FreeSWITCH 1.2

Build robust, high-performance telephony systems
using FreeSWITCH

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

FreeSWITCH 1.2
Second Edition

Build robust, high-performance telephony systems
using FreeSWITCH

Anthony Minessale
Michael S Collins
Darren Schreiber

Raymond Chandler

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

FreeSWITCH 1.2
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First edition: July 2010
Second edition: May 2013
Production Reference: 1170513

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-100-4

www . packtpub.com

Cover Image by Suresh Mogre (suresh.mogre. 99@gmail . com)

www.it-ebooks.info

http://www.it-ebooks.info/

Authors
Anthony Minessale

Credits

Project Coordinator
Arshad Sopariwala

Michael S Collins

Darren Schreiber Proofreader

Raymond Chandler Paul Hindle

. Indexer
Reviewers

Norm Brandinger Monica Ajmera Mehta

Kristian Kielhofner
Graphics
Jeff Leung Abhinash Sahu

Brian Wiese

Production Coordinator
Acquisition Editor Pooja Chipulunkar

Usha lyer

Cover Work
Lead Technical Editor

Ankita Shashi

Pooja Chipulunkar

Technical Editors
Chirag Jani

Soumya Kanti
Ankita Meshram
Dheera Meril Paul

Zafeer Rais

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Anthony Minessale has been working with computers for nearly 30 years. He
is the primary author of FreeSWITCH and Director of Engineering for CudaTEL at
Barracuda Networks.

He created and continues to run the ClueCon Telephony Developers Conference,
held every August in Chicago.

He has extensive experience in the Internet industry and VoIP. Before creating
FreeSWITCH, he contributed heavily to the Asterisk open source project, producing
many features that are still in use today. At Barracuda Networks, Anthony

oversees the production and development of the CudaTEL PBX appliance that uses
FreeSWITCH as its core telephony engine.

I would like to thank my awesome family: my wife, Jill, son,

Eric, and daughter, Abbi, for putting up with the long hours and
supporting me on my cause to revolutionize the telephony industry.
Thanks to my dogs, Chewie and Gypsy, for staying up with me at

2 a.m. on long nights. I would also like to thank the open source
community at large, especially those involved in the FreeSWITCH
project, and I hope to see you all every summer at ClueCon!

www.it-ebooks.info

http://www.it-ebooks.info/

Michael S Collins is a telephony and open source software enthusiast. He is a
PBX veteran, having worked as a PBX technician for five years and as the head of IT
for a call center for more than nine years. He is an active member of the FreeSWITCH
community and has co-authored FreeSWITCH Cookbook, Packt Publishing. He resides
in Central California with his wife and two children and currently works for
Barracuda Networks, Inc.

I would like to thank first and foremost my wife, Lisa, my daughter,
Katherine, and my son, Sean, who keep me going each day.
Without them I could not contribute to open source projects like
FreeSWITCH, much less co-author a book.

I would also like to thank the many FreeSWITCH experts around the
world who are so willing to answer technical questions: Anthony
Minessale, Michael Jerris, Moises Silva, Raymond Chandler, Ken
Rice, Travis Cross, and many more. I would especially like to thank
Brian K. West for patiently educating me in the ways of VolP.

I am also grateful to the many people who devote themselves to
answering questions on the FreeSWITCH mailing list and IRC
channel: Steven Ayre, Avi Marcus, Steve Underwood, and all the
rest. The FreeSWITCH worldwide community is a great example of
what an open source community should be. Well done!

www.it-ebooks.info

http://www.it-ebooks.info/

Darren Schreiber is the CEO and Co-founder of 2600 Hz. He began working
heavily in open source voice with the FreeSWITCH project, where he engaged with
Brian, Mike, and Anthony. His projects have since evolved into two enterprise
VoIP platforms that allow a multitude of development of voice, SMS, and video
applications to be delivered to customers.

He has 15 years of voice and IT experience including developing multiple enterprise
SaaS infrastructures for hosting and remotely managing IT, voice, and e-commerce
services. He is a guest lecturer at major universities on VoIP technology and leads
paid international VoIP trainings. As a serious telephony enthusiast since a young age,
he has worked extensively with VoIP technologies. He graduated from Rensselaer
Polytechnic Institute with a degree in Computer Science and Business Management.

He is also a co-author of FreeSWITCH Cookbook, Packt Publishing.

I'd like to thank, first and foremost, the FreeSWITCH team. Without
them, I wouldn't have been challenged with some of the most
intriguing technology and people I've ever worked with. It has been
a gift working with them.

I'd also like to thank my family and friends who have put up with my
crazy work schedule and constant tardiness, and have helped provide
funds and moral support for our work. Thanks for everything.

Finally, I'd like to thank the open source community. Their tireless
patience and countless selfless contributions are a constant reminder
that the world is not an evil place, and that people are generally out
for the greater good of society.

www.it-ebooks.info

http://www.it-ebooks.info/

Raymond Chandler(eintralanman) has been working with, and contributing to,
open source projects for over a decade. Raymond's VoIP experience started with a
small CLEC/ITSP using SER for call routing, and Asterisk for voicemail and advanced
services. After encountering limits in Asterisk and looking for features not easily found
in SER, he moved to using OpenSER and CallWeaver (then known as OpenPBX.org).
While that combination was better, he still had not found his perfect solution.

In 2006, he was introduced to FreeSWITCH. Since then, he's been using FreeSWITCH
and regularly contributing to the community. He is the author of mod_1lcr and
several utility PHP/Perl scripts. He now works with Anthony Minessale as a
CudaTel Software Engineer at Barracuda Networks (ecudaTel and @Barracuda).

In the spring of 2011, he was among the founding members of the Open Source
Telephony Advancement Group (@0STAG), whose mission is to advance open source
telephony to new heights by funding open source projects through funds received by
generous contributions and grants from those who share the OSTAG vision.

I'd like to thank my loving wife, Samantha, our daughters Makenzie,
Trinity, Alecsys, and Kristian, and our sons Kaiden and Casper

for their support while they get less time with me than any of us
would like. I'd also like to thank the countless volunteers who step
up to help out in the FreeSWITCH and other open source project
communities. It would be impossible to keep any project running
without them.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Norm Brandinger has worked in the computer industry focusing in the areas of
systems programming and communications for many years. He graduated with an
Engineering Degree in Computer Science from the University of Florida just before
the industry began experiencing the exponential growth that continues today. He
has worked on the communication challenges that Fortune 100, mid-sized, and
small companies all face as an owner, employee, and consultant. Today he balances
his high-tech career with a love of the outdoors. Hiking in the woods, climbing
mountains, and biking are just some of the ways he finds some balance.

He would not be where he is today without the support, love, guidance, and good
genes from his parents. His mom is a retired Special Education professor from
Trenton State College. Most recently, his dad was the Executive Director of the New
Jersey Commission on Science and Technology. His brother Paul also inherited some
good genes as he now works for NASA's Goddard Space Flight Center.

I would like to acknowledge and thank my partner, Donna. She
works full time as a nurse, yet manages to find the time to take care
of much of the home and social responsibilities. Her tireless efforts
are the reason I have had the time to work on this project.

Kristian Kielhofner is the Co-founder and Chief Technology Officer of Star2Star
Communications, The World's Most Reliable Business Grade Communications
Solution. He is the inventor and architect of Star2Star's patent-pending StarPath and
Constellation technologies. Prior to joining Star2Star, he was most well known as the
creator and maintainer of AstLinux, the first Linux distribution to target embedded
devices for open source telephony applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Jeff Leung is a Small Business Networking Consultant and a Telecommunications
Technician. He has seven years of experience in various networking protocols and
network architectures including Microsoft Active Directory Networks, Legacy Nortel
PBX systems, and FreeSWITCH IP-PBX systems.

He started learning networking protocols at the age of 14 when he stumbled across
a book about Active Directory networks at his local library, and the experiences and
self-teaching of networking protocols started to snowball from there, eventually
turning a hobby into a career that he is very passionate about.

I extend my thanks to the Richmond Public Library located in
Richmond, British Columbia for jumpstarting my career with the
selection of printed material, and my family for the support they
have given me during my tenure at British Columbia Institute of
Technology for further training in the Telecommunications and
Networking career.

Brian Wiese maintains IT systems for school districts in Central Wisconsin, USA.
For more than 12 years he has brought cost-effective and sustainable solutions to
education, including recommending open source software such as FreeSWITCH.
Brian has also authored many programs and scripts to increase productivity and
streamline daily operations for both education and the business sector. In his
spare time he enjoys experimenting with new technology, tinkering with his home
network, and giving back to his community.

First, I want to thank Anthony for creating FreeSWITCH and giving
it to the world, as well as the community for being so willing to

help others. I want to express my sincere gratitude to my parents

for always pushing me to achieve success. Finally, I want to thank
everyone who gave me unprecedented opportunities and inspiration
to pursue my passion for technology.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more

You might want to visit www . Packt Pub . com for support files and downloads related to your
book.

Did you know that Packt Publishing offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . Packt Pub . com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt Publishing
books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

(€]

Do you need instant solutions to your IT questions? PacktLib is Packt Publishing's online
digital book library. Here, you can access, read, and search across Packt Publishing's entire
library of books.

Why Subscribe?

* Fully searchable across every book published by Packt Publishing
* Copy and paste, print, and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt Publishing account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Architecture of FreeSWITCH 7
A revolution has begun and secrets have been revealed 7
The FreeSWITCH design — modular, scalable, and stable 8
Important modules — Endpoint and Dialplan 11
Complex applications made simple 15
Voicemail 15
Multi-party conferencing 18
The FreeSWITCH API (FSAPI) 19
The XML registry 21
Language modules 22
The demonstration configuration 22
Summary 24
Chapter 2: Building and Installation 25
Setting up the FreeSWITCH environment 26
Operating system 26
Operating system prerequisites 27
Linux/Unix 27
Mac OS X 27
Windows 28
Text editors and XML 28
Downloading the source 29
Building from the latest code 30
Compiling FreeSWITCH for Linux/Unix/Mac OS X 30
Compiling FreeSWITCH 30
Step 1 — edit modules.conf 31

Step 2 — run the configure script 31

Step 3 — run the make and make install utilities 32

Step 4 — edit modules.conf.xmi 34

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Step 5 — install sound and music files 35
Compiling FreeSWITCH for Windows 35
Important considerations for Windows users 36
Building the solution with MSVC/MSVCEE 36
Starting FreeSWITCH 41
Running FreeSWITCH in the background 42
Summary 44
Chapter 3: Test Driving the Example Configuration 45
Important concepts to understand 45
Putting FreeSWITCH to work 50
Controlling FreeSWITCH with the CLI 50
Configuring a SIP phone to work with FreeSWITCH 53
SIP settings 53
X-Lite soft phone 54
Hard phones 57
Aastra phones 58
Polycom phones 59
Snom phones 60
Testing the example Dialplan 61
Test calls for a single phone 61
The Tetris extension 61
Echo test 62
Music on hold 62
Demonstration IVR 62
The information application 63
Test calls for two or more phones 63
Calling another telephone 63
Parking a call 63
Calling a conference 63
Example Dialplan quick reference 64
Summary 65
Chapter 4: SIP and the User Directory 67
Understanding the FreeSWITCH user directory 67
Working with the FreeSWITCH user directory 70
User features 70
Adding a user 72
Testing voicemail 75
Groups of users 77
Connecting to the world with gateways 79
Setting up a new gateway 79
Making calls 82
Receiving calls 82

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Making calls without a gateway 83
SIP profiles and user agents 84
Summary 85

Chapter 5: Understanding the XML Dialplan 87
FreeSWITCH XML Dialplan elements 88
Contexts 88

Default 89

Public 89

Features 89
Extensions 89

Conditions 90
Call legs and channel variables 92
Accessing channel variables 94
Regular expressions 95
Actions and anti-actions 98
How Dialplan processing works 98
Creating a new extension 103
Important Dialplan applications 105

bridge 106

playback 106

say 106

play_and_get_digits 108

ivr 109

sleep 109

answer 109

pre_answer 110

hangup 110

set 110

transfer 110
Dialstring formats 111
Summary 114

Chapter 6: Using XML IVRs and Phrase Macros 115
IVR engine overview 116
IVR XML configuration file 116
IVR engine overview 116

IVR menu definitions 118

greet-long 118
greet-short 119
invalid-sound 119
exit-sound 119
timeout 120

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

inter-digit-timeout 120
max-failures 120
max-timeouts 121
digit-len 121
tts-voice 121
tts-engine 121
confirm-key 122
confirm-macro 122
IVR menu destinations 122
menu-exec-app 124
menu-play-sound 124
menu-back 124
menu-top 124
Routing calls to your IVR 125
Nesting IVRs 125
Using phrases with IVRs 126
Calling Phrase Macros 126
Phrase Macro examples — voicemail 127
Advanced routing 132
Summary 134
Chapter 7: Dialplan Scripting with Lua 135
Getting started with Lua 136
Running Lua scripts from the Dialplan 136
Basic Lua syntax 137
Building voice applications 138
A simple IVR — interacting with the caller 141
Conditions and looping 142
Even more conditions and looping 146
Advanced IVR concepts 152
Connecting to a database with LuaSQL 152
Making a web call with curl 158
Lua patterns versus regular expressions 163
Scripting tips 164
Summary 165
Chapter 8: Advanced Dialplan Concepts 167
Dialplan overview 168
General Diaplan concepts 171
Contexts 172
Conditions 173
Actions 174
Putting it all together 175
XML Dialplan module review 176

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Extensions 178
Conditions 179
Special condition variables 182
Inline execution 183
Actions and anti-actions 185
The regex operator 186
Nested conditions 188
Pitfalls to avoid 190
XML Dialplan applications 191
mod_dptools 191
mod_sofia 194
mod_commands 196
Utilizing variables 197
Testing variables with regular expressions 197
Caller profile fields 197
Channel variables 197
Channel variables and call setup 198
Global variables 199
Dialplan functions 200
Real-time condition evaluation 201
String conditioning 202
Database queries 202
SIP contact parameters 203
Set, export, and legs 205
Set versus export 205
Passing variables via call headers 206
XML Dialplan cookbook 206
Match by IP address and call a number 206
Match an IP address and Caller ID 208
Match a number and strip digits 208
Match a number, strip digits, and add a prefix 209
Call a registered device 209
Try party A, then party B 210
Route DIDs to extensions 210
Alternate outbound gateways 211
Multiple endpoints with enterprise originate 211
Summary 213
Chapter 9: Moving Beyond the Static XML Configuration 215
The mod_xml_curl basics 216
The mod_xml_curl Dialplan 219
The mod_xml_curl folder 220

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

The mod_xml_curl configuration 222
The mod_xml_curl summary 225
Generating configurations dynamically with language bindings 225
Making calls from the command line interface 227
Using ESL to execute commands 229
Summary 232
Chapter 10: Controlling FreeSWITCH Externally 233
General overview 234
Event system architecture 234
Event-based modules 235
mod_event_socket 235
Configuring event socket settings 236
Reading events 237
Minimum event information 239
Sending events 240
Events from the Dialplan 241
mod_event_multicast 242
FreeSWITCH event system commands 243
auth <password> 243
api 243
bgapi 244
event 245
noevents 246
divert_events 246
filter 246
filter delete 247
nixevents 248
sendevent 248
sendmsg <uuid> 248
execute 249
hangup 250
nomedia 250
log <level> 250
nolog 250
linger 251
nolinger 251
FreeSWITCH Console application 251
Event Socket Library 251
Supported libraries 252
ESLObject 252
eslSetLogLevel($loglevel) 252

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

ESLevent object 253
serialize([$format]) 253
setPriority([$number]) 253
getHeader($header_name) 253
getBody() 253
getType() 253
addBody($value) 253
addHeader($header_name, $value) 253
delHeader($header_name) 253
firstHeader() 254
nextHeader() 254

ESLconnection object 254
new($host, $port, $password) 254
new($fd) 254
socketDescriptor() 254
connected() 254
getinfo() 255
send($command) 255
sendRecv($command) 255
api($command[, $arguments]) 255
bgapi($command[, $arguments]) 255
sendEvent($send_me) 256
recvEvent() 256
recvEventTimed($milliseconds) 256
filter($header, $value) 256
events($event_type,$value) 256
execute($appl, $arg][, $uuid]) 256
executeAsync($appl, $arg][, $uuid]) 257
setAsyncExecute($value) 257
setEventLock($value) 257
disconnect() 257

Events in practice 257

Event Socket Library example — running a command 258

Examples of sending events to FreeSWITCH 258
Setting phone lights 258
Rebooting a phone 260
Requesting phone reconfiguration 260
Custom notify messages 261

Summary 262
Chapter 11: Web-based Call Control with mod_httapi 263
HTTAPI syntax 264

Work actions 265
playback 265
vmname 266
record 267
pause 267
speak 268
say 269

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

execute 270
sms 271

dial 271
recordCall 272
conference 272
hangup 273
break 273

log 273
continue 274
getVar 274
voicemail 275
mod_httapi configuration file 275
Permissions 277
Exiting 280
Storing data across successive requests 280
Some parameters are missing from some requests 281
Making it easier 281
The demo IVR - in HTTAPI 282
Summary 286
Chapter 12: Handling NAT 287
A brief introduction to NAT 288
Understanding the evolution of NAT 289
The four pitfalls of NAT 290
Demystifying NAT settings in FreeSWITCH 292
Making media flow 296
Advanced options and settings 297
FreeSWITCH on the client side 299
Other creative uses of FreeSWITCH in a NAT situation 300
Conclusion 301
Summary 302
Chapter 13: VoIP Security 303
Network level protection 303
Separating interfaces and restricting traffic 304
Sample setup — simple 305
Sample setup — complex 307
VLANs 308
Intrusion detection 309
Registration monitoring 309
Fail2Ban 310
Encryption 312
Protecting SIP signalling 313
Choosing between encryption options 313
Encryption with SSL 314

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Encryption with TLS 315
Protecting audio 316
Encryption with SRTP 317
Encryption with ZRTP 318
Protecting passwords 320
Registration passwords 320
Voicemail passwords 321
Summary 322
Chapter 14: Advanced Features and Further Reading 323
Multi-user conferencing 324
Configuration 324
Conference profiles 324
Caller controls 329
Advertise 330
Sending and receiving XMPP events 330
Connecting callers to the conference 331
Controlling active conferences 332
Nibblebill 332
Use cases 332
Billing (pre-pay) 332
Billing (post-pay) 333
Pay-per-call service billing 333
Maximum credit and/or fraud prevention 333
Design goals 333
Installation and configuration 334
Database tables 335
Creating the database table for PostgreSQL 336
Creating the database table for MySQL 336
Billing a call 336
The nibble method (default) 336

An alternative to nibble billings 337
Examples 338
Different rates per user 338
Single rate for all users 339
Different rates per area code 340
Different rates per service delivery 341
Hang up the call when the balance is depleted 342
Application/CLI/API commands 343
Adding and deducting funds 345
Enabling session heartbeat 345

Bill based on B Leg only 345
Alternative endpoints 345
Skype and GSM endpoints 346
Skype with mod_skypopen 347

[ix]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

GSM with mod_gsmopen 348
TDM with FreeTDM 349
Configuration tools and related projects 349
Web GUIs 350
FusionPBX 350
FreePyBX 350
blue.box 351
Kazoo 351
Supporting libraries 351
Liverpie (Ruby) 352
FreeSWITCHeR (Ruby) 352
Librevox (Ruby) 352
EventSocket (Python/Twisted) 353
FSSocket (Perl) 353
Vestec Automatic Speech Recognition 353
Summary 354
Appendix A: The FreeSWITCH Online Community 355
The FreeSWITCH mailing lists 355
Talking in real time via IRC 357
The FreeSWITCH main website and wiki 359
The main FreeSWITCH page — www.freeswitch.org 360
The FreeSWITCH wiki page — wiki.freeswitch.org 360
The annual ClueCon open source developer conference 361
Appendix B: Migrating from Asterisk to FreeSWITCH 363
Getting started 364
Starting and stopping Asterisk or FreeSWITCH 364
Basic debugging 365
Asterisk 365
FreeSWITCH 365
Configuration files 366
Two SIP phones 366
Asterisk configuration 367
FreeSWITCH configuration 368
Analysis 372
Voicemail 373
Asterisk 373
FreeSWITCH 374
Accessing voicemail 375
Asterisk 375
FreeSWITCH 375
Summary 376

[x]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Appendix C: The History of FreeSWITCH 377
Taking things to the next level 378
New ideas and a new project 380
The first ClueCon 382
Introducing FreeSWITCH 383

Index 387

[xi]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A lot has happened in the three years since the original FreeSWITCH 1.0.6 book was
released. At the time, FreeSWITCH 1.0 was only about two years old. A number of
early adopters became staunch believers in this relative newcomer. Many others
became introduced to FreeSWITCH with the help of a shiny new FreeSWITCH book
from Packt Publishing. A few short years later the FreeSWITCH Cookbook was also
released. Things were happening quickly.

In the meantime the FreeSWITCH team remained active in their development efforts.
New features have been added and existing features have been optimized and
enhanced. Even prior to the release of FreeSWITCH 1.2.0 we knew that we would
eventually want to revise what we affectionately called the bridge book.

When writing of this edition began, FreeSWITCH 1.2.1 had just come out. In the
ensuing months a number of subsequent versions were released. At the time of

this writing, the FreeSWITCH project had just moved Version 1.2.8 to stable status,
meaning no more features will be added, only bug fixes. The new development
branch will eventually result in FreeSWITCH Version 1.4. Will we see a FreeSWITCH
1.4 book released in 2016? Only time will tell, but we wouldn't bet against it.

Like we did with the previous edition of this book, we want to answer a few
important questions.

Is FreeSWITCH right for me? The correct answer is always the same, it depends.

The FreeSWITCH development team and long-time users are often asked which
telephony platform to use. The answer is always the same: use what works for

you and your scenario. While we may favor FreeSWITCH we also recognize that
every situation is different. If Asterisk or Yate is a better fit for what you want to
accomplish then by all means use them. We are very bullish on open source software.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What is FreeSWITCH? FreeSWITCH is a scalable softswitch. In practical terms,
this means that it can do anything a traditional PBX can do and much more. It
can (and does) act as the core switching software for commercial carriers. It can
scale up to handle thousands of simultaneous calls. It can also scale down to act
as a simple softphone for your laptop or personal computer. It can also work in a
cluster of servers. FreeSWITCH is the telephony engine that powers the CudaTel
Communication Server from Barracuda Networks.

FreeSWITCH is not a proxy server. If you need proxy server functionality, then
consider OpenSIPS, Kamailio, Repro, or other similar software. FreeSWITCH is a
back-to-back user agent or B2BUA. In this regard, it is similar to Asterisk and other
IP PBX software.

Which open source license does FreeSWITCH use? FreeSWITCH is released under
the Mozilla Public License (MPL) Version 1.1. Since FreeSWITCH is a library that
can be implemented in other software applications and projects, the developers felt
it important to strike a balance between the extremely liberal BSD license and the
so-called viral GPL. The MPL fits this paradigm well and allows businesses to create
commercial products based on FreeSWITCH without licensing concerns.

However, what about using FreeSWITCH with GPL-based software? It should
suffice if we said that the developers wanted to make sure that anyone, including
proprietary and GPL-based software users, could use FreeSWITCH. The powerful
event socket gives us this functionality, a simple TCP socket-based interface that
allows an external program to control FreeSWITCH. Regardless of the license you
may be using for your own software, you can still connect to a FreeSWITCH server
without any licensing issues.

What this book covers

Chapter 1, Architecture of FreeSWITCH, gives a brief, but thorough introduction to the
underlying architecture of FreeSWITCH.

Chapter 2, Building and Installation, shows how to download and install FreeSWITCH
on Windows and Unix-like operating systems.

Chapter 3, Test Driving the Example Configuration, provides a hands-on look at the
powerful and feature-rich example FreeSWITCH configuration.

Chapter 4, SIP and the User Directory, offers an introduction to the concept of users
and the directory as well as a brief look at SIP user agents.

Chapter 5, Understanding the XML Dialplan, explains the basics of creating and editing
Dialplan extensions to add advanced functionality to a FreeSWITCH install.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 6, Using XML IVRs and Phrase Macros, discusses how to create menus and
sound phrases for interacting with callers as well as the useful Phrase Macro system.

Chapter 7, Dialplan Scripting with Lua, introduces the concept of advanced call
handling using the lightweight scripting language Lua.

Chapter 8, Advanced Dialplan Concepts, builds upon the foundation laid in
Chapter 5, Understanding the XML Dialplan, and shows how to handle more
challenging routing scenarios.

Chapter 9, Moving Beyond the Static XML Configuration, explains concepts necessary
for configuring and controlling FreeSWITCH dynamically, such as with a database
system.

Chapter 10, Controlling FreeSWITCH Externally, introduces the incredibly powerful
Event Socket and the Event Socket library that can be used to access and control a
FreeSWITCH server.

Chapter 11, Web-based Call Control with mod_httapi, shows the reader how to use the
new mod_httapi module to create telephony applications controlled via HTTP.

Chapter 12, Handling NAT, provides much needed insight into understanding how
NAT causes issues with VoIP and how to work around them.

Chapter 13, VoIP Security, offers suggestions on how to secure VoIP communications
from prying eyes as well as securing a FreeSWITCH server against various attacks.

Chapter 14, Advanced Features and Further Reading, highlights some of the more
powerful FreeSWITCH features such as conferencing and offers some ideas on where
to learn more about FreeSWITCH.

Appendix A, The FreeSWITCH Online Community, gives a brief introduction to the
worldwide online community and the tools used to stay in contact.

Appendix B, Migrating from Asterisk to FreeSWITCH, helps those familiar with Asterisk
to get up and running quickly with FreeSWITCH.

Appendix C, The History of FreeSWITCH, is a description of how FreeSWITCH came to
be, written by FreeSWITCH master architect and lead developer Anthony Minessale.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What you need for this book

At the very least you will need a computer on which you can run FreeSWITCH.
Typically this is a server although that isn't an absolute requirement. You will also
need at least one SIP device, be it a softphone, desk phone, or analog telephone
adapter (ATA) device. Without such a phone you will not be able to make any phone
calls into your FreeSWITCH system.

Although not a requirement, having an account with a SIP provider will enable you
to make calls to the Public Switched Telephone Network or PSTN.

Who this book is for

This book is for prospective FreeSWITCH administrators as well as enthusiasts
who wish to learn more about how to set up, configure, and extend a FreeSWITCH
installation. If you are already using FreeSWITCH, you will find that the
information in this book compliments what you have already learned from your
personal experience.

A solid understanding of basic networking concepts is very important. Previous
experience with VoIP is not required, but will certainly make the learning process
go faster.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "We can see FreeSWITCH status
information by issuing the stuts command at the FreeSWITCH console."

A block of code is set as follows:

<extension name="get voicemail"s
<condition field="destination number" expression=""*98$">
<action application="answer"/>
<action application="voicemail"
data="check auth default ${domain name}"/>
</condition>
</extension>

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<extension name="get voicemail"x>
<condition field="destination number" expression=""*98$">
<action application="answer"/>
<action application="voicemail™"
data="check auth default ${domain name}"/>

</conditions>

</extensions>

Any command-line input or output is written as follows:

/usr/local/freeswitch/bin/fs cli -x version

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Numerous
messages will appear in the Output window."

%j%‘\ Warnings or important notes appear in a box like this.
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

Welcome to FreeSWITCH! If you are reading this, then undoubtedly you are
interested in things like telecommunications and Voice over Internet Protocol
(VoIP). FreeSWITCH is revolutionary software created during a telephony
revolution. Before looking at the architecture of this powerful software, let's take a
look at the colorful world of telecommunications. This will help to put FreeSWITCH
into perspective.

In this chapter we will cover:

* A telephony revolution
* Advantages of FreeSWITCH
* Endpoint and Dialplan modules

* How FreeSWITCH simplifies complex applications like voicemail

A revolution has begun and secrets have
been revealed

How and why the telephone works is a mystery to most people. It has been kept secret
for years. We just plugged our phones into the wall and they worked, and most people
do just that and expect it to work. The telephony revolution has begun, and we have
begun to pry its secrets from the clutches of the legacy of the telephony industry.

Now, everyday individuals like you and me are able to build phone systems that
outperform traditional phone services and offer advanced features for relatively low
cost. Some people even use FreeSWITCH to provide telephone services for making a
profit. FreeSWITCH has been designed to make all of this easier, so we will go over the
architecture to get a better understanding of how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

Do not be concerned if some of the concepts we introduce seem unnaturally abstract.
Learning telephony takes time, especially VoIP. In fact, we recommend that you
read this chapter more than once. Absorb as much as you can on the first pass,

then come back after you complete Chapter 5, Understanding the XML Dialplan. You
will be surprised at how much your understanding of VoIP and FreeSWITCH has
improved. Then come back and skim it a third time after you have completed Chapter
10, Controlling FreeSWITCH Externally; at this point, you will have a firm grasp of
VoIP and FreeSWITCH concepts. Give yourself plenty of time to digest all of these
strange new concepts, and soon you will find that you are a skilled FreeSWITCH
administrator. If you keep at it, you will be rewarded with a meaningful
understanding of this strange and wonderful world we call telephony.

Telephones and telephony systems (such as telephone switches and PBXs) are

very complicated and have evolved over the years into several varieties. The most
popular type of phone in the U.K. and the U.S. is the traditional analog phone, which
we affectionately refer to as POTS lines or Plain Old Telephone Service. From the
traditional Ma Bell phone up to the long-range cordless phones that most of us have
today, one thing has remained the same — the underlying technology. In the last
10-15 years, there has been a convergence of technology between computers and
telephones that has produced a pair of affordable alternatives to POTS lines — Mobile
phones and VoIP phones (also called Internet Phones).

FreeSWITCH fits into this big tangled mess of various telephone technologies by
bridging them together, so that they can communicate despite being otherwise
completely incompatible. FreeSWITCH also bridges telephone calls with computer
programs that you can write yourself, and controls what happens in ways like never
before. FreeSWITCH is software that runs on Windows and several UNIX varieties
such as Mac OS X, Linux, Solaris, and BSD. This means you can install FreeSWITCH
on your home PC or even a high-end server and use it to process phone calls.
Installing FreeSWITCH is discussed in detail in Chapter 2, Building and Installation.
We will be doing this as soon as we review the basic architecture.

The FreeSWITCH design — modular,
scalable, and stable

The design goal of FreeSWITCH is to provide a modular, scalable system around

a stable switching core, and to provide a robust interface for developers to add to
and control the system. Various elements in FreeSWITCH are independent of each
other and do not have much knowledge about how the other parts are working,
other than what is provided in what are called exposed functions. The functionality
of FreeSWITCH can also be extended with loadable modules, which tie a particular
external technology into the core.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

FreeSWITCH has many different module types that revolve around the central core,

much like satellites orbiting a planet. The list includes:

Module type: Purpose:

Endpoint Telephone protocols like SIP/H.323 and POTS lines
Application Performs a task such as playing audio or setting data
Application Exports a function that takes text input and returns text output,
Programming which could be used across modules or from an external
Interface (API) connection

Automated Speech Interfaces with speech recognition systems

Recognition (ASR)

Chat Bridges and exchanges various chat protocols

Codec Translates between audio formats

Dialplan Parses the call details and decides where to route the call
Directory Connects directory information services, such as LDAP, to a

Event handlers

common core lookup API

Allows external programs to control FreeSWITCH

File Provides an interface to extract and play sound from various
audio file formats

Formats Plays audio files in various formats

Languages Programming language interfaces used for call control

Loggers Controls logging to the console, system log, or log files

Say Strings together audio files in various languages to provide

Text-To-Speech (TTS)
Timers
XML Interfaces

feedback to say things like phone numbers, time of day, spell
words, and so on

Interfaces with text-to-speech engines
POSIX or Linux kernel timing in applications

Uses XML for Call Detail Records (CDRs), RADIUS, CURL,
LDAP, RPC, and/or SCGI

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

The following image shows what the FreeSWITCH architecture looks like and how
the modules orbit the core of FreeSWITCH:

Endpoints

XML Interface

ENUM Dial Plans : ASR/TTS FLITE
Route Plans FS CORE ;

SNDFILE

Applications ~ ', File Formats
Embedded Languages CONSOLE
PERL '

Loggers
LOGFILE ; EV

YQIGENAR Event Consumers

By combining the functionality of the various module interfaces, FreeSWITCH can
be configured to connect IP phones, POTS lines, and IP-based telephone services.
It can also translate audio formats and interfaces with a custom menu system,
which you can create by yourself. You can even control a running FreeSWITCH
server from another machine. Let's start by taking a closer look at a pair of
important module types.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Important modules — Endpoint and
Dialplan

Endpoint modules are critically important and add some of the key features that
make FreeSWITCH the powerful platform it is today. The primary role of these
modules is to take certain common communication technologies and normalize them
into a common abstract entity which we refer to as a session. A session represents

a connection between FreeSWITCH and a particular protocol. There are several
Endpoint modules that come with FreeSWITCH, which implement several protocols
such as SIP, H.323, Jingle (Google Talk), and some others. We will spend some time
examining one of the more popular modules named mod_sofia.

Sofia-SIP (http://sofia-sip.sourceforge.net) is an open source project
sponsored by Nokia, which provides a programming interface for the Session
Initiation Protocol (SIP). We use this library in FreeSWITCH in a module we call
mod_sofia. This module registers to all the hooks in FreeSWITCH necessary to
make an Endpoint module, and translates the native FreeSWITCH constructs into
SIP constructs and back again. Configuration information is taken from the central
FreeSWITCH configuration files, which allows mod_sofia to load user-defined
preferences and connection details. This allows FreeSWITCH to accept registration
from SIP phones and devices, register to other SIP Endpoints such as service
providers, send notifications, and provide services to the phones such as voicemail.

The SIP protocol is defined by a number of RFC (request
for comment) documents. The primary RFC can be found at
http://www.ietf.org/rfc/rfc3261.txt.

When a SIP call is established between FreeSWITCH and another SIP device, it

will show up in FreeSWITCH as an active session. If the call is inbound, it can be
transferred or bridged to interactive voice response (IVR) menus, hold music, or
one or more extensions, though numerous other options are available. Let's examine
a typical scenario where an SIP phone registered as extension 2000 dials extension
2001 with the hope of establishing a call.

First, the SIP phone sends a call setup message to mod_sofia over the network
(mod_sofia is listening for such messages). After receiving the message, mod_sofia
in turn parses the relevant details and passes the call into the core state machine in
FreeSWITCH. The state machine (in the FreeSWITCH core) then sends the call into
the ROUTING state.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

The next step is to locate the Dialplan module based on the configuration data for
the calling Endpoint. The default and most widely used Dialplan module is the XML
Dialplan module. This module is designed to look up a list of instructions from the
central XML registry within FreeSWITCH. The XML Dialplan module will parse a
series of XML extension objects using regular expression pattern-matching.

As we are trying to call 2001, we hope to find an XML extension testing the
destination number field for something that matches 2001 and routes accordingly.
The Dialplan is not limited to matching only a single extension. In fact, in Chapter

5, Understanding the XML Dialplan, you will get an expanded definition of the term
extension. The XML Dialplan module builds a sort of task list for the call. Each
extension that matches it will have its actions added to the call's task list.

Assuming FreeSWITCH finds at least one extension, the XML Dialplan will insert
instructions into the session object with the information it needs to try and connect
the call to 2001. Once these instructions are in place, the state of the calling session
changes from ROUTING to EXECUTE, where the next handler drills down the list
and executes the instructions obtained during the ROUTING state. This is where the
application interface comes into the picture.

Each instruction is added to the session in the form of an application name and a
data argument that will be passed to that application. The one we will use in this
example is the bridge application. The purpose of this application is to create
another session with an outbound connection, then connect the two sessions for
direct audio exchange. The argument we will supply to bridge will be user/2001,
which is the easiest way to generate a call to extension 2001. A Dialplan entry for
2001 might look like this:

<extension name="example">
<condition field="destination_ number"
expression=""2001%">
<action application="bridge" data="user/2001"/>
</conditions>

</extensions>

The extension is named example, and it has a single condition to match. If the
condition is matched, it has a single application to execute. In plain language,
the mentioned extension could be expressed like this: If the caller dialed 2001,
this establishes a connection between the calling party and the endpoint (that is,
telephone) at 2001. Consider how this happens.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Once we have inserted the instructions into the session, the session's state will
change to EXECUTE, and the FreeSWITCH core will use the data collected to perform
the desired action. First, the default execute state handler will parse the command
to execute bridge on user/2001, then it will look up the bridge application and
pass the user/2001 data in. This will cause the FreeSWITCH core to create a new
outbound session of the desired type. User 2001 is also a SIP phone, so user/2001
will resolve into a SIP dial string, which will be passed to mod_sofia to ask it to
create a new outbound session.

If the setup for that new session is successful, there will now be two sessions in the
FreeSWITCH core. The bridge application will take the new session and the original
session (the caller's phone) and call the bridge function on it. This allows the audio
to flow in both directions once the person at extension 2001 actually answers the
phone. If that user was unable to answer or was busy, a timeout (that is, a failure)
would occur and send the corresponding message back to the caller's phone. If a call
is unanswered or an extension is busy, many routing options are possible, including
call forwarding or voicemail.

All of this happens from the simple action of picking up the phone handset and
dialing 2 0 0 1.FreeSWITCH takes all of the complexity of SIP and reduces it to a
common denominator. From there, it reduces the complexity further by allowing us
to configure a single instruction in the Dialplan to connect the phone at 2000 to the
phone at 2001. If we want to allow the phone at 2001 to be able to call the phone at
2000, we can add another entry in the Dialplan going the other way:

<extension name="example 2">
<condition field="destination number" expression=""2000$">
<action application="bridge" data="user/2000"/>
</conditions>

</extensions>

In this scenario, the Endpoint module turned SIP into a FreeSWITCH session and
the Dialplan module turned XML into an extension. The bridge application turned
the complex code of creating an outbound call and connecting the audio into a
simple application/data pair. Both the Dialplan module and the application module
interface are designed around regular FreeSWITCH sessions. Therefore, not only
does the abstraction make life easier for us at the user level, it also simplifies the
design of the application and the Dialplan because they can be made agnostic of

the actual endpoint technology involved in the call. It is because of this abstraction,
when we make up a new Endpoint module tomorrow for something like Skype
(there is actually such a thing present, by the way), that we can reuse all the same
application and Dialplan modules. The same principle applies to the Say, Automatic
Speech Recognition (ASR), Text-to-Speech (TTS), and other such modules.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

It is possible that you may want to work with some specific data provided by the
Endpoint's native protocol. In SIP, for instance, there are several arbitrary headers
as well as several other bits of interesting data from the SIP packets. We solve this
problem by adding variables to the channel. Using channel variables, mod_sofia
can set these arbitrary values as they are encountered in the SIP data where you can
retrieve them by name from the channel in your Dialplan or application. This way,
we share our knowledge of these special variables with the SIP Endpoint. However,
the FreeSWITCH core just sees them as arbitrary channel variables that the core can
ignore. There are also several special reserved channel variables that can influence
the behavior of FreeSWITCH in many interesting ways. If you have ever used a
scripting language or configuration engine that uses variables (sometimes called
attribute-value pairs or AVPs), you are at an advantage because channel variables
are pretty much the same concept. There is simply a variable name and a value that
is passed to the channel and the data is set.

There is even an application interface for this, the set application, which lets you set
your own variables from the Dialplan:

<extension name="example 3">
<condition field="destination number" expression=""2000$">
<action application="set" data="foo=bar"/>
<action application="bridge" data="user/2000"/>
</conditions>

</extensions>

This example is almost identical to the previous example, but instead of just
placing the call, we first set the variable foo equal to the value bar. This variable
will remain set throughout the call and can even be referenced at the end of the call
in the detail logs.

The more we build things in small pieces, the more the same underlying resources
can be reused, making the system simpler to use. For example, the codec interface
knows nothing else about the core, other than its own isolated world of encoding and
decoding audio packets. Once a proper codec module has been written, it becomes
usable by any Endpoint interface capable of carrying that codec in its audio stream.
This means that if we get a Text-To-Speech module working, we can generate
synthesized speech on any and all Endpoints that FreeSWITCH supports. It does not
matter which one comes first as they have nothing to do with each other. However,
the addition of either one instantly adds functionality to the other. The TTS module
becomes more useful because it can use more codecs; the codecs have become more
useful because we added a new function that can take advantage of them. The same
idea applies to applications. If we write a new application module, the existing
endpoints will immediately be able to run and use that application.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Complex applications made simple

FreeSWITCH removes much of the complexity of the more advanced applications.
Let's look at two examples of a more complex application.

Voicemail

The first application we will discuss is the voicemail application. The general
purpose of this application is probably pretty easy to deduce. It provides voicemail
service. This application is useful to add right after the bridge application as a
second option, in case the call was not completed. We can do this with a careful
combination of application choices and one of those fancy special variables that we
were discussing earlier. Let's look at a new version of our last extension that also
allows us to leave a voicemail:

<extension name="example 4">
<condition field="destination number" expression=""2000$">
<action application="set"
data="hangup_after bridge=true"/>
<action application="bridge" data="user/2000"/>
<action application="voicemail"
data="default ${domain} 2000"/>
</condition>
</extension>

Here we see two uses of channel variables. First we set hangup_after bridge=true
telling the system to just hang up once we have had at least one successfully bridged
call to another phone and to disregard the rest of the instructions. We are also using
the domain variable as seen in brackets prefixed with a dollar sign, ${domain}. This
is a special variable that defaults to the auto-configured domain name, which all the
phones are using from the configuration.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

In this example, we check if someone is dialing 2000. We then try to bridge the call
to the phone registered to extension 2000. If the call fails or if there is no answer, we
will continue to the next instruction, which is to execute the voicemail application.
We provide the information the application needs to know and which extension

the voicemail is for, so it knows how to handle the situation. Next, the voicemail
application plays the pre-recorded greeting or generates one for you using the Say
module's interface we briefly discussed earlier. It strings together sound files to make
a voice say something like, "The person at extension 2 0 0 0 is not available, please
leave a message." Next, mod_voicemail prompts you to record a message, and now
is your chance to leave your mark in that person's inbox by leaving a voice message.
As an additional feature, if you are not satisfied with your recording, you can repeat
it as many times as you wish. Once you finally commit, a FreeSWITCH MESSAGE_
WAITING event is fired into the core event system, which is picked up by mod_sofia
by way of an event consumer, where the event information is translated into SIP —in
this case a SIP NOTIFY message that lets the SIP phone know that there is a message
waiting. If everything goes as planned, the phone registered on extension 2000 will
illuminate its message-waiting indicator light!

Again in this example, not only have we seen how to play a greeting, record a
message, and send it to a user, we have also uncovered another unsung hero of

the FreeSWITCH core — the event system. The FreeSWITCH event system is not a
module interface like the other examples, it is a core engine that you can use to bind
to named events and react accordingly when an event is received. In other words,
throughout the FreeSWITCH core, there are events that are sent and received.
Modules can bind to (that is listen for) various events. They can also fire events into
the event engine; other modules can listen for those events. As we discussed, the
Sofia SIP module binds or subscribes to the event designated for MESSAGE_WAITING
information. This allows our mod_voicemail module to interact with mod sofia
without either system having any knowledge about the other's existence. The event
is fired by mod_voicemail, received by mod_sofia, and translated into the proper
SIP message —all seemingly magical, courtesy of the event system.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There are several challenges with such a complex interactive system when
considering all of the possible languages it may need to support, as well as what
files to play for the automated messages and how they are strung together. The Say
module supplies a nice way to string files together, but it is limited to something
specific like spelling a word, counting something, or saying a certain date. The way
we overcome this is by defining a more complex layer on top of the Say module
called Phrase Macros. Phrase Macros are a collection of XML expressions that pull
out a list of arguments by matching a regular expression and executing a string

of commands. This is very similar to how the XML Dialplan works, only custom-
tailored for interactive voice response (IVR) scenarios. For example, when mod
voicemail asks you to record your message, rather than coding in the string of files
to make it say what you want, the code just calls a Phrase Macro called voicemail
record_message. This arbitrary string is shared between mod_voicemail and the
Phrase Macro section in the configuration allowing us, the users, to edit the file
without doing any fancy programming.

<macro name="voicemail record message">
<input pattern=""(.*)$">
<match>
<action function= "play-file"
data="voicemail/vm-record message.wav"/>
</match>
</input>
</macro>

When mod_voicemail executes the voicemail record message macro, it first
matches the pattern, which, in this case, is just to match everything, as this
particular macro has no input. If the macro did have input, the pattern matching
could be used to perform different actions based on different input. Once a match
is found, the match tag is parsed in the XML for action tags just like in our
Dialplan example. This macro just plays the file vim-record_message.wav, but
more complicated macros, like the ones for verifying your recording or telling you
how many messages you have in your inbox, may use combinations of various
Say modules and play various audio files. Phrase Macros are discussed in detail
in Chapter 6, Using XML IVRs and Phrase Macros and used extensively in Chapter 7,
Dialplan Scripting with Lua.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

Once again, we have cooperation among the phrase system, the audio file, and

the Say modules loaded by the core being joined together to enable powerful
functionality. The Say modules are written specifically for a particular language or
voice within a language. We can programmatically request to say a particular time
and have it translated into the proper Say module based on input variables. The
Phrase Macro system is a great way to put bigger variable concepts into your code,
which can be easily tweaked later by everyday users. For example, if we wanted to
make a small IVR that asks us to dial a four-digit number and then just read it back
and hang up, we could make one macro called myapp_ask_for_digits and the
other called myapp_read_digits. In our code, we would execute these macros by
name — the former when it is time to ask for the digits and the later to read back the
digits by passing in the value we entered. Once this is in place, a less-experienced
individual could implement the XML files to play the proper sounds. He or she

can use the Say modules to read back the number, and it should all be working in
multiple languages with no further coding necessary. Voicemail is just one example
of FreeSWITCH in use as an application server. There are endless possibilities when
we use FreeSWITCH to connect phone calls with computers.

Multi-party conferencing

Another popular feature of FreeSWITCH is delivered by the mod_conference
conferencing module. The mod_conference module provides dynamic conference
rooms that can bridge together the audio from several audio channels. This can be
used to hold meetings where there are several callers who want to interact on the
same call. Each new session that connects to the same conference room will join the
others, and instantly be able to talk to all of the other participants at the same time.
By using a Dialplan example, similar to the one we used for bridging to another
phone, we can make an extension to join a conference room:

<extension name="example 4">
<condition field="destination number" expression=""3000$">
<action application="conference" data="3000@default"/>
</conditions>
</extension>

This is just as simple as bridging a call, but what is special about this extension is that
many callers can call extension 3000 and join the same conference. If three people
joined this conference and one of them decides to leave, the other two would still be
able to continue their conversation.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The conference module also has other special features, such as the ability to play
sound files or Text-To-Speech to the whole conference or even just to a single
member of the conference. As you may have guessed, we are able to do this by using
the TTS and sound file interfaces provided by their respective modules. Once again,
the smaller pieces come together to extend the functionality without needing explicit
knowledge of the other components in the system.

The conference module also uses the event system in a special way, employing what
are called custom events. When it first loads, a module such as mod conference can
reserve a special event namespace called a subclass. When something interesting
happens, such as when a caller joins or leaves a conference, it fires those events on
the cusToM event channel in the core. When we are interested in receiving such
events, all we have to do is subscribe to the cusTom event supplying an extra subclass
string, which specifies the specific cUSTOM events we are interested in. In this case,
itis conference: :maintenance. This makes it possible to look out for important
things such as when someone joins or leaves the conference, or even when they start
and stop talking. Conferencing is discussed in detail in Chapter 14, Advanced Features
and Further Reading.

The FreeSWITCH API (FSAPI)

Another very powerful module interface in FreeSWITCH is the FSAPI module. The
principle of this type of interface is very simple —it takes a single string of text as
input, which may or may not be parsed, and performs a particular action. The return
value is also a string that can be of any size, from a single character up to several
pages of text, depending on the function that was called. One major benefit of FSAPI
functions is that a module can use them to call routines in another module without
directly linking into the actual code. The command-line interface of FreeSWITCH or
CLI uses FSAPI functions to pass FreeSWITCH API commands from an operating
system's command prompt.

Here is a small example of how we can execute the status FSAPI command from
the FreeSWITCH CLI:

5, 25 minutes, 5 seconds, 49 mi isecond b03 microseconds
b git la3allf 2013-02-15 11: 7) A

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

What's really happening here is that when we type status and press the Enter key,
the word "status" is used to look up the status FSAPI function from the module

in which it is implemented. The underlying function is then called, and the core is
queried for its status message. Once the status data is obtained, the output is written
to a stream that comes back and prints as the result of the command.

We have already learned that a module can create and export FSAPI functions that
can be executed from anywhere such as the CLI. But wait, there's more! Modules
can also be written to push commands into the FSAPI interface and send the result
over a specific protocol. There are two modules included in FreeSWITCH that do
just that—mod_xml_rpc and mod_event_socket (discussed respectively in Chapter 9,
Moving Beyond the Static XML Configuration and Chapter 10, Controlling FreeSWITCH
Externally). Consider the example of mod_xml_rpc. This module implements the
standardized XML-RPC protocol as a FreeSWITCH module. Clients using an XML-
RPC interface can connect to FreeSWITCH and execute any FSAPI command they
choose. So a remote client could execute an RPC call to status, and get a similar
status message to the one we saw in the previous example. This same module also
provides FreeSWITCH with a general web server, which allows FSAPI commands
to be accessed with a direct URL link. For example, one could point a browser

to http://example.freeswitch.box:8080/api/status to access the status
command directly over the World Wide Web. By using this technique, it's possible
to create FSAPI commands that work similar to a CGI, providing a dynamic web
application that has direct access to FreeSWITCH internals.

As we have shown, the FSAPI interface is very versatile. Now we know it can be
used to provide a CLI interface, a way for modules to call functions from each other,
and a way to export WWW or XML-RPC functions. There is still one more use for
FSAPI functions that we have not covered. We touched briefly on the concept of
channel variables earlier, noting that we can use the expression ${myvariable} to
get the value of a certain variable. FSAPI functions can also be accessed this way

in the format $ {myfunction () }. This notation indicates that the FSAPI command
myfunction should be called, and that the expression should be replaced with the
output of that function call. Therefore, we can use ${status () } anywhere when
variables are expanded to gain access to the status command. For example:

<action application="set" data="my status=${status()}"/>

The value placed in the my_status variable will be the output from the
status command.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The drawback to all the versatility provided by a single module interface is that, in
order to achieve all of this, we have to loosely type the functionality. This means that
there are several cases where a single FSAPI command could easily be accessed using
all of the ways we have discussed. In addition, there are also some other specific
functions that are specifically designed for a particular access method. For instance,
if we made an FSAPI command that produced HTML intended to be accessed with
a web browser, we would not want to access it from the CLI or by referencing it as a
variable. Similarly, if we made an FSAPI function that computed some kind of value
based on call details, which was designed to be used from the Dialplan, it would

not be very useful at the CLI or from the Web. So, with great power comes great
responsibility, and this is one case where we need to use common sense to decide
when and where to use the proper FSAPI functions to get the most out of them.

The XML registry

We have now discussed many of the fundamental components of the FreeSWITCH
core and how they interact with each other. We have seen how the event system can
carry information across the core, and how the XML Dialplan can query the XML
registry for data. This would be a good time to explain the XML registry a bit more.
The XML registry is a centrally managed XML document that holds all of the critical
data that FreeSWITCH needs to operate properly. The initial document is loaded
from your hard drive and passed into a special pre-processor. This pre-processor can
include other XML documents and other special operations, such as setting global
variables, which can be resolved by the pre-processor further down in the document.

Once the entire document and all of the included files are parsed, replaced, and
generated into a static XML document, this document is loaded into memory. The
XML registry is divided into several sections — configuration, odbc, dialplan, directory,
locations, chatplan, languages, and phrases. The core and the modules draw their
configuration from the configuration section. The XML Dialplan module draws its
Dialplan data from the dialplan section. The SIP authentication, user lookup, and
the voicemail module read their account information from the directory section.
The Phrase Macros pull their configuration from the phrases section. If we make a
change to any of the documents on the disk, we can reload the changes into memory
by issuing the reloadxml command from the CLI. (This is an example of using the
FSAPI interface to communicate with the FreeSWITCH core.)

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

Language modules

One distinct type of module that does not have a direct interface to FreeSWITCH-
like files and Endpoints, but still offers an immensely powerful connection

to existing technology, is the Language module. Language modules embed a
programming language like Lua, JavaScript, Perl, and even C# (using mod_managed)
into FreeSWITCH, and transfer functionality between the core and the language's
runtime. This allows things like IVR applications to be written in the embedded
language, with a simple interface back to FreeSWITCH for all the heavy lifting.
Language modules usually register into the core with the application interface and
the FSAPI interface and are executed from the Dialplan. Language modules offer
lots of opportunities and are very powerful. Using language modules, you can build
powerful voice applications in a standard programming language. In some respects,
you can actually control a telephone with a programming language.

The demonstration configuration

Understanding all of these concepts right off the bat is far from easy, and as the
maintainers of the software, we do not expect most people to have everything just
click. This is the main reason that every new layer we put on top of the core makes
things simpler and easier to learn. The demonstration configuration of FreeSWITCH
is the last line of defense between new users of the software and all of the crazy,
complicated, and sometimes downright evil stuff better known as telephony. We try
very hard to save the users from such things.

The main purpose of the demonstration configuration in FreeSWITCH is to showcase
all of the hundreds of parameters there are to work with. We present them to you

in a working configuration that you could actually leave untouched and play with a
bit before venturing into the unknown and trying your own hand at changing some
of the options. Think of FreeSWITCH as a Lego set. FreeSWITCH and all of its little
parts are like a brand new bucket Lego bricks, with plenty of parts to build anything
we can imagine. The demonstration configuration is like the sample spaceship

that you find in the instruction booklet. It contains step-by-step instructions on
exactly how to build something you know will work. After you pick up some
experience, you might start modifying your Lego ship to have extra features, or
maybe even rebuild the parts into a car or some other creation. The good news about
FreeSWITCH is that it comes out of the box already assembled. Therefore, unlike the
bucket of Lego bricks, if you get frustrated and smash it to bits, you can just re-install
the defaults and you won't have to build it again from scratch. The demonstration
configuration is discussed in Chapter 3, Test Driving the Example Configuration.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Once FreeSWITCH has been successfully built on your system, you simply have to
launch the program without changing one line in the configuration file. You will be
able to point a SIP telephone or software-based SIP softphone to the address of your
computer and make a test call. If you are brave and have the ambition of connecting
a traditional analog phone, you may want to get the SIP thing under your belt first.
This is because it involves a little more work (including purchasing a hardware card
for your computer or a magic device called an ATA —analog telephone adapter).

If you have more than one phone, you should be able to configure them to each having
an individual extension in the range 1000-1019, which is the default extension number
range that is pre-defined in the demonstration configuration. Once you get both
phones registered, you will be able to make calls across them or have them to meet in
a conference room in the 3000-3399 range. If you call an extension that is not registered
or let the phone ring at another extension for too long, the voicemail application

will use the phrase system to indicate that the party is not available, and ask you

to record a message. If you dial 5000, you can see an example of the IVR system at
work, presenting several menu choices demonstrating various other neat things
FreeSWITCH can do out of the box. There are a lot of small changes and additions that
can be made to the demonstration configuration while still leaving it intact.

For example, using the pre-processor directives we went over earlier, the
demonstration configuration loads a list of files into the XML registry from certain
places, meaning that every file in a particular folder will be combined into the final
XML configuration document. The two most important points where this takes place
are where the user accounts and the extensions in the Dialplan are kept. Each of the
20 extensions that are preconfigured with the defaults are stored into their own file.
We could easily create a new file with a single user definition and drop it into place
to add another user, and simply issue the reloadxml command at the FreeSWITCH
CLI The same idea applies to the example Dialplan. We can put a single extension
into its own file and load it into place whenever we want.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of FreeSWITCH

Summary

FreeSWITCH is a complex system of moving parts that are intertwined to

produce a solid, stable core with flexible and easy-to-extend add-ons. The core
extends its interfaces to modules. These modules simplify the functionality further
and extend it up to the user. The modules also can bring outside functionality into
FreeSWITCH by translating various communication protocols into a common,
well-known format. We looked at the various module types, and demonstrated how
they revolve around the core and interact with each other to turn simple abstract
concepts into higher-level functionalities. We touched base on a few of the more
popular applications in FreeSWITCH — the conferencing and voicemail modules and
how they, in turn, make use of other modules in the system without ever knowing
it. This agnosticism is accomplished by means of the event system. We also saw how
the demonstration configuration provides several working examples to help take the
edge off of an otherwise frightening feat of staring down the business end of a full-
featured soft-switch.

Now that we have a general idea of what makes FreeSWITCH tick, we will take

a closer look at some of these concepts with some real-world examples for you to
try. First we obtain a copy of the source code from the Internet, so we can build the
software package and install it. From there, we will test out the configuration, so be
sure to get yourself a SIP phone or at least a softphone. Once we try a few things, we
will dive a litter deeper into how things work and create a few things of our own,
like an extension or two and an IVR menu. So take a deep breath and get ready to
dive into the world of telephony with FreeSWITCH!

In the following chapter we will take our first steps in getting a FreeSWITCH system
up and running.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

FreeSWITCH is open source software. Basically, this means that anyone can obtain,
read, compile, mangle, fix, or do anything that comes to mind, the raw source code
of the application. Many users, especially beginners, will find that dealing with
source code is somewhat a daunting task, but rest assured, we are doing our best to
make this experience as painless as possible. In the future, we will be adding binary
packages into various popular Linux distributions, but for the time being, we will
explain how to manually obtain and install FreeSWITCH for Unix and Windows.
(For the purpose of this chapter, the terms Unix-like and Linux/Unix refer not only
to Unix and Linux, but also to FreeBSD and Mac OS X.) Try not to fret if it seems
overwhelming. With a little patience and luck, the whole process will go smoothly.
It's not entirely unlike a root canal. It's been said that many root canals are pulled off
without a hitch and when they go wrong, they go horribly wrong; and that is where
the horror stories, which we all hear, come from.

In this chapter, we will discuss how to download and install FreeSWITCH from the
source code for Unix-like environments as well as for Windows. We will cover the
necessary prerequisites for each operating system. Finally, we will explain how to
launch FreeSWITCH and how to run it in the background.

In this chapter, we will cover the following topics:

* Setting up the FreeSWITCH environment

* Laying the ground work for our FreeSWITCH installation
* Downloading and installing FreeSWITCH

* Launching FreeSWITCH and running it in the background

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

Setting up the FreeSWITCH environment

FreeSWITCH, like many other software applications, requires a suitable environment.
Primarily that means choosing an appropriate operating system for your hardware
and having the proper LAN/WAN connectivity and physical environment.

Operating system

The first question to consider here is: which operating system should be used?
Generally speaking, it is good to use an operating system with which you are
comfortable and familiar. One caveat to consider is 32-bit versus 64-bit. Some users
have reported problems when running a 32-bit OS on a 64-bit hardware platform.
We strongly recommend that you use a 64-bit OS if you have 64-bit hardware.

Those who prefer a Windows environment can use XP, Vista, Windows 7, Server
2003, Server 2008 R2, or Server 2012. Several users have reported good success with
production systems running on modern hardware and using Windows Server 2008.

On the other hand, there is a wide variety of Unix-like operating systems available,
many of which are freely downloadable. Most of us have an operating system
(Linux, BSD, Solaris, and so on) and distribution (CentOS, Debian, Ubuntu, and

so on) that we prefer to use. The FreeSWITCH developers do not advocate any
particular operating system or distribution.

Some have asked which platform is the best for FreeSWITCH. There are many factors
to consider when choosing a platform on which to run a telephony application.
FreeSWITCH is cross-platform, and therefore, it compiles and runs on numerous
systems. However, through hard-earned experience, we know which operating
systems and distributions lend themselves to real-time telephony applications. The
bottom line is that you want your system to be stable and reliable. The FreeSWITCH
community has overwhelmingly endorsed CentOS 5 and Debian 6 as production-
ready Linux distributions.

As of the time of writing, there were concerns with the performance
of FreeSWITCH under CentOS 6. Many members of the FreeSWITCH

community report that these issues do not occur in CentOS 6.3. If you
’ experience unusual symptoms in prior versions of CentOS Version 6

then try using CentOS 6.3.

Keep in mind that bleeding edge distributions generally are not appropriate
for real-time telephony systems. Boring and predictable are preferable to latest
and greatest.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Operating system prerequisites

Each operating system has its own set of prerequisites. Make sure that you have met
the prerequisites for your platform. In the following sections we discuss Linux/Unix,
Mac OS X, and Windows.

Linux/Unix

The following items are usually already installed on your system. Note that a Git
client is not required:

* Git: A Git client also gives you access to the current code repository
(recommended especially for developers and those who want the latest code)

* GNUMAKE: The GNU version of Make

e AUTOCONE: Version 2.60 or higher

* AUTOMAKE: Version 1.9 or higher

e LIBTOOL: Version 1.5.14 or higher

* GCC: Version 3.3 or higher

* WGET: Any recent version

* LIBNCURSES: Any recent version

* BZIP2: Any recent version

Mac OS X

It is strongly recommended that Mac users have, at the very least, OS X Version
10.4. Compiling FreeSWITCH on OS X requires the installation of the Apple XCode
Developer Tools. You may download them from http://connect.apple.com. Free
registration is required.

Apple has been making some changes in the tools supported on OS X.
M The FreeSWITCH community does their best to keep people informed of
Q the latest information with respect to building and running FreeSWITCH
on OS X. Stay informed by visiting http://wiki.freeswitch.org/
wiki/Installation and Setup on OS X.

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

Windows

FreeSWITCH in a Windows environment has two primary requirements. They are
as follows:

1. Microsoft Visual C++ 2008 or 2010 (or 2008 or 2010 Express Edition).
2. A file decompression utility.

FreeSWITCH in Windows is compiled and built using Microsoft Visual C++
(MSVC) or Visual C++ Express Edition (MSVCEE). The Express Edition is

free to download, though registration is required. It can be obtained at http://
www.microsoft.com/Express/VC. The other requirement for Windows is a file
decompression utility like WinZip (www.winzip.com), or WinRAR (www.rarlab.
com). A free alternative is 7-Zip (www.7-zip.org). Each of these utilities will add a
right-click (context) menu option to Windows Explorer.

. The Express Editions of Visual C++ do not support 64-bit targets by
& default. If you are intending to build 64-bit versions of FreeSWITCH
VS for Windows, it is recommended that you have the Professional
Editions of Visual Studio instead of Visual C++ Express.

Text editors and XML

Working with FreeSWITCH requires you to have a text editor with which you are
comfortable. Regardless of your editor choice, we strongly recommend that you use
a text editor that supports XML syntax highlighting. You will find that editing XML
configuration files is much easier on the eyes with highlighting turned on.

If you do not already have a preferred editor, we suggest trying one or two for your
platform. Be aware that if you are in a Linux/Unix environment that does not have
a Graphical User Interface (GUI), your choices will be fewer. However, there are
several excellent text-only editors available:

* Emacs: A text-only editor available for just about any Unix-like environment,
including Mac OS X. It can highlight source code, XML, HTML, and more.
This is the editor of choice for the FreeSWITCH development team. (A GUI
version of Emacs is also available.)

* Vi/Vim: A text-only editor available for just about any Unix-like
environment. Like Emacs, it can highlight source code and markup
languages. (A GUI version of Vim is also available.)

* Notepad++: A graphical text editor for a Windows environment. It supports
highlighting of many programming and markup languages. It is a very
useful and free text editor for Windows.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

* Microsoft Visual Studio/Visual C++ Express: This Integrated Development
Environment (IDE) has a graphical editor that plays out very well with XML
files. It supports highlighting and auto-completion of the XML tags and will
display a red underline for any improperly closed or edited XML tags and/
or elements.

Downloading the source

Most open source projects have their source code divided into two general
categories: stable and latest. The FreeSWITCH project recently formed these two
branches. Version 1.2.x is the stable branch and Version 1.3.x is the latest branch.
Future releases will follow the even/odd numbering plan, where 1.4.x is stable and
1.5.x is the unstable or development branch. You can update to the latest branch

at any time if you are using Git (see the Building from the latest code section in this
chapter) One other point to keep in mind: binary distributions of FreeSWITCH might
be available for your platform. While they are certainly convenient, in our experience
it is easier to troubleshoot, update, and customize your FreeSWITCH installation
when compiling from the source.

Be sure that your system has the Internet access because the build process will
occasionally need to download additional files.

The source code can be obtained from the following FreeSWITCH download site:
http://files.freeswitch.org

Locate a file named freeswitch-1.2.x.tar.gz (where x is the latest build number),
and download it into a local directory on your computer, then decompress it. A
typical session in Linux might look like the following:

#>cd /usr/src

#>wget http://files.freeswitch.org/freeswitch-1.2.1.tar.bz2
#>tar jxvf freeswitch-1.2.1l.tar.bz2

This will create a new directory that contains the FreeSWITCH source code ready
for you to compile on your system. (From now on, this will be referred to as the
FreeSWITCH source directory.)

Windows users should create a new directory and download the source file. See the
Compiling FreeSWITCH For Windows section later in this chapter.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

Building from the latest code

If you prefer to be on the latest version of FreeSWITCH, you will need a Git client.
Use yum, apt, or whichever package manager your distribution has to install Git.
In Windows, a popular (and free) client is TortoiseGit (code.google.com/p/
tortoisegit).

In Linux/Unix environments a typical Git checkout and compile session would look
like this:

#>cd /usr/src

#>git clone git://git.freeswitch.org/freeswitch.git
#>cd freeswitch

#>./bootstrap.sh

#>./configure -C

#>make install

#>make cd-sounds-install

#>make cd-moh-install

The preceding commands will take some time to complete. You can automate
the process a bit by chaining the commands together with the && operator. These
commands are discussed in more detail in the following sections.

