
www.it-ebooks.info

http://www.it-ebooks.info/

NGINX High Performance

Optimize NGINX for high-performance, scalable web
applications

Rahul Sharma

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

NGINX High Performance

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1100715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-183-9

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Rahul Sharma

Reviewers
Titouan Galopin

Tatsuhiko Kubo

Commissioning Editor
Veena Pagare

Acquisition Editor
Shaon Basu

Content Development Editor
Sumeet Sawant

Technical Editor
Shashank Desai

Copy Editor
Sarang Chari

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Rahul Sharma works as a principal consultant with Xebia India. He has 10 years of
experience in building and designing applications on the Java and J2EE platforms. He
is an open source enthusiast and has contributed to a variety of open source projects,
such as Apache Crunch, Apache Provisionr, Apache HDT, and so on. In his career, he
has worked with companies of various sizes, from enterprises to start-ups, and has
used NGINX along the way. He often speaks at various technical meetups and shares
his knowledge on his personal blog at https://devlearnings.wordpress.com/.

www.it-ebooks.info

https://devlearnings.wordpress.com/
http://www.it-ebooks.info/

About the Reviewers

Titouan Galopin is a certified PHP/Symfony French web architect from Paris. He
has worked for various companies, including Ademis, Emakina, LIIP, and Coburo.

Titouan graduated in computer science and information technology from the
Paris-Saclay University, and he is currently pursuing an engineering degree from
the University of Technology of Compiègne.

First as a web developer and then as a web architect since 2012, Titouan has worked
on NGINX intensively to improve its performance as much as possible. In the few
years of his work, he has accumulated a lot of experience with NGINX, and he is
now an expert in optimizing it to serve web content.

Tatsuhiko Kubo is a software engineer in infrastructure engineering and has a
strong passion for open source software. His contribution to the development and
publication of works on various kinds of open source software is his life's work. His
usual work includes the development and operation of various kinds of middleware.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 vii
Chapter 1: Working with NGINX	 1

The NGINX architecture	 2
Installing NGINX from source	 3

Build requirements	 4
The ANSI C compiler and build system	 4
libatomic_ops and AIO – optional requirements	 5
Perl – an optional requirement	 5
The Perl Compatible Regular Expressions library – an optional requirement	 5
OpenSSL – an optional requirement	 6
Zlib – an optional requirement	 6

Configuring NGINX	 6
Configuring NGINX defaults	 7
Configuring NGINX modules	 8
Configuring NGINX for the Web	 9
Configuring NGINX for e-mail	 13
Configuring third-party modules	 13
NGINX – the complete package	 13

Building and installing NGINX	 15
Deploying in NGINX	 16
Deploying NGINX	 17

Summary	 20
Chapter 2: Benchmarking the Server	 21

Performance testing	 21
Using timeouts	 22

Baselines	 23
A note about tools	 23

Generating metrics using Siege	 24
Installing Siege	 24
Running Siege	 26

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Siege test results	 28
Generating metrics using Apache JMeter	 29

Installing JMeter	 29
Installing Java	 30

Setting JAVA_HOME	 31
Running JMeter	 32
Components of JMeter	 33

Threads	 33
Sampler	 33
Configuration elements	 33
Assertions	 34
Listeners	 34
Test plan	 34

Building JMeter test plans	 34
JMeter test results	 40

Summary	 41
Chapter 3: Tweaking NGINX Configuration	 43

NGINX configuration syntax	 43
Configuring NGINX workers	 45

worker_processes	 45
accept_mutex	 46
accept_mutex_delay	 46
worker_connections	 47
worker_rlimit_nofile	 47
multi_accept	 48
use	 48

Configuring NGINX I/O	 50
Sendfile	 51
Direct I/O	 51
Asynchronous I/O	 52
Mixing them up	 53

Configuring TCP	 54
TCP_NODELAY	 54
TCP_CORK	 55
Setting them up	 55

Setting up the server	 56
Measuring gains	 57

Summary	 58
Chapter 4: Controlling Buffers, Timeouts, and Compression	 59

Configuring buffers	 59
client_body_buffer_size	 60

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

client_max_body_size	 60
client_body_in_file_only	 60
client_body_in_single_buffer	 61
client_body_temp_path	 61
client_header_buffer_size	 62
large_client_header_buffers	 62

Configuring timeouts	 62
keepalive	 63

keepalive_timeout	 64
keepalive_requests	 65
keepalive_disable	 65

send_timeout	 66
client_body_timeout	 66
client_header_timeout	 66

Compression	 67
ngx_http_gzip_module	 67

gzip	 67
gzip_comp_level	 67
gzip_min_length	 68
gzip_types	 68
gzip_proxied	 68
gzip_http_version	 69
gzip_vary	 69
gzip_disable	 69

ngx_http_gzip_static_module	 70
gzip_static	 70

ngx_http_gunzip_module	 70
gunzip	 71

Configuring logs	 71
access_log	 71
log_format	 72
log_subrequest	 72
error_log	 72
log_not_found	 73

Setting up the server	 73
Measuring gains	 74

Summary	 77
Chapter 5: Configuring the Network Stack	 79

TCP buffers	 79
The TCP window	 82
TCP control algorithms	 83

TCP states	 84

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Raising server limits	 86
The queue size	 86
The listen socket queue size	 86
Half-opened connections	 87
Ephemeral ports	 87
Open files	 88

Setting up the server	 89
Summary	 90

Chapter 6: Using NGINX Cache	 91
Caching static content	 91

open_file_cache	 92
open_file_cache_valid	 92
open_file_cache_min_uses	 93
open_file_cache_errors	 93
Setting up the server	 93

Caching dynamic content	 94
Using FastCGI and the related cache	 94

Installing PHP	 94
Deploying PHP scripts	 96
Configuring php-fpm	 98
Configuring NGINX FastCGI	 99
Setting up the server	 102
Configuring the FastCGI cache	 103

Using Proxy and the related cache	 107
Installing Python and Flask	 108

Building a Python application	 109
Configuring NGINX Proxy	 111

proxy_pass	 112
proxy_method	 112
proxy_set_header	 112
proxy_http_version	 113
proxy_pass_request_headers / proxy_pass_request_body	 113
proxy_ignore_headers	 113
proxy_connect_timeout / proxy_send_timeout / proxy_read_timeout	 114
proxy_store / proxy_store_access	 114
proxy_cache_path	 115
proxy_cache_key	 115
proxy_cache	 116
proxy_cache_valid	 116
proxy_no_cache	 116
proxy_cache_bypass	 117
proxy_cache_methods	 117

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

proxy_cache_use_stale	 117
Setting up the server	 118

Using Memcache	 119
memcached_pass	 120
memcached_connect_timeout / memcached_send_timeout /
memcached_read_timeout	 120
memcached_bind	 121
Setting up the server	 121
Measuring gains	 123

Summary	 124
Chapter 7: Extending NGINX	 125

The Lua scripting language	 125
The NGINX Lua module	 128

Installation	 128
Directives	 130

lua_package_path	 131
lua_shared_dict	 131
init_by_lua/init_by_lua_file	 131
set_by_lua/set_by_lua_file	 131
content_by_lua/content_by_lua_file	 132
header_filter_by_lua/header_filter_by_lua_file	 132
body_filter_by_lua/body_filter_by_lua_file	 133
access_by_lua/access_by_lua_file	 133
rewrite_by_lua/rewrite_by_lua_file	 134
log_by_lua/log_by_lua_file	 134

The NGINX-Lua API	 134
ngx.arg	 135
ngx.var.varName	 135
ngx.say/ngx.print	 135
ngx.location.capture/ngx.location.capture_multi	 135
ngx.ctx	 136
ngx.status	 136
ngx.header.HeaderField	 136
ngx.req.functions	 136
ngx.shared.DictionaryName	 137
ngx.socket.tcp	 137

NGINX Lua libraries	 138
Setting up the server	 139

The problem statement	 139
Statement	 139

Summary	 142
Index	 143

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
NGINX is one of the most widely used web servers on the Internet. The server
is often named when one is looking to deliver better performance with the same
hardware. The server has a state-of-the-art event-based architecture, which enables it
to deliver hundreds of thousands of concurrent connections on standard hardware.

As a first step, adopting NGINX leads to better results. However, as with any piece of
software, NGINX can also be optimized to serve content faster. This book provides ways
to optimize NGINX for last-mile performance. It also aims to provide insights into the
NGINX architecture for you to understand it better. The book is not an NGINX learning
book and is intended for people with some experience with NGINX. The book only
explains those parts of the NGINX configuration that have an impact on performance.

Besides NGINX optimization, the book also talks about the process of benchmarking
and about baselines to quantify the gains made. This is an end-to-end book that helps
you to tweak the NGINX server's performance.

What this book covers
Chapter 1, Working with NGINX, talks about NGINX's high-performance architecture.
It also explains the various modules available in NGINX. The chapter lists details of
the amenability of the server to customization. In the end, the chapter builds a simple
configuration to deploy example web pages in NGINX.

Chapter 2, Benchmarking the Server, explains performance testing to generate baselines.
Siege and JMeter are tools used to measure and benchmark the performance of your
server. The chapter aims to generate metrics for the web pages deployed in Chapter 1,
Working with NGINX, which can be compared to see performance changes.

Chapter 3, Tweaking NGINX Configuration, covers the parameters: Worker and
Worker_process, the use method and multi_accept, Sendfile, directio and aio,
tcp_nodely, and tcp_nopush.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 4, Controlling Buffers, Timeouts, and Compression, lists the features: keeplive,
send timeouts, client buffers, gzip compression, and controlling logs.

Chapter 5, Configuring the Network Stack, lists details about tweaking the TCP options
to achieve better network utilization. This chapter also talks about various server
defaults that need to be customized.

Chapter 6, Using NGINX Cache, shows that NGINX can cache static content, as well
as dynamic content. The server provides various directives to cache content. The
chapter lists ways to use caches, namely FastCGI Cache, NGINX Proxy Cache, and
Memcache, to render content.

Chapter 7, Extending NGINX, provides details of HttpLuaModule, which can be used
to extend NGINX for all kinds of activities. The module enables support for Lua,
which is a powerful, fast, lightweight, embeddable scripting language. The chapter
aims to build an SEO check using Lua.

What you need for this book
You'll require the following software:

•	 NGINX 1.7.x
•	 JMeter
•	 Siege
•	 PHP and PHP-FPM
•	 Python and Flask
•	 Memcache

Who this book is for
A system administrator or developer looking for ways to extract the maximum
performance from NGINX will find this book useful. If you are facing various
challenges, such as handling more users from the same system and aiming to load
your website pages faster, then this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The worker then uses the available event-notification interfaces, such as epoll and
kqueue, to process each connection in an efficient event loop."

A block of code is set as follows:

location /hello {
 alias "$ABSOLUTE_PATH_TO_CODE";
 }

Any command-line input or output is written as follows:

curl -I http://nginx.org

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "This module allows
us to return either the 444 error or the 204 error in low-memory conditions."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[x]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

[1]

Working with NGINX
Igor Sysoev started developing NGINX in 2002. The first version was aimed at
delivering static content on web scale. It was released to the public in 2004, thus
solving Daniel Kegel's C10K problem of 10,000 simultaneous connections. NGINX
adapted a modular, asynchronous, event-based, nonblocking architecture, which
works well to deliver tens of thousands of concurrent connections on a server with
typical hardware.

In this chapter, we will cover the following topics:

•	 The NGINX architecture
•	 Installing NGINX from source
•	 Configuring NGINX for HTTP
•	 Deploying a "Hello world!" page

www.it-ebooks.info

http://www.it-ebooks.info/

Working with NGINX

[2]

The NGINX architecture
NGINX has its foundation in event-based architecture (EBA). In EBA, components
interact predominantly using event notifications instead of direct method calls. These
event notifications, occurring from different tasks, are then queued for processing
by an event handler. The event handler runs in an event loop, where it processes an
event, de-queues it, and then moves on to the next event. Thus, the work executed by
a thread is very similar to that of a scheduler, multiplexing multiple connections to a
single flow of execution. The following diagram shows this:

When compared with the thread-based architecture, EBA gives better performance
output. In EBA, there are a fixed number of threads performing tasks and no new
threads are formed. Thus, we achieve better utilization of the CPU and an improved
memory footprint. There is also no overhead of excessive context switching and
no need for a thread stack for each connection. Ideally, the CPU becomes the only
apparent bottleneck of an event-driven application.

NGINX runs one master process and several worker processes. The master process
reads/evaluates the configuration and maintains the worker processes. All request
processing is done by the worker processes. NGINX does not start workers for every
request. Instead, it has a fixed pool of workers for request processing. Each worker
accepts new requests from a shared listen queue. The worker then uses the available
event-notification interfaces, such as epoll and kqueue, to process each connection
in an efficient event loop. The idea is to optimize the utilization of the server's
resources using nonblocking/asynchronous mechanisms when possible. By doing
so, each worker is able to process thousands of connections. The following diagram
shows this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

NGINX has an extensible modular architecture. There is a core module (ngx_core_
module), which is responsible for connection handling. Then, there are modules
for every kind of processing that NGINX offers, for instance an HTTP module
(ngx_http_core_module) for HTTP processing, an e-mail module (ngx_mail_core_
module) for e-mail processing, a proxy module (ngx_http_proxy_module), and
so on. The modular system is quite extensible and allows third-party developers
to extend NGINX beyond its existing capabilities. Each worker loads a chain of
modules as specified in the NGINX configuration. Every request that a worker
handles goes through the loaded chain of modules.

Installing NGINX from source
NGINX can be downloaded from http://nginx.org/. The site provides a stable
package and a mainline version package. Both versions are quite stable, and either
of them can be used to build NGINX for production environments. The mainline
version contains all active development. This essentially means that all new features
and noncritical bug fixes are developed here. At times, this may also cause certain
third-party modules to break due to a change in the internal APIs. The stable version
only gets the critical bug fixes. New features and noncritical bug fixes are not ported
to the stable version. NGINX has a well-maintained documentation available at
http://nginx.org/en/docs/. The documentation is a great source of information
related to NGINX features, internals, and recipes.

www.it-ebooks.info

http://nginx.org/
http://nginx.org/en/docs/
http://www.it-ebooks.info/

Working with NGINX

[4]

Nginx.org runs the released mainline version. You can
check this using the following curl command:
curl -I http://nginx.org

The preceding command will print HTTP headers, which
list the server they run on:
HTTP/1.1 200 OK

Server: nginx/1.7.7

Content-Type: text/html; charset=utf-8

Build requirements
Before we start building NGINX, we need to make sure that your system meets the
requirements mentioned in the following pages.

The ANSI C compiler and build system
As NGINX is written in C, GNU C Compiler (GCC) is recommended to build this.
So, make sure you have gcc installed on your box. In addition to this, make sure that
PATH contains essential build tools, such as make.

Install the build-essential package using the following code to get the
complete set of tools:
$ sudo apt-get install build-essential

NGNIX provides options to customize/optimize the compilation and linking done
by the C compiler. You could also specify a C compiler and preprocessor that is not
in PATH:

•	 --with-cc: This specifies an alternative C compiler location to the one
in PATH.

•	 --with-cpp: This provides the C preprocessor's location.
•	 --with-cc-opt: This specifies the additional options that are passed to the

C compiler. You can pass options to include libraries, for example, -I /usr/
local/include.

•	 --with-ld-opt: This specifies additional options that are passed to Linker.
You can pass options to link libraries, for example, -L /usr/local/lib.

•	 --with-cpu-opt: This platform argument can be specified so that a build can
be optimized for a specific architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

libatomic_ops and AIO – optional requirements
NGINX can use libatomic_ops for memory update operations. The library
allows atomic updates, thus removing the lock handling involved in accessing
shared memory. You can install the required package and use it with the --with-
libatomic configuration parameter. Optionally, you can also download the library
from https://github.com/ivmai/libatomic_ops and point to it using the
--with-libatomic configuration parameter.

Linux offers asynchronous I/O (AIO). This allows applications to overlap I/O
operations with other processing, thus enabling better utilization of resources.
NGINX can use this by using the --with-file-aio configuration parameter.

Install the libaio1, libatomic-ops, and libatomic-ops-dev
packages to get the required libraries, as shown in the following code:
$ sudo apt-get install libaio1 libatomic-ops libatomic-
ops-dev

Perl – an optional requirement
NGINX-embedded Perl (ngx_http_perl_module) requires Perl to be installed
on your box. The module can be used to build Perl-based configurations in
NGINX configuration files. You could also download/build the Perl binary from
http://www.perl.org/ and point to it using the --with-perl parameter. Perl
modules, used in configurations, can be located with --with-perl modules
configuration parameters.

Install the Perl package as follows to get the required binaries:
$ sudo apt-get install perl

To know about the available modules, use the following code:
$ apt-cache search geo::ipfree

The Perl Compatible Regular Expressions
library – an optional requirement
The NGINX HTTP rewrite (ngx_http_rewite_module) module requires the support
of the Perl Compatible Regular Expressions (PCRE) library. You could install the
package, or you could download the sources from http://www.pcre.org/ and point
to it using the --with-pcre configuration parameter. Additional parameters can be
passed with the --with-pcre-opt argument; they are passed to the PCRE library.

www.it-ebooks.info

https://github.com/ivmai/libatomic_ops
http://www.perl.org/
http://www.pcre.org/
http://www.it-ebooks.info/

Working with NGINX

[6]

Install the libpcre3 and libpcre3-dev packages as follows to get
the required libraries:
$ sudo apt-get install libpcre3 libpcre3-dev

OpenSSL – an optional requirement
NGINX provides strong cryptography using SSL and TLS protocols. This requires
the OpenSSL package to be available on your box. Optionally, you could download
the OpenSSL source from http://www.openssl.org/ and point to it using the
--with-openssl option. Additional parameters can be passed with the --with-
openssl-opt argument; they are passed to the OpenSSL library.

Install the openssl and libssl-dev packages as follows to get
the required libs:
$ sudo apt-get install openssl libssl-dev

NGINX, by default, does not enable the SSL module. It can be enabled using the
–with-http_ssl_module configuration.

Zlib – an optional requirement
NGINX can compress HTTP responses in gzip. In order to do this, it requires
the support of the Zlib library. You could either install the package or download
the sources from http://www.zlib.net/ and point to it using the --with-zlib
configuration parameter.

Install the zlib1g and zlib1g-dev packages as follows to get
the required libs:
$ sudo apt-get install zlib1g zlib1g-dev

Configuring NGINX
Download and extract the NGINX src package .tar.gz archive from
http://nginx.org/en/download.html. Use the following command:

$ wget http://nginx.org/download/nginx-1.7.9.tar.gz

Next, configure NGINX in the following manner:

$ cd nginx-1.7.9

$./configure

www.it-ebooks.info

http://www.openssl.org/
http://www.zlib.net/
http://nginx.org/en/download.html
http://www.it-ebooks.info/

Chapter 1

[7]

The configure command will generate a default NGINX configuration in the
form of Makefile. The following output shows the generated configuration of the
NGINX binary:

 Configuration summary

 + using PCRE library: ../pcre-8.35

 + OpenSSL library is not used

 + md5: using system crypto library

 + sha1: using system crypto library

 + using system zlib library

 nginx path prefix: "/usr/local/nginx"

 nginx binary file: "/usr/local/nginx/sbin/nginx"

 nginx configuration prefix: "/usr/local/nginx/conf"

 nginx configuration file: "/usr/local/nginx/conf/nginx.conf"

 nginx pid file: "/usr/local/nginx/logs/nginx.pid"

 nginx error log file: "/usr/local/nginx/logs/error.log"

 nginx http access log file: "/usr/local/nginx/logs/access.log"

 nginx http client request body temporary files: "client_body_temp"

 nginx http proxy temporary files: "proxy_temp"

 nginx http fastcgi temporary files: "fastcgi_temp"

 nginx http uwsgi temporary files: "uwsgi_temp"

 nginx http scgi temporary files: "scgi_temp"

The configuration step provides loads of options to alter default paths and
enable/disable all kinds of modules available with NGINX. Using these, you can
configure NGINX as per your requirements. This step requires some thought as,
once NGINX binaries are built for a configuration, they cannot be altered for default
paths or for the support of disabled modules.

Configuring NGINX defaults
NGINX provides options to change default paths, configuration filenames, log files,
and so on. It is not mandatory to provide these options. They have a default value,
which is used if the option is not specified:

•	 --prefix : /usr/local/nginx: This specifies the path where NGINX will
be installed. All other paths are relative to this location.

•	 --sbin-path : prefix/sbin/nginx: This specifies the name of the NGINX
executable binary file.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with NGINX

[8]

•	 --conf-path : prefix/conf/nginx.conf: NGINX can run a configuration
file using the -c filename runtime arguments. If that is not specified, NGINX
tries to load a default configuration specified by this option.

•	 --pid-path : prefix/logs/nginx.pid: The NGINX runtime
configuration can specify a PID file, the location to store the process ID of
the main process. If the pid directive is missing from the configuration file,
NGINX stores the information at the location specified by this option.

•	 --lock-path : prefix/logs/nginx.lock: NGINX maintains a lock for
shared access to resources. The runtime configuration can specify the lock
file. If the lock directive is missing from the configuration file, NGINX stores
the information at the location specified by this option.

•	 --error-log-path : prefix/logs/error.log: An error log path can be
specified in the NGINX runtime configuration. If the error_log directive
is missing in the specified configuration, then NGINX writes the log at the
location specified by this option.

•	 --http-log-path : prefix/logs/access.log: The HTTP-access log paths
can be specified in the NGINX runtime configuration. If the access_log
directive is missing in the specified configuration, NGINX writes logs at the
location specified by this option.

•	 --with-debug: This option enables a detailed debug log in NGINX. This
option is not enabled by default.

•	 --user : nobody: The NGINX runtime configuration can specify an
unprivileged user run NGINX worker processes.

•	 --group : nobody: The NGINX runtime configuration can specify a group
that will own NGINX worker processes.

•	 --build: This option assigns a name to the generated binary. The name
would be available in the NGINX -v command.

Configuring NGINX modules
NGINX has an extensive set of features. It can be used as a web server, a web cache,
a load balancer, an e-mail proxy, and so on. All these features of NGINX are
compiled and configured as modules. Certain modules are enabled by default, while
some need to be enabled. Modules should be carefully selected when building a
high-performance system to keep a low memory footprint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Configuring NGINX for the Web
NGINX, by default, installs the HTTP module. The HTTP server can be disabled
using the --without-http configuration parameter. Along with the HTTP
module, NGINX also enables the following modules by default. The modules can
be disabled selectively using the specified configuration parameter. Here is a list
of a few parameters:

•	 --without-http_access_module: This module allows us to control access
from a limited set of IP addresses.

•	 --without-http_autoindex_module: This module builds the index
file, which can generate a directory listing for requests ending with a
forward slash (/).

•	 --without-http_auth_basic_module: This module allows access control
using the basic authentication protocol.

•	 --without-http_browser_module: This module enables us to create
variables based on the value of the User-Agent request header field.

•	 --without-http_charset_module: This module enables the conversion of
the response data between different character encodings and the setting of
the Content-Type response header field.

•	 --without-http_empty_gif_module: This module allows NGINX to serve
a 1 x 1 transparent GIF from memory.

•	 --without-http_fastcgi_module: This module allows NGINX to send
requests to the FastCGI server.

•	 --without-http_geo_module: This module allows us to set up
configuration variables based on the client IP address. The variables can then
be used in other modules for certain actions.

•	 --without-http_gzip_module: This module allows us to compress
responses in the gzip format, thus reducing the amount of bytes transferred.

•	 --without-http-cache: NGINX is capable of using the HTTP cache, that
is, setting the correct request headers to enable content caching. This can be
used when NGINX is set up as a proxy to an upstream content provider.
The option can disable the cache, but it is not advisable as the cache is quite
handy in most setups.

•	 --without-http_limit_conn_module: This module allows us to control the
number of concurrent connections from a single IP. Post limits, it sends the
503 error response.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with NGINX

[10]

•	 --without-http_limit_req_module: This module allows us to define
the request processing rate for particular keys. It keeps track of requests
from a single IP, queuing them if the request rate exceeds the defined
processing rate. After the maximum queue size has been reached, it sends
a 503 error response.

•	 --without-http_map_module: This module allows us to set up
configuration variables that derive value from other existing variables.

•	 --without-http_memcached_module: This module allows NGINX to serve
requests directly from a memcached server. The memcached server should
contain the response in advance by means external to NGINX.

•	 --without-http_proxy_module: This module enables NGINX to send
requests to other servers.

•	 --without-http_referer_module: This module allows NGINX to filter
requests based on the values in the Referrer header field.

•	 --without-http_rewrite_module: This module allows NGINX to
manipulate URLs, using regular expressions, based on certain conditions.

•	 --without-http_scgi_module: This module allows NGINX to send
requests to the SCGI server.

•	 --without-http_split_clients_module: This module allows NGINX to
configure variables for A/B testing.

