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Preface

Thanks to the progress made in the hardware industries, our storage capacity has
increased, and because of this, there are many organizations who want to store all types of
events for analytics purposes. This has given birth to a new era of machine learning. The
field of machine learning is very complex and writing these algorithms is not a piece of
cake. Apache Mahout provides us with readymade algorithms in the area of machine
learning and saves us from the complex task of algorithm implementation.

The intention of this book is to cover classification algorithms available in Apache
Mahout. Whether you have already worked on classification algorithms using some other
tool or are completely new to the field, this book will help you. So, start reading this book
to explore the classification algorithms in one of the most popular open source projects
which enjoys strong community support: Apache Mahout.

www.it-ebooks.info


http://www.it-ebooks.info/

What this book covers

Chapter 1, Classification in Data Analysis, provides an introduction to the classification
concept in data analysis. This chapter will cover the basics of classification, similarity
matrix, and algorithms available in this area.

Chapter 2, Apache Mahout, provides an introduction to Apache Mahout and its installation
process. Further, this chapter will talk about why it is a good choice for classification.

Chapter 3, Learning Logistic Regression / SGD Using Mahout, discusses logistic
regression and Stochastic Gradient Descent, and how developers can use Mahout to use
SGD.

Chapter 4, Learning the Naive Bayes Classification Using Mahout, discusses the Bayes
Theorem, Naive Bayes classification, and how we can use Mahout to build Naive Bayes
classifier.

Chapter 5, Learning the Hidden Markov Model Using Mahout, covers the HMM and how
to use Mahout’s HMM algorithms.

Chapter 6, Learning Random Forest Using Mahout, discusses the Random forest
algorithm in detail, and how to use Mahout’s Random forest implementation.

Chapter 7, Learning Multilayer Perceptron Using Mahout, discusses Mahout as an early
level implementation of a neural network. We will discuss Multilayer Perceptron in this
chapter. Further, we will use Mahout’s implementation of MLP.

Chapter 8, Mahout Changes in the Upcoming Release, discusses Mahout as a work in
progress. We will discuss the new major changes in the upcoming release of Mahout.

Chapter 9, Building an E-mail Classification System Using Apache Mahout, provides two
use cases of e-mail classification—spam mail classification and e-mail classification based
on the project the mail belongs to. We will create the model, and use this model in a
program that will simulate the real working environment.
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What you need for this book

To use the examples in this book, you should have the following software installed on
your system:

Java 1.6 or higher

Eclipse

Hadoop

Mahout; we will discuss the installation in Chapter 2, Apache Mahout, of this book
Maven, depending on how you install Mahout

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Who this book is for

If you are a data scientist who has some experience with the Hadoop ecosystem and
machine learning methods and want to try out classification on large datasets using
Mahout, this book is ideal for you. Knowledge of Java is essential.
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Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “Extract
the source code and ensure that the folder contains the pom.xm1l file.”

A block of code is set as follows:

public static Map<String, Integer> readDictionary(Configuration conf,
Path dictionaryPath) {
Map<String, Integer> dictionary = new HashMap<String, Integer>();
for (Pair<Text, IntWritable> pair : new SequenceFileIterable<Text,
IntWritable>(dictionaryPath, true, conf)) {
dictionary.put(pair.getFirst().toString(),
pair.getSecond().get());

}

return dictionary;

¥

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

public static Map<String, Integer> readDictionary(Configuration conf,
Path dictionaryPath) {
Map<String, Integer> dictionary = new HashMap<String, Integer>();
for (Pair<Text, IntWritable> pair : new SequenceFileIterable<Text,
IntWritable>(dictionaryPath, true, conf)) {
dictionary.put(pair.getFirst().toString(),
pair.getSecond().get());

}

return dictionary;

}

Any command-line input or output is written as follows:

hadoop fs -mkdir /user/hue/KDDTrain

hadoop fs -mkdir /user/hue/KDDTest

hadoop fs -put /tmp/KDDTrain+_20Percent.arff /user/hue/KDDTrain
hadoop fs -put /tmp/KDDTest+.arff /user/hue/KDDTest

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Now, navigate to the
location for mahout-distribution-0.9 and click on Finish.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.
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Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.
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Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.
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Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.
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Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from

http://www.packtpub.com/sites/default/files/downloads/49590S_Coloredlmages.pdf.
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Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.
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Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.
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Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.
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Chapter 1. Classification in Data Analysis

In the last decade, we saw a huge growth in social networking and e-commerce sites. I am
sure that you must have got information about this book on Facebook, Twitter, or some
other site. Chances are also high that you are reading an e-copy of this book after ordering
it on your phone or tablet.

This must give you an idea of how much data we are generating over the Internet every
single day. Now, in order to obtain all necessary information from the data, we not only
create data but also store this data. This data is extremely useful to get some important
insights into the business. The analysis of this data can increase the customer base and
create profits for the organization. Take the example of an e-commerce site. You visit the
site to buy some book. You get information about books on related topics or the same
topic, publisher, or writer, and this helps you to take better decisions, which also helps the
site to know more about its customers. This will eventually lead to an increase in sales.

Finding related items or suggesting a new item to the user is all part of the data science in
which we analyze the data and try to get useful patterns.

Data analysis is the process of inspecting historical data and creating models to get useful
information that is required to help in decision making. It is helpful in many industries,
such as e-commerce, banking, finance, healthcare, telecommunications, retail,
oceanography, and many more.

Let’s take the example of a weather forecasting system. It is a system that can predict the
state of the atmosphere at a particular location. In this process, scientists collect historical
data of the atmosphere of that location and try to create a model based on it to predict how
the atmosphere will evolve over a period of time.

In machine learning, classification is the automation of the decision-making process that
learns from examples of the past and emulates those decisions automatically. Emulating
the decisions automatically is a core concept in predictive analytics. In this chapter, we
will look at the following points:

Understanding classification
Working of classification systems
Classification algorithms

Model evaluation methods
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Introducing the classification

The word classification always reminds us of our biology class, where we learned about
the classification of animals. We learned about different categories of animals, such as
mammals, reptiles, birds, amphibians, and so on.

If you remember how these categories are defined, you will realize that there were certain
properties that scientists found in existing animals, and based on these properties, they
categorized a new animal.

Other real-life examples of classification could be, for instance, when you visit the doctor.
He/she asks you certain questions, and based on your answers, he/she is able to identify
whether you have a certain disease or not.

Classification is the categorization of potential answers, and in machine learning, we want
to automate this process. Biological classification is an example of multiclass
classification and finding the disease is an example of binary classification.

In data analysis, we want to use machine learning concepts. To analyze the data, we want
to build a system that can help us to find out which class an individual item belongs to.
Usually, these classes are mutually exclusive. A related problem in this area is finding out
the probability that an individual belongs to a certain class.

Classification is a supervised learning technique. In this technique, machines—based on
historical data—Ilearn and gain the capabilities to predict the unknown. In machine
learning, another popular technique is unsupervised learning. In supervised learning, we
already know the output categories, but in unsupervised learning, we know nothing about
the output. Let’s understand this with a quick example: suppose we have a fruit basket,
and we want to classify fruits. When we say classify, it means that in the training data, we
already have output variables, such as size and color, and we know whether the color is
red and the size is from 2.3” to 3.7”. We will classify that fruit as an apple. Opposite to
this, in unsupervised learning, we want to separate different fruits, and we do not have any
output information in the training dataset, so the learning algorithm will separate different
fruits based on different features present in the dataset, but it will not be able to label
them. In other words, it will not be able to tell which one is an apple and which one is a
banana, although it will be able to separate them.
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Application of the classification system

Classification is used for prediction. In the case of e-mail categorization, it is used to
classify e-mail as spam or not spam. Nowadays, Gmail is classifying e-mails as primary,
social, and promotional as well. Classification is useful in predicting credit card frauds, to
categorize customers for eligibility of loans, and so on. It is also used to predict customer
churn in the insurance and telecom industries. It is useful in the healthcare industry as
well. Based on historical data, it is useful in classifying particular symptoms of a disease
to predict the disease in advance. Classification can be used to classify tropical cyclones.
So, it is useful across all industries.
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Working of the classification system

Let’s understand the classification process in more detail. In the process of classification,
with the dataset given to us, we try to find out informative variables using which we can
reduce the uncertainty and categorize something. These informative variables are called

explanatory variables or features.

The final categories that we are interested are called target variables or labels. Explanatory
variables can be any of the following forms:

Continuous (numeric types)
Categorical

Word-like

Text-like

Note

If numeric types are not useful for any mathematical functions, those will be counted as
categorical (zip codes, street numbers, and so on).

So, for example, we have a dataset of customer’s’ loan applications, and we want to build
a classifier to find out whether a new customer is eligible for a loan or not. In this dataset,
we can have the following fields:

e Customer Age

e Customer Income (PA)

e Customer Account Balance

e Loan Granted

From these fields, Customer Age, Customer Income (PA) and Customer Account
Balance will work as explanatory variables and Loan Granted will be the target variable,

as shown in the following screenshot:

Explanatory variables Target variable

(Class label)

**

Customer Age Customerincome (PA) | Customer Account Loan Granted
Balance
35 5145000 550000 Yes
24 550000 5500 Mo
(Figure 1)

To understand the creation of the classifier, we need to understand a few terms, as shown

in the following diagram:
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Algorithm
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¥
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e Training dataset: From the given dataset, a portion of the data is used to create the
training dataset (it could be 70 percent of the given data). This dataset is used to build
the classifier. All the feature sets are used in this dataset.

o Test dataset: The dataset that is left after the training dataset is used to test the
created model. With this data, only the feature set is used and the model is used to
predict the target variables or labels.

e Model: This is used to understand the algorithm used to generate the target variables.

While building a classifier, we follow these steps:

Collecting historical data

Cleaning data (a lot of activities are involved here, such as space removal, and so on)
Defining target variables

Defining explanatory variables

Selecting an algorithm

Training the model (using the training dataset)

Running test data

Evaluating the model

Adjusting explanatory variables

Rerunning the test

While preparing the model, one should take care of outlier detection. Outlier detection is
a method to find out items that do not conform to an expected pattern in a dataset. Outliers
in an input dataset can mislead the training process of an algorithm. This can affect the
model accuracy. There are algorithms to find out these outliers in the datasets. Distance-
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based techniques and fuzzy-logic-based methods are mostly used to find out outliers in the
dataset. Let’s talk about one example to understand the outliers.

We have a set of numbers, and we want to find out the mean of these numbers:
10, 75, 10, 15, 20, 85, 25, 30, 25

Just plot these numbers and the result will be as shown in the following screenshot:

Clearly, the numbers 75 and 85 are outliers (far away in the plot from the other numbers).
Mean = sum of values/number of values = 32.78

Mean without the outliers: = 19.29

So, now you can understand how outliers can affect the results.

While creating the model, we can encounter two majorly occurring problems
—Overfitting and Underfitting.

Overfitting occurs when the algorithm captures the noise of the data, and the algorithm fits
the data too well. Generally, it occurs if we use all the given data to build the model using
pure memorization. Instead of finding out the generalizing pattern, the model just
memorizes the pattern. Usually, in the case of overfitting, the model gets more complex,
and it is allowed to pick up spurious correlations. These correlations are specific to
training datasets and do not represent characteristics of the whole dataset in general.

The following diagram is an example of overfitting. An outlier is present, and the
algorithm considers that and creates a model that perfectly classifies the training set, but
because of this, the test data is wrongly classified (both the rectangles are classified as
stars in the test data):

[ | B ¥} | Training data
r. . .

* 0 o W ous

¥ *—. = []| Testdata
* Y/ B

¥ % _.-. . B

L2
¥ * iZ: .
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There is no single method to avoid overfitting; however, we have some approaches, such
as a reduction in the number of features and the regularization of a few of the features.
Another way is to train the model with some dataset and test with the remaining dataset. A
common method called cross-validation is used to generate multiple performance
measures. In this way, a single dataset is split and used for the creation of performance
measures.

Underfitting occurs when the algorithm cannot capture the patterns in the data, and the
data does not fit well. Underfitting is also known as high bias. It means your algorithm has
such a strong bias towards its hypothesis that it does not fit the data well. For an
underfitting error, more data will not help. It can increase the training error. More
explanatory variables can help to deal with the underfitting problem. More explanatory
fields will expand the hypothesis space and will be useful to overcome this problem.

Both overfitting and underfitting provide poor results with new datasets.
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Classification algorithms

We will now discuss the following algorithms that are supported by Apache Mahout in
this book:

Logistic regression / Stochastic Gradient Descent (SGD): We usually read
regression along with classification, but actually, there is a difference between the
two. Classification involves a categorical target variable, while regression involves a
numeric target variable. Classification predicts whether something will happen, and
regression predicts how much of something will happen. We will cover this algorithm
in Chapter 3, Learning Logistic Regression / SGD Using Mahout. Mahout supports
logistic regression trained via Stochastic Gradient Descent.

Naive Bayes classification: This is a very popular algorithm for text classification.
Naive Bayes uses the concept of probability to classify new items. It is based on the
Bayes theorem. We will discuss this algorithm in Chapter 4, Learning the Naive
Bayes Classification Using Mahout. In this chapter, we will see how Mahout is useful
in classifying text, which is required in the data analysis field. We will discuss
vectorization, bag of words, n-grams, and other terms used in text classification.
Hidden Markov Model (HMM): This is used in various fields, such as speech
recognition, parts-of-speech tagging, gene prediction, time-series analysis, and so on.
In HMM, we observe a sequence of emissions but do not have a sequence of states
which a model uses to generate the emission. In Chapter 5, Learning the Hidden
Markov Model Using Mahout, we will take one more algorithm supported by Mahout
Hidden Markov Model. We will discuss HMM in detail and see how Mahout
supports this algorithm.

Random Forest: This is the most widely used algorithm in classification. Random
Forest consists of a collection of simple tree predictors, each capable of producing a
response when presented with a set of explanatory variables. In Chapter 6, Learning
Random Forest Using Mahout, we will discuss this algorithm in detail and also talk
about how to use Mahout to implement this algorithm.

Multi-layer Perceptron (MLP): In Chapter 7, Learning Multilayer Perceptron
Using Mahout, we will discuss this newly implemented algorithm in Mahout. An
MLP consists of multiple layers of nodes in a directed graph, with each layer fully
connected to the next one. It is a base for the implementation of neural networks. We
will discuss neural networks a little but only after a detailed discussion on MLP in
Mahout.