Compiling FreeSWITCH for Linux/Unix/
Mac OS X

The install procedure is essentially the same for Linux, Unix, or Mac OS X. However,
make sure that your system has met the prerequisites listed in the previous section.

Compiling FreeSWITCH

Compiling FreeSWITCH requires just a few steps, although it will take some time
depending upon the speed of your system. The basic procedure for compiling
FreeSWITCH is as follows:

1. Run the bootstrap.sh script.

2. Edit the modules. conf file to customize which modules are compiled
by default.

Run the configure script.
Run the make and make install utilities to compile and install.
Edit modules.conf .xml to customize which modules are loaded by default.

ARSI

Install the sound and music files.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Following are detailed step-by-step instructions for compiling FreeSWITCH.

Step 1 — edit modules.conf

The modules. conf file contains a list of the various FreeSWITCH modules that will
be configured and compiled. The default modules. conf file has a sensible set of
modules pre-selected to be compiled. However, there is one optional module that
we will enable now. You should have a new subdirectory named freeswitch-
1.2.x, where 1.2.x is the version number. For example, if the latest stable version is
1.2.1 then your source directory will be /usr/src/freeswitch-1.2.1. Perform the
following steps:

1. Change the directory into the new FreeSWITCH source directory:

#>cd /usr/src/freeswitch-1.2.x

2. Openmodules.conf in a text editor. Scroll down to the following line:
#asr tts/mod flite

3. Remove the # character from the beginning of the line, then save and exit.
The mod_f1lite module enables FreeSWITCH to use the open source Festival
Lite text-to-speech (TTS) engine. (The Flite TTS engine does not produce
a particularly high quality speech synthesis. However, it is very handy for

doing TTS testing.)
More information about Festival Lite can be found at
s http://www.speech.cs.cmu.edu/flite/.

After editing modules. conf, we are ready to start the build process.

Removing the # character at the beginning of a line in
modules. conf will cause the module on that line to

automatically be built when issuing the make command.
"~ Likewise, adding a # at the beginning of the line will prevent

the corresponding module from being built automatically.

Step 2 - run the configure script

Like many open source projects, FreeSWITCH in UNIX-like environments makes use
of the now famous configure script. From within the FreeSWITCH source directory,
launch the configure script, as follows:

#>./configure -C

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

The configure script performs many tasks, including making sure that the
prerequisites have been met. If a prerequisite has not been met then the configure
script will exit and tell you which dependency has not been met. If this occurs then
you must resolve the issue and rerun the configure script. You will need to make
sure that all of the prerequisites have been met before the configure script will run
to completion. The -c argument tells the configure module to create a config.
cache file that will be used by subsequent configure scripts with the various
libraries included in the source tree.

o The configure script is a common tool in building open
~ source software in the Linux/Unix environment. It has many
Q options to modify the behavior. Launch configure with the
--help argument to see a complete list.

During the configuration process, you will see the configure script run multiple
times. FreeSWITCH makes use of many libraries like Apache Portable Runtime
(APR) and Perl Compatible Regular Expressions (PCRE). Each of these elements
has its own specific configure script that is customized to its own needs.

After some time, the configure script finishes and returns you to the system prompt.
You will undoubtedly see a lot of output on the screen from the configuration process,
but if you do not see any errors then you may proceed to the compilation process.

Step 3 — run the make and make install utilities

The configuration process in the previous step actually creates what is called a
Makefile for FreeSWITCH, its libraries, and its various modules. The compilation
and installation of FreeSWITCH are both handled by the make utility. First run make,
and then run make install.Many users will run them both with one command line,
which is as follows:

#>make && make install

Like the configure script, the make process takes a while, and it will stop if there are
any errors. Usually things go well, and at the end of the compilation and installation,
you are greeted with the following message:

+o----—-- FreeSWITCH install Complete ---------- +

+ FreeSWITCH has been successfully installed. +

+ +

+ Install sounds: +

+ (uhd-sounds includes hd-sounds, sounds) +

+ (hd-sounds includes sounds) +
[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

make

make

make

make

make

make

cd-sounds-install

cd-moh-install

uhd-sounds-install

uhd-moh-install

hd-sounds-install

hd-moh-install

sounds-install

moh-install

Install non english sounds:

replace XX with language

(ru : Russian)

cd-sounds-XX-install
uhd-sounds-XX-install
hd-sounds-XX-install

sounds-XX-install

Upgrade to latest:

make

samples

Additional resources:

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

e +
+ http://www.freeswitch.org +
+ http://wiki.freeswitch.org +
+ http://jira.freeswitch.org +
+ http://lists.freeswitch.org +
+ +
+ irc.freenode.net / #freeswitch +
+ +
e e e T +

If you see a message like the last one then you have successfully compiled
FreeSWITCH, and can proceed to the next step. If an error occurs then the
compilation process will stop and report it. You will need to correct the problem
before you can continue. If the error message is unfamiliar to you then you should
contact the FreeSWITCH community using the resources listed in Appendix A, The
FreeSWITCH Online Community.

Step 4 — edit modules.conf.xml

The modules. conf . xml file contains a list of modules that FreeSWITCH will load
when it is launched. The default modules.conf .xml file corresponds with the
default modules. conf file. The modules that are built by default in modules. conf
are also enabled by default in modules.conf.xml. As we enabled mod_flite to

be built in modules.conf, we need to enable mod flite in modules.conf .xml SO
that it will be loaded automatically when FreeSWITCH starts. As a rule of thumb,
any module that you wish to load automatically when FreeSWITCH starts must be
enabled in modules.conf .xml.

The modules. conf .xml file is located in the conf /autoload_configs subdirectory.
The default location is /usr/local/freeswitch/conf/autoload configs/
modules. conf .xml. Open the file in a text editor and locate the following line near
the end of the file:

<!-- <load module="mod flite"/> -->
Remove the <! -- and - - > tags so that it looks like the following:
<load module="mod flite"/>

Save the file and exit. You are almost ready to start the FreeSWITCH application.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

What's the difference between modules. conf and modules.
cont . xml files? The modules. conf file is found in the source
directory, and is used to control FreeSWITCH modules that are
compiled when running make. It is a simple text file that uses a
% leading # character to denote a comment. The modules. conf .xml

T file is part of the example XML configuration, and is found in the
FreeSWITCH autoload_configs subdirectory. It uses standard
XML <! -- and - -> pairs to denote a comment. It controls which
modules are loaded when FreeSWITCH is launched.

Step 5 — install sound and music files

Sound and music files are not absolutely required. However, they are highly
recommended. Without them, you will not have music on hold, and features like
voicemail and the sample IVR will not be functional. FreeSWITCH has sample sound
and music files available in four different sampling rates. We recommend installing
all of them so that you can take advantage of high quality audio connections
wherever possible.

To install the sound files, just issue the following command in the FreeSWITCH
source directory:

#>make cd-sounds-install

To install the music files, issue the following command:

#>make cd-moh-install

These commands will download and install the sound and music files in 8 kHz,
16 kHz, 32 kHz, and 48 kHz sampling rates. FreeSWITCH will use the appropriate
sampling rate when playing a sound or music file to a caller.

You are now ready to start FreeSWITCH. The next section covers compiling
FreeSWITCH in the Windows environment, so skip down to the Starting
FreeSWITCH section.

Compiling FreeSWITCH for Windows

As mentioned in the Operating system prerequisites section, FreeSWITCH is built with
MSVC or MSVCEE. The steps presented here are specifically for MSVCEE 2010;
however, the steps for the various editions of MSVC are essentially the same.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

Important considerations for Windows users

Unless you are a developer, you may find that using the FreeSWITCH binary
installer is more than adequate for your needs. Simply download the x86 or x64
freeswitch.msi from http://files.freeswitch.org/windows/installer/ and
run the installer. It is extremely simple to do. More information about the binaries
can be found online at http://wiki.freeswitch.org/wiki/Installation for
Windows#Precompiled Binaries.

With the new features present in Microsoft's Visual Studio 2010, it is now highly
advisable that users should use this development environment instead of Visual
Studio 2008. Please do note that the recommendation also applies to the Express
Editions. Some of the exciting new modules added in FreeSWITCH since 1.0.6 may
not be present in the Visual Studio 2008 project files, as the contributors of the project
mainly focused on developing applications with Visual Studio 2010.

At the time of writing, please do not attempt to import the Visual Studio 2010
solution file in a Visual Studio 2012 build environment, as FreeSWITCH currently
does not build correctly with it.

Building the solution with MSVC/MSVCEE

There are several small steps to take prior to building with MSVCEE. They are as
follows:

1. Create a new folder and copy the bz2 file into it. In our example, we'll use the
following:

C:\FreeSWITCH\freeswitch-1.2.1l.tar.bz2

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2. Right-click on freeswitch-1.2.1.tar.bz2 and extract the files with your
decompression utility. You will now have a new file named freeswitch-
1.2.1.tar.

3. Right-click on freeswitch-1.2.1.tar and extract the files. This process will
take a few moments. For 7-zip, you will then see a window similar to the
following screenshot:

36% Copying... = i m

Elapsed time: 00:00:08 Total size: 178 MB
Remaining time: 00:00:14 Speed: 8214 KB/s
Files: 4383 Processed: 64 ME
Compression ratio: 101% Compressed size: &h MB

freeswitch-1.2.14ibs \libdingaling build corfigh.
ac_cflags_sun_option m4

£ Background i [Pause] [Cancel

WiInRAR decompresses both the . gz and . tar files in a single step.

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

4. After extraction, you will have a new sub-folder named after the
latest version of FreeSWITCH. In our example, we now have a
sub-folder named freeswitch-1.2.1. Double-click on the folder to
see the complete FreeSWITCH source tree. It will be similar to the

screen in the following screenshot:

-
U@vl "« Local Dick (D:) ¥ freeswitch-1.21 »

; Freeswitch.2005.unsupported

8] Freccuitch N8 cvnrace

8/13/201211:47 PM

27123017 11.47 DAA

Organize « of Open « Burn Mew folder =~
X Favorites Name : Date modified Type
- B Desktop . htdocs 8/30/20121:58 PM File folder
4 Downloads . libs 8/30/2012 1:58 PM File folder
5| Recent Places . patches 8/30/2012 1:57 PM File folder
- J scripts 8/30/2012 1:58 PM File folder
= Libraries . src 8/30/20121:58 PM File folder
@ Do e . support-d 8/30/2012 1:58 PM File folder
J, Music s w32 8/30/20121:58 PM Filefolder
[Pictures . web 8/30/2012 1:58 PM File folder
B videos | .gitattributes 8/13/201211:47 PM GITATTRIBUTES File
| .gitignore 8/13/201211:47 PM GITIGMORE File
18 Computer | wersion 8/13/201211:47 PM VERSION File
|| acinclude.mé 8/13/201211:47 PM M4 File
q"‘; Network | aclocal.mé 8/13/201211:49 PM M4 File
|| AUTHORS 8/13/201211:47 PM File
L] ecsh 8/13/201211:46 PM SHFile
L Changelog 8/13/201211:47 PM File
L cluecontmpl 8/13/201211:47 PM TMPL File
| CMakelists 8/13/201211:47 PM Text Document
L | configure 8/13/201211:49 PM File
L configurein 8/13/201211:47 PM INFile
| COPYING 8/13/201211:47 PM File
|| devel-bootstrap.sh 8/13/201211:47 PM SH File
L erlang.spec 8/13/201211:47 PM SPECFile

Microsoft Visual 5...

BAirracnft Vienal €

4 | i

Date modified: 8/13/2012 11:47 PM
Size: 68 bytes

swig_common
Preprocessed C/C++ Source

[iate created: 8/30/2012 1:58 PM

m

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

5. While there are many files, the only ones we care about right now are the
two solution files. For MSVC, the file is named Freeswitch.2010.sln, and
for MSVCEE, it is named Freeswitch.2010.express.sln. Double-click
on the appropriate solution file for your edition of MSVC. The screenshots
in this example will show MS Visual C++ Express Edition. However, the
Professional and Ultimate editions will be very similar.

6. After the solution file loads, click on the drop-down box (located on the
toolbar) and change from Debug to Release, then go to Build | Build
Solution or press F7. If you are using the Visual Studio 2010 IDE, then go
to Build | Build Solution or enter the Ctrl + Shift + B key sequences. The
solution will start building. Numerous messages will appear in the Output
window. When the solution has finished building, you will see a message at
the bottom of the Output window as shown in the following screenshot:

-

[Freeswitch.2010.express - Microsaft Visual C++ 2010 Express = | S

File Edit View Project Debug Tools Window Help
;'J'ﬁﬂﬂl& —élﬁ|) - ® '| b |Release

Solution Explorer

=

z Solution ‘Freeswitch.2010.ex) »
7 16khz
21 16khz music
A 32khz
121 32khz music
7 8khz
- [3 Bkhz music
» [31 abyss
. [7 aprtoolkit
+ 3 curllib
. [docs
> -ﬂ Download 16khz music
> -ﬂ Download 16khzsound
> -ﬂ Download 32khz music
> -ﬂ Download 32khzsound
> -ﬂ Download 8khz music
> -ﬂ Download 8khzsound
. [Z Download CELT

-| | win32

e

XOQIOO]

m

. [Download FLITE Output > 0 X
4 ;’3 Download J50N Show output from: | Build '|| _g | ‘-;'=j —:"b" ;| .
> [Z1 Download LAME lbl>S0t18_glUe.C(5/b5! WAPMLNE L4441 ‘= ! CONVErS10R from 1AT' TO ©SWL
> :’HDownload libjpeg 161> sofia_presence.c
. [Download LIBSHOUT 161> sofia_reg.c
-ri Download mpgl23 161> Creating library D:‘\freeswitch-1.2.1\Win32\Release\mod\mod_sofia.
R

= 161> Generating code
s:l Download OGG 161> Finished generating code
;’3 Download OPENSSL 161> mod_sofia.2818.vcxproj -> D:\freeswitch-1.2.1\Win32\Release'\mod\mod_
:’;“iDawnIoad pocketsphine ========== Rebuild All: 143 succeeded, 1 failed, 17 skipped ========== =
. ™ Downlnad PTHRFAD N
4 | 1 b < [m »

Rebuild All failed Coll

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

The MSVC/MSVCEE solution files will automatically perform
several steps that are usually done manually in a Linux/Unix
installation. These include downloading all the sound and music
files and building optional modules like Flite (text-to-speech)
and PocketSphinx (speech recognition). However, these optional
modules still need to be enabled in modules. conf . xml if you
wish to have them automatically loaded when FreeSWITCH
& starts. More information about PocketSphinx can be found at
L http://cmusphinx.sourceforge.net/wiki/start.
Go back to the Windows Explorer. You will see that the build
process has created a new folder named Release. This is the
FreeSWITCH installation directory. The last step before launching
FreeSWITCH is to edit the modules. conf . xml file in order to
enable mod_f1lite to be loaded by default when FreeSWITCH
is started. We will be using the mod_f1lite text-to-speech (TTS)
engine in several examples throughout this book.

7. Double-click on the conf folder, then double-click on the autoload configs
folder. Open modules. conf .xml in an editor. In our example, we'll use
MSVCEE to edit the file as seen in the following screenshot:

| Freeswitch.2010.express - Microsoft Visual C++ 2010 Express = |] |)

File Edit View Project Debug Tools Window Help

E;’E'J'Jﬂﬂlaﬁ—ﬁnﬂl‘)'“' b |Release 'HWmBZ 'H@;

i ah e =2,

Solution Explorer Ml modules.confaml® Ao
: =" - =
iy <load module="mod_tone_stream”/> 3 3
3 Solution ‘Freeswitch.2010.ex) <l—— Timers --» . E’
p ;’Hlﬁkhl <!-- <load module="mod_timerfd"/> --»

- 31 16khz music E <l-- <load module="mod_posix_timer"/> -->
. [Z1 32khz
. [27 32khz music <!-- languages -->
. [T skhz <Ilload 1od:le:;midifpi:ermo?ﬁy"/>
= . <!-- <load module="mod_perl"/> -->
s Ladl Bkh -
& b = muse <1-- <load module="mod_python"/> --»
- aoyss X <!-- <load module="mod_java"/> -->
4 3 aprtoolkit <load module="mod_lua"/>
i curllib
- [Adocs <l-- ASR /TTS -->
Download 16khz music <load 'rodule="mod_flite"/>‘
Download 16khzsound <!-- <load module="mod_pocketsphinx"/> -->
T Download 32khz music <!-- <load module="mod_cepstral”/> -->
-.;-i Download 32khzsound <1-- <load module="mod_tts_commandline™/> --»
o 1-- <load module="mod rss"/> --
- [Z1 Download 8khz music < clond modutesTmoc_ o
. [Download Bkhzsound <l-- Say --> r
- [Download CELT <load module="mod_say_en"/>
g :’HDDW"”WC' FLITE <!-- <load module="mod_say_ru"/> --»
» [Z1 Download J50N <!-- <load module="mod_say_zh"/> -->
. 71 Download LAME
. [71 Download libjpeg <l-- Third party modules --»)
] Download LIBSHOUT <!--<load module="mod_nibblebill"/>-->
E <!--<load module="mod_callcenter”/>-->
[T Download mpgl23 -
> e < -
= D 00% -~ i .
B Output
Col31

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

8. Locate the following line near the end of the file:

<!-- <load module="mod flite"/> -->

Remove the <! -- and - - > tags so that it looks like the following:

<load module="mod flite"/>

9. Save the file and exit the editor. You are now ready to launch FreeSWITCH
for the first time.

Starting FreeSWITCH

Once you have compiled and installed FreeSWITCH, it is time to launch the
application:

* Linux/Unix/OS X: run /usr/local/freeswitch/bin/freeswitch

* Windows: run freeswitchconsole.exe from the Release directory

The system will start loading, and numerous messages will display on the screen.
Console messages are color-coded for readability. Do not worry about all of the
messages right now, just make sure that your system starts up and you get to the
FreeSWITCH console, which we call the command-line interface (CLI). The CLI
prompt looks like the following;:

freeswitch@localhost>

Let's issue a few commands to verify that the system is operational. First, issue the
version command to verify the version of FreeSWITCH that we have installed.
You'll see something similar to this:

FreeSWITCH Version 1.2.1

Next, issue the status command, which displays a few statistics about your system.
You'll see output similar to this:
freeswitch@localhost> status

UP 0 years, 0 days, 0 hours, 0 minutes, 16 seconds, 808 milliseconds, 260
microseconds

FreeSWITCH is ready

0 session(s) since startup

0 session(s) 0/30

1000 session(s) max

min idle cpu 0.00/100.00

Current Stack Size/Max 240K/8192K

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

These are just a few of the many commands you will learn about in FreeSWITCH.
For a complete list of commands, simply type help and press Enter. Lastly, shut
down FreeSWITCH with this command: fsct1l shutdown. The system will display
numerous messages as it shuts down, and will return you to the system command
prompt. (If you launched freeswitchconsole.exe from the Windows Explorer then
the FreeSWITCH window will simply close.)

Running FreeSWITCH in the background

In most cases, you will want FreeSWITCH to run in the background. In a Unix/
Linux environment this is frequently called running as a daemon. In Windows
this is called running as a service.

To launch FreeSWITCH as a daemon in Unix/Linux, execute the following
command:

#>/usr/local/freeswitch/bin/freeswitch -nc

The various Linux and Unix distributions take different approaches to automatically
running a daemon at system start up. Several initialization or init script

examples are available on the FreeSWITCH wiki: wiki . freeswitch.org/wiki/
Freeswitch_init. Consult the system administration documentation for your
specific distribution for instructions on how to configure the init script to launch
FreeSWITCH at system start up.

Windows requires just a few steps to have FreeSWITCH run as a service. They are
as follows:

1. Open a Windows command-line session (click on Start | Run, type cmd, and
then click on the OK button).

2. Change the directory into your FreeSWITCH installation directory, as follows:

cd FreeSWITCH\freeswitch-1.2.1\Release

3. Run freeswitchconsole.exe with the -install argument, as follows:
freeswitchconsole -install FreeSWITCH
4. The last step is to configure the service itself.

If you are using Windows XP or Server 2003, open the services tool and click
on Start | Control Panel | Administrative Tools | Services.

Otherwise, if you are using later versions of Windows, simply type in
Services in the Start menu's search textbox. Select the Services icon in the
results bar.

Alternatively, you can also bring up the Services MMC Console by entering

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Windows Key + R and typing in services.msc, and then click on OK.

FreeSWITCH should now appear in the list of services:

-

L Services =REE X

File Action

o | F ez HE»reanw

. Services (Local)

FreeSWITCH Mame Description Status Startup Type Log On As o
% Distributed Transa.. Coordinates... Manual Metwork 5.,

Start the service 7 DNS Client TheDNS Cli... Started Autematic Network S...
“;Encrypting File 5y... Provides th... Manual Local Syste...

Description: " Extensible Authen... The Extensi... Started Manual Local Syste...

The FreeSWITCH service. i Fax Enables you... Manual Metwork S... =
* 3 FreeSWITCH The FreeSW... Automatic Local Syste...
. Function Discover... The FDPHO... Started Manual Lecal Service
“;Function Discover... Publishes th... Manual Local Service
.+ Google Update 5e.. Keeps your... Autornatic (D... Local Syste...
“:Google Update 5e.. Keeps your.. Manual Local Syste..
“:Group Policy Client The service .. Started Autematic Laocal Syste..
. Health Key and Ce... Provides X.5... Manual Lecal Syste...
“;HomeGroup Liste... Makes local... Manual Local Syste...
“sHomeGroup Provi... Performs ne... Manual Local Service
. HP Quick Synchro.. Started Autematic Local Syste..
S HP Service Started Autematic Laocal Syste..
% HP Software Fram... Started Manual Lecal Syste...
i HP Wireless Assist... This service ... Started Automnatic (D... Local Syste...
“;Human Interface ... Enables gen... Started Manual Local Syste...
“:IKE and AuthIP IPs... The IKEEXT .. Manual Local Syste..
. Interactive Service... Enables use... Manual Lecal Syste...

Extended /(‘Standard /

5. Right-click on FreeSWITCH and click on Start. The service will take a

moment to start up.

6. Confirm that the service is running by using the £s_c1i.exe utility found in

the Release folder.

7. You will see a welcome screen and a command prompt. Issue the status
command to confirm that the system is running.

8. Type /exit to close the fs_cli.exe program.

You now have FreeSWITCH running as a service in Windows.

The £s_c11i utility is discussed in greater detail in Chapter 10, Controlling

FreeSWITCH Externally.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Installation

Summary

In this chapter, we accomplished a number of objectives. They are as follows:

Downloaded and installed FreeSWITCH

Customized the installation by modifying the modules. conf file to compile
the mod_flite TTS module (Linux/Unix/Mac OS X only)

Customized the FreeSWITCH configuration by modifying modules.conf.
xml to automatically load mod_£f1ite when FreeSWITCH is launched

Launched FreeSWITCH and issued several commands to confirm its
operational status

Launched FreeSWITCH as a daemon (Linux/Unix) or as a service (Windows)

In the following chapter, we will put our new installation into action as we explore
the demonstration configuration of FreeSWITCH.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the
Example Configuration

Now that you have FreeSWITCH installed, it is time to explore the example
configuration (or example config). The example config is preconfigured with users,
a Dialplan, security settings, and more. The example config is designed to make
your first experience with FreeSWITCH as simple as possible by showing you what
FreeSWITCH can do.

In this chapter we will cover the following topics:

* Important VoIP and FreeSWITCH concepts

* Using the FreeSWITCH command-line interface (fs_c11i)
* Configuring a phone to work with FreeSWITCH

* (alling various extensions in the system

Important concepts to understand

FreeSWITCH is a very versatile piece of software. One of the biggest reasons that it's

so versatile is because the world of telephony is very dynamic. As the developers

of the software, we often faced difficult choices when making decisions about how
FreeSWITCH should behave in various situations. Quite often, we faced conundrums
where a large number of potential users required the software to work in a specific
way, and the others expected the exact opposite behavior. We easily support devices
that behave properly, but at the same time we must adapt to tolerate many devices that
blatantly violate specifications. FreeSWITCH was designed to scale, so we also had to
design things so you can start out with a self-contained static configuration and be able
to scale into using live dynamic configurations without missing a beat. This is a lot to
swallow for a new user but don't fret. When you installed FreeSWITCH in the previous
chapter, you also installed a fully functional example configuration that will get you
through most of this book, with only a few minor modifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

As we discussed in Chapter 1, Architecture of FreeSWITCH, FreeSWITCH is based on

a central core fuelled by a central XML registry and orbited by several modules that
communicate with each other via the core. We are going to use the example settings
in the XML registry to register some phones and make a few test calls. When you
make a call, the SIP module will push a request to the XML Dialplan, where the
digits you dialed are matched against a series of patterns called regular expressions.
Once a match has been found, the data from the XML extension that matched is
copied into the channel locally, so it has a list of instructions that it will execute in the
next stage of the call. It's possible to match more than one extension on the same pass
of the Dialplan depending on the choice of configuration keywords. For these first
few tests, just a single extension will be put to use, and you will have a chance to see
all of the call data that is available whenever a channel is in the ROUTING state. (For
details on channel states, see the Putting it all together section in Chapter 8, Advanced
Dialplan Concepts.)

In telephony jargon, we call a connection between two devices a call leg. The term A
leg is used to describe the communication path between the calling party (or caller)
and FreeSWITCH. The term B leg is used to describe the communication path between
the receiving party (or callee) and FreeSWITCH. Consider the following illustration:

FreeSWITCH

FreeSWITCH

User checking
his or her
voice mail

‘Aleg—» /7

& i)
Calling Receiving
A “one-legged” Call Party Party

A traditional call with two legs

oo
o0
i

If you are using a phone to call and listen to a demo extension then there is one call leg
in use, that is, the connection between your phone and FreeSWITCH. If you dial digits
that end up calling another phone currently registered to FreeSWITCH or push the call
to a service provider to call your cellular phone, you then have two call legs — the first
one, A leg, we explained, and another one, B leg, that connects FreeSWITCH and the
other phone or service provider. Each leg of the call has its own unique properties, and
a special relationship with the opposite leg in that particular call. When one or more
legs of a call are exchanging media with each other, we call that a bridge. In a bridged,
call, either leg of the call can perform certain operations on the other leg in the same
bridge such as putting it on hold, transferring it to another extension, or joining it with
a third party to form a three-way call.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Some calls only have one leg — there is a connection between one phone and
FreeSWITCH, and FreeSWITCH interacts with the caller directly. Frequently, this
type of interface is referred to as an IVR or Interactive Voice Response menu. Other
examples of one-legged calls include a user connected to voicemail, as well as a caller
connected to a conference room. IVRs are very powerful and you certainly have used
them before if you have ever called a system that provides a list of choices and asks
you to dial a digit indicating the choice you want to make. If you have ever used a
calling card, this is also a form of IVR that asks you to dial your account number,
PIN, and destination digits before completing your call. Some IVRs can even detect
speech and react purely on special words that you may say at the appropriate time.
With FreeSWITCH, it is simple to make an IVR, and we will learn a few ways to do
this in Chapter 6, Using XML IVRs and Phrase Macros and Chapter 7, Dialplan Scripting
with Lua.

The XML Dialplan separates the extensions into special groups called contexts.

A context is an XML tag containing several extension elements. An extension

is a collection of patterns to match against the dialed digits and a relative set of
instructions to execute based on a positive or negative match against the patterns.
Consider the following figure:

Clontext Clontext Clontext

—i— -E>I<tensions —i— -E>I<tensions —i— -E>I<tensions
i l:— -Conditions i l:— “Conditions i %— ‘Conditions
i T:— -Actions i T:— -Actions i T:— -Actions

*;— -E>I<tensions *;— -E>I(tensions *;— -E>I<tensions
i l:— -Conditions i l:— -Conditions i %— -Conditions
i T:— ‘Actions i T:— ‘Actions i T:— ‘Actions

i- -E>I<tensions +:— -E)I(tensions +:— -E>I<tensions
l:— -Conditions l:— -Conditions %— -Conditions
T:— -Actions T:— -Actions T:— -Actions

The XML dialplan hierarchy

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

Every new call that enters the FreeSWITCH core must have a pre-ordained set of
context, Dialplan, and extension digits to indicate where the call should be routed. In
our examples, we will be using the XML Dialplan and the default Dialplan context.
The extension digits will depend on what you dialed when you placed the call. Once
you dial an extension, the SIP Endpoint module will insert all of the call data it has
decoded from your SIP phone, set the Dialplan to XML, the context to default, and
push the call's state to ROUTING. The default ROUTING logic in the core will look up
the XML Dialplan module and push the call into its call hunt handler routine. This
routine connects to the XML registry and searches the list of contexts for the default
context. Once the context has been located, it parses each extension in the context,
testing the patterns held in the condition tag until it finds one that matches. Each
action tag within that condition tag contains an application and an optional

data argument. These applications provided by the application modules that we
discussed in Chapter 1, Architecture of FreeSWITCH, will be executed in order until the
last one is reached or the call ends.

The arguments to the applications can contain channel variables, a special group of
name/value pairs that are designed to influence the channel behavior, and provide
a way to store important call data. They look similar to the special pre-processor
variables we recently discussed, but only a single dollar sign is used rather than two.
${destination_number}, for instance, tells you what digits the caller dialed, and

is the primary value used to route calls. The condition tags use the field attribute
to denote which value to run the pattern match against. If this value is one of the
special variables held in the caller profile, you can omit the ${} for simplicity's sake.

The special caller profile variables are as follows. Some may seem unusual at first,
but as you use FreeSWITCH more, you will see where these all come into play:

® username

® dialplan

® caller id name

® caller id number

® callee id name

® callee id number

®* network addr

® ani

® aniii

® rdnis

®* destination_ number

¢ source

* uuid

b context

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The caller profile is just a collection of special information that every call has in
common, which is passed along from one leg to another. This information can be
accessed the same way as other variables, and should be considered read-only, as the
data is provided by the initial call setup. Following is a real example from the default
configuration, which uses the tone generator in the core to play a rendition of the
popular song from the 1980's video game, Tetris:

<extension name="tone_stream">
<condition field="destination number"
expression=""9198%">
<action application="answer"/>
<action application="playback"
data="tone_ stream://path=${base dir}
/conf/tetris.ttml;loops=10"/>
</conditions>
</extension>

As you can see, it uses field="destination number" to check if you dialed 9198,
and if you did, it answers the call and plays the tone stream. It uses ${base_dir}

to denote the location where the configuration is stored so it can deduce the path to
the correct file containing the tone data. (Don't worry if this seems like a lot to digest.
We will be explaining this information in more detail.) You have had a chance to see
FreeSWITCH in action by making a few test calls to the various example extensions
that are found in the example config. Channel variables can be very useful when
integrating outside information about a call, which you may want to set and retrieve
later in your own applications. These variables might contain information such as the
caller's account number, which is useful if someone calls in to manage their account.
There is an interface to set variables in the application interface provided by the set
application. Consider the following example:

<action application="set" data="customer id=1234"/>

From this point on, the channel variable customer_id will contain the value 1234. If
the value is not changed prior to the call ending then this value will also be available
in the Call Detail Record (CDR) data.

As the XML registry can be rather large and scary, we have designed it to be loaded
from several smaller files spread out into the configuration directory in logical

order. This means that rather than digging into one giant file, you can locate smaller,
simpler files, each of which can be used to configure a specific type of functionality in
FreeSWITCH.

_ The FreeSWITCH wiki contains a large diagram showing how
the example config is laid out: http://wiki.freeswitch.
o

org/wiki/Default config#Overview Diagram of
the Demo Configuration.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

Once FreeSWITCH loads the main registry (a file called freeswitch.xml), the

file is run through a special pre-processor that scans the file for special directives,
which are replaced in the file with the contents of other files. In some cases, the pre-
processor also sets global variables. This means that you can set important variables
once in the top-level configuration file and reference them later in the deeper sections
of the registry. Take an IP address or domain name for instance. Pretend that you
have some significant IP address, say, 74.112.132.98. If you use this value multiple
times in your configuration, you can put the following line somewhere at the top of
the first file that is loaded:

<X-PRE-PROCESS cmd="set" data="my ip=74.112.132.98"/>

Now you can place $${my_ip} in your configuration where you want your IP
address to appear. This expansion is done by the pre-processor, so in the final XML
generated and loaded by FreeSWITCH, the IP will appear as if it was hardcoded into
the file everywhere $${my_ip} appeared.

Another great feature of the XML pre-processor is the ability to include other files
with a single line. Following is an example line used in the example config to load all
the files from a particular directory in place inside the default Dialplan context:

<X-PRE-PROCESS cmd="include" data="default/*.xml"/>

This means that every single file in the default folder that ends with . xml will

be included in place of the preceding line. This makes it possible to create new
extensions in their own dedicated files and include them into your Dialplan without
disturbing the default.xml file (the file containing the default Dialplan context).

Putting FreeSWITCH to work

Now that we have covered the basics, it is time to roll up our sleeves and really
put FreeSWITCH to work. We will first learn a bit more about the main tool for
controlling FreeSWITCH, the Command Line Interface (or CLI), after which we
will configure one or two telephones and make some test calls.

Controlling FreeSWITCH with the CLI

In Chapter 2, Building and Installation, we briefly discussed a utility called £s_c1i.
As we generally will run FreeSWITCH as a daemon (Linux/Unix) or a service
(Windows), it is important to become familiar with using £s_c1i. For convenience,
you can add £s_cli.exe to your path in Windows. In Linux/Unix you can create a
symbolic link, as follows:

#>1n -s /usr/local/freeswitch/bin/fs cli /usr/local/bin/fs cli

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Some Linux users prefer to add /usr/local/freeswitch/bin to the Linux path.

Now, if you simply type £s_c1i at the system command prompt, it will launch the
fs_cli program for you.

Generally speaking, Windows executable files will have . exe at the
M end of the filename. On Windows systems, the £s_c1i program is
Q named fs_cli.exe. Windows users can type £s_cli.exe or just
fs_cli, whereas Linux/Unix users should type £s_c11i to launch
the FreeSWITCH command-line utility.

Launch the command-line utility:

#>fs cli

You will be greeted with the following FS CLI welcome message as shown in the
following screenshot:

Anthony Mines
Michael Jerris, T
FreeSWITCH (http:
Paypal Donations
Bro

Once connected, everything you type will be sent to the FreeSWITCH server, except
for commands that begin with a / (slash) character. These slash commands control
the behavior of the £s_c1i program itself. Issue the /help command to see the list of
available f£s_c1i slash commands as shown in the following screenshot:

freeswitch@internal> /help
Command Description

Exit the program.

nt commands.
Log commands
Filter logs for a single call uuid
Filter commands.
ebug [0-7] Set debug level.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

Note that there are several different slash commands for exiting the system: /exit, /
quit, and /bye. Also, there is the ellipsis (...) shortcut for exiting out of the £s_c1i
program. All four of these commands will exit the £s_c11i utility and return you

to the system prompt. They are all equivalent, so use whichever suits you. Keep in
mind that when running FreeSWITCH from the console, that is, not as a daemon or
service, the ellipsis shortcut will perform a FreeSWITCH system shutdown!

The other slash command to keep in mind is /1og. By default, £s_c11 starts up with
full debug logging enabled. (The welcome screen mentions this fact with +OK log
level [7] displayed at start up.) The /1og command will let you control what level
of debug logging will be displayed during your £s_c1i session. You can change

the log level at any point during your session. When you exit and restart £s_c11,
the log level will reset to 7. (This behavior can be controlled with the -d or --debug
command-line parameters.) Unless you wish to see a lot of debug information, it is
best to set the log level to 6, as follows:

freeswitcheinternal>/log 6
+0OK log level 6 [6]

Each number from 0 to 7 represents a different debug level as noted in the
following table:

Debug level: Name: Text display color:
0 Console White

1 Alert Red

2 Critical (Crit) Red

3 Error (Err) Red

4 Warning Violet

5 Notify Light Blue

6 Information (Info) Green

7 Debug Yellow

You may use the name (case-insensitive) as well as the number when specifying the
log level:

freeswitch@internal>/log info
+0K log level info [6]

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

All the other commands you type will be sent to the FreeSWITCH server. There are a
few basic commands to become familiar with. They are as follows:

* help: Displays a list of available CLI commands; these commands are called
FSAPI commands or just APIs for short

* version: Displays the FreeSWITCH version you are running

* status: Displays some statistics about the currently running instance of
FreeSWITCH

* show channels: Displays a list of individual channels that are active

* show calls: Displays a list of bridged calls

A channel is a single call leg. An example of a one-legged call is a user checking his
or her voicemail. On the other hand, a call is two individual call legs bridged (that is,
connected) together. Be sure to understand the difference between show channels
and show calls.

In the next section, we will learn a few more commands that will help us configure
phones to work with FreeSWITCH.

Configuring a SIP phone to work with
FreeSWITCH

Most of the devices that we connect to FreeSWITCH will be SIP-based. SIP or
Session Initiation Protocol is a very common signaling protocol for telephone
calls. (SIP is not limited to voice; it can handle chat, video, and other session types.)
SIP phones come in two varieties: hard phones and soft phones. A hard phone is

a standalone device with a headset, keypad, and usually a digital display. A soft
phone is a software application that runs on a computer and utilizes the computer's
speaker and microphone or an external headset. We will examine the setup process
for a free soft phone called X-Lite, as well as the basic SIP configuration options for
hard phones from Aastra, Polycom, and Snom.

SIP settings

All SIP devices have a minimum set of configuration parameters that must be

set. Like all complex protocols, SIP has its share of obscure and sometimes arcane
configuration options. However, they are well beyond the scope of this book. We
will be limiting our discussion to the basics that are necessary to make a SIP device
connect to FreeSWITCH and perform standard PBX functions: make and receive
calls, transfer calls, put calls on hold, and so on.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

In our SIP configuration, we will have our SIP devices register with our FreeSWITCH
server. When a SIP device is registered with an SIP registrar, then that registrar
knows how to route calls to the SIP device. FreeSWITCH acts as a SIP registrar. SIP
allows for digest authentication for SIP endpoints that wish to register. It is possible
to allow unauthorized SIP endpoints to register, but it is not recommended. (A good
analogy might be that of an open relay SMTP server. If you just let anyone into your
system to send an e-mail or make phone calls, bad things are bound to happen.
Please do not do it!)

SIP users bear other semblances to e-mail. A SIP URI contains user@edomain just
like an e-mail address. There is also a real name or display name in addition to
the username, as well as a domain. There is also an authorization username and
password. The authorization username does not need to be the same as the
username but in many cases it is.

FreeSWITCH comes preconfigured with 20 SIP user accounts. (In Chapter 4, SIP and
the User Directory, we will discuss these in more detail, including how to configure
additional users.) The user names are 1000 through 1019. You can use any of these
users for testing.

The following are the SIP settings for user 1000:

e Username: 1000
e Authorization Username: 1000
e Password: 1234

e Domain: [IP address of your FreeSWITCH server]

Keep these settings handy for setting up your SIP device. Let's look at the
configuration process for several different SIP phones. Even if your device is not
specifically mentioned here, you can still use the basic principles of configuring

the SIP device and you should be able to get your phone connected without much
hassle. In each of the following examples, we will connect a different telephone to a
FreeSWITCH server running on a local LAN.

X-Lite soft phone

X-Lite (http://www.counterpath.com) is a free soft phone. (X-Lite is, however, not
open source.) Download and install X-Lite on a computer that is on the same LAN as
your FreeSWITCH server.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

recommended nor supported.

Launch the X-Lite application. You will see a phone as shown in the

following screenshot:

While it is technically possible to run a soft phone on the
same machine as your FreeSWITCH server, this is neither

"Litﬂ

Softphone View Contacts

Help

200 @ of mep) & i

Ym

Contacts I Histary I SoftPhone.com
: Woice & Single Number PEX &
Preserce Messaging iden Calling “Inantity Interoperatility
oo

COUNTERPATH

Click on Softphone, and then click on SIP Account Settings... to open the SIP
account menu. X-Lite supports just a single SIP account. Click on Add to open up the

SIP Account screen. Fill in the form fields.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

Setting up extension 1005 would look like the following screenshot:

SIP Account

Account [Voicema'll " Topology " Transport " Advanced]

Account name: | Test User |

Protocol: | SIP |

User Details

* UserID:| 1005 ‘|

* Domain: | 1015.0.210 ‘|

Password: | sees |

Display name: | Test User |

Autharization name:[1005]

~ Domain Prawy

|2| Register with domain and receive calls
Send outbound via:
@ Domain

() Proxy Address: :

J

Click on OK to accept these settings. The phone will attempt to register with
FreeSWITCH. A successful registration looks like the following screenshot:

"Lite [=T1E]

Softphone Miew Contacts Actions Help

- Qoo L of m Y

| - B

Account enabled. The phone is ready. »

I Contacts I History I SoftPhone.com I

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This phone is now registered. If you receive a different message in the display, there
was most likely a configuration error. Several common errors are 403, 404, and 408:

403 —Forbidden: This means that the authorization username or password is
incorrect.

404 —Not Found: This means that the username specified was not found by
the FreeSWITCH server.

408 — Timeout: Usually, this means that the domain is not correct or there is
a network problem. Be sure to check firewall settings to make sure that port
5060 traffic is not being blocked.

Now that your phone is registered, you can begin making test calls. Skip to the
Testing the example Dialplan section.

Hard phones

We will take a brief look at setting up a few different kinds of hard phones. After
reviewing the sample setup for Aastra, Polycom, and Snom phones, you will know
the basic principles and should be able to set up any SIP-compliant telephone.

Before you start, be sure that you have at least the following basic information for
your phone:

IP address: You will need to know the IP address of the phone if you wish
to use the web interface. Most phones also have a small menu system for
configuring the phone itself.

Admin name: Most phones will have an admin user.

Admin password: Most phones also require an admin password.

If you are unsure of the telephone's default username and password, consult the
manufacturer's website for more information.

Most hard phones are field upgradable, that is, the manufacturer
M supplies updated firmware that can be downloaded and
Q installed on each phone. Visit the manufacturer's website to find
out if there is an updated firmware available for your phone as
well as what features it includes.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

Aastra phones

Aastra phones have a standard web-based interface. Point a browser to the phone's
IP address and then log in. Click on the Global SIP link on the navigation pane. The
interface for the Aastra 9112i will look as shown in the following screenshot:

800 Aastra 9112i =
GD (G) x I 4) fod ([) [hrp://10.15.0.153/globa 73 v JS(*F: GoogQ)
Aastra 9112i T -
A ASTHRA
Status
System Information [Global SIP Settings
Operation
Liser Password Basic SIP Authentication Settings
Programmable Keys Screen Name Aastra Test
Directary Phone Number 1006
Reset
Basic Settings Caller ID 1006
Preferences Authentication Name 1006
Call Forward Password o U
Advanced Settings ; <
Matwark Line Mode | Generic :].
Global SIP Basic SIP Network Settings
Action URI Proxy Server 10.15.0.210
Configuration Server Proxy Port 5060
Firmware Update
Troubleshooting Backup Proxy Server 0.0.0.0
Backup Proxy Port 4]
Qutbound Proxy Server 0.0.0.0
Outbound Proxy Port 1]
Registrar Server 10.15.0.210
Registrar Port 5060
Backup Registrar Server 0.0.00
Backup Registrar Port 0
Registration Period] A
v
& S) I RE=
[# Downloads Common_Platf... Clear
Stopped * v

Fill in all the fields under Basic SIP Authentication Settings. Under Basic SIP
Network Settings, fill in the Proxy Server, Proxy Port, Registrar Server, and
Registrar Port fields. Scroll down and click on Save Settings, then restart the phone
by clicking on the Reset link on the navigation pane. The phone will restart and
connect to FreeSWITCH.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

If the registration is successful then the display name (Aastra Test), and the phone
number (1006) will show in the telephone display. Now that your phone is registered,
you can begin making test calls. Skip to the Testing the example Dialplan section.

Polycom phones

Polycom phones have a web interface as well as a menu on the phone. You can use
either; however, it is easier to use the web interface. Point a browser at the phone's IP
address and log in. Click on the Lines link. Like many SIP phones, the SoundPoint IP
330 can register to more than one server. In this example, we'll use Line 1 to connect
to FreeSWITCH. The web interface for a Polycom SoundPoint IP 330 looks like the
following screenshot:

®00 Polycom - SoundPoint IP Configuration Utility (@]

op (G (%) (A) e tad ([hup://10.15.0.110/reg_Lhtm 17 v J= (¥ CoogleQ]
Polycom - SoundPoint IP Configur... + —

POLYCOM SoundPoint IP Configurati

General Network SiP Lines
Line Parameters:

Identification

Display Mame | Polycom Test

Address | 1007

Auth User ID | 1007

Auth Password | 1234

Label | 1007

Transpor

%) Downloads | Common_Platf...

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

For Line 1, fill in the following fields: Display Name, Address, Auth User ID, Auth
Password, and Label. Under Server 1, fill in the Address and Port fields. Scroll
down and click on the Submit button. The phone will reboot and then connect to
FreeSWITCH.

Now that your phone is registered, you can begin making test calls. Skip to the
Testing the example Dialplan section.

Snom phones

Snom phones have a full-featured web interface for configuration. Point a browser at
your phone's IP address to open up the web interface. Notice that Snom phones have
the concept of identities, which allow you to connect to more than one server. Click
on the Identity 1 link on the navigation pane and fill in the SIP configuration fields.
The web interface for a Snom 300 looks like the following screenshot:

®00 snom 300 (o]
http://10.15.0.114/line_login.htm?|=1
- - -
Configuration Identity 1 VERSION
Operation
Home Login EIP NAT = RTP
Directory Login Information:
Setup Identity active: @on Doff @
Preferences Displayname: Snom Test (@]
Speed Dial Account: 1008 @
Function Keys Password: ees @
Identity 1 ®
Identity 2 Registrar: 10.15.0.210
Identity 3 Outbound Proxy: 10.15.0.210 @
Identity 4 Failover Identity: @
Action URL Settings Authentication Username: 1008 @
Advanced Mailbox: @
Trusted Certificates Ringtone: @ |
ST EEE Custom Meledy URL: @
Status
. Display text for idle screen: 1008 @
Systern Information
Log Ring After Delay (sec): @
SIP Trace Record Missed Calls: @on Doff @
DNS Cache Record Dialed Calls: @on Ooff @
Subscriptions Recerd Received Calls: ®on (off @
PCAP Trace S Re-Ri 10 Play Ri
Py ave -Register Play Ringer
CEETEE Remove Identity Remove All Identities
Manual
snom :
VolP phones X
Il.gl Downloads Common_Platf... Clear

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Configure Identity 1 by filling in the fields under Login Information: Displayname,
Account, Password, Registrar, Outbound Proxy, Authentication Username, and
Display test for idle screen. Click on Save then click on Re-Register. The phone will
immediately connect to FreeSWITCH.

Now that your phone is registered, you can begin making test calls. Skip to the
Testing the example Dialplan section.

FreeSWITCH supports the use of the local sound card or an

external headset that is connected to the FreeSWITCH server.

The optional PortAudio module (mod_portaudio) can be

~ compiled and enabled in the same manner as the mod_flite
example discussed in Chapter 2, Building and Installation. See
http://wiki.freeswitch.org/wiki/Mod portaudio
for details on how to configure and use the PortAudio module
with FreeSWITCH.

Testing the example Dialplan

Now that you have a phone configured, you can perform several kinds of test calls.
If you can get two different phones configured, you can make a few additional types
of test calls. Before you begin dialing, be sure that you have installed the default
sounds and music files. (Windows users will have them installed by default. Linux/
Unix users should refer to the Step 5 - install sound and music files section in Chapter 2,
Building and Installation, for more information.)

Test calls for a single phone

The following tests are simple ways to confirm that FreeSWITCH is operating
properly, as well as learning more about what it can do. In each case, you simply
need to dial the four-digit number and click on your phone's Send button.

The Tetris extension

Dial 9198. You will hear what hopefully sounds like the Tetris theme song. The
sound is generated solely using tone generation. (See http://wiki.freeswitch.
org/wiki/TGML for more information on TGML, the tone generation markup
language used in FreeSWITCH.)

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

Echo test

Dial 9196. Speak into the phone and the audio will be echoed back to you. This test
confirms that audio is flowing in both directions. (Keep in mind that if your phone
and the FreeSWITCH server are on the same LAN then the echoed audio will return
very quickly. Try dialing 9195, which will do an echo test with a 5-second delay.)

Music on hold

Dial 9664. The system will play the default music on hold. If you hear the music,
your music on hold files are properly installed, and FreeSWITCH is correctly
playing those sound files.

Demonstration IVR
Dial 5000. The demonstration IVR menu will play. You will be given the options that
are described as follows:

* Call FreeSWITCH public conference

* Echo test

* Music on hold

* Register for ClueCon

* Screaming Monkeys (yes, really)

* Sample IVR sub-menu
The FreeSWITCH public conference is quite literally a public conference room,
which anyone may call into. Note that your FreeSWITCH system will need to have

the Internet access, and that your firewall and NAT must be configured to allow SIP
and RTP traffic.

The echo test and music on hold options are identical to dialing 9196 and 9664,
respectively.

ClueCon is an annual telephony developer conference. Dialing 4 will transfer you to
an operator who will be glad to get you registered for the conference.

The sample sub-menu is very simple— press * to return to the main menu.

The demonstration IVR menu is found at conf/ivr menus/demo ivr.xml.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The information application

Dial 9192. This extension is very simple. Before dialing, be sure to open up the
fs_cli utility. The info application will dump a lot of debug data about the current
phone call. Change the debug level to 6 (INFO) before you dial. You can find the
sample output of this in the Chapter 3 folder of the code bundle.

Don't worry about what all of that means right now. Just remember that
FreeSWITCH stores a lot of information for each call leg that is active. The info
Dialplan application is useful for debugging your custom Dialplan entries.

Test calls for two or more phones

The true power of FreeSWITCH is seen in how it can handle calls from multiple
endpoints. The following tests will give you an idea of some of the features that
FreeSWITCH supplies. The tests in this section require at least two different
telephones to be configured.

Calling another telephone

Dial 1000, 1001, and so on. Simply dial the other phone's extension number and it
should ring. Most SIP phones are like regular telephones, so just pick up the handset
to answer. If a telephone isn't configured for a particular extension, you will be
connected to the voicemail application and prompted to leave a message in the
mailbox for the extension you called.

Parking a call

Call another telephone and wait for an answer. Click on the Transfer button and dial
6001. Hang up. The other party is now parked and will hear music on hold. Retrieve
the call in one of the following ways:

1. Dial 6001. The parked call is automatically unparked.

2. Dial 6000 and wait for the system to answer. The system will prompt you for
the extension number.

Dial 6001. The parked call is automatically unparked.

Calling a conference
Dial 3000 from several different phones. All parties will be able to hear each other.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Test Driving the Example Configuration

Example Dialplan quick reference

Consult the following table for a list of extension numbers and their functions:

Extension Function

1000 - 1019 Local extensions

** + extension number Intercepts a ringing phone (that is, call pickup)
2000 Samples call group: Sales

2001 Samples call group: Support

2002 Samples call group: Billing

3000 - 3399 Samples conference rooms

4000 or *98 Retrieves voicemail

5000 Demo IVR

5900 FIFO queue park

5901 FIFO queue retrieve

6000 Valet park/retrieval, manual
6001-6099 Valet park/retrieval, automatic

7243 RTP multicast page

0911 Group intercom example #1

0912 Group intercom example #2

0913 Emergency outbound conference example
9178 Example fax receive

9179 Example fax transmit

9180 Ring test, far end generates ring tone
9181 Ring test, send U.K. ring tone

9182 Ring test, send music as ring tone
9183 Answer, then send U K. ring tone
9184 Answer, then send music as ring tone
9191 ClueCon registration

9192 Information dump

9195 Delayed echo test

9196 Echo test

9197 Milliwatt tone (test signal quality)
9198 Tetris

9664 Music on hold

The bulk of the example Dialplan is defined in conf/dialplan/default.xml.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Summary

In this chapter, we were introduced to the default configuration of FreeSWITCH.
Among the topics we discussed were the following:

* The important concepts behind how and why FreeSWITCH behaves when
you make calls
* Basicuse of £s_c1i, the FreeSWITCH command-line interface utility

* How to configure SIP devices to connect to FreeSWITCH using the
predefined user accounts

* Testing the default Dialplan by dialing a number of different extensions

We now turn our attention to another important aspect of
FreeSWITCH: the user directory.

In the next chapter, we will take a closer look at the FreeSWITCH user directory.

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

In the previous chapter, we briefly introduced SIP, the Session Initiation Protocol,
where we discussed how to register a telephone with FreeSWITCH. In this chapter,
we will build upon that foundation and learn more about how we use SIP to connect
users, both locally and around the world. SIP is a ubiquitous protocol in the VoIP
landscape. In this chapter, we will cover the following topics:

* Learning the principles behind the FreeSWITCH user directory

* Exploring and configuring the FreeSWITCH user directory for the first time
* Learning how to connect FreeSWITCH to service providers

* Making modifications to the Dialplan and directory XML configuration

* Briefly discussing SIP profiles and user agents

Understanding the FreeSWITCH user
directory

The FreeSWITCH user directory is based on a centralized XML document,
comprising of one or more <domain> elements. Each <domain> can contain either
<users> elements or <groups> elements. A <groups> element contains one or more
<group> elements, each of which contains one or more <users> elements. In turn,

a <users> element contains one or more <user> elements. A small, simple example
would look like the following:

<section name="directory"s>
<domain name="example.com">
<groups>
<group name= "default">
<users>
<user id="1001">

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

<params>
<param name="password" value="1234"/>
</params>
</users>
</user>
</group>
</groups>
</domain>
</section>

Downloading the example code

M You can download the example code files for all Packt books
you have purchased from your account at http: //www.
Q packtpub. com. If you purchased this book elsewhere,
you can visit http: //www.packtpub. com/support and
register to have the files e-mailed directly to you.

Some more basic configurations may not have a need to organize the users in groups
so it is possible to omit the <groups> element completely, and just insert several
<user> elements into the top <domain> element.

The important thing is that each user@domain derived from this directory is
available to all components in the system —it's a single centralized directory for
storing all FreeSWITCH user information. If you register as a user with a SIP phone
or if you try to leave a voicemail message for a user, FreeSWITCH looks in the same
place for user data. This is important because it limits duplication of data, and makes
it more efficient than it would be if each component kept track of its users separately.

This system should work well for a small system with a few users in it, but what
about a large system with thousands of users? What if a user wants to connect his

or her existing database to FreeSWITCH to provide the user directory? Well, using
mod_xml_curl that we discussed in Chapter 1, Architecture of FreeSWITCH, we can
create a web service that gets the request for the entries in the user directory, in much
the same way a web page sends the results of an HTML form submission. In turn,
that web service can query an existing database of users regardless of the format,

and construct the XML records in the format that the FreeSWITCH registry expects.
mod_xml_curl returns the data to the module requesting the lookup. This means that
instant, seamless integration with your existing setup is possible; your data is still
kept in its original, central location.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The user directory can be accessed by any subsystem within FreeSWITCH. This
includes modules, scripts, and the FSAPI interface among others. In this chapter,
we are going to learn how the Sofia SIP module employs the user directory to
authenticate your soft phone or hardware SIP phone. If you are a developer, you
may appreciate some nifty things you can do with your user directory, such as
adding a <variables> element to either the <domains, the <groups>, or the <user>
element. In this element you can set many <variable> elements, allowing you to
set channel variables that will apply to every call made by a particular authenticated
user. This can come in very handy in the Dialplan because it allows you to make
user-specific routing decisions. It is also possible to define IP address ranges using
CIDR notation, which can be used to authenticate particular users based on what
remote network address they connect from. This removes the need for a login and
password, if your user always logs in from the same remote IP address.

Authentication is the process of identifying a user. Authorization is
the process of determining the level of access of a user. Authentication
answers the question, "Is this person really who he says he is?"
Authorization answers the question, "What is this person allowed to

Y do here?" When you see expressions such as IP Auth and Digest Auth,
remember that they are referring to the two primary ways of identifying
(that is, authenticating) a user. IP authorization is based upon the user's
IP address. Digest authentication is based upon the user supplying
a username and password. SIP (and FreeSWITCH) can use either
method. Visit http://en.wikipedia.org/wiki/Digest access_
authentication for a discussion of how digest authentication works.

The directory is implemented in pure XML. This is advantageous for several
reasons, not least of which is the X in XML: Extensible. Since XML is, by definition,
extensible, the directory structure is also extensible. If we need to add a new element
to the directory, we can do so simply by adding to the existing XML structure.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

Working with the FreeSWITCH user
directory

The example configuration has one domain with a directory of 20 users. Users can
be added or removed very easily. There is no set limit to how many users can be
defined on the system. The list of users is collectively referred to as the directory.
Users can belong to one or more groups. Finally, all the users belong to a single
domain. By default, the domain is the IP address of the FreeSWITCH server.

FreeSWITCH also supports multiple domains. You can find
% more information at http://wiki.freeswitch.org/
g wiki/Multi-tenant.

In the following sections we will discuss these topics:

e User features
* Adding a user
* Testing voicemail

* Groups of users

User features

Let's begin by looking at the XML file that defines a user. Locate the file conf /
directory/default/1000.xml and open it in an editor. You should see a file like
the following;:

<include>
<user id="1000">

<params>
<param name="password" value="$${default password}"/>
<param name="vm-password" value="1000"/>

</params>

<variables>
<variable name="toll_allow"

value="domestic, international, local"/>

<variable name="accountcode" value="1000"/>
<variable name="user_ context" value="default"/>
<variable name="effective caller_id name"
value="Extension 1000"/>
<variable name="effective_caller_id_ number"
value="1000"/>

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<variable name="outbound caller id name"
value="$${outbound caller name}"/>
<variable name="outbound caller id number"
value="$${outbound caller id}"/>
<variable name="callgroup" value="techsupport"/>
</variabless>
</user>
</include>

The XML structure of a user is simple. Within the <include> tags the user has the
following;:

* The user element with the id attribute
* The params element, wherein parameters are specified

¢ The variables element, wherein channel variables are defined

Even before we know what many of the specifics mean, we can glean from this
file that the user ID is 1000 and that there is both a password and a vm-password.
In this case, the password parameter refers to the SIP authorization password.

(We discussed this in the Configuring a SIP phone to work with FreeSWITCH section
in Chapter 3, Test Driving the Example Configuration.) The expression $${default_
password} refers to the value contained in the global variable default_password,
which is defined in the conf /vars.xml file. If you surmised that vm-password
means voicemail password then you are correct. This value refers to the digits that
the user needs to dial when logging in to check his or her voicemail messages. The
value of id is used both as the authorization username and the SIP username.

Additionally, there are a number of channel variables that are defined for this user.
Most of these are directly related to the default Dialplan. The following table lists
each variable and what it is used for:

Variable Purpose

toll allow Specifies which types of calls the user can
make

accountcode Arbitrary value that shows up in CDR data

user_context The Dialplan context that is used when this
person makes a call

effective caller id name Caller ID name displayed on called party's

phone when calling another registered user

effective caller_id number Caller ID number displayed on called party's
phone when calling another registered user

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

Variable Purpose
outbound_caller_ id_name Caller ID name sent to provider on outbound
calls

outbound_caller_id number Caller ID number sent to provider on
outbound calls

callgroup Arbitrary value that can be used in Dialplan
or CDR

In summary, a user in the default configuration has the following;:

* A username for SIP and for authorization

* A voicemail password

* A means of allowing/restricting dialing

* A means of handling caller ID being sent out

* Several arbitrary variables that can be used or ignored as needed

Let's now add a new user to our directory.

Adding a user

Adding one or more users is a simple two-step process, which is as follows:

1. Create a new XML file for the user, usually by copying an existing file.
2. Modify the Local_Extension Dialplan entry.

In this example, we will create a new user for a person named Gwen and a username
of 1100. Perform the following steps:

1. Open a terminal window, and change the directory to conf /directory/
default.

2. Make a copy of 1000.xml and name it 1100.xml. A Linux/Unix session
looks as follows:
#>cd /usr/local/freeswitch/conf/directory/default
#>cp 1000.xml 1100.xml

3. Open 1100.xml in an editor and make the following changes:

o

Replace all occurrences of 1000 with 1100

° Change the value of effective_caller id_name to Gwen

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

4. The new file should look as follows:

<include>
<user id="1100">
<params>
<param name="password" value="$${default password}"/>
<param name="vm-password" value="1100"/>
</params>
<variables>
<variable name="toll allow"
value="domestic, international, local"/>
<variable name="accountcode" value="1100"/>
<variable name="user context" value="default"/>
<variable name="effective caller id name" value="Gwen"/>
<variable name="effective caller id number"
value="1100"/>
<variable name="outbound caller id name"
value="$${outbound caller name}"/>
<variable name="outbound caller id number"
value="$${outbound caller id}"/>
<variable name="callgroup" value="techsupport"/>
</variabless>
</user>
</include>

5. Save the file. Next, we need to edit the Dialplan entry for
Local_Extension.Cnxnlconf/dialplan/default.xmlinznledﬁor
and locate the following lines:

<extension name="Local Extension">
<condition field="destination number"
expression=""(10[01] [0-9])S$">

This Dialplan extension, as its name implies, routes calls to local extensions. In our
case, a local extension is a phone registered to a user in our directory. Recall that
FreeSWITCH comes with 20 directory users predefined, numbered 1000 through 1019.
This extension corresponds to those 20 users. By default, any call made to 1000, 1001,
..., 1019 will be handled by the Local_Extension Dialplan entry. We need to add 1100
to the regular expression. Edit the expression value so that it looks as follows:

~(10[01] [0-9] |1100)$

Save the file. (Regular expressions are discussed in greater detail in Chapter 5,
Understanding the XML Dialplan, in the Regular expressions section.)

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

The last thing we need to do is reload the XML configuration. Launch £s_c1i and

issue the reloadxml command as follows:

freeswitch@internal> reloadxml

+OK [Success]

2012-09-14 14:27:32.942464 [INFO] mod enum.c:871 ENUM Reloaded
2012-09-14 14:27:32.942464 [INFO] switch time.c:1163 Timezone reloaded

530 definitions

Our new extension has been defined, and we should now be able to register a SIP
phone to user 1100. Using the methods described in Chapter 3, Test Driving the
Example Configuration, register a SIP phone to user 1100. An X-Lite configuration

looks like the following screenshot:

Linux/Unix users can save time by opening two terminal

M windows. Run £s_c1i in one window and your editor in
Q the other. For advanced handling of multiple windows check
out the GNU Screen utility. More information can be found at
http://www.gnu.org/software/screen.

SIP Account

Account | Veicemail

Protocol:

~ User Details

Account name: | Test

* User ID:

Authorization name:

Topology || Transport || Advanced

User

1100

10.15.64.228

Gwen

1100

~ Domain Proxy

|l :Reqgister with domain and receive calls

Send outbound via:
& Domain
Prowxy Address:

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The registered phone can now make outbound calls, and can receive inbound calls
from those who dial 1100.

M To see which SIP phones are registered, issue this
Q command at the FreeSWITCH command line:

sofia status profile internal reg.

Now that we have successfully added a user, let's test a common feature: voicemail.

Testing voicemail

Each user in the directory has a voice mailbox, where others can leave voice
messages. In the example Dialplan configuration, unanswered calls to a user will go
to the user's voicemail after 30 seconds. Make a test call to confirm that everything
is working. Dial the destination extension and let it ring. After about 30 seconds,
the voicemail system will answer; record a message of at least three seconds (the
minimum message length), and then hang up. (If you have only one phone for
testing, try dialing your own extension.)

The user's phone will now have a message-waiting indicator. An X-Lite soft phone
with a message waiting looks like the following screenshot:

Softphone View Contacts Help

a0 @ o mawp 0 H

[Contacts T History r SoftPhone.com]

Notice the recording icon and the telephone handset icon. Each has a red circle
indicating the number of voicemail messages and missed calls, respectively.

Al

~ Save time when leaving a voice message by pressing #, to skip
past the user's outbound greeting.

Retrieving the message is also simple; dial *98 or 4000. The voicemail system will

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

guide you through logging in and listening to new or saved messages. A typical
session would sound like the following:

4000

"Welcome to your voicemail. Please enter your ID, followed by pound."
11004

"Please enter your password, followed by pound"

11004

"You have one new message."

When a user has a new message, the system will automatically play it along with the
date and time that the message was left. The default voicemail menus are configured
as follows:

Main menu:

1—Listen to new messages

2 —Listen to saved messages

5—Options menu (recorded name, greeting, and so on)
— Exit voicemail

While listening to a message:

1—Replay message from the beginning
2—Save message

4 —Rewind

6 —Fast-forward

After listening to a message:

1—Replay message from the beginning
2—Save message

4—Send to e-mail (requires configuration)

7 —Delete message

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Feel free to try out some of these options. Log in to your voicemail and record an
outbound greeting. By default, you can record up to 10 different greetings; however,
most users only record a single greeting. Typically, we will use greeting number one.

u All of the voicemail options are customizable. Look in the file
~ conf/autoload configs/voicemail.conf.xml.You can
Q edit the default voicemail profile or even create your own
custom voicemail profiles.

Now that we have voicemail working, we can concentrate on one other useful
feature: groups of users.

Groups of users

Larger installations frequently need the ability to dial multiple telephones. For
example, a department in a company might have several users, all of whom are
responsible for answering calls to that department. At the same time, they each have
their own extension number, so they can individually receive calls. FreeSWITCH has
a directory feature that allows users to be grouped together. A user can belong to
multiple groups.

Some PBX systems employ an advanced form of inbound call
routing called ACD or Automatic Call Distribution. Call

M groups are not used for this kind of application. Although it
is beyond the scope of this publication, FreeSWITCH users
wanting advanced functionality are encouraged to investigate
FIFO queues. See http://wiki.freeswitch.org/wiki/
Mod_fifo for more information.