•	 --without-http_ssi_module: This module enables NGINX to process
SSI commands

•	 --without-http_upstream_ip_hash_module --without-http_upstream_
keepalive_module --without-http_upstream_least_conn_module

These modules enable load-balancing capabilities in NGINX. A number of
servers can be grouped together to provide upstream content to NGINX.
The upstream group can distribute requests between them using any of the
following methods:

°° client IP address hash

°° keep-alive parameters

°° number of connected clients

NGINX has separate modules depending on the method selected for
request distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

•	 --without-http_userid_module

This module allows NGINX to use cookies for client identification.

•	 --without-http_uwsgi_module

This module allows NGINX to send requests to the uWSGI server.
Besides the preceding modules, which are enabled by default, the NGINX
catalog has modules that can offer a range of features, such as SSL support,
streaming media, and so on. These modules are disabled by default and need
to be enabled at compile time. The following is the list of modules that can be
enabled at compile time.

•	 --with-http_addition_module: This module can modify the response
returned for a given request. It adds a response from another subrequest
before and after the actual response.

•	 --with-http_auth_request_module: The module can enable client
authorization based on the subrequest. The client accesses protected resources,
which trigger a subrequest for authorization. Depending on the response code
received, access is allowed (2xx) or denied (401 error/403 error).

•	 --with-http_degradation_module: This module allows us to return either
the 444 error or the 204 error in low-memory conditions. This module is not
available on Linux platforms.

•	 --with-http_perl_module: This module allows you to insert Perl code into
your NGINX configuration files and to make Perl calls from SSI.

•	 --with-http_flv_module: This module provides support to stream Flash
media files.

•	 --with-http_geoip_module: This module allows us to use Maxmind
GeoIP-Databases to build custom variables based on client IP addresses.

Note that in order to use this module, you need to have the
Maxmind library in your path.

•	 --with-http_google_perftools_module: This module allows you to use
Google's performance tools (http://code.google.com/p/gperftools/) to
profile NGINX workers.

www.it-ebooks.info

http://code.google.com/p/gperftools/
http://www.it-ebooks.info/

Working with NGINX

[12]

•	 --with-http_gzip_static_module: This module enables NGINX to serve
precompressed static content in the .gz form.

•	 --with-http_image_filter_module: This module allows image
transformation using the libgd library.

Note that in order to use this module, you need to have the libgd
library in your PATH.

•	 --with-http_mp4_module: This module enables the streaming of MP4 files.
•	 --with-http_random_index_module: This module enables NGINX to

randomly select and serve any file in a directory as the index file.
•	 --with-http_realip_module: This module can be used to correctly

determine the client IP. If NGINX is used behind a proxy or a load balancer,
then the module can extract the client IP from the correct header field.

•	 --with-http_secure_link_module: This module is used to access control of
locations by generating checksums.

•	 --with-http_spdy_module: This module enables support for the SPDY
protocol.

•	 --with-http_ssl_module: This module enables HTTPS support in NGINX.
•	 --with-http_stub_status_module: This module builds basic server

statistics.
•	 --with-http_sub_module: This module modifies the generated response by

replacing certain search strings with replacement strings.
•	 --with-http_dav_module: This module extends support for the WebDAV

protocol over HTTP.
•	 --with-http_xslt_module: This module modifies the generated response

using XSLT transformations.

Note that you need to have the libxml2 and libxslt
libraries in your PATH.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Configuring NGINX for e-mail
NGINX has the capability to serve as an e-mail proxy. It supports POP3, IMAP, and
SMTP protocols along with SSL capabilities. The e-mail modules are disabled by
default. They need to be configured with the following parameters:

•	 --with-mail: This module enables e-mail capabilities. It enables POP3,
IMAP, and SMTP modules.

•	 --with-mail_ssl_module: This module enables the support for the
SSL/TLS protocols for e-mail services.

•	 --without-mail_pop3_module: This module enables the support for the
POP3 protocol. The module is enabled by the e-mail module.

•	 --without-mail_imap_module: This module enables the support for the
IMAP protocol. This module is enabled by the e-mail module.

•	 --without-mail_smtp_module: This module enables the support for the
SMTP protocol. The module is enabled by the e-mail module.

Configuring third-party modules
NGINX is completely modular in nature, which essentially means that you can build
your own modules to extend its existing capabilities. The NGINX community has
built a large number of third-party modules that can perform various tasks. If you
want to use a few of these modules, you need to compile them with the NGINX
source. Download the module source and point to the source using the --add-module
configure parameter. You can add as many modules as you want.

The NGINX official release does not support these modules, so make
sure that you test the binaries before setting them up for production.
If you are building from the mainline source, then modules relying on
internal APIs can break while moving from one version to another.

NGINX – the complete package
Now that you know how to configure the available modules in NGINX, you may
want to customize the binary as per your needs. While you are enabling/disabling
modules, do make a note of all the libraries that NGINX will rely on. For the modules
available from the NGINX catalog, it may be a good idea to download the required
sources and point to them using correct parameters. The following command
configures an NGINX binary:

$./configure \

 --prefix=/etc/nginx \

www.it-ebooks.info

http://www.it-ebooks.info/

Working with NGINX

[14]

 --user=www-data \

 --group=www-data \

 --without-http_uwsgi_module \

 --without-http_scgi_module \

 --without-http_fastcgi_module \

 --without-http_geo_module \

 --without-http_browser_module \

 --without-http_upstream_keepalive_module \

 --without-http_browser_module \

 --without-http_ssi_module \

 --with-openssl=../openssl-1.0.2a \

 --with-pcre=../pcre-8.36 \

 --with-http_ssl_module \

 --with-http_realip_module \

 --with-http_sub_module \

 --with-http_gzip_static_module \

 --with-http_secure_link_module \

 --with-http_stub_status_module \

 --with-libatomic=../libatomic_ops-7.2 \

 --with-file-aio

The following output summary lists the libraries used and the NGINX defaults
generated. Makefile, which is generated as a result of the preceding code, can be
used to build and install the NGINX binary. Here's the output summary of the
preceding command:

Configuration summary

 + using PCRE library: ../pcre-8.36

 + using OpenSSL library: ../openssl-1.0.2a

 + md5: using OpenSSL library

 + sha1: using OpenSSL library

 + using system zlib library

 + using libatomic_ops library: ../libatomic_ops-7.2

 nginx path prefix: "/etc/nginx"

 nginx binary file: "/etc/nginx/sbin/nginx"

 nginx configuration prefix: "/etc/nginx/conf"

 nginx configuration file: "/etc/nginx/conf/nginx.conf"

 nginx pid file: "/etc/nginx/logs/nginx.pid"

 nginx error log file: "/etc/nginx/logs/error.log"

 nginx http access log file: "/etc/nginx/logs/access.log"

 nginx http client request body temporary files: "client_body_temp"

 nginx http proxy temporary files: "proxy_temp"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Building and installing NGINX
The configure command generated Makefile for the specified configuration.
Makefile can now be used to install NGINX in the following manner:

$ make

$ sudo make install

The preceding command shows the output listing the locations of installation:

test -d '/etc/nginx' || mkdir -p '/etc/nginx'

test -d '/etc/nginx/sbin' || mkdir -p '/etc/nginx/sbin'

test ! -f '/etc/nginx/sbin/nginx' || mv
'/etc/nginx/sbin/nginx' '/etc/nginx/sbin/nginx.old'

cp objs/nginx '/etc/nginx/sbin/nginx'

test -d '/etc/nginx/conf' || mkdir -p '/etc/nginx/conf'

cp conf/koi-win '/etc/nginx/conf'

cp conf/koi-utf '/etc/nginx/conf'

cp conf/win-utf '/etc/nginx/conf'

test -f '/etc/nginx/conf/mime.types' || cp
conf/mime.types '/etc/nginx/conf'

cp conf/mime.types '/etc/nginx/conf/mime.types.default'

test -f '/etc/nginx/conf/fastcgi_params' || cp
conf/fastcgi_params '/etc/nginx/conf'

cp conf/fastcgi_params '/etc/nginx/conf/fastcgi_params.default'

test -f '/etc/nginx/conf/fastcgi.conf' || cp
conf/fastcgi.conf '/etc/nginx/conf'

The make command prints lot of debugging information, for
example, the library paths, the default configuration paths, and so
on. You can run it with the -s option to disable all the information.

After installation, NGINX is available in the specified prefix directory. You can go to
the specified location and run it with the sudo command. Alternatively, you can add
it to PATH using update-alternatives and then run it. The following command
shows this:

$ sudo update-alternatives --install /usr/bin/nginx nginx
/etc/nginx/sbin/nginx 1

$ sudo nginx

www.it-ebooks.info

http://www.it-ebooks.info/

Working with NGINX

[16]

You can check this by loading http://localhost in your browser. It should display
the following NGINX page:

Deploying in NGINX
Now that we have successfully installed NGINX, we want to try out some
deployments in NGINX.

In this section, we have a Hello world! web page that we will deploy in NGINX.
The code uses the Bootstrap library, which needs to be packaged with the code.
The complete package has the following structure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

The following is the HTML markup of index.html:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Using Nginx</title>
 <link href="css/bootstrap.min.css" rel="stylesheet">
 </head>
 <body>
 <div class="container">
 <div class="jumbotron">
 <h1>Hello world!</h1>
 <p>Deploying in Nginx<p>
 </div>
 </div>
 </body>
</html>

In this HTML markup, we will display the heading "Hello, world!" and a bit of text
on the web page, which has the title Using Nginx. The Bootstrap CSS has been used to
style the content. You can download it from http://getbootstrap.com/getting-
started/ or use the wget command from a CDN and add it to the css folder:

$ wget https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/css/bootstrap.min.
css

Details of the HTML source code will not be covered here as they are beyond the
scope of the book. The purpose of this code is to deploy a simple web page in NGINX.

Deploying NGINX
We want to load the page created previously at the location http://localhost/hello.
In order to do so, we need to write a configuration block using the following directives:

•	 location: This defines a configuration for a URI. The location URI can be a
prefix or a regular expression.

•	 alias: This defines the directory path for the specified location directive.
This is the location from where all the files are served.

•	 include: This allows the inclusion of the configuration blocks defined in one
file in another file.

www.it-ebooks.info

http://getbootstrap.com/getting-started/
http://getbootstrap.com/getting-started/
http://www.it-ebooks.info/

Working with NGINX

[18]

NGINX, by default, loads the deployment from nginx.conf in the installation
directory.

In the preceding section, NGINX was installed in /etc/nginx, thus
nginx.conf should be available in /etc/nginx/conf/nginx.
conf.
NGINX allows us to write configurations across multiple files as
logical units. We can include these files in a main file to define the
complete configuration. Rather than writing configuration blocks in
nginx.conf, we will create new files and then include them in the
required locations in nginx.conf.

For our purposes, we will create nginx-localhost-server.conf in the /etc/
nginx/conf directory with the following configuration block:

location /hello {
 alias "$ABSOLUTE_PATH_TO_CODE";
 }

Here, we have defined the /hello location and set it to serve from index.html at
$ABSOLUTE_PATH_TO_CODE. When the page is loaded, it tries to load the CSS from
/hello/css/bootstrap.min.css. The location directive successfully matches the
/hello prefix and serves the CSS from the $ABSOLUTE_PATH_TO_CODE/css path.

The /hello prefix needs to available in the localhost server's name; thus, we need
to include nginx-localhost-server.conf in the block, which defines the localhost
server in nginx.conf. The following code shows this:

server_name localhost;

include the hello location
include nginx-localhost-server.conf;

location / {
 root html;
 index index.html index.htm;
}

Now, all that is left for us to do is reload NGINX. It is always a good idea to test the
NGINX configuration before loading. Testing can flag up possible errors arising from
invalid configurations, which would be discovered while loading NGINX. Use the -t
switch to test the configuration, as shown in the following code:

$ sudo nginx -t

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

If the test is successful, the command will print the following output; otherwise, it
will print the errors found, if any:

nginx: the configuration file /etc/nginx/conf/nginx.conf syntax is ok

nginx: configuration file /etc/nginx/conf/nginx.conf test is
successful

Once we have verified the configuration, reload NGINX with the following
configuration:

$ sudo nginx -s reload

Verify the page at http://localhost/hello. It should show the following content:

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with NGINX

[20]

Summary
This chapter gave insights into the components of the performance-oriented
NGINX architecture and the EBA model. NGINX was compiled from source with
components that suit our requirements. The custom build package was installed and
a sample web page was deployed to it.

The purpose of this chapter was to give you a crash course in NGINX. In the
subsequent chapters, we will see ways to measure your NGINX website's
performance and optimize it for the last mile.

www.it-ebooks.info

http://www.it-ebooks.info/

[21]

Benchmarking the Server
Benchmarking the server is the process of generating metrics of the throughput,
responsiveness, and reliability of the application response. This is the precursor to
server optimization since the generated metrics serve as a baseline that can be used
to know the effectiveness of any optimization done.

The following sections list the ways and tools to benchmark your server:

•	 Performance testing and baselines
•	 Generating metrics using Siege
•	 Generating metrics using Apache JMeter

Performance testing
The idea of performance testing is to put the system under pressure and determine
various quality attributes, such as stability, responsiveness, and so on. These
attributes can serve multiple purposes, such as the following:

•	 Validating whether the application meets a criterion
•	 Validating whether the system can perform in extreme conditions
•	 Comparing different applications
•	 Determining application bottlenecks
•	 Performance tuning

Thus, performance testing can serve a number of goals. Before we start testing, we
need to ascertain the performance goals we want to achieve. Depending on our
purpose, our tools and methodologies will change.

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[22]

Performance testing has the following variations:

•	 Load testing: This is the simplest form of testing, where the system is put
under a specified load. The idea is to know whether the system will perform
well under anticipated workloads. The aim of load testing is to know the
largest user load that the site can handle with accepted performance metrics.

•	 Stress testing: In this form of testing, the system is subjected to an extensive
load to determine its upper limits. The idea is to find out the robustness and
responsiveness under conditions beyond those anticipated during normal
operations. This is a negative form of testing, where the intention is to find
out at what loads the system will break.

In order to benchmark our server, we will subject it to a kind of load testing known
as performance testing. The goal here is not to expose any defects but to establish the
following parameters:

•	 Throughput: This is defined as the rate at which the server can serve content,
that is, concurrent requests per second that a server can handle. This usually
defines the upper limits of the web server.

•	 Error rate: This is defined as the ratio of nonsuccessful requests to the
total number of requests. The error may have occurred due to server
unavailability because of high load or due to network timeouts. The metric
is used in conjunction with the throughput as it is required to have the
minimum error rate with a higher throughput.

•	 Response time: This is defined as the time interval from the time instance
when a request initiates to the time instance when the first part of the
response is received, subtracting out latency, if any. A request is generally
queued, and then it is serviced. Thus, the response time defines the time
interval that a request spends in the queue and the time that the server takes
to generate a response for that request.

Using timeouts
When the server is under load, the average response time increases as the server is
busy responding to the large number of requests it has received. When the server has
optimizations, the test can be run again, and you can compare whether the average
response time has improved or not. But, how can you go about comparing the error
rate and the throughput? The two results may not show you any error rate or a small
change in the throughput. This is because the server responds to all requests—just
that it takes more time in certain instances.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

In order to compare the error rate and the throughput, we need to take care of the
response time. This can be done using the timeouts defined in HTTP. The HTTP
protocol defines the following two timeouts:

•	 Connection timeout: This is the time it takes to create a connection (socket)
to the web server

•	 Response timeout: This is the time it takes for the server to send back a
response

For any request, if a timeout occurs, it is treated as a failure. Thus, while determining
the error rate and the throughput in different tests, the timeouts should remain the
same. Basically, when we run the test to determine a metric, the other factors should
remain the same; otherwise, the numbers are difficult to compare.

Baselines
A baseline is defined as the accepted attributes that describe a system at a particular
point in time. Thus, the baseline serves as a point of reference. The idea is to capture
performance metrics after every change and determine their effectiveness by
comparing them to the baseline. Changes can only be compared one at a time.
While working with baselines, we need to make sure that all aspects except for the
single change must remain the same. Thus, the new metrics data, after the change,
when compared to the baseline data, will show whether the performance improves
or declines.

Our goal at the end of the chapter is to generate baselines that can be used to find out
the efficacy of optimizations.

Always run performance tests on a machine other than the server under
test. If you run them on the same machine, the numbers generated will
be misleading.

A note about tools
Performance tests executed on various tools cannot be compared directly with each
other. The tools vary significantly in how they simulate load and how metrics are
determined; thus, the results vary largely when compared with each other. But the
trend generated by tests on one tool is comparable to a trend from another tool. If a
tool demonstrates a decrease in performance, then the other tool should provide a
similar result.

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[24]

Load simulation opens sockets on the client side. The sockets, in turn, are treated
as file descriptors. Thus, make sure there are enough file descriptors available on
the box. The limit can be enhanced by the ulimit -n command or by changing the
security.limits file.

Generating metrics using Siege
There are many tools for load testing your application. Some of these are free, open
source solutions, while a few have commercial licenses. Siege is an open source
utility, which can be used to stress test a server. It has been created by Jeff Fulmer
and can be downloaded from http://www.joedog.org/siege-home.

Given a URL or a set of URLs, Siege can simulate the provided number of users to
load test these locations. The utility generates metrics for the elapsed time, the total
data transferred, the server response time, its transaction rate, its throughput, and its
concurrency. Basically, the tool is aimed at generating server behavior when there is
a traffic spike.

Installing Siege
The latest version of Siege can be downloaded from http://download.joedog.
org/siege/siege-latest.tar.gz. The .tar.gz can then be extracted to build and
install the latest version of the utility. At the time of writing the book, version 3.0.9 is
the latest one:

$ wget http://download.joedog.org/siege/siege-latest.tar.gz

$ tar -xvf siege-latest.tar.gz

$ cd siege-3.0.9/

$./configure

The ./configure command generates a configuration for Siege. The process checks
for all required libraries. The command provides loads of options; use the -h flag
to list them. There are a few useful parameters that can be used to customize Siege.
They are as follows:

•	 prefix: This installs Siege to the specified path and configures the default
configuration files. If not specified, Siege is installed at /usr/local.

•	 bindir: This installs the binary in the specified directory.
•	 mandir: This installs the man pages in the specified directory.

www.it-ebooks.info

http://www.joedog.org/siege-home
http://download.joedog.org/siege/siege-latest.tar.gz
http://download.joedog.org/siege/siege-latest.tar.gz
http://www.it-ebooks.info/

Chapter 2

[25]

•	 with-ssl: This lets Siege run for the HTTP protocol by default. If you
want to use it for HTTPS, then OpenSSL is required. Siege tries to pick
OpenSSL if it is available on the system; otherwise, one can be specified
using this option.

•	 without-ssl: This specifies that SSL support is not to be built in Siege.

Post the ./configure command, the tool can be installed by the following
commands:

$ make

$ sudo make install

The make command generates the binary for the specified configuration, and make
install installs it to the system path. The process lists down the location where the
installation has happened.

Post installation, Siege may not be available on your path if it is installed to an
alternative location, such as /etc/siege. In order to add it to the path, use the
update-alternatives command, as shown here:

$ sudo update-alternatives --install /usr/bin/siege siege

/etc/siege/bin/siege1

Check Siege by running the following command:

$ siege -V

It should print the version as shown in the following output:

SIEGE 3.0.9

Copyright (C) 2014 by Jeffrey Fulmer, et al.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

Siege is also available in Ubuntu repositories, but the package is a
rather old one, for example, Ubuntu Precise offers Siege 2.7. This can
be installed using the apt-get command as follows:
$ sudo apt-get install siege

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[26]

Running Siege
The siege command can be executed on the terminal. The command lists all kinds
of parameters that are available. You could run the command on the page deployed
in the previous chapter, as follows:

$ siege http://192.168.2.100/hello/

By default, Siege keeps running for quite a while and prints a lot of logging
information. You will be required to press Ctrl + C to close the program. The
program executes the default load and prints the performance results, as shown
in the following code:

Transactions: 4443 hits

Availability: 100.00 %

Elapsed time: 149.94 secs

Data transferred: 15.56 MB

Response time: 0.00 secs

Transaction rate: 29.63 trans/sec

Throughput: 0.10 MB/sec

Concurrency: 0.05

Successful transactions: 4443

Failed transactions 0

Longest transaction: 0.01

Shortest transaction: 0.00

In the preceding command, Siege executed the default configuration. Use the -C or
--config options to find out your default configuration:

$ siege -C

A few interesting default parameters to look at are the following:

•	 Concurrent users: This specifies the load executed
•	 Failures until abort: This specifies the number of failures that will abort the

execution
•	 Time to run: This specifies the amount of out time
•	 Repetitions: This specifies the iterations to perform
•	 Resource file: This specifies the default configuration file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Since the default configuration does not specify the time to run or repetitions, the
tool keeps executing until it finds the specified number of failures. You should edit
the configuration file specified by the resource file and modify the defaults as per
your requirements.

Alternatively, you could pass the parameters from the command line using the
available options, for example:

$ siege -c 15 -r 10 -q http://192.168.2.100/

The preceding command puts a load of 15 users for about 10 iterations. The -q
option makes sure that Siege prints only the results and errors (if any).

There are certain parameters that cannot be controlled from the command-line
options. The connection timeout is one such parameter. Set the timeout parameter
value in the default configuration file located at /etc/siegerc. Since the web server
is on the local network, keep the value of the timeout quite low, for example, 5 or 10
seconds. After saving the file, run siege with the -C option to list the configuration. It
should list the timeout as follows:

CURRENT SIEGE CONFIGURATION

Mozilla/5.0 (unknown-x86_64-linux-gnu) Siege/3.0.9

Edit the resource file to change the settings.

--

version: 3.0.9

socket timeout: 10

The siege command also defines a behavior for the test's execution. The following
are the modes in which Siege can be executed:

•	 Default: This is the default behavior of Siege. Basically, the test hits the
URL from all simulated users. For every simulated user, the next hit will
come after a default delay of 1 second. The time interval can be changed by
modifying the delay property in the configuration file.

•	 Benchmark: In this mode, the test engine neglects the delay and runs as fast
as the server and the network allow it to. Every simulated user hits the next
URL just after the previous one. Use the -b option to enable this mode of
execution; optionally, set the benchmark property to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[28]

Siege test results
Before we start analyzing results, we need to make sure that the server is working at
its peak. In order to do so, run Siege in benchmark mode with a large user count and
with a moderate number of iterations. Alternatively, you could also use the -t option
to specify the time frame for which Siege should run. The test should be performed a
couple of times, and the results should be averaged to create the metrics.

In order to determine the error rate and the throughput, make sure that we set a
value for the timeout. After this, execute Siege with numbers until we start getting
an error rate. Also, you need to make sure that Siege does not abort execution due to
a large number of errors. If this causes an issue, increase the number of failures to a
reasonable number to then arrive at a result. The following code shows this:

$ siege -b -c 790 -r 50 -q http://192.168.2.100/hello

The preceding code gives the following output:

[error] socket: read error Connection reset by peer sock.c:479:
Connection reset by peer

 done.

Transactions: 37164 hits

Availability: 94.09 %

Elapsed time: 14.29 secs

Data transferred: 130.14 MB

Response time: 0.19 secs

Transaction rate: 2600.70 trans/sec

Throughput: 9.11 MB/sec

Concurrency: 492.12

Successful transactions: 37164

Failed transactions: 2336

Longest transaction: 5.02

Shortest transaction: 0.00

In order to determine the response time, run the same test but after removing the
timeout set in Siege. The test will execute all transactions without any errors but will
have a larger response time. Optionally, we could increase the users a little more and
then determine the response time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

The results from Siege can be evaluated to form the metrics as follows:

•	 Throughput: The transaction rate defines this metric, for example, 2600
requests per second

•	 Error rate: Availability defines this metric, for example, 94 percent
availability will make the error rate 6 percent

•	 Response time: The results show the response time

Generating metrics using Apache JMeter
In this section, we will work with Apache JMeter, a free, open source load-testing
tool for analyzing and measuring the performance of web applications. JMeter not
only simulates the load, but there are numerous response verifications that can be
performed. The tool also enables server monitoring and the graphical analysis of
results. It can also execute use cases where certain steps need to take place.

JMeter offers the following varied features:

•	 Loads varied test systems, such as the Web (HTTP/HTTPS), SOAP, FTP,
JMS, e-mail (SMTP/POP3/IMAP), native commands, TCP, and so on

•	 Based on GUI
•	 Completely based on Java (thus portable across various operating systems)
•	 Multithreading framework (allows us to simulate concurrent users)
•	 Used in a distributed manner (simulating loads from different machines

simultaneously)
•	 Large catalog of plugins offering various capabilities
•	 Offline analysis and replaying of tests

The tool is plugin-based and has a large catalog of existing plugins. It can be
extended to perform additional tasks. In short, the tool is a Swiss Army knife for
developers, where they can perform different kinds of testing using it.

Installing JMeter
JMeter is easy to install. It can be downloaded from http://jmeter.apache.org/.
The site provides an archive in the .tgz and .zip formats. You can download either
of them and extract them to a location. At the time of writing the book, version 2.12 is
the latest version available to download.

www.it-ebooks.info

http://jmeter.apache.org/
http://www.it-ebooks.info/

Benchmarking the Server

[30]

The extracted archive will have the following structure:

•	 bin: This contains the JMeter executable, examples, and templates.
•	 docs: This contains Javadocs for the JMeter code base
•	 extras: This contains miscellaneous items that are add-ons to JMeter,

such as Ant
•	 lib: This contains all the required libraries
•	 licenses: This contains licenses bundled for libraries used in JMeter
•	 printable_docs: This contains the user guide and other help documents
•	 README, LICENSE, and NOTICE files

Before we can start running JMeter, we need to make sure that Java is available on
the box.