We will discuss all the classification algorithms supported by Apache Mahout in this book,
and we will also check the model evaluation techniques provided by Apache Mahout.
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Model evaluation techniques

We cannot have a single evaluation metric that can fit all the classifier models, but we can
find out some common issues in evaluation, and we have techniques to deal with them.
We will discuss the following techniques that are used in Mahout:

Confusion matrix
ROC graph

AUC

Entropy matrix
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The confusion matrix

The confusion matrix provides us with the number of correct and incorrect predictions
made by the model compared with the actual outcomes (target values) in the data. A
confusion matrix is a N*IN matrix, where N is the number of labels (classes). Each column
is an instance in the predicted class, and each row is an instance in the actual class. Using
this matrix, we can find out how one class is confused with another. Let’s assume that we
have a classifier that classifies three fruits: strawberries, cherries, and grapes. Assuming
that we have a sample of 24 fruits: 7 strawberries, 8 cherries, and 9 grapes, the resulting
confusion matrix will be as shown in the following table:

Predicted classes by model |

| Strawberries||Cherries||Grapes

Strawberries||4 ||3 ||O |
Actual class

Cherries ||2 | 5 ||1 |

Grapes ||0 ||1 ||8 |

So, in this model, from the 8 strawberries, 3 were classified as cherries. From the 8
cherries, 2 were classified as strawberries, and 1 is classified as a grape. From the 9
grapes, 1 is classified as a cherry. From this matrix, we will create the table of confusion.
The table of confusion has two rows and two columns that report about true positive, true
negative, false positive, and false negative.

So, if we build this table for a particular class, let’s say for strawberries, it would be as
follows:

True Positive False Positive
4 (actual strawberries classified correctly) (a) 2 (cherries that were classified as strawberries)(b)
False Negative True Negative

3 (strawberries wrongly classified as cherries) (c)||15 (all other fruits correctly not classified as strawberries) (d)

Using this table of confusion, we can find out the following terms:

e Accuracy: This is the proportion of the total number of predictions that were
correctly classified. It is calculated as (True Positive + True Negative) / Positive +
Negative. Therefore, accuracy = (a+d)/(a+b+c+d).

e Precision or positive predictive value: This is the proportion of positive cases that
were correctly classified. It is calculated as (True Positive)/(True Positive + False
Positive). Therefore, precision = a/(a+b).

e Negative predictive value: This is the proportion of negative cases that were
classified correctly. It is calculated as True Negative/(True Negative + False
Negative). Therefore, negative predictive value = d/(c+d).

e Sensitivity / true positive rate / recall: This is the proportion of the actual positive

www.it-ebooks.info


http://www.it-ebooks.info/

cases that were correctly identified. It is calculated as True Positive/(True Positive +
False Negative). Therefore, sensitivity = a/(a+c).

Specificity: This is the proportion of the actual negative cases. It is calculated as True
Negative/(False Positive + True Negative). Therefore, specificity =d /(b+d).

F1 score: This is the measure of a test’s accuracy, and it is calculated as follows: F1
= 2.((Positive predictive value (precision) * sensitivity (recall))/(Positive predictive
value (precision) +sensitivity (recall))).
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The Receiver Operating Characteristics (ROC)
graph

ROC is a two-dimensional plot of a classifier with false positive rate on the x axis and true
positive rate on the y axis. The lower point (0,0) in the figure represents never issuing a
positive classification. Point (0,1) represents perfect classification. The diagonal from
(0,0) to (1,1) divides the ROC space. Points above the diagonal represent good
classification results, and points below the line represent poor results, as shown in the
following diagram:
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Area under the ROC curve

This is the area under the ROC curve and is also known as AUC. It is used to measure the
quality of the classification model. In practice, most of the classification models have an
AUC between 0.5 and 1. The closer the value is to 1, the greater is your classifier.
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The entropy matrix

Before going into the details of the entropy matrix, first we need to understand entropy.
The concept of entropy in information theory was developed by Shannon.

Entropy is a measure of disorder that can be applied to a set. It is defined as:

Entropy = -pllog(p1) — p2log(p2)- .......

Each p is the probability of a particular property within the set. Let’s revisit our customer
loan application dataset. For example, assuming we have a set of 10 customers from
which 6 are eligible for a loan and 4 are not. Here, we have two properties (classes):
eligible or not eligible.

P(eligible) = 6/10 = 0.6

P(not eligible) = 4/10 = 0.4

So, entropy of the dataset will be:

Entropy = -[0.6*log2(0.6)+0.4*log2(0.4)]
= -[0.6%-0.74 +0.4*-1.32]

= 0.972

Entropy is useful in acquiring knowledge of information gain. Information gain measures
the change in entropy due to any new information being added in model creation. So, if
entropy decreases from new information, it indicates that the model is performing well
now. Information gain is calculated as:

IG (classes , subclasses) = entropy(class) —(p(subclass1)*entropy(subclass1)+
p(subclass2)*entropy(subclass2) + ...)

Entropy matrix is basically the same as the confusion matrix defined earlier; the only
difference is that the elements in the matrix are the averages of the log of the probability
score for each true or estimated category combination. A good model will have small
negative numbers along the diagonal and will have large negative numbers in the off-
diagonal position.
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Summary

We have discussed classification and its applications and also what algorithm and
classifier evaluation techniques are supported by Mahout. We discussed techniques like
confusion matrix, ROC graph, AUC, and entropy matrix.

Now, we will move to the next chapter and set up Apache Mahout and the developer
environment. We will also discuss the architecture of Apache Mahout and find out why
Mahout is a good choice for classification.
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Chapter 2. Apache Mahout

In the previous chapter, we discussed classification and looked into the algorithms
provided by Mahout in this area. Before going to those algorithms, we need to understand
Mahout and its installation. In this chapter, we will explore the following topics:

What is Apache Mahout?

Algorithms supported in Mahout

Why is it a good choice for classification problems?
Setting up the system for Mahout development
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Introducing Apache Mahout

A mahout is a person who rides and controls an elephant. Most of the algorithms in
Apache Mahout are implemented on top of Hadoop, which is another Apache-licensed
project and has the symbol of an elephant (http://hadoop.apache.org/). As Apache Mahout
rides over Hadoop, this name is justified.

Apache Mahout is a project of Apache Software Foundation that has implementations of
machine learning algorithms. Mahout was started as a subproject of the Apache Lucene
project in 2008. After some time, an open source project named Taste, which was
developed for collaborative filtering, and it was absorbed into Mahout. Mahout is written
in Java and provides scalable machine learning algorithms. Mahout is the default choice
for machine learning problems in which the data is too large to fit into a single machine.
Mahout provides Java libraries and does not provide any user interface or server. It is a
framework of tools to be used and adapted by developers.

]

e
-

’— b L /A0l j

| |

U

MAHOUT

To sum it up, Mahout provides you with implementations of the most frequently used
machine learning algorithms in the area of classification, clustering, and recommendation.
Instead of spending time writing algorithms, it provides us with ready-to-consume
solutions.

Mahout uses Hadoop for its algorithms, but some of the algorithms can also run without
Hadoop. Currently, Mahout supports the following use cases:

e Recommendation: This takes the user data and tries to predict items that the user
might like. With this use case, you can see all the sites that are selling goods to the
user. Based on your previous action, they will try to find out unknown items that
could be of use. One example can be this: as soon as you select some book from
Amazon, the website will show you a list of other books under the title, Customers
Who Bought This Item Also Bought. It also shows the title, What Other Items Do
Customers Buy After Viewing This Item? Another example of recommendation is
that while playing videos on YouTube, it recommends that you listen to some other
videos based on your selection. Mahout provides full API support to develop your

www.it-ebooks.info


http://hadoop.apache.org/
http://www.it-ebooks.info/

own user-based or item-based recommendation engine.

Classification: As defined in the earlier chapter, classification decides how much an
item belongs to one particular category. E-mail classification for filtering out spam is
a classic example of classification. Mahout provides a rich set of APIs to build your
own classification model. For example, Mahout can be used to build a document
classifier or an e-mail classifier.

Clustering: This is a technique that tries to group items together based on some sort
of similarity. Here, we find the different clusters of items based on certain properties,
and we do not know the name of the cluster in advance. The main difference between
clustering and classification is that in classification, we know the end class name.
Clustering is useful in finding out different customer segments. Google News uses
the clustering technique in order to group news. For clustering, Mahout has already
implemented some of the most popular algorithms in this area, such as k-means,
fuzzy k-means, canopy, and so on.

Dimensional reduction: As we discussed in the previous chapter, features are called
dimensions. Dimensional reduction is the process of reducing the number of random
variables under consideration. This makes data easy to use. Mahout provides
algorithms for dimensional reduction. Singular value decomposition and Lanczos are
examples of the algorithms that Mahout provides.

Topic modeling: Topic modeling is used to capture the abstract idea of a document.
A topic model is a model that associates probability distribution with each document
over topics. Given that a document is about a particular topic, one would expect
particular words to appear in the document more or less frequently. “Football” and
“goal” will appear more in a document about sports. Latent Dirichlet Allocation
(LDA) is a powerful learning algorithm for topic modeling. In Mahout, collapsed
variational Bayes is implemented for LDA.
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Algorithms supported in Mahout

The implementation of algorithms in Mahout can be categorized into two groups:

e Sequential algorithms: These algorithms are executed sequentially and do not use
Hadoop scalable processing. They are usually the ones derived from Taste. For
example: user-based collaborative filtering, logistic regression, Hidden Markov
Model, multi-layer perceptron, singular value decomposition.

o Parallel algorithms: These algorithms can support petabytes of data using Hadoop’s
map and hence reduce parallel processing. For example, Random Forest, Naive
Bayes, canopy clustering, k-means clustering, spectral clustering, and so on.
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Reasons for Mahout being a good choice
for classification

In machine learning systems, the more data you use, the more accurate the system built
will be. Mahout, which uses Hadoop for scalability, is way ahead of others in terms of
handling huge datasets. As the number of training sets increases, Mahout’s performance
also increases. If the input size for training examples is from 1 million to 10 million, then
Mahout is an excellent choice.

For classification problems, increased data for training is desirable as it can improve the
accuracy of the model. Generally, as the number of datasets increases, memory
requirement also increases, and algorithms become slow, but Mahout’s scalable and
parallel algorithms work better with regards to the time taken. Each new machine added
decreases the training time and provides higher performance.
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Installing Mahout

Now let’s try the slightly challenging part of this book: Mahout installation. Based on
common experiences, I have come up with the following questions or concerns that users
face before installation:

¢ [ do not know anything about Maven. How will I compile Mahout build?
e How can I set up Eclipse to write my own programs in Mahout?
e How can I install Mahout on a Windows system?

So, we will install Mahout with the help of the following steps. Each step is independent
from the other. You can choose any one of these:

e Building Mahout code using Maven
e Setting up a development environment using Eclipse
e Setting up Mahout for a Windows user

Before any of the steps, some of the prerequisites are:

¢ You should have Java installed on your system. Wikihow is a good source for this at
http://www.wikihow.com/Install-Java-on-Linux
¢ You should have Hadoop installed on your system from the

http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/SingleNodeSetup.html URL
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Building Mahout from source using Maven

Mahout’s build and release system is based on Maven.

Installing Maven

1. Create the folder /usr/local/maven, as follows:

mkdir /usr/local/maven

Download the distribution apache-maven-x.y.z-bin.tar.gz from the Maven site

(http://maven.apache.org/download.cgi) and move this to /usr/local/maven, as
follows:

mv apache-maven-x.y.z-bin.tar.gz /usr/local/maven

3. Unpack to the location /usr/local/maven, as follows:

tar -xvf apache-maven-x.y.z-bin.tar.gz

4. Edit the .bashrc file, as follows:

export M2_HOME=/usr/local/apache-maven-x.y.z
export M2=$M2_HOME/bin
export PATH=$M2:$PATH

Note

For the Eclipse IDE, go to Help and select Install new Software. Click on the Add
button, and in the pop up, type the name M2Eclipse, provide the link

http://download.eclipse.org/technology/m2e/releases, and click on OK.
Building Mahout code

By default, Mahout assumes that Hadoop is already installed on the system. Mahout uses
the HADOOP_HOME and HADOOP_CONF_DIR environment variables to access Hadoop cluster
configurations. For setting up Mahout, execute the following steps:

1.

2.

Download the Mahout distribution file mahout-distribution-0.9-src.tar.gz from
the location http://archive.apache.org/dist/mahout/0.9/.

Choose an installation directory for Mahout (/usr/local/Mahout), and place the
downloaded source in the folder. Extract the source code and ensure that the folder
contains the pom.xm1 file. The following is the exact location of the source:

tar -xvf mahout-distribution-0.9-src.tar.gz
Install the Mahout Maven project, and skip the test cases while installing, as follows:

mvn install -Dmaven.test.skip=true

Set the MAHOUT_HOME environment variable in the ~/.bashrc file, and update the PATH
variable with the Mahout bin directory:

export MAHOUT_HOME=/user/local/mahout/mahout-distribution-0.9
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export PATH=$PATH: $SMAHOUT_HOME/bin

5. To test the Mahout installation, execute the command: mahout. This will list the
available programs within the distribution bundle, as shown in the following
screenshot:
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Setting up a development environment using
Eclipse

For this setup, you should have Maven installed on the system and the Maven plugin for
Eclipse. Refer to the Installing Maven step explained in the previous section. This setup
can be done in the following steps:

1.

Download the Mahout distribution file mahout-distribution-0.9-src.tar.gz from
the location http://archive.apache.org/dist/mahout/0.9/ and unzip this:

tar xzf mahout-distribution-0.9-src.tar.gz

Let’s create a folder named workspace under /usr/local/workspace, as follows:

mkdir /usr/local/workspace

Move the downloaded distribution to this folder (from the downloads folder), as
follows:

mv mahout-distribution-0.9 /usr/local/workspace/

Move to the folder /usr/local/workspace/mahout-distribution-0.9 and make an
Eclipse project (this command can take up to an hour):

mvn eclipse:eclipse

Set the Mahout home in the .bashrc file, as explained earlier in the Building Mahout
code section.

Now open Eclipse. Select the file, import Maven, and Existing Maven Projects.
Now, navigate to the location for mahout-distribution-0.9 and click on Finish.
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Setting up Mahout for a Windows user

A Windows user can use Cygwin (a large collection of GNU and open source tools that
provides functionality similar to a Linux distribution on Windows) to set up their
environment. There is also another way that is easy to use, as shown in the following
steps:

1. Download Hortonworks Sandbox for virtual box on your system from the location
http://hortonworks.com/products/hortonworks-sandbox/#install. Hortonworks
Sandbox on your system will be a pseudo-distributed mode of Hadoop.

2. Log in to the console. Use Alt + F5 or alternatively download Putty and provide
127.0.0.1 as the hostname and 2222 in the port, as shown in the following figure. Log
in with the username root and password -hadoop.

= -
#2 PuTTY Configuration
Categony:

=~ Sgssinn Basic options for your PuTTY session

Eb Ten I_.Dglging Specify the destination you want to connect ta
Tm}é;?rbnard Host Mame (or IP address) Port
- Bell 127.0.0.1 2222
- Features Connection type:

=1 Window (0 Raw (D) Telnet (O Rlogin @ SS5H () Seral
f-‘-.ppea!ance Load, save or delete a stored session
- Behawiour
- Translation Saved Sessions
- Selection
s Crlen ire [y L il

3. Enter the following command:

yum install mahout

Now, you will see a screen like this:
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4. Enter y, and your Mahout will start installing. Once this is done, you can test by
typing the command mahout and this will show you the same screen as shown in the
Setting up a development environment using Eclipse recipe seen earlier.
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Summary

We discussed Apache Mahout in detail in this chapter. We covered the process of
installing Mahout on our system, along with setting up a development environment that is
ready to execute Mahout algorithms. We have also taken a look at the reasons behind
Mahout being considered a good choice for classification. Now, we move to the next
where we will understand about logistic regression and learn about the process that needs
to be followed to execute our first algorithm in Mahout.