Groups are defined in the file conf /directory/default.xml. Open the file and
locate the groups node. Notice that there are four groups already defined. They are
as follows:

* Default— All users in the directory

* Sales—1000 to 1004

* Billing—1005 to 1009

* Support—1010 to 1014

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

The latter three groups are merely arbitrarily defined groups that can be modified or
removed as needed. The default group, though, is a bit more interesting. It contains
every user in the directory. (Use with caution!) Let's add a new group and then
examine how groups work. Perform the following steps:

1. Open conf/directory/default.xml. Add the following lines inside the
groups node:

<group name="custom">
<users>
<user id="1000" type="pointer"/>
<user id="1100" type="pointer"/>
</users>

</group>

2. If you have two or more telephones registered then use their extension
numbers instead of 1000 and 1100. Save the file.

3. Launch fs_cli and press F6 or issue the reloadxml command.

Confirm that the new custom group has been added by using the group_
call command. Your output should be similar to the following:

freeswitcheinternal> group call custom

[sip invite domain=10.15.64.229,presence_
1d=1000@10.15.64.229] error/user not_ registered, [sip invite_
domain=10.15.64.229,presence_id=1100@10.15.64.229]sofia/internal/
sip:1100@10.15.129.38:5060;rinstance=8eecf059256b51f1;fs
nat=yes;fs path=sip%3A1100%4010.15.129.38%3A5060%3Brinstance%3D8ee
cf059256b51f1

What significance does this chunk of apparently random gibberish hold? The group_
call command is used to create a SIP dialstring for calling multiple telephones.

In our example, user 1000 is not registered and therefore would not receive a

call. (Hence the error of user not_registered.) However, user 1100 is indeed
registered. If a user in a group is not registered, when the group is called, that user

is effectively ignored. Before we can call our new group we need to add it to the
Dialplan as follows:

1. Open conf/dialplan/default.xml and locate the group_dial billing
extension:

<extension name="group dial billing"s>
<condition field="destination number" expression=""2002$">
<action application="bridge"
data="group/billing@${domain name}"/>
</conditions>

</extensions>

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

2. Insert the following new lines after the </extension> tag of the group_
dial billing extension:
<extension name="group dial_custom">
<condition field="destination number" expression=""2003$">
<action application="bridge"
data="group/custom@${domain name}"/>
</conditions>

</extensions>

Save the file.
Launch £s c1li and issue the reloadxml command.

5. Test your group by dialing 2003. All the extensions in your group
should ring.

When all of the phones in a group are ringing, the first one to answer will win and
receive the call. All the other phones will stop ringing.

We have seen how we can connect telephones to FreeSWITCH, as well as the many
features they have. Now let's discuss how to make phone calls outside the local
FreeSWITCH server.

Connecting to the world with gateways

The counterpart to having a user register to your FreeSWITCH server is to have your
server register as a user on a remote server. This is accomplished using gateways. A
gateway is quite simply a way to authenticate with another SIP server. This includes
authentication challenges to SIP REGISTER attempts as well as INVITE messages.
Telephone service providers use very large servers (including some running
FreeSWITCH!) to provide SIP trunks to their subscribers. In FreeSWITCH, we can
use a gateway to connect to a SIP provider. We can also use a gateway to connect to
another SIP server, such as another FreeSWITCH server or any SIP-compliant IP-PBX.

Setting up a new gateway

A gateway simply connects to a SIP server just like a SIP phone connects to
FreeSWITCH. As such, a gateway configuration bears some resemblance to a SIP
phone configuration. Like a SIP phone registering to FreeSWITCH, a gateway has
some minimum requirements. They are as follows:

* Username and password

* Server address or IP, and port

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

These values are supplied by the service provider. Occasionally there are other
parameters, like a proxy server and port. If you already have an account with a
SIP provider then you can use it for your gateway. In this example, we will use an
account from iptel.org.

1
‘Q Visit http://www.iptel.org/service to

sign up for a free SIP account.

To add a new gateway, perform the following steps:

1.

Create a new XML file in conf/sip_profiles/external. This example will
use iptel.org.xml. Add the following lines, inserting the proper values for
your provider:
<include>

<gateway name="iptel">

<param name="username" value="MY USER _NAME"/>

<param name="password" value="MY PASSWORD"/>

<param name="realm" value="iptel.org"/>

<!-- iptel.org requires a 'proxy' parameter -->

<param name="proxy" value="sip.iptel.org"/>

</gateway></include>

Save the file and then launch £s_c1i.
Issue the command /log 6 to decrease the verbosity of debug messages.

Simply reloading the XML configuration will not add the new gateway. Issue
the following command: sofia profile external restart reloadxml.

The output will look as follows:

freeswitch@internal> sofia profile external restart reloadxml
Reload XML [Success]
restarting: external

freeswitch@internal> 2012-09-14 16:29:23.509986 [INFO] mod_
enum.c:808 ENUM Reloaded

2012-09-14 16:29:23.511578 [INFO] switch time.c:661 Timezone
reloaded 530 definitions

2012-09-14 16:29:24.118566 [NOTICE] sofia reg.c:85 UN-Registering
iptel
2012-09-14 16:29:24.713768 [NOTICE] sofia.c:1218 Waiting for

worker thread

2012-09-14 16:29:24.713768 [NOTICE] sofia glue.c:3690 deleted
gateway example.com

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

2012-09-14 16:29:24.713768 [NOTICE] sofia reg.c:2237 Added gateway
'iptel' to profile 'external'

2012-09-14 16:29:24.713768 [NOTICE] sofia reg.c:2237 Added gateway
'example.com' to profile 'external'

2012-09-14 16:29:24.713768 [NOTICE] sofia.c:3149 Started Profile
external [sofia reg externall

2012-09-14 16:29:25.736445 [NOTICE] sofia reg.c:333 Registering
iptel

5. Confirm that the gateway is registered properly. Issue the command sofia
status. The output should look similar to the following:

freeswitch@internal> sofia status

Name Type
Data State
external profile sip:mod
sofia@10.15.0.91:5080 RUNNING (0)
example.com gateway sip:joeuser@
example.com NOREG
iptel gateway sip:MY USER@sip.
iptel.org REGED
internal profile sip:mod
sofia@10.15.0.91:5060 RUNNING (0)
internal-ipvé profile sip:mod sofia@
[::1]1:5060 RUNNING (0)
10.15.0.91 alias
internal ALIASED

3 profiles 1 alias

The gateway's state should be REGED, which means that the registration was
successful. If it says something else, like FAIL. WAIT, most likely there is a
configuration problem. Confirm your settings and try again.

\ Warning: Restarting a profile will disconnect all active calls that
~ are currently routed through that profile. An alternate command to
Q add a newly created gateway without restarting the entire profile is:
sofia profile <profile name> rescan reloadxml.

Now that our gateway is added, we need to modify the Dialplan so that we can
make and receive calls.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

Making calls

We will make a simple Dialplan entry that sends calls out to our new gateway.

Our new extension will accept the digit 9 and then the digit 1, followed by exactly

10 more digits representing the telephone number to be dialed. (In a production
environment there are many other possible strings, which can even be alphanumeric.
Some of these will be considered in Chapter 5, Understanding the XML Dialplan.)

To get started with making outbound calls, add your new extension to the Dialplan,
by performing the following steps:

1. Create a new file in conf/dialplan/default named 01 custom.xml.
2. Add the following text to the file:

<include>
<extension name=" iptel-outbound"s>
<condition field="destination_ number"
expression=""9(1\d{10})s">
<action application="bridge"
data="sofia/gateway/iptel/$1"/>
</condition>
</extension>
</include>

3. Save the file. Launch £s_cli and press F6 or issue the reloadxml command.

The new extension is now ready to be tested. From a phone that is registered to
FreeSWITCH, dial 9 plus a 10-digit phone number. For example, dial 9, 1-800-555-1212.
It may take a moment for the call to be established. Confirm that audio is flowing in
both directions and that each party can hear the other. If audio is flowing in only one
direction, most likely there is a problem with the NAT device on your local network.
NAT traversal is discussed in more detail in Chapter 14, Handling NAT.

Receiving calls

Generally, when you register your gateway with a SIP provider, the provider allows
you to receive calls. (Telephones that register with FreeSWITCH are an example of
this.) In the example configuration, FreeSWITCH treats incoming calls as inherently
untrusted, even if they come from the corresponding end of a registered gateway.
These calls come into the public Dialplan context. From there they can be discarded
or routed as needed. Let's set up a simple Dialplan entry for handling inbound calls
to our iptel.org account. This works for any SIP trunk or gateway connection you
have created.

1. Create a new file in conf/dialplan/public named 01 iptel.xml.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

2. Add these lines to the file, using your account name as follows:

<include>
<extension name="iptel-inbound">
<condition field="destination number"
expression:"A(MY_IPTEL_USERNAME)$">)$">
<action application="set"
data="domain name=${domain}"/>
<action application="bridge" data="1000 XML default"/>
</condition>
</extensions>
</include>

3. Save the file. Launch £s_c1i and press F6 or issue the reloadxml command.

Be sure to use your actual iptel username. Inbound calls will now be routed
to extension 1000. You can route calls to any valid extension, including all the
extensions we tested in Chapter 3, Test Driving the Example Configuration.

Making calls without a gateway

Sometimes it is not necessary to use a gateway. For example, not all services require
digest authorization. An example of this is the FreeSWITCH public conference
server. In fact, the default Dialplan contains an extension for dialing the conference:
9888. (Actually, there are several different conference rooms on the public
FreeSWITCH conference server.) Let's look at this extension. Open conf/dialplan/
default.xml in an editor and locate the freeswitch public conf via sip
extension. Note the bridge line:

<action application="bridge"
data="sofia/${use profile}/$leconference.freeswitch.org"/>

In the example configuration, the value in ${use_profile} is set to internal (as
defined in conf/vars.xml). When a user dials 9888 the dialstring that is sent out is
actually as follows:

sofia/internal/888@conference.freeswitch.org

Notice that there is no mention of a gateway. Instead, FreeSWITCH simply sends
the call out to the internal SIP profile. In other words, the local FreeSWITCH server
sends a call to conference. freeswitch.org without actually authorizing it. This
is possible because the server at conference. freeswitch.org does not require
authorization for incoming calls. (This is where the gateway comes in—if the target
server issues a challenge then the gateway will respond to that challenge with
authorization credentials, namely the username and password.)

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

SIP and the User Directory

Not all SIP providers explicitly require digest authorization of calls; some perform
IP authorization instead. In those cases you do not need to create a gateway.
Instead, simply send the call out to a SIP profile. Usually, the internal SIP profile is
sufficient for these kinds of calls.

SIP profiles and user agents

Before we finish our discussion of SIP and the user directory, it would be good to
touch upon a subject that some users initially find a bit daunting: SIP profiles. In the
strictest sense of the word, a SIP profile in FreeSWITCH is a user agent. In practical
terms, this means that each SIP profile listens on a particular IP address and port
number. In the example configuration, the internal profile listens on port 5060,
and the external profile listens on port 5080. Not only does the profile listen, but

it can respond as well. For example, when a phone sends a SIP REGISTER packet to
FreeSWITCH (at port 5060), the internal profile hears the registration request and
acts accordingly. The files in conf/sip_profiles/ are ones which determine how
the profiles behave. Many of the parameters in these profiles are used to customize
how FreeSWITCH handles various SIP traffic scenarios. In most cases the defaults
are reasonable and should work. In other cases, though, you may find that because
of the peculiarities in various VoIP phones, vendors, or your local environment, you
will need to make adjustments.

Lastly, do not let the profile names, internal and external, be a source of confusion.
Each profile is simply a user agent that is streamlined for a specific purpose. The
internal profile is optimized to handle telephone registrations and calls between
registered phones, even phones that are not on the local LAN. The external profile is
optimized for outbound gateway connections and several NAT traversal scenarios.

For a deeper discussion of user agents and the concept of a back-to-back user agent
(B2BUA) see http://en.wikipedia.org/wiki/Back-to-back user agent.

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Summary

In this chapter, we discussed the following;:

How FreeSWITCH collects users into a directory

How FreeSWITCH uses a VoIP protocol, SIP, to connect users to each other,
and to the world

SIP is similar to e-mail in that it has users and domains
Employing various user features such as voicemail

Adding a new user and modifying the Dialplan accordingly
Connecting to the outside world with gateways

SIP profiles and user agents

In this chapter, we made some minor modifications to the default XML Dialplan,
and we learned how to set up users and domains within the XML user directory.
Now that we have a general understanding of how these modifications work, we
will continue to build upon this foundation. In the next chapter, we will now begin
to form a much more detailed understanding of FreeSWITCH as we further explore
the XML Dialplan module, the default and most commonly used call routing engine
available in FreeSWITCH.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the
XML Dialplan

The Dialplan is a crucial part of any FreeSWITCH installation. Indeed, any PBX must
have a Dialplan, sometimes called a numbering plan, in order to handle the routing
of calls. In simple terms, a Dialplan is a list of instructions on where to route a call.
For example, when a user picks up a phone and dials 1000, how does the system
know what to do with that call? The example Dialplan knows to connect the calling
party to the telephone registered as user ID 1000. However, the Dialplan can do
much more than merely connect the calling and called parties. The Dialplan contains
instructions on what the call should do and how it should behave.

In the previous chapter we made small modifications to the Dialplan. In this
chapter, we will build upon that foundation and introduce the basics of routing and
controlling calls as we discuss the following topics:

Overview of the XML Dialplan

Contexts, extensions, and actions

Conditions, patterns, and regular expressions
Channel variables

Creating and testing a new extension
Important Dialplan applications

Writing Dialstrings

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

FreeSWITCH XML Dialplan elements

The example FreeSWITCH XML Dialplan is a good place to start learning about
XML Dialplan concepts. The configuration is contained in three main files and two
directories, located at conf/dialplan/:

* default.xml: This contains the primary FreeSWITCH Dialplan configuration

* public.xml: This contains configurations for handling calls coming in to
FreeSWITCH from another location

* features.xml: This contains a special context for handling specific
dialing features

* default/: Files in this directory get included in the default context

* public/: Files in this directory get included in the public context

The example XML configuration has many instructions for routing calls, all of which
make use of the basic building blocks of a Dialplan: contexts, extensions, conditions,
and actions. A context is a logical grouping of one or more extensions. An extension
contains one or more conditions that must be met. Conditions contain actions that
will be performed on the call, depending on whether the condition is met or not.
Before further discussing these building blocks, let's revisit some of the concepts we
first considered in Chapter 3, Test Driving the Example Configuration.

Contexts

Contexts are logical groups of extensions. Think of contexts as sections of the
Dialplan. Each section has a specific purpose and contains only extensions that are
related to the purpose. One such purpose is to isolate extensions from one another.
A typical example of this is "multi-tenancy". A FreeSWITCH server can service
more than one business entity (tenant), and providing each tenant with its own
context prevents numbering conflicts. Each tenant could, for example, have a "dial
zero for the operator" extension. Users in one tenant can dial 0 to reach their front-
desk extension, while users in another tenant can also dial 0 to reach a completely
different extension. Another consideration for contexts is security. Phone calls that
are being routed through a context have access only to the resources specifically
allotted, perhaps long-distance or international dialing, or use other resources such
as multi-party audio conference rooms.

There is no limit to the number of extensions that may be defined. The example XML
Dialplan defines three different contexts, which we'll look at next.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Default

The default context contains all of the extension definitions that are available to
registered users of the system. When we added extension 1100 to conf/dialplan/
default.xml, we were actually modifying an extension in the default context. Most
of the features of the example XML Dialplan are defined in this file.

Public

The public context is a good example of using contexts for the sake of security.

All unauthorized calls coming in to the FreeSWITCH server will be handled by

the public context. The name "public" means "inherently untrusted". By default,
FreeSWITCH is paranoid about what unauthorized callers can do in the system.
Generally speaking, the public context is used to route incoming DID (Direct
Inward Dial) phone numbers to a specific internal extension (see conf/dialplan/
public/00_inbound_did.xml for an example). You can use the public context to let
in only the calls that you deem appropriate for your system.

Features

The features context is a good example of grouping together extensions by
function. These extensions could just as easily be added to the default context;
however, putting them in their own context helps keep things organized. The
extensions defined in the features context mostly are not Endpoints in themselves
but rather helper extensions, which perform a function and then transfer the caller
elsewhere. An example of this is the please hold extension that sets the music on
hold for the caller, tells the caller, "Please hold while I connect your call", and then
transfers the caller to the destination extension.

Extensions

The term extension can sometimes be misleading. In the traditional PBX
environment, an extension is simply a phone connected to the phone system,
typically with a three-digit or four-digit extension number. In FreeSWITCH an
extension is actually a set of instructions that define what to do with a call. It can
be as simple as dialing a three-digit or four-digit number, and having someone's
desk phone ring. In fact, this is precisely what we did in Chapter 4, SIP and The
User Directory, in the Adding a user section, when we added a new user and a
corresponding extension to allow her phone to be dialed.

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

An extension definition begins with an <extension> tag and ends with a closing
</extension> tag. All the conditions, actions, and anti-actions in between are
part of the extension definition. Extensions have two optional attributes: name and
continue. The name attribute is used primarily to keep your Dialplan readable.
You can imagine how difficult it would be to look at a Dialplan file with dozens
of <extensions> tags without any names. The continue attribute determines the
Dialplan parser's behavior when it finds a matching extension. An extension is
said to match if all of the conditions for that extension evaluate to true. By default,
extensions do not continue after the first Dialplan match. Setting continue="true"
will cause the parser to keep looking for more extensions to match (see the How
Dialplan Processing works section later in this chapter).

Conditions

Conditions decide the requirements to take the actions listed inside an extension. For
example, you might have a condition that says "When 999 is dialed" and then runs
the actions within the extension block. Keep in mind that conditions are not limited
just to which phone number was dialed. Conditions can also be based on date and
time, caller ID, the IP address of the sending server, and even channel variables.
Looking through the example Dialplan files, you will mostly see conditions like the
following;:

<condition field="destination number" expression=""(1234)S$">

The destination number field is by far the most common field tested, as most of the
time we need to route a call based upon the digits dialed by a user.

Many extensions have just a single condition:

<extension name="Simple example">
<condition field="destination number" expression=""(1234)$">
<!-- actions performed here -->
</conditions>
</extensions>

However, you can also stack conditions to create a logical AND, as shown in the
following example:

<extension name="Two condition tags example">
<condition field="ani" expression=""(1111)$"></condition>
<condition field="destination number" expression=""(1234)$">

<!-- actions performed here but only if both of the above
conditions are true -->
</condition>
</extension>
[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the preceding example, both conditions must be true for the actions inside the
second <condition> tag to be executed. The ani field (which is the calling party's
phone number) must be "1111", and the dialed_number field must be "1234" for
the actions to be executed. The plain-language description of this extension would
be, "If the caller is 1111 and the destination is 1234 then execute these actions".
Putting multiple <condition> tags inside a single extension is sometimes called
stacking the conditions. Note that the first condition is still a valid XML node and
requires a closing tag. XML allows a syntactic shortcut for this, which is as follows:

<condition field="ani" expression=""(1111)$"/>
The trailing / (forward slash) character closes the <condition> tag.

An additional feature of the <condition> tags is the break attribute. (Sometimes you
will hear this being referred to as the break flag or break parameter.) When stacking
multiple conditions, the break attribute can control how the parser behaves after each
condition is evaluated. The break attribute can have the following four values:

* on-true: Stop searching further conditions in this extension if the current
condition is true

* on-false: Stop searching further conditions in this extension if the current
condition is false (this is the default)

* never: Keep searching further conditions regardless of whether the current
condition is true or false

* always: Stop searching further conditions regardless of whether the current
condition is true or false (very rarely used)

The default behavior is to break out of searching for more conditions as soon as the
first failed match occurs. Let's try the same extension with a break attribute:

<extension name="Two condition tags example'">
<condition field="ani" expression=""(1111)$" break="never"s
<!-- actions performed here if caller is 1111 -->
</conditions>
<condition field="destination number" expression= " (1234)8">

<!-- actions performed here if caller dialed 1234 even if caller
was not 1111 -->
</conditions>
</extensions>
[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

We added break="never" to the first condition. The parser will now behave
differently when it gets to this condition. Regardless of whether or not the first
condition fails, the parser moves on to the next condition within the same extension.
Without the break="never" attribute, the parser would have stopped all further
parsing of this extension, and moved on in the Dialplan. But what happens if this
condition is true? The actions inside the first condition will be added to the task list,
and then the parser moves on to the next condition in this extension. The net result
is that we get a set of actions performed if the caller dialed 1234, but we have other
actions that get performed if the caller happens to be 1111.

sl .\ . .
N More advanced conditions are considered in

Chapter 8, Advanced Dialplan Concepts.

Call legs and channel variables

Phone calls to and from FreeSWITCH consist of one or more call legs. A one-legged
connection might be something like a user dialing into his or her voicemail. A
traditional call between two parties is a connection with two call legs. Recall the
following diagram from Chapter 3, Test Driving the Example Configuration:

A traditional call with two legs

FreeSWITCH ,: FreeSWITCH
User checking E «
7 hisorher 1+ "Aleg’'—>/ “\¢— Bleg
voice mail]
[~] . ™ fer———
B : &
X Calling Receiving
A “one-legged” Call : Party Party

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

A call between two different telephones consists of an A leg (calling or originating
party) and a B leg (receiving party). Each call leg is also known as a channel, as in
an audio channel. Each channel has a set of logical attributes that you might call

a list of facts about that particular call leg. Each of these attributes is stored in a
corresponding channel variable. In the previous chapter, we learned that a registered
user has several channel variables defined, and these variables are included in call
legs involving that user. To get an idea of just how much information is available for
a call, you can call the information extension at 9192 by following these steps:

1. Launch fs_cli and issue the command /log 6.
2. From a registered phone dial 9192.

You will see dozens of lines of information. The following is an excerpt from an
info dump:

2012-09-28 12:26:27.862464 [INFO] mod dptools.c:1504 CHANNEL DATA:
Channel-State: [CS_EXECUTE]

Channel-Call-State: [ACTIVE]
Channel-State-Number: [4]

Channel-Name: [sofia/internal/1010@10.15.64.229]
Unique-ID: [660e8db4-09a2-11e2-98al-a759¢c95c7090]
Call-Direction: [inbound]
Presence-Call-Direction: [inbound]
Channel-HIT-Dialplan: [truel

Channel-Presence-ID: [1010@10.15.64.229]
Channel-Call-UUID: [660e8db4-09a2-11e2-98al-a759c95c7090]
Answer-State: [answered]

Channel-Read-Codec-Name: [PCMU]
Channel-Read-Codec-Rate: [8000]
Channel-Read-Codec-Bit-Rate: [64000]
Channel-Write-Codec-Name: [PCMU]
Channel-Write-Codec-Rate: [8000]
Channel-Write-Codec-Bit-Rate: [64000]
Caller-Direction: [inbound]

Caller-Username: [1010]

Caller-Dialplan: [XML]

Caller-Caller-ID-Name: [1010]
Caller-Caller-ID-Number: [1010]
Caller-Network-Addr: [10.15.64.123]

Caller-ANI: [1010]

Caller-Destination-Number: [9192]

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

variable sip from user: [1010]
variable sip from uri: [1010@10.15.64.229]
variable sip from host: [10.15.64.229]

variable channel name: [sofia/internal/1010@10.15.64.229]
variable sip call id: [3c27e62339dd-652d94imggcb]
variable sip local network addr: [10.15.64.229]
variable sip network ip: [10.15.64.123]
variable sip network port: [2048]
variable sip received ip: [10.15.64.123]
variable sip received port: [2048]
variable sip via protocol: [udp]
variable sip authorized: [true]
variable sip number alias: [1010]
variable sip auth username: [1010]
variable sip auth realm: [10.15.64.229]

variable toll allow: [domestic,international, locall
variable accountcode: [1010]

variable user context: [default]

variable effective caller id name: [Extension 1010]
variable effective caller id number: [1010]
variable outbound caller id name: [FreeSWITCH]
variable outbound caller id number: [0000000000]

The lines beginning with variable_ show the values in the respective channel
variables. For example, the line variable_sip_authorized: [true] is showing
that the value of the sip authorized channel variable is true. You will also
notice that there are numerous other data elements such as Unique-ID and Call-
Direction. These are info application variables. Most (but not all) of these are
available as read-only values, which can be accessed just like channel variables.

Accessing channel variables

Within the Dialplan, variables are accessed with a special notation: ${variable_
name }. Consider the following example:

<action application="log" data="INFO The value in sip authorized
is '${sip authorized}'"/>

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This action would print a log message to the FreeSWITCH command line as follows:

2009-12-09 14:32:48.904383 [INFO] mod dptools.c:897 The value in sip
authorized is 'true'

Accessing the read-only values is much the same. Each of these values has a
corresponding channel variable name. For example:

<action application="log" data="INFO The value of Unique-ID is
'${uuid}'"/>

This will print a log line on the FreeSWITCH command line as follows:

2009-12-09 14:46:31.695458 [INFO] mod dptools.c:897 The value of Unique-
ID is 'l69ae42e-29f5-4elc-9505-8ee6ef643081"

\ A complete list of info application variables and their corresponding
~ channel variable names can be found at the following address:
Q http://wiki.freeswitch.org/wiki/Channel Variables#Info
Application Variable Names .28variable xxxx.29

Channel variables are discussed further in Chapter 8, Advanced Dialplan Concepts.

Regular expressions

The FreeSWITCH XML Dialplan makes extensive use of Perl-compatible regular
expressions (PCRE). A regular expression is a means of executing a true/false test
on a string of characters. This is commonly called pattern matching. When a regular
expression is applied to a string of characters, we answer a simple question: does

it match the pattern? If the answer is yes, then usually it means that a particular
condition is met, and therefore, the extension in question can be executed. In some
cases, we want to do something if a pattern is not met (see the Actions and anti-actions
section of this chapter.)

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

Perl-compatible regular expressions follow a very specific syntax. It can be
overwhelming at first. However, once you learn the basics you will appreciate just
how powerful they are. The following are some sample regular expressions and
their meanings:

Pattern Meaning

123 Match any string containing the sequence "123"

123 Match any string beginning with the sequence "123"

123% Match any string ending with the sequence "123"

N23% Match any string that is exactly the sequence "123"
atch any single digit (0-

\d Match any single digit (0-9

\d\d Match two consecutive digits

Md\d\d$ Match any string that is exactly three digits long

M dA{7}$ Match any string that is exactly seven digits long

AN\d{7}H)$ Match any string that is exactly seven digits long, and store the

matched value in a special variable named $1
A1?(\d{10})$ Matching any string that optionally begins with the digit "1" and
contains an additional ten digits; store the ten digits in $1

AB\d\d\d)$ Match any four-digit string that begins with the digit "3", and store the
matched value in $1

You can no doubt see that regular expressions can be used to match virtually any
conceivable pattern of dialed digits. They also can match letters and punctuation
marks. Look through conf/dialplan/default.xml and you will see many different
regular expressions used.

If you would like to know if a particular string matches a specific pattern, then use
the regex command at the FreeSWITCH command line. (The term regex is short
for regular expression and is generally pronounced "REJ-ex".) The regex command
needs at least two arguments: the data to test and the pattern to match against. The
arguments are separated by a | (pipe) character. The regex command will return
true if the data and the pattern match, otherwise it will return false. You can try
the following examples at fs_c1i:

freeswitch@internal> regex 1234|\d

true

freeswitch@internal> regex 1234|\d\d\d\d
true

freeswitch@internal> regex 1234|\d{4}
true

freeswitch@internal> regex 1234|\d{5}

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

false

freeswitch@internal> regex 1234|"1234%

true

freeswitch@internal> regex 1234|234

true

freeswitch@internal> regex 1234|"234

false

The regex command also has a capture syntax that will store and return the values
that matched instead of a true or false value. The expression %0 contains the entire
matched value whereas %1 contains the first captured value, %2 contains the second,
and so forth. Try the following commands:

freeswitch@internal>
true
freeswitch@internal>
18005551212
freeswitch@internal>
800
freeswitch@internal>
555
freeswitch@internal>
1212

freeswitch@internal>
d\d) | %1%2%3

8005551212

freeswitch@internal>
d\d) |%1-%2-%3

800-555-1212
freeswitch@internal>

18005551212

regex

regex

regex

regex

regex

regex

regex

regex

1800555121217 (\d\d\d) (\d\d\d) (\d\d\d\d)

1800555121212 (\d\d\d) (\d\d\d) (\d\d\d\d) | %0

1800555121212 (\d\d\d) (\d\d\d) (\d\d\d\d) | %1

18005551212 |1? (\d\d\d) (\d\d\d) (\d\d\d\d) |%2

1800555121212 (\d\d\d) (\d\d\d) (\d\d\d\d) | %3

1800555121212 (\d\d\d) (\d\d\d) (\d\d\

1800555121212 (\d\d\d) (\d\d\d) (\d\d\

18005551212 "7 |%0

Use the regex command to quickly test data strings and patterns.

Regular expressions are useful in numerous other computer-related
M endeavors. You may find it handy to know more than just the basic
Q pattern matching syntax. The FreeSWITCH wiki contains links to
many online resources for learning more:

http://wiki.freeswitch.org/wiki/Regular Expression

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

Actions and anti-actions

Actions represent the actual steps to take when a Dialplan match has been found.
The actions are always present inside an extension and condition block.

Actions and anti-actions both tell FreeSWITCH to act upon a call. The difference
between the two is simple: actions are executed if the condition is met and anti-
actions are executed if the condition is not met. Consider the following example:

<extension name="Action vs. anti-action example">
<condition field="destination number" expression=""(9101)$">
<action application="log" data="INFO You dialed 9101"/>
<anti-action application="log"
data="INFO You did NOT dial 9101"/>
</conditions>
</extensions>

In the preceding example, <extension> will log some information to the
FreeSWITCH command line depending upon what the user dialed. If the user dials
9101, the action is executed and the log displays, "You dialed 9101". If the user dials
anything other than 9101, then the anti-action is executed and the log displays, "You
did NOT dial 9101".

Most extensions you create (and indeed those in the example Dialplan) will

have many actions but few anti-actions. In most cases, actions execute Dialplan
applications, which in turn may accept arguments. In the preceding example, the 1og
application is executed and the data attribute contains the argument passed to it.

How Dialplan processing works

Understanding the Dialplan is easier if you can visualize what happens when a call
comes in. Often, we hear expressions like "the call traverses the Dialplan" or "the call
hits the Dialplan". What exactly does that mean? Let's walk through the processing
of a call, so that we can really understand what the XML Dialplan is doing.

The Dialplan has two phases: parsing and executing. The Dialplan parser looks for
extensions to execute. When it finds a matching extension, it then adds the actions
(or anti-actions) to a list of tasks to be executed. When the parser finishes looking for
extensions, the execution phase begins, and the actions in the task list are performed.

A good way to see all of this in action is to watch the FreeSWITCH console in debug
mode while making a test phone call. Launch f£s_c1i, make a test call to 9196 (echo
test), and then hang up the phone. Scroll back in your terminal and look for a line
that looks like the following example:

2012-09-28 20:10:21.930188 [INFO] mod dialplan xml.c:485 Processing Test
User <1010>->9196 in context default

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This is the start of the Dialplan processing. A telephone whose user is named Test
User has dialed 9196. (Your console will display the name of the user associated
with the phone from which you dialed.) The lines that follow begin with Dialplan:
and are debug messages, showing which extensions matched and which ones did
not. The first extension parsed is called unloop. It is an important extension, but is
not very interesting for our Dialplan discussion. Look at the next extension that gets
parsed. In our example, the debug output is as follows:

Dialplan: sofia/internal/1010@10.15.64.229 parsing [default->unloopl]
continue=false

Dialplan: sofia/internal/1010@10.15.64.229 Regex (PASS) [unloopl]
${unroll loops}(true) =~ /“true$/ break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 Regex (FAIL) [unloopl ${sip
looped call}() =~ /“true$/ break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 parsing [default->tod example]
continue=true

Dialplan: sofia/internal/1010@10.15.64.229 Date/TimeMatch (FAIL) [tod
example] break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 parsing [default->holiday
example] continue=true

Dialplan: sofia/internal/1010@10.15.64.229 Date/TimeMatch (FAIL)
[holiday example] break=on-false

The extension tod_example (time of day example) shown is being parsed. These
debug lines correspond to the tod_example extension found in conf/dialplan/
default.xml:

<extension name="tod example" continue="true"s>
<condition wday="2-6" hour="9-18">
<action application="get" data="open=true"/>
</conditions>

</extensions>

This extension simply checks the time of the day and the day of the week. If the call is
made on a weekday (Monday through Friday) during business hours (9:00 AM to 6:59
PM) then it sets the channel variable open to true. This call was made on a Friday at
10:10 PM. Therefore, it passed the wday (day of week) test but not the hour (hour of
day) test. Had the call been made between 9 AM and 6 PM then both conditions would
have been met, and the set application would have been added to the task list. Notice
that the tod_example extension has continue="true". This means that the Dialplan
will continue parsing extensions even if tod_example matches.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

The parser continues trying to match extensions, most of which fail:

Dialplan: sofia/internal/1010@10.15.64.229 Regex (FAIL) [Check IVR-based
CF] ${cf target}() =~ /"\d+$/ break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 parsing [default->global-
intercept] continue=false

Dialplan: sofia/internal/1010@10.15.64.229 Regex (FAIL) [global-
intercept] destination number (9196) =~ /"886%/ break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 parsing [default->group-
intercept] continue=false

Dialplan: sofia/internal/1010@10.15.64.229 Regex (FAIL) [group-intercept]
destination number (9196) =~ /"*8%/ break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 parsing [default->intercept-
ext] continue=false

Dialplan: sofia/internal/1010@10.15.64.229 Regex (FAIL) [intercept-ext]
destination number (9196) =~ /"**(\d+)$/ break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 parsing [default->redial]
continue=false

Dialplan: sofia/internal/1010@10.15.64.229 Regex (FAIL) [rediall
destination number (9196) =~ /" (redial|870)$/ break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 parsing [default->globall]
continue=true

Dialplan: sofia/internal/1010@10.15.64.229 Regex (FAIL) [globall ${call

debug} (false) =~ /“true$/ break=never
Dialplan: sofia/internal/1010@10.15.64.229 Regex (FAIL) [globall ${sip
has_crypto}() =~ /" (AES CM 128 HMAC SHA1l 32|AES CM 128 HMAC SHAl 80)$/

break=never

The preceding debug lines are all failed matches, which is completely normal. Next,
we see some interesting output as follows:

Dialplan: sofia/internal/1010@10.15.64.229 Absolute Condition [global]

Dialplan: sofia/internal/1010@10.15.64.229 Action hash(insert/${domain
name}-spymap/${caller id number}/${uuid})

Dialplan: sofia/internal/1010@10.15.64.229 Action hash(insert/${domain
name}-last dial/${caller id number}/${destination number})

Dialplan: sofia/internal/1010@10.15.64.229 Action hash(insert/${domain
name}-last dial/global/${uuid})

Dialplan: sofia/internal/1010@10.15.64.229 Action set (RFC2822
DATE=${strftime(%a, %d %b %Y %T %z)})

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Notice the debug line that mentions Absolute Condition. An absolute condition
simply means that the condition is always evaluated as true, and the actions within
are always executed. This condition tag is located in the global extension further
down in default.xml. It is listed as follows:

<extension name="global" continue="true"s>
<condition field="${call debug}"
expression=""trues"
break="never">
<action application="info"/>
</conditions>
<!--
This is an example of how to auto detect if telephone-event
is missing and activate inband detection
-=>
<!--
<condition field="${switch r sdp}"
expression="a=rtpmap: (\d+) \stelephone-event/8000"
break="never">
<action application="set" data="rtp payload number=$1"/>
<anti-action application="start dtmf"/>
</conditions>
-=>
<condition field="${sip has crypto}"
expression=""(AES_CM 128 HMAC SHAl 32|AES _CM 128 HMAC_ SHAl 80)s"
break="never">

<action application="set" data="sip_ secure media=true"/>

<!-- Offer SRTP on outbound legs if we have it on inbound. -->
<l-- <action application="export" data="sip secure media=true"/>
-->
</conditions>
<condition>

<action application="hash" data="insert/${domain_ name}-
spymap/${caller id number}/s${uuid}"/>

<action application="hash" data="insert/${domain name}-
last_dial/${caller id number}/${destination number}"/>

<action application="hash" data="insert/${domain_ name}-
last _dial/global/${uuid}"/>

<action application="set" data="RFC2822 DATE=${
strftime (%a, %d %$b %Y $T %z)}"/>

</conditions>
</extensions>

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

The third <conditions> tag (highlighted) in the global extension has no field or
expression and thus always evaluates to true, and therefore, the actions within are
added to the task list. This does raise a good question: normally the parser stops
parsing the current extension as soon as a condition fails, so why did the parser not
skip past the global extension after its first condition failed? The answer lies in

the break attribute. Notice that we have break="never" specified in the first two
<condition> tags in this extension. This tells the parser to keep parsing the current
extension for further conditions regardless of whether this condition is true or false
(see the Conditions section earlier in this chapter).

Most of the following conditions fail to match until the parser reaches the music on
hold extension:

Dialplan: sofia/internal/1010@10.15.64.229 Regex (PASS) [echol]
destination number (9196) =~ /"9196%/ break=on-false

Dialplan: sofia/internal/1010@10.15.64.229 Action answer ()
Dialplan: sofia/internal/1010@10.15.64.229 Action echo()

The parser adds the answer and echo Dialplan applications to the task list.

At this point, the parsing is done and now the execution phase begins. You will see
some debug lines that begin with EXECUTE and show exactly what is being executed,
as shown in the following example:

EXECUTE sofia/internal/1010@10.15.64.229 hash(insert/10.15.64.229-
spymap/1010/1e67£fc46-09e5-11e2-8893-b106a33054£8)

EXECUTE sofia/internal/1010@10.15.64.229 hash(insert/10.15.64.229-last_
dial/1010/9196)

EXECUTE sofia/internal/1010@10.15.64.229 hash(insert/10.15.64.229-last_
dial/global/le67fc46-09e5-11e2-8893-b106a33054£8)

EXECUTE sofia/internal/1010@10.15.64.229 set(RFC2822 DATE=Fri, 28 Sep
2012 20:24:03 -0700)

EXECUTE sofia/internal/1010@10.15.64.229 answer ()
EXECUTE sofia/internal/1010@10.15.64.229 echo()

The previous output is a complete example of a call hitting the Dialplan and being
processed. Though it took us several minutes to discuss this process, it happens very
quickly on the server. This "parse first, execute second" processing strategy makes the
XML Dialplan relatively efficient. As an exercise, try watching the debug output while
calling 9664 (music on hold) and dialing from one registered telephone to another.

Now that you have seen the Dialplan parser in action, let's create a new extension.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating a new extension

Let's create a brand new extension. Start by opening the conf/dialplan/
default/01_custom.xml file we created in Chapter 4, SIP and the User Directory.
This file will contain the custom extensions that we will create from now on.

Always begin your custom Dialplan filenames with a digit sequence. The
reason for this is that the XML parser reads the XML files in the order

s“ represented by their ASCII filenames. The last file at conf /dialplan/
default/ that we want parsed is 99999 enum.xml. This file contains
the ENUM extension that is used as a last resort if the dialed number does
not match any other extensions. See http://wiki.freeswitch.org/
wiki/Mod_enum for more information.

A Dialplan XML file can contain one or more extension definitions. The only
restriction is that the file should begin and end with the XML tags <include>
and </include> respectively.

Our new extension will be simple, but it will also demonstrate the power and
flexibility of the FreeSWITCH Dialplan. The extension will have the following
characteristics:

* Answering the call

* Reading back the calling user's extension number in two different formats,

waiting one second after each reading
* Sleeping for two seconds
* Saying goodbye to the caller
* Hanging up

* The extension will be executed when the caller dials 9101
To create the new extension follow these steps:

1. Add the following content to your 01_custom.xml file:

<include>
<extension name="simple test">

<condition field="destination number"

expression=""(9101)$">
<action application="answer"/>
<action application="say"
data="en number iterated ${ani}"/>
<action application="sleep" data="1000"/>
<action application="say"
data="en number pronounced ${ani}"/>

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

<action application="sleep" data="1000"/>
<action application="playback"
data="voicemail/vm-goodbye.wav"/>
<action application="sleep" data="2000"/>
<action application="hangup"/>
</conditions>
</extension>
</include>

2. Save the file. Launch £s_c1i and issue the reload xml command, or press F6.

The new extension is now added. To test your new extension, simply dial 9101. (You
can also watch the FreeSWITCH command line to get a sense of what the system is
doing as it processes your extension.) The system should answer, play the two sound
prompts, and then hang up. Let's step through each line of the extension and discuss
what it does:

<extension name="simple test">

This tag simply marks the beginning of the extension definition. The name attribute is
actually optional. However, it helps with making the Dialplan more readable. Also, the
extension name will appear in the FreeSWITCH logs, which makes troubleshooting a
little easier. The extension definition ends with the </extension> tag.

<condition field="destination number" expression=""(9101)S$">

The condition tag defines the matching parameters for this extension. Here we
match the value in destination_number against the pattern * (9101) $. In plain
language, this condition says, "If the user dialed the exact digits 9101, then execute
the actions inside this condition block." All of the actions between this tag and the
closing </condition> tag will be executed.

<action application="answer"/>

The answer application does just what it says: it answers the call.

<action application="say" data="en number iterated ${ani}"/>

This executes the say application, which uses the pre-recorded sound prompts to
voice numbers, letters, currency amounts, and so on. The first three arguments to

the say application are: the say engine (usually a language), pronunciation type, and
pronunciation method. In this example, we are telling the say application to use the
en engine (that is, use the English sound files) and to pronounce a number in iterated
fashion. The number 1234 will be voiced as, "One-two-three-four". The say application
is further described in the Important Dialplan applications section of this chapter.

<action application="sleep" data="1000"/>

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The preceding action simply sleeps, that is, pauses the execution for 1000
milliseconds (1 second).

<action application="say" data="en number pronounced ${ani}"/>

This executes the say application again, this time using the pronounced method.
With the pronounced method, the say application will pronounce the number
instead of merely listing the digits. The number 1234 will be voiced as, "One
thousand, two hundred thirty-four".

<action application="sleep" data="1000"/>

This action pauses the execution for another 1000 milliseconds.

<action application="playback" data="voicemail/vm-goodbye.wav"/>

The preceding action executes the playback application. The playback application
plays an audio file to the caller. The filename is specified as the argument. In this
case, we specify a file normally used with the FreeSWITCH voicemail application.
The playback application is further described in the Important Dialplan applications
section of this chapter.

M FreeSWITCH contains a number of pre-recorded audio files.
Q The English filenames and contents are listed in docs/phrase/
phrase_en.xml under the FreeSWITCH source directory.

<action application="sleep" data="2000"/>
This pauses execution for 2000 milliseconds (2 seconds).
<action application="hangup"/>
The last action of our extension hangs up, disconnecting the caller.

That's it! You have now gone through the basic steps necessary to add custom
extensions to your system. Most of the extensions that we create will go into the
default context, because they are designed for the users of our system. In a few
cases we may add extensions to another context. For example, to handle incoming
DID calls you would update the public Dialplan context. We may also define a
custom context to handle a specific need, such as when using a single FreeSWITCH
server to handle multiple departments or multiple companies.

Important Dialplan applications

FreeSWITCH has more than 140 Dialplan applications. However, a few of them
are particularly important because they are used very frequently. In this section we
consider the most important and widely used Dialplan applications.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

bridge
The bridge application connects two Endpoints together.
Argument syntax:

<target endpoints[,<target endpoints>] [|<target endpoints]

Endpoints separated by commas are dialed simultaneously. Endpoints separated by
pipes are dialed sequentially. The first Endpoint to answer receives the call, at which
time dialing to all other Endpoint is discontinued.

Examples:

<action application="bridge" data="user/1000"/>
<action application="bridge"
data="sofia/gateway/my gateway name/$1"/>

See the Dialstring formats section later in this chapter.

playback

The playback application simply plays an audio file to the caller. Files can be in
many formats. The sound and music files included in FreeSWITCH are all . wav files.

Argument syntax: absolute path to a sound file or relative path to an installed sound
file.

Examples:

<action application="playback"
data="/absolute/path/to/sound.wav"/>
<action application="playback" data="voicemail/vm-goodbye.wav"/>

You can also playback from a stream location (for mp3 files, you'll need mod_shout
loaded). That would look like this:

<action application="playback"
data="http://sounds.com/path/to/sound.mp3"/>

say
The say application uses the built-in say engine to voice to the caller some piece of
information. This is not text-to-speech. See the speak application.

Argument syntax:

<module name> <say type> <say method> <text>

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The module_name is usually the language, for example en or es.

The say_type parameter can be any of the following:

®* number

®* items

® persons

® messages

® currency

®* time measurement

®* current date

® current time

®* current date time

* telephone number

®* telephone extension

e url

* ip address

®* e-mail address

®* postal address

® account number

®* name_spelled

®* name phonetic

®* short date time

The say_method parameter can be any of the following:

* n/a (amethod is not applicable)

* pronounced ("one hundred, twenty-three")

* iterated ("one two three")

* counted (special case, similar to "pronounced")

Examples:

<action
<action
<action
<action

application="say"
application="say"
application="say"
application="say"

data="en
data="en
data="en

data="en

number pronounced 1234"/>
number iterated 1234"/>
currency pronounced 1234"/>
items pronounced 1234"/>

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

play_and_get digits

The play_and_get_digits application will play a sound file to the caller, while
at the same time listening for digits dialed by the caller. This allows you to create
interactive Dialplans without necessarily creating an entire IVR.

Argument syntax:

<min> <max> <tries> <timeout> <terminators> <file> <invalid file>
<var_name> <regex> [<digit timeout>] ['<failure ext> [failure dp
[failure context]]']

Arguments:

* min: Minimum number of digits to collect
* max: Maximum number of digits to collect
* tries: Number of attempts to play the file and collect digits

* timeout: Number of milliseconds to wait before assuming the caller is done
entering digits

* terminators: Digits used to end input if less than min digits have been
pressed (typically #)

* file:Sound file to play while digits are fetched

* invalid_file: Sound file to play when digits don't match the regex
argument

* var_name: Channel variable that digits should be placed in
* regex: Regular expression to match digits

* digit_timeout (optional): Number of milliseconds to wait in between digits
(defaults to timeout value)

* failure ext (optional): Destination extension to which the call should be
transferred if the caller does not enter a valid input value

* failure_dp (optional with failure_ext): Destination Dialplan type when
using failure_ext

* failure context (optional with failure_ dp): Destination Dialplan context
when using failure_dp

Example:

<action application="play and get digits"
data="2 5 3 8000 # /path/to/sound file.wav
/path/to/invalid_sound.wav my digits \d+ "/>
<action application="log" data="User entered these digits:
${my digits}"/>

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This example executes play and_get_digits with the following parameters:

* Looks for a minimum of two digits

* Looks for a maximum of five digits

* Tries three times

* Waits 8 seconds before assuming the caller is done entering digits

* Uses the # key as the terminator

* Plays the sound file /path/to/sound_file.wav while collecting digits

* Plays the sound file /path/to/invalid_sound.wav if invalid digits are dialed
* Stores the dialed digits in the channel variable my_digits

* Matches against the pattern \d+

ivr
The ivr application sends the caller to a predefined IVR.

Argument syntax: Name of IVR to execute.
Example:
<action application="ivr" data="ivr_demo"/>

See Chapter 6, Using XML IVRs and Phrase Macros, and also the ivr_demo extension in
conf/dialplan/default.xml.

sleep

The sleep application pauses Dialplan execution for the specified number of
milliseconds.

Argument syntax: Number of milliseconds to sleep.

Example:

<action application="sleep" data="1000"/>

answer

The answer application picks up the phone by establishing an audio path to the calling
party. In SIP terms, this causes FreeSWITCH to send a "200 OK" message, establish a
codec to use (if not already determined), and begin the flow of RTP packets.

Example:

<action application="answer"/>

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

pre_answer

The pre_answer application is similar to answer, except it establishes early media.
In SIP terms, this causes FreeSWITCH to send a "183 Session Progress with SDP"
message.

Example:

<action application="pre answer"/>

hangup

The hangup application disconnects the audio path and ends the call.
Argument syntax: Optional hang up cause.

Examples:

<action application="hangup"/>
<action application="hangup" data="USER BUSY"/>

set

The set application sets a channel variable or processes an API command from
within the Dialplan. (This latter feature is demonstrated in Chapter 8, Advanced
Dialplan Concepts.)

Argument syntax:
<variable_name=value>

Example:

<action application="set" data="my_ chan var=example value"/>
<action application="log"
data="INFO my chan var contains ${my chan var}"/>

transfer

The transfer application sends the call back through the Dialplan. This causes an
entirely new parse phase and execution phase to take place.

Argument syntax:

<destination number> [destination dialplan [destination context]]

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Example:

<action application="transfer" data="9664"/>
<action application="transfer"
data="12345 XML custom"/>

Dialstring formats

Before we leave our discussion of the Dialplan, it would be good to consider one
more topic: Dialstrings. A Dialstring is exactly what it sounds like —a string of
characters that defines a destination to be dialed by FreeSWITCH. All Dialstrings
have a specific syntax. The syntax varies depending upon the type of Endpoint being
dialed. The most important types of Dialstring in FreeSWITCH are those for Sofia,
because they represent how we dial SIP Endpoints. However, as we will see, there
are several different kinds of Dialstrings. They are used primarily in two places,
which are as follows:

* Bridging an existing call leg in the Dialplan with the bridge application

* Creating a new call leg at the CLI with the originate command

1
‘\Q Dialstring syntax is the same whether using the bridge

dialplan application or the originate API command.

Let's learn a bit more about Dialstrings by considering a few examples, starting with
some Sofia Dialstrings. The basic Sofia Dialstring takes two different formats:

* gsofia/<profile name>/<user@domains>

* sofia/gateway/<gateway names/<users>

As we learned in Chapter 4, SIP and the User Directory, we can dial another SIP
Endpoint, either with or without a gateway. When using Sofia to dial through a SIP
profile, it is necessary to specify both the user and domain. However, when dialing
through a gateway it is not necessary to include the domain because this is already
defined in the gateway configuration. Therefore, the following is not allowed:

<!-- Wrong -->
<action application="bridge"
data="sofia/gateway/my gateway/user@l.2.3.4"/>

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

The correct syntax is as follows:

<!-- Correct -->
<action application="bridge"
data="sofia/gateway/my gateway/user">

The equivalent for dialing through the internal profile would look like
the following:

<!--Also correct -->
<action application="bridge"
data="sofia/internal/user@l.2.3.4 /">

Knowing these two syntaxes will cover the vast majority of your SIP dialing needs.
However, there are many edge cases. For a complete discussion on dial strings see
http://wiki.freeswitch.org/wiki/Dialplan XML#SIP-Specific Dialstrings.

When dialing a user who is registered on your FreeSWITCH server there is a
shortcut available:

user/<user 1ids>[@domain]

This syntax makes it very easy to dial another phone registered on your system. In
fact, Local Extensionin conf/dialplan/default.xml uses this method to connect
calls to registered users:

<action application="bridge"
data="user/${dialed extension}@s${domain name}"/>

The @domain parameter is optional if you have only one domain defined on your
FreeSWITCH server.

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The following are a few more types of Dialstrings:

loopback/<destination numbers: This creates a call leg and puts it in the
Dialplan at <destination numbers

freetdm//<channel>/<phone numbers: This creates a call leg on

a telephony interface card (see http://wiki.freeswitch.org/wiki/
FreeTDM for more information on using traditional telephony hardware with
FreeSWITCH)

error/<error codes: This simulates an error condition; useful for testing

group/<group name>[@domain]: This calls a group of users (see Chapter 4,
SIP and the User Directory)

Feel free to try some of these. If you have a phone registered to your FreeSWITCH
server, then use the originate command from £s_c1i. The basic syntax of
originate is as follows:

originate <dialstring> <destination number>

Try the following and see what happens. Replace 1000 with the extension number of
your phone:

originate loopback/9664 1000

originate user/1000 9664

originate error/USER_BUSY 1000

originate loopback/9192 1000

originate loopback/4000 1000

As you can see, FreeSWITCH has many tools for creating calls. There is virtually no
scenario that it cannot handle or emulate.

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the XML Dialplan

Summary

Completing this chapter is an important milestone for a beginner. Understanding
the concepts presented here is a large part of being able to configure and maintain a
FreeSWITCH server. A number of topics were discussed:
* The basic hierarchy of the FreeSWITCH XML Dialplan:
© The Dialplan consists of one or more contexts
° Contexts consist of one or more extensions
° Extensions contain one or more conditions

° Conditions usually have one or more actions or anti-actions

* Regular expressions and pattern matching

* Anintroduction to the concept of channel variables

* How Dialplan parsing and processing works

* Creating our own custom extension

* Alist of some of the more common and useful Dialplan applications
Having these basic skills, you should now be able to create truly useful extensions
that do more than merely connect one telephone user to another. Although the
Dialplan is very powerful and flexible, it is not in and of itself an IVR engine or a

programming language. FreeSWITCH has modules that work with the Dialplan to
add these more advanced features to your system.

In the next chapter, we will look at two aspects of FreeSWITCH that help us interact
with callers: the XML IVR subsystem and FreeSWITCH phrase macros.

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and
Phrase Macros

The built-in IVR (Interactive Voice Response) engine is a powerful component

of the FreeSWITCH system. It allows messages to be played and interactive
responses (usually touch-tones) to be processed, in order to direct calls to particular
destinations. It can ultimately allow callers to hear information without needing to
speak to a live person, select options that enable/disable features, or to enter data
that can be used in account, billing, or other operations.

Most people are familiar with an IVR as an auto-attendant that answers a main
number for your company and provides a list of options to reach people (that is,

"For sales press one, for support press two"). This avoids disruptions to unintended
call recipients, and reduces or removes the need for a dedicated receptionist. More
advanced IVRs can also be used for collecting information from a caller, such as a
caller's account number or the PIN number for a conference bridge. In this chapter,
we will explore utilizing the built-in IVR engine that FreeSWITCH provides natively.
You will use the skills you learned in Chapter 5, Understanding the XML Dialplan, to
route calls to an IVR application via the Dialplan, and we will build an IVR menu
using the built-in XML configuration files native to FreeSWITCH.

The following topics will be discussed:

* IVR engine overview

* IVR XML configuration file
* IVR menu definitions

* IVR menu destinations

* Routing calls to your IVR

* Nesting IVRs

* Using phrases with IVRs

* Advanced routing

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

IVR engine overview

Unlike many applications within FreeSWITCH which are built as modules, IVR is
considered the core functionality of FreeSWITCH. It is used anytime a prompt is
played and digits are collected. Even if you are not using the IVR application itself
from your Dialplan, you will see IVR-related functions being utilized from various
other applications. As an example, the voicemail application makes heavy use of
IVR functionality when playing messages, while awaiting digits to control deleting,
saving, and otherwise managing voicemails.

In this section, we will only be reviewing the IVR functionality that is exposed from
within the ivr Dialplan application. This functionality is typically used to build an
auto-attendant menu, although other functions are possible as well.

IVR XML configuration file

FreeSWITCH ships with a sample IVR menu, typically invoked by dialing 5000 from
the sample Dialplan. When you dial 5000, you will hear a greeting welcoming you
to FreeSWITCH, and will present your menu options. The menu options consist

of options such as calling the FreeSWITCH conference, calling the echo extension,
hearing music on hold, or going to a submenu. We will start off by reviewing the
XML that powers this example.

IVR engine overview

Open conf/ivr_menus/demo_ivr.xml, which contains the following XML:

<!-- demo IVR setup -->

<!-- demo IVR, Main Menu -->

<menu name="demo_ivr"
greet-long="phrase:demo_ivr_main_menu"
greet-short="phrase:demo_ivr main_menu_short"
invalid-sound="ivr/ivr-that_was_an_invalid_entry.wav"
exit-sound="voicemail/vm-goodbye.wav"
confirm-macro=""
confirm-key=""
tts-engine="flite"
tts-voice="rms"
confirm-attempts="3"
timeout="10000"
inter-digit-timeout="2000"
max-failures="3"
max-timeouts="3"

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

digit-len="4">

<!-- The following are the definitions for the digits the user dials
-=>

<!-- Digit 1 transfer caller to the public FreeSWITCH conference -->

<entry action="menu-exec-app" digits="1" param="bridge

sofia/$${domain}/888@conference.freeswitch.org"/>

<entry action="menu-exec-app" digits="2" param="transfer 9196

XML default"/s> <!-- FS echo -->

<entry action="menu-exec-app" digits="3" param="transfer 9664
XML default"/> <!-- MOH -->

<entry action="menu-exec-app" digits="4" param="transfer 9191
XML default"/s> <!-- ClueCon -->

<entry action="menu-exec-app" digits="5" param="transfer
1234*256 enum"/> <!-- Screaming monkeys -->

<entry action="menu-sub" digits="6" param="demo_ ivr submenu"/>
<!-- demo sub menu -->

<!-- Using a regex in the digits tag lets you define a dial

pattern for the caller
You may define multiple regexes if you need a different
pattern for some reason -->
<entry action="menu-exec-app" digits="/"(10[01] [0-9]1)8/"
param="transfer $1 XML features"/>

<entry action="menu-top" digits="9"/> <!-- Repeat this menu -->
</menu>
<!-- Demo IVR, Sub Menu -->

<menu name="demo_ivr submenu"
greet-long="phrase:demo_ivr sub menu"
greet-short="phrase:demo_ivr sub menu short"
invalid-sound="ivr/ivr-that was_an invalid_entry.wav"
exit-sound="voicemail/vm-goodbye.wav"
timeout="15000"
max-failures="3"
max-timeouts="3">

<!-- The demo IVR sub menu prompt basically just says, "press
star to return to previous menu..." -->
<entry action="menu-top" digits="*"/>

</menu>

In the preceding example, there are two IVR menus defined: demo_ivr and demo_
ivr_submenu. Let's break apart the first one and examine it, starting with the IVR
menu definition itself.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

IVR menu definitions

The following XML defines an IVR menu named demo_ivr:

<menu name="demo_ivr"
greet-long="phrase:demo_ivr_main_menu"
greet-short="phrase:demo_ivr main_menu_short"
invalid-sound="ivr/ivr-that_was_an_invalid_entry.wav"
exit-sound="voicemail/vm-goodbye.wav"
confirm-macro=""
confirm-key=""
tts-engine="flite"
tts-voice="rms"
confirm-attempts="3"
timeout="10000"
inter-digit-timeout="2000"
max-failures="3"
max-timeouts="3"
digit-len="4">

We'll use the previously mentioned menu's name later when we route calls to the
IVR from the Dialplan. Following the name, various XML attributes specify how
the IVR will behave. The following options are available when defining an IVR's
behavior.

greet-long

The greet-1long attribute specifies the initial greeting that is played when a caller
reaches the IVR. This is different from the greet -short sound file which allows for
introductions to be played, such as "Thank you for calling XYZ Company". In the
demo IVR, the greet-1long attribute is a Phrase Macro that plays an introductory
message to the caller ("Welcome to FreeSWITCH...") followed by the menu options
the caller may choose from.

Argument syntax: Sound filename (or path + name), TTS, or Phrase Macro.

Examples:

greet-long="my greeting.wav"
greet-long="phrase:my greeting phrase"

greet-long="say:Welcome to our company. Press 1 for sales, 2 for
support."

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

greet-short

The greet-short attribute specifies the greeting that is replayed if the caller enters
invalid information, or no information at all. This is typically the same sound file as
greet -long without the introduction. In the sample IVR, the greet -short attribute
is a Phrase Macro that simply plays the menu options to the caller, and does not play
the lengthy introduction found in greet-1long.

Argument syntax: Sound filename (or path + name), TTS, or Phrase Macro.

Examples:

greet-short="my greeting retry.wav"
greet-short="phrase:my greeting retry phrase"
greet-short="gay:Press 1 for sales, 2 for support."

invalid-sound

The invalid-sound attribute specifies the sound that is played when a caller makes
an invalid entry.

Argument syntax: Sound filename (or path + name), TTS, or Phrase Macro.

Examples:

invalid-sound="invalid entry.wav"
invalid-sound="phrase:my invalid entry phrase"
invalid-sound="say:That was not a valid entry"

exit-sound

The exit-sound attribute specifies the sound, which is played when a caller makes
too many invalid entries or too many timeouts occur. This file is played before the
IVR exits. (The call will continue in the Dialplan.)

Argument syntax: Sound filename (or path + name), TTS, or Phrase Macro.

Examples:

exit-sound="too many bad entries.wav"
exit-sound="phrase:my too many bad entries phrase"
exit-sound="say:Hasta la vista, baby."

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

timeout

The timeout attribute specifies the maximum amount of time the IVR will wait
for the user to start entering digits after the greeting has played. If this time limit is
exceeded, the menu is repeated until the value in the max-timeouts attribute has
been reached.

Argument syntax: Any number, in milliseconds.

Examples:

timeout="10000"
timeout="20000"

inter-digit-timeout

The inter-digit-timeout attribute specifies the maximum amount of time to wait
in between each digit the caller presses. This is different from the overall timeout.

It is useful to allow enough time to enter as many digits as necessary, without
frustrating the caller by pausing too long after they are done making their entry. For
example, if both 1000 and 1 are valid IVR entries, the system will continue waiting
for the inter-digit-timeout length of time after 1 is entered, before determining
that it is the final entry.

Argument syntax: Any number, in milliseconds.

Example:

inter-digit-timeout="2000"

max-failures

The max-failures attribute specifies how many failures due to invalid entries to
tolerate before exiting the IVR. (The call will continue in the Dialplan.)

Argument syntax: Any number.

Example:

max-failures="3"

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

max-timeouts

The max-timeouts attribute specifies how many timeouts to tolerate before exiting
the IVR. (The call will continue in the Dialplan.)

Argument syntax: Any number.

Example:

max-timeouts="3"

digit-len
The digit-1len attribute specifies the maximum number of digits that the user can
enter before determining the entry is complete.

Argument syntax: Any number greater than or equal to one.

Example:

digit-len="4"

tts-voice

The tts-voice attribute specifies the specific Text-To-Speech voice that should be
used.

Argument syntax: Any valid Text-To-Speech voice.

Example:

tts-voice="Mary"

tts-engine
The tts-engine attribute specifies the specific Text-To-Speech engine that should be
used.

Argument syntax: Any valid Text-To-Speech engine.

Example:

tts-engine="flite"

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

confirm-key

The confirm-key attribute specifies the key which the user can press to verify the
entry of a target extension number. It is used with the confirm-macro attribute.

Argument syntax: Any valid DTMF digit.

Example:

confirm-key="#"

confirm-macro

The confirm-macro attribute specifies which Phrase Macro to play while waiting for
the confirm-key to be pressed. When set, the macro is played after the caller enters a
destination extension number at the IVR.

Argument syntax: Any valid Phrase Macro.
Example:
confirm-macro="my confirm macro"

These attributes dictate the general behavior of the IVR.

IVR menu destinations

After defining the global attributes of the IVR, you need to specify what specific
destinations (or options) are available for the caller to press. You do this with
<entry> XML elements. Let's review the first six XML options used by this IVR:

<entry action="menu-exec-app" digits="1" param="bridge
sofia/$${domain}/888econference.freeswitch.org"/>
<entry action="menu-exec-app" digits="2" param="transfer 9196 XML

default"/> <!-- FS echo -->

<entry action="menu-exec-app" digits="3" param="transfer 9664 XML
default"/> <!-- MOH -->

<entry action="menu-exec-app" digits="4" param="transfer 9191 XML
default"/> <!-- ClueCon -->

<entry action="menu-exec-app" digits="5" param="transfer 1234*256
enum"/> <!-- Screaming monkeys -->

<entry action="menu-sub" digits="6" param="demo ivr submenu"/>
<entry action="menu-exec-app" digits="/"(10[01] [0-9])%/"
param="transfer $1 XML features"/>

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Each entry defines an individual action that a caller can take from within the menu.
There are three parameters for each entry —an action to be taken, the digits the
caller must press to activate that action, and the parameters (the param attribute)
that are passed to the action. In most cases you will probably use the menu-exec-
app action, which transfers control of the call to a Dialplan application along

with Dialplan parameters, just as you would from the regular Dialplan (bridge,
transfer, hangup, and so on.).

In the previous examples, the available options are pretty simple —they define a
single digit (digits="3" for example) which, when pressed either bridges a call
directly to an endpoint (digit 1) or transfers the call to an extension in the Dialplan
(digits 2, 3, 4, and 5). Lastly, the destinations for digits ¢ and 9 are related to IVR
submenus (described in the following section).

There is one entry that is a bit different from the rest, which is the second to last IVR
entry. It deserves a closer look.

<entry action="menu-exec-app" digits="/"(10[01] [0-9])s/"
param="transfer $1 XML features"/>

This entry definition specifies a regular expression for the digits field. This regular
expression field is identical to the expressions you would use in the Dialplan. In this
example, the IVR is looking for any four-digit extension number from 1000 through
1019 (which is the default extension number range for the predefined users in the
directory). Notice that the regular expression here has parentheses that capture the
value that is matched. This captured value is stored in the special variable $1 and is
used in the argument of the transfer application. This effectively allows the IVR to
accept 1000-1019 as entries, and transfer the caller directly to those extensions when
they are entered into the IVR.

The remaining IVR entry actions are a bit different. They introduce menu-sub as an
action, which transfers the caller to an IVR submenu, and menu- top, which restarts
the current IVR and replays the menu.

<entry action="menu-sub" digits="6"
param="demo_ivr_submenu"/>

<entry action="menu-top" digits="9"/>

These two entries transfer control of the running IVR to a new IVR. Note that by
transferring to a sub-menu in this manner you build a history of IVRs. So, a go back
button is available to the caller, which sends them to the previous IVR.

Several other actions exist that can be used within an IVR. The complete list of
actions you can use from within the IVR is covered in the following sections.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

menu-exec-app

The menu-exec-app action, combined with a param field, executes the specified
application and passes the parameters listed to that application. This is equivalent
to using <action application="app" data="data"s> in your Dialplan. The most
common use of menu-exec-app is to transfer a caller to another extension in the
Dialplan.