Installing Java
JMeter requires a Java runtime to be available. The runtime version has to be 6 or
above. Check whether Java is available using the following code:

$ java --version

If Java is not available, install the OpenJDK runtime available using apt-get:

$ sudo apt-get update

$ sudo apt-get install default-jdk

The preceding command installs a default JDK runtime available
for your Ubuntu. If you want a specific version, say JDK7 or
JDK8, then install the openjdk-7-jdk or openjdk-8-jdk
packages, respectively.

This will install OpenJDK on the box. However, if you want to install Oracle JDK,
you have to use the following commands:

$ sudo apt-get install python-software-properties

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

This will install a third-party apt-get repository, from where the package will be
installed as Oracle does not provide a repository for this. Now, you can install JDK
using the following command:

$ sudo apt-get install oracle-java6-installer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

The preceding command installs Oracle JDK 6. If you want a specific
version, say JDK7 or JDK8, then install oracle-java7-installer
or oracle-java8-installer packages, respectively.

Setting JAVA_HOME
Once a version of Java is installed on the box, you need to set the JAVA_HOME
environment variable. This can be done by finding the path of the Java installation
and then adding the variable to /etc/environment.

Determine the Java location using update-alternatives as follows:

$ sudo update-alternatives --config java

This lists all the Java installations available on your box, as shown in the following
output:

Copy the path from your preferred installation, and then edit /etc/environment to
add JAVA_HOME variable:

JAVA_HOME="YOUR_PATH"

Now, reload the /etc/environment configuration:

$ source /etc/environment

Verify the change by executing the following command:

echo $JAVA_HOME

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[32]

Running JMeter
The bin folder in the JMeter installation offers all the scripts to run it. The tool can
be executed in any of the following modes:

GUI mode:

•	 To run the JMeter UI, execute jmeter.sh, which is available in the bin folder
under the JMeter installation path. You could do several things there:

1.	 Create test plans.
2.	 Run the proxy server to record test plans.
3.	 Execute test plans.
4.	 See the live status of a running test.
5.	 Analyze existing results and many more things.

•	 The UI is quite intuitive; play with it to get to know it better. Going further,
we will work in the GUI mode to build test plans and analyze results.

Non-GUI mode:

•	 JMeter can also be run in a non-UI mode. The tool can run existing test
plans and log outputs. This mode is quite helpful when the tool runs in the
distributed mode. Run the jmeter.sh command with the -n and -t options.
Use the -l and -j options to specify the files to which the results and JMeter
logs are saved. The following code shows this:
$./jmeter.sh -n -t test-plan -j test.log

•	 In addition to this, the bin folder contains the following scripts to control the
non-GUI JMeter instance:

°° shutdown.sh: This is used to gracefully shut down the non-GUI
instance

°° stoptest.sh: This is used to abruptly shut down the non-GUI
instance

Server mode:

•	 This mode is used when simulating load from multiple machines. All
the machines run a server component by executing the -s option or the
jmeter-server.sh script in the bin folder. All these servers are controlled
via a master client running the JMeter GUI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

If your network has proxy server settings, then you may want to pass this additional
information to the JMeter engine. In order to do so, use the following options:

•	 -H: This specifies the proxy server hostname or IP address
•	 -P: This specifies the proxy server port
•	 -u: This specifies the proxy server username if required
•	 -a: This specifies the proxy server password if required

Components of JMeter
JMeter tests are composed of several elements. These elements are responsible for
making requests, verifying responses, doing analyses, generating graphs, simulating
loads, and so on. Similar types of elements are grouped together to define JMeter
components. In the following section, we will discuss the important components
required to build a test.

Threads
This is the starting point of a test. The thread component defines the pool of users
that will execute the load in the particular test. The steps that need to be performed
are grouped under the threads element. The element provides options to simulate
load in various ways, for example, all in one go, increasing with time, and so on. The
component also allows you to schedule tests for a later time.

Sampler
The sampler elements are responsible for making actual requests. JMeter supports
loads of protocols, such as FTP, HTTP, JDBC, and so on. There are samplers for each
of them. Each sampler provides options to configure the requests that it makes.

Configuration elements
Configuration elements are used to set up values and variables that can be used by
samplers. If the test contains multiple samplers, then instead of setting common
values in each of them, add a relevant configuration element.

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[34]

Assertions
These are used to verify the validity of the response. Each sample has assertions
that perform checks to validate the response received. Unless an assertion is added
under the sampler, which would mean it only applies to the particular sampler; it is
applicable to all the samplers that are part of the test.

Listeners
Listeners gather all data from tests. There are various listeners that can analyze the
test results and build graphs and tables out of them. All listeners allow us to save
data in the CSV or XML format for later reference.

Test plan
All the preceding elements are grouped together under the test plan element. The
plan can set up the variables required in the test. The plans provide additional
settings for tests, such as simulating users one by one instead of in parallel, adding
JARs to the test's classpath, and so on.

Besides the preceding components, JMeter provides various kinds of components,
such as preprocessors, postprocessors, timers, logic controllers, and so on. The
chapter only covers the components required to build basic tests.

For a complete description of the uses of components, refer to the JMeter
documentation at http://jmeter.apache.org/usermanual/.

Building JMeter test plans
In order to define a test, we need to build requests and validate and analyze the
response received. Instead of adding HTTP request samplers, we can run a proxy
server, packed in JMeter, and record all samples.

Let's start building a simple test plan by starting JMeter in GUI mode, as shown here:

www.it-ebooks.info

http://jmeter.apache.org/usermanual/
http://www.it-ebooks.info/

Chapter 2

[35]

The next step is to start the proxy server and point the browser to it. The option is
available under Workbench. Navigate to Workbench and right-click on Add | Non
Test Elements | HTTP(S) Test Script Recorder.

Take a note of the port on which the proxy server will run; by default, it will run on
8080. Click on Start to run the server, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[36]

The proxy server is now running on 127.0.0.1:8080. Apply these settings in
your browser under Network | Settings. The following screenshot is the result of
these steps:

If you are going to access web pages running on the localhost
server, make sure to clear localhost, 127.0.0.1 from the
No Proxy for setting.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Now, when you open a web page in the browser, the request will be recorded in
JMeter. We will use these recorded requests to generate our test plan.
Access the Hello world! page developed in the previous chapter using the IP address
of your machine, for example, http://192.168.2.100/hello/. This will record
requests in the JMeter proxy server, which we will use in our tests.

JMeter tests are grouped as users, so add Thread Group under Test Plan by
navigating to Test Plan and right-clicking on Add | Threads | Thread Group.

The Thread Group element has a couple of useful fields. The fields for Number
of Threads, Loop Count, and Ramp up Period can be used to simulate the
required load.

Now, select and drag all the requests generated under HTTP Test Recorder to
Thread Group. This adds the selected requests to the test.

The test needs to verify and analyze the responses received for the requests initiated. To
see the complete list, navigate to Thread Group and right-click on Add | Assertions.

For our purposes, we will use the Response Assertion component. The panel enables
us to compare various fields of the response. Using this, we can verify the response
text, response code, response headers, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[38]

Add Response Assertion under all requests using the right-click options. In each of
the assertions, select Response Code and add 200 under Patterns To Test.

We need to control timeouts to determine the error rate and the throughput. For
each request, JMeter allows us to set a connection timeout and a response timeout.
The HTTP Request component contains fields for both of these options. Optionally,
we could add the Http Requests Defaults component available upon navigating to
Thread Group and right-click on Add | Config Element. The values defined in this
component will remain the same for all requests. As in Siege, put a small value in the
connection timeout as well as the response timeout:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Next, to analyze the result, we need to add Listener by right-clicking on Add options
on Thread Group. For our purposes, we will use the Aggregate Report component.
The component aggregates the response information and provides the request count,
minimum, maximum, average, error rate, approximate throughput (request/second),
and kilobytes per second for each request.

Along with the Aggregate Report component, add the View Results Tree
component. The component will show all responses in the form of a tree. It also
allows you to inspect response codes, the time taken, headers, and so on. The
component can selectively show errors, success messages, or all requests. It is quite
helpful to get error requests in the component as you can analyze the response to see
what has caused the issues.

We are done with all the components that are required; now run the test by clicking
on the Start button on the toolbar. The toolbar offers handy buttons, such as Toggle
Log Viewer for error logs and Clear all to remove previous results. Also, once the
test starts, the tool will enable the Stop button to stop the test. Post the test execution,
Aggregate Report should display the numbers we want to know.

The default value of one user is too low to generate any kind of useful
numbers. To get some actual numbers, increase Number of threads to
1,400, Loop count to 100 and run the test.

www.it-ebooks.info

http://www.it-ebooks.info/

Benchmarking the Server

[40]

JMeter test results
During or after test execution, Aggregate Report will display the results. The
table shows all the metrics that are required to create our baseline. The aggregated
response at the bottom is either the sum or the average of different components.
We should be looking at the metrics of each request, which will give us more
relevant information.

The preceding figure shows the metrics values as follows:

•	 Throughput: 908.7 requests/second.
•	 Error rate: JMeter makes this metric readily available.
•	 Response time: Since the tests are running on the local network, the latency

is next to nothing. The average response time is shown as 522 milliseconds.

If there are any errors reported, navigate to the View Results Tree component. It will
show the error requests in red. Click on any of them to see the response received. If
the test contains assertions, then expand the request tree to see the assertions that
have failed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Summary
In this chapter, you learned about the concepts of performance testing and baselines.
Both of these use performance metrics defined by the error rate, throughput, and
response time. The chapter gives an overview of some of the tools that can be used
by system administrators and developers to determine performance metrics.

One thing to note is that the tools covered in this chapter simulate a browser, but
they are not browsers. They do not understand a web page and cannot interpret
HTML/JS/CSS. Thus, they cannot determine any errors that people will see when
they load the site. The chapter only covers the tools in brief, listing the important
features. The aim of this chapter is to enable the reader to generate a baseline that
can be compared to determine the optimization done in the upcoming chapters.

In the next chapter, we'll take a look at the NGINX configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[43]

Tweaking NGINX
Configuration

NGINX is fast, but the default configuration is not good enough to take the most
out of the underlying hardware. The chapter takes the NGINX configuration built in
Chapter 1, Working with NGINX, and tunes it to attain optimal performance.

In this chapter, we will cover the following topics:

•	 NGINX configuration syntax
•	 Configuring NGINX workers
•	 Configuring NGINX I/O
•	 Configuring TCP
•	 Setting up the server

NGINX configuration syntax
In Chapter 1, Working with NGINX, we got a glimpse of an NGINX configuration. This
section aims to cover it in more detail. The complete configuration file has a logical
structure that is composed of directives grouped into a number of sections. A section
defines the configuration for a particular NGINX module, for example, the http
section defines the configuration for the ngx_http_core module.

www.it-ebooks.info

http://www.it-ebooks.info/

Tweaking NGINX Configuration

[44]

An NGINX configuration has the following syntax:

•	 Valid directives begin with a variable name and then state an argument
or series of arguments separated by spaces.

•	 All valid directives end with a semicolon (;).
•	 Sections are defined with curly braces ({}).
•	 Sections can be nested in one another. The nested section defines a module

valid under the particular section, for example, the gzip section under the
http section.

•	 Configuration outside any section is part of the NGINX global configuration.
•	 The lines starting with the hash (#) sign are comments.
•	 Configurations can be split into multiple files, which can be grouped

using the include directive. This helps in organizing code into logical
components. Inclusions are processed recursively, an include file can also
have include statements.

•	 Spaces, tabs, and new line characters are not part of the NGINX
configuration. They are not interpreted by the NGINX engine, but they help
to make the configuration more readable.

Thus, the complete file looks like the following code:

#The configuration begins here
global1 value1;
#This defines a new section
section {
 sectionvar1 value1;
 include file1;
 subsection {
 subsectionvar1 value1;
 }
}
#The section ends here
global2 value2;
The configuration ends here

NGINX provides the -t option, which can be used to test and verify the
configuration written in the file. If the file or any of the included files contains
any errors, it prints the line numbers causing the issue:

$ sudo nginx -t

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

This checks the validity of the default configuration file. If the configuration is
written in a file other than the default one, use the -c option to test it.

You cannot test half-baked configurations, for example, you defined
a server section for your domain in a separate file. Any attempt to
test such a file will throw errors. The file has to be complete in all
respects.

Now that we have a clear idea of the NGINX configuration syntax, we will try to
play around with the default configuration. This chapter only aims to discuss the
parts of the configuration that have an impact on performance.

The NGINX catalog has a large number of modules that can be configured for
different purposes. This chapter does not try to cover all of them as the details
are beyond the scope of the book. Please refer to the NGINX documentation at
http://nginx.org/en/docs/ to know more about the modules.

Configuring NGINX workers
NGINX runs a fixed number of worker processes as per the specified configuration.
As explained in Chapter 1, Working with NGINX, these worker processes are
responsible for all request processing. In the following sections, we will work
with NGINX worker parameters. These parameters are mostly part of the NGINX
global context.

worker_processes
The worker_processes directive controls the number of workers:

worker_processes 1;

The default value for this is 1, which means that NGINX runs only one worker. The
value should be changed to an optimal value depending on the number of cores
available, disks, network subsystem, server load, and so on.

As a starting point, set the value to the number of cores available. Determine the
number of cores available using lscpu:

$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 4

www.it-ebooks.info

http://nginx.org/en/docs/
http://www.it-ebooks.info/

Tweaking NGINX Configuration

[46]

The same can be accomplished by greping out cpuinfo:

$ cat /proc/cpuinfo | grep 'processor' | wc -l

Now, set this value to the parameter:

One worker per CPU-core.
worker_processes 4;

Alternatively, the directive can have auto as its value. This determines the number
of cores and spawns an equal number of workers.

When NGINX is running with SSL, it is a good idea to have multiple workers.
SSL handshake is blocking in nature and involves disk I/O. Thus, using multiple
workers leads to improved performance.

accept_mutex
Since we have configured multiple workers in NGINX, we should also configure the
flags that impact worker selection. The accept_mutex parameter available under the
events section will enable each of the available workers to accept new connections
one by one. By default, the flag is set to on. The following code shows this:

events {
 accept_mutex on;
}

If the flag is turned to off, all of the available workers will wake up from the
waiting state, but only one worker will process the connection. This results in the
Thundering Herd phenomenon, which is repeated a number of times per second. The
phenomenon causes reduced server performance as all the woken-up workers take
up CPU time before going back to the wait state. This results in unproductive CPU
cycles and nonutilized context switches.

accept_mutex_delay
When accept_mutex is enabled, only one worker, which has the mutex lock, accepts
connections, while others wait for their turn. The accept_mutex_delay corresponds
to the timeframe for which the worker would wait, and after which it tries to acquire
the mutex lock and starts accepting new connections. The directive is available under
the events section with a default value of 500 milliseconds. The following code
shows this:

events{
 accept_mutex_delay 500ms;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

worker_connections
The next configuration to look at is worker_connections, with a default value
of 512. The directive is present under the events section. The directive sets the
maximum number of simultaneous connections that can be opened by a worker
process. The following code shows this:

events{
 worker_connections 512;
}

Increase worker_connections to something like 1,024 to accept more simultaneous
connections.

The value of worker_connections does not directly translate
into the number of clients that can be served simultaneously. Each
browser opens a number of parallel connections to download various
components that compose a web page, for example, images, scripts, and
so on. Different browsers have different values for this, for example,
IE works with two parallel connections while Chrome opens six
connections. The number of connections also includes sockets opened
with the upstream server, if any.

worker_rlimit_nofile
The number of simultaneous connections is limited by the number of file descriptors
available on the system as each socket will open a file descriptor. If NGINX tries to
open more sockets than the available file descriptors, it will lead to the Too many
opened files message in the error.log.

Check the number of file descriptors using ulimit:

$ ulimit -n

Now, increase this to a value more than worker_process * worker_connections.
The value should be increased for the user that runs the worker process. Check the
user directive to get the username.

www.it-ebooks.info

http://www.it-ebooks.info/

Tweaking NGINX Configuration

[48]

NGINX provides the worker_rlimit_nofile directive, which can be an alternative
way of setting the available file descriptor rather modifying ulimit. Setting the
directive will have a similar impact to updating ulimit for the worker user. The
value of this directive overrides the ulimit value set for the user. The directive is not
present by default. Set a large value to handle large simultaneous connections. The
following code shows this:

worker_rlimit_nofile 20960;

To determine the OS limits imposed on a process, read the file
/proc/$pid/limits. $pid corresponds to the PID of the process.

multi_accept
The multi_accept flag enables an NGINX worker to accept as many connections as
possible when it gets the notification of a new connection. The purpose of this flag
is to accept all connections in the listen queue at once. If the directive is disabled, a
worker process will accept connections one by one. The following code shows this:

events{
 multi_accept on;
}

The directive is available under the events section with the default value off.

If the server has a constant stream of incoming connections, enabling
multi_accept may result in a worker accepting more connections than
the number specified in worker_connections. The overflow will lead
to performance loss as the previously accepted connections, part of the
overflow, will not get processed.

use
NGINX provides several methods for connection processing. Each of the available
methods allows NGINX workers to monitor multiple socket file descriptors, when
there is data available for reading/writing. These calls allow NGINX to process
multiple socket streams without getting stuck in any one of them. The methods are
platform-dependent, and the configure command, used to build NGINX, selects the
most efficient method available on the platform. If we want to use other methods,
they must be enabled first in NGINX.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

The use directive allows us to override the default method with the method
specified. The directive is part of the events section:

events {
 use select;
}

NGINX supports the following methods of processing connections:

•	 select: This is the standard method of processing connections. It is built
automatically on platforms that lack more efficient methods. The module
can be enabled or disabled using the --with-select_module or --without-
select_module configuration parameter.

•	 poll: This is the standard method of processing connections. It is built
automatically on platforms that lack more efficient methods. The module can
be enabled or disabled using the --with-poll_module or --without-poll_
module configuration parameter.

•	 kqueue: This is an efficient method of processing connections available on
FreeBSD 4.1, OpenBSD 2.9+, NetBSD 2.0, and OS X.
There are the additional directives kqueue_changes and kqueue_events.
These directives specify the number of changes and events that NGINX will
pass to the kernel. The default value for both of these is 512.

The kqueue method will ignore the multi_accept directive if it has
been enabled.

•	 epoll: This is an efficient method of processing connections available on
Linux 2.6+. The method is similar to the FreeBSD kqueue.
There is also the additional directive epoll_events. This specifies the
number of events that NGINX will pass to the kernel. The default value for
this is 512.

•	 /dev/poll: This is an efficient method of processing connections available on
Solaris 7 11/99+, HP/UX 11.22+, IRIX 6.5.15+, and Tru64 UNIX 5.1A+.
This has the additional directives, devpoll_events and devpoll_changes.
The directives specify the number of changes and events that NGINX will
pass to the kernel. The default value for both of these is 32.

•	 eventport: This is an efficient method of processing connections available
on Solaris 10. The method requires necessary security patches to avoid kernel
crash issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Tweaking NGINX Configuration

[50]

•	 rtsig: Real-time signals is a connection processing method available on
Linux 2.2+. The method has some limitations. On older kernels, there is
a system-wide limit of 1,024 signals. For high loads, the limit needs to be
increased by setting the rtsig-max parameter. For kernel 2.6+, instead of the
system-wide limit, there is a limit on the number of outstanding signals for
each process. NGINX provides the worker_rlimit_sigpending parameter
to modify the limit for each of the worker processes:

worker_rlimit_sigpending 512;

The parameter is part of the NGINX global configuration.
If the queue overflows, NGINX drains the queue and uses the poll method to
process the unhandled events. When the condition is back to normal, NGINX
switches back to the rtsig method of connection processing. NGINX
provides the rtsig_overflow_events, rtsig_overflow_test, and rtsig_
overflow_threshold parameters to control how a signal queue is handled
on overflows.
The rtsig_overflow_events parameter defines the number of events
passed to poll.
The rtsig_overflow_test parameter defines the number of events handled
by poll, after which NGINX will drain the queue.
Before draining the signal queue, NGINX will look up how much it is filled.
If the factor is larger than the specified rtsig_overflow_threshold, it will
drain the queue.

The rtsig method requires accept_mutex to be set. The method
also enables the multi_accept parameter.

Configuring NGINX I/O
In Chapter 1,Working with NGINX, we discussed the --with-file-aio parameter
that can be provided while configuring NGINX, which can enable it to perform
asynchronous I/O. Besides this, NGINX can also take advantage of the Sendfile
and direct I/O options available in the kernel. In the following sections, we will try
to configure parameters available for disk I/O.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

Sendfile
When a file is transferred by an application, the kernel first buffers the data and then
sends the data to the application buffers. The application, in turn, sends the data to
the destination. The Sendfile method is an improved method of data transfer, in
which data is copied between file descriptors within the OS kernel space, without
transferring data to the application buffers. This results in the improved utilization of
the operating system's resources.

The method can be enabled using the sendfile directive. The directive is available
for the http, server, and location sections:

http{
 sendfile on;
}

The flag is set to off by default.

Direct I/O
The OS kernel usually tries to optimize and cache any read/write requests. Since the
data is cached within the kernel, any subsequent read request to the same place will
be much faster because there's no need to read the information from slow disks.

Direct I/O is a feature of the filesystem where reads and writes go directly from
the applications to the disk, thus bypassing all OS caches. This results in better
utilization of CPU cycles and improved cache effectiveness.

The method is used in places where the data has a poor hit ratio. Such data does not
need to be in any cache and can be loaded when required. It can be used to serve
large files. The directio directive enables the feature. The directive is available for
the http, server, and location sections:

location /video/ {
 directio 4m;
}

Any file that's larger than that specified in the directive will be loaded by direct I/O.
The parameter is disabled by default.

The use of direct I/O to serve a request will automatically disable
Sendfile for the particular request.

www.it-ebooks.info

http://www.it-ebooks.info/

Tweaking NGINX Configuration

[52]

Direct I/O depends on the block size while doing a data transfer. NGINX has the
directio_alignment directive to set the block size. The directive is present under
the http, server, and location sections:

location /video/ {
 directio 4m;
 directio_alignment 512;
}

The default value of 512 bytes works well for all boxes unless it is running a Linux
implementation of XFS. In such an instance, the size should be increased to 4 KB.

Asynchronous I/O
Asynchronous I/O allows a process to initiate I/O operations without having to
block or wait for it to complete.

The aio directive is available under the http, server, and location sections of
an NGINX configuration. Depending on the section, the parameter will perform
asynchronous I/O for the matching requests. The parameter works on Linux kernel
2.6.22+ and FreeBSD 4.3. The following code shows this:

location /data {
 aio on;
}

By default, the parameter is set to off. On Linux, aio needs to be enabled with
directio, while on FreeBSD, sendfile needs to be disabled for aio to take effect.

If NGINX has not been configured with the --with-file-aio module,
any use of the aio directive will cause the unknown directive aio
error.

The directive has a special value of threads, which enables multithreading for send
and read operations. The multithreading support is only available on the Linux
platform and can only be used with the epoll, kqueue, or eventport methods of
processing requests.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

In order to use the threads value, configure multithreading in the NGINX binary
using the --with-threads option. Post this, add a thread pool in the NGINX global
context using the thread_pool directive. Use the same pool in the aio configuration:

thread_pool io_pool threads=16;
http{
….....
 location /data{
 sendfile on;
 aio threads=io_pool;
 }
}

Mixing them up
The three directives can be mixed together to achieve different objectives on different
platforms. The following configuration will use sendfile for files that are smaller
than what is specified in directio. Files served by directio will be read using
asynchronous I/O:

location /archived-data/{
 sendfile on;
 aio on;
 directio 4m;
}

The aio directive has a sendfile value, which is available only on the FreeBSD
platform. The value can be used to perform Sendfile in an asynchronous manner:

location /archived-data/{
 sendfile on;
 aio sendfile;
}

NGINX invokes the sendfile() system call, which returns with no data in the
memory. Post this, NGINX initiates data transfer in an asynchronous manner.

www.it-ebooks.info

http://www.it-ebooks.info/

Tweaking NGINX Configuration

[54]

Configuring TCP
HTTP is an application-based protocol, which uses TCP as the transport layer.
In TCP, data is transferred in the form of blocks known as TCP packets. NGINX
provides directives to alter the behavior of the underlying TCP stack. These
parameters alter flags for an individual socket connection.

TCP_NODELAY
TCP/IP networks have the "small packet" problem, where single-character messages
can cause network congestion on a highly loaded network. Such packets are 41 bytes
in size, where 40 bytes are for the TCP header and 1 byte has useful information.
These small packets have a huge overhead of around 4000 percent and can saturate
a network.

John Nagle solved the problem (Nagle's algorithm) by not sending the small packets
immediately. All such packets are collected for a certain amount of time and then
sent in one go as a single packet. This results in the improved efficiency of the
underlying network. Thus, a typical TCP/IP stack waits for up to 200 milliseconds
before sending the data packages to the client.