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3. Learning Logistic Regression /
SGD Using Mahout

Instead of jumping directly into logistic regression, let’s try to understand a few of its
concepts. In this chapter, we will explore the following topics:

Introducing regression
Understanding linear regression
Cost function

Gradient descent

Logistic regression

Understanding SGD

Using Mahout for logistic regression
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Introducing regression

Regression analysis is used for prediction and forecasting. It is used to find out the
relationship between explanatory variables and target variables. Essentially, it is a
statistical model that is used to find out the relationship among variables present in the
datasets. An example that you can refer to for a better understanding of this term is this:
determine the earnings of workers in a particular industry. Here, we will try to find out the
factors that affect a worker’s salary. These factors can be age, education, years of
experience, particular skill set, location, and so on. We will try to make a model that will
take all these variables into consideration and try to predict the salary. In regression
analysis, we characterize the variation of the target variable around the regression
function, which can be described by a probability distribution that is also of interest. There
are a number of regression analysis techniques that are available. For example, linear
regression, ordinary least squares regression, logistic regression, and so on.
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Understanding linear regression

In linear regression, we create a model to predict the value of a target variable with the
help of an explanatory variable. To understand this better, let’s look at an example.

A company X that deals in selling coffee has noticed that in the month of monsoon, their
sales increased to quite an extent. So they have come up with a formula to find the relation
between rain and their per cup coffee sale, which is shown as follows:

C = 1.5R+800

So, for 2 mm of rain, there is a demand of 803 cups of coffee. Now if you go into minute
details, you will realize that we have the data for rainfall and per cup coffee sale, and we
are trying to build a model that can predict the demand for coffee based on the rainfall. We
have data in the form of (R1, C1), (R2, C2).... (Ri, Ci). Here, we will build the model in a
manner that keeps the error in the actual and predicted values at a minimum.

Cost function

In the equation C = 1.5R+800, the two values 1.5 and 800 are parameters and these values
affect the end result. We can write this equation as C= pO+p1R. As we discussed earlier,
our goal is to reduce the difference between the actual value and the predicted value, and
this is dependent on the values of p0 and p1. Let’s assume that the predicted value is Cp
and the actual value is C so that the difference will be (Cp-C). This can be written as
(p0+p1R-C).To minimize this error, we define the error function, which is also called the
cost function.

The cost function can be defined with the following formula:

Cost Function(p,.p,) = ]TZH p.*+PR,)-C, }
N &=

Here, i is the ith sample and N is the number of training examples. We calculate costs for
different sets of p0 and p1 and finally select the p0 and p1 that gives the least cost (C).
This is the model that will be used to make predictions for new input.

Gradient descent

Gradient descent starts with an initial set of parameter values, p0 and p1, and iteratively
moves towards a set of parameter values that minimizes the cost function. We can
visualize this error function graphically, where width and length can be considered as the
parameters p0 and p1 and height as the cost function. Our goal is to find the values for p0
and p1 in a way that our cost function will be minimal. We start the algorithm with some
values of p0 and p1 and iteratively work towards the minimum value. A good way to
ensure that the gradient descent is working correctly is to make sure that the cost function
decreases for each iteration. In this case, the cost function surface is convex and we will
try to find out the minimum value. This can be seen in the following figure:
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Cost Function
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Logistic regression

Logistic regression is used to ascertain the probability of an event. Generally, logistic
regression refers to problems where the outcome is binary, for example, in building a
model that is based on a customer’s income, travel uses, gender, and other features to
predict whether he or she will buy a particular car or not. So, the answer will be a simple
yes or no. When the outcome is composed of more than one category, this is called
multinomial logistic regression.

Logistic regression is based on the sigmoid function. Predictor variables are combined
with linear weight and then passed to this function, which generates the output in the
range of 0—1. An output close to 1 indicates that an item belongs to a certain class. Let’s
first understand the sigmoid or logistic function. It can be defined by the following
formula:

F (z) = 1/1+e (-z)

With a single explanatory variable, z will be defined as z = S0 + B1*x. This equation is
explained as follows:

e z: This is called the dependent variable. This is the variable that we would like to
predict. During the creation of the model, we have this variable with us in the training
set, and we build the model to predict this variable. The known values of z are called
observed values.

e x: This is the explanatory or independent variable. These variables are used to predict
the dependent variable z. For example, to predict the sales of a newly launched
product at a particular location, we might include explanatory variables such as the
price of the product, the average income of the people of that location, and so on.

e B0: This is called the regression intercept. If all explanatory variables are zero, then
this parameter is equal to the dependent variable z.

e B1: These are values for each explanatory variable.

The graph of the logistic function is as follows:
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With a little bit of mathematics, we can change this equation as follows:
In(F(x)/(1-F(x)) = B0 + B1*x

In the case of linear regression, the cost function graph was convex, but here, it is not
going to be convex. Finding the minimum values for parameters in a way that our
predicted output is close to the actual one will be difficult. In a cost function, while
calculating for logistic regression, we will replace our Cp value of linear regression with
the function F(z). To make convex logistic regression cost functions, we will replace
(p0+p1Ri-Ci)2 with one of the following:

e log (1/1+e (-(B0O + [1*x))) if the actual occurrence of an event is 1, this function will
represent the cost.

e log (1-(1/1+e (-(BO + B1%*x)))) if the actual occurrence of an event is 0, this function
will represent the cost.

We will have to remember that in logistic regression, we calculate the class probability.
So, if the probability of an event occurring (customer buying a car, being defrauded, and
so on ) is p, the probability of non-occurrence is 1-p.
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Stochastic Gradient Descent

Gradient descent minimizes the cost function. For very large datasets, gradient descent is a
very expensive procedure. Stochastic Gradient Descent (SGD) is a modification of the
gradient descent algorithm to handle large datasets. Gradient descent computes the
gradient using the whole dataset, while SGD computes the gradient using a single sample.
So, gradient descent loads the full dataset and tries to find out the local minimum on the
graph and then repeat the full process again, while SGD adjusts the cost function for every
sample, one by one. A major advantage that SGD has over gradient descent is that its
speed of computation is a whole lot faster. Large datasets in RAM generally cannot be
held as the storage is limited. In SGD, the burden on the RAM is reduced, wherein each
sample or batch of samples are loaded and worked with, the results for which are stored,
and so on.
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Using Mahout for logistic regression

Mahout has implementations for logistic regression using SGD. It is very easy to
understand and use. So let’s get started.

Dataset

We will use the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. This is a dataset
for breast cancer tumors and data is available from 1995 onwards. It has 569 instances of
breast tumor cases and has 30 features to predict the diagnosis, which is categorized as
either benign or malignant.

Note

More details on the preceding dataset is available at http://archive.ics.uci.edu/ml/machine-
learning-databases/breast-cancer-wisconsin/wdbc.names.

Preparing the training and test data

You can download the wdbc . data dataset from http://archive.ics.uci.edu/ml/machine-
learning-databases/breast-cancer-wisconsin/wdbc.data.

Now, save it as a CSV file and include the following header line:

ID_Number,Diagnosis, Radius, Texture, Perimeter, Area, Smoothness, Compactness, Con

Now, we will have to perform the following steps to prepare this data to be used by the
Mahout logistic regression algorithm:

1. We will make the target class numeric. In this case, the second field diagnosis is the
target variable. We will change malignant to 0 and benign to 1. Use the following
code snippet to introduce the changes. We can use this strategy for small datasets, but
for huge datasets, we have different strategies, which we will cover in Chapter 4,
Learning the Naive Bayes Classification Using Mahout:

public void convertTargetToInteger() throws IOException{
//Read the data
BufferedReader br = new BufferedReader(new FileReader("wdbc.csv"));
String line =null;
//Create the file to save the resulted data
File wdbcData = new File('"<Your Destination location for file.>");
FileWriter fw = new FileWriter(wdbcData);
//We are adding header to the new file

fw.write("ID_Number"+","+"Diagnosis"+","+"Radius"+", "+"Texture"+", "+"Pe
rimeter"+", "+"Area"+", "+"Smoothness"+", "+"Compactness"+", "+"Concavity"+
", "+"ConcavePoints"+", "+"Symmetry"+", "+"Fractal_Dimension"+", "+"RadiusS
tdError"+", "+"TextureStdError"+", "+"PerimeterStdError"+", "+"AreaStdErro
r'+", "+"sSmoothnessStdError"+", "+"CompactnessStdError"+", "+"ConcavityStd
Error"+","+"ConcavePointStdError"+", "+"Symmetrystderror"+","+"FractalDi
mensionStderror"+","+"WorstRadius"+", "+"worsttexture"+", "+"worstperimet
er"+", "+"worstarea"+", "+"worstsmoothness"+", "+"worstcompactness"+", "+"w
orstconcavity"+", "+"worstconcavepoints"+", "+"worstsymmentry"+", "+"worst
fractaldimensions"+"\n");
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/*In the while loop we are reading line by line and checking the last
field- parts[1] and changing it to numeric value accordingly*/
while((line=br.readLine())!=null){
String []parts = line.split(",");
if(parts[1].equals("M")){

fw.write(parts[0]+","+"0"+", "+parts[2]+", "+parts[3]+", "+parts[4]+", "+pa
rts[5]+", "+parts[6]+", "+parts[7]+", "+parts[8]+", "+parts[9]+", "+parts[10
1+", "+parts[11]+", "+parts[12]+", "+parts[13]+", "+parts[14]+", "+parts[15]
+", "+parts[16]+", "+parts[17]+", "+parts[18]+", "+parts[19]+", "+parts[20]+
", "+parts[21]+", "+parts[22]+", "+parts[23]+", "+parts[24]+", "+parts[25]+"
,"+parts[26]+", "+parts[27]+", "+parts[28]+", "+parts[29]+", "+parts[30]+",
"+parts[31]+"\n");
}

if(parts[1].equals("B")){

fw.write(parts[O]+","+"1"+", "+parts[2]+", "+parts[3]+", "+parts[4]+", "+pa
rts[5]+", "+parts[6]+", "+parts[7]+", "+parts[8]+", "+parts[9]+", "+parts[10
1+", "+parts[11]+", "+parts[12]+", "+parts[13]+", "+parts[14]+", "+parts[15]
+", "+parts[16]+", "+parts[17]+", "+parts[18]+", "+parts[19]+", "+parts[20]+
", "+parts[21]+", "+parts[22]+", "+parts[23]+", "+parts[24]+", "+parts[25]+"
,"+tparts[26]+", "+parts[27]+", "+parts[28]+", "+parts[29]+", "+parts[30]+",
"+parts[31]+"\n");
3
}

fw.close();
br.close();

}
Tip
Downloading the example code

You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you have purchased. If
you purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

. We will have to split the dataset into training and test datasets and then shuffle the
datasets so that we can mix them up, which can be done using the following code
snippet:

public void dataPrepration() throws Exception {

// Reading the dataset created by earlier method
convertTargetToInteger and here we are using google guava api's.

List<String> result =
Resources.readLines(Resources.getResource("wdbc.csv"), Charsets.UTF_8);

//This is to remove header before the randomization process.
Otherwise it can appear in the middle of dataset.

List<String> raw = result.subList(1, 570);

Random random = new Random();

//Shuffling the dataset.

Collections.shuffle(raw, random);

//Splitting dataset into training and test examples.
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List<String> train = raw.subList(0, 470);
List<String> test = raw.subList(470, 569);
File trainingData = new File("<your Location>/ wdbcTrain.csv");
File testData = new File('"<your Location>/ wdbcTest.csv");
writeCSV(train, trainingData);
writeCSV(test, testData);
}
//This method is writing the list to desired file location.
public void writeCSV(List<String> list, File file) throws IOException{
FileWriter fw = new FileWriter(file);

fw.write("ID_Number"+","+"Diagnosis"+", "+"Radius"+", "+"Texture"+",6 "+"Pe
rimeter"+", "+"Area"+", "+"Smoothness"+", "+"Compactness"+", "+"Concavity"+
", "+"ConcavePoints"+", "+"Symmetry"+", "+"Fractal_Dimension"+", "+"RadiusS
tdError"+","+"TextureStdError"+", "+"PerimeterStdError"+", "+"AreaStdErro
r'+", "+"SmoothnessStdError"+", "+"CompactnessStdError"+","+"ConcavityStd
Error"+","+"ConcavePointStdError"+", "+"Symmetrystderror"+","+"FractalDi
mensionStderror"+","+"WorstRadius"+", "+"worsttexture"+", "+"worstperimet
er"+", "+"worstarea"+", "+"worstsmoothness"+", "+"worstcompactness"+", "+"w
orstconcavity"+", "+"worstconcavepoints"+", "+"worstsymmentry"+", "+"worst
fractaldimensions"+"\n");

for(int i1=0;i< list.size();i++){

fw.write(list.get(1i)+"\n");
}

fw.close();

}

Training the model

We will use the training dataset and trainlogistic algorithm to prepare the model. Use the
following command to create the model:

mahout trainlogistic --input /tmp/wdbcTrain.csv --output /tmp//model --
target Diagnosis --categories 2 --predictors Radius Texture Perimeter Area
Smoothness Compacthess Concavity ConcavePoints Symmetry Fractal_Dimension
RadiusStdError TextureStdError PerimeterStdError AreaStdError
SmoothnessStdError CompactnessStdError ConcavityStdError
ConcavePointStdError Symmetrystderror FractalDimensionStderror WorstRadius
worsttexture worstperimeter worstarea worstsmoothness worstcompactness
worstconcavity worstconcavepoints worstsymmentry worstfractaldimensions --
types numeric --features 30 --passes 90 --rate 300

This command will give you the following output:
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Let’s understand the parameters used in this command:

e trainlogistic: This is the algorithm that Mahout provides to build the model using
your input parameters.

e input: This is the location of the input file.

e output: This is the location of the model file.

e target: This is the name of the target variable that we want to predict from the
dataset.

e categories: This refers to the number of predicted classes.

e predictors: This features in the dataset used to predict the target variable.

e types: This is a list of the types of predictor variables. (Here all are numeric but it
could be word or text as well.)

e features: This is the size of the feature vector used to build the model.

e passes: This specifies the number of times the input data should be re-examined
during training. Small input files may need to be examined dozens of times. Very
large input files probably don’t even need to be completely examined.

e rate: This sets the initial learning rate. This can be large if you have lots of data or
use lots of passes because it decreases progressively as data is examined.