AIgunKHﬂsdeax:application <params>

Example:

<entry digits="1" action="menu-exec-app"
param="application paraml param2 param3 ..."/>
<entry digits="2" action="menu-exec-app"
param="transfer 9664 XML default"/>

menu-play-sound

The menu-play-sound action, combined with a param field, plays a specified
sound file.

Argument syntax: valid sound file.

Example:

<entry digits="1" action="menu-play-sound" param="screaming monkeys.
wav"/>

menu-back

The menu-back action returns to the previous IVR menu, if any.
Argument syntax: None.

Example:

<entry digits="1" action="menu-back"/>

menu-top

The menu-top action restarts this IVR's menu.
Argument syntax: None.

Example:

<entry digits="1" action="menu-top"/>

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Routing calls to your IVR

Now that you've built an IVR, you need some way to get calls to reach the IVR.

Routing calls to your IVR is simple and can be done from within the Dialplan. Add

the following XML application to your Dialplan extension where you want to invoke
an IVR:

<action application="ivr" data="demo ivr"/>
This will cause FreeSWITCH to look for an IVR named demo_ivr and invoke it.

The XML Dialplan entry for invoking the demo_ivr, which is included with the
sample FreeSWITCH configuration files, is as follows:

<!-- a sample IVR -->
<extension name="ivr_demo">
<condition field="destination number" expression=""5000$">
<action application="answer"/>
<action application="sleep" data="2000"/>
<action application="ivr" data="demo ivr"/>
</condition>
</extension>

Note that in the preceding example, a s1leep application appears
_ before the IVR is executed. This is important as it allows media to
start flowing between your caller and your FreeSWITCH instance,
" before the IVR's greeting begins to play. If the Dialplan does not
do this, you may get complaints from some callers saying that the
beginning of the greeting in being clipped.

Nesting IVRs

There are two ways to nest or otherwise combine IVRs. The first way is to use the
submenu system list, as previously mentioned. Simply create two or more IVR
menus as if they were independent menus, with each one having a unique name.
Then, from the main IVR, create an entry option with action of menu-sub, and a
paran field containing the name of the child IVR. For example:

<entry digits="1" action="menu-sub" param="child ivr"/>

The advantage of creating your menus this way is that you gain the ability to use the
menu-back action to allow callers to get to the previous IVR menu. It is useful if you
have multiple parents calling the same child menu.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

The other way to use submenus is to assign each IVR a unique extension number
and simply transfer the caller from one extension to another, in order to get to and
from the parent and child menus. In this way, you can always guarantee that you
can get from one specific IVR to another and back again, regardless of how an IVR
was invoked. This also makes your Dialplan more consistent and allows for testing
individual IVRs (by dialing their extension directly) at any time without having to
navigate the entire tree.

Using phrases with IVRs

You may have noticed that the greet-long and greet-short options in the
examples use phrase:demo_ivr main_ menu as opposed to a specific sound
filename and path. IVRs allow you to specify sound files using the phrase and
Text-To-Speech macros. This is useful for several reasons; most notably the ability
to chain together multiple sounds into one phrase and the ability to have different
languages presented to the caller, based on the caller's information.

Calling Phrase Macros

Phrase Macros can be called from the Dialplan, from an IVR, or from a Dialplan
script (such as Lua script, which is discussed in the next chapter). The latter will be
covered in the next chapter. Phrase Macros can be used virtually in all places where
a sound filename can be used. Phrase Macros are used only for playback purposes,
so they cannot be used when specifying a filename for a recording operation. We
have already seen examples of using phrases in our XML IVR configuration files.
The following are a few examples of using Phrase Macros from the Dialplan:

<action application="playback"
data="phrase:myphrase:argl:arg2:arg3"/>

<action application="play and get digits"

data="2 5 3 7000 # phrase:myphrase:argl /invalid.wav my var
\d+"/>

Note that there is no requirement to have an argument. The following code is valid
as well:

<action application="playback" data="phrase:myphrase"/>

Now let's look at some phrases to see what they can accomplish for you.

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Phrase Macro examples — voicemail

Remember that the FreeSWITCH voicemail system is a heavy user of IVRs. It is also
exemplary in its use of Phrase Macros to simplify the task of combining prerecorded
sound prompts in a reusable way. By looking at the Phrase Macros used in the
FreeSWITCH voicemail implementation, we can learn virtually all there is to know
about using these powerful tools.

Open conf/lang/en/vm/sounds.xml in a text editor and scan through the file. You
will notice the familiar opening <include> tag and the subsequent <macro> tags.
Just by looking at the definitions of these macros, you can get an idea of what some
of them do.

The basic syntax of a Phrase Macro looks as follows:

<macro name="<macro name>">
<input pattern="<pattern>">
<match>
<action/>
</match>
<nomatch>
<action/>
</nomatch>
</input>
<input pattern="<pattern>">
<match>
<action/>
</match>
<nomatch>
<action/>
</nomatch>
</input>
</macro>

The macro is defined by the contents within the <macro> and </macro> tags.

The input pattern expression is a regular expression (pattern) that is matched
against any arguments that are passed to the Phrase Macro. The actions inside of
the <match> and </match> tags are executed if there is a positive match, otherwise
the actions inside the <nomatch> and </nomatch> are executed. If a match is

found, then the special regular expression capture variables ($1, $2, and so on) are
available inside the <match> node. Note that you may have multiple input patterns.
This functions in a way that is very similar to the XML Dialplan functions. See the
following code for an example of using multiple input pattern nodes.

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

Let's review a few simple macros. Locate the voicemail goodbye macro as follows:

<macro name="voicemail goodbye">
<input pattern="(.*)">
<match>

<action function="play-file"
data="voicemail/vm-goodbye.wav"/>

</match>
</input>
</macro>

This macro is called by the voicemail system when the caller logs out. In this case the
input pattern is (.*), which will always match, even if the phrase was called without
an argument. This pattern is very common in Phrase Macros. At first glance, it may
not seem advantageous to have seven lines of code just to play a single sound file.
However, using this Phrase Macro allows us to customize what happens when a
caller logs out of voicemail, and we can do so without editing any source code. There
are, though, other advantages.

Locate the voicemail enter pass macro:

<macro name="voicemail enter pass'">
<input pattern="(.*)">
<match>

<action function="play-file" data="voicemail/vm-
enter_ pass.wav"/>
<action function="say" data="$1" method="pronounced"
type="name_spelled"/>
</match>
</input>
</macro>

Note that this macro captures the arguments and places them in the special variable
$1. In the example configuration, the voicemail module sends # as the argument.
This macro is what controls the dialog when the caller is logging into voicemail.
Specifically, it plays the sound file that says, "Please enter your password, followed
by..." and then uses the say application to say the word "pound". The net effect then,
is that the caller hears "Please enter your password, followed by... pound". This
macro lets us customize what the caller hears when he or she is prompted to enter a
password.

M Watch the £s_c11i program while logging into voicemail and
Q checking messages. You can observe the phrases being parsed
and executed.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

At this point, we can already see that Phrase Macros are good for customization, and
they stitch together various sound prompts to create meaningful sentences to play to
the caller. A classic example of this is the IVR menu. The voicemail main menu really
is just an IVR menu for a specific purpose. It is a dialog that says to the caller, "To listen
to new messages, press one. To listen to saved messages, press two. For advanced
options, press five. To exit, press pound". Let's look at the following macro.

Locate the macro voicemail menu, listed as follows:

<macro name="voicemail menu">
<input pattern=""([0-9#*]): ([0-9#*]): ([0-9#*]) : ([0-9#*])$">
<match>
<!-- To listen to new messages -->
<action function="play-file"
data="voicemail/vm-
listen new.wav"/>
<action function="play-file"
data="voicemail/vm-press.wav"/>
<action function="say"
data="$1" method="pronounced"
type="name_spelled"/>
<action function="execute" data="sleep(100)"/>
<!-- To listen to saved messages -->
<action function="play-file"
data="voicemail/vm-listen saved.wav"/>
<action function="play-file"
data="voicemail/vm-press.wav"/>
<action function="say" data="$2" method="pronounced"
type="name_spelled"/>
<action function="execute" data="sleep(100)"/>
<!-- For advanced options -->
<action function="play-file"
data="voicemail/vm-advanced.wav"/>
<action function="play-file"
data="voicemail/vm-press.wav"/>
<action function="say" data="$3" method="pronounced"
type="name_spelled"/>
<action function="execute" data="sleep(100)"/>
<!-- To exit -->
<action function="play-file"
data="voicemail/vm-to exit.wav"/>
<action function="play-file"
data="voicemail/vm-press.wav"/>
<action function="say" data="$4" method="pronounced"
type="name_phonetic"/>
</match>
</input>
</macro>

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

Most of this phrase is self-explanatory. The key piece of information is actually found
in the pattern (highlighted). The voicemail module calls this macro with an argument
list that looks like this: 1:2:5: #. The input pattern is simply a regular expression that

parses out those values, so that $1 contains 1, $2 contains 2, $3 contains 5, and $4

contains #.

Q

You may be wondering where the key presses are defined, that is, where
you can tell the FreeSWITCH voicemail module that the caller should
press one for new messages, press two for saved messages, and so on.
The answer is in the file conf /autoload configs/voicemail.
conf .xml. Look in the <profiles> node for the default voicemail
profile. Notice that many of the parameters have names ending

with -key. These are all customizable. The parameter play-new-
messages-key defines which key the user presses to listen to new
messages. The parameter conf ig-menu-key is what the user presses
to access the advanced options menu. Feel free to experiment with your
own customizations. The FreeSWITCH developers recommend that you
make a copy of the default voicemail profile, and then define your own
custom profile if you wish to make changes to a production system.

Let's look at one more example of using Phrase Macros to solve what may otherwise be
complicated IVR scenarios. The voicemail message_count macro solves two distinct
problems. First, we have two different types of voicemail messages, namely, new and

saved. Second, we have the challenge of when to use messages (plural) or message
(singular), when telling the caller how many messages are present. Notice how our

voicemail message_count macro elegantly solves both problems as follows:

<macro name="voicemail message count">

<input pattern=""(1):(.*)$" break on match="true">

<matchs>

<action function="play-file"
data="voicemail/vm-you have.wav"/>

<action function="say" data="$1" method="pronounced"
type="items"/>

<action function="play-file"
data="voicemail/vm-3$2.wav"/>

<action function="play-file"
data="voicemail/vm-message.wav"/>

</match>

</input>

<input pattern=""(\d+):(.*)$">

<matchs>

<action function="play-file"
data="voicemail/vm-you have.wav"/>

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<action function="say" data="$1" method="pronounced"
type="items"/>

<action function="play-file"
data="voicemail/vm-$2.wav"/>

<action function="play-file"
data="voicemail/vm-messages.wav"/>

</match>
</input>
</macro>

Again, much of this is self-explanatory, and like the previous example, the key

to understanding this macro is in the input patterns (highlighted). The voicemail
module calls this macro with an argument of x: new or x: saved, representing the
number of new or saved messages, respectively. The number of messages is captured
in $1, and then type of messages (either new or saved) will be stored in $2. The
macro uses $2 to determine whether to play voicemail/vm-new.wav or voicemail/
vm-saved.wav, so that problem is easily solved. However, what about saying
messages versus message?

Notice that the first input has an extra attribute, namely, break_on_match. By
setting this attribute to true, we tell the macro to stop looking at the rest of the
input patterns in the macro. If the user has a single new message, then the voicemail
module will call this phrase with an argument of 1:new. (Likewise, it would call the
argument with 1:saved for a single saved message.) The first pattern will match, and
no more searching for matches will be performed. Then, the actions within the first
<match> will be executed. In this case the Phrase Macro stitches together a phrase
that says, "You have ... one ... new ... message". However, if there is more than one
message (or zero messages), then the argument would be something like 2 : new. In
this case, the first input pattern match would fail, and then it would continue on

to the second pattern, where it would match. The actions inside this <match> node
would yield a phrase that says, "You have ... two ... new ... messages". By using a
more specific input pattern first, along with setting break_on_match to true, and by
using the more general input pattern second, we have a simple and elegant way of
handling the plural problem that is common among many languages.

Keep these principles in mind as we will put them to good use in Chapter 7, Dialplan
Scripting with Lua.

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

Advanced routing

IVRs are not just limited to menus. While you most likely want to program complex
IVRs using a programming language, it's possible to use the built-in XML IVRs in
other ways, too.

For example, let's say you wanted to require callers to enter a PIN number in order
to reach a special answering service. You might create an IVR that contains the PIN
number as the only available entry, and replace the sound files with a greeting,
requesting the PIN number and the invalid entry sound with an invalid password
message. The menu would be simple enough, as follows:

<menu name="enter pin"
greet-long="phrase:enter your pin"
invalid-sound="phrase:invalid pin"
exit-sound="phrase:invalid pin"
timeout="15000"

max-failures="3"

max-timeouts="3">

<entry digits="1828" action="menu-exec-app"
param="transfer after hours XML default"/>
</menu>

This would effectively create a prompt, requesting a password of 1828 as previously
stated, and disconnect the caller after three failed attempts.

As another option, you might create an IVR that collects some data that is later used
in your Dialplan. Let's say you wanted the caller to enter the caller ID that they want
to appear on their next outgoing call. You could create an IVR to collect 10 digits,
pass the result to another extension which sets the digits to the current caller ID, and
then go to the final destination. Your IVR menu might look like the following;:

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<menu name="set callerid"
greet-long="phrase:enter your callerid"
invalid-sound="phrase:invalid callerid"
exit-sound="phrase:invalid callerid"
timeout="15000"
digit len="10"
max-failures="99"
max-timeouts="99">
<entry digits="/"(\d{10})$/" action="menu-exec-app"
param="transfer $1 XML set callerid"/>

</menu>
You would then create a special context in your Dialplan, which might look like this:

<context name="set callerid"s>
<extension name="SetIt">
<condition field="destination number"
expression=""(\d{10})s$">
<action application="set"
data="effective caller id number=$1"/>

<action application="bridge"
data="sofia/external/18005551212"/>

</conditions>
</extension>
</context>

The combination of the preceding IVR and helper context would allow callers to
enter their Caller ID, and have it set prior to the bridge application being called.

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Using XML IVRs and Phrase Macros

Summary

The IVR system within FreeSWITCH is a powerful, flexible tool to use when creating
anything that gathers input from a caller. When combined with the various other
applications in FreeSWITCH, the possibilities for routing callers using dynamic and
creative call flows are endless.

Now that we have considered the XML IVR system and the Phrase Macro system,
let's turn our attention to an alternative means of controlling complex interaction
with the caller, that is, Dialplan scripting with the Lua programming language.

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

In the previous chapter, we discussed the basics of building Interactive Voice
Response (IVR) applications using the built-in XML IVR engine. The XML IVR
engine is useful for building simple IVR applications that are relatively static in
nature. FreeSWITCH has other ways of building IVR applications that are more
flexible and powerful than the built-in XML IVR engine. One way is by utilizing
the various scripting languages that have been integrated into FreeSWITCH.
FreeSWITCH supports the following scripting languages for building voice
applications:

* JavaScript

* Lua

e Perl
Any of the preceding languages can be used for building IVR applications. In this
chapter we will focus on using Lua (www. lua.org), a lightweight scripting language

that is designed to be embedded within other projects. A famous example of which is
World of Warcraft.

\ Each of the scripting languages has its own advantages and
~ drawbacks. Lua is a good choice because it is fast, scalable, and
Q easy to learn. All things being equal, Lua is a good choice for
almost any Dialplan script you would want to write.

This chapter will cover the following topics:

* Getting started with Lua

* Building voice applications

* Advanced IVR

* Scripting tips
As part of our building voice applications with Lua, we will make extensive use of
custom phrase macros in our examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

Getting started with Lua

Lua is built and loaded by default when using the example configuration. To
confirm that you have Lua installed and running, open up £s_c1i and issue the 1ua
command. You should see something like this:

freeswitch@internal> lua

-ERR no reply

If you see an error that says command not found then you'll need to build and load
mod_1lua for your system. Use the same technique we employed for building and
loading mod_f1lite. See the Compiling FreeSWITCH for Linux/Unix/Mac OS X section
in Chapter 2, Building and Installation for details.

Running Lua scripts from the Dialplan

The 1ua Dialplan application is called from within the <action> tags using the
familiar syntax:

<action application="1lua"
data="my script.lua argl arg2 arg3"/>

Arguments passed to the script are separated by spaces. To include an argument that
contains a space, use single quote characters to delimit the argument:

<action application="1lua"
data="my script.lua 'arg 1' 'arg 2' 'arg 3'"/>

If you put your script in the scripts subdirectory under the main FreeSWITCH
installation directory, then it is not necessary to specify the full path to your
script file. If needed, you can use an absolute path. For example, in Linux/Unix
environments, do the following;:

<action application="lua" data="/full/path/to/my script.lua"/>
In Windows:

<action application="lua"
data="C:\full\path\to\my script.lua"/>

Before we start writing scripts, let's take a brief look at the syntax of the
Lua language.

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Basic Lua syntax

Lua has a simple syntax that is easy both to learn and to read. The following is a
simple script:

-- This is a sample Lua script
-- Single line comments begin with two dashes
-- 1[I
This is a multi-line comment.
Everything between the double square brackets
is part of the comment block.
11
-- Lua is loosely typed

var = 1 -- This is a comment
var ="alpha" -- Another comment
var ="Al" -- You get the idea...

-- 1[I
When the Lua script is called from the dialplan
you have a few magic objects. A handy one is
the 'freeswitch' object which lets you do things
like this:
freeswitch.consoleLog ("INFO","This is a log line\n")

Another important one is the 'session' object which
Lets you manipulate the call:
session:answer ()
session:hangup ()
11
-- Lua makes extensive use of tables
-- Tables are a hybrid of arrays and associative arrays
vall =1
val2 2
my table = {

keyl = vall,
key2 = val2,
"index 1",
"index 2"

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

freeswitch.consoleLog ("INFO", "my table
. lll\nll)

freeswitch.consoleLog ("INFO", "my table
. lll\nll)

-- Access arguments passed in

argl = argv([1l] -- First argument
arg2 = argv/[2] -- Second argument
-- Simple if/then

if (var =="Al") then

freeswitch.consoleLog ("INFO", "var is
end
-- Simple if/then/else
if (var =="Al1") then
freeswitch.consoleLog ("INFO", "var is
else
freeswitch.consoleLog ("INFO", "var is
end
-- String concatenation uses
"that"

var ="This" .." and "

freeswitch.consoleLog ("INFO", "var contains '"

-- The end

keyl is ' my table["keyl"]

index 1 is '" my table[1]

lAll\nll)

lAll\nll)
not 'Al'!\n")

on |\nn)

var

Every Lua script that is executed from the Dialplan receives the session object,
which represents the call leg that is being processed. The session object is the
primary means of manipulating the call, and is used extensively in Lua scripting.

Building voice applications

Now that we have covered the basic Lua syntax, let's create a simple Lua script and
the corresponding entry in the Dialplan. First, create a new Dialplan extension that
will execute the Lua script when a user dials 9910:

1. Openthe 01_custom.xml file that we created in Chapter 5, Understanding the
XML Dialplan, and add the following new extension:

<extension name="Simple Lua Test">

<condition field="destination number" expression=""(9910)S$">

<action application="lua" data="testl.lua"/>

</conditions>
</extensions>

2. Save thefile, launch £s_c1i, and issue reloadxml, or press the F6 key:

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Our Dialplan is now ready to call the Lua script named test1.1lua. Create
this new script as follows.

3. Using your text editor, create the test1.1lua script in the freeswitch/
scripts/ directory, and add the following code lines:

-- testl.lua

-- Answer call, play a prompt, hang up

-- Set the path separator

pathsep = '/

-- Windows users do this instead:

-- pathsep = '"\'

-- Answer the call

session:answer ()

-- Create a string with path and filename of a sound file
prompt ="ivr" .. pathsep .."ivr-welcome to freeswitch.wav"
-- Print a log message
freeswitch.consoleLog ("INFO", "Prompt file is '" .. prompt .."'\n")
-- Play the prompt

session:streamFile (prompt)

-- Hangup

session:hangup ()

4. Save the file.

The preceding script is now ready for us to test. Using a phone that is registered on
your FreeSWITCH server, dial 9910. You will hear the sound prompt being played,
and then the system will disconnect the call.

M After editing and saving a Lua script, there is no need to execute
Q reloadxml. As soon as the script file is saved, the 1ua application
called from the Dialplan will use the updated script file.

Let's look at a few lines in this script and review their functions.
pathsep = '/!'

This preceding code line creates a variable named pathsep, whose value is a single
forward slash (/) character. This is used as the path separator for Linux/Unix based
systems. Windows users will, of course, need to use the backslash (\) character as the
path separator.

1
~ Using a path separator variable will make scripts

more portable between operating systems.

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

session:answer ()

The preceding code line answers the call. Most scripts will answer the call as their
first action.

prompt ="ivr" .. pathsep .. "ivr-welcome to freeswitch.wav"

The preceding line creates a variable named prompt that contains the relative path to
one of the included sound files.

freeswitch.consoleLog ("INFO", "Prompt file is '" .. prompt .. "'\n")

The preceding command will print a line of information to the FreeSWITCH console.
It is very handy for troubleshooting and debugging. If you watch the FreeSWITCH
console while calling 9910, you should see a line like the following in the output:

2012-10-11 16:46:50.770343 [INFO] switch cpp.cpp:1227 Prompt file is
'ivr/ivr-welcome_to freeswitch.wav'

1
‘Q Be sure to include a trailing newline sequence (\n) when

using freeswitch.consoleLog.

session:streamFile (prompt)

The preceding code line uses the session object's streamFile method to play the
audio file to the caller. Keep in mind that when specifying a relative path name,
FreeSWITCH will actually find the file that matches the sample rate of the call.

In many cases, this will be 8000, because the sampling rate of 8000 Hz (8 kHz) is
typical for a phone call. In this example, the actual Linux path to the sound file is
the following: /usr/local/freeswitch/sounds/en/us/callie/ivr/8000/ivr-
welcome to freeswitch.wav.

M A complete list of English sound files and their contents can
Q be found in docs/phrase/phrase en.xml, under the
FreeSWITCH source directory.

The last code line simply hangs up the call, disconnecting the calling party:

session:hangup ()

Building simple scripts with Lua is not at all difficult. Now let's write a script that
does some basic interactions with the caller.

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

A simple IVR - interacting with the caller

Most IVR applications require some sort of input from the caller. For example,

it is quite common for an IVR application to prompt the caller to enter a PIN

or an account number, and then act accordingly. Let's write a small script that
demonstrates how to collect some dialed digits from the caller, and read them back,
using two different pronunciation methods:

1. Openthe 01_custom.xml file and add the following new extension:

<extension name="Read Back Entered Digits">
<condition field="destination number" expression=""(9911)S$">
<action application="lua" data="read back digits.lua"/>
</conditions>
</extensions>

2. Save the file, launch £s_c1i, and issue reloadxml, or press the F6 key.

Our Dialplan is now ready to call the Lua script named read_back_digits.lua.
Create this new script as follows:

1. Using your text editor create read_back_digits.lua in the freeswitch/
scripts/ directory and add the following code lines:

-- read_back_digits.lua

--Answer the call

session:answer ()

-- Set the path separator

pathsep = '/!'

-- Windows users do this instead:

-- pathsep = '\

-- Set a variable that contains the sound prompt to play
prompt ="ivr" .. pathsep
"ivr-please_enter extension followed by pound.wav"

-- Set a variable that contains the invalid message to play
invalid ="ivr" .. pathsep
"ivr-that_was_an_invalid_entry.wav"

-- Play file and collect digits

-- Variable 'digits' will contain the digits collected
-- Valid input is 3 digits min, 5 digits max

-- Caller presses # (pound or hash) to finish

digits = session:playAndGetDigits (3, 5, 3, 7000,"#", prompt, invalid,
"\\d+")

-- Read back digits iterated, then pause

-- "one two three four five"

session:execute("say", "en number iterated " .. digits)
session:sleep(1000)

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

-- Read back digits pronounced, then pause

-- "twelve thousand, three hundred forty-five"
session:execute ("say", "en number pronounced " .. digits)
session:sleep(1000)

-- Politely hang up

thankyou = "ivr" .. pathsep .. "ivr-Thank you.wav"
goodbye = "voicemail" .. pathsep .. "vm-goodbye.wav"
session:streamFile (thankyou)

session:sleep (250)

session:streamFile (goodbye)

-- Hangup

session:hangup ()

2. Save the file.

This script is now ready for us to test. Dial 9911 and listen for the prompt, which
will tell you to enter an extension. Key-in several digits and then press the #

key. The system will read back the digits in iterated format (one-two-three-four),
then in pronounced format (one thousand, two hundred thirty-four), and will
finally say, "Thank you, goodbye," before hanging up. The playAndGetDigits
method will also handle invalid input for you. Try entering only two digits or a
star to hear the invalid entry dialog. If the caller makes three invalid entries then
playAndGetDigits will disconnect.

Conditions and looping

The previous examples demonstrate a basic dialog with the caller. Let's now examine
a script that will use conditionals and looping. We will also apply what we learned
in Chapter 6, Using XML IVRs and Phase Macros, to create a new Phrase Macro to
assemble several individual sound files into a larger sound prompt.

Let's create the Phrase Macro first. We need a Phrase Macro that will stitch together
individual sounds files into a prompt that says, "To continue, press one; to exit, press
two". We create a new file called custom-phrases.xml and add a new macro.

1. Open the file conf/lang/en/demo/custom-phrases.xml. Add the following
code lines:

<macro name="read digits2 phrase" pause="100">
<input pattern="(.*)">
<match>
<action function="play-file" data="voicemail/vm-continue.
wav"/>
<action function="play-file" data="voicemail/vm-press.wav"/>
<action function="play-file" data="digits/1l.wav"/>

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

<action function="execute" data="sleep(250)"/>
<action function="play-file" data="voicemail/vm-to_exit.
wav"/>
<action function="play-file" data="voicemail/vm-press.wav"/>
<action function="play-file" data="digits/2.wav"/>
<action function="execute" data="sleep(250)"/>

</match>

</input>
</macro>

2. Save the file, launch £s_c1i, and issue reloadxml, or press the F6 key.

The Phrase Macro read_digits2_phrase is now ready to be used.

Remember that any time you edit an XML configuration file you need
M to issue the reloadxml command, or press F6 at the FreeSWITCH
Q command line. It is good to get into the habit of reloading your XML
configuration whenever you make a change because this will make it
easier to locate the source of any errors or typos.

3. Open the 01_custom.xml file and add the following new extension:

<extension name="Read Back Entered Digits #2">
<condition field="destination number" expression=""(9912)S$">
<action application="lua" data="read back digits2.lua"/>
</conditions>
</extensions>

4. Save the file, launch £s_c1i, and issue reloadxml, or press F6.

Our Dialplan is now ready to call the Lua script named read_back_digits2.lua.

Create the following new script:

1.

Using your text editor create read back_digits2.luainthe freeswitch/
scripts/ directory and add the following lines:

-- read back digits2.lua

-- Demonstrates while loop and session:ready ()

--Answer the call

session:answer ()

-- Set the path separator

pathsep = '/!'

-- Windows users do this instead:

-- pathsep = '"\'

-- Set a variable that contains the sound prompt to play
prompt = "ivr" .. pathsep

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

"ivr-please enter extension followed by pound.wav"
-- Set a variable that contains the invalid message to play
invalid = "ivr" .. pathsep
"ivr-that was _an invalid entry.wav"
-- Set a flag for continuing or exiting
continue = true
-- Initiate while loop
-- Loop continues until caller hangs up or chooses to exit
while (session:ready () == true and continue == true) do
-- Play file and collect digits
-- Variable 'digits' will contain the digits collected
-- Valid input is 3 digits min, 5 digits max
-- Caller presses # (pound or hash) to finish
digits = session:playAndGetDigits(3, 5, 3, 7000, "#", prompt,
invalid, "\\d+")
-- Read back digits iterated, then pause
-- "one two three four five"
session:execute("say", "en number iterated " .. digits)
session:sleep(1000)
-- Read back digits pronounced, then pause
-- "twelve thousand, three hundred forty-five"
session:execute ("say", "en number pronounced " .. digits)
session:sleep(1000)
-- Ask caller to continue or exit
digits = session:playAndGetDigits(1, 1, 2, 4000, "#",
"phrase:read _digits2 phrase", invalid, "\\d{1}")

freeswitch.consoleLog ("INFO", "digits is '" .. digits .. "'\n")
if (digits == "2") then
continue = false
freeswitch.consoleLog ("INFO", "Preparing to exit...\n")
end

end

-- Politely hang up

thankyou = "ivr" .. pathsep .. "ivr-Thank you.wav"
goodbye = "voicemail" .. pathsep .. "vm-goodbye.wav"
session:sleep (250)

session:streamFile (thankyou)

session:sleep (250)

session:streamFile (goodbye)

-- Hangup

session:hangup ()

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

2. Save the file.

We are now ready to test. At the FreeSWITCH command line issue the command /
log 6 so that the debug messages are not displayed. Watch the console while you
call the new extension. Dial 9912 and enter the value to be read back. After the value
is read back, there will be a second prompt that will ask you to press 1 to continue, or
to press 2 to exit. (Technically, any key other than 2 will continue the script.) Try both
options and watch the console. You will see the console log messages from the script
that print the digit you pressed.

Let's review the two highlighted lines from our script:

while (session:ready() == true and continue == true) do
This code line initiates the while loop. Notice that there are two conditions that must
be true or the while loop will exit; namely, session:ready () must be true and the
variable cont inue must also be true. The session:ready () method is a simple
way to know whether or not the caller has hung up. When the caller hangs up, the
session:ready () method will be a non-true value. The other condition is a test on
the variable continue, which is a simple flag that we created and set to true. It stays
true until the caller presses 2 when prompted to continue or exit, and at that time
continue is set to false.

if (digits == "2") then
The preceding line simply checks if the caller pressed 2 in order to exit. If digits
contain 2 then the script sets the value of continue to false, which causes the while
loop to exit.

Note that the information received from play and

get_digits is a string value, not an integer. The

digits dialed by the caller can include the *and # key.

This example demonstrates some simple ways to use conditionals to your advantage.
The session:ready () method is an important tool to use when you need to break
out of your script's main control loop if the caller hangs up.

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

Even more conditions and looping

Let's look back into what we have learned so far and create a simple utility script that
lets the caller make recordings. The script will prompt the user for a series of digits,
which it will use for the filename, allow the caller to record a prompt, give the caller
a choice to accept or re-record, and finally, let the caller choose to record another
prompt or exit the script. It will also introduce the concept of functions and using
setInputCallback to handle certain key presses. Finally, we will create two new
Phrase Macros and reuse an existing Phrase Macro. The basic call flow looks like the
following diagram:

Call Start \l,
1. Listen > Playback
1. Record Message Enter message Record 7 J
2. Exit >l Number 2| Message | | 2 Accept Message

3. Re-record

N T

Hang Up Message

Saved

Start by adding the extension to the Dialplan as follows:

3. Open the 01_custom.xml file and add the following new extension:

<extension name="Record Sound Files Utility">
<condition field="destination number" expression=""(9913)3$">
<action application="lua" data="record sound files.lua"/>
</conditions>
</extensions>

4. Save the file. Launch £s_c1i and issue reloadxml, or press Fé.

Our Dialplan is now ready to call the Lua script named record_sound_files.

lua. Next, let's create some Phrase Macros. The first Phrase Macro tells the caller,
"To record a greeting, press one; to exit, press two". Note that this Phrase Macro is
almost identical to the read_digits2_phrase macro that we created in the previous
example. The other Phrase Macro will tell the user to enter the message number (that
is, the filename) and press pound (#). Add the two new Phrase Macros as shown in
the following code snippet:

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

5. Open the file conf/lang/en/demo/custom-phrases.xml and add these
code lines:

<macro name="record greeting or_exit" pause="100">
<input pattern="(.*)">
<match>
<action function="play-file"
data="voicemail/vm-to record greeting.wav"/>
<action function="play-file"
data="voicemail/vm-press.wav"/>
<action function="play-file" data="digits/1l.wav"/>
<action function="execute" data="sleep(250)"/>
<action function="play-file"
data="voicemail/vm-to_exit.wav"/>
<action function="play-file"
data="voicemail /vm-press.wav"/>
<action function="play-file" data="digits/2.wav"/>
<action function="execute" data="sleep(250)"/>
</match>
</input>
</macro>
<macro name="enter message number" pause="100">
<input pattern="(.*)">
<match>
<action function="play-file"
data="ivr/ivr-please_enter the.wav"/>
<action function="play-file" data="ivr/ivr-file.wav"/>
<action function="play-file" data="ivr/ivr-number.wav"/>
<action function="execute" data="sleep(250)"/>
<action function="play-file" data="currency/and.wav"/>
<action function="play-file"
data="voicemail/vm-press.wav"/>
<action function="play-file" data="digits/pound.wav"/>
<action function="execute" data="sleep(250)"/>
</match>
</input>
</macro>

6. Save the file, launch £s_c1i, and issue reloadxml, or press F6.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

The Phrase Macro record greeting or exit and enter message number are
now ready to be used. Finally, create the new script as follows:

1.

Using your text editor, create record_sound_files.lua in the freeswitch/
scripts/ directory and add the following lines:

-- record_sound_files.lua

-- Lets user record one or more sound files

-- Sounds are stored in ${sounds dir}

-- Input Callback to handle digits dialed during the recording
function onInput (s, type, obj)

if (type == 'dtmf') then
return "break" -- This ends the recording
end
end

-- Answer the call
session:answer ()
session:sleep (500)
-- Set the path separator
pathsep = '/
-- Windows users do this instead:
-- pathsep = '"\'
-- Set a variable that contains the sound prompt to play
prompt = "ivr" .. pathsep
"ivr-please enter extension followed by pound.wav"
-- Set a variable that contains the invalid message to play
invalid ="ivr" .. pathsep
"ivr-that was_an invalid entry.wav"
-- Set a flag for continuing or exiting
continue = true
-- Specify action when digits are dialed during the recording
session:setInputCallback ("onInput","")
-- Initiate while loop
-- Loop continues until caller hangs up or chooses to exit
while (session:ready () and continue) do
-- First menu:
-- 1 = Record
-- 2 = Exit
digits = session:playAndGetDigits(1, 1, 3, 7000, "#",
"phrase:record greeting or exit", invalid, "\\d{1}")
if (digits == "2") then
continue = false
freeswitch.consoleLog ("INFO", "Preparing to exit...\n")
else
-- Collect message number from caller

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

-- Variable 'digits' will contain the digits collected
-- Valid input is 3 digits min, 5 digits max
-- Caller presses # (pound or hash) to finish
msgnum = session:playAndGetDigits (3, 5, 3, 7000, "#",
"phrase:enter message number", invalid, "\\d+")
-- Read back the message number
session:execute("say", "en number iterated " .. msgnum)
session:sleep(1000)
-- New loop: accepted or not
accepted = false
while (session:ready() and not accepted) do
-- Record ile
session:streamFile ("phrase:voicemail record message")
-- Play a "bong" tone prior to recording
session:streamFile ("tone stream://v=-
7;%(100,0,941.0,1477.0) ;v=-7;>=2;+=.1;%(1000, 0O, 640)")
filename = session:getVariable('sounds dir') .. pathsep
msgnum .. ".wav"
session:recordFile (filename,300,100,10)
-- New loop: Ask caller to listen, accept, or re-record
listen = true
while (session:ready() and listen) do
session:streamFile (filename)

-- Use handy record file check macro courtesy of the
voicemail module

local digits = session:playAndGetDigits (1, 1, 2, 4000,
"#", "phrase:voicemail record file check:1:2:3", invalid,
"\\da{1}")

if (digits == "1") then
listen = true
accepted = false
session:execute ("sleep", "500")

elseif (digits == "2") then
listen = false
accepted = true
-- Let the caller know that the message is saved
-- NOTE: you could put these into a Phrase Macro as well
session:streamFile ("voicemail/vm-message.wav")
session:execute ("sleep","100")
session:execute("say", "en number iterated " .. msgnum)
session:execute ("sleep","100")
session:streamFile ("voicemail/vm-saved.wav")
session:execute("sleep","1500")

elseif (digits =="3") then
listen = false

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

accepted = false
session:execute ("sleep", "500")
end -- if (digits == "1")

end -- while (listen)

end

-- while (not accepted)

end -- if (digits == "2")
end -- while (session:ready())

-- Let's be polite

thankyou = "ivr" .. pathsep .. "ivr-Thank you.wav"

goodbye

session:

session:

session

session

= "voicemail" .. pathsep .. "vm-goodbye.wav"
sleep (250)
streamFile (thankyou)

:sleep(250)
:streamFile (goodbye)

-- Hangup

session:hangup ()

2. Save the file.

Test the script by dialing 9913. The first menu simply says, "To record a greeting,
press one; to exit, press two". Press 1. The system will then ask for a message number
followed by the pound (#) sign. Key-in 1234#. Next, you will be prompted to record
a message. Record a message and then press any digit or stop talking to finish.

The recording will be played back and then you will be in the last menu with the
following options: listen, accept, or re-record. Try each one to see how the script

operates. You may record as many files as you need.

Al

Let's review a few key parts of this script in the following way, starting with the

The recordings are located in the sounds directory. To see the

~ sounds directory, go to £s_c11i and issue the following command:
Q eval ${sounds _dir}. Also, note that the recordFile method

will overwrite any existing files without warning, so be careful!

onInput function:

function onInput (s, type, obj)
if (type == 'dtmf') then
return "break" -- This ends the recording

end
end

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

This function simply tests the type of input and returns a value of "break" if the user
dialed a DTMF digit. When, though, is this function executed? It is closely related to
this line of code, which is found later in the script:

session:setInputCallback ("onInput", "")

The setInputCallback method specifies what to do when the caller dials a digit.
Whenever a digit is dialed, the function specified here is called. (Note that this does
not apply when executing session:playAndGetDigits, which handles digits on its
own.) In our script, the function onInput is called whenever the caller dials a digit.

The function simply returns "break", which stops both the recording and playback.
So, not only can you stop recording by pressing a digit, you can also skip past the
playback of various prompts. Dial 9913 again and when you get to the voice prompt
that says, "Record your message at the tone", press a digit to skip past it.

Notice that we nested a pair of while loops inside of the main while loop. The main
while loop continues to execute until the caller hangs up or presses 2 to exit. The
middle while loop continues until the variable accepted is true. The inner while
loop continues until the variable 1isten is false. The inner while loop allows the
caller to listen to his or her recording as often as desired before accepting it, and the
middle while loop allows the caller to re-record the file as many times as desired.
The outer while loop lets callers record as many different sound files as they wish.

You probably noticed that we have a session:ready () check
in each while loop. This is necessary to handle the case where

Y the caller hangs up in the middle of processing a while loop. As
a rule of thumb, any time you have a while loop in a Dialplan
script you should check the status of session:ready (). Failure
to do so could lead to zombie Lua scripts waiting for input from a
session that has long since disconnected!

The script records all sound files as .wav files. You can change the file type by
choosing a different file extension, such as .ul or .gsm. However, the FreeSWITCH
developers recommend using .wav files, unless there is an extremely compelling
reason not to do so.

There is one other curious line of code, which is as follows:

session:streamFile ("tone stream://v=-
7;%(100,0,941.0,1477.0) ;v=-7;>=2;+=.1;%(1000, 0, 640)")

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

The preceding line uses the built-in Tone Generation Markup Language (TGML)
to create the "bong" tone played to the caller just prior to recording. FreeSWITCH
allows you to create and playback a wide array of tones. See http://wiki.
freeswitch.org/wiki/TGML for more information.

Using a combination of playing sound files, accepting caller input via touch-tones, as
well as recording the caller's voice, you can easily build custom voice applications.

More information about Lua and the session object can be found
i online athttp://wiki.freeswitch.org/wiki/Mod lua.

Up to this point, what we have accomplished with Lua is similar to what we did
with the XML IVR engine. Let's now consider some advanced concepts that explicitly
show the advantages of using a scripting language.

Advanced IVR concepts

In addition to important programming constructs such as conditionals and looping,
there are other things that are possible by utilizing a scripting language. One of

the advanced functions of a really useful IVR is the ability to interact with a third-
party database. In some cases, this is a simple web lookup function. In other cases,
it involves asking the caller for an account or ID number and a PIN code, and then
polling a database. Let's consider simple examples of each method.

Connecting to a database with LuaSQL

The LuaSQL interface implements a simple interface between Lua and a DBMS. (The
LuaSQL interface is provided by the Kepler project. More information is available at
http://www.keplerproject.org/luasgl/.)

The examples in this section require some working knowledge
u of databases and the ability to compile LuaSQL, for the target
~ database type to which you will be connecting. It is beyond
Q the scope of this book to describe all the possible installation
scenarios. The examples presented here were done on a 32-bit
Debian 6 installation using PostgreSQL 9.1.5.

Set up your database to use the examples presented as follows:

1. Create a database user named fsuser with a password fspass.

2. Create a database named fsbook.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Create a table named users:

CREATE TABLE users (
name character varying(20),
pin integer,
acct integer,
balance numeric(9,2),
PRIMARY KEY (acct)

) ;

Add some data as follows:

INSERT INTO users (name, pin, acct, balance) VALUES ('Anthony',
7654,9898, 123.45);

INSERT INTO users (name, pin, acct, balance) VALUES('Michael',
9642,1771, 0.00);

INSERT INTO users(name, pin, acct, balance) VALUES('Darren',
3756,2316, 15.75);

Test to make sure that you can log in to your database with your username;
otherwise, the Lua script will not be able to communicate with your
database.

Add a new extension in the following way.

Open the 01_custom.xml file and add the following new extension:
<extension name="Simple db connection">
<condition field="destination number" expression=""(9914)$">
<action application="lua" data="db_ connect.lua"/>
</condition>

</extension>
Save the file, launch £s_c1i, and issue reload xml, or press F6.

Our Dialplan is now ready to call the Lua script named db_connect . 1ua. Our
script will demonstrate the basic concepts of connecting to the database and
performing an SQL query. We will accept an account number and PIN from
the caller, query the database, check the PIN, and if it is correct, the script will
read the customer's balance. Let's create our script in the following way.

Using your text editor create db_connect.lua in the freeswitch/scripts/
directory and add the following lines:

-- db_connect.lua
-- Connects to a database, checks PIN, reads balance

-- Load the LuaSQL

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

require "luasgl.postgres"

-- A hangup function makes the code a bit cleaner
function hangup call ()
session:streamFile ("ivr/ivr-Thank you.wav")
session:sleep (250)
session:streamFile ("voicemail/vm-goodbye.wav")
session:hangup ()
end

-- Clean up if necessary

function close db conn()
cur:close ()
con:close ()
env:close ()

end

-- Create database environment object
env = assert (luasgl.postgres())

-- Create database connection object
con = assert (env:connect ("fsbook", "fsuser", "fspass", "localhost"))

-- Set invalid entry file
invalid = "ivr/ivr-that was_an invalid entry.wav"

-- Greet caller
session:answer ()
session:streamFile ("ivr/ivr-hello.wav")

tries = 0
while (session:ready() == true and tries < 3) do
-- Collect account number
acct = session:playAndGetDigits (3, 5, 3, 7000, "#",
"phrase:enter message number", invalid, ".+")

-- Pull account from database
cur = assert (con:execute ("SELECT * FROM users WHERE acct = '"

acct .. "'m))

-- Get the results, indexed alphanumerically by column names
row = cur:fetch ({}, "a")

-- Confirm that we received the record

if (cur:numrows () == 1) then
-- We have an account, now collect PIN and check
tries 0

while (tries < 3) do
pin = session:playAndGetDigits(3, 5, 3, 7000, "#", "ivr/ivr-
please enter pin followed by pound.wav", invalid, "\\d+")

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

if (pin == row.pin) then

bal = row.balance

user repeat = true

while (session:ready() == true and user repeat == true) do
session:streamFile ("voicemail/vm-you have.wav")
session:execute("sleep",200)
session:execute("say", "en currency pronounced " .. bal)
session:execute ("sleep",200)
digits = session:playAndGetDigits(1,1,3,7000,"#","ivr/

ivr-to_repeat these options.wav",invalid, "\\d+") -- repeat y/n
freeswitch.consoleLog ("INFO", "User entered '" .. digits
"\n")
if (digits == "1") then
user repeat = true
else

close db conn()
hangup call()
break
end
end
else
-- Caller entered wrong PIN
session:streamFile ("ivr/ivr-that was an invalid entry.
wav")
tries = tries + 1;
end
end
if (tries > 2) then
-- Too many failed attempts to enter PIN
session:streamFile ("voicemail/vm-abort.wav")
close db conn()
hangup call ()
break
end
else
-- We did not find this account
session:streamFile (invalid)
tries = tries + 1;
end
end -- while (tries < 3)

if (tries > 2) then
session:streamFile ("voicemail/vm-abort.wav")
close db conn ()
hangup call()

end

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

8. Save the file.

Test the new extension by dialing 9914. Enter in a four-digit account number that

is found in the database and press #. In our example, you could enter 1771. Enter
the corresponding PIN number for the account and press #. The system will do a
database lookup and then read back the account balance. Try different combinations
of valid and invalid account numbers and PIN numbers, to see how the script
handles errors.

Let's review the important new features presented in this script. You will first notice
that we used a pair of functions. These are not required. However, they make the
code more readable. The function hangup_call simply ends the call. The function
close_db_conn closes the database connection that we opened. These functions are
called in various places in our script so that we can exit the script smoothly.

The database connectivity occurs with several lines in particular, which are
highlighted:

require "luasqgl.postgres"

This line simply loads the 1uasqgl .postgres module. Depending on your database
environment, it could be luasqgl .mysql, luasqgl . odbc, or even luasql.oci8 for
Oracle databases.

Some users have experienced a memory leak when using the MySQL

connector with LuaSQL. If you wish to use MySQL as your database
g then you should strongly consider using the ODBC connector.

This line creates a database environment object for us to use:
env = assert (luasqgl.postgres())

This line does a little more work. It actually creates a connection object which allows
us to talk to our database:

con = assert (env:connect("fsbook","fsuser","fspass", "localhost"))
The arguments to use the connect action are as follows:

e Database name
e Username
e Password

¢ Host name or IP address

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

If the connection is successful, then the connection object allows us to perform SQL
queries on the target database.

cur = assert(con:execute ("SELECT * FROM users WHERE acct = '" .. acct
|||||))

This line actually performs a sQL. SELECT function on the users table in the target
database. It returns a cursor object. The cursor object represents the results of the
SQL statement performed on the target database. Our example uses the cursor object
to return a row of data as follows:

row = cur:fetch ({}, "a")

The fetch method takes two arguments, namely, a Lua table name (optional), and
either "a" or "n" to represent the kind of indices the row object will have:

* ma": This means alphanumeric indices; the columns will be accessed by the
name of the column

e "n" (default): This means numeric indices; the columns will be accessed by
the numeric index of the field positions in the row

The table is an optional argument which will populate a Lua table with the row

data. In our example, we pass in empty braces ({ }) to indicate that we will not be
using a Lua table. The fetch method will return a row of data or nil, if no more data
is found. Note that a SELECT can return zero, one, or more rows of data. The fetch
method allows the programmer to cycle through the results, one row at a time. In
our example, we selected a row of data based on the acct field, which is a primary
key, so our result would be either contain no records or one record. We double-check
our results as follows:

if (cur:numrows() == 1) then

The PostgreSQL, MySQL, and Oracle LuaSQL drivers all support the numrows ()
method. In our example, we want to know if we received back exactly one row of
data, which corresponds to the account number that the caller entered. We make the
assumption that if the query did not return exactly one row of data, then the caller
entered an invalid account number. Once it is established that a valid account has
been entered, we then check to see if the caller entered the correct PIN as follows:

if (pin == row.pin) then

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

This check makes sure that the caller entered the PIN that is read from the database.
If not, the caller is prompted again to enter the PIN. Three wrong attempts will cause
the script to exit.

More information about connection and cursor objects can be
% found at the following website: http://www.keplerproject.
’ org/luasgl/manual .html

Connecting to databases is relatively straightforward using LuaSQL. Now let's
consider an alternative method of connecting to an external data source.

Making a web call with curl

Sometimes it is useful to make a web call from your script. There are varied
applications where this is used, such as checking a news or weather feed, or integrating
a voice application with a web application. In this example, we will do a very simple
web call to get the UTC time from the U.S. Navy website, which returns the data in an
easily parseable manner. We will also introduce a few new concepts, including using
the freeswitch.API object, passing arguments to a Phrase Macro, and using Lua's
string manipulation functions to do pattern-matching and data extraction.

The first step is to install mod_curl, which we can do just like we did with
mod_f1lite in Chapter 2, Building and Installation. Perform the following steps:

1. Openmodules.conf in the FreeSWITCH source directory and locate the
following line:

#applications/mod_curl
Remove the # and save the file.

2. Openmodules.conf.xml in the conf/autoload configs directory and
locate the following line:

<!l-- <load module="mod curl"/> -->
Remove the <! -- and - - > tags and save the file.

3. Build and compile mod_curl from the FreeSWITCH source directory:

make mod curl-install

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

4. Wait for the installation to finish and then restart FreeSWITCH. Launch fs_
cli and type help. If mod_curl loaded successfully, then you will see that
curl is now available as an API command, with the syntax listed as follows:

curl,curl url [headers|json] I[get|head|post [url encoded
datal],curl API,mod curl

Next, add a new extension to the Dialplan as follows:

1. Openthe 01_custom.xml file and add the following new extension:

<extension name="Web Lookup">
<condition field="destination number" expression=""(9915)$">
<action application="1lua" data="web-lookup.lua"/>
</conditions>
</extensions>

2. Save the file, launch £s_c1i, and issue reloadxml, or press F6.

Our Dialplan is now ready to call the Lua script named web-1lookup . lua. Now let's
create a new Phrase Macro that will accept an hh:mm: ss argument and read back the
time. Perform these steps:

1. Open the file conf/lang/en/demo/custom-phrases.xml. Add the
following lines:

<macro name="simple time" pause="50">
<input pattern="(\d\d) : (\d\d) : (\d\d) ">
<match>
<action function="execute" data="sleep(250)"/>
<action function="say" data="$1" method="pronounced"
type="number" />
<action function="execute" data="sleep(50)"/>
<action function="say" data="$2" method="pronounced"
type="number" />
<action function="execute" data="sleep(50)"/>
<action function="play-file" data="currency/and.wav"/>
<action function="execute" data="sleep(50)"/>
<action function="say" data="$3" method="pronounced"
type="number" />
<action function="execute" data="sleep(50)"/>
<action function="play-file" data="time/seconds.wav"/>
<action function="execute" data="sleep(250)"/>
</match>
</input>
</macro>

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

2. Save thefile, launch £s_c1i, and issue reloadxml, or press F6.

The Phrase Macro simple_time is now ready to be used. It accepts the time
argument in hh:mm: ss format and applies the input pattern of (\d\d) : (\d\d) : (\
d\d) to receive the variables $1, $2, and $3 which contain the hour, minutes, and
seconds, respectively. Finally, create the new Lua script as follows:

1. Using your text editor create web-lookup.lua in the freeswitch/scripts/
directory and add the following lines:
-- web-lookup.lua
-- Makes a curl call to http://tycho.usno.navy.mil/cgi-bin/timer.

pl
-- Extracts time information and reads back to caller

-- Set a variable with the target URL
web url = "http://tycho.usno.navy.mil/cgi-bin/timer.pl"

-- Number of times we've read time to caller
num reads = 0

-- Get a FreeSWITCH API object
api = freeswitch.API()

session:answer ()

while (session:ready() == true and num reads < 10) do
freeswitch.consoleLog ("INFO","URL: " .. web url .. "\n")

raw _data = api:execute("curl", web url)
freeswitch.consoleLog ("INFO", "Raw data:\n" .. raw_data
n \I'l\l'l")

-- Look for line that matches
MMM. dd, hh:mm:ss UTC
date time = string.match(raw data, "
.-UTC", 1)

if (date time == nil) then
freeswitch.consoleLog ("INFO", "UTC date and time not found\n")
else
freeswitch.consoleLog ("INFO", "UTC date and time is '" .. date_
time .. "'\n")

-- Now parse out the individual elements into smaller strings

time = string.gsub(date time,".- (%d+:%d+:%d+) .+","%1")
freeswitch.consoleLog ("INFO", "Time is '" .. time .. "'\n\n")
session:streamFile ("phrase:simple time:" .. time)

end

num reads = num reads + 1
session:execute("sleep","1000")
end

session:hangup ()

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

2. Save the file.

Dial 9915 and listen. The script will perform the web lookup using the
FreeSWITCH's curl APL If the call is successful, the raw data is parsed to extract the
hour, minutes, and seconds, after which those values are passed into the simple
time Phrase Macro. The macro then reads back the time to the caller. After 10 cycles
the script will exit. You may hang up at any time.

1
‘Q Be sure that your FreeSWITCH server has Internet access,

otherwise the web-1lookup . lua script will fail.

Let's review the new concepts presented in this example. Notice the following two
related lines of code:

api = freeswitch.API()

raw data = api:execute("curl", web url)

The first line creates a FreeSWITCH API object, which allows us to send API
commands from our script. (Remember, API commands are those that are sent
from the FreeSWITCH command line.) The second line actually executes the curl
command and captures the result. The script prints the raw data from the curl call,
which generally looks like the following;:

< !DOCTYPE HTML PUBLIC"-//W3C//DTD HTML 3.2 Final"//EN>
<html>
<body>
<TITLE>What time is it"</TITLE>
<H2> US Naval Observatory Master Clock Time</H2> <H3><PRE>

Feb. 28, 06:39:03 UTC Universal Time

Feb. 28, 01:39:03 AM EST Eastern Time

Feb. 28, 12:39:03 AM CST Central Time

Feb. 27, 11:39:03 PM MST Mountain Time

Feb. 27, 10:39:03 PM PST Pacific Time

Feb. 27, 09:39:03 PM AKST Alaska Time

Feb. 27, 08:39:03 PM HAST Hawaii-Aleutian Time
</PRE></H3><P> US Naval
Observatory
</body>
</html>

All this data comes in a single string of text. The following line of code extracts the
line of text with the UTC time:

date time = string.match(raw data, "
.-UTC",1)

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

The date time variable now contains
Feb. 28, 06:39:03 UTC. The string.
match function applies a pattern-match on the raw_data string. The pattern we
match against is
. -UTC. There are two meta-characters in this pattern, namely,
the period and the dash. The other characters are literal. In plain language this
pattern reads, "match a string of text beginning with '
' and any subsequent
characters until UTC is found". The. - means, "match as few characters as possible".

1
‘Q Lua string manipulation functions are documented online at

http://www.lua.org/manual/5.1/manual.html#5.4.

Now that we have a single line of text, we need to extract the hour, minute, and
second of the time:

time = string.gsub(date time,".- (%d+:%d+:%d+) .+","%1")

This line uses the string.gsub function to perform a "match and modify" function
on a particular string. The arguments to string.gsub are the string to match, the
pattern to match against, and the "replacement" value. In our example, we want to
extract the hour :minute: second information from the string. The string.gsub
function works by matching a part or all of the input string and then returning a
replacement value. This is somewhat different from many other languages' string
handling and pattern-matching. However, it is just as effective. The pattern that we
use in this case is as follows:

- (%d+:%d+:%d+) .+

This pattern matches, from the beginning of the string, as few characters as possible
until it reaches the time value. It "captures" the time value (hh:mm: ss), and then
continues matching until the end of the string. The hh:mm: ss value is represented
by %1. Putting %1 as the "replacement" argument causes string.gsub to return only
the captured data, which is precisely what we want. Now that we have the time
information, we can pass it to our Phrase Macro in the following way:

session:streamFile ("phrase:simple time:" .. time)

The time value in the format hh:mm: ss is passed into the Phrase Macro, where it is
matched against the input pattern as follows:

<input pattern="(\d\d) : (\d\d) : (\d\d) ">

The hour, minute, and second values get captured in $1, $2, and $3 respectively, and
are read back to the caller. The script then repeats nine more times and hangs up,
unless the caller hangs up first.

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In some cases, it is necessary to encode and decode string data. For reference, the
following are some of the functions that you can use to URL-encode and URL-
decode strings as needed in your web calls:

function urldecode (s)

return (string.gsub (string.gsub (s, "+",""),
"% (Ex%IX)",
function (str)
return string.char (tonumber (str, 16))
end))

end

function urlencode (s)
return (string.gsub (s,"%W",
function (str)
return string.format ("%$%%02X", string.byte (str))
end))
end

By now it is probably apparent that retrieving external data (via a database
connection or web lookup) is relatively straightforward. The real work is in handling
the possible exceptions and acting upon the retrieved data.

Lua patterns versus regular expressions

Technically speaking, Lua does not natively support regular expressions.

However, the Lua pattern-matching syntax has many similarities to traditional Perl
Compatible Regular Expressions (PCRE). The following table shows Lua patterns
and the PCRE equivalents:

Lua Metacharacter PCRE Metacharacter
+ +
_ *?
% \
[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Dialplan Scripting with Lua

The following table shows the Lua character classes and their PCRE equivalents:

Lua Character Class PCRE Character Class
%d \d

Jow \w

%s \s

Complete Lua pattern syntax documentation can be found at http: //www.lua.org/
manual/5.1/manual .html#5.4.1.

With a little practice, anyone familiar with regular expressions will be able to write
effective Lua patterns.

Scripting tips
There are a few things to keep in mind when working with Lua scripts from the
Dialplan:

When a Lua script is finished, the call automatically hangs up. If
you wish for the Dialplan to continue processing, be sure to execute
session:setAutoHangup (false). Consider the following Dialplan snippet:
<condition>

<action application="lua" data="my_ script.lua"/>

<!--the following is not executed unless setAutoHangup is

false -->

<action application="transfer" data="$1 XML default"/>

</conditions>

The proper way to exit a Lua script is for the script to run out of commands.
As of the previous edition of this publication, there was no explicit command
to exit a script; however, you may now use the error () function to force the
script to terminate. If session:setAutoHangup (false) has been set, then
the Dialplan will continue to process.

Keeping the previous point in mind, note that calling session:bridge () or
session:transfer () may not work as you expect. The bridge or transfer
action will not occur until the script exits. Consider the following code
snippet:

freeswitch.consoleLog ("INFO", "Before transfer...\n")
session:transfer ("9664 XML default")
freeswitch.consoleLog ("INFO", "After transfer...\n")

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The transfer action will not occur until after the second consolelLog call and
any subsequent lines of code are executed. If you wish to use the bridge or
transfer action then be sure that they occur at the logical end of your script.

Do not use Lua (or any other scripting language) as a replacement for the
Dialplan. The XML Dialplan is extremely efficient at routing calls and no
scripting language can compete with it. Use Lua for interacting with the
caller, or, to perform functions that are not easily executed in the Dialplan.
A good rule of thumb is that if you can do it in the Dialplan, you should do it
in the Dialplan.

Do not overuse scripts called from the Dialplan. If you find that you are
trying to build elaborate scripts to control calls, do inline billing, third-party
call control, and so on. Then it is most likely you need to use the event socket
Chapter 10, Controlling FreeSWITCH Externally, details some of the amazing
things that are possible using the event socket.

Summary

Lua is a great choice for building simple and elegant voice applications for
interacting with callers. It is very lightweight and is therefore scalable. It has a simple
syntax that is easy to learn and there is ample online documentation.

In this chapter, we accomplished a number of objectives:

Became acquainted with basic Lua syntax and control structures

Wrote several scripts that demonstrate how to interact with a caller,
including answering, hanging up, playing sound files, playing Phrase
Macros, and accepting input from the caller

Learned how to use the freeswitch object to send log messages to the
console and to execute API commands

Installed LuaSQL and demonstrated how to connect to a PostgreSQL
database from within a Lua script

Built mod_curl and enabled it to be loaded by default

Demonstrated the use of curl requests to perform web calls from within a
Lua script

Became familiar with Lua's pattern-matching syntax

Now that we have a basis for writing scripts to interact with a caller, it is time to
revisit the Dialplan. The following chapter will review a few concepts introduced in
Chapter 5, Understanding the XML Dialplan, and then take your understanding of the
Dialplan to a whole new level.

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

In the preceding chapters you learned a bit about the power of the XML
configuration files used in FreeSWITCH. Specifically, you learned about Dialplan
entries and using XML to set general configuration settings. In this chapter, we
will dive deep into the general structure of Dialplan, features of the XML Dialplan
processing system, and how you can use what appears to be the very basic features
to achieve very complex results.

Some items in this chapter may appear to be repetitive, but we want to go back
over some basic Dialplan functionality talked about in the earlier chapters, and be
sure we explain the hows and whys of the Dialplan system. It is quite common for
people to use the XML Dialplan in FreeSWITCH without really understanding it,
hampering efforts to extend the system or debug complex problems. This chapter
aims to make you an expert at exactly how and why things operate the way they do
within the Dialplan.

In this chapter, we will presume you have some basic understanding of how
FreeSWITCH routes and processes calls, and have seen some XML configurations.
Configuring and placing some phone calls on a demo FreeSWITCH installation
would work for your benefit prior to reading this chapter.

In this chapter we will discuss the following topics:

* Dialplan overview

* General Dialplan concepts

* Parsing and executing

* XML Dialplan module

* XML Dialplan pre-processing

» Utilizing variables

* Testing variables with regular expressions

* Passing variables to other legs

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

* Macros in Dialplans

* DPitfalls to avoid

* Multiple extensions on the same pass

* Special attributes of the XML extensions
* Alternatives to XML

Dialplan overview

The Dialplan engine in FreeSWITCH is an incredibly flexible piece of software.

If you have a background of using other switching systems, you are probably
familiar with Dialplan concepts being tied to a somewhat flat and static set of logic
statements — you pre-program a set of decisions in the switch's native language (that
is, answer calls, play files, collect digits, and transfer calls) and this happens for
every call. Anything that cannot be done using the pre-built commands and logic
statements available in that switch, well, they just cannot be done.

In FreeSWITCH, Dialplan processing is actually done by loadable modules. The logic
in these modules is utilized every time a call is handled, and you can load multiple
Dialplan modules to process calls in different ways, depending on the logic you
need. This is a very important distinction between FreeSWITCH and other systems,
and it is often overlooked. By making Dialplan processing modular, a new form of
freedom is introduced to the way in which the calls are routed. You can write your
own module or use alternative modules to open up new subsets of commands for
processing your Dialplan. This freedom is comparable to other switches that allow
you to invoke external scripts to handle your Dialplan. FreeSWITCH gives you
tighter integration by keeping everything in C and allowing you to utilize its internal
APIs and/or linked libraries (if necessary), as opposed to external calls to scripting
languages. This allows processing to take place with a much lower cost for resources
on your system.

Why make Dialplan processing modular? It is important to first understand why we
have a Dialplan.

Let's forget about programming for a while and review a philosophy on what people
want to get out of their switching system. If you break down most call handling

in any voice system, you'll see that almost everything phone calls do traverses a
flowchart-style logic design. In fact, if you ask people how they want their phone to
behave, they often begin reciting yes/no decisions or points to take action, which can
almost always be turned into a basic flowchart. No matter what you are trying to do,
if you charted out your entire decision-making process as a flowchart, you have just
designed your Dialplan. Inherently, you have also envisioned the requirements of
decisions a Dialplan module must be able to handle.

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Yas

No

Press 2 e sl

Press 1

Let us take an example of a common call flow and break it apart. On close
examination of the example shown here, this flowchart makes a lot of assumptions
about pieces of information and logic that the Dialplan must be able to process. For
example, in order to make a decision about whether or not you are currently open
for business, the Dialplan processor must have access to the system's date and time,
and you should be able to compare it with the time of day you are open or closed.
To make the decision about whether your caller is pressing 1, the Dialplan processor
must have the ability to interpret touch-tones. Based on the conditions being
compared, you must then be able to do something with the call —transfer it, play a
tile, hang up, and so on. All these requirements make up the logic and syntactical
commands that the Dialplan will utilize. In many systems, the ability to make these
decisions is done by writing somewhat cryptic configuration code that can lead

to certain limitations and drive you nuts. In FreeSWITCH, the logic can exist in
different languages or you can write your own language.

Looking back into the history, no vision of an interpreter of Dialplan commands
has been perfect. From one system to the next, the way people structure their
commands for how to handle calls has changed. FreeSWITCH's forward-thinking
developers knew this, so they decided to make the actual Dialplan command
processing itself modular.

The technical advantages of having loadable Dialplan modules are numerous.
Firstly, the switching system itself can now provide links to any existing external
libraries (such as SQL libraries, YAML libraries, CURL HTTP libraries, and likewise),
in order to retrieve your Dialplan configuration and turn it into the expected style

of logic that FreeSWITCH needs for processing the call. Secondly, the Dialplan
processing module can rely on other event-driven pieces of the system, allowing you
to do things such as loading call instructions from a remote web server.

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

A further advantage is being able to customize logic inside a loadable module to
route calls explicitly, based on the logic that you hardcode in the C programming
language (native to FreeSWITCH). This allows you to make up your own Dialplan
processing routines rather than rely on the ones built into FreeSWITCH. Your own
routines can tie libraries together that you have linked (such as SQL) with C-based
logic APIs, exposed by FreeSWITCH. For example, you could easily query a SQL
database to find out if a user wants to have their call proxied, and then directly
invoke the FreeSWITCH API to turn on proxying, all from within your Dialplan
processor and with just a few lines of C code. This creates a huge advantage because
you gain great flexibility without having to spawn expensive third-party processes
and threads to process your Dialplan (such as invoking a shell script or a PHP
script just to do a simple true/false test of a value in a SQL database). This allows
FreeSWITCH to handle much higher call volumes.