It is important to note that the problem exists with applications such as Telnet, where
each keystroke is sent over wire. The problem is not relevant to a web server, which
severs static files. The files will mostly form full TCP packets, which can be sent
immediately instead of waiting for 200 milliseconds.

The TCP_NODELAY option can be used while opening a socket to disable Nagle's
buffering algorithm and send the data as soon as it is available. NGINX provides
the tcp_nodelay directive to enable this option. The directive is available under
the http, server, and location sections of an NGINX configuration:

http{
 tcp_nodelay on;
}

The directive is enabled by default.

NGINX use tcp_nodelay for connections with the keep-alive mode.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

TCP_CORK
As an alternative to Nagle's algorithm, Linux provides the TCP_CORK option. The
option tells the TCP stack to append packets and send them when they are full or
when the application instructs to send the packet by explicitly removing TCP_CORK.
This results in an optimal amount of data packets being sent and, thus, improves the
efficiency of the network. The TCP_CORK option is available as the TCP_NOPUSH flag
on FreeBSD and Mac OS.

NGINX provides the tcp_nopush directive to enable TCP_CORK over the connection
socket. The directive is available under the http, server, and location sections of
an NGINX configuration:

http{
 tcp_nopush on;
}

The directive is disabled by default.

NGINX uses tcp_nopush for requests served with sendfile.

Setting them up
The two directives discussed previously do mutually exclusive things; the former
makes sure that the network latency is reduced, while the latter tries to optimize
the data packets sent. An application should set both of these options to get efficient
data transfer.

Enabling tcp_nopush along with sendfile makes sure that while transferring a file,
the kernel creates the maximum amount of full TCP packets before sending them
over wire. The last packet(s) can be partial TCP packets, which could end up waiting
with TCP_CORK being enabled. NGINX makes sure it removes TCP_CORK to send these
packets. Since tcp_nodelay is also set at this point, these packets are immediately
sent over the network without any delay.

www.it-ebooks.info

http://www.it-ebooks.info/

Tweaking NGINX Configuration

[56]

Setting up the server
The following configuration sums up all the changes proposed in the preceding
sections:

worker_processes 3;
worker_rlimit_nofile 8000;

events {
 multi_accept on;
 use epoll;
 worker_connections 1024;
}

http {
 sendfile on;
 aio on;
 directio 4m;
 tcp_nopush on;
 tcp_nodelay on;
 # Rest Nginx configuration removed for brevity
}

It is assumed that NGINX runs on a quad core server. Thus, three worker processes
have been spanned to take advantage of three out of four available cores and leaving
one core for other processes.

Each of the workers has been configured to work with 1,024 connections.
Correspondingly, the nofile limit has been increased to 8,000. By default, all worker
processes operate with mutex; thus, the flag has not been set. Each worker processes
multiple connections in one go using the epoll method.

In the http section, NGINX has been configured to serve files larger than 4 MB using
direct I/O, while efficiently buffering smaller files using Sendfile. TCP options
have also been set up to efficiently utilize the available network.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Measuring gains
It is time to test the changes and make sure that they have given performance gain.

Run a series of tests using Siege/JMeter to get new performance numbers. The tests
should be performed with the same configuration to get a comparable output:

$ siege -b -c 790 -r 50 -q http://192.168.2.100/hello

Transactions: 79000 hits

Availability: 100.00 %

Elapsed time: 24.25 secs

Data transferred: 12.54 MB

Response time: 0.20 secs

Transaction rate: 3257.73 trans/sec

Throughput: 0.52 MB/sec

Concurrency: 660.70

Successful transactions: 39500

Failed transactions: 0

Longest transaction: 3.45

Shortest transaction: 0.00

The results from Siege should be evaluated and compared to the baseline. The
following conclusions are derived while comparing the new numbers with the
numbers generated in Chapter 2, Benchmarking the Server:

•	 Throughput: The transaction rate defines this as 3250 requests/second
•	 Error rate: Availability is reported as 100 percent; thus; the error rate

is 0 percent
•	 Response time: The results show a response time of 0.20 seconds

Thus, these new numbers demonstrate performance improvement in various
respects.

After the server configuration is updated with all the changes,
reperform all tests with increased numbers. The aim should be to
determine the new baseline numbers for the updated configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Tweaking NGINX Configuration

[58]

Summary
The chapter started with an overview of the NGINX configuration syntax. Going
further, we discussed worker_connections and the related parameters. These allow
you to take advantage of the available hardware. The chapter also talked about
the different event processing mechanisms available on different platforms. The
configuration discussed helped in processing more requests, thus improving the
overall throughput.

NGINX is primarily a web server; thus, it has to serve all kinds of static content.
Large files can take advantage of direct I/O, while smaller content can take
advantage of Sendfile. The different disk modes make sure that we have an optimal
configuration to serve the content.

In the TCP stack, we discussed the flags available to alter the default behavior
of the TCP sockets. The tcp_nodelay directive helps in improving latency. The
tcp_nopush directive can help in efficiently delivering the content. Both these flags
lead to improved response time.

In the last part of the chapter, we applied all the changes to our server and then did
performance tests to determine the effectiveness of the changes done. In the next
chapter, we will try to configure buffers, timeouts, and compression to improve the
utilization of the available network.

www.it-ebooks.info

http://www.it-ebooks.info/

[59]

Controlling Buffers, Timeouts,
and Compression

So far, we have built an NGINX configuration to make the best use of the available
platform. This is just one part of the story where we have optimized NGINX request
processing. We can also customize various client-side parameters to better utilize the
available network, thus increasing the throughput.

In this chapter, we will cover the following topics:

•	 Configuring buffers
•	 Configuring timeouts
•	 Compression
•	 Controlling logs
•	 Setting up the server

Configuring buffers
Request buffers serve an important role in NGINX request handling. On receiving
a request, NGINX writes it to these buffers. The data in these buffers is available as
NGINX variables, such as $request_body. If the buffers are small in comparison to
the request size, the data gets written to files on the disk and, thus, would involve
I/O. NGINX provides various directives that can alter request buffers.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[60]

client_body_buffer_size
This directive sets the buffer size used for the request body. If the body exceeds the
buffer size, either the complete body or a part of it gets written to a temporary file.
This directive gets ignored if NGINX is configured to use files instead of the memory
buffer. By default, the directive sets an 8k buffer for 32-bit systems and a 16k buffer
for 64-bit systems. The directive is available under the http, server, and location
sections of an NGINX configuration. Here's an example:

server{
 client_body_buffer_size 8k;
}

client_max_body_size
This directive sets the maximum request body size handled by NGINX. If the request
is larger than the specified size, then NGINX sends back the HTTP 413(Request
Entity too large) error. The directive is of importance if the server handles large
file uploads.

By default, the directive sets 1m as the maximum limit. This directive is available
under the http, server, and location sections of an NGINX configuration. Here's
an example:

server{
 client_max_body_size 2m;
}

client_body_in_file_only
This directive disables NGINX buffers and stores the request body in a temporary
file. The file contains data as plain text. The directive is available under the http,
server, and location sections of an NGINX configuration. It can have one of the
following three values:

•	 off: The value will disable file writing.
•	 clean: The request body will be written to a file. The file will be removed

after processing the request.
•	 on: The request body will be written to a file. The file will not be removed

after processing the request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

By default, the directive is set to off. Here's an example:

http{
 client_body_in_file_only clean;
}

This directive is quite helpful for debugging purposes. It is not
recommended for production deployments.

client_body_in_single_buffer
This directive instructs NGINX to store the complete request body in a single buffer.
By default, the directive is set to off. If enabled, it optimizes I/O while reading the
$request_body variable. The directive is available under the http, server, and
location sections of an NGINX configuration. Here's an example:

server{
 client_body_in_single_buffer on;
}

client_body_temp_path
This directive specifies the location to store temporary files for the request body. In
addition to the location, the directive can also specify whether the files need a folder
hierarchy up to three levels. The level is specified as the number of digits used to
generate the folder.

By default, NGINX creates temporary files in the client_body_temp folder under
the NGINX installation path. The directive is available under the http, server, and
location sections of an NGINX configuration. Here's an example:

server{
 client_body_temp_pathtemp_files 1 2;
 }

This directive will generate paths, such as temp_files/1/05/0000003051, under the
NGINX prefix location.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[62]

client_header_buffer_size
This directive is similar to client_body_buffer_size. It allocates a buffer for
request headers. If the request header does not fit into a specified buffer, the
large_client_header_buffers directive is used to allocate a bigger buffer.

The default value of 1k is good enough for all intents and purposes. This directive is
available under the http and server sections of an NGINX configuration:

http{
 client_header_buffer_size 1m;
 }

large_client_header_buffers
This directive specifies the maximum number and size of buffers used for reading
large client request headers. These buffers are allocated on demand only when
the default buffers are insufficient. The buffers are released when the request is
processed or the connection gets transitioned into the keep-alive state.

The default values of 4k and 8k buffers are good enough for all intents and purposes.
The directive is available under the http and server sections of an NGINX
configuration:

http{
 large_client_header_buffers 4 8k;
 }

If the request URI exceeds the size of a single buffer, NGINX sends back the HTTP
414(Request URI Too Long) error to the client. Also, if any request header field
exceeds the size of a single buffer, NGINX sends back the HTTP 400 (Bad Request)
error to the client.

Configuring timeouts
Every request served by NGINX goes through various timeouts. These timeouts, if
optimized, can have a considerable impact on the server's performance. Post timeout,
the resources are released and, thus, can be utilized for other requests. In the
following section, we will configure various timeout directives provided by NGINX.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

keepalive
HTTP is a stateless, request-response-based protocol, where the client opens a TCP
connection with the server, sends the request, receives the response, and then the
server closes the connection to release the resources.

Now, if the client makes multiple requests to the server, for every request, the
client opens a connection, transfers the data, and then the connection is closed by
the server. This is quite inefficient if the web pages contain a lot of resources as the
browser will open a connection for every resource.

HTTP has the keepalive mode, which instructs the server to hold a TCP connection
open once the request has been completed. If the client needs to make another
request, it can use this idle keepalive connection rather than creating a new TCP
connection. Such a connection can be terminated when the client feels it is no longer
required or the server determines that there been no activity over the connection
for a certain interval of time (timeout). Modern browsers usually open multiple
keepalive connections and use them to serve content.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[64]

Since keepalive connections are kept open for an interval of time they have a cost of
increased resource utilization. The keepalive timeout should be optimal depending
on your website and traffic load. This will improve the site's performance. If the
timeout is quite large, then it can have a negative impact on performance during
high traffic loads.

NGINX has a couple of directives to configure keepalive connections.

keepalive_timeout
This directive configures the timeout for keepalive connections. By default,
the value is set to 75 seconds. The value 0 disables keepalive connections. The
directive is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

http{
 keepalive_timeout 20s;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

This directive also has a second optional time argument, which it sends back in the
Keep-Alive: timeout=time response header field. The header field is recognized
by certain browsers, such as Mozilla, Konqueror, and so on, and could have a
different value compared to the timeout. Here's an example:

http{
 keepalive_timeout 20s 18s;
 }
$ curl -I http://192.168.2.100/hello
…......
Connection: keep-alive
Keep-Alive: timeout=18
…....

keepalive_requests
This directive configures the total number of requests allowed over a keepalive
connection. After the maximum number of requests are made, the server closes
the connection.

By default, the directive sets 100 as the maximum number of allowed requests. The
directive is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

http{
 keepalive_requests 20;
 }

keepalive_disable
This directive disables keepalive connections for a particular set of browsers.

By default, the directive sets msie6 as a value. This directive is available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
 keepalive_disabled msie6 safari;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[66]

send_timeout
This directive sets a timeout for transmitting data to the client. This timeout does not
apply to the entire transfer but only between two successive write operations. If the
timeout expires, NGINX will close the connection.

By default, the directive sets the value as 60 seconds. The directive is available
under the http, server, and location sections of an NGINX configuration. Here's
an example:

server{
 send_timeout 30s;
 }

client_body_timeout
This directive sets a timeout to send the request body from the client. The timeout
does not apply to the complete request body but only to two successive read
operations. If the client does not send anything within the set time interval, NGINX
sends back the HTTP 408(Request Timed Out) error.

By default, this directive sets the value as 60 seconds. The directive is available
under the http, server, and location sections of an NGINX configuration.
Here's an example:

server{
 client_body_timeout 30s;
 }

client_header_timeout
The directive sets a timeout to send the complete request header from the client. If
the client does not send the complete header information within the set time interval,
NGINX sends back the HTTP 408(Request Timed Out) error.

By default, the directive sets the value 60 seconds. The directive is available under
the http and server sections of the NGINX configuration. Here's an example:

server{
 client_header_timeout 30s;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

Compression
Compression can improve website speed by reducing the amount of data transferred
over the network. NGINX offers a couple of alternatives to use for serving
compressed content.

ngx_http_gzip_module
This module enables gzip compression in NGINX. The server compresses the data
and then sends it over wire. Compression is mostly helpful in serving textual content.
It does not help in serving noncompressible content, such as JPEG, GIF, MP3, and
so on. Also, if the compression level is high, there is not much gain in terms of the
compressed data size, and the server mostly ends up wasting CPU cycles.

The module offers the following directives to configure the gzip compression.

gzip
This directive enables gzip compression in NGINX. By default, the directive is set
to off. This directive is available under the http, server, location, and if (in the
location section) sections of an NGINX configuration. Here's an example:

http{
 gzip on;
 }

gzip_comp_level
This directive sets a gzip compression level of response. The directive has values in
the range 1 to 9. Very high compression will not yield good results as it takes more
CPU cycles without much benefit in compressing the data size.

By default, the directive is set to 1. The values from 1 to 3 offer optimal results as
they offer a fine balance between the final compressed sizes and the time spent. This
directive is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

http{
 gzip_comp_level 2;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[68]

gzip_min_length
This directive sets the minimum response length that will be compressed.
The module determines the response length from the Content-Length response
header field.

By default, this directive is set to 20 bytes. The directive is available under the http,
server, and location sections of an NGINX configuration. Here's an example:

http{
 gzip_min_length 1000;
 }

gzip_types
This directive sets the response types that will be compressed. By default, the
directive is set to text/html. The directive is available under the http, server,
and location sections of an NGINX configuration. Here's an example:

http{
 gzip_types text/xml text/css text/plain;
 }

Responses of the text/html type are always compressed. The
directive specifies MIME types additional to text/html.

gzip_proxied
The directive can be used to enable/disable compression if NGINX serves a response
via an upstream. The directive can take one or more of the following values to
determine what kind of response should be compressed:

•	 expired: This enables compression if the Expires header field has a value to
disable caching.

•	 no-cache/no-store/private: This enables compression if the Cache-Control
header field has the values no-cache, no-store, or private.

•	 no_last_modified: This enables compression if the header does not have
the Last-modified field.

•	 auth: This enables compression if the header has the Authorization field.
•	 no_etag: This enables compression if the header does not have the Etag field.
•	 any/off: This enables/disables compression for all requests.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

By default, the directive is set to off. The directive is available under the http,
server, and location sections of an NGINX configuration. Here's an example:

http{
 gzip_proxied expired no-cache no-store;
 }

gzip_http_version
The directive sets the minimum HTTP version of a request for a compressed
response. By default, the directive sets the value 1.1. The directive is available under
the http, server, and location sections of an NGINX configuration. Here's an
example:

http{
 gzip_http_version 1.1;
 }

gzip_vary
If gzip is enabled, this directive adds the Vary: Accept-Encoding header field to the
response. The directive is disabled (off) by default. It is available under the http,
server, and location sections of an NGINX configuration. Here's an example:

http{
 gzip_vary on;
 }

gzip_disable
There are browsers (for example, IE6) that cannot understand gzip compression.
This directive can be used in such situations to disable compression by looking into
the User-Agent request header field.

By default, this directive is not present. The directive is available under the http,
server, and location sections of an NGINX configuration. Here's an example:

http{
 gzip_disable "MSIE [1-6]\.";
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[70]

ngx_http_gzip_static_module
This module enables NGINX to serve a precompressed .gz extension file instead of a
regular file. The server does not generate the .gz compressed file; instead, it just tries
to send an already existing .gz extension file first, if found. This has the benefit of
saving server CPU cycles while serving compressed data.

The module is not enabled by default. It can be enabled by passing the --with-
http_gzip_static_module option while configuring an NGINX binary.

gzip_static
This directive enables NGINX to send precompressed files with the .gz extension.
By default, the directive is set to off. This directive can be set to on where NGINX
will determine whether the client supports the.gz file; if so, it will send the .gz file;
otherwise, it will send the regular file. Alternatively, the value can be set to always,
where NGINX will skip the client check and will serve the request with a .gz file, if
one exists.

This directive takes into account the values of the gzip_http_version, gzip_
proxied, and gzip_disable directives in order to determine whether or not the
client supports compressed responses. The directive is available under the http,
server, and location sections of an NGINX configuration. Here's an example:

server{
 gzip_static always;
 }

ngx_http_gunzip_module
This module enables NGINX to serve a decompressed response for clients
that do not support gzip encoding. The module is often used with
ngx_http_gzip_static_module. NGINX can serve precompressed .gz files using
ngx_http_gzip_static_module. If the client cannot handle compressed responses,
then ngx_http_gunzip_module can decompress the .gz file to serve the request.

This module is not enabled by default. It can be enabled by passing the --with-
http_gunzip_module option while configuring an NGINX binary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

gunzip
This directive enables the decompression of .gz responses in NGINX. By default,
the directive is set to off. This directive is available under the http, server, and
location sections of an NGINX configuration:

location / {
 gzip_static always;
 gunzip on;
 }

Configuring logs
Logging is a double-edged sword. On the one hand, it offers all kinds of useful
information, but on the other hand, it has a computational cost. If the application
generates thousands of log lines, the cost will have a negative impact on
performance. In the following section, we will discuss NGINX directives that can be
used to tweak logs.

access_log
This directive configures logging for all requests served by NGINX. The directive
takes multiple parameters that can be used to configure the log path, format
template, buffers, and so on. The syslog value can be used to direct logs to a syslog
server rather than to a log file. Alternatively, the complete logging can be disabled
using off as a value.

By default, access logs are enabled to write to the log/access.log file in the
prespecified combined format. This directive is available under the limit_except,
http, server, location, and if (in location section) sections of an NGINX
configuration. Here's an example:

http{
 access_log logs/access.log combined;
 }

NGINX sections can contain multiple access_log directives
specifying different log destinations and, optionally, different format
templates.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[72]

log_format
This directive can be used to define a template for the access_log directive. The
log format can contain any of the existing variables defined in NGINX. By default,
NGINX defines the combined format, which it uses in the access log directive. The
directive is only available under the http section of an NGINX configuration. Here's
an example:

log_format combined '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent"';

log_subrequest
This directive enables the logging of subrequests in the access log directive. By
default, the directive is set to off. This directive can be used to enable logging under
the http, server, and location sections of an NGINX configuration. Here's an
example:

http{
 log_subrequest on;
 }

error_log
This directive can be used to configure logging in NGINX. Logs can be directed to
a file or the error stream (stderr) or to a syslog server. The directive also defines a
level of logging, namely debug, info, notice, warn, error, crit, alert, or emerg.
Log statements with more severity than configured are logged to the specified
destination.

By default, error logs are enabled, with the error level, to write to the log/error.log
file. This directive is available under the global, http, server, and location sections
of an NGINX configuration. Here's an example:

http{
 error_log logs/warn.log warn;
 }

NGINX sections can contain multiple error_log directives
specifying different log destinations and, optionally, different log
levels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

log_not_found
This directive enables/disables the reporting of files not found (HTTP 404 errors) in
the error log. By default, the directive is set to on. The directive can be used to enable
logging under the http, server, and location sections of an NGINX configuration.
Here's an example:

http{
 log_not_found on;
 }

Setting up the server
The following configuration sums up all the changes proposed in the preceding
sections:

http {
 #####
 # Configuring Buffers
 #####
client_body_buffer_size 15K;
client_max_body_size 8m;

 #####
 # Configuring Timeouts
 #####
keepalive_timeout 20;
client_body_timeout 15;
client_header_timeout 15;
send_timeout 10;

 #####
 # Configuring Gzip
 #####
gzip on;
gzip_comp_level 2;
gzip_min_length 1000;
gzip_proxied any;
gzip_types text/plain text/css application/json application/x-
javascript text/xml application/xml application/xml+rss text/
javascript;

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[74]

 #####
Configuring Logs
 #####
access_log off;
log_not_found off;
error_log logs/error.log crit;

 # Rest NGINX configuration removed for brevity
}

The following things are done by the preceding configuration:

•	 Timeouts are lowered for keepalive, send, and client requests
•	 Buffers are configured for the request body
•	 Header buffers are not changed as the defaults are good enough
•	 Text requests, such as CSS, JS, XML, and so on, are served using Gzip

compression
•	 Logs are kept to a bare minimum

Measuring gains
It's time to test the changes and make sure that they give a performance gain.

If we try to test the changes using Siege / JMeter, the results do not show any
change:

$ siege -b -c 790 -r 50 -q http://192.168.2.100/hello

Transactions: 79000 hits

Availability: 100.00 %

Elapsed time: 24.25 secs

Data transferred: 13.54 MB

Response time: 0.20 secs

Transaction rate: 3268.73 trans/sec

Throughput: 0.52 MB/sec

Concurrency: 642.70

Successful transactions: 39500

Failed transactions: 0

Longest transaction: 3.48

Shortest transaction: 0.00

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

So, did the changes make an impact?

It is important to note here that the changes made in the chapter affect the client that
is not running on the same network. Basically, the configured timeouts do not come
into play when testing on a fast local network. The timeouts have an effect while
testing the pages on the Internet or on a slow network. Thus, a proper environment
should be simulated in order to test pages. To test the changes, we deployed pages
on an Amazon EC2 server and then tested it.

In order to determine performance numbers for the preceding changes, we need to
enable/disable compression and keepalive in our benchmarking tools.

Siege allows us to configure keepalive and compression through the siegerc
configuration file.

•	 Disable keeplive by setting the close value in the connection property
•	 Disable gzip compression by setting the accept-encoding property to

identity

Run a few tests to get some numbers:

 $ siege -b -c 150 -r 50 -q http://my.server.org/hello

 done.

Transactions: 15000 hits

Availability: 100.00 %

Elapsed time: 172.72 secs

Data transferred: 3.56 MB

Response time: 1.47 secs

Transaction rate: 86.85 trans/sec

Throughput: 0.02 MB/sec

Concurrency: 127.38

Successful transactions: 15000

Failed transactions: 0

Longest transaction: 13.02

Shortest transaction: 0.65

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Buffers, Timeouts, and Compression

[76]

Now, enable both the preceding settings by configuring the connection property to
keep-alive and configuring the accept-encoding property to gzip. Run a few tests
to determine the impact of the changes made:

$ siege -b -c 150 -r 50 -q http://my.server.org/hello

 done.

Transactions: 15000 hits

Availability: 100.00 %

Elapsed time: 55.62 secs

Data transferred: 2.93 MB

Response time: 0.50 secs

Transaction rate: 269.69 trans/sec

Throughput: 0.05 MB/sec

Concurrency: 134.48

Successful transactions: 15000

Failed transactions: 0

Longest transaction: 2.58

Shortest transaction: 0.37

A comparison of the two results leads to the following conclusions:

•	 The throughput has improved significantly from 87 requests/second
to 270 requests/sec

•	 The response time has decreased significantly from 1.47 seconds to 0.5
seconds

In order to run benchmarks with JMeter, we need to configure it in the following
manner:

•	 Disable keepalive by deselecting the Use Keepalive checkbox under the
HTTP Request configuration element

•	 Disable gzip by setting identity in the Accept Encoding headers under
HTTP Header Manager

Run a few tests to determine some performance numbers. Now, enable the
settings by selecting the Use Keepalive checkbox and setting the gzip value
in the Accept-Encoding field. Again, run a few tests and compare the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

Summary
This chapter was aimed at tweaking an NGINX configuration for HTTP clients. It
started with a discussion about NGINX client buffers and related directives. These
directives enable limiting I/O while reading requests. The section after that was
aimed at the timeouts available in NGINX. It gave insights into the benefits of
the keepalive HTTP mode. The sections about compression showed the NGINX
configuration to reduce data sent over the network by using gzip in various ways.
The chapter also talked about ways to configure NGINX logs and request access logs
to control the information logged.

The last section summed up all the required changes and tried to test them. The
changes do not yield any gain on a fast network. These configuration changes are
aimed at solving issues that manifest on a slow network, and, thus, to test these
changes, a proper environment is required.

The directives configured can be readily used by a browser, but the benchmark
tooling needs to be configured properly to make use of these settings. The chapter
showed ways to enable/disable the required settings in Siege and JMeter. In the end,
performance tests were performed to determine the effectiveness of the changes.

In the next chapter, we will try to tune the TCP stack for optimal performance.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[79]

Configuring the
Network Stack

HTTP is a TCP/IP-based system; therefore, an administrator trying to extract the
last drop of performance will not only optimize the web server, but also look at the
TCP network stack. TCP has various network congestion avoidance defaults, which
can be tweaked to yield better bandwidth utilization. Moreover, TCP connections
consume server resources, such as ports and memory. These are fixed resources and
are only reused when released by previous TCP connections. System administrators
can configure parameters for the optimal reuse of these fixed resources.