Now our model is ready to move on to the next step of evaluation. To evaluate the model
further, we can use the same dataset and check the confusion and AUC matrix. The
command for this will be as follows:

mahout runlogistic --input /tmp/wdbcTrain.csv --model /tmp//model --auc --
confusion

e runlogistic: This is the algorithm to run the logistic regression model over an input
dataset

e model: This is the location of the model file

e auc: This prints the AUC score for the model versus the input data after the data is
read

e confusion: This prints the confusion matrix for a particular threshold

The output of the previous command is shown in the following screenshot:

www.it-ebooks.info


http://www.it-ebooks.info/

Now, these matrices show that the model is not bad. Having 0.88 as the value for AUC is
good, but we will check this on test data as well. The confusion matrix informs us that out
of 172 malignant tumors, it has correctly classified 151 instances and that 34 benign
tumors are also classified as malignant. In the case of benign tumors, out of 298, it has
correctly classified 264.

If the model does not provide good results, we have a number of options.

Change the parameters in the feature vector, increasing them if we are selecting few
features. This should be done one at a time, and we should test the result again with each
generated model. We should get a model where AUC is close to 1.

Let’s run the same algorithm on test data as well:

mahout runlogistic --input /tmp/wdbcTest.csv --model /tmp//model --auc -
confusion

So this model works almost the same on test data as well. It has classified 34 out of the 40
malignant tumors correctly.
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Summary

In this chapter, we discussed logistic regression and how we can use this algorithm
available in Apache Mahout. We used the Wisconsin Diagnostic Breast Cancer dataset and
randomly broke it into two datasets: one for training and the other for testing. We created
the logistic regression model using Mahout and also ran test data over this model. Now,
we will move on to the next chapter where you will learn about the Naive Bayes
classification and also the most frequently used classification technique: text

classification.
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Chapter 4. Learning the Naive Bayes
Classification Using Mahout

In this chapter, we will use the Naive Bayes classification algorithm to classify a set of
documents. Classifying text documents is a little tricky because of the data preparation
steps involved. In this chapter, we will explore the following topics:

Conditional probability and the Bayes rule
Understanding the Naive Bayes algorithm
Understanding terms used in text classification
Using the Naive Bayes algorithm in Apache Mahout
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Introducing conditional probability and
the Bayes rule

Before learning the Naive Bayes algorithm, you should have an understanding of
conditional probability and the Bayes rule.

In very simple terms, conditional probability is the probability that something will happen,
given that something else has already happened. It is expressed as P(A/B), which can be
read as probability of A given B, and it finds the probability of the occurrence of event A
once event B has already happened.

For example, if you choose a card from a standard card deck and if you were asked about
the probability for the card to be a diamond, you would quickly say 13/52 or 0.25, as there
are 13 diamond cards in the deck. However, if you then look at the card and declare that it
is red, then we will have narrowed the possibilities for the card to 26 possible cards, and
the probability that the card is a diamond now is 13/26 = 0.5. So, if we define A as a
diamond card and B as a red card, then P(A/B) will be the probability of the card being a
diamond, given it is red.

Sometimes, for a given pair of events, conditional probability is hard to calculate, and
Bayes’ theorem helps us here by giving the relationship between two conditional
probabilities.

Bayes’ theorem is defined as follows:
| P(B|A)P(A)

P(A|B)= 5 05]

The terms in the formula are defined as follows:

P(A): This is called prior probability or prior

P(B/A): This is called conditional probability or likelihood
P(B): This is called marginal probability

P(A/B): This is called posterior probability or posterior

The following formula is derived only from the conditional probability formula. We can
define P(B/A) as follows:
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P(4NB)|

P(4)

When rearranged, the formula becomes this:

P(ANB)=P(B|A)P(4)|

Now, from the preceding conditional probability formula, we get the following:

P(AnB) P(B|A)P(A)]

P(A|B)= p(B) P(B)

Let’s take an example that will help us to understand how Bayes’ theorem is applied.

A cancer test gives a positive result with a probability of 97 percent when the patient is
indeed affected by cancer, while it gives a negative result with 99 percent probability
when the patient is not affected by cancer. If a patient is drawn at random from a
population where 0.2 percent of the individuals are affected by cancer and he or she is
found to be positive, what is the probability that he or she is indeed affected by cancer? In
probabilistic terms, what we know about this problem can be defined as follows:

P (positive| cancer) = 0.97

P (positive| no cancer) = 1-0.99 = 0.01

P (cancer) = 0.002

P (no cancer) = 1-0.002= 0.998

P (positive) = P (positive| cancer) P (cancer) + P (positive| no cancer) P (no cancer)
= 0.97*0.002 + 0.01*0.998

= 0.01192

Now P (cancer| positive) = (0.97*0.002)/0.01192 = 0.1628

So even when found positive, the probability of the patient being affected by cancer in this
example is around 16 percent.
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Understanding the Naive Bayes algorithm

In Bayes’ theorem, we have seen that the outcome is based only on one evidence, but in
classification problems, we have multiple evidences and we have to predict the outcome.
In Naive Bayes, we uncouple multiple pieces of evidence and treat each one of them
independently. It is defined as follows:

P (outcome | multiple Evidence) ) = P (Evidence 1|outcome)* P (Evidence 2|outcome)* P
(Evidence 3|outcome) .... /P (Evidence)

Run this formula for each possible outcome. Since we are trying to classify, each outcome
will be called a class. Our task is to look at the evidence (features) to consider how likely
it is for it to be of a particular class and then assign it accordingly. The class that has the
highest probability gets assigned to that combination of evidences. Let’s understand this
with an example.

Let’s say that we have data on 1,000 pieces of fruit. They happen to be bananas, apples, or
some other fruit. We are aware of three characteristics of each fruit:

e Size: They are either long or not long
e Taste: They are either sweet or not sweet
e Color: They are either yellow or not yellow

Assume that we have a dataset like the following:

Fruit type||Taste — sweet]|Taste — not sweet||Color — yellow|[|Color — not yellow||Size — long||Size — not long||Total
Banana [|350 ||150 ||45() ||50 ||400 ||100 ||500 |
Apple ||150 ||150 ||10() ||200 ||0 ||300 ||300 |
Other ||150 ||50 ||50 ||150 ||100 ||100 ||200 |
Total ||650 ||350 ||60() ||400 ||500 ||500 ||1000 |

Now let’s look at the things we have:

P (Banana) = 500/1000 = 0.5

P (Apple) = 300/1000 = 0.3

P (Other) = 200/1000 = 0.2

Let’s look at the probability of the features:
P (Sweet) = 650/1000 = 0.65

P (Yellow) = 600/1000 = 0.6

P (long) = 500/1000 = 0.5

P (not Sweet) = 350/1000 = 0.35

P (not yellow) = 400/1000= 0.4
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P (not long) = 500/1000 = 0.5

Now we want to know what fruit we will have if it is not yellow and not long and sweet.
The probability of it being an apple is as follows:

P (Apple| sweet, not long, not yellow) = P (sweet | Apple)* P (not long | Apple)* P (not
yellow | Apple)*P (Apple)/P (sweet)* P (not long) *P (not yellow)

= 0.5*%1*0.67*0.3/P (Evidence)
= 0.1005/P (Evidence)
The probability of it being a banana is this:

P (banana| sweet, not long, not yellow) = P (sweet | banana)* P (not long | banana)* P
(not yellow | banana)*P (banana)/P (sweet)* P (not long) *P (not yellow)

= 0.7%0.2*0.1*0.5/P (Evidence)
= 0.007/P (Evidence)
The probability of it being any other fruit is as follows:

P (other fruit| sweet, not long, not yellow) = P (sweet | other fruit)* P (not long | other
fruit)* P (not yellow | other fruit) *P (other fruit)/P (sweet)* P (not long) *P (not yellow)

= 0.75*0.5*%0.75*0.2/P (Evidence)
= 0.05625/ P (Evidence)

So from the results, you can see that if the fruit is sweet, not long, and not yellow, then the
highest probability is that it will be an apple. So find out the highest probability and assign
the unknown item to that class.

Naive Bayes is a very good choice for text classification. Before we move on to text
classification using Naive Bayes in Mahout, let’s understand a few terms that are really
useful for text classification.
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Understanding the terms used in text
classification

To prepare data so that it can be used by a classifier is a complex process. From raw data,
we can collect explanatory and target variables and encode them as vectors, which is the
input of the classifier.

Vectors are ordered lists of values as defined in two-dimensional space. You can take a
clue from coordinate geometry as well. A point (3, 4) is a point in the x and y planes. In
Mahout, it is different. Here, a vector can have (3, 4) or 10,000 dimensions.

Mahout provides support for creating vectors. There are two types of vector
implementations in Mahout: sparse and dense vectors. There are a few terms that we need
to understand for text classification:

e Bag of words: This considers each document as a collection of words. This ignores
word order, grammar, and punctuation. So, if every word is a feature, then calculating
the feature value of the document word is represented as a token. It is given the value
1 if it is present or O if not.

e Term frequency: This considers the word count in the document instead of 0 and 1.
So the importance of a word increases with the number of times it appears in the
document. Consider the following example sentence:

Apple has launched iPhone and it will continue to launch such products. Other
competitors are also planning to launch products similar to that of iPhone.

The following is the table that represents term frequency:

~—

Coun

> P~

aunch

—

e

=]

roduct

lan

=
]
=

The following techniques are usually applied to come up with this type of table:

e Stemming of words: With this, the suffix is removed from the word so “launched”,
“launches”, and “launch” are all considered as “launch”.

e Case normalization: With this, every term is converted to lowercase.

e Stop word removal: There are some words that are almost present in every
document. We call these words stop words. During an important feature extraction
from a document, these words come into account and they will not be helpful in the

www.it-ebooks.info


http://www.it-ebooks.info/

overall calculation. Examples of these words are “is, are, the, that, and so on.” So,
while extracting, we will ignore these kind of words.

¢ Inverse document frequency: This is considered as the boost a term gets for being
rare. A term should not be too common. If a term occurs in every document, it is not
good for classification. The fewer documents in which a term occurs, the more
significant it is likely to be for the documents it does occur in. For a term t, inverse
document frequency is calculated as follows:

IDF (t) = 1 + log (total number of documents/ number of documents containing t)

e Term frequency and inverse term frequency: This is one of the popular
representations of the text. It is the product of term frequency and inverse document
frequency, as follows:

TFIDF (t, d) = TF (t, d) * IDF (¢)

Each document is a feature vector and a collection of documents is a set of these feature
vectors and this set works as the input for the classification. Now that we understand the
basic concepts behind the vector creation of text documents, let’s move on to the next
section where we will classify text documents using the Naive Bayes algorithm.
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Using the Naive Bayes algorithm in
Apache Mahout

We will use a dataset of 20 newsgroups for this exercise. The 20 newsgroups dataset is a
standard dataset commonly used for machine learning research. The data is obtained from
transcripts of several months of postings made in 20 Usenet newsgroups from the early
1990s. This dataset consists of messages, one per file. Each file begins with header lines
that specify things such as who sent the message, how long it is, what kind of software
was used, and the subject. A blank line follows and then the message body follows as
unformatted text.

Download the 20news-bydate.tar.gz dataset from
http://gwone.com/~jason/20Newsgroups/. The following steps are used to build the Naive
Bayes classifier using Mahout:

1. Create a 20newsdata directory and unzip the data here:

mkdir /tmp/20newsdata
cd /tmp/20newsdata
tar -xzvf /tmp/20news-bydate.tar.gz

2. You will see two folders under 26newsdata: 20news-bydate-test and 26news-
bydate-train. Now create another directory called 20newsdataall and merge both
the training and test data of the 20 newsgroups.

3. Come out of the directory and move to the home directory and execute the following:

mkdir /tmp/20newsdataall
cp -R /20newsdata/*/* /tmp/20newsdataall

4. Create a directory in Hadoop and save this data in HDFS format:

hadoop fs -mkdir /user/hue/20newsdata
hadoop fs -put /tmp/20newsdataall /user/hue/20newsdata

5. Convert the raw data into a sequence file. The seqdirectory command will generate
sequence files from a directory. Sequence files are used in Hadoop. A sequence file is
a flat file that consists of binary key/value pairs. We are converting the files into
sequence files so that it can be processed in Hadoop, which can be done using the
following command:

bin/mahout seqdirectory -i /user/hue/20newsdata/20newsdataall -o
/user/hue/20newsdataseq-out

The output of the preceding command can be seen in the following screenshot:
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6. Convert the sequence file into a sparse vector using the following command:

bin/mahout seq2sparse -i /user/hue/20newsdataseq-out/part-m-00000 -o
/user/hue/20newsdatavec -lnorm -nv -wt tfidf

The terms used in the preceding command are as follows:

o 1norm: This is for the output vector to be log normalized
o nv: This refers to named vectors
o wt: This refers to the kind of weight to use; here, we use tfidf

The output of the preceding command on the console is shown in the following
screenshot:

7. Split the set of vectors to train and test the model:

bin/mahout split -i /user/hue/20newsdatavec/tfidf-vectors --
trainingOutput /user/hue/20newsdatatrain --testOutput
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/user/hue/20newsdatatest --randomSelectionPct 40 --overwrite --
sequenceFiles -xm sequential

The terms used in the preceding command are as follows:

o randomSelectionPct: This divides the percentage of data into testing and
training datasets. Here, 60 percent is for testing and 40 percent for training.

o xm: This refers to the execution method to use: sequential or mapreduce. The
default is mapreduce.

8. Now train the model:

bin/mahout trainnb -i /user/hue/20newsdatatrain -el -o /user/hue/model
-1i /user/hue/labelindex -ow -c

9. Test the model using the following command:

bin/mahout testnb -i /user/hue/20newsdatatest -m /user/hue/model/ -1
/user/hue/labelindex -ow -o /user/hue/results

The output of the preceding command on the console is shown in the following
screenshot:
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We get the result of our Naive Bayes classifier for the 20 newsgroups.
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Summary

In this chapter, we discussed the Naive Bayes algorithm. This algorithm is a simplistic yet
highly regarded statistical model that is widely used in both industry and academia, and it
produces good results on many occasions. We initially discussed conditional probability
and the Bayes rule. We then saw an example of the Naive Bayes algorithm. You learned
about the approaches to convert text into a vector format, which is an input for classifiers.
Finally, we used the 20 newsgroups dataset to build a classifier using the Naive Bayes
algorithm in Mahout. In the next chapter, we will continue our journey of exploring
classification algorithms in Mahout with the Hidden Markov model implementation.

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5. Learning the Hidden Markov
Model Using Mahout

In this chapter, we will cover one of the most interesting topics of classification
techniques: the Hidden Markov Model (HMM). To understand the HMM, we will cover
the following topics in this chapter:

Deterministic and nondeterministic patterns
The Markov process

Introducing the HMM

Using Mahout for the HMM
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Deterministic and nondeterministic
patterns

In a deterministic system, each state is solely dependent on the state it was previously in.
For example, let’s take the case of a set of traffic lights. The sequence of lights is red —
green — amber — red. So, here we know what state will follow after the current state.
Once the transitions are known, deterministic systems are easy to understand.

For nondeterministic patterns, consider an example of a person named Bob who has his
snacks at 4:00 P.M. every day. Let’s say he has any one of the three items from the menu:
ice cream, juice, or cake. We cannot say for sure what item he will have the next day, even
if we know what he had today. This is an example of a nondeterministic pattern.