Parfl Ser

Perl chlpt

new |
with own stack/etc.

embedded Perl

destroyed

" 'Call Continues

There is a common misconception that the FreeSWITCH Dialplan is based on, and
requires, XML. This is simply not true. If you prefer flat files, you could use them to
store your Dialplan configuration. If you prefer YAML, you could use that too. You
just need to load the correct C-based Dialplan module to interpret your stored logic
for the particular type of configuration file you want FreeSWITCH to utilize.

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

This aside, the most common (and currently, the most robust) Dialplan processing
mechanism in FreeSWITCH is still the XML-based Dialplan module. Most Dialplan
examples that are shipped with FreeSWITCH, or those scattered on the web, are in
XML. Therefore, they will remain the focus of this chapter. Creating your own C
modules is beyond the scope of this book, but it is important that you understand
that this functionality exists. As you get more and more advanced in using
FreeSWITCH, you may find that the built-in XML Dialplan processor will not handle
your needs for all cases, and you should remember that you are not limited to using
just XML! There are other avenues to achieve what you want to accomplish in terms
of call routing.

Before we dig into the specifics of the XML Dialplan, let us review and expand on
some basic concepts about Dialplans in general.

General Diaplan concepts

Let's briefly review some concepts that were first introduced in Chapter 5,
Understanding the XML Dialplan. In general, a Dialplan helps generate a list of actions
to take so that a caller can reach the person or people they want to talk to. A Dialplan
module implements the decision-making process that powers this. While a Dialplan
module is free to implement any concept it wants for organizing how calls are
routed, three concepts, in particular, are generally used when processing a call. These
three concepts can be broken down by asking the same three questions for every call:

* Contexts: Where do we look for a general list of destinations (or features)
that the current caller is allowed to reach?

* Conditions: Whom, specifically, is the caller trying to reach?

* Actions: What actions need to be taken to reach that party?

These three questions are generally answered by breaking the routing decisions
into three concepts — caller context, condition matching, and actions. These concepts
are not necessarily unique to FreeSWITCH. We'll explore each of these concepts
individually in this section.

The end result of any Dialplan's decision making is a series of actions. Every
Dialplan module must return a list of actions that, when executed one after the other,
results in party A reaching party B successfully.

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Contexts

When we talk about context, we are really referring to a list of individual
destinations that a caller is allowed to reach. These parties don't have to be
individual people; they can be groups of people or interactive features (for example,
voicemail), but ultimately, a caller wants to be connected to someone or something. A
context is a collection of rules that helps determine who a caller is trying to reach,
and whether they are allowed to reach that destination or not. These "rules" are
called extensions.

You can think of a caller's context as the overall grouping of logic statements for

a general set of destinations that can be called. In the example Dialplan the most
commonly used contexts are the "internal" and the "public" contexts. The "internal"
context generally refers to calls being made by users who are internal, or inside the
walls of the switching system (such as people sitting inside an office building). These
people can call each other with four-digit dialing, or dial 9 to call an outside number.
The "public" context usually refers to people outside the system calling in. These
people can usually only reach a small subset of destinations within the system, such as
employee desk phones, but can't reach a destination, such as a lobby phone, directly.

Why have a group of destinations at all? Why not just have internal and public
numbers? Most organizations need more flexibility than that. For example, let's

look at the common scenario of phones at a hotel. If we looked at all the use cases

at a hotel, we might break them into three general contexts —internal staff, internal
guests, and external callers. For the purposes of this discussion, we'll nickname those
use cases as "staff", "guests", and "external".

For "external" callers, the reason to group who they can call together is simple—we
want external callers to be able to reach front desk staff and the hotel restaurant

by calling one of two main phone numbers. However, we do not want outside
callers to be able to call rooms or use the in-house hotel features (for example, our
phone system's wake-up call service) directly. Therefore, we'll put together a list of
externally accessible numbers in the context "external" and route all outside callers to
this context for processing.

Hotel guests, on the other hand, should be able to call one another's rooms, use the
wake-up call services, and call the front desk staff. Again, this group of numbers

is different from those of the "external" callers —so they get their own context with
those destinations.

Finally, staff have special functions, such as being able to flag a person's phone as
"checked out", restricting calls from that phone while a room is empty (for safety, in
order to prevent toll fraud). These functions aren't accessible to guests, and certainly
not to outside callers, so staff get their own context as well.

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Visually, the logic you're creating ends up looking something like this:

Caller (context)

Internal Guest Internal Staff External Caller
Calling To Front Desk V V v
(Destination) Restaurant \ Y v
Hotel Rooms \/ \ X
Wake-up Call \ X X
Set checked-out X N X

flag

Now we see the need for contexts. The preceding list shows that each individual type
of caller has specific constraints on whom they can (and are allowed to) call.

Note carefully that the concept of a context is not for calling a specific party, but for
grouping together numbers that can be dialed to reach parties. The actual decisions
on who we want to reach, and what number they are assigned, is handled by
conditions, which are described in the following sections.

Conditions

Once the system has determined the general list of who is allowed to be reached, it
must figure out precisely who is being dialed and how to reach them. This is done
using conditions.

Conditions are one or more logic statements that are used to figure out where the
call should go. They typically involve comparing information about a caller (such
as what number they dialed or the Caller ID of the call), with a set of rules. This
information is gathered from Dialplan variables (discussed later in this chapter) and
matched against regular expressions, strings, or other variables.

Conditions are most commonly used to match the dialed number with a specific
destination that maps to a specific phone. For example, we might be testing to see if
a person dialed a specific number; say, 415-886-7949. If they did, we would provide a
list of actions that would connect to the user at the extension 7949.

Sometimes destination matching works on fields other than the dialed number. For
example, you might check the calling party's Caller ID, and if it's a telemarketer, for
example, you might play a busy signal. There are many combinations of field and
value pairs you might check, in order to determine where to send a call. You can
even check for technical or database-driven settings, such as whether someone is
behind NAT or they have a call-forwarding entry saved in a database table.

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

It is also possible to set up the Dialplan in such a way that multiple conditions match,
triggering multiple actions in the same call. Such an example might be carried out to
connect a caller to someone, and when they hang up, continue the call only if they
are calling from a specific area code, and play a survey for them. Multiple conditions
can exist in various ways, depending on your Dialplan processor.

Using our example of a hotel discussed earlier, you might end up with three contexts
that each check various conditions to determine different destinations, as follows:

"Internal Guest" Context "Internal Staff" Context "External" Context

Did they dial 0? Did they dial 07

-Go to front desk -Go to front desk

Did they dial 29292 Did they dial 2929? Did they dial 646-222-2929?
-Go to restaurant -Go to restaurant - Go to restaurant

Did they dial 3000-3999? Did they dial 3000-3999?

-Ring room 3000-3999 -Ring room 3000-3999

Did they dial *5?
-Go to wake-up call
Did they dial *6?
-Set checked out flag

By default, and in most use cases, the Dialplan is processed until a match is found.
See the following Extensions for more information.

Actions

Actions are the steps to be taken when a condition matches. This is where the
Dialplan generates a list of actions the switch will need to perform, to actually get the

caller to the destination party. Actions include "answering", "bridging", "routing to
voicemail", and so on.

It is very important to understand that the Dialplan module only creates a list of
actions to perform — it does not actually execute those actions in real time! There
are some exceptions to this rule, but the general premise of the original Dialplan
structure revolves around staying modular and not requiring the module to do any
of the heavy lifting, to actually connect the call and perform the actions.

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

To clarify this further, think of the Dialplan as generating a to-do list for what needs
to happen on the call. A to-do list might consist of:

* Answer

* Play welcome file

* Transfer to user "John Doe"

* Hangup
That list would be handed back to FreeSWITCH to perform on its own.

The Dialplan is not intended to be interactive during the actual flow of the call. If you
need complete interaction while a call is in progress, you should utilize a scripting
language linked to FreeSWITCH. You can learn about this in Chapter 7, Dialplan
Scripting with Lua.

Putting it all together

The time at which FreeSWITCH actually processes all the contexts, extensions,
conditions, and actions you've specified is during the ROUTE phase. Every call goes
through the ROUTE state. The routing state is when FreeSWITCH passes control of
the call to the Dialplan module in use and the previous four concepts are used to
develop a list of actions.

The process generally looks like this:

New Call

Decide
Context

_— T —————

Ring Phone Ring Phone

Answer " hnswer
Play File Play File

Hangup Hangup

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

A list of resulting actions is finally returned to FreeSWITCH, such as:

* EXECUTE answer
* EXECUTE and play the file.wav
* EXECUTE hangup

Members of the FreeSWITCH community will often speak of the
Dialplan "phases" —when they do, they are referring to this two-
Y phase process of ROUTE and EXECUTE. Sometimes you will hear
Q individuals referring to the ROUTE phase as the "parsing" phase. The
term "parsing" loosely describes what is happening during the ROUTE
phase. We also use the expression "hunting" as a synonym for the
ROUTE phase. ROUTE, parsing, and hunting all refer to the same thing.

Understanding this two-phase process is crucial in mastering the operation of the
XML Dialplan.

XML Dialplan module review

As we discussed in Chapter 5, Understanding the XML Dialplan, the XML Dialplan
module is the most popular way to configure FreeSWITCH. At the time of writing
this book it is also the most robust. It supports contexts, which contain lists of
extensions, with each extension containing one or more conditions, and each
condition containing a list of actions to be executed.

Let's review a few concepts to make sure that you are fully comfortable with them.
The searching and processing of Dialplan entries is based on an expected layout that
looks something like a multi-dimensional tree.

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Context Guests

Gontéxt External

After a quick glance at the expected structure of your Dialplan and how it is used,

it should be somewhat obvious why XML lends itself as a good choice for the

creation of a Dialplan. The nesting attributes of XML are a perfect fit for the scenario
shown. FreeSWITCH relies on a tree of configuration options in a Dialplan, and
XML is naturally a limitless tree-like structure that allows for embedding values
within each leaf on the tree. In addition, you can add custom tags and attributes at
any time —even ones that are ignored by FreeSWITCH but are useful for your own
software when reading/writing to XML. It is a great match.

At this point, you should be well versed with contexts, extensions, conditions, and
actions. Let us dig a bit deeper into the XML Dialplan to see how these different

Dialplan features can behave.

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Extensions

Extensions are simply XML containers that group conditions and actions together.
Note that the name "extensions" can be a bit misleading. Most people are used to an
extension being something you attempt to reach by dialing it, such as 2900 or 3000,
but extensions in FreeSWITCH are not related to what you dial at all; they are simply
named subsections of the Dialplan context. For example, to reach someone by dialing
2900, you might actually be hitting an extension named darren, like this:

<extension name="darren">
<condition field="destination number" expression=""2900$">
<action application="bridge" data="user/darren"/>
</conditions>
</extension>

In this example, the extension is named darren, but dialing 2900 is how you reach
Darren, thanks to the condition.

Extensions have a variety of behaviors that can be modified. By default, when
FreeSWITCH finds an extension that has matching conditions, it stops looking for
additional extensions. For example, if you have an extension that modifies your
Caller ID, followed by an extension that actually routes the call, FreeSWITCH will
never reach the second extension by default. As an example, this will fail to reach
anyone:

<extension name="set callerid">
<condition field="destination number" expression=""2900$">
<action application="set"
data="effective caller id number=4158867900"/>
</condition>
</extensions>
<extension name="darren">
<condition field="destination number" expression=""2900$">
<action application="bridge" data="user/darren"/>
</conditions>
</extension>

In the preceding example, the second extension will never run. If you want to allow
additional extensions to run after a successful match, you must use the continue
flag. If we modify the previous example, the Dialplan will now operate as expected:

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<extension name="set callerid" continue="true">
<condition field="destination number" expression=""2900$">
<action application="set"
data="effective caller id number=4158867900"/>
</conditions>
</extensions>
<extension name="darren"s
<condition field="destination number" expression=""2900$">
<action application="bridge" data="user/darren"/>
</condition>
</extensions>

Note that we have added continue="true" only to the first extension, indicating to
the Dialplan module that it should keep processing even if the extension matches.
We do not add it to the second extension because we do not want to continue
processing the Dialplan after the second match (where the call is actually connected).

Conditions

Conditions allow for testing regular expressions against variables. Conditions exist
within extension tags. We will discuss the different types of variables available a bit
later in this chapter.

Conditions can be used to test one or more expressions. By default, and at their most
basic level, one or more conditions can be specified, with a group of actions executed
when all conditions evaluate to true.

As an example, let us look at the following code snippet:

<extension name="test two_things">
<condition field="network addr" expression=""192\.168\.1\.1$"/>
<condition field="destination number" expression=""2900$">
<action application="playback" data="i-know-you.wav"/>
</condition>
</extension>

In this example, there are two conditions listed. Note carefully the /> at the end of the
first condition tag. While there are no actions contained within the first condition,

it is still tested and, if it fails, the entire extension is skipped. However, if both the
conditions pass, meaning the caller is dialing 2900 and their network IP address

is 192.168.1.1, then the action(s) will run. This effectively creates an AND logic
between the two conditions — both must match before the playback action is specified.

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

How does this work? The secret is in the break attribute, also called a break flag.
Every condition statement has a break flag associated with it that determines what
should happen after the expression is evaluated. The default behavior for the break
flag is on- false, meaning that we break out of, or stop processing, conditions and
extensions as soon as we encounter a false or negative result during evaluation.

You can set the break parameter to one of four values:

* on-false: To stop searching after the first unsuccessful match (default
behavior)

* on-true: To stop searching conditions after the first successful match
* always: To stop at this condition regardless of a match or non-match

* never: To continue searching regardless of a match or non-match

You can even create a pseudo if/then/else processing section using conditions.
Let us examine the use of one of these attributes further: the never flag.

Let's say you want to create an extension that processes calls only from a particular
IP address and checks if the user dialed *72 or *73. You can do this as two separate
extensions, as follows:

<extension name="extension_ 72">
<condition field="network addr" expression=""192\.168\.1\.15"/>
<condition field="destination number" expression=""*72$">
<action application="playback" data="forward-on.wav"/>
</conditions>
</extensions>
<extension name="extension_ 73">
<condition field="network addr" expression=""192\.168\.1\.15"/>
<condition field="destination number" expression=""*73$">
<action application="playback" data="forward-off.wav"/>
</conditions>

</extensions>

You can also use the power of the break flag to consolidate this into a single
extension, as follows:

<extension name="extension_ 72_or_73">
<condition field="network_ addr"
expression=""192\.168\.1\.15"/>
<condition field="destination number" expression=""*72%"
break="on-true">
<action application="playback" data="forward-on.wav"/>
</conditions>

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<condition field="destination number" expression=""*73$">
<action application="playback" data="forward-off.wav"/>
</conditions>
</extension>

As you can see, by adding the break="on-true" flag to the first condition, we stop
processing only when the condition evaluates to true. Otherwise, we continue
processing. Think of this as an if/then/else-if statement; if the first condition
matches, run it and stop processing, otherwise run the second condition if it matches.

As another example, consider the concept of using an if/then condition followed
by another if/then. You can simulate this logic by using the break="never" flag.
While actions inside failing conditions will not be added to the list of execution steps,
the subsequent conditions will still be processed. Consider the example where we
want to check two different network parameters in the same extension block:

<extension name="decide routing">
<condition field="network addr"
expression=""192\.168\.1\.1%"
break="never">
<action application="set" data="inhouse=true"/>
</conditions>
<condition field="source" expression="PortAudio"/>
<action application="set" data="portaudio=true"/>
</condition>
</extension>

The preceding XML would test to see if a user is calling from 192.168.1.1 and set a
variable if true. It would continue, in all cases, to the second condition as well and
test whether the user was using PortaAudio or not, and set a variable if true. This
represents an effective i£/then condition followed by another if/then.

A condition must exist inside every extension tag, even if you intend for the
condition to be true always. The following code snippet is not valid:

<extension name="set callerid"s>
<action application="set"
data="effective callerid number=4158867900"/>
</extension>

No condition tag exists, so this extension will be ignored and the action will never
be run.

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Special condition variables

While in most conditions you will encounter utilize variables and expressions, some
conditions can be written to utilize special condition variables in order to make
processing simpler and more flexible.

The following variables are available for use as field attributes in your XML
condition tags:

context: The current Dialplan context

rdnis: The redirected number; that is, the directory number to which the call
was last presented

destination number: The called number; that is, the number this call is
trying to reach

dialplan: The name of the Dialplan module in use (that is, XML or YAML)
caller id name: The name of the caller, if available

caller_id number: The number of the party who called, if available

ani: The Automatic Number Identification of the calling party

aniii: The type of device placing the call, if available (for example,
payphone)
uuid: The unique identifier of the current call

source: The name of the FreeSWITCH module that received the call (for
example, PortAudio)

chan_name: The name of the current channel (for example, PortAudio/1234)
network_addr: The IP address of the signaling source for a call

Some simple examples are as follows:

<condition field="network add" expression=""1\.2\.3\.4%">

<condition field="caller id number" expression=""1[01]\d\d"/>

The following items can be used directly as attributes inside the condition tag:

year: Denotes the calendar year, 0-9999

yday: Denotes the day of year, 1-366

mon: Denotes the month, 1-12 (for example, January is equal to 1)
mday: Denotes the day of month, 1-31

week: Denotes the week of year, 1-53

mweek: Denotes the week of month, 1-6

wday: Denotes the day of week, 1-7 (for example, Sunday is equal to 1 and
Monday is equal to 2)

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

* hour: Denotes the hour, 0-23
* minute: Denotes the minute (of the hour), 0-59

* minute-of-day: Denotes the minute of the day, (1-1440) (for example,
midnight is equal to 1, 1 A.M. is equal to 60, and noon is equal to 720)

These condition attributes can be used like this:

<extension name="holiday example" continue="true">
<condition mday="1" mon="1">
<action application="set"
data="open=false" inline="true"/>
</conditions>
</extensions>

This example would set a variable named open to false on New Year's Day. Note
the condition line, which utilizes the mday and mon condition variables. A simple
day/time checkout would be like this:

<extension name="holiday example" continue="true"s>
<condition wday="2-6" hour="8-16">
<action application="set" data="open=true" inline="true"/>
</conditions>
</extensions>

This would set the channel variable open to "truer, if the call came in between 8
AM. and 5 P.M.

Inline execution

The original design of FreeSWITCH was to forbid actions from occurring during the
routing/Dialplan phase. This had the intended side effect of discouraging people
from evaluating and manipulating variables and call flow from within the Dialplan.
Instead, it was left to the various embedded scripting languages to perform these
programmatic actions. The theory was simple —rather than design a possibly obscure
and limiting set of commands that can be used within the Dialplan to evaluate
variables and create logic, FreeSWITCH would instead link to various scripting
languages, such as Perl or Lua, which have much richer logic-processing capabilities
than FreeSWITCH could ever design (and better documentation). This not only
expands the possibilities of what can be performed but also avoids having to train
people on the ins and outs of the XML processing system.

However, as FreeSWITCH evolved, more and more people desired the ability to
handle call flow processing in the native XML Dialplan language. One of the most
basic features that was noticeably absent during Dialplan routing was the ability to
set, and later test (and possibly override) a variable. After numerous requests to the
core developers, the inline flag was added to XML Dialplan processing.

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

The inline flag allows for some (but not all) commands to be executed during
the Dialplan phase, breaking many of the previously stated rules. While its use is
discouraged, it is sometimes necessary to achieve additional functionality or just
make code more naturally readable.

As an example of why we need an inline execution, let us look at the following
code snippet:

<extension name="check for user" continue="true"s>
<condition field="${callerid}" expression="2035551212">
<action application="get" data="user=yes"/>
</conditions>
</extensions>
<extension name="route users only">
<condition field="${user}" expression="yes">
<action application="answer"/>
<action application="playback" data="tada.wav" />
<action application="hangup"/>
</conditions>

</extensions>

The preceding code snippet defines two extensions that rely on each other — the first
extension is supposed to set a variable named user to "yes", if someone is calling
from 203-555-1212, and the second snippet is supposed to route all calls with the
user variable set to a message playing tada.wav. The snippet does not work this
way, though. Let us examine why not.

Recall that conditions are evaluated before any action is ever executed. In the previous
example, set is an action application. Therefore, it will not be executed until all

the conditions are evaluated. This means that condition that looks at the variable
${user} will always fail, because the code that sets that variable is yet to run, hence
the need for inline processing.

If the XML action is changed to read:
<action application="set" data="user=yes" inline="true"/>

The XML Dialplan processor will actually execute the set application as soon as it is
encountered. Now the XML snippet works as expected.

To avoid abuse of this feature, and for various other technical reasons, the inline
flag is only available to applications that run quickly and get or set some variable(s).
Inline functions must also not access or modify the state of the current session.

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The list of actions available for inline processing includes, among others,
the following;:

check_acl: To check the access control lists
eval: To execute an internal API or simply log some text to the console
event: To fire arbitrary events

export: To set a variable on the channel that will survive on the B legs/
transfers

log: To create a log entry manually

presence: To send the PRESENCE IN and PRESENCE_OUT events
set: To set a variable on the channel

set_global: To set a global variable

set_profile var: To set the user's profile we want to use

set_user: To set the current user and add all their channel variables to the
active leg

sleep: To pause the processing

unset: To unset a variable

verbose_events: To be verbose on events being sent
cidlookup: To set the caller_id_name field via CNAM lookups
curl: To make an HTTP request and receive the response
easyroute: To direct to database-driven DID routing engine
enum: To perform enum lookups or related services

lcr: To take least cost routing decisions

nibblebill: To bill accounts on a per-minute basis

odbc_query: To perform manual ODBC queries

The details on each of these commands are documented on the FreeSWITCH wiki.

Actions and anti-actions

Another available call control mechanism is the combination of action and anti-
action tags. Unlike conditions, these tags allow you to failover to an alternate set of
actions if a condition fails. This is another version of the 1£/then/else condition,
but can be easier to read and manage, especially when trying to queue multiple
actions within the same condition.

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Let us take an example to see how this works:

<condition field="${inhouse}"
expression="true" break="never"s>
<action application="log" data="This is an in-house call"/>
<anti-action application="log" data="Not in-house call"/>
</conditions>

The preceding example would output, "This is an in-house call" to the log if
the variable ${inhouse} is set to true, otherwise it would output, "Not in-house
call" to the log. This is much easier to read than splitting the if/then/else logic
into two separate condition statements.

The regex operator

Sometimes it is necessary to create more complicated logic structures. For example, it
is easy to test whether the destination number expressionis 1000 or 1001:

<condition field="destination number" expression=""100[01]$">

In effect, the regular expression says, "Match if the destination number is
1000 or is 1001". But what if you need to do a logical or on two different fields?
The regex operator can help.

The basic syntax for regex is:

<condition regex="all|any|xor">
<regex field="some field" expression="Some Value"/>
<regex field="another field"
expression=""Another\s*Value$"/>
<action(s) ...>
<anti-action(s)...>
</conditions>

You can have as many regex tags as need inside the condition. The regex operator
can have three different values:

* all:ltis equivalent to a logical AND operation. All the expressions contained
in the condition must be true for the actions to be taken.

* any: Itis the equivalent to a logical Or operation. Any of the expressions
contained in the condition may be true for the actions to be taken.

* xor: Itis the equivalent to a logical XOr operation. Only one of the expressions
can be true for the actions to be taken.

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

To perform a more complicated logic statement, such as an or on two different fields,
try this:

<extension name="Regex OR example" continue="true">
<condition regex="any">
<!—- If either is true then perform actions--»>
<regex field="caller id name" expression="Some User"/>
<regex field="caller id number" expression=""1001$"/>
<action application="log"
data="INFO At least one matched!"/>
<!-- If *none* are true then do anti-actions -->
<anti-action application="log"
data="WARNING None of the conditions matched!"/>
</conditions>

</extensions>

In the preceding example, the action tags will be executed if either the expression
caller_ id nameis "Some User" or the caller id number expressionis "1001". If
neither regex evaluates to true, then the anti-action tags will be executed.

You can also have more intricate regular expressions. For example, let's say that
"Some User" has more than one extension. You could use this regex:

<regex field="caller id number" expression=""1001|1005%"/>

To perform a large AND operation, you can use an extension like this:

<extension name="Regex AND example" continue="true">
<condition regex="all">
<!—- If both are true then perform actions-->
<regex field="caller id name" expression="Some User"/>
<regex field="caller id number" expression=""1001$"/>
<action application="log"
data="INFO Both matched!"/>
<!-- If *any* are false then then do anti-actions -->
<anti-action application="log"
data="WARNING At least one failed!"/>
</conditions>

</extensions>

Again, you can stack as many <regex> tags inside the condition as you would like. All
of them must evaluate to true in order to execute the apps inside the action tags. If
any of the regex test fails, then any apps inside the anti-action tags will be executed.

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

In some rare cases, you may need to perform an XOR or exclusive OR operation;
that is, where one —but only one — of the conditions can be true. If none of the tests
evaluate to true, or if more than one test evaluates to true, then the whole logical
operation evaluates to false. Here is an example:

<extension name="Regex XOR example" continue="true">
<condition regex="xor"s>
<!-- If only one is true then perform actions -->
<regex field="caller id name" expression="Some User"/>
<regex field="caller id number" expression=""1001$"/>
<action application="log"
data="INFO exactly one matched!"/>
<!-- If none or 2+ are true then the XOR fails -->
<anti-action application="log"
data="WARNING XOR evaluated false!"/>
</conditions>

</extension>

Nested conditions

Starting with Version 1.2.6 of FreeSWITCH, you may now nest the <condition> tags
to address various situations. One such condition is illustrated by this logical construct:

IF conditionl TRUE THEN

IF condition2 TRUE THEN
DO actions
ELSE
DO other actions
ENDIF

IF condition3 TRUE THEN
DO actions
ELSE
DO other actions
ENDIF

IF condition4 TRUE THEN
DO actions
ELSE
DO other actions
ENDIF

ELSE
DO other actions
ENDIF

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

By nesting the conditions it becomes much easier to accomplish this task. The
following excerpt illustrates an example where the destination_ number is the
equivalent of condition1 in our logical construct. We then have various other fields
that are the equivalents of condition2, condition3, and conditiona4. For brevity
we've left out specific action and anti-action tags:

<condition field="destination number"

expression=""1000%"

require nested="false">

<action..>

<anti-action..>

<condition field="caller id number" expression=""1001$">
<action..>
<anti-action..>

</conditions>

<condition field="caller_ id number" expression="1?408\d+">
<action..>
<anti-action..>

</conditions>

<condition field="caller id number" expression=""1001$">
<action..>
<anti-action..>

</conditions>

<action..>
<anti-action..>
</conditions>

Keep the important note in mind that all nested conditions get processed before the
parent condition. This means that all action and anti-action expressions in the
parent condition will always be executed after the actions/anti-actions in the nested
conditions, In other words, when the Dialplan parser is looking for actions (or anti-
actions) in the hunting phase, it will always add the actions/anti-actions inside the nested
conditions, before it adds the actions/anti-actions of the parent condition.

In the previous example, the three nested conditions (the ones that test the

caller id number field) will all be evaluated and their actions/anti-actions will be
processed before the actions/anti-actions of the parent condition (the one that tests
the destination_ number field). In simple terms, the children conditions come before
the parent conditions.

The following section explains more about the two phases of Dialplan processing,
including a mistake that new users commonly make.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Pitfalls to avoid

There are two major places where the Dialplan design can confuse new users
of FreeSWITCH — especially those with a background using Asterisk. Firstly, in
understanding how variables are handled during conditional processing, and
secondly, in interpreting the logs.

Keep in mind that the Dialplan is, two-phase process, the first of which is the ROUTE
(also called the "hunting" or "parsing") phase. This phase completes prior to any
other command being actually executed. Let us again look at the example provided,
which do not work as intended. This time around, we will do what many people try
to do when debugging their XML —we will add the info application to the XML, to
obtain a printout of the variables that are set on a channel, on the console.

<extension name="check for user" continue="true"s>
<condition field="${callerid}" expression="2035551212">
<action application="set" data="user=yes"/>
<action application="info"/>
</conditions>
</extensions>
<extension name="route users only">
<condition field="${user}" expression="yes">
<action application="answer"/>
<action application="playback" data="tada.wav"/>
<action application="hangup"/>
</conditions>
</extension>

When this code snippet runs, the info application will output all variables set on
the channel to the screen, and the user will see that the variable "user" is in fact
set to "yes". Yet the following condition, which tests the variable user, doesn't
run. Many users will think FreeSWITCH is broken, but in fact, they are misreading
the output they are seeing. After careful examination, you will note in your logs
that the set application executed after all the conditions were tested, and the info
application ran subsequently, showing that the variable had been set, but the
conditional testing had been completed long before this occurred. This can lead to
many hours of frustration if you are not careful while reading the logs.

The log will show whether or not the individual Dialplan entries were matched,
which can confuse people into thinking those sections of the Dialplan were actually
executed. In fact, you must scroll down lower in the log to discover what actions
were actually taken. Get used to looking for the EXECUTE log statements and paying
more attention to those to see what is actually happening. If items are not being
executed as expected, then your conditions are not set correctly.

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

XML Dialplan applications

While we would love to go through all the available Dialplan commands, the list far
exceeds the space we have for this chapter. Therefore, we will limit our discussion
of available Dialplan commands into three areas — Dialplan tools, Sofia connectivity,
and general API commands. These Dialplan commands are provided by mod_
dptools, mod_sofia, and mod commands respectively. They are also some of the
most common and most popular commands in use today.

mod_dptools

The mod_dptools command is a collection of Dialplan management tools. There are
many applications available from within the Dialplan. You have already learned
how basic commands such as answer, hangup, bridge, and set work. Let us go over
a few of the more advanced commands.

* Dbind meta_app: This command binds an application to the specified call
leg(s). During a bridged call, the DTMF sequence on the bound call leg will
trigger the execution of the application. The call leg that is not bound will not
hear the DTMF sequence being dialed. You can only bind a single digit, and
the binding is usually proceeded with a * key press. As an example, let us say
you want to allow *2 to begin a call recording.

When the calling party presses *2, the recording would begin. In this case,
you could utilize the following Dialplan snippet. Notice the bind_meta_app
highlighted:
<action application="bind meta app" data="2 a s
record session::recording.wav"/>
<action application="bridge"
data="sofia/sipprovider/+14158867900">

This action allows the A-leg on this channel to press *2 to invoke call
recording on the same leg (the third parameter s indicates the same leg).

Note that unless otherwise specified, bind_meta_app will use * as the "meta
key". Set the bind_meta_key channel variable to a different value to modify
this behavior. For example, to use # instead of * you can do this:

<action application="set" data="bind meta key=#"/>

Notice the format of the bind meta_app parameters:

<action application="bind meta app"
data="KEY LISTEN_ TO RESPOND ON
APPLICATION | : : PARAMETERS] "/>

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

The following list explains the previous parameters:

o

o

KEY: This specifies the key to listen for.

LISTEN_TO: This specifies which call leg to listen for the key.
Acceptable parameters are a, b, or ab.

RESPOND_ON: This specifies which call leg to respond when the key is
dialed. For example, when playing a file as the response command,
which leg will hear the playback. Acceptable parameters are s for
the same leg; that is, the leg on which the key was pressed, or o for
the opposite leg.

ApPPLICATION: This specifies what application to run.

PARAMETERS: This specifies the parameters to pass to the application.
Note that you separate applications and parameters using double
colons (APPLICATION: : PARAMS).

A\l

‘Q Once bound to a call leg, the application binding will

persist for the lifetime of the call leg.

For advanced DTMF key bindings see the mechanism bind_digit_action.

* bind digit_action: This command implements a more advanced and
elegant key mapping mechanism than bind_meta_app. It allows you to
capture any digit combination and does not have a requirement that it begin
with a *

The format of the bind_digit_action parameters are:

<action application="bind digit action"
data="REALM, KEY | REGEX, COMMAND, COMMAND ARGUMENTS, LISTEN _
TO,RESPOND ON"/>

The following list explains the previous parameters:

[e]

o

REALM: Specifies to Michael, the user.

KEY | REGEX: Specifies the key to listen for, or a regex parameter
containing the key(s) to listen for.

COMMAND: Specifies the dialplan application to run. It can be either
a dialplan command (prefixed with exec:) or an API command
(prefixed with api:).

COMMAND_ARGUMENTS: Specifies the arguments for the command
being run.

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

° LISTEN_TO: Specifies which call leg to listen for the key. Acceptable
parameters are a, b, or ab.

RESPOND_ON: Specifies which call leg to respond. For example,
when playing a file as the response command, which leg will hear
playback. Acceptable parameters are s for the same leg; that is, the
leg on which the key was pressed, or o for the opposite leg.

Here is an example. The following command will hang up all calls on the
system by dialing a secret code, 9348234. It runs the APl hupall command.
<action application="bind digit action"

data="my digits,9348234,api:hupall"/>

Be aware that bind_digit_action causes dialed digits to be consumed by
bind digit_action and thus will not be sent through to other applications.

eavesdrop: This command allows you to listen in on other channels. As an
example, the following Dialplan command would allow you eavesdrop on a
UUID placed in $1.

<action application="eavesdrop" data="$1"/>

You can replace $1 with any UUID you wish, or retrieve the UUID from the
database, like this:

<action application="eavesdrop"
data="${db (select/spymap/${extension}) }"/>

In this example, the variable extension is utilized, which can be set prior

in the Dialplan, and used as a search parameter to look into the database for
a UUID associated with an extension. In this scenario, if you recorded the
extension number and UUID of all active calls in the database under the table
spymap, you could later retrieve that information for eavesdropping here.

execute extension: You can execute an extension from within another
extension with this Dialplan application. The purpose would be to route a
call temporarily to another extension, then return back to the same place

we left. This is similar to the loopback function found in other switches.
execute_ extension executes an extension like a macro, and then returns.
This is different from transfer, which goes to the new extension instantly and
does not return. The execute_extension command will keep the current
scope and build a one-time extension, execute it, and return right back to
where it was called.

<action application="execute extension"
data="destination number [Dialplan] [context]"/>

If you do not specify the Dialplan and context, it defaults to the current one.

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Use execute_extension only when you need to execute a command and return to the
Dialplan processing where you left off. When you do not need to do anything else, use the
transfer application. If you are a programmer, then this analogy is fitting: execute
extension is like gosub whereas transfer is like goto.

* send_display: You can send a customized SIP INFO message to a phone,
which (on some models of phones) will display the message on the phone's
display.

An example of usage:

<action application="send display" data="Support Call"/>

This could be used to display a department or message on the phone that
indicates who the call is for, or what department was called initially.

There are many more commands available for review on the FreeSWITCH
wiki at: http://wiki.freeswitch.org/wiki/Mod dptools.

mod_sofia

The mod_sofia command is generally responsible for all things under SIP. This
includes acting as an endpoint for sending and receiving SIP calls and managing
SIP registrations and contact information. Various commands exist within mod_
sofia that help manage not only the initiation and receiving of calls but also

the management and deconstruction of endpoint information such as a device's
registered IP address and whether the device is behind NAT.

While Sofia itself does not provide applications that you utilize from the Dialplan
directly, it is used in so many command parameters that it is important to go through
it more specifically here.

Sofia is generally accessed when bridging SIP calls. Bridging refers to connecting an
A leg to a newly initiated B leg. When bridging calls, the general format is as follows:

<action application="bridge"
data="sofia/profile/endpoint [@domain] "/>

Let us analyze the data portion of this command.

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

As the bridge command is a general purpose command that does not exclusively
bridge SIP calls, you must specify the sofia/ parameter first to indicate that you
are working with a SIP call. Following the sofia/ parameter, you must specify
what gateway or SIP profile is to be used for connecting the call. If you specify a
gateway that you have configured in your SIP configuration, the domain name of
the receiving server is already known and does not need to be added at the end of
the dial string (that is, you can leave off @domain). If you specify a profile name as
the second parameter, you are telling Sofia which IP address, port, and parameters
to utilize when connecting the call. In this case, you must specify a domain or IP
address at the end of your Sofia bridge application. Finally, the endpoint parameter
specifies the username to send to the remote system. This is often a DID or extension
number, so that the remote end knows what party on their system to connect to.

Here are some examples of different ways in which you might bridge a call. In
the following examples, let us assume we have a service provider gateway named
supersip and a Sofia profile named external.

<action application="bridge"
data="sofia/supersip/+14158867900" />

This would bridge a caller to (415) 886-7900 using the supersip provider
information.

<action application="bridge"
data="sofia/external/+14158867900@sip.supersip.com"/>

This would bridge a caller to (415) 886-7900 using the supersip provider, except in
this case, we have explicitly specified that we wish to call via the profile external
(using whatever IP address and port are contained within that profile) and that we
are routing the call via a server at sip.supersip.com.

<action application="bridge"
data="sofia/external/someuser@otheroffice.com:5080"/>

This would bridge a caller to the user someuser located on the server otheroffice.
com via port 5080. It is good to note that nothing is stopping you from bridging calls
between FreeSWITCH, Asterisk, or other types of servers via this method —including
other servers on your local network. You have complete control of the username,
server, port, and routing of a call via this command when used in this way.

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Now consider a more complex example. Sofia accepts parameters at the end of a
dial string to specify advanced options on how a call should behave. As an example,
let us say we want to send a call using TCP, instead of the default UDP transport
protocol. Adding a semi-colon at the end of a dial string allows you to attach

Sofia options at the end of the dial-string. In this case, we want to add the option
transport=tcp to the end of a dial-string. It can be done like this:

<action application="bridge" data=
"sofia/external/+14158867900@sip.supersip.com; transport=tcp"/>

The purpose and importance of reviewing these examples is to expose the power that

is contained within the Sofia system that is accessible via the Dialplan. Applications are
not limited to basic bridging options based on defined profiles — you can connect calls to
anywhere you need to via the creative use of variables, options, and Dialplan functions.

mod_commands

The mod_commands command provides commands on the CLI to the administrator
of the system. Sometimes CLI commands may be useful within FreeSWITCH call
processing too. While generally CLI commands differ from applications called from
the Dialplan, you can explicitly run any CLI command you wish, by wrapping the
command into an evaluation string.

As an example, the CLI command hupall (NORMAL_CLEARING) normally resets
(hangs up on) all active calls and terminates them with the reason NORMAL CLEARING.
This command is normally run only from the command line. If you wanted it to be
available via the Dialplan when dialing 999, you could define an extension like this:

<extension name="Make API call from Dialplan"s>
<condition field="destination number" expression=""(999)$">
<action application="set"
data="api result=${hupall (normal clearing) }"/>
</conditions>
</extensions>

Note the highlighted line. We have wrapped the CLI command hupall in an
expression as ${hupall (normal_clearing) } and placed it within an extension. In
addition, the results of the command will be stored in the variable api_result, since
we placed the expression in the set command.

While this example is not very practical, the point of the exercise is to show that
any CLI command can be executed from the Dialplan and its results utilized. For
a complete list of CLI commands, review the FreeSWITCH wiki at http://wiki.
freeswitch.org/wiki/Mod commands

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Utilizing variables

Up to this point we have considered the basic use of channel variables. FreeSWITCH
has more advanced ways of using variables, including global variables. Let's round
out our understanding of variables by looking at some of these.

Testing variables with regular expressions

We have already discussed the purpose and basic use of the condition XML tag. Now
we will discuss the different elements you can actually test to help make decisions
about call handling.

FreeSWITCH offers three general categories of variables that you can test - caller
profile fields, channel variables, and global variables. In addition, you can utilize
macros and API functions and utilize their output in your conditions as well. We will
review each of these in detail.

Caller profile fields

Caller profile fields are variables that are retrieved when a caller is authenticated.
The variables are set within the directory and can include things such as the caller's
area code, codec preferences, and likewise. You can utilize caller profile fields within
conditions when processing the Dialplan, like this:

<condition field="${caller profile field}"s>

The variables get set within your directory, like this:

<user id="bob">
<variables>
<variable name="caller profile field" value="1234"/>
</variabless>
</user>

In this example, when bob authenticates, it means he is set as the current caller
profile. The result is that all the variables contained within his profile are accessible
just like any other channel variable.

The user directory was covered in detail in Chapter 4, SIP and the User Directory.

Channel variables

Every channel in FreeSWITCH can have a number of variables associated with it
to track state, settings, and other information about a call. Channel variables are
utilized in the format:

${variable}

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Channel variables may be set in the Dialplan, application, or directory. They affect
progress or settings for the call. They can be used almost anywhere variable processing
is invoked, such as in Dialplan conditions, application commands, and likewise.

<condition field="${channel variable}">

Channel variables are perhaps the most utilized and most important aspect of
processing a call within FreeSWITCH. There are many, many channel variables
available on any single call and even more that can be set to modify the behavior
of a call. You can review the complete list of channel variables available online at
http://wiki.freeswitch.org/wiki/Channel Variables.

Channel variables and call setup

You can utilize channel variables when setting up calls or specific call legs, such as
when originating a new call or when bridging an A leg of a call to a B leg via the
bridge command. In these instances there are two ways to set channel variables —
curly brackets {} and square brackets [1. Each work differently and are useful when
bridging or originating a call to multiple parties at the same time.

Curly brackets are used "globally" for the duration of a call. Take the following
example, where we are bridging a call to Darren's (user) cell phone, 203-555-1212.
We only want to ring the phone for 20 seconds, to avoid hitting voicemail.

<application action="bridge"
data="{call timeout=20}sofia/gateway/my gw/2035551212"/>

The variable in brackets is utilized on the newly setup channel, sofia/gateway/
my_gw/2035551212. Now, let's add in calling Darren's office phone. We want the
office phone to ring for 30 seconds, but still leave the cell phone at 20 seconds. We
can achieve this with square brackets before each leg of the bridge, like this:

<application action="bridge"
data="[call timeout=20]sofia/gateway/my gw/2035551212
, [call timeout=30]sofia/gateway/my gw/4158867901"/>

By placing the variables in square brackets, they apply to each leg of the specific call.

M Curly braces are only valid at the very beginning of a dial string.
Q Also, newlines are not valid —your bridge string should all be on
one line with no spaces between the braces and the sofia/ portion.

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

You can also "clobber" variables set with curly braces by using square brackets later.
You must set a flag, named local_var clobber, to make this work. We can recreate
the exact same example just specified by setting the "default" timeout to 30 seconds
for all legs and overriding the timeout to 20 seconds only for the cell phone, like this:

<application action="bridge"
data="{local var clobber=true,call timeout=30}
[call timeout=20]sofia/gateway/my gw/2035551212
,sofia/gateway/my gw/4158867901"/>

Setting multiple variables can be accomplished by comma-delimiting. For example,
you can specify:

{call timeout=20,sip secure media=true}

The preceding code can be used to specify two variables for all channels, or:
[call timeout=20,sip secure media=true]

The preceding code can be used to specify individual channels.

There is a special notation used with an enterprise originate. Instead of square
brackets (per-channel) or curly braces (per-originate) we use the less-than and
greater-than symbols. Consider the following example:

<action application="bridge"
data="<ignore early media=true>{varl=vall}
sofia/gateway/my gw/${destl}:
{vari=val2}sofia/gateway/my gw/${dest2}"/>

Note the use of <ignore_early media=trues> at the beginning of the dialstring. This
causes the variable ignore_early media to be set to true on both of the "originates"
that get created.

An example of using enterprise originate is found later in this chapter in the section
XML Dialplan cookbook.

Global variables

When FreeSWITCH first starts up, it loads your entire XML configuration into the
memory. During this process, it looks for the following code:

<X-PRE-PROCESS cmd="set" data="domain=127.0.0.1"/>

This code defines the global variables.

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Global variables are expanded during this initial load process when FreeSWITCH
starts up. The x-PRE-PROCESS tag designates a command to be processed during
the actual XML load. When you set a variable during this phase, that variable is
considered global automatically and becomes accessible throughout the application
as $${variable} elsewhere in the XML.

Note also that when you utilize $${variable} in your XML, it is also replaced
during XML load-time with the variable that was set during the X- PRE- PROCESS tag
processing.

<X-PRE-PROCESS cmd="set" data="domain=127.0.0.1"/>

<param name="domain" value="$${domain}"/>

For example, the preceding XML code would literally be compiled and seen by
FreeSWITCH as one single line:

<param name="domain" value="127.0.0.1"/>

This behavior is a feature of the XML parser —not FreeSWITCH itself. The pre-
processing of global variables happens prior to the XML file being utilized by any
FreeSWITCH process or event.

FreeSWITCH outputs the compiled XML file to disk. You can review this file to see
what happened to your pre-processor commands and global variable declarations. It
is usually located in /usr/local/freeswitch/log/freeswitch.xml.fsxml.

You can utilize global variables in your conditions, your variable and parameter
declarations, and pretty much anywhere, like this:

<condition field="$${global variable}">

Dialplan functions

Dialplan functions are small pieces of functionality that run real-time when
processing Dialplan conditions. They can be used to gain a little more control and
flexibility when writing your condition statements.

Dialplan functions can actually be used elsewhere —not just in the Dialplan. They are
not related to XML — they can be used anywhere that a FreeSWITCH string processor
is invoked. Examples of other places they may appear include external scripts that
execute and set variables, bridge and transfer applications, and so on.

The general format for Dialplan functions is:

${api_ func(api_args ${var name})}

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Where the api_func function is the name of the Dialplan function, api_args is

the name of the arguments to pass to the function, and ${var_name} is an optional
variable name to pass to the function. The format and expected parameters for api_
args vary depending on the function being used. Each available Dialplan function is
explained in more detail in the following sections.

Virtually any API that can be executed from fs_cli

can also be executed from within the Dialplan using the
T~ ${api (args) } notation.

Real-time condition evaluation

You can perform conditional evaluations within a condition expression using the
cond function.

The general format of the condition functions is:

${cond (<expr> ? <true vals> : <false vals)}

An example of using the condition function:

${cond(5 > 3 ? true : false)}
This expression would return true. The allowed comparison operators are:

* == indicates equality
* !=indicates not equal
* >indicates greater than
* >=indicates greater than or equal to
* <indicates less than
* <= indicates less than or equal to
Note that you can compare strings with strings and numbers with numbers, but if

you compare a string to a number, they will be compared as strlen(string) and
the number.

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

String conditioning
You can select a portion of a variable's value, (just like a substr function in many

programming languages) by wrapping the variable in ${var:offset:length} tags.
The arguments are:

* var: A string variable. It can be a literal string or a variable such as
${caller id}.

* offset: The location to start copying data. The value o0 indicates the first
character.

* length: The number of characters to look for. It is optional and if omitted,
the remainder of the string is copied.

Some examples of the arguments are as follows:

var = 1234567890
${var:offset:length}
{var:0:1} // 1

{var:1} // 234567890
{var:-4} // 7890
{

{

va
va

R

var:-4:2} // 78
var:4:2} // 56

“r vr »r ¥

An example of utilizing this API call to capture the first three numbers (U.S. area
code) in an outgoing caller's Caller ID, stored in a variable named ${callerid}, via
the Dialplan is as follows:

<application name="set" data="areacode=${callerid:0:3}"/>

Using anything less than or equal to 0 as the length will return from the specified
position to the end of the string.

Database queries

You can arbitrarily insert, delete, select, and update values from the internal
FreeSWITCH database.

The general format for database commands is:

${db (command/realm/key/value) }

Database commands can be insert, select, or delete, followed by the table or
realm, followed by a key and a value pair.

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

As an example, we could program-specific hold music, based on a caller's Caller ID:

<action application="playback" data="${db(select/music/${caller id
number}) }"/>

As another example, we could insert data into the database. In this example we insert
the current caller's UUID into a table named spymap, utilizing the caller's Caller ID
as the record key. Someone could later retrieve the last UUID based on a specific
Caller ID.

<action application="db" data="insert/spymap/${caller id
number}/${uuid}"/>

When you're writing to the FreeSWITCH database, you are utilizing the sqlite or
ODBC database configured for the system. This makes the data you store permanent.
Sometimes this isn't desirable or practical, and you have temporary data you just
wish to keep in memory. In that case, you can utilize the same application patterns as
we have seen earlier but swap out db for hash.

For example, we could retrieve from the hash:

<action application="playback" data="${hash(select/music/${caller id
number}) }"/>

Or we can store in a hash:

<action application="hash" data="insert/spymap/${caller id
number}/${uuid}"/>
Hash is simply an in-memory hash table that stores key/value pairs. If you restart
FreeSWITCH, you will lose any data in the hash.

SIP contact parameters

You can retrieve the contact string and parameters of a registered Sofia contact (and
manipulate them) using the sofia_contact command. The general format for this
command is:

${sofia_contact (profile/foo@bar.com) }

This is useful for multiple reasons. At its simplest use, it can be used to retrieve the
string and detect parameters such as whether NAT was detected on the registered
user, or whether the user is registered at all. As a more complex example, you can
use this feature to strip the contact string for pieces you wish to utilize and then
manipulate them further.

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

The following XML snippet will look up a user named foo@domain.com and get
the user's domain name or IP address and contact parameters at the time of
registration from the contact string. It will strip the username from the front of
the user's contact record.

<condition
field="\${sofia_ contact ($user idedomain.com) }"

[fel+@(.*)">

<action application="set" data="to_domain=$1"/>

nr

expressions=

</conditions>

Replace domain. com with the actual domain that you are searching. Note the regular
expression pattern:

rel+@(.)

This pattern matches from the beginning of the string until it finds the @ symbol, then
captures everything after the @ symbol into $1.

After you have stripped out the username, you could replace it with a new
username. This is often done when routing DIDs to a customer's PBX—you could
replace the recipient's username with the DID being called, like this:

<condition
field="\${sofia contact ($user idedomain.com}) }"
expression=""["\@]+(.*)">
<action application="bridge"
data="sofia/external/${DID number}@$1"/>
</conditions>

In this example, if a variable was set in the ${DID number} field, it would be
combined with the user's IP address and contact routing information. So if a user
was registered as franke72.44.12.28, it might be replaced in this example with
2035551212@72.44.12.28.

If you have multiple SIP profiles to which users may register their

devices then you may occasionally receive an ERR/USER_NOT _
M REGISTERED error when using sofia_contact, even though the

registration is present. Remedy this by using * as the name of the
Q profile when calling the sofia_contact command:

sofia_ contact (*/user@domain)

— The * will tell Sofia to search all SIP profiles for the user. -

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Set, export, and legs

When performing a bridge to connect two different call legs, you may find that

you have a channel variable in the originating leg (the A leg) that you wish to be
available also in the B leg. Sometimes you have a value that you want only to appear
in one leg or the other. The techniques presented in this section will explain how to
accomplish these tasks.

Set versus export

There are two general Dialplan applications available to set and modify information
about calls and the way the switch will process calls. These commands are named
set and export.

The set application sets variables on a channel for the duration of the channel.
These variables can then be accessed by applications (such as CDR) or by Dialplan
condition testing. You have seen the set application used several times in examples
throughout this book.

The export application takes the set application a step further. It sets variables on
the current channel but also saves the variable for use in any future channels created
that stem from the current channel or Dialplan context. In other words, export sets
variables on both the A leg of a call and on any future B legs that get set up.

The difference between the two applications can be subtle until you start needing to
access information on B legs (transferred calls). The export application then becomes
very useful for ensuring consistency in variables that may be needed in multiple legs
of calls.

Consider these examples:

<!--Variable "foo" is set on both legs -->

<action application="export" data="foo=bar"/>

<action application="bridge" data="/user/1001"/>
<!--Variable "foo" is set on b leg only -->

<action application="export" data="nolocal:foo=bar"/>
<action application="bridge" data="/user/1001"/>

In some cases you may want to have the variable foo available in both call legs.
There are other times, such as when processing CDRs, when you may wish to have a
particular value present in only the B leg. The highlighted line shows an example of
using the nolocal: directive, which sets channel variable foo to the value of bar on
the B leg, but does not set channel variable foo at all on the A leg.

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Passing variables via call headers

Sometimes it is useful to add your own custom headers to outbound calls. The SIP
stack is the most common place to do this.

You can add arbitrary headers to outbound SIP calls by using the same set and
export commands listed, as shown, but prefixing the variable names with the string
sip_h_. For example, to add the header callerLikesTacos=1 to a call, you could
add a set application prior to a bridge application, like this:

<action application="set" data="sip h X-CallerLikesTacos=1"/>
<action application="bridge"
data="sofia/mydomain.com/1000@example.com"/>

If you wish to add headers to a BYE request, you will need to use the prefix sip_
bye h on the channel variable.

o While not required, you should prefix your headers with
~ X- to avoid issues with interoperability with other SIP
Q stacks. X- headers are generally seen as custom headers
and are ignored in the SIP world if not recognized.

XML Dialplan cookbook

We present here a few scenarios that you may need to refer to from time-to-time
because they are relatively common. The examples presented in this section are in
the mold of the traditional cookbook full of recipes for the reader to try. Feel free to use
and modify these recipes in your custom Dialplans.

Match by IP address and call a number

In the following example, the particular extension will be selected only if the IP
address of the calling endpoint is 192.168.1.1. In the second condition, the dialed
number is extracted in variable $1 and put in the data of the bridge application, in
order to dial out to IP address 192.168.2.2.

<extension name="Testl">
<condition field="network addr"
expression=""192\.168\.1\.18"/>
<condition field="destination number" expression=""(\d+) $">
<action application="bridge"
data="sofia/profilename/$1@192.168.2.2"/>
</conditions>
</extensions>

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The first condition field is terminated by a slash. The last condition field that contains
the action tag is terminated by a regular </conditions> tag. Also, note that the
preceding example is not the same as this example:

<extension name="TestlWrong">
<condition field="destination number" expression=""(\d+)$"/>
<condition field="network addr"
expression=""192\.168\.1\.18">
<action application="bridge"
data="sofia/profilename/$1@192.168.2.2"/>
</conditions>
</extensions>

The Test1wWrong example will not route the call properly because the variable $1
will not have any value, since the destination number was matched in a different
condition, field.

You can also solve the Test1Wrong example by setting a variable in the first
condition which you then use inside the second condition's action:

<extension name="Testl.2">
<condition field="destination number" expression=""(\d+)$">
<action application="set" data="dialed number=$1"/>
</conditions>
<condition field="network_ addr"
expression=""192\.168\.1\.15">
<action application="bridge"
data="sofia/profile/${dialed number}@l92.168.2.2"/>
</conditions>

</extensions>

You cannot use a variable set inside an extension for further conditions/matches as
the extension is evaluated when the action is called.

If you need to do different actions based on a variable set inside an extension, you
need to either use execute extension to transfer the call for the variable to be set,
or use inline processing. (See the section Inline execution earlier in this chapter.)

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Match an IP address and Caller ID

In this example, we need to match a called number beginning with the prefix 1 and
match the incoming IP address at the same time.

<extension name="Test2">
<condition field="network addr"
expression=""192\.168\.1\.18"/>
<condition field="destination number" expression=""1(\d+)$">
<action application="bridge"
data="sofia/profilename/$0@192.168.2.2"/>
</conditions>
</extensions>

Here, although we match with the rule *1 (\d+) s, we don't use the variable $1,
which would contain only the rest of the dialed number with the leading 1 stripped
off. Instead, we use the variable $0 that contains the original destination number.

Match a number and strip digits

In this example we need to match a called number beginning with 00, but we also
need to strip the leading digits. Assuming that FreeSWITCH receives the number
00123456789 and we need to strip the leading 00 digits, then we can use the
following extension:

<extension name="Test3.1">
<condition field="destination_ number"
expression=""00 (\d+)$">
<action application="bridge"
data="sofia/profilename/$1@192.168.2.2"/>
</condition>
</extension>

On the other hand, if you anticipate receiving non-digits, or you want to match on
more than just digits, use . + instead of \d+, because \d+ matches numeric digits
only, whereas a . + will match all characters from the current position to the end of
the string:

<extension name="Test3.2">
<condition field="destination number" expression=""00(.+)$">
<action application="bridge"
data="sofia/profilename/$1@192.168.2.2"/>
</condition>
</extension>

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Technically, we are not "stripping off" the digits we do not want, but
U rather we are "capturing" the digits that we do want. Remember,

Q the value matched inside the first set of parentheses is stored in $1.
Semantics aside, the net result is that we have the digits we want in a
variable that we can use for whatever purpose we need.

Match a number, strip digits, and add a prefix

In this example we need to strip the leading digits as shown, but we also need to
place a new prefix before the called number. Assuming that FreeSWITCH receives
the number 00123456789 and we need to replace the 00 with 011, we can use the

following extension:

<extension name="Test4">
<condition field="destination number"
expression=""00 (\d+) $">
<action application="bridge"
data="sofia/profilename/0llslex.x.x.X"/>
</conditions>
</extensions>

Call a registered device

This example shows how to bridge to devices that have registered with your
FreeSWITCH system. In this example we assume that you have set up a Sofia profile
called 1local_profile and your phones are registering with the domain example.
com. Note the % instead of @ in the dial string:

<extension name="internal">
<condition field="source" expression="mod_sofia"/>
<condition field="destination number" expression=""(4\d+) $">
<action application="bridge"
data="sofia/local profile/$0%example.com"/>
</conditions>
</extensions>

The use of % instead of @ is a FreeSWITCH-specific feature. Using the form
user%domain tells FreeSWITCH that a user is registered with domain, and that
domain is being serviced by the FreeSWITCH directory.

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

Try party A, then party B
The following example shows how it is possible to call another action if the first
action fails.

If the first action is successful, the call is bridged to 1111@examplel.company.com
and will exist until one of the parties hangs up. After this, no other processing will
be done because the caller's channel is closed. (In other words, 1111@example2.
company . com is not called.)

If the initial call to 1111@examplel . company . com was not successful, the channel
will not be closed and the second action will be called.

<extension name="find me">
<condition field="destination number" expression=""1111$">
<action application="set"
data="hangup_ after bridge=true"/>
<action application="set" data="continue on fail=true"/>
<action application="bridge"
data="sofia/local_profile/llll@examplel.company.com"/>
<action application="bridge"
data="sofia/local_profile/llll@example2.company.com"/>
</conditions>
</extension>

Route DIDs to extensions

To route incoming calls that come in to a certain DID via the context public to a fixed
extension in the context inhouse, do something like the following:

<context name="public"s>
<extension name="test did">
<condition field="destination number"
expression=""\d{6} (\d{4})s">
<action application="transfer" data="$1 XML inhouse"/>
</conditions>
</extensions>
</context>

This will capture only the last four digits of a ten-digit number and transfer the caller
to that number via the inhouse context. Note the parentheses around \d{4} that
allow us to capture only the last four digits.

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Alternate outbound gateways

In this example we send ten-digit outbound calls from 0fficea to gateway 1 and
from OfficeB to gateway 2. This assumes 0fficeA and OfficeB are both using the
same FreeSWITCH box but need different routing for outbound calls. It assumes
both offices have 4-digit extensions, and that 0f ficeA's extensions start with 2 and
OfficeB's extensions start with 3.

<extension name="officeA outbound"s>
<condition field="caller_id_number"
expression=""2\d{3}s"/>
<condition field="destination_ number"
expression=""(\d{10})s">
<action application="set"
data="effective caller id number=8001231234"/>
<action application="set"
data="effective caller id name=Office A"/>
<action application="bridge"
data="sofia/gateway/myswitch.com/$1"/>
</condition>
</extension>
<extension name="officeB outbound"s>
<condition field="caller_id_number"
expression=""3\d{3}s"/>
<condition field="destination_ number"
expression=""(\d{10})s">
<action application="set"
data="effective caller id number=8001231235"/>
<action application="set"
data="effective caller id name=Office B"/>
<action application="bridge"
data="sofia/gateway/otherswitch.com/$1"/>
</condition>
</extension>

Multiple endpoints with enterprise originate

Consider this example: a customer wants to know if they can route a call to two
different people. Person number one (Alice) prefers that her desk phone ring

first, and then her mobile phone. Person number two (Bob) prefers that his desk
phone and his mobile phone ring simultaneously. Whoever answers first — Alice or
Bob —will take the call and all the other outbound calls will stop ringing.

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Dialplan Concepts

This complicated scenario requires the use of FreeSWITCH's enterprise originate.
The basic idea of an enterprise originate is that there are individual originates that
are connected in a larger "enterprise". In our example, Alice's phones might be dialed
like this:

<action application="bridge"
data="[leg_timeout=10]user/Alice|
[leg timeout=20]sofia/gateway/my gw/${alice mobile}"/>

And for Bob:

<action application="bridge"
data:"[leg_timeoutzlo]user/Bob|
[leg timeout=20]sofia/gateway/my gw/${bob mobile}"/>

Each of these individual bridge attempts would work for calling either Alice or Bob,
but not both at the same time. To accomplish this, put both of these into a single
bridge action and separate them with the special : _: sequence. Here is an example:

<action application="bridge"

data="<ignore early media=trues>[leg timeout=10]user/Alice|
[leg timeout=20]sofia/gateway/my gw/${alice mobile}: :
[leg timeout=10]user/Bob]|

[leg timeout=20]sofia/gateway/my gw/${bob mobile}"/>

In this case, when the inbound leg hits this bridge app, FreeSWITCH will initiate two
separate "originates" — one for reaching Alice and the other for reaching Bob. The
effect here is that FreeSWITCH tries to reach Alice, by calling her desk phone and
then her mobile while at the same time calling Bob at his desk phone and his mobile
phone. If anyone answers then the whole "enterprise" stops and the call is connected
to the endpoint that answered.

Note that we are forced to use ignore_early media=true, because we are creating
so many call legs. There is no way to pick just one source of early media (ringing)
and use it. Be sure to set the ringback or transfer ringback variables if you need
to supply some kind of ringing signal to the calling party.

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Summary

In this chapter we delved very deeply into the operation of the FreeSWITCH
Dialplan. Building upon the foundation laid in Chapter 5, Understanding the XML
Dialplan, we discussed many advanced Dialplan concepts:

* How Dialplan parsing works

* Using global variables and channel variables

* Advanced use of regular expressions

* Various advanced routing concepts
The Dialplan system in FreeSWITCH is one of the most important concepts you can
learn. The power of FreeSWITCH is truly unleashed within the Dialplan system itself,

and understanding the complexities of using various functions within FreeSWITCH is
key to ensure that the FreeSWITCH performs exactly the way you want.

In the next chapter, we will lay the foundation for doing very powerful FreeSWITCH
configurations that do not rely solely on the static XML files.

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static
XML Configuration

Up to now, we've concentrated on using the static XML example configuration

files that get installed with FreeSWITCH by default. In this chapter, we'll move

on to show you how you can have a fully configured FreeSWITCH with only the
most minimal static XML. FreeSWITCH offers several ways of letting you control it
dynamically. Although each method has a different focus, some of their functions
overlap. For example, both mod_xml_curl and the language bindings allow you to
create dynamic configurations. In this chapter we will cover the following methods:

mod_xml_curl: This module allows you to pull a configuration file from a
web server. Configurations include Dialplans, user directory, and general
configuration files. It also allows for dynamic configuration with a static
fallback in case of a server failure.

Language bindings: In a way similar to mod_xml_curl, you can use the
supported scripting languages (Lua, Perl, Java, Python, and so on) to
generate dynamic configurations.

originate API: The originate APl is unique in a way that it can create
new phone calls on the system, hence the name originate. We will briefly
demonstrate how to create a new call with the originate APl using fs_c1i.

Event Socket/ESL: The Event Socket and ESL (Event Socket Library)
provide a very powerful means of controlling FreeSWITCH. We briefly
introduce the Event Socket in this chapter and then go into greater detail in
Chapter 10, Controlling FreeSWITCH Externally.

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

The mod_xml_curl basics

The mod_xml_curl module is a module that uses the well-known cURL library
(curl.haxx.se) to pull XML configuration files from a web server. FreeSWITCH can
parse these files on-the-fly and use them as it would use the static XML configuration
files. Since you control the web server, you get the benefit of being able to change

the XML that is delivered from one request to the next. This can be useful when
configuring more than one FreeSWITCH server from the same web server. One big
benefit of a setup like this is the ability to make configuration changes in a single
place and have them affect an entire cluster of servers.

All of the mod_xml_curl examples in this chapter require a web server configured to
run PHP scripts. The examples have been tested on Apache2 with mod_php since it
can run under Linux/UNIX and Windows.

To make mod_xml_curl load on FreeSWITCH startup, follow these steps:

1. Open conf/autoload_configs/modules.conf.xml in your favorite text
editor and add the following line near the top of the modules to load mod_
xml_curl:

<load module="mod xml_curl"/>

2. Save the file.

_ mod_xml curl is built by default in Windows but not in Linux/
a Unix. Be sure to enable mod_xml curl in the modules. conf file
Vs in the FreeSWITCH source folder, and then execute the command

make mod xml curl-install.

As you can imagine, we need to give FreeSWITCH a URL to be used for pulling
the configuration files it needs. We do that by editing the xml_curl.conf.xml file.
Follow these steps:

3. Open conf/autoload _configs/xml_curl.conf.xml in a text editor and
enter the following lines:

<configuration name="xml curl.conf" description="curl
conf">
<bindings>
<binding name="arbitrary name">
<param name="gateway-url"
value="http://localhost/xml_ curl/index.php"
bindings="configuration|dialplan|directory"/>
</binding>
</bindings>
</configurations>

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

4. Save the file.
5. Restart FreeSWITCH.

The binding name attribute can be anything you want, although we recommend
something descriptive. The param inside binding has a value for the URL that

gets requested each time a configuration is needed. In our example we use a local
PHP script, however you could also use a public web server. As you can see by the
bindings attribute we have selected configuration, dialplan, and directory to
be requested from the web server by FreeSWITCH (we'll see these later when we talk
about the section value in the index.php file discussed next).