In this chapter, we will cover the following topics:

•	 TCP buffers
•	 TCP states
•	 Raising server limits
•	 Setting up the server

The chapter will discuss various commands to tweak TCP parameters on the Debian
platform. These commands may vary on other platforms, so please check the related
reference documentation.

TCP buffers
The TCP protocol uses the socket interface to communicate. Its performance does not
depend only on network transfer rate, but rather on the product of the transfer rate
and the roundtrip time. This is known as the bandwidth delay product (BDP). The
BDP measures the amount of data that fills the TCP pipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Network Stack

[80]

Internally, the OS kernel attaches certain (received and sent) buffers to each of the
opened sockets. Each of these buffers must be large enough to hold the TCP data
along with an OS-specific overhead. The BDP signifies the buffer space required by
the sender and the receiver to obtain maximum throughput on TCP. The send and
receive buffers describe a congestion window for a socket communication, which
determines how many packets can be sent over the wire in one go. The buffers can be
configured to push more network packets over high-speed networks.

The buffer size is limited by the operating system, which imposes an upper bound
on the maximum amount of memory available for use by a TCP connection, inclusive
of everything. These limits are too small for today's high-speed networks.

The ping command can be used to derive the BDP for a network. It gives the
roundtrip time, which is multiplied by the network capacity to define the buffer size.
Here's the command:

buffer size = network capacity * round trip time

For example, if the ping time is 30 milliseconds and the network consists of 1G
Ethernet, then the buffers should be as follows:

.03 sec * (1024 Megabits)*(1/8)= 3.84 MegaBytes

The memory consumed by TCP can be found by listing the net.ipv4.tcp_mem key
using the sysctl command:

$ sysctl net.ipv4.tcp_mem

net.ipv4.tcp_mem = 188319 251092 376638

The output lists three values, namely, minimum, initial, and maximum buffer size.

There is no need to manually tune the values of tcp_mem. Since version
2.6.17, the Linux kernel comes bundled with an auto-tuning feature that
configures the buffer values dynamically within the specified range. List
net.ipv4.tcp_moderate_rcvbuf to check for auto-tuning:
$ sysct lnet.ipv4.tcp_moderate_rcvbuf

net.ipv4.tcp_moderate_rcvbuf = 1

The value 1 indicates that tuning is enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

In addition to the total TCP buffer, we can also list the receive and send buffers using
the following keys:

•	 net.ipv4.tcp_rmem

This lists the memory for the TCP receive buffers
•	 net.ipv4.tcp_wmem

This lists the memory for the TCP send buffers

The keys output three values, namely, minimum, initial, and maximum, for the
respective buffers.

The initial size determines the amount of memory allocated at the start, when the
socket is created. This should be kept low; otherwise, under heavy traffic conditions,
each socket will start allocating large initial memory, which can cause the system to
run out of memory, thus yielding poor performance. The Linux kernel's auto-tuning
will dynamically adjust the buffers during usage for optimal performance and
memory utilization.

The maximum size for the receive and send buffers can be determined using the
net.core.rmem_max and net.core.wmem_max properties. The default values for
these properties are quite low—around 200 Kb. Here's an example:

$ sysctl net.ipv4.tcp_moderate_rcvbuf

net.core.rmem_max = 212992

$ sysctl net.ipv4.tcp_moderate_rcvbuf

net.core.wmem_max = 212992

Using the preceding set of kernel properties, TCP defines what are known as the
"receiver window size" and the "sender window size", respectively. Now, if the
receiver window is small, then the sender cannot send more data, thus leading to
suboptimal performance. Even while sending data, if the "send window" is small,
then the server will send smaller data than what the receiver can hold.

Modify these values to something like 16 MB as the maximum window size. Also,
modify the maximum values of net.ipv4.tcp_rmem and net.ipv4.tcp_wmem to the
corresponding values. The values can be updated by setting the correct set of keys
and values in the sysctl command:

$ sudo sysctl -w net.core.rmem_max=16777216

net.core.rmem_max = 16777216

$ sudo sysctl -w net.ipv4.tcp_rmem='4096 87380 16777216'

net.ipv4.tcp_rmem = 4096 87380 16777216

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Network Stack

[82]

$ sudo sysctl -w net.core.wmem_max=16777216

net.core.wmem_max = 16777216

$ sudo sysctl -w net.ipv4.tcp_wmem='4096 16384 16777216'

net.ipv4.tcp_wmem = 4096 16384 16777216

The TCP window
The TCP header contains a window field, which determines the receiver buffer size.
The default size of this window is 16 bits, which means it can represent data of
a few Kb.

TCP defines a window-scaling option, which can extend the 16-bit TCP window
field (part of the TCP header) to 32 bits, essentially allowing larger data packets.
The option specifies the count of bits by which the header needs to be shifted.
This shifting allows larger values to be sent using the window field. The following
diagram shows this:

The buffer allocated at the receiving end is dynamically altered by the value in this
window field. Window scaling is part of the TCP handshake and is enabled by
default. This feature of TCP can be toggled using net.ipv4.tcp_window_scaling.

Along with TCP window scaling, the TCP header also defines a timestamp
(net.ipv4.tcp_timestamps) used to sync packets and a sack (net.ipv4.tcp_sack)
used to selectively identify packets lost during transmission.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

TCP enables all the features mentioned earlier by default. They should not be
disabled as turning them off will hurt performance rather than make any gains.

TCP control algorithms
TCP uses control algorithms to avoid congestion. There are various implementations
for these algorithms. The Linux kernel packs the htcp, cubic, and reno implements.
These can be found using the net.ipv4.tcp_available_congestion_control key
as follows:

$ sysctl net.ipv4.tcp_available_congestion_control

net.ipv4.tcp_available_congestion_control = cubic reno

If certain implementations are missing, then you could easily
install them using mprobe. The implementations are mostly
available as reloadable kernel modules. You can use the
following mprobe commands:
$ sudo modprobetcp_htcp

$ sudo modprobetcp_bic

The reno implementation has been the classical model of congestion control. It
suffers from various issues, for example, it is slow to start. Thus, it is not suitable for
high bandwidth networks. Cubic has replaced reno as the default implementation
for various OS kernels.

You can verify the congestion control algorithm used by TCP by listing the
net.ipv4.tcp_congestion_control key:

$ sysctl net.ipv4.tcp_congestion_control

net.ipv4.tcp_congestion_control = cubic

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Network Stack

[84]

TCP states
A TCP connection usually goes through a series of states during its lifetime. The state
signifies the status of the TCP connection. In order to determine the connection state,
execute the netstat command:

$ sudo netstat --tcp --all --numeric

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State tcp
0 0 0.0.0.0:3306 0.0.0.0:* LISTEN tcp 0 0 0.0.0.0:139
0.0.0.0:* LISTEN

tcp 0 0 192.168.2.111:39551 182.19.89.106:80 ESTABLISHED

tcp 396 0 192.168.2.111:18358 173.194.36.70:443 TIME_WAIT

tcp 0 0 127.0.0.1:80 127.0.0.1:48234 TIME_WAIT

The states can contain any of the following values:

•	 LISTEN: This indicates that the socket is ready for incoming connections
•	 SYN_SENT: This indicates that the socket is attempting to establish a

connection
•	 SYN_RECV: This indicates that the server has received a connection request
•	 ESTABLISHED: This indicates that the server has established a connection
•	 LAST_ACK: This indicates that the server is waiting for ACK as the socket

is closed
•	 CLOSE_WAIT: This indicates that the server is waiting for the socket to close

as the client has closed the connection
•	 TIME_WAIT: This indicates that the server has closed the socket but is waiting

for packets in the network
•	 FIN_WAIT1: This indicates that the connection is shutting down as the socket

is closed
•	 FIN_WAIT2: This indicates that the connection is closed and the socket is

waiting for shutdown from client
•	 CLOSED: This indicates that the socket is not being used

When a TCP connection closes, the connection moves to the TIME_WAIT state.
The connection remains in this state for a long period of time, usually twice the
maximum segment life (msl). The reason for waiting is that packets may arrive out of
order or be retransmitted after the connection has been closed. Thus, the connection
is being kept around so that these delayed packets can be handled appropriately.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

The long TIME_WAIT state results in the memory and ports getting blocked by closed
connections. Thus, a heavily loaded server can run out of resources, which can be
caused by a large number of connections in the TIME_WAIT state.

The default MSL is 60 seconds, thus making the TIME_WAIT state last for 2 minutes for
each closed socket. The MSL can be listed for the net.ipv4.tcp_fin_timeout key:

$ sysctl net.ipv4.tcp_fin_timeout

net.ipv4.tcp_fin_timeout = 60

To make the TIME_WAIT state last for 40 seconds, decrease the value of net.ipv4.
tcp_fin_timeout to 20 seconds:

$ sudo sysctl -w net.ipv4.tcp_fin_timeout = 20

net.ipv4.tcp_fin_timeout = 20

Another way of improving the utilization of TCP sockets is to configure the TCP
behavior using tcp_tw_reuse. The property allows TCP to reuse the TIME_WAIT
socket when it is safe from the protocol viewpoint. The configuration is disabled by
default; enable it by setting the net.ipv4.tcp_rw_reuse key:

$ sysctl net.ipv4.tcp_tw_reuse

net.ipv4.tcp_tw_reuse = 0

$ sudo sysctl -w net.ipv4.tcp_tw_reuse = 1

net.ipv4.tcp_tw_reuse = 1

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Network Stack

[86]

The kernel also presents the tcp_tw_recycle option as an
alternative to tcp_tw_reuse. The tcp_tw_recycle option
is a more aggressive version of tcp_tw_reuse and enables
fast recycling of TIME_WAIT connections:
$ sysctl net.ipv4.tcp_tw_recycle

net.ipv4.tcp_tw_recycle = 0

It is not recommended that you enable this option as the kernel
makes assumptions before determining whether to reuse a
socket. These assumptions can pose problems when working
with a NAT, stateful firewall.

Raising server limits
A TCP connection utilizes a number of operating system resources. The OS kernel
limits these available resources by imposing various upper bounds. In this section,
we will raise the limits in order to increase the available resources for use.

The queue size
The TCP stack tries to process data packets as soon as they arrive. If the rate of
processing is low, the arriving data packets get queued up. The kernel usually
specifies a limit on the total number of packets that can be queued at the server.
The value is specified by the net.core.netdev_max_backlog key:

$ sysctl net.core.netdev_max_backlog

net.core.netdev_max_backlog = 300

Increase the queue size to a large value, such as 10000:

$ sudo sysctl -w net.core.netdev_max_backlog=10000

net.core.netdev_max_backlog = 10000

The listen socket queue size
The OS kernel defines a limit on the listen socket queue size. The limit is specified by
the value of the net.core.somaxconn key:

$ sysctl net.core.somaxconn

net.core.somaxconn = 128

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

Now, increase the queue size to a large value, such as 2048:

$ sudo sysctl -w net.core.somaxconn=2048

net.core.somaxconn = 2048

It is important to note that the parameter will not make
the intended impact. NGINX also limits the queue size of
pending connections. The limit is defined by the backlog
option of the listen directive in the NGINX configuration.
By default, the variable defines a limit of -1 for the FreeBSD
and OS X platforms and 511 for other platforms. Increase the
values of backlog and net.core.somaxconn to alter the
size of the pending connections queue.

Half-opened connections
When the server accepts a connection, the connection waits for an acknowledgment
from the client. Until that has happened, the connection is in a half-opened state.
The OS kernel limits the total number of connections that can be in such a state. The
server will drop new requests if the limits are exceeded. The limit is specified by the
value of the net.ipv4.tcp_max_syn_backlog key:

$ sysctl net.ipv4.tcp_max_syn_backlog

net.ipv4.tcp_max_syn_backlog = 256

Increase the size to a large value, such as 2048:

$ sysctl -w net.ipv4.tcp_max_syn_backlog = 2048

net.ipv4.tcp_max_syn_backlog = 2048

Ephemeral ports
Ephemeral ports are the port numbers used by an operating system when an
application opens a socket for communication. These ports are short-lived and are
valid endpoints for the duration of the communication. The Linux kernel defines the
ephemeral ports against the net.ipv4.ip_local_port_range key:

$ sysctl net.ipv4.ip_local_port_range

net.ipv4.ip_local_port_range = 32768 61000

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Network Stack

[88]

The two values signify the minimum and maximum port values out of the total of
65,535 available ports on any system. These values may look adequately large, that
is, 61000 - 32768 = 28232 is the number of available ports. It is important to note that
28,232 is the total number of available ports on the system. It does not turn out to be
the number of concurrent connections that the server can serve.

As explained in the TCP states section, TCP will block sockets in the TIME_WAIT state
with duration of MSL x 2. By default, the MSL is 60 seconds, which makes the TIME_
WAIT period 120 seconds long. Thus, the server can only guarantee 28232/120 = 235
connections at any moment in time. If the server is acting as a proxy server, that is,
it is serving content from upstream, then the number of connections will be half,
that is, 235/2 = 117. Depending on your service and the load, this may not be a great
number to look at!

The number of ports guaranteed by the server at any moment
in time can be increased by modifying the MSL. If the MSL is
30 seconds, the TIME_WAIT state comes out at 60 seconds. The
result is 28232/60 = 470 available ports at any moment in time.

The range can be modified by specifying the minimum and maximum ports against
the net.ipv4.ip_local_port_range key:

$ sudo sysctl -w net.ipv4.ip_local_port_range='15000 65000'

net.ipv4.ip_local_port_range = 15000 65000

This makes a total of 50,000 ports for TCP socket use.

Open files
The kernel considers each opened socket as a file. It also imposes an upper bound on
the total number of opened files. By default, the limit is set to 1,024 opened files:

$ ulimit -n

1024

Considering the total ephemeral socket range, this range is too low to serve the
desired purpose. Under load, the limit may lead to socket failure with Too many
opened files error messages in syslog.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

The limits can be modified by changing the values in /etc/security/limits.conf.
The file defines a soft limit and a hard limit against an item. Increase these values for
the nofile item as an asterisk (*) with the user:

* soft nofile 50000

* hard nofile 50000

The configuration specified previously alters the system-wide
PAM limits. NGINX can also modify these limits using the
worker_rlimit_nofile configuration directive covered in
Chapter 3, Tweaking NGINX Configuration. It is preferable to modify
the limits for NGINX rather than raise the overall system limits.

Setting up the server
This chapter proposed changes to various kernel parameters. The changes were
executed for each key using the sysctl command. The sysctl-w command was
executed to write back changes made to the behavior until the next reboot. In order
to make the change persistent across the machine reboot, the respective key-value
pairs must be updated in the /etc/sysctl.conf file. The file can then be reloaded
using the sysctl-p command to apply the configuration changes.

The following configuration sums up all the changes proposed in the chapter:

TCP Stack changes

net.core.rmem_max = 16777216

net.ipv4.tcp_rmem = 4096 87380 16777216

net.core.wmem_max = 16777216

net.ipv4.tcp_wmem = 4096 16384 16777216

net.ipv4.tcp_fin_timeout = 20

net.ipv4.tcp_tw_reuse = 1

net.core.netdev_max_backlog = 10000

net.ipv4.ip_local_port_range = 15000 65000

net.core.somaxconn=2048

For the keys not mentioned in the preceding configuration, the kernels default values
are good enough. If the kernel defaults do not match the proposed values, append
the change to the preceding list. Reboot the machine to make sure that all changes to
the configuration are picked up.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Network Stack

[90]

All the keys mentioned in this chapter are part of the Unix procfs
under the /proc/sys directory. The /proc/sys directory
contains directories representing the areas of the kernel, with
each directory having files for the respective parameters. In
order to know the value for a kernel parameter, for example,
net.core.wmem_max, convert the key to a relative folder path
under /proc/sys by replacing all dots (.) with slashes (/):
$ cat /proc/sys/net/core/wmem_max

16777216

Values can also be written to these files via the sudo command:
$ sudo bash -c 'echo 16777216 >
/proc/sys/net/core/wmem_max'

The modifications done in this manner are temporary, and
sysctl should be used to permanently modify the values.

Summary
This chapter was aimed at tweaking the network stack for performance-oriented
communication. The chapter started with a discussion around TCP buffers and the
bandwidth delay product (BDP). These buffers (send and receive) describe the TCP
window size for socket connection. The window size governs the size of the TCP
data packet. Traditionally, TCP-defined window sizes are of 16 bits. This can be
increased to 32 bits, enabling transfer of larger data using the TCP scaling option.

This chapter described the TCP connection TIME_WAIT state. The TCP state is required
to make sure that the socket handles all lingering packets before closing down. This is a
necessary overhead as TIME_WAIT connections consume system ports and memory but
do not serve any active clients. Since the state depends on the TCP maximum segment
life (MSL), the MSL is reduced, enabling faster reuse of system resources.

Finally, the chapter listed ways to increase the TCP backlog, ephemeral ports,
and available opened files. All of these are required to serve large numbers of
concurrent clients.

Until now, we tweaked configurations to increase the utilization of the available
resources. In the next chapter, we will try to remove slow data access using caching.
The chapter will describe the caching alternatives available in NGINX and ways of
using them.

www.it-ebooks.info

http://www.it-ebooks.info/

[91]

Using NGINX Cache
Slow data access can be improved drastically using a layer of caching. Caching
temporarily saves recently used information in a store optimized for information
lookup. This improves the server's performance by reducing the number of lookups
required to load the same resource multiple times.

NGINX can cache static as well as dynamic content. If used in front of an upstream,
NGINX will cache the responses received, thus doing away with future requests to
the upstream server. In this chapter, we will cover the following topics:

•	 Caching static content
•	 Using FastCGI and the related cache
•	 Using Proxy and the related cache
•	 Using Memcache

Caching static content
NGINX is already optimized to serve static content. In the case of high-traffic
websites, the performance can be further improved using open_file_cache. The
NGINX cache will store the recently used file descriptors and related metadata,
such as modification time, size, and so on, in the cache. The cache will not store the
contents of the requested file.

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[92]

open_file_cache
This directive enables a cache in NGINX that will store the following information:

•	 Opened file descriptors and related metadata, such as size, modification
time, and so on

•	 The existence of files and directories
•	 Any errors related to lookup, such as "permission denied", "file not found",

and so on

The cache defines a fixed size, and during overflows, it removes the least recently
used (LRU) elements. The cache evicts elements after a period of inactivity. The
directive is available under the http, server, and location sections of an NGINX
configuration. The directive is disabled by default. Here's an example:

http{
open_file_cache max=1000 inactive=20s;
}

In the preceding configuration, a cache is defined for 1,000 elements. The inactive
parameter configures the expiry time of 20 seconds. It is not necessary to set an
inactive time period as the directive, by default, sets 60 seconds of inactivity period.

NGINX also defines a number of related directives that can be used to configure the
behavior of open_file_cache during error and validity checks.

open_file_cache_valid
NGINX's open_file_cache holds a snapshot of information. The snapshot may not
be valid after a while as the information has changed at the source. The open_file_
cache_valid directive defines the time period (in seconds), after which the elements
in open_file_cache are revalidated. Here's an example:

http{
open_file_cache_valid 30s;
}

By default, the elements are validated after a period of 60 seconds. This directive
can be configured under the http, server, and location sections of an NGINX
configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[93]

open_file_cache_min_uses
NGINX will clear elements from the cache after the inactive time period. This
directive can be used to configure the minimum number of accesses to mark the
element as actively used. By default, the minimum number of accesses is set to 1 or
more times. The directive can be configured under the http, server, and location
sections of an NGINX configuration. Here's an example:

http{
open_file_cache_min_uses 4;
}

open_file_cache_errors
As stated earlier, NGINX can cache errors that have occurred during file access.
But this needs to be enabled by setting the open_file_cache_errors directive. If
error caching is enabled, NGINX reports back the same error when the resource is
accessed (without looking for resources). Here's an example:

http{
open_file_cache_errors on;
}

By default, the error cache is set to off. The directive can be configured under the
http, server, and location sections of an NGINX configuration.

Setting up the server
The following NGINX configuration summarizes the changes required to enable
caching of static content:

http {
open_file_cache max=5000 inactive=20s;
open_file_cache_valid 60s;
open_file_cache_min_uses 5;
open_file_cache_errors off;

server {

Rest configuration omitted for brevity
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[94]

Caching dynamic content
NGINX can cache responses from upstream servers. In this manner, it can
significantly improve page load times and reduce the load on upstream servers.
NGINX has various modules to perform upstream lookup, such as FastCGI, uwsgi,
Proxy, and so on. Each upstream configuration presents its own set of directives to
configure the related cache.

Using FastCGI and the related cache
FastCGI is a language-independent protocol, which enables web servers to interface
with various interactive programs. FastCGI is conceptually similar to Common
Gateway Interface (CGI). It is meant to be an open, secure, and fast web server
interface to address performance issues of CGI, with improvements to reduce the
associated overheads.

NGINX comes with the ngx_http_fastcgi module, which enables it to serve
dynamic content from applications written in all kinds of languages, such as PHP,
Python, Perl, and so on. Each of these languages has its own implementations
for FastCGI, for example, PHP-FPM or any existing CGI implementation can be
wrapped using the fcgiwrap utility to run on the FastCGI protocol.

In the remaining sections, we will configure NGINX to serve content using PHP via
FCGI. Once the server is set up to use PHP, we will try to improve the performance
using the corresponding FCGI cache.

Installing PHP
In order to work with PHP scripts, we need to make sure that the php command is
available on our box. While writing this book, PHP 5.6.14 is the latest stable version
available on http://php.net and can be installed by performing the following steps:

Download and unpack the latest PHP archive:

$ wget -O php-5.6.8.tar.gz http://php.net/get/php-
5.6.8.tar.gz/from/this/mirror

$ tar -xvf php-5.6.8.tar.gz

The extracted archive contains the PHP source. The PHP binary can be configured
by executing the ./configure command in the extracted folder. The configure
command gives loads of options to alter PHP defaults.

www.it-ebooks.info

http://php.net
http://www.it-ebooks.info/

Chapter 6

[95]

The PHP source bundles a FastCGI process manager, also known as PHP-FPM. This
can be enabled by passing the --enable-fpm option to the configure command:

$ cd php-5.6.8

$./configure --enable-fpm -q

+--+

| License: |

| This software is subject to the PHP License, available in this |

| distribution in the file LICENSE. By continuing this installation |

| process, you are bound by the terms of this license agreement. |

| If you do not agree with the terms of this license, you must abort |

| the installation process at this point. |

+--+

Thank you for using PHP.