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

The Markov process

In the Markov process, the next state is dependent on the previous states. If we assume
that we have an n state system, then the next state is dependent on the previous n states.
This process is called an n model order. In the Markov process, we make the choice for the
next state probabilistically. So, considering our previous example, if Bob had juice today,
he can have juice, ice cream, or cake the next day. In the same way, we can reach any state
in the system from the previous state. The Markov process is shown in the following
diagram:

If we have n states in a process, then we can reach any state with n2 transitions. We have a
probability of moving to any state, and hence, we will have n2 probabilities of doing this.
For a Markov process, we will have the following three items:

o States: This refers to the states in the system. In our example, let’s say there are three
states: state 1, state 2, and state 3.

¢ Transition matrix: This will have the probabilities of moving from one state to any
other state. An example of the transition matrix is shown in the following screenshot:

Today
Yesterday State 1, State 2, State 3
State 1 0.1 0.8 0.2
State 2 0.3 0.1 0.1
State 3 0.6 0.1 0.7

This matrix shows that if the system was in state 1 yesterday, then the probability of
it to remain in the same state today will be 0.1.

e Initial state vector: This is the vector of the initial state of the system. (Any one of
the states will have a probability of 1 and the rest will have a probability of 0 in this
vector.)
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State 1, State 2, State 3
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Introducing the Hidden Markov Model

The Hidden Markov Model (HMM) is a classification technique to predict the states of a
system by observing the outcomes without having access to the actual states themselves. It
is a Markov model in which the states are hidden.

Let’s continue with Bob’s snack example we saw earlier. Now assume we have one more
set of events in place that is directly observable. We know what Bob has eaten for lunch
and his snacks intake is related to his lunch. So, we have an observation state, which is
Bob’s lunch, and hidden states, which are his snacks intake. We want to build an algorithm
that can forecast what would be Bob’s choice of snack based on his lunch.

Observed State
( )
Lunch) Spicy Normal No
Food Food Food

Hidden State
(Snacks)

In addition to the transition probability matrix in the Hidden Markov Model, we have one
more matrix that is called an emission matrix. This matrix contains the probability of the
observable state, provided it is assigned a hidden state. The emission matrix is as follows:

P (observable state | one state)
So, a Hidden Markov Model has the following properties:

e State vector: This contains the probability of the hidden model to be in a particular
state at the start

¢ Transition matrix: This has the probabilities of a hidden state, given the previous
hidden state

¢ Emission matrix: Given that the hidden model is in a particular hidden state, this has
the probabilities of observing a particular observable state

e Hidden states: This refers to the states of the system that can be defined by the
Hidden Markov Model

e Observable state: The states that are visible in the process

Using the Hidden Markov Model, three types of problems can be solved. The first two are
related to the pattern recognition problem and the third type of problem generates a
Hidden Markov Model, given a sequence of observations. Let’s look at these three types
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of problems:

e Evaluation: This is finding out the probability of an observed sequence, given an
HMM. From the number of different HMMs that describe different systems and a
sequence of observations, our goal will be to find out which HMM will most
probably generate the required sequence. We use the forward algorithm to calculate
the probability of an observation sequence when a particular HMM is given and find
out the most probable HMM.

¢ Decoding: This is finding the most probable sequence of hidden states from some
observations. We use the Viterbi algorithm to determine the most probable sequence
of hidden states when you have a sequence of observations and an HMM.

e Learning: Learning is generating the HMM from a sequence of observations. So, if
we have such a sequence, we may wonder which is the most likely model to generate
this sequence. The forward-backward algorithms are useful in solving this problem.

The Hidden Markov Model is used in different applications such as speech recognition,
handwritten letter recognition, genome analysis, parts of speech tagging, customer
behavior modeling, and so on.
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Using Mahout for the Hidden Markov
Model

Apache Mahout has the implementation of the Hidden Markov Model. It is available in
the org.apache.mahout.classifier.sequencelearning.hmm package.

The overall implementation is provided by eight different classes:

HMMModel: This is the main class that defines the Hidden Markov Model.
HmmTrainer: This class has algorithms that are used to train the Hidden Markov
Model. The main algorithms are supervised learning, unsupervised learning, and
unsupervised Baum-Welch.

HmmEvaluator: This class provides different methods to evaluate an HMM model.
The following use cases are covered in this class:

o Generating a sequence of output states from a model (prediction)

o Computing the likelihood that a given model will generate the given sequence of
output states (model likelihood)

o Computing the most likely hidden sequence for a given model and a given
observed sequence (decoding)

HmmAlgorithms: This class contains implementations of the three major HMM
algorithms: forward, backward, and Viterbi.

HmmUtils: This is a utility class and provides methods to handle HMM model
objects.

RandomSequenceGenerator: This is a command-line tool to generate a sequence by
the given HMM.

BaumwWelchTrainer: This is the class to train HMM from the console.
ViterbiEvaluator: This is also a command-line tool for Viterbi evaluation.

Now, let’s work with Bob’s example.

The following is the given matrix and the initial probability vector:

Ice cream

Cake||Juice

||O.36

||0.51 ||0.13 |

The following will be the state transition matrix:

Ice cream||Cake||Juice
Ice cream]|0.365 ||0.500||0.135|
Cake ||0.250 ||0.125||0.625|
Juice ||O.365 ||0.265||0.370|
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The following will be the emission matrix:

||Spicy food||Normal food|[No food
Ice cream||0.1 ||0.2 ||O.7 |
Cake "QS "025 "025 |
Juice ||0.80 ||0.10 ||O.10

Now we will execute a command-line-based example of this problem. We have three
hidden states of what Bob’s eaten for snacks: ice-cream, cake, or juice. Then, we have
three observable states of what he is having at lunch: spicy food, normal food, or no food
at all. Now, the following are the steps to execute from the command line:

1. Create a directory with the name hmm: mkdir /tmp/hmm. Go to this directory and
create the sample input file of the observed states. This will include a sequence of
Bob’s lunch habit: spicy food (state 0), normal food (state 1), and no food (state 2).
Execute the following command:

echo "012221100212111122200000022200000
011112222202120212110001010212121211
002202110" > hmm-input

2. Run the BaumWelch algorithm to train the model using the following command:

mahout baumwelch -i /tmp/hmm/hmm-input -o /tmp/hmm/hmm-model -nh 3 -no
3 -e .0001 -m 1000

The parameters used in the preceding command are as follows:

(e]

i: This is the input file location

o: This is the output location for the model

nh: This is the number of hidden states. In our example, it is three (ice cream,
juice, or cake)

no: This is the number of observable states. In our example, it is three (spicy,
normal, or no food)

e: This is the epsilon number. This is the convergence threshold value

m: This is the maximum iteration number

(e]

(e]

(e]

(e]

(e]

The following screenshot shows the output on executing the previous command:
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3. Now we have an HMM model that can be used to build a predicted sequence. We
will run the model to predict the next 15 states of the observable sequence using the
following command:

mahout hmmpredict -m /tmp/hmm/hmm-model -o /tmp/hmm/hmm-predictions -1
10

The parameters used in the preceding command are as follows:
m: This is the path for the HMM model
o: This is the output directory path
1: This is the length of the generated sequence
4. To view the prediction for the next 10 observable states, use the following command:

mahout hmmpredict -m /tmp/hmm/hmm-model -o /tmp/hmm/hmm-predictions -1
10

The output of the previous command is shown in the following screenshot:

From the output, we can say that the next observable states for Bob’s lunch will be
spicy, spicy, spicy, normal, normal, no food, no food, no food, no food, and no food.

5. Now, we will use one more algorithm to predict the hidden state. We will use the
Viterbi algorithm to predict the hidden states for a given observational state’s
sequence. We will first create the sequence of the observational state using the
following command:

echo "1 202110011 2" > /tmp/hmm/hmm-viterbi-input

6. We will use the Viterbi command-line option to generate the output with the
likelihood of generating this sequence:

mahout viterbi --input /tmp/hmm/hmm-viterbi-input --output tmp/hmm/hmm-
viterbi-output --model /tmp/hmm/hmm-model --likelihood
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The parameters used in the preceding command are as follows:

input: This is the input location of the file

output: This is the output location of the Viterbi algorithm’s output
model: This is the HMM model location that we created earlier
likelihood: This is the computed likelihood of the observed sequence

O O O o

The following screenshot shows the output on executing the previous command:

. Predictions from the Viterbi are saved in the output file and can be seen using the cat
command:

cat /tmp/hmm/hmm-viterbi-output

The following output shows the predictions for the hidden state:
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Summary

In this chapter, we discussed another classification technique: the Hidden Markov Model.
You learned about deterministic and nondeterministic patterns. We also touched upon the
Markov process and Hidden Markov process in general. We checked the classes
implemented inside Mahout to support the Hidden Markov Model. We took up an example
to create the HMM model and further used this model to predict the observational state’s
sequence. We used the Viterbi algorithm implemented in Mahout to predict the hidden
states in the system.

Now, in the next chapter, we will cover one more interesting algorithm used in
classification area: Random forest.
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Chapter 6. Learning Random Forest
Using Mahout

Random forest is one of the most popular techniques in classification. It starts with a
machine learning technique called decision tree. In this chapter, we will explore the

following topics:

e Decision tree
e Random forest
e Using Mahout for Random forest
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Decision tree

A decision tree is used for classification and regression problems. In simple terms, it is a
predictive model that uses binary rules to calculate the target variable. In a decision tree,
we use an iterative process of splitting the data into partitions, then we split it further on
branches. As in other classification model creation processes, we start with the training
dataset in which target variables or class labels are defined. The algorithm tries to break all
the records in training datasets into two parts based on one of the explanatory variables.
The partitioning is then applied to each new partition, and this process is continued until
no more partitioning can be done. The core of the algorithm is to find out the rule that
determines the initial split. There are algorithms to create decision trees, such as Iterative
Dichotomiser 3 (ID3), Classification and Regression Tree (CART), Chi-squared
Automatic Interaction Detector (CHAID), and so on. A good explanation for ID3 can
be found at http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html.

Forming the explanatory variables to choose the best splitter in a node, the algorithm
considers each variable in turn. Every possible split is considered and tried, and the best
split is the one that produces the largest decrease in diversity of the classification label
within each partition. This is repeated for all variables, and the winner is chosen as the
best splitter for that node. The process is continued in the next node until we reach a node
where we can make the decision.

We create a decision tree from a training dataset so it can suffer from the overfitting
problem. This behavior creates a problem with real datasets. To improve this situation, a
process called pruning is used. In this process, we remove the branches and leaves of the
tree to improve the performance. Algorithms used to build the tree work best at the
starting or root node since all the information is available there. Later on, with each split,
data is less and towards the end of the tree, a particular node can show patterns that are
related to the set of data which is used to split. These patterns create problems when we
use them to predict the real dataset. Pruning methods let the tree grow and remove the
smaller branches that fail to generalize. Now take an example to understand the decision
tree.

Consider we have a iris flower dataset. This dataset is hugely popular in the machine
learning field. It was introduced by Sir Ronald Fisher. It contains 50 samples from each of
three species of iris flower (Iris setosa, Iris virginica, and Iris versicolor). The four
explanatory variables are the length and width of the sepals and petals in centimeters, and
the target variable is the class to which the flower belongs.
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Sentosa
{Entire Group)

Petal Length < 2.1 Petal Length == 2.1

Sentosa Petal Width

Petal Width < 1.9 Petal Width >= 1.9

As you can see in the preceding diagram, all the groups were earlier considered as Sentosa
species and then the explanatory variable and petal length were further used to divide the
groups. At each step, the calculation for misclassified items was also done, which shows
how many items were wrongly classified. Moreover, the petal width variable was taken
into account. Usually, items at leaf nodes are correctly classified.
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Random forest

The Random forest algorithm was developed by Leo Breiman and Adele Cutler. Random
forests grow many classification trees. They are an ensemble learning method for
classification and regression that constructs a number of decision trees at training time and
also outputs the class that is the mode of the classes outputted by individual trees.

Single decision trees show the bias—variance tradeoff. So they usually have high variance
or high bias. The following are the parameters in the algorithm:

¢ Bias: This is an error caused by an erroneous assumption in the learning algorithm
e Variance: This is an error that ranges from sensitivity to small fluctuations in the
training set

Random forests attempt to mitigate this problem by averaging to find a natural balance
between two extremes. A Random forest works on the idea of bagging, which is to
average noisy and unbiased models to create a model with low variance. A Random forest
algorithm works as a large collection of decorrelated decision trees. To understand the idea
of a Random forest algorithm, let’s work with an example.

Consider we have a training dataset that has lots of features (explanatory variables) and
target variables or classes:

A sample training set with features f's and
target classes T's

We create a sample set from the given dataset:

A different set of random features were taken into account to create the random sub-
dataset. Now, from these sub-datasets, different decision trees will be created. So actually
we have created a forest of the different decision trees. Using these different trees, we will
create a ranking system for all the classifiers. To predict the class of a new unknown item,
we will use all the decision trees and separately find out which class these trees are
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predicting. See the following diagram for a better understanding of this concept:

Class 5
Class 2

Different decision trees to predict the class of an unknown item

In this particular case, we have four different decision trees. We predict the class of an
unknown dataset with each of the trees. As per the preceding figure, the first decision tree
provides class 2 as the predicted class, the second decision tree predicts class 5, the third
decision tree predicts class 5, and the fourth decision tree predicts class 3. Now, a Random
forest will vote for each class. So we have one vote each for class 2 and class 3 and two
votes for class 5. Therefore, it has decided that for the new unknown dataset, the predicted
class is class 5. So the class that gets a higher vote is decided for the new dataset. A
Random forest has a lot of benefits in classification and a few of them are mentioned in
the following list:

Combination of learning models increases the accuracy of the classification
Runs effectively on large datasets as well

The generated forest can be saved and used for other datasets as well

Can handle a large amount of explanatory variables

Now that we have understood the Random forest theoretically, let’s move on to Mahout
and use the Random forest algorithm, which is available in Apache Mahout.
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Using Mahout for Random forest

Mahout has implementation for the Random forest algorithm. It is very easy to understand
and use. So let’s get started.

Dataset

We will use the NSL-KDD dataset. Since 1999, KDD99 has been the most widely used
dataset for the evaluation of anomaly detection methods. This dataset is prepared by S. J.
Stolfo and is built based on the data captured in the DARPA ‘98 IDS evaluation program
(R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, D. Weber,
S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Zissman, “Evaluating
intrusion detection systems: The 1998 darpa off-line intrusion detection evaluation,”
discex, vol. 02, p. 1012, 2000).

DARPA ‘98 is about 4 GB of compressed raw (binary) tcp dump data of 7 weeks of
network traffic, which can be processed into about 5 million connection records, each with
about 100 bytes. The two weeks of test data have around 2 million connection records.
The KDD training dataset consists of approximately 4,900,000 single connection vectors,
each of which contains 41 features and is labeled as either normal or an attack, with
exactly one specific attack type.

