
www.it-ebooks.info

http://www.it-ebooks.info/

Corona SDK HOTSH T

A detailed guide with 10 projects specifically designed
to expand the fundamentals of this exciting mobile
development platform!

Nevin Flanagan

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Corona SDK HOTSH T

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1140513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-430-8

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author

Nevin Flanagan

Reviewers

Alan Grace

Sergey Lalov

Michael Piercy

Acquisition Editor

Mary Nadar

Lead Technical Editor

Ankita Shashi

Technical Editors

Ankita Meshram

Veena Pagare

Project Coordinator

Shiksha Chaturvedi

Proofreader

Maria Gould

Indexer

Hemangini Bari

Graphics

Ronak Dhruv

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

 About the Author

Nevin Flanagan has had an extremely varied career covering several fields, but the
threads of computers, teaching, and games have trailed through it all for years. He has
programmed on different levels ranging from assembly language to high-level scripting in
game engines, and is credited as a contributor to the World of Warcraft user interface. He is
currently fascinated by the interface possibilities offered by mobile touchscreen devices and
is completing a Master's degree in Interactive Media and Game Development at Worcester
Polytechnic Institute in Massachusetts.

He lives with his wife Jenna in Leominster, Massachusetts, in the U.S.A.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

Credit goes to Louise and David, my parents, for teaching me both the importance of
communicating clearly and the love of storytelling that has driven my passion to play and
create games. Eva Farrell, Nadya Murray, and Matthew Lerner joined me in discovering,
enjoying, and creating stories; Geoff Gowan, David Larkin, and Mike Weber showed me how
to program graphical applications and get excited about making games, and the Lehman
Alternative Community School gave us all a place to try it out.

The computer science faculty at Ithaca College gave me tools and opportunities; Chuck Leska
showed me the importance of readability; and John Barr provided me with opportunities to
use my skills in new fields. The IMGD program at WPI has encouraged me to keep creating
new things and pushed me to see how far I can build my ideas; the faculty's confidence and
demands have helped me build myself up in the things that matter most, such as vision,
commitment, and confidence.

This is a book about Corona, so I must thank Walter Luh and the rest of the team at Corona
Labs (including co-creator Carlos Icaza), not only for creating this exceptional tool, but for
fulfilling requests and staying engaged with me as I've used their software and produced
this book. A huge shout out is also due to the #corona IRC channel on irc.freenode.net,
especially Lerg, LavaLevel, and lKinx, who gave me people to teach as well as learn with.
This book would have been poorer without their questions and advice about their
Corona projects.

Finally, immeasurable thanks go to the people in my life who have constantly expressed their
support and faith for my ability to contribute something meaningful; especially Lopeppeppy,
Unkle, Cairenn, and Onyx, who know who they are; and to Jenna, for lighting up every day of
my life whenever I try to smear clouds across the sun.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Alan Grace is a co-founder of Pixel Wolf Studios, an Indie game development studio based
in Dublin, Ireland. Having worked for a number of years in web and graphic design running
his own design studio, Alpha Solutions, Alan has a vast area of expertise across multimedia
and game design. Having completed his MSc in Media and Digital Games he set up Pixel Wolf
Studios in 2011.

Alan currently lectures on a number of courses teaching game development using Corona
SDK. He also was a reviewer on Corona SDK Mobile Game Development: Beginner's Guide,
Michelle M. Fernandez, Packt Publishing.

Sergey Lalov is a master in radioengineering and programmer from Russia; he got
his degree in 2009. Since then he has been working as a network administrator with
Linux servers, as a web developer, as a developer of a video surveillance system, and as
a developer of an automatic autodrome, where all cars have been equipped with Linux
onboard computers with GPS and cameras in a way so people can see in real-time driver's
position and score. Finally he became a developer of mobile apps and games for Android
and iOS. His brother, Vladimir, is a talented graphics designer and writer. Together they
form a great tandem for game development. Now the Spiral Code Studio company has been
founded (http://spiralcodestudio.com) and they work on a promising futuristic tower
defense game—strong science fiction and addictive gameplay that we all love.

Being a game developer has always been a dream job of Sergey's since childhood. As well
as many others, he was really impressed when he got his 8-bit NES console (actually it
was a Chinese clone called Dendy). It was very interesting how this little thing operated
and produced dynamic images based on user input. Later at middle school he joined
radioengineering club for pupils, where he was first introduced to computers; the club had
i286 and i486 machines. His first program was a simple paint-like app for DOS in C. Later
there were commodore-like computers with BASIC on board and finally a modern Pentium II
computer. At high school he wrote his first simple game for DOS in Pascal—a side-scroller in
space, in which the player guided his or her spaceship destroying coming asteroids.

www.it-ebooks.info

http://spiralcodestudio.com
http://www.it-ebooks.info/

At university he became a web developer and was trying to make a game in 3D using
different 3D engines, but only after the university did he find Corona SDK. At that time there
were almost no competitors to Corona—it's fast, easy to use, and extremely easy to learn.
Having learned Python before, he learned Lua and the basics of Corona SDK in just a week!
Lua is a great language, really well thought out. Even now Corona SDK is the most user
friendly tool to make fast games for mobile platforms.

Michael Piercy co-founded the Dublin-based, independent game development outfit
Pixel Wolf Studios, after achieving an MSc in Digital Games and a BA in Computer Game
Design. Focusing on mobile game design and development, he worked on a range of games
covering various marketplaces such as iOS and Android platforms.

Michael also worked on the Corona SDK Mobile Game Development for Beginners
Video Series, by Packt Publishing. His online portfolio is available to the public at
www.MichaelPiercy.ie.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents

Preface	 1

Project 1: Bat Swat – An Introduction to App Event Cycles	 7
What do we build?	 7
Describing the game	 9
Defining the event flow	 11
Creating the objects	 14
Creating the interface	 20
Adding the Shell	 24
Tracking high scores	 27
Adding finishing touches	 35
Game over – wrapping it up	 40
Can you take the HEAT? The Hotshot Challenge	 40

Project 2: SuperCargo – Using Events to Track Game Progress	 41
What do we build?	 42
Describing the game	 43
Loading a level from a file	 47
Displaying the map contents	 54
Adding the interface	 59
Making the game playable	 63
Adding the Shell component	 70
Supporting Undo	 77
Preserving game history	 80
Game over – wrapping it up	 85
Can you take the HEAT? The Hotshot Challenge	 85

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Project 3: TranslationBuddy – Fast App Development for any Field	 87
What do we build?	 87
Summarizing the design 	 89
Creating the account	 91
Assembling the translator	 94
Displaying results	 102
Soliciting input	 109
Maintaining a history	 114
Game over – wrapping it up	 122
Can you take the HEAT? The Hotshot Challenge	 122

Project 4: Deep Black – Processing Mobile Device Input	 123
What do we build?	 123
Creating the player and receiving events	 125
Processing raw physical events	 135
Bridging physical events to game events	 137
Creating the world rules	 142
Creating enemies and controlling collisions	 147
Responding to fire controls and creating bullets	 151
Responding to collisions and handling lives	 157
Recognizing kills and recording scores	 164
Game over – wrapping it up	 170
Can you take the HEAT? The Hotshot Challenge	 171

Project 5: Atmosfall – Managing Game Progress with Coroutines	 173
What do we build?	 173
Tracking progress through the level	 175
Constructing the enemy behavior	 180
Creating a schedule	 181
Scripting behavior	 186
Controlling the boss	 192
Cleaning up and making the game playable	 197
Game over – wrapping it up	 203
Can you take the HEAT? The Hotshot Challenge	 203

Project 6: Predation – Creating Powerful Visuals from Simple Effects	 205
What do we build?	 205
Planning the dissolve	 207
Applying the dissolve	 209
Planning the splatter	 211
Assembling the splatter layers	 213
Game over – wrapping it up	 216
Can you take the HEAT? The Hotshot Challenge	 216

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Project 7: Caves of Glory – Mastering Maps and Zones	 217
What do we build?	 217
Parsing a level file	 219
Displaying objects	 223
Creating an efficient background	 227
Scrolling around a large level	 230
Interacting with objects	 232
Defining a chapter	 235
Creating scenes for datafiles	 237
Linking scenes together	 239
Game over – wrapping it up	 241
Can you take the HEAT? The Hotshot Challenge	 242

Project 8: The Beat Goes On – Integrating with Game Networks	 243
What do we build?	 243
Tracking multiple touches	 245
Comparing touches with targets	 247
Loading and playing music	 250
Enabling Game Center on the Provisioning Portal	 252
Enabling Game Center on iTunes Connect	 256
Initializing a game network connection	 260
Updating and reading a leaderboard	 262
Game over – wrapping it up	 265
Can you take the HEAT? The Hotshot Challenge	 265

Project 9: Into the Woods – Computer Navigation of Environments	 267
What do we build?	 267
Structuring the A* algorithm	 269
Writing a custom iterator	 272
Selecting costs for neighboring tiles	 275
Sorting likely routes using a heap	 277
Writing a heuristic function	 283
Connecting all the elements	 285
Using the implementation to find a path	 286
Moving based on path selection	 288
Game over – wrapping it up	 289
Can you take the HEAT? The Hotshot Challenge	 289

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Project 10: Underfoot – Selectively Leveraging the Physics System	 291
What do we build?	 291
Building physics for the map	 293
Making characters interact with the world	 297
Responding to collisions with other characters	 299
Bouncing off enemies as appropriate	 302
Controlling gravity to enable climbing	 304
Selecting collisions by manipulating contacts	 306
Adding polish with custom fonts	 308
Game over – wrapping it up	 310
Can you take the HEAT? The Hotshot Challenge	 310

Index	 311

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book is meant to help you build the skills to create games and other apps for touchscreen
mobile devices such as iPhones, Android-based phones, and touchscreen e-readers, as
quickly and reliably as possible. We'll aim to avoid spending time on rewriting code, practice
structuring your projects to create fewer, more obvious, bugs, and discuss techniques to make
your apps friendlier and less frustrating for your end users. In short, we're going to take your
experiences with the Corona platform and polish them until you're a Corona hotshot!

We present you with ten original projects in various states of completion to explain and
practice the various concepts being presented. Each of these projects was created in two
weeks or less using Corona SDK and art assets available under a Creative Commons license
from the website opengameart.org.

What this book covers
Project 1, Bat Swat – an Introduction to App Event Cycles, which is a basic "tap the targets"
reflex game, will walk you through the overall lifecycle of a Corona app, from design to
polish, and introduce you to the use of custom events to control program flow.

Project 2, SuperCargo – Using Events to Track Game Progress, which uses a Sokoban-style
game to illustrate ways to save game progress and history, allowing the user to undo their
moves or resume their game after interruptions.

Project 3, TranslationBuddy – Fast App Development for any Field, which shows that not
every app made with Corona is a game. This frontend to Microsoft Translate shows how to
use Corona's widget library to create standard user interface elements, as well as make
requests of a remote service.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Project 4, Deep Black – Processing Mobile Device Input, is an asteroid-shooting game that
introduces you to Corona's physics capabilities, including velocity, force, and collisions. It
also presents you with the basics of using the device's accelerometer for user input.

Project 5, Atmosfall – Managing Game Progress with Coroutines, helps us learn pans, enemy
scripting, and level scheduling with its top-down scrolling shooter. This project also provides
useful working examples of class templates in Lua and how they can be used to generate
different enemies or weapons from a common core of behavior.

Project 6, Predation – Creating Powerful Visuals from Simple Effects, unleashes ZOMBIES! In
this project, you'll take a mostly finished game in the style of Missile Command, and learn
some techniques for getting extra mileage out of Corona's visual-effects tools to extend it
with splattering blood and dissolving monsters.

Project 7, Caves of Glory – Mastering Maps and Zones, which is an exploration game, will
give us space to explore generating tile-based maps from a custom file format, panning
around large maps, and scanning a directory for all available data files.

Project 8, The Beat Goes On – Integrating with Game Networks, is a rhythm game used as
a basis for configuring and populating leaderboards and achievements using Corona's game
network libraries. Social components in games are the big frontier.

Project 9, Into the Woods – Computer Navigation of Environments, will help you expand your
repertoire of tile-based games with path-finding and mobile enemies. You will learn an efficient
Lua implementation of the popular A* algorithm and select a path for monsters that follow the
player as he or she moves.

Project 10, Underfoot – Selectively Leveraging the Physics System, helps you learn how
to control the physics library in all its glory, including selective collisions, detecting solid
collisions without bouncing, and controlling gravity on an object-by-object basis.

What you need for this book
Most importantly, you will need a copy of the Corona SDK, as well as a user account for it.
The examples in this book were developed and tested against the public release 1076 of
Corona, so using them with an earlier version may result in bugs. You can download Corona
after signing up for a free account through http://developer.coronalabs.com/user/
register?destination=downloads/coronasdk, if you don't have it installed already.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

We also assume that you've entered into the required agreements with whatever
marketplaces you want to publish to, such as Apple or Google. You'll also need to have your
agreement in place with Apple if you want to test your apps on iOS devices, and not just
simulators. There are numerous Internet resources explaining these agreements, how to set
them up, and how much they cost. We assume you know how to create the development
profiles and specialized keys that will allow your apps to be distributed.

While they're not required for any of these projects, you're highly
encouraged to familiarize yourself with common programming tool
applications such as version control and project management tools.
An abundance of free software and websites are available, such as git,
Mercurial, and gitolite for repository hosting, OpenProj and Redmine
for project tracking. These tools can be invaluable for keeping a
project on track and moving forward.

Who this book is for
The projects in this book are intended to help people who have grasped the basics of Corona
and Lua to move forward, developing more complex projects, using advanced techniques
and practicing good software development. We assume that you've already signed up for
Corona, and have completed one or two simple projects in it already. The fundamentals of
the Lua language are not covered, and while the implications or details of a specific API are
sometimes discussed, we do not provide complete documentation for Corona's functions
or modules.

If you haven't yet gotten started with Corona, you may want to consider starting out with a
copy of Corona SDK Mobile Game Development: Beginner's Guide, written by Michelle M.
Fernandez and available through Packt Publishing.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "The timer.performWithDelay pattern is
probably a familiar one."

www.it-ebooks.info

http://www.packtpub.com/authors/profiles/michelle-m-fernandez
http://www.packtpub.com/authors/profiles/michelle-m-fernandez
http://www.it-ebooks.info/

Preface

4

A block of code is set as follows:

 self.World:addEventListener('Death', self)
 self.World:addEventListener('Despawn', self)

 self:addEventListener('Game', self.World)

When we wish to draw your attention to a particular part of a code block such as
distinguishing code being added, the relevant lines or items are set in bold:

 self.ScoreTotal = 0
 self.StartingCount = 1
 self.Count = self.StartingCount

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1
Bat Swat – An

Introduction to App
Event Cycles

The biggest challenge with any large project is managing the various elements that make it
up and keeping them in sync with each other. Different systems have evolved to help make
this easier (object-oriented programming being the most famous). Corona and Lua include
features to support object-oriented thinking, but the most prominent feature of Corona
that helps the app designer manage communication between program elements is a design
pattern, which academics refer to as the publish-subscribe or observer-target model; Corona
calls it events and listeners.

What do we build?
We'll start exploring this concept with a simple game, where creatures race across the
screen, and you have to tap them before they escape off the other side. While the project
design is simple, it provides an excellent arena to test and review the process of translating
between low-level events provided by the system, and high-level events that describe events
in the abstracted game.

This game project also illustrates how to construct different sections of an app using scenes
in Corona's storyboard library and how to pass information between them. For instance,
the gameplay scene forwards your final score to the menu screen to be considered for
high-score status.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

8

What does it do?
The app launches to a menu screen that displays the app name and an instruction to tap the
screen. If left unattended, it also displays the high-scores list. Once the screen is tapped, it
proceeds to a game screen depicting the ramparts of a tall castle, panning up over the walls
as bats fly past. If you can tap the bats before they escape off the screen, they fall off the
screen and you gain points. After a certain number, the game reckons up your score based
on the number you managed to catch and submits that score to a list of recorded high scores
to see if it has earned a place.

How is it excellent?
This system allows multiple objects to be notified when something happens in your program;
the important part is that the point where that thing happens doesn't really need to know
how many other parts of your code are interested, or what they'll do in response. It also
allows a program to be separated into layers which consist of different objects. Each layer
defines the events that outside objects might be interested in and adapts between low-level
events (like collisions and touches on the screen) and higher-level abstract events (such as
enemies dying or creatures coming within range of each other).

You'll be getting a feel for how event-based communications help manage multi-part
projects, and you'll do it along with a refresher on how easily Corona lets you assemble a
simple, but very playable, game. The logic as presented in the Lua language helps streamline
a lot of chores that require many steps in languages like Objective-C.

The project also provides a good foundation for refreshing our acquaintance with some
commonly used Corona facilities, notably the storyboard library, the transition library,
and the sqlite3 database system. All of these will be important as we go forward. This
project provides a low-pressure environment to catch up with them and refreshes your
memory, which will serve you in good stead.

How are we going to do it?
While the development cycle is very simple, its structure forms the basis for planning
basically any project. The structure is as follows:

ff Describing the game

ff Defining the event flow

ff Creating the game scene, and the bat and world objects

ff Creating the interface layer

ff Adding the shell

ff Tracking high scores

ff Adding some polish

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

9

What do I need to get started?
To complete the core of this project, you will need a small sprite to represent your
elusive creatures, in the neighborhood of 32 x 32 pixels. To add the scrolling and parallax
backgrounds for gameplay, a large wall graphic (about the size of your mobile device screen)
and a distant background image (ideally taller than your target display) are also needed.
Additional graphics make the menu screen more interesting.

A complete package of suitable graphics is included in the project download files at
www.packtpub.com. These graphics, like the others in the book, were obtained from
http://opengameart.org/ and are freely available for reuse under a Creative Commons
By license. This allows you to include the graphics, free of charges or royalties, in any project
(even commercial ones), as long as the project gives proper credit to the creators of the
works used.

Describing the game
The first step to constructing any project, especially any software project, is to document the
goals and requirements of the project. A software engineering professor of mine was fond of
saying that "if you don't know where you're going, how can you know if you've gotten there
or not?" Having a description in writing is a valuable tool for a single developer, because it
gives them a way to track all their relevant thoughts and goals and remember what their
initial intentions were. It is also an invaluable tool for teams of developers, because it gives
them a central source for their task targets and a place to answer many of their questions
without taking up time in meetings or in-person discussions for trivial answers.

Getting on with it
Since this project is focused on a couple of simple technical goals, the game design is simple
and the description will be short and fairly informal. Create a new text document in an editor
of your choice, and enter (or paste) each block of quoted text into it as we review them.

1.	 A design should start with an overview description that summarizes what the player
will experience and why it will be fun:

Bat Swat is a game that tests your reflexes, challenging you to
quickly tap sinister bats as they escape across the screen from
the bottom left to the top right. Each bat knocked out of the sky
is worth ten points, and the ten highest scores are displayed on
the menu screen with the initials of their achievers.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

10

2.	 The design progresses to explain the appearance of the game and the gameplay in
some more detail:

The bats' flight is displayed across the staggered ramparts of
a gothic castle, which move down and left across the screen to
show upward progress. A distant landscape is slowly moved down
in the background to reinforce the impression of upward travel.
A numerical display of the player's score so far is shown in the
upper left. A game lasts until 30 bats have appeared on the screen
and either escaped off the other side or been knocked down.

3.	 The design also explains what parts of the game are required in addition to the
gameplay screen itself, to meet players' other expectations such as high score lists:

Between games, and when the app first launches, a splash screen
is displayed with the name of the game and a reminder to tap the
screen in order to begin play. If the game remains on this screen
for more than a few seconds, it cycles between a display of the
high score record and the game credits.

4.	 The design will explain the specifics of how high scores are selected and displayed:

When the menu is displayed after completing a game, if that game's
final score is within the ten highest scores recorded, a pop-up
screen is shown displaying the new high score and soliciting the
player's initials. This disappears and returns to the normal menu
screen once the initials entry is confirmed.

What did we do?
Having this body of text handy gives us a touchstone and a definite target. Rather like the
adage that you can sculpt by starting with a block a marble and chipping away everything
that doesn't look like an elephant, our task as a developer is now to correct every point in
the project that doesn't conform to our target description.

Committing our thoughts to writing is also important because it requires us to organize
our design ideas and clarify ambiguities. Your design document serves as your preliminary
rubber duck, a receptive listener to explain your ideas to in order to understand them
better yourself.

What else do I need to know?
Many people get intimidated by the thought of writing design documents, concerned about
being shackled into their original vision, or being unable to make changes as their ideas
develop. It's important to remember that the design document is a component of your
project, just like your code and graphics. Just as these components will be developed or
replaced, expect your design document to evolve as your project develops. If you are coding
and decide something needs to change, you can update your design document to reflect
your new intentions.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

11

If you are storing your projects in a version control repository such as git or SVN (which you
should be for all but the most trivial projects), it's also an excellent idea to store your design
document in that repository so that you can go back and check how the project goals
have developed.

Other developers are so excited about their ideas that they view writing a design document
as a useless obstacle to seeing those ideas come to life as quickly as possible. While it's
important to focus your energies on parts of a project that produce visible rewards and keep
you most engaged, the bottom line should be that any code you produce without at least
an outline of a design document isn't your project; it's a prototype of your project and you
should be prepared to replace any or all of it when your design is finalized. A project written
directly from inspiration tends to be composed of pieces that have trouble interacting
cleanly, and it will become increasingly disorganized as early testing changes the design.

Defining the event flow
To make sure that the game operates cleanly and the code is maintainable, we will first
define the abstract events that take place at game level, and then explain the layer that
translates lower-level events into those needed events.

Getting on with it
We need to consider what sorts of events take place at which levels, starting from the
top, because the output from the highest-level processes is what ultimately interests
us as developers:

1.	 The game itself has two major events, its beginning and end. It also has one other
important event, when the player's score changes; this event is used to keep the
score counter in the corner of the screen updated.

2.	 In order to determine when important game events occur, the game creates,
intervenes in, and listens to a world. A world is a fairly self-contained system where
actions whose results are relevant to the outcome of a game are resolved.

For example, in a game of baseball, the outcome of the game is
expressed in scores for the teams, determining a winner and a
loser, but these are abstract concepts; the scores are determined
by how the rules of the game are applied to things that happen
on the field; for example, which hits are caught and which lead to
runners on base.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

12

At the most basic level, the outcomes of these actions are determined by details
like the laws of physics and players' reach and skill, whether a player can get into
position to catch a ball flying in a certain direction, and so on. It is in the context of
the world that we know a player has reached a particular base; it is in the context of
the game that base is identified as home plate and that by reaching it, the player has
accrued a run for their team.

3.	 So, we need to determine what events in our world will be relevant to our game.
The game score increases when creatures in the world are defeated by player action.
The game is complete once a certain number of creatures have left the world, either
by escaping off the borders or by being destroyed. So, the world needs at least two
events; one indicating that a creature in the world has died, and one indicating that
a creature in the world has despawned. It's worth noting that every death event
will also be followed by a despawn event for the same creature, once the death
animation has finished.

The world generates events for deaths by listening itself to the various creatures
spawned into it, waiting for them to post death events to themselves. It also waits
for events to be posted for those creatures who are removing themselves from the
world, and posts Despawn events to itself accordingly.

4.	 Finally, the creatures themselves are responsible for posting their own death events.
Since our game model is very simple, they do this whenever they detect touch
events on themselves. Additionally, Corona does not currently post events to objects
to inform them when they are removed from the display environment, so the
creatures will need to generate those objects themselves when they are ready to
leave the world environment.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

What did we do?
Now we have a verbal description of what layers are required to handle the flow needed
to make the game work. In a more formal setting, this would be part of a program
design document, which is not the same thing as a game design document; game design
documents describe game rules, program design documents, and describe how software
will be written that implements the game design (or other software; Corona is not just used
for games).

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

13

Broadly speaking, we now have a plan for events and the layers of the program that they
happen at; the plan looks something like the following image (arrows point from events to
the objects that listen for them):

Game World Creature

Game Start

Game End

Score

UI

Despawn

Death

touch

remove

Death

Another way to think of the event model for a piece of software is in terms of the event flow;
how events occur on specific targets and trigger listeners that dispatch the same or related
events to new targets:

Creature

World

Game

Creature

Creature

World

Game

UI

remove

Despawn

Game End

touch

Death

Death

Score

What else do I need to know?
This design process, where we start with the most high-level, abstract part of the process
and proceed further into the details until we reach whatever the underlying platform gives
us, is often referred to as top-down design. Designing from the top down helps you build
your code's foundation modules based on what the ultimate needs of your app will be,
rather than restricting the final program to what you first thought you would need.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

14

The biggest challenge when authoring in a top-down fashion is that you typically create
software in such a way that it relies on components that haven't been written yet, so
you can't run anything until you fill in the gaps. You can speed up the testing of top-level
components by writing what are called stubs of the components being used, which are
extremely simple functions that provide default responses.

Creating the objects
Now that there's an overall plan, it's time to start making that plan a reality and creating
some actual code in a project we can run! As important as planning is, there's no denying
that the exciting part of the project is watching the things you've been working on come
to life and actually show up on the screen.

Getting ready
Using events in Corona requires tying your conceptual objects to specific types of Corona
objects that support events. There are three types of such objects by default: display objects,
storyboard scene objects, and the global Runtime object. (It's possible to create your own,
but that's not something we're discussing at this point.) The creature objects are visible
on screen and need to receive touch events, so it's logical to represent them with display
objects. The world needs to hold a bunch of creatures and give them spatial relationships,
so using a display group for it makes sense.

The game doesn't have a direct correspondence to anything on the screen, although it's
responsible for showing the contents of the world as well as the display of the score.
We'll make it a scene, because it has much the same life cycle and because we can use
its associated display group to hold both the world and, later, the interface group.

Getting on with it
When you start the Corona Simulator, the splash screen asks whether you want to create
a new project, launch the simulator, view your Corona Dashboard for info on apps you've
released, or review demos and sample code.

1.	 Click on the icon for New Project; the pop-up screen that you take next changes
slightly depending whether you are running the simulator on Windows or Mac OS X:

�� On a Mac, enter the project name and select Scene from the template list.
Leave the other two entries (size and default orientation) at their defaults
and select the Next button. Choose a location for your new project file,
then select Show in Finder from the last pop-up.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

15

�� Under Windows, the dialog is somewhat more compact. Enter the project
name and select Multiscreen Application. Use the Browse button near the
upper-right corner to select whatever project directory you want to use.
The OK button will open your project in both Windows Explorer and the
Corona Simulator.

2.	 Once a window is showing the project contents, find the file called
scenetemplate.lua and make a copy of it. Name the copy game.lua.

3.	 Open the file main.lua in the project folder using the text editor of your choice.
Find the last line, where it says storyboard.gotoScene("scenetemplate"),
and change it to storyboard.gotoScene("game").

4.	 Save this file. This changes the file which the project will look in for its initial
screen content.

Loading art assets and libraries
Download the project pack, if you haven't already:

ff Copy the images directory and its contents into your project folder. This includes
both the sprite sheet for our creatures and the background graphics for our world,
as well as some images we'll use later to create our splash screen.

ff Also, copy the files world.lua and bat.lua from the version 1 subfolder into
your directory. We'll include these files in the main game file and discuss their
contents later.

Loading the world
Open the file game.lua. This file is prepopulated with the skeleton of a storyboard scene,
which we'll fill in with code to run the game, and supplement with listener functions to
respond to world events.

Find the block for the scene:createScene function and start replacing the comment that
talks about inserting your own code with several new lines:

display.newRect(group, 0, 0, display.contentWidth, display.
contentHeight):setFillColor(0, 0)

 self.World = require "world" {
 Backdrop = "images/exterior-parallaxBG1.png",
 Tile = "images/wall.png";
 Inhabitants = {
 bat = require "bat"
 }
 }
 group:insert(self.World)

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

16

This loads and calls the world.lua module, which generates a new function that constructs
a world object with the specified options.

Depending on how much Lua programming you've done, the syntax of
the require call may or may not be familiar to you; when a name or
expression is followed directly by a string literal or table constructor,
Lua attempts to call the value of the name or expression (assuming it is
a function) with the string or table as its only argument. So the name
require followed by the literal world is equivalent to the function call
require "world". Since require returns whatever is returned by the
module it loads, and world.lua returns a function (more on this in a bit),
the require "world" call itself ends up being equivalent to a function,
and followed by the table constructor, the {braces}, and their contents, it
becomes a call to that function using that table. The table specifies graphics
files to be used by the new world object for its presentation, as well as a list
of creatures that the world needs to be able to include and create.

Then, we take the newly created world object and add it to the scene's display group so that
it will appear on the screen and be hidden or deleted properly when our game leaves or
purges the scene.

Linking the game with the world
Finally, we establish some event trigger relationships between the game object and the
world object that it has created:

 group:insert(self.World)

 self.World:addEventListener('Death', self)
 self.World:addEventListener('Despawn', self)

 self:addEventListener('Game', self.World)
end

As specified previously, the game object will listen to the world for events where a creature
has been defeated or has otherwise despawned, so that it can determine when the player
scores and when the game should end. It also registers the world object to receive game-
related events such as the game beginning and ending. Note that the game has no idea how
the world object will respond to these events, or even if it will respond at all. It simply makes
sure that the world will be notified when these things happen.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

17

Loading a new game into the display
The createScene event is dispatched to scenes only when they are first loaded or if their
displays have been unloaded to save memory. When the scene actually begins or is reloaded
from a different scene, the createScene event might be skipped, but the enterScene
event always fires.

1.	 We'll go down to the next event responder, and replace the contents of that
function with code that actually starts the game:

function scene:enterScene(event)
 self.ScoreTotal = 0

2.	 When a game starts, the player's score should always be reset to 0:

 self.ScoreTotal = 0
 self.StartingCount = 1
 self.Count = self.StartingCount

3.	 While the design calls for 30 creatures traversing the screen in turn, first we want to
make sure that the basic mechanisms we're creating work. So to start, we will create
only one bat so that we don't have to wait for the whole scene to finish in order to
try again. While the game only needs to track the remaining count of creatures, we
remember the total count we were going to spawn for the game, so it can be stored
with high-score information easily:

 self.Count = self.StartingCount
 self:dispatchEvent{name = 'Game'; action = 'start', duration =
(self.Count + 1) * 1500}

This is our first custom event that we trigger! This notifies anyone who's listening
(like, possibly, the world) that a game is about to begin, and that it's expected to last
a certain number of milliseconds. Many games will not have a fixed duration field,
but we want to provide an estimate of the game time so that the scrolling parallax
background will move continuously throughout the game. This code allows a second
and a half for each bat (since that's how often they'll be released), plus another
second and a half for the last bat to cross the screen.

Notice that the event's name starts with a capital letter. All
Corona built-in events have names beginning with lowercase
letters; using uppercase letters to start the names of our own
custom events ensures that we won't have any naming conflicts
with Corona, and also makes it easy to recognize basic events
from our own.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

18

Preparing the game challenges
Once we've triggered the game start, we prepare the bats to be dispatched:

 self:dispatchEvent{name = 'Game'; action = 'start', duration =
(self.Count + 1) * 1500}
 for i=1,self.Count do
 local x, y = 0, display.contentHeight,
 timer.performWithDelay(i * 1500,
 function(...)
 self.World:Spawn{kind = 'bat', x = x, y = y, 'brown'}
 end
)
 end
end

This loop prepares the creation of as many bats as the game level is supposed to release.
Right now, it will generate only one, because the StartingCount event has been reduced
to 1 for test purposes; but increasing that number will automatically schedule more bats
every second and a half.

The timer.performWithDelay pattern is probably a familiar one; it creates a new
temporary function on each pass through the loop, which will call another function with
the parameters specified in that pass through the loop. The x and y values specified are
currently fixed for testing purposes, but later we will add some variety so that the bats do
not all follow the exact same line.

Responding to world changes
Finally, we go up to the top of the scene file after the storyboard.createScene()
call, and define one more function of the scene object. The scene has been registered as
a listener for Despawn events on the world, so we need to explain how the game should
handle those events when they occur:

local scene = storyboard.newScene()

function scene:Despawn(event)
 if not tonumber(self.Count) or self.Count <= 1 then

When a table (which includes scene and display objects) is registered as a
listener on some event target, it should have a field name matching the event
name (including matching case; Lua is case-sensitive), containing a function that
will process those events. If it does not contain such a field when the relevant
event occurs, it will simply be ignored until the next such event (later, we will use
this deliberately). The game is concerned about these events because once all
the bats it directed the world to spawn have despawned, the game is complete.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

19

Monitoring game progress
The first thing we do when a creature despawn occurs in the world is check how many
more despawns we're expecting. As a sanity check to avoid errors, if the count of remaining
creatures is missing or not a number, we also assume that the game is over:

 if not tonumber(self.Count) or self.Count <= 1 then
 self:dispatchEvent{name = 'Game'; action = 'stop'}

Concluding the game
If the count of creatures still waiting to spawn isn't more than one, indicating that there are
extra bats still waiting their turn, then the game is over (this count reduces by 1 for each bat
that spawns). We dispatch a Game event with the stop action to notify interested listeners
(like the world) that the game is over:

 self:dispatchEvent{name = 'Game'; action = 'stop'}
 os.exit()

Once other game elements have performed end-of-game cleanup, we leave the game.
Eventually, we will want to return to the menu screen and submit our score to the high-
scores table, but that module doesn't exist yet:

 os.exit()
 else
 self.Count = self.Count - 1
 end
end

If the game is still waiting for more than one creature to pass, all we need to do is reduce the
count we're waiting for by one to account for the count that just passed.

The game module is now ready to test! Before we finish, we can just go down towards the
bottom of the file, and remove the skeleton functions for exitScene and destroyScene,
as well as the scene:addEventListener calls for them. They will not be needed for this
module in this project.

Understanding your libraries
It's worth examining the world.lua and bat.lua modules briefly, because they
implement the rest of the critical event chain that we designed in the second step. Notice in
world.lua how the world constructor function adds a function to the world object called
self:Game(event). Since the game registered the world as a listener for Game events
by itself, this function will be called automatically when the game object sends a start or
stop event.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

20

The world object also provides the Spawn function that the game calls to create new bats,
and one of the things it does there is add itself as a listener for Death and remove events on
the newly spawned creature. It responds to Death events by reposting them to itself, and to
remove events by posting Despawn events for the game to pick up.

The bat.lua module has a couple of points of interest. We've covered in the abstract how
custom events can be substituted for physical events; the bat illustrates this directly, by
publishing a Death event to itself when it is tapped. It then also unregisters itself for future
tap events so that you can't repeatedly tap dead bats for extra score.

Notice that the bat object registers for its own Death event, as well as the
world registering for it. It uses this so that it can separate the cosmetic reaction
to its death (currently very simple) from the logical events required to make it
happen. It also means that it will respond properly even if something else posts
a Death event to it from outside.

What did we do?
At this point we have a rudimentary test game that illustrates the flow of events up and
down the object layers. For the sake of brevity, we imported existing modules to support
two of the three layers we need to deal with, and constructed the third one to control and
respond to the middle layer. The game layer does not ever interact with the individual bat
objects, honoring the programming principle called encapsulation or weak coupling.

So far, the game will run a single bat across the screen and then quit. If you manage to
tap the bat, it will fade out but finish its trip across the screen. Obviously, this is not a
very satisfactory game for the work needed to produce all these files (assuming that you
had to write all three of them yourself). However, the next few tasks will show us how
comparatively easy it is to incorporate these features into the robust infrastructure we
have established.

Creating the interface
While many game designers consider games that require no visible interface to be the
platonic ideal of their craft, nearly every game requires some sort of extra-diegetic interface
element, something that provides information about the game world and accepts commands
into the game world, but is not itself part of the game world. To show the player how well
they're doing, we'll add a layer above the game world, with a number showing the player's
current score, and increment it whenever their score changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

21

Getting on with it
First, we're going to prepare the interface module. This code will live in a separate file to
make it easy to maintain without changing the game code, and vice versa, once the initial
connection is made. The interface module will be a function that takes a game object and
returns the group containing the various interface elements. Start by creating a new text
file in the project source directory named interface.lua and framing in the outline of
the function:

return function(game)
 local self = display.newGroup()

 return self
end

This gives us the groundwork for a function that returns a new group. Now we can start
filling in the body with elements for the group (or one element, in this case).

Adding visible information
First we create the text object that will display the score:

 local self = display.newGroup()
 self.ScoreDisplay = display.newText(self, "000", 20, 10, native.
systemFont, 24)
 self.ScoreDisplay:setReferencePoint(display.CenterRightDisplayPoint)

Setting the reference point doesn't actually move anything on the screen, but it does change
which point in the text is considered by Corona to be the x and y coordinates of the object.
This will make it easier to keep the text aligned as we update it later.

Updating an information display
We want the score display to change when things happen in the game, so it will need to
listen for the relevant events:

 self.ScoreDisplay:setReferencePoint(display.CenterRightDisplayPoint)
 function self.ScoreDisplay:Score(event)

Because the score display object will be used as a listener that responds whenever the
game's score changes, it will need a function field that responds to Score events.

 function self.ScoreDisplay:Score(event)
 local x, y = self.x, self.y

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

22

Because Corona text objects are not naturally aligned, some juggling is needed whenever
one might change its text contents and therefore its size. The x and y values we record here
are the ones where we always want the center of the text's right edge to appear.

 local x, y = self.x, self.y
 self.text = string.format("%03d", event.total)

The format call ensures that the displayed score is always three digits long, with leading
zeroes as needed. This keeps the score looking consistent.

 self.text = string.format("%03d", event.total)
 self:setReferencePoint(display.CenterRightDisplayPoint)
 self.x, self.y = x, y
 end

This ensures that we will be placing the text at its new center-right anchor. Also, it sets that
point back to the originally recorded coordinates. Now that we've concluded the function
to respond to score changes, we need to register that we're interested in hearing about the
scores, before we return the new interface to the game creating it:

 end
 game:addEventListener('Score', self.ScoreDisplay)
 return self
end

Linking the interface to the game
Save the file and close it. We now have a functional interface layer, but it isn't yet being
created or used. Open the game.lua file and locate the scene:createScene function
block. After the lines that create and insert the world group, add similar lines for the
interface module:

 group:insert(self.World)
 self.Interface = require "interface" (self)
 group:insert(self.Interface)

 self.World:addEventListener('Death', self)

We load the interface creator function, and call it, passing it a reference to the game it will
listen to for Score events. We then insert the interface into the game scene's display group at
a higher layer than the world layer, so that it rides on top (otherwise, the world background
would hide the interface).

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

23

Triggering a game event from a world event
However, although the interface layer is now being created and displayed, and it's listening
for Score events on the game, these events are not being published yet. Near the top of the
open game.lua file, above the scene:Despawn function, add a function, similar in form to
the despawn function, to handle death events and modify the game's score accordingly.

local scene = storyboard.newScene()

function scene:Death(event)

The first thing we will need to do when we detect that a creature has died in the world
(rather than just leaving the world borders and despawning) is increment the game score:

function scene:Death(event)
 self.ScoreTotal = self.ScoreTotal + 10

Then, after changing the actual score, we need to broadcast that the score has changed.
This will finish the Death response handler:

 self.ScoreTotal = self.ScoreTotal + 10
 self:dispatchEvent{name = 'Score'; total = self.ScoreTotal}
end

function scene:Despawn(event)

Lua is a language that's light on semi-colons, making their use
between statements optional in almost all cases. In this case,
table constructors allow items being added to the new table to
be separated with either commas (most of the time) or semi-
colons (only occasionally). I like to use them to separate table
elements into groups; in this case, I use one to separate the
event name (which all events have) from the other parameters
(which are particular to each specific event).

Now, the score should increment as you successfully tap the bat flying over (if you want to
test it more thoroughly, try changing the game scene's StartingCount field from 1 to 5).
The last precaution we need to take is to reset the score properly if the scene is reused
for a new game without being unloaded first, by adding an event inside the scene's
enterScene response:

function scene:enterScene(event)
 self.ScoreTotal = 0
 self:dispatchEvent{name = 'Score'; total = self.ScoreTotal}
 self.StartingCount = 5

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

24

What did we do?
We created a display to show the game score, and set it to update automatically as the game
score increases. We made the display aware of the specific game whose score it will display,
by passing that game to the interface constructor. We also modified the game to actually
produce these events, so that the interface will have some updates to process.

What else do I need to know?
The world object doesn't register itself with the game object for events; it lets the game
object do that for it and only provides the response. Why do we instead give the game object
to the interface layer and let it register itself?

The main reason is that the world is primarily a source of events for the game to listen to,
whereas the interface is primarily interested in events that the game object generates. In
a more complex game, it would be very difficult for the game object to anticipate every
possible event that the interface might need to display, and every new event the interface
wanted to handle would require modifying the game module as well to register it. This
approach lets the interface call the shots as far as registration, whereas the game can
reasonably assume that it will drive most communication that goes from the game into
the world.

Adding the Shell
Most arcade-style games like this one have one or two screens to fill the gap between
games, provide instructions, and display score records. Corona's storyboard module makes
it easy to implement this splash screen as a separate scene and pass useful cues between
the two.

Getting ready
Copy the file visuals.lua, from the version 3 subfolder in the project pack, into your
project directory. This is a library that provides some visual effects functions; each one
takes the object to perform the effect on, and returns a function that can be called to stop
the effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

25

Getting on with it
Because most of the code in the menu module is just the straightforward loading and
positioning of images, we'll copy the module into the project directory rather than code the
entire thing from scratch. Copy the file menu.lua, from the version 3 subfolder in the
project pack, into your project directory and open it in a text editor so we can review the
points which are more interesting:

local scene = storyboard.newScene()

function scene:tap(event)
 storyboard.gotoScene("game")
 return true
end

local function alternate(object)

This sets the scene up to be used as a listener for tap events. When the registered target is
tapped, the scene will initiate a change to the game scene, which will trigger the initialization
of a new game. In order for this to do anything, the scene object must be tagged as a listener
(the scene's view group will receive touch events of many of its children that don't handle
their own events):

function scene:createScene(event)
 local group = self.view

 group:addEventListener('tap', self)

 self.Backdrop = display.newImage(group, "images/splash.png", 0, 0)

Creating a staging zone for high scores
We'll add a group on the screen where high scores can be displayed:

	 scene.ScoresWindow = display.newGroup()
	 scene.view:insert(scene.ScoresWindow)
	 scene.ScoresWindow.x, scene.ScoresWindow.y = 40, 190

This display group, presently left empty, is positioned in the large blank space in the
lower-left corner of the splash screen. In later updates it will give us a suitable place to
display the high scores list and game credits.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

26

Linking the shell into the play cycle
In order to actually use this scene, we need to adjust the main.lua file or it will just
continue opening the game scene. Open main.lua and change the last line from
storyboard.gotoScene("game") to storyboard.gotoScene("menu").
This will change the first scene loaded when the game starts.

Finally, now that we have somewhere to return to, we don't have to quit the app when the
game is over. You can open game.lua, find the line in the scene:Despawn function that
reads os.exit(), and replace it with the following:

 self:dispatchEvent{name = 'Game'; action = 'stop'}
 storyboard.gotoScene("menu")
 else

Now the game will loop back to the menu screen after the game is done!

What did we do?
Now we have the basic structure typical of arcade-style games; launch to splash screen,
proceed to game, return to splash screen. We not only incorporated a new scene module
into the project, but we made the connections to set it as our initial scene and revert back
to it after each game is over.

What else do we need to know?
When a display object is touched or tapped on the screen, the object itself is the first one to
be informed of the event. However, if it does not mark the event as handled (by returning
a truthy Lua value, one which is not nil or false, from the event handler), the event will
continue to be passed up to its ancestor groups, in reverse order, then to other objects
positioned behind it and their ancestors, until finally it is dispatched to the global object
Runtime or until one of the objects declares it taken care of. Therefore, a tap on any object
which is part of the menu scene will eventually be passed up to the scene's display group,
which is the ancestor of all of them.

In scripting languages, truthy values are ones that are considered on
or positive for if statements. In Lua, all values are truthy except for
nil and the Boolean value false; even the empty string and the number
0, which are treated as false in many other languages, are considered
truthy in Lua.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

27

Tracking high scores
The last ingredient to meet our requirements is high-score tracking. We'll need to pass the
final scores from the finished game, collect initials (in true arcade fashion) for new high
scores, and maintain the database of saved scores.

Getting ready
Copy the enterInitials.lua scene file from the version 4 subfolder of the project
pack into your project directory. This scene is fairly straightforward and adds the pop-up
screen that will collect players' initials when they reach a new high score.

This section uses the sqlite3 library included with Corona to simplify managing score
records. While we'll spend some time discussing the intent of the SQL statements included,
a detailed discussion of SQL syntax is thoroughly outside the scope of this book. For a good,
basic introduction, visit http://www.w3schools.com/sql/.

Getting on with it
We're going to start by creating a wrapper module to save the rest of our program from
dealing directly with the database. There are three basic tasks that the rest of the program
needs the database to do:

ff Retrieving a top score

ff Determining if a score belongs in the top 10

ff Adding a new score to the database

Linking to the database file
Create a new text file in the project directory called history.lua and open it. Start by
loading the needed library:

local sqlite3 = require "sqlite3"

This loads Corona support for working with databases and establishes the local name
sqlite3 as your interface for using it. Now it's time to open and prepare the database
as needed:

local sqlite = require "sqlite3"

local storagePath = system.pathForFile('BatSwat.history', system.
DocumentsDirectory)

local db = sqlite3.open(storagePath)

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

28

Because the Resource directory is read-only on mobile platforms, we store the score
database in the Documents directory. The sqlite3.open call attempts to load the given
file location as a new database, and creates a blank database file if no file was found:

local db = sqlite3.open(storagePath)
Runtime:addEventListener('system',
 function(event)
 if(event.type == "applicationExit") then
 db:close()
 end		
 end
)

We'll get more into dealing with closed and paused applications in the next chapter, but
this just makes sure that the database will be flushed and closed properly if the application
is closing.

Initializing the database
We'll need a list in the database where we can store score values:

 end
)

db:exec[[
 CREATE TABLE IF NOT EXISTS history (
 happened PRIMARY KEY,
 Score,
 Count,
 Initials
);
]]

This is our first taste of SQL, where we have the database run with the :exec method. It just
makes sure that the database has a table to hold our high scores, including when the score
was achieved, how much it was, how many creatures there were on the whole level, and
who got the score in question. The time the score that was achieved is used as the table's
primary key, meaning there can be only one score for any given moment of completion. As
the game is single-player, this is fine. If the database already existed, this line will do nothing.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

29

Notice the use here of the Lua long string literal, enclosed in double
brackets. This form ignores escape characters, quotes, new lines, and
everything else except its closing bracket, simply treating them as
characters in the string. This makes it ideal for incorporating code from
other languages, reducing the likelihood that some element from the
stored code will end the string prematurely or be misinterpreted by the
Lua parser.

Cleaning up old scores
We don't need to keep more scores than we can display.

);
]]

db:exec[[
 DELETE FROM history WHERE happened NOT IN (SELECT TOP 10 happened
FROM history ORDER BY Score DESC)
]]

This is a maintenance line. We don't want the list of high scores to just keep getting bigger
and bigger and taking up more of the user's device memory, so whenever we launch the
game, we clean out any scores that have fallen off the bottom of the list. The SQL statement
here basically says, "make a list of all the times that have scores in the top 10, and then
delete every score whose time isn't on that list."

]]

local history = {}

return history

Here, we're just preparing the history module that will be returned when the file is loaded.
The three functions that are the substance of the module will be added between these two
new lines, since the return must go last.

While programming styles vary, it's frequently a good habit to build
your code inwardly; for instance, when you type the beginning of an
if … then statement in Lua, you can immediately type end on the
next line and then back up and fill the contents in between the two.
This approach helps you avoid forgetting to close function calls, long
strings, loops, and other things that can end up unbalanced.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

30

Considering possible new high scores
To see if a new score qualifies as a high score, we'll see where it falls among the scores
already gathered:

local history = {}

function history:find(score)
 for count in db:urows([[SELECT count() FROM history WHERE Score >=
]] .. score) do
 return count + 1
 end
end

This function identifies where a proposed score would fit into the list. We'll use it to identify
which new scores have a place in the top 10 and should ask for the player's initials. It
works by counting the number of existing score entries that are larger than the score
under consideration.

The sqlite3 library offers three different functions for scanning through the results of a
SELECT query. The db:nrows method returns a table representing the row, with named
fields matching the column names that hold their values for that record. The db:rows
function gives back a table which simply holds the value of the first column at index 1, the
value of the second column at index 2, and so forth. The db:urows function, used here,
simply uses Lua's multiple returns to pass back all the values from the record without making
a new table, in the same order they would appear in the table returned by db:rows.

It's worth noting that all three functions don't actually return any records;
they return iterator functions that produce the contents of a new row
each time they're called. This makes them ideal for use in Lua generalized
for loops.

Saving new high scores
When a new score is identified as being better than a previous high score, we need to
record it:

end

function history:add(statistics)
 if statistics.HighScore <= 0 then return end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

31

This function will submit a new score to the database. If for some reason a score of 0 was
submitted, we won't bother storing it:

 if statistics.HighScore <= 0 then return end
 db:exec(
 string.format([[
 INSERT INTO history VALUES (
 datetime('now', 'localtime'),
 %d, %d, %q
);]],
 statistics.HighScore,statistics.MobCount, statistics.Initials
)
)

Here, we use the string.format function (a close relative and derivative of the C
printf) to fill in the specific information provided to us about the score into an otherwise
preprogrammed SQL INSERT command. Executing the finished command adds the new
row into the database.

Recovering old high scores
To display the scores, we'll need to retrieve them from the database:

)
end

function history:TopScore(index)

The last function we add will retrieve the score with a given index; 1 for the highest score,
2 for the second highest, and so on:

function history:TopScore(index)
 local query = [[SELECT * FROM history ORDER BY Score DESC LIMIT 1
OFFSET]] .. (index - 1)

Here we prepare the query. The LIMIT 1 clause means we only want one value from the
list, and the OFFSET clause indicates how far down the sorted list we want to find that value,
basically like an index into an array:

 local query = [[SELECT * FROM history ORDER BY Score DESC LIMIT 1
OFFSET]] .. (index - 1)
 for info in db:nrows(query) do

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

32

To make it easier for the code calling this function to use the result, we use the db:nrows
iterator to get back a table structured like a record, with named fields for the column values.

 for info in db:nrows(query) do
 return info
 end

Like most database functions, the luasqlite3 iterators aren't really intended to be used
with single values. We could save the obtained record in a variable local to the function and
trust the loop to exit after one pass (since the query statement specified should never return
more than one record), but just returning out of the loop on the first pass also works fine,
since we have nothing else to do after finding the first record.

Since the function will always return from the first pass through the loop, there's no need for
any other body, and we're done with the module:

 return info
 end
end

return history

Communicating scores between modules
Now that the score tracker is ready, we need to prepare the other modules to use it. First, we
make a small change to the game scene file, to make it pass its final score back to the menu
scene for consideration. The storyboard library has added the ability to hand parameters
off to a scene when you load it which is perfect for this purpose:

function scene:Despawn(event)
 if not tonumber(self.Count) or self.Count <= 1 then
 self:dispatchEvent{name = 'Game'; action = 'stop'}
 storyboard.gotoScene("menu", {params = {Score = self.ScoreTotal,
Count = self.StartingCount}})
 else
 self.Count = self.Count - 1
 end
end

This way, the menu's enterScene function will be able to access the score and count as
fields of the event.params table. This is the only change we need to make to the game.
lua scene file. Next, open the menu.lua file to add support for receiving this data. Start by
loading the history module at the top of the file so that we will be able to check whether the
received score is a new record:

local history = require "history"

local storyboard = require("storyboard")

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

33

Now, we need to add support for using that module to check for a new high score and record
the initials that qualify. If we have to pop up a collection window, we want to hold off on
running any animations until we've returned from that process, so replace the unconditional
call to the scene:Cycle()function, which handles showing the high scores and credits,
with a conditional statement:

function scene:enterScene(event)
 self.Banner.alpha = 0

 if event.params and event.params.Score then
 if history:find(event.params.Score) <= 10 then
 storyboard.showOverlay("enterInitials", {effect = "fromBottom",
params = {Score = event.params.Score, Count = event.params.Count},
isModal = true})
 end
 else
 self:Cycle()
 end

end

Reviewing new scores
First, we check whether we've received a score at all. Remember that this scene is also
launched when the app starts up, in which case there will be no new score to forward.