It is critical that you handle the scenario where FreeSWITCH requests something
from your script that it doesn't know how to handle. Use the following response to
tell FreeSWITCH that you don't know how to handle the request and that it should
look locally for the configuration file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<document type="freeswitch/xml">
<section name="result"s>
<result status="not found"/>
</section>
</document >

This is especially useful if you want to handle only a few extensions or contexts

in the Dialplan or if you only want to serve up special options for just a couple of
modules. In the following sections, we'll show you some examples of doing exactly
this. First we'll cover the index. php file which acts as the driver for all requests.
Place the following index.php file in an appropriate location for your server:

<?php
function not found($msg = '') {
print "<document type=\"freeswitch/xml\">\n";
print " <section name=\"result\">\n";
print " <result status=\"not found\"/>\n";
print " </section>\n";
print " <!-- $msg -->\n";

print "</document>\n";
exit;
}
header ("Content-Type: text/xml");
print "<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"no\"?>\n";
if (tarray key exists('section', $ REQUEST)) {
not found('no section passed');

}

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

if (!preg match('/"(directory|dialplan|configuration)$/"',
$ REQUEST['section'])) {
not found('section not valid');
}
$gen file = "${ REQUEST['section']}.php";
if (file exists(Sgen file) && is readable($gen file)) {
include s$gen file;
} else {
not found('S$gen file not found');

}

The not_found () function will just print out the chunk of not found XML that we
mentioned earlier. In the event that we decide that we want the static XML to handle
the request or if something is wrong with the request, then we'll respond with the
not found XML block.

The next couple of lines (that start with header and print) will make sure
that a browser or FreeSWITCH will recognize the response as XML and handle
it appropriately.

The next three-line block will make sure that the request contains a section so that
we know what to serve back to FreeSWITCH. If there is no section passed, we'll
return the not found XML.

The three-line block following that checks to make sure that the section is either
dialplan, directory, or configuration. Any other sections that get requested will
receive a response to with the not found XML chunk indicating that FreeSWITCH
should look locally for the configuration that it's seeking.

The last if block makes sure that we have a file in place to handle the section being
requested and that the file is readable.

In the following section we'll go on to see how the Dialplan requests are handled
with the dialplan.php file in the same folder as the index.php file.

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The mod_xml_curl Dialplan

In this section we'll show you how you can handle the book_test dialplan context
with mod_xml_curl and let all other contexts fall back to the static XML Dialplan.
Add the following dialplan.php file to the same subfolder as your index.php file:

<?php
if (larray key exists('Hunt-Context', $_REQUEST) ||
$_REQUEST['Hunt-Context'] != 'book test') ({
not found('not our context');
}
print "<document type=\"freeswitch/xml\">\n";
print " <section name=\"dialplan\">\n";
print " <context name=\"${ REQUEST['Hunt-Context']}\">\n";
print " <extension name=\"no_name\">\n";
print " <condition>\n";
print " <action application=\"info\">\n";
print " </condition>\n";
print " </extension>\n";
print " </context>\n";
print " </section>\n";
print "</document>\n";

FreeSWITCH will send many POST parameters to our web application on every
request. A couple of frequently used parameters are Hunt - Context and Hunt -
Destination-Number, which correspond to the Dialplan context and the
destination_ number that you normally see in the static XML Dialplan). The first
three lines of dialplan.php make sure that there exists a Hunt - Context in our
request, and that the Hunt - Context is book_test, else it will return the now familiar
not found XML to tell FreeSWITCH to keep looking elsewhere for the context.

The remainder of this script just prints out the XML for our Dialplan context which
contains a single extension.

A useful tool for testing your web server is the curl command line tool. On a Linux/
UNIX system issue this command from the command prompt:

curl -D- http://localhost/xml curl/index.php -d
'section=dialplan&Hunt-Context=book test'

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

The resulting output will look something like the following:

HTTP/1.1 200 OK
...Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<document type="freeswitch/xml">
<section name="dialplan">
<context name="book test">
<extension name="no name'>
<condition>
<action application="info"/>
</conditions>
</extension>
</context>
</section>
</document >

Many of the examples you see will use cURL from the command line. We'll usually
use the -D option to dump the headers of the response. In our usage, -D- tells cURL
to dump the headers on the screen instead of a file, so we can see them immediately.

Notice that the <condition> tag has no attributes. The reason is that we can make
the routing decisions in our script real-time and only return XML for the decision
we've already made. However, you still have the choice of printing out conditions
with field and expression attributes to allow FreeSWITCH to evaluate them
and make decisions. Most implementations will return the single extension, but
others will return an entire context and mod_xml_curl is used simply to keep
configurations uniform across multiple machines.

u The examples in this chapter show the use of cURL on a Linux/
~ UNIX command line. However, curl . exe is available for both 32-
Q bit and 64-bit versions of Windows. Visit http://curl.haxx.se/
dlwiz/?type=bin to download an executable for your platform.

The mod_xml_curl folder

In this section we'll show you how to respond to folder requests from FreeSWITCH.
This example will allow any user to register with the password 1234. This is meant
only to be a demonstration of returning valid XML to FreeSWITCH and should never
be deployed on a production machine because of inherent security implications.

Add the directory.php file to the same folder that contains your index.php file.

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The following is the directory. php file:

<?php
if (larray key exists('domain', $ REQUEST) ||
larray key exists('user', $ REQUEST)) {

not found('missing domain or user');

}

print "<document type=\"freeswitch/xml\">\n";

print " <section name=\"directory\">\n";

print " <domain name=\"${ REQUEST['domain']}\">\n";
print " <groups>\n";

print " <group name=\"default\">\n";

print " <users>\n";

print " <user id=\"${ REQUEST['user']}\">\n";
print " <params>\n";

print " <param name=\"password\"
value=\"1234\">\n";

print " </params>\n";

print " <variables>\n";

print " <variable name=\"user context\"
value=\"default\">\n";

print " </variables>\n";

print " </user>\n";

print " </users>\n";

print " </group>\n";

print " </groups>\n";

print " </domain>\n";

print " </section>\n";

print "</document>\n";

As with dialplan requests, directory requests will send a number of POST
parameters that will help you to determine how to respond to the request. The

most commonly used are the domain and user parameters. In the first three lines

of this script, we make sure that both of them exist before we proceed. As with
earlier examples, we return the not found XML if either of our required parameters
are not present.

The remainder of the script goes on to print out the XML that FreeSWITCH will need
to process. Notice that in the <domain> and <users tags we simply echo back what
was requested from us. This will return a valid XML response with the password
1234 for any user on any domain. Again, it's a very bad idea to use this example on
any production server as it could allow would-be attackers to authenticate against
your server and make calls from protected contexts. This example is meant only for
demonstrating the steps required to return a valid response to a directory request. In
production systems you will most likely store your user information in a database
and your script will query the database in order to return the required information.

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

At the system command prompt issue the following command:

curl -D- http://localhost/xml curl/index.php -d
'section=directory&domain=example.com&user=1000"'

The results will appear similar to the following:

HTTP/1.1 200 OK
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<document type="freeswitch/xml">
<section name="directory"s>
<domain name="example.com">
<groups>
<group name="default">
<userss
<user id="1000">
<params>
<param name="password" value="1234"/>
</params>
<variables>
<variable name="user context" value="default"/>
</variables>
</user>
</userss>
</group>
<groups>
</domains>
</section>
</document >

Pay close attention to the name attribute of the <domains> tag, and the id attribute of
the <users> tag and notice how they change if you post different parameters from the
curl request. Keep in mind that all of the groups and users inside a <domain> tag
belong to the same domain. Likewise, all of the users inside a <group> tag belong to
the same group.

The mod_xml_curl configuration

You can supply FreeSWITCH with a number of configuration files using mod_xml_
curl and the configuration binding. In this section we'll dynamically generate a
sofia.conf file and build a bit of a framework for doing other configurations with
ease. We will be adding a few new files and subfolders to our web server.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Add the following configuration.php file to the same folder that has the index.
php file:

<?php
if (array key exists('key value', $ REQUEST)) {
$conf = $ REQUEST['key value'];
if (is_file("configuration/$conf.php")) {
include once("configuration/$conf.php");
} else {
not found("unable to find config script ($conf.php)");
}
}

Note that the configuration.php file will look for specific configurations in a
subfolder appropriately named configuration. Create this subfolder under the
same folder that contains index.php and configuration.php.

Next, add the following sofia. conf .php file in the configuration subfolder:

<?php
print "<document type=\"freeswitch/xml\">\n";
print " <section name=\"configuration\">\n";
print " <configuration name=\"sofia.conf\">\n";
print " <profiles>\n";
print " <profile name=\"internal\">\n";
print " <settings>\n";
print " <param name=\"sip-ip\"
value=\"${ SERVER['REMOTE ADDR']}\"/>\n";
print " <param name=\"rtp-ip\"
value=\"${ SERVER['REMOTE ADDR']}\"/>\n";
print " <param name=\"sip-port\" value=\"5060\"/>\n";
print " </settings>\n";
print " </profile>\n";
print " </profiles>\n";
print " </configuration>\n";
print " </section>\n";

print "</document>\n";

There's really nothing to the sofia.conf . php file except printing out the XML
response for FreeSWITCH. We assume that since the configuration.php
successfully found this file and loaded it, then the only sensible thing to do is print
the XML. The one thing that's worth noting is that the sip-ip and rtp-ip will be set
to the IP address that sent the request, so we use 127.0.0.1 in our example.

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

Let's test our configuration. At the system command prompt issue the following
command:

curl -D- http://localhost/xml curl/index.php -d
'section=configuration&key value=sofia.conf’

The output will be similar to the following:

HTTP/1.1 200 OK
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<document type="freeswitch/xml">
<section name="configuration"s>
<configuration name="sofia.conf">
<profiless>
<profile name="internal">
<settings>
<param name="sip-ip" value="127.0.0.1"/>
<param name="rtp-ip" value="127.0.0.1"/>
<param name="sip-port" value="5060"/>
</settings>
</profile>
</profiles>
</configurations>
</section>
</document >

As previously mentioned, the rtp-ip and sip-ip are both the IP addresses from
which the request came. In this scenario we use 127.0.0.1, which isn't terribly useful
at all. Imagine if you had a cluster of a dozen FreeSWITCH boxes where all profiles
were exactly the same with the exception of the IP addresses that they're bound to.
Suddenly this example starts showing signs of usefulness in a real world situation.

Another thing you might notice as you start inspecting some of these requests is that
there are a few requests for configuration files with a post_1load_ prefix. These files
are requested to let you provide settings in files that are required before mod_xml_
curl can be loaded (for example, modules.conf .xml and switch.conf.xml). The
contents allowed in these post_load_ files are the same as the regular static files. For
example, you can have your modules. conf .xml load only mod_xml_curl and then
load the remainder of your required modules in post_load modules.conf via the
mod_xml_curl response.

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The mod_xml_curl summary

Most of the mod_xml_curl examples we've shown you will print the same XML
every time so they're essentially static with a few dynamic bits here and there.

You may have also noticed, and silently mocked, the fact that we're just using print
statements to output the XML file. In PHP, as in the case of other languages, there
are XML generating libraries/classes that can help you generate valid and compliant
XML with different character encodings. For example, PHP has the SimpleXML
extension (http://php.net/manual/en/book.simplexml.php) that can also be
used. As a general rule, you should use such a library if you plan on doing any
serious implementation.

Generating configurations dynamically
with language bindings

If you would rather not set up a web server to process scripts, FreeSWITCH gives
you the option of handling the same binding requests with the built-in scripting
languages. All of the scripting language modules allow you to set the parameters so
that you can have a script that handles requests which is the same as the mod_xm1_
curl script. The most commonly used languages are as follows:

* Luawithmod 1lua
* Perl with mod_perl
* Python with mod_python

FreeSWITCH also supports Microsoft .NET languages by means
+ of mod_managed. However, its usage is different than that of the
%ji\ scripting languages of Lua, Perl, and Python. More information
’ can be found online at http://wiki.freeswitch.org/
wiki/Mod managed.

Looking in conf /autoload_configs/ you will see configuration files for each
language:
® Jua.conf.xml

®* perl.conf.xml

* python.conf.xml

[225]

www.it-ebooks.info

http://php.net/manual/en/book.simplexml.php
http://php.net/manual/en/book.simplexml.php
http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

Open any one of these and you'll see some parameters like the following;:

<param name="xml-handler-bindings"
value="dialplan|directory|configuration"/>

<param name="xml-handler-script"

value="/path/to/script.ext"/>
As you might have guessed, the xml-handler-bindings are the configuration sections
that you wish to be handled by your script. Therefore, xm1-handler-script is the
path to the script that you want to execute to handle the requests.

While we use mod_lua in these examples, the principles
A also apply to mod_perl and mod_python.

The major difference between mod_xml_curl and mod_1lua is that since mod_1lua is
embedded into FreeSWITCH there's no need for setting Content -Type and printing
XML output for FreeSWITCH to read in. Instead, you just set a special variable
named XML_STRING that contains the XML content to be parsed by FreeSWITCH.
You can see this in the following example:

local xml header = [[<?xml version="1.0" encoding="UTF-8"
standalone="no"?>

<document type="freeswitch/xml">

11

local xml body

if XML REQUEST['section'] == 'configuration' and
XML _REQUEST ['key value'] == 'sofia.conf' then
local ip v4 = params:getHeader('FreeSWITCH-IPv4')

xml body = string.format ([[
<section name="configuration"s>
<configuration name="sofia.conf">
<profiless>
<profile name="internal">
<settings>
<param name="sip-ip" value="%s"/>
<param name="rtp-ip" value="%s"/>
<param name="sip-port" value="5060"/>
</settings>
</profile>
</profiles>
</configurations>
</section>]], ip v4, ip v4)
else

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

xml body = [I
<section name="result">
<result status="not found"/>

</section>
11
end
local xml footer = [[</documents>]]
XML STRING = xml header .. xml body .. xml footer

This example should look pretty familiar. This is essentially the same thing that we
did in the mod_xml_curl configuration example earlier in this chapter. We generate
the XML opening and closing sections which will always be the same. Then, if the
section is configuration and the key_value is sofia.conf, we generate a minimal
sofia.cont. If there's any other section or any other configuration is requested, then
we just return the same not_found XML chunk from the mod_xml_curl examples
earlier in this chapter.

At first glance, it might seem like a bit of a hassle trying to keep these scripts in sync
across several machines in a cluster. However, if you consider the possibility of
using Box, Dropbox, or one of the many other options for keeping files in sync across
multiple boxes, then you could have a graceful alternative to using mod_xml_curl
that does not require the use of a web server.

Making calls from the command line
interface

You can make calls with no users on a system. For this example, we're going to
assume that you have an endpoint to which you can make unauthenticated calls.
This endpoint could be an IP phone, a soft phone, or even another FreeSWITCH
server with a registered user or two. The only requirement is that the URI you call
should ring a phone that you can answer. In our examples, we'll use my . open.
endpoint.example.com as the target domain. Be sure to use the appropriate user
and domain or IP address for your configuration.

Open £s_cli and execute this command:
originate sofia/internal/l1234@my.open.endpoint.example.com &echo ()

Obviously, this isn't going to be very useful in the real world. Hearing yourself say,
"Hello, testing one, two, three..." can prove to be a good test of bi-directional audio
and such, but to make this a productive example we should probably do something
bit more interesting with our call.

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

In the following example, we'll originate a call to our endpoint, and then bridge it to
the public FreeSWITCH conference using the example default Dialplan that comes as
part of the default FreeSWITCH install.

originate sofia/internal/1234@my.open.endpoint.example.com
&transfer (9888 XML default)

As with the previous example, this one will dial our endpoint first. When we pick
up, we'll be transferred into the default XML dialplan context where the 9888 will
match the freeswitch public conf via sip extension in the default context and
bridge the call.

The next example will also bridge us to the public FreeSWITCH conference via
SIP, but without the need for a Dialplan since we're doing the bridge from the
originate command:

originate sofia/internal/l234@my.open.endpoint.example.com
&bridge (sofia/internal/888@conference.freeswitch.org)

It could be argued that the previous two examples aren't very useful either, unless
of course, it's Wednesday at around 1PM EST. In that case, you'll likely find yourself
right in the middle of the weekly community FreeSWITCH users conference call.

That said, you can slightly modify these examples to create a click to call script for a
website. You could make a form on your site where users enter their phone number
and have it post to a form handler that does an originate to your main IVR.

originate sofia/gateway/my provider/12125551234 &ivr (main menu)

This originate will call 12125551234 through the provider gateway named my_
provider and drop the person who answers into the IVR named main_menu. You
may be wondering how to get that phone number from the web form into the fs_
cli. One way is to have the form handler launch a system command that contains
fs_cli, such as the following:

fs cli -x 'originate sofia/gateway/my provider/12125551234
&ivr (main menu)'

Notice the use of £s_c1i with the -x (to execute) parameter. Using £s_cli -xis
simple and clean. However, it may not be the most scalable or efficient method,
depending upon your scenario. The following section will introduce you to one of
the most powerful aspects of FreeSWITCH, the event socket and ESL.

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Using ESL to execute commands

In our previous examples we've originated calls from £s_c1i. In this section we'll
show you a couple of code samples that will do the same things from your favorite
scripting language. For our examples, we're going to use Lua, since you've probably
become accustomed to it by now. The ESL API is the same whether you use Python,
Lua, PHP, Perl, or whatever, so the adventurous minds could follow along in their
own favorite language.

ESL scripts versus built-in languages

Keep in mind that ESL-based programs are not the same as using
M built-in languages. The FreeSWITCH event socket is a TCP-based
connection to FreeSWITCH. The ESL is an abstraction library that
Q is available for more languages than just the few that are built-in
to FreeSWITCH. You must first install the Lua, Perl, Python, or
PHP for your system before using ESL. For Lua see http://www.
lua.org for more information.

First, since the ESL modules aren't built as part of the default install, we'll need to
build them before we can do anything with it. Linux/ UNIX users should follow
these steps:

1. Navigate to the FreeSWITCH ESL folder:
cd ${FS_SRC}/libs/esl

2. Execute the following command:
make luamod

Assuming these commands run successfully, you should now have the Lua ESL
module built and saved in ${FS_SRC}/libs/esl/lua as ESL.so.

Al

~ If you have trouble installing the Lua ESL module then try
installing the Lua development module for your platform.

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

You can move the ESL. so file to one of the paths that is in the Lua module's path
search to make it load no matter what folder you're in when you run the script.

The easiest way to find those folders is to run . /lua/single_command.lua from the
${Fs_srC}/1libs/esl folder. Doing that should give you output resembling

the following:

no file './ESL.so'

no file '/usr/local/lib/lua/5.1/ESL.so'

no file '/usr/lib/x86 64-linux-gnu/lua/5.1/ESL.so’
no file '/usr/lib/lua/5.1/ESL.so'

We notice here that the system looks for ESL. so in the present working folder
(represented by .) and then in a couple of built-in Lua library search paths. Since we
don't want to have a copy of ESL. so in every single folder from which we ever plan
to run a Lua script we'll copy it to the next path in the search list, that is usr/local/
lib/1lua/5.1. In this example however, your system may have a different path. Be
sure to run single_command.lua as shown previously to find out the correct paths
for your case. Run these commands:

sudo mkdir -p /usr/local/lib/lua/5.1/
sudo cp lua/ESL.so /usr/local/lib/lua/5.1/

./lua/single command.lua

Note that we create the folder if it doesn't already exist and then copy our ESL. so file
into the folder. Lastly we run single_command. lua again to make sure it found our
ESL. so.

Windows users must build mod_es1 with Microsoft Visual Studio
_ (the pre-compiled binaries will not suffice). Right-click on mod esl
% and click on Build. It will create es1.d11. Place this file in your
L= Lua installation's c1ib sub-folder. When running a Lua script in
Windows, use the command prompt and execute 1ua followed by the
name of the script. For example: lua single_command. lua.

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

If all went as expected, you should now have a new error that looks similar to
the following;:

/usr/bin/lua: Error in api (arg 2), expected 'char const *' got 'nil’
stack traceback:

[C]: in function 'api'

./lua/single command.lua:9: in main chunk

[c]l: ?

If that's the case for you, then all went well. This new error is just telling us that we
didn't pass a mandatory command to our single_command. lua script. Let's do that
now. Run this command:

./lua/single command.lua status

Passing the status API command to our single_command. lua script should give us
output that looks similar to the following:

UP 0 years, 0 days, 5 hours, 6 minutes, 27 seconds, 223 milliseconds, 190
microseconds

FreeSWITCH (Version 1.2.8) is ready

0 session(s) since startup

0 session(s) - 0 out of max 30 per sec

1000 session(s) max

min idle cpu 0.00/96.00

Current Stack Size/Max 240K/240K

If you see what you expect to see here, then you should be able to pass any API
command using a script similar to single_command. lua. So you could take the

originate examples from earlier, and use them over ESL from Lua. Try something
like this:

./lua/single command.lua 'originate
sofia/gateway/my provider/12125551234 &ivr(main menu)'

One thing that could make this even more useful than it already is would be the
option to run this script on a separate machine than the one your FreeSWITCH
process is running on. Thankfully, you have that option. Details for configuring mod_
event_socket to allow you to control it externally are covered in greater detail in
the next chapter, appropriately named Controlling FreeSWITCH Externally.

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Beyond the Static XML Configuration

Summary

Using the strategies covered in this chapter, you could have a cluster of FreeSWITCH
boxes that have a bare minimal XML configuration and get the bulk of their
configurations from a web server. There's no need for any of these boxes to have a
user directory or Dialplan on them, because those can also be pulled from the web
server in real-time as needed. Add in the process that involved you to bridge calls
over ESL from your favorite scripting language to originate calls, manage voicemails,
and so on, you now have a cluster of FreeSWITCH servers that you can manage
almost completely remote without ever having to log into the shell.

These are just a small sample of the ways to configure and control FreeSWITCH
without relying solely on static XML files. In the next chapter we learn about an
even more useful way to control FreeSWITCH as we now delve into the extremely
powerful FreeSWITCH event socket.

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

10

Controlling FreeSWITCH
Externally

The FreeSWITCH event system is one of the most exciting components of
FreeSWITCH. You have already learned how FreeSWITCH operates when it utilizes
various static configuration files and scripting languages. The event system allows
for tremendous real-time dynamic behavior and control of FreeSWITCH. Utilizing
the event system is where FreeSWITCH really comes alive.

The event system allows external software programs to act as listeners regarding
activity happening on the system. This allows for real-time interaction with
telephony operations on the telephony softswitch in conjunction with externally
running software or hardware. Almost everything that happens within the
FreeSWITCH system causes some sort of event message to be generated. These
events can be watched by external entities. This is similar to the publish/subscribe
(or "pub-sub") system used by common message queuing software solutions,
although it is specifically tailored for FreeSWITCH events.

The event system is bi-directional: In addition to allowing external programs to
listen to events, external programs can also send events to FreeSWITCH. You can
send and/or receive events in real time from your own programs. This combination
allows you to use FreeSWITCH in almost any way you can imagine.

In this chapter, we will discuss the following:

* General overview of the event system

* Event system architecture

* Accessing the event socket

* Event socket library

* Example ESL program in PHP

* Creating a conference manager using the event system

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

General overview

The event system is the nerve center of FreeSWITCH, allowing both internal and
external software to subscribe to a stream of activity happening inside the switching
system. In FreeSWITCH, almost everything that happens generates (or "fires") an
event. Receiving a new phone call results in an event. Ending a call results in an
event. Committing a log entry to disk results in an event. Even speaking or going
silent can generate an event. Each event becomes part of an event stream, which is
tagged with an event type, event category, and various other details about the event.
Other pieces of software can then listen for these events and act on them in any way
they wish, such as streaming them to you via a TCP socket connection in plain text.

Events provide yet another way to extend functionality within FreeSWITCH. Events
are different from hooks or modules (which can affect the actual processing and
handling of calls in real time). Events provide an asynchronous (or non-blocking/
queued) method of keeping track of activity on the system. They are generated by
one part of the software in one place, and then are consumed by another part of the
software. In practice, this is useful in scenarios where you may have more activity
happening on the switch than you can actually process in an external program.

As an example, you may suddenly have a large spike in call volume which generates
new call events. You may also be attempting to consume these events via a web
browser, but the web browser cannot immediately keep up with the number of

new calls that happen. By using a queued event system you avoid blocking the core
switching engine (and thus, blocking the calls themselves) from being handled while
you wait for the web browser to catch up to the volume that is occurring.

In this chapter, we will review all the different aspects of the event system —from
receiving and processing events to sending events to FreeSWITCH from external
programs. We will cover the modules that enable the event system externally, the
types of events that can be generated, and the ways in which you might utilize
events. Finally, we will consider a sample scenario and code to help you get started
in creating your own programs to control FreeSWITCH.

Event system architecture

The event subsystem in FreeSWITCH was designed to maximize throughput and
prioritize events depending on their type and the system load. There are two layers
within the event system of FreeSWITCH. The first layer provides internal event
handling routines and an interface for absorbing (or "consuming") events within
FreeSWITCH itself. The second layer is provided by the modular architecture and
provides the client-facing access to those events. By keeping these two units of
functionality separate, the availability of a publish/subscribe style event system
becomes apparent.

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Within the internal event layer, FreeSWITCH provides core functionality that
handles events occurring both on a system-level and a channel-level. Events can

be published or broadcast by any part of the system, including modules. Two core
types of events generally exist —system events and logging events. System events
are generated by the core subsystem components or by modules. They include
everything from the system's internal timer heartbeat to conference subsystem
events, such as a party joining or leaving a conference room. Logger events are
generated every time a log entry is attempted to the FreeSWITCH log file. These
subsystems actually consist of three event queues, each with its own thread and
priority level. If a queue fills up, the system fails over to the next queue until the
entire event system is full. As calls or system functions progress, events are produced
and stored in memory via these backend threads while they await pickup from
internal subscribers. Once a message has been picked up by all subscribed modules
and subsystems, the event message is destroyed. This allows the event system to
scale better as events that are thrown do not cause a call to block while waiting for
event consumers to pick up queued events.

FreeSWITCH uses its modular architecture to make events available to external
software. An event handling module can subscribe to internal event messages,
format them and send them to an external program. Such modules are called,
appropriately, event handlers. There are not a lot of event handlers bundled with
FreeSWITCH, but the ones that do exist are quite rich in their abilities, mostly
because the underlying event system is so rich to start with. We will review these
modules and how to utilize them.

Event-based modules

There are a number of modules that can handle events. By far the most commonly
used module is mod_event socket. We will focus most of our attention on this
module and then briefly touch on a few of the others.

mod_event_socket

mod_event_socket is the most common module in FreeSWITCH for sending and
receiving events via third-party programs. This module provides a TCP socket which
you can connect to from external software programs. Once authenticated, you can
send and receive plain-text event information that is easy to understand and parse.

It allows for bi-directional communication for both consuming events from and
sending events to FreeSWITCH.

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

Utilizing event sockets is generally easy. First, you connect from an external
program to a preconfigured socket which is configured for mod_event_socket. You
authenticate to the system, then you begin sending event messages to FreeSWITCH.
You can also initiate a request to receive events, at which point mod_event_socket
will attach event listeners to the event system, queue event messages, and send them
to you as fast as you can process them.

The mod_event_socket module exposes an interface where you can request to
receive plain text, serialized copies of events, and generate events of your own. You
can optionally request to receive data formatted as XML. The module includes an
event filtering mechanism, allowing you to subscribe only to the event types that

are of interest to you. For example, your program may be designed only to operate
on conferences; therefore, you need only to receive conference-related events. The
module itself is ultimately responsible for capturing events from the internal event
system, and echoing them to each active TCP connection it has established. It does
the work of setting up and maintaining an individual queue for each individual TCP
connection, as each of the connections are likely to consume events at a different rate.
The queuing itself however, is part of the core operation of FreeSWITCH.

Configuring event socket settings

You enable the event socket system simply by loading mod_event_socket in

your modules.conf .xml configuration file. Once loaded, mod_event_socket is
configured by editing the event_socket . conf .xml configuration file. The following
parameters are available:

* listen-ip: The IP address to listen on, for event socket connections. External
programs would connect to this IP address. The default settings allow socket
connections only from the local host. You can specify a specific IP address or
use 0.0.0.0 to listen on all local IP addresses.

<param name="listen-ip" value="127.0.0.1"/>

* listen-port: The TCP port to listen on for inbound connections.

<param name="listen-port" value="8021"/>

* password: The authentication password that is required when connecting to
this port.

<param name="password" value="ClueCon"/>

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

* apply-inbound-acl: Access Control List (ACL) is used to control the
connections to this port. This allows you to have a fine-grained control
over who is actually able to connect to the IP:port combination specified
previously. You can either use a known access control list name (as specified
in conf/autoload_configs/acl.conf.xml) or you can use an actual IP
address range.

<param name="apply-inbound-acl" value="<acl list|cidr>"/>

Following is an example for apply-inbound-acl:

<param name="apply-inbound-acl" value="known machines"/>
<param name="apply-inbound-acl" value="10.20.0.0/16"/>

Note that multiple apply-inbound-acl parameters will not work.

Reading events

When reading events from mod_event_socket, the data will be in the format of name/
value pairs, separated by a colon. An event message is terminated with two end-of-
line (EOL) sequences. FreeSWITCH uses the traditional DOS/Windows EOL sequence
of carriage-return linefeed (CRLF) characters. Your external program should connect
to the event socket and read as many characters as it can, up until two linefeeds are
encountered. Following is an example of a single key/value pair line:

Event-Name: CHANNEL EVENT

Some key/value pairs contain multiple line breaks within the value itself. In this
scenario, FreeSWITCH still wants to present the value as a single "line" to you. To do
this, FreeSWITCH will URL encode the data so it still appears as one line. Following
is an example of a multi-line value response:

variable switch r sdp: v%3D0%0D%0A0%3DUAC%206407%206867%20IN%20IP4%20
192.168.27.72%0D%0As%3DSIP%20Media%20Capabilities%0D%0AC%3DIN%20
IP4%2061.231.8.102%0D%0At%$3D0%200%0D%0AM%3Daudio%2012916%20RTP/AVP%20
0%2018%20101%0D%0Aa%3Drtpmap%3A0%20PCMU/8000%0D%0Aa%3Drtpmap%3A18%20
G729/8000%0D%0Aa%3DfMtp%3A18%20annexb%3Dno%0D%0Aa%3Drtpmap%3A101%20
telephone-event/8000%0D%0Aa%3Dfmtp%3A101%200-15%0D%0Aa%3Dmaxptime$3A2
0%0D%0A

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

The preceding example is a URL Encoded SDP body from a call that FreeSWITCH is
processing. It originally looked as follows:

variable switch r sdp: v=0

o=UAC 6407 6867 IN IP4 192.168.27.72
s=SIP Media Capabilities

c=IN IP4 61.231.8.102

t=0 0

m=audio 12916 RTP/AVP 0 18 101
a=rtpmap:0 PCMU/8000

a=rtpmap:18 G729/8000

a=fmtp:18 annexb=no

a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

a=maxptime:20

If one of the name/value pairs is a Content - Length header, you need to read

exactly that many bytes from the socket after the initial headers and two CRLFs are
encountered. Once you have read all the bytes in the content length, the next packet
will start on the subsequent byte. When you have an event containing the content -
Length header, this is an indication that additional content is generated with the event,
which is not in the key/value form and may contain its own native formatting.

The following is an example of an event notifying of a change in a channel's state:

Content-Length: 646

Content-Type: text/event-plain

Channel-State: CS_EXECUTE

Channel-State-Number: 4

Channel-Name: sofia/default/1006%4010.0.1.250%3A5060
Unique-ID: 74775b0d-bl12-46e2-95af-c28258650blb
Call-Direction: inbound

Answer-State: ringing

Event-Name: CHANNEL STATE

Core-UUID: 2130a7dl-clf7-44cd-8fae-8ed5946f3cec
FreeSWITCH-Hostname: localhost.localdomain

FreeSWITCH-IPv4: 10.0.1.250

FreeSWITCH-IPv6: 127.0.0.1

Event-Date-Local: 2012-12-16%2022%3A33%3A18

Event-Date-GMT: Mon, %$2017%20Dec%202012%2004%3A33%3A18%20GMT
Event-Date-timestamp: 1197865998931097

Event-Calling-File: switch channel.c
Event-Calling-Function: switch channel perform set running state
Event-Calling-Line-Number: 620

Note the highlighted line shows that the Event -Name is CHANNEL _STATE. This event
relates to a change in the channel's state.

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Minimum event information

Every event you receive from FreeSWITCH via mod_event_socket will contain a
minimum amount of information, regardless of the event type. The fields provided
for any event are made available to help you understand not only what event type
to expect, but also to help you understand when the event actually happened and on
which server. In a multi-server environment, these fields are particularly useful as
the core-uuID header can be used to understand which system generated the event,
while the timestamps ensure that events can be reconstructed and handled in the
proper order.

The fields you will also receive in any event are illustrated by the following event:

Event-Name: CHANNEL EVENT

Core-UUID: 689fd828-e85b-ca43-a219-39332bc55860
Event-Date-Local: 2012-05-09%2018%3A48%3A59
Event-Date-GMT: Wed, %$2009%20May%202012%2016%3A48%3A59%20GMT
Event-Calling-File: switch channel.c
Event-Calling-Function: switch channel set caller profile
Event-Calling-Line-Number: 840

The preceding information is always included, no matter which event is being
received. That means that every event will be tagged with the following;:

* Event-Name: The event's name, which is a description of the type of event it
is

* Core-UUID: The UUID of the current instance of the FreeSWITCH core

* Event-Date-Local: The date/time of the event according to the system clock

* Event-Date-GMT: The date/time of the event in GMT (that is UTC) time

* Event-Calling-File: The C source file from which the event was fired

* Event-Calling-Function: The name of the function that fired this event

* Event-Calling-Line-Number: The exact line number of the C source file

where this event was fired

The last three headers are particularly useful for testing and troubleshooting. After
the preceding information, event-specific information will be included depending on
the type of event being sent. There is no line break or spacing between the mentioned
event key/value pairs and the event-specific key/value pairs.

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

Sending events

You can send events into the FreeSWITCH core via mod_event socket over the
same TCP connection you receive events over (the connection is bi-directional). All
commands are formatted with a command name and arguments. Some commands
require additional fields after the command itself. The formatting for additional
fields when you send events is similar to the format you use when you receive
events. You send FreeSWITCH a list of key/value pairs specifying the event name
and specific flags related to the event, and FreeSWITCH injects the message into the
event subsystem for modules or the FreeSWITCH core to handle.

An example of a basic command is as follows:
api sleep 5000

This would run the API command sleep and pass it the argument 5000, causing the
system to sleep for five seconds.

A more complicated example might be injecting messages directly into the
FreeSWITCH event queue system. You can inject events into the FreeSWITCH
system with the sendevent command, followed by associated parameters.

An example of the sendevent command is as follows:

sendevent NOTIFY

profile: internal

content-type: application/simple-message-summary
event-string: check-sync

user: 1005

host: 192.168.10.4

content-length: 5

hello

This would send a NOTIFY event with associated information. In this case, we are
requesting that a NOTIFY message be sent to user 1005@192.168.10.4 on Sofia's
internal profile. If mod_sofia is loaded and listening for these types of messages,
it will generate the appropriate SIP packet to user 1005 for the requested NOTIFY
message and include the content-type and event-string header in the SIP
message, along with the content itself, which in this case is hello.

Note that all event messages you send into FreeSWITCH must be terminated by two
CRLF character sequences.

The full list of event commands you can send to FreeSWITCH is detailed later in this
chapter in the section FreeSWITCH event system commands.

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Events from the Dialplan

mod_event_socket provides a Dialplan application named socket that allows

for outbound TCP connections to be made to an IP and port, where the other end
can stream commands for execution back to FreeSWITCH. This is similar to the
network-based fast-AGI (FAGI) of Asterisk, but it can operate in full asynchronous
mode, allowing commands to be issued and control to be returned immediately in
anticipation of additional events or responses.

When you call outbound socket, FreeSWITCH automatically puts the call in park.
You can watch calls go into the parked state by watching the event stack for the
CHANNEL PARK event.

The syntax for calling socket from the Dialplan is:

<ip>:<port> [<keywordss>]

The following are examples of how to use it in the Dialplan:

<action application="socket" data="127.0.0.1:8084"/>
<action application="socket" data="127.0.0.1:8084 async"/>
<action application="socket" data="127.0.0.1:8084 full"/>
<action application="socket"

data="127.0.0.1:8084 async full"/>

The optional keywords async and full modify the behavior as follows:

* async: The async keyword indicates that all commands will return instantly,
making it possible to monitor the socket for events while the stack of
commands are executing. If the async keyword is absent, then each event
socket command will block until it has finished.

e full: The full keyword indicates that the other end will have the full
command set for event socket. This is the same command set an inbound
event socket connection has, so you can execute API commands, get global
events, and so on. If the full keyword is absent, then the command set
and events are limited to that particular call. In other words, if full is not
specified, then the commands sent on this socket connection can affect only
the channel currently being processed. Likewise, the socket connection will
only receive events related to this particular channel.

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

mod_event_multicast

mod_event_multicast is very similar to mod_event_socket. It allows for sending
and receiving events via network multicasts to third-party programs and other
FreeSWITCH instances using plain-text event information. Other hosts can be
configured to listen for events and parse them, potentially triggering events being
fired on those hosts.

Event headers are the same as typical events except that all original headers

are prefixed with 'Orig-' and the event is of cusToM type with a subtype of
multicast::event. A Multicast-Sender header is also added. The following
is an example of a packet received outside of FreeSWITCH that was sent by mod_
event _multicast

Event-Name: CUSTOM

Core-UUID: 12938281-57ce-11de-9be6-99a22d850£40
FreeSWITCH-Hostname: SYS1

FreeSWITCH-IPv4: 192.168.1.12

FreeSWITCH-IPv6: %3A%3Al

Event-Date-Local: 2010-01-16%2018%3A15%3A10
Event-Date-GMT: Tue, %2016%20Jun%202009%2022%3A15%3A10%20GMT
Event-Date-Timestamp: 1245190510366825
Event-Calling-File: mod event multicast.c
Event-Calling-Function: mod event multicast runtime
Event-Calling-Line-Number: 313

Event-Subclass: multicast%3A%3Aevent

Multicast: yes

Multicast-Sender: 5211c5b8-ac42-11e2-8176-d16e41886£24
Orig-Event-Name: CUSTOM

Orig-Core-UUID: 8784372-5ecc-4eaa-9002-9992b7ab7c4d

You configure mod_event_multicast by editing the conf/autoload configs/
event_multicast.conf.xml configuration file. This file has four parameters to
configure. They are as follows:

* address: IP address of destination where events are to be sent.
* port: TCP port of destination where events are to be sent.

* Dbindings: Bindings specify what events you want to send to the multicast
addresses. This follows the same format as event <arg> <args, as specified
earlier in this chapter.

* ttl: You can specify the TTL (Time To Live) for packets so that packets get
dropped if not delivered in a timely manner. This is dependent on your
LAN/WAN switching equipment for following this setting. The value is the
number of "hops" to allow.

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The following is an example configuration for mod_event_multicast:

<param name="address" value="225.1.1.1"/>
<param name="port" value="4242"/>

<param name="bindings" value="PRESENCE IN CUSTOM sofia::register
CUSTOM multicast::event"/>

<param name="ttl" value="1"/>

FreeSWITCH event system commands

The following is a list of commands available for use from any event-based utility
you use to connect to FreeSWITCH. You can use these commands from ESL (the
FreeSWITCH Event Socket Library, discussed later in this chapter), via mod_
event_socket and via any other standard interface that FreeSWITCH provides

for accessing the event system. The syntax is the same for all access methods,
although there may be variations in formatting and encoding that are introduced by
individual modules.

auth <password>

When you first connect to the FreeSWITCH event system via the mod_event_socket
module, you must authenticate. The following command allows you to pass your
authentication parameters:

auth ClueCon

api

The api command issues an Application Programming Interface (API) command.
Any API command accessible via the FreeSWITCH command-line interface may be
issued. This executes the corresponding command in blocking mode, which means
that the control will not return to the open event socket and no other commands will
be allowed to execute until this one finishes.

Syntax: api <commands> <arg>
Examples:
apil originate sofia/mydomain.com/4158867999@telco.com 1000

This will initiate a call to (415) 886-7999 via telco.com, and connect it to local
extension 1000.

api sleep 5000

This would execute a sleep command for five seconds (5000 milliseconds).
[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

bgapi

The bgapi command will execute a job in the background and return a Job-UUID
tield with reference to the background job. When the command actually executes
and completes, the result will be sent as an event with a UUID to match the one
initially given.

The bgapi command accepts the same arguments for commands as the api
command explained above. The only difference is that the server returns
immediately and is available for processing more commands.

Syntax: bgapi <commands> <arg>

Examples:

bgapi originate sofia/example/300@foo.com 8600
Content-Type: command/reply
Reply-Text: +OK Job-UUID: c¢7709e9c-1517-11dc-842a-d3a3942d3d63

When the command is done executing, FreeSWITCH will fire an event with the

same UUID in the gob-uuID field. The event type of the response message will be
BACKGROUND_JOB, so you must be subscribed to receive those types of events in order
to see the response. A sample response might look like the following:

Content-Length: 625

Content-Type: text/event-plain

Job-UUID: c7709e9c-1517-11dc-842a-d3a3942d3d63
Job-Command: originate

Job-Command-Arg: sofia/default/300%20foco.com
Event-Name: BACKGROUND_JOB

Core-UUID: 42bdf272-16e6-11dd-b7a0-db4edd065621
FreeSWITCH-Hostname: ser

FreeSWITCH-IPv4: 192.168.1.104

FreeSWITCH-IPv6: 127.0.0.1

Event-Date-Local: 2008-05-02%2007%3A37%3A03
Event-Date-GMT: Thu, %$2001%20May%202008%2023%3A37%3A03%20GMT
Event-Date-timestamp: 1209685023894968
Event-Calling-File: mod event_ socket.c
Event-Calling-Function: api_exec
Event-Calling-Line-Number: 609

Content-Length: 41

+0OK 7f4ded4bc-17d7-11dd-b7a0-db4edd065621

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Note that in the response of the background job, the original job ID is listed in Job-
uu1D, while the UUID of the call that the originate command created (that is,

the result of the originate command) is in the extra content data, in this case +0x
7f4dedbc-17d7-11dd-b7a0-db4edd065621. If you are building an application that
needs to communicate asynchronously with FreeSWITCH, then be sure to use bgapi
to submit commands and subscribe to BACKGROUND JOB events. Use the Job-UUID
field value to match a bgapi command with its corresponding BACKGROUND_JOB
event. The BACKGROUND JOB event will contain the "final" results of the command
that was sent via bgapi.

event

The event command starts or stops the streaming of events. Events are streamed via
the module that is executing the event command (that is, mod_event_socket TCP
connection, mod_erlang event, and so on). You can subscribe to specific event class
types, or you can subscribe to all event types.

Subsequent calls to 'event' will override and disable previously requested event sets.
Syntax: event plain <list of event types | alls
Examples:
event plain ALL
This requests a copy of all events.
event plain CUSTOM conference::maintenance

This requests a copy of CUSTOM events, specifically the conference module's
maintenance events.

event plain CHANNEL CREATE CHANNEL DESTROY CUSTOM
conference: :maintenance sofia::register sofia::expire

This requests a copy of events that have to do with the creating or destroying of
channels, and all custom events from the conference module's maintenance system
and Sofia's register and expire system.

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

noevents

This command disables all events that were previously enabled with the event
command.

Usage:

noevents

divert_events

The divert_events command allows events which an embedded script would
expect to get in the input call back to be diverted to the event socket. This means
that a running script in FreeSWITCH that needs input can actually receive it from
an outside connecting program which sends the event responses via an event socket
connection.

An input callback can be registered in an embedded script using

setInputCallback (). (We considered an example of using set InputCallback () in
Chapter 7, Dialplan Scripting with Lua.) Setting divert_events to on can be used for
chat messages like a Gtalk channel, automatic speech recognition (ASR) events, and
others.

Syntax: divert events <on|off>

Examples:

divert_events on
divert events off

filter

Specify event types to listen for. Multiple filters on a socket connection are allowed.
Note that this command is a "filter in", not a filter out. (See the section nixevent.) Set
multiple filters to narrow the types of events you wish to see.

Syntax: filter <EventHeader> <ValueToFilters>
Examples:

The following example will subscribe to all events:

events plain all
Content-Type: command/reply
Reply-Text: +OK event listener enabled plain

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Subscribes to all events.

filter Event-Name CHANNEL EXECUTE

Content-Type: command/reply

Reply-Text: +OK filter added. [filter]=[Event-Name CHANNEL EXECUTE]
filter Event-Name HEARTBEAT

Content-Type: command/reply

Reply-Text: +OK filter added. [Event-Name]=[HEARTBEAT]

Filters will receive only events of type CHANNEL_EXECUTE and HEARBEAT.

You can filter on any of the event headers. To filter for a specific channel you would
filter by uuid using this syntax:

filter Unique-ID d29a070f-40f£f-43d8-8b9d-d369b2389dfe

Use a combination of filters to narrow down the events you wish to receive on
the socket.

filter delete

Specify the event filters that you wish to cancel. This can be used if you are
accidentally (or intentionally) filtering too much data and wish to receive additional
events.

Syntax: filter delete <EventHeader> <ValueToFilters>

Examples:

filter delete Event-Name HEARTBEAT
filter delete Unique-ID d29a070f-40ff-43d8-8b9d-d369b2389dfe

This deletes the filter which is applied for the given Unique-1D. After this, you will
not receive any events for this Unique- ID.

filter delete Unique-ID

This deletes all the filters which are applied based on the Unique-1D.

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

nixevents

This command is the opposite of the £ilter command, it prevents a particular type
of event from being received.

Usage:

nixevents <event types | ALL | CUSTOM custom event sub-class>

sendevent

Send an event into the event system (multiline input for headers).
Syntax: sendevent <event-names

This generates an event within the internal FreeSWITCH event system. Any of the
modules or system processes that have subscribed to this event type will get the event.

If you issue sendevent without specifying an event type, and include an Event -
Name header with the desired event name, you can specify any event type you want.
For example:

sendevent SOME NAME

Event-Name: CUSTOM

Event-Subclass: albs::Section-Alarm
Section: 33

Alarm-Type: PIR

State: ACTIVE

An example of the sendevent command is as follows:

sendevent NOTIFY

profile: internal

content-type: application/simple-message-summary
event-string: check-sync

user: 1005

host: 192.168.10.4

content-length: 5

hello

sendmsg <uuid>

Send a message to the call of the given UUID (call-command execute or hangup).
Use this command to control the behavior of specific in-progress calls. You need to
provide a UUID for the call.

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

In order to control calls using send message, the calls should be parked. A parked
call means the channel is sitting in a sort of limbo state, allowing you to execute
applications on the channel without interrupting other applications already
executing (Note: A parked call will not receive any media, including music-on-hold.).

You can originate a call directly to park by using the &park () syntax:

originate sofia/example/300@foo.com &park()

There are two types of core actions that can be performed on a channel: execute and
hangup. These two actions are described in detail in the following sections.

execute

The execute command is used to execute Dialplan applications. You can put an
application name and application arguments into the execute request, and loop the
application multiple times if you wish. A simple example might include playing a
.wav file.

The format is as follows:

SendMsg <uuids>

call-command: execute

execute-app-name: <one of the applications>
execute-app-arg: <application data>

loops: <number of times to invoke the command, default: 1>

As an example, the following sendMsg command would play a file named test .wav
to the channel specified in <uuids.

SendMsg <uuids>

call-command: execute
execute-app-name: playback
execute-app-arg: /tmp/test.wav

If you have data that exceeds 2048 characters needs to be passed in as an argument
via the sendMsg command, you can use a slightly different format when submitting
your commands:

SendMsg <uuids>

call-command: execute

execute-app-name: <one of the applicationss>

loops: <number of times to invoke the command, default: 1>
content-type: text/plain

content-length: <content length>

<application data>

Note the highlighted lines. You can specify the length of the text used to invoke your
application and then send in the application data in full.
[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

hangup

This command hangs up an active call.

Format:

SendMsg <uuids>
call-command: hangup
hangup-cause: <recognized hangup cause>

nomedia

You can control whether or not FreeSWITCH is in the media path real time with the
nomedia command. This command allows you to turn on or off media handling for a
specific channel.

Usage:

SendMsg <uuids>
call-command: nomedia
nomedia-uuid: <noinfo>

log <level>

This command enables log output. You can specify a logging level that you wish
to see. This allows you to receive all the log events just as if you were on the
FreeSWITCH CLL

Usage:

log <levels>

nolog

This command disables log output previously enabled by the 1og command.
Usage:

nolog

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

linger
Tells FreeSWITCH not to close the socket connect when a channel hangs up. Instead,

it keeps the socket connection open until the last event related to the channel has
been received by the socket client.

Usage:

linger

nolinger
This command disables linger functionality previously enabled by the linger
command.

Usage:

nolinger

FreeSWITCH Console application

Most people do not realize it, but if they have used the FreeSWITCH Console
application (£s_c1i), then they have already used the FreeSWITCH event socket
subsystem. £s_c1i is a C application that connects to the FreeSWITCH event socket
provided by mod_event_socket. It consumes all system events, colorizes them, and
provides an interface for sending commands back in the form of event messages. The
entire FreeSWITCH console has been completely recreated by this application. (You
can view the source code for £s_cli in 1ibs/esl/fs_cli.c under the FreeSWITCH
source directory.)

Event Socket Library

The FreeSWITCH Event Socket Library (ESL) is a set of standard APIs made
available as loadable modules for various programming languages. Generally
speaking, the APIs, when loaded into a programming language of your choice,
provide native function calls for accessing FreeSWITCH event functionality —
without the need to set up a TCP or network socket or otherwise concern yourself
with how FreeSWITCH is reached.

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

Supported libraries

FreeSWITCH utilizes SWIG (www. swig.org) to create a standardized set of APIs.
SWIG takes a defined list of variable and function calls and automatically creates
libraries that link the core FreeSWITCH code to the programming language's native
loadable module interfaces. The following languages are supported by default:

* Perl

e PHP
 LUA

* Python
* Ruby

e C
 TCL

e .NET

The following objects and methods apply to any language that can build

ESL extensions. Once you have loaded the corresponding module for your
particular programming language, you can utilize any of the standard ESL
objects, functions, and variables. The generic function calls are listed in the
following section. The FreeSWITCH ESL uses SWIG to take care of most type
conversions for you, so try using your language's native type casting or variable
structures when using these commands.

ESLObject

ESLObject is the core ESL object. You can set the 1oglevel information you wish to
receive for events that you are receiving from FreeSWITCH.

esiSetLogLevel($loglevel)

eslSetLogLevel ($loglevel) sets the log level on the server. $1oglevel is an
integer between 0 and 7. The values for $1oglevel mean the following:

* 0is EMERG
e 1is ALERT
e 2isCRIT

* 3is ERROR

* 4is WARNING
* 5is NOTICE

* 6isINFO

* 7is DEBUG

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

ESLevent object

When an event is received, you will get an ESLevent object. This object has various
helper functions available to help parse and process the event that was received.

serialize([$format])

serialize ([$format]) turns an event into colon-separated "name: value" pairs
similar to a SIP/e-mail packet.

setPriority([$number])

setPriority ([$number]) sets the priority of an event to $number in case it is fired.

getHeader($header_name)

getHeader ($header_name) gets the header with the key of $header name from an
event object.

getBody()

getBody () gets the body of an event object.

getType()

getType () gets the event type of an event object.

addBody($value)

addBody ($value) adds $value to the body of an event object. This can be called
multiple times for the same event object.

addHeader($header_name, $value)

addHeader ($header name, $value) adds a header where the key is $header_name
and value is $value to an event object. This can be called multiple times for the same
event object.

delHeader($header_name)

delHeader ($header name) deletes the header with key $header name from an
event object.

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

firstHeader()

firstHeader () sets the pointer to the first header in an event object, and returns its
key name. This must be called before nextHeader is called.

nextHeader()

nextHeader () moves the pointer to the next header in an event object, and returns
its key name. firstHeader must be called before this method to set the pointer. If
you are already on the last header when this method is called, it will return NULL.

ESLconnection object

The ESLconnection object maintains a connection to FreeSWITCH for event
handling. This object maintains connectivity to FreeSWITCH and handles sending
and receiving of messages.

new($host, $port, $password)

This command initializes a new instance of ESLconnection, and connects to the host
$host on the port $port, and supplies $password to the FreeSWITCH server.

This is intended only for an event socket in inbound mode. Use this function when
creating a connection to FreeSWITCH that is not initially bound to any particular call
or channel.

new($fd)

This command initializes a new instance of ESLconnection, using the existing file
number (file descriptor) contained in $£d.

You can use this with Event Socket outbound connections. It will fail on inbound
connections, even if passed a valid inbound socket.

socketDescriptor()

This command returns the UNIX file descriptor for the connection object if a
connection exists. This is the same file descriptor that was passed to new ($£d), when
used in outbound mode.

connected()

This command tests if the connection object is connected. IT returns 1 if connected, 0
otherwise.

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

getinfo()

When FreeSWITCH connects to an "Event Socket Outbound" handler, it sends a
CHANNEL_ DATA event as the first event after the initial connection. getInfo () returns
an ESLevent that contains this Channel Data.

getInfo () returns NULL when used on an "Event Socket Inbound" connection.

send($command)

This command sends a command to FreeSWITCH, and it does not wait for a reply.

You can call recvEvent or recvEventTimed events in a loop to receive a reply.
The reply event will have a header named content-type that has a value of api/
response Or command/reply.

To automatically wait for the reply event, use sendrecv () instead of send ().

sendRecv($command)

Internally, sendRecv ($command) calls send ($command) and then recvEvent (), and
returns an instance of ESLevent.

recvEvent () is called in a loop until it receives an event with a header named
content - type that has a value of api/response or command/reply, and then
returns it as an instance of ESLevent.

Any events received by recvEvent () that are unrelated to this transaction
are queued up, and will be returned on subsequent calls to recvEvent () in
your program.

api($command[, $arguments])

Send an API command to the FreeSWITCH server. This method blocks further
execution until the command has been executed.

api ($command, $args) is identical to sendRecv ("api $command $args").

bgapi($command[, $arguments])

Send a background API command to the FreeSWITCH server to be executed in its
own thread and is non-blocking.

bgapi ($command, $args) is identical to sendRecv ("bgapi $command $args").

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

sendEvent($send_me)

Inject an event into the FreeSWITCH event system. This allows you to send an event
into FreeSWITCH where event consumers can process and utilize the event.

recvEvent()

This returns the next event from FreeSWITCH. If no events are waiting, this call will
block until an event arrives.

If any events were queued during a call to sendrecv (), then the first one will be
returned, and removed from the queue. Otherwise, the next event will be read from
the connection.

recvEventTimed($milliseconds)

This command is similar to recvEvent (), except that it will block for (at most) the
time specified in $milliseconds.

A call to recvEventTimed (0) will return immediately. This is useful for polling
of events.

filter($header, $value)

See the event socket filter command.

events($event_type,$value)

$event_type can have the value plain, json, or xml. Any other value specified for
$event_type gets replaced with plain.

execute($appl, $arg][, $uuid])

Execute a Dialplan application, and wait for a response from the server. On socket
connections not anchored to a channel (frequently, the case with inbound event
socket connections), all three arguments are required. $uuid specifies the channel on
which to execute the application.

execute () returns an ESLevent object containing the response from the server. The
getHeader ("Reply-Text") method of this ESLevent object returns the server's
response. The server's response will contain +OK [Success Message] on success or
-ERR [Error Message] on failure.

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

executeAsync($app[, $arg][, $uuid])

This command is identical to execute; however, it does not wait for a response from
the server. (In programming parlance, executeAsync is "non-blocking".)

This works by causing the underlying call to execute () to append async: true
header in the message sent to the channel.

setAsyncExecute($value)

Force async mode on for a socket connection. This command has no effect on
outbound socket connections that are set to async in the Dialplan and inbound
socket connections, as these connections are already set to async mode.

$value should be 1 to force async mode, and 0 not to force it.

Specifically, calling setAsyncExecute (1) operates by causing future calls to
execute () toinclude the async: true header in the message sent to the channel.
Other event socket library routines are not affected by this call.

setEventLock($value)

Force sync mode on for a socket connection. This command has no effect on
outbound socket connections that are not set to async in the Dialplan, as these
connections are already set to sync mode.

$value should be 1 to force sync mode, and 0 not to force it.

Specifically, calling setEventLock (1) operates by causing future calls to execute ()
to include the event-lock: true header in the message sent to the channel. Other
event socket library routines are not affected by this call.

disconnect()

Closes the socket connection to the FreeSWITCH server.

Events in practice

Let's look at a few specific examples that demonstrate the use of events.

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

Event Socket Library example — running
a command

The following PHP example shows how you can write a simple script to process one-
line commands. Using the FreeSWITCH Event Socket Library you can send those
commands to FreeSWITCH and wait for the response.

// Include FreeSWITCH ESL Library. Note that ESL.php comes
// with the FreeSWITCH PHP ESL module.
require_once ('ESL.php') ;
if ($argc <= 1) {
printf ("ERROR: You Need To Pass A Command\nUsage:\n\t%s <commands>",
$argv[0]);
exit () ;
}
// Strip off the executable's name ($argv[0]) array shift (Sargv);
Scommand = sprintf('$s', implode(' ', sSargv));
printf ("Command to run is: %s\n", $command) ;
// Connect to FreeSWITCH
$sock = new ESLconnection('localhost', '8021', 'ClueCon') ;
// Send the Command
Sres = S$sock->api (Scommand) ;
// Print the response
printf ("$s\n", S$res->getBody());

Examples of sending events to FreeSWITCH

The following examples are useful in demonstrating what you can do with the event
socket by sending (or "injecting") events right into the FreeSWITCH event system.

Setting phone lights

Many phones support turning line lights on and off via SIP presence messages. You
can use the event socket to turn these lights on and off yourself.

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Turn lights on

You can turn a phone's lights on by sending a presence event to FreeSWITCH, which
will then send a SIP presence message to the phone. Connect to the FreeSWITCH
event socket and send the following event:

sendevent PRESENCE IN

proto: sip

from: 1000@example.com

login: 1000@example.com

event type: presence

alt event type: dialog
Presence-Call-Direction: outbound
answer-state: confirmed

Anyone who has a line button for 1000@example . com should see that line's light turn
on. Note carefully the answer-state header —confirmed key/value pair. This means
there is an active call happening (or we are simulating one) and the light should be
turned on.

Turn lights off

You can turn a phone's light off by sending a presence event to FreeSWITCH, just
like turning the lights on. After connecting to the FreeSWITCH event socket send the
following event:

sendevent PRESENCE IN

proto: sip

from: 1000@example.com

login: 1000@example.com

event type: presence
Presence-Call-Direction: outbound
alt event type: dialog
answer-state: terminated

Note carefully that the terminated state of answer-state header means there is no
call on this line (turn the light off).

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

Rebooting a phone

FreeSWITCH has the ability to send a request to SIP phones to ask them to reboot.
This is useful if you have changed a configuration entry and wish to make the phone
get the new configuration, which most phones will do automatically when booting
during their provisioning phase.

You will need to know the call-1d field for the registered phone you are interested
in rebooting. You can get this from issuing sofia status profile <profile_name>
reg command and finding the party in the list. You can then issue sofia profile
<profile _name> check_sync <call id> reboot. The phone should reboot.

You can connect to the FreeSWITCH event socket to perform both these actions. The
commands would be prefaced by api, as follows:

Search for the Call-Id of interest from within your program
apl sofia status profile <profile name> reg

Reboot the phone

apl sofia profile <profile name> check-sync <call id> reboot

Requesting phone reconfiguration

Some phones support the feature of being reconfigured. To have Snom phones
reread their settings from the settings server you can use the following:

sendevent NOTIFY

profile: internal

event-string: check-sync;reboot=false

user: 1000

host: 192.168.10.4

content-type: application/simple-message-summary

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Custom notify messages

You can send custom notify messages with arbitrary content via event firing. As an
example, if you have sent the following:

sendevent NOTIFY

profile: internal

content-type: application/simple-message-summary
event-string: check-sync

user: 1005

host: 99.157.44.194

content-length: 2

OK

A packet similar to the following one would be generated:

NOTIFY sip:1005@99.157.44.203 SIP/2.0

Via: SIP/2.0/UDP 99.157.44.194;rport;branch=z9hG4bKpH2DtBDcDtgON

Max-Forwards: 70

From: <sip:1005@99.157.44.194>;tag=Dy3c6Q1lyl5v5S

To: <sip:1005@99.157.44.194>

Call-ID: 129d1446-0063-122c-15aa-001la923fealf

CSeq: 104766492 NOTIFY

Contact: <sip:mod sofia@99.157.44.194:5060>

User-Agent: FreeSWITCH-mod sofia/1.0.trunk-9578:9586

Allow: INVITE, ACK, BYE, CANCEL, OPTIONS, PRACK, MESSAGE, SUBSCRIBE,
NOTIFY, REFER, UPDATE, REGISTER, INFO, PUBLISH

Supported: 100rel, timer, precondition, path, replaces

Event: check-sync

Allow-Events: talk, presence, dialog, call-info, sla, include-
session-description, presence.winfo, message-summary

Subscription-State: terminated;timeout

Content-Type: application/simple-message-summary

Content-Length: 2

OK

Note that aside from the SIP notify message itself being generated because of our
request, the specific fields we included in the request were passed directly into the
SIP message.

[261]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling FreeSWITCH Externally

Summary

Once you understand how rich the event system in FreeSWITCH is and have tried it
out yourself, you begin to realize that there are literally thousands of things you can
do with the FreeSWITCH application. Unlike previous topics on making phone calls
or configuring modules, this is one piece of FreeSWITCH that truly lets you and your
users interact with FreeSWITCH in real time, in any way you can possibly imagine.
The event engine is powerful and robust, and its applications are limitless.

In the following chapter, we will look at a more lightweight means of controlling
FreeSWITCH. Read on to learn about controlling FreeSWITCH with mod_httapi.

[262]

www.it-ebooks.info

http://www.it-ebooks.info/

11

Web-based Call Control
with mod_ httapi

The relatively new mod_httapi module was built to allow you to make your IVRs
and other call control applications more dynamic. With it you can generate custom
IVRs based on user input. FreeSWITCH's mod_httapi employs a simple HTTP POST
operation to send various bits of information to a web application for a RESTful way
to control FreeSWITCH call flows. In this chapter we will discuss:

* The syntax of HTTAPI markup

* HTTAPI configuration

* Basic HTTAPI operation, including the httapi Dialplan application

* A sample PHP library that makes HTTAPI applications easier to develop

As you read this chapter, keep in mind that mod_httapi employs an iterative

call handling process; that is, there are repeated HTTP POST requests to the web
server for a single phone call. This gives the application developer a great amount
of flexibility and power in designing an application. It is not necessary to generate
all the possible call flow logic in a single response. A phone call controlled by the
httapi application will perform the actions specified in the HTTP response (that is,
the HTTAPI "document") and then send another HTTP POST request to the server. In
effect, the httapi application gets instructions from the web server, processes them,
and then contacts the web server to say, "I'm done with those instructions. What's
next?". This iteration happens until the call ends or has been transferred outside the
control of the httapi Dialplan application.

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

HTTAPI syntax

HTTAPI markup is really nothing more than specifically crafted XML. In its most
basic form an HTTAPI document looks like this:

<document type="text/freeswitch-httapi">
<variables/>

<params/>

<work/>

</document >

This document is returned from the web server in response to the HTTP POST
operation that requested it.

An HTTAPI response must have a content type of text/xml. All HTTAPI responses
must include the document tag with the type attribute of text/freeswitch-httapi.
Aside from that, you may use any one, or all, of the child tags in a given response.
The child tags available are:

* params: These are the POST params (that is, "parameters") that FreeSWITCH
passes to the web server on each request. You can use the <params> tag to
tell FreeSWITCH to pass custom POST params.

* variables: These are channel variables from the channel that is calling
the httapi Dialplan application. The <variables> tag allows you to set
channel variables that can be used by the FreeSWITCH Dialplan or read
back into httapi on subsequent requests. (This is described in more detail
later in this chapter.)

* work: This is where most of the interesting stuff happens. There are many
different action tags that can be used as children of the <work> tag to make
FreeSWITCH do just about anything with the phone call being controlled:
logging a message at the console, playing a sound file, doing Automatic
Speech Recognition, collecting DTMF keypresses, and so on. The available
action tags and the attributes that correspond to each action are covered in
great detail in the next section.

Many of the following actions have the ability to add bindings to them that allow you
to have FreeSWITCH collect and pass information back to you. This is handled much
like an HTML form on a web page. Each element will have a "name" and any data
collected for that element will be passed to your web application as a POST param of
the same name. The bindings will have a regular expression (or regex) against which
to match, and an optional digit value to strip from the end of the input value.

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Work actions

The HTTAPI work actions are described in this section. In the following definitions,
DATA is the content of the tag (that is, <tag>*DATA*</tag>).

All work actions have two tags that are always available:

* action: Changes the new default target URL.
* temp-action: Changes target URL to submit the next request. Subsequent
requests will use the default URL or whatever is specified in the action tag.