NSL-KDD is a dataset suggested to solve some of the inherent problems of the KDD99
dataset. You can download this dataset from http://nsl.cs.unb.ca/NSIL.-KDD/.

We will download the KDDTrain+_ 20Percent. ARFF and KDDTest+.ARFF datasets.

The NSL-KDD Dataset

Abstract

NSL-KDD is a data set suggested to solve some of the inherent problems of the KDD'09 data set which are mentioned in [1]. Although.
this new version of the KDD data set still suffers from some of the problems discussed by McHugh [2] and may not be a perfect
representative of existing real networks. because of the lack of public data sets for network-based IDSs. we believe it still can be applied
as an effective benchmark data set to help researchers compare different intrusion detection methods. Furthermore, the number of records
in the NSL-KDD train and test sets are reasonable. This advantage makes it affordable to run the experiments on the complete set without
the need to randomly select a small portion. Consequently, evaluation results of different research work will be consistent and

comparable.

Data Files

KDDTrain+. ARFF The full NSL-KDD train set with binary labels in ARFF format

KDDTrain+. TXT The full NSL-KDD train set including attack-type labels and difficulty level in CSV format

KDDTrain+ 20Percent. ARFF A 20% subset of the KDDTrain+.arff file

KDDTrain+ 20Percent. TXT A 20% subset of the KDDTrain+.txt file

KDDTest+ ARFF The full NSL-KDD test set with binary labels in ARFF format

KDDTest+. TXT The full NSL-KDD test set including attack-type labels and difficulty level in CSV format
KDDTest-21.ARFF .iLl subset of the KDDTest+.arff file which does not include records with difficulty level of 21 out of
KDDTest-21.TXT A subset of the KDDTest+.txt file which does not inelude records with difficulty level of 21 out of 21

Note
In KDDTrain+_20Percent. ARFF and KDDTest+.ARFF, remove the first 44 lines (that
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is, all lines starting with @attribute). If this is not done, we will not be able to generate a
descriptor file.
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Steps to use the Random forest algorithm in
Mahout

The steps to implement the Random forest algorithm in Apache Mahout are as follows:

1. Transfer the test and training datasets to hdfs using the following commands:

hadoop fs -mkdir /user/hue/KDDTrain

hadoop fs -mkdir /user/hue/KDDTest

hadoop fs -put /tmp/KDDTrain+_20Percent.arff /user/hue/KDDTrain
hadoop fs -put /tmp/KDDTest+.arff /user/hue/KDDTest

2. Generate the descriptor file. Before you build a Random forest model based on the
training data in KDDTrain+.arff, a descriptor file is required. This is because all
information in the training dataset needs to be labeled. From the labeled dataset, the
algorithm can understand which one is numerical and categorical. Use the following
command to generate descriptor file:

hadoop jar $MAHOUT_HOME/core/target/mahout-core-xyz.job.jar
org.apache.mahout.classifier.df.tools.Describe

-p /user/hue/KDDTrain/KDDTrain+_20Percent.arff

-f /user/hue/KDDTrain/KDDTrain+.info

-d N3C2NC4NC8N2CI19NL

Jar: Mahout core jar (xyz stands for version). If you have directly installed Mahout, it
can be found under the /usr/1ib/mahout folder. The main class Describe is used
here and it takes three parameters:

The p path for the data to be described.
The f location for the generated descriptor file.

d is the information for the attribute on the data. N3C2NC4NC8N2C19NL
defines that the dataset is starting with a numeric (N), followed by three categorical
attributes, and so on. In the last, L. defines the label.

The output of the previous command is shown in the following screenshot:

3. Build the Random forest using the following command:

hadoop jar $MAHOUT_HOME/examples/target/mahout-examples-xyz-job.jar
org.apache.mahout.classifier.df.mapreduce.BuildForest
-Dmapred.max.split.size=1874231 -d
/user/hue/KDDTrain/KDDTrain+_20Percent.arff

-ds /user/hue/KDDTrain/KDDTrain+.1info

-s1 5 -p -t 100 -0 /user/hue/ nsl-forest

Jar: Mahout example jar (xyz stands for version). If you have directly installed
Mahout, it can be found under the /usr/1ib/mahout folder. The main class build
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forest is used to build the forest with other arguments, which are shown in the
following list:

Dmapred.max.split.size indicates to Hadoop the maximum size of each partition.
d stands for the data path.
ds stands for the location of the descriptor file.

sl is a variable to select randomly at each tree node. Here, each tree is built using
five randomly selected attributes per node.

p uses partial data implementation.

t stands for the number of trees to grow. Here, the commands build 100 trees using
partial implementation.

o stands for the output path that will contain the decision forest.

In the end, the process will show the following result:

m m m
W W m

. Use this model to classify the new dataset:

hadoop jar $MAHOUT_HOME/examples/target/mahout-examples-xyz-job.jar

org.apache.mahout.classifier.df.mapreduce.TestForest

-i /user/hue/KDDTest/KDDTest+.arff

-ds /user/hue/KDDTrain/KDDTrain+.info -m /user/hue/nsl-forest -a -mr
-0 /user/hue/predictions

Jar: Mahout example jar (xyz stands for version). If you have directly installed
Mabhout, it can be found under the /usr/1ib/mahout folder. The class to test the
forest has the following parameters:

I indicates the path for the test data
ds stands for the location of the descriptor file

m stands for the location of the generated forest from the previous command
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a informs to run the analyzer to compute the confusion matrix

mr informs hadoop to distribute the classification

o stands for the location to store the predictions in

The job provides the following confusion matrix:

So, from the confusion matrix, it is clear that 9,396 instances were correctly classified and
315 normal instances were incorrectly classified as anomalies. And the accuracy
percentage is 77.7635 (correctly classified instances by the model / classified instances).
The output file in the prediction folder contains the list where 0 and 1. 0 defines the
normal dataset and 1 defines the anomaly.
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Summary

In this chapter, we discussed the Random forest algorithm. We started our discussion by
understanding the decision tree and continued with an understanding of the Random
forest. We took up the NSL-KDD dataset, which is used to build predictive systems for
cyber security. We used Mahout to build the Random forest tree, and used it with the test
dataset and generated the confusion matrix and other statistics for the output.

In the next chapter, we will look at the final classification algorithm available in Apache
Mahout. So stay tuned!
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Chapter 7. Learning Multilayer
Perceptron Using Mahout

To understand a Multilayer Perceptron (MLP), we will first explore one more popular
machine learning technique: neural network. In this chapter, we will explore the

following topics:

e Neural network and neurons

e MLP
e Using Mahout for MLP implementation
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Neural network and neurons

Neural network is an old algorithm, and it was developed with a goal in mind: to provide
the computer with a brain. Neural network is inspired by the biological structure of the
human brain where multiple neurons are connected and form columns and layers. A
neuron is an electrically excitable cell that processes and transmits information through
electrical and chemical signals. Perceptual input enters into the neural network through
our sensory organs and is then further processed into higher levels. Let’s understand how
neurons work in our brain.

Neurons are computational units in the brain that collect the input from input nerves,
which are called dendrites. They perform computation on these input messages and send
the output using output nerves, which are called axons. See the following figure
(http://vv.carleton.ca/~neil/neural/neuron-a.html):

Axon hillock
‘ -~ Sama Axon
Dendrite Mucleus

Terminal buttons

-

=mchematic of biological neuron.

On the same lines, we develop a neural network in computers. We can represent a neuron
in our algorithm as shown in the following figure:
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X2 f >

Here, x1, x2, and x3 are the feature vectors, and they are assigned to a function f, which
will do the computation and provide the output. This activation function is usually chosen
from the family of sigmoidal functions (as defined in Chapter 3, Learning Logistic
Regression / SGD Using Mahout). In the case of classification problems, softmax
activation functions are used. In classification problems, we want the output as the
probabilities of target classes. So, it is desirable for the output to lie between 0 and 1 and
the sum close to 1. Softmax function enforces these constraints. It is a generalization of
the logistic function. More details on softmax function can be found at
http://www.fags.org/fags/ai-fag/neural-nets/part2/section-12.html.
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Multilayer Perceptron

A neural network or artificial neural network generally refers to an MLP network. We
defined neuron as an implementation in computers in the previous section. An MLP
network consists of multiple layers of these neuron units. Let’s understand a perceptron
network of three layers, as shown in the next figure. The first layer of the MLP represents
the input and has no other purpose than routing the input to every connected unit in a feed-
forward fashion. The second layer is called hidden layers, and the last layer serves the
special purpose of determining the output. The activation of neurons in the hidden layers
can be defined as the sum of the weight of all the input. Neuron 1 in layer 2 is defined as
follows:

Y12 = g(w110x0 +w111x1+w112x2+w113x3)

The first part where *x0 = 0* is called the bias and can be used as an offset, independent
of the input. Neuron 2 in layer 2 is defined as follows:

Y22 = g(w120x0 +w121x1+w122x2+w123x3)

7
y2? Nis o ————
ys

Input Layer Hidden Layer Output layer

Neuron 3 in layer 2 is defined as follows:
Y32 =g (w130x0 +w131x1+w132x2+w133x3)

Here, g is a sigmoid function, as defined in Chapter 3, Learning Logistic Regression /
SGD Using Mahout. The function is as follows:

g(z) = 1/1+e (-z)

In this MLP network output, from each input and hidden layers, neuron units are
distributed to other nodes, and this is why this type of network is called a fully connected
network. In this network, no values are fed back to the previous layer. (Feed forward is
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another strategy and is also known as back propagation. Details on this can be found at
http://home.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html.)

An MLP network can have more than one hidden layer. To get the value of the weights so
that we can get the predicted value as close as possible to the actual one is a training
process of the MLP. To build an effective network, we consider a lot of items such as the
number of hidden layers and neuron units in each layer, the cost function to minimize the
error in predicted and actual values, and so on.

Now let’s discuss two more important and problematic questions that arise when creating
an MLP network:

e How many hidden layers should one use for the network?
¢ How many numbers of hidden units (neuron units) should one use in a hidden layer?

Zero hidden layers are required to resolve linearly separable data. Assuming your data
does require separation by a non-linear technique, always start with one hidden layer.
Almost certainly, that’s all you will need. If your data is separable using an MLP, then this
MLP probably only needs a single hidden layer. In order to select the number of units in
different layers, these are the guidelines:

¢ Input layer: This refers to the number of explanatory variables in the model plus one
for the bias node.

e Output layer: In the case of classification, this refers to the number of target
variables, and in the case of regression, this is obviously one.

e Hidden layer: Start your network with one hidden layer and use the number of
neuron units equivalent to the units in the input layer. The best way is to train several
neural networks with different numbers of hidden layers and hidden neurons and
measure the performance of these networks using cross-validation. You can stick
with the number that yields the best-performing network. Problems that require two
hidden layers are rarely encountered. However, neural networks that have more than
one hidden layer can represent functions with any kind of shape. There is currently
no theory to justify the use of neural networks with more than two hidden layers. In
fact, for many practical problems, there is no reason to use any more than one hidden
layer. A network with no hidden layer is only capable of representing linearly
separable functions. Networks with one layer can approximate any function that
contains a continuous mapping from one finite space to another, and networks with
two hidden layers can represent an arbitrary decision boundary to arbitrary accuracy
with rational activation functions and can approximate any smooth mapping to any
accuracy (Chapter 5 of the book Introduction to Neural Networks for Java).

e Number of neurons or hidden units: Use the number of neuron units equivalent to
the units in the input layer. The number of hidden units should be less than twice the
number of units in the input layer. Another rule to calculate this is (number of input
units + number of output units)* 2/3.

Do the testing for generalization errors, training errors, bias, and variance. When a
generalization error dips, then just before it begins to increase again, the numbers of nodes
are usually found to be perfect at this point.
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Now let’s move on to the next section and explore how we can use Mahout for an MLP.
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MLP implementation in Mahout

The MLP implementation is based on a more general neural network class. It is
implemented to run on a single machine using Stochastic Gradient Descent, where the
weights are updated using one data point at a time.

The number of layers and units per layer can be specified manually and determines the
whole topology with each unit being fully connected to the previous layer. A bias unit is
automatically added to the input of every layer. A bias unit is helpful for shifting the
activation function to the left or right. It is like adding a coefficient to the linear function.

Currently, the logistic sigmoid is used as a squashing function in every hidden and output
layer.

The command-line version does not perform iterations that lead to bad results on small
datasets. Another restriction is that the CLI version of the MLP only supports
classification, since the labels have to be given explicitly when executing the
implementation in the command line.

A learned model can be stored and updated with new training instances using the " - -
update" flag. The output of the classification result is saved as a . txt file and only
consists of the assigned labels. Apart from the command-line interface, it is possible to
construct and compile more specialized neural networks using the API and interfaces in
the mrlegacy package. (The core package is renamed as mrlegacy.)

In the command line, we use TrainMultilayerPerceptron and
RunMultilayerPerceptron classes that are available in the mrlegacy package with three
other classes: Neural network. java, NeuralNetworkFunctions. java, and
MultilayerPerceptron.java. For this particular implementation, users can freely control
the topology of the MLP, including the following:

The size of the input layer
The number of hidden layers
The size of each hidden layer
The size of the output layer
The cost function

The squashing function

The model is trained in an online learning approach, where the weights of neurons in the
MLP is updated and incremented using the backPropagation algorithm proposed by
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), Learning representations by
back-propagating errors. Nature, 323, 533-536.
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Using Mahout for MLP

Mahout has implementation for an MLP network. The MLP implementation is currently
located in the Map-Reduce-Legacy package. As with other classification algorithms, two
separated classes are implemented to train and use this classifier. For training the
classifier, the org.apache.mahout.classifier.mlp.TrainMultilayerPerceptron class,
and for running the classifier, the
org.apache.mahout.classifier.mlp.RunMultilayerPerceptron class is used. There
are a number of parameters defined that are used with these classes, but we will discuss
these parameters once we run our example on a dataset.

Dataset

In this chapter, we will train an MLP to classify the iris dataset. The iris flower dataset
contains data of three flower species, where each data point consists of four features. This
dataset was introduced by Sir Ronald Fisher. It consists of 50 samples from each of three
species of iris. These species are Iris setosa, Iris virginica, and Iris versicolor. Four
features were measured from each sample:

Sepal length
Sepal width
Petal length
Petal width

All measurements are in centimeters. You can download this dataset from

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/ and save it as a .csv file, as
shown in the following screenshot:

Index of /ml/machine-learning-databases/iris

Name Last modified Size Description

a Parent Directory -
@ Index 03-Dec-1996 04:01 105
@ bezdeklris.data 14-Dec-1999 12:12 4 4K
@ iris.data 08-Mar-1993 16:27 4 4K
1015 NANES 11-Jul-2000 21:30 2 9K

e

Apache2.2.15 (CentQS) Server ar archive.ics.uci.ecu Port 80

This dataset will look like the the following screenshot:
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Steps to use the MLP algorithm in Mahout

The steps to use the MLP algorithm in Mahout are as follows:
1. Create the MLP model.