Next, it uses the history module to ask whether the newly received score belongs in
the top 10. If not, it won't be showing the initials entry screen and can go directly to
running animations.

If this is a new high score, however, we need to display the enterInitials pop-up scene
to collect user input. We use the storyboard library's showOverlay function to display the
new scene over the current one, since we will be coming straight back to the splash screen
when we are done. We pass scene and count to this function, just as we received them, so that
the data entry screen can record them in the database. The isModal argument field prevents
touches in the pop-up scene from drifting down into the menu screen while it is active.

Finally, we register the menu scene to notice when the score is recorded and the overlay is
closed, so that it can start its animations. First, we specify that the Cycle function (which
runs those animations) should be the scene's response to any overlays ending; then we make
sure the scene knows that it is interested in its own overlayEnded events:

end

scene.overlayEnded = scene.Cycle
scene:addEventListener("overlayEnded", scene)

function scene:exitScene(event)

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

34

Displaying the score history
Now that score processing is ready, we're going to add code to actually display the
high scores. For the moment, we'll just lay them out in the designated space as soon as
animations are visible. So, we'll add that call to the menu's scene:Cycle function:

function scene:Cycle()
 self.StopPulsing = visuals.PulseInOut(self.Banner)
 self.StopEffects = revealScores(self)
end

Because we're expecting this to be animated later, we're leaving open the option to have a
transition that we might need to stop or change. Right now, we'll focus on just making the
scores show up in the new revealScores function:

local function revealScores(scene)
 display.remove(scene.ScoresSlide)
 scene.ScoresSlide = display.newGroup()
 scene.ScoresWindow:insert(scene.ScoresSlide)
end

function scene:Cycle()

This adds a new group to store all our high score displays in, making it easy to animate or
clear all of them at once. Before that, however, we remove any previous high-score displays
to make room, since the high scores may have changed since they were last displayed:

 scene.ScoresWindow:insert(scene.ScoresSlide)
 for i = 1, 10 do
 local score = history:TopScore(i)

Next, we loop through the 10 highest scores in the history of the game. The score variable
will actually be a table containing all the relevant fields:

 local score = history:TopScore(i)
 if not (score and score.Initials and score.Score) then break; end

If the game is new, the high score table might be mostly empty, so if we run out of scores,
we finish the loop early:

 if not (score and score.Initials and score.Score) then break; end
 display.newText(scene.ScoresSlide, score.Initials, 0, 24 * (i -
1), native.systemFont, 16)
 local score = display.newText(scene.ScoresSlide, score.Score, 0,
24 * (i - 1), native.systemFont, 16)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

35

We create the two text objects to hold the initials and the actual score. Creating two objects
means that they can be aligned separately:

 local score = display.newText(scene.ScoresSlide, score.Score, 0,
24 * (i - 1), native.systemFont, 16)
 score:setReferencePoint(display.CenterRightReferencePoint)
 score.x = 100
 end
end

Finally, we align the score number on the right-hand side of the available space. The score
reveal is now basically complete!

What did we do?
By recording high scores and allowing people to compete for the best, we've finished adding
the core criteria required by the design document. Some features that were described
aren't implemented yet, but they're all fairly cosmetic in nature. That means the game is
functionally finished, and now is a good time to test it out. Play it repeatedly and look for
anything that seems broken. Or, just keep playing it for a while; you've earned it!

Adding finishing touches
Although the game is functionally working at this point, it's not really ready for the prime
time. The way the bats just fade out and keep flying could easily confuse players. The
high scores table could use a little more excitement. Finally, since we're reusing Creative
Commons art assets, some credit information is in order.

Getting ready
Copy the explosion.lua file from the version 5 subfolder of the project pack into your
project directory. This file provides the sprite sheet info and a simple function to create and
animate a small explosion at a given point.

Getting on with it
First, we're going to make the bat's death a little more dramatic, adding a little explosion and
causing the bat to fall off the bottom of the screen instead of continuing to fly. Open up the
bat.lua file and find the mobDied local function, which is registered to go off in response
to the creature's Death event, and delete the line that says self.alpha = 0.3:

local function mobDied(self, event)
 transition.cancel(self.Flight)

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

36

The first thing we're going to do is stop the bat's normal flight course:

 transition.cancel(self.Flight)
 explosion(self.parent, self.x, self.y)

We'll use the new explosion module to create an animated explosion in the bat's world
environment at its current point. The explosion is responsible for animating itself and
deleting itself when the animation is done.

Changing the creatures' motion
We want the bat to seem to fall when it is killed:

 explosion(self.parent, self.x, self.y)
 transition.to(self, {time = 1000, x = display.contentWidth})

We'll start the bat sliding sideways off the right-hand side. Because we're looking for a
natural bouncing motion under the effects of gravity, the horizontal aspect of the motion will
be tweened linearly, while the vertical component will be tweened quadratically; this means
we need two separate transitions:

 transition.to(self, {time = 1000, x = display.contentWidth})
 local distance = 100 + (display.contentHeight - self.y)

We calculate the total distance the bat will travel vertically to rise up 50 pixels and then fall
off the bottom of the screen. We add 100 because it will also fall the extra 50 pixels that it
bounced up:

 local distance = 100 + (display.contentHeight - self.y)
 transition.to(self,
 {
 time = 1005, transition = arc, onComplete = clean;
 y = display.contentHeight
 }
)

Animating on a custom curve
Because the bat will first bounce up a little, then fall, its vertical motion will be determined
by a custom tweening function, arc, which we will write in a moment. This transition is
made slightly longer than the first one, because it will clean up the object (and post
a remove event) when it's done, and we want to make sure the other transition has
finished first:

local function arc(t, tMax, start, delta)
 if t <= 250 then
 return easing.outQuad(t, 250, start, -50)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

37

 else
 return easing.inQuad(t - 250, tMax - 250, start - 50, delta + 50)
 end
end

local function mobDied(self, event)

This is our custom tweening function. It isn't terribly fancy; it transitions the object back,
against the direction of the tween, for the first 250 milliseconds, then tweens it forward from
that point for the rest. It relies on Corona's existing quadratic tweens (a decelerating tween for
the upward motion, and an accelerating one for the fall) to calculate the intervening values.

Adding visual interest to the high scores
Now the bat dies a little more dramatically and we can move on to animating the credits
and high scores. Close bat.lua and open menu.lua, and add a new text object to the
scene:createScene function:

 self.ScoresWindow.x, self.ScoresWindow.y = 40, 190

 local creditsText = [[
Bat Swat code:
 Nevin Flanagan
Images:
 Bat Sprite:
 MoikMellah
 Environment art:
 Jetrel
 Licensed from
 opengameart.org
 under CC-By 2.0]]
 self.Credits = display.newText(self.ScoresWindow, creditsText, -16,
0, 190, 144, native.systemFont, 12)
end

This credits object will trade places periodically with the high-scores display, so whenever it
fades out, it needs to cue the high-score object to slide into the empty space:

 self.Credits = display.newText(self.ScoresWindow, creditsText, -16,
0, 190, 144, native.systemFont, 12)
 self.Credits:addEventListener('Faded', function() self.StopEffects =
visuals.SlideInFadeOut(self.ScoresSlide) end)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

38

We don't want the credits to appear until the high scores have faded out, so make them
completely transparent whenever the scene starts:

function scene:enterScene(event)
 self.Banner.alpha = 0
 self.Credits.alpha = 0

 if event.params and event.params.Score then

This means that in order for it to ever appear, it needs to be cued in whenever the high
scores fade out, which we'll set up in the revealScores function:

 score.x = 100
 end
 scene.ScoresSlide:addEventListener('Faded', function (...) scene.
StopEffects = visuals.SlideInFadeOut(scene.Credits) end)
end

In order for the object to ever receive a Faded event, we'll have to start the same transition
on it:

 scene.ScoresSlide:addEventListener('Faded', function (...) scene.
StopEffects = visuals.SlideInFadeOut(scene.Credits) end)
 return visuals.SlideInFadeOut(scene.ScoresSlide)
end

This moves the collected scores down off the screen, and schedules them to slide back
in after a second and a half. Returning the resulting cancellation function means that the
Cycle function will store it in the scene.StopEffects field. This is important, because
if we start a game, we need to be able to cancel that transition. We can do that from the
scene:exitScene function.

function scene:exitScene(event)
 self.StopPulsing()
 if self.StopEffects then
 self.StopEffects()
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 1

39

Parameterizing the game length
Finally, we need to update the number of bats per scene; right now, it is set to a test value
of 5. The document specifies 30 per game. To leave ourselves room for flexibility in the
future, we'll have the menu pass in the desired number when it calls the game scene, much
the same way the game passes the final score out. Go to the top of menu.lua and add the
following line:

local scene = storyboard.newScene()

local options = {params = {Count = 30}}

function scene:tap(event)

We'll reuse this table as we relaunch the game scene. Now, we just need to supply it when
we launch the game, which is in the function right under that:

local options = {params = {Count = 30}}

function scene:tap(event)
 storyboard.gotoScene("game", options)
 return true

Adding a reference to the options table tells storyboard to pass the parameters in to the
scene being opened. Finally, we can save and close menu.lua, open game.lua, and make
one change to the scene:enterScene function:

function scene:enterScene(event)
 self.ScoreTotal = 0
 self:dispatchEvent{name = 'Score'; total = self.ScoreTotal}
 self.StartingCount = event.params.Count
 self.Count = self.StartingCount

Instead of setting the game's starting creature count to a fixed 5, we'll set it to whatever is
passed in by the menu.

What did we do?
Now, we added additional animations to the dying bats by modifying only one function (and
adding another one for it to call). We also added a little animation to create visual interest
and made control of the game scene more flexible.

www.it-ebooks.info

http://www.it-ebooks.info/

Bat Swat – an Introduction to App Event Cycles

40

Game over – wrapping it up
We have engineered a game from concept description up through final polish and
improvements. We have designed and implemented a flexible system for bridging
communications between disparate elements of the program and adapted the components
within that system to accommodate new elements as they are included. We also now have
a playable game! How many bats can you swat?

Can you take the HEAT? The Hotshot
Challenge

There are several generalizations that have been left in the code to make it easier to add new
components and variations later with a minimum of fuss. Can you give the player a choice
between the existing level and one that mixes the brown bats with black ones that move
slower, but take three taps to kill? For the cleanest results, try and do it without creating any
new scene files!

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2
SuperCargo – Using

Events to Track
Game Progress

Mobile games and apps bring a new challenge to developers; they are frequently used in
open spaces, on the go, while waiting for something, or in other circumstances where the
user might be interrupted at any time. Some of the most common examples are as follows:

ff The user's meal (train, or person they're meeting) might arrive, causing them to put
their device away

ff The user might be playing on a device with telephone functionality, and receive a
call in the middle of the game

ff The user might switch to another app, causing your program to be closed to free up
device memory

ff The user's device might run out of battery power

To be popular with users, apps have to "preserve state", that is, remember where they are
at each given moment, so that if one of these or any other interruption occurs, they are not
frustrated by losing their progress. We'll explore how the event model that we discussed in
Project 1, Bat Swat – An Introduction to App Event Cycles, can help us streamline the process
of remembering what the user has done so far.

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

42

What do we build?
To illustrate these principles, we'll make a clone of the popular puzzle game Sokoban. This
game originated in Japan, where the title means warehouse keeper, and was popular among
Unix users. Ports exist for many systems, including several mobile versions. The goal is to
arrange boxes into target spaces through a confined space, without pushing any box into a
corner that you can't get it out of. We'll cover the details in the game design document.

What does it do?
Like Bat Swat, SuperCargo will follow the basic splash screen-game-splash screen cycle of
most arcade games. By the time we're done, the splash screen will allow the user to select
one of several levels to play through. The game content will load the chosen level and display
it using a tiled sprite sheet, then receive game moves from taps on different parts of the
screen. The game engine will determine whether these moves are illegal, process the results
of legal moves, and display them. The game will also track the number of moves used to
progress through a given level and allow users to undo moves, so that they can escape from
unwinnable conditions or consider alternate strategies. Finally, the game will remember
progress through uncompleted levels, including more than one level at a time, to give the
user more flexibility.

Why is it great?
Sokoban has a well-developed set of file formats and a huge body of existing levels, so this
game would be easy to expand with in-app purchases or by allowing the user to add their
own level files from public sources, so a lot of potential value is possible at no cost. For us
as developers, however, the real benefit comes from seeing how easy it can be to preserve
game progress by storing user input streams or other game events. The event model that we
developed for Bat Swat means that we will actually be able to add saved progress with only
the smallest of code changes.

How are we going to do it?
A couple of the tasks from the first project will be condensed to give more focus to the
others, and because they consist of more familiar tasks such as:

ff Describing the game

ff Loading a level from a file

ff Displaying the map contents

ff Adding the interface

ff Making the game playable

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

43

ff Adding the shell

ff Supporting undo

ff Preserving game history

What do I need to get started?
You'll need two main resources, a levels file that contains text descriptions of the various
levels, and a tiled image file that contains icons of the walls, empty floors, goal spaces, boxes,
and the player. To ensure proper scaling, each tile in the image file should have a one-pixel
border around it on all sides that repeats the pixels at the edges of the usable area. Without
this, when using Corona's auto scaling to support higher-resolution displays, you may notice
seam lines or a grid where the tiles don't quite touch each other.

The included image file, bomb_party_v4.full.png, was generated
from a downloaded sprite sheet by using ImageMagick's convert tool,
a command-line tool highly useful for carrying out automated processing
of images, including cropping, scaling, and layering images together.
While a discussion of ImageMagick command syntax is well beyond the
scope of this book, you can read many useful tips at http://www.
imagemagick.org/Usage/ or review the tileextrude.sh file
we've included in the code bundle for this project.

Describing the game
This step can't be overlooked! Even though it's not part of the coding and might feel familiar
from last time, it's critical to start every project with a clear description of what that project
needs to accomplish.

Getting on with it
Let's go over the various sections of the design.txt file included with the project pack
and consider what each one tells us about the project.

Core mechanic
We'll start by laying down the basic principle behind the game's creation, and a summary
of its rules.

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

44

Supercargo is a mobile port of a popular puzzle game, wherein the player controls an
onscreen avatar that can move in the four cardinal directions. The avatar's progress is
blocked by walls that completely bound the area and create shapes inside that boundary.
There are boxes distributed throughout the area, and if the player attempts to move their
avatar onto one box, it will push the box if there is an empty space across the box from the
player's avatar. Boxes cannot be pulled or slid across the avatar's direction of motion. There
are a number of goal spaces throughout the game area, equal to the number of boxes;
when each box is placed on a goal area and each goal area is occupied by a box, the level is
complete. Players' completion of a level is scored according to the number of distinct steps
taken by their character to achieve a solution, with lower scores being more highly rated.

This is the fundamental design summary. It summarizes the core rules of Sokoban: there is
one player who can move in the four major directions; the player can push boxes if there is
room, but not pull them; there are goal spaces to take the boxes to, with one for each box,
although any box can go on any goal. It tells us that there are two major kinds of features
that don't move (walls and goals) and two kinds of features that do move (the player and
boxes). We'll use this strategy when designing the game internals, to separate the map
into a moving layer and a non-moving layer.

This section also explains the win condition; for each box in the "moving" layer, there is a
goal at the same point in the non-moving layer, and vice versa. We'll need this in the fifth
task, Making the game playable, to recognize wins.

This also says that we'll need to keep track of the number of moves, to determine how good
the solution was. We're only going to count moves that change the board (move a box) and
not every step the player takes moving into position.

Interface summary
Let's go into more detail about how the user will use the device to control the game.

To receive player input on mobile platforms, input of desired directions of movement will be
accomplished by tapping near that edge of the screen. In exploring possible solutions, undo
is a critical feature, so undoing the last move that pushed a box will be possible by shaking
the device. A counter in the corner of the screen will indicate how many moves the player
has taken to reach the displayed game state. If the screen has not been touched for several
seconds, the display fades until the next touch to allow for unimpeded contemplation.

This describes the various mechanisms that the user will use to interact with the game. It
tells us that we need to be able to recognize taps on different areas of the screen, but not
on specific objects, which will be important for the interface layer. It says that we have to
recognize shakes of the device, and that we have to be able to back up to the condition
before certain steps.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

45

It also describes the informative features of the interface (very minimal in this game) and
a feature to make the game feel more responsive. However, this feature will be entirely
contained in the interface; the core game does not need to know whether the move
count is visible to the user, it only needs to know what the move count is.

Persistence requirement
Next, we specify the requirement we discussed at the beginning of the project, to
save progress.

To facilitate preserving progress across multiple sessions, the game will save a move list and
update it for each move added. When the user opens a level for which a move history is in
progress, the program will ask them whether they wish to resume or discard that game.
Completing a level discards its accumulated history.

Some of this was implied by the need to undo, but we'll need a persistent move history,
one that we can reload if the game is run again later. This also explains what will happen
if a level was not completed when the game was interrupted. This is the core design goal
of this project, but because the rest of the game needs to be completed first, it will wait for
the last task.

Data format
The format is well established, but let's confirm that we subscribe to the same definition.

Levels will be loaded from text files in a format standard for this type of puzzle game. Each
line of a text file represents one row of the grid on which the game is played, where a #
character indicates a square filled with a wall, a . (period) character indicates a goal space
for a box, a $ indicates a box not on a goal space, a * character indicates a box initially
positioned on a goal space, a space character denotes blank floor, an @ character indicates
the player's starting avatar position on plain floor, and a + character indicates the avatar's
starting position on a goal space. A level can contain exactly one @ or + character, and the
number of $ characters should equal the total number of . and + characters.

This is a common text format used to store Sokoban levels, referred to as a .sok file. For this
reason, the module that will translate portions of the files into in-memory representations
of playable levels will be called sok.lua. This guideline also tells us that there can be single
spaces in the level description (* and +) that affect both the static portion of the level (goal
spaces) and the movable part (player or boxes). This will inform the method we'll use to
process the file in task two, Loading a level from a file.

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

46

Additional data requirements
A single text file can contain multiple levels. A level consists of all consecutive lines that
contain only characters recognized as part of the level format ([#$.+*@]). The convention
is that each level will be preceded by a line containing its sequence number in the file, and
followed by a tilde (~).

This also tells us about the level data format. We'll need to know which level is desired when
loading from a file. We'll also need to be prepared to parse through multiple levels and keep
track of which one we're processing.

Preliminary module design
Now that we understand the written design and some of its ramifications, we'll outline what
components are needed and what events they'll use to communicate.

The major components will be Game and Shell. These represent two distinct modes,
and the app will only be in one at any given time. For this reason, and because they each
have distinct displays and modes of interaction, they will be represented by two different
storyboard scenes in Corona as follows:

ff The Game component will need the following components:

�� The Map component will store the internal representation of the game
state: walls, goals, player, and box positions

�� The World component will display the state of the Map component to
the player

�� The Interface component will show non-world information from the
player and collect player input for the Game component

ff The Shell component will need components for the following tasks:

�� Selecting a level

�� Starting a game with the selected level

�� Identifying whether to resume or restart an incomplete game

What did we do?
We started by explicitly describing the particulars of the design. We made notes of different
requirements of the design, and guesses about what we need to do in development to
support these requirements. Finally, we summarized how we can break down our tasks
in order to effectively implement each one.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

47

Loading a level from a file
During the design process, we identified a Sokoban level as a two-dimensional array with
two layers, one of moving elements and one of static elements, which can interact with each
other (for instance, although the player and the boxes can both move over goals or empty
spaces, neither can move into wall spaces). We have a choice of whether to define the array
as row-major, where each entry in the parent array is a row, represented as an array of
column values; or column-major, where each entry is an array that stores all the rows
for a given column.

Lua doesn't directly support two-dimensional data structures the way
some languages do. But it does support making arrays (tables with
sequential integer keys) where the value of each slot is another array.

Since the level files represent each row of the map with a line of text, they are naturally
row-major in their storage; therefore, we will use a row-major format for our world arrays.
There will be two such arrays, one for moving objects and one for static elements; they will
be stored as fields in another table that represents the map. In keeping with this, we'll refer
to the indices as row and column as much as possible, to minimize confusing them with the
usual order referring to x and y coordinates.

Every space on the map is either an empty space, a wall space, or a goal space. So each
value of a column entry in row arrays belonging to the static layer will be one of the strings
#, ., or (space).

Some spaces contain boxes, one space contains the player, and some spaces contain nothing
that moves. So each value of a column entry in row arrays that belong to the moving layer
will be one of the string '@', the string '$', or the value nil.

Getting ready
If you haven't already done so, create a new scene-based project using the Corona splash
screen, the way you did in the first project. Then fill that project in with a few pre-made pieces:

1.	 Copy the images and levels folders and the interface.lua and game.lua files
from the version 1 folder in the project pack of this new project.

2.	 To load the game scene when the app starts, open main.lua and change the
storyboard.gotoScene("scenetemplate") call to storyboard.
gotoScene("game", {params = {File = "levels/default.txt",
Level = 1}}).

3.	 Finally, open game.lua in a text editor.

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

48

Getting on with it
Before we write the sok.lua module, let's take a look at the module that uses it, game.
lua. While the beginning of this file contains mostly basic graphics and sprite definitions,
notice that it starts by requiring the sok module. The meat of this module is, like most
scenes, in two functions: the createScene method and the enterScene method. It also
continues in a familiar fashion: it loads a World module to display the state of the game
model and registers World to receive the Game events on itself; and it loads an interface
module to handle user input, registering itself to receive the Move events from interface.

In the Bat Swat project, user input was received and processed by the
world, and all the interface did was display the score. Why is the interface
processing input in this project?

In Bat Swat, the user was interacting directly with specific objects in the
world, so it was much easier to receive the input directly at those objects.
In the Supercargo design, the user's touches are on zones of the screen;
the user isn't interacting with the specific things in the part of the screen
he's/she's tapping on, but just indicating direction.

The enterScene method contains the call to load the game map, using the sok module
required earlier. The Map module is an abstract structure, not tied to any particular on-screen
object, and used by the game to track the state and determine legal moves.

This pattern, where a purely abstract Map is used by logic in a semi-
abstract game object to adjudicate input from a concrete, on-screen
interface object, is an example of what is called model-view-
controller, or MVC programming, where the view is responsible only
for displaying states, the model is responsible only for tracking states,
and the controller is responsible for managing all the interactions and
messages that pass between the two. While it's a fundamental principle
in programming for Apple's platforms in Objective-C, MVC thinking is
useful in any language, because it helps separate tasks that are only
loosely related and track all possible points of communication.

After loading the map object, the game tells the world module to display its contents using
the world:Load() method and sends an event that the game is now ready to begin. It
includes a reference to itself so that listening modules such as world can register for any
other events that they might need to be informed of, without the game needing to know
what those events might be.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

49

Writing the loader
But let's take a closer look now at the sok.load() call, which dictates what the modules
we're about to write will need to provide. The calling module provides the path to the file
containing the levels (a string), as well as the index of the desired level within the file (an
integer). In return, the game expects back Map, a table object formatted as we described at
the beginning of the task. So, our module needs to include a function named Load, which
accepts those two arguments (a path and an index) and returns the constructed Map. The
following are the steps to write the loader:

1.	 Create a new file in the project directory, sok.lua, and start by filling it with the
basic module skeleton:

local sok = {}
return sok

2.	 A Lua module should return a usable object. This is most often a table with functions
or configuration values as fields, but it might also be a function that carries out some
self-contained task. So, we start by creating and returning the table. But we've also
established that the module needs to contain a load function with two arguments:

local sok = {}
function sok.load(fileName, index)
end
return sok

3.	 We know that the function needs to create and return a table with two layers, so
let's establish that:

function sok.load(fileName, index)
 local self = {
 Fixed = {};
 Moving = {};
 }
 return self
end

Parsing levels from the file
A level is defined as any block of consecutive lines in the file that all contain level content,
where the lines before and after, if any, contain non-level content. The following are the
steps to parse levels from the file:

1.	 As we read through the file, we'll need to track which level we're processing as well
as whether we're crossing the line from one kind of line to the other:

 Moving = {};
 }

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

50

 local discoveredLevel, lastLineIsContent = 0, false
 return self
end

2.	 Then, we use the Lua interface's io library to look at each line of the file one
after another:

 local discoveredLevel, lastLineIsContent = 0, false
 for line in io.lines(fileName) do
 end
 return self

Check your line endings

When you're processing text data files, make sure you know
the line ending format used in the file! Lua, by default,
processes files assuming they use Unix/Linux/OS X line
endings (which are also the standard for iOS and Android),
but if you develop using Windows, your text editor may use a
different format by default!

3.	 For each of those lines, check whether it contains only content characters:

 for line in io.lines(fileName) do
 if line:match("^[# .@+$*]+$") then
 end
 end

This is our first example of using Lua patterns to recognize
whether a string meets certain rules. Patterns are like regular
expressions from languages like perl, except that they give up a
few features in exchange for being much higher-performance.
The preceding pattern says:

Does the entire line consist only of the characters #, @,
+, $, *, (space), and . (period)?

4.	 If we have a content line, then we need to see if it follows another content line (in
which case it is part of the level already being considered), or if it is the first line of a
new level. Either way, we need to remember when processing the next line that this
one had level content.

 if line:match("^[# .@+$*]+$") then
 if not lastLineIsContent then
 discoveredLevel = discoveredLevel + 1
 end
 lastLineIsContent = true
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

51

Parsing the desired level
As we loop through the file increasing the discovered index, eventually we should reach
the level that was requested, and process it if so. The following are the steps to parse the
desired level:

1.	 First, we'll add the arrays for the new row to both layers:

 discoveredLevel = discoveredLevel + 1
 end
 if discoveredLevel == index then
 local fixed, moving = {}, {}
 table.insert(self.Fixed, fixed)
 table.insert(self.Moving, moving)
 end
 lastLineIsContent = true
 end

2.	 Then, we'll get each character from the line and add the appropriate features to the
layers. The string.gmatch function is used with the for loops to run the loops
once for each piece of the string being examined that matches a given pattern, and
. is the pattern for any single character, so for tile in line:gmatch('.')
means repeat for each character in the variable line.

 table.insert(self.Moving, moving)
 local position = 0
 for tile in line:gmatch('.') do
 position = position + 1
 resolve[tile] (fixed, moving, position)
 end
 end
 lastLineIsContent = true

The last line, about resolve[tile], has not actually been explained yet. Because we have
several different characters, and some of them affect one layer, and some affect both, we
need some way to manage choosing the appropriate processing. In most languages, this
would be done with a switch or case block, which Lua doesn't offer. It could be processed
in a long if … then … elseif …then chain, but a natural way in Lua is to use a table of
functions, where the functions are stored under keys that represent their intended purposes.
We'll fill in this table in a moment, because we're almost done with handling the file.

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

52

Recognizing ends of levels
When we hit a line that does not contain content, the level we were processing, if any,
is over. Perform the following to recognize the ends of levels:

1.	 We need to make a note that we are no longer handling level content.

 lastLineIsContent = true
 else
 lastLineIsContent = false
 end
 end
 return self

2.	 And, if the level we were just passing through was the level that was requested,
we're done. We can break out of the loop here:

 lastLineIsContent = true
 else
 if discoveredLevel == index then break; end
 lastLineIsContent = false
 end

3.	 Finally, before we return, we do have a sanity check to make sure that we actually
found the level requested. This might not happen if, for example, we asked for the
25th level of a file with 20 levels in it.

 lastLineIsContent = false
 end
 end
 assert(discoveredLevel > 0, string.format([[the file "%s" was
not found to contain a level %d]], fileName, index))
 return self
end

Processing each tile
In the body of the sok.load function, we relied on a table of functions to process each tile
according to its content. Some tiles affect only the fixed layer (walls), while others affect both
(the player initially placed on a goal square, or a box starting on an open square).

Because the functions will be stored in a table and chosen dynamically, they all need to have
the same arguments, since we do not know (and do not want to know) which one is being
called. Each function will take the array representing the current row, in both the fixed and
moving layers, and the column within the row being modified. So, the first function defined
will affect only the fixed layer:

local sok = {}
local resolve = {

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

53

 ['#'] = function(fixed, moving, column)
 fixed[column] = '#'
 end,

}

This example (and all the rest) uses the extended syntax for defining
arbitrary keys in a new table, [key] = value. While this is often
used (as here) to use literal strings as keys even though they're not
legal variable names, it can be used to set any Lua value (except nil)
as the key, including tables, functions, and other complex values.
Note however, that two tables with the same keys and values are still
different objects, and using one as a key won't retrieve or overwrite
the value associated with the other.

4.	 This first function affects only the fixed layer, along with the next two:

local resolve = {
 ['#'] = function(fixed, moving, column)
 fixed[column] = '#'
 end,
 [' '] = function(fixed, moving, column)
 fixed[column] = ' '
 end,
 ['.'] = function(fixed, moving, column)
 fixed[column] = '.'
 end,
}

5.	 The other symbols represent a movable element, either a box or the player, placed
on either a plain square or a goal space. So these functions will populate both layers.

 ['.'] = function(fixed, moving, column)
 fixed[column] = '.'
 end,
 ['@'] = function(fixed, moving, column)
 fixed[column] = ' '
 moving[column] = '@'
 end,
 ['$'] = function(fixed, moving, column)
 fixed[column] = ' '
 moving[column] = '$'
 end,
 ['+'] = function(fixed, moving, column)
 fixed[column] = '.'
 moving[column] = '@'
 end,

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

54

 ['*'] = function(fixed, moving, column)
 fixed[column] = '.'
 moving[column] = '$'
 end,
}

Trailing commas in tables

Lua allows you to leave a comma (or semicolon) at the end of your
tables with nothing after it, which is a good habit to get into; it makes
you less likely to leave them out when adding new elements to the end
of the table, especially with tables that span multiple lines.

What did we do?
We started our project by importing the beginning of the core scene that will provide
gameplay. As you continue developing new apps, you'll find that you tend to produce them
from a common skeleton with a little bit of adaptation, so you often won't produce the new
project completely from scratch. Once we had the framework in place, we created a new
module which has all the code needed to translate an encoded file into a usable level.

What else do I need to know?
The project won't load yet; try to run it and you'll get an error. The next thing we need to
do is create the module that displays the world state on the screen. This module is already
being loaded, but until it exists, you'll get an error from trying to load it.

Displaying the map contents
Right now, the game scene is dependent on another module that hasn't been created, the
world module. This module is needed to create a visible representation of the abstract Map
data, from the format created by the sok.load function.

Getting ready
The world module is used on the following line in game.lua:

self.World = require "world" (30, 20, lawnParty, statics, lawnParty,
movables)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

55

This tells us that the world module needs to return a function. That function takes two
numbers, the number of columns of tiles and rows of tiles that the map object can display at
once, and several graphical arguments: an image sheet containing the tiles to use for walls,
goals, and empty spaces, a table explaining which to use for each purpose, another image
sheet (or in this case, the same one) containing the images to use for movable elements, and
a table containing the sprite descriptions for each movable item. The function also returns
some sort of object or value representing the world.

The resulting object is immediately used on two other lines:

 group:insert(self.World)
 self:addEventListener('Game', self.World)

We also know that the returned object has to be a display object (since it can be inserted
into a group), and that it will receive Game events (although it is not required to act
on them).

Finally, the object is used once in the game's enterScene method:

 self.World:Load(self.Map)

So, the returned object will also need a Load method that takes the Map data as
an argument. This method will arrange the elements of the world component to
represent the specified map.

To get started, create a new world.lua file in your SuperCargo project directory and
open it.

Getting on with it
We established during preparation that the module creates a function that takes certain
arguments, so we'll enter the skeleton for that into the new file as follows:

return function(columns, rows, tileSheet, tiles, spriteSheet, sprites)
end

We said that the function needs to return a display object. Since it will contain many other
tiles and sprites, this object should be a group:

return function(columns, rows, tileSheet, tiles, spriteSheet, sprites)
 local self = display.newGroup()
 return self
end

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

56

The returned group needs a method called Load that takes a map structure:

 local self = display.newGroup()
 function self:Load(map)
 end
 return self

Adding the content layers
We've gone on repeatedly about how the Map component is separated into two layers, so it
makes sense to create two visual layers to parallel them:

 local self = display.newGroup()
 self.Tiles = display.newImageGroup(tileSheet)
 self:insert(self.Tiles)
 self.Mobs = display.newImageGroup(spriteSheet)
 self:insert(self.Mobs)
 function self:Load(map)

Optimized image groups

Since we're depending on the fact that all tiles come from a single
image sheet, and all sprites also come from a single image sheet (also
called a texture atlas), we can take advantage of Corona's image groups,
which allow for higher performance when all the contents of a group
can be guaranteed to use the same texture raster as their source data.
While Sokoban is not a performance-critical game, we can experiment
here with using this functionality.

Since there will be a tile in each space of the world, but we won't know which one until the
map is loaded, we represent each tile with a sprite that has one sequence for each thing
that tile can contain. To display the fixed part of a map, the world can just switch each tile
to the sequence for the contents at that point. So that we can find each tile, we'll also store
references to all of them in another two-dimensional array.

 self:insert(self.Tiles)
 self.Tiles.Row = {}
 for row = 1, rows do
 self.Tiles.Row[row] = {}
 for column = 1, columns do
 local tile = display.newSprite(self.Tiles, tileSheet, tiles)
 tile:setReferencePoint(display.BottomRightReferencePoint)
 tile.x, tile.y = column * tile.width, row * tile.height
 self.Tiles.Row[row][column] = tile
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

57

 end
 self.Mobs = display.newGroup()

For each row in the specified size, we create a row in the array, and enough tiles to cover
every column in the row.

For the Mobs layer (mob in this case is a term from the MUD community that means mobile
object), we just create an array to track the positions of later sprites:

 self:insert(self.Mobs)
 self.Mobs.Row = {}
 for i = 1, #self.Tiles.Row do
 table.insert(self.Mobs.Row, {})
 end
 function self:Load(map)

Loading the world with a map
Now the blank map is created, we need to define the Load function so that it actually copies
the map content into the display. Perform the following steps to load the world with a map:

1.	 The first step is to make sure the Mobs layer is empty, in case the map layer was in
use previously:

 function self:Load(map)
 for i = self.Mobs.numChildren, 1, -1 do
 self.Mobs:remove(i)
 end
 end

2.	 Next, we consider each tile of the world, setting the tile sprite's sequence to match
the fixed layer of the map (or a blank default if the supplied map doesn't cover the
whole area):

 self.Mobs:remove(i)
 end
 for y, row in ipairs(self.Tiles.Row) do
 for x, tile in ipairs(row) do
 tile:setSequence(map.Fixed[y] and map.Fixed[y][x] or ' ')
 local mob = map.Moving[y] and map.Moving[y][x]
 end
 end
 end
 return self

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

58

3.	 At the same time, we need to create sprites that represent moving objects at
those locations:

 local mob = map.Moving[y] and map.Moving[y][x]
 if mob then
 local new = display.newSprite(self.Mobs, spriteSheet,
sprites[mob])
 new:setReferencePoint(display.
BottomRightReferencePoint)
 new.x, new.y = x * new.width, y * new.height
 self.Mobs.Row[y][x] = new
 end
 end

Tiling from the bottom-right corner

We set objects to be placed by their bottom-right corners, because in a
system where ranges typically start at one rather than zero, this allows
that corner to be placed at the index times the size of each tile and still
land in the right place. For example, an object located at the tile position
(3, 5) with a tile size of 16 will end up with its bottom-right corner placed
at (48, 80) and its top-left at (32, 64). This means that it covers the third
column and fifth row of 16 x 16 blocks starting at (0, 0).

What did we do?
Using an existing, defined data format, we created a generalized way to display the contents
of a map compatible with that format.

What else do I need to know?
At this point the project should be ready to run without errors, although it will just display a
single level on the screen like this and doesn't allow the user to play at all. However, one of
the common strategies for programming is to develop one component, test it, and make sure
it works before adding new features. Now we know we have a working map and can focus on
adding gameplay.

If your project doesn't work, particularly check that you modified the main.lua file to
launch the game scene rather than scenetemplate, and that you're passing it the File
and Level fields in its params table.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

59

Adding the interface
Now that the game displays a level correctly, we need to start adding the ability to
communicate with it.

Getting ready
We imported a pre-packaged interface.lua file from version 1, but it doesn't do
anything. Actually, it does one thing: it returns a blank group, which fills in the space that
the rest of the game needs occupied to work, but doesn't actually send or respond to
any events.

This practice, when programming complex systems, of leaving a minimal
dummy placeholder for a larger chunk of code in place until the actual
implementation can be created is called making a stub.

Open the interface.lua file and remove the starting placeholder that says:

 return display.newGroup()

Getting on with it
We'll expand the interface group with the required behaviors:

1.	 The interface will still be represented by a display group, so we'll break it out into
a variable so that we can add to it before we return it:

return function(game)
 local self = display.newGroup()
 return self
end

2.	 The design says that the interface will display a move count in the upper-left, so
we'll create a text object, which starts out displaying 0:

 local self = display.newGroup()
 local counter = display.newText(self, "0", 10, 10, native.
systemFont, 24)
 counter:setReferencePoint(display.CenterLeftReferencePoint)
 return self
end

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

60

3.	 When a Move event happens on the game object, this count needs to be updated.
The following pattern to adjust the text and keep it aligned should be familiar:

 counter:setReferencePoint(display.CenterLeftReferencePoint)
 function counter:Move(event)
 if event.count then
 local x, y = self.x, self.y
 self.text = event.count
 self:setReferencePoint(display.CenterLeftReferencePoint)
 self.x, self.y = x, y
 end
 end
 game:addEventListener('Move', counter)
 return self

In other words, the counter listens for the Move events on the game; if the event has
an associated count of moves taken, the counter updates itself to display that count.

4.	 It was also stated that the counter fades if the game is left undisturbed. We need to
know what to monitor for touch events that would wake it up; while we could use
Runtime, that creates problems when the scene stops being active (we'll discuss
that problem in more detail in a later project). The interface will collect all its touch
and tap events from the scene's associated group, which collects all touches on its
children (such as the world scene) that aren't handled by those children.

return function(game)
	 local self = display.newGroup()
 local target = game.view
 local counter = display.newText(self, "0", 10, 10, native.
systemFont, 24)

5.	 Whenever a touch on this target is detected, the counter needs to cancel any
previous fading it had planned, and start a new timer. We can make the timer start
fading and the fade over time simple by using a transition with an initial delay, which
is reusable:

local fade = {delay = 5000, time = 750; alpha = 0}
return function(game)

6.	 The touch handler becomes fairly easy to write at this point; we need to track
the transition for the fade event, so it can be cancelled, which is easily done as
a property of the text object:

 self.x, self.y = x, y
 end
 end
 function counter:touch(event)
 if self.Fade then

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

61

 transition.cancel(self.Fade)
 end
 self.alpha = 1.0
 self.isVisible = true
 self.Fade = transition.to(self, fade)
 end
 target:addEventListener('touch', counter)
 game:addEventListener('Move', counter)

7.	 Finally, we need to start the timer running when the interface is created, or the
counter will sit on the screen at the game start without fading until the player
touches the screen:

 self.Fade = transition.to(self, fade)
 end
 counter:touch()
 target:addEventListener('touch', counter)

Creating the Move requests
The last element of the interface is not complicated code, but it takes some real math to
design properly. We need to identify taps as being in one of the four compass directions
compared to the screen. To reduce user mishaps, we will discard taps that happen too
near a boundary between one direction and another.

Black regions indicate where touches will move the character

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

62

We have two challenges here: recognizing whether a touch is in one of the active zones
or not, and "snapping" the directions being output to the exact compass points. We can
get the angle of the touch with the math.atan2 function, but the tough part is the east
quadrant. The polar axis, the point where the zero angle lies on graphs, is right in the
middle of it. Angles that should be registered for the eastern direction range from 0-π/8
(Lua's trigonometric functions all return results in radians), but also from 15π/8-0. While
this problem could be solved with a long if/elseif statement, we can solve the whole
problem fairly simply by just adding π/8 (one-sixteenth of a circle), moving the angles under
consideration to line up with the zero line.

At this point, solving both questions becomes much easier. We can slice the circle into eight
wedges, and determine which wedge the specified angle falls into by dividing the angle
by one-eighth of a circle, π/4. You can clip the fractional part of the wedge off with math.
floor() and normalize it into a range (eliminating negative angles or angles over a full circle)
by taking the result modulus 8 (that is, dividing by eight and keeping only the remainder).

In this way, a fractional number from 0 to 2π is converted into an integer from zero to seven.
Because we're only interested in the wedges zero, two, four, and six, we can compare the
wedge index modulus 2 to 0 to determine if it's a valid touch, and then multiply the wedge
number by an eighth of a circle, π/4, to obtain the final direction, pointing straight right,
down, left, or up.

local function checkMove(self, event)
 local direction = math.atan2(event.y - display.contentCenterY,
event.x - display.contentCenterX) + math.pi / 8
 direction = math.floor(direction * 4 / math.pi) % 8

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

63

 if direction % 2 == 0 then
 self:dispatchEvent{name = 'Move'; action = 'attempt', direction
= direction * math.pi / 4 }
 end
 return true
end
return function(game)
 local self = display.newGroup()

This new function just has to be attached to the interface to handle touches on the target
using the following code:

 local target = game.view
 self.tap = checkMove
 target:addEventListener('tap', self)
 local counter = display.newText(self, "0", 10, 10, native.
systemFont, 24)

The dispatchEvent call triggers an event targeted on the interface that indicates that
the player tried to move in a particular direction. This event has no clue about whether
the attempted move is legal or will produce any results. It only says that the player tried to
move, and which way.

What did we do?
We fleshed out the interface so that the user knows how deep they are into the game, and
added a little polish so the UI feels more professional. We also created a layer that takes a
complex event and reduces it to just the information the game needs to know.

Making the game playable
The interface registers touches as commands now, but the game isn't receiving them yet.
So it will still appear dead as a doornail, except insofar as touching the screen will make the
move counter (which is stuck at zero) stop fading or reappear.

Getting ready
Copy the file map.lua from the version 2 folder into your Supercargo directory, and
modify game.lua by replacing the line that says the following:

 self.Map = sok.load(event.params.File, event.params.Level)

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

64

So that it says the following instead

 self.Map = require "map" (sok.load(event.params.File, event.params.
Level))

The function in the map module modifies map as returned by sok.load by adding some
methods to it that help resolve rules questions about the map object. One returns the
column and row where the player is currently located in the map object, one checks the map
to see if the game has been won (all boxes are on goal spaces), and one checks whether
there is a potential obstacle to player movement (a wall or box) at a given space, and what it
is (either #, $, or nil). We'll want this function to determine if proposed moves are legal.

Getting on with it
To make the game actually process move inputs, it needs to register for the Move events sent
to the interface, in its own createScene responder:

 self.UI = require "interface" (self)
 group:insert(self.UI)
 self.UI:addEventListener('Move', self)
end

Handling the Move inputs
We need to let the scene respond in some way when Move events occur. The following are
the steps for handling the Move inputs:

1.	 The default will be able to assume that the move fails, unless we determine that it is
legal; we'll modify our template event as we discover the actual circumstances.

function scene:Move(event)
 if event.action == 'attempt' then
 local move = {name = 'Move'; action = 'blocked', direction =
event.direction}
 self:dispatchEvent(move)
 end
end
-- Called when the scene's view does not exist:
function scene:createScene(event)

2.	 The game will need to check the legality of the move, modify its state according to
the move's outcome, and report the outcome of the move. The Move event contains
the desired direction of movement, so we'll have to convert this to a destination tile
using the player's current location:

 if event.action == 'attempt' then
 local x, y = self.Map:FindPlayer()

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

65

 local dX, dY = round(math.cos(event.direction)), round(math.
sin(event.direction))
 local targetX, targetY = x + dX, y + dY
 local move = {name = 'Move'; action = 'blocked', direction =
event.direction}

3.	 The if statement about the event type is mostly a sanity check at the moment, but
will become important when we add undo. The round function is a trivial function
that rounds a number toward the nearest integer, rather than strictly up or strictly
down; you can add it to game.lua right above the scene:Move method:

local function round(x)
 return math.floor(x + 0.5)
end
function scene:Move(event)

4.	 Now, we know what space the player is trying to move his character to, so we can
ask the map whether that space is clear:

 local targetX, targetY = x + dX, y + dY
 local obstacle = self.Map:Obstacle(targetX, targetY)
 local move = {name = 'Move'; action = 'blocked', direction =
event.direction}

5.	 We can deal with the simple case first; the space is empty and we can move into
it freely:

 local move = {name = 'Move'; action = 'blocked', direction =
event.direction}
 if not obstacle then
 self.Map.Moving[y][x], self.Map.Moving[targetY][targetX] =
nil, self.Map.Moving[y][x]
 if #move == 0 then
 move.action = 'step'
 end
 table.insert(move, 1, {x = x, y = y})
 end
 self:dispatchEvent(move)

Lua supports multiple assignment, and it can be a lot more concise when moving
values from one variable or location to another, especially if they're being swapped.
The part where we check the length of the move event and insert something into it
needs a bit more of an explanation.

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

66

Tables in Lua can contain values under any kinds of keys, including multiple kinds in
the same table. When we store values under string keys that name the relationship
of the value to the table, we call the table, a record; when we store things under
consecutive integer keys, we call it an array. In this case, a single event table is being
used as both at once.

I like to use the array portion of an event to indicate that things are
direct objects of the event action, especially when there can be more
than one. So if a move event represents a successful move, the array
portion contains all the things that are moving, denoted by their
original coordinates; the first one is assumed to be the player (who
always moves on any successful move event) and any others are
boxes (a maximum of one under standard Sokoban rules).

6.	 If anything is moving, we also want to include the horizontal and vertical movement,
since we've already calculated them:

 table.insert(move, 1, {x = x, y = y})
 end
 if #move > 0 then
 move.x, move.y = dX, dY
 end
 self:dispatchEvent(move)

7.	 Now, if there is an obstacle, it doesn't automatically mean the move fails. Boxes can
be pushed as long as there is an empty space directly beyond them. This check goes
before checking whether there is free space, since if the box can move, we'll move it
over and leave free space that the player can move into:

 local move = {name = 'Move'; action = 'blocked', direction =
event.direction}
 if obstacle == '$' then
 local finalX, finalY = targetX + dX, targetY + dY
 end
 if not obstacle then

8.	 This says that as far as the box is concerned, we're looking at the space from the
same distance from the box in our way, as the box was from the guy pushing it.
We need to know if that space is free.

 if obstacle == '$' then
 local finalX, finalY = targetX + dX, targetY + dY
 if not self.Map:Obstacle(finalX, finalY) then
 self.Map.Moving[targetY][targetX], self.Map.Moving[finalY]
[finalX] = nil, self.Map.Moving[targetY][targetX]
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

67

9.	 This moves the box into the space next to it, in the direction in which the character
pushed. Next, we add the box to the event as something that is moving:

 if not self.Map:Obstacle(finalX, finalY) then
 self.Map.Moving[targetY][targetX], self.Map.Moving[finalY]
[finalX] = nil, self.Map.Moving[targetY][targetX]
 table.insert(move, 1, {x = targetX, y = targetY})
 end

10.	 As we described previously for the player, we're saving the box's current position in
the event. We also want to mark the event as moving a box, because that makes it
a substantive change to the game state.

 table.insert(move, 1, {x = targetX, y = targetY})
 move.action = 'push'

 end

11.	 To complete the push, we indicate that there is no obstacle left in the space, so that
the player will also move. Note that if the box can't move, the obstacle variable
won't be cleared, so the player won't move either.

 move.action = 'push'
 obstacle = nil
 end

There are only two jobs left. We need to include a move count, so that the counter
on the screen can update, and then we need to end the game if the win condition
has been met.

12.	 We'll use a new property of the game scene, MoveCount, to track how many pushes
have taken place, so we'll need to jump briefly to the scene's enterScene method,
so we can declare that any newly started game has used zero moves.

 self.Map = require "map" (sok.load(event.params.File, event.
params.Level))
 self.MoveCount = 0
 self.World:Load(self.Map)

13.	 Returning to the Move handler, we need to increase the MoveCount value whenever
a box gets moved, since simple player steps can't cause a win.

 move.x, move.y = dX, dY
 end
 if move.action == 'push' then
 self.MoveCount = self.MoveCount + 1
 end
 move.count = self.MoveCount
self:dispatchEvent(move)

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

68

14.	 Finally, after the move event is finished, we need to check whether the game's
condition was changed to a win condition. Since the game state wasn't actually
changed unless the move event was push, we'll repeat the check we just made:

 self:dispatchEvent(move)
 if move.action == 'push' and self.Map:CheckWin() then
 self:dispatchEvent{name = 'Game'; action = 'stop', state =
self.Map, Game = self}
 end
 end

This means that if a win condition is reached, we'll send out an event saying that the
game is over. This allows things like the world object to clean up their association
with the game.

15.	 To see something actually happen, the game itself needs to respond to this event as
well; for now, we'll just close the app when the level is over:

function scene:Game(event)
 if event.action == 'stop' then
 os.exit()
 end
end
-- Called when the scene's view does not exist:
function scene:createScene(event)

16.	 And to actually receive the event, we should register it as well:

 os.exit()
 end
end
self:addEventListener('Game', self)
--
 Called when the scene's view does not exist:

Displaying the effects of moves
Right now, we could technically play through the level, and win it, but we'd be playing
completely blind. We'd never see a thing happen on the screen. The moves take place in the
game, but nothing fixes the world to reflect that. We want the world to listen for the Move
events on the game (the Move events on the interface are only indications of player intention,
not actual changes, so the world isn't interested in them). Perform the following steps:

1.	 The game doesn't know that the world is interested in its Move events, but it does
make sure that the world object gets its start and stop events, so we'll have the
world respond to those by registering itself appropriately. Open up world.lua and
add a new function to the world object:

 function self:Game(event)
 if event.action == 'start' then

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

69

 event.Game:addEventListener('Move', self)
 elseif event.action == 'stop' then
 event.Game:removeEventListener('Move', self)
 end
 end
 return self

2.	 The world isn't interested in the Move events if there's no game going on (and not
being registered when the game scene isn't active helps avoid some registration
issues). This ensures that once the game has started, and only for the duration of
the game, the world will receive the game's Move outcome events. But it also
needs to respond to them:

 function self:Move(event)
 if event.action == 'step' or event.action == 'push' then
 end
 end
 function self:Game(event)

3.	 We aren't interested in blocked move events, since we don't have to update
anything. Next we make a note of which way things are moving (In Sokoban, if
multiple things move in a single action, they always move in the same direction):

 if event.action == 'step' or event.action == 'push' then
 local dX, dY = event.x, event.y
 end

4.	 The next part is a little strange:

 local dX, dY = event.x, event.y
 local moving = {}
 for _, coords in ipairs(event) do
 moving[self.Mobs.Row[coords.y][coords.x]] = coords
 self.Mobs.Row[coords.y][coords.x] = nil
 end
 end

This is working around a potential pitfall. Because the first thing in the list is the
player, and if a box is moving, the player is moving into the space where the box
currently is. If we simply moved the reference to the player sprite into the space
where it's going, it would overwrite the reference to the box sprite being pushed,
and we wouldn't be able to find the box to move it.

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

70

5.	 There are a few ways to work around the issue, but this is the safest; we make a
temporary table, and copy all the things that are moving into that table with their
original locations as the associated values. Then, we take them out of the world's
list of movable things.

 self.Mobs.Row[coords.y][coords.x] = nil
 end
 for mob, coords in pairs(moving) do
 self.Mobs.Row[coords.y + dY][coords.x + dX] = mob
 mob.x, mob.y = mob.x + mob.width * dX, mob.y + mob.height
* dY
 end
 end

Then what we do is go through the temporary table of things that are moving. Since each
sprite that we are moving was matched in the table with its current coordinates, we put it
back into the Mobs layer at its new position, obtained by adding the movement directions to
those current coordinates. Then we move the actual sprite, and not just the tile position it is
recorded at being in, by the appropriate amount.

What did we do?
We made the game process user input into actual moves, enforcing the game rules, and we
made the world display those moves so the player can see what is going on.

At this point, you should be able to play through the level! Sit back for a few moments, build
the project for your device, and enjoy the fruits of your work.

Adding the Shell component
Now that we have one playable level, we need to expand this app to allow the player some
choice. The included file comes with 90 levels and limiting the player to only the first one
seems unfortunate.