The PHP source requires the libxml and libevent development
libraries. Make sure that the libxml2-dev and libevent-dev
packages are installed:

$ sudo apt-get install libxml2-dev libevent-dev

Post configuration, run the make command to generate the PHP binary:

$ make --quiet

Next, execute the make command with the install option to install php and related
packages on the system path:

$ sudo make install

Installing PHP CLI binary: /usr/local/bin/

Installing PHP CLI man page: /usr/local/php/man/man1/

Installing PHP FPM binary: /usr/local/sbin/

Installing PHP FPM config: /usr/local/etc/

Installing PHP FPM man page: /usr/local/php/man/man8/

Installing PHP FPM status page: /usr/local/php/php/fpm/

Installing PHP CGI binary: /usr/local/bin/

Installing PHP CGI man page: /usr/local/php/man/man1/

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[96]

Verify the PHP installation by running the php and php-fpm commands with
the -v option:

$ php -v

PHP 5.6.8 (cli) (built: Apr 27 2015 10:11:53)

Copyright (c) 1997-2015 The PHP Group

Zend Engine v2.6.0, Copyright (c) 1998-2015 Zend Technologies

$ php-fpm -v

PHP 5.6.8 (fpm-fcgi) (built: Apr 27 2015 10:12:03)

Copyright (c) 1997-2015 The PHP Group

Zend Engine v2.6.0, Copyright (c) 1998-2015 Zend Technologies

We could also install PHP from the Ubuntu repositories using
the apt-get command. Unlike the configure command,
which generates the fpm package, we need to install the
php5-fpm package to get PHP FastCGI support. The only
caveat here is that the PHP version will not be the latest one.
The following command shows this:
$ sudo apt-get install php5php5-fpm

Deploying PHP scripts
We are done with installing the php and php-fpm packages on our box. Next, we
want to use these to run PHP scripts. We have built the following PHP script to
show dates. All PHP code is written within the <?php ?> block. I will provide an
explanation of the code; however, please refer to the PHP tutorials for a complete
overview of the language. The following commands show this:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Check dates</title>
<link href="css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<?phpdate_default_timezone_set('GMT'); ?>
<div class="container">
<div class="jumbotron">
<h1>Checking dates</h1>
</div>
<div class="row">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[97]

<h4>Today is <?php echo '<mark>' . date('l'). '</mark>, '.
date('d-M'). ' and current time is ' .
date('h:i:sa');?></h4></div>
<div class="row">
<h4> Tomorrow will be
<?php $d=strtotime('tomorrow'); echo date('l', $d) .', '.date('d-
M', $d) . '.';?></h4></div>
<div class="row">
<h4> Next Sunday is on
<?php $d=strtotime('next Sunday');echo date('d-M', $d)
.'.';?></h4></div>
</div>
</body>
</html>

The first PHP statement (line 8) sets the default time zone to GMT using the
date_default_timezone_set function:

•	 Next, we print today's information using the date function (line 14) to
determine current day (l), date (d-m), and time (h:i:sa)

•	 The dot (.) is used as an operator (line 14) to concatenate different strings
into one

•	 Similarly, we print tomorrow's information using the strtotime and date
functions (line 17) to determine the day (l) and date (d-m)

•	 At last, we determine the next Sunday's information using the strtotime
and date functions (line 20)

We can pack the script as a date.php parallel to index.html in our "Hello, world!"
example. This will allow us to use some basic styling as well:

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[98]

Configuring php-fpm
Now, we need to run the PHP-FPM server and configure the connector in NGINX.
The server also requires a configuration file, specifying server settings, such as port,
user, connection, pool and so on, and reports errors if the configuration file is
not found:

$ sudo php-fpm

ERROR: failed to open configuration file '/usr/local/etc/php-fpm.conf':
No such file or directory (2)

ERROR: FPM initialization failed

The PHP installation provides a default file that can be used to start the FPM server.
The file can be in the /usr/local/etc/php-fpm.conf.default location, or as
specified in the installation output message. Copy the default file to the error
path specified in the server output. Modify the process user and group names to
www-data by doing a lookup for user and group directives in the file:

; Unix user/group of processes

; Note: The user is mandatory. If the group is not set, the default
user's group

; will be used.

user = www-data

group = www-data

The default the server will run on port 9000. Modify it to run on a Unix socket by
specifying a Unix socket address in the listen directive:

; 'ip.add.re.ss:port' - to listen on a TCP socket to a

; specific IPv4 address on a specific port;

; 'port' - to listen on a TCP socket to all

; IPv4 addresses on a specific port;

; '/path/to/unix/socket' - to listen on a unix socket.

listen = /var/run/php-fpm.sock

Since we have configured the unix socket, we also need to set the socket owner and
group. Specify the owner and group names in the listen.owner and listen.group
directives respectively:

; Set permissions for unix socket, if one is used. In Linux,

; read/write permissions must be set in order to allow

; connections from a web server.

listen.owner = www-data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[99]

listen.group = www-data

listen.mode = 0660

We have now configured the PHP-FPM server correctly, and it should start listening at
the address specified. Restart the server using the php-fpm command, as shown here:

$ sudo php-fpm

Configuring NGINX FastCGI
Until now, we have written some PHP code and have configured a PHP server to
render the content. But NGINX is still not configured to interpret PHP. If we try to
access the /hello/date.php location, the browser will download the file rather than
displaying the contents. Configure FastCGI in NGINX using the following directives.
In addition to the directives, NGINX creates the $fastcgi_script_name variable,
which is set using the request URI.

fastcgi_pass
This directive is used to specify the address of the FastCGI server. The address can
be in any of the following forms:

•	 It can be a domain name or IP address along with the port, that is,
location:port

•	 It can be a unix socket address specified with the unix: prefix, for example,
unix:/var/run/php-fpm.sock

•	 It can be a group of servers created using the NGINX upstream directive

This directive is only available under the location and if and in location
sections of an NGINX configuration. Here's an example:

location ~ \.php($|/){
fastcgi_passunix:/var/run/php-fpm.sock;
}

fastcgi_param
This directive allows the configuration of request parameters passed to the
FastCGI server. The directive allows a parameter to be declared as a name-value
pair. It is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

http{
fastcgi_param REDIRECT_STATUS 200;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[100]

Each FastCGI server has its own set of parameters. The PHP
implementation makes it mandatory to pass the SCRIPT_FILENAME
and QUERY_STRING parameters. The filename must specify the
script to execute, and QUERY_STRING is required to pass request
parameters:
fastcgi_param SCRIPT_FILENAME /location/$fastcgi_
script_name;

fastcgi_param QUERY_STRING $query_string;

If there are any POST requests by PHP, then in addition to the
preceding parameters, the following three parameters are also
required:
fastcgi_param REQUEST_METHOD $request_method;

fastcgi_param CONTENT_TYPE $content_type;

fastcgi_param CONTENT_LENGTH $content_length;

fastcgi_index
This directive is used to specify the index script that should be executed if the URL
ends in a slash (/) and does not specify a script to execute. The directive sets the
value in the $fastcgi_script_name variable. This directive is available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
fastcgi_index index.php;
}

fastcgi_split_path_info
This directive specifies a regular expression that can be used to capture and update
the $fastcgi_script_name variable from the request URL. In addition to the
$fastcgi_script_name variable, the directive also specifies the $fastcgi_path_
info variable, which is also captured by the regular expression. This directive is
available under the location section of an NGINX configuration. Here's an example:

http{
fastcgi_split_path_info ^(.+\.php)(.*)$;
}

The expression must capture two arguments: the first one for $fastcgi_script_
name and the second one for $fastcgi_path_info.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[101]

fastcgi_bind
This directive can be used to specify and address FastCGI communication. By
default, the directive is set to off. NGINX therefore auto assigns the local IP address
for communication. This directive is available under the http, server, and location
sections of an NGINX configuration.

fastcgi_ignore_headers
This directive enables NGINX to ignore processing of certain FastCGI response
headers, namely, X-Accel-Expires, Expires, Cache-Control, Set-Cookie, Vary,
X-Accel-Redirect, X-Accel-Charset, X-Accel-Buffering, and X-Accel-Limit-
Rate. If not disabled, the fields cause the following behavior:

•	 The caching is controlled by the X-Accel-Expires, Expires, Cache-
Control, Set-Cookie, and Vary header fields

•	 An internal redirect is performed using X-Accel-Redirect
•	 The response character set is controlled by X-Accel-Charset
•	 The buffering of responses is controlled by X-Accel-Buffering
•	 The rate of response transmission to the client is controlled by X-Accel-

Limit-Rate

This directive is available under the http, server, and location sections of an
NGINX configuration.

fastcgi_pass_request_headers / fastcgi_pass_request_
body
This directive indicates whether the request header and body should be passed to
the FastCGI server or not. By default, both the directives are set to on. Both these
directives are available under http, server, and location sections of NGINX
configuration. Here's an example:

http{
fastcgi_pass_request_headers on;
fastcgi_pass_request_body on;
}

fastcgi_connect_timeout / fastcgi_send_timeout / fastcgi_
read_timeout
The fastcgi_connect_timeout directive sets the timeout to establish a connection
between NGINX and the FastCGI server.

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[102]

The fastcgi_send_timeout directive sets the timeout to write a request to the
FastCGI server. The fastcgi_read_timeout directive sets the timeout to read a
response from the FastCGI server.

All the three directives have the default value of 60 seconds and are available
under the http, server, and location sections of an NGINX configuration. Here's
an example:

http{
fastcgi_send_timeout 30s
fastcgi_connect_timeout 30s
fastcgi_read_timeout 30s
}

It is important to note that the connection will be closed if the timeout specifies any
fastcgi_send_timeout directive and the fastcgi_read_timeout directive expires.

fastcgi_store / fastcgi_store_access
The fastcgi_store directive enables the saving of responses from upstream to the
disk as files. By default, the directive is set to off. The directive can be turned on,
which will save the response in the directive's root location. The directive can also
specify a path, using variables, which is used to determine the file's location. The
directive is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

location /php{
fastcgi_store on;
fastcgi_store_access user:rw group:rw all:r;
root /location;
}

The $fastcgi_store_access directive can be used to specify the permissions for
the created files.

Setting up the server
The previous section covered the FastCGI directives available in NGINX. Now, let's
try to configure the communication between NGINX and the PHP-FPM server.

Add a location directive to handle .php files and configure NGINX FastCGI
upstream in the following manner:

location ~* /hello/(.+\.php)$ {
fastcgi_pass unix:/var/run/php-fpm.sock;
fastcgi_param SCRIPT_FILENAME /code-location/$1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
}

The preceding configuration does the following:

•	 The location directive does case-insensitive regular expression (~* /hello/
(.+\.php)$) matching to server URLs such as /hello/date.php

•	 The location regular expression captures the $1 argument, which is then used
in the fastcgi_param argument to specify the script location

•	 fastcgi_pass specifies the unix socket on which the FPM server is listening

Now, access the location http://server/date.php; it should generate an HTML, as
shown in the following screenshot:

Configuring the FastCGI cache
We have successfully set up a connection between NGINX and PHP. Now, we want
to cache the content served from PHP. NGINX provides the following directives to
configure the FastCGI cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[104]

fastcgi_cache_path
This directive is used to define a FastCGI cache. The directive has a couple of
arguments that can be used to configure the cache behavior. It is mandatory to
specify the disk location, cache name, and cache size. The cache also has an inactive
time period, that is, the time after which data will be purged from the cache.
The levels parameter can be used to define the hierarchy while writing data to
the cache. The directive is only available under the http section of an NGINX
configuration. Here's an example:

http{
fastcgi_cache_path /var/cache/NGINX keys_zone=mycache:10m
inactive=15m;
}

By default, the inactive period is set to 10 minutes. NGINX also runs a cache
manager, which will remove the oldest entry once the cache reaches its maximum
size as defined by the optional max_size parameter.

Cache loading is accomplished by a cache loader process. The option parameter
specified by the directives, namely loader_files, loader_sleep, and loader_
threshold, can alter the cache loading behavior.

fastcgi_cache_key
This directive defines the key for cache lookup. The directive is available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
fastcgi_cache_key "$request_method$request_uri";
}

fastcgi_cache
This directive enables the use of a previously defined memory cache using the
fastcgicache_path directive. The fastcgi_cache directive identifies the memory
zone by the name specified in the configuration. By default, the cache is set to off.
The directive is available under the http, server, and location sections of an
NGINX configuration. Here's an example:

http{
fastcgi_cache mycache;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

fastcgi_cache_valid
This directive enables NGINX to define the cache time period depending on the
HTTP response code. If the HTTP response code is not specified, then only the 200,
301, and 302 response codes are cached. The directive also specifies any parameter
that can be used to cache all response code files. The directive is available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
fastcgi_cache_valid 200 302 10m;
fastcgi_cache_valid any 1m;
}

Cache control fields in the response header have higher precedence than the
directive. The processing of the response header can be turned off using the
fastcgi_ignore_headers directive.

fastcgi_no_cache
This directive defines the conditions under which the response will not be saved to
the cache. The directive takes a list of the parameters that are evaluated at runtime.
If any of them are nonempty and nonzero, the response will not be cached. The
directive is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

http{
fastcgi_no_cache $http_pragma $cookie_nocache;
}

The preceding configuration will not cache the response if the header contains the
Pragma field or if a no-cache cookie has been set.

fastcgi_cache_bypass
This directive defines the conditions under which NGINX will not perform cache
lookup. The directive takes a list of parameters that are evaluated at runtime.
If any of them is nonempty and nonzero, the response will not be cached. The
directive is available under the http, server, and location sections of an NGINX
configuration:

http{
fastcgi_bypass_cache $http_pragma $cookie_nocache;
}

The preceding configuration will not perform a lookup on the cache if the header
contains the Pragma field or if a no-cache cookie has been set.

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[106]

fastcgi_cache_methods
This directive defines the list of HTTP methods that will be cached. By default, the
GET and HEAD methods are cached. The directive is available under the http, server,
and location sections of an NGINX configuration. Here's an example:

http{
fastcgi_cache_methods GET HEAD;
}

fastcgi_cache_use_stale
This directive defines the error conditions under which a stale response can be
used from the cache. The directive defines all error conditions served by NGINX as
parameters. By default, the directive is set to off. This directive is available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
fastcgi_cache_use_stale http_500 http_503;
}

Setting up the server
The following configuration adds support for FastCGI cache in NGINX and enables
it for the deployed PHP scripts:

http{
fastcgi_cache_path /etc/NGINX/cache keys_zone=phpCache:100m
inactive=60m;
fastcgi_cache_key "$request_method$host$request_uri";
server{
location ~* /hello/(.+\.php)$ {
fastcgi_passunix:/var/run/php-fpm.sock;
fastcgi_param SCRIPT_FILENAME /code-location/$1;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
fastcgi_cache phpCache;
fastcgi_cache_valid 1m;
add_header X-FastCGI-Cache $upstream_cache_status;
}
Rest NGINX configuration omitted for brevity
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

The preceding configuration does the following things:

•	 The fastcgi_cache_path directive creates a cache for the specified size
•	 The fastcgi_cache_key directive defines the key format for cache lookup
•	 The fastcgi_cache directive in the location section enables the cache for all

requests served by the block
•	 The fastcgi_cache_valid will cache a successful response for 1 minute
•	 Additionally, the server adds the X-FastCGI-Cache field in the response

header, indicating the status of the cache hit

Since we have added a field in the header, it can be used to validate whether the
request has been served from the cache. Here's an example:

$ curl -I http://192.168.2.100/hello/date.php

HTTP/1.1 200 OK

Server: NGINX/1.7.12 (Ubuntu)

Date: Thu, 30 Apr 2015 08:50:30 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

X-Powered-By: PHP/5.6.8

X-FastCGI-Cache: MISS

$ curl -I http://192.168.2.100/hello/date.php

..

X-FastCGI-Cache: HIT

Using Proxy and the related cache
NGINX can be used to Proxy an existing HTTP server. There can be many reasons to
do this. We may want to use NGINX in front of Tomcat or Jetty. If there are multiple
applications running at different locations, then NGINX can take care of the routing
requests, depending on the request URL. NGINX can be used with Apache by
configuring the Proxy module.

In the remaining sections, we will configure NGINX to serve content using Python-
Flask. Once the server is set up, we will try to improve the performance using the
corresponding Proxy cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[108]

Installing Python and Flask
In order to work with Python, we need to make sure that the Python command is
available on our box. It can be downloaded from http://www.python.org/. At
the time of writing this, Python 3.4.3 is the latest stable version available. It can be
installed by performing the following steps:

1.	 Download and unpack the latest Python archive:
$ wget https://www.python.org/ftp/python/3.4.3/
Python-3.4.3.tgz

$ tar -xvf Python-3.4.3.tgz

2.	 The extracted archive contains the Python source code. We can configure
Python by executing the ./configure command in the extracted folder:
$./configure

configure: creating ./config.status

config.status: creating Makefile.pre

config.status: creating Modules/Setup.config

config.status: creating Misc/python.pc

config.status: creating Misc/python-config.sh

config.status: creating Modules/ld_so_aix

config.status: creating pyconfig.h

creating Modules/Setup

creating Modules/Setup.local

creating Makefile

Python 3.4 and above include Python Package Manager,
namely the pip command. The pip command requires the
openssl and libssl-dev libraries. Make sure that they
are available:
$ sudo apt-get install libssl-dev openssl

3.	 After configuration, run the make command to generate the Python binary:
$ make --quiet

4.	 Next, execute the make command with the install option to install Python and
its related packages on your system path:
$ sudo make install

www.it-ebooks.info

http://www.python.org/
http://www.it-ebooks.info/

Chapter 6

[109]

5.	 Verify the Python installation by running the python3 command with
the -V option:
$ python3 -V

Python 3.4.3

6.	 Now, we need to set up Flask, a web framework available in Python. Install it
using the pip command:
$ sudo python3 -m pip install flask

Building a Python application
In the previous section, we prepared our box for Python development. In this
section, we will build an application that will show certain dates, as done in the PHP
application discussed earlier in the chapter. The section will provide an explanation
of the application code. However, please refer to the Python documentation for a
complete overview of the language.

The application consists of an HTML template, namely date.html, which is used to
render the content:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Checking Dates</title>
<link href="css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<div class="container">
<div class="jumbotron">
<h1>Checking dates</h1>
</div>
<div class="row">
<h4>Today is <mark>{{ today.day }}</mark>,{{ today.date }} and
current time is {{ today.time }}</h4></div>
<div class="row">
<h4> Tomorrow will be {{ tomorrow.day}}, {{ tomorrow.date
}}.</h4></div>
<div class="row">
<h4> Next {{ nextday.day }} is on {{ nextday.date }}</h4></div>
</div>
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[110]

The template contains standard HTML syntax. The parts of text that are meant to be
replaced by Python variables are enclosed within {{ }}.

The application also packs a Python script, namely date.py, which is used to
compute the variables and render the content:

from flask import Flask
from flask import render_template
import datetime

class AppdateTime :
def __init__(self, day, date, time):
self.day = day
self.date = date
self.time = time

@app.route("/")
defcomputeDate():
d = datetime.datetime.now();
today = AppdateTime(d.strftime("%A"),d.strftime("%d %B"),
d.strftime("%H:%M:%S %p"))
d = d + datetime.timedelta(days=1)
tom = AppdateTime(d.strftime("%A"),d.strftime("%d %B"),
d.strftime("%H:%M:%S %p"))
d = d + datetime.timedelta(days=6)
nxt = AppdateTime(d.strftime("%A"),d.strftime("%d %B"),
d.strftime("%H:%M:%S %p"))
return render_template('date.html',today=today, tomorrow=tom,
nextday=nxt)
app = Flask(__name__)
if __name__ == "__main__":
app.run()

The preceding script does the following things:

•	 The couple of lines at the top import the Flask framework and its related tools
•	 Next, we define an Appdatetime class that can be used to find the day, date,

and time
•	 The computeDate method computes the dates and then fills date.html to

send back the complete HTML
•	 The script uses the datetime and strftime Python methods to calculate dates
•	 The computeDate method is mapped to the / path using the app.route

annotation
•	 Finally, we run the Flask engine and bind it to the localhost address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

Pack date.html in a folder named templates that are parallel to the date.py
location. The application will have the following structure:

Now, run the Flask server using the python3 command:

$ python3 date.py

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

The web page should be up on the 5000 port of the server. It is important to note that
we have packed a CSS that is not being served now. In the next section, we will try to
configure static resources from NGINX, while serving the dynamic content from the
Flask server. Here's the web page:

Configuring NGINX Proxy
In the preceding section, we developed a Python application running on the 5000
port. Now, we want to configure NGINX to Proxy the server using the following
directives. We will also try to cache the response from the Python server by enabling
the proxy cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[112]

In addition to the directives, the NGINX Proxy module also creates the $proxy_host,
$proxy_port, and $proxy_add_x_forward_for variables that can be used at various
places such as Proxy headers.

proxy_pass
This directive can be used to specify the protocol, address, and URL (optional) of the
upstream server. The protocol takes the value http or https. The address can be in
any of the following forms:

•	 It can be a domain name or IP address along with the port, that is,
location:port

•	 It can be a unix socket address specified with a unix: prefix and enclosed
within colons, for example, unix:/var/run/server.sock:

•	 It can be a group of servers created using the NGINX upstream directive

This directive is only available under the location and if and in location
sections of an NGINX configuration. Here's an example:

location /myloc/{
proxy_pass http://unix:/var/run/server.sock:/loc;
}

proxy_method
This directive sets the HTTP method passed to the proxy server instead of the
version specified by the client. The directive is available under the http, server,
and location sections of an NGINX configuration.

proxy_set_header
This directive is used to define header fields passed in the upstream request. The
fields can have values in the form of variables and text. If there is a field with an
empty string ("") as its value, it will not be passed in the upstream request. The
directive is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

location /myloc/{
proxy_set_header Host $proxy_host;
proxy_set_header Accept-Charset UTF-8;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

By default, NGINX sets only two fields, namely Host with the $proxy_host value
and connection with the close value.

proxy_http_version
This directive sets the version of HTTP for requests to the upstream server. By
default, the value is 1.0. Version 1.1 should be used for keepalive connections.
The directive is available under the http, server, and location sections of an
NGINX configuration.

In order to work with upstream keepalive connections, the
connection header needs to be set. NGINX, by default, sets
the header field to close. Use proxy_set_header to set the
keepalive value in the connection header. Here's an example:

location /myloc/{
 proxy_set_header Connection keep-alive;
 proxy_http_version 1.1
}

proxy_pass_request_headers / proxy_pass_
request_body
These directives indicate whether the request header and body should be passed
to the upstream server or not. By default, both the directives are set to on. The
directives are available under the http, server, and location sections of an NGINX
configuration. Here's an example:

http{
proxy_pass_request_headers on;
proxy_pass_request_body on;
}

proxy_ignore_headers
This directive enables NGINX to ignore the processing of certain upstream response
headers, namely X-Accel-Expires, Expires, Cache-Control, Set-Cookie, Vary,
X-Accel-Redirect, X-Accel-Charset, X-Accel-Buffering, and X-Accel-Limit-
Rate. If not disabled, the fields cause the following behavior:

•	 The caching is controlled by X-Accel-Expires, Expires, Cache-Control,
Set_Cookie, and Vary header fields

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[114]

•	 An internal redirect is performed using X-Accel-Redirect
•	 The response character set is controlled by X-Accel-Charset
•	 The buffering of responses is controlled by X-Accel-Buffering
•	 The rate of response transmission to the client is controlled by

X-Accel-Limit-Rate

This directive is available under the http, server, and location sections of an
NGINX configuration.

proxy_connect_timeout / proxy_send_timeout
/ proxy_read_timeout
The proxy_connect_timeout directive sets the timeout to establish a connection
between NGINX and the Proxy server.

The proxy_send_timeout directive sets the timeout to write a request to the Proxy
server. The proxy_read_timeout directive sets the timeout to read a response from
the Proxy server.

All the directives have a default value of 60 seconds and are available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
proxy_send_timeout 30s;
proxy_connect_timeout 30s;
proxy_read_timeout 30s;
}

It is important to note that the connection will be closed if the timeout specifies any
proxy_send_timeout directives and proxy_read_timeoutdirective expires.

proxy_store / proxy_store_access
The proxy_store directive enables saving responses from upstream to the disk
as files. By default, the directive is off. The directive can be turned on, which will
save the response in the directive's root location. The directive can also specify a
path, using variables, which is used to determine the file's location. The directive is
available under the http, server, and location sections of an NGINX configuration:

location /myloc{
proxy_store on;
proxy_store_access user:rw group:rw all:r;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

root /location;
}

The proxy_store_access directive can be used to specify the permissions for the
created files. By default, the directive grants read-write permissions to the file owner
only. This directive is available under the http, server, and location sections of an
NGINX configuration.

proxy_cache_path
This directive is used to define a cache. The directive has a couple of arguments
that can be used to configure the cache behavior. It is mandatory to specify the
disk location, cache name, and cache size. The cache also has an inactive time
period, that is, the time after which data will be purged from the cache. The levels
parameter can be used to define the hierarchy while writing data to the cache. The
directive is only available under the http section of an NGINX configuration. Here's
an example:

http{
proxy_cache_path /var/cache/NGINX keys_zone=mycache:10m
inactive=15m;
}

By default, the inactive period is set to 10 minutes. NGINX also runs a cache
manager, which will remove the oldest entry once the cache reaches its maximum
size as defined by the optional max_size parameter.

Cache loading is accomplished by a cache loader process. The option parameter
specified by the directive, namely, loader_files, loader_sleep, and loader_
threshold can alter the cache loading behavior.

proxy_cache_key
This directive defines the key for cache lookup. The directive is available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
proxy_cache_key "$request_method$request_uri";
}

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[116]

proxy_cache
This directive enables the use of a previously defined memory cache using the
proxy cache_path directive. The proxy_cache directive identifies the memory zone
by the name specified in the configuration. By default, the cache is set to off. The
directive is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

http{
proxy_cache mycache;
}

proxy_cache_valid
This directive enables NGINX to define the cache time period depending on the
HTTP response code. If the HTTP response code is not specified, then only the 200,
301, and 302 response codes are cached. The directive also specifies any parameter
that can be used to cache all response code files. The directive is available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
proxy_cache_valid 200 302 10m;
proxy_cache_valid any 1m;
}

Cache control fields in the response header have a higher precedence than the
directive. The processing of the response header can be turned off using the
proxy_ignore_headers directive.

proxy_no_cache
This directive defines the conditions under which the response will not be saved
to the cache. The directive takes a list of parameters that are evaluated at runtime.
If any of them is nonempty and nonzero, the response will not be cached. The
directive is available under the http, server, and location sections of an NGINX
configuration. Here's an example:

http{
proxy_no_cache $http_pragma $cookie_nocache;
}

The preceding configuration will not cache the response if the header contains the
Pragma field, or if a no-cache cookie has been set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

proxy_cache_bypass
This directive defines the conditions in which NGINX will not perform cache lookup.
The directive takes a list of parameters that are evaluated at runtime. If either of them
is nonempty and nonzero, the response will not be cached. The directive is available
under the http, server, and location sections of an NGINX configuration. Here's
an example:

http{
proxy_bypass_cache $http_pragma $cookie_nocache;
}

The preceding configuration will not perform cache lookup if the header contains the
Pragma field, or if a no-cache cookie has been set.

proxy_cache_methods
This directive defines the list of HTTP methods that will be cached. By default, the
GET and HEAD methods are cached. The directive is available under the http, server,
and location sections of an NGINX configuration. Here's an example:

http{
proxy_cache_methods GET HEAD;
}

proxy_cache_use_stale
This directive defines the error conditions under which a stale response can be
used from the cache. The directive defines all error conditions served by NGINX
as parameters. By default, the directive is set to off. This directive is available
under the http, server, and location sections of an NGINX configuration. Here's
an example:

http{
proxy_cache_use_stale http_500 http_503;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[118]

Setting up the server
The following configuration enables NGINX to serve content from the Flask
application. NGINX is also configured to serve the CSS file, which is a part of the
Python application. The cache directives are used to enable the support of the Proxy
cache for the Python application. Here's how NGINX is configured for Flash:

http{
proxy_cache_path /etc/NGINX/pythoncachekeys_zone=pythonCache:100m
inactive=60m;
proxy_cache_key "$request_method$host$request_uri";
server{
location /python/css/ {
alias "/code-path/css/";
}

location /python/ {
proxy_pass http://127.0.0.1:5000/;
proxy_cache pythonCache;
proxy_cache_valid any 1m;
add_header X-Proxy-Cache $upstream_cache_status;
}
Rest NGINX configuration omitted for brevity
}
}

The preceding configuration does the following things:

•	 The proxy_cache_path directive creates a cache for the specified size
•	 The proxy_cache_key directive defines the key format for cache lookup
•	 The location directive for /python/css enables NGINX to serve all

static content
•	 The location directive for /python/ forwards all requests to the server

running at 127.0.0.1:5000
•	 The proxy_cache directive in the location section enables the cache for all

requests served by the block
•	 The proxy_cache_valid directive caches a successful response for 1 minute

Additionally, the server adds the X-Proxy-Cache field in the response header,
indicating the status of a cache hit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

Now, access the location http://server/python/. A screenshot similar to the
following one will be displayed:

Since we have added a field in the header, it can be used to validate whether the
request has been served from the cache:

$ curl -I http://192.168.2.100/python/

HTTP/1.1 200 OK

Server: NGINX/1.7.12 (Ubuntu)

Date: Thu, 30 Apr 2015 08:50:30 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

X-Proxy-Cache: MISS

$ curl -I http://192.168.2.100/python/

..