To create the MLP model, we will use the TrainMultilayerPerceptron class. Use
the following command to generate the model:

bin/mahout org.apache.mahout.classifier.mlp.TrainMultilayerPerceptron -
i /tmp/irisdata.csv -labels Iris-setosa Iris-versicolor Iris-virginica
-mo /tmp/model.model -1s 4 8 3 -1 0.2 -m 0.35 -r 0.0001

You can also run using the core jar: Mahout core jar (xyz stands for the version). If
you have directly installed Mahout, it can be found under the /usr/1ib/mahout
folder. Execute the following command:

Java -cp /usr/lib/mahout/ mahout-core-xyz-job.jar
org.apache.mahout.classifier.mlp.TrainMultilayerPerceptron -i
/tmp/irisdata.csv -labels Iris-setosa Iris-versicolor Iris-virginica -
mo /user/hue/mlp/model.model -1s 4 8 3 -1 0.2 -m 0.35 -r 0.0001

The TrainMultilayerPerceptron class is used here and it takes different parameters.
Also, i is the path for the input dataset. Here, we have put the dataset under the /tmp
folder (local filesystem). Additionally, labels are defined in the dataset. Here we have
the following labels:

o mo is the output location for the created model.

o 1s is the number of units per layer, including input, hidden, and output layers.
This parameter specifies the topology of the network. Here, we have 4 as the
input feature, 8 for the hidden layer, and 3 for the output class number.

o 1 is the learning rate that is used for weight updates. The default is 0.5. To
approximate gradient descent, neural networks are trained with algorithms.
Learning is possible either by batch or online methods. In batch training, weight
changes are accumulated over an entire presentation of the training data (an
epoch) before being applied, while online training updates weighs after the
presentation of each training example (instance). More details can be found at
http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf.

o m is the momentum weight that is used for gradient descent. This must be in the
range between 0-1.0.

o r is the regularization value for the weight vector. This must be in the range
between 0—0.1. It is used to prevent overfitting.
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2. To test/run the MLP classification of the trained model, we can use the following
command:

bin/mahout org.apache.mahout.classifier.mlp.RunMultilayerPerceptron -i
/tmp/irisdata.csv -cr 0 3 -mo /tmp/model.model -o /tmp/labelResult.txt

You can also run using the Mahout core jar (xyz stands for version). If you have
directly installed Mahout, it can be found under the /usr/1ib/mahout folder. Execute
the following command:

Java -cp /usr/lib/mahout/ mahout-core-xyz-job.jar
org.apache.mahout.classifier.mlp.RunMultilayerPerceptron -i
/tmp/irisdata.csv -cr 0 3 -mo /tmp/model.model -o /tmp/labelResult.txt

The RunMultilayerPerceptron class is employed here to use the model. This class
also takes different parameters, which are as follows:

o i indicates the input dataset location

o cr is the range of columns to use from the input file, starting with O (that is, " -
cr 0 5° for including the first six columns only)

o mo is the location of the model built earlier

o o is the path to store labeled results from running the model

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Summary

In this chapter, we discussed one of the newly implemented algorithms in Mahout: MLP.
We started our discussion by understanding neural networks and neuron units and
continued our discussion further to understand the MLP network algorithm. We discussed
how to choose different layer units. We then moved to Mahout and used the iris dataset to
test and run an MLP algorithm implemented in Mahout. With this, we have finished our
discussion on classification algorithms available in Apache Mahout.

Now we move on to the next chapter of this book where we will discuss the new changes
coming up in the new Mahout release.
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Chapter 8. Mahout Changes in the
Upcoming Release

Mahout is a community-driven project and its community is very strong. This community
decided on some of the major changes in the upcoming 1.0 release. In this chapter, we will
explore the upcoming changes and developments in Apache Mahout. We will look at the

following topics in brief:

e New changes due in Mahout 1.0
e Apache Spark
e H20-platform-related work in Apache Mahout
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Mahout new changes

Mahout was using the map reduce programming model to handle large datasets. From the
end of April 2014, the community decided to stop the implementation of the new map
reduce algorithm. This decision has a valid reason. Mahout’s codebase will be moving to
modern data processing systems that offer a richer programming model and more efficient
execution than Hadoop’s MapReduce.

Mahout has started its implementation on the top of Domain Specific Language (DSL)
for linear algebraic operations. Programs written in this DSL are automatically optimized
and executed in parallel on Apache Spark. Scala DSL and algebraic optimizer is Scala and
Spark binding for Mahout.
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Mahout Scala and Spark bindings

With Mahout Scala bindings and Mahout Spark bindings for linear algebra subroutines,
developers in Mahout are trying to bring semantic explicitness to Mahout’s in-core and
out-of-core linear algebra subroutines. They are doing this while adding the benefits of the
strong programming environment of Scala and capitalizing on scalability benefits of Spark
and GraphX. Scala binding is used to provide support for Scala DSL, and this will make
writing machine learning programs easier.

Mahout Scala and Spark bindings are packages that aim to provide an R-like look and feel
to Mahout’s in-core and out-of-core Spark-backed linear algebra. An important part of
Spark bindings is the expression optimizer. This optimizer looks at the entire expression
and decides on how it can be simplified and which physical operators should be picked. A
high-level diagram of the binding stack is shown in the following figure

(https://issues.apache.org/jira/secure/attachment/12638098/BindingsStack.jpg):

Component Stack
[ Algebraic DSL (“syntactic sugar’’) . J
Y- N : o
: Logieal translation layer : e
l (Optimizer) ;
: . J :
i Physical transiation lagyer translation |:
' @ b | > !
: Engine | Spar'ig EngineN ... |:
' ( AlgebraicDsL |[~ il 2 |
1 - :
: In-core math HDFS E
: % | lesoop { |-
e e e Al S B

The Spark binding shell has also been implemented in Mahout 1.0. Let’s understand the
Apache Spark project first and then we will revisit the Spark binding shell in Mahout.
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Apache Spark

Apache Spark is an open source, in-memory, general-purpose computing system. Spark’s
in-memory technique provides performance that is 100 times faster. Instead of Hadoop-
like disk-based computation, Spark uses cluster memory to upload all the data into the
memory, and this data can be queried repeatedly.

Apache Spark provides high-level APIs in Java, Python, and Scala and an optimized
engine that supports general execution graphs. It provides the following high-level tools:

e Spark SQL.: This is for SQL and structured data processing.

e MLib: This is Spark’s scalable machine learning library that consists of common
learning algorithms and utilities, including classification, regression, clustering,
collaborative filtering, dimensionality reduction, as well as the underlying
optimization primitives.

e GraphX: This is the new Spark API for graphs and graph-parallel computation.

e Spark streaming: This can collect data from many sources and after processing this
data, it uses complex algorithms and can push the data to filesystems, databases, and
live dashboards.

As Spark is gaining popularity among data scientists, the Mahout community is also
quickly working on making Mahout algorithms function on Spark’s execution engine to
speed up its calculation 10 to 100 times faster. Mahout provides several important building
blocks to create recommendations using Spark. Spark-item similarity can be used to create
other people also liked these things kind of recommendations and when paired with a
search engine can personalize recommendations for individual users. Spark-row similarity
can provide non-personalized content based on recommendations and when paired with a
search engine can be used to personalize content based on recommendations
(http://comments.gmane.org/gmane.comp.apache.mahout.scm/6513).
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Using Mahout’s Spark shell

You can use Mahout’s Spark shell by referring to the following steps:

1. Download Spark from http://spark.apache.org/downloads.html.
2. Create a new folder with the name spark using the following command and move the

downloaded file there:

mkdir /tmp/spark
mv ~/Downloads/spark-1.1.1.tgz/tmp/spark

3. Unpack the archived file in a folder using the following command:

cd /tmp/spark
tar xzf spark-1.1.1.tgz

4. This will unzip the file under/tmp/spark/spark-1.1.1. Now, move to the newly
created folder and run the following command:

cd /spark-1.1.1
sbt/sbt assembly

This will build Spark on your system as shown in the following screenshot:

5. Now create a Mahout directory and move the file to it using the following command:

mkdir /tmp/Mahout

6. Check out the master branch of Mahout from GitHub using the following command:

git clone https://github.com/apache/mahout mahout
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The output of the preceding command is shown in the following screenshot:

. Change your directory to the newly created Mahout directory and build Mahout:

cd mahout
mvn -DskipTests clean install

The output of the preceding command is shown in the following screenshot:

. Move to the directory where you unpacked Spark and type the following command to
start Spark locally:

cd /tmp/spark/spark-1.1.1
sbin/start-all-sh

The output of the preceding command is shown in the following screenshot:

. Open a browser; point it to http://localhost:8080/ to check whether Spark has
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successfully started. Copy the URL of the Spark master at the top of the page (it
starts with spark://).
10. Define the following environment variables:

export MAHOUT_HOME=[directory into which you checked out Mahout]
export SPARK_HOME=[directory where you unpacked Spark]
export MASTER=[url of the Spark master]

11. Finally, change to the directory where you unpacked Mahout and type bin/mahout
spark-shell; you should see the shell starting and get the mahout> prompt.

Now your Mahout Spark shell is ready and you can start playing with data. For more
information on this topic, see the implementation section at

https://mahout.apache.org/users/sparkbindings/play-with-shell.html.
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H20 platform integration

As discussed earlier, an experimental work to integrate Mahout and the H20 platform is
also in progress. The integration provides an H20 backend to the Mahout algebra DSL.

H20 makes Hadoop do math! H20O scales statistics, machine learning, and math over big
data. It is extensible and users can build blocks using simple math legos in the core. H20
keeps familiar interfaces such as R, Excel, and JSON so that big data enthusiasts and
experts can explore, munge, model, and score datasets using a range of simple-to-
advanced algorithms. Data collection is easy, while decision making is hard. H20 makes it
fast and easy to derive insights from your data through faster and better predictive
modeling. It also has a vision of online scoring and modeling in a single platform
(http://0xdata.com/download/).

H20 is fundamentally a peer-to-peer system. H20 nodes join together to form a cloud on
which high-performance distributed math can be executed. Each node joins a cloud of a
given name. Multiple clouds can exist on the same network at the same time as long as
their names are different. Multiple nodes can exist on the same server as well (they can
even belong to the same cloud).

The Mahout H20 integration is fit into this model by having N-1 worker nodes and one
driver node, all belonging to the same cloud name. The default cloud name used for the
integration is mah2out. Clouds have to be spun up as per their task/job.

More details can be found at https://issues.apache.org/jira/browse/MAHOUT-1500.
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Summary

In this chapter, we discussed the upcoming release of Mahout 1.0, and the changes that are
currently going on. We also glanced through Spark, Scala binding, and Apache Spark. We
also discussed a high-level overview of H20O Mahout integration.

Now let’s move on to the final chapter of this book where we will develop a production-
ready classifier.
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Chapter 9. Building an E-mail
Classification System Using Apache
Mahout

In this chapter, we will create a classifier system using Mahout. In order to build this
system, we will cover the following topics:

Getting the dataset
Preparation of the dataset
Preparing the model
Training the model

In this chapter, we will target the creation of two different classifiers. The first one will be
an easy one because you can both create and test it on a pseudo-distributed Hadoop
installation. For the second classifier, I will provide you with all the details, so you can run
it using your fully distributed Hadoop installation. I will count the second one as a hands-
on exercise for the readers of this book.

First of all, let’s understand the problem statement for the first use case. Nowadays, in
most of the e-mail systems, we see that e-mails are classified as spam or not spam. E-
mails that are not spam are delivered directly into our inbox but spam e-mails are stored in
a folder called spam. Usually, based on a certain pattern such as message subject, sender’s
e-mail address, or certain keywords in the message body, we categorize an incoming e-
mail as spam. We will create a classifier using Mahout, which will classify an e-mail into
spam or not spam. We will use SpamAssassin, an Apache open source project dataset for
this task.

For the second use case, we will create a classifier, which can predict a group of incoming
e-mails. As an open source project, there are lots of projects under the Apache software
foundation, such as Apache Mahout, Apache Hadoop, Apache Solr, and so on. We will
take the Apache Software Foundation (ASF) e-mail dataset and using this, we will
create and train our model so that our model can predict a new incoming e-mail. So, based
on certain features, we will be able to predict which group a new incoming e-mail belongs
to.

In Mahout’s classification problem, we will have to identify a pattern in the dataset to help
us predict the group of a new e-mail. We already have a dataset, which is separated by
project names. We will use the ASF public e-mail archives dataset for this use case.

Now, let’s consider our first use case: spam e-mail detection classifier.
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Spam e-mail dataset

As I mentioned, we will be using the Apache SpamAssassin projects dataset. Apache
SpamAssassin is an open source spam filter. Download 20021016_easy_ham. tar and
20021010_spam. tar from http://spamassassin.apache.org/publiccorpus/, as shown in the
following screenshot:

Index of /publiccorpus

MName Last modified Size Description

Parent Directory N

20021818 _easy ham.tar.bz2 2084-86-29 83:26 1.86M

20821810 _hard _ham.tar.bz2 2094-12-16 19:49 1.@M

20821810 _spam.tar.bz2 2084-86-29 B3:26 1.1M

20838228 =asy ham.tar.bz2 2084-86-29 B3:26 1.5M

20038228 sasy _ham_2.tar.bz2 2004-86-29 83:26 1.8M

20838228 hard ham.tar.bz2 2084-12-16 19:49 1.a@M

[ETED [ Ry

20038228 spam.tar.bz2 20@4-86-29 83:26 1.1M
20838228 spam 2.tar.bz2 280a4-86-29 @3:26 2.8M
20856311 spam 2.tar.bz2 29@5-83-11 23:55 2.eM
cbsolete/ 2014-82-84 16:26 -

readme. hitml 2086-81-31 20:30 4.5K

Upache'2.4.10 (Unix) OpenSSL/1.0.1i Server at spamassassin.apache.org Port 80
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Creating the model using the Assassin
dataset

We can create the model with the help of the following steps:

1. Create a folder under tmp with the name dataset, and then click on the folder and
unzip the datasets using the following command:

mkdir /tmp/assassin/dataset
tar -xvf /tmp/assassin/ 20021010_easy_ham.tar.bz2
tar -xvf /tmp/assassin/ 20021010_spam.tar.bz2

This will create two folders under the dataset folder, easy _ham and spam, as shown
in the following screenshot:

Jtrmp/assassin/dataset

i Mame Ext Size
|| ..
. easy_ham

spam

2. Create a folder in Hdfs and move this dataset into Hadoop:

hadoop fs -mkdir /user/hue/assassin/
hadoop fs -put /tmp/assassin/dataset /user/hue/assassin
tar -xvf /tmp/assassin/ 20021010_spam.tar.bz2

Now our data preparation is done. We have downloaded the data and moved this data
into hdfs. Let’s move on to the next step.