Getting ready
Start by copying the images/splash.png and menu.lua files from the version 3 folder
of the project pack. This gives you a working foundation for a shell, although it is not very
interactive. To add the Shell component, perform the following steps:

1.	 Open main.lua and fix the storyboard.gotoScene call there to load the menu
scene rather than the game scene.

2.	 Next, open game.lua, find the scene:Game function that dictates what should
happen when a game ends, and replace the call to os.exit() with storyboard.
gotoScene("menu").

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

71

3.	 Test the app to make sure it launches to the menu screen. The Go! button starts the
familiar level, and completing the level returns to the menu screen.

Getting on with it
When the user taps the place where the currently selected level is displayed, the app should
pop up a list of available levels to choose from. For the time being, this will stay simple: it will
just say 1 for the first level, and so on. To do this, the menu needs to determine how many
levels are in the file in question, display a list, and get the user's selection back from that list.

Counting levels
Fortunately, we have a library which already does something related. We'll add a new
function to the sok module, sok.count, which will return the number of levels found in a
given file. Perform the following steps to count levels:

1.	 The sok.count function has a lot in common with sok.load. In fact, sok.count
was originally created by copying the function body, changing the name, and
stripping out the code that actually built the map. It just lets discoveredLevel
increase until it runs out of file, and returns the resulting number. The following is
the finished function:

function sok.count(fileName)
 local discoveredLevel, lastLineIsContent = 0, false
 for line in io.lines(fileName) do
 if line:match("^[# .@+$*]+$") then
 if not lastLineIsContent then
 discoveredLevel = discoveredLevel + 1
 end
 lastLineIsContent = true
 else
 lastLineIsContent = false
 end
 end
 return discoveredLevel
end

2.	 You can see how this is based on the same framework. Now, we need to load this
module in menu.lua so that the menu can inform the level selection of how many
levels are available:

local scene = storyboard.newScene()
local sok = require "sok"
scene.File = system.pathForFile "levels/default.txt"

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

72

3.	 Since the pickLevel module will always come back to the menu scene, we'll
implement it as an overlay scene, much the way we did with the initials entry
module in Bat Swat. Add a tap listener to show this overlay when the user taps
the current level:

 self.LevelSelect.Display = display.newText(self.LevelSelect,
"1", 6, 5, native.systemFont, 20)
 self.LevelSelect:addEventListener('tap',
 function(event)
 end
)
 self.Launch = display.newGroup()

4.	 We'll give the selection screen three pieces of information that it needs to do its
job: which object should the user be notified with when the user makes a choice
(by receiving a SelectLevel event), which levels are available for selection (for
convenience, this can just be a number, and the list will autopopulate), and which
level was currently selected (so that if the player finished 68 and wants to switch to
69, he/she doesn't have to scroll all the way back down from 1).

 self.LevelSelect:addEventListener('tap',
 function(event)
 local parameters = {
 Target = self;
 Selection = tonumber(self.LevelSelect.Display.text);
 Range = sok.count(self.File);
 }
 end
)

5.	 Now that it's ready, we'll invoke the selection screen with those arguments when
the selection box is tapped:

 Range = sok.count(self.File);
 }
 storyboard.showOverlay('pickLevel', {isModal = true; params
= parameters})
 end
)

6.	 Since we supply the scene object itself as the Target object for the LevelSelect
events, something needs to listen to it in order to capture the selection information.
We can use the selection text, which is already used to store the current selection:

 function self.LevelSelect.Display:SelectLevel(event)
 self.text = event.Level

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

73

 end
 self:addEventListener('SelectLevel', self.LevelSelect.Display)
 self.Launch = display.newGroup()

So to write the pickLevel module, we know that it has to function as a scene, and we also
know that it receives a Target object to which it should send the SelectLevel events
containing a Level field. We know that it needs to offer a choice among some number of
levels, and that it should start with one specified level pre-selected. We'll accomplish all this
with a tableView, one of Corona's built-in UI templates.

Building the selection screen
Create a copy of scenetemplate.lua named pickLevel.lua and open it. The following
are the steps for building the selection screen:

1.	 At the top, load the widget library so that we can create a tableView:

local scene = storyboard.newScene()
local widget = require "widget"
-- Called when the scene's view does not exist:
function scene:createScene(event)

2.	 In the createScene body, make a tableView. Since it's fine for it to cover
the whole screen, we can use defaults for most of the inputs and just supply
a couple of options:

function scene:createScene(event)
 local group = self.view
 self.Display = widget.newTableView{
 id = "level_selection",
 bgColor = {0x40, 0x40, 0x40, 0x99},
 }
 group:insert(self.Display)
end

3.	 The real work will come once the enterScene module has been called and we
know that we have the right set of parameters.

Although createScene also receives the parameters
passed to storyboard.gotoScene, be careful of relying
on them in createScene. If your scene is loaded again
without being purged first, the createScene event will not
be fired again, and you'll enter the scene still using values that
were passed the first time the scene was entered.

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

74

4.	 We'll save the event recipient in the scene object so that it can be referenced easily.

function scene:enterScene(event)
 self.Target = event.params.Target
end

5.	 We need to add rows to the table that represent the different levels available. This is
easiest to do in a loop.

 self.Target = event.params.Target
 local exploreAll = ipairs
 local labels = {}
 for i, text in exploreAll(event.params.Range) do
 labels[i] = text
 self.Display:insertRow{
 height = display.contentHeight * 0.10,
 }
 end
end

This populates a table with strings obtained from a table passed in. But this is mostly
future-proofing, against the day we get level files with descriptions included or
something similar; we've already passed a number for that value, instead. That's
why we use an intermediary variable to store ipairs instead of just calling ipairs
directly for the for loop.

6.	 We need to create a loop driver that just iterates up to a number, returning indices
and strings the same way ipairs would.

 local exploreAll = ipairs
 if tonumber(event.params.Range) then
 exploreAll = countTo
 end
 local labels = {}

7.	 We'll add the countTo iterator function and its supporting countUp function at the
top of the file:

local widget = require "widget"
local function countUp(max, n)
 n = n + 1
 if n <= max then
 return n, tostring(n)
 end
end
local function countTo(n)
 return countUp, n, 0
end
-- Called when the scene's view does not exist:

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

75

Lua's for…in…do structure is called the generic for because you
can completely control how it generates new values. It takes three
things: a generator function, a state variable that stays constant
until the loop is over, and a starting position variable, allowing you
considerable control. Functions such as pairs, ipairs, and
string.gmatch fill in these three values for you when you call
them. We'll look more closely at custom iterators in Project 9, Into
the Woods – Computer Navigation of Environments.

Presenting the table
Corona's tableView provides a few default aspects of appearance; blocks of background color
with lines between rows, and so on. But since the contents of a table are very free-form,
it's up to your code to explain how they will be presented. The following are the steps for
presenting the table:

1.	 The tableView has two different aspects on which it requires your assistance; these
are presenting the table's data, and processing user input.

 local labels = {}
 local function displayLevel(event)
 end
 local function selectLevel(event)
 end
 for i, text in exploreAll(event.params.Range) do
 labels[i] = text
 self.Display:insertRow{
 height = display.contentHeight * 0.10,
 onRender = displayLevel,
 onEvent = selectLevel,
 }
 end

The specified functions receive events containing the particulars, such as what
groups to draw in and which row in the table the event is for.

2.	 The tableView does part of the display according to defaults unless you override it,
creating white rows with thin lines between them. That's fine for a practice project.
What we do need to add is the text for the appropriate level:

 local function displayLevel(event)
 local row, output = event.target, event.view
 display.newText(output, labels[event.index], 12, row.height *
0.125, native.systemFont, row.height * 0.75)
 :setTextColor(0x00)
 end

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

76

3.	 We get the height of the row from the original row creation (10 rows on the screen
at once), the group to add the text to from the event, and the number of rows
within the table from the event as well. We use the shared labels table to get the
text from the loop that created the rows. Then, we just need to process touches on
the rows:

 local function selectLevel(event)
 local row, output = event.target, event.view
 if event.phase == 'press' then
 output.background:setFillColor(0x99)
 elseif event.phase == 'release' then
 self.Target:dispatchEvent{name = 'SelectLevel'; Level =
event.index}
 storyboard.hideOverlay()
 end
 end

Row touch responders get four main kinds of touches. We're not interested in
horizontal swipes; we respond to press actions just to highlight the choice the user
is hitting. A release is treated as a selection, sending the required event back to the
menu scene and hiding the selection process.

4.	 Now that the scene can create the table correctly on pressing Enter, we just need to
start out by scrolling to the desired part of the table:

 onEvent = selectLevel,
 }
 end
 self.Display:scrollToIndex(event.params.Selection)
end

5.	 There is one last piece of cleanup to take care of. Since the Display text object was
registered as a listener on the scene, if the scene's view is purged, the text object
will be destroyed but will remain as a listener, causing problems the next time the
scene is reconstructed. We can clean this up in the destroyScene handler for the
menu module:

-- Called prior to the removal of scene's "view" (display group)
function scene:destroyScene(event)
 self:removeEventListener('SelectLevel', self.LevelSelect.
Display)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

77

What did we do?
We brought in a fairly straightforward static scene and expanded it with an outside module,
so that the tasks of starting a game and selecting one can be kept separate. This also makes
it easier to change either the menu or the selection process later.

Supporting Undo
In puzzle games, it's important to consider alternate solutions. It's especially important in
games where some moves cannot be reversed, such as pushing a box into a corner. We'll use
the game history we've accumulated to step backward and reverse our most recent move
when the user shakes the device.

Getting on with it
Our design says that the user should be able to undo their last move by shaking the device.

Recognizing the Undo requests
Shaking is recognized by looking at the accelerometer events. These events are
dispatched only to the global Runtime target; our UI will need to listen to this target, and
stop listening when its scene is not active, but ideally we don't want the game scene to
know that a submodule needs to be connected to Runtime or disconnected later. Perform
the following steps to recognize the Undo requests:

1.	 Since the interface for the game scene is generated in the createScene event,
the interface can register and unregister itself by listening to the Scene object for
the enterScene and exitScene events. We'll add the functions to listen or stop
listening to Runtime first, in interface.lua:

local function engage(self, event)
 Runtime:addEventListener('accelerometer', self)
end
local function disengage(self, event)
 Runtime:removeEventListener('accelerometer', self)
end
return function(game)

2.	 Then we just need to attach the following functions to the interface when it is
constructed, and start listening for the right scene events:

 target:addEventListener('tap', self)
 self.enterScene = engage
 game:addEventListener('enterScene', self)
 self.exitScene = disengage

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

78

 game:addEventListener('exitScene', self)
 local counter = display.newText(self, "0", 10, 10, native.
systemFont, 24)

3.	 And finally, since the interface object itself is being registered as the listener for the
accelerometer events, it needs an appropriate method:

 game:addEventListener('exitScene', self)
 function self:accelerometer(event)
 if event.isShake then
 self:dispatchEvent{name = 'Move'; action = 'undo'}
 end
 end
 local counter = display.newText(self, "0", 10, 10, native.
systemFont, 24)

Fortunately, we don't have to do any complex tracking of accelerometer data to recognize
whether the user is shaking the device; Corona uses routines provided by the host OS to
determine that for us.

Saving move history and backing moves out
So now the interface can dispatch the undo events for Move when the device is shaken. The
Game object is already listening for the Move events on the interface, so we need to add some
recognition to the existing routine. Open game.lua and find the scene:Move function.

 if move.action == 'push' and checkWin(self.Map) then
 self:dispatchEvent{name = 'Game'; action = 'stop', state = self.
Map, Game = self}
 end
 elseif event.action == 'undo' then
 end
end

The Move function currently only acts when the requested action is an attempt to move.
When that's not the case, we can now check whether the Move was an undo request, instead.

The question then becomes how to restore the game back to its state before a given move.
Fortunately, each Move event on the game that's either a push or step event contains the
positions of the moving elements before the move was completed. So we can actually save
these events themselves as a way of tracking the game history (specifically, the push events,
since player steps don't meaningfully advance the game). Perform the following steps for
saving move history and backing moves out:

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

79

1.	 Right now, the game scene uses a number to count how many push events have
taken place. But since we're going to be saving them in chronological order in an
array, we can use the length of that array to know how many moves have taken
place instead. Find the scene:enterScene code in game.lua and change the
following line:

 self.Map = require "map" (sok.load(event.params.File, event.
params.Level))
 self.MoveCount = 0
 self.World:Load(self.Map)

So that it reads the following:

 self.Map = require "map" (sok.load(event.params.File, event.
params.Level))
 self.History = {}
 self.World:Load(self.Map)

2.	 We can then match the other code in scene:Move that formerly relied on
MoveCount to this new system:

 if move.action == 'push' then
 table.insert(self.History, move)
 end
 move.count = #self.History
 self:dispatchEvent(move)

3.	 Now that our pre-existing code is working on the new system, we can use the most
recent Move event in the history as a way of resetting the Move action:

 elseif event.action == 'undo' then
 local lastMove = table.remove(self.History)
 if lastMove then
 end
 end

The if block just ensures that we don't attempt to undo the beginning of the game.

4.	 Since we don't save step events in the history, we can't guarantee that the player
is still in the position it was in immediately after the move being undone. Although
the box pushed will be in the same position as it was in immediately after the move
being undone, since this is the most recent push. So we get the player's current
position from the map, clear that position, and set the player's position before the
move being undone as his/her current position:

 if lastMove then
 local column, row = self.Map:FindPlayer()
 local realm = self.Map.Moving
 realm[row][column] = nil
 realm[lastMove[1].y][lastMove[1].x] = '@'
 end

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

80

5.	 The local variable realm is just used to shorten our code and eliminate a lot of
tedious repeating of table lookups. Then, we can fetch the box that was moved
and restore it from the position it was moved to.

 realm[lastMove[1].y][lastMove[1].x] = '@'
 local xFinal, yFinal = lastMove[2].x + lastMove.x,
lastMove[2].y + lastMove.y
 realm[lastMove[2].y][lastMove[2].x] = realm[yFinal][xFinal]
 realm[yFinal][xFinal] = nil
 end

6.	 Finally, we reload the world to match the current state of the Map entity (this is
much easier than trying to regress it) and issue an event with the revised move
count to force the interface to update.

 realm[yFinal][xFinal] = nil
 self.World:Load(self.Map)
 self:dispatchEvent{name='Move'; count = #self.History}
 end

At this point, undo should work. You can load the app to your device and test it the
real way, or it will simulate device shakes although the simulator doesn't supply most
accelerometer input.

What did we do?
We replaced a simple move count with a series of Move actions that we can reverse. We
didn't have to generate any new data structures to hold the history as the events we already
used to process gameplay have all the needed info!

Preserving game history
Finally, we descend on the task that we set on this project to solve. The rest of the game now
meets its requirements and it is up to us to make sure that someone's partially solved game
is not lost due to circumstances.

Getting ready
Copy the save.lua file from the version 5 folder in the project pack in your directory.
This module will do the actual file writing and editing.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

81

We'll use a file in the Documents directory to store the game history so that it can be
reloaded after the app is restarted. Now, when the menu launches a level, it will first
check whether that file is present and contains history. If so, it will ask the user whether to
continue from it, or delete it and start the level over. To avoid name collisions, the history file
for a level will be the number of that level, followed by a period and the name of the level
file, for example, 13.default.txt.

Getting on with it
The game history consists of three main elements—managing user choices about using
history, saving actual history, and linking the save process to the game in progress.

Controlling history selection
To get started, open up the menu.lua file. Perform the following steps to control
history selection:

1.	 We'll use a more involved function now to load the selected level, so replace the line
that starts self.Launch:addEventListener with the following code:

 display.newText(self.Launch, "Go!", 16, 5, native.systemFont,
20)
 local function launch(event)
 end
 self.Launch:addEventListener('tap', launch)

2.	 We'll save some reusable values in local variables before checking whether the
history file exists for the level being started:

 local function launch(event)
 local level = tonumber(self.LevelSelect.Display.text)
 local history = string.format("%d.%s", level, self.
File:match("[^/\\]+$"))
 local parameters = {
 File = self.File;
 Level = level;
 Path = system.pathForFile(history, system.
DocumentsDirectory)
 }
 end

3.	 Next, we'll attempt to open the designated file to see if it exists or not.

 Path = system.pathForFile(history, system.
DocumentsDirectory)
 }
 local existingHistory = io.open(parameters.Path, 'r')
 end

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

82

4.	 If the file is empty, we won't bother the user with resuming a game that never made
any progress, as if there were no history, and just start the game:

 local existingHistory = io.open(parameters.Path, 'r')
 if existingHistory and existingHistory:seek('end') > 0 then
 else
 storyboard.gotoScene("game", {params = parameters})
 end
 end

5.	 If the file does exist, it can't be deleted if it's still open.

 if existingHistory and existingHistory:seek('end') > 0 then
 existingHistory:close()
 else

6.	 Rather than taking the trouble of creating a new scene, we'll be using the platform's
native alert mechanism to ask the users what they want to do:

 if existingHistory and existingHistory:seek('end') > 0 then
 existingHistory:close()
 local function proceed(event)
 end
 native.showAlert("Game in progress", "Do you want to resume
or delete this game?", {"Resume", "Reset", "Cancel"}, proceed)
 else

7.	 The showAlert function will eventually dispatch an event to the specified listener,
proceed, that indicates whether the user picked the first, second, or third option.
We'll move on to the game scene as long as the user didn't select Cancel:

 local function proceed(event)
 if event.index < 3 then
 storyboard.gotoScene("game", {params = parameters})
 end
 end

8.	 But first, if the user selected the Reset option, we'll clear the history file:

 local function proceed(event)
 if event.index == 2 then
 os.remove(parameters.Path)
 end
 if event.index < 3 then

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

83

Linking history to the game when loading
Now the menu scene is confirming the user choice correctly, as well as supplying the game
scene with the location it will use to save or load history info. The history will consist of
all the Move attempt events sent to the interface that actually resulted in a legal move;
each event will be encoded in text using JSON format, which can be easily encoded and
decoded using Corona libraries. So on entering the scene, we'll recover all such events from
the file, in order, and send them to the UI as if they had been triggered by tap events. We'll
do this before loading the world with the map data or posting the game's start event, so
the world doesn't spend time keeping up with displaying moves that will just be overwritten
an instant later.

JSON is JavaScript Object Notation, a common format for
recording objects with named properties that looks a lot like a
Lua table constructor.

Perform the following steps to link history to the game when loading:

1.	 First, at the beginning of game.lua, load the JSON library:

local sok = require "sok"
local json = require "json"
local storyboard = require("storyboard")

2.	 Then, find the enterScene function:

 self.History = {}
 self.Path = event.params.Path
 local historyFile = io.open(self.Path, 'r')
 self.World:Load(self.Map)

3.	 If the file doesn't exist, we'll create it empty, and leave it closed to avoid any
problems with the save module:

 local historyFile = io.open(self.Path, 'r')
 if historyFile then
 else
 io.open(self.Path, 'w')
 :close()
 end
 self.World:Load(self.Map)

www.it-ebooks.info

http://www.it-ebooks.info/

SuperCargo – Using Events to Track Game Progress

84

4.	 But if it does exist, we'll read out each line of text, use the JSON library to convert it
back into a move event and dispatch it to the interface, just like the interface itself
would, but without the tap event. The scene's own event processing will then
update the game with the results of the move.

 if historyFile then
 for line in historyFile:lines() do
 self.UI:dispatchEvent(json.decode(line))
 end
 historyFile:close()
 else

5.	 To complete the save system, whether we loaded any history or not, we engage
the save module that we imported earlier and register it to clean itself up when the
scene is exited as shown in the following snippet:

 end
 self:addEventListener('exitScene', require "save" (self.Path,
self.UI, self))
 self.World:Load(self.Map)

The save module makes a point of only saving move attempts that result in legal
moves. This means that it needs access to the source of move attempts (the interface
object), but also to the source of events that confirm those moves (the game scene). It also
needs to know the path it will use for the file. For convenience, the save module returns
a function that turns it off, so that the game scene doesn't need to know directly what it is
registered for.

What did we do?
We set the menu up to ask the user intelligently whether they want to use history left over
from a previous attempt to play the game that was interrupted. Then, we set the game up
to load the saved user input stream. The game should now be fully functional!

www.it-ebooks.info

http://www.it-ebooks.info/

Project 2

85

Game over – wrapping it up
You can now install the game on your device and experiment with things like force-stopping
it in the middle of a game or powering the device off and on again. When you relaunch the
game app and reselect the level, it should give you the choice of picking right up where
you left off!

Can you take the HEAT? The Hotshot
Challenge

One of the things the game scene does that is left unused in this pass through the project
is creating walking sprites for the main character. See if you can modify the world object to
make the character face in the right direction whenever he moves or attempts to move!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3
TranslationBuddy –

Fast App Development
for any Field

While Corona is probably best known as a tool for building games and e-books, it includes a
few goodies that make it considerably easier to launch nearly any application, including the
remote-site frontend apps so popular with business clients. Its high-level architecture allows
many of these apps to be generated with a fraction of the code that would be required to
create them in Java or Objective-C. As a simple example of how we can leverage this, we'll
build an application that collects text entry from the user and submits it to the Microsoft
Translator API.

What do we build?
TranslationBuddy is a small, multi-screen app. It will allow the user to enter a new phrase
in English, or switch to a list of phrases they have translated before. Once they have entered
a new phrase or selected an old one, it displays the whole phrase, along with its Japanese
translation. A Back button allows the user to back out of the results into whichever screen
they loaded it from. A tab bar at the bottom also allows the user fast access to the entry and
history screens.

Although the app in its presented form provides only one specific conversion, we'll make
sure to write the translation module so that it doesn't internally make assumptions about
which source or target language will be chosen.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

88

What does it do?
For this project we are going to be building a fast, simple app that requires minimal graphical
content. It showcases Corona's versatility by providing a useful, readily-adaptable application
without a lot of coding from scratch or downloading third-party libraries that might be
expensive, awkward to learn, or both.

1.	 We'll start by creating a general-purpose translation module that logs into the
Microsoft Translator API. This is a web service that you register for through the
Windows Azure marketplace; you can send text to it in various languages to receive
translations back in various languages. This will give us practice at making Internet
requests to remote services.

2.	 We'll create a total of three scenes: one to collect requests from the user; one to
present phrases which were previously translated; and one to display the translation
of a phrase. Because Microsoft Translator is a metered service with limited access,
we'll re-use previously collected translations instead of requesting new ones.

3.	 We'll also create a tab bar that floats above the rest of the app, allowing the
user to quickly switch between the two phrase selection scenes.

Why is it great?
This project will provide some experience at using tools that Corona provides to simplify
common tasks. Some have been visited already, such as using Corona's JSON library
to quickly store and retrieve complex data objects in files or data streams or using the
storyboard library to facilitate switching between different data views, but the biggest
aid to quickly launching apps with familiar user interfaces is the widget library.

The widget library creates visual objects that fulfill common interface tasks, such as push
buttons, scrollable lists, tab bars, and draggable sliders. These objects are created with
simple default settings that allow them to be deployed very quickly in prototypes, but also
allow complex custom settings that allow their appearances to be tailored to designer
specifications with considerable detail. And since their core behavior is event-based, this
detail can be added without redesigning the functional part of the code.

In cases where large numbers of custom objects are needed, Corona even allows you to
create a theme module, a Lua file that explains all your desired customizations for the widgets
you'll use, or even use multiple themes, such as in cases where you might want a menu used
to give commands to a game separated from a menu that chooses settings for that game.

The other feature we're going to leverage is Corona's network.request API. This reduces
the complex two-way communications and synchronizations used to transfer data back and
forth from the Internet to a single call with a few options. In the simplest cases where you
need a file off the Internet, you can use the even simpler network.download function.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

89

Because network requests can take time, Corona expects you to give it back control so that
it can continue to run other things while waiting for your response. We'll take a look at a way
to organize the code so that it acts more like a single function that can be paused until the
response comes in, by using a Lua feature called a coroutine. This is a powerful and versatile
feature that we'll use more as time goes by.

How are we going to do it?
This project will be shorter and simpler compared to the previous one. The design work
requires little analysis and there's no iteration over the various modules. However, we also
need to prepare an account so that we can connect to the web service that will do the actual
translation. In this project we will be covering the following points:

ff Summarizing the design

ff Creating the account

ff Assembling the translator

ff Displaying results

ff Soliciting input

ff Maintaining a history

What do I need to get started?
You'll need the presentation folder of the Project 3 file pack. This folder contains
images for the tabs in the navigation bar and a mask that will be used to prevent visual
effects from bleeding over each other during transitions from one view to another.

You'll also need a Windows Live ID. If you don't already have one, you can obtain one for free
from the Microsoft Sign up page at https://signup.live.com/signup.aspx.

Summarizing the design
This is just as important for any other piece of software as it is for games. A clear
understanding of the software's goals and the different interactions that will take place
between the user and software will be a vast help in keeping the software usable. This
project is the last one in which we'll explicitly cover the design that states what the
software needs to do.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

90

Getting on with it
Because this app has only a few features, the design will stay fairly simple.

1.	 Start by explaining the overall function:

TranslationBuddy will provide translations of short phrases and words from English
into Japanese, and preserve a history of translations that have been previously
obtained so that they can be viewed again.

2.	 Specify the user experience along the principal interaction path (how the user is
expected to use the software most often):

When the app opens, an editable text field is displayed above a tab bar with two
options: Translate and History. Translate is the current option. When the text field is
selected, the device's native text entry facility appears; when it is dismissed, the view
pans to the right-hand side to reveal a list of the entered text and the translation
below it. The tabs remain visible so that the user can return to enter or select
another translation easily. The result display is also topped with a bar that includes
a Back button to return to whatever selection method opened the results screen.

3.	 Explain the user experience along any other interaction paths (there is only one in
this case):

The History tab button reveals a table of previous English sentences that have been
entered. This list can be scrolled up and down to reveal parts that don't fit on the
screen. Tapping a sentence will reveal the translation of that sentence much as if it
had been just entered in the Translate view.

4.	 Finally, explain any other non-functional requirements; that is, details that might be
possible to change without completely upsetting the chosen solution:

Translations will be obtained from the Microsoft Translator API. Because this service
has limited access, the app will store received translations with the sentences that
produced them to avoid needlessly repeating requests.

What did we do?
We've outlined what tasks the app will perform and summarized the interface elements that
will implement those tasks. We've specified a couple of what project managers call non-
functional requirements, specifications about how things will be done, and the parameters
that operations will be performed within, such as which engine will provide the translations
and that it must conserve the service subscription. These requirements could be changed
without stopping the app from doing its job, but they might have other side-effects, such as
damaging the app's business model, if it had one.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

91

Creating the account
In order to obtain translations via the Web, we need to make requests of an appropriate
service. I selected Microsoft Translator for this project because it allows you to set up a
free subscription to translate up to 2 million characters of text a month; using Google
Translate instead would be similar, aside from the URLs used to communicate, but Google
Translate does not, at the time of this writing, have any option for free or trial use through
third-party programs.

The app assumes that all users of the app will use the same subscription information, so
all translations done with TranslationBuddy will come out of the same 2,000,000 character
per month service allowance. If you were launching this app as a product for wide use, you
would presumably need to subscribe to a higher-capacity service plan and have a revenue
model in place to support it, but for educational purposes, this basic account should be
more than adequate.

Getting ready
Have a Windows Live ID created and available, either the one you already had or the one you
create just for this project. They are freely available from Microsoft.

Open Corona and create a new scene-based project from the Corona splash screen as
you did with the first two projects, called TranslationBuddy. Create a new file called
credentials.lua in the project folder, open it, and enter the skeleton table that
will hold the authorization information you're going to create:

return {
 id = [[]],
 secret = [[]],
}

Getting on with it
Creating a Microsoft Translator API application account is done through the Azure services
marketplace:

1.	 Start by directing your web browser to https://datamarket.azure.com/
dataset/bing/microsofttranslator and let the page load. Price listings
should appear on the right-hand side of the page; scroll down past the alarmingly
large numbers at the beginning and locate the bottom entry in the list, which should
say SIGN UP rather than BUY; click on SIGN UP. You may be required to sign in with
your Windows Live ID at this point.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

92

2.	 If you have not used your Live ID to obtain services through the Azure Marketplace
before, you may need to enter some information about yourself in order to proceed.
Once you have completed the form fields and selected CONTINUE, you should be
presented with the Terms of Use for the Microsoft Windows Azure Marketplace.
Feel free to read them over; if you cannot comply with them, move on to the next
project. Check I accept the Terms of Use and click on REGISTER when you are ready
to proceed.

3.	 At this point, you are nearly done signing up for the Translator service access. Check
I have read and agree to the above publisher's Offer Terms and Privacy Policy and
click on SIGN UP. This should take you to a purchase receipt page.

4.	 Now that you have an allowance for the service, you need to create a secret key
and client ID that the app will use to identify itself to the service in order to have
its requests accepted. Go to https://datamarket.azure.com/developer/
applications/ in your browser and find the section towards the bottom of
the page entitled Registered Applications. Unless you have used this Live ID for
other development work, it will probably say "You do not have any registered
applications." Click on the REGISTER button.

5.	 A form appears requesting identifying information about your application. For
the client ID, enter CoronaHotshotProject3XXX, replacing XXX with your own
initials; this must be unique across all applications registered on the marketplace,
so it may be necessary to add your birth date or something else to the client ID to
make it unique.

6.	 For the name, enter TranslationBuddy. The client secret field should be
pre-populated; leave it alone. A redirect URL is required, but will not be used
for this service; you can use a common URL such as https://example.com.

7.	 Enter Mobile translation app for the description, and click on CREATE. You
should return to the Developers page, but your new name should now be visible
under Registered Applications.

8.	 Follow the Edit link at the right-hand side of the screen next to it. This reopens the
form you used to register the application. We'll enter the required information into
the credentials.lua file so that the application can load it as needed.

9.	 The client ID is permanent and can't be selected, so on the line in credentials.
lua that reads id = [[]], you'll need to type in the same client ID in between
the pairs of brackets as follows:

return {

 id = [[CoronaHotshotProject3XXX]],

 secret = [[]],

}

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

93

10.	 The secret is much more complicated and easy to mistype, but you can also select
and copy the contents of the text box and paste them into the brackets (be careful
to select all the characters in the text box, and nothing else on the page):

return {

 id = [[CoronaHotshotProject3XXX]],

 secret = [[a0B9c8D7e6+F5g4H3i2J1/]], -- not a real secret; paste
in your own!

}

The double brackets indicate a Lua long string literal. The contents are
converted into a string just as if you had used single quotes or double quotes,
but nothing inside is a special character; everything is stored into the string
contents exactly as you type it into the source. Long string literals can even
span multiple lines and will include the new line characters as part of their
content. They're good to use for strings that might have special character
content, like XML markup. See section 2.1 of the Lua 5.1 manual for details.

Save and close credentials.lua. You can save the details for the application on the
developer site, and log out of Live if you're so inclined.

What did we do?
We registered an application with a shared communication secret that will allow us to
authenticate our app as a legitimate user of the service. We stored the authentication
information where we can easily load it into our app's Lua environment to incorporate it
into our network requests. We'll be able to use this information in our app to obtain
something like a cookie that we can include in our translation requests to show the
service that they're genuine.

What else do I need to know?
Treat your application as secret and client ID as confidential information! If they become
public, the odds are good that some stranger in another country will start using them to
freeload off your Azure subscription and use up your service allowance for himself/herself.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

94

Assembling the translator
It's generally better to assume that you'll want to reuse your code later for something else,
so avoid building it around one specific use. Our translator module will consist of factory
functions for different translation services (although we're only going to include one) that
produce functions that perform actual translation work. Any translator function produced
by a factory function should take the same arguments, but the various factories might have
different arguments to represent different authentication criteria that the different services
might use. We only need one factory for Microsoft Translator, which will need to know the
client ID and shared secret in order to create a translator function that can authorize itself.

Getting ready
Create a new file in the TranslationBuddy project directory, translation.lua, and
open it in the text editor of your choice.

Getting on with it
First, we'll lay out the skeleton of the module as we've described it, and then we'll start
fleshing out the factory for Microsoft Translator-enabled translation handlers.

local translation = {}

function translation.microsoft(client_id, client_secret)
	 return function(text, from, to, completion)
	 end
end

return translation

Here we establish two things: what information is needed to create a translator that can
draw on a specified Microsoft Translator subscription (the client ID and secret that we
created and stored in credentials.lua), and what information a translator engine
needs in order to do a translation: the text to translate, the language that text is in now, the
language you want it translated into, and a callback function. Because fulfilling a translation
request may require network traffic (and will, in the case of our Microsoft module), it can't
return the result as soon as the function is called. Instead, the translator receives a function
as an argument that it will call with the finished translation once it's done. This is similar to
the way you make a network.request call; you provide it with a function that will process
the result once you get it back, and then go on with whatever else you're doing.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

95

Gatekeeping requests
We've already observed that your program might be able to take actions while it's waiting for
the translation results, so we'll need to keep track of whether the translator engine is ready
to receive requests.

function translation.microsoft(client_id, client_secret)
 local ready
 return function(text, from, to, completion)
 if ready then
 -- initiate translation
 return true
 else
 return false
 end
 end
end

By returning true or false according to whether or not the engine was ready, programs
using the engine to request translations can know whether they can expect their requests
to be processed or not.

Consuming requests
What we're creating is a pattern that computer scientists sometimes call a consumer,
something that you keep supplying requests to and it keeps processing them. We'll create
a function that loops infinitely, requesting new text to be translated, processing the
translations, and passing them off to the callbacks supplied with them. Then, we'll integrate
it with the pieces that will allow it to go into hibernation while it's waiting for a new
translation request, or for a network response to arrive:

function translation.microsoft(client_id, client_secret)
 local ready, authorization
 local function translate(source)
 while true do
 local text, from, to, completion = source()
 local translation = fetch_translation(text, from, to,
authorization)
 completion{
 name = 'Translation', action = 'complete';
 fromLanguage = from, toLanguage = to,
 source = text, result = translation
 }
 end
 end
 return function(text, from, to, completion)
 if ready then

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

96

Here's the basic form of our consumer function. It loops infinitely, collecting a translation
request from a function provided to it when it starts. It calls another function to process
that request using an authorization it maintains using the credentials it was created with
(the arguments to the translation.microsoft function). Finally, it constructs an event
structure describing the results of the request and hands it off to the function that was
supplied with the request. Then it lets the loop repeat.

Maintaining authorization
Note the addition of the authorization variable. Microsoft Translator requires each request
to be accompanied by an access token. The access token is requested from an authorization
server, and is good for a certain amount of time (typically 10 minutes) from its issuance. The
client ID and shared secret must be supplied when the access token is requested for the
token request to be granted. So we need to make sure before any request that we have an
authorization, and that it's up to date:

 local text, from, to, completion = source()
 if not authentication or authentication.expiration <= os.time()
then
 authentication = obtain_token(client_id, client_secret)
 end
 local translation = fetch_translation(text, from, to,
authentication)

Linking the translation loop
The way the function is designed right now, it tries to run continuously, which isn't going to
work. It has to give control back to Corona whenever it shifts back into waiting mode, or the
responses to its requests will never be delivered. The way to do that is by running it inside a
Lua coroutine.

Coroutines are a little bit like threads in other multitasking environments (and in fact calling
the type function on a coroutine object returns the string thread). They allow a function to
be run semi-separately from the rest of the program, so that it can bookmark itself and go
into a wait mode; when the main program calls it again, it picks up from the point where it
bookmarked itself, as if nothing had happened.

To allow coroutines (and the main program) to communicate with each other, they can also
pass values back and forth as arguments and returns when they hand off control. The first
time a coroutine is started after being created, the body function can receive arguments
through the start process and use them normally. The translate loop function takes one
argument, a function that it can call to obtain the details of its next translation request.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

97

Once it's ready to wait for the first request, the loop will yield control of the program back
to the main thread that started it by calling a dedicated function, coroutine.yield. Once
the main program resumes the coroutine again, by passing it a translation request, the
coroutine.yield function will return the values that were passed into the restart process
by calling coroutine.resume. Let's start by seeing how this function works:

 local ready, authentication
 local function submissions()
 ready = true
 local text, from, to, completion = coroutine.yield()
 ready = false
 return text, from, to, completion
 end
 local function translate(source)

This function releases control back to the main program and waits for the program to pass
it the details of a translation request. So before it does that, it marks the lock variable's
ready as true so that the function that receives the requests will know not to refuse
them. Once it's been restarted, it marks the translator as busy again so that if any duplicate
requests are posted, they won't interfere with its progress.

The translator factory now needs to set up its coroutine and link the supply function to it:

 source = text, result = translation
 }
 end
 end
 local self = coroutine.create(translate)
 coroutine.resume(self, submissions)
 return function (text, from, to, completion)
 if ready then

Notice that after creating the coroutine, we start it and pass it the submissions function
we created to collect requests. Since the first thing it does is call that function, the coroutine
yields almost immediately, after setting ready to true. So the first time the control function
(the function returned at the end of the factory) is called, it will resume the function from
where it is paused, waiting to assign the particulars of the translation request.

This means we're ready to enable passing those requests into the coroutine when it's ready
and the calling code has a translation request:

 coroutine.resume(self, submissions)
 return function (text, from, to, completion)
 if ready then
 coroutine.resume(self, text, from, to, completion)

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

98

 return true
 else
 return false
 end
 end
end

Since we supply the various parameters as extra arguments to coroutine.resume, and
as the coroutine was already yielded, those parameters will be the return values from the
coroutine.yield call.

Handling the network requests
Every translation request requires an HTTP GET call to a URL on a Microsoft Translator server.
This call needs to be accompanied by an access token that was issued in the last 10 minutes;
if no such access token exists, a new one needs to be obtained. We call functions for both of
these operations in the code we've already created, but they don't exist yet. The trick is that
each function has to yield and set itself up to be resumed in order to return.

1.	 We'll start with the one that gets called on every translation request:

local translation = {}

local request_address = [[http://api.microsofttranslator.com/v2/
Http.svc/Translate?text=%s&from=%s&to=%s]]

local function fetch_translation(text, from, to, authentication)
end

function translation.microsoft(client_id, client_secret)

2.	 The request_address property is something of a constant. It describes the
Internet address, as defined by the instructions for communicating with the
Microsoft Translator engine, to which translation requests need to be sent. Notice
the %s tokens embedded in it; these can be replaced, by using Lua's string.
format function, with the values of the appropriate arguments.

local function fetch_translation(text, from, to, authentication)
 local self = coroutine.running()
end

3.	 This records the currently running coroutine. We'll need this information to make
sure that we can resume the right one once the response to our request is received.

local function fetch_translation(text, from, to, authentication)
 local self = coroutine.running()
 local function extract(event)
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

99

 network.request(request_address:format(url.escape(text), from,
to), "GET", extract, {headers = {Authorization = "Bearer " ..
authentication.access_token}})
end

4.	 If you're not familiar with how web server communications work, each request or
response placed via the Hypertext Transfer Protocol contains a body and a number
of headers, although either can be empty. Each header has a name and a value.
The Microsoft Translator API specifies that each request needs a header called
Authorization whose value is the word Bearer followed by a space and the
value of the access token.

The extract function, which we'll fill out in a moment, is supplied to network.
request so that it has a way of notifying our program once the request is complete.

The function url.escape converts arbitrary text into a form
suitable for inclusion in URLs by replacing illegal characters
with escaped equivalents. It's part of the LuaSocket library,
created to add low-level networking capability to Lua, and
included in Corona.

 network.request(request_address:format(url.escape(text), from,
to), "GET", extract, {headers = {Authorization = "Bearer " ..
authentication.access_token}})
 return coroutine.yield()
end

5.	 Having filed our network request, we sit back and wait for the results to be returned
to us. But in order for those results to make it to the right place, we have to make
sure that the response function sends them there.

 local function extract(event)
 local content = event.response:match("%b<>([^<>]+)%b<>")
 coroutine.resume(self, content)
 end

6.	 The response comes back as a very simple XML document, one that just has a single
tag. While we could write or use a library to parse XML into Lua data structures, such
an operation is serious overkill for a result that will consistently be only a single tag
and its text contents. The %b<> search expression in Lua pattern matching searches
for a less-than sign, a greater-than sign, and everything in between, allowing us to
quickly and simply eliminate the tags and just capture the text content.

By passing the string along to coroutine.resume, we allow the function that
yielded to pass it back as a normal return.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

100

Renewing the access token
The process of requesting a fresh access token is actually very similar. The network address
is different, the request is a POST rather than a GET, and the client credentials are stored in
the request body rather than the URL, but the form, of posting a request, yielding, and then
allowing the response to resume the thread is very similar:

local translation = {}

local token_provider = [[https://datamarket.accesscontrol.windows.net/
v2/OAuth2-13]]
local token_request = [[grant_type=client_credentials&client_
id=%s&client_secret=%s&scope=http://api.microsofttranslator.com]]

local function obtain_token(client_id, client_secret)
 local self = coroutine.running()
 local function update(event)
 end
 network.request(token_provider, "POST", update, {body = token_
request:format(url.escape(client_id), url.escape(client_secret))})
 return coroutine.yield()
end

local request_address = [[http://api.microsofttranslator.com/v2/Http.
svc/Translate?text=%s&from=%s&to=%s]]

The authorization information is actually returned as a JSON description of a record. Corona
includes a function to build a Lua table equivalent to a JSON-encoded value, so converting
it back will be trivial. The authentication response has four values, but we're only actually
interested in two: the actual access token, and the duration it's good for (this is typically 10
minutes, but there's no reason to rely on that). Since it doesn't store a record of when the
token was issued, we'll need to store that, too.

1.	 We convert the encoded response into a table with separate fields:

 local function update(event)
 local results = json.decode(event.response)
 end

2.	 In order to preserve the time the token was issued, and more importantly, when it
expires, we collect the current time, broken down into a table with separate fields
for the different components: hours, minutes, and for our purposes, seconds, which
is what the token's duration is provided in. So now we're going to adjust that time:

 local function update(event)
 local results = json.decode(event.response)
 local now = os.date('*t')
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

101

3.	 We make two modifications to the time we've gotten. We add the duration of the
token in seconds to get the expiration time. We also clear any specification about
whether the time provided is in Daylight Savings Time or not. This is only rarely a
problem; it only makes a difference if the current time and the specified time are on
opposite sides of Daylight Savings Time starting or ending. But when it does occur, it
leads to bugs that are extremely frustrating and hard to pinpoint, such as causing you
to label a token that lasts 10 minutes as not expiring for an hour and 10 minutes:

 local now = os.date('*t')
 now.sec, now.isdst = now.sec + results.expires_in, nil
 end

Make a habit of clearing DST data from time specifications
whenever you use a time and date table to increase, or
decrease, a duration or point in time by a certain amount. I
spent multiple days isolating a bug in a Lua program that was
caused by automatic DST adjustment.

4.	 Record the expiration time into the authorization object so that we can track how
much time it has left:

 now.sec, now.isdst = now.sec + results.expires_in, nil
 results.expiration = os.time(now)
 end

Feeding the table back into os.time converts it into a pure
numerical measure of time that can be compared as being less
(earlier) or more (later) than another time.

5.	 Finally, return the usable authorization object back into the thread that's waiting
on it:

 results.expiration = os.time(now)
 coroutine.resume(self, results)
 end

The translation module should now be ready for action!

What did we do?
We constructed a blueprint for creating functions that accept translation requests, and
implemented that blueprint for the specific service that was specified in our design. We used a
coroutine to allow the function flow to act like the outside of a program rather than the inside,
making the program flow more natural and easier to write. We also successfully engineered a
two-way communication between our program and a remote server, submitting authentication
credentials and storing a short-term authorization to complete requests.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

102

What else do I need to know?
If you want to test this part, try commenting out the contents of main.lua and adding
the code:

local translation = require "translation"
local credentials = require "credentials"
local translator = translation.microsoft(credentials.id, credentials.
secret)
local function report(event)
 print(event.result)
end
translator("Translation Buddy", "en", "ja", report)

The Corona Terminal should, after a moment, print out 翻訳の相棒. Testing code modules
and individual functions is an important way to make sure you catch errors early, before
you've written a lot of code that's dependent on something that may be broken.

Make sure you remove this code and uncomment the previous contents before proceeding.

Displaying results
Once we obtain the translation results, we need to display them. The design says that we can
have a separate view for this, which slides in to display the entry view. A scene seems like a
good fit for each of these views; we'll create one that stores the various text elements of the
translation in the rows of a table view.

Getting ready
Copy the scenetemplate.lua file in the project directory to a new file named result.
lua and open it.

Getting on with it
The design says that this display will contain a list of the text and its translation, and a bar
with a button to return to the previous view. We want the button bar to appear above the
table, but simply creating a table view and placing a rectangle above it runs into a snag;
while Corona's tableView objects offer a lot of convenience, they don't currently have an
easy way to clear or reset them. The simplest way to make sure a table is up to date with its
intended contents is to create the table each time the scene is visited, and delete it when
the scene is no longer visible; this means that we can always enter the contents into a fresh,
empty table.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

103

To keep elements stacked correctly as they're destroyed and recreated, what we'll do is
create a couple of groups and establish them as zones into which different sorts of content
can be stacked, so that we have a place into which we can put new tables so that they will
always be behind the controls.

This is a common pattern in graphics programming, to create layers
within a stack of visual elements, so that regardless of the order of
items in each layer, they're always separated from the layers above
and below them. The zones this creates typically are reserved for
elements with specific meanings or purposes and are sometimes
referred to as strata, a word taken from geology and referring to a
stack of distinct layers with different characteristics.

Constructing the strata
Find the createScene function for this scene, and replace the placeholder comment with
the creation of some groups that will serve as our strata, or layers. Groups follow the same
rules we've just described; if group 2 is in front of group 1, then each thing in group 2 is in
front of all things in group 1:

function scene:createScene(event)
 local group = self.view

 self.Data = display.newGroup()
 group:insert(self.Data)
 self.Controls = display.newGroup()
 group:insert(self.Controls)
end

The control layer doesn't need to be refreshed from one trip through the scene to another,
so we can create it now. In the style of the iOS navigation bars, we'll create a blue field to
block out the background and give the button a natural place to live. Because this is not an
immersive app like a game, we'll leave room for the status bar at the top of the screen.

 group:insert(self.Controls)
 self.Controls.y = display.statusBarHeight
 display.newRect(self.Controls, 0, 0, display.contentWidth, display.
contentHeight * 0.08)
 :setFillColor(0x90, 0xA0, 0xC0)
end

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

104

Adding the controls
Buttons and other widgets offer a lot of customization options, but most of these have
sensible defaults. To facilitate providing only the information you need to, each widget
constructor takes a table as its single argument, which can contain only the settings that you
want to override or specify. The default button appearance is a white rounded rectangle with
a black border and a black label, but we want to adjust our button to make it look more at
home on our blue background.

 :setFillColor(0x90, 0xA0, 0xC0)
 local buttonHeight = self.Controls.height * 0.8
 self.Back = widget.newButton {
 left = display.contentWidth * 0.05, top = buttonHeight * 0.1;
 label = "Back", yOffset = buttonHeight * -0.1, labelColor =
{default = {0xFF, 0xFF, 0xFF}, over = {0x70, 0x70, 0x70}};
 height = buttonHeight, width = buttonHeight * 2.75;
 fontSize = buttonHeight * 0.66;
 onEvent = relay;
 }
 self.Back:setFillColor(0xB0, 0xC0, 0xF0)
 self.Controls:insert(self.Back)
end

We set the button's size to be a little shorter than the bar it's on, its font size to be small
enough to fit in that height, and its width to be in proportion.

Buttons can have many more customizations, such as using embossed text for the label,
or using custom images instead of simple rounded rectangles. The most important
customization a button has, however, is its behavior. Buttons are supposed to do something
when you activate them, so the creation of a button also takes a function that specifies what
will happen when the user interacts with the button by touching the button, releasing a
touch that began in it, or sliding their finger around after touching the button.

Widgets handle events a little strangely. Rather than dispatching events directly to the
widget as an event target, they take a function at creation time which is the only receiver
of that widget's events. However, that function can also take charge of broadcasting events
onto the widget, allowing them to be handled the way most other events are.

local scene = storyboard.newScene()

local widget = require "widget"

local function relay(event, ...)
 event.target:dispatchEvent{name = 'buttonEvent'; target = event.
target; phase = event.phase}

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

105

 return true
end

-- Called when the scene's view does not exist:
function scene:createScene(event)

You can still register your event response function directly to your
button if you prefer; this makes the code a little less flexible, but
sometimes code needs efficiency more than it needs flexibility. Buttons
also allow you to specify up to two different listeners to handle press
and release events separately from each other; if you use any of these,
you should not specify the general onEvent function.

Once our button receives events the way we expect it to, we can set the scene up as a
listener, to respond to the button's activation by returning to the previous scene. The
name we specified for button events is, fittingly, buttonEvent:

 self.Controls:insert(self.Back)
 self.Back:addEventListener('buttonEvent', self)
end

Since the scene is being used as the listener, it needs a method named after the event to
handle it:

local function relay(event, ...)
 event.target:dispatchEvent(event, ...)
 return true
end

function scene:buttonEvent(event)
 if event.phase == 'ended' then
 storyboard.gotoScene(self.Origin)
 end
end

-- Called when the scene's view does not exist:
function scene:createScene(event)

Note that we return to the scene with its name stored in scene.Origin. For this to work
properly, we'll need to set that value whenever the scene is started, which we'll set up after
one important step.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

106

Preloading scene visuals
Unlike our previous scenes, this scene will be moved onto the screen using a transition. This
means that parts of the scene will be visible before the scene is completely on the screen;
the enterScene event fires for a scene once its entrance transition is complete and it's
fully on the screen. If we wait until this point to go through the usual process of filling in
the scene's contents, it will appear to slide in mostly empty and then suddenly fill in with
info once it stops moving. Since most people will find this a jarring experience, we want to
populate the scene before it starts to appear. We'll do this by changing the data population
from taking place in the enterScene event to the willEnterScene event, which fires
as soon as the scene change is requested. So change the scene:enterScene function to
scene:willEnterScene, and change the event registration from scene:addEventLis
tener('enterScene', scene) to scene:addEventListener('willEnterScene',
scene). Also change scene:exitScene to scene:didExitScene and update
that listener registration in the same way.

Now we'll take care of that stray variable that wasn't assigned yet.

function scene:willEnterScene(event)
 local group = self.view

 self.Origin = storyboard.getPrevious()
end

Creating the list display
As said when we created the view strata, the easiest way to make sure the list is updated
whenever the scene is reloaded is to destroy the table and create it from scratch:

function scene:willEnterScene(event)
 local group = self.view

 self.Origin = storyboard.getPrevious()

 local output = widget.newTableView{
 id = "results_output";
 width = display.contentWidth, height = display.contentHeight;
 topPadding = self.Controls.contentBounds.yMax, bottomPadding = 50;
 }
 self.Data:insert(output)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

107

While table views support an enormous list of customizable options, the focus in this project
is using the ready-to-go nature of widgets to make a project run very easily and quickly, so
we're using defaults when reasonable. The only thing we're specifying is the padding on the
top and bottom. These make sure that no part of the data being displayed is trapped under
the control bars at the top or bottom. We set the top padding to start at the bottom of the
control section, which allows for both its height and the height of the status bar.

