Modern Electrodynamics
In his Lectures on Physics, Richard Feynman asserts that “ten thousand years from now, there can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics”. Whether this prediction is borne out or not, it is impossible to deny the significance of Maxwell’s achievement to the history, practice, and future of physics. That is why electrodynamics has a permanent place in the physics curriculum, along with classical mechanics, quantum mechanics, and statistical mechanics. Of these four, students often find electrodynamics the most challenging. One reason is surely the mathematical demands of vector calculus and partial differential equations. Another stumbling block is the non-algorithmic nature of electromagnetic problem-solving. There are many entry points to a typical electromagnetism problem, but it is rarely obvious which lead to a quick solution and which lead to frustrating complications. Finally, Freeman Dyson points to the “two-level” structure of the theory.1 A first layer of linear equations relates the electric and magnetic fields to their sources and to each other. A second layer of equations for force, energy, and stress are quadratic in the fields. Our senses and measurements probe the second-layer quantities, which are determined only indirectly by the fundamental first-layer quantities.
INTRODUCTION TO QUANTUM MECHANICS
Unlike Newton’s mechanics, or Maxwell’s electrodynamics, or Einstein’s relativity, quantum theory was not created—or even definitively packaged—by one individual, and it retains to this day some of the scars of its exhilarating but traumatic youth. There is no general consensus as to what its fundamental principles are, how it should be taught, or what it really “means.” Every competent physicist can “do” quantum mechanics, but the stories we tell ourselves about what we are doing are as various as the tales of Scheherazade, and almost as implausible. Niels Bohr said, “If you are not confused by quantum physics then you haven’t really understood it”; Richard Feynman remarked, “I think I can safely say that nobody understands quantum mechanics.”
Usted puede contribuir con Libros UCLV, es importante para nosotros su aporte..
Contribuir