3. Convert this data into sequence files so that we can process it using Hadoop:

bin/mahout seqdirectory -i /user/hue/assassin/dataset -o
/user/hue/assassinseq-out
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4. Convert the sequence file into sparse vector (Mahout algorithms accept input in
vector format, which is why we are converting the sequence file into sparse vector)
by using the following command:

bin/mahout seq2sparse -i /user/hue/assassinseq-out/part-m-00000 -o
/user/hue/assassinvec -lnorm -nv -wt tfidf

The command in the preceding screenshot is explained as follows:

o lnorm: This command is used for output vector to be log normalized.

o nv: This command is used for named vector.

o wt: This command is used to identify the kind of weight to use. Here we use tf-
idf.

5. Split the set of vectors for training and testing the model, as follows:
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bin/mahout split -i /user/hue/assassinvec/tfidf-vectors --
trainingOutput /user/hue/assassindatatrain --testOutput
/user/hue/assassindatatest --randomSelectionPct 20 --overwrite --
sequenceFiles -xm sequential

The preceding command can be explained as follows:

o The randomSelectionPct parameter divides the percentage of data into test and
training datasets. In this case, it’s 80 percent for test and 20 percent for training.

o The xm parameter specifies what portion of the tf (tf-idf) vectors is to be
used expressed in times the standard deviation.

o The sigma symbol specifies the document frequencies of these vectors. It can be
used to remove really high frequency terms. It is expressed as a double value. A
good value to be specified is 3.0. If the value is less than 0, no vectors will be
filtered out.

6. Now, train the model using the following command:

bin/mahout trainnb -i /user/hue/assassindatatrain -el -o
/user/hue/prodmodel -1i /user/hue/prodlabelindex -ow -c

7. Now, test the model using the following command:

bin/mahout testnb -i /user/hue/assassindatatest -m /user/hue/prodmodel/
-1 /user/hue/prodlabelindex -ow -0 /user/hue/prodresults
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ram took 47941 m=s (Minutes: 0

You can see from the results that the output is displayed on the console. As per the matrix,
the system has correctly classified 99.53 percent of the instances given.

We can use this created model to classify new documents. To do this, we can either use a
Java program or create a servlet that can be deployed on our server.

Let’s take an example of a Java program in continuation of this exercise.
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Program to use a classifier model

We will create a Java program that will use our model to classify new e-mails. This
program will take model, labelindex, dictionary-file, document frequency, and text file as
input and will generate a score for the categories. The category will be decided based on

the higher scores.

Let’s have a look at this program step by step:

e The .jar files required to make a compilation of this program are as follows:

O O O o

Hadoop-core-x.y.x.jar
Mahout-core-xyz.jar

Mahout-integration-xyz.jar
Mahout-math-xyz.jar

e The import statements are listed as follows. We are discussing this because there are
lots of changes in the Mahout releases and people usually find it difficult to get the
correct classes.

import
import
import
import
import
import
import
import
import
import
import

O 0O 0O O 0O 0O o o o o o

org.apache.
org.
org.
org.

import
import
import
import

O O O o

org.apache.
org.

(e]

import
import

(e]

org.apache.
org.
org.
org.
org.
.apache.hadoop.
google.common.
google.common.

import
import
import
import
import
import
import

O O O O O o o

java.
java.
java.
java.

java.util.Map;

org

org.
org.
org.
org.

org

com.
com.

.apache.hadoop.
apache.hadoop.
apache.lucene.
apache.lucene.
apache.lucene.

util.HashMap;

io.BufferedReader;
io.FileReader;
io0.StringReader;

conf.Configuration;

fs.Path;

analysis.Analyzer;
analysis.TokenStream;
analysis.standard.StandardAnalyzer;

lucene.analysis.tokenattributes.CharTermAttribute;

apache.lucene.
apache.mahout.
apache.mahout.

util.Version;
classifier.nalivebayes.BayesUtils;
classifier.naivebayes.NaiveBayesModel;

mahout.classifier.naivebayes.StandardNaiveBayesClassifiel

apache.mahout.

mahout.common.
apache.mahout.
apache.mahout.
apache.mahout.
.vectorizer.TFIDF;

apache.mahout

common.Pair;

iterator.sequencefile.SequenceFileIterable,
math.RandomAccessSparseVector;

math.Vector;

math.Vector.Element;

io.*;
collect.ConcurrentHashMultiset;
collect.Multiset;
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e The supporting methods to read the dictionary are as follows:

public static Map<String, Integer> readDictionary(Configuration conf,
Path dictionaryPath) {
Map<String, Integer> dictionary = new HashMap<String, Integer>();
for (Pair<Text, IntWritable> pair : new SequenceFileIterable<Text,
IntWritable>(dictionaryPath, true, conf)) {

dictionary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionary;

}

e The supporting methods to read the document frequency are as follows:

public static Map<Integer, Long> readDocumentFrequency(Configuration
conf, Path documentFrequencyPath) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

for (Pair<IntWritable, LongWritable> pair : new
SequenceFileIterable<IntWritable, LongWritable>(documentFrequencyPath,
true, conf)) {

documentFrequency.put(pair.getFirst().get(),

pair.getSecond().get());

}

return documentFrequency;

}

e The first part of the main method is used to perform the following actions:
Getting the input

Loading the model
Initializing StandardNaiveBayesClassifier using our created model

O O O o

the vector from the dataset

The following code can be used for the preceding actions:

public static void main(String[] args) throws Exception {
if (args.length < 5) {
System.out.println("Arguments: [model] [labelindex]
[dictionary] [documentfrequency] [new file] ");
return;
}
String modelPath = args[0];
String labelIndexPath = args[1];
String dictionaryPath = args[2];
String documentFrequencyPath = args[3];
String newDataPath = args[4];

Reading labelindex, document frequency, and dictionary created while creating

Configuration configuration = new Configuration(); // model is a

matrix (wordId, labelId) => probability score
NaiveBayesModel model = NaiveBayesModel.materialize(new
Path(modelPath), configuration);
StandardNaiveBayesClassifier classifier = new
StandardNaiveBayesClassifier (model);
// labels is a map label => classId
Map<Integer, String> labels =

BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath));
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Map<String, Integer> dictionary = readDictionary(configuration,
new Path(dictionaryPath));

Map<Integer, Long> documentFrequency =
readDocumentFrequency(configuration, new
Path(documentFrequencyPath));

e The second part of the main method is used to extract words from the e-mail:
Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_CURRENT);

int labelCount = labels.size();
int documentCount = documentFrequency.get(-1).intValue();

System.out.println("Number of labels: " + labelCount);
System.out.println("Number of documents in training set: " +
documentCount);
BufferedReader reader = new BufferedReader (new
FileReader (newDataPath));
while(true) {

String line = reader.readLine();

if (line == null) {

break;

}

ConcurrentHashMultiset<Object> words =
ConcurrentHashMultiset.create();
// extract words from mail
TokenStream ts = analyzer.tokenStream("text", new
StringReader(line));
CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class);
ts.reset();
int wordCount = 0;
while (ts.incrementToken()) {
if (termAtt.length() > 0) {
String word =
ts.getAttribute(CharTermAttribute.class).toString();
Integer wordId = dictionary.get(word);
// if the word is not in the dictionary, skip it
if (wordId !'= null) {
words.add(word);
wordCount++;

}
b
}
ts.close();

e The third part of the main method is used to create vector of the id word and the tf-
idf weights:

Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
for (Multiset.Entry entry:words.entrySet()) {
String word = (String)entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word);
Long freq = documentFrequency.get(wordId);
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double tfIdfvalue = tfidf.calculate(count, freq.intValue(),
wordCount, documentCount);
vector.setQuick(wordId, tfIdfvalue);

}

¢ In the fourth part of the main method, with classifier, we get the score for each
label and assign the e-mail to the higher scored label:

Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategorylId = -1;
for(int i=0 ;i<resultVector.size();i++) {
Element el = resultVector.getElement(i);
int categorylId = el.index();
double score = el.get();
if (score > bestScore) {
bestScore = score;
bestCategoryId = categorylId;
}

System.out.print(" " + labels.get(categoryId) + ": " + score);

3
System.out.println(" => " + labels.get(bestCategoryId));

}
}

Now, put all these codes under one class and create the . jar file of this class. We will use
this . jar file to test our new e-mails.
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Testing the program

To test the program, perform the following steps:
1. Create a folder named assassinmodeltest in the local directory, as follows:

mkdir /tmp/assassinmodeltest
2. To use this model, get the following files from hdfs to /tmp/assassinmodeltest:

o For the earlier created model, use the following command:

hadoop fs -get /user/hue/prodmodel /tmp/assassinmodeltest

o For labelindex, use the following command:

hadoop fs -get /user/hue/prodlabelindex /tmp/assassinmodeltest

o For df-counts from the assassinvec folder (change the name of the part-
00000 file to df -count), use the following commands:

hadoop fs -get /user/hue/assassinvec/df-count
/tmp/assassinmodeltest

dictionary.file-0 from the same assassinvec folder
hadoop fs -get /user/hue/assassinvec/dictionary.file-0
/tmp/assassinmodeltest

3. Under /tmp/assassinmodeltest, create a file with the message shown in the
following screenshot:

mv cmds 00000, 7blb73Icf3ccfodbcidede3if2eezbolfl

4. Now, run the program using the following command:

Java -cp /tmp/assassinmodeltest/spamclassifier.jar:/usr/lib/mahout/*
com.packt.spamfilter.TestClassifier /tmp/assassinmodeltest
/tmp/assassinmodeltest/prodlabelindex
/tmp/assassinmodeltest/dictionary.file-0 /tmp/assassinmodeltest/df-
count /tmp/assassinmodeltest/testemail

5. Now, update the test e-mail file with the message shown in the following
screenshot:
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Delivered-To: exmh-workers@listman.example.com

6. Run the program again using the same command as given in step 4 and view the
result as follows:

Now, we have a program ready that can use our classifier model and predict the unknown
items. Let’s move on to our second use case.
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Second use case as an exercise

As discussed at the start of this chapter, we will now work on a second use case, where we
will predict the category of a new e-mail.
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The ASF e-mail dataset

The Apache Software Foundation e-mail dataset is partitioned by project. This e-mail
dataset can be found at http://aws.amazon.com/datasets/7791434387204566.

- C." aws.amazon.com,
amazon SRR Aceount Console +
web services
AWS Products & Solutions - F - n Developers - Support ~
Browse By Category &= Apache Software Foundation Public Mail Archives
t Apache Softwara Foundation Public Mail Archives

& collection of all publicly availablg

dation mail archives as of July 11, 2011

Submitted By: Grant Ingersoll

US Snapshot ID =nap-17f7f476
{Limue/Unix):

Size: 200 GB

License: Pubiic
http:/

archives.html)

Source: The Apach
Created On: August 15 0 PM GMT

Last Updated: August 15,2011 10:00 PM GMT

A smaller dataset can be found at http://files.grantingersoll.com/ibm.tar.gz. (Refer to
http://lucidworks.com/blog/scaling-mahout/). Use this data to perform the following steps:

1. Move this data to the folder of your choice (/tmp/asfmail) and unzip the folder:

mkdir /tmp/asfmail
tar -xvf ibm.tar

2. Move the dataset to hdfs:

hadoop fs -put /tmp/asfmail/ibm/content /user/hue/asfmail

3. Convert the mbox files into Hadoop’s SequenceFile format using Mahout’s
SequenceFilesFromMailArchives as follows:

mahout org.apache.mahout.text.SequenceFilesFromMailArchives --charset
"UTF-8" --body --subject --input /user/hue/asfmail/content --output
/user/hue/asfmailout
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4. Convert the sequence file into sparse vector:

mahout seq2sparse --input /user/hue/asfmailout --output
/user/hue/asfmailseqsp --norm 2 --weight TFIDF --namedVector --
maxDFPercent 90 --minSupport 2 --analyzerName
org.apache.mahout. text.MailArchivesClusteringAnalyzer

5. Modify the labels:

mahout org.apache.mahout.classifier.email.PrepEmailDriver --input
/user/hue/asfmailseqsp --output /user/hue/asfmailseqsplabel --
maxItemsPerLabel 1000

Now, the next three steps are similar to the ones we performed earlier:

1. Split the dataset into training and test datasets using the following command:

mahout split --input /user/hue/asfmailseqsplabel --trainingOutput
/user/hue/asfmailtrain --testOutput /user/hue/asfmailtest --
randomSelectionPct 20 --overwrite --sequenceFiles

2. Train the model using the training dataset as follows:

mahout trainnb -i /user/hue/asfmailtrain -o /user/hue/asfmailmodel -
extractLabels --labelIndex /user/hue/asfmaillabels

3. Test the model using the test dataset:

mahout testnb -i /user/hue/asfmailtest -m /user/hue/asfmailmodel --
labelIndex /user/hue/asfmaillabels

As you may have noticed, all the steps are exactly identical to the ones we performed
earlier. Hereby, I leave this topic as an exercise for you to create your own classifier
system using this model. You can use hints as provided for the spam filter classifier. We
now move our discussion to tuning our classifier. Let’s take a brief overview of the best
practices in this area.
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Classifiers tuning

We already discussed classifiers’ evaluation techniques in Chapter 1, Classification in
Data Analysis. Just as a reminder, we evaluate our model using techniques such as
confusion matrix, entropy matrix, area under curve, and so on.

From the explanatory variables, we create the feature vector. To check how a particular
model is working, these feature vectors need to be investigated. In Mahout, there is a class
available for this, ModelDissector. It takes the following three inputs:

e Features: This class takes a feature vector to use (destructively)

e TraceDictionary: This class takes a trace dictionary containing variables and the
locations in the feature vector that are affected by them

e Learner: This class takes the model that we are probing to find weights on features

ModelDissector tweaks the feature vector and observes how the model output changes.
By taking an average of the number of examples, we can determine the effect of different
explanatory variables.

ModelDissector has a summary method, which returns the most important features with
their weights, most important category, and the top few categories that they affect.

The output of ModelDissector is helpful in troubleshooting problems in a wrongly
created model.

More details for the code can be found at
https://github.com/apache/mahout/blob/master/mrlegacy/src/main/java/org/apache/mahout

While improving the output of the classifier, one should take care with two commonly
occurring problems: target leak, and broken feature extraction.

If the model is showing results that are too good to be true or an output beyond
expectations, we could have a problem with target leak. This error comes once
information from the target variable is included in the explanatory variables, which are
used to train the classifier. In this instance, the classifier will work too well for the test
dataset.

On the other hand, broken feature extraction occurs when feature extraction is broken.
This type of classifier shows the opposite result from the target leak classifiers. Here, the
model provides results poorer than expected.

To tune the classifier, we can use new explanatory variables, transformations of
explanatory variables, and can also eliminate some of the variables. We should also try
different learning algorithms to create the model and choose an algorithm, which is good
in performance, training time, and speed.

More details on tuning can be found in Chapter 16, Deploying a classifier in the book
Mahout in Action.
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Summary

In this chapter, we discussed creating our own production ready classifier model. We took
up two use cases here, one for an e-mail spam filter and the other for classifying the e-mail
as per the projects. We used datasets for Apache SpamAssassin for the e-mail filter and

ASF for the e-mail classifier.
We also saw how to increase the performance of your model.

So you are now ready to implement classifiers using Apache Mahout for your own real
world use cases. Happy learning!
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