Adding rows to the display
Now we need to add each piece of text to the table. As the project is laid out right now,
only two items will ever be displayed: the English source text and its Japanese translation.
However, it's not inconceivable that we might do something in the future like have a piece
of text entry translated into several languages simultaneously. We'll start by adding a row to
the table view for each item being displayed:

 self.Origin = storyboard.getPrevious()

 local texts = event.params
 local output = widget.newTableView{
 id = "results_output";
 width = display.contentWidth, height = display.contentHeight;
 topPadding = self.Controls.contentBounds.yMax, bottomPadding = 50;
 }
 self.Data:insert(output)
 for i, text in ipairs(texts) do
 output:insertRow{
 -- construct rows
 }
 end
end

Now we run into a small stumbling block. There are still a small number of useful facilities that
Corona doesn't provide direct support for, and one of these is measuring the space required
to display a piece of text. Fortunately, most of these missing facilities have some way to work
around them, and we can determine how many lines are needed to show a given string by
setting a hidden text object to show the string and checking how tall it becomes:

 self.Origin = storyboard.getPrevious()

 local width, height = display.contentWidth, display.contentHeight
 local texts = event.params
 local output = widget.newTableView{
 id = "results_output";
 width = display.contentWidth, height = display.contentHeight;

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

108

 topPadding = self.Controls.contentBounds.yMax, bottomPadding = 50;
 }
 self.Data:insert(output)
 local measure = display.newText(group, "", width, height, width, 0,
native.systemFont, height * 0.075)
 measure.isVisible = false
 for i, text in ipairs(texts) do
 measure.text = text
 output:insertRow{
 rowHeight = measure.height;
 }
 end
end

We just need to make sure that we clean up this temporary text object once we're done
with it:

 output:insertRow{
 height = measure.height,
 onRender = displayText,
 }
 end
 measure:removeSelf()
end

Finally, for each row that we provide, we need to explain to Corona how the row will appear
and what data it will contain. You can use different functions for different rows in cases
where they don't all appear the same, but all we're doing is showing the text of each item.
The default color of new text objects is white, which doesn't show up well (or in fact at all)
on a white background, so we set each new text object to display in black:

 local texts = event.params
 local function displayText(event)
 display.newText(event.row, texts[event.row.index], 12, height *
1/256, width, 0, native.systemFont, height * 0.075)
 :setTextColor(0x00)
 end
 local output = widget.newTableView{
 id = "results_output";
 width = display.contentWidth, height = display.contentHeight;
 topPadding = self.Controls.contentBounds.yMax, bottomPadding = 50;
 onRowRender = displayText;
 }
 self.Data:insert(output)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

109

Cleaning up the scene after each use
Since we're creating a new table view each time this scene is visited, we need to make
sure they get cleaned up, or we'll come back to overlapping displays (and creeping
memory leaks):

function scene:didExitScene(event)
 while self.Data.numChildren > 0 do
 self.Data[1]:removeSelf()
 end
end

What did we do?
We developed a complete life cycle for a scene that will probably be reloaded multiple
times while the app is running, working around some limitations of our target platform
(which you'll find you need to do in nearly any programming environment). We separated
visual environments logically as well as visually by storing them in separate groups, and used
built-in capabilities provided by Corona to display buttons and complex program output to
the user with a minimum of work on our part.

Soliciting input
Of course, a translation engine isn't much use unless you can enter text that you want
translated. To collect this, we'll use a native display object, a text box. The user can enter a
large string of text into this box, and the program will be notified when the user closes it.

Getting ready
Copy scenetemplate.lua into a new file called entry.lua and open it.

Getting on with it
Native display objects aren't quite the same as widgets, although they often look similar.
A widget is actually a Corona display group containing other rectangles, text, and other
Corona display objects, created and managed with internal Lua code. This means that you
can put widgets into other display groups and control their front-to-back ordering. Native
objects, on the other hand, are created by the device's operating system at Corona's request.
Although they have many of the same properties as display objects, such as x and y position
and visibility, they don't move with their parent group or inherit any characteristics like
alpha, and they always appear in front of any standard Corona display objects you create,
regardless of group; that means they aren't affected by things like storyboard transitions.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

110

Creating a backdrop
We'll give the scene a blank white background to help the elements stay visually separate:

function scene:createScene(event)
 display.newRect(self.view, 0, 0, display.contentWidth, display.
contentHeight)
end

Creating the text box
Because text boxes and other native interface elements aren't really part of the Corona
canvas, they won't move or hide when you change scenes with the storyboard. You can deal
with this in a few ways, but we're going to settle it by deleting the text box when the scene
is closed, and recreating it when the scene is re-opened:

function scene:enterScene(event)
 local group = self.view

 local width, height = display.contentWidth, display.contentHeight
 self.Entry = native.newTextField(width * 0.075, height * 0.1, width
* 0.85, height * 0.66)
end

-- Called when scene is about to move offscreen:
function scene:exitScene(event)	
 self.Entry:removeSelf()
 self.Entry = nil
end

Processing the user input
Native text objects work more closely with the event model, dispatching events onto the text
object. These events have the name userInput and update their listeners about several
sorts of events, such as when the editor or keyboard appears, when the text has changed,
when the user has hit Enter, or when the keyboard has been closed, which is usually
interpreted as a cue to process whatever the box contains. Listeners can use these triggers to
perform complex tasks like auto-fill, but in our case, we're only interested in submission.

1.	 We'll start by registering the scene object as a listener on the text box:

 self.Entry = native.newTextField(width * 0.075, height * 0.1,
width * 0.85, height * 0.66)
 self.Entry:addEventListener('userInput', self)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

111

2.	 We'll add a function to the scene object to process the events sent to its listeners.
We're interested in two specific event actions, submitted, which indicates that the
user has hit a button like done or Enter, and ended, which indicates that the text
box is no longer receiving input; either the keyboard has been hidden or a different
text field is now in charge of input:

local scene = storyboard.newScene()

function scene:userInput(event)
 if event.phase == 'submitted' then
 native.setKeyboardFocus(nil)
 elseif event.phase == 'ended' then
 end
end

-- Called when the scene's view does not exist:
function scene:createScene(event)

3.	 When the box is submitted, we'll just remove focus from it, hiding the keyboard and
triggering the other event, where we'll do the actual work:

function scene:userInput(event)
 if event.phase == 'submitted' then
 native.setKeyboardFocus(nil)
 elseif event.phase == 'ended' then
 local originalText = event.target.text
 -- process translation
 end
end

4.	 When the input is complete, we'll want to process it. To do that, we need a
translator engine that we can make the request of. To create one of those, we need
authorization info to contact the translation service. Move up to the top of the file,
after the storyboard calls, and add two new required calls:

local scene = storyboard.newScene()

local credentials = require "credentials"
local translation = require "translation"

function scene:userInput(event)

5.	 Pass the credentials to the factory to create a translator:

local credentials = require "credentials"
local translation = require "translation"

local translator = translation.microsoft(credentials.id,
credentials.secret)

function scene:userInput(event)

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

112

6.	 Now, step back to the scene:userInput function. Remember that the translator
returns true to indicate that it's started processing your request, or false to show
that it was busy and couldn't take your request at this time. We'll use this to provide
user feedback:

 elseif event.phase == 'ended' then
 local originalText = event.target.text
 if translator(originalText, 'en', 'ja', output) then
 native.setActivityIndicator(true)
 end
 end

7.	 The activity indicator is a system-dependent signal that tells the user that the
system is busy and their actions can't be processed at the moment. While it's visible,
Corona ignores user events like touches. On iOS, it looks like a spinning spokes
pattern that fades its way around the circle. Also notice that we call the translator
with an argument called output. This needs to be the callback function that will
process the translated text when the translation is finished. Frame it in before the
scene:userInput function:

local translator = translation.microsoft(credentials.id,
credentials.secret)

local function output(event)
end

function scene:userInput(event)

8.	 The first thing it needs to do is dismiss the activity indicator, to tell the user that the
translation is done and to tell the system that user input can be accepted again:

local function output(event)
 native.setActivityIndicator(false)
end

9.	 The result display screen expects an array of strings, so it creates one:

local function output(event)
 native.setActivityIndicator(false)
 local texts = {event.source, event.result}
 displayResults(texts)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

113

10.	 Finally, it calls a function to pass this array to the result screen. This function is pretty
simple and we probably wouldn't make a separate function for it except that we'll
need it again in the next section:

local translator = translation.microsoft(credentials.id,
credentials.secret)

local function displayResults(texts)
 storyboard.gotoScene("result", {effect = 'slideLeft'; params =
texts })
end

local function output(event)

Tying the pieces together
Save entry.lua and open main.lua. It should still contain the template text that gets
added when Corona creates a new project for you. Let's start by setting the status bar
to the light appearance typical of productivity apps:

display.setStatusBar(display.DefaultStatusBar)

local storyboard = require "storyboard"
storyboard.gotoScene("scenetemplate")

Interestingly, display.DefaultStatusBar is frequently not
the status bar that apps display by default. Many devices default
to showing display.TranslucentStatusBar.

Now, make sure that the app starts by displaying the input screen:

local storyboard = require "storyboard"
storyboard.gotoScene("entry")

At this point, you should be able to test the app in the simulator or on your device. We have
only one part left to make sure that the app is fully functional and efficient.

What did we do?
We created a view that uses built-in operating facilities to easily collect a string of text
from the user. We created a translation engine that authenticates with our app's unique
passcodes and used it to obtain translated text. We used a familiar, well-understood
interface element to tell the user to wait until we received the translation back and
forwarded it to our display view.

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

114

Maintaining a history
To help the user with common phrases and save bandwidth and translation allowance, the
app will store a history of requested translations and their results. We'll give the user the
option to view them, and use them to avoid duplicate network requests if the user enters
text that has already been translated.

Getting ready
We'll store the history file in the app's Documents folder, which sync software generally
backs up to the user's computer. Each line will be a JSON-encoded copy of the arrays of
strings that holds the original text and the translation.

Open the main.lua file in the TranslationBuddy folder, if you don't already have it open
from the previous task.

Getting on with it
The history view and the entry view both need access to the history file, so it's important
for them to agree on its location. Lua doesn't have symbolic constants, but we can create a
global variable and never change it; both modules can then share it as a common file path.

1.	 Near the top of main.lua, before the storyboard calls, add a line to define that
location, in the directory that gets backed up by sync software:

display.setStatusBar(display.DefaultStatusBar)

PATH = system.pathForFile("translation.history", system.
DocumentsDirectory)

local storyboard = require "storyboard"

2.	 Touch the file path to make sure that the file exists. We don't want to use the file at
this time, so we close it as soon as we open it:

PATH = system.pathForFile("translation.history", system.
DocumentsDirectory)
io.open(PATH, 'a')
 :close()

local storyboard = require "storyboard"

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

115

Opening a file in append mode (that's what the 'a' indicates)
is the safest way to guarantee that the file exists, because it will
create an empty file if there wasn't one, but it will not overwrite or
erase the contents of an existing file, which write mode (indicated
with a 'w') will.

3.	 Now we can leave main.lua for the moment and modify entry.lua to use
this file as a cache. Find the scene:userInput function; if we already have the
translation saved, there's no need to send it to the translation engine. We'll look
at each line, and see if its array starts with the entered text:

 local originalText = event.target.text
 for line in io.lines(PATH) do
 local history = json.decode(line)
 if history[1] == originalText then
 displayResults(history)
 return
 end
 end
 if translator(originalText, 'en', 'ja', output) then

If we find such an array, which indicates that the text was translated before, we'll
simply proceed to the results screen using that saved text, and bail out of the
function without calling the translator.

4.	 For this to work, we also need to save anything we do get from the translator and
add it to the file, so we'll have it next time. We'll do this in the output function that
handles translation results:

 storyboard.gotoScene("result", {effect = 'slideLeft'; params =
texts })
end

local function output(event)
 native.setActivityIndicator(false)
 local texts = {event.source, event.result}
 save(texts, PATH)
 displayResults(texts)
end

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

116

5.	 Since the translator is never even called unless the requested text was not in the file,
we can simply append it to the end, along with its translation:

local translator = translation.microsoft(credentials.id,
credentials.secret)

local function save(entry, path)
 local log = io.open(path, 'a')
 log:write(json.encode(entry), '\n')
 log:close()
end

local function displayResults(texts)

Viewing the history
At this point, the entry module is silently caching translation results in order to save
service costs. However, the design also calls for the app to let the user view this history
and review previous translations. This calls for another scene. Save entry.lua, and copy
scenetemplate.lua into a new scene file, history.lua. Open this file in your
preferred editor.

The history view will use a table view to display the English lines that were sent to the
translator. Like the result module, it will create the table fresh each time the scene is
launched, but it's even simpler; it needs no extra controls, so no stratum is required:

function scene:enterScene(event)
 local group = self.view

 self.History = widget.newTableView{
 id = "translation_history";
 width = display.contentWidth, height = display.contentHeight;
 topPadding = display.statusBarHeight, bottomPadding = 50;
 }
 group:insert(self.History)
end

-- Called when scene is about to move offscreen:
function scene:didExitScene(event)
 self.History:removeSelf()
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

117

Similarly to the result module, the history will use an array table to store all the translation
requests to display or execute. However, it will use single-line text objects to display just
the first part of the English submissions, and each entry will be based on one line in the
history file:

 local group = self.view

 self.Data = {}
 local function displayHistory(event)
 display.newText(event.view, self.Data[event.row.index][1], 4,
event.row.height * 0.125, native.systemFont, event.row.height * 0.75)
 :setTextColor(0x00)
 end
 self.History = widget.newTableView{
 id = "translation_history";
 width = display.contentWidth, height = display.contentHeight;
 topPadding = display.statusBarHeight, bottomPadding = 50;
 onRowRender = displayHistory;
 }

The table will fill in this array with lines from a text file:

 group:insert(self.History)
 for line in io.lines(PATH) do
 table.insert(self.Data, (json.decode(line)))
 self.History:insertRow{
 height = display.contentHeight * 1/12;
 }
 end
end

Unlike the result view, rows in this table should be selectable to load their contents in the
result view. Table views make this easy by taking an onRowTouch handler that processes
touch events on the rows and notifies them when they've been pressed, released, or swiped.
We're only interested in releases in this case.

The function is basically a copy of the displayResults utility function in entry.lua:

 :setTextColor(0x00)
 end
 local function loadHistory(event)
 if event.phase == 'release' then
 storyboard.gotoScene("result", {effect = 'slideLeft'; params =
self.Data[event.row.index]})
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

118

 self.History = widget.newTableView{
 id = "translation_history";
 width = display.contentWidth, height = display.contentHeight;
 topPadding = display.statusBarHeight, bottomPadding = 50;
 onRowRender = displayHistory;
 onRowTouch = loadHistory;
 }

Enabling both views
We want users to be able to request translations through either the new entry or the history
view; there's an established convention for this in mobile apps, and Corona provides support
for it through the tab bar widget. A tab bar usually takes up the bottom of the screen and
has a few icons, often with text labels, that can be tapped to switch between different pages
of an app's interface. Like the other widgets, the tab bar is highly customizable, but its
default appearance is frequently quite adequate, so the only things you have to specify are
where to put it and what buttons to put on it.

1.	 First, reopen main.lua and load the widget module:

io.open(PATH, 'a')
 :close()

local widget = require "widget"

local storyboard = require "storyboard"

2.	 Visual elements that are loaded after the storyboard is initialized will float over the
shared layer that storyboard scenes are loaded into, so we'll create the widget
at the bottom of the file:

storyboard.gotoScene("entry")

widget.newTabBar{
 top = display.contentHeight - 50;
 buttons = {
 {
 id = "entry";
 label = "Translate";
 width = 32, height = 32;
 defaultFile = "presentation/translate-up.png", overFile =
"presentation/translate-down.png";
 onPress = pickScene;
 selected = true;
 },
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

119

The id field for a button can be any Lua value you care to use, and I use the names
of the scenes they will load to keep the code simple. The label field is a string
that will be displayed under the icon for the tab. It can be blank, but leaving icons
unlabeled makes them much less useful; very few are as immediately intuitive
as their creators believe. The width and height fields are mandatory in current
versions of the widget API, and just specify the dimensions of the button icon. The
defaultFile and overFile fields specify the icons to be used for the tab when it
is selected (over) or deselected (default). The selected value should only be set on
one button, and indicates that that button should use its up image when the bar is
loaded. The onPress field should be a function that handles presses on the tab; it
can be shared between different buttons if they have some way for the function to
distinguish them (like the id value).

3.	 The second button will be very similar:

 buttons = {
 {
 id = "entry";
 label = "Translate";
 up = "presentation/translate-up.png", down = "presentation/
translate-down.png";
 onPress = pickScene;
 selected = true;
 },
 {
 id = "history";
 label = "History";
 width = 32, height = 32;
 defaultFile = "presentation/history-down.png", overFile =
"presentation/history-up.png";
 onPress = pickScene;
 },
 }

4.	 Finally, they just need the function that will launch their appropriate scenes. Fill it in
just before the widget is created:

storyboard.gotoScene("entry")

local function pickScene(event)
	 storyboard.gotoScene(event.target._id)
end

widget.newTabBar{

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

120

For reasons that aren't clear, current versions of Corona store
the IDs assigned to tab bar buttons in the _id field rather
than id as previous versions did. This might change in a future
version of Corona.

Now you can load the app and switch between the two views. However, unless your history
only consists of very small phrases, you may notice an odd glitch when you select a sentence
from the history.

Keeping the effects clean
To keep the table short, the history view displays only the beginning of each English sentence
in a single-line text object. However, the rest of each text is still hanging off the right edge of
the screen. This isn't an issue until the scene slides left to make room for the result display,
dragging the extra text across the view. We'll fix this with a mask.

The file presentation/masking-frame.png is pretty simple. Since the screen size is
specified in the config.lua file as being 320 x 480, the mask file consists of a white area
(which will reveal everything in its target object normally) surrounded by a 4 pixel black
border on all sides. Black prevents anything in the target object from showing up at that spot.
So, using this mask crops out everything around the edges of the target screen. We'll load the
mask with the history module, and attach the mask to the view whenever it's created:

local json = require "json"

local frame = graphics.newMask("presentation/masking-frame.png")

-- Called when the scene's view does not exist:
function scene:createScene(event)
 local group = self.view

 group:setMask(frame)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 3

121

The mask can be positioned on its target using the maskX and maskY values, which specify
where to put the center of the mask compared to the masked object's local origin. This is
usually the center of the object, but for groups, it's whatever point is defined as the group's
point (0, 0). That's frequently the top-left corner, depending on where you placed the group's
children inside it. So, we'll move the mask to line up with the center of the screen:

function scene:createScene(event)
 local group = self.view

 group:setMask(frame)
 group.maskX, group.maskY = display.contentCenterX, display.
contentCenterY
end

If you try it again, you should not see any more spill-over from the history view into the
results as they slide in!

What did we do?
We built a scene that uses a slightly more complex table view. We populated it with data
from a file rather than a table, and made it respond to touch actions to select the specified
entries. We also created another commonly-used, familiar user interface object to switch
between the two related tasks the app can perform; viewing old translations and viewing
new translations.

What else do I need to know?
When creating tab bar icons, it's common to leave any part that might be considered
the background of the icon, transparent so that it can be superimposed over any bar or
background. It's also typical to make some distinctive difference between the selected
and unselected forms of an icon, such as grayscale versus color, or flat versus embossed.

To work properly with the graphics rendering engine, images used as masks must have a
height and width that are multiples of four, and they should have a border all the way around
the edges of black pixels, at least 3 pixels thick. Grays can also be used to make the masked
target partially transparent. We'll explore masks in detail in Project 6, Predation

www.it-ebooks.info

http://www.it-ebooks.info/

TranslationBuddy – Fast App Development for any Field

122

Game over – wrapping it up
At this point, you've learned how to make Corona log on to a remote service and process the
results, how to make an extended task pause and resume itself with new input from the main
process, and how to produce a familiar, basic user interface with very little work. The ability
to produce straightforward, frontend apps like this can be very useful as a freelancer, making
it easy to take requests from business clients, who often pay better than game designers. The
following screenshot shows an example of our app:

Can you take the HEAT? The Hotshot
Challenge

Depending on whether you're more practical or entertainment-minded, we have two
recommendations for the Hotshot Challenge on this project. We made sure that the result
display module isn't limited to two strings, so both challenges center around making use
of that.

For one option, have the entry module obtain translations of the text in several different
languages, rather than just one, and present them all to the user. If you're feeling ambitious,
put the flag for each language's country next to its text in the results view!

If you're feeling a little more whimsical, develop the app to work more like the site
translationparty.com; have it translate the sentence into another language, then
translate the result back into the original language, and see how much it's changed. Do
this a few times back and forth and see what it turns into!

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4
Deep Black –

Processing Mobile
Device Input

Games developed for traditional platforms have used a variety of input schemes to let the
player control the game. These have included joysticks, buttons, keyboards, and pointing
devices such as mice. On tablets, smartphones, and other mobile devices, many of these
input forms are missing or awkward; keyboards are on-screen representations with small
buttons, or extra devices that have to be carried separately and physical buttons are few.
However, most of these mobile devices also have some new inputs such as motion and
tilt sensors. Designing games to make the most of these capabilities also requires you to
understand how to read them, which is easy, and how to interpret that input, which is
a little harder.

What do we build?
Deep Black will be a game in the style of Asteroids, where you have to dodge flying space
rocks while using your ship's laser to whittle them down to size. Instead of using left turn,
right turn, and thrust buttons, the player will control the ship's direction and motion by
tilting the device and by shaking it to use their hyperspace jump. Any touch on the screen
will fire the ship's weapon as long as it is being held down.

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

124

What does it do?
The game will model the player's spaceship and asteroids flying around. It will allow the
player to launch laser shots, which will break up the rocks when they collide, accumulating
points for the player. The game will also wrap the player's ship and bullets, as well as the
asteroids, around to the other side of the screen as they move over the edge. The game will
control the player's motion according to the angle at which the device is being held. The
degree to which the tilt is, in line with the front-back axis of the player's ship will accelerate
it forward or backward; the degree to which the tilt is perpendicular to the ship's angle will
turn the ship to one side or the other. This means that the input will dynamically change
meaning as the ship adjusts to it.

This will also be our first game project to use lives for the player to determine game progress.

Why is it great?
This will be our first project that uses Corona's physics engine. This will save us most of the
trouble of controlling objects' speed, moving them around the screen, and detecting when
they bump into each other. We'll also see how to use the power of the physics library to
choose which objects can or can't bump into each other; for instance, in asteroids-style
games, the asteroids don't smash when they pass over each other.

Corona's physics engine uses Erin Catto's popular Box2D free collision
modeling library, and sometimes you can combine info from the Box2D
online manual (found at http://www.box2d.org/manual.html)
with Corona's physics documentation to produce more detailed answers
to your tough physics questions.

We'll discuss how to collect tilt input from the device's accelerometers, and how to use it
to determine the angles at which the device is being held. We'll compare these angles
to the angle at which the player's ship is positioned in order to separate it into turn and
thrust controls.

How are we going to do it?
For this project, we'll review the design, rather than creating it. While an indie programmer
will often be designing their own games and then coding from their designs, any programmer
at a studio is likely to be coding from a design document given to them by a designer or
design team.

ff Creating the player and receiving events

ff Processing raw physical events

ff Bridging physical events to game events

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

125

ff Creating the world rules

ff Creating enemies and controlling collisions

ff Responding to fire controls and creating bullets

ff Responding to collisions and handling lives

ff Recognizing kills and recording score

What do I need to get started?
First, read over the design.txt file and consider how to solve some of the problems
presented there:

ff Lots of things need to move continually, some under constant speed (rocks and
bullets), others under adjustable acceleration (the player ship). Moreover, we
need to recognize when these things come into contact, so that bullets can split or
destroy rocks and rocks can destroy the spaceship. The physics module addresses
all of these needs.

ff The game needs to recognize seven different inputs from the player in four
categories: turn left, turn right, accelerate forward, accelerate backward, start firing,
stop firing, and jump through hyperspace. Five of these inputs will come from the
accelerometer: four from tilt, and one from shaking. The other two will come from
the touch screen.

ff An interface layer will be needed to display the current score and available lives.
Lives are easy to display with a series of repeated images, but the score display is
more naturally handled as numeric text.

Creating the player and receiving
events

The first thing to do is to create the player ship object, both visually and with a physics
presence. That will require turning physics on in the scene so that the player's ship can be
simulated. Once the object appears, we'll specify how it will respond to certain inputs from
the player, in abstract terms; events which specifically describe the desired actions. This
will get us ready to supply those events based on physical events produced by the user's
handling of the device.

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

126

Getting ready
Create a new folder called Deep Black, and copy the contents of the version 0 folder
from the Project 4 project pack directory: the build.settings and config.lua files
that go with any typical Corona project; the visuals.lua and explosion.lua library
files that we used in Project 1, Bat Swat – an Introduction to App Event Cycles; the sprite,
background, effect, and image folders and the art files in them; the main.lua file; and
the splash.lua and game.lua files. This version of game.lua is a bare scene file, a copy
of the scenetemplate.lua file provided by Corona in new scene-based projects. The step
of copying this file into new scenes should be familiar from previous projects.

The build.settings file included in this folder is set to launch our game in
landscape orientation.

Getting on with it
We'll start by creating an almost blank scene that contains just the player. Open the game.
lua file and find the createScene event handler.

Creating a placeholder world
We'll start by creating a plain colored background. We'll use a color that matches the overall
look of the background image we'll use later:

function scene:createScene(event)
 local group = self.view

 display.newRect(group, 0, 0, display.contentWidth, display.
contentHeight)
 :setFillColor(0x5E, 0x3F, 0x6B)
end

We'll create a single group to hold any objects that are meaningful in the world (later, we'll
replace this with a full-fledged World object):

 :setFillColor(0x5E, 0x3F, 0x6B)
 self.World = display.newGroup()
 group:insert(self.World)
end

Because an asteroids game needs a certain amount of space, our sprites are a bit big
compared to the screen. As a quick fix, we'll make the world twice as big by scaling it down:

 group:insert(self.World)
 self.World.xScale, self.World.yScale = 0.5, 0.5
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

127

For release, you'll typically want to fix up your sprites for the
target resolution; they'll look crisper. But when you're in early
development, short-term solutions like this one can keep you
moving and get you on to the next step right away.

Preparing the physics simulation
We'll be using physics to move ships and bullets around, so go to the beginning of the file
and perform the following steps:

1.	 Load the required module:

local storyboard = require("storyboard")
local scene = storyboard.newScene()

local physics = require "physics"

2.	 The setup of a new game will be done in the willEnterScene event for the
game scene; this event is the last warning we get before the scene starts to
become visible:

 self.World.xScale, self.World.yScale = 0.5, 0.5
end

function scene:willEnterScene(event)
end

function scene:enterScene(event)

3.	 Because the new scene has no guarantees about anything that might have been
using the physics environment before, the first thing it will do on starting is wipe
any previous physics simulation:

function scene:willEnterScene(event)
 physics.stop()
end

The first time you start the game scene, an error prints out in
the terminal that physics couldn't be stopped because it wasn't
started yet. You can safely ignore this message; it won't be
visible to your users or affect the play experience.

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

128

4.	 Once we know that the old physics environment, if any, has been cleared, we can set
up a new one so that we can use our sprites as physics objects. We'll pause it right
away so that the simulation won't run physics during any opening transition:

function scene:willEnterScene(event)
 physics.stop()
 physics.start()
 physics.pause()
end

5.	 Since this is a top-down game with no gravity, we configure that fact on the physics
environment before proceeding:

 physics.start()
 physics.pause()
 physics.setGravity(0, 0)
end

6.	 Finally, once the scene is fully loaded, we'll start the physics simulation in response
to the scene's enterScene event:

function scene:enterScene(event)
 physics.start()
end

Setting up the ship object
First, we'll specify the sprite and physics information for the player's ship. Create a new file in
your project folder, spaceship.lua, and open it for editing.

1.	 This module will be responsible for adding physics to the ship sprite, so we'll require
that module:

local physics = require "physics"

2.	 The ship will be a sprite with four different views contained in one image sheet.
We'll start by specifying the basic form of the image sheet:

local physics = require "physics"

local sheet = graphics.newImageSheet("sprite/player.png",
 {
 sheetContentWidth = 80, sheetContentHeight = 98;
 }
)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

129

Unlike our previous image sheets, this one is not uniform in its layout, so we specify
the positions of the four frames individually:

local sheet = graphics.newImageSheet("sprite/player.png",
 {
 frames = {
 {
 x = 41, y = 1;
 width = 38, height = 50;
 },
 {
 x = 1, y = 1;
 width = 38, height = 50;
 },
 {
 x = 1, y = 52;
 width = 39, height = 45;
 },
 {
 x = 40, y = 52;
 width = 39, height = 45;
 },
 };
 sheetContentWidth = 80, sheetContentHeight = 98;

3.	 To make a sprite from the sheet, we need a sequence definition, which explains
which frames are used for which purposes. In this case, the sprite is not actually
animated, so each sequence is only one frame long:

 sheetContentWidth = 80, sheetContentHeight = 98;
 }
)

local sequences = {
 {
 name = 'level';
 start = 1, count = 1;
 };
 {
 name = 'left';
 start = 4, count = 1;
 };
 {
 name = 'right';
 start = 3, count = 1;

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

130

 };
 {
 name = 'damaged';
 start = 2, count = 1;
 };
}

4.	 This lets us fill in the basic function that will generate a sprite from these definitions:

 start = 2, count = 1;
 };
}

return function(parent)
 local self = display.newSprite(parent, sheet, sequences)
 return self
end

The default shape for a new physics body on an object is a rectangle with the
dimensions of the object's bounding box; using this would lead to frustrated
players when rocks appear to collide with the empty space around the ship's
corners and destroy it. We'll define an octagonal shape that comes closer to the
ship's visible shape.

 };
}

local body = {
 shape = {-20, -3; -15, -23; 2, -25; 17, -4; 17, 4; 2, 25; -15,
23; -20, 3};
}

return function(parent)

You can define arbitrary shapes as an array of values, alternating
between x and y values. There are two rules; the points should be
defined in clockwise order (given that Corona's coordinate system
is upside-down from Box2D's, which specifies counter-clockwise
points), and the shape should be convex, with no places where a
point is dimpled in between two of its neighbors.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

131

5.	 We'll specify this shape definition for the body when we add it to the sprite:

return function(parent)
 local self = display.newSprite(parent, sheet, sequences)
 physics.addBody(self, "dynamic", body)
 return self
end

Attaching behaviors to the player ship
Now that we have the basic physical and visual definition of a ship, we need to define how
it responds to certain game events. To keep our code modular and easy to modify later, we'll
do this in a separate file. Save spaceship.lua, create a new empty file player.lua, and
open it.

1.	 The player constructor function will take arguments indicating the event source that
the player will listen to for input events, as well as the world group that the player
object will belong to, and where to place the player ship in that world:

return function(input, world, x, y)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

132

2.	 It will construct a spaceship object in that world, and move it to the indicated point:

return function(input, world, x, y)
 local self = require "spaceship" (world)
 self.x, self.y = x, y
 return self
end

3.	 Because the sprite image is pointed right, but we want it pointed up, we'll rotate it
to face that direction. Setting isFixedRotation may seem counterintuitive for a
ship that will spin around, but this only specifies to the physics engine that it is not
allowed to turn the object when we accelerate it:

 self.x, self.y = x, y
 self.rotation = -90
 self.isFixedRotation = true
 return self

In games where sprites rotate freely, it's often helpful to create the
image files so that the sprites face right by default. This means that
we can easily use the rotation angle of the player sprite to calculate
things like which direction a bullet fired by the player should travel.
If the sprite image faced a different way, we would have to correct
the angles each time we made a calculation.

4.	 We'll register the player to receive commands and other events that it needs from
the input object, as well as detect time passing in the world:

 self.isFixedRotation = true
 world:addEventListener('clock', self)
 input:addEventListener('Thrust', self)
 input:addEventListener('Yaw', self)
 input:addEventListener('Fire', self)
 input:addEventListener('Jump', self)
 return self

5.	 Whenever time passes in the game (clock events), we'll apply any specified thrust
force to the player ship, and rotate it by any input amount. We'll preset these values
to 0:

 self.rotation = -90
 self.Burn, self.Turn = 0.0, 0.0
 function self:clock(event)
 if self.Burn ~= 0 then
 local angle = math.rad(self.rotation)
 self:applyForce(self.Burn * math.cos(angle), self.Burn *
math.sin(angle), self.x, self.y)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

133

 end
 self:rotate(self.Turn * event.delta / 1000)
 end
 input:addEventListener('clock', self)

6.	 To keep gameplay sane, the design specifies a top speed for the player ship, so we'll
enforce that:

 self.isFixedRotation = true
 self.TopSpeed = 400
 self.Burn, self.Turn = 0.0, 0.0
 function self:clock(event)
 local dX, dY = self:getLinearVelocity()
 if math.pythagorean(dX, dY) > self.TopSpeed then
 local angle = math.atan2(dY, dX)
 self:setLinearVelocity(self.TopSpeed * math.cos(angle),
self.TopSpeed * math.sin(angle))
 end
 if self.Burn ~= 0 then

7.	 When the input source provides new input values for the thrust on the ship or
turning angle, based on the tilt of the device, we have to capture those values so
that they can be applied by the clock processor:

 input:addEventListener('clock', self)
 function self:Thrust(event)
 self.Burn = event.value
 end
 input:addEventListener('Thrust', self)
 function self:Yaw(event)
 self.Turn = event.value
 end
 input:addEventListener('Yaw', self)

8.	 And finally, we also need to set the player sprite to correctly display its tilted
animations for left and right turns:

 function self:Yaw(event)
 local direction = 'level'
 if event.value < 0 then
 direction = 'left'
 elseif event.value > 0 then
 direction = 'right'
 end
 self:setSequence(direction)
 self.Turn = event.value
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

134

Adding a library function
The pythagorean function, which calculates total distance between two points based on
their x and y distances, isn't part of the math library as pre-loaded, so we'll require it at the
start of the player module.

require "math.pythagorean"

return function(input, world, x, y)
 local self = require "spaceship" (world)

Now we just need to provide that module. Lua automatically assumes that prefixes in
package names separated by periods correspond to folder names in your project, so after
you save player.lua, create a folder math in your project directory and make a new
empty file in it called pythagorean.lua. Open this file and frame in the addition of
a new function to the math module:

module 'math'

function pythagorean(a, b)
end

This function is fairly simple; it applies the a² + b² = c² logic of the Pythagorean theorem to
find the total distance between two points:

function pythagorean(a, b)
 return sqrt(a * a + b * b)
end

Given how small this function is, why is it in a module by itself? Mostly
because it's a simple, abstract function which isn't naturally a part of one
of the other core elements of the game. Several of the game elements
can use it, so redefining it for each one doesn't make sense. While it
could simply be a module of its own at the top level of the project, it's
clearly math-related, so it makes sense to add it to the standard module.

What did we do?
At this point, you should be able to run the code, although all it will do is show you a ship on
a purple background. Right now nothing is sending the events that it's waiting to respond to;
addressing that will be our next task.

So far we've established the basics of an environment for our player object to occupy,
constructed a sprite with a physics identity, and prepped it to receive control events.
We've also created a general-purpose helper function that can be reused in other
modules or projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

135

Processing raw physical events
Accelerometer events are complex, reporting three main pieces of information—tilt
vector, motion vector, and whether or not the event has been identified as a shake of the
device—contained in seven different fields. However, we're interested in only two and
a limited aspect of those at that; shake recognition, and the angle of the device to the
horizontal (actually two angles; the side-to-side and front-to-back tilts). So we'll attach
a listener that processes these events on Runtime and sends simplified events with the
information in the form we want to deal with.

Getting ready
A little more explanation is in order for this task. The actual math required to get the desired
information (the two angles by which the device is off the horizontal plane) only takes two
lines of code, but understanding why this math achieves the desired result is less simple.

X-

Y-

X+

Z-

Z+

Y+

zGravity
xGravity

Gravity

event

yGravity

event.zGravity

Z+

Y+Y-

Z-

event

yGravity

event.xGravity

Y-

Y+

X+

X-

event.xGravity

event.zGravity

X+X-

Z+

Z-

Corona represents gravity in three vectors; a direction and magnitude in three dimensions,
broken into its three Cartesian coordinates. Imagine an arrow pointing from the middle of
your phone or tablet towards the focus of gravity, that is, the center of the Earth.

If you're not on the Earth, the arrow will be pointing somewhere
else, and might be longer or shorter. This is probably not a concern
for most of our readers.

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

136

The coordinates of the end of the arrow are provided in the event as if the device were lying
flat at the center of the universe; that is, even though—from the outside—we see the Earth
as standing still and the device as turning over, from the accelerometer's viewpoint, the x, y,
and z axes are fixed to the device and the arrow pointing out gravity is rotating across them.

While the exact length of the arrow may vary—depending on where you are, what device
you're using, and from moment to moment—most of the time, we're only interested in its
direction. This can be determined from the proportions of the various vector components,
regardless of the total vector length; since they're all perpendicular, applying trigonometry is
fairly easy. We can look at any two components as being the opposite and adjacent sides of
the vector's angle in that plane. The opposite side from a corner of a right triangle divided by
the adjacent side to that corner gives you the tangent of the angle of that corner. So, you can
feed the ratio of the zGravity (opposite) and yGravity (adjacent) components to math.
atan (or more often, give the two separate numbers to math.atan2, which is easier and
gives more reliable results) to determine the angle by which the device is tipped front-to-back
off the horizontal. We can replace yGravity with xGravity to determine the sideways tilt.

Getting on with it
Create a new file, input.lua, in the top level of your project directory, and open it
for editing.

1.	 Create the skeleton of a new listener function, and register it to respond to
accelerometer events on the Runtime target:

local function processor(event)
end

Runtime:addEventListener('accelerometer', processor)

2.	 The code will calculate the angles between the device's z axis and the vertical
according to gravity, along the device's x and y axes, and the results will be posted
back to Runtime in a new event named Tilt:

local function processor(event)
 local theta = math.atan2(event.yGravity, -event.zGravity)
 local phi = math.atan2(event.xGravity, -event.zGravity)
 Runtime:dispatchEvent{name='Tilt'; lateral = phi, vertical =
theta}
end

3.	 The listener will also post a custom event called Shake if the device is being shaken.
Exactly what this means is up to the host operating system and hardware.

 Runtime:dispatchEvent{name='Tilt'; lateral = phi, vertical =
theta}
 if event.isShake then

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

137

 Runtime:dispatchEvent{name = 'Shake'}
 end
end

4.	 As a last courtesy, the module will return this new listener if the host code wants
to be able to turn it on and off (we won't need to in this project):

Runtime:addEventListener('accelerometer', processor)

return processor

5.	 Save input.lua. In order to have this listener loaded and ready in the rest of our
code, open main.lua and load the input module at the top:

display.setStatusBar(display.HiddenStatusBar)

require "input"

local storyboard = require "storyboard"

What did we do?
We created an adapter layer to present the information provided by Corona in a form
more easily usable to us. This very simple code extension is flexible enough to be reused
in other projects.

Bridging physical events to game
events

We now have physical events being passed in a very understandable format. We have a little
bit of work left to do to translate these events (which are still specifically about the physical
condition of the device) into commands for the player.

Getting ready
The math in this section is almost as abstract as the previous task, because the design
specifies that the ship's acceleration is going to be based on how strongly the device's tilt
aligns with the ship's facing direction, and the speed with which it turns will be based on
how much the direction of tilt runs across the ship's facing.

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

138

Getting on with it
Save any other open files and open game.lua.

1.	 Make sure the pythagorean distance module is loaded; we'll need it in this file
as well:

local scene = storyboard.newScene()

require "math.pythagorean"

local physics = require "physics"

2.	 We'll start by explaining how Tilt events will be translated into Thrust and Yaw
events on the game scene, before the event handlers:

local physics = require "physics"

function scene:Tilt(event)
end

function scene:createScene(event)

3.	 We'll normalize the angles into range from -1 to +1 by using math.sin, then we'll
determine the angle and length of the 2D vector they create using familiar methods.

function scene:Tilt(event)
 local lateral, vertical = math.sin(event.lateral), math.
sin(event.vertical)
 local theta, r = -math.atan2(lateral, -vertical), math.
pythagorean(lateral, vertical)
end

Because we're using math.sin, we're also moving the angles
onto a quadratic scale as the tilt increases. This can often
produce perfectly acceptable results, especially since most
people playing tilt-based games don't tilt the device very far.

4.	 Since we subtract the player's current rotation from the specified angle, we can
redefine the lateral and vertical values as being across the direction of facing and
along the direction of facing:

 local theta, r = -math.atan2(lateral, -vertical), math.
pythagorean(lateral, vertical)
 theta = theta - math.rad(self.Player.rotation)
 lateral, vertical = math.sin(theta) * r, math.cos(theta) * r
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

139

5.	 The other thing we want to do is clip small values for both inputs, so that the player
has some margin where they're not turning or accelerating, even if they can't hold
the device exactly flat (which is nearly impossible):

local threshold = 1/6

function scene:Tilt(event)
 local lateral, vertical = math.sin(event.lateral), math.
sin(event.vertical)
 local theta, r = -math.atan2(lateral, -vertical), math.
pythagorean(lateral, vertical)
 theta = theta - math.rad(self.Player.rotation)
 lateral, vertical = math.sin(theta) * r, math.cos(theta) * r
 if math.abs(lateral) < threshold then lateral = 0 end
 if math.abs(vertical) < threshold then vertical = 0 end
end

6.	 Once this is done, we can submit the two values for Thrust and Yaw as events for
the player object to catch:

 if math.abs(vertical) < threshold then vertical = 0 end
 self:dispatchEvent{name='Thrust'; value = vertical * 1/3}
 self:dispatchEvent{name='Yaw'; value = lateral * 64}
end

7.	 Then all we need to do is to set the scene to receive Tilt events whenever the scene
is fully loaded, and stop receiving them when the scene leaves the foreground:

function scene:enterScene(event)
 physics.start()
 Runtime:addEventListener('Tilt', self)
end

function scene:exitScene(event)
 Runtime:removeEventListener('Tilt', self)
end

Tracking time passage
There are two challenges with running game objects directly of﻿f of the enterFrame event
sent to Runtime:

ff It lists only the time right before each frame, without indicating how much time has
actually passed.

ff If objects that want to update themselves all register individually for enterFrame
events of Runtime, then if you want to do something like pause the game, you have
to find each of these objects individually and disengage them, or build each listener
to check some kind of common isPaused value.

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

140

We'll use a custom event, clock, to solve both of these things. The listener for this event
will track the time of consecutive enterFrames to include the elapsed duration between
them. Because any objects that need to know about time passing in the game will listen to
the game scene itself for these clock events, the game scene itself can be responsible for
turning them off by disconnecting itself from the Runtime events that drive them. We can
turn only one listener on and off instead of an indefinite number.

The player object is already programmed to listen for these events, so we need to create
the bridge that will send them.

1.	 First, we'll specify how the scene will respond to enterFrame events when it's
listening to them:

local physics = require "physics"

local clock, previous = 0, system.getTimer()
function scene:enterFrame(event)
end

local threshold = 1/6

2.	 The listener will compare the time of the current frame to the last time recorded:

function scene:enterFrame(event)
 local elapsed = event.time - previous
end

3.	 It will increment the total accumulated time by the amount elapsed, and record the
current time as the new previous time:

function scene:enterFrame(event)
 local elapsed = event.time - previous
 clock, previous = clock + elapsed, event.time
end

4.	 Next it will post that passage of time to the scene so that any objects that need
to can observe it:

 clock, previous = clock + elapsed, event.time
 self:dispatchEvent{name = "clock"; clock = self, delta =
elapsed, time = clock}
end

5.	 We'll add a function that starts the clock, saving the current time so that the first
frame received has a previous frame time to check against, and register the listener
for enterFrame events:

 self:dispatchEvent{name = "clock"; clock = self, delta =
elapsed, time = clock}
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

141

function scene:Start()
 previous = system.getTimer()
 Runtime:addEventListener('enterFrame', self)
end

local threshold = 1/6

6.	 Another function will stop the clock by discharging any time passed since the last
update and removing the listener:

 Runtime:addEventListener('enterFrame', self)
end

function scene:Stop()
 local elapsed = system.getTimer() - previous
 self:dispatchEvent{name = "clock"; clock = self, delta =
elapsed, time = clock}
 Runtime:removeEventListener('enterFrame', self)
end

local threshold = 1/6

7.	 Because time passes primarily within the world, whenever the scene is running,
the game will respond to clock events by reposting them to the world object:

 Runtime:removeEventListener('enterFrame', self)
end

scene:addEventListener('clock', scene)
function scene:clock(event)
 if self.view then
 self.World:dispatchEvent(event)
 end
end

local threshold = 1 / 6

8.	 Finally, the scene will call these functions when it begins or ends:

function scene:enterScene(event)
 physics.start()
 Runtime:addEventListener('Tilt', self)
 self:Start()
end

-- Called when scene is about to move offscreen:

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

142

function scene:exitScene(event)
 Runtime:removeEventListener('Tilt', self)
 self:Stop()
end

What did we do?
This task has been about interpreting the intended meaning of fundamental events;
converting the angle of the device into instructions for the player object, and controlling
how the passage of time for the device's clock controls the passage of time for the game.

At this point, you should be able to build the project for the device and test how the player
ship moves as you tilt the device in various directions.

Creating the world rules
The world of the game serves three practical functions and one cosmetic one. We will use it
to provide a starry background, to enhance the ambiance of the game, as well as to provide
a reference for the speed and direction of the motions of things in that world. We will
enforce one of the rules from the design; that all objects in the world wrap from one edge
to the opposite edge as they move. We will also allow the world to generate a randomly
chosen point within its own bounds, which we will use for the player's hyperspace faculty.
Finally, the world will encapsulate its own method for removing all mobile objects from itself,
clearing out everything except the background.

Getting ready
Create a new file at the top level of your project, world.lua, but do not open it yet.

Getting on with it
Start by changing the world construction in game.lua to call the module you're about to
create. The world will need to know what target will supply it with events (it will use clock
events to continually enforce some of its rules as the physics engine moves things around).

 display.newRect(group, 0, 0, display.contentWidth, display.
contentHeight)
 :setFillColor(0x5E, 0x3F, 0x6B)
 self.World = require "world" ()
 group:insert(self.World)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

143

Save game.lua, open your new world.lua file, and fill in a function that creates a
new group.

return function()
 local self = display.newGroup()

 self.xScale, self.yScale = 0.5, 0.5
 return self
end

At this point, the code is carrying out the same function that it was doing before we
modularized it.

Filling the visible field
To fill the visible area of the world group, we'll use a pair of nested for loops, one to fill a
single row, the other to fill each row of the screen.

1.	 First, we'll get the bounds of the screen in the new group's local coordinates, so we
know the space we need to cover:

return function()
 local self = display.newGroup()

 self.xScale, self.yScale = 0.5, 0.5
 local xMin, yMin = self:contentToLocal(0, 0)
 local xMax, yMax = self:contentToLocal(display.contentWidth,
display.contentHeight)

 return self
end

2.	 Next, we'll iterate over these dimensions, jumping by the declared size of the
background each time:

 local xMax, yMax = self:contentToLocal(display.contentWidth,
display.contentHeight)

 for x = xMin, xMax, BG_WIDTH do
 for y = yMin, yMax, BG_HEIGHT do
 end
 end

 return self
end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

144

3.	 In order for this to work, we have to specify the size of the background image, which
we'll do at the start of the file:

local BG_WIDTH, BG_HEIGHT = 256, 256

return function()
 local self = display.newGroup()

4.	 Then, it becomes fairly easy to construct the images:

 for y = yMin, yMax, BG_HEIGHT do
 display.newImage(self, "background/starBackground.png", x,
y)
 end

5.	 After the loop, we'll memorize the number of objects used in the group, so that we
know which children are the players, rocks, or bullets:

 display.newImage(self, "background/starBackground.png", x,
y)
 end
 end
 local firstMob = self.numChildren + 1

 return self
end

Managing the world bounds
Now, we'll add two functions to the world object, to wrap objects within it or to select a
random point in it.

1.	 The wrapping will be performed each time the game object updates the clock, which
should happen after each time the physics engine moves things around:

 self:addEventListener('clock', self)
 function self:clock(event)
 end
 return self

2.	 We need to consider each object in the world that can move, which will all be on top
of the tiles we added at the beginning, which threshold we memorized after creating
the background:

 function self:clock(event)
 local width, height = xMax - xMin, yMax - yMin
 for i=firstMob, self.numChildren do
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

145

3.	 We already have the bounds calculated from when the background was filled in, so
it's fairly easy to assess each object's correct position after wrapping; the object's
current position, modulus of the world's width, plus the world's origin:

 for i=firstMob, self.numChildren do
 local child = self[i]
 child.x, child.y = (child.x - xMin) % width + xMin, (child.y
- yMin) % height + yMin
 end

Generating random locations
Since we already have the world's bounds, generating random points is fairly easy. We'll
attach a function to the world that the game can call on demand.

 input:removeEventListener('destroyScene', self)
 end

 function self:Random()
 end
 return self

Lua's math.random format can generate a number in any range of integers if you give it the
smallest and largest allowed values. Since we can't be sure that the group's global bounds
are perfect integers, we'll adjust them toward the center of the range.

 function self:Random()
 return math.random(math.ceil(xMin), math.floor(xMax)), math.
random(math.ceil(yMin), math.floor(yMax))
 end

Clearing movable objects
If a given world can be reused between games, it's important to make sure that objects
from a previous game aren't accidentally carried over into a new one. Since the world
recalls the point of division between the background objects and the functional objects,
this is fairly easy.

1.	 Attach the function constructor after the Random function body:

 return math.random(math.ceil(xMin), math.floor(xMax)), math.
random(math.ceil(yMin), math.floor(yMax))
 end

 function self:Clear()
 end
 return self

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

146

2.	 Go through all of the world group's children, working backward until you reach the
last background object:

 function self:Clear()
 for i = self.numChildren, firstMob, -1 do
 end
 end

3.	 Remove each child that represents a game object:

 function self:Clear()
 for i = self.numChildren, firstMob, -1 do
 self:remove(i)
 end
 end

The world group should be ready for use now. We should make one change to the
game object to make use of these new features; save world.lua and return to
game.lua.

4.	 Add a new scene event registration after exitScene for the didExitScene event:

scene:addEventListener("exitScene", scene)
scene:addEventListener("didExitScene", scene)

scene:addEventListener("destroyScene", scene)

This event fires to indicate that the scene in question is no longer
visible on the display at all, as a result of a scene transition.

5.	 Add a handler to support these events:

 self:Stop()
end

function scene:didExitScene(event)
 self.World:Clear()
end

function scene:destroyScene(event)

6.	 This handler should clear objects from the world, once it is safely invisible to the
user, in preparation for reusing the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

147

What did we do?
We automatically generated enough image tiles to cover the screen, set up a rule to
keep objects on the screen, and added a way for the game to request a random point as
extensibly as possible. Using this structure for the world makes it easier to update if any of
the parameters of the game were to change later in development.

No game design is ever final until release at the earliest. The easier you,
as the developer, can make it to accommodate change requests, the less
time will be consumed in recoding and extra testing.

At this point, you can test it and see the player ship return to the other side of the screen
when it slides off one side.

Creating enemies and controlling
collisions

Now the game is ready to start adding some challenges. First we'll add the rocks and make
them move, then we can manage destroying the player's ship when a collision takes place.

Getting ready
In this task, we'll not only control the new elements' motion with physics, but we'll also start
in on controlling and detecting collisions between elements. The player needs to respond
when an asteroid runs into it (by being destroyed), but the design says that the rocks don't
collide with each other at all, passing right over each other. We can accomplish this with a
Box2D collision group; by specifying the same negative integer as the groupFilter field of
the filter table in each new object's body description, we tell Corona that these objects never
collide with each other. They won't interact physically, and any collision listeners they have
won't be called when they overlap.

Positive groupFilter values are used with collision masks (discussed
in the next project) to make objects collide, even when their masks
specify that they wouldn't otherwise.

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

148

Getting on with it
The first thing we'll do is create a library for creating the three different sizes of asteroid.
We have two different images; we'll fake the middle one by scaling the large one down
and mirroring the sprite.