X-Proxy-Cache: HIT

Using Memcache
Memcache is a generic-purpose memory-caching system. It is often used to speed up
slow data access. The NGINX memcached module presents various directives that
can be configured to serve content directly from Memcache, thus avoiding requests
to the upstream server.

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[120]

In addition to the directives, the module also creates the $memcached_key variable,
which is used to perform cache lookup. Before using the Memcache lookup, a
value must be set in the $memcached_key variable, which is determined from the
request URL.

It is important to note that the NGINX Memcache module
only performs the lookup for the specified $memcached_key
variable. It does not perform any write backs to the cache for the
specified key. A value corresponding to the key should be in the
cache beforehand, written by means external to NGINX.

memcached_pass
This directive is used to specify the location of the memcached server. The address
can be specified in any of the following ways:

•	 A domain name or IP address, along with an optional port
•	 A Unix domain socket specified with the unix: prefix
•	 A group of servers created using the NGINX upstream directive

The directive is only available under the location and if and in location
sections of an NGINX configuration. Here's an example:

location /myloc/{
set $memached_key $uri;
memcached_pass localhost:11211;
}

memcached_connect_timeout / memcached_
send_timeout / memcached_read_timeout
The memcached_connect_timeout directive sets the timeout to establish a
connection between NGINX and the memcached server.

The memcached_send_timeout directive sets the timeout to write a request to the
memcached server. The memcached_read_timeout directive sets the timeout for
reading a response from the memcached server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

All the directives have a default value of 60 seconds and are available under the
http, server, and location sections of an NGINX configuration. Here's an example:

http{
memcached_send_timeout 30s;
memcached_connect_timeout 30s;
memcached_read_timeout 30s;
}

It is important to note that the connection will be closed if the timeout specifies any
memcached_send_timeout directive, and memcached_read_timeout directive expires.

memcached_bind
This directive can be used to specify and address in order to communicate with the
memcached server. By default, the directive is set to off. Thus, NGINX auto-assigns
the local IP address for communication. The directive is available under the http,
server, and location sections of an NGINX configuration.

Setting up the server
In this section, we will configure NGINX to serve requests from the memcached
server for the Python application that was developed earlier in the chapter. When
NGINX is unable to find the key in the memcached server, it forwards the request
to the Python application. The application then serves the request and puts the
responses in the memcached server for future requests. Here's how we configure
NGINX for Memcache:

server{
location /python/css/ {
alias "/code/location/css/";
}

location /python/ {
set $memcached_key "$request_method$request_uri";
charset utf-8;
memcached_pass 127.0.0.1:11211;
error_page 404 502 504 = @pythonfallback;
default_type text/html;
}

location @pythonfallback {
rewrite ^/python/(.*) /$1 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[122]

proxy_pass http://127.0.0.1:5000;
proxy_set_header X-Cache-Key "$request_method$request_uri";
}
Rest NGINX configuration omitted for brevity

}

The preceding NGINX configuration does the following things:

•	 Setting $memcached_key for cache lookup
•	 Specifying the address of the memcached server using the memcached_pass

directive
•	 Using a fallback to serve content from Python server upstream for errors

such as 404
•	 Additionally requesting the Python server upstream, thus setting a header

field for the lookup key

In order to interact with the memcached server from
Python, we would require the python3-memcached
package. Install it using the pip command:
$ sudopython3 -m pip install python3-memcached

from flask import Flask
from flask import render_template
from flask import request
import memcache
zsq23
cache = memcache.Client(["127.0.0.1:11211"])

@app.after_request
defprocessResponse(response):
cachekey = request.headers.get('X-Cache-Key')
if(request.method=="GET"):
cache.set(cachekey,str(response.data).encode("utf8"))
return response

class AppdateTime :
def __init__(self, day, date, time):
self.day = day
self.date = date
self.time = time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[123]

@app.route("/")
def hello():

Rest Python implementation removed for brevity

The aforementioned Python code does the following:

•	 Line 4 imports the memcache module
•	 Next, we make the connection to the memcached server running on

127.0.0.1:11211

•	 The processResponse method marked with @app.after_request executes
for every request

•	 The processResponse method adds the response to the memcached server
against the key specified in the request header (X-Cache-key)

Measuring gains
It is time to test the changes and make sure that they have given any performance gain.
It is important to note that we cannot apply the baselines developed in the previous
chapter as the complete setup is quite different. We are no longer serving static
content; here we are building dynamic content from a proxy server. Thus, first we need
to perform a couple of tests in order to build a baseline with only the proxy server:

$ siege -b -c 250 -r 50 -q http://192.168.2.100/python/

done.

Transactions: 12461 hits

Availability: 99.69 %

Data transferred: 6.03 MB

Response time: 0.33 secs

Transaction rate: 381.65 trans/sec

Throughput: 0.18 MB/sec

Concurrency: 127.28

Successful transactions: 12461

Failed transactions: 39

Now, modify the NGINX configuration to serve content using the memcached
server. Validated by the new numbers, the server will take much more load. Increase
the concurrency so that you can get to know the new limits:

$ siege -b -c 900 -r 50 -q http://192.168.2.100/python/

done.

www.it-ebooks.info

http://www.it-ebooks.info/

Using NGINX Cache

[124]

Transactions: 45000 hits

Availability: 100.00 %

Elapsed time: 18.15 secs

Data transferred: 23.82 MB

Response time: 0.27 secs

Transaction rate: 2479.34 trans/sec

Throughput: 1.31 MB/sec

Concurrency: 669.05

Successful transactions: 45000

Failed transactions: 0

Summary
This chapter is aimed to explain the caching capabilities of NGINX. It is capable of
caching all static and dynamic content. The open_file_cache directive can be used
to improve NGINX performance while serving static content.

The dynamic content caching has a couple of options. NGINX can interface with
other servers/applications using different protocols, such as FastCGI, HTTP Proxy,
uwsgi, and so on. Depending upon the type of interface, the related cache can be
employed. This chapter gave examples of PHP and Python in order to show how
NGINX can work with other servers while utilizing the corresponding caches.
NGINX can also be used to serve content from the memcached server. The last part
of the chapter demonstrated NGINX's ability to work with memcache.

It is important to note that caching will improve performance, but not all data can
be cached. Any data that is highly time sensitive or varies with the content of the
request should not be cached. The impact of caching must also be measured by doing
performance tests. The results should be used to alter the application baselines.

NGINX is completely extensible; thus, it allows us to write custom extensions to
do varied things. The large catalog of NGINX extensions is a statement of its easy
extensibility. In the next chapter, we will talk about how to extend NGINX and build
performance-oriented plugins using Lua.

www.it-ebooks.info

http://www.it-ebooks.info/

[125]

Extending NGINX
Until now, we have installed and configured NGINX for out-of-the-box request
processing. However, NGINX is completely extensible, which essentially means that
if we are not satisfied with what it does, we can build custom scripts to enable the
same. The Lua scripting language can be used to leverage NGINX's extension hooks
for custom request processing.

In this chapter, we will cover the following topics:

•	 The Lua scripting language
•	 The NGINX Lua module
•	 The NGINX Lua API
•	 Setting up the server

The Lua scripting language
Lua is a lightweight, multi-paradigm programming language built on top of ANSI C.
It is a dynamically typed language, which is intended for scripting purposes. It can
be used on platforms ranging from large server systems to small mobile applications.
The Lua interpreter is quite compact and can be embedded in various applications.

Lua is a functional language and provides a small set of general features, such
as functions, garbage collection, closures, coercion, coroutine, and so on. It only
supports a limited set of data structures, such as Boolean, numbers, strings, and
tables (for arrays, sets, lists, and so on). All code in Lua is written as blocks of
statements, optionally followed by a semicolon.

The Lua code can be executed with LuaJIT, a just-in-time compiler for Lua. The
interpreter can be used in the interactive mode, so let's try a few simple examples to
get hands-on with Lua. This section only provides a brief overview of Lua's syntax
and features. For a complete overview, refer to the official documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending NGINX

[126]

Let's start by downloading the latest version of LuaJIT from http://luajit.org/
download.html:

$ wget http://luajit.org/download/LuaJIT-2.0.3.tar.gz

$ tar -xvzf LuaJIT-2.0.3.tar.gz

$ ls LuaJIT-2.0.3

COPYRIGHT doc dynasm etc Makefile README src

In order to build LuaJIT, we need to invoke the make command:

$ make

==== Building LuaJIT 2.0.3 ====

make -C src

….....

==== Successfully built LuaJIT 2.0.3 ====

The generated LuaJIT binary can be installed using the install option of the make
command:

$ sudo make install

==== Installing LuaJIT 2.0.3 to /usr/local ====

…......

ln -sf luajit-2.0.3 /usr/local/bin/luajit

==== Successfully installed LuaJIT 2.0.3 to /usr/local ====

Now that we have installed the Lua interpreter, execute the luajit command with
the -v option to check the version information:

$ luajit -v

LuaJIT 2.0.3 -- Copyright (C) 2005-2015 Mike Pall. http://luajit.org/

Let's try our first sample to build the hello function. The function takes a name and
then prints a greeting message:

$ luajit
LuaJIT 2.0.3 -- Copyright (C) 2005-2015 Mike Pall. http://luajit.org/
> function hello(name)
>> print ("hello "..name)
>> print ("let's run Lua")
>> end

www.it-ebooks.info

http://luajit.org/download.html
http://luajit.org/download.html
http://www.it-ebooks.info/

Chapter 7

[127]

> hello("rahul")
hello rahul
let's run Lua

There are a couple of things to note:

•	 The first statement defines a function with the name argument.
•	 The method starts from the function statement until it finds the end

statement.
•	 Messages can be sent to the console using the print API.
•	 In the second line, string concatenation has been performed using the ...

operator.

The previous example demonstrated Lua functions and the string data type. In the
next example, we compute the factorial of a number to demonstrate a few more
features, such as loops, variables, return values, and so on:

$ luajit
LuaJIT 2.0.3 -- Copyright (C) 2005-2015 Mike Pall. http://luajit.org/
> function computeFactorial(num)
>> local fact = 1
>> for i = 2,num do
>> fact=fact*i
>> end
>> return fact
>> end
> start = 5
>> while start < 10 do
>> print(start,computeFactorial(start))
>> start = start+1
>> end
5 120
6 720
7 5040
8 40320
9 362880
>

www.it-ebooks.info

http://www.it-ebooks.info/

Extending NGINX

[128]

In the preceding code, we built the computeFactorial function. The function takes a
number and returns its factorial. There are a couple of things to note:

•	 The second line demonstrates variable scopes as it creates the fact variable
available only in the computeFactorial method

•	 The third line defines a for loop iterating from 2 to the passed value
•	 The for loop defined in the third line ends with the end statement in the

fifth line
•	 The function returns the value and ends with the end statement (the seventh

line)
•	 The code finds a while loop (in the ninth line) to compute the factorials of

a few numbers
•	 The print API prints the factorials as key-value pairs (in the tenth line)

Now that we have gained some knowledge of Lua, we want to explore the
NGINX-Lua integration for custom request processing.

The NGINX Lua module
NGINX has the nginx_lua module developed by Openresty.org that can be used
to leverage Lua scripting. The module integrates Lua threads into the NGINX event
model to enable asynchronous code execution. The module shares the loaded Lua
libraries across all requests but segregates request contexts using Lua threads, thus
resulting in a small memory footprint.

Openresty.org provides a complete web server package with
an NGINX core, nginx_lua, LuaJIT, and a host of NGINX
modules that can be used to deploy applications.

Installation
This module is not enabled by default and needs to be built with NGINX. The
module requires the Lua 5.1 version with the LuaJIT 2.0/ 2.1 interpreter. Download
the latest version of the module from https://github.com/openresty/lua-
nginx-module/releases. You can also use the following command:

$ wget https://github.com/openresty/lua-nginx-
module/archive/v0.9.15.tar.gz

$ tar -xzvf v0.9.15.tar.gz

www.it-ebooks.info

https://github.com/openresty/lua-nginx-module/releases
https://github.com/openresty/lua-nginx-module/releases
http://www.it-ebooks.info/

Chapter 7

[129]

The module also requires ngx_develt_kit. The latest version of the kit can be
downloaded from https://github.com/simpl/ngx_devel_kit/releases.
You can also use the following command:

$ wget https://github.com/simpl/ngx_devel_kit/archive/v0.2.19.tar.gz

$ tar -xzvf v0.2.19.tar.gz

We need to build these modules with NGINX, but before we do that, we need
to export Lua and the LuaJIT library as system variables. Lua and LuaJIT should
be available in /usr/local/lib/lua/ and /usr/local/include/luajit-2.0
respectively:

$ export LUAJIT_LIB=/usr/local/lib

$ export LUAJIT_INC=/usr/local/include/luajit-2.0

Next, configure NGINX to build the downloaded modules using the configure
command. In addition to configuring the modules using the --add-module option,
we also need to specify the luajit binary path to the linker:

 $./configure \

 --with-ld-opt='-Wl,-Bsymbolic-functions -Wl,-z,relro,-
rpath,/usr/local/bin/luajit' \

 --prefix=/usr/share/nginx –conf-path=/etc/nginx/nginx.conf \

 --http-log-path=/var/log/nginx/access.log \

 --error-log-path=/var/log/nginx/error.log \

 --lock-path=/var/lock/nginx.lock \

 --pid-path=/run/nginx.pid \

 --http-client-body-temp-path=/var/lib/nginx/body \

 --http-fastcgi-temp-path=/var/lib/nginx/fastcgi \

 --http-proxy-temp-path=/var/lib/nginx/proxy \

 --http-scgi-temp-path=/var/lib/nginx/scgi \

 --http-uwsgi-temp-path=/var/lib/nginx/uwsgi \

 --with-pcre-jit \

 --with-http_realip_module \

 --with-http_addition_module \

 --with-http_sub_module \

 --with-pcre=/home/ubuntu/nginx/pcre-8.36 \

 --add-module=/home/ubuntu/nginx/ngx_devel_kit-0.2.19 \

 --add-module=/home/ubuntu/nginx/lua-nginx-module-0.9.15

www.it-ebooks.info

https://github.com/simpl/ngx_devel_kit/releases
http://www.it-ebooks.info/

Extending NGINX

[130]

After configuring the NGINX build, generate, and install the binary using make
commands, as shown here:

$ make

$ sudo make install

Validate the NGINX installation using the -V option:

$ nginx -V

nginx version: nginx/1.7.9

built by gcc 4.8.2 (Ubuntu 4.8.2-19ubuntu1)

configure arguments: -with-ld-opt='-Wl,-Bsymbolic-functions -Wl,
-z,relro,-rpath,/usr/local/bin/luajit' --prefix=/usr/share/nginx
--conf-path=/etc/nginx/nginx.conf --http-log-
path=/var/log/nginx/access.log --error-log-
path=/var/log/nginx/error.log --lock-path=/var/lock/nginx.lock --pid-
path=/run/nginx.pid --http-client-body-temp-path=/var/lib/nginx/body
--http-fastcgi-temp-path=/var/lib/nginx/fastcgi --http-proxy-temp-
path=/var/lib/nginx/proxy --http-scgi-temp-path=/var/lib/nginx/scgi -
-http-uwsgi-temp-path=/var/lib/nginx/uwsgi --with-pcre-jit --with-
http_realip_module --with-http_addition_module --with-http_sub_module
--with-pcre=/home/ubuntu/nginx/pcre-8.36 --add-
module=/home/ubuntu/nginx/ngx_devel_kit-0.2.19 --add-
module=/home/ubuntu/nginx/lua-nginx-module-0.9.15

On some platforms, the nginx -v command may give the following
error due to the loading of shared libraries:
error while loading shared libraries: libluajit-
5.1.so.2: cannot open shared object file: No such file
or directory

In order to fix the error, append the /usr/local/lib/ path to the
shared library path by executing the following command:
$ LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH

Directives
While working with Lua directives, it is important to understand that NGINX
processes a request in different life cycle phases. Each of the NGINX modules is
executed in one of these phases. The following is a list of important phases of the
NGINX request life cycle:

•	 Location selection phase: The server selects the location block to serve
the request

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

•	 Location rewrite phase: HttpRewriteModule is executed in this phase if the
request requires a location rewrite

•	 Access phase: HttpAccessModule is executed in this phase to determine
whether the request should be allowed, denied, or authenticated

•	 Try files phase: The request tries to get a response using the try_files block
•	 Content phase: A response is generated in this phase using one of the

various content handlers in NGINX, for example, Proxy, FastCGI, and so on
•	 Log phase: An access log is generated in this phase for the served request

The ngx_lua module provides the following directives to enable execution of the
Lua code in one of the phases of NGINX execution.

lua_package_path
This directive specifies the lookup path for Lua scripts used in set_by_lua,
content_by_lua, and other directives.

lua_shared_dict
This directive creates a Lua dictionary that is shared across all NGINX workers.

init_by_lua/init_by_lua_file
This directive specifies the Lua code (as a string) executed by NGINX's master process
at the global Lua VM level. The code can register Lua's global variables and import
Lua modules that can be used later in other Lua directives. Here's an example:

init_by_lua 'cjson = require "cjson"';

The init_by_lua_file directive is similar to init_by_lua. It executes the code
specified in a file to set the global context. Both directives are available under the
http section of an NGINX configuration.

set_by_lua/set_by_lua_file
This directive specifies the Lua code (as a string), a return variable, and certain
optional arguments. It executes the code using the passed arguments and provides
the value in the specified variable. Here's an example:

set_by_lua $sum 'return (10 + 20)';
echo $sum;

www.it-ebooks.info

http://www.it-ebooks.info/

Extending NGINX

[132]

Arguments passed to the Lua code can be accessed using the ngx.arg[i] directive.
The directive can only return a single value from the code. If multiple values are
required, we need to use the ngx.var.VariableName directive to create multiple
variables. Here's an example:

set_by_lua $sum 'return (ngx.arg[1] + ngx.arg[2])' 10 20;
echo $sum;

The set_by_lua_file directive is similar to set_by_lua. It executes the code
specified in a file using optional parameters and returns the value in the specified
variable. Both directives are available under the if (in location), location, and
server sections of an NGINX configuration.

content_by_lua/content_by_lua_file
This directive acts as a content provider and executes the Lua code (as a string) to
generate an NGINX response. It is important to note that the directive must not be
used with other content handles, such as Proxy, in the same location block.

The content_by_lua_file directive is similar to content_by_lua. It executes
the code specified in a file to generate an NGINX response. Both directives are
available under the location and if (in location) sections of an NGINX
configuration. Here's an example:

location /content {
 content_by_lua 'ngx.say("hello ! Content from lua")';
}

header_filter_by_lua/header_filter_by_lua_file
NGINX allows the manipulation of response headers using Lua. The code can add
new header fields or manipulate/delete existing response headers. The header_
filter_by_lua directive executes the Lua code as a response header filter. The code
can access response headers using ngx.header.HeaderFieldName variable.

The header_filter_by_lua_file directive is similar to header_filter_by_lua. It
executes the code specified in a file to manipulate response headers. Both directives
are available under the http, server, location, and if (in location) sections of
an NGINX configuration. Here's an example:

location /content {
 content_by_lua 'ngx.say("hello ! Content from lua")';
 header_filter_by_lua 'ngx.header.X-Source = "LuaScript"';
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[133]

body_filter_by_lua/body_filter_by_lua_file
The directive executes during the output-body-filter phase of NGINX and can be
used to manipulate the output body. The complete response body is passed in the
ngx.arg[1] variable. The Lua code can alter the contents of the variable to return a
new output body. The ngx.arg[2] variable contains the eof flag.

The body_filter_by_lua_file directive is similar to body_filter_by_lua. It
executes the code specified in a file to filter the output body. Both directives are
available under the http, server, location, and if (in location) sections of an
NGINX configuration. Here's an example:

location /content {
 content_by_lua 'ngx.say("hello ! Content from lua")';
 header_filter_by_lua 'ngx.header.content_length = nil';
 body_filter_by_lua '
 ngx.arg[1]=string.upper("from body filer"..ngx.arg[1]) ';
}

In the HTTP protocol, the Content-Length header field
signifies the length of the message body. On the client side,
the protocol determines the size of the message transferred,
known as the transfer length. The two lengths should be the
same. If the two lengths are going to be different, then the
length of the message body should not be specified. Thus, it
is always recommended that you clear the Content-Length
header field when the Lua code modifies the body length.

access_by_lua/access_by_lua_file
The directive executes the Lua code during the access phase of NGINX after the
execution of ngx_http_access_module.

The access_by_lua_file directive is similar to access_by_lua. It executes code
specified in a file to determine access. Both directives are available under the http,
server, location, and if (in location) sections of an NGINX configuration.
Here's an example:

location /content {
 content_by_lua 'ngx.say("hello ! Content from lua")';
 access_by_lua ' if ngx.var.remote_addr == "192.168.2.111" then
 ngx.exit(ngx.HTTP_FORBIDDEN)
 end';
}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending NGINX

[134]

rewrite_by_lua/rewrite_by_lua_file
The rewrite_by_lua directive executes Lua code during the rewrite phase of
NGINX after the execution of ngx_http_rewrite_module.

The rewrite_by_lua_file directive is similar to rewrite_by_lua. It executes
the code specified in a file during the rewrite phase. Both directives are available
under the http, server, location, and if (in location) sections of an NGINX
configuration. Here's an example:

location /content {
 content_by_lua 'ngx.say("hello ! Content from lua")';
 rewrite_by_lua ' if ngx.var.remote_addr == "192.168.2.111" then
 ngx.redirect("/forbidden.html")
 end';
}

log_by_lua/log_by_lua_file
The log_by_lua directive executes the Lua code during the log request phase of
NGINX. The code does not replace NGINX access logs, but can do sundry things,
such as tracking request times, logging messages, and so on. The messages logged
using ngx.log() will be sent to the NGINX error log. It is important to note that the
request body is not accessible in this API.

The log_by_lua_file directive is similar to log_by_lua. It executes the code
specified in a file during the log-request phase. Both directives are available
under the http, server, location, and if (in location) sections of an NGINX
configuration. Here's an example:

location /content {
 echo "hello world!"
 log_by_lua 'ngx.log(ngx.NOTICE,"logging request response")';
}

The NGINX-Lua API
The nginx_lua module provides an API that can be called in the Lua code to
interact with other NGINX components. The complete API is exposed in the form
of two packages, namely, ngx and ndk. These packages are available within the
ngx_lua directive and can be imported in external Lua modules using the require
statements. The API has been integrated into the NGINX event loop, so all I/O
operations in the Lua code must be performed using the exposed API to avoid
performance bottlenecks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[135]

The complete API is quite comprehensive and provides methods to interact
with every feature of NGINX. It is available at http://wiki.nginx.org/
HttpLuaModule#Nginx_API_for_Lua. The following section provides an overview
of the exposed API.

ngx.arg
The ngx.arg[i] API provides a way to access the variable/data passed to the
Lua code:

•	 In the set_by_lua directive, the variable holds the passed arguments
•	 In the body_filter_by_lua directive, the variable holds the response body

and the eof flag

ngx.var.varName
Any variable declared in an NGINX configuration can be accessed using the
ngx.var.varName variable. The Lua code can read and write values in these
variables. No new variables can be declared by Lua using this syntax.

ngx.say/ngx.print
The function writes output from the Lua code to the response body.

ngx.location.capture/ngx.location.capture_
multi
The ngx.location.capture API is a function call that can be used to send a
subrequest. The method takes the URI as the argument and returns a response
containing the response header, response body, and response status. Optionally, we
can also specify additional parameters, such as the HTTP method, arguments, and so
on, in the function call.