The following is a list of work actions and their descriptions:

playback

playback plays a file and optionally collects input. It has the following attributes:

* file: The path to the file to play
* name: Paramhame to save result
* error-file: Error file to play on invalid input

* digit-timeout: Timeout waiting for digits after file plays (when input
bindings are present)

* input-timeout: Timeout waiting for more digits in a multi-digit input

* loops: Maximum number of times to play the file (when input bindings are
present)

* asr-engine: Automated Speech Recognition (ASR) engine to use
* asr-grammar: Automated Speech Recognition (ASR) grammar to use

* terminators: The keys that you want to use to immediately stop and
process the digits collected

Example:

<document type="text/freeswitch-httapi">
<work>

<playback action="http://newurl/index.php"
temp-action="http://newtempurl/index.php"
name="playback user_input"
error-file="ivr/ivr-error.wav"
file="ivr/ivr-welcome_to_freeswitch.wav"
asr-engine="pocketsphinx"
asr-grammar="my default asr grammar"
digit-timeout="5"

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

input-timeout="10"
loops="3"
terminators="#">
<bind strip="#">~\\d{3}</bind>
</playback>
</work>
</document >

The playback action is analogous to the playback Dialplan application.

vmname

vmname plays a voicemail name and optionally collects input. It has the following
attributes:

* id: User's name to play passed as user@edomain
* name: Param name to save result
* error-file: Error file to play on invalid input

* digit-timeout: Timeout waiting for digits after file plays (when input
bindings are present)

* input-timeout: Timeout waiting for more digits in a multi-digit input
(when input bindings are present)

* loops: Maximum number of times to play the file (when input bindings are
present)

* terminators: The keys that you want to use to immediately stop and
process the digits collected

Example:

<document type="text/freeswitch-httapi">
<work>
<vmname action="http://newurl/index.php"
temp-action="http://newtempurl/index.php"
name="vmname_user input"
error-file="ivr/ivrerror.wav"
id="1007@192.168.1.101"
digit-timeout="5"
input-timeout="10"
loops="3"
terminators="#">
<bind strip="#">~\\d{3}</bind>
</vmname>
</work>
</document >

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

record

record records a file, optionally collects input, and posts the file back to the target
URL. It has the following attributes:

file: The file path to record
name: Param name to save result (will be a multipart form file upload)
error-file: Error file to play on invalid input

beep-file: File to play as an indicator to start recording message (that is, a
voicemail beep)

digit-timeout: Timeout waiting for digits after file plays (when input
bindings are present)

limit: Upper limit of number of seconds to record

terminators: The keys that you want to use to immediately stop and
process the digits collected

Example:

<document type="text/freeswitch-httapi">

<work>

<record action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
name="playback user input"
error-file="ivr/ivr-error.wav"
beep-file="tone stream://$${beep}"
file="12345.wav"
digit-timeout="5"
limit="60"
terminators="#">
<bind strip="#">~\\d{3}</bind>

</records>

</work>

</document >

The record action is analogous to the record Dialplan application.

pause

pause waits for input for a specific amount of time. It has the following attributes:

milliseconds: Number of milliseconds to pause
name: Param hame to save result

error-file: Error file to play on invalid input

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

digit-timeout: Timeout waiting for digits after file plays (when input
bindings are present)

input-timeout: Timeout waiting for more digits in a multi-digit input

loops: Maximum number of times to play the file when input bindings
are present.

terminators: The keys that you want to use to immediately stop and
process the digits collected

Example:

<document type="text/freeswitch-httapi">

<work>
<pause action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
name="pause_ user input"
error-file="ivr/it_was_that_bug.wav"
digit-timeout="5"
milliseconds="15000"
terminators="#">
<bind strip="#">~\\d{3}</bind>
</pause>
</work>

</document >

speak

speak reads text to the caller using the TTS (Text-to-Speech) engine, optionally
collecting input. It has the following attributes:

text: The text to be spoken to the caller
name: Param name to save result
error-file: Error file to play on invalid input

digit-timeout: Timeout waiting for digits after file plays (when input
bindings are present)

input-timeout: Timeout waiting for more digits in a multi-digit input

loops: Maximum number of times to play the file when input bindings are
present

engine: Text-to-Speech (TTS) engine to use
voice: Text-to-Speech (TTS) voice to use

terminators: The keys that you want to use to immediately stop and
process the digits collected

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Example:

<document type="text/freeswitch-httapi">
<work>
<speak action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
name="speak user input"
error-file="ivr/ivr-error.wav"
digit-timeout="5"
engine="flite"
voice="glt™"
text="Hello from flite text to speech engine"
terminators="#">
<bind strip="#">~\\d{3}</bind>
</speak>
</work>
</document >

The speak action is analogous to the speak Dialplan application.

say
Use the FreeSWITCH say engine to iterate sounds to simulate a human speaker. It
has the following attributes:

* text: The text to speak, spell, pronounce, and so on

* name: Param hame in which the result will be saved

* error-file: Error file to play on invalid input

* digit-timeout: Timeout waiting for digits after file plays (when input
bindings are present)

* input-timeout: Timeout waiting for more digits in a multi-digit input

* loops: Maximum number of times to play the file when input bindings are
present

* language: Language of speech

* type: Type (say interface parameter)

* method: Method (say interface parameter)
* gender: Gender (say parameter)

* terminators: The keys that you want to use to immediately stop and
process the digits collected

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

Example:

<document type="text/freeswitch-httapi">
<work>
<say action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
name="say user input"
error-file="ivr/ivr-error.wav"
digit-timeout="5"
language="en"
type="name spelled"
method="pronounced"
text="This is what the caller will hear"
terminators="#">
<bind strip="#">~\\d{3}</bind>
</say>
</work>
</document >

The say action is analogous to the say Dialplan application. See the say entry under
Important Dialplan applications in Chapter 5, Understanding the XML Dialplan.

execute

execute executes a FreeSWITCH Dialplan application. It has the following
attributes:

* application: The Dialplan application to run
* data: Alternate source for application data

* *DATA*: The application data

Example:

<document type="text/freeswitch-httapi">
<work>
<execute action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
application="1log"
data="INFO this is an info log message"/>
</work>
</document >

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

SMS

sms sends an SMS message. It has the following attributes:

¢ to: The destination number

* *DATA*: The message data

Example:

<document type="text/freeswitch-httapi"s>
<work>
<sms action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
to="gi1p:1007@192.168.1.101">Message text here</sms>
</work>
</document >

Note: this requires mod_sms to be compiled and loaded. See
http://wiki.freeswitch.org/wiki/Mod sms for more information.

dial
dial places an outbound call or transfer. It has the following attributes:

* context: Dialplan context

* Dialplan: Dialplan type (usually XML)
* caller-id-name: Caller ID Name

* caller-id-number: Caller ID Number

* *DATA*: Number to dial or originate string
Example:

<document type="text/freeswitch-httapi">
<work>
<dial action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
caller-id-name="HTTAPI Test"
caller-id-number="19193869900"
context="default"
Dialplan="XML">
sip:2019@10.1.1.12
</dial>
</work>
</document >

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

The dial action will place a call through the Dialplan, and if a new call leg is created,
the call being controlled by HTTAPI will be connected to it.

recordCall

recordCall initiates recording of the call. The file will be posted when the call ends.
It has the following attributes:

e 1limit: Timeout in seconds.

* name: If this starts with http:// then it must specify the URL where
FreeSWITCH will puT the file. Your web server must be set up to handle a
PUT request in order to use it this way. If omitted, FreeSWITCH will record to
a temporary directory.

Example:

<document type="text/freeswitch-httapi">
<work>
<recordCall action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
name="http://localhost/newfile.wav"
limit="60"/>
</work>
</document >

The recordcall action is analogous to the record Dialplan application.

conference

conference starts a conference call. It has the following attributes:

* profile: Conference profile to use

* *DATA*: The conference name in which the call will be placed

Example:

<document type="text/freeswitch-httapi">
<work>
<conference action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
profile="my new profile"s>
My Conference
</conference>
</work>
</document >

The conference action is analogous to the conference Dialplan application.

[272]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

hangup

hangup hangs up the call. It has the following attributes:
* cause: The hangup cause to send

Example:

<document type="text/freeswitch-httapi">
<work>
<hangup action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
cause="NORMAL CLEARING"/>
</work>
</document >

The hangup action is analogous to the hangup Dialplan application.

break

break exits the httapi application and continues in the Dialplan.

<document type="text/freeswitch-httapi">
<work>
<break/>
</work>
</document >

log

log writes a log line to £s_c11i, console, and log file.

* level: The loglevel to use

* clean: If set to a true value, then the log line will not print the log prefix

Example:

<document type="text/freeswitch-httapi">
<work>
<log action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
level="info">this is a log message with a prefix</logs>
<log level="warning"
clean="1">and this is one without</log>
</work>
</document >

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

The log action is analogous to the 1og Dialplan application. Note that the 1og Dialplan
application does not have a clean option whereas the httapi log action does.

continue

continue performs no specific work actions and continues (that is, a no-op action).
This is useful if you want to request a different action URL based on the results of a
getVar or similar.

<document type="text/freeswitch-httapi">
<work>
<continue action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"/>
</work>
</document >

getVar
getVar gets a channel variable's contents (depends on permissions). It has the
following attributes:

* permanent: When set to a true value this variable gets sent on all subsequent
HTTAPI requests for this call, otherwise it is sent only on the next request

* name: The variable name to read from the channel (for example, caller id_

name)

Example:

<document type="text/freeswitch-httapi"s>
<work>
<getVariable name="caller id name"
action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
permanent="1"/>
</work>
</document >

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

voicemail

voicemail calls the voicemail Dialplan application without requiring "execute"
permissions. It has the following attributes:

check: When set to a true value this allows the caller to check messages; that
is, the mailbox user. If omitted then the caller will be prompted to leave a
voice message in the mailbox.

auth-only: Authenticate only and move on. In the event this mode is chosen,
two new variables will be set on the channel upon successful authentication:
° wvariable user pin authenticated is set to true
° wvariable user pin authenticated user is the username of the
successfully authenticated user
profile: Voicemail profile name to use (omit for "default").
domain: Domain to use (omit for global domain variable).

id: ID to use (omit to prompt for id).

Example:

<document type="text/freeswitch-httapi">

<work>

<voicemail action="http://localhost/newurl.php"
temp-action="http://localhost/newtempurl.php"
auth-only="1"
check="1"
domain="192.168.1.101"
id="1010"
profile="default"/>

</work>

</document >

The voicemail action is analogous to the voicemail Dialplan application.

mod _httapi configuration file

The mod_httapi configuration file is found in conf /autoload_configs and is
named httapi.conf.xml. It contains several settings parameters as well as a
profiles section. The example configuration contains a default HTTAPI profile
or you may create your own profiles.

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

Inside the profile tag you will notice a number of param entries. These control
things such as default settings for various work actions, permissions control
(see the following sections), and the default URL to use for HTTP requests.

You might recall the gateway-url parameter from the mod_xml_curl configuration
in Chapter 9, Moving Beyond the Static XML Configuration, and how mod_xml_curl
would use it to get its configuration from the web server. In mod_httapi, there's an
identical gateway-url parameter that FreeSWITCH can use as a base URL to which
information can be pushed and from which information can be pulled, namely a
web server. As httapi is a Dialplan application, we also have the ability to specify

a different URL if we choose. As we look at the following two examples, notice that
we don't pass any application data in the first example. This will cause it to use the
preconfigured gateway-url parameter from the configuration file. In the second
example, we give httapi a URL that's different than the one in the configuration file.

Example one:

<action application="httapi "/>

Example two:

<action application="httapi"
data="http://localhost/httapi/index2.php"/>

In the next few examples, we'll demonstrate how you can pass extra POST
parameters to your web app. Both of the following examples are functionally
identical to example two.

The following example passes the URL as a named parameter inside curly brackets
(or "braces" - the { and } characters) that FreeSWITCH interprets before sending the
request to the web server. The url parameter is special and literally means "use this
URL for the request".

<action application="httapi"
data="{url=http://localhost/httapi/index2.php}">

In our next example, we pass the url parameter as before, as well as passing a new
parameter to set the HTTP method (for instance, GET, PUT, or POST).

<action application="httapi"
data="{method=POST,url=http://localhost/httapi/index2.php}">

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Permissions

With all the control that you have in httapi, sometimes it becomes necessary to
throttle that power a little bit with permissions on things such as variables that
shouldn't be changed, or applications and APIs that you don't want to execute
inadvertently. In the example httapi.conf .xml configuration file, you will see the
<permissions> tag under the default profile. Within the permissions tag you'll
find many different permissions that you can enable, with even more fine-grained
control over certain aspects of some of them.

set-params is a permission to allow you to set or restrict the setting of the same
parameters that can be set from within the {}'s when calling httapi from the
Dialplan and have them persist throughout the lifetime of the call.

set-vars allows you to set or restrict the setting of channel variables. This
permission goes a step further than the set -params does and allows you to specify
which variables you want to allow the setting of, similar to the way access control is
handled in acl.conf.xml. Notice the default policy and the ability to allow access in
the following snippet from the example configuration file:

<permission name="set-vars" value="true"s>
<variable-list default="deny">
<!-- Variables here may be changed -->
<variable name="caller id name"/>
</variable-lists>
</permission>

The preceding code listed says, in effect, that the ability to set variables is disabled
unless they are specifically named within the variable-1list.

You may have noticed that there's no attribute on the <variable> tag that tells it
that it should allow setting of the given variable. There is a valid type attribute that
works the same as the type attribute you've seen in ACLs, but the default is to be
the opposite of the policy if the type attribute is omitted. That is to say, if your list
default is deny, then leaving the type attribute off of an entry will make it allow the
given entity. The opposite is also true:

<permission name="set-vars" value="true"s>
<variable-list default="allow">
<!-- Variables here may *not* be changed -->
<variable name="caller id name"/>
</variable-lists>
</permission>

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

Pay close attention to your allow and deny entries,

otherwise you may inadvertently allow a program

to have access to sensitive data.

As you might expect, the get -vars permission allows you the ability to read channel
variables from the call. This permission has the same fine-grained controls that the
set-vars option gives. There is a separate ACL-like control list for getting variables
as opposed to setting variables. This exists because there is the possibility that you
will want to allow some variables to be set from your application, while others
remain read-only, and some are totally inaccessible altogether.

The extended-data permission will pass much more information to your web
application than without it. The default behavior is to post a succinct overview of the
channel and allow you to get the information you need via HTTAPI commands and
subsequent callbacks. If you would rather have every set channel variable posted to
your application upon the initial request, you only need to enable this option.

If you set the execute-apps permission then you'll have the ability to call Dialplan
applications from within your httapi web application. This will allow you to use
applications with an <execute> tag as described earlier. This permission has the
same sort of ACL-like control that we have seen in a couple of the other permissions
already. You have the ability to allow access to all applications, or enable or disable
them one by one. In the following code from the example configuration, you will see
that we allow access to use applications with a default deny policy, and allow access
to the info and hangup applications:

<permission name="execute-apps" value="true">
<application-list default="deny">
<application name="info"/>
<application name="hangup"/>
</application-list>

</permission>

The expand-vars permission allows you to use variables in your applications like
you normally could from the XML Dialplan. Variables like $ {caller id_ number}
would be expanded inline. The expression ${caller id number} would give you
the number of the calling party. This also gives you a way to use API commands
from within your web applications. Consider this example:

${sofia_contact (1010@192.168.1.100) }

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

This line will execute the sofia_contact API command with the given argument
and have the result inserted in place. As you read this, you might be considering the
security implications of allowing access to every possible API command from within
your application. No worries! ACL-like control lists are available. You can allow or
disallow as many API commands or variables as you need to. Consider the following
XML snippet:

<permission name="expand-vars" value="true">
<variable-list default="deny">
<variable name="caller id name"/>
<variable name="caller id number"/>
</variable-list>
<api-list default="deny">
<api name="expr"/>
<api name="lua"/>
<apl name="sofia contact"/>
</api-list>

</permission>

The preceding code would allow the setting of the caller_id name and caller_ id_
number channel variables and no others. It would allow the execution of the expr,
lua, and sofia_contact API commands but no others. This example shows the
fine-grained control that you as the application developer and FreeSWITCH system
administrator have over HTTAPI applications running on your system.

The dial permission allows you to dial a number from your web application that
will hit the Dialplan and be routed accordingly.

The dial-set-Dialplanand dial-set-context permissions allow you to change
the Dialplan and, if applicable, the Dialplan context that is used to dial the number.

The dial-set-cid-name and dial-set-cid-number permissions will let you set the
caller ID name and caller ID number when you make the call.

The dial-full-originate permission will allow you to dial using
the full endpoint/ profile/number syntax. (for example: sofia/
internal/1010@192.168.1.100)

Enabling any one of dial-set-context, dial-set-Dialplan, dial-set-cid-name,
dial-set-cid-number, or dial-full-originate will enable the dial permission
even if it is set to false elsewhere in the configuration file.

The conference permission will allow you to call into conferences, while the
conference-set-profile permission will allow you to change the conference
profile used on each request. If conference-set-profile is enabled then conference
will be enabled even if it is set to false elsewhere in the configuration file.

[279]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

One thing to note is that any of the ACL-like control lists can be skipped by simply
closing the <permissions> tag without including the list. This will default to allow
all as if you had created the list with default="allow". The following two examples
will work exactly the same way.

Example one:

<permission name="set-vars" value="true"/>

Example two:

<permission name="set-vars" value="true">
<variable-list default="allow">
</variable-list>

</permission>

Exiting

In the event that the user hangs up, FreeSWITCH will pass the "exiting" param to let
you know that the call is over, and you can tear down any sessions that you might
have opened and complete any reporting that you might have been keeping track of.
While you can completely ignore this request and FreeSWITCH will recover just fine,
it's expecting a plain text response of "OK".

Storing data across successive requests

As you begin thinking about applications that you can write with this newly
acquired knowledge, you might be wondering about the best way to store pieces

of information from one request to the next. Obviously, you could set and get
channel variables, but that could be expensive with having to do multiple requests
per set/ get operation. If you were writing a web application that a person logged
into and used (for example, online banking systems), you could just store those bits
of information in a session for easy access later. Thankfully, httapi allows you to
do this. Each request will include a session_id POST or GET parameter. With this
session_id parameter value you should be able to initialize a session using its value
as the session identifier. This level of control is available in just about every web
programming language. An example of doing this in PHP would look similar to the
following:

if (array key exists('session id', $ REQUEST)) {

session id($ REQUEST['session id']);

}

session start();

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

After you've started the session, you will have access to a session variable or object
that can be used to store information that you can access on subsequent requests.

Some parameters are missing from some
requests

If you use the example configuration, you should get all the information from every
HTTP request. When you start editing the example configuration, you might notice
that if you turn on extended-data then you start missing out on some of the data
that should be passed to your application. The reason for this is that the default
method is a GET request. All the information that is passed with extended-data
can often exceed the maximum allowed length of CGI parameters, which results in
cutting off some of the data from the end of the request. There are a couple of ways
to fix this. The most permanent way is to set the method parameter in the httapi.
conf .xml file as shown here:

<param name="method" value="POST"/>

However, there is a way to set the method per-request if you decide that you only
want to set the method to POST on the requests that are causing issues. You can set
the method in the URL string as shown here:

<action application="httapi"
data="{url=http://localhost/httapi/index.php, method=POST}"/>

Making it easier

As you looked at the examples earlier in the chapter, you may have thought that
while there might be a lot of power in this httapi thing, you really don't want to
learn another XML format to control FreeSWITCH. Also, manually printing all of
that XML could be a huge hassle. We couldn't agree more. That's why the httapi
XML was written to be easy to implement with a helper library in the language of
your choice. A couple of such libraries exist in the freeswitch-contrib repository
for PHP and Python, already.

_ The FreeSWITCH Git server (git.freeswitch.
% org) contains several repositories, one of which is
e freeswitch-contrib. This repository (or "repo")
contains user-contributed code samples.

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

Moving forward, we'll show you a couple of examples of using the PHP version to
create some basic, but useful IVRs. With all the IDEs that exist nowadays that offer
code completion on things such as function and method names, as well as variable
names, you should find it much easier to create your custom call flows using a
library like this than you would with manually typing out the httapi XML.

The demo IVR —in HTTAPI

Before you start, you need to already have a web server set up to serve up PHP files,
with the PHP XML extensions installed. Setting up web servers is outside the scope
of this book, so if you don't have that set up already, that will be your first step. Once
that is ready you may proceed with this section.

Once your web server is set up and ready to serve the PHP files, the next thing you'll
need to do is download the PHTTAPI library from the freeswitch-contrib repo.

All the classes are written into one PHP file to make it easier to install and get going.
Obtain the file here: http://git.freeswitch.org/git/freeswitch-contrib/
plain/intralanman/PHP/phttapi/phttapi.php. Save it as a known path that can be
referenced later. You might also prefer to put this in the web directory where you'll be
writing or downloading the demo IVR. In the next section, we'll cover the highlights of
the demo-ivr.php script that are included with the code samples for this chapter.

Visit the Packt Publishing website (www . packtpub . com)
s to obtain code samples for this publication.

Save the file 1004_11_01.php as demo-ivr.php in the web documents directory on
your web server. Open it in a text editor and follow along as we discuss each line of
code and what it does.

if (array key exists('session id', $ REQUEST)) ({
session_id($_REQUEST|['session_id']);

}

session_start();

This block will start the session using the session_id like we described earlier in
this chapter.

if (array key exists('exiting', $_REQUEST)) {
session_destroy () ;
header ('Content-Type: text/plain');
print "OK";
exit () ;

[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

If we see the exiting parameter, we destroy the PHP session and tell FreeSWITCH
we understand and then we exit the script.

$demo = new phttapi();

Here, we create the httapi object. This object ($demo) allows us to perform
operations such as work actions.

Sopt = array key exists('main _menu_option', $_REQUEST) ?
$_REQUEST['main_menu_ option'] : '';

This is a simple if / then/else condition that will make sure $opt is always set, even if
the main_menu_option is empty. The main_menu_option, which we later bind to the
options, is going to be populated with the keys that were pressed by the caller.

if (preg _match('/*10[01] [0-9]%/', $opt)) {
$xfer = new phttapi dial($opt);
$xfer->context ('default');
$xfer->Dialplan('XML');
$demo->add action(S$xfer);

} else {

This block will test if the option matches the extension regex. If it is then we build a
new phttapi_dial object ($xfer), set the destination, and then add the action to the
$demo object. If it's not an extension, we drop into a switch statement that tests for
each of the single keypress options.

case 'l':
$conf = new phttapi dial('9888');
$conf->caller id name('another book reader');
Sconf->context ('default');
Sconf->Dialplan('XML');
$demo->add action($conf);
break;

If option 1 was pressed, then we create a dial option that corresponds to the dial
tag that we described earlier in this chapter. Each of the attributes on the tag have a
corresponding method in the phttapi_dial class. For example, the context method
sets the context attribute, the Dialplan method sets the Dialplan attribute, and so
on. (Option 1 will send the caller to the public FreeSWITCH conference server.)

Cases 2 through 5 are all dial objects and have the same basic logic with the
attributes assigned differently to achieve the desired results for each option.

case '6':

if (array key exists('sub menu option', $ REQUEST) && $_
REQUEST['sub_menu option'] == '*') {

[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

unset ($ SESSION['first sub play done'l]l);
$demo->add action($c = new phttapi continue());
break;

}

$demo->start variables() ;

$demo->add variable('main menu option', 6);

$demo->end variables() ;

$sub = new phttapi playback() ;

$sub->error file('ivr/ivr-that was_an_invalid entry.wav');
$sub->loops(3);

$sub->digit timeout ('15000');

if (tarray key exists('first sub play done', $ SESSION)) {
$ SESSION['first sub play done'l = TRUE;
$sub->file('phrase:demo ivr sub menu');

} else {

$sub->file('phrase:demo ivr sub menu short');

$star = new phttapi action binding('*');
$sub->add binding($star);
$sub->name('sub _menu option');

$demo->add action($sub);
break;

Option 6 is a little tricky and should probably be broken out into its own file, as it
is technically a separate IVR. We included it in a single file for you here to make it
easier to install and test. (Option 6 demonstrates an IVR submenu.)

case '9':
$continue = new phttapi continue() ;
$demo->add action($continue);
break;

With this chunk of code, we simply do a continue, which has the effect of
"repeating these options" as there are no bindings and no way to pass the
main_ menu_ option parameter.

default:
$intro = new phttapi playback() ;
$intro-serror file('ivr/ivr-that was_an invalid entry.wav');
$intro->loops(3);
$intro->digit timeout ('2000');

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

$intro->input timeout('10000');

$intro->name('main menu option');

Sintro->terminators('#');

if (tarray key exists('first play done', $ SESSION)) {
$ SESSION['first play done'] = TRUE;
$intro->file('phrase:demo_ ivr main menu') ;

} else {

$intro->file('phrase:demo ivr main menu short');

}

The default case action is to play the intro file. To simulate the way the ivr
Dialplan application does it, we'll just store something in the session to let us know
whether or not we've already played the long intro or not. (The short and long
greetings are explained in IVR menu definitions in Chapter 6, Using XML IVRs and
Phrase Macros.)

$bl = new phttapi action binding(1);

égéxt = new phttapi action binding('~10[01] [0-9]"');
$intro->add binding($bl);

éiﬁtro—>add_binding(Sbext) ;

$demo->add action($intro);

In this section the ellipses indicate that the other options were left out for brevity.
You can see here that we create a binding object for each of the digit choices and then
add each binding to the playback action. Then, just as with our previous examples,
we add the action to the $demo object. Obviously, we could have built out a single
binding with a more complete regex that would have worked for all the digits.
However, we did it this way to show that you can have multiple bindings with
single digits and/or regexes and things will still work as designed.

header ('Content-Type: text/xml');
print S$demo->output () ;

Here, we set the content type of the response to text/xml and print the output of the
object we've been building. FreeSWITCH won't understand your responses if you
use any other content-type than text/xml, so be sure to set that however it's done
in your language of choice.

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

Web-based Call Control with mod_httapi

Summary

In this chapter we learned about the new functionality unleashed with mod_httapi.
By combining a web browser with FreeSWITCH it is now possible to do call control
using the simple HTTAPI markup. Further, we also discussed a PHP library
(phttapi.php) that provides an abstraction layer to make it even easier to build
telephony applications on a web server. By using mod_httapi, enterprises can
leverage the knowledge of their web developers to assist with creating telephony
applications. Furthermore, web developers need not learn all that a FreeSWITCH
administrator needs to know. Rather, they can learn just HITAPI and still have
everything they need to build feature-rich, web-controlled telephony applications.

In the next chapter, we will focus on a very important subject for the VoIP
administrator: how to handle NAT.

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

12

Handling NAT

In the beginning of the book we talked about legacy. The more things change,

the more everybody wants it to stay the same. It's just a part of how technology
evolution works. Our cars still pretend to have speedometer needles; the graphics
on your favorite website look like an old-fashioned set of buttons and switches.

We as a society also try to live by the motto: "If it ain't broke, don't fix it!" The same
principle applies even to things that seem relatively modern, like "how we get on the
Internet". Most of us would prefer to remain blissfully unaware of the details when
it comes to how all of our fancy gizmos make it onto the Internet. Those of us who
take the plunge into the exciting world of IP Telephony will not make it very far
before coming face to face with a fearsome beast known as NAT (Network Address
Translation).

In this chapter we will discuss:

* A brief introduction to NAT, including a little history
* The four pitfalls of NAT

* The settings in FreeSWITCH that help overcome NAT
* Troubleshooting tips

www.it-ebooks.info

http://www.it-ebooks.info/

Handling NAT

A brief introduction to NAT

A good way to explain NAT to someone who could absolutely care less about
techno-babble would be with an analogy. Think of a giant office building and its
mailroom. An employee on the 10th floor sends a package to you by dropping it off
at the mailroom on the ground floor. The package is passed on to the Postal service
and it arrives at your house. The return address on the package is actually the
address of the entire office building and not the tiny office on the 10th floor. Now
say you need to return the package. You put it back through the Postal system and
it arrives at the building and the employees in the mailroom must figure out where
to deliver the package by mapping your name or office number to the location in
the building, and then they take it back up to the employee on the 10th floor. The
mailroom is like a NAT router because it proxies the mail between the actual Postal
system and the one inside the building. The offices are like the LAN addresses
because they do not have any direct access to the mail. What if the name of the office
sending the message is messed up or not present on the package and the mailroom
employees have no idea which office to send the package to when you return it? This
would be a NAT problem and the package may end up getting lost just like your
calls. Perhaps you get the package and notice it's missing the office name or number
but you know which office sent it because you were expecting this package and
then when you return it you write the office number on the label? This would be an
ANTI-NAT feature created by you.

NAT versus PAT
\ There are technical differences between Network Address Translation
Ny (NAT) and Port Address Translation (PAT). However, in the VoIP
industry (and elsewhere) the term NAT is used quite liberally. In this

chapter we follow this liberal use and make no explicit distinction
between NAT and PAT.

When it comes to networking, NAT is basically a technique where an entire LAN
or Local Area Network (meaning a network that is not directly connected to the
Internet) is connected to a device that does have access to the Internet and uses a
single public IP address (meaning an IP that is directly connected to the Internet)
to provide Internet connectivity to the entire LAN. It's used primarily to reduce the
number of public IP addresses that are necessary since we are running out of them
fast. We started out with four billion of them and they are all basically used up at
the time of writing this.

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Putting your local network behind NAT has a side effect of constantly protecting
your computers and other devices from attack since they are not visible on the
Internet. Experts do not feel this is the ultimate solution for security because there
are still ways to compromise devices behind NAT but consider it a bonus protection
when used together with other good security practices. By the way, you'll learn
more about security when it comes to VoIP in Chapter 13, VoIP Security.

Understanding the evolution of NAT

The demand for IPv4 addresses has grown over the years since the Internet

has evolved. As the demand increased, the pool of available addresses has been
depleted and there is a shortage of available IPv4 addresses. Two major attempts
to deal with this situation have become popular over time - NAT and IPv6.

NAT has become a fairly popular way to take a small subset of public IP addresses
and utilize them across a larger number of devices on a network. NAT took off in
the 1990s as a way to mitigate the IP starvation problem until IPv6 took off, but

now it's so popular that many people don't want to let go of it. Meanwhile, system
administrators are forced to embrace the looming legacy of NAT and make sure that
we can tolerate it across our software and equipment due to popularity.

A new standard for IP addresses called IPv6 can solve the IP starvation problem
by adding so many public IP addresses that we can have trillions of IP addresses
for every square inch of the surface area of the Earth. We could give a block of IPs,
the size of the entire Internet as we know it today, to every creature on the planet
and not even put a dent in the total available pool of IPv6 addresses. The IPv6
specification was published in 1998 and has been slowly gaining momentum. IPv6
still takes a back seat to the more widely used IPv4 that was adopted in the 1970s.
Most likely, even if we fully adopt IPv6, NAT still won't go away for some time.

M In case you're wondering, FreeSWITCH does support SIP and
Q RTP over IPv6. More information on the subject can be found
online at http://wiki.freeswitch.org.

For most of us in the IP Telephony world, NAT is a proverbial four-letter word (or
is at least used often in sentences with several other four-letter words). I will try to
spare you the intimate details of IP networking since you either already know about
it or you can easily find endless documentation on it. What you do need to know

is that a healthy understanding of the pitfalls of NAT can save you tons of time
otherwise spent banging your head against a wall or pulling your hair out. The goal
of this chapter will be to explain how you can successfully navigate the treacherous
waters of NAT by leveraging the ANTI-NAT features of FreeSWITCH. Good luck,
we're all rooting for you!

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling NAT

The key problem we are trying to solve with NAT and VolP is that since a device
(phone) behind NAT is not visible to the Internet, it becomes difficult to contact that
device when you want to call it. The next big problem is that some protocols, such as
SIP, may break when used over NAT. If you find this whole thing to be completely
confusing, take solace in the fact that we have actually simplified it for you. So while
it may seem to be crazy right now, the fact is that it was much worse before.

To be honest, the original stance of the FreeSWITCH developers on the NAT issue
was, "Not our problem!" In an ideal world, every device behind a NAT firewall

is well aware of its circumstances and can successfully solve its own problems.
Unfortunately, we do not live in an ideal world (of course if we were in an ideal
world, none of us would have a job because there would be no problems to solve).
So we decided, "OK fine, we'll give it a shot!" We soon learned that our users had a
myriad of devices that they wanted to use with FreeSWITCH, but these devices had
absolutely no idea how to deal with NAT. Soon, we began the monumental task of
developing techniques to allow these devices to work despite their shortcomings.
NAT is a vicious opponent and the faint-hearted do not stand a chance to survive.

The four pitfalls of NAT

There are four basic pitfalls of NAT that everyone should learn. Understand these
pitfalls and you will be well-equipped to handle the NAT scenarios that you'll no
doubt face:

* NAT can be there even when you don't know about it. The Internet does not
have to be involved.

* Any two techniques to defeat NAT used together will cancel each other out.

* Some devices use a SIP ALG (Application Layer Gateway) to defeat NAT.

* NAT correction techniques can falsely identify a situation and actually make

things even worse.

Become familiar with these pitfalls. They are referenced frequently throughout
this chapter.

[290]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Let's discuss each of these in more detail:

NAT can be there even when you don't know it. The Internet does not have
to be involved.

If you are using home Internet service from your cable or telephone
company, or even in some cases a business-class service, they may on
occasion use NAT to put all of their customers in a separate network and
then translate that network to other segments in their infrastructure. This
could happen not just once but multiple times between your device and
its destination and you have no control over it. This can cause some real
problems for people trying to use VoIP. Most VoIP protocols only have
basic provisions for dealing with NAT and often fall short. This is probably
the first problem that most home-users will encounter when trying to use
VoIP from their homes. NAT can also be used in this fashion inside a LAN
connecting multiple LANs without actually reaching the Internet. Getting
on the Internet is just the most popular use for NAT but it can be used just
as well to isolate one LAN from another. If you're asking your friendly
neighborhood VolIP guru for help and he suggests a NAT problem, don't
count it out just because you are not using the Internet or because you
don't know NAT is there.

Any two techniques to defeat NAT used together will cancel each other out.

This one is tricky and a very popular issue among VoIP users. The best way
to visualize it is to picture a game of Othello. Whenever you make a move
to block the NAT it flips everything around. If you make a counter move, it
flips it all back. This might even be happening more than you think (see the
first pitfall). As long as it's an odd number of flips and you started out with
a non-working situation you should end up okay, but you should make it a
point to do only the most minimal modifications possible to avoid confusion
and pain. If your phone supports NAT features and you enable them and
also enable them on FreeSWITCH, you may end up with one-way or no
audio. What's even more confusing is that there are so many ways to cancel
out NAT. Some require only changes on your phone behind the NAT, while
some require changes only on FreeSWITCH and some require a change on
both ends. Do you get now as to why I was wishing you luck earlier?

[291]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling NAT

* Some devices use a SIP ALG to defeat NAT.

"Arrrghh, curse you SIP ALG!". We've heard that being exclaimed countless
times over IRC or on a community conference call. ALGs mean well but
they usually mess things up real bad. They are like a combination of the first
two pitfalls because they are usually implemented inside your provider or
in your network router and enabled by default without your knowledge.
They do the worst and last resort of all the ANTI-NAT techniques that is
modifying the SIP packets as they pass through your router. This can lead
to misbehaviors and misrouted traffic that will present itself to you as a
complete mystery. Heed my words. If you find yourself uttering the phrase,
"This makes absolutely no sense", the first thing you should check is to see if
you are under the evil spell of a SIP ALG. In many cases, simply turning off
a SIP ALG resolves NAT-related issues.

* NAT correction techniques can falsely identify a situation and actually make
things even worse.

It helps to understand your surroundings at least enough to know if you
actually need to enable ANTI-NAT features. Some SIP agents make use of
the more arcane aspects of SIP and do really fancy things with the network
addresses in the packet. For those of you familiar with SIP, yes I know

it's all arcane but we need to keep things in perspective. So the problem

is, completely legitimate packets that are just doing things in a way that
resemble NAT can trigger some of the features we use to detect NAT. So you
need to be careful, especially with Cisco phones that are notorious for being
bad behind NAT and subject to false detection at the same time.

Demystifying NAT settings in
FreeSWITCH

Now that we have reviewed the common pitfalls of NAT, we can go over the
various types of NAT situations that you may encounter. There are several technical
differences between the various implementations of NAT as well, but we won't focus
on that because you'll probably fall asleep and miss the point of the chapter which

is learning how to use FreeSWITCH in a NATed environment. Basically you will
probably be in a situation where either your phone or PBX is behind NAT talking

to a SIP endpoint that is not behind NAT (or vice versa). Even worse, you might

end up in the dreaded double-NAT situation where both sides of a connection

are independently behind their own individual NAT routers at the same time.

A double-NAT scenario looks like the following diagram:

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

T
FreeSWITCH|— NAT

SIP
PHONE

Double-NAT Scenarios can be especially challenging.

Let's start with a sane, yet challenging situation where you have a phone at your
house that can't understand NAT and you want to register to your FreeSWITCH
server that is on the public Internet. The good news is that this situation is

already covered for you by the example FreeSWITCH configuration. The core of
FreeSWITCH has a feature called ACL (Access Control Lists). An ACL lets you
create lists of network addresses and control access to things depending on whether
or not a particular device is originating from an address defined by the ACL. There
is equal value in determining if an address matches or does not match a list and from
there deciding if being (or not being) on the list is a good or bad thing.

This feature makes it possible to allow certain devices to authenticate based on their
IP address or you can make a list of enemy devices so you can completely block
anyone who is on the list. In this case we will use the ACL to determine if a device
is behind NAT or not and decide what to do from there.

A device behind NAT is likely to have an IP address within a special range called
REC-1918. The easiest explanation for this is that there is a special set of I’ addresses
that never lead to the Internet because they are reserved for private use on LANs.
This is basically any IP address that starts with 192.168.x.x, 172.16.x.x through
172.31.x.x, or 10.x.x.x. We'll just call them LAN addresses from now on.

More information about RFC-1918 IP addresses can be found at
e http://en.wikipedia.org/wiki/Private network.

Because these addresses are private, there can be endless networks using the same
exact IP addresses but they can never connect to each other. Now when you connect
these networks to a NAT router, all the phones on these private networks will be
able to reach your FreeSWITCH server. The routers work by keeping track of all

the traffic coming from the LAN addresses and sending it to the Internet as if it

was coming from the public Internet IP on the router. Then, when the destination
on the Internet sends a response to the NAT router, it uses the mapping to deliver
the packet back to the sender. The source address that FreeSWITCH sees the traffic
originating from may never be the same and this makes it very difficult to send an
incoming call to the phone. This is where the ACL comes in handy.

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling NAT

FreeSWITCH has a configuration parameter for mod_sofia profiles called apply-
nat-acl. This parameter can be used more than once in the same profile and expects
the name of an ACL list. When mod_sofia gets SIP REGISTER or INVITE packets,

it looks at the contact address and checks the IP referenced in the Contact header
against the specified ACL. If there is a match, it concludes that the device must be
behind NAT. It's difficult to tell which IPs represent devices behind NAT but we
have a bit of a clue. Remember RFC-1918 or LAN addresses as we affectionately

call them? Since it's a defined range of IP addresses, we can conclude that if you

are coming from one of these addresses then you are calling from behind NAT.

Be careful! Don't forget the fourth pitfall, it's not 100 percent safe to assume every
device coming from a LAN address is behind NAT. This may not always be the case
but more times than not it is. It's just good to be wary. One case where it may not

be true is when FreeSWITCH also has a LAN address because it's behind NAT too.
Well, we have a special ACL that is created for you when FreeSWITCH starts, called
nat .auto. This special ACL already contains the entire RFC-1918 address space but
it also checks the machine's local network address and excludes that address space
so you won't get any false positives when it gets calls from phones on the same LAN
as FreeSWITCH. At the same time this ACL can detect a phone that is actually in

a remote location behind NAT. FreeSWITCH comes pre-configured with apply-
nat-acl set to nat.auto and can correct most typical device behind NAT versus
FreeSWITCH on the public Internet situations.

How do we solve the problem? Basically, when the phone registers from behind
NAT and it's detected, we save the IP and port that we saw the register originate
from and store it in the internal database alongside the unreachable LAN address
that the unsuspecting phone has provided us. When we need to contact this phone,
we consult our database and determine the external IP:port to which the message
should be sent. The SIP headers will still have the internal IP:port values that the
remote phone is expecting to see. We also tell the phone to register more frequently
so that the mapping stays open, since most NAT routers only hold a translation path
open for a short period of time. This technique is especially effective in avoiding the
other part of the fourth pitfall because we never modified the intended address at all
like the evil ALG. This means the phone will happily see everything it expects and
never be the wiser.

Here is an example of output from the FreeSWITCH CLI (Command Line Interface).
The client is a softphone behind NAT registering to an instance of FreeSWITCH
running on a public IP. Notice the Contact field is using the IP 10.0.1.85 that is a LAN
address. The status shows that UDP-NAT was detected thanks to the nat.auto ACL
list. The trick comes in at the end of the Contact. The extra parameters £s_nat and
fs_path are appended to the Contact address of the phone registration so we can
figure out how to circumnavigate the NAT. Consider the following:

[294]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

fs nat=yes
fs path=sip%3A1006%40206.22.109.244%3RA43425%3Brinstance%3Db67dbafc
9baa9465%3Btransport%3Dudp.

The £s_path field is a SIP URI (Uniform Resource Identifier) that actually will lead
back to the phone through NAT. It's URL-encoded, so special characters in the URI
do not conflict with the real contact. The decoded version of this field is:

sip:1006@206.22.109.244:43425;rinstance=b67dbafc9baad®465; transport=udp

So even though when we call the phone we will send the INVITE packet to
206.22.109.244:43425, we will keep it addressed to 10.0.1.85:5060 and that is
exactly where it will end up once the NAT translation takes place and the local router
delivers it to the phone. You can see the complete set of registration information
using the sofia status profile internal regcommand. The following is an
example:

freeswitch@myhost> sofia status profile internal reg

Registrations:

Call-ID: ZWU1MjdiZTI2MTg2MmVhNTc5NTk3MDYS5YjFmOTVKMTU.

User: 1006@myhost.freeswitch.org

Contact: "TEST" <sip:1006@10.0.1.85:10118;rinstance=b67dbafc9baad4d

65;transport=udp; fs nat=yes;fs path=sip%3A1006%40184.58.189.244%3A43425%3
Brinstance%3Dbé67dbafc9baad9465%3Btransport$3Dudp>

Agent: eyeBeam release 1104g stamp 54685

Status: Registered (UDP-NAT) (unknown) EXP(2012-12-09 10:18:07)
EXPSECS (88)

Host: myhost

IP: 206.22.109.244

Port: 43425

Auth-User: 1006

Auth-Realm: myhost .freeswitch.org

MWI-Account: 1006@myhost.freeswitch.org

Total items returned: 1

Notice that the Contact : header contains both the £s_nat and £s_path parameters.
Any SIP traffic that FreeSWITCH needs to send to user 1006 will use the URI
specified in the £s_path parameter.

[295]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling NAT

Making media flow

Now that the SIP messages are flowing properly from FreeSWITCH to the phone,
what about the media? A phone call is not very eventful if you can't even hear each
other, right? We had many problems where the calls would set up properly until the
point where NAT would strike the RTP packets that provide the actual audio of the
call, rendering the call with one-way-audio or even no-way-audio in some cases. In
light of this injustice, we created a separate feature that is always enabled and only
needs to be manually disabled in a very few set of cases inspired by the fourth pitfall.
This feature is called RTP auto-adjust. The reason we need it is because when the
phone tries to call us from behind NAT, it will naively advertise its unreachable LAN
address to FreeSWITCH as the intended destination for the audio.

We could guess that since the device is behind NAT, we should really send the audio
to the same address that we saved from the SIP message. But that is not always the
case since various types of NAT have restrictions and the port mappings sometimes
don't exist until the device behind NAT has actually sent a packet. So, in reality we
may have no idea whatsoever as to how to successfully get audio flowing to the
phone. Thanks to the auto-adjust feature, we still have a fighting chance. As long

as we give the phone a valid address where it can send us audio, we can wait until

it sends us some packets and use the originating address to determine where to

send the audio back. This is not 100 percent guaranteed, as we know, but it's very
effective in an otherwise hopeless situation. Just to be safe we only allow this magical
adjustment to happen right at the beginning of the call otherwise evildoers may try
to steal people's audio streams.

As previously mentioned, this RTP auto-adjust is pretty much enabled by default
and will turn on automatically. The way in which you can tell that it is working is
by looking for a log message like the one that follows. The message shows you the
original media destination and the new one that was detected. This log line prints at
the beginning of any call where auto-adjust has triggered.

2012-05-09 10:37:48.183742 [INFO] switch rtp.c:3607 Auto Changing port
from 10.0.1.85:23010 to 206.22.109.244:34029

The following diagram shows this more clearly:

[296]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Phone tells FreeSWITCH to
send audio to 10.0.1.85.23010...
FreeSWITCH NAT "
..but FreeSWITCH sees that Public IP:Port Local IP:Port
audio is coming from 206.27.109.244:34029 206.22.109.244:34029 10.0.1.85:23010
and auto-adjusts RTP sending from the Phone
wrong |P:Port to the correct IP:Port. Behind NAT

If you do have one of the two percent of cases where this feature triggers the
fourth pitfall and actually breaks things for you, then all you need to do is add this
parameter to your SIP profile:

<param name="disable-rtp-auto-adjust" value="true"/>

Otherwise you can also disable it on a per-call basis by setting the channel variable
rtp_auto_adjust=false at some point before the media stream has started.

Advanced options and settings

Now that we kind of understand how it works, we can look at other ways to trigger
the NAT detection. In some cases, the ACL is not enough because maybe a sneaky
ALG has messed up the packet or maybe the traffic is passing over a proxy or the
phone may think it's handling the NAT case itself but it's not doing it quite right.

We have another option that is not enabled by default because it laughs in the face
of the fourth pitfall and basically thinks almost anything slightly out of the ordinary
is NAT. This parameter is dangerous but effective in cases where you have no other
choice. The name of the parameter is aggressive-nat-detection and setting it

to true in your SIP profile will enable it for all traffic. Basically it looks at the SIP
packets and if it sees a variety of IP addresses in various headers, it uses logical
deduction to figure out which one is the source address. From there it does the
same thing that the ACL based one does, only it may not always be the source
address that it writes into the database.

<param name="aggressive-nat-detection" value="true"/>

[297]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling NAT

The following diagram illustrates such a case:

Without aggressive NAT detection the phone may
register with a contact IP address and port of
10.0.1.85:23010

FreeSWITCH NAT "
Public IP:Port is Private IP:Port is
With aggressive NAT detection FreeSWITCH will 206.22.109.244:34029 10.0.1.85:23010
“try harder” to detect if a client is behind NAT. In ‘
this case it will see that the contact IP and port Phone behind NAT

should be 206.22.109.244:34029

FreeSWITCH has a family of parameters we refer to as "No Device Left Behind"

or NDLB. These parameters denote situations where we completely mimic or
accept a flaw in a device and pretend everything is peachy or make provisions for
the device so it can still work despite the fact that we are utterly offended that we
actually had to make it work by modifying the code. One such parameter that is
particularly effective in the battle against NAT is called force-rport. The purpose
of the rport attribute in SIP is a minimal attempt to conquer NAT by appending

; rport to the request.

When FreeSWITCH sees this attribute, it will respond in kind with a rport=host:ip
attribute so the phone will realize it's behind NAT. The funny thing is, some phones
can react properly when they see the rport in the response but never request it. The
force-rport parameter causes FreeSWITCH to pretend that every device we talk to
has supplied an rport parameter so we respond as if they did and hence unlock the
functionality that would otherwise be unobtainable.

This parameter is also not enabled by default, as is the case for most NDLB options.
It also opens up vulnerability to the fourth pitfall, since it can break many devices.
You can either set it to true to always assume rport or set it to safe to only enable
it for devices where we know it's required to make things work. You can also set it to
client-only or server-only to only do it depending on the direction of the call but
with any luck you will never need those options.

B Polycom phones provide a classic use case for setting nd1b-
force-rport to true or safe because these phones do not
support rport. In most cases you will want to use safe since most

@’%%‘\ phone models do support rport. If for some reason you need to

’ use ndlb-force-rport=true then create a new SIP profile with
this parameter. Make sure that only the Polycom phones use this

o SIP profile. -

[298]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

FreeSWITCH on the client side

We have covered some of the common cases where your phone is behind NAT
talking to FreeSWITCH who isn't. Now we can move on to cases where your
local copy of FreeSWITCH is behind NAT and talking to a SIP provider or
another FreeSWITCH server on the public Internet. Luckily, we have also
dressed up the example configuration to have the best chance to work under
these NAT circumstances.

I recommend you try the unaltered example configuration on a test instance of
FreeSWITCH every so often just to see if there are any more new default behaviors
you may be missing out on. FreeSWITCH supports two client-side NAT-busting
protocols by default called NAT-PMP and UPnP. Both of these protocols use
slightly different methods but the basic gist is the same.

Both methods use a network protocol to discover your NAT router and communicate
with it, so rather than making the NAT mappings on-the-fly, it asks the router

to open a port and actually learns the details of the port mapping, so when
FreeSWITCH talks to another server it's putting the correct information in the
packets for both the SIP and the media. That is cool! Beware though, now we're
opening the door to the second, third, and fourth pitfalls.

. More information about NAT-PMP and UPnP can be found online
% athttp://en.wikipedia.org/wiki/NAT Port Mapping
s Protocol and http://en.wikipedia.org/wiki/Universal
Plug and Play, respectively.

We have now disguised the fact that we are behind NAT so the other side cannot
detect it. An ALG might be hiding in our midst and mess with the packet thinking
that it still needs to when it doesn't. The other side might be using something similar
to aggressive NAT detection and spring a double anti-NAT trap. The great thing is,
if you have some very strict NAT routers or firewalls, this feature will not only solve
the address mapping dilemma, but also unlock otherwise blocked ports held tight
by the firewall. Wait, there's more! You can also use the FSAPI interface to map and
unmap ports in the event your application has some need for such a mapping.

There are a set of parameters in the SIP profile called ext-sip-ip and ext-rtp-ip.
These parameters are used to supply information about how to behave in regards

to external IP addresses. The default configuration defines both of these parameters
with auto-nat. This is used together with the NAT router control feature we were
just talking about to just do the right thing. Some of us will not have a router that
supports NAT-PMP or UPnP, or worse, it will claim to support one or the other and
then not work at all because either it's inherently broken or due to some other deadly
combination of the pitfalls.

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling NAT

We can disable this functionality when we start FreeSWITCH by supplying the
-nonat command-line option. With this option disabled, we still have some tricks
up our sleeve. You can put an IP address in either field when you already know
what it is, for example when you have a static external IP address. Better yet, you
can set it to autonat :x.x.x.x (Where x.x.x.x should be replaced with your public IP)
so it uses your known external IP and still does a bit of dynamic magic.

Additionally, you can make use of dynamic DNS or STUN by setting it to host :my.
domain.com Or stun:stun.myhost.com (Where my.domain.com Or stun.myhost.
com are your own dynamic domain or STUN server, respectively) to do lookups as
needed. This has disadvantages because it can slow things down or stop working.
As usual we have already shipped the best options by default but you still deserve
to know about the other options. If you do control your own routers, you can

also create permanent NAT mappings that route specific traffic right to your
FreeSWITCH server or phones, and the ext-sip-ip and ext-rtp-ip can come in
very handy in that case. Also, if you have the means, you could use a VPN to route
two independent networks to each other when both are behind NAT, assuming
you can actually control the router at both ends.

Other creative uses of FreeSWITCH in a
NAT situation

FreeSWITCH can be used to conquer NAT by simply wedging it between devices.
You can configure a local FreeSWITCH and register all of your phones to it, then
register that instance of FreeSWITCH to the SIP provider on behalf of all of your
phones, carving a hole right through the NAT and keeping everyone happy. Also,
you can set up FreeSWITCH on a public IP somewhere on the Internet, then register
all of your phones or local FreeSWITCH instances from multiple locations to that
common server, so even if both locations are behind NAT, they can still make calls
between sites without a problem.

[300]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Conclusion

We wish you well on your journey into the world of NAT! Hopefully, this chapter
will prove useful when you are stuck or prepare you in advance for a battle with

an ALG .That would really be awful! If you memorize everything in this chapter
and somehow still have problems, you can always come online and ask other
FreeSWITCH community members for help. See Appendix B, The FreeSWITCH Online
Community. One final word of wisdom that can make you look smart is that if next
time you notice someone complaining that their calls fail 30 seconds after they start,
then yes, it's a NAT problem. This has been shown in the following diagram:

"
SIP
PHONE

FreeSWITCH

<—— INVITE —
p—— 100 Trying ——>
——183 Ringing——>
F—— 2000K —>
—— Media ——>
<—— Media —

<—X<—ACK —

/T\

ACK blocked by NAT device

FreeSWITCH does not receive the ACK
and therefore thinks the phone is not responding
and the call ends at about 30 seconds.

In some cases FreeSWITCH can't fix the problem and you will need to fix or replace
the NAT device.

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling NAT

Summary

That's a lot of information to swallow in one sitting, so I'll understand if you're still
confused. Can you believe this is actually the watered-down high-level explanation?
Luckily, the FreeSWITCH developers have already been down this road and have
done their best to tailor the defaults so that it just works. So, in this chapter, we've
identified the pitfalls of NAT and if even one reader is spared the searing pain
caused by a first encounter with an ALG or NAT router then our journey into
madness was not in vain.

We've also covered all of the options you have in FreeSWITCH to mitigate
NAT-related problems and now you can venture into the wilderness and make
phone calls where nobody thought phone calls were possible. Before we move
on to VoIP security, I'll leave you with a few more tips so hopefully you will get
things working perfectly even when plagued by NAT. The following are the tips
you should remember:

* Learn the four pitfalls of NAT and keep your eyes open for them

It's very easy to get distracted and fall prey to one of the pitfalls. If you
notice it's taking too long, start over and make sure that you haven't made
a mistake somewhere that is leading you astray.

* Try to make the least changes necessary to get NAT working

The more you mess with NAT settings, the easier it is to do something wrong
or make things incompatible. It's very easy to get one end working and break
the other and go back and forth for hours at the mercy of the second pitfall.

* If you have access to your own router, configure it to make conditions as
favorable as possible for NAT

The best way to make things simple is to tune your surroundings so you
have the ideal environment. Choose basic NAT settings and stick with
defaults that are usually tuned to working the best for the majority of cases.

In our next chapter we will change our focus from overcoming NAT issue and look
at ways to improve VolP security.

[302]

www.it-ebooks.info

http://www.it-ebooks.info/

15

VoIP Security

VoIP Security is an increasingly important topic for protecting your FreeSWITCH
system. Protection strategies include both proactive and defensive technologies.
Proactive technologies in FreeSWITCH include multiple types of encryption for both
SIP and RTP communication which discourages tampering or eavesdropping with
phone calls. Defensive technologies in FreeSWITCH, when combined with other
open source tools, can block suspicious or malicious transmissions from unknown
sources and prevent abuse or fraud. The importance of combining FreeSWITCH
capabilities with generally available open source VoIP tools is essential when
running in a production environment.

This chapter is divided into the following four sub-sections:

* Network level protection
* Protecting signaling
* Protecting audio

* Protecting passwords

Network level protection

Most malicious individuals utilize open network ports to break into VoIP systems.
They look for anything from weak passwords to known software bugs and attempt
to exploit those setups to control the configuration and routing of a phone system.
The general goal is to commit fraud, eavesdrop on calls, or steal information

(such as voicemail messages).

Since the network is the entry point to your system, it's important to pay close
attention to how your network is setup and take advantage of some of the
functionality within FreeSWITCH to secure your system further.

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

Separating interfaces and restricting traffic

SIP is a technology that is commonly targeted for abuse on the open Internet. In most
cases, malicious hackers will attempt to scan a range of IP addresses by sending
UDP packets on port 5060 and look for servers that respond. Once they find a server
which responds, they will attempt to brute-force common passwords or simply try to
dial out. In some cases they will also simply flood the server with fake registration or
other packets, crippling the system's ability to operate properly.

One of the most basic ways by which you can protect your FreeSWITCH system is
by separating your SIP interfaces and enforcing firewall or IPTables rules that are
different on each interface.

As you've learned in previous chapters, FreeSWITCH allows you to set up different
Sofia SIP interfaces so that you can send and receive SIP traffic via different IP
addresses and ports on the same system. What may not be obvious is that this setup
is useful for providing an extra layer of security and stability.

In terms of security, Sofia SIP profiles have default contexts for which they will route
inbound calls to. Those contexts can default to fairly restrictive Dialplans. If you
combine restrictive contexts and Dialplans with the relevant SIP profile, you are less
likely to allow someone to send fraudulent SIP traffic through your system, even if
you accidentally create a misconfiguration.

In addition, each Sofia SIP profile can have a different Access Control List (ACL). In
this way, you can put more stringent restrictions on public facing IP addresses and
looser restrictions on private IP addresses.

In terms of stability and performance, a little known fact about FreeSWITCH's design
is that each Sofia SIP interface is a separate thread. It means that by having separate
threads for each port and IP, you somewhat help in minimizing any disruptions
someone can cause to the system. While this is by no means a foolproof way of
protecting your system, any additional time you get to resolve an issue when being
attacked maliciously is helpful.

[304]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Sample setup — simple

In its most simple form, having an interface where your carriers or Internet
Telephone Service Providers (ITSPs) reach you versus an interface that your phones
use is inherently beneficial. Most malicious activity starts with someone discovering
that you are accepting and responding to SIP traffic on port 5060 via a port scan. At
this point they will try various combinations of authentication methods until they
find one that works, or otherwise abuse that port. If you restrict access on this IP and
change the port to a random number and solely allow inbound calls from carriers
using ACLs, you immediately prevent anyone from gaining access to your system,
even if they have the right username and password.

The following diagram shows how people set up their FreeSWITCH system
by default:

<7

Carrier

w Port 5060
< FreeSWITCH

Phones

In an alternate setup, you can utilize unique and unusual ports that make it harder
for hackers to find. In addition, you can use a firewall to restrict carriers to one port
while keeping the other port open for phones. This has been demonstrated in the
following diagram:

& :
Carrier !
Port 5678

Port 23000 FreeSWITCH

Phones

[305]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

To achieve the previous example where carriers communicate via port 5678
and phones communicate on port 23000, you could set up a configuration like
the following:

<profile name="incoming from pstn"s>
<settings>
<param name="auth-calls" value="true"/>
<param name="apply-inbound-acl" value="my carriers"/>
<param name="context" value="inbound call"/>
<param name="sip-port" value="5678"/>
. other settings here
</settings>
</profile>

In the previous Sofia profile, inbound calls from your carriers must come in on port
5678. When they hit this port, the my_carriers ACL will be applied, making sure
only carriers get through. If you make an error in your my_carriers ACL, no big
deal - the context the caller reaches is inbound_call and only allows for inbound
calls, not outbound. These are a fairly solid set of restrictions.

In addition, since you know only your carriers should be contacting you on port
5678, you could modify your firewall or IPTables software firewall rules to allow
traffic on this port only from your carrier's IP addresses. This is a fairly fool proof
methodology for inbound access.

You would then create the following profile for your users to utilize:

<profile name="customer access">
<settings>
<param name="auth-calls" value="true"/>
<param name="apply-inbound-acl" value="default deny list"/>
<param name="context" value="customer call"/>
<param name="sip-port" value="23000"/>
. other settings here
</settings>
</profile>

In this Sofia SIP profile, calls that your customers make would need to hit SIP port
23000. This port requires authentication and uses an ACL called default_deny list
which denies all traffic by default. This will force traffic to be authenticated, meaning
the user must provide a valid username and password to be able to utilize the system.
Once the user provides that information they will be sent to the customer_call
context where the calls will be processed.

[306]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Sample setup — complex

A more complex example indicates isolation of networks and assumes you have
network routing gear that allows you to split network access either physically
(separate network cables and routers) or via subnets or VLANSs (see next section).

In the more complex setup, you would additionally use different IP addresses which,
via your operating system, are bound to different network cards. In addition to
mapping the SIP ports to different interfaces, you would also map the event socket
and other FreeSWITCH ports to a management interface.

To do this, you might set up two Sofia SIP profiles like the following:

<profile name="incoming from pstn"s>
<settings>
<param name="auth-calls" value="true"/>
<param name="apply-inbound-acl" value="my carriers"/>
<param name="context" value="inbound call"/>
<param name="sip-port" value="5678"/>
<param name="sip-ip" value="2.3.4.5"/>
other settings here
</settings>
</profile>
<profile name="customer access">
<settings>
<param name="auth-calls" value="true"/>
<param name="apply-inbound-acl" value="default deny list"/>
<param name="context" value="customer call"/>
<param name="sip-port" value="23000"/>
<param name="sgip-ip" value="212.222.33.111"/>
other settings here
</settings>
</profile>

In the previous scenario, note carefully the sip-ip setting which differs for each
interface. One interface is 2.3.4.5 and the other is 212.222.33.111. FreeSWITCH
will attempt to utilize the network interface on the physical server which represents
the IP address that you have specified in the Sofia SIP profile. This allows you to
use different firewalls and network links for each interface powering your
FreeSWITCH system.

[307]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

In this scenario, 2.3 .4 .5 could be an internal IP address that is not routable on the
public Internet and 212.222.33.111 could be a public IP address that is routable.
The IP address 212.222.33.111 would only have to be open to carriers unless you
have users with phones outside your local network. As an alternative for allowing
softphones, you could allow your staff to VPN into your network. This would be the
most secure strategy possible.

The previous scenario can also be illustrated with the following diagram:

=
o
=
o

FreeSWITCH Carrier

In the previous diagram, the phone talks on the Network Interface Card (NIC) on
the FreeSWITCH box assigned to 2.3 .4 .5, while the carrier talks to FreeSWITCH
via the NIC on 212.222.33.111.

VLANs

VLAN:Ss are a fantastic way to isolate phones from data communications on your
local network and if done correctly, they can improve call quality while preventing
malicious activity.

VLANS are often overlooked as optional but in fact, a lot of damage can be done

by having phones on the same network as computers. It is simple to identify the IP
address of a device and log in to it when they are on the same network. From there,
it is trivial to lift the SIP username and passwords of many phones. For example,

if you log in to a Polycom phone, you can export the configuration which contains
the phone's credentials and view them in plain text. It is more challenging to do this
when a phone is on a private segment of the network.

In addition to manipulating a phone directly, VLANSs prevent tools running on
computers from sending bogus information into the voice network. This includes
scenarios as simple as unauthorized softphones that are used to hijack an extension
to send bogus BYE messages causing calls to hang up intentionally when they should
have continued.

[308]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

It's worth noting that VLANSs are available on most networks as either port-based
tagging, where a specific physical port on a switch is part of a virtual LAN or
software-based tagging, where the network interface card or operating system tags
each packet with a specific virtual LAN number in the IP header.

Setting up VLANS is beyond the scope of this book. However it should be noted that
nearly all popular desk phone models and recent network gear support VLANS,
including both software and port-based VLAN tagging.

Intrusion detection

Detecting intruders attempting to gain access to the system or who are intentionally
creating a denial-of-service or similar type of disturbance can be a challenge. While it
may seem obvious what type of traffic would be considered unusual, there are edge
cases that must be considered when setting up rules for automatic detection and
blocking of hacking attempts.

Registration monitoring

Some tools overwhelm VoIP systems by sending fake authorization attempts to them
without ever responding to the challenge request that is used in SIP. One popular
tool is often referred to as friendly scanner or SIPvicious. These types of tools keep a
system busy by handling bogus requests, overloading the system, making it difficult
to handle real requests, and so on. In addition, some suspicious behavior can be
detected from someone simply trying to make long distance or international calls
repeatedly within a short time period.

FreeSWITCH provides the ability to log a warning when an attempt is made to
utilize credentials in the system (recognized or not). Programs such as Fail2Ban

may then be used to monitor the frequency in which this logline is produced. If the
frequency hits a threshold where the traffic is suspicious, the IP address causing the
traffic can be blocked for a period of time (or permanently). It is generally considered
suspicious if a large number of authorization attempts occurs from the same IP
address within a relatively short period of time.

[309]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

To ensure that a warning is generated when FreeSWITCH receives an invalid
authentication attempt, you can modify your SIP profiles and include the
following setting;:

<param name="log-auth-failures" value="true"/>
A'log line will be generated for authentication attempts that looks as follows:

[WARNING] SIP auth challenge (REGISTER) on sofia profile 'customer_access' for
[user_rdkj7h@2600hz.com] from ip 184.106.157.100

These warnings can be counted automatically and are used to ban the IP address
184.106.157.100 in the previous example.

Fail2Ban

Fail2Ban is a third-party program that runs in the background and monitors logs.
When specific loglines such as the authentication challenge line shown previously,
are seen a certain number of times, Fail2Ban takes an action. It can be programmed
to e-mail you with an alert or automatically use IPTables to block an offending IP
address after too many invalid attempts occur within a certain period of time.

This book is not intended to be a complete guide for using Fail2Ban. However some
sample scripts are given later in the chapter.

To configure Fail2Ban you will need to create several files which instruct Fail2Ban
what to look for in your logs and what to do when it finds a match.

For filters, Fail2Ban has by default, a folder where you can place filters. These filters
contain strings which can be used to match against your logs. You can have as many
filters as you want to look for different types of traffic in your logs. When combined
with FreeSWITCH's error log which shows invalid login attempts, this can become a
useful filter mechanism.

The second file, known as the jail configuration file applies the filters to rules such
as how often an error is allowed to occur and what action to take after that threshold
has been exceeded. The jail configuration file effectively specifies how to react
(when filters match).

[310]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Filter configurations

Let's first review a £ilter configuration file. This file would typically be placed
in /etc/Fail2Ban/filter.d/ and named according to the particular filter you
are looking for. In this case we might call the file freeswitch-auth.conf. The
file would contain a filter to look for failed authentication attempts. The format is
a standard regular expression. In this case we consider a failure in FreeSWITCH
anytime someone tries to register or make a call using invalid credentials. The file
would look like the following:

freeswitch-auth.conf Fail2Ban filter configuration file
[Definition]

failregex = SIP auth failure \ ((?:[REGISTER|INVITE])\) on sofia
profile \'[*']1+\' for \[.*\] from ip <HOST>

This will watch the FreeSWITCH logs for failed REGISTER or INVITE messages.

Jail configurations

Now, combine this filter with a jail entry which blocks an IP address if too many
failed INVITES or REGISTERS are received within a certain period of time. To do this
edit /etc/Fail2Ban/jail.conf and add the following entry:

[freeswitch-auth]
enabled = true

place your custom port entries in here if needed (per the Sofia
settings above)

port = 5060
filter = freeswitch-auth
logpath = /var/log/freeswitch/freeswitch.log

maxretry = 50

findtime = 30

bantime = 6000

action = iptables-allports [name=freeswitch, protocol=all]

The earlier settings indicate the use of freeswitch-auth filter and after 50 failed
INVITE or REGISTER authorization attempts (maxretry) within a 30 second period,
blocks the IP address of the offender. If the filter is met (meaning 50 failed INVITE or
REGISTER authorization attempts occur) within a 30 second period, the IP address
will be banned in full for 6000 seconds.