1.	 Create a file, asteroids.lua, open it, and frame in the beginnings of a
table module:

local physics = require "physics"

local asteroids = {}

return asteroids

2.	 We'll sum up the bodies that will be used to represent the physics of the three
different asteroids:

local asteroids = {}

local shape = {
 large = {-68,-5; -44,-41; 17,-55; 58,-15; 68,33; 14,55; -54,28;
};
 medium = {-46,3; -37,-18; 11,-37; 46,-21; 39,10; 13,37; -29,27;
};
 small = {-22,9; -17,-19; 13,-21; 22,3; -2,21; };
}

return asteroids

3.	 We'll define a function that can be used to add common asteroid behavior to a
display object, based on a supplied physics body, but won't fill it in yet:

 small = {-22,9; -17,-19; 13,-21; 22,3; -2,21; };
}

local function asteroid(object, shape)
 return object
end

return asteroids

4.	 Then we'll add three functions to the library, which create the images for the
different sizes and use the function we just specified to add their behavior:

 return object
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

149

function asteroids.large(parent)
 local self = display.newImage(parent, "sprite/meteorBig.png")
 return asteroid(self, shape.large)
end

function asteroids.medium(parent)
 local self = display.newImage(parent, "sprite/meteorBig.png")
 self.xScale, self.yScale = 2/3, -2/3
 return asteroid(self, shape.medium)
end

function asteroids.small(parent)
 local self = display.newImage(parent, "sprite/meteorSmall.png")
 return asteroid(self, shape.small)
end

return asteroids

5.	 The module will be complete once we finish that function. Inside, we'll create a
table that combines the provided shape data with a collision filter that prevents
the rocks from colliding:

 small = {-22,9; -17,-19; 13,-21; 22,3; -2,21; };
}

local rockFilter = {groupIndex = -2}
local function asteroid(object, shape)
 local body = {shape = shape, filter = rockFilter}
 return object
end

6.	 Then we'll use that body description to add physics to the provided display object:

local function asteroid(object, shape)
 local body = {shape = shape, filter = rockFilter}
 physics.addBody(object, "dynamic", body)
 return object
end

7.	 We'll give the new body a push and a twist so that it tumbles across the screen in a
random direction:

 physics.addBody(object, "dynamic", body)
 local push, theta = 1, math.random() * 2 * math.pi
 object:applyLinearImpulse(push * math.cos(theta), push * math.
sin(theta), object.x, object.y)
 object:applyAngularImpulse(25)
 return object

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

150

8.	 Finally, so that new rocks don't seem to just blink into existence, we'll use a
transition to fade them in. Since the rock is created at full visibility, we'll use
transition.from to fade it in starting from transparency:

local rockFilter = {groupIndex = -2}
local fadeIn = {time = 750, alpha = 0}
local function asteroid(object, shape)
 local body = {shape = shape, filter = rockFilter}
 physics.addBody(object, "dynamic", body)
 local push, theta = 1, math.random() * 2 * math.pi
 object:applyLinearImpulse(push * math.cos(theta), push * math.
sin(theta), object.x, object.y)
 object:applyAngularImpulse(25)
 transition.from(object, fadeIn)
 return object
end

The asteroid module should be complete now; save it and open game.lua.

Spawning enemies at game start
When the game scene loads and is ready to start playing, we'll add rocks to the scene to
serve as challenges.

1.	 In game.lua, find the willEnterScene function where we get the game ready,
and add a loop at the end to create rocks (we'll only make two at the beginning of
the game).

 self.Player = require "player" (self, self.World, self.
World:contentToLocal(display.contentCenterX, display.
contentCenterY))
 for i=1, 2 do
 local new = asteroids.large(self.World)
 end
end

function scene:enterScene(event)

2.	 We don't want any of the rocks to start right on top of the player, so we'll choose
their starting location based on a minimum radius from the player's location, and a
maximum radius to prevent them from wrapping too close.

 for i=1, 2 do
 local new = asteroids.large(self.World)
 local theta, r = math.random() * 2 * math.pi, math.random(100,
200)
 new.x, new.y = r * math.cos(theta), r * math.sin(theta)
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

151

3.	 You should be ready to test the code again, on the simulator or on the device, and
see the asteroids drifting across the screen. If you're patient, you can see them pass
over each other or run into the player ship, pushing it around the screen.

What did we do?
We created some simple physics bodies and set them to collide with the player, but not with
each other. We set up a response to that collision by using a custom event to keep the code
clear and set up multiple responses to that event at the appropriate levels.

Responding to fire controls and
creating bullets

It's possible to use the game on your device now for some simple gameplay dodging rocks,
although there's no progress or way to lose or advance. It's time to start adding more
interactivity by accepting shake and touch inputs to control the player ship's laser fire and
hyperspace jump.

Getting ready
Since we won't want the ship to be destroyed by its own lasers, we're going to include it in
a collision group much as we did with the asteroids. Start by opening spaceship.lua and
adding a line to that effect in the body definition used by the player constructor. Save that
file and create a new file at the top level of the project, laser.lua, for the first stages of
this task.

Also, we'll set a timer on the laser objects so that they disappear after a moment if they
don't hit anything. To do this, we'll need an object that receives clock events to track the
passage of time.

Getting on with it
This module is a constructor, so we'll create the framework for a function for it to return
as follows:

1.	 The function will need to know what clock will govern the laser's lifetime, how long
that lifetime is, what is firing the laser, which direction it will go, and what art to use
for it:

return function(clock, life, origin, direction, image)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

152

2.	 The function will create a new image object using the specified file:

return function(clock, life, origin, direction, image)
 local self = display.newImage(origin.parent, image)
 return self
end

3.	 It will rotate the image to face the specified direction, and place it the appropriate
distance from the center of the object firing it:

return function(clock, life, origin, direction, image)
 local self = display.newImage(origin.parent, image)
 self.rotation = direction
 direction = math.rad(direction)
 local dX, dY = math.cos(direction), math.sin(direction)
 self.x, self.y = origin.x + self.width * dX, origin.y + self.
width * dY
 return self
end

4.	 It will add a physics identity to the image, and set it as a sensor so that it doesn't
transfer any momentum to things that it hits:

 local dX, dY = math.cos(direction), math.sin(direction)
 self.x, self.y = origin.x + self.width * dX, origin.y + self.
width * dY
 physics.addBody(self, "dynamic", body)
 self.isSensor = true
 return self

5.	 All lasers will belong to the same collision group as the player, so that they don't
collide with the player or each other:

local body = {filter = {groupIndex = -1}}

return function(clock, life, origin, direction, image)
 local self = display.newImage(origin.parent, image)

6.	 We'll register the laser to receive clock events on its governing object and respond
to them:

 self.isSensor = true
 clock:addEventListener('clock', self)
 function self:clock(event)
 end
 return self

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

153

7.	 In that handler, we'll subtract the elapsed time (in milliseconds) from the remaining
duration (in seconds), and clear the laser if it's been used up:

 function self:clock(event)
 life = life - event.delta / 1000
 if life <= 0 then
 event.clock:removeEventListener('clock', self)
 self:removeSelf()
 end
 end

8.	 Finally, we'll give the laser its initial motion before returning it:

 self:removeSelf()
 end
 end
 local speed = 400
 self:setLinearVelocity(speed * dX, speed * dY)
 return self

Dispatching fire control events
Save laser.lua and open game.lua. We'll respond to physical touch events on the device
by dispatching semantic touch events to the game object for the player ship to respond to.

1.	 Above the createScene and other scene event handlers, add a handler for
touch events:

 self:dispatchEvent{name='Yaw'; value = lateral * 64}
end

function scene:touch(event)
end

function scene:createScene(event)

2.	 When a touch starts, we notify the game that the player has started firing the
ship lasers.

function scene:touch(event)
 if event.phase == 'began' then
 self:dispatchEvent{name = 'Fire'; phase = 'began'}
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

154

3.	 When a touch ends or is cancelled, we'll notify the game that firing can stop:

 if event.phase == 'began' then
 self:dispatchEvent{name = 'Fire'; phase = 'began'}
 elseif event.phase == 'ended' or event.phase == 'cancelled' then
 self:dispatchEvent{name = 'Fire'; phase = 'ended'}
 end

4.	 Since we don't care where on the screen these touches are for these events, we'll
listen for touches that reach Runtime. Since we only want to respond while the
scene is fully loaded, we'll start and stop listening in response to enterScene and
exitScene events:

 Runtime:addEventListener('Tilt', self)
 Runtime:addEventListener('touch', self)
 self:Start()
end

function scene:exitScene(event)
 Runtime:removeEventListener('Tilt', self)
 Runtime:removeEventListener('touch', self)
 self:Stop()

Responding to fire events
Now that fire events are being transmitted, the player object needs to respond to them.
We'll use a field on the player object, player.FireCounter, to track whether there's
an active touch being used as a Fire command. This field will be nil when the player is not
firing, and the number of seconds until the ship can fire again when the player is firing.

1.	 Save game.lua and open player.lua. After the registration for Fire events, add
a handler for them, which will toggle the player between firing and non-firing states:

 input:addEventListener('Fire', self)
 function self:Fire(event)
 if event.phase == 'began' then
 self.FireCounter = 0
 elseif event.phase == 'ended' then
 self.FireCounter = nil
 end
 end
 input:addEventListener('Jump', self)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

155

2.	 Inside the clock handler, we'll count down the remaining fire time (if any), and
reset the timer if it gets below zero. Remember that the clock event's duration
is in milliseconds, but the fire counter is in seconds.

 function self:clock(event)
 if self.FireCounter then
 self.FireCounter = self.FireCounter - event.delta / 1000
 if self.FireCounter <= 0 then
 self.FireCounter = self.FireCounter + 0.5
 end
 end
 local dX, dY = self:getLinearVelocity()

3.	 When the timer resets, we'll also create a laser facing in the direction of the
player ship:

 if self.FireCounter <= 0 then
 self.FireCounter = self.FireCounter + 0.5
 laser(event.clock, 1, self, self.rotation, "effect/
laserGreen.png")
 end

4.	 This also means that we need to require the laser module at the beginning of the
player module:

require "math.pythagorean"

local laser = require "laser"

return function(input, world, x, y)

Teleporting the player
While we're completing the controls the player can respond to, we'll take a moment to add
the hyperspace function.

1.	 In player.lua, add a handler function under the listener registration for
Jump events:

 input:addEventListener('Jump', self)
 function self:Jump(event)
 end
 return self

2.	 Move the player to the coordinates specified in the event and stop the motion.

 function self:Jump(event)
 self.x, self.y = event.x, event.y
 self:setLinearVelocity(0, 0)
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

156

3.	 Save player.lua and return to game.lua so that we can add a listener for
Shake events:

 self:dispatchEvent{name='Yaw'; value = lateral * 64}
end

function scene:Shake(event)
end

function scene:touch(event)

4.	 The response to these events is simple; we'll request a random location from
the World object, and send a Jump event with those coordinates to move the
player there:

function scene:Shake(event)
 local x, y = self.World:Random()
 self:dispatchEvent{name = 'Jump'; x = x, y = y}
end

5.	 We'll register and unregister to receive Shake events at the same times we do for
Tilt events, since they're provided by the same source.

 Runtime:addEventListener('Tilt', self)
 Runtime:addEventListener('Shake', self)
 Runtime:addEventListener('touch', self)
 self:Start()
end

function scene:exitScene(event)
 Runtime:removeEventListener('Tilt', self)
 Runtime:removeEventListener('Shake', self)
 Runtime:removeEventListener('touch', self)

What did we do?
We created a module to manage temporary laser objects and destroy them cleanly after
they hit something. We translated two different events about device information into their
equivalent events with game significance, and programmed the player object to respond
to them with suitable actions.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

157

Responding to collisions and
handling lives

Now we have an environment where rocks collide with the player and with lasers, but not
with each other. Right now, however, no responses are installed to these collisions, so default
behavior is all that happens; the intangible lasers simply travel until they run out of time,
and the rocks and player push each other around the screen. We'll allow collisions to destroy
objects, and modify game conditions like the player's remaining lives accordingly.

Getting ready
Like touch events, collision events can be processed either by the objects actually
colliding, or by Runtime. Also, like touch events, it's almost always easier to process the
events correctly in listeners on those objects than in listeners on Runtime. Unlike touch
events, however, collision events are dispatched to Runtime in a notably different form
than they are to individual objects; if you adapt code from a Runtime listener for use in an
object collision listener, you'll need to replace the use of the object1 and object2 fields
of the event with the fields target (the body involved in the collision whose listener this is)
and other (the other body involved in the collision, which also gets its own event call).

Getting on with it
We need to add collision responses to three things in the game; the player, the rocks, and the
lasers. The lasers are the easiest, since their response to collisions will be simply to disappear.

Clearing lasers that hit something
Open laser.lua and find the point in the constructor function after it adds the physics
body to the new laser.

1.	 We'll assign a common collision handler to each laser, so they go away after colliding
with something:

 self:removeSelf()
 end
 end
 self:addEventListener('collision', clean)
 local speed = 400

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

158

2.	 The only other thing to do is define the collision handler, so that it marks a laser that
collides with something as ready for removal:

 end
 local function clean(event)
 end
 self:addEventListener('collision', clean)

3.	 First, we'll remove the collision listener from the laser so that there won't be any
conflicts if it manages to collide with more than one thing at once:

 local function clean(event)
 event.target:removeEventListener('collision', clean)
 end

4.	 Since the laser is already counting down to its own removal, we'll simply set that
counter to expire immediately:

 local function clean(event)
 event.target:removeEventListener('collision', clean)
 life = 0
 end

The approach we're using here is required because you can't
destroy a physics body in response to a collision; it is still being
used by the collision resolution process and could still be
interacting with other bodies. We have to defer the object's
actual removal until the physics engine has finished with its
work and returned control to Corona.

Destroying asteroids
When a laser collides with an asteroid, two collision events will actually be produced for the
same collision; one for the laser (already dealt with) and one for the asteroid. We'll use that
other event to mark the asteroid to be split up or destroyed.

The three sizes of asteroids will respond differently to being hit; the smallest size gets
destroyed and larger sizes spawn two of the next smaller size. Since any of these responses
require removing and possibly adding physics bodies, they can't be performed in direct
response to the collision. We'll create a collection of clean-up functions that we can attach
to the appropriate asteroid sizes at creation.

1.	 Open asteroid.lua and add a table to fill with functions after the library table
is defined; these cleaner functions will also use the spawn functions. These new
functions will be attached to the various asteroids as clock listeners when they're
ready to be cleaned:

local asteroids = {}

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

159

local resolve = {}
function resolve.large(self, event)
end

function resolve.medium(self, event)
end

function resolve.small(self, event)
end

local shape = {

2.	 Each function will start by unregistering its target object as a clock listener:

function resolve.large(self, event)
 self.parent:removeEventListener('clock', self)
end

function resolve.medium(self, event)
 self.parent:removeEventListener('clock', self)
end

function resolve.small(self, event)
 self.parent:removeEventListener('clock', self)
end

3.	 They will all finish by removing the asteroid that they're cleaning:

function resolve.large(self, event)
 self.parent:removeEventListener('clock', self)
 self:removeSelf()
end

function resolve.medium(self, event)
 self.parent:removeEventListener('clock', self)
 self:removeSelf()
end

function resolve.small(self, event)
 self.parent:removeEventListener('clock', self)
 self:removeSelf()
end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

160

4.	 The two larger ones will spawn smaller ones, using the functions stored in the
existing table:

function resolve.large(self, event)
 self.parent:removeEventListener('clock', self)
 for i=1,2 do
 local new = asteroids.medium(self.parent)
 new.x, new.y = self.x, self.y
 end
 self:removeSelf()
end

function resolve.medium(self, event)
 self.parent:removeEventListener('clock', self)
 for i=1,2 do
 local new = asteroids.small(self.parent)
 new.x, new.y = self.x, self.y
 end
 self:removeSelf()
end

5.	 Once that's done, each of the creation functions will attach the appropriate cleaning
function to its new object as a clock handler. They will not register the object to
receive clock events yet.

function asteroids.large(parent)
 local self = display.newImage(parent, "sprite/meteorBig.png")
 self.clock = resolve.large
 return asteroid(self, shape.large)
end

function asteroids.medium(parent)
 local self = display.newImage(parent, "sprite/meteorBig.png")
 self.xScale, self.yScale = 2/3, -2/3
 self.clock = resolve.medium
 return asteroid(self, shape.medium)
end

function asteroids.small(parent)
 local self = display.newImage(parent, "sprite/meteorSmall.png")
 self.clock = resolve.small
 return asteroid(self, shape.small)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

161

6.	 These functions will also specify the point value of each asteroid created:

function asteroids.large(parent)
 local self = display.newImage(parent, "sprite/meteorBig.png")
 self.clock = resolve.large
 self.Points = 20
 return asteroid(self, shape.large)
end

function asteroids.medium(parent)
 local self = display.newImage(parent, "sprite/meteorBig.png")
 self.xScale, self.yScale = 2/3, -2/3
 self.clock = resolve.medium
 self.Points = 50
 return asteroid(self, shape.medium)
end

function asteroids.small(parent)
 local self = display.newImage(parent, "sprite/meteorSmall.png")
 self.clock = resolve.small
 self.Points = 90
 return asteroid(self, shape.small)
end

7.	 In the asteroid shared function, we'll attach another function to the new object as a
collision listener:

local function clean(event)
end

local fadeIn = {time = 750, alpha = 0}
local rockFilter = {groupIndex = -2}
local function asteroid(object, shape)
 local body = {shape = shape, filter = rockFilter}
 physics.addBody(object, "dynamic", body)
 object:addEventListener('collision', clean)
 local push, theta = 2/3, math.random() * 2 * math.pi

8.	 In that collision function, we'll unregister the same collision listener (to prevent
duplicate collision responses) and register the object to clean itself up on the next
clock cycle. It doesn't need to add a clock handler, because that was attached
when the object was created.

local function clean(event)
 local self = event.target
 self:removeEventListener('collision', clean)
 self.parent:addEventListener('clock', self)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

162

9.	 Since game objects in this project can expect their parent to be the world object,
each rock will pass an event to its parent indicating that it has been destroyed. The
game object can listen to the world for these events and respond appropriately:

 self.parent:addEventListener('clock', self)
 self.parent:dispatchEvent{name = 'Destroy'; kind = 'rock', self}
end

10.	 It will also play an explosion animation at the point where the asteroid is when it
gets hit:

 self.parent:dispatchEvent{name = 'Destroy'; kind = 'rock', self}
 explosion(self.parent, self.x, self.y)
end

11.	 This means that it needs access to the explosion module:

local physics = require "physics"

local explosion = require "explosion"

local asteroids = {}

Handling collisions with the player
Bouncing and shoving isn't how we want the rocks to interact with the player. We'll start
dealing with this by adding a collision handler to the player object that will redispatch it
as a semantic event, that is, one that has game meaning.

1.	 Open player.lua and add a new event listener after the world event code:

 self:setLinearVelocity(0, 0)
 end
 self:addEventListener('collision', self)
 function self:collision(event)
 end
 return self

2.	 This listener will simply send a new event to the object:

 function self:collision(event)
 self:dispatchEvent{name = 'Destroy'; kind = 'ship', self}
 end
 return self

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

163

3.	 Then add a listener for that new event, to add a suitable visual:

 function self:collision(event)
 self:dispatchEvent{name = 'Destroy'; kind = 'ship', self}
 end
 self:addEventListener('Destroy', self)
 function self:Destroy(event)
 explosion(self.parent, self.x, self.y)
 end
 return self

Now that the player object is ready to handle this collision event, we'll set up the
game object to respond to the same event by resetting the player object in the
level. Save player.lua and go back to game.lua.

4.	 Set up the scene's willEnterScene listener to register the scene to track
Destroy events on the player object once it is created:

 self.Player = require "player" (self, self.World, self.
World:contentToLocal(display.contentCenterX, display.
contentCenterY))
 self.Player:addEventListener('Destroy', self)
 for i=1, 2 do
 local new = asteroids.large(self.World)

5.	 Near the top of the file, add a function to the scene object to process those
events. If the destroyed object is described as a player, the game will queue up
another function that will move the player back to the center and stop its motion.

 self:dispatchEvent{name = 'Jump'; x = x, y = y}
end

function scene:Destroy(event)
 if event.kind == 'ship' then
 local player = event[1]
 self:addEventListener('clock', reset)
 end
end

function scene:touch(event)

Collision handlers can't respond to a collision by moving
an object, for the same reasons they can't destroy the
object directly.

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

164

6.	 Because this function won't be attached directly to the player (in case the player
code itself should need the enterFrame entry for something), the function will be
created each time it needs to be applied, so that it can use the appropriate player
object as an upvalue.

 if event.kind == 'ship' then
 local player = event[1]
 local function reset(event)
 end
 self:addEventListener('clock', reset)
 end

7.	 The function will first remove itself as a listener:

 local function reset(event)
 self:removeEventListener('clock', reset)
 end

The fact that the function needs to refer to itself is why
it is created here as a named function and not as an
anonymous one.

8.	 It will move its bound object to the center of the screen and set its velocity to 0.

 local function reset(event)
 self:removeEventListener('clock', reset)
 player.x, player.y = player.parent:contentToLocal(display.
contentCenterX, display.contentCenterY)
 player:setLinearVelocity(0, 0)
 end

What did we do?
We used the collisions of these objects as a way to notify the objects of updates that they
could not perform during the event response itself. We cleaned up one-shot listeners to
prevent them causing errors later. We created new, different enemies in response to other
ones being destroyed, and laid the groundwork for dealing with the player's death and losing
the game, which we'll finish in the next section.

Recognizing kills and recording
scores

The world-level interactions between the player, asteroids, and lasers are effectively
complete at this point. The remaining tasks are for the game to track those elements that are
not part of the world representation; accomplishments and challenges.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

165

Getting on with it
To manage scores, first we'll need to set it when a game begins.

1.	 Open game.lua and find the enterScene handler, set the starting value for player
score, and dispatch a game event:

 Runtime:addEventListener('touch', self)
 self.Score = 0
 self:dispatchEvent{name = 'Score'; value = self.Score}
 self:Start()

2.	 To trigger changes in the score, the game needs to track Destroy events for rocks,
which it can receive from the world:

 self:dispatchEvent{name = 'Score'; value = self.Score}
 self.World:addEventListener('Destroy', self)
 self:Start()

3.	 Before moving on, keep registration balanced by removing the listener in
the exitScene handler:

function scene:exitScene(event)
 Runtime:removeEventListener('Tilt', self)
 Runtime:removeEventListener('Shake', self)
 Runtime:removeEventListener('touch', self)
 self.World:removeEventListener('Destroy', self)
 self:Stop()
end

4.	 Next, add another condition to the check in the game scene's Destroy
handler, since this function will handle events from both sources:

 self:addEventListener('clock', reset)
 elseif event.kind == 'rock' then
 local rock = event[1]
 end
end

5.	 When a rock is destroyed, adjust the score and broadcast an event with the
new score:

 elseif event.kind == 'rock' then
 local rock = event[1]
 self.Score = self.Score + rock.Points
 self:dispatchEvent{name = 'Score'; delta = rock.Points, value
= self.Score}
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

166

Tracking lives
To make the game interesting, the player should have a finite number of lives that determine
when the game is over.

1.	 Start by going back to the enterScene handler and setting the initial lives counts
along with the starting score:

 self.World:addEventListener('Destroy', self)
 self.Lives = 2
 self:dispatchEvent{name = 'Lives'; value = self.Lives}
 self:Start()

2.	 Return to the Destroy event handler, and modify the branch for the player
to adjust the number of lives and broadcast the change in an event:

 self:addEventListener('clock', reset)
 self.Lives = self.Lives - 1
 self:dispatchEvent{name = 'Lives'; delta = -1, value = self.
Lives}
 elseif event.kind == 'rock' then

3.	 If no lives remain available when the player is destroyed, the game is over;
announce this to the game object with a Game state event:

 if event.kind == 'ship' then
 if self.Lives <= 0 then
 timer.performWithDelay(1,
 function(...)
 self:dispatchEvent{name = 'Game'; action = 'stop', Score
= self.Score}
 end
)
 else
 local player = event[1]
 local function reset(event)
 self:removeEventListener('clock', reset)
 player.x, player.y = player.parent:contentToLocal(display.
contentCenterX, display.contentCenterY)
 player:setLinearVelocity(0, 0)
 end
 self:addEventListener('clock', reset)
 self.Lives = self.Lives - 1
 self:dispatchEvent{name = 'Lives'; delta = -1, value = self.
Lives}
 end
 elseif event.kind == 'rock' then

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

167

4.	 In response to that event, the game should pause the simulation and return to
the menu screen:

scene:addEventListener('Game', scene)
function scene:Game(event)
 physics.pause()
 storyboard.gotoScene('splash')
end

local threshold = 1 / 6

function scene:Tilt(event)

Now that this event is being fired, there's one last piece of clean-up we can do
properly. Save game.lua and open player.lua.

5.	 Before the constructor function returns the new object, register it to receive
Game events from the game and respond to them:

 function self:Destroy(event)
 explosion(self.parent, self.x, self.y)
 end
 input:addEventListener('Game', self)
 function self:Game(event)
 end
 return self

6.	 In that handler, clean up the events that the player has registered for on the game
object, since the player object is about to be disposed of.

 function self:Game(event)
 if event.action == 'stop' then
 world:removeEventListener('clock', self)
 input:removeEventListener('Thrust', self)
 input:removeEventListener('Yaw', self)
 input:removeEventListener('Fire', self)
 input:removeEventListener('Jump', self)
 input:removeEventListener('Game', self)
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

168

Displaying lives and the score
The last element to managing game progress is to make it visible to the player; no game will
hold a player's interest if they can't see themselves getting closer to their goal. For this, we'll
use a new group to hold the display elements, which we'll create along with the world.

1.	 All the appropriate events are already in place, so load and call the new module in
createScene of game.lua, and install the resulting group in the scene:

 self.World = require "world" (self)
 group:insert(self.World)
 self.UI = require "interface" (self)
 group:insert(self.UI)
end

2.	 Next, create the interface.lua module file. Open it and frame in the
function to create the new layer:

return function(game)
 local self = display.newGroup()
 return self
end

3.	 Add a text object to the layer to display the score:

 local self = display.newGroup()
 local score = display.newText(self, "", 10, 7, native.
systemFont, 14)
 score:setReferencePoint(display.TopRightReferencePoint)
 score.x, score.y = display.contentWidth - 10, 7
 return self

4.	 Register this text as a listener for Score events on the game, and give it a
handler to process them:

 score.x, score.y = display.contentWidth - 10, 7
 game:addEventListener('Score', score)
 function score:Score(event)
 end
 return self

5.	 This handler can just display the new value in the text object, realigning the
text as needed:

 function score:Score(event)
 local x, y = self.x, self.y
 self.text = tostring(math.floor(event.value))
 self:setReferencePoint(display.TopRightReferencePoint)
 self.x, self.y = x, y
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

169

6.	 To keep the lives display contained, create a new group and make it a child of this
one. Position it a little in from the top-left corner. This group will hold one child
image visible for each life the player has:

 self.x, self.y = x, y
 end
 local lives = display.newGroup()
 self:insert(lives)
 lives.x, lives.y = 10, 7
 return self

7.	 Register this group to receive Lives events from the game and handle them:

 lives.x, lives.y = 10, 7
 game:addEventListener('Lives', lives)
 function lives:Lives(event)
 end
 return self

8.	 When an event is received, the group first shows as many children as the
player has lives:

 function lives:Lives(event)
 for i = 1, event.value do
 if self[i] then
 self[i].isVisible = true
 end
 end
 end

9.	 If not enough images are available, it creates them:

 for i = 1, event.value do
 if self[i] then
 self[i].isVisible = true
 else
 local new = display.newImage(self, "image/life.png")
 new:setReferencePoint(display.TopRightReferencePoint)
 new.x, new.y = new.width * 1.1 * I, 0
 end
 end

10.	 Finally, it hides any life images already created that aren't required right now:

 self.x = self.width * 1.1 * i
 end
 end
 for i = event.value + 1, self.numChildren do
 self[i].isVisible = false
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Deep Black – Processing Mobile Device Input

170

What did we do?
We leveraged existing events to manipulate game-specific progress values, the player's
accumulated score, and remaining lives. We created events to track those values, and a
visible UI layer to display the values of those events.

Game over – wrapping it up
This project has covered a lot of ground. We practiced converting accelerometer input into
a more readily usable form and interpreting it based on the player's orientation in the game
world. We explored using several different aspects of the physics engine to control motion,
including force, impulse, and velocity. We covered the basics of using collision filters to select
which objects do and don't affect each other. We also extended our technique for calculating
and tracking scores to cover game lives as well, which are core features in many game styles
that future projects will use without extensive discussion.

And, of course, there were explosions!

www.it-ebooks.info

http://www.it-ebooks.info/

Project 4

171

Can you take the HEAT? The Hotshot
Challenge

Add UFOs that come out semi-randomly; there's a suitable image in the original art files
folder in the project pack. The UFOs should shoot red lasers in random directions at
semi-regular intervals. Destroying a UFO grants the player an extra life. You should be able
to do this with only one new code file and some modifications to the game scene code,
although using two new files may yield a cleaner solution.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5
Atmosfall – Managing
Game Progress with

Coroutines

If you're a long-time or low-level programmer, you may be accustomed to controlling
the core of your game loop; if you're more used to recent game engines, you may have
learned to juggle complex information about what actors in your game are doing at any
given moment. In Corona, the combination of a separately-tracked physics engine and the
versatility of Lua will, when used correctly, manage this information for you.

What do we build?
We'll explore this idea of managing progress through a game schedule by completing a
scrolling shooter in the tradition of games such as Xevious or River Run, where the player
maneuvers a ship around the screen, avoiding enemy fire and destroying enemy ships until
he/she reaches a boss target. Enemies will include ships that fly various patterns across the
screen, turrets that follow the scrolling background and turn to face the player's ship, and a
boss at the end that takes many hits to destroy and moves in various directions, firing multiple
weapons. The player's ship will be able to fire at points on the screen that the player touches.

What does it do?
The player maneuvers their ship around the screen as the ground scrolls under them
from the top of the screen downward. As the scrolling background reaches certain points,
enemies appear and fly or scroll around the screen, firing bullets as they go; the player must
avoid the bullets as well as the ship itself while shooting back.

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

174

Like the Deep Black game, this project will be based on Corona's Box2D-based physics library.
In this version, most objects will be "sensors", meaning they only detect collisions, and do
not bounce off of each other or transfer momentum. We'll also use Box2D's collision filters
so that we don't need to process enemy ships colliding with each other, or bullets hitting
each other.

In the TranslationBuddy project, we got a taste of coroutines and how they can be used
to bookmark a task that you're in the middle of and come back to it later. In this project, we'll
take that concept much further, using coroutines to create scripted behavior that's carried
out over time, which is the simplest part of what game players and developers usually refer
to as AI. We'll create computer-controlled fighters that follow flight assignments which are
predictable at run time, but easily customized by the designer.

Why is it great?
In addition to coroutines, we'll also use a Lua feature called environments to create a
minimal language of very simple functions controlling intervals and enemy actions. Features
like this can become useful in larger projects, where programmers and designers must
collaborate on a project. In such projects, programmers are responsible for the code that
carries out the actions which the enemies will take, but the decisions of what the enemies
should do, when, and in what order, are made by game designers, and frequently have to be
adjusted for best balance and fun. For this reason, it's good to let the designers edit these
schedules and scripts themselves. Designers are usually not experienced programmers,
although they often have a little knowledge of programming and scripting, so this simple
language will make it much easier for the designers.

How are we going to do it?
For this project, we'll review the design, rather than creating it. While an indie programmer
will often be designing their own games and then coding from their designs, any programmer
at a studio is likely to be coding from a document given to them by a designer or design
team. We will be managing game progress with the help of the following game coroutines:

ff Founding the framework

ff Moving the player

ff Scheduling enemies

ff Scripting behavior

ff Controlling the boss

ff Cleaning up and making the game playable

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

175

What do I need to get started?
First, open the file design.txt from the project pack and read through it, noting the [NYI]
tags that indicate features still pending. In full development projects, this sort of status
tracking will usually be carried out by a more complex database or dedicated tracking
program, but even in small projects, a simple record of what has yet to be accomplished
can be very useful.

At this point, the game has files describing various ships (a broad category which also
includes the ground-based, immobile turrets) as well as the various weapons with which the
ships are equipped, the bullets they fire, and the explosions when they land. It also includes
code that handles things taking damage—including events that can be tracked by user
interface elements or gameplay progress tracking, processing user input into commands,
and a long background made up of large tiles. A splash screen is already completed and
appears when the game is launched.

What the game still needs is actual level design. Enemies need to appear as time advances
in the level, and carry out various plans of attack against the player. This means that there
are two kinds of schedules required; the schedule of which enemies appear when, and the
individual schedules of the enemies that dictate how each one flies and attacks after it is
created. To make this happen, we'll not only create scheduling behaviors, but also modules
that attach these behaviors and other suitable characteristics, such as orientation, to our
predefined ships to make them into bosses and enemies.

This distinction between units in a game that have statistics and
behaviors, and the actors that represent them in the game world,
is very powerful for scaling projects up in complexity.

Once that's done, create a new project folder, Atmosfall, and copy the contents of the
version 0 folder in the project pack directory. You should be able to load this project into
the simulator and advance the game past the splash screen, seeing a ship in the middle of a
swamp background. In the simulator, you can click anywhere on the game screen and watch
the ship fire double bullets at the point at which you click. You can also build the game for
a device and watch the ship slide around the screen as you tilt the device. The prototype
responds to user input and is ready to start adding the scheduling and AI enemy control.

Tracking progress through the level
Games like this typically trigger enemy appearances and events based on how far the
background has scrolled past the screen. To focus on the challenges of the project, we'll import
the background itself and just add the scrolling logic to issue events that track this progress.

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

176

Getting ready
You should have already copied the partly completed project from the version 0 folder
into your new project directory; if you haven't, do that now.

Getting on with it
We'll start by loading the new marsh background into the Ground layer of the game's view,
instead of the blank rectangle that the project uses by default. Open the game.lua file and
change the createScene function to load this module as the new background, as shown in
the following code snippet:

 local group = self.view
 self.Ground = require "level.marsh"(group)
 self.Mobs = display.newGroup()

Then we adjust the scale of the background to make it fit into the width of the screen:

 self.Ground = require "level.marsh"(group)
 local scale = display.contentWidth / self.Ground.width
 self.Ground.xScale, self.Ground.yScale = scale, scale
 self.Mobs = display.newGroup()

If you test the code at this point, you should see a static background filling the screen behind
the player ship.

Sliding the background
Pinning a moving rectangle to another moving rectangle so that it doesn't slide too far and
show the back side of the world requires a little bit of math, but we can offload this math
onto Corona with a little ingenuity.

First, when the scene starts, we'll make sure that in the willEnterScene responder,
the background is lined up, with its bottom edge along the bottom edge of the screen.

 physics.setGravity(0, 0)
 self.Ground:setReferencePoint(display.BottomCenterReferencePoint)
 self.Ground.xOrigin, self.Ground.y = display.contentCenterX,
display.contentHeight
 for _, coordinates in ipairs(walls) do

Before we can start the background moving, we need to know how long it's supposed to take.
This could vary from level to level in a real game, so we will let the schedule we load provide
this value (the file in question doesn't exist yet; creating it will be part of our next task, so
make a note that it will need to return its total length) as shown in the following code:

 physics.setGravity(0, 0)
 self.Duration = require "level.marsh-enemies" (self)
 self.Ground:setReferencePoint(display.BottomCenterReferencePoint)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

177

Now that we know the desired length of the background scroll, we can start the transition
in response to the enterScene event, once the scene has finished loading as shown in the
following code snippet. This is where the magic happens and the explanation will follow once
you've had a chance to scan it.

 self.Exit = nil
 local bounds = self.Ground.contentBounds
 self.Ground.Pan = transition.to(self.Ground,
 {
 time = self.Duration * 1000;
 y = 0, yReference = bounds.yMin - bounds.yMax;
 onComplete = function(object)
 object.enterFrame, object.Pan = nil, nil
 end
 }
)
 self.Lives = 2

The key here is that transition.to (and transition.from) can tween any value on any
object that can be indexed, even though it usually gets applied to the visible properties of
display objects. The yReference value has no visible effect on an object by itself; changing
an object's yReference value changes what value its y position ends up being in its parent
coordinates, but doesn't cause anything to move on the screen. However, when you combine
this with continually adjusting the y position, it has the effect of changing the scale of the
motion; setting the y position moves the object so that the point designated internally as its
yReference value sits at the specified coordinate in its parent system.

Transitions on the reference point and placement

combine to form a proportional translation

X X X

X X X

X X X

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

178

We also needed to know the distance to move the reference point in the group; the marsh
module builds a group with its zero point, or origin, at its bottom. So eventually, we need
to move the yReference value to a negative value equal to the functional height of the
background. We figure this out from the height of its bounding rectangle.

If you want to test this out, you'll have to temporarily replace self.Duration = require
"marsh-enemies" (group) with self.Duration = 60. To temporarily sub out values
like this, I often create an end-of-line comment, making the line look like the following:

 self.Duration = 60 -- require "level.marsh-enemies" (self)

Then, to replace the old code, I can just delete the part that says 60 --. Once you've
inserted this place-holder, you can test the code and you'll see the background crawl past.
However, if you're using a tall profile device, such as an iPhone 5, you may see that the
bottom edge of the background first creeps down across the empty bar at the bottom of the
screen, before filling it completely, and at the end, it will expose a bar of black at the top as
it creeps into place. This is because when Corona uses letterbox alignment, it only positions
the reference frame for drawing to leave space at the edges; it doesn't actually crop out
anything that was hanging over the edges of the screen. But we can do this fairly easily by
adding a mask to the display stage, the way we did on scenes in Project 3 to hide bits of
overhanging text during transitions. To enforce this letterboxing globally throughout the
program, we can add the mask in main.lua.

require "input"
display.currentStage:setMask(graphics.newMask("effect/masking-frame.
png"))
display.currentStage.maskX, display.currentStage.maskY = display.
contentCenterX, display.contentCenterY
local storyboard = require "storyboard"

Tracking the background progress
We need to track how far the schedule for the level will have advanced. We want this to be
as fine-grained as we can manage, so we'll check the value as frequently as Corona will do,
which is every frame. This means that an enterFrame listener is the logical vector which is
shown in the following code snippet:

 Runtime:addEventListener('enterFrame', self.Ground)
 function self.Ground:enterFrame(event)
 end
 self.Lives = 2

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

179

For the schedule, we need to track time elapsed since the schedule starts. We'll make a note
of the time when the scene begins, and post the Progress events that indicate what time
the schedule has reached at, as shown in the following code:

 self.Ground.Start = system.getTimer()
 Runtime:addEventListener('enterFrame', self.Ground)
 function self.Ground:enterFrame(event)

The other thing we want to track is the actual motion of the background. The first enemy
we'll create is a turret, so if it doesn't appear to move in sync with the ground, the user will
find that very distracting. This is a little trickier, since the ground's position and reference are
both moving on the same sliding scale. Fortunately, there is another point that moves more
predictably—the origin.

The origin of an object is whichever point is considered (0, 0) for placing
that object's reference point. For most objects, it's fixed at the object's
center; for groups, it's (0, 0) in the group's coordinates, wherever the
group's children happen to be placed in relation to it. In our case, what
we're really concerned with is that the object's origin is fixed with respect
to its visible contents in a way that the reference point isn't. So if the
group moves down by three pixels on the screen, you can say confidently
that its yOrigin value also increased by three (assuming that it's not
parented to a group with a different yScale value).

We can track the position of the ground's yOrigin value from frame to frame in order to
determine how much it has visibly moved. We can include that information in the events
we dispatch to supply the progress information as shown in the following code:

 self.Ground.Start = system.getTimer()
 self.Ground.oldY = self.Ground.yOrigin
 Runtime:addEventListener('enterFrame', self.Ground)
 function self.Ground:enterFrame(event)
 scene:dispatchEvent{name = 'Progress'; time = (event.time - self.
Start) / 1000; delta = self.yOrigin - self.oldY}
 self.oldY = self.yOrigin
 end

Our schedule module will feed off these events to update its progress and trigger actions.
First, however, we need something for the schedule module to do; schedules for levels will
consist of spawning enemies at different intervals.

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

180

Constructing the enemy behavior
For the schedule to spawn new enemies, we need one to exist. We'll start with a simple one,
that just moves in sync with the ground to start with. Once that works, we'll add tracking and
weapon fire.

Getting on with it
Add a new file, turret.lua, and open it. This file will add turret behavior to a ship
sprite and physics description specified in the starting project.

Creating an enemy
Add the basic description of the turret object's appearance and physics as shown in the
following code:

local ship = require "ship.ship"
local category = require "category"
local groundFilter = {
 groupIndex = category.enemy;
}
return function(game, x, y)
 local self = ship.turret(game, game.Mobs.Ground, groundFilter)
 self.x, self.y = x, y
 self.bodyType = 'static'
 return self
end

This creates a turret that just sits perfectly still and does nothing, which isn't very interesting.
The next thing we'll do is make it move in sync with the ground by following the Progress
events that we added to the game in the last section as shown in the following code:

 self.bodyType = 'static'
 game:addEventListener('Progress', self)
 function self:Progress(event)
 if self.y then
 self.y = self.y + event.delta
 else
 game:removeEventListener('Progress', self)
 end
 end
 return self

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

181

Since each Progress event contains the amount the screen moved, we can move the turret
by the same amount. Now that this object has some basic behavior, it's time to start linking it
into the game and attaching the scheduling mechanism. Save and switch to game.lua, and
add a simple table before the event definitions using the following code:

local scene = storyboard.newScene()
scene.Spawn = {
 turret = require "turret";
}
function scene:createScene(event)

This means that we can call game.Spawn.turret(game, x, y) to create a new turret
at x, y in the world for game. However, we're not going to call it directly. We'll create a
schedule that contains functions to spawn enemies in a common, shared context (the game)
to save the code having to contain the same values repeated an awful lot.

Creating a schedule
In order to have our turret appear at the right point, we'll create a schedule that spawns new
enemies as the level progresses.

Getting on with it
Save game.lua for the moment and create a new file in the level folder called
marsh-enemies.lua. This file will define a schedule module that's 60 seconds
long, so that's the first thing we'll define using the following code:

return function(game)
 local duration = 60
 return duration
end

At this point, if you previously put a placeholder duration in
game.lua to test the background scroll, you can revert that
to the code that uses this file.

Next we'll use the schedule function (from a module that isn't created yet) to start our
custom schedule function against the current game. This will take a few steps to make it
fully clear, but showing you how it will be used in the following code should help you see
why this setup is worth engineering:

 local duration = 60
 schedule(game,
 function()

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

182

 at (0.3) spawn.turret(50, -20)
 end
)
 return duration

Now here's the catch—the at and spawn.turret functions haven't been defined anywhere
yet, and they won't be made local in this file or defined as globals, even though this function
uses them as global. Our schedule function will create them in a custom environment.

So for each schedule function, we'll create an environment that contains simplified actions
on the game the schedule is for, and use it for the function that defines the schedule. We'll
combine this with making the schedule function part of a coroutine, so that it can suspend
itself, such as when it is waiting for a particular time to come up in the schedule.

So, before moving on, load the module you're about to create into marsh-enemies.lua
using the following code:

local schedule = require "schedule"
return function(game)
 local duration = 60

Building a schedule framework
Save marsh-enemies.lua and create the file schedule.lua at the top of your project.
This file won't actually be very long. The core is a function that starts each newly created
coroutine, attaching the environment supplied to the schedule, running that schedule until
it's complete, and finally disconnecting the schedule from the game so that it won't throw
errors or take up processing time as shown in the following code:

local function bind(game, listener, actions, schedule)
 setfenv(schedule, actions)
 schedule()
 game:removeEventListener('Progress', listener)
end

The rest of the module will be a function that does the work of setting it up. It'll create an
environment that contains bridge actions to the main game, start a coroutine using our
glue function, and start that coroutine with the schedule function and environment. This
coroutine will wake up every time the game object receives a Progress event to see if there
are any enemies it needs to spawn, create those required, and go back to waiting.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

183

We'll start by creating a blank environment and our coroutine:

 game:removeEventListener('Progress', listener)
end
return function(game, schedule)
 local actions = {}
 local self = coroutine.wrap(bind)
end

Unlike coroutine.create, coroutine.wrap returns a function
that resumes the new coroutine each time it's called. It's usually a
little more convenient, but be a little careful with coroutine.wrap
because if any error is thrown inside the coroutine, it will bubble right
up and affect the code calling the resume function.

We'll then connect the new coroutine to be resumed for each Progress event sent to the
game using the following code:

 local self = coroutine.wrap(bind)
 game:addEventListener('Progress', self)
end

We'll create a listener that stops feeding new Progress events into the schedule module
when the game ends, such as when the player loses all of his or her lives as shown in the
following code. This effectively terminates the schedule; there's no way anymore to resume
it and it will get garage-collected.

 game:addEventListener('Progress', self)
 local function close(event)
 if event.action == 'ended' then
 game:removeEventListener('Progress', self)
 game:removeEventListener('Game', close)
 end
 end
 game:addEventListener('Game', close)
end

Then, we'll start the coroutine with its schedule and environment, as well as the information
it needs to clean itself up, and return the new coroutine in case the calling code has some
use for it:

 game:addEventListener('Game', close)
 self(game, self, actions, schedule)
 return self
end

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

184

Building the scheduled actions
Of the two functions we've described, the at action is the simpler one. It checks the
elapsed time in the schedule module; if it's not enough, it yields to keep waiting, but if
its designated time has arrived, it returns from its loop and lets the schedule advance.
This means the code is very straightforward as follows:

 local actions = {}
 function actions.at(time)
 repeat
 local progress = coroutine.yield()
 until progress.time >= time
 end
 local self = coroutine.wrap(bind)

Calling the function at may seem a little strange, but it allows the
schedule calls to read much more like normal language. We could
have called the function waitUntil and written the function
waiting for it on another line, but Lua's loose syntax allows us to use
this very compact format.

The spawn functions are a little more complex. We could simply build them all like
the following:

function actions.spawn.turret(x, y)
 return game.Spawn.turret(game, x, y)
end

However, since each one would follow the same pattern, we can use another pattern based
on metatables and the __index lookup, the self-populating table. __index on a table's
metatable is only used when the requested key isn't in the original table; this means that
the function that creates the requested value can store it in the table, and next time, it will
simply be retrieved from the table instead of being looked up in the __index table again.
This makes the spawn action family easy to summarize in one block.

 actions.spawn = setmetatable({},
 {
 __index = function(t, name)
 local function cue(...)
 return game.Spawn[name](game, ...)
 end
 t[name] = cue
 return cue
 end
 }
)
 local self = coroutine.wrap(bind)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

185

That's actually all there is to the schedule system! You can test it out and watch the turret
appear in the upper-left and slide-down corner across the screen, mindlessly facing right and
doing nothing.

Bringing an enemy to life
Making the turret work requires only two main steps. The first is to have it track the
player. Since the game object keeps a reference to the Player object, this boils down
to basic trigonometry.

Open turret.lua and add a line to the Progress handler as shown in the following code:

 if self.y then
 self.y = self.y + event.delta
 self.rotation = math.deg(math.atan2(game.Player.y - self.y,
game.Player.x - self.x))
 else

The arctangent of the y and x distances gives the facing direction from the turret to the
player, which we can use as the rotation angle to make the turret point at the player. If you
try the code again you should see the turret stay pointed at the player as it scrolls down and
the player moves. The last step is to give the turret a weapon. While we have the turret
file open, have it start firing as soon as it is created:

 end
 self.Weapons.AntiAir:start(self, 100, 0)
 return self

This depends on the turret having a weapon called AntiAir, which in this case was already
created in the existing partial code.

The turret is complete for the time being. If you test the code, it should shoot at the player,
and bullets fired at it should vanish when they hit it. Currently, however, nothing gets
destroyed no matter how many bullets hit it.

What did we do?
A lot of stuff happened in this section! Using coroutines to track a continuously advancing
schedule of new enemies, using Lua environments to wrap up some complicated actions
in some simple wrappers, and adding an advancing series of progression data to drive
everything else.

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

186

What else do I need to know?
Environments are a powerful feature of Lua; each function has an associated environment
which is just a table linked to that function. Whenever a function needs to use a global, it
looks up the global name as a string key in that table. By changing a function's environment,
we can give it access to a totally different set of global functions. The real power here will
come from the fact that the environment that we link to our schedule will be stocked with
functions that use the normal environment, and can therefore take actions whose particulars
are hidden from the code using them.

Lua creates a default environment to link to its code when it's
started, containing all the standard global functions, and stores a
link to that environment in that environment under the name _G,
which you've probably used already.

Scripting behavior
An enemy that just sits and shoots predictably quickly stops presenting much of a challenge.
Our next enemy will be capable of steering around the screen according to a predesigned
path, but since the path will be managed through a schedule similar to the one we use to
spawn enemies, a different path can be given to each enemy.

Getting ready
This new enemy will be a fighter craft equipped with a single forward-facing machine gun
that can be turned on and off. It can face a given direction, set its speed, and adjust its facing
over time to create more naturally curved paths. We'll use the third entry in ship/sprite.
lua to represent this ship.

Getting on with it
Prepare a new file in the top level of the project called dogfighter.lua. It will start
much like the player.lua and turret.lua files. Notice that this function takes an extra
argument—the function that describes its orders as shown in the following code:

local ship = require "ship.ship"
local category = require "category"
local enemyFilter = {
 groupIndex = category.enemy;
}
return function (game, x, y, path)
 local self = ship.fighter(game, game.Mobs.Air, enemyFilter)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

187

 self.x, self.y = x, y
 return self
end

Because the fighters will face down by default, we'll rotate it in the opposite direction from
the player. To keep the shadows and highlights on the sprite still appearing to come more or
less from the same side, we'll reverse the y scale.

 self.x, self.y = x, y
 self.rotation = 90;
 self.yScale = -1;
 return self
end

We'll set a Speed value that will hold the ship's desired scalar velocity, without regard to
which direction it's going in or how that velocity will be broken down into the x and y speeds:

 self.rotation = 90;
 self.yScale = -1;
 self.Speed = 0
 return self
end

We'll use a plan module, to be created next, to generate a coroutine that will carry out the
requested orders, similar to the schedule module:

 self.Speed = 0
 local plan = require "plan" (self, path)
 return self

Finally, we'll start a timer to update this coroutine according to the passage of time, and
store this timer so that we can stop it when the ship is destroyed or removed:

 local plan = require "plan" (self, path)
 self.Guidance = timer.performWithDelay(1000/application.fps, plan,
0)
 return self

Writing a ship control script
To get a notion of what commands our plan module needs to support, let's lay out a control
script first. The ship will start by facing down across the screen, move forward at a set speed,
and start firing as it travels down. After a second, it will veer off to the left and stop firing.
This function will be laid out in the marsh-enemies.lua module, so save dogfighter.
lua and reopen that module to add the following code:

 function()
 at (0.3) spawn.turret(50, -20)
 at (0.5) spawn.defender(140, -10,

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

188

 function ()
 face(90)
 go(100)
 fire("MachineGun", 50, 0)
 after (1) turn(60, 0.75)
 release("MachineGun")
 end
)
 end

So, this gives us at least six functions to support:

ff face() will instantly set the ship to face the specified direction.

ff go() will set the ship's forward velocity to the specified speed.

ff turn() will adjust the ship's facing by the specified angle relative to its current
facing, over the specified amount of time.

ff after() will wait until the specified amount of time has passed since after() was
called, then proceed. It's not quite the same as at() in the level schedule, because
that waits for specific intervals from the start of the level.

ff fire() and release() will start or stop the specified weapon. The same key
should be used that was used to identify the template in the ship's Weapons table.

The dogfighter module uses the plan module to support these functions, so save
marsh-enemies.lua and create the new module, plan.lua, in the top level of the
project. This file will start off with a skeleton similar to that of schedule.lua, as shown
in the following snippet, with which it has a great deal in common:

local function bind(path, actions)
end
return function(self, path)
end

The plan will have the same sort of glue function, which will attach a set of actions to the
plan function in the same way:

local function bind(path, actions)
 setfenv(path, actions)
 path()
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

189

However, where schedules are intended to run for a fixed amount of time, a ship's orders
need to be carried out as long as it's alive, which could be highly variable. But since we
expect plans to run off of a timer that will repeat indefinitely, this makes them more uniform
to cancel once the plan function is exhausted. We just wait for one more firing of the timer
so that we can get the timer source to cancel it.

 path()
 local finalize = coroutine.yield()
 timer.cancel(finalize.source)
end

The code to start a new plan from the glue function and arguments will be almost identical
to that of schedule.lua:

return function(self, path)
 local actions = {facing = self.rotation}
 local plan = coroutine.wrap(bind)
 plan(path, actions)
 return plan
end

The ship control code will be able to refer to facing as a global
variable to determine the angle at which the ship is pointing, although
setting this global will not turn the ship. This is convenient for scripts
that might want smarter behavior.