The ngx.location.capture_multi API is similar to the ngx.location.capture
API, but it can issue multiple, parallel subrequests to multiple URIs. The function
takes input arguments as an array of URIs and option pairs. It returns multiple
values—one for each URI passed. Here's an example:

 res= ngx.location.capture('/call')

 res1, res2, res3 = ngx.location.capture_multi{
 { "/call1", { args = "v1=1&v2=3" } },

www.it-ebooks.info

http://wiki.nginx.org/HttpLuaModule#Nginx_API_for_Lua
http://wiki.nginx.org/HttpLuaModule#Nginx_API_for_Lua
http://www.it-ebooks.info/

Extending NGINX

[136]

 { "/call2" },
 { "/call3", { method = ngx.HTTP_POST, body = "Data" } }, }

ngx.ctx
This API can be used to hold data specific to the current request.

ngx.status
This API denotes the response status of the current request.

ngx.header.HeaderField
This API can be used to access/manipulate response headers. Besides modifying the
existing headers, the Lua code can also define new header fields. Setting the value to
nil clears the header field.

ngx.req.functions
This API defines a number of methods in the ngx.req package that can be used to
manipulate the current request. The following is a list of the available methods:

•	 start_time: This returns the timestamp of when the request was created.
•	 http_version: This returns the HTTP version of the current request.
•	 raw_header: This returns the HTTP header of the current request.
•	 get_method/set_method: This retrieves/manipulates the current request's

HTTP method.
•	 get_headers/set_header/clear_header: This retrieves/manipulates the

current request's HTTP headers. Modifying or adding (new) a header field
is allowed by the API. The header field can be removed by either setting the
value to nil or by using the clear_header function.

•	 read_body/discard_body: This API reads the current request body if it
has not been read previously. If the body has been read earlier, the method
returns immediately. Alternatively, the Lua code can discard a request by
issuing the discard_body call.

•	 get_body_data/set_body_data/get_post_args: These methods allow the
Lua code to read and manipulate the response body as a string. If the request
is a HTTP post request, then use the get_post_args function call to get data
as variables instead of strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[137]

•	 set_uri: This call can modify the URI of the current request. The method can
also trigger new location matching in NGINX, such as the rewrite directive.
By default, the location jumping is turned off.

•	 set_uri_args/get_uri_args: These methods can use the read and modify
request query string. The get method returns the complete parameters as
key-value pairs.

ngx.shared.DictionaryName
This API can be used to access a shared dictionary created by the lua_shared_dict
directive. The dictionary has the following methods:

•	 get/get_stale: This method returns the value for the key passed. If the
key does not exist, the method returns null. If the key has expired, the
get_stale method returns the expired value.

•	 set/safe_set: This method sets key-value pairs. Optionally, the method can
also specify the expiry time during which the value would be valid. The set
method would always override the value of the key even if it has not expired.
Alternatively, the safe_set method will never override a nonexpired value.

•	 flush_all/flush_expired: The flush_all method marks all the items in
the dictionary as expired. The flush_expired method frees up memory by
removing all the expired items.

•	 delete: This removes a key-value pair from the dictionary.
•	 get_keys: This returns all keys to the dictionary.

ngx.socket.tcp
This API can be used to work with a tcp or unix socket. The API is completely
nonblocking in nature. It is important to note that the socket has the lifetime of the
Lua code executing it. Thus, it cannot be shared across various Lua handlers.

The socket created by the API offers the following methods:

•	 connect: This method connects to a tcp socket address or a unix socket
address.

•	 sslhandshake: This attempts an SSL handshake over the connection.
•	 send: This writes data over the wire.
•	 receive/receiveuntil: This receives data over the wire. The

receiveuntil method returns an iterator that can be used to read a stream.
•	 close: This closes the connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending NGINX

[138]

•	 settimeout: This method sets a timeout for the next operation over the
socket, namely connect, send, read, and so on.

•	 setkeepalive: This adds the connection to Lua's internal connection pool.
The pool has a fixed size, specified as an argument in setkeepalive. If the
pool exceeds the size, then the least recently used connection is automatically
closed. The pool also specifies a lifetime for the connection, after which the
connection is closed.

The socket is automatically closed when the Lua code exits or the socket lifetime
expires. Any fatal error occurring over the socket will close the socket.

NGINX Lua libraries
The NGINX-Lua support is quite mature. Besides the module and the API, there are
a couple of third-party libraries that can be used for various purposes. The following
is a list of a few of the available libraries:

•	 lua-resty-mysql (github.com/openresty/lua-resty-mysql): This library
provides the Mysql driver to Lua

•	 lus-resty-redis (github.com/openresty/lua-resty-redis): This library
provides the Redis driver to Lua

•	 lua-resty-memcached (github.com/openresty/lua-resty-memcached):
This library provides the memcached driver to Lua

•	 lua-resty-string (github.com/openresty/lua-resty-string): This
library provides string utility methods

•	 lua-resty-websocket (github.com/openresty/lua-resty-websocket):
This library provides support for WebSockets in Lua

•	 lua-resty-dns (github.com/openresty/lua-resty-dns): This library
provides the DNS resolver in Lua

•	 lua-resty-upload (github.com/openresty/lua-resty-upload): This
library provides support for the upload of HTTP files in Lua

In order to use these libraries, include the respective scripts in the NGINX
configuration file using the lua_package_path directive. Then, import the package
using Lua's require statement:

lua_package_path "/home/ubuntu/lua-resty-mysql-master/lib/?.lua;;";
init_by_lua 'mysql = require "resty.mysql"';

www.it-ebooks.info

github.com/openresty/lua-resty-mysql
github.com/openresty/lua-resty-redis
github.com/openresty/lua-resty-memcached
github.com/openresty/lua-resty-string
github.com/openresty/lua-resty-websocket
github.com/openresty/lua-resty-dns
github.com/openresty/lua-resty-upload
http://www.it-ebooks.info/

Chapter 7

[139]

Setting up the server
In the following section, we will try to build an example using NGINX-Lua support.

The problem statement
Let's say we have a website, the pages of which have moved from location /previous-
feature/1 , ... , /previous-feature/n to /new-feature-1 , ... , /new-
feature-n. Now, if the site is being indexed by Google (or any other search engine),
it might be required to perform URL redirects when the Googlebot hits /previous-
location/X. The redirect may require a proper HTTP redirect code (301, 302) too.

Statement
In order to solve the previously stated problem, we need to do some validation
before processing a request. We will configure NGINX to do the following:

•	 Determine whether the request URI is one of the redirected locations
•	 If no, then serve the request
•	 If yes, then determine the new location and HTTP redirect code
•	 Perform an NGINX redirect to the new location using the redirect code

We will save the location information in MySQL in the following format; then,
we can do lookups from NGINX to determine whether the location requires a
redirect or not:

ID Org_Location Redirect_Loc Redirect_Code
1 /previous-feature/1 /new-feature-1 301

2 /previous-feature/2 /new-feature-2 302

The following MySQL statements will create the required table and insert data into it:

CREATE TABLE seo_redirect_location (
 id int(11) NOT NULL AUTO_INCREMENT,
 Org_Location varchar(45) DEFAULT NULL,
 Redirect_Location varchar(45) DEFAULT NULL,
 Redirect_Code int(11) NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO seo_redirect_location
(Org_Location, Redirect_Location, Redirect_Code)

www.it-ebooks.info

http://www.it-ebooks.info/

Extending NGINX

[140]

VALUES
('/previous-feature/1','/new-feature-1',301);

INSERT INTO seo_redirect_location
(Org_Location,Redirect_Location, Redirect_Code)
VALUES
('/previous-feature/2','/new-feature-2',302);

Now, we need to build the NGINX script that can look up the MySQL database. We
will add the lua-resty-Mysql library to do this. The following NGINX script sums
up all the required changes:

add library to path
lua_package_path "/home/ubuntu/lua-resty-mysql-
master/lib/?.lua;;";

import mysql package
init_by_lua 'mysql = require "resty.mysql" ';

server {
 location / {
 default_type 'text/plain';

 content_by_lua ' local db, err = mysql:new()
 db:set_timeout(1000)
#connect to databas
 local ok, err, errno, sqlstate = db:connect{
 host = "192.168.2.111",
 port = 3306,
 database = "test",
 user = "newuser",
 password = "newuser",
 max_packet_size = 1024 * 1024 }

 if not ok then
 ngx.exec("@inline_concat")
 end

 local res, err, errno, sqlstate = db:query("select * from
seo_redirect_location where org_Location=\'"..ngx.var.uri.."\'
order by id asc", 10)

 if next(res) then
 return ngx.redirect(res[1].Redirect_location,res[1].
Redirect_Code)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[141]

 end
 ngx.exec("@inline_concat")
 ';
 }

 location @inline_concat {
 # MIME type determined by default_type:
 default_type 'text/plain';
 set $a "hello";
 set $b "world";
 # Lua script to generate Hello world
 set_by_lua $res "return
ngx.arg[1]..ngx.arg[2]..ngx.var.uri" $a $b;

 return 200 $res;
 }
}

The preceding script does the following things:

•	 The lua_package_path directive adds the lua-resty-Mysql scripts to the
NGINX Lua path

•	 The init_by_lua directive imports the resty.mysql package
•	 NGINX does all validations in the default location block
•	 The content_by_lua directive tries to build a response using Lua
•	 The db.connect statement connects to the MySQL instance
•	 If an error occurs while connecting to MySQL, then the content is served

from the @inline_concat location
•	 If no error occurs, then check the location int in the seo_redirect_

location table using db:query() method
•	 The next() method call gives back any result found by the query
•	 If one exists, perform a redirect using the ngx.redirect() method
•	 If one does not exist, the server serves content from the @inline_concat

location
•	 If the NGINX configuration does not have a default content type, it needs to

be set in the @inline_concat location block
•	 In the @inline_concat location, set_by_lua executes the Lua code to

generate a response
•	 NGINX sends back the generated response using the return statement.

The optional HTTP code (200) is also passed to the call

www.it-ebooks.info

http://www.it-ebooks.info/

Extending NGINX

[142]

Summary
The chapter is aimed at extending NGINX request processing using Lua. Lua is a
powerful, dynamic scripting language. This language implements a small set of
features. It has a rather small memory footprint and can be embedded on various
host systems using the LuaJIT interpreter. NGINX has the ngx_lua module, which
enables Lua scripts in NGINX request processing. This chapter described the module
directives and their integration into the life cycle phases of NGINX requests.

The NGINX-Lua integration also provides an API, exposed as the ngx and ndk
packages. These packages can be used to interact with other NGINX components. The
packages can also be imported into external Lua scripts. The API has been integrated
with the NGINX event loop. Thus, all I/O should be performed using these packages
to avoid a performance hit. In the end, the chapter used the module directives, API,
and third-party Lua libraries to build an example of custom request processing.

www.it-ebooks.info

http://www.it-ebooks.info/

[143]

Index
A
Apache JMeter

components 33
documentation, URL 34
installing 29
JAVA_HOME, setting 31
Java, installing 30
running 32, 33
test plans, building 34-40
URL 30
used, for creating metrics 29

Apache JMeter, components
assertions 34
configuration elements 33
listeners 34
sampler 33
test plan 34
threads 33

B
bandwidth delay product (BDP) 79
baselines 23
Bootstrap CSS

URL 17
buffer, configuring

about 59
client_body_buffer_size 60
client_body_in_file_only 60
client_body_in_single_buffer 61
client_body_temp_path 61
client_header_buffer_size 62
client_max_body_size 60
large_client_header_buffers 62

C
Common Gateway Interface (CGI) 94
compression

about 67
ngx_http_gunzip_module 70
ngx_http_gzip_module 67
ngx_http_gzip_static_module 70

connection timeout 23

D
directives

about 130
access_by_lua 133
access_by_lua_file 133
body_filter_by_lua 133
body_filter_by_lua_file 133
content_by_lua 132
content_by_lua_file 132
header_filter_by_lua 132
header_filter_by_lua_file 132
init_by_lua 131
init_by_lua_file 131
log_by_lua 134
log_by_lua_file 134
lua_package_path 131
lua_shared_dict 131
rewrite_by_lua 134
rewrite_by_lua_file 134
set_by_lua 131
set_by_lua_file 131

dynamic content, caching
about 94
FastCGI 94

www.it-ebooks.info

http://www.it-ebooks.info/

[144]

F
FastCGI cache, configuring

about 103
fastcgi_cache 104
fastcgi_cache_bypass 105
fastcgi_cache_key 104
fastcgi_cache_methods 106
fastcgi_cache_path 104
fastcgi_cache_use_stale 106
fastcgi_cache_valid 105
fastcgi_no_cache 105
server, setting up 106, 107

Flask
installing 108

H
HTTP 79

J
Java

installing 30
JAVA_HOME

setting 31

K
keepalive, timeouts

about 63
keepalive_disable 65
keepalive_requests 65
keepalive_timeout 64

L
least recently used (LRU) elements 92
load testing 22
logs, configuring

about 71
access_log 71
error_log 72
log_format 72
log_not_found 73
log_subrequest 72

Lua 125-128

LuaJIT
URL 126

LuaJIT 2.0/ 2.1 interpreter
URL 128

M
Memcache

gains, measuring 123
memcached_bind directive 121
memcached_connect_timeout 120
memcached_connect_timeout directive 121
memcached_pass 120
memcached_read_timeout 120
memcached_read_timeout directive 121
memcached_send_timeout

directive 120, 121
server, setting up 121-123
using 119, 120

metrics
creating, Apache JMeter used 29
creating, Siege used 24

N
NGINX

architecture 2, 3
building 15
complete package 13, 14
configuration syntax 43-45
configuring 6, 7
configuring, for e-mail 13
configuring, for Web 9-12
defaults 8
defaults, configuring 7
deploying 16-18
documentation, URL 3
installing 15
installing, from source 3, 4
modules, configuring 8
third-party modules, configuring 13
URL, for downloading 3

NGINX FastCGI, configuring
about 99
fastcgi_bind 101
fastcgi_connect_timeout 101

www.it-ebooks.info

http://www.it-ebooks.info/

[145]

fastcgi_ignore_headers 101
fastcgi_index 100
fastcgi_param 99
fastcgi_pass 99
fastcgi_pass_request_body 101
fastcgi_pass_request_headers 101
fastcgi_read_timeout 102
fastcgi_send_timeout 101
fastcgi_split_path_info 100
fastcgi_store 102
fastcgi_store_access 102
server, setting up 102

NGINX I/O, configuring
about 50
Asynchronous I/O 52, 53
Direct I/O 51
Sendfile 51

NGINX-Lua API
about 134, 135
ngx.arg 135
ngx.ctx 136
ngx.header.HeaderField 136
ngx.location.capture 135
ngx.location.capture_multi 135
ngx.print 135
ngx.req.functions 136, 137
ngx.say 135
ngx.shared.DictionaryName 137
ngx.socket.tcp 137, 138
ngx.status 136
ngx.var.varName 135

NGINX Lua libraries
about 138
lua-resty-dns 138
lua-resty-memcached 138
lua-resty-mysql 138
lua-resty-string 138
lua-resty-upload 138
lua-resty-websocket 138
lus-resty-redis 138

NGINX Lua module
about 128
installation 128-130

Nginx.org 4
NGINX Proxy, configuring

about 111
proxy_cache 116

proxy_cache_bypass 117
proxy_cache_key 115
proxy_cache_methods 117
proxy_cache_path 115
proxy_cache_use_stale 117
proxy_cache_valid 116
proxy_connect_timeout 114
proxy_http_version 113
proxy_ignore_headers 113
proxy_method 112
proxy_no_cache 116
proxy_pass 112
proxy_pass_request_body 113
proxy_pass_request_headers 113
proxy_read_timeout 114
proxy_send_timeout 114
proxy_set_header 112
proxy_store 114
proxy_store_access 114
server, setting up 118, 119

NGINX request life cycle, phases
access phase 131
content phase 131
location rewrite phase 131
location section phase 130
log phase 131
try files phase 131

NGINX, requisites
about 4
AIO, optional 5
ANSI C compiler 4
build system 4
libatomic_ops, optional 5
OpenSSL, optional 6
Perl Compatible Regular Expressions

library, optional 5, 6
Perl, optional 5
Zlib, optional 6

NGINX workers, configuring
about 45
accept_mutex 46
accept_mutex_delay 46
multi_accept 48
use 48-50
worker_connections 47
worker_processes 45, 46
worker_rlimit_nofile 47

www.it-ebooks.info

http://www.it-ebooks.info/

[146]

ngx_develt_kit
URL 129

ngx_http_gunzip_module
about 70
gunzip 71

ngx_http_gzip_module
about 67
gzip 67
gzip_comp_level 67
gzip_disable 69
gzip_http_version 69
gzip_min_length 68
gzip_proxied 68, 69
gzip_types 68
gzip_vary 69

ngx_http_gzip_static_module
about 70
gzip_static 70

O
OpenSSL

URL 6

P
performance testing

about 21, 22
load testing 22
stress testing 22

performance tools
URL 11

Perl
URL 5

Perl Compatible Regular Expressions
(PCRE) library

URL 5
PHP

installing 94, 95
php-fpm, configuring 98
scripts, deploying 96, 97
URL 94

php-fpm
configuring 98, 99

Proxy
using 107

Python
application, building 109-111
installing 108
URL 108

R
response timeout 23

S
server

gains, measuring 57, 74-76
problem statement 139
setting up 56, 73, 74, 89, 139
statement 139-141

server limits, raising
about 86
ephemeral ports 87
half-opened connections 87
listen socket queue size 86
open files 88
queue size 86

Siege
installing 24, 25
running 26, 27
test results 28, 29
URL 24
used, for creating metrics 24

source
NGINX, installing from 3, 4

static content, caching
about 91
open_file_cache 92
open_file_cache_errors 93
open_file_cache_min_uses 93
open_file_cache_valid 92
server, setting up 93

stress testing 22

T
TCP buffers

about 80, 81
control algorithms 83
states 84, 85
window 82, 83

www.it-ebooks.info

http://www.it-ebooks.info/

[147]

TCP, configuring
about 54
setting up 55
TCP_CORK 55
TCP_NODELAY 54

timeouts
about 22
configuring 62
connection timeout 23
response timeout 23

timeouts, configuring
client_body_timeout 66
client_header_timeout 66
keepalive 63
send_timeout 66

tools 23

Z
Zlib

URL 6

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
NGINX High Performance

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Nginx HTTP Server
Second Edition
ISBN: 978-1-78216-232-2 Paperback: 318 pages

Make the most of your infrastructure and serve pages
faster than ever with Nginx

1.	 Complete configuration directive and
module reference.

2.	 Discover possible interactions between Nginx
and Apache to get the best of both worlds.

3.	 Learn to configure your servers and virtual
hosts efficiently.

4.	 A step-by-step guide to switching from Apache
to Nginx.

Mastering NGINX
ISBN: 978-1-84951-744-7 Paperback: 322 pages

An in-depth guide to configuring NGINX for
any situation, including numerous examples and
reference tables describing each directive

1.	 An in-depth configuration guide to help you
understand how to best configure NGINX for
any situation.

2.	 Includes useful code samples to help you
integrate NGINX into your application
architecture.

3.	 Full of example configuration snippets,
best-practice descriptions, and reference tables
for each directive.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Nginx Module Extension
ISBN: 978-1-78216-304-6 Paperback: 128 pages

Customize and regulate the robust Nginx web server,
and write your own Nginx modules efficiently

1.	 Install Nginx from its source on multiple
platforms.

2.	 Become acquainted with core Nginx modules
and their configuration options.

3.	 Explore optional and third-party module
extensions along with configuration directives.

Instant Nginx Starter
ISBN: 978-1-78216-512-5 Paperback: 48 pages

Implement the nifty features of nginx with this
focused guide

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Understand Nginx and its relevance to the
modern Web.

3.	 Install Nginx and explore the different methods
of installation.

4.	 Configure and customize Nginx.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Working with NGINX
	The NGINX architecture
	Installing NGINX from source
	Build requirements
	The ANSI C compiler and build system
	libatomic_ops and AIO – optional requirements
	Perl – an optional requirement
	The Perl Compatible Regular Expressions
library – an optional requirement
	OpenSSL – an optional requirement
	Zlib – an optional requirement

	Configuring NGINX
	Configuring NGINX defaults
	Configuring NGINX modules
	Configuring NGINX for the Web
	Configuring NGINX for e-mail
	Configuring third-party modules
	NGINX – the complete package

	Building and installing NGINX
	Deploying in NGINX
	Deploying NGINX

	Summary

	Chapter 2: Benchmarking the Server
	Performance testing
	Using timeouts

	Baselines
	A note about tools

	Generating metrics using Siege
	Installing Siege
	Running Siege
	Siege test results

	Generating metrics using Apache JMeter
	Installing JMeter
	Installing Java
	Setting JAVA_HOME

	Running JMeter
	Components of JMeter
	Threads
	Sampler
	Configuration elements
	Assertions
	Listeners
	Test plan

	Building JMeter test plans
	JMeter test results

	Summary

	Chapter 3: Tweaking NGINX Configuration
	NGINX configuration syntax
	Configuring NGINX workers
	worker_processes
	accept_mutex
	accept_mutex_delay
	worker_connections
	worker_rlimit_nofile
	multi_accept
	use

	Configuring NGINX I/O
	Sendfile
	Direct I/O
	Asynchronous I/O
	Mixing them up

	Configuring TCP
	TCP_NODELAY
	TCP_CORK
	Setting them up

	Setting up the server
	Measuring gains

	Summary

	Chapter 4: Controlling Buffers, Timeouts, and Compression
	Configuring buffers
	client_body_buffer_size
	client_max_body_size
	client_body_in_file_only
	client_body_in_single_buffer
	client_body_temp_path
	client_header_buffer_size
	large_client_header_buffers

	Configuring timeouts
	keepalive
	keepalive_timeout
	keepalive_requests
	keepalive_disable

	send_timeout
	client_body_timeout
	client_header_timeout

	Compression
	ngx_http_gzip_module
	gzip
	gzip_comp_level
	gzip_min_length
	gzip_types
	gzip_proxied
	gzip_http_version
	gzip_vary
	gzip_disable

	ngx_http_gzip_static_module
	gzip_static

	ngx_http_gunzip_module
	gunzip

	Configuring logs
	access_log
	log_format
	log_subrequest
	error_log
	log_not_found

	Setting up the server
	Measuring gains

	Summary

	Chapter 5: Configuring the
Network Stack
	TCP buffers
	The TCP window
	TCP control algorithms

	TCP states
	Raising server limits
	The queue size
	The listen socket queue size
	Half-opened connections
	Ephemeral ports
	Open files

	Setting up the server
	Summary

	Chapter 6: Using NGINX Cache
	Caching static content
	open_file_cache
	open_file_cache_valid
	open_file_cache_min_uses
	open_file_cache_errors
	Setting up the server

	Caching dynamic content
	Using FastCGI and the related cache
	Installing PHP
	Deploying PHP scripts
	Configuring php-fpm
	Configuring NGINX FastCGI
	Setting up the server
	Configuring the FastCGI cache

	Using Proxy and the related cache
	Installing Python and Flask

	Building a Python application

	Configuring NGINX Proxy
	proxy_pass
	proxy_method
	proxy_set_header
	proxy_http_version
	proxy_pass_request_headers / proxy_pass_request_body
	proxy_ignore_headers
	proxy_connect_timeout / proxy_send_timeout / proxy_read_timeout
	proxy_store / proxy_store_access
	proxy_cache_path
	proxy_cache_key
	proxy_cache
	proxy_cache_valid
	proxy_no_cache
	proxy_cache_bypass
	proxy_cache_methods
	proxy_cache_use_stale
	Setting up the server

	Using Memcache
	memcached_pass
	memcached_connect_timeout / memcached_send_timeout / memcached_read_timeout
	memcached_bind
	Setting up the server
	Measuring gains

	Summary

	Chapter 7: Extending NGINX
	The Lua scripting language
	The NGINX Lua module
	Installation
	Directives
	lua_package_path
	lua_shared_dict
	init_by_lua/init_by_lua_file
	set_by_lua/set_by_lua_file
	content_by_lua/content_by_lua_file
	header_filter_by_lua/header_filter_by_lua_file
	body_filter_by_lua/body_filter_by_lua_file
	access_by_lua/access_by_lua_file
	rewrite_by_lua/rewrite_by_lua_file
	log_by_lua/log_by_lua_file

	The NGINX-Lua API
	ngx.arg
	ngx.var.varName
	ngx.say/ngx.print
	ngx.location.capture/ngx.location.capture_multi
	ngx.ctx
	ngx.status
	ngx.header.HeaderField
	ngx.req.functions
	ngx.shared.DictionaryName
	ngx.socket.tcp

	NGINX Lua libraries
	Setting up the server
	The problem statement
	Statement

	Summary

	Index