Defining ship actions
The easiest actions to implement will actually be the fire control ones:

 local actions = {facing = self.rotation}
 function actions.fire(name, xAim, yAim)
 end
 function actions.release(name)
 end
 local plan = coroutine.wrap(bind)

We'll put a sanity check in just so that if a designer (or programmer) misspells a weapon
name or otherwise tries to fire a non-existent weapon, it doesn't crash the ship's entire plan:

 function actions.fire(name, xAim, yAim)
 if self.Weapons[name] then
 self.Weapons[name]:start(self, xAim, yAim)
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

190

We'll take a similar approach with the release function, but as a convenience, it can be
called without any name to stop all firing weapons:

 function actions.release(name)
 if name and self.Weapons[name] then
 self.Weapons[name]:stop()
 else
 for name, weapon in pairs(self.Weapons) do
 weapon:stop()
 end
 end
 end

The go function is one of the functions that I was referring to when I mentioned that some
functions get simpler when the base ship images are pointed to the right. It also stores the
scalar speed to facilitate turning functions:

 local actions = {facing = self.rotation}
 function actions.go(speed)
 local angle = math.rad(actions.facing)
 self:setLinearVelocity(speed * math.cos(angle), speed * math.
sin(angle))
 self.Speed = speed
 end
 function actions.fire(name, xAim, yAim)

The Corona rotation properties are measured in degrees, but Lua
math functions return and expect angles in radians. The math.deg
and math.rad functions help plug this gap.

Finally, we get to use turn(). This is a slightly more complicated function because it keeps
control of the ship until the turn is complete. For convenience, it expects durations in
seconds, not milliseconds, as shown in the following code:

 self.Speed = speed
 end
 function actions.turn(angle, duration)
 duration = duration * 1000
 end
 function actions.fire(name, xAim, yAim)

It needs to know how much time has passed since the last time it was checked, so it starts by
noting the time it started:

 function actions.turn(angle, duration)
 duration = duration * 1000
 local start = system.getTimer()
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

191

The function will continue reducing the duration by the elapsed time whenever it gets
notified of time passing, until the complete duration has passed:

 local start = system.getTimer()
 while duration > 0 do
 local elapsed = coroutine.yield()
 elapsed, start = elapsed.time - start, elapsed.time
 duration = duration - elapsed
 end
 end

To turn the ship smoothly, it will see what portion of the turn duration has just elapsed
(maxing out at all of it), and turn by that large a slice of the remaining angle:

 while duration > 0 do
 local elapsed = coroutine.yield()
 elapsed, start = elapsed.time - start, elapsed.time
 local wedge = angle * math.min(1, (elapsed / duration))
 actions.face(actions.facing + wedge)
 duration = duration - elapsed
 end

Finally, it will reduce the remaining angle to turn by the amount it just turned by:

 actions.face(actions.facing + wedge)
 angle = angle - wedge
 duration = duration - elapsed
 end

Adding a new ship to the level
Open game.lua and add the dogfighter module to the list of elements the game
can create:

scene.Spawn = {
 turret = require "turret";
 dogfighter = require "dogfighter";
}

If you test the code at this point, you will see a ship fly down across the screen and bank,
although it should not fire yet.

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

192

Adding weapon fire
Save and move to the file ship.lua in the ship folder of your project directory. Find
the section where it declares the fighter description, and fill a new entry into the
Weapons table:

 MaxHealth = 1;
 Weapons = {
 MachineGun = weapon.MachineGun,
 };
 },
 dreadnought = ship {

If you test the code again, the enemy ship should fire as it comes down from the top of
the screen.

What did we do?
We expanded the principles used for the schedule module to run actions in an even more
specific context by using a single ship as the basis for the environment applied to the new
plan. This system opens up a lot of options for producing varied ship behaviors to challenge
and engage the player. Ships can fly in formation, appear in waves, and use various fire
patterns to spray the screen with bullets.

What else do I need to know?
There's one important caveat to using functions with environments like this, in Lua, functions
are actually objects; this means that if you set different environments on a function, the
environment more recently set is used. And if you have multiple references to a function,
setting the environment on one of them changes all of them. This means that if you try to
use the same function as a plan for more than one ship at once, very strange things may
happen, as if all the guidance systems were interfering.

The easiest way to deal with this is to make plan factories, functions that return a new copy
of a function each time they're called. Each such closure, or instance of function code, has
its own upvalues and its own distinct environment. By the end of the project, we'll have
constructed several of these.

Controlling the boss
No game like this is complete without an awe-inspiring boss craft or base that offers a more
complex fight. Because boss crafts don't typically fly around in circles, a new action is called
for in plan.lua; hover. It's very similar to turn in its implementation, so we won't cover
it in too much detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

193

Getting on with it
First, open plan.lua and add the hover function to the environment:

 self.Speed = speed
 end
 function actions.hover(xMove, yMove, duration)
 duration = duration * 1000
 local start = system.getTimer()
 while duration > 0 do
 local elapsed = coroutine.yield()
 elapsed, start = elapsed.time - start, elapsed.time
 local fraction = math.min(1, (elapsed / duration))
 local xDrift, yDrift = xMove * fraction, yMove * fraction
 xMove, yMove = xMove - xDrift, yMove - yDrift
 self.x, self.y = self.x + xDrift, self.y + yDrift
 duration = duration - elapsed
 end
 end
 function actions.turn(angle, duration)
 duration = duration * 1000

Creating the boss object
Now that the AI script actions are complete, we'll create the file that will accept these
actions and advance the game when a boss is destroyed. Make a copy of dogfighter.lua
in the top level of the project and name it boss.lua. The following are the steps to create
a boss object:

1.	 The module function will accept a flight plan function like the dogfighter
module does, but also accepts a function that dictates what will happen when
the boss is defeated:

return function (game, x, y, path, advance)
 local self = ship.dreadnought(game, game.Mobs.Air, enemyFilter)

2.	 Record the advance function in the boss's table so that we can retrieve it and run it
when the boss dies:

 self.Speed = 0
 self.Advance = advance
 local plan = require "plan" (self, path)

Using a supplied function gives us choices about how bosses appear. For instance, you could
make a level where a boss appeared halfway through, and its defeat started a new schedule
to proceed through the rest of the level.

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

194

Making the boss module available
In order for the schedule to be able to spawn a new boss object, the game's spawn table
needs a reference to the module. Open game.lua and add a new line to the table near
the top of the file.

scene.Spawn = {
 turret = require "turret";
 dogfighter = require "dogfighter";
 boss = require "boss";
}

Driving the boss's behavior
To launch the boss at the end of the level, we'll modify the level schedule. Open
marsh-enemies.lua and find the end of the function being passed to the schedule.

1.	 We'll add an entry a second or two before the schedule runs out to create the
boss object:

 at (58) spawn.boss(160, -40, orbit(), bossOneDestroyed)
 end
)

 return duration

2.	 Because it's easy in this case, we'll specify what happens when the boss is
defeated first:

end
local function bossOneDestroyed(self, game)
 game:dispatchEvent{name = 'Game'; action = 'ended', outcome =
'won'}
end
return function(game)

3.	 Then we'll create a function that returns a set of flight orders moving in a
figure-eight pattern; first, the boss will move down from its spawning point
at the top of the screen and slide over to one corner of its loop:

local function orbit()
 return function()
 hover(0, 100, 2)
 after (1.5) hover(55, 0, 1.5)
 end
end
local function bossOneDestroyed(self, game)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

195

4.	 Then, its flight plan will go into a loop that will last until it is destroyed, moving
down, then up and over, and then the same on the other side.

 return function()
 hover(0, 100, 2)
 after (1.5) hover(55, 0, 1.5)
 while true do
 after(1) hover(40, 50, 1.5)
 after(1) hover(-150, -50, 4)
 after(1) hover(-40, 50, 1.5)
 after(1) hover(150, -50, 4)
 end
 end

5.	 As the boss moves, it will switch some of its guns on and off as it changes direction.
Because these calls are repetitive, the flight plan can define reusable functions
for them.

 after (1.5) hover(55, 0, 1.5)
 local function crossFan()
 fire(1, 50, 80); fire(2, 50, -80)
 release(3); release(4)
 fire(5, 50, 13); fire(6, 50, -13)
 end
 local function focusForward()
 release(1); release(2)
 fire(3, 48, -15); fire(4, 48, 15)
 release(5); release(6)
 end
 while true do

This ability to keep using loops, functions, and other programming
semantics inside a sandbox like this makes it especially powerful.

6.	 Once it calls those functions appropriately, the flight plan is complete.

 while true do
 focusForward()
 after(1) hover(40, 50, 1.5)
 crossFan()
 after(1) hover(-150, -50, 4)
 focusForward()
 after(1) hover(-40, 50, 1.5)
 crossFan()
 after(1) hover(150, -50, 4)
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

196

Handling the boss's defeat
The default onDestroy handler falls short in two regards where the boss is concerned. It
needs to end the level (as determined by the boss's advance function), and frankly, one little
explosion isn't impressive enough for a boss's victory. The following are the steps to handle
the boss's defeat:

1.	 Open ship.lua and frame in an onDestroy override for the dreadnought entry:

 dreadnought = ship {
 sprite = chassis [4];
 MaxHealth = 1000;
 onDestroy = function(game, event)
 local self = event.unit
 end;
 Weapons = {

2.	 Most of the functions are still the same as the default onDestroy function, so we'll
start by bringing them in. However, we'll hold off on removing the boss sprite as
shown in the following code:

 onDestroy = function(game, event)
 local self = event.unit
 timer.cancel(self.Guidance)
 for id, weapon in pairs(self.Weapons) do
 weapon:stop()
 end
 end

3.	 First, we'll start a repeating timer to set off explosions continuously on top of the
boss sprite:

 local w, h = self.width / 2, self.height / 2
 local chainReaction = timer.performWithDelay(100,
 function(event)
 explosion(self.parent, self.xOrigin + math.random(-w,
w), self.yOrigin + math.random(-h, h))
 end,
 0
)

4.	 Then, we'll start a one-use timer that will clean things up. It will stop the endless
explosions, remove the boss, and trigger the boss's Advance function.

 self.Destruction = timer.performWithDelay(1000,
 function(event)
 timer.cancel(chainReaction)
 self:Advance(game)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

197

 self:removeSelf()
 end
)

Test things out! Once you make it past the other enemies and dodge the boss's guns, you'll
see the boss going down in a blaze of glory. Having your character be invulnerable during
development makes things like this much easier to test out.

What did we do?
We expanded the selection of actions available to the enemy's AI code. We created a new
object type with a continuously repeating set of controls and internal logic to its actions. We
also used one timer to regulate another, in order to create a visually interesting effect with a
fixed duration.

What else do I need to know?
If you want to create functions for your control coroutines, they need to be defined inside
the function that contains the instructions. Otherwise, they'll be created without the special
environment that provides their instructions, and they won't respond properly.

Cleaning up and making the game
playable

There are three issues left before the game fulfills its design:

ff Filtering collisions based on groupIndex alone doesn't prevent bullets from hitting
each other, or allow the player ship to fly over turrets without colliding with them.

ff One enemy before the boss is not going to provide a satisfying challenge. The
level should provide several fighters and turrets to challenge the player over the
level's course.

ff The player can't actually lose lives or fail the game. This isn't a bug, but a feature
that's deliberately been disabled until the end, in order to make the game easier
to test.

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

198

Getting on with it
In order to control collisions more accurately, we'll use an additional feature of collision
filters—category masking. This feature allows you to specify up to 16 categories that an
object can belong to, as well as which of those categories the object will collide with. An
object is not required to collide with objects from its own category. If two objects overlap
and only one of them can collide with the other, no collision takes place and the two
objects pass through each other.

The category and mask for an object are defined as bitmasks, numbers where each bit in the
representation is treated as a separate on-off value. The easiest way to write these values
in your code is as hexadecimal integers: 0x0001, 0x0002, 0x0004, and so on. You can then
add these values together to make composite bitmasks.

We want the player ship to collide with enemy bullets and enemy ships; it is already
prevented from colliding with its own bullets or any friendly ships the game could contain by
sharing the same negative groupIndex value. We will use the bit value 0x0001 to signify
ships, and the bit 0x0002 to signify bullets; to keep this straight and clear, we'll define these
in a file. Open the file category.lua and add three new entries to the table being returned:

return {
 ship = 0x0001,
 bullet = 0x0002,
 all = 0xFFFF;
 general = 0,

Save this file and open player.lua; set the filter used by the player object to create an
object that belongs to the ship category and collides with objects from either the ship or
bullet category.

local playerFilter = {
 groupIndex = category.player;
 categoryBits = category.ship, maskBits = category.ship + category.
bullet
}

The dogfighter.lua and boss.lua files get the same treatment; these flying ships can
collide with the player's ship (destroying them both) or the player's bullets, as shown in the
following code:

local enemyFilter = {
 groupIndex = category.enemy;
 categoryBits = category.ship, maskBits = category.ship + category.
bullet;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

199

Make this change to both files using the following code, then open turret.lua. This one
requires slightly different treatment; player bullets can destroy the turrets, but the player's
ship can fly freely over them without either being destroyed.

local groundFilter = {
 groupIndex = category.enemy;
 categoryBits = category.ship, maskBits = category.bullet;
}

Notice that the turret's mask doesn't include other ships; this means that even if those ships
are set to collide with ships (which the turrets still count as), they won't, since one-way
collisions don't count.

Once you've saved this change, open weapon.lua. This one is slightly different because
each weapon is owned by a particular group, and fires bullets that belong to that group, not
hitting other objects from it. Find the anonymous function that is returned from the internal
local function weapon, where the filter for each new weapon is defined from the group
index used to create it as shown in the following code:

 self.filter = {
 groupIndex = groupIndex;
 categoryBits = category.bullet, maskBits = category.ship
 }
 return self

Collision filters are now set up; bullets don't collide with each other, ships only collide if
they're on different sides, and turrets can be shot but don't directly prevent flyovers.

Adding challenges to the level
Adding new enemies to the schedule can be simple or complex. Creating a turret is as simple
as specifying a position, and optionally waiting for a specified time by using the at (time)
function. As we've seen, creating a fighter is still simple, but requires supplying a function
that lays out the ship's flight plan. Fighters and their patterns constitute the main attraction
of a game like this, so we'd probably like quite a few, flying in variable patterns. Rather
than copying and pasting the flight plan code for each spawn command, we can produce
variations on common flight patterns by using function factories.

A function factory is another function that takes some arguments of the programmer's
choice, and produces another function that doesn't have to run right away, but, when it does
run, it produces a common behavior adjusted by the arguments that were used to create it.
Each time the factory is used, it produces a new version of the desired behavior function,
which also means that each of these functions can have its own environment (which is
important for our ship controllers). We've already created one factory, actually, in the form
of the orbit function that controls the boss. Now we'll produce a few more for a variety
of flight behaviors.

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

200

In level/marsh-enemies.lua, create a new function, cross. This function will produce
variable versions of the flight plan used by the dogfighter module we already created,
that flies straight down across the screen, firing, then turns off the gun and veers off to one
side before leaving the screen. The cross function will take one argument, the angle to turn
left or right when it changes course as shown in the following code:

local schedule = require "schedule"
local function cross(angle)
 return function()
 end
end
local function orbit()

The body of the returned function will resemble the anonymous function supplied to our
sample dogfighter function. You can enter it again or cut and paste the previous code;
note that the fixed turn, 60, is replaced with the enclosing angle argument.

local function cross(angle)
 return function()
 face(90)
 go(100)
 fire("MachineGun", 50, 0)
 after (1) turn(angle, 0.75)
 release("MachineGun")
 end
end

Trim out the existing entry for the dogfighter at the 0.5 seconds, and add in a few lines that
use this function about halfway through the level:

 at (0.3) spawn.turret(50, -20)
 at (26) spawn.dogfighter(140, -20, cross(-75))
 at (27.5) spawn.dogfighter(180, -20, cross(75))
 at (29) spawn.dogfighter(140, -20, cross(-75))
 at (58) spawn.boss(160, -40, orbit(), bossOneDestroyed)

You can test this, if you like, to see how the fighters come out one by one.

We're going to add new patterns for a few more fighters, but first let's drop in a couple more
turrets over the course of the map.

 at (0.3) spawn.turret(50, -20)
 at (12) spawn.turret(245, -20)
 at (26) spawn.dogfighter(140, -20, cross(-75))
 at (27.5) spawn.dogfighter(180, -20, cross(75))
 at (29) spawn.dogfighter(140, -20, cross(-75))

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

201

 at (35) spawn.turret(275, -20)
 at (42.5) spawn.turret(40, -20)
 at (58) spawn.boss(160, -40, orbit(), bossOneDestroyed)

We'll add two more flight plan factories using the following code: one that just flies right
across the screen at a chosen angle, and one that flies in a wide arc and travels back the
way it came. Both start and stop shooting during their course.

 release("MachineGun")
 end
end
local function strafe(angle)
 return function()
 face(angle)
 go(100)
 fire("MachineGun", 50, 0)
 end
end
local function swoop()
 return function()
 face(90)
 go(100)
 after (0.1) turn(30, 0.75)
 fire("MachineGun", 50, 0)
 turn(-240, 3)
 release("MachineGun")
 turn(30, 0.75)
 end
end
local function orbit()

We can spice things up after the first turret with a couple of the simpler flyers using the
following code:

 at (0.3) spawn.turret(50, -20)
 at (6.5) spawn.dogfighter(330, -15, strafe(120))
 at (9) spawn.dogfighter(-10, -15, strafe(60))
 at (12) spawn.turret(245, -20)

www.it-ebooks.info

http://www.it-ebooks.info/

Atmosfall – Managing Game Progress with Coroutines

202

An advantage of presenting the flight plans as functions in Lua is that they can contain
loops and choices like any code. We'll generalize the fliers using the swoop pattern using
a for loop:

 at (12) spawn.turret(245, -20)
 for i=1,3 do
 at (20 + i) spawn.dogfighter(180, -20, swoop())
 end
 at (26) spawn.dogfighter(140, -20, cross(-75))

Save marsh-enemies.lua and try running through the whole level and see how the
different enemies appear. Right now you're still invincible!

Enabling finite lives
In this particular case, we'll take the easy way out. The code to subtract lives when the player
is hit was in the code when we started the project, and was turned off to make debugging
and testing easier. This code is extremely similar to a module that was created in the Deep
Black project, which is why it isn't covered in detail here.

Open game.lua and find the commented line that registers the game object to track
Destroy events on the player and add the following code:

 local Player = player(self, display.contentCenterX, display.
contentCenterY)
--Player:addEventListener('Destroy', self)
 self.Player = Player

Uncomment the line to allow the game to remove a life or end the game whenever the
player's ship is destroyed:

 local Player = player(self, display.contentCenterX, display.
contentCenterY)
 Player:addEventListener('Destroy', self)
 self.Player = Player

It's often advantageous to do things like this, creating systems early to make sure they work,
then disabling them while they're inconvenient. It's time to try out the game! Careful, it's
pretty hard.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 5

203

Game over – wrapping it up
This was a serious endeavor! This system has several complex elements and uses all three
major elements of advanced Lua: metatables, environments, and coroutines. It combines the
special controls of smartphones with a classic retro style of arcade game play.

Can you take the HEAT? The Hotshot
Challenge

A lot of these games have a special backup weapon of some kind. You can combine the
weapon objects of this game with the multitouch techniques from Project 8, The Beat Goes
On to create a bomb that starts charging when you touch your ship with one finger while
already firing with another. Once both fingers have been held on the screen long enough, the
bomb goes off around the point where the original finger is targeting the screen and deals
damage to all enemies nearby. Try making an effect like a targeting circle that zooms in on
the space being targeted as the bomb gets closer to falling.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project 6
Predation – Creating

Powerful Visuals from
Simple Effects

Corona is a two-dimensional engine that currently focuses on mobile development, which
means that the devices it targets are limited in their graphical processing power compared
to desktop and laptop computers. Nonetheless, most of these devices have enough graphics
power to make them comparable to, say, 32-bit game consoles, and they are easily capable
of compositing images, layering elements, and clipping images or groups to a mask. While
the engine doesn't currently support the dynamic creation of masks or sprite sheets, some
creative application of the effects that it does support allows for a wide range of effects to be
created with very little code.

What do we build?
For this short project, we will take a functionally complete game and apply some visual
polish to it. This game, Predation, is a relative of the classic arcade game Missile Command,
where zombies that explode into pools of diseased, corrosive blood when shot, are
substituted for the explosive missiles of the original. However, currently the graphics are a
bit crude; the zombies simply vanish when the blood pools eats them away, and the blood
pools are perfectly round, flat pools of red color.

www.it-ebooks.info

http://www.it-ebooks.info/

Predation – Creating Powerful Visuals from Simple Effects

206

What does it do?
In this particular project, we have a game that is already feature-complete. You can play all
the way through it, tapping the screen to dissolve marauding zombies in to fast-evaporating
pools of caustic goo and turning the zombies into new pools of goo in the process. Instead
of adding new functionality, we're going to focus on plussing, or juicing, the game before
release. These are terms used by some game developers to refer to the process of looking at
a game or other work in progress and looking for the parts of it that can most easily be made
plus one or plus ten percent to improve value and appeal for the effort, or pumping juiciness
into the game's presentation.

Zombie games tend to be aimed at a market that's interested in gore and explosions. While
going over the top in this regard would be both expensive and potentially draw us some
complaints, we can add some eye-catching appeal with only a little work. Ideally, the zombies
should appear to dissolve or break up as the goo washes over them; we can simulate this by
using a sort of tone effect to erase them a bit at a time. We'll also liven up the blood pools
with some texture, liquid shine, and some variation in the outline.

Why is it great?
This project will showcase the extreme ease of coding most visual effects and transitions in
Corona. While to some extent this is offset by the need to create mask images and effect
templates, the effects images used for this project were created using the free image
software GIMP (the GNU Image Manipulation Program, available at http://www.gimp.
org/) in under half an hour apiece.

How are we going to do it?
This project is quite short, and for a change, some of the steps we're going to review have
nothing directly to do with writing code. This is because writing the code for Corona's
transitions and visual effects is absurdly easy. The challenge in producing good visual effects
in Corona is not coding them, but planning which effects will produce the desired results.
We will be covering the following topics in this project:

ff Planning the dissolve

ff Applying the dissolve

ff Planning the blood splatter

ff Assembling the splatter layers

What do I need to get started?
You should create a new empty project directory called Predation, and copy the contents
of the version 0 folder in the project pack directory. This game is functional, and you can
try running it before we start modifying it.

www.it-ebooks.info

http://www.gimp.org/
http://www.it-ebooks.info/

Project 6

207

Familiarizing yourself with something before you start changing it is
always recommended.

Planning the dissolve
Having zombies that blink instantly out of existence when killed is functional for gameplay,
but lacks what some developers call the "wow! factor". We'd like the zombies to sort of
frothily disappear from the side where they come into contact with the diseased goo. While
the actual code is simple, the process depends on having the right art assets and placing
them correctly, so we need to make sure we understand the plan.

Getting ready
We can't actually edit the sprite, but Corona does offer a feature called masking. Masking
allows us to use another grayscale image to control which parts of a display object actually
appear. Pixels that are black in the mask image are blocked out from the display object on
which the mask is used, while white pixels in the mask allow the masked object to show
through normally. Mask pixels which are gray allow the masked object to show through with
some transparency, according to how dark they are.

We've used simple rectangular masks in previous projects to prevent parts
of a scene from bleeding during transitions; in this project we'll practice
using them as effects and not just for clipping.

Getting on with it
The real power here comes from the fact that Corona will also let us rotate, slide, or stretch
the image being used as a mask, and continue changing these factors over time. We can
create a mask image which contains a gradient that blocks progressively more of the image
as it goes from one end to the other; and slide that mask across the image to phase it out.

www.it-ebooks.info

http://www.it-ebooks.info/

Predation – Creating Powerful Visuals from Simple Effects

208

A mask starts out centered over the origin of its target; the center of the image or vector, or
the (0,0) point of the group. Its center can be moved to any other coordinate in the target
object's system by setting the object's maskX and maskY properties. The mask can be turned
around this point by setting the target's maskRotation property; like the rotation property,
this value is measured in degrees clockwise. The mask can also be stretched or compressed
using the target's maskScaleX and maskScaleY properties.

If the mask isn't as large as its target, or if the mask is slid so that
part of the target is outside it, portions of the target that are
outside the bounds of the mask are clipped (not drawn), as if the
mask were black there.

To cause the dissolve effect on destroyed zombies to appear to move away from the side
facing the cause of its destruction, we can turn the mask so that the increasing black is
pointed towards that side. We then move the mask's center away from the destroying
object. To keep the motion smooth at any angle, we'll use trigonometry to place the
mask's center at a specific radial distance; that is, the distance in a straight line rather than
separated into x and y parts.

Keeping in mind that the mask is moving away from the thing it's oriented toward, we'll
express the displacement (the distance it moves) as a negative value as shown in the
following figure:

What did we do?
By now, we've understood how the existing art assets can be applied to create new effects,
and planned out the basics of the math that will create this effect. We're ready to convert
the motion and effect that we want into code.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 6

209

Applying the dissolve
Now that we have the right assets and a plan to use them for the desired effect, it's time to
write the actual code.

Getting ready
Open the file creep.lua and locate the gap just above the body of the module function,
after the table of sprite sequences.

Getting on with it
The first thing that needs to be done is to load the mask file so that it can be used on the
zombie sprites.

1.	 One mask object can be shared among any number of objects, so we'll load it into a
variable at the top level of the file:

 start = 12, count = 1;
 },
}

local dissolve = graphics.newMask("effects/dissolve.png")

return function(goal, x, y)

2.	 While we're here, we'll add a constant declaration for the distance the mask will
travel to move it completely across the sprite until it's invisible. As we discussed in
the Planning the dissolve section, this distance will be negative since it's moving
away from the direction it's turned towards:

local dissolve = graphics.newMask("effects/dissolve.png")
local dissolveDisplacement = -72

return function(goal, x, y)

3.	 The mask is now ready and available to the function that needs it; the self:Die
function inside the constructor, which causes a creep that's touched a hazard to
remove itself, leave a pool of hazard, and notify the world. First we'll add the mask
to the object that's about to be destroyed:

 function self:Die(cause)
 blast(world, cause, self.x, self.y)
 world:dispatchEvent{name='Death'; unit = self, source = cause,
worth = 10, chain = cause.Chain}

www.it-ebooks.info

http://www.it-ebooks.info/

Predation – Creating Powerful Visuals from Simple Effects

210

 world:removeEventListener('clock', self)
 self:setMask(dissolve)
 clear(self)
 end

4.	 The mask's grain (the size and spacing of the black areas) is a little coarse for these
fairly small images, so we'll scale it down to make it seem finer:

 self:setMask(dissolve)
 self.maskScaleX, self.maskScaleY = 0.5, 0.5
 clear(self)

For a commercial project, we'd probably want to scale the mask
image itself down before release, to produce a cleaner result,
but often when a project is in early development, it's more
useful to get it running quickly with the assets already at hand,
to see results quickly and make changes easily.

5.	 Next, determine the angle between the dying zombie and the object that triggered
its death and was passed into the Die function as the cause argument:

 self:setMask(dissolve)
 self.maskScaleX, self.maskScaleY = 0.5, 0.5
 local theta = math.atan2(cause.y - self.y, cause.x - self.x)
 clear(self)

6.	 Turn the mask to face this direction. Remember that Lua's trigonometric functions
return results in radians, but Corona's rotation properties expect values in degrees.

 local theta = math.atan2(cause.y - self.y, cause.x - self.x)
 self.maskRotation = math.deg(theta) % 360
 clear(self)

7.	 Next, animate the mask's position to move a negative amount in that direction.
The transition library will animate any numerical property of value of the specified
object, so it can control maskX and maskY just as easily as it can the object's own
position or scale.

 self.maskRotation = math.deg(theta) % 360
 transition.to(self,
 {
 maskX = dissolveDisplacement * math.cos(theta),
 maskY = dissolveDisplacement * math.sin(theta);
)
 display.clear(self)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 6

211

8.	 Finally, instead of clearing the object instantly on death, we want to hold off until
the animation is over:

 transition.to(self,
 {
 maskX = dissolveDisplacement * math.cos(theta),
 maskY = dissolveDisplacement * math.sin(theta);
 onComplete = display.clear}
)
 end

You can now test the project on either the simulator or a device and watch the zombies
evaporate when a splat touches them!

What did we do?
We created a reusable mask that can be attached to each monster object as it dies, and
pointed it in the correct direction to appear to come from the direction of whatever killed
the creature. We used the transition library to easily manage the movement of the mask
that creates the impression of disappearing.

What else do I need to know?
The display.clear function isn't a standard part of the Corona display module. It's
effectively a version of display.remove that includes sanity checks as to whether an
object is still usable, mostly in cases where the object has been cleared from the scene
before its transition finishes. Since it will be used to remove both creeps and blasts, it's in
a module of its own, similar to the math.pythagorean function in earlier projects.

Of course, you can also animate the other properties of an object that govern its mask,
such as its rotation and scale.

Planning the splatter
A more distinctive splatter effect would create some more interest, particularly with the
more shooter-oriented, thrill-seeking crowd. This still won't be terribly gory or anything,
but we'll give it a more distinctive outline, a little texture, and some variation from one
splat to another.

www.it-ebooks.info

http://www.it-ebooks.info/

Predation – Creating Powerful Visuals from Simple Effects

212

Getting on with it
We want to avoid some of the common traps in effects like this; specifically, uniformity can
get distracting or irritating. However, we don't want to create a lot of different animations
and pictures.

Rotation is very useful here. We can rotate our splat mask to vary the outline a little; and we
can vary the red texture's rotation to similarly mitigate the obvious similarity. Both of these
can simply be set randomly from 1 to 360.

While it's not tremendously realistic, we can add a rotation animation to the texture to give
it a feeling of motion, and it's very inexpensive. But we still want some steady highlighting, to
give an impression of light on liquid, so we can use a faint texture that will continue to point
in a single direction. We can make a gleam that brightens the red color while still showing
the moving, swirling texture by using a feature called blend modes.

A blend mode decides how the object affected changes the image that appears underneath
it. The normal mode works pretty much as you would expect, simply drawing the object in
question over the rest of the image, only leaving gaps for transparent parts of the image, or
areas around the border of a shape such as a circle.

The multiply and screen modes work much like they do in Photoshop or similar programs. In
multiply mode, a black pixel in the multiplied object always leaves black, and a white pixel
leaves the original showing through; in screen mode, a black pixel leaves the original image
and a white pixel gives white. Pixels in between are combined accordingly.

The add mode causes the image being overlaid to make the original image selectively
brighter; it's similar to screen mode in many ways, but it tends to create a sort of burned in
look. We'll combine the add mode with a fairly dim highlight image to add that gleaming look.

The following image illustrates how the same sprite can be combined with a background in
each of these modes from left to right: normal, multiply, screen, and add:

What did we do?
We've planned out a slightly more complex effect, one layered together out of several
pieces, and included separate animations and effects to bring it together.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 6

213

Assembling the splatter layers
Now that we have some notion of how to combine the elements, we'll put them together in
the actual code. Because we have two different images that we'll want layered together, the
splatter object can't be just a single display object any more. We'll replace it with a group,
layer on highlights, and add the impression of motion.

Getting ready
Make sure that the effects folder in your project contains the images blood.png, splat.
png, and highlight.png. Copy these from the version 1 subfolder of the Predation
directory in the project pack if needed.

Getting on with it
Start by opening the file blast.lua and perform the following steps:

1.	 Near the beginning of the file, load the mask:

local category = require "category"

local clip = graphics.newMask("effects/splat.png")

local function shrink(object)

2.	 Next, locate the first lines of the main function where a circle is created to represent
the splatter and set to appear as red. Change these functions to create a new group
parented to the specified world, positioned at a specified point:

return function (world, cause, x, y)
 local self = display.newGroup()
 world:insert(self)
 self.x, self.y = x, y

 self:toBack()

3.	 Like the mask image in the zombie example, the blood image isn't currently set to
the same size we were using before, so we'll adjust the scale:

 world:insert(self)
 self.x, self.y = x, y
 self:scale(25/32, 25/32)

 self:toBack()

www.it-ebooks.info

http://www.it-ebooks.info/

Predation – Creating Powerful Visuals from Simple Effects

214

4.	 Next, we'll load the blood texture and center it over the group's origin. This keeps
the positioning consistent with that of a single image:

 self:scale(25/32, 25/32)
 self.Blood = display.newImage(self, "effects/blood.png")
 self.Blood.x, self.Blood.y = 0, 0

 self:toBack()

5.	 We'll load the highlight image into the same group, and make sure it's positioned
like the blood texture:

 self.Blood = display.newImage(self, "effects/blood.png")
 self.Blood.x, self.Blood.y = 0, 0
 self.Blood.rotation = math.random(360)
 self.Gleam = display.newImage(self, "effects/highlight.png")
 self.Gleam.x, self.Gleam.y = 0, 0

 self:toBack()

6.	 We'll set the highlight to add mode:

 self.Gleam = display.newImage(self, "effects/highlight.png")
 self.Gleam.x, self.Gleam.y = 0, 0
 self.Gleam.blendmode = 'add'

 self:toBack()

7.	 Next, we'll attach the mask. Like the zombie dissolve mask, a single loaded mask can
be used for all these objects:

 self.Gleam.blendMode = 'add'
 self:setMask(clip)

 self:toBack()

8.	 We're almost done. To create that variation we discussed in the previous section,
rotate the mask and the texture to random positions:

 self.Blood.x, self.Blood.y = 0, 0
 self.Blood.rotation = math.random(360)
 self.Gleam = display.newImage(self, "effects/highlight.png")
 self.Gleam.x, self.Gleam.y = 0, 0
 self.Gleam.blendMode = 'add'
 self:setMask(clip)
 self.maskRotation = math.random(360)

 self:toBack()

www.it-ebooks.info

http://www.it-ebooks.info/

Project 6

215

9.	 Finally, we'll animate the blood texture. We'll give it a random turning speed in
either direction; the doubling code makes sure that it has a minimum intensity
regardless of the direction it's turning in.

 self.Blood.rotation = math.random(360)
 local twist = math.random(-270, 270)
 if math.abs(twist) <= 135 then
 twist = twist * 2
 end
 self.Gleam = display.newImage(self, "effects/highlight.png")

10.	 To finish the animation code, we just need to actually start the animation:

 if math.abs(twist) <= 135 then
 twist = twist * 2
 end
 transition.to(self.Blood, {time = 2000; delta = true; rotation =
twist})
 self.Gleam = display.newImage(self, "effects/highlight.png")

Notice that we don't need to change any of the other code that controls the effect, such as
the collision code or the growing and shrinking. It all just works with the new object!

What did we do?
We assembled two layers into a single effect image, and applied a single mask to the whole
assembly. We added animation selectively to some parts of the image but not others:

What else do I need to know?
This ability to add a mask to an entire group is one of the most powerful aspects of Corona's
masking feature. You can use it for everything from clipping different sections of a display,
to creating special effects, to managing important game elements like a flashlight or torch
radius effect when dungeon crawling.

www.it-ebooks.info

http://www.it-ebooks.info/

Predation – Creating Powerful Visuals from Simple Effects

216

Game over – wrapping it up
We've combined a fairly simple set of graphics operations with a set of appropriate art
assets to make a working game more visually interesting. Visual appeal is a major part of
a game's appeal on any platform and a large part of what will set an independent game
apart from other games created by hobbyists. If you're using Corona as a tool for studio
development (and even some professional studios like Electronic Arts are beginning to use
Corona for mobile development) then techniques like these will make it easier to create the
sorts of visuals expected of professional developers on a device of limited power using a
straightforward framework.

If you're planning development for a Corona project, keep in mind that good visual effects
are likely to require a little more work from artists, and a little less from programmers,
because of the emphasis on creating masks and other images to support effects, rather
than using code to dynamically create moving images and effects.

Can you take the HEAT? The Hotshot
Challenge

Use the remaining art assets to create a crosshair that lingers after each touch that creates a
splatter. Experiment with the different image layers available and the blendMode property
of the display objects: normal, add, multiply, and screen. See what different effects you can
create, and different ways to make the crosshairs fade out as time passes.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7
Caves of Glory –
Mastering Maps

and Zones

The games and projects we've focused on so far have been of an arcade style; gameplay is
continuous, time-oriented, and takes place in a single screen. However, many adventure and
platform games involve moving the action from one screen to another. For this project, we'll
work on reusing the same set of code between several different rooms which must all be
visited in the course of a single game.

What do we build?
Caves of Glory will be a treasure-hunting adventure game, a simplified graphical cousin
of games like Colossal Cave Adventure. The player will direct a character to move through
three different maze-like levels until he/she finds each of the eight treasure chests scattered
through the levels. The engine we're building is suitable for both scrolling maps and bounded
maps; we'll feature transitions between screens, but those screens can scroll.

What does it do?
This project will use a scene template, a modified form of the scene files we've used in
previous projects, to create multiple scenes that use the same underlying code, but different
level map data. It will manipulate the Lua package loading system so that Corona will load
these scenes just as if they were separate scene files. It will use a common set of object and
character code to make interactions between the player and the different game elements
easily customizable.

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

218

The project starts you off with a block of pre-existing code, much of which will look familiar
from previous projects. These existing modules supply features like displaying a character,
processing input into game commands, and monitoring game logic at the highest level.

One significant difference between this project and previous game projects is that a single
game is played out over several scenes; this means that the scene object is no longer a
suitable parallel for the game abstraction, the way we've used it up until now. Instead, the
game will be an independent object, which can be tracked across multiple scene transitions.
Because we still want to be able to monitor the game object for events, we'll represent it
with an empty display group parented to the stage. In this way, it will automatically inherit
the addEventListener, removeEventListener, and dispatchEvent methods that
we've come to rely on so heavily.

Why is it great?
In early versions of Corona, if you wanted to load all files of a particular kind, like map data
or sound files, you had to keep an index of what files would be loaded. If you added a new
file, it wouldn't appear until you also added it to the index; if you removed one without
clearing it from the index, it will typically cause the app to crash when it tries to load a file
that doesn't exist.

However, the current version of Corona incorporates the Lua File System (LFS) library, which
allows you to carry out filesystem manipulations that aren't available in base Lua. While
changing file permissions is not usually useful in mobile environments, LFS also allows
you to create and remove subdirectories in code, which can be useful in conjunction with
downloading remote files, and most importantly, it allows you to scan through all the entries
in a particular folder. This means that you can do things like build a table view containing a list
of all files in a directory, or give each map file its own scene to display that file.

How are we going to do it?
While a few of the components are already built in this example, we're going to focus on the
following portions that center around building and displaying the map data.

ff Parsing a level file

ff Displaying objects

ff Creating an efficient background

ff Scrolling around a large level

ff Interacting with objects

ff Defining a chapter

ff Creating scenes for datafiles

ff Linking scenes together

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

219

What do I need to get started?
As usual, you'll need to create your project folder, CavesOfGlory, and copy the contents of
the version 0 folder from the project pack directory into it.

Parsing a level file
The first thing we'll do for this project is work on the code that reads a level datafile and
build an internal representation out of it; not actual sprites or images, but simply a table
describing the various terrain elements, distinctive features, and interactive elements that
the level area contains.

Getting ready
The level file format consists of two sections, separated by a blank line. The first section
starts with a line that describes the type of terrain that will be used to represent the map:
desert, cave, forest, mountain, and so on. The rest of the section is a sort of text picture of
the level, rather like the maps used for the Sokoban levels in Project 2, SuperCargo – Using
Events to Track Game Progress.

After the blank line is a list of items and objects that appear in the level; a name, possibly
preceded by the name of an item-set module that specifies where the item's description is
found, the position of a square or range of squares where the item will exist in the level, and
any other details about the object, such as what a treasure chest contains or which level an
exit leads to. A line might optionally consist of just an item-set name followed by a colon,
which sets the default for any following item names that don't specify their own source set.

There are also third-party tools that allow you to draw maps
using a graphical interface, such as Tiled, which typically stores
maps in XML or JSON files; libraries like Lime do some of the
heavy lifting to load these files into your game. This method has
the advantage that it makes it easy for designers to create maps
visually; however, the maps aren't usually very human-readable
and take up more disk space, as well as sometimes requiring
more memory to process.

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

220

Getting on with it
Start by opening the file map.lua from the project folder. This file provides a single-function
module that currently returns an empty table. There are two other functions already in the
file, which we'll use to go through the two distinct sections of the file; the small one simply
checks a line and returns if it's blank, and the more complicated one takes an iterator, such
as we'd usually use to run a single for loop, and splits it into two functions, each of which
runs its own for loop, first up to the first entry that meets the test, then the rest of the way
through the iterator. We'll use these functions together to run one loop up to the first blank
line (the map image) and one to process everything else in the file (object descriptions).

Custom iterators are one of the most powerful constructions in
Lua, but sadly not one of the most intuitive. We'll cover their
power, as well as their construction, in greater detail in Project
9, Into the Woods – Computer Navigation of Environments.

Splitting the level into map and object data
First, obtain the two iterators that will process the whole file in two sections, separated by a
blank line:

 local self = {}
 local layout, objects = split(blank, io.lines(filename))
 return self

Next, frame in the two loops that will use these sequences:

 local layout, objects = split(blank, io.lines(filename))
 for map_line in layout() do
 end
 for object in objects() do
 end
 return self

We'll fill in the first loop with some basic structure code to prepare for processing the
second loop.

Creating the map canvas
In order to add objects to the map, we need to have the representation of those spaces
stored in the map array, so we'll go over each line and character in the map image and
add a corresponding space to the map.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

221

Skipping the terrain description, add a row to the map for each line in the first part:

 for map_line in layout() do
 local terrain = map_line:match('^(.+):$')
 if terrain then
 else
 local row = {}
 table.insert(self, row)
 end
 end

For each character in the map line, add a space to the row. Each space will have additional
data added to it when we develop the map portion more fully:

 local row = {}
 table.insert(self, row)
 for tile in map_line:gmatch('.') do
 local space = {
 Features = {},
 }
 table.insert(row, space)
 end
 end

Reading objects into the position data
Each line will either be an object including a set prefix, a set prefix alone to be used for
later objects without one, or an object without any set prefix that uses the last declared
prefix. So before the loop starts, we'll need to stake out a variable to store the last declared
default prefix:

 end
 local family_group
 for object in objects() do

So, the first thing we need to do is check whether the line meets the description of a new
default prefix; a word followed by a colon:

 for object in objects() do
 local family = objectName:match("^(%S+):$")
 if family then
 family_group = family
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

222

Otherwise, the object needs to be processed according to its identifier and position
(and any other specifics):

 if family then
 family_group = family
 else
 local objectName, data = object:match("^(%S+)%s*(.*)$")
 end

If the object name doesn't contain its own set prefix, we need to apply the current default
set prefix:

 else
 local objectName, data = object:match("^(%S+)%s*(.*)$")
 local family, name = objectName:match("^([^:]+):?(.*)$")
 if name == '' then
 family, name = family_group, family
 end
 end

Each object in the list has a position on the map, and some objects have more info; for
example, an exit to another level should specify which level it connects to and where in the
destination level it takes the player. We'll separate this optional data from the position info
and split the position into its x and y parts, separated by a comma:

 if name == '' then
 family, name = family_group, family
 end
 local x, y, details = data:match("^([-%d]+),([-%d]+)%s*(.*)$")
 end

Each part is able to contain a range to support large objects, so we'll process the x and y
portions to check for a dash or multiple numbers as needed:

 local x, y, details = data:match("^([-%d]+),([-%d]+)%s*(.*)$")
 local xMin, range, xMax = x:match('(%d*)(%-?)(%d*)')
 xMin = tonumber(xMin) or 1
 xMax = tonumber(xMax) or range ~= '-' and tonumber(xMin) or
#self[1]
 local yMin, range, yMax = y:match('(%d*)(%-?)(%d*)')
 yMin = tonumber(yMin) or 1
 yMax = tonumber(yMax) or range ~= '-' and tonumber(yMin) or
#self
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

223

Finally, we'll generate the specified object and add it to each of the spaces in the specified
range. Each set prefix will define a module in the objects package, containing one
constructor function for each object in the set:

 yMax = tonumber(yMax) or range ~= '-' and tonumber(yMin) or
#self
 for x = xMin, xMax do
 for y = yMin, yMax do
 table.insert(self[y][x].Features, require("objects."..
family)[name](details))
 end
 end
 end

Save map.lua.

What did we do?
We skipped over the first section of a two-part file (for the most part), read each entry in
the second section, and tracked a changeable setting across multiple entries. We stored
instances of the specified objects in the locations they were tagged as belonging in.

Displaying objects
Now that we have a list of objects and positions, we'll add representations of the objects in a
map to the scene created from that map. Because a map is only loaded once in the lifecycle
of a scene, but the visuals might be purged to conserve memory, we don't simply attach
object data to the sprites or images used to display the objects, as we did in simpler projects.

Getting on with it
Inside your project directory, find the objects folder that you copied over when you
started the project, and open the file common.lua in that folder (if you've looked at the
map datafiles, you'll notice this file has the same name as the object set used in those files).
Notice that this file already loads an image sheet and uses an internal table of sequence lists
for sprites.

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

224

Supplying visual descriptions of items
Find the table constructor assigned to common.campfire and add a new function definition
to this table:

common.campfire = object {
 Embody = function(self)
 end;
 EnterSpace = true;
}

This function creates and loads a campfire sprite from the preloaded sheet, which contains
several different objects and frames, and defined sequences that specify which frames make
up the campfire animations:

 Embody = function(self)
 return display.newSprite(sheet, sequences.campfire)
 end;

In the constructor for the common.barrel table, add an Embody function that creates a
static image from a frame of the same sheet:

common.barrel = object {
 Embody = function(self)
 return display.newImage(sheet, 22)
 end;
 EnterSpace = false;
}

Storing multiple static images in a single texture in this way is often called
texture atlasing. It offers a way to consolidate the use of texture memory
and improves performance in many circumstances.

The Embody function for treasure chests will be similar to the campfire, so that it can be
switched between open and closed visual states:

common.chest = object {
 Embody = function(self)
 return display.newSprite(sheet, sequences.chest)
 end;
 EnterSpace = false;
}

The exit object won't have an Embody function, because it doesn't have its own
appearance; it simply designates an area of the map as being a trigger. The cave
that makes this area obvious to the player will be part of the background.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

225

Loading item visuals into the world
Now that the object templates can specify their appearances, we need to generate those
objects and arrange them in the scene. Save any other files you have open, and open the
world.lua file. This will be the module that scenes use to build the groups that display
the contents of their maps.

First, create a subgroup to hold objects, characters, and other local features:

 local self = display.newGroup()
 self.Features = display.newGroup()
 self:insert(self.Features)
 function self:View(x, y)

Next, add a function to the world group, which will add a specified object to the world's
map at the point you declare:

 end
 function self:Add(object, x, y)
 local list = self.Map[y][x].Features
 if not table.indexOf(list, object) then table.insert(list, object)
 end
 end
 return self

If the object is already represented in the world, simply return that representation.
Otherwise, be ready to add one if needed.

if not table.indexOf(list, object) then table.insert(list, object) end
if self[object] then return self[object] end
 if object.Embody then
 end
end

This function will call the object's Embody function as we declared it before and place it
within the space of the chosen tile:

 if object.Embody then
 local actor = object:Embody()
 self.Features:insert(actor)
 self:Place(actor, x, y)
 return actor
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

226

Now, add a new function to the new world object, which will load it with the contents of
a map created using map.lua:

 end
 function self:Load(map)
 end
 return self

This function will go through each space in the map:

 function self:Load(map)
 for v, row in ipairs(map) do
 for h, space in ipairs(row) do
 end
 end
 end

It will scan that space for objects, and use the function we declared earlier to create each
one within the world, in the center of its tile:

 for h, space in ipairs(row) do
 for i, feature in ipairs(space.Features) do
 self:Add(feature, h, v)
 end
 end

Finally, attach the map file to the world for future reference:

function self:Load(map)
 self.Map = map
 for v, row in ipairs(map) do

Save the file. This should be the first point at which you can load the project in the simulator,
walk your character around by tapping the various edges of the screen, and see a handful of
objects move around you.

The next step will be filling in the background, so that you're not moving among these
objects in a featureless void.

What did we do?
We used per-object functions to map image and sprite data to objects in a generalized
fashion. We looked at each map space in turn and loaded all the relevant objects for that
space in their specified order.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

227

What else do I need to know?
One thing you may want to note is the way the sheet size is specified in the file as being 224
pixels squared, when the actual image is 112 pixels squared. In a case like this where you
want to scale up all of the contents (the icons are 16 x 16 but are being used on a map of 32
x 32 tiles), this is a fast and simple way to do it.

Another approach that can be useful in conjunction with sprite sheets and texture atlases
is to employ a texture-packing utility. When a texture is loaded into memory, each of its
dimensions is increased if needed to make it a power of two; so while a 60 x 120 image
will take up memory as if it were 64 x 128, a 550 x 550 image will take up the same texture
memory as a 1024 x 1024 background texture! Sometimes tiled textures can be rearranged
with a different number of tiles per side, which allows them to reduce one dimension below
the next power of two without pushing the other dimension up over its next power of two.

More commonly, however, texture packers help by taking sprites and similar contents that
don't take up their entire tile space and squeezing them together to reduce the total area
needed for all sprites in the sheet. These utilities can typically export a Lua file that contains
all the tables to describe the locations of the different frames, along with their rearranged
image file.

Creating an efficient background
While objects and characters will typically be scattered around a level, covering only a small
fraction of its total area, the ground generally takes up the whole area of the level. This isn't
a problem on small levels that are mostly or completely contained within the screen, but in
large, scrolling levels, the number of objects off-screen can begin to have a significant effect
on performance.

Getting on with it
To display the background terrain of a level, first we're going to need to convert the
one-character tiles from the level map file into sequences appropriate for the terrain type
as the level loads. The core of the conversion will be handled by the terrain type itself.

Loading background data from a level file
Save any open files and reopen map.lua. When each line is tested to see if it is a terrain
specifier, add code to save that choice with the map:

 local terrain = map_line:match('^(.+):$')
 if terrain then
 self.Terrain = require("terrain."..terrain)
 else

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

228

However, if a terrain specifier tries to replace another one, or if terrain content is loaded
before any specifier is found, an error is thrown:

 if terrain then
 assert(not self.Terrain, "Error in map "..filename..": multiple
terrain types specified")
 self.Terrain = require("terrain."..terrain)
 else
 assert(self.Terrain, "Error in map "..filename..": No terrain
type specified for map content")
 local row = {}

Obviously, you don't want your game to ship with faulty maps in it. But
one of the reasons for supporting a file format like this, as in Project 5,
Atmosfall – Managing Game Progress with Coroutines, is to facilitate other
designers or scripters working on the game who may not be full-time
programmers, and who will usually appreciate error messages that tell
them why their file is broken. For that matter, you may make a mistake
yourself, and be glad for the clue in tracking it down.

In the body of the loop that expands each line of terrain data, expand the fields it stores with
each space:

 local space = {
 map = self;
 x = #row + 1,
 y = #self;
 Features = {};
 }

For each character in the file, we will also request that the terrain expand it to the appropriate
animation sequence. So, if maps typically use the # character to represent a wall or obstacle,
a desert terrain might expand it to rock while a forest terrain might expand it to bush.

 y = #self;
 Ground = self.Terrain:Expand(tile);
 Features = {};

Finally, after assembling the individual tiles, we ask the terrain type to clean up the map.
For instance, it might adjust border tiles so that they use the correct edge or corner based
on which side of a pool or hole or other feature they are located on.

 end
 if self.Terrain then
 self.Terrain:Polish(self)
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

229

 local family_group
 for object in objects() do

Save map.lua.

Assembling the tile field
Open world.lua. At the beginning of the module function, before creating the features
layer, add a new layer that will contain the terrain tiles. Since every tile in this layer
will be a sprite from the same sheet, we can improve performance by using Corona's
newImageGroup function:

 local self = display.newGroup()
 self.Ground = display.newImageGroup(terrain.Atlas)
 self:insert(self.Ground)
 self.Features = display.newGroup()

Request the size of a single tile from the terrain type, so that tiles can be fit together properly:

 self:insert(self.Ground)
 self.HSize, self.VSize = terrain:TileDimensions()
 self.Features = display.newGroup()

Create an array (which will eventually be two-dimensional) to store the tiles we create:

 self.HSize, self.VSize = terrain:TileDimensions()
 self.Tiles = {}
 self.Features = display.newGroup()

Next, add tiles to the layer to cover the screen. Note that we add an extra layer of tiles
around the bottom and right. This means that we don't have gaps showing during the times
the background is being aligned with the screen as it moves, in the next section.

 self.Tiles = {}
 for v = 1, rows + 1 do
 local row = {}
 self.Tiles[v] = row
 for h = 1, columns + 1 do
 local tile = terrain:Tile()
 self.Ground:insert(tile)
 tile:setReferencePoint(display.BottomRightReferencePoint)
 tile.x, tile.y = h * self.HSize, v * self.VSize
 row[h] = tile
 end
 end
 self.Features = display.newGroup()

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

230

What did we do?
We've created a layer of terrain segments large enough to cover the screen. These segments
can be configured to display any section of the background that fits within the confines of
the screen.

What else do I need to know?
Performance concerns aren't quite as large as they used to be in earlier versions of Corona.
Around the same time that image sheets and image groups were introduced, Corona
instituted a feature called offscreen culling, wherein it doesn't spend time drawing objects
that are not currently visible. However, while this makes the processing time for offscreen
tiles very small, it doesn't reduce it to zero, so a performance impact might still be noticeable
for very large worlds if you generated enough tiles to hold the whole thing.

Moreover, loading times are still a challenge for mobile games, since phones and tablets
have comparatively limited memory. Using this window onto the terrain means that
noticeably less time needs to be used to construct the world object during this easily
overloaded program phase.

Regarding the terrain:Polish() function, it constitutes a large portion of the work done
to make a level look good. However, it's also not very interesting; it consists mostly of a long
chain of if...then...else...if statements. For this reason it's not being discussed
here in detail; you can review the individual biome files in terrain.lua if you're curious
about what it does.

Scrolling around a large level
The result of reducing the background to a screen-sized window is that it has to be kept
placed behind whatever section of the world is currently visible in that screen.

Getting on with it
Open world.lua, if needed.

Displaying the visible background
Insert a new local function before the module function, which will set the world tiles to
display the needed portion of the background:

local function alignBackground(world, ground)
end

return function (terrain, columns, rows)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

231

First, determine which tile appears in the top-left corner of the screen:

local function alignBackground(world, ground)
 local x, y = world:contentToLocal(0, 0)
 x, y = math.floor(x / world.HSize), math.floor(y / world.VSize)
end

Next, go through each of the tiles of the visible background:

 x, y = math.floor(x / world.HSize), math.floor(y / world.VSize)
 for v, row in ipairs(world.Tiles) do
 local sourceRow = world.Map[y + v]
 for h, tile in ipairs(row) do
 end
 end
end

For each one, set it to display the appropriate piece of terrain, based on which tile of the
original map would be in that section:

 local sourceRow = world.Map[y + v]
 for h, tile in ipairs(row) do
 local space = sourceRow and sourceRow[x + h]
 if space then
 tile.isVisible = true
 tile:setSequence(space.GroundType)
 tile:play()
 end
 end
 end

If the tile has slipped off the bounds of the map, hide the tile until the map moves back:

 if space then
 tile.isVisible = true
 tile:setSequence(space.GroundType)
 tile:play()
 else
 tile.isVisible = false
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

232

Aligning the background with the screen
This keeps the background showing the part of the world that should be on screen, but the
background object itself doesn't move within the world as the world scrolls. This, however,
can be fixed easily:

 tile.isVisible = false
 end
 end
 end
 ground.x, ground.y = x * world.HSize, y * world.VSize
end

The background snaps to tile boundaries as it is moved about.

Finally, make sure that the function actually gets called whenever the map is updated:

 function self:View(x, y)
 matchPointPlacement(self, x, y, display.getCurrentStage(),
display.contentCenterX, display.contentCenterY)
 alignBackground(self, self.Ground)
 end

What did we do?
We created a function that links the visible portions of a world to the slice of the map
structure that describes them, and positions the tiles so that they stay in sync with
the world as it is being moved.

Interacting with objects
The game would be singularly uninteresting if all you could do is walk around the levels and
look at them.

Getting on with it
Open world.lua, if needed, and find the function self:Add. Our first step here will be
to register the world to detect taps on those objects that the player can manipulate.

Registering interactive objects with the world
Check whether the new object has an Interact function. If it does, add the world as a tap
listener on the new object:

 self:Place(actor, x, y)
 if object.Interact then

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

233

 actor:addEventListener('tap', self)
 end
 return actor

Next, add a tap handler to the world object:

 alignBackground(self, self.Ground)
 end
 function self:tap(event)
 end
 function self:Add(object, x, y)

Because the player character represents the player in the game world, a game object can
only be interacted with if the player character is next to it. The first step to determine this
is to identify the tile the object is on from the event coordinates:

 function self:tap(event)
 local x, y = self:contentToLocal(event.x, event.y)
 x, y = math.ceil(x / self.HSize), math.ceil(y / self.VSize)
 end

Next, the nearby squares are checked for the presence of at least one character (we'll write
this function momentarily):

 x, y = math.ceil(x / self.HSize), math.ceil(y / self.VSize)
 local character = seekAdjacentCharacer(self.Map, x, y)
 if character then
 end
 end

The object being interacted with is passed the specific character who is using it, in case it has
some special effect on them:

 if character then
 event.target.Info:Interact(character)
 end

At the top level of the file, add the function to scan adjacent squares for a character:

 ground.x, ground.y = x * world.HSize, y * world.VSize
end

local function seekAdjacentCharacter(map, x, y)
end

return function (terrain, columns, rows)

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

234

This function will test adjacent offsets from the space where the object is located, starting
with the space above it, until it reaches that space again:

local function seekAdjacentCharacter(map, x, y)
 local dX, dY = 0, -1
 repeat
 until dY == -1
end

To advance between clockwise adjacent spaces, the loop will use a programmers' trick to
swap the x and y offsets, negating the y offset to ensure that it covers all four spaces:

 repeat
 dX, dY = -dY, dX
 until dY == -1

In each space, the function will look through the local features and see if any of them is a
character. If so, its work is done and it returns what it has found.

 repeat
 local row = self.Map[y + dY]
 local space = row and row[x + dX]
 if space then
 for _, feature in pairs(space.Features) do
 if feature.Character then
 return feature
 end
 end
 end
 dX, dY = -dY, dX
 until dY == -1

Adding interactivity to an object definition
Finally, we need to add a description, wherever appropriate, to objects that are interactive,
so that the world knows to monitor them. The common set contains only one interactive
object, the chest. Add the Interact function to the common.chest definition in
objects/common.lua:

common.chest = object {
 Embody = function(self)
 return display.newSprite(sheet, sequences.chest)
 end;
 EnterSpace = false;
 Interact = function (self, player)
 end;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

235

This function will be responsible for using a function on the interacting player to give them
a mark of progress toward their goal, a new item in their inventory (distinct from an item in
the world):

 Interact = function (self, player)
 if not self.Opened then
 self:setSequence("open")
 player:Give("coin")
 self.Opened = true
 end
 end;

What did we do?
We added conditional touch registration, so that the system will only spend time processing
those objects that do something when touched.

Defining a chapter
The goal of this project has been loading content automatically and handling multi-part
areas, so it's important to include features like quest definitions and to specify which area
in a chapter the player will begin in.

Getting ready
Create a file in the chapter/1 folder of the project directory, contents, and open it in a
text editor.

Getting on with it
This chapter is simple and needs only two pieces of information.

Specifying a chapter's beginning and end
On the first line of the chapter content file, specify the chapter start:

start:

The chapter will begin in the desert_camp map, on a square next to the tent decoration:

start: desert_camp 8,6

On the next line, we'll detail the chapter's goal: the collection of eight coin objects:

start: desert_camp 8,6
goal: coin 8

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

236

Launching a selected chapter
Save the content file and open game.lua. This module creates the game object and
attaches its relevant functions. The game:Begin() function is intended to launch a
particular chapter. In order to do this, it will read the content file to place the character
in the right scene and note which accomplishments it needs to track on the player to
determine when the chapter is over. Start by looping over the lines of the content file
for the specified chapter:

 function self:Begin(chapter)
 local target, x, y
 for line in io.lines(directory.."/contents") do
 local action, details = line:match("^([^:]+):%:%s+(.+)$")
 end
 end

When a start line is found, record which scene and location it needs to go to; we'll finish
processing the file before launching the actual transition:

 for line in io.lines(directory.."/contents") do
 local action, details = line:match("^([^:]+):%:%s+(.+)$")
 if action == 'start' then
 target, x, y = details:match("^(%w+)%s+(%d+)%,(%d+)")
 x, y = tonumber(x), tonumber(y)
 end
 end

When a goal line is found, record the type of goal being sought and how many are required:

 if action == 'start' then
 target, x, y = details:match("^(%w+)%s+(%d+)%,(%d+)")
 x, y = tonumber(x), tonumber(y)
 elseif action == 'goal' then
 local kind, count = details:match("^(%w+)%s+(%d+)")
 self.GoalKind, self.GoalCount = kind, tonumber(count)
 end

Tracking goal progress
While we're processing this file, go to the Proceed function in the gotoScene call further
down, and register the game to receive events that indicate the player gained a new item:

self.Player = character
 self.Player:addEventListener('Gained', self)
 UI:AttachPlayer(self.Player)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

237

Add a function to the game object to respond to user when these events are received:

 self.isVisible = false
 function self:Gained(event)
 end
 function self:Begin(chapter)

This handler will compare the received prize to the desired goal item to determine if it
should be counted:

 function self:Gained(event)
 if event.object == self.GoalKind then
 self.CountAcquired = (self.CountAcquired or 0) + 1
 end
 end

If the count has reached the needed number of items, the chapter is declared completed:

 if event.object == self.GoalKind then
 self.CountAcquired = (self.CountAcquired or 0) + 1
 if self.CountAcquired >= self.GoalCount then
 self:dispatchEvent{name = 'Goal'; action = 'completed', kind =
self.GoalKind}
 self:dispatchEvent{name = 'Chapter'; action = 'completed',
index = self.Chapter}
 end
 end

What did we do?
While the separate map files in a chapter folder specify its various zones and goodies, we've
added a file that indicates how and where the chapter should begin, and what special deeds
are needed to finish it.

Creating scenes for datafiles
The code that loads a map into a scene is meaningless unless scenes are created that will
actually load those specific files. Loading a specified chapter into the game will also include
building a scene for each datafile.

Getting on with it
At the start of the game:Begin() function in game.lua, add a loop to examine each file in
the specified chapter directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

238

Scanning the chapter directory
Add the chapter number onto the reserved directory path, and use the lfs.dir iterator
to run a for loop over each file in the directory:

 function self:Begin(chapter)
 self.Chapter = chapter
 local directory = chapterDirectory .. chapter
 for name in lfs.dir(directory) do
 end
 local target, x, y

We don't want to create scenes for files that aren't maps, like the content file:

 for name in lfs.dir(directory) do
 if name:match("^[^.]+%.map$") then
 end
 end

For each map file, we'll run our scene creation engine with that file to generate a loader for
a new scene. This doesn't actually make the scene itself immediately, but it puts it where
storyboard.gotoScene can find it later:

 if name:match("^[^.]+%.map$") then
 scene(name)
 end

Launching the first scene
Once all other work required for initiating a chapter is finished, and the starting scene is
identified, we need only to launch it from the data we obtained in the chapter content file:

 UI:AttachPlayer(self.Player)
 storyboard.gotoScene(target, {params = {Characters = {[self.
Player] = {x = x, y = y} } } })
 end;

What did we do?
We used the LFS library to search for any files that have been designated part of a chapter,
and used our scene template module to create scene loaders for them.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

239

What else do I need to know?
The key to these preloaded scenes is the package.preload table. When you call require,
it could find the desired module in any of a number of places, including regular files when
you run your project in the simulator, archive contents when you run it on a device, and even
dynamically-linked libraries if you are using Corona Enterprise. But the first place it looks is
the table package.preload, where it will run any function it finds under the module name
as the chosen module loader, much as if that function were the contents of a file.

Linking scenes together
Now that we have a chapter that contains multiple scenes, the last step is to make it possible
to travel between them.

Getting on with it
We need to adjust the function that moves characters and features around the map, so that
it can tell when a character has stepped into a trigger region (an exit into another level, in
this case). Open the map.lua file and find the self:Move() function definition.

Recognizing trigger movement
When an item is moved, it returns an event target that will receive a Moved event when any
animations or other transitions are complete. The calling code can listen to this target to
determine when movement is finished and effects can be applied.

 table.insert(space.Features, table.remove(origin.Features,
table.indexOf(origin.Features, item)))
 item:Move(origin, space)
 :addEventListener('Moved', self)
 end

The listener needs a handler function that will scan features in the new space:

 function self:Moved(event)
 for _, feature in ipairs(event.destination.Features) do
 event.target:removeEventListener('Moved', self)
 end
 function self:Move(item, dX, dY)

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

240

For each feature identified, it will execute any code attached to that feature for handling an
object entering its space:

 for _, feature in ipairs(event.destination.Features) do
 if feature.SpaceEntered then
 feaure:SpaceEntered(event.target)
 end
 end
 event.target:removeEventListener('Moved', self)

Executing the level transition
Save map.lua and open objects/common.lua. Add an Initialize function to the
description for common.exit that will process the transition target details from the
map file:

common.exit = object {
 Initialize = function(self, details)
 local targetScene, targetX, targetY = details:match("^(%w+)%:(%d+
),(%d+)")
 self.Target = {
 scene = targetScene;
 x = tonumber(targetX), y = tonumber(targetY)
 }
 end;
 EnterSpace = true;
}

Once this is done, add a SpaceEntered function to the same object:

 EnterSpace = true;
 SpaceEntered = function (self, incoming)
 end;
}

This function will transition to the desired scene, passing the information about where the
character should be placed when the scene starts:

 SpaceEntered = function (self, incoming)
 if incoming.Character then
 storyboard.gotoScene(self.Target.scene, { params = { Characters
= { [incoming] = {x = self.Target.x, y = self.Target.y} } } })
 end
 end;

www.it-ebooks.info

http://www.it-ebooks.info/

Project 7

241

What did we do?
We added recognition for characters entering specific spaces. Up to this point, we have
relied on the physics engine for most such detection, but for tile-based games collision
detection becomes trivial.

We also added a response to that feature collision, allowing the player to navigate between
all the scenes of the chapter.

Game over – wrapping it up
This project has been an exercise in modularity; loading from datafiles stored in a format
that is easy to author and update using simple tools, automatically adding new level scenes
based on datafiles as they're added to the project (without having to update any indexes or
similar maintenance), creating links between scenes based on name and destination only,
and separating out visible terrain backgrounds that fill the screen only from the conceptual
maps that describe the whole environment.

While the gameplay is minimal in this example, the techniques developed here can be
combined with other development approaches to build involved and complex games.

www.it-ebooks.info

http://www.it-ebooks.info/

Caves of Glory – Mastering Maps and Zones

242

Can you take the HEAT? The Hotshot
Challenge

The game currently has a couple of weaknesses; it's not persistent in the event the user
closes it to use something else, and in the event that a previously visited scene gets
unloaded, the chests in that room will reset, allowing the player to finish the level
without visiting all chests.

Make the game persistent; preserve the statuses of the various chests in a file so that they
can be set back to their old statuses when the game is reloaded. Refer back to Project 2,
SuperCargo – Using Events to Track Game Progress, if you need examples of saving game
status advances.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8
The Beat Goes On –

Integrating with Game
Networks

Games with a social aspect have become increasingly popular, and Corona offers a way to
access these networks and migrate your app from one to another according to your target
platform with a minimum of code changes using the gameNetwork library. Along the way,
we'll also practice exploiting the facility of most touchscreen devices to detect and track
multiple points of touch, allowing for a greater variety of gameplay.

What do we build?
This project presents you with a completed game engine—almost. The game can load and
play level files, but doesn't currently accept any player input, so it's impossible to complete
the level or score any points.

You will incorporate recognition for multiple touches, expand the game play to evaluate
these touches for accuracy, and score the player accordingly. Once the level is over, you
will submit the player's new score to a centralized leaderboard for approval.

What does it do?
The project searches for game files that contain descriptions of what targets to offer the
player at what times, and uses a table view to list these files to the player to choose from.
When the player chooses a game file, the game looks for a music file with a matching name,
and plays it if it exists.

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

244

During the course of the game, circular targets will appear on the screen, either flashing in
and out or drifting around the screen. The player's goal is to touch as close to the centers of
these circles as possible, and keep his or her fingers close to the centers as they move. As
time passes for each target the player is touching, the player's score will increase; the closer
their touches are to the centers of the targets, the faster their score will go up.

The app will use a natively available game network to include players' final scores in a shared
leaderboard. This supports only one network, Apple's Game Center, but developers building
for Android devices can enhance the project with Corona's new Corona Cloud service.

Corona Cloud had just been made available at the time of this
publication and could not be included, but a library to make it
compatible with the gameNetwork module was in development.

Why is it great?
Gamers are increasingly showing that they prefer playing in a context with other people,
where they can be a part of a game community. While Corona currently supports a limited
number of game networks, it offers the features of those networks in a way which is
intended to be independent of any one operating system. So as new services become
available in the future, keeping your projects up to date using your service of choice
should remain fairly simple.

How are we going to do it?
Like Project 3, TranslationBuddy – Fast App Development for any Field, a substantial part of
this project will be making sure that the settings for the app are configured properly in a web
service, rather than programming the supporting code. We will be covering the following
tasks in this chapter:

ff Tracking multiple touches

ff Comparing touches with targets

ff Loading and playing music

ff Enabling Game Center on the Provisioning Portal

ff Enabling Game Center on iTunes Connect

ff Initializing a game network connection

ff Posting scores and achievements

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

245

What do I need to get started?
You can complete the first portions of this exercise, tracking touches and playing background
music, on any device; but the only active game network that the project was written to
support is Apple's Game Center. Since Game Center is not compatible with non-Apple
devices, to test the second part, you'll need an Apple Developer Account, an iTunes Connect
login, and an iOS device capable of running Corona apps (iOS 4.3 or more recent).

You'll also need to create a project folder called TheBeatGoesOn and to copy the contents
of the version 0 folder in the project pack directory to it. This includes the base game
scene, splash screen, a music file, and a game description file that specifies what targets
will appear and how they will move over the course of the song.

Tracking multiple touches
The first thing we will do is to construct a list that contains all currently active touch objects
and their locations. It will use its own touch listener to stay up to date with any touch event
that reaches the Runtime target (so buttons and other objects that return true in their
touch listeners will not affect it).

Getting ready
After you've copied your project directory from the version 0 contents, create a text file
at the top level of your project called touches.lua and open it.

Getting on with it
This module will allow the user to iterate through all the currently active touches.

Enabling multiple touches
Since this file exists to track multiple simultaneous touches, it should guarantee that Corona
will track these touches; by default, Corona operates in single-touch mode.

system.activate("multitouch")

Testing multi-touch events requires building for device; since the
simulator emulates "touch" input based on the position of the
mouse, it can't generate multiple touch points at once.

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

246

Creating a list
We will need a table to track touches across individual event calls:

system.activate("multitouch")

local touchList = {}

Adding new entries to the list
We'll need to use a touch listener on the Runtime target to follow individual touches:

local touchList = {}

local function process(event)
end
Runtime:addEventListener('touch', process)

When a touch begins, add its location info to the touches list:

local function process(event)
 if event.phase == 'began' then
 touchList[event.id] = {x = event.x, y = event.y; xStart = event.
xStart, yStart = event.yStart}
 end
end

Touch events contain an ID field, which contains a value that
identifies the touch. This value will be the same for all touch events
that are part of the same gesture or finger contact.

Updating entries in the list
When a touch moves around the screen, we make sure that it's one we're tracking (in case
something else intercepted the beginning of a touch), and that we update the correct info:

 touchList[event.id] = {x = event.x, y = event.y; xStart = event.
xStart, yStart = event.yStart}
 elseif event.phase = 'moved' then
 local touch = touchList[event.id]
 if touch then
 end
 end

If we recognize the touch, we update it with the current location:

 if touch then
 touch.x, touch.y = event.x, event.y
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

247

Clearing entries from the list
Touch events that are not moved or begun are either ended or cancelled, either of which
means that the touch is over:

 touch.x, touch.y = event.x, event.y
 end
 else
 touchList[event.id] = nil
 end

Granting access to the list
We won't grant direct access to the list to avoid making it easy for coders relying on the
module to damage it, but instead we will pass a function that iterates over the list's contents:

Runtime:addEventListener('touch', process)

return function()
 return pairs(touchList)
end

What did we do?
This list allows us to check the status of all active touches whenever we need to, by
centralizing responses to the touch events rather than trying to process each one as it comes
in. This also means that we have access to each touch that hasn't received any events since
the last cycle.

Comparing touches with targets
Now that we have a list of touches that can be examined at will, we need to add logic to
compare those touches with the desired target locations.

Getting ready
Save touches.lua if needed, and open the file game.lua from the project folder. Take a
look through the scene:willEnterScene(event) function; this is where the list of game
targets will be created, that we will use in the main loop.

Getting on with it
Start at the top of game.lua.

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

248

Loading the touches module
Load the function that will carry a for loop over all active touch points:

local level = require "level"

local touches = require "touches"

local storyboard = require "storyboard"

Matching touches to targets
Find the scene:clock(event) function which is in charge of updating the game each time
its main loop runs; it is currently empty.

1.	 The first thing it does is start an empty list, which will hold targets that have a touch
nearby, and the distance to the nearest touch for those targets, as well as a count of
active touches that aren't the closest to any target:

function scene:clock(event)
 local orbits = {}
 local orphans = 0
end

2.	 For each touch currently on the screen, it considers each target and finds the
nearest one to that touch:

function scene:clock(event)
 local orbits = {}
 local orphans = 0
 for id, location in touches() do
 local nearest, proximity
 for _, target in pairs(self.Targets) do
 local distance = math.pythagorean(location.x - target.x,
location.y - target.y)
 if not nearest or distance < proximity then
 nearest, proximity = target, distance
 end
 end
 end
end

3.	 If the touch is the closest touch to some target, and within a specified range, it
records the distance:

 if not nearest or distance < proximity then
 nearest, proximity = target, distance
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

249

 if proximity <= self.TARGET_RADIUS and (not orbits[nearest]
or proximity < orbits[nearest]) then
 orbits[nearest] = proximity
 end
 end

4.	 Otherwise, it marks the touch as orphaned, or off-target. This count is stored as a
negative number to make it easy to subtract from the user's score later.

 if proximity <= self.TARGET_RADIUS and (not orbits[nearest]
or proximity < orbits[nearest]) then
 orbits[nearest] = proximity
 else
 orphans = orphans - 1
 end

Adjusting the player's score
In the same function, we'll adjust the player's score. Because accuracy in this game is
something that has to be sustained, the total accuracy of touches at any given moment
is used to speed up or slow down the rate at which the score increases. If the score stops
increasing completely, the level is over.

1.	 First, reckon the penalty from any inaccurate touches:

 orphans = orphans - 1
 end
 end
 local pressure = orphans * self.TARGET_RADIUS * -0.5
end

2.	 Next, consider each touch that was on-target, and adjust the score increase
upward accordingly.

 local pressure = orphans * self.TARGET_RADIUS * -0.5
 for target, proximity in pairs(orbits) do
 pressure = pressure + (self.TARGET_RADIUS - proximity)
 end
end

3.	 Apply this rate change to the degree of score increase, adjusted for the actual
amount of time that has passed.

 pressure = pressure + (self.TARGET_RADIUS - proximity)
 end
 self.Velocity = math.min(self.Velocity + pressure * event.delta,
self.TERMINAL_VELOCITY)
end

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

250

4.	 If the rate has bottomed out, the level is over.

 self.Velocity = math.min(self.Velocity + pressure * event.
elapsed, self.TERMINAL_VELOCITY)
 if self.Velocity <= 0 then
 self:dispatchEvent{name = 'Level'; action = 'failed'}
 end
end

5.	 Otherwise, adjust the score by the rate of change multiplied by the amount of
time passed.

 if self.Velocity <= 0 then
 self:dispatchEvent{name = 'Level'; action = 'failed'}
 else
 self.ScoreCurrent = self.ScoreCurrent + self.Velocity * event.
delta
 end
end

What did we do?
We set up the main game loop to award points for each touch that lies close enough to a
target point (keep in mind that the target points are in motion). Because this will happen
in every frame, we need to adjust the value being gained according to the amount of game
time that has actually passed.

Loading and playing music
While it is possible to play a rhythm game without any audio, it certainly reduces
the experience.

Getting ready
Make sure that you copied the file RockYourBody|Vibemaster B.mp3 and that it resides
in the levels folder next to the file RockYourBody.easy.

Getting on with it
We'll look for song files by using matching filenames between the game level file and its
corresponding song file.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

251

Finding the song file
In the game.lua file, find the scene:enterScene(event) function that starts the game
when it is completely ready, and attempt to load an audio stream from the same path:

function scene:enterScene(event)
self.Music = audio.loadStream(event.params.File:gsub('[^.]+$', 'mp3'))
 self.Velocity = 50
end

If the file cannot be loaded (say, because it does not exist), the attempt will return nil, and
the next step can be skipped:

 self.Music = audio.loadStream(event.params.File:gsub('[^.]+$',
'mp3'))
 if self.Music then
 end
 self.Velocity = 50

Playing the song file
As long as the song file was loaded, we can go ahead and play it, saving the returned channel
so that we can close it later if the song needs to be stopped prematurely (such as by the
player failing the level):

 if self.Music then
 self.MusicPlaying = audio.play(self.Music)
 end
 self.Velocity = 50

Closing the song file
When the scene is exited, we need to stop the music in case it's still playing:

function scene:exitScene(event)
 if self.MusicPlaying then
 audio.stop(self.MusicPlaying)
 self.MusicPlaying = nil
 end
end

We'll finish cleaning up the audio stream object so it doesn't hold on to any memory:

 self.MusicPlaying = nil
 end
 if self.Music then
 audio.dispose(self.Music)
 self.Music = nil
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

252

What did we do?
We loaded a song file from direct association to its matching game file, by changing the
desired file extension. We loaded the file as a stream so that it would consume only a little
memory at a time, and cleaned it up when the scene completed.

Enabling Game Center on the
Provisioning Portal

To run or test Game Center code in your app, you have to create a custom App ID on Apple's
Provisioning Portal and use it to build your app.

Getting on with it
First, you will need to log into your Apple Developer account on the iOS Dev Center at
https://developer.apple.com/devcenter/ios/index.action.

Create the App ID
Once you're logged in, the iOS Dev Center main page should appear.

1.	 From the main page of the iOS Dev Center, open the Provisioning Portal:

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

253

2.	 Once on the Provisioning Portal, select the Identifiers link from the iOS Apps section
and click on the Identifiers header again in the resulting screen to expand it:

3.	 Once the header is expanded, click on the App IDs link and click on the button in the
upper-right corner with the plus + icon to register a new App ID:

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

254

4.	 In the screen that pops up, first enter a descriptive name for your App ID, usually the
name of your app:

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

255

5.	 Next, scroll down and enter a bundle ID, a reverse-domain-name format identifier
specific to your organization, school, or studio:

6.	 After you click on Submit, you can see that your App ID is enabled for Game Center:

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

256

What did we do?
We created a tag that will allow Game Center to correctly associate our requests with the
right set of leaderboards and achievements, once we create that set.

Enabling Game Center on iTunes
Connect

Building your app using a Game Center-enabled App ID is the first step, but won't yield any
useful results if there are no leaderboards or achievements to post to or unlock.

Getting ready
You should have already created an iTunes Connect account using the same Apple ID as
your Apple Developer account. If you're still logged into the iOS Dev Center, there may be
a direct link to iTunes Connect conveniently in the upper-right corner near the link for the
Provisioning Portal; otherwise, you can always go there directly by directing your browser
to http://itunesconnect.apple.com. You will also need to create application info for
your app so that you can configure leaderboards or achievements using the bundle ID you
created in the previous step.

This means that you have to create your app info on iTunes Connect as
soon as you want to test Game Center, rather than right before launch.
However, regardless of what release date you have in mind, your app
won't become available until you formally upload a binary.

Getting on with it
After logging into iTunes Connect, select Manage Your Applications and the info that you
created for your new app.

Enabling Game Center
Once you're looking at your app info, hit the Manage Game Center button on the right-hand
side of the screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

257

This presents you with a new choice: Single Game, or Group of Games. Choose Single Game
in this case.

Select Group of Games if you have games that want to share
leaderboards and achievements. The most common case for this will be
if you release a free version as well as a paid version of your game.

Adding a leaderboard
Once you select how Game Center is enabled, you should see a screen that lets you add new
features. Select Add Leaderboard:

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

258

Next, you'll have to specify whether the leaderboard is a single set of values, or whether
it's a combination assembled from several other leaderboards of the same kind (like
single-player and multiplayer high scores). Choose Single Leaderboard:

You'll need to specify a type of value that will be ranked, and an ID string that your code will
use to refer to this leaderboard. Enter High Scores and overall_allTime:

You can specify how the values should be formatted (a Monopoly style game, for example,
might present scores in the form of money amounts), and whether scores should be ranked
in descending or ascending order (the card game Hearts, for example, treats low scores as
better). Pick Integer, and High to Low:

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

259

Finally, you have to select at least one localization. Localizations allow you to specify things
like what sort of units the stored values are in (points, cards, seconds, dollars, and so on)
as well as what the icon for the leaderboard should be (in case it includes text, or symbols
specific to certain cultures or regions). Click on the Add Language button:

Choose English for the language, enter All-Time High Scores for the name, and
pick Integer (100,000,122) for the score format (unless you live in Europe or another region
where large numbers are grouped with periods and decimals are separated by commas,
such as €132.436,84). Enter point and points as the singular and plural formats for the
score suffix.

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

260

Finally, click on Choose File and browse for the music.png file included in the original
artwork folder of the project pack. Once the icon appears, click on Save to close the
Language dialog and click on Save again. Your leaderboard is ready for use!

Leaderboard icons need to be either 512 x 512 pixels, or 1024 x 1024.

What did we do?
We created a leaderboard associated with the ID that we generated in the last step. Once our
app is built using that ID, any communications it makes with Game Center will automatically
be connected with the new set of leaderboards (as well as achievements, if any).

Initializing a game network
connection

Now that everything is enabled, the app itself needs to request a connection to the specified
set of social features. It will use Corona's gameNetwork library to sign into the remote
service, so that later calls will make requests to the right host.

Getting ready
Return to your project directory and open the main.lua file.

Getting on with it
Near the top of main.lua, select a module based on the operating system:

do
 local valid, loader = pcall(require, "social."..system.getInfo("plat
formName"):gsub("%s", "_"))
 if valid then
 social = loader
 else
 social = {loaded = false}
 end
end

local storyboard = require "storyboard"

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

261

Because system.getInfo can return a platform name
containing spaces, the gsub call is there to avoid conflicts with
tokens or other issues.

Registering application load
Inside the social folder in your project directory, create a new text file, iPhone_OS.lua,
and open it for editing.

First, create a local table that can be used to share states with outside code:

local gameNetwork = require "gameNetwork"
local status = {}

return status

Register a system event listener so that we can connect after the rest of our app has
finished loading:

local status = {}

local function loader(event)
end
Runtime:addEventListener('system', loader)

return status

Tracking connection progress
When Game Center finishes loading, Corona will call the function, if any, that you provided
when you requested the initialization, and provide it with the results of the initialization
attempt, using the value init for the event.type field when initialization is finished:

local status = {}

local function register(event)
 if event.type == 'init' then
 end
end

local function loader(event)

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

262

We can use this to record whether we connected to the service successfully, using the local
table we recorded earlier:

local function register(event)
 if event.type == 'init' then
 status.loaded = event.data
 end
end

Requesting a Game Center connection
Finally, we'll combine this tracker function with the response we prepared to the application
loading so that we actually request a connection to the game network:

local function loader(event)
 if event.type == 'applicationStart' then
 gameNetwork.init("gamecenter", register)
 Runtime:removeEventListener('system', loader)
 end
end
Runtime:addEventListener('system', loader)

What did we do?
We made a connection to the Game Center service once all the application resources were
loaded and are now ready to receive it. We also left ourselves a way to determine whether
or not this connection was completed.

What else do I need to know?
App functionality that depends on Game Center can't be tested in the Corona Simulator,
because Game Center depends on your app being built with the correct bundle ID to connect
it to the desired features (leaderboards and achievements). You need to build it for your
device or for the XCode Simulator in order to test Game Center features.

Updating and reading a leaderboard
Now that our leaderboard is ready, we need to actually log our scores to it.

Getting ready
Save any other open files and open the file game.lua.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

263

Getting on with it
Locate the scene:Game(event) function which responds to a game being over.

Checking network availability
To be able to submit high scores, we have to be connected to the network; otherwise,
we should just leave the game:

scene:addEventListener('Game', scene)
function scene:Game(event)
 if social.loaded then
 else
 storyboard.gotoScene('splash')
 end
end

Submitting a final score
When a game ends, collect the scene's score variable and submit it to the game network:

 if social.loaded then
 gameNetwork.request('setHighScore',
 {
 localPlayerScore = {category = 'overall_allTime', value =
self.ScoreCurrent};
 }
)
 else
 storyboard.gotoScene('splash')

Then add a listener so that the game can carry on once the scores are submitted and the
leaderboard has responded that it has received them:

local function displayScores(event)
end

scene:addEventListener('Game', scene)
function scene:Game(event)
 if social.loaded then
 gameNetwork.request('setHighScore',
 {
 localPlayerScore = {category = 'overall_allTime', value =
self.ScoreCurrent};
 listener = displayScores;
 }
)
 else

www.it-ebooks.info

http://www.it-ebooks.info/

The Beat Goes On – Integrating with Game Networks

264

Displaying leaderboard values
In the listener for the score submission, we'll fall back on a built-in leaderboard display to
show the results of the submitted score and how it ranks:

local function displayScores(event)
 gameNetwork.show('leaderboards',
 {
 leaderboard = {
 category = 'overall_allTime',
 timeScope = 'AllTime';
 };
 }
)
end

This request will also get a listener, a simple closure that will send the game back to the
splash screen once the user dismisses the leaderboard display:

 gameNetwork.show('leaderboards',
 {
 leaderboard = {
 category = 'overall_allTime',
 timeScope = 'AllTime';
 };
 listener = function(event)
 storyboard.gotoScene('splash')
 end;
 }
)

What did we do?
We used the results of our Game Center initialization call from the last step to determine
whether scores could be sent to a leaderboard, then forwarded them if the leaderboard was
available. Finally, we used Game Center's own built-in facilities to show the current status of
the leaderboard before returning to the splash screen.

What else do I need to know?
In addition to the functions we've used here that ask the network itself to display its info,
the gameNetwork package also includes requests that allow you to scan leaderboards
yourself, collect data about other players, format your own lists of achievements, and so on.
These allow you to take over some of the coding work in exchange for much more control in
making the displayed leaderboards and achievements fit the appearance of your game.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 8

265

Game over – wrapping it up
You've gotten a start on two major tasks in this project. A full discussion of multi-touch, state
handling, and gesture recognition could very easily encompass a book of its own. Game
Center and other game networks are not actually very complicated from the programming
side; getting them working correctly is mostly a matter of configuring them correctly on the
server support side.

Can you take the HEAT? The Hotshot
Challenge

Now that you've come this far, try adding some achievements to the game. Some
possibilities include making it all the way through your first song, getting a score above
100,000 points, or getting through 30 seconds of the song without missing a target. This
will require both setting up the achievements on iTunes Connect much like you did with the
leaderboard, and using the unlockAchievement string key with gameNetwork.request.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9
Into the Woods –

Computer Navigation
of Environments

As players, most of us enjoy a game more when the ways in which computer characters
move around seem more sensible or natural to us, rather than when they are obviously
mechanical or over-simplified. Creating characters that can sensibly choose goals and find
a good way to get there goes a long way toward improving a player's enjoyment.

What do we build?
We're going to take a tile-based exploration and adventure game, built from the same engine
that we used in Project 7, Caves of Glory, and add calculated path finding so that enemies
start to hunt you down when you get near, even around corners and obstacles.

What does it do?
The project will enable computer-controlled enemies in the game to respond when the
player character comes within their range, by selecting a way to reach the player and travel
until they reach him or her. This path finding means that as long as the player stands still
within range, monsters alerted to his/her presence will eventually reach him/her; he/she
can't rest at any spot where enemies would simply get stuck in a corner trying to reach
him/her.

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

268

You'll add this to the project by writing code that carries out what is called the A* algorithm
(pronounced ey-star), an approach to finding the easiest available path between where a
character is and where it's going. A* takes an account of whether certain areas between here
and there are harder or take longer to cross, and it uses "off-the-cuff" estimates of the likely
distance to focus on finding a good, usable way to reach the target fast. It's not guaranteed
to find the best possible way to reach its destination, but as long as you provide it with
reasonable guidelines, it will never prefer a lengthy awkward route when a substantially
better one is nearby.

Why is it great?
Firstly, familiarity with A* can only help you if you want to develop smart game
behaviors—it's powerful, commonly known, and well-understood. Its balanced tradeoff of
good results against fast performance has made it the go-to choice of path-finding scheme
for many games applications.

The other step that this project takes is to really illustrate how powerful projects start to
become when you can re-use techniques from other examples. The world and map engines
are built on top of the code from Project 7, Caves of Glory, with only a few modifications. The
code that controls both computer-controlled and player-controlled characters is based on
the AI controllers from Project 5, Atmosfall. The touch controls to move your character are
taken almost directly from Project 2, SuperCargo. Being able to assemble components that
can easily be modified and rearranged, much like toy building sets, is where the real power
of good software creation starts to appear.

How are we going to do it?
Unlike previous projects, most of this project will be focused on pieces of a single algorithm.
We will perform the following operations to do so:

ff Structuring the A* algorithm

ff Sorting likely routes using a heap form

ff Writing a custom iterator

ff Selecting costs for neighboring tiles

ff Writing a heuristic function

ff Using the implementation to find a path

ff Moving based on path selection

ff Following the main character

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

269

What do I need to get started?
As with other projects, you will need to copy the contents of the version 0 folder in the
project pack into your own project folder called IntoTheWoods.

You may also want to try the demo at http://www.antimodal.com/astar/. Set the
steps per frame value fairly low, to 1 or 2, and hit Find Path to see the algorithm in action.
Watch how it occasionally gets backtracked but finds a short path after searching less than
a quarter of the area.

Structuring the A* algorithm
We'll lay out the basic structure of the A* search, looking for the point of the current search
border likeliest to be closest to the destination, checking to see if any of them offer a faster
route to known spaces, and whether or not we have reached our target.

Getting ready
Create a new file, path.lua, and open it for editing.

Getting on with it
We'll start by laying out the generic skeleton of an A* implementation.

Assembling the requirements
In addition to a start position, a goal position, a progress function, and a heuristic function,
A* needs to create two things internally to do its job—a list of spaces currently on the border
of its search, and the known costs to reach them, and a list of the spaces that the search has
determined which are in the best path to any given known space using the following code:

return function(start, goal, neighbors, h)
 local costs = {[start] = 0}
 local parents = {}
end

Selecting the cheapest choice
The costs table holds all spaces that have been considered at all as part of the path, but still
have any unknowns about the paths going through them. We need to select whichever space
in the list has the lowest projected total cost using the following code:

return function(start, goal, neighbors, h)
 local costs = {[start] = 0}
 local parents = {}

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

270

 for prospect in lowestEstimate(costs, function(source) return
h(source, goal) end) do
 end
end

We'll cover the details of the lowestEstimate iterator in a few steps.

Checking for completion
As shown in the following code, if the easiest space to reach under consideration is the goal
space, well, we found it!

 for prospect in lowestEstimate(costs, function(source) return
h(source, goal) end) do
 if prospect == goal then
 end
 end

Then we just need to unravel the chain of parentage back to its beginning using the
following code:

 if prospect == goal then
 while parents[prospect] and parents[prospect] ~= start do
 prospect = parents[prospect]
 end
 end

As shown in the following code, whichever node along the path was reached from the start
position is the first step that needs to be taken to follow that path:

 if prospect == goal then
 while parents[prospect] and parents[prospect] ~= start do
 prospect = parents[prospect]
 end
 return prospect
 end

Advancing the search
If we haven't reached the goal, then we need to take the spaces we can reach from this one,
and the costs to move to them from this point.

 return prospect
 end
 for successor, cost in neighbors(prospect) do
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

271

The neighbors iterator in the previous code snippet is used in a generic form. The
algorithm doesn't care how neighbors are determined or the costs to reach them are
calculated, as long as the iterator returns a neighbor node and a cost to travel to that node
for each adjacent (or otherwise reachable) space, and returns nil when it has shared every
possible neighbor with us.

We'll create our own specific neighbors function for use with our maps in the next task.

Registering new or improved possibilities
For each neighbor, we'll consider whether it's either a new discovery, or whether the path
we took to get here represents a new shortcut over the currently known path:

 for successor, cost in neighbors(prospect) do
 cost = cost + costs[prospect]
 if not costs[successor] or costs[successor] > cost then
 end
 end

The next line is a bit quirky. Of all the steps in the whole process, it's probably the most
artificial; it exists entirely because of how we'll maintain our search structure, a couple of
tasks down the road.

 if not costs[successor] or costs[successor] > cost then
 if costs[successor] then costs[successor] = nil end
 end

The previous highlighted line exists just to make sure the following line works the way we
expect, by guaranteeing that each assignment into the costs table is sorted correctly for
the next pass through the loop.

 if not costs[successor] or costs[successor] > cost then
 if costs[successor] then costs[successor] = nil end
 costs[successor] = cost
 end

If we either added this new space for consideration, or determined that this is a better way
to reach the target neighbor than any previously known, we need to remember that this
prospect is the best known way to reach the space in question.

 if not costs[successor] or costs[successor] > cost then
 if costs[successor] then costs[successor] = nil end
 costs[successor] = cost
 parents[successor] = prospect
 end

This is in fact the entire form of the A* algorithm, with only three major details needed to
make it fully functional.

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

272

What did we do?
We laid out the basic skeleton of the A* methodology—a sort of rubber band constantly
being stretched out in the direction of the goal, held back by areas that are harder or
impossible to pass.

What else do I need to know?
A* is an extension of a method called Djikstra's algorithm, after the influential computer
scientist Edsger Djikstra who published it in 1959. Djikstra's algorithm takes a starting point
and finds the shortest route from there to every other point you can get to. Because it
covers the entire map, it can take a while to run, especially with large maps; A* expands it by
considering not just the easiest next step, but the one that leads to the next space with the
best combination of known cost to get there plus likely cost to get the rest of the way. This
means that A* keeps moving in generally the right direction.

Writing a custom iterator
Most for loops in Lua are designed to process a list of things, most often some or all of the
keys in a table. These lists are produced by functions that get called repeatedly to produce
one item at a time from the list.

Most of the time, these loops are set up using the standard functions pairs or ipairs.
However, Lua allows you to supply any custom setup that meets a particular format, which
we'll use to operate on each of the squares adjacent to a given square in the map.

We've actually dabbled in this before, in Project 8, The Beat Goes
On, when we used a binding to return the results of ipairs on
a specific table, but now we're going to expand this to create our
own iteration processes.

Getting ready
Save path.lua and open map.lua.

Getting on with it
We're going to use a variant of the technique we used in Caves of Glory, to detect a
character in the spaces next to a treasure chest.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

273

Starting the loop
Add a local function to the beginning of the map module:

 return function() return head, s, v end, function() return f, s,
bridge end
end
local function nextNeighbor(start, previous)
end

return function (filename)

The loop following manages the offset from the start position in the center, defaulting to
start from the position to the right of the start (although since it advances once at its start,
it internally starts from the position above and moves once clockwise):

local function nextNeighbor(start, previous)
 local dX, dY = 0, -1
 repeat
 local row = start.map[start.y + dY]
 local space = row and row[start.x + dX]
 dX, dY = -dY, dX
 until dY = -1
end

The loop skips over blank spaces, such as would be found at the edges of the map:

 dX, dY = -dY, dX
 local row = start.map[start.y + dY]
 local space = row and row[start.x + dX]
 if space then
 return space
 end

Advancing the loop
Each time a for loop calls its generator function, it passes back the first value returned by
the last call. We can use this to get the last offset positions as shown in the following code:

 local dX, dY = 0, -1
 if previous then
 dX, dY = previous.x - start.x, previous.y - start.y
 dX, dY= -dY, dX; if dY==-1 then return end
 end
 repeat
 dX, dY = -dY, dX

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

274

Preparing a loop
Create a new local function after the last one using the following code:

 until dY = -1
end
local function neighbors(start)
end
return function (filename)

This local function will prepare a new for loop when it is called, by supplying the
nextNeighbor generator function and the space to use as the center, passed as an
argument by the A* loop:

local function neighbors(start)
 return nextNeighbor, start
end

Go down to the contents of the main module function in this file, and add a new function
field to the map module once it is constructed:

 end
 space.Neighbors = neighbors
 function self:Find(item)

The previous function is not a method and doesn't use colon (:) syntax.

The previous code exposes the new iterator to the outside world.

What did we do?
We kept our code readable and maintainable by keeping it in a familiar, intuitive structure
(the for loop), facilitating this by using our own function to walk from one adjacent square
to the next.

What else do I need to know?
The way Lua for … in loops work is that they take three components—a generator
function that produces the next value from the previous value, a domain for the iteration
which stays constant throughout the loop (the table being scanned, for instance, in cases
such as pairs and ipairs), and an initial value that is fed to the first call to the generator.
The generator function itself will be called with two arguments, the iteration domain, and
the first result from the last pass through the loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

275

Rather than entering all three of these values yourself, you typically use a function that
generates them accordingly. For instance, the pairs(t) function actually returns three
values—the built-in function next, the table t itself, and nil.

Selecting costs for neighboring tiles
The other piece of information that we need to know about each neighboring tile is how
hard, compared to other tiles, it is to take the step into that tile from the one we are
considering. We'll add this information to the terrain engine and attach it to the spaces
to make it easy to find.

Getting ready
Open the forest.lua file in the terrain folder.

Getting on with it
This model will keep things simple, basing costs to enter a space solely on the type of space
being entered. This means we can use a simple table.

Providing cost assignments
Add a new local table near the top of forest.lua:

local forest = {}
local entryCosts = {
}
function forest:Expand(kind)

Add values for the basic terrain types found in the map:

local entryCosts = {
 bush=
 math.huge,
 ['=grass']=1,
}

The use of math.huge means that the pathfinder will prefer any
path over grass and rocks, no matter how long, over one that goes
through trees. We can also test whether the length of a path is
math.huge to avoid trying to follow impossible paths.

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

276

Selecting costs for terrain types
We'll also provide a function that selects costs from the following table as needed:

 };
};
Cost-function(start,neighbour)
end;
Polish=function(tile)

Polished terrain maps may have variants on the same terrain type, so we use only the core
type; terrain types are stored as strings where any subcategory comes after the basic terrain
type, separated by a colon:

function forest.Cost(start, neighbor)
 local name = neighbor.Ground
end

Finally, we return the appropriate value from the table, with a default that ensures
unrecognized terrain types will not be crossed:

function forest.Cost(start, neighbor)
 local name = neighbor.Ground
 return entryCosts[name] or math.huge
end

Save forest.lua.

Forwarding the cost data
Return to the nextNeighbor function in map.lua. Remember from path.lua that
the iterator needs to return two values, the next neighbor and the cost, like the following
iterator code does:

 local space = row and row[start.x + dX]
 if space then
 return space, start.map.Terrain.Cost(start, space)
 end
 until dY = -1

What did we do?
We completed the neighbor analysis process by adding weights to different tile transitions,
allowing the different terrain types to offer specifics about what type each square represents.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

277

What else do I need to know?
This cost-assessment function is not terribly efficient. Since it is called many times for each
pass through the map, if there are many monsters, all calculating a path regularly, this
inefficiency will be multiplied enough to have a serious impact on game performance.

One way to make it more efficient is to precalculate each square's neighbors and costs, since
they don't change. You can store a table in each map square that records the neighbors and
their costs, such as by using neighbor square tables as keys and costs as the values. Scanning
for neighbors then becomes a matter of simply iterating that table.

Sorting likely routes using a heap
The A* routine spends a lot of time selecting the space with the shortest known route;
because it does this over and over, if we use an inefficient way to find this space in the list,
it will rapidly add up and slow down the processing, interfering with the game frame rate.
To keep performance high, we store our list in a form that computing scientists call a heap,
which can be kept sorted in an efficient way as things are added to it or taken away.

Getting ready
Save and re-open path.lua. Note the point where the main for loop of the A* function uses
the lowestEstimate function to iterate over available spaces. This is another customer
iterator; it will set up a heap based on the costs table we define, and then repeatedly
remove the value with the lowest supposed cost.

Getting on with it
A heap is a way of organizing an array so that each element is always sorted before the
two regarded as its children (according to the sorting of your choice). While the array is
not sorted from front to back, it eliminates half of the remaining array with every sort step
it performs, making the sort process very fast. You can see the end of the task for more
detailed information on how heaps and the heap-sort process works.

Building the heap form
Frame in the lowestEstimate function at the top of path.lua. This function receives the
set of costs, as well as the heuristic function that can be applied to each space.

local function lowestEstimate(costs, h)
end
return function(start, goal, neighbors, h)

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

278

The following function will build an internal heap form that sorts the different elements in the
costs table according to their total estimated travel costs, which will be stored in another table:

local function lowestEstimate(costs, h)
 local estimates = {}
 local heap, length = {}, 0
 for n, c in pairs(costs) do
 end
end

For the initially supplied costs, we'll expand them based on a list of heuristic values (which
we'll assemble in a moment), adding items into the heap without initial regard for sorting:

local function lowestEstimate(costs, h)
 local estimates = {}
 local heap, length = {}, 0
 for n, c in pairs(costs) do
 estimates[n] = c + heuristics[n]
 length = length + 1
 heap[length] = n
 end
end

The A* algorithm assumes that a space's heuristic value never changes
during the course of the algorithm.

Once all items are added, the heap form is sorted from the bottom-up. This will tend to get
potentially redundant work out of the way early:

 heap[length] = n
 end
 for subtree=(length - length % 2) / 2, 1, -1 do
 pushdown(heap, subtree, length)
 end
end

Adding to the heap form
For the heap form to be useful for sorting a selection, we have to be able to add new
items to it, but our iterator doesn't provide access to the heap form directly, because it
wants to keep it sorted. However, we can use a metatable attached to the original cost set,
to record whenever a new value is added to the set and fix the heap form as shown in the
following code:

 pushdown(heap, subtree, length)
 end
 local function relist(costs, node, cost)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

279

 end
 setmetatable(costs, {__newindex = relist})
end

The first thing we need to do is actually record the new cost. The rawset function works like
the statement costs[node] = cost, but without triggering the metatable, which would
cause an infinite loop:

 local function relist(costs, node, cost)
 rawset(costs, node, cost)
 end

Then we need to record the estimated total cost for the new value, the way we did when we
built the heap form:

 local function relist(costs, node, cost)
 rawset(costs, node, cost)
 estimates[node] = cost + heuristics[node]
 end

If the element has been in heap before, we find its old place before resorting it. Otherwise,
we add it to end:

 local function relist(costs, node, cost)
 rawset(costs, node, cost)
 estimates[node] = cost + heuristics[node]
 local i = table.indexOf(heap, node)
 if not i then
 i = #heap + 1
 heap[i] = node
 end
 end

Once it's in the heap form, we push it up toward the top, swapping it with its parent, until
it's in the correct sorted position:

 heap[i] = node
 end
 local parent = (i - i % 2) / 2
 while parent >= 1 and estimates[heap[parent]] > estimates[node] do
 heap[parent], heap[i] = node, heap[parent]
 i = parent
 parent = (i - i % 2) / 2
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

280

Caching heuristic values
Because heuristics don't change over the course of the algorithm, we want to avoid
recalculating them. But the purpose of this method is efficiency, so we also don't want to
calculate a value for any node that never gets considered. We can solve this with another
metatable-based pattern, very common in Lua, called a self-populating table:

 local estimates = {}
 local heuristics = setmetatable({},
 {
 __index = function(t, node)
 end
 }
)
 local heap, length = {}, 0

The index function for this table is called whenever a value is indexed that doesn't exist in
the table yet. First, it calculates the heuristic for that node.

 __index = function(t, node)
 local val = h(node)
 end

It saves the value in the table, so that the __index function won't be called again when the
value is requested later:

 __index = function(t, node)
 local val = h(node)
 t[node] = val
 end

And it returns the value, so that it can be used when it was requested:

 __index = function(t, node)
 local val = h(node)
 t[node] = val
 return val
 end

Fixing heap
The biggest complexity in the heap function is the process of sorting a value to the bottom
of its sub-tree. We've used the pushdown function already, but it needs to be implemented
as shown in the following code snippet:

 local estimates = {}
 local function pushdown(heap, start, l)
 end
 local heuristics = setmetatable({},

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

281

The function keeps checking the value against its children until neither one is out of order
with it:

 local function pushdown(heap, start, l)
 repeat
 until not branch
 end

If one is out of order with it, it has to swap with whichever child can become the parent of
the other and stay sorted:

 repeat
 local leftChild = start * 2
 local smaller, branch = math.huge, nil
 if leftChild <= l then
 smaller, branch = estimates[heap[leftChild]], leftChild
 local rightChild = leftChild + 1
 local value = estimates[heap[rightChild]]
 if rightChild <= l and value < smaller then
 smaller, branch = value, rightChild
 end
 end
 until not branch

Once it has determined which child can be selected to move up, it checks whether they are,
in fact, out of order:

 if rightChild <= l and value < smaller then
 smaller, branch = value, rightChild
 end
 value = estimates[heap[start]]
 if smaller < value then
 end
 end

If so, it swaps them to restore order and checks the new sub-tree:

 if smaller < value then
 heap[start], heap[branch] = heap[branch], heap[start]
 start = branch
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

282

Otherwise, if the element is in order with both children, heap is sorted again and we
can stop:

 if smaller < value then
 heap[start], heap[branch] = heap[branch], heap[start]
 start = branch
 else
 break
 end

Pulling a value
To iterate over the list, we have to be able to get the smallest cost value and take it out of
the list. At the bottom of the lowestEstimate function, start constructing the generator
function that will do this. This function will also need the heap object as its iterator state.

 setmetatable(costs, {__newindex = relist})
 return function(t, ...)
 end, heap
end

Getting the lowest estimate is easy; it's at the beginning of the heap object.

 return function(t, ...)
 local root = t[1]
 return root
 end, heap

As long as heap was not empty, we need to fix it. The easiest way to do this is to grab the
last element in the whole heap object, jump it up into the gap, and then sort it down using
our existing fixer:

 return function(t, ...)
 local root = t[1]
 if root then
 local length = #t
 t[1] = t[length]
 t[length] = nil
 if length > 2 then
 pushdown(t, 1, length - 1)
 end
 end
 return root
 end, heap

There! Our heap sort is ready to organize our selected spaces. The A* module is
almost ready.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

283

What did we do?
We kept our algorithm efficient by organizing our selection of spaces under consideration
into a sorted tree arrangement, or heap; this makes it easy to add new options or remove
old ones while keeping them sorted in a reasonably short time.

What else do I need to know?
Heaps are a non-trivial piece of computing, and we don't completely cover how they work.
The basics are that they store a tree inside an array, to keep it compact and simplify the
process of allocating searching for parents and children. If the root of the tree is element 1
of the array, then each element N's children are element 2*N and element 2*N + 1.

When a new element is added to heap, it is added at the very end, pushed up the tree until
it reaches a parent that does not sort earlier than it, and then, if needed, pushed back down
another branch of the tree until it is sorted properly. When an element (usually the first
element) is removed, the last element of heap is swapped into its place, and then pushed
back down the tree until it settles into a properly sorted location. All of this is designed to
keep the number of swapped or moved elements to an absolute minimum.

You can find a step-by-step example of a heap sort in action at http://ds-algo.
blogspot.com/2007/06/heap-sort-explained.html. A technical explanation of heap
sorting and the principles that make it work can be read at http://en.wikipedia.org/
wiki/Heapsort.

Writing a heuristic function
As mentioned earlier, A* is an evolution of a slightly simpler algorithm called Djikstra's
algorithm, which is guaranteed to find the shortest available path, but takes longer to run.
The principle difference is that A* uses a heuristic function that gives its best guess about
which squares are closer than which others to the destination. In this way, it tries to keep its
focus moving in the general direction of the goal. We'll choose a reasonable heuristic for the
type of map we're using, and implement it so that it will be available to in-game creatures of
a certain type.

Getting ready
Create a new file, walker.lua, and open it for editing.

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

284

Getting on with it
Since our map is a square grid, for our heuristic, we'll use what is called the "Manhattan"
distance, the square distance that has to be counted along both axes to get to the goal.

Constructing the function
Frame the function in at the top of the new file:

local function manhattan(space, goal)
end

The function will take both the x and y distances and add them together:

local function manhattan(space, goal)
 return math.abs(goal.x - space.x) + math.abs(goal.y - space.y)
end

What did we do?
We added a "Manhattan" estimation of distances between any arbitrary square on the map
and a selected goal square in the same map, allowing our path-finding process to reach a
reasonable result more quickly.

What else do I need to know?
A*'s performance is highly dependent on your choice of heuristic. If your heuristic has a
very high weight compared to your cost values, the algorithm will tend to find a route very
quickly, but at the possible expense of skipping over better routes nearby. If your heuristic is
weighted very low, the algorithm will search more possible routes, typically finding a better
route from the available choices but taking longer to consider more options. If your heuristic
is zero, the algorithm becomes Djikstra's algorithm, searching out every possible route but
always returning the best one possible.

On grid maps, the Manhattan distance (so called because the borough of Manhattan in New
York City is laid out very neatly in a grid pattern) is a fairly reliable heuristic; on free-form
maps, the Pythagorean distance, or radial distance, is a good start. On large, complex maps,
a more sensitive function may be needed to keep performance up; for instance, regions of
the map might be assigned weights according to the prevailing terrain. A swampy region
might be generally assigned a high heuristic cost, even if low-cost paths through it exist, to
indicate that only the most useful shortcuts should be pursued.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

285

Connecting all the elements
All of the pieces for our path-finding implementation are ready now. Our next step is to bind
them all together into a module that can determine the shortest path when traveling "on
foot" through our virtual environment.

Getting ready
Open walker.lua, if needed.

Getting on with it
The walker module will specify which neighbor and heuristic functions need to be used with
the algorithm.

Assembling dependencies
The module will therefore need to load the path module so that it can call our A* function.

local path = require "path"
local function manhattan(space, goal)

Binding the components
The module function will take a start space and an end space, and use the path module to
pick a step in the right direction.

 return math.abs(goal.x - space.x) + math.abs(goal.y - space.y)
end
return function(start, goal)
 return path(start, goal, start.map.Neighbors, manhattan)
end

What did we do?
We've given the A* algorithm a particular case to work on, by choosing functions that
provide it with neighbors and a heuristic for a specific kind of map. If we wanted to create a
flying or swimming creature, we would need to replace the neighbors function to modify
the costs for obstacle spaces or areas of water.

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

286

Using the implementation to find
a path

Now that the path-finding implementation is complete, it's time to call it for any enemy who
isn't currently doing something.

Getting ready
Open the file monster.lua and find the nested function called idle.

Getting on with it
The idle function does nothing right now; it just waits forever.

Monitoring while idle
Functions in these AI controllers tend to be very high-level and abstract. We'll use a provided
iterator to look at each of the surrounding spaces within a certain distance:

 function idle()
 while wait() do
 for space in surroundings(4) do
 end
 end
 end

For each nearby space, we'll check its contents:

 while wait() do
 for space in surroundings(4) do
 for _, content in ipairs(space.Features) do
 end
 end
 end

If anything in the space is a character with a different allegiance, or faction, it's time to chase
after it and attack:

 for space in surroundings(4) do
 for _, content in ipairs(space.Features) do
 if content.Character and content.Alleigance ~= self.
Alleigance then
 return hunt(content)
 end
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

287

Responding with pursuit
Add another function next to idle:

 local idle, hunt
 function hunt(quarry)
 end
 function idle()

These enemies are relentless and never stop chasing you due to the following code:

 function hunt(quarry)
 while true do
 end
 end

A hunting enemy checks whether its quarry is adjacent to it:

 while true do
 local dX, dY = location()
 dX, dY = dX - quarry.Location.x, dY - quarry.Location.y
 if math.abs(dX + dY) == 1 and dX * dY == 0 then
 end
 end

If so, the monster attacks (this feature isn't actually implemented yet):

 dX, dY = dX - quarry.Location.x, dY - quarry.Location.y
 if math.abs(dX + dY) == 1 and dX * dY == 0 then
 attack(quarry)
 end

Otherwise, the monster identifies the next step in getting to that point, and starts
moving there. If the space is unavailable, step returns false, and the monster waits:

 if math.abs(dX + dY) == 1 and dX * dY == 0 then
 attack(quarry)
 else
 local proceed = path(location(), quarry.Location)
 if proceed then
 if not step(proceed) then wait() end
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Into the Woods – Computer Navigation of Environments

288

What did we do?
We tracked which computer characters are currently in the middle of an action, and when
they're not already occupied with an attack or a movement, we've used this path-finding tool
to select a course for them to follow to guarantee that they remain a threat to any player
who stands and waits.

Moving based on path selection
Now that this path is being found as needed, the last crucial step is to actually carry it out.

Getting ready
Open the file character/init.lua, which includes specific actions and features used by
both computer- and human-controlled players.

Getting on with it
The step function is in fact very similar to the network functions from TranslationBuddy, and
that's what we're going to model it on:

function presence.step(target)
 local origin = getfenv(2).location()
 local self = coroutine.running()
 local function resume(event)
 event.target:removeEventListener('Moved', resume)
 coroutine.resume(self, 'finished')
 end
 local motion = origin.map:Move(character, getfenv(2).world, target.x
- origin.x, target.y - origin.y)
 if motion then
 motion:addEventListener('Moved', resume)
 repeat local outcome = coroutine.yield()
 until outcome == 'finished'
 return true
 end
 end

What did we do?
We expanded the computer character control code to carry out an actual Move command
over time, and return control to the character controller when the move is completed.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 9

289

Game over – wrapping it up
Path-finding is a sophisticated topic; while a basic A* implementation like this one is a
robust solution to simpler maps under constraints such as tiled movement, more free-form
movement environments will demand more elaborate solutions. However, the solution
presented here is both fairly efficient and quite adaptable in the way you can redefine
its neighbor and heuristic functions; for instance, you could allow different characters to
navigate the same map by different routes if one of them can fly over cliffs and trees.

Can you take the HEAT? The Hotshot
Challenge

Use one of the other monster sprites, such as the swamp monster, and create a new monster
that moves through streams and other water, but moves more slowly over land. Use a
neighbor function that prefers water over land as a result. You'll need to use additional
art files from the original art folder to add water to the environment.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10
Underfoot – Selectively
Leveraging the Physics

System

So far, we've used Corona's support for the Box2D physics system primarily as a collision
detector. It's been used in three projects and we've immediately turned off the gravity in
every case. In at least one case, most bodies we create are sensors. This project will explore
how to use more of the actual physics-based features to build a platform game with gravity
and solid floors and walls.

What do we build?
For this project, we will start with a partly completed platform game; it contains all sprites,
and a tile map module similar to that used in Project 7, Caves of Glory – Mastering Maps
and Zones and Project 9, Into the Woods – Computer Navigation of Environments. We will
add physics to this world to create the world interactions that support game play; walls
and floors that stop the player, collision detection with enemies that doesn't allow them to
actually push the player or cause things to bounce off each other, and climbable ladders.
We'll use collision filtering, in combination with sensor body elements, to keep only the
physics interactions that are actually useful to us.

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

292

What does it do?
You'll start out with working modules to load a map from a file, load characters with sprites
and accept control signals for them, supply control events for your character from user input,
track score, and recognize level completion. The game implements a simple platformer,
where you jump from block to block, score points by jumping on top of enemies to squish
them, and navigate ladders and pools of water. The player will move the character to the
left-hand side or right-hand side by holding the screen on the desired side, climb by tilting
the device backward or forward, and jump whenever they release the screen (including a
tap for standing jumps).

Why is it great?
This project will address one aspect of the physics module that we've let slide up to this
point: multi-element bodies (fixtures in Box2D's internal parlance). We've used them a little
in the shooter projects, solely as a way to create concave physics shapes without freaking
out Box2D. However, in this case, we'll really go down the fixtures rabbit hole, using different
collision filters for different fixtures as well as creating bodies that contain both solid fixtures
and sensor fixtures.

How are we going to do it?
The tasks for this project will focus on controlling physics interactions.

ff Building physics for the map

ff Making characters interact with the world

ff Driving character behavior

ff Responding to collisions with other characters

ff Bouncing off enemies as appropriate

ff Controlling gravity to enable climbing

ff Selecting collisions by manipulating contacts

ff Adding polish with custom fonts

What do I need to get started?
You will need to copy the contents of the version 0 folder in the project pack directory
into a new project folder. These directions assume that you call this directory Underfoot.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

293

Building physics for the map
In order to use physics to drive our game interactions, we'll need some physics content for
our game world to give characters some floors (and walls) to interact with.

Getting ready
Open the file categories.lua and locate the table being returned (currently empty).

Getting on with it
We'll create a long physics block for every unbroken row of block tiles.

Defining the floor category
In categories.lua, add a new entry to the table being returned:

return {
 ground = {
 groupIndex = ID.general;
 categoryBits = ID.wall,
 maskBits = ID.sprite;
 },
}

Save this file, open world.lua, and load this module at the top of the file.

local categories = require "categories"

local function matchPointPlacement(target, referenceX, referenceY,
frame, targetX, targetY)
Since the module is working with collisions, it will also need
physics.
Local physics = require "physics"
local categories = require "categories"

Clearing the map
Open the file world.lua and locate the self:Load(map) function. After looping over the
map, make sure that in case the world object is being reused, any previous platform objects
are cleared:

 end
 if self.Blocks then
 for _, block in ipairs(self.Blocks) do
 display.remove(block)

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

294

 end
 end
 self.Map = map

Then, make sure that the world starts with its list of solids being newly empty:

 display.remove(block)
 end
 end
 self.Blocks = {}
 self.Map = map

Scanning the rows and identifying block runs
Look over each row of the map at a time:

 self.Blocks = {}
 for h, row in ipairs(map) do
 end
 self.Map = map

Then, for each row, gather the position, ground style, and width of each run of blocks using
a custom iterator (which we'll write next):

 for h, row in ipairs(map) do
 for start, kind, width in scanRow(row) do
 end
 end

Before using these dimensions to create the blocks, we'll back out for a moment to create
the iterator that will treat the map row as a sequence of blocks. Move back up the file before
the module function and frame in the form of an iterator that works with numeric indices:

 until dY == -1
end

local function advance(row, start)
end
local function scanRow(row)
 return advance, row, 0
end

return function (terrain, columns, rows)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

295

When the generator comes back to a row at the start or middle of a run of ground blocks,
it scans to the end of that run before proceeding:

local function advance(row, start)
 while row[start] and row[start].isGround do
 start = start + 1
 end
end

It then advances until it finds a block that contains solid ground:

 start = start + 1
 end
 repeat
 start = start + 1
 until row[start].isGround
end

If it reaches the end of the row first, scanning is complete and it ends the loop by
returning nil:

 repeat
 start = start + 1
 if not row[start] then
 return
 end
 until row[start].isGround

Once it has the beginning of a block run, it scans forward on a new counter until it finds the
end of that run or the row:

 until row[start].isGround
 local stop = start + 1
 while row[stop] and row[stop].isGround do
 stop = stop + 1
 end
end

Finally, it returns the start position as well as the function used to create the blocks in the
right size and style, along with the width, obtained by subtracting the beginning from the end:

 stop = stop + 1
 end
 return start, row[start].isGround, stop - start
end

We here take advantage of a feature of Lua, where any non-nil value is considered true. So
we can store functions with ground spaces that create the right sort of ground, and nil on
those spaces that don't count as ground.

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

296

Creating the blocks
Back inside the loop, it's time to take the information from the iterator and make blocks with
it. Multiply the index of the current row as well as the start and width of the block by the
world's tile dimensions to determine the dimensions for the new floor:

 for start, kind, width in scanRow(row) do
 local block = kind(self, (start - 1) * self.HSize, (h - 1) *
self.VSize, width * self.HSize, self.VSize)

And finally we store the block in the list we created earlier:

 physics.addBody(block, 'static', {filter = categories.ground})
 table.insert(self.Blocks, block)
 end

What did we do?
We picked out individual streaks of consecutive blocks in each row of the tile map, and gave
each one a physics identity, allowing it to block the passage of solid characters. We gave
these blocks a generic grouping so that they will collide with nearly all other objects.

What else do I need to know?
There are two reasons to consolidate adjacent blocks rather than give each block tile its very
own physics square:

ff Box2D performs significantly faster when you give it fewer objects to handle, and
the smaller number of blocks uses less memory as well

ff Sometimes when another object scrapes along a series of stacked blocks, Box2D
gets confused and makes it stop at one of the boundaries, like a person tripping
over the seam in a sidewalk

Also, the iterator we created to scan for blocks is a bit inefficient, but fixing it (by returning
the ends of blocks instead of their beginnings) makes the code's usage harder to understand
and isn't worth it unless it has a significant impact on load times.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

297

Making characters interact with the
world

However, static blocks never interact with each other; they're only there to give characters
and creeps something to interact with. Those objects also need to be modeled in the physics
world in order for the physics model to be useful. We'll add physics modeling to the player
character and monsters, so that they fall under gravity, land properly on the floor, and can't
walk through walls.

Getting ready
Save world.lua, if necessary, and open categories.lua instead.

Getting on with it
Characters will need bodies that collide with the floors, but not with each other, to prevent
collisions that transfer momentum.

Defining the character body category
In categories.lua, add another category under ground:

 maskBits = ID.sprite;
 },
 body = {
 groupIndex = ID.body;
 categoryBits = ID.sprite,
 maskBits = ID.wall;
 },
}

Adding a body to characters
Save and move to the file init.lua in the character folder. This module takes a sprite
and some other descriptive info and expands that sprite sheet into a complete game object
with all its behaviors—except, at the moment, physics.

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

298

First we'll create an element description that is specifically solid, and uses the body filter we
just defined, but otherwise inherits its shape info from the supplied body description.

return function(kind)
 local body = setmetatable({isSensor = false, filter = categories.
body}, {__index = kind.Form})
 return function(world)
 local self = display.newSprite(kind.Appearance, kind.Animations)

Now we'll add this shape as the base fixture in the sprite's new body:

 self.Mind = require "plan" (self.Brain, self, world, kind.
Personality(self))
 physics.addBody(self, 'dynamic', body)
 self.isFixedRotation = true

What did we do?
We've laid the framework here for all characters to interact with the ground, without
interacting with each other. This eliminates a lot of issues like characters violently
bouncing off each other.

What else do I need to know?
Box2D simulates bodies in three different ways. Dynamic bodies are fully simulated; they
collide with all other objects (except when filters specify that they shouldn't), they move
according to their own velocity, and their velocity is affected by gravity and other forces
that you might apply. They bounce when two of them collide.

Static objects never move on their own. They typically represent ground, walls, or other
immovable objects. You can move them by setting their x and y coordinates (outside of
physics processing), but they never keep any velocity from one round to another. Box2D
also optimizes collision detection against static objects in a way that gets much better
performance if the objects are left standing still instead of being moved around a lot.
Dynamic objects will bounce off of static objects, but never move the static object in the
process, and static objects never create collision events with other static objects, no matter
where you move them.

If you need an object that acts like a static object but will move regularly, make it a kinematic
object. Like static objects, kinematic objects win any collision they're involved in, and
are unaffected by gravity; unlike static objects, they can have a velocity that affects their
movement over time. You cannot apply forces or impulses to a kinematic object and they
pass through static objects and other kinematic objects without generating any collisions.

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

299

Responding to collisions with other
characters

Even though we don't want characters colliding violently with each other, we still want them
interacting when they come into contact. We'll deal with this by adding sensor elements
(what Box2D calls fixtures) to our existing objects, with the same shapes as their solid
portions; these sensors won't generate dynamic collisions, but they will trip collision
events so that we can detect when they happen.

Getting ready
Save any other files and reopen categories.lua.

Getting on with it
Enemies shouldn't be concerned about colliding with each other, but collisions between
enemies and the character are important.

Defining categories for enemies and the player
The player and enemy objects are very similar in their overall requirements; they collide
with the same sorts of things, but they have different requirements as to what they need
to ignore.

 maskBits = ID.wall;
 },
 player = {
 categoryBits = ID.spirit,
 maskBits = ID.spirit + ID.ladder;
 },
 enemy = {
 categoryBits = ID.spirit,
 maskBits = ID.spirit + ID.ladder;
 },
}

Each one belongs to a different group in order to control collisions, though.

 player = {
 groupIndex = ID.player;
 categoryBits = ID.spirit,
 maskBits = ID.spirit + ID.ladder;
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

300

 enemy = {
 groupIndex = ID.enemy;
 categoryBits = ID.spirit,

Applying categories to bodies
Save any open files and open character/init.lua. Find the module function, which
accepts a character description and generates a character constructor function. This function
is currently generating a solid body only for a new character:

Add a new body to the constructor function, based on the same template as the first one.

 local body = setmetatable({isSensor = false, filter = categories.
body}, {__index = kind.Form})
 local spirit = setmetatable({isSensor = true, filter = kind.Group},
{__index = kind.Form})
 return function(world)

Add this extra fixture to the physics body creation.

 self.Mind = require "plan" (self.Brain, self, world, kind.
Personality(self))
 physics.addBody(self, 'dynamic', body, spirit)
 self.isFixedRotation = true

Now that we have code to make use of the Group field of a character description, switch to
character/person.lua and add this field to the character descriptions there. This file is
already requiring the categories module.

 humanoid{
 Name = "Hero";
 Appearance = "ranger_f";
 Personality = require "player";
 Group = categories.player;
 Speed = 64;
 };
 humanoid{
 Name = "Mummy";
 Appearance = "mummy";
 Personality = require "monster";
 Group = categories.enemy;
 Speed = 32;
 };

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

301

Reacting to collision events
Now that each character has both a solid fixture to collide with walls, and a sensor fixture
to detect collisions with each other, it's time to link some of that processing together.

Now that player and monster characters can collide with each other, we can resolve
collisions based on what character is involved. Add some new options to the contact
function in character/init.lua.

 if other.Name == 'Ground' then
 self:dispatchEvent{name = 'Land'}
 self.Standing = other
 elseif self.Allegiance == categories.player then
 elseif self.Allegiance == categories.enemy then
 end

If the player collides with something that is not ground, it's currently reasonable to assume
that it must be an enemy, which hurts the player.

 elseif self.Allegiance == categories.player then
 self:dispatchEvent{name = 'Hurt'}
 elseif self.Allegiance == categories.enemy then

Make sure that collisions will trigger the contact function to process them, and the
character's mind will be apprised of the fact that he or she has been hurt, in the body
of the constructor.

 self.isFixedRotation = true
 self:addEventListener('collision', contact)
 self:addEventListener('Hurt', self.Mind)
 self:addEventListener('Fall', self.Mind)

We also need to specify that being hurt will pre-empt anything else the character is doing,
and block their control for a moment. There is already a function to handle this, but we need
to let this event interrupt other functions. Add a couple entries to the precedence table at
the top of character/init.lua.

local precedence = {
 fall = {
 Land = 'idle',
 Hurt = 'flinch',
 Steer = 'fall',

Add the same line, Hurt = 'flinch', to the walk and idle subtables.

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

302

What did we do?
By adding sensor components to the various character bodies, we can now trigger
responses, such as reversing direction or reacting with damage.

What else do I need to know?
Sensor components are slightly limited compared to solid components, because there are
no reactive collisions to disable or modify. The biggest indication of this is that they don't
receive preCollision or postCollision events, only the collision event with both
began and ended phases. This also means that their contact points can't be disabled, or
have bounce or friction modified, because they don't generate any.

Bouncing off enemies as appropriate
Like any good platformer, our character will bounce off of enemies when he/she lands on top
of them, but not when he/she hits them from the side. We'll accomplish this by checking the
position of the collision on the main character.

Getting on with it
We've already created the basic behavior for when the character collides with an enemy,
by taking damage and flinching back.

Checking for foot-head contact
Although there are a number of tests to determine whether a body has landed on top of
another body, such as checking direction or comparing positions for horizontal overlap and
vertical separation, we're going to create another sensor fixture. This one is intended to
detect collisions with walls, rather than other sprites. Open character/init.lua and
calculate the width of the new body in the main function:

local spirit = setmetatable({isSensor = true, filter = kind.Group},
{__index = kind.Form})
 local width, height = calculateBaseWidth(body)
 width, height = width or (sprite.width / 2 - 2), height or (sprite.
height / 2)
 return function(world)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

303

Use this base width to create an outline along the bottom of the sprite:

 width, height = width or (sprite.width / 2 - 2), height or (sprite.
height / 2)
 local feet = {isSensor = true, filter = categories.body; shape =
{width, height; width, height + 2; -width, height + 2; -width, height}
}
 return function(world)

Include this fixture as the third component of each character body:

 local feet = {isSensor = true, filter = categories.body; shape =
{width, height; width, height + 2; -width, height + 2; -width, height}
}
 physics.addBody(sprite, 'dynamic', body, spirit, feet)

Modify the contact function so that its collision recognition checks for this specific overlap.
This can be used to distinguish between landing on the ground or running into a wall:

 if other.Name == 'Ground' then
 if event.selfElement == 3 then
 self:dispatchEvent{name = 'Land'}
 self.Standing = other
 elseif self.Standing and self.Standing ~= other then
 self:dispatchEvent{name = 'Bump'}
 end
 elseif self.Allegiance == categories.player then

It can be used to distinguish whether the player character has landed on top of an enemy or
bumped into it from the side:

 elseif self.Allegiance == categories.player then
 if other.Allegiance == categories.enemy and event.selfElement ~=
3 then
 self:dispatchEvent{name = 'Hurt'}
 end
 elseif self.Allegiance == categories.enemy then

It can also be used by the enemy to act more bouncy when the layer jumps on them. The
player bouncing off the tops of enemies is part of their physics, not their control.

 elseif self.Allegiance == categories.enemy then
 if other.Allegiance == categories.player and event.otherElement
== 3 then
 local dX, dY = other:getLinearVelocity()
 other:setLinearVelocity(dX, -dY)
 self:dispatchEvent{name = 'Stomp'}
 timer.performWithDelay(350, function() self:removeSelf() end)
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

304

What did we do?
We distinguished between two different sorts of collision between the same pair of bodies,
by using multiple sensors within a single body.

What else do I need to know?
Collision events also include x and y fields, which specify the point where the colliding bodies
made contact. These also offer a way to check the particulars of a collision; however, at the
time of this writing, there was a Corona bug affecting the coordinates reported in this event.
If this seems like a simpler way to process your collision events, check the Corona update
logs to see if this is now reporting reliably.

Controlling gravity to enable climbing
One of the benefits of the physics engine is that it frees us from handling gravity and its
effects on falling and jumping in our own code; these are well-understood, well-established
procedures, and coding them again ourselves makes no sense when there are already
high-performance, well-tested tools available. However, as players of platform games,
we frequently want to be able to reach certain high areas without having to jump up
complicated staircases first. To create a ladder that we can both walk past and climb up,
some special code is needed to interact with the gravity system; we'll practice detecting
when the player is in a suitable place to change its physics (that is touching a ladder) by
using a sensor object.

Getting on with it
There is one limitation of Corona's current implementation of Box2D that will oblige us to
do a bit of work on our own. There is currently no way to ask what other objects a sensor or
body is currently in contact with, so we have to remember objects when we start a collision
with them, and then forget them when the collision is over.

Tracking contact with ladder regions
Open character/init.lua and add a table to store objects the character is in
contact with:

 self.Speed = kind.Speed
 self.Adjacent = {}
 self.Brain = enlighten(self)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

305

In the collision processor, register any object in this table that starts a collision with the
character.

local function touch(event)
 local self, other = event.target, event.other
 if event.phase == 'began' then
 self.Adjacent[other] = other
 if other.Name == 'Ground' then

When a collision ends, remove the departing object from the character's list.

 elseif event.phase == 'ended' then
 self.Adjacent[other] = nil
 if other.Climbable then

Detecting available ladders
When the player controller gets a climb input, it needs to check whether there is a ladder
available. Open game.lua and add an adapting listener when the Player object is created:

 UI:addEventListener('Release', self.Player.Mind)
 UI:addEventListener('Vertical', self.Player)
 function self.Player:Vertical(event)
 for object in pairs(self.Adjacent) do
 if object.Climbable then
 self:dispatchEvent{name = 'Climb'; unpack(event)}
 break
 end
 end
 end
 self.Focus = self.Player

Negating Gravity when Climbing
Return to character/init.lua and locate the presence.climb function inside the
enlighten function. When the climbing process starts, reduce the effect of gravity on the
character to nothing, to represent it holding on.

 function presence.climb(direction)
 local action
 character.gravityScale = 0
 repeat
 local elapsed

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

306

Restoring gravity when releasing a ladder
When the player moves left or right while on a ladder, or jumps, the character releases the
ladder and gravity reasserts its ugly dominance. At the end of presence.climb, restore
the gravity scale to normal:

until action
 character.gravityScale = 1
 return action()

What did we do?
We allowed the game to interpret up-down control input only when in contact with a ladder,
by keeping track of when we come into contact with a ladder, and controlling the effect of
gravity on the character while climbing.

Selecting collisions by manipulating
contacts

While the only thing that needs to be done when a sensor collides with another fixture is
decide whether and how to react, solid fixtures (any fixture that isn't a sensor) have other
accompanying behaviors; they don't interpenetrate (overlap), they can transfer momentum
(bounce), and there can be friction when they collide. However, there is a hook in the library,
extended by Corona, that allows us to use programmatic features to modify these aspects
of a collision dynamically when it happens, so we'll control collisions by selectively disabling
these contacts between objects on a case-by-case basis.

Getting on with it
When a collision event occurs, the event contains a reference to a contact object that can
be used to examine or modify the characteristics of that specific collision.

Specializing the floor object
Start by creating a new file, bridge.lua. Open it and fill in the fact that it starts as a
frontend to another module:

return function(parent, x, y, width, height)
 local self = require "rock" (parent, x, y, width, height)
 return self
end

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

307

Next, because the bridge appears only half as thick as a rock tile, adjust the height and y value
passed to the existing module, making the body thinner and pushing it down the screen.

return function(parent, x, y, width, height)
 local trim = math.floor(height * 0.5)
 local self = require "rock" (parent, x, y + (height - trim), width,
trim)
 return self
end

Checking the direction
Our special floor will need another listener for imminent collisions:

local function testPosition(event)
end

return function(parent, x, y, width, height)

This listener needs to compare the position of the floor's top with the character's feet:

 local function testPosition(event)
 if event.target.y < event.other.y then
 end
end

Disabling the collision
In the event that the character is coming from the side or below, preventing the collision
is simple:

 if event.target.y < event.other.y then
event.contact.enabled = false
 end

For any of this to actually work, we need to link the listener to the floor's
preCollision events.

What did we do?
We created a class of platform that ignores collisions based on the direction the character
was moving at the time, by using a preCollision handler to disable the contact.

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

308

What else do I need to know?
Pre-collision events can fire many times for two colliding events, and can start firing even
before the objects' shapes are actually overlapping. This is because Box2D starts generating
contacts for a pair of objects as soon as their bounding boxes (the smallest rectangle that still
holds all of the object) overlap, even if the shapes contained within aren't actually touching.
This is why contact objects have an isTouching property that should usually be checked
when you respond to collision events.

Adding polish with custom fonts
Throughout the projects in this book up to this point, we've avoided using any fonts other
than the default system font, whatever that might be, because the fonts that come installed
on Android and iOS platforms are not consistent. However, fonts are a powerful element
of a game or app's visual style and aesthetics; we can expand the options available to us by
shipping our own fonts with our app. Corona makes this very simple. We'll review including
the font data in your app, making it available to devices, and including it in your app.

Getting ready
Copy the file Berenika-Bold.ttf from the directory original artwork/OFL 1.1/
wmk69 in the project pack folder into the top level of your project directory.

Getting on with it
The Corona build process needs the font file to be in your project directory; after that, all you
really need to do is refer to the font in your app.

Using a font in your app
To tell your app to use the font, all you typically need to do is refer to it by name. Open
scene.lua and find the line near the top that reads as follows:

local bannerFont = native.systemFont

Change this line to read:

local bannerFont = "Berenika-Bold"

The lines that create the start and complete text use this variable to create their text objects,
for instance:

local banner = display.newText(group, "Start!", 0, 0, bannerFont, 36)

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10

309

Notice that the font name doesn't include the .ttf file extension.

Registering the font with iOS
No additional step is required to use a custom font on Android devices. For iOS, it's also
required to include the font's name in the app's property list. Open the file build.
settings and find the table named plist, defined inside a sub-table named iphone
inside the table settings. Add a new line that lists the font file:

 iphone = {
 plist = {
 UIAppFonts = {"Berenika-Bold.ttf",},
 UIStatusBarHidden = false,

If you use multiple custom fonts in your app, add all the filenames
to the table on this line.

What did we do?
We made a new font available to our app, regardless of platform, and used it to render our
own custom text objects. You can build your app for a device and see this custom text appear
at the beginning of the game level.

What else do I need to know?
To also see your custom font appear in the simulator, you need to install the font in your
operating system's usual location. On Mac OS, you can typically just double-click on the font
file, which will open a display window in the FontBook application, including a button that
says Install Font; click on this to load the font into your system. On Windows, follow the
directions from the Microsoft Knowledge Base at http://support.microsoft.com/
kb/314960.

On Mac OS and iOS devices, you can use either True Type font files (.ttf) or Open Type
font files (.otf). On Windows and Android, only True Type fonts can be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Underfoot – Selectively Leveraging the Physics System

310

Game over – wrapping it up
We've created an actively physics-driven game that takes advantage of many of Box2D's
features: gravity (including gravity scale), collision filtering, using sensors to detect collisions
without transferring momentum, and contact modification.

Can you take the HEAT? The Hotshot
Challenge

Box 2D allows an object's gravityScale property to have any multiplier, not just 1 or
0. This means that you can use it to emulate buoyancy, or to simulate effects that Box2D
doesn't recognize, like the wind resistance that distinguishes a falling leaf from a falling coin.
Use this to emulate water (use a plain blue rectangle if needed, or supply a water sprite), so
that the player sinks only slowly instead of falling, and the jump command works while the
player is in the middle of the water.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
A* algorithm, IntoTheWoods app

cheapest choice, selecting 269
completion, checking 270
possibilities, registering 271
requirements, assembling 269
search, advancing 270, 271
structuring 269

account, TranslationBuddy app
creating 91-93

addEventListener method 218
add mode 212
Atmosfall app

boss, controlling 192
building 173
challenges, adding to level 199-201
collisions, controlling 198, 199
enemy behavior, constructing 180
enemy behavior, scripting 186
features 174
finite lives, enabling 202
functioning 173, 174
process, tracking through level 175
requisites 175
schedule, creating 181

audio, TheBeatGoesOn app
loading 250
playing 250
song file, closing 251
song file, finding 251
song file, playing 251

B
background, Caves of Glory app

aligning, with screen 232
background data, loading from level file 227,

228
creating 227
tile field, assembling 229

bat.lua module 20
Bat Swat app

building 7
describing 9
design document, writing 9-11
event flow, defining 11, 12
features 8
final polish 40
finishing touches, adding 35
functionalities 8
game design 9, 10
game design documents 12
high scores, tracking 27
interface, creating 20
objects, creating 14, 15
requisites 9
scene:createScene function 15
shell, adding 24
structure 8
stubs 14
top-down design 13
world 11

behaviors, Deep Black app
attaching, to player ship 131-133

www.it-ebooks.info

http://www.it-ebooks.info/

312

blend modes 212
add mode 212
multiply mode 212
normal mode 212
screen mode 212

boss, Atmosfall app
controlling 192

boss behavior, Atmosfall app
driving 194, 195

boss defeat, Atmosfall app
handling 196, 197

boss object, Atmosfall app
controlling 193

Box2D online
URL 124

bullets, Deep Black app
creating 151, 152

C
Caves of Glory app

about 217
background, creating 227
building 217
chapter, defining 235
chapter directory, scanning 238
features 218
functionalities 217
large level, scrolling 230
level file, parsing 219, 220
objects, displaying 223, 224
objects, interacting with 232, 233
requisites 219
scenes, creating for datafiles 237
scenes, linking 239

chapter, Caves of Glory app
beginning and end, specifying 235
defining 235
selected chapter, launching 236

characters , Underfoot app
body, adding to 297
character body category, defining 297
interacting, with world 297

collisions, Deep Black app
asteroids, destroying 158-161
controlling 147-149

handling, with player 162-164
lasers, clearing 157
responding to 157

collisions, Underfoot app
categories, applying to bodies 300
categories, defining for enemies and player 299
collision events, reacting to 301
direction, checking 307
disabling 307
floor object, specializing 306
responsibilities to 299
selecting, by manipulating contacts 306

column-major 47
Corona

about 7, 205
SuperCargo app 42

Corona splash screen 91
coroutine 89
costs for neighboring tiles, IntoTheWoods app

cost assignments, providing 275
cost data, forwarding 276
selecting 275
selecting, for terrain types 276

createScene event 17, 77
createScene event handler 126
createScene function 103
custom fonts, Underfoot app

adding 308
registering, with iOS 309

custom iterator, IntoTheWoods app
loop, advancing 273
loop, preparing 274
loop, starting 273
writing 272

D
Deep Black app

about 123
behaviors, attaching to player ship 131, 133
building 123
bullets, creating 151
collisions, controlling 147
collisions, responding to 157
design, reviewing 124

www.it-ebooks.info

http://www.it-ebooks.info/

313

enemies, creating 147
events, receiving 125
features 124
fire controls, responding to 151
functioning 124
kills, recognizing 164
library function, adding 134
lives, handling 157
physical events, bridging to game events 137,

139
physics simulation, preparing 127, 128
placeholder world, creating 126
player, creating 125
raw physical events, processing 135-137
requisites 125
score, recording 164
ship object, setting up 128-131
world rules, creating 142

design document, Bat Swat app
writing 9, 10

design process, SuperCargo app
about 43
additional data requirements 46
core mechanic 43, 44
data format 45
interface summary 44
persistence requirement 45
preliminary module design 46

design, TranslationBuddy app
summarizing 89, 90

Despawn events 18
dispatchEvent method 218
display.clear function 211
displayResults utility function 117
dissolve, Predation

applying 209-211
planning 207, 208

E
elements, IntoTheWoods app

components, binding 285
connecting 285
dependencies, assembling 285

Embody function 224
encapsulation 20

enemies bouncing, Underfoot app
foot-head contact, checking 302, 303
vertical movement, reversing 303

enemies, Deep Black app
creating 147-149
spawning 150

enemy, Atmosfall app
bringing, to life 185
creating 180

enemy behavior, Atmosfall app
constructing 180

enemy behavior, Atmosfall app
new ship, adding to level 191
scripting 186, 187
ship actions, defining 189, 190
ship control script, writing 187, 189
weapon fire, adding 192

enterFrame event
creating 139

enterScene event 17 106
enterScene method 48
environments 174
event flow, Bat Swat app

defining 11

F
finishing touches, Bat Swat app

adding 35, 36
creatures motion, changing 36
custom curve, animating 36, 37
game length, parameterizing 39
visual interest, adding to high scores 37, 38

fire controls, Deep Black app
fire control events, dispatching 153
player, teleporting 155
responding to 151-154

fixtures 299
FontBook application 309

G
game:Begin() function 236
Game Center enabling on iTunes Connect,

TheBeatGoesOn
leaderboard, adding 257-259

www.it-ebooks.info

http://www.it-ebooks.info/

314

Game Center enabling on Provisioning Portal,
TheBeatGoesOn

App ID, creating 252-255
Game Center, TheBeatGoesOn app

enabling, on iTunes Connect 256, 257
enabling, on Provisioning Portal 252

game history, SuperCargo app
history selection, controlling 81, 82
linking, to game 83, 84
preserving 80

game network connection, TheBeatGoesOn app
application load, registering 261
connection progress, tracking 261
Game Center connection, requesting 262
initializing 260

gameNetwork library 243
GIMP

URL 206
goal progress, Caves of Glory app

tracking 236, 237
gravity control, Underfoot app

contact, tracking with ladder regions 304
negating, when climbing 305
restoring 306

H
heap 277
heuristic function, IntoTheWoods app

constructing 284
writing 283, 284

high scores, Bat Swat app
database file, linking 27
database, initializing 28
new high scores, considering 30
new high scores, saving 30, 31
new scores, reviewing 33
old high scores, recovering 31, 32
old scores, cleaning 29
score history, displaying 34, 35
scores, communicating between modules 32
tracking 27

history, TranslationBuddy app
effects, keeping clean 120, 121
maintaining 114, 115
viewing 116, 117

I
input soliciting, TranslationBuddy app

about 109
backdrop, creating 110
text box, creating 110
user input, processing 110-113

interactive objects, Caves of Glory app
registering, with world 232, 233

interactivity, Caves of Glory app
adding, to object definition 234

interface, Bat Swat app
creating 20
game event, triggering from world event 23
information display, updating 21
linking, to game 22
visible information, adding 21

interface, SuperCargo app
adding 59, 60, 61
Move requests, creating 61-63

interpenetrate 306
IntoTheWoods app

A* algorithm, structuring 269
building 267
costs, selecting for neighboring tiles 275
custom iterator, writing 272
elements, connecting 285
features 268
functionalities 267
heuristic function, writing 283
path-finding implementation, using 286
requisites 269
routes, sorting using heap 277

iTunes Connect
URL 256

J
JavaScript Object Notation. See JSON
JSON 83
juicing 206

K
kinematic object 298

www.it-ebooks.info

http://www.it-ebooks.info/

315

L
large level, Caves of Glory app

scrolling 230
leaderboard, TheBeatGoesOn app

final score, submitting 263
network availability, checking 263
reading 262
updating 262
values, displaying 264

level file, Caves of Glory app
level, splitting into map and object data 220
map canvas, creating 220, 221
objects, reading into position data 221, 222
parsing 219, 220

level, SuperCargo app
desired level, parsing 51
each tile, processing 52, 53
ends of levels, recognizing 52
levels, parsing from file 49, 50
loader, writing 49
loading from file 47, 48

library function, Deep Black app
adding 134

Lime 219
lives, Deep Black app

displaying 168, 169
handling 157
tracking 166, 167

local function 274
lowestEstimate function 277
lowestEstimate iterator 270
Lua 7
Lua File System (LFS) library 218

M
map contents, SuperCargo app

content layers, adding 56, 57
displaying 54, 55
world, loading with map 57

masking 207
math.pythagorean function 211
Microsoft Translator API

creating 91
model-view-controller 48

momentum 306
multi-element bodies 292
multiple touches, TheBeatGoesOn app

access, granting to list 247
enabling 245
entries, adding to list 246
entries, clearing from list 247
entries, updating in list 246
list, creating 246
tracking 245

multiply mode 212

N
neighbors iterator 271
network.download function 88
newImageGroup function 229
normal mode 212

O
objects, Bat Swat app

art assets, loading 15
creating 14
game challenges, preparing 18
game, concluding 19
game, linking with world 16
game progress, monitoring 19
libraries 19
libraries, loading 15
new game, loading into display 17
world changes, responding 18
world, loading 15

objects, Caves of Glory app
displaying 223
item visual descriptions, supplying 224
item visuals, loading into world 225, 226

offscreen culling 230
Open Type font files 309

P
path-finding implementation, IntoTheWoods

app
monitoring, with idle function 286
pursuit, responding with 287
using 286

www.it-ebooks.info

http://www.it-ebooks.info/

316

path selection, IntoTheWoods app
performing 288

physical events, Deep Black app
bridging, to game events 137-139
time passage, tracking 139-141

physics simulation, Deep Black app
preparing 127, 128

physics, Underfoot app
block runs, identifying 294, 295
blocks, creating 296
building, for map 293
floor category, defining 293
map, clearing 293
rows, scanning 294

placeholder world, Deep Black app
creating 126

player, Deep Black app
creating 125, 126

plussing 206
Predation

about 205
building 205
dissolve, applying 209, 210
dissolve, planning 207, 208
features 206
functioning 206
requisites 206
splatter layers, assembling 213-215
splatter, planning 211, 212

progress tracking, Atmosfall app
background progress, tracking 178, 179
background, sliding 176, 178
performing 175, 176

pythagorean function 134

R
raw physical events, Deep Black app

processing 135, 136
removeEventListener method 218
results display, TranslationBuddy app

about 102, 103
controls, adding 104, 105
list display, creating 106
rows, adding 107, 108
scene, cleaning 109

scene visuals, preloading 106
strata, constructing 103

routes, IntoTheWoods app
heap, fixing 280, 281
heap form, adding to 278, 279
heap form, building 277, 278
heuristic values, caching 280
sorting, heap used 277
value, pulling 282

row-major 47

S
scene:clock(event) function 248
scene:Game function 70
scenes, Caves of Glory app

creating, for datafiles 237
first scene, launching 238
level transition, executing 240
linking 239
trigger movement, recognizing 239

scene:userInput function 112
scene:willEnterScene(event) function 247
schedule, Atmosfall app

creating 181
scheduled actions, building 184, 185
schedule framework, building 182, 183

score, Deep Black app
displaying 168, 169
managing 165

screen mode 212
self:Die function 209
self-populating table 280
shell, Bat Swat app

adding 24
linking, into play cycle 26
staging zone, creating for high scores 25

Shell component, SuperCargo app
adding 70, 71
levels, counting 71, 73
selection screen, building 73, 74
table, presenting 75, 76

ship object, Deep Black app
setting up 128-131

showAlert function 82
sok.count function 71

www.it-ebooks.info

http://www.it-ebooks.info/

317

solid fixtures 306
splatter layers, Predation

assembling 213-215
splatter, Predation

planning 211, 212
StartingCount event 18
storyboard.createScene() 18
storyboard library 7
strata 103
string.gmatch function 51
SuperCargo app

building 42
design process 43
effects of moves, displaying 68-70
features 42
functioning 42
game history, preserving 80
game, making playable 63
interface, adding 59
level, loading from file 47
map contents, displaying 54
move inputs, handling 64-68
move inputs, processing 63, 64
requisites 43
Shell component, adding 70
undo, supporting 77

T
tab bar widget 118
terrain:Polish() function 230
TheBeatGoesOn app

audio, loading 250
audio, playing 250
building 243
features 244
functionalities 243
Game Center, enabling on iTunes Connect 256
Game Center, enabling on Provisioning Portal

252
game network connection, initializing 260
leaderboard, reading 262
leaderboard, updating 262
multiple touches, tracking 245
requisites 245
touches, comparing with targets 247
touches, matching to targets 248, 249

Tiled 219
timer.performWithDelay pattern 18
touches, TheBeatGoesOn app

comparing, with targets 247
matching, to targets 248
score, adjusting 249, 250
touches module, loading 248

TranslationBuddy app
about 87
account, creating 91, 92
building 87
design, summarizing 89, 90
features 88, 89
functioning 88
history, maintaining 114-116
history, viewing 116, 117
input, soliciting 109
requisites 89
results, displaying 102
translator, assembling 94

translator, TranslationBuddy app
access token, renewing 100, 101
assembling 94
authorization, maintaining 96
network requests, handling 98, 99
requests, consuming 95, 96
requests, gatekeeping 95
translation loop, linking 96, 97

True Type font files 309

U
Underfoot app

building 291
characters, interacting with world 297
collisions, adding with custom fonts 308
collisions, responding to 299
collisions, selecting by manipulating contacts

306
dynamic bodies 298
enemies, bouncing as appropriate 302
features 292
functionalities 292
gravity, controlling 304
physics, building for map 293
requisites 293
static objects 298

www.it-ebooks.info

http://www.it-ebooks.info/

318

W
weak coupling 20
willEnterScene event 127 106
world:Load() method 48
world.lua module 19
world rules, Deep Black app

creating 142
movable objects, clearing 145, 146
random locations, generating 145
visible field, filling 143, 144
world bounds, managing 144

Wow! factor 207

Undo requests, SuperCargo app
move history, saving 78
moves out, backing 78-80
recognizing 77
supporting 77

V
visible background, Caves of Glory app

displaying 230, 231

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Corona SDK HOTSH T

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Corona SDK Mobile Game
Development: Beginner's
Guide
ISBN: 978-1-849691-88-8 Paperback: 408 pages

Create monetized games for iOS and Android with
minimum cost and code

1.	 Build once and deploy your games to both iOS and
Android

2.	 Create commercially successful games by applying
several monetization techniques and tools

3.	 Create three fun games and integrate them with
social networks such as Twitter and Facebook

Marmalade SDK Mobile Game
Development Essentials
ISBN: 978-1-849693-36-3 Paperback: 318 pages

Get to grips with the Marmalade SDK to devekop games
for a wide range of mobile devices, including iOS, Android,
and more

1.	 Easy to follow with lots of tips, examples and
diagrams, including a full game project that grows
with each chapter

2.	 Build video games for all popular mobile platforms,
from a single codebase, using your existing C++
coding knowledge

3.	 Master 2D and 3D graphics techniques, including
animation of 3D models, to make great looking
games

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Building your First Mobile
Game using XNA 4.0
ISBN: 978-1-849687-74-4 Paperback: 158 pages

A fast-paced, hands-on guide to building a 3D game for the
Windows Phone 7 platform using XNA 4.0

1.	 Building a 3D game for the Windows Phone 7
platform

2.	 Drawing 2D and 3D graphics on Windows Phone.

3.	 Using the rich capabilities of the Windows Phone
platform.

4.	 Creating a custom framework step by step that will
act as a base for building (future) games.

Unity 3 Game Development
Hotshot
ISBN: 978-1-849691-12-3 Paperback: 380 pages

Eight projects specifically designed to exploit Unity's full
potential

1.	 Cool, fun, advanced aspects of Unity Game
Development, from creating a rocket launcher to
building your own destructible game world

2.	 Master advanced Unity techniques such as surface
shader programming and AI programming

3.	 Full of coding samples, diagrams, tips and tricks to
keep your code organized, and completed art assets
with clear step-by-step examples and instructions

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Project 1: Bat Swat – An Introduction
to App Event Cycles
	What do we build?
	Describing the game
	Defining the event flow
	Creating the objects
	Creating the interface
	Adding the Shell
	Tracking high scores
	Adding finishing touches
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 2
: SuperCargo – Using Events to Track
Game Progress
	What do we build?
	Describing the game
	Loading a level from a file
	Displaying the map contents
	Adding the interface
	Making the game playable
	Adding the Shell component
	Supporting Undo
	Preserving game history
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 3
: TranslationBuddy – Fast App Development for any Field
	What do we build?
	Summarizing the design
	Creating the account
	Assembling the translator
	Displaying results
	Soliciting input
	Maintaining a history
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 4
: Deep Black – Processing Mobile Device Input
	What do we build?
	Creating the player and receiving events
	Processing raw physical events
	Bridging physical events to game events
	Creating the world rules
	Creating enemies and controlling collisions
	Responding to fire controls and creating bullets
	Responding to collisions and handling lives
	Recognizing kills and recording scores
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 5
: Atmosfall – Managing Game Progress with Coroutines
	What do we build?
	Tracking progress through the level
	Constructing the enemy behavior
	Creating a schedule
	Scripting behavior
	Controlling the boss
	Cleaning up and making the game playable
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 6
: Predation – Creating Powerful Visuals from Simple Effects
	What do we build?
	Planning the dissolve
	Applying the dissolve
	Planning the splatter
	Assembling the splatter layers
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 7
: Caves of Glory – Mastering Maps
and Zones
	What do we build?
	Parsing a level file
	Displaying objects
	Creating an efficient background
	Scrolling around a large level
	Interacting with objects
	Defining a chapter
	Creating scenes for datafiles
	Linking scenes together
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 8
: The Beat Goes On – Integrating with Game Networks
	What do we build?
	Tracking multiple touches
	Comparing touches with targets
	Loading and playing music
	Enabling Game Center on the Provisioning Portal
	Enabling Game Center on iTunes Connect
	Initializing a game network connection
	Updating and reading a leaderboard
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 9
: Into the Woods – Computer Navigation of Environments
	What do we build?
	Structuring the A* algorithm
	Writing a custom iterator
	Selecting costs for neighboring tiles
	Sorting likely routes using a heap
	Writing a heuristic function
	Connecting all the elements
	Using the implementation to find
a path
	Moving based on path selection
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Project 10
: Underfoot – Selectively Leveraging the Physics System
	What do we build?
	Building physics for the map
	Making characters interact with the world
	Responding to collisions with other characters
	Bouncing off enemies as appropriate
	Controlling gravity to enable climbing
	Selecting collisions by manipulating contacts
	Adding polish with custom fonts
	Game over – wrapping it up
	Can you take the HEAT? The Hotshot Challenge

	Index