[311]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

Other considerations

The Fail2Ban script must be tuned so that a large site is not accidentally kicked
offline just because they are busy. For example, if you have a rate limit Fail2Ban
entry, you would not want to set up Fail2Ban to block IP addresses if they happen
to send 50 authentication requests in a 5 second period, because if the site has 50
phones and their power goes out, when their power comes back on all phones will
attempt to register at once, resulting in them being banned. This is not the intent.

Care must be taken when setting up Fail2Ban to test for edge case scenarios like the
power outage scenario just described.

Encryption

Keeping voice communication secure is essential to any communications platform.
This is especially critical for PSTN communication routed over the Internet because
end-users often assume secure lines when speaking about confidential matters or
conducting financial transactions.

VoIP encryption is based on two concepts - encrypting signaling and encrypting
media (audio/video) communication. Like any standard encryption mechanism,
VoIP encryption utilizes standard cryptography libraries and involves key exchanges
and password negotiation to securely transmit and receive information. The two
main encryption algorithms used in VoIP (which are detailed later) are very similar
to SSL over the web and key exchange is used when connecting to remote servers via
SSH. In either exchange, the main goal is to end up with an encryption algorithm and
a common encryption secret between the two parties that only they know, which can
be used to encrypt and decrypt the actual content - the phone call.

Many people toss around the terms TLS, SSL, and SRTP without fully understanding
them. It should be understood that in order to fully protect communications it is
recommended to choose both an encryption strategy for signaling and an encryption
strategy for audio encryption.

In the following sections, we'll review each cryptography strategy in more detail.

[312]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Protecting SIP signalling

SIP signaling is important to encrypt. It contains both authentication information
your phone utilizes to make and receive calls and it includes the Caller ID Name
and Number of the caller and callee, by default in plain text. This is easy to sniff and
to spoof. Encryption makes that harder. In addition, if you are using SRTP (Secure
RTP), the SIP signaling contains the cryptography key used to keep your audio
secure. Someone who observed this key in plain-text would easily be able to defeat
the media encryption utilized.

Choosing between encryption options

There are a variety of encryption options available for FreeSWITCH. You can encrypt
the signaling (that is, the SIP messages), the media (that is, the audio in the RTP
stream), or both. Transport Layer Security (TLS) V1 encrypts everything over the
TCP connection; this has the downside that jitter or delays due to TCP can occur.
UDP is generally preferred for RTP and using TLSV1 has some additional traffic
overhead. ZRTP has the advantage that it allows for end-to-end encryption without
pre-exchanging keys or certificates but is a bit more complex to set up, especially
for some clients. Finally there is Secure Sockets Layer (SSL) v2/3; this encrypts

the SIP control channel over an encrypted TCP connection using SSL certificates,
but by default doesn't provide anything for the RTP data. The login information
and call metadata is transmitted over the control channel, so if this is what you care
about, protecting this is enough and adds no overhead to the RTP data. If you want
to encrypt the voice data itself (so the voice data cannot be understood) it can be
combined with SRTP. SRTP enables encryption of the RTP data with minor overhead
to each of the RTP UDP packets. This has the benefit that the call data are encrypted
but is still over UDP, so there should be virtually no difference with SRTP on or off
it. The encryption key used for SRTP is exchanged over the control channel (which
SSLv2/3 encrypts), which gives you best results of both the worlds. Generally
SSLv2/3 + SRTP is the most firewall friendly(has the fewest changes for existing
installations). SSLv2/3 + SRTP is also fairly easy to configure on the FreeSWITCH
server and most likely the most supported encryption method for most clients and
SIP phones, so generally they should be where someone wants to start encrypting
call data.

ZRTP is a protocol that was co-designed by the same individual
who created PGP encryption. More information can be found at
http://zfone.com.

[313]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

Encryption with SSL

SSL encryption works in the same way as negotiation via a website or any other
SSL-based service. A third-party is used to validate (sign) certificates used between
a sender and a receiver to exchange messages. These certificates are based on a
public and private hash that should in theory, be loaded on the phone itself and the
server respectively.

FreeSWITCH supports SSL v2/3 encryption of SIP packets. By default, enabling

SSL only encrypts SIP, it doesn't provide anything for the media or RTP data.
Information on how to encrypt the media is provided via this encrypted SSL control
channel to allow for RTP data to be encrypted, but only if SRTP is also enabled. The
call information and call metadata is transmitted over the protected connection so

if this is what you care about protecting, you can use SSL encryption alone with no
RTP encryption or overhead. For example, if you don't want packet sniffing of phone
numbers to work, SSLv2/3 will be sufficient for encrypting your SIP packets. If you
want to encrypt the voice data itself (so the voice data cannot be understood) it can
be combined with SRTP (refer to the earlier part of this chapter).

Setting Up SSLv2/3

In order to utilize SSL encryption you must compile FreeSWITCH with the OpenSSL
enabled library. In addition, you'll need to generate and self-sign or professionally
sign an SSL certificate. These certificates work in the exact same way as web server
SSL certificate signing works.

To compile FreeSWITCH with the OpenSSL enabled library, ensure that the
OpenSSL development libraries are installed. Then run the configure command with
the --with-openssl flag set. Note that this flag is set by default so, most likely, you
already have this library compiled in, but this provides a fail-safe way to be sure.

FreeSWITCH includes a simple script to help you generate self-signed certificates
quickly to use on the Internal SIP Profile that ships by default. If your server internal
hostname is pbx. freeswitch.org, you can run:

bin/gentls cert setup -cn pbx.freeswitch.org -alt
DNS:pbx.freeswitch.org -org freeswitch.org

bin/gentls cert create_ server -cn pbx.freeswitch.org -alt
DNS:pbx.freeswitch.org -org freeswitch.org

Some phones check the hostname for matches, so in the previous commands,
modify the hostname to match your server. You can generate multiple certificates
for each domain name you host, if necessary. These scripts generate and self-sign
certificates which are automatically placed into your conf/ss1/ folder for your
FreeSWITCH installation.

[314]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Once you've generated your certificates, you will need to tell FreeSWITCH which SIP
profiles use these certificates and enable SSL encryption support on those profiles. To
do this, set these variables in your Sofia SIP profile:

<param name="tls" value="true"/>
<param name="tls-version" value="sslv23"/>
<param name="tls-cert-dir" value="/opt/freeswitch/conf/ssl"/>

If you generated your certificates with a passphrase protecting the files themselves,
you can enter that password here:

<param name="tls-passphrase" value=""/>

You can generate different certificates for different SIP profiles if you wish, for
added security.

Once you've installed the certificates and started FreeSWITCH you should be able to
enable SSL on your endpoint device and all SIP packets should be encrypted.

Encryption with TLS

TLS is an alternative encryption mechanism for establishing secure signaling. It
is generally seen as a more mature strategy. TLS encrypts everything over a TCP
connection and maintains that connection for the duration of a dialog.

Like SSL, TLS requires the OpenSSL libraries. To compile FreeSWITCH with the
library enabled OpenSSL, ensure that the OpenSSL development libraries are
installed. Then, run the configure command with the --with-openssl flag set. Note
that this flag is set by default, so most likely you already have this library compiled
in, but this provides a fail-safe way to be sure.

To enable TLS encryption for signaling simply add the following to your Dialplan:

<param name="tls-version" value="tlsvl"/>

There are a number of gotchas and snafus possible with TLS. TLS (and its forerunner,
SSL) runs on TCP, rather than UDP. This has the downside that when FreeSWITCH
needs to make a connection toward the phone (such as delivering an inbound call to
the phone) and if the phone is sitting behind a firewall or NAT traversal mechanism,
the phone may be unreachable. You must make sure that all firewalls are configured
to work with TCP inbound traffic. Also, ensure that the time is configured properly
on your endpoint as you will get cryptic bad certificate error messages if the
time is too far off, and it will fail to handshake properly.

[315]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

As in the previous example with SSL, you must also specify the folder where your
certificates reside:

<param name="tls-cert-dir" value="/opt/freeswitch/conf/ssl"/>

If you generated your certificates with a passphrase protecting the files themselves,
you can enter that password here:

<param name="tls-passphrase" value=""/>

Once you've installed the certificates and started FreeSWITCH, you should be able to
enable TLS on your endpoint device and all SIP packets should be encrypted.

Protecting audio

Audio content (also known as the RTP stream) is perhaps the most valuable part of a
VoIP conversation. This makes it one of the most important parts for VolP security.
Encryption of the RTP stream ensures that the actual content of phone calls cannot be
listened in on, recorded, or otherwise illegally obtained. There are multiple ways to
achieve this security.

At its core, the theme for encryption algorithms requires that both sides involved in
the encryption agree on a method and an encryption algorithm for encrypting and
decrypting the data being transmitted and received. In other words, you can't use
an encryption method that isn't supported by both sides. In addition, encryption
algorithms are based on key exchanges, generally at the beginning of a call. These
key exchanges are similar to exchanging passwords by both parties, but in an
electronic and often automated way.

There are two popular forms of encryption generally used when encrypting audio
and media streams. These forms of encryption are SRTP and ZRTP.

SRTP was developed in 2004 by a small team of IP protocol and cryptographic
experts from Cisco and Ericsson. SRTP defines a method of transmitting and
receiving RTP with message authentication and integrity and replay protection

to the RTP data. It is designed to work in both unicast and multicast applications.
Because it is older and was developed by key IP telephony hardware players, it has
seen adoption in most standard equipment. SRTP is available on numerous devices
available in the world today.

[316]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

ZRTP was developed in 2006 by Phil Zimmermann (creator of PGP). It is a newer
entrant that makes key negotiation automatic, significantly simplifying the setup
and operation of ensuring secure and encrypted RTP calls. It also has the added
advantage of not being dependent on server-side encryption. Encryption can occur
between servers that are otherwise unaware of the contents of the RTP stream. This
should allow the speed of adoption to increase significantly as dependencies are
greatly reduced. However, most hardware manufacturers will need to implement
ZRTP for this protocol to be fully successful.

Both SRTP and ZRTP technologies are supported by FreeSWITCH and are described
in this chapter.

Encryption with SRTP

SRTP is an encryption mechanism that is negotiated during call setup via SIP.

Both sides of the SIP conversation must agree to support RTP encryption and
exchange keys for encryption in the SIP packets. The encryption key used for SRTP
is exchanged over the control channel. This information is then used to encrypt the
audio stream.

SRTP enables encryption of the RTP data with minor overhead to each of the RTP
UDP packets. This has the benefit that the call data are encrypted but still transmit
via UDP, minimizing latency or network traversal mechanisms that would normally
be used in an unencrypted stream.

Generally SSLv2/3 and SRTP are the most firewall friendly strategies for existing
installations since the actual work has already been done to get RTP to transmit
properly over the network. SSL and SRTP are also fairly easy to configure within
FreeSWITCH.

Note that unless you enable encryption of the SIP packets as well (discussed later)
the key for the SRTP goes in the clear. For a fully secure connection between your
phone and FreeSWITCH you should combine SIP encryption with SRTP encryption.
This prevents any snooping or man-in-the-middle attacks. If only SRTP is enabled,
only payload packets of type RTP packets will be secured.

Enabling SRTP

You can enable SRTP from your Dialplan on a per-call basis by setting the
following flag:

<action application="set" data="sip_ secure media=true"/>

[317]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

This needs to be done on both legs and on both inbound and outbound calls to be
fully effective. Of course, your provider may not support SRTP so you may only be
able to enable this on legs from FreeSWITCH to the endpoint.

You can check if media is secured properly within the Dialplan by checking for the
variable $ {sip_secure_media_confirmed} to be set. As an example, the following
block will play a bong tone when SIP media is secured:

<extension name="is_secure">
<condition field="${sip secure media confirmed}"
expression=""trues$">
<action application="sgleep" data="1000"/>
<action application="gentones" data="${bong-ring}"/>
</conditions>

</extensions>

When debugging encryption, a helpful hint is in the SIP packet as to whether the
phone is properly requesting encryption. You will see SIP packets that include the
a=crypto line if you have offered encrypted RTP in your SIP setup.

Encryption with ZRTP

ZRTP is an SRTP-based encryption algorithm that differs from SRTP by exchanging
encryption keys within the media stream, making the encryption more secure and
also transparent to servers that don't understand the protocol. This allows ZRTP to
be more flexible than SRTP and gives complete control to the endpoints to handle
all levels and requirements of encryption without the risk of a man-in-the-middle
attack. ZRTP also does not require a key exchange prior to media setup. The key
exchange occurs during the initial portion of the RTP conversation.

ZRTP establishes keys over RTP when it is in an initially insecure state using the
Diffie-Hellman key exchange protocol. The ZRTP protocol is fully laid out in RFC 6189.

Learning about cryptography
\ When first learnipg about cryptography, it i§ easy to get lost
~ in a sea of unfamiliar expressions such as Diffie-Hellman and
Q key exchange. These are part of a larger field of cryptography
known as PKI (Public Key Infrastructure). We recommend
that you consult some of the many excellent resources
— available for learning more about this field. -

[318]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

One of the major strong points of ZRTP is its ability to work via proxies. Typically
with SRTP, every point communicating via the encrypted stream needs to be aware
of the encryption protocol, and also able to encrypt and decrypt the audio stream.
This allows for snooping the encryption mid-stream if you have access to a server
where the stream traverses. With ZRTP, the opposite is true; the servers in the
middle do not need to be aware of the encryption protocol at all. They believe they
are simply passing standard RTP packets. Since the servers are unaware of what the
content of the RTP stream contains, only the two endpoints need to support ZRTP
in order for the conversation to be completely secure. The proxies don't need to
understand, or pass encryption information.

Another major advantage of ZRTP in FreeSWITCH is that it's enabled by default. The
ZRTP protocol itself inserts negotiation packets into every initial RTP conversation
and waits for a reply. If a reply is received, ZRTP encryption is automatically enabled
when the other endpoint requests it.

Because ZRTP is a less popular protocol, there has been work to not only build ZRTP-
enabled phones and soft clients but also work on a ZRTP software proxy. This proxy
allows you to simply install a ZRTP plug-in software program, known as Zfone, and
RTP traffic will be automatically encrypted, even with a software that doesn't natively
support ZRTP. Zfone runs in the background unobtrusively and pops up to notify
you when a key exchange has occurred. There is additionally an SDK available to help
developers build ZRTP-enabled software and hardware as well.

You can enable or disable ZRTP support from within your Dialplan using the
following command:

<action application="set" data="zrtp secure media=[true|false]l"/>

When ZRTP is being negotiated, you will see the following line on the FreeSWITCH
console indicating ZRTP is being offered:

[DEBUG] switch_rtp.c:928 [zrtp main]: START SESSION INITIALIZATION.

The ZRTP protocol will then begin injecting ZRTP negotiation packets into the RTP
stream. If ZRTP is successfully started for a session, you will see a series of ZRTP log
messages followed by a confirmation message that the channel is now secure, such as
the following;:

[zrtp protoco]: Enter state SECURE (DH).

[319]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

You will also see that a cache of the selected shared secret was auto-stored, which
will be used for comparison purposes on the next call:

[zrtp cache] Storing ZRTP cache to </ust/local/freeswitch/db/zrtp.dat>...

You must ensure that ZRTP was compiled when FreeSWITCH was built. If you are
unsure, you can use the flag - -enable-zrtp to force ZRTP to be enabled during
compiling, via the configure program.

Protecting passwords

Passwords are used in FreeSWITCH when phones register. When FreeSWITCH
registers to external gateways and when administrators authenticate into the
FreeSWITCH system itself. Most of these areas utilize weak plaintext passwords.

In addition, many users set their passwords to simple easy-to-guess combinations.
Worse yet, some don't ever change or set up their voicemail boxes, leaving the
defaults in place.

These passwords are very often targeted and once gained, they are exploited to
commit fraud.

There are a few mechanisms available to mitigate this.

Registration passwords

Registration credentials do not need to be passed or kept on disk in plain-text. When
defining SIP credentials in your folder, instead of including the following line:

<param name="password" value="samiam"/>
replace it with a pre-calculated a1-hash of the password, like the following;:

<param name="al-hash" value="c6440e5de50b403206989679159de89%a"/>

To generate a1-hash, get the mds of the string username : domain:password, which
is your username, domain name, and password all tied together with a colon. As an
example:

echo -n "darren:2600hz.com:passl234" | md5sum
b62dle3e27773f£d173c87e342a6aace

[320]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

You would utilize the returned hash in your folder entry. This means you did not
have to store the actual SIP registration on disk and someone who finds a way to
compromise the folder file can't see the password either.

[Q In Mac OSX, use md5 instead of md5sum.]

A full example would look something like the following;:

<user id="darren">
<params>
<param name="al-hash"
value="c6440e5de50b403206989679159de89a" />
</params>
</user>

Voicemail passwords

Voicemail boxes have a history of being compromised for a variety of reasons.
Besides simply listening to someone else's messages, voice mailboxes are often
exploited because they have call-back or forward features which can be turned on
remotely. One of the most popular strategies is to hack a voicemail box and forward
that person's calls to an expensive international destination, racking up thousands
of dollars of calls in a short amount of time. This makes voicemail password hacking
popular even today.

Protection against weak voicemail passwords is fairly simple. FreeSWITCH

stores voicemail passwords in plain-text in the database, allowing you to scan for
passwords which are weak, such as 1111 or 1234. You can also scan for people who
are using their extension number as their voicemail password which is another
popular (and insecure) password strategy.

To scan for weak passwords you'll need to write a script that looks for passwords
in the voicemail configuration database. Assuming you are using the defaults in
FreeSWITCH, the voicemail database is stored in a SQLite file in your FreeSWITCH
DB folder. This folder will be in one of various locations depending on how you
installed FreeSWITCH, but most commonly it is in /opt/freeswitch/db, /usr/
local/freeswitch/db, or /var/lib/freeswitch/db.

[321]

www.it-ebooks.info

http://www.it-ebooks.info/

VoIP Security

A sample way to check your database could be using the following simple
SQLite query:

sglite3 db/voicemail default.db "select * from voicemail prefs
where password=1234 or password=1111"

This command would use the SQLite3 linux client to look in the voicemail prefs
table for any passwords that are 1111 or 1234. It will print all information about
that mailbox on the screen, including the username and domain name of the user
who has this password. You can then take corrective action by either resetting the
password forcefully or contacting the user to advise them to change their password.

Summary

This chapter is only a brief guide to the most common VolIP security technologies
prevalent today. There are a plethora of additional resources including sites such as
www . hackingvoip.com, books on Hacking VoIP, and RTP encryption.

Taking the basic steps outlined in this chapter will provide you sufficient amount of
security against today's most common hacks, DoS attacks, and abuses. This should
allow most small to medium sized PBXes or hosted VoIP systems to operate securely
and reliably.

We now move on to the last chapter in this book where we consider a variety of
subjects that don't fit into any particular category. We will also present the reader
with other resources for learning more about SIP, VoIP, and FreeSWITCH.

[322]

www.it-ebooks.info

http://www.hackingvoip.com
http://www.it-ebooks.info/

14

Advanced Features
and Further Reading

There are two general categories of applications that can utilize FreeSWITCH — ones
that are built in C as modules that live inside FreeSWITCH, and the others that
control or manage FreeSWITCH externally. Both topics will be covered briefly in
this chapter.

FreeSWITCH contains a variety of application modules that provide functionality
and features that direct calls and make switching decisions while calls

are in progress. These modules range from Caller ID lookup modules to real-time
billing modules to multi-party conferencing modules. Modules can be used with
each other to enrich the general Dialplan application set, to supervise calls, or to
provide other functionality.

In addition, an entire community of open source FreeSWITCH applications has
grown to provide various software programs that can fully (or partially) manage
FreeSWITCH.

In this chapter, we'll presume you already have some basic understanding of how
FreeSWITCH operates. We'll review various applications or modules which enable
various features within FreeSWITCH, scratching only the surface of what they do.
We'll also briefly cover some third-party tools that you can use to expand your
utilization of FreeSWITCH further.

We will discuss the following topics in this chapter:

* Multi-user conferencing (mod_conference)

* Real-time billing (mod_nibblebill)

* Other endpoint types: Skype, GSM, and TDM
* Web GUIs and other projects

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Multi-user conferencing

FreeSWITCH includes a powerful built-in multi-user conferencing module mod_
conference, which allows the mixing of audio channels between callers in a multi-
user audio conferencing system. This system also allows for full control of all audio
mixing and caller interaction features, such as detection of touch-tones, management
of send and receive audio paths per channel, volume controls, gain controls, and
more. You can create as many conferences as you like, as long as free system
resources (that is, memory, CPU cycles, and so forth) are still left there.

Configuration

The mod_conference configuration is configured in the conference section of

the XML files. This is generally located in the autoload configs/conference.
conf . xml file. The configuration defines how conferences behave, through a series
of profiles. These profiles can be applied to conferences when they are created via
the Dialplan. The conference configuration file is divided into several sections, each
with its own set of parameters. These sections are detailed in this chapter.

Conference profiles

Conference profiles are templates of the settings that can be applied to a particular
conference. In combination with caller-controls (discussed in this section), conference
profiles allow for the complete customization of the behavior of individual
conferences. You can create template types and apply them across many conferences,
create a profile for each conference you intend to utilize, or you can simply utilize
the defaults.

Conference profiles are named profiles that contain lists of parameters within each
named profile element. The general structure is as follows:

<profiles>
<profile name="default">
<param name="paramName" value="paramValue"/>
</profiles>
</profiles>

[324]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

You can have any number of <profiles tags, and each <profiles> tag can have any
number of <param> tags. The following is a list of parameters that are available:

rate: The rate parameter specifies the default (and highest) sampling

rate that the conference bridge will utilize. All callers who call into this
channel will have their audio transcoded into this sampling rate if they are
not already transcoded at that rate. For the purposes of audio mixing, this
defines the lowest sampling rate in relation to the system — if two callers have
HD phones but call into a conference where the rate is 8000, those callers will
have their audio sampled down to the lower rate.

° Parameter syntax: <param name="rate" value="8000"/>

° Default: 8000

° Available options: 8000, 12000, 16000, 24000, 32000, and 48000
(possibly others in the future)

caller-controls: This parameter specifies the caller-controls profile to
use with this conference bridge.

° Parameter syntax: <param name="caller-controls"

value="default"/>

auto-record: This parameter specifies whether to automatically record
conferences or not. Recording will begin once two or more parties are on the
line. This option, if set, must consist of a path that can be written to for the
purposes of recording the conference.

° Parameter syntax: <param name="auto-record"

value="filename"/>
° Default: off

Sample filename: /usr/local/freeswitch/sounds/
conferences/${conference name}.wav

The sample filename listed would record conferences into a file based on the
conference bridge's name.

interval: This parameter specifies the number of milliseconds per frame
that are mixed. This setting is similar to how ptime works, but does not
need to match the actual ptime of a caller. Higher numbers require less CPU
usage, but can cause conversation quality issues, so experiment with your
setup. The default is usually oOk.

° Parameter syntax: <param name="interval" value="20"/>

° Default: 20

[325]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

energy-level: This parameter specifies the energy level (or strength/
volume of audio) required for audio to be sent to the other users. The energy
level is a threshold that dictates the level at which a person is determined

to be speaking versus the background noise received. This feature helps
remove background or ambient noise from being mixed into the conference.
If this option is too high, it can result in clipping at the beginning and end

of people's sentences. The value 0 disables the detection and will bridge all
packets even if they are only background noise.

° Parameter syntax: <param name="energy-level" value="20"/>

° Default: 20
° Set 0 to disable completely

member - flags: This parameter allows for setting member-specific flags
or parameters on individual conference members. These options include
whether to be wasteful with packet mixing (that is, send audio to individuals
even when no speaking is happening in the conference), whether or not
a specific member is the leader of a conference (and thus, the conference
should terminate when they leave), and so on. Options should be separated
by a pipe | character.

° Parameter syntax: <param name="member-£flags"
value="waste|endconf"/>

° The options for the member-flags parameter are as follows:

° deaf: Prevents the members from listening to other members in
the conference by default (this can be changed after the conference
has begun via events).

° waste: Sends audio to channels even when no conversation
is occurring.

° dist-dtmf: Distributes DTMF signals to each channel.
When someone pushes a DTMF tone, it is normally absorbed
and processed by FreeSWITCH. This option prevents that from
happening and instead echoes the DTMF tone to all
other members.

° endconf: Specifies that the conference should end when this
party exits.

conference-flags: This parameter sets the conference-wide flags that dictate
how the conference behaves. The only currently available option is to force
users to wait for the moderator before the conference begins. Moderators are
determined via the Dialplan, when bridged to the conference, by passing an
extra flag. While waiting for the moderator to join, callers hear music on hold.

° Parameter syntax: <param name="conference-flags"

value="wait-mod"/>

[326]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

tts-engine: This parameter specifies the Text-To-Speech engine to utilize
within this conference bridge.

° Parameter syntax: <param name="tts-engine"

value="cepstral"/>

tts-voice: This parameter specifies which Text-To-Speech engine voice to
utilize within this conference bridge.

° Paranuﬁersyrﬁax:<param name="tts-voice" value="david"/>
pin: This parameter specifies the PIN code (that is pass code or password)
that must be entered before user is allowed to enter the conference.

° Parameter syntax: <param name="pin" value="12345"/>
max-members: The maximum number of members allowed in the conference.
If this number is reached and an additional member tries to join, the max-
members - sound will be played and the caller will not be allowed to enter the
conference bridge.

° Parankﬁersyrﬁax:<param name="max-members" value="20"/>
caller-id-name: This parameter instructs the caller ID name to set when
making an outbound call from within this conference bridge.

° Parameter syntax: <param name="caller-id-name" value="John

Doe" />

caller-id-number: This parameter instructs the caller ID number to set
when making an outbound call from within this conference bridge.

° Parameter syntax: <param name="caller-id-number"

value="4158867900" />

comfort-noise: This parameter instructs the volume level of background
white noise to get added to the conference. Sometimes callers think they have
been dropped from a conference if the audio level remains too quiet. This
comfort noise setting provides white noise on the line so the caller knows the
line is still connected. Note that at higher audio sampling rates, this noise can
become bothersome, so you may wish to tweak this setting if you go above
8000 Hz sampling rates.

° Parameter syntax: <param name="comfort-noise"

value="1000"/>

[327]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

announce-count: The parameter will speak the total number of callers in the
conference when a new person joins, but only when the threshold specified
in this parameter is reached. It requires a valid text-to-speech engine.

° Parameter syntax: <param name="announce-count" value="5"/>

suppress-events: This parameter is for use with the FreeSWITCH event
system. This special configuration option denotes that certain types of
events should NOT be fired to other parties who may be listening for
conference events.

° Parameter syntax: <param name="suppress-events"

value="true"/>

sound-prefix: This parameter sets a default path from which to retrieve
conference audio files.

° Paranuﬁersyrﬁax:<param name="sgound-prefix" value="/usr/

local/freeswitch/sounds/"/>

The following parameters are available for setting custom sounds to play from
within the conference bridge when certain activities occur. All sounds are played to
individual caller channels and not to all parties in the conference, with the exception
of enter-sound and exit-sound, which are played to all members.

All sound files are specified with the format: <param name="sound-name"
value="file.wav"/>

The custom sounds available are as follows:

muted-sound: This sound is played when a caller has been muted.
unmuted-sound: This sound is played when a caller is no longer muted.

alone-sound: This sound is played to a caller when they are the only
remaining party.

enter-sound: This sound is played to all members when a new caller joins
the conference.

exit-sound: This sound is played to all members when a caller leaves
the conference.

kicked-sound: This sound is played when a caller is kicked out from
the conference.

locked-sound: This sound is played to callers who try to join a
locked conference.

is-locked-sound: This sound is played to conference participants when
a conference is locked.

[328]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

* is-unlocked-sound: This sound is played to conference participants when a

conference is unlocked.
* pin-sound: This prompt is used while asking for a conference pin.

* Dbad-pin-sound: This sound is played when an invalid PIN number is entered.

* perpetual-sound: A special setting — this plays a sound in a continuous loop

forever, when parties are in the conference.

* moh-sound: A file or resource handle that plays a particular music-on-hold
stream to the conference, when there is only one member in the conference.
When a second member joins, the audio will stop, unless the mod-wait
settings have been specified (as mentioned earlier).

* max-members-sound: If someone tries to join a conference that already has
the maximum amount of members, this file is played.

Caller controls

Conferences allow caller controls which specify what commands are available to
callers via touch-tones from within an active conference. Commands can include
modifying the volume of the conference, mute/un-mute, or more advanced
options such as playing menus to individuals or moving people from one
conference to another.

Caller controls are based on pre-configured templates that are applied when a
conference is first started. For example, you can specify a list of controls that are
available (such as the 0 key for mute, 1 to lower the volume, and 3 to increase the
volume) and then apply those controls to three different conferences. The settings
are applied when the conference begins and remain the same for the duration of
the conference.

Keep in mind that you cannot have one party entering the conference with one set of
controls and another party with another set of controls.

M Warning: Do not name your caller-controls as default
Q or none. Those words are reserved for the default key
mappings or no key mappings, respectively.

The following is an example of the caller-controls configuration:

<caller-controlss>
<group name="standard-keys" >
<control action="vol talk dn" digits="1"/>
<control action="vol talk zero" digits="2"/>
<control action="vol talk up" digits="3"/>

[329]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

<control action="transfer" digits="5"
data="100 XML default"/>

<control action="execute application" digits="0"
data="playback conf help.wav"/>

<control action="execute application" digits="#"
data="execute_dialplan conference-menu"/>

</group>
</caller-controls>

The preceding example shows how to create a caller-controls profile named
standard-keys. The keys 1, 2, and 3 lower, normalize, and raise the volume
respectively, the key 5 transfers the caller who pressed the key to an extension 100,
and the keys 0 and # each execute a specific Dialplan application.

Advertise

The advertise section of the conference configuration file allows you to generate
presence events (advertisements) to services and subscribed parties via the
FreeSWITCH event system. The idea is to set up permanent room names that
generate presence events just like a phone or other device would. An outside
program can then monitor whether a conference room is in use or not.

Advertise settings contains a room name in each element within advertise tags, as
shown in this example:

<advertise>
<room name="888@$${domain}" status="FreeSWITCH"/>
</advertises>

Sending and receiving XMPP events

The conference module allows for XMPP servers such as Gtalk to accept commands
via Jabber/XMPP. These commands can include things such as kicking users,
transferring calls, and likewise. The configurations are simple to use and the
examples are as follows:

<chat-permissions>
<profile name="default"s>
<user name="bob@somewhere.com" commands="all"/>
<user name="harry@somewhere.com"
commands="|deaf |dial|energy|kick
|list|lock|mute |norecord
|play|record|relate|say|saymember
| stop|transfer|undeaf |unlock
|unmute | volume in|volume out|"/>
</profile>
</chat-permissions>

[330]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Connecting callers to the conference

Callers reach conferences via the conference application, which is usually invoked
from the XML Dialplan or from the event socket via API calls. The general syntax for
connecting a caller to a conference is as follows:

<action application="conference" data="confname@profilename"/>

confname is the conference room's name, and profilename is the profile to use from
the conference configuration file (as specified earlier in this chapter).

You can optionally pass specific parameters in to the conference by appending
+flags at the end of a conference profile name, as shown in the following code:

<action application="conference"
data="confnameeprofilename+ConfPIN+flags
mute |deaf |waste|moderator}

||/>

Conferences are created on-demand when the first participant arrives in the bridge.
Upon creation, the settings from the active profile, along with the specified conference
PIN number, are recorded in memory with the conference. This is important to note
because changes you load into memory won't take effect on in-progress conferences.
For example, once a conference has been started with a PIN number, any future
participants who join the conference must specify the same PIN number.

The profile name you specify should match a named profile from your conf/
autoload configs/conference.conf.xml file.

Dynamically created conferences stay alive until the number of members drops
to zero.

The following are some examples of values to specify in the data section when
bridging a call to a conference:

Action data Description

confname Profile is "default", no flags or PIN
confname+1234 Profile is "default", PIN is 1234
confname@profilename+1234 Profile is "default", PIN is 1234, no flags

confname@profilename++flags{mute | waste} ~ Profile is "default", multiple flags, no PIN

confname+1234+flags{mute | waste} Profile is "default", multiple flags with PIN

Note that while some parameters are optional, their order is very important.

[331]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Controlling active conferences

A number of CLI and API commands exist for controlling an active conference. The
most commonly used commands involve kicking members, adjusting volumes, and
originating calls (to add people to a conference). While these items are outside the
scope of this tutorial, you should consult the FreeSWITCH wiki for more examples of
how to use CLI commands to control a conference bridge.

Further detailed information about conferencing can be
found online at http://wiki.freeswitch.org/
wiki/Mod conference.

Nibblebill

mod_nibblebill is a credit/debit module for FreeSWITCH. The module was
initially written by Darren Schreiber to fill the gaps of a professional grade trunking
system that lacked the ability to detect fraud in real-time. Its purpose is to allow real-
time debiting of credit or cash from a database while calls are in progress.

Darren had the following goals:

* Debiting credit/cash from accounts real-time
* Allowing for billing at different rates during a single call

* Allowing for warning callers when their balance is low (via audio,
in-channel)

* Allowing for disconnecting or re-routing calls when balance is depleted

* Allowing billing functions listed previously to operate with multiple
concurrent calls

Use cases

mod_nibblebill can be used in a variety of use cases, some of which are listed in the
following topics.

Billing (pre-pay)
You can allow people to put cash into an account and "nibble" away at it. In addition,

when callers have almost depleted their account, a tone or other message can play
(or another action can occur) warning the caller about this.

[332]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Upon full depletion of their account, the call can either be transferred to an extension
that allows them to recharge their balance via touch-tones or otherwise, or the call
can simply be disconnected.

Billing (post-pay)

If your database column allows it, you can make the warning and out-of-cash
thresholds a negative number. Callers can "dip into" negative numbers in the
database, and then you can bill them after their usage. In this way, you are also able
to protect yourself from abuse, since callers will still be terminated if they go below
some (negative) threshold you set (that is, they spend too much money in a month).

This is a more typical approach to billing for landlines and it allows for an account to
be automatically cut off, if excessive usage occurs without someone paying their bill.

Pay-per-call service billing

You could bill for providing a special service, either via fixed fee or via per-minute
after a certain event (for example, entering a credit card number and being approved).

Maximum credit and/or fraud prevention

You can set up a credit field that gets depleted by your users, similar to pre-pay as we
had seen earlier, but just not tell them about it. When they deplete all their credit for a
day, week, month, and so on they can't make any more calls. You can use an external
script to deposit more credit into their account at a pre-set interval. This would allow
something such as "100 minutes a day free" or other such promotions to work.

Design goals

If you plan to use mod_nibblebill please keep in mind the design goals of
the module:

* Concurrent design: This allows for supervision of multiple in-progress
channels that belong to the same account/account code.

* Scalability: This allows for different heartbeat intervals (or turning off
supervision during calls altogether). This allows the administrator to tweak
checks depending on system load.

* Flexibility: This allows warning levels and "out-of-funds" levels to be flexible
on a global and/ or per-user basis, and allows customization as to what
happens when the caller is out of funds.

[333]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

* Customizable: These settings should be customizable, including when
people are terminated or warned and what happens when they are
terminated or warned.

Installation and configuration

mod_nibblebill is part of the main FreeSWITCH source tree. It requires database/
ODBC support to function properly. The ODBC designated name must be known
to configure mod_nibblebill, just like other ODBC modules within FreeSWITCH.
Linux/Unix users must compile mod_nibblebill as it is disabled by default.

Enabling mod_nibblebill is very similar to the process we used in Chapter 2,
Building and Installation where we enabled mod_flite:

1. Openmodules.conf in the FreeSWITCH source directory and locate
the following line:

#applications/mod nibblebill
Remove the # and save the file.

2. Compile the module with the following command:
make mod nibblebill-install

3. Open the conf/autoload_configs/modules.conf .xml file and locate
the following line:

<!-- <load module="mod nibblebill"/> -->
Remove the <! -- and --> tags and save the file.

4. Modify the database connection settings in conf/autoload_configs/
nibblebill.conf .xml:

<param name="odbc-dsn" value="database:user:password"/>
5. Save the file and exit.

Now mod_nibblebill will load automatically when FreeSWITCH starts. Note that
you may also load or unload mod_nibblebill without restarting FreeSWITCH. This
allows you to make changes to your nibblebill configuration without bringing
down your entire system.

More information about Data Source Names (DSN) in
%j%‘\ FreeSWITCH can be found at http://wiki.freeswitch.
’ org/wiki/Data_source name.

[334]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Database tables

For your configuration file (from nibblebill.conf .xml which we had seen before),
make sure you have an ODBC database driver and database that is accessible and
contains the correct database, table, and column names. While a discussion of ODBC
configurations is beyond the scope of this book, a basic odbc. ini file might look
something like the following;:

[NIBBLEBILL]

Description = Nibblebill

Driver = MySQL

SERVER = localhost

PORT = 3306

DATABASE = nibblebill

OPTION = 67108864

Socket = /var/lib/mysqgl/mysql.sock
User = db_user

Password = db_pass

A sample table is shown in this example:

mysgl> use nibblebill;

mysgl> select * from accounts;

+ommmmm - e il tommmm - +
| id | name | cash |
+ommmmm - e il tommmm - +
1	Darren	41.4161
2	Joe	50
9	tester9	50
10	testerlo	44.8213
837269	My Company	50
+ommmmm - e il tommmm - +

5 rows in set (0.00 sec)

In the previous example, a table named accounts exists in the database nibblebill.
That table contains id and cash columns for use by the billing script. The id column
represents the account code for the user and cash represents the amount of money
the user currently has in his or her account. The corresponding settings in your
nibblebill.conf .xml file for the previous setup would be as follows:

<param name="db dsn" value="nibblebill:user:password"/>
<param name="db_table" value="accounts"/>

<param name="db column cash" value="cash"/>

<param name="db_column_account" value="id"/>

[335]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Creating the database table for PostgreSQL

Use the following SQL command to create a table in Postgres:

create table accounts (

id bigserial not null,

name varchar(256),

cash double precision not null
)

Creating the database table for MySQL

Use this SQL command to create a table in MySQL:

CREATE TABLE accounts

(

id int NOT NULL PRIMARY KEY,
name VARCHAR (255),

cash double precision NOT NULL
) ;

Note that your business logic may require more columns in the accounts table. The
nibblebill database will only use id, name, and cash; it will ignore all other columns.

Billing a call

There are several methods available to employ billing calls. This section discusses the
relevant methods and related options.

The nibble method (default)

The default method of billing is based on the concept of a FreeSWITCH heartbeat.
For every x seconds, we deduct y amount from an account.

To bill a call, you must set a minimum of two variables on an in-progress channel. The
variables are nibble rate and nibble account. As a neat feature, mod_nibblebill
doesn't really care where you set up the billing variables from, as long as they exist
before a hangup occurs. That means that you can set them in the Dialplan inside the
directory in Lua script anywhere that you can manipulate channel variables.

In its simplest form, you can add this to a user's directory entry:

<variable name="nibble rate" value="0.03"/>
<variable name="nibble account" value="18238"/>

[336]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Now that user will be billed $0. 03 /minute for every call made or received. The
billing will go against account 18238.

By default, a heartbeat is set at 60 seconds. This means that every 60 seconds, $0.03
is deducted from their account. Note that all mathematical calculations are done
using FreeSWITCH's internal microseconds counters. This means a few things:

1. If a heartbeat does not fire exactly on time, you will get a fraction of a cent
billed. You should make sure your underlying database can support that.
Counters count the time in-between ticks exactly. There is no "lost" billing.

Billing of minimums does not exist (yet).

You can modify the heartbeat interval globally with this parameter:

<param name="global heartbeat" value="300">

That would make the heartbeat fire every 300 seconds, or every five minutes.
Heartbeats can go as low as every second (though this is really not wise, as you're
making a database call every second, per channel).

An alternative to nibble billings

It is possible to use this module without heartbeats enabled. That means you just bill
a call at the end of the call. You set the same variables as listed previously, but you
also set one additional variable in your mod_nibblebill.conf .xml file:

<param name="global heartbeat" value="off">

By doing this, billing will only occur at the end of a call (on hang up). The time
calculation will be from when the call was answered until the end of the call. If a call
is never answered, billing is skipped.

The formula used to bill calls when this parameter is set as follows:

([time call ended] - [time call answered]) x [rate per minute] = total
charge

NOTE: This method does not allow for any
% supervision of a call in progress, meaning fraud can
T occur and people can go over their allotted limits.

[337]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Examples

The following examples demonstrate how to implement various billing scenarios.

Different rates per user

It is possible to have different rates per minute, per user. This can work in addition to
the Dialplan examples listed later, as long as you take care not to delete the variables.
Consider the following example.

Let's say you have two users—one is billed at $0. 05/minute and the other at $0.10/
minute. Neither is billed when calling a toll-free 800 number. You would set up their
directory entries as follows:

<user id="dschreiber"s>
<params>
<param name="password" value="1234"/>
</params>
<variables>
<variable name="nibble rate" value="0.05"/>
<variable name="nibble account" value="8182"/>
<variable name="default areacode" value="415"/>
<variable name="toll_allow"
value="domestic, international, local"/>
<variable name="user_ context" value="default"/>
</variables>
</user>
<user id="expensive_ guy">
<params>
<param name="password" value="1234"/>
</params>
<variables>
<variable name="nibble rate" value="0.10"/>
<variable name="nibble account" value="2932"/>
<variable name="default areacode" value="212"/>
<variable name="toll_allow"
value="domestic, international, local"/>
<variable name="user_ context" value="default"/>
</variables>
</user>

[338]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Then in your Dialplan, override the bill rates for toll-free calls only:

<extension name="tollfree800">
<condition field="destination number"
expression=""1"(800\d{7})s">
<action application="set" data="nibble rate=0"/>
<action application="bridge"
data="sofia/gateway/flowroute/s$1"/>
</conditions>
</extensions>

All non-800 number calls will be billed at the rates set on the user's account, while
toll-free calls will be billed 0 (equivalent to no billing).

Single rate for all users

On your user accounts type the following code:

<user id="mercutioviz"s>
<params>
<param name="password" value="1234"/>
</params>
<variables>
<variable name="toll allow"
value="domestic, international, local"/>
<variable name="user context" value="default"/>
<variable name="nibble account" value="1"/>
</variables>
</users>

Append the following code as well:

<user id="dschreiber">
<params>
<param name="password" value="1234"/>
</params>
<variables>
<variable name="toll allow"
value="domestic, international, local"/>
<variable name="user context" value=" default"/>
<variable name="nibble account" value="2"/>
</variables>
</user>

[339]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

In the Dialplan add an entry on the extension you want to bill as follows:

<extension name="outbound"s>
<condition field="destination number"
expression=""91" (\d{10,})s">
<action application="set" data="nibble rate=0.05"/>
<action application="set"
data="nibble account=${nibble account}"/>
<action application="bridge"
data="sofia/gateway/flowroute/1$1"/>
</conditions>
</extensions>

Different rates per area code

This example bills all calls at $0. 05/minute, except calls to area code 919 which are
$0.07/minute and calls to 800 numbers, which are free. Calls are billed to whatever

account code is set for the user in their directory profile.

In the following example, we set the rate from the Dialplan. Be careful! This
overrides any variable set on the user/directory level:

<extension name="tollfree800">
<condition field=" destination_number"
expression=""1? (800\d{7})s$">
<action application="set"
data="nibble account=${accountcode}"/>
<action application="set" data="nibble rate=0"/>
<action application="bridge"
data="sofia/gateway/flowroute/1$1"/>
</conditions>
</extension>
<extension name="special91l9rate">
<condition field="destination number"
expression=""1?(919\d{7})s$">
<action application="set"
data="nibble account=3${accountcode}"/>
<action application="set" data="nibble rate=0.07"/>
<action application="bridge"
data="sofia/gateway/flowroute/1$1"/>
</conditions>
</extension>
<extension name="domestic">
<condition field="destination number"

[340]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

expression=""1? (\d{10})s$">

<action application="set"
data="nibble account=${accountcode}"/>

<action application="set" data="nibble rate=0.05"/>

<action application="bridge"
data="sofia/gateway/flowroute/1$1"/>

</condition>
</extensions>

Different rates per service delivery

This idea encompasses the concept of changing the nibble_rate entity while the
call is in progress.

Here is an idea: a caller could call in and for the first part of their call, they might

be getting billed at $1. 00/minute, maybe to talk to tier1 support. If they need
tier2 support, the rate goes to $5.00/minute. The rate changes when the call is
transferred, simply by changing the variable. You can even set the amount to 0 while
the caller is on hold or in a FIFO queue. In the following example, extension 2000
routes to the first tier agent at extension 1000. Extension 2001 routes to the second
tier agent at extension 1001:

<extension name="tierl"s>
<condition field="destination number" expression=""2000$">

<!-- Save anything billed at a previous rate -->
<action application="nibblebill" data="flush"/>
<!-- Change the rate -->
<action application="set" data="nibble rate=1.00"/>
<!-- Transfer to Tierl rep -->
<action application="transfer" data="1000 XML default"/>
</conditions>
</extensions>

<extension name="tier2">
<condition field="destination number" expression=""2001">

<!-- Save anything billed at a previous rate -->
<action application="nibblebill" data="flush"/>
<!-- Change the rate -->
<action application="set" data="nibble rate=5.00"/>
<!-- Transfer to Tier2 rep -->
<action application="transfer" data="1001 XML default"/>
</conditions>
</extension>

[341]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Another possible use of this is to bill a caller while they're talking to support, but to
stop billing after the call when you give them a survey. Its the same concept as the
previous instant, except done as follows, where extension 2002 routes to the survey:

<extension name="survey-after-call"s>
<condition field="destination number" expression=""2002">
<!-- Handle support request here at $1.00/minute via
extension 1001 -->
<action application="set" data="nibble rate=1.00"/>
<action application="set"
data="hangup_ after bridge=false"/>
<action application="bridge"
data="sofia/internal/1001@$${domain}"/>
<action application="nibblebill" data="flush"/>
<!-- Set rate to 0, then xfer caller to survey IVR -->
<action application="set" data="nibble rate=0.00"/>
<action application="bridge"
data="sofia/internal/1002@$${domain}"/>
</conditions>
</extensions>

WARNING: There is a "catch" to this method. You should
flush the current call's billings to the database before the

call's rate changes. This is to write out any billed seconds
’ since the last query to DB with the old rate. See f£1ush in the

section Application/CLI/API commands later in this chapter.

Hang up the call when the balance is depleted

When the balance of an account drops below the setting you have specified in the
configuration for nobal_amt, the call gets transferred to an extension of your choice.
This allows you to play a message such as, "Your call has been terminated due to
insufficient funds." Since we're really just transferring the call to an extension and
suspending the billing process, you could get fancy and potentially make the user
key in their credit card number to replenish their funds.

In your conf/autoload_configs/nibblebill.conf.xml file add something
like the following:

<param name="nobal amt" value="0"/>
<param name="nobal action" value="hangup XML default"/>

[342]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

In this example, note the nobal_action parameter of "hangup XML default".
This tells mod nibblebill to transfer the call to the extension named hangup in the
default context of your XML Dialplan when the balance reaches the nobal_amt
threshold. You can then add this to your Dialplan:

<extension name="hangup">
<condition field="destination_ number"
(hangup) $">
<action application="playback" data="no more funds.wav"/>

nr

expressions=

<action application="hangup"/>
</conditions>

</extensions>

In this example, when a caller's balance reaches zero their call will be transferred to
the hangup extension. That extension will play a message stating that they are out of
funds (assuming you record a sound file named no_more_funds.wav) and the call
will disconnect.

Note carefully that the B leg currently also gets transferred to
% the same extension. In other words, the other party will also
T hear the announcement about no more funds.

Application/CLI/APlI commands

The following commands can be used from the Dialplan, CLI, or APIL The syntax
is basically the same for each, with somewhat obvious difference being that
applications are in the following format:

<action application="nibblebill" data="action [params]"/>
Whereas CLI and API commands are just as follows:

nibblebill <channel-uuids> <action> [params]

Check

Inserting the check command in your application or using it on the CLI with a UUID
returns the balance that has been billed so far. This does not include any increments
that are not written to the database yet.

<action application="nibblebill" data="check"/>

[343]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Flush

Insert the following code in your Dialplan:

<action application="nibblebill" data="flush"/>

The preceding code will immediately write any pending billings to the database.
Billing will continue, but everything that needed to be billed up to this point in time
will be calculated and recorded. This has no effect when billing is paused.

Pause
Insert the following code in your Dialplan:

<action application="nibblebill" data="pause"/>

This will set a flag to pause billing. If the call is terminated while billing is paused, no
billing since the time the call was paused will be calculated, but billing prior to the
pause will still get recorded. You can also manually resume billing later on during
the call with the resume command (see the following section).

Note that if you call the pause command when a call is already paused, then the
pause command will be ignored.

Resume
Insert the following code in your Dialplan:

<action application="nibblebill" data="resume"/>

This will resume billing during a call that was previously paused. The time in between
pause and resume is not billed. Note that you can pause and resume a call multiple
times. The time between each pause and resume will not be billed.

Reset
Insert the following code in your Dialplan:

<action application="nibblebill" data="reset"/>

This will reset the billing timer to the current time. But note that all you are doing
here is resetting all the internal counters that track the call's progress to the current
time, so any time that would have been billed prior to now (but has not yet been
committed to disk) will be "lost" and considered "free."

Any amounts already deducted in the database for a particular
account are considered committed —a done deal. This command

has no impact on commits already made to disk/database.

[344]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Adding and deducting funds

Insert an adjust command in your Dialplan:

<action application="nibblebill" data="adjust 5.00"/>

It adds or deducts a certain amount of funds from an account (in this case, we are
adding $5.00). Note that this occurs immediately and currently circumvents any
protections that exist for when the database is down. It is your responsibility to deal
with having a functioning database when you use this command.

Use negative numbers to deduct from an account.

Enabling session heartbeat

Enabling the session heartbeat is done during a call as follows:

<action application="nibblebill" data="heartbeat 60"/>

This sets the heartbeat for the current call (only) to 60 seconds. You can set this
differently per call.

Bill based on B Leg only

If you want to bill only the B Leg, enable_heartbeat_events variable must be
enabled on the B Leg channel. You can enable these heartbeats by setting the heartbeat
events in the bridge command. As we discussed earlier in the book, variables in
brackets on the bridge command are passed to the B Leg. Here is an example:

<action application="bridge"

data="{enable heartbeat events=5,nibble rate=1,nibble
account=0838833133}sofia/external/$letel.co."/>

Alternative endpoints

While most users of FreeSWITCH will use SIP (and thus mod_sofia), there are other
ways for FreeSWITCH to communicate with the world. Here are brief descriptions of
three methods that you may wish to investigate further.

[345]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Skype and GSM endpoints

Not everyone has the budget to buy hardware or services to connect to the Skype
and GSM (Global System for Mobile Communications) networks, especially when
first learning a new technology. FreeSWITCH has an alternative to offer to those
willing to do a little work: a pair of endpoints (that is, channel drivers) that allow
inbound and outbound voice calls and messaging (chatting and SMSs) in the
cheapest possible way.

Both mod_skypopen and mod_gsmopen support full integration with all the
FreeSWITCH features, have CLI commands for diagnostic and control, full
events interaction, and can be used in the same way as the Sofia SIP workhorse
endpoint module.

Both the mod_skypopen and mod_gsmopen modules have the same general structure:
they control an external entity (an "interface") via its own signalling protocol,

and redirect the audio stream from/to FreeSWITCH via the interface to/from the
destination network.

FreeSWITCH
Skype Skype

Mod_skypopen mgnalmgﬁ client Network
~ Audio “|instance

Serial
FreeSWITCH signalin PDR GSM
/ modem
.
Audio ~|Soundcard[€ cellphone

For mod_skypopen, the "interface" is an instance of the regular Skype client software
that interacts natively with the Skype network, redirecting the audio flow to
FreeSWITCH. The Skype client instance is controlled by mod_skypopen through the
Skype API native commands (signalling).

For mod_gsmopen, the "interface" is a GSM modem (or perhaps a second-hand

cell phone) that interacts natively with the GSM network. The GSM interface is
controlled by mod_gsmopen via serial port commands, often regular AT commands
(signalling), while the audio flows through a soundcard.

[346]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Both mod_skypopen and mod_gsmopen fully support voice calls and chatting, using the
regular FreeSWITCH APIs, Dialplans, and events. So, if your application works with
SIP or Jabber, both for voice and/or messaging, it will work unmodified on GSM and
Skype networks as well, including inbound/outbound chatting and SMS messages.

Skype with mod_skypopen

The mod_skypopen module effectively connects a running Skype instance on the
server with FreeSWITCH using the public Skype APIs. Skype was not reverse
engineered and requires no external hardware for this feature to work. mod_
skypopen is simply a legal usage of the Skype API. While mod_skypopen uses the
Skype API in full accordance with the Skype license agreement, it is not endorsed,
certified, or otherwise approved in any way by Skype.

Because of these properties, mod_skypopen requires a running copy of Skype,

which is what provides access to the Skype APIs. Running Skype usually requires X
Windows, which can eat some resources. The process is fairly simple, mod_skypopen
operates by creating a dummy audio driver which Skype sends and receives audio
to/from. This dummy driver actually just retransmits the data to/from FreeSWITCH
instead of going to a real set of speakers and a microphone on your soundcard.

In order to use mod_skypopen, you will need to compile and load the mod_skypopen
module, and start at least one instance of the regular native Skype client on the same
machine on which FreeSWITCH is running on.

Linux and Windows are fully supported and you can have dozens of concurrent
Skypopen calls on a machine that has enough RAM and CPU power to run dozens of
Skype client instances. On Mac, only one instance is possible as of this writing.

On Linux and Windows, you can have multiple instances answering inbound Skype
calls/chat for the same Skype username (that is, dozens of concurrent inbound calls
for "mycompany tech support").

Multiple outbound calls/chat can be originated from the same Skype username
on Linux (that is, dozens of concurrent calls placed by "mycompany sales" Skype
username), while on Windows, each outbound call has to be placed by a different
Skype username ("mycompany_ sales01", "mycompany sales02", and so on).

Both on Linux and Windows Skypopen, the Skype client instances can run
"headless", without the need (and the overhead) of a desktop installation (for
example, on a regular "server" installation, on Linux using Xvfb).

[347]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Skypopen allows for placing and receiving outbound/inbound calls to/from other
Skype usernames (the classic regular "Skype-to-Skype" calls), for placing "SkypeOut"
calls to PSTN or cell phone numbers around the world (you must buy credit from
Skype for the Skype username used by the "interface" Skype client instance), for
receiving "Skypeln" calls originally destined for a PSTN number somewhere in the
world (you must buy the service from Skype), and for chatting (inbound/outbound)
with other Skype usernames. The Skype SMS service is not yet supported as of this
writing.

Extremely detailed information on setting up and

using mod_skypopen can be found online at
t http://wiki.freeswitch.org/wiki/Mod skypopen.

GSM with mod_gsmopen

You will need to compile and load the mod_gsmopen module, and the following;:

* One or more GSM modems or second-hand cell phones (the "interface")
* One or more serial ports (most often just a USB port)
* One or more soundcards (most often a cheap USB "dongle")

e Cables for the serial and audio connection between the "interface" and serial
port/soundcard

Each "interface" is the combination made by all of the listed items.

Most cell phones out there can be directly connected to a serial port (USB) via their
own data cable, while for audio you will need to make an audio cable from the
hands-free jack to the in/out jacks of the soundcard.

There are very nice cheap embedded compound devices in the market

(fully supported by GSMOpen) that comprise the GSM modem, the soundcard,
and an internal USB hub (a complete "interface"). With those devices, you'll have
only one standard USB cable running from the FreeSWITCH machine to the
"black box" complete interface.

Each GSM modem supports one concurrent call. To add more lines (numbers), just
connect USB hubs and additional devices. See the Wiki at the next link for more
details, including supported cell phones and devices. For usage as a SMS gateway
only (no voice calls needed) you only want the serial part of the "interface" (no
soundcard and no audio cable). You can connect as many second-hand cell phones as
you wish with USB hubs (multi-serial support is very good in Linux), and the CPU
load at full SMS throughput is negligible.

[348]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Each "interface" has its own SIM card, with its own mobile number. Ideally, you
will have a good mobile plan from your GSM carrier. Note that most carriers offer
free intra-carrier calls, "SME plans", "family plans", free minutes, or special offers on
special hours.

You can mix and match interfaces with different carriers and plans, and have
outbound calls and SMSs made from the less costly "interface" via Dialplan and least
cost routing.

At the time of writing, GSMOpen runs only on Linux, however Windows support
will be available soon.

More detailed information about mod_gsmopen

and supported GSM dongles can be found online at
’ http://wiki.freeswitch.org/wiki/GSMopen.

TDM with FreeTDM

FreeSWITCH is fully compatible with many types of telephony interface cards.
Various types of interface cards are manufactured by Sangoma, Digium, OpenVox,
Rhino Technologies, RedFone, and others. The FreeSWITCH developers originally
created a BSD-licensed abstraction library named OpenZAP. This abstraction layer
allowed FreeSWITCH to communicate with both Sangoma and Digium-based
cards and their requisite drivers. FreeTDM, sponsored by Sangoma Technologies
Corporation, is a new abstraction layer that has completely replaced OpenZAP.

Detailed information on configuring various analog and
digital (T1/E1 and PRI) cards can be found online at
http://wiki.freeswitch.org/wiki/FreeTDM.

Configuration tools and related projects

The FreeSWITCH community has grown tremendously over the past few years with
many different people using the software for a variety of purposes. These purposes
range from running small home PBXs to large telephone companies. Along the way
a variety of people have created different bits of code that allow you to save time or
allow FreeSWITCH to operate in unique ways. Contributions range from complete
open source GUIs and frameworks to small single-purposes libraries. We briefly
discuss some of these items next.

[349]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Web GUIs

There are a number of Web Graphical User Interfaces (Web GUIs) available for
FreeSWITCH today. Some are graphical tools that generate XML configuration files
while others take the approach of abstracting the switch configuration completely
and providing simplified but flexible user interfaces to end-users. We cover some of
the more popular ones below.

Note that choosing the right GUI is really a personal decision based on your
preferences. Some people prefer one language over another. Some people are
concerned strictly about features. Some people focus on scalability. Since most
distributions come with easy to install ISOs, you should try out all the interfaces
you can find before making a decision on which one you like the most.

FusionPBX

FusionPBX is an open source graphical interface written in PHP. The project
started as the FreeSWITCH package on the pfSense firewall. Later it was renamed
to FusionPBX and released with multi-platform support including Linux, BSD,
Windows, Mac OS X, and others. It supports multiple databases including
PostgreSQL, MySQL, and SQLite.

Features include unlimited extensions, IVR menu, voicemail-to-e-mail, hunt groups,
fax server, interactive conference controls, viewing active calls and extensions,
queues, call forward, click-to-call, DISA, provisioning, multi-tenant, and more.

FusionPBX is highly customizable. For example, a user assigned to the "superadmin"
group can log in to the web interface and perform many administrative functions
including customizing the menu, content, themes, user groups, multi-tenant
configuration, and feature permissions.

Additional information, such as documentation and screenshots, are available on
the website (http://www.fusionpbx.com). See also the IRC channel #fusionpbx on
irc.freenode.net.

FreePyBX

FreePyBX is a Python-based FreeSWITCH GUI written by Noel Morgan. It allows
for configuration and web-based administration of FreeSWITCH. It has a multitude
of features including multi-tenant, call center, a built-in ticketing system, and more.
You can learn more at http://www. freepybx.org.

[350]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

blue.box

blue.box is an open source PHP/MySQL based project by the 2600hz team which
provides a graphical user interface for configuring the XML files that FreeSWITCH
utilizes. It is designed to power small and medium sized FreeSWITCH installations
using solely the built-in features of FreeSWITCH and XML configurations managed
by the GUL It is highly customizable and has modular functionality allowing various
features to be implemented over time, but users can install only what they need. It
also supports multi-tenancy.

Additional information is available at http://www.2600hz.org/. See also the IRC
channel #2600hz on irc.freenode.net.

Kazoo

Kazoo is an open source platform from the 2600hz team that aims to bring
distributed cloud communications to the masses. The project was a natural next step
in development for open source telephony platforms. It is designed to help service
providers scale to medium and large installation sizes and allows for network and
site redundancy across the internet or a large private WAN. The entire stack was
designed to expose all functionality as APIs so all functions can be fully automated
by external software. The GUI, call-handling APIs, database storage engine, and
messaging engines have all been abstracted into independent modules, allowing you
to choose which pieces to utilize for your own application.

If you are interested in the hosted or distributed communications market, you should
check out Kazoo. You can learn more about the Kazoo platform at http://2600hz.
com/platform.html.

Supporting libraries
In addition to the Event Socket Library (ESL) abstraction library supplied with

FreeSWITCH, there are third-party libraries that expand upon (or eschew entirely)
ESL while adding specific functionality to certain programming languages.

[351]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Liverpie (Ruby)

Liverpie (language independent IVR proxy) is a free piece of software, written

in Ruby, that talks to FreeSWITCH on one side, and to any web application on

the other, regardless of language, platform, and so on. It translates FreeSWITCH
mod_event_socket dialogue into HTTP markup (embedding various parameters in
HTTP headers), so you can write your own HTTP-speaking finite state machine and
hook it to FreeSWITCH via Liverpie. Note also that Liverpie expects the response in
YAML so you can save yourself the pain of providing XML if you are comfortable
with Liverpie doing the translation.

You can learn more about Liverpie at http: //www.liverpie.com.

FreeSWITCHeR (Ruby)

FreeSWITCHeR is an EventMachine-based Ruby library for interacting with
FreeSWITCH. The FreeSWITCHeR library interacts through mod_event_socket. It
can create both inbound and outbound event listeners and can power an entire call
from a Ruby library. Significant amounts of documentation and sample code to get
you started are available.

You can learn more about FreeSWITCHeR at https://github.com/bougyman/
freeswitcher.

Librevox (Ruby)

Librevox eventually came to life during a major rewrite of FreeSWITCHeR. Harry
Vangberg, who participated in the original FreeSWITCHeR code, decided to rewrite
FreeSWITCHeR and this is the result. From the website: "Librevox and Freeswitcher
look much alike on the outside, but Librevox tries to take a simpler approach on

the inside." As with FreeSWITCHeR, there is a good amount of documentation and
sample code to get you started.

You can learn more about Librevox at https://github.com/vangberg/librevox.

[352]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

EventSocket (Python/Twisted)

EventSocket is a Twisted protocol for the FreeSWITCH event socket. This protocol
provides support for both inbound and outbound methods of the event socket in a
single-file class. It may be used for a wide variety of purposes. It aims to be simple
and extensible, and to export all the functionality of FreeSWITCH to Twisted-based
applications. Moreover, it is totally event-driven and allows easy implementation of
complex applications aiming at controlling FreeSWITCH through the event socket.

This code is part of the core of the Nuswit Telephony API (http://nuswit.com), a
full-featured web-based dialer currently operating in Brazil and Colombia.

Source code, examples, and documentation are available at http://github.com/
fiorix/eventsocket.

FSSocket (Perl)

The FSSocket Perl library, based on the Perl Object Environment (POE) framework,
allows for easy integration with the FreeSWITCH event socket system from Perl. It
parses FreeSWITCH events into hashes. You can ask for as many event types as you
like or all for everything.

Source code, examples, and documentation are available at: http://search.cpan.
org/~ptinsley/POE-Filter-FSSocket-0.07/.

Vestec Automatic Speech Recognition

While FreeSWITCH works with the PocketSphinx project, those who want
professional-grade speech recognition should consider Vestec. Vestec has an ASR
platform that works well with FreeSWITCH and that is suitable for real-world
applications. Vestec is a commercial offering, however the company will offer a free,
unlimited, full-featured developer license to anyone who uses FreeSWITCH. Contact
Vestec via email at info@vestec.com for more information. Supported languages
are listed at http://www.vestec.com/acoustic models.

[353]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features and Further Reading

Summary

FreeSWITCH provides a powerful toolset for creating rich applications. The modules
bundled with FreeSWITCH today are an early example of what you can do with

the powerful internal APIs that are available. In addition, a thriving community

of FreeSWITCH enthusiasts is taking the software development available to the

next level. Expect many hosted, cloud, and premise-based solutions to thrive in the
coming years for various purposes in the VoIP and communications space, based on
the FreeSWITCH core.

[354]

www.it-ebooks.info

http://www.it-ebooks.info/

The FreeSWITCH
Online Community

One of the good things about many open source software projects is that people from
around the world connect on a regular basis to form a community of interested, and
in many cases passionate users. FreeSWITCH is certainly one of these.

In this appendix we will introduce several aspects of the online community. They are
as follows:

* FreeSWITCH mailing lists
¢ Real-time interaction via IRC
e Main FreeSWITCH website and wiki

* The annual ClueCon telephony conference in Chicago

This appendix will help you to become a part of this vibrant, worldwide community.

The FreeSWITCH mailing lists

The FreeSWITCH project maintains several mailing lists at
http://lists.freeswitch.org. The primary list for most users is appropriately
named freeswitch-users. Like many projects, the lists are powered by the GNU
mailing list manager, MailMan.

www.it-ebooks.info

http://www.it-ebooks.info/

The FreeSWITCH Online Community

To join one of the lists, simply browse to 1ists.freeswitch.org and click on the
name of the list as shown in the following screenshot:

0o lists.freeswitch.org Mailing Lists =

u http:/ flists.freeswitch.org/mailman/listinfo ﬁ' v B

information about the list, or to subscribe, unsubscribe, and change the preferences on your subscription. To visit
the general information page for an unadvertised list, open a URL similar to this one, but with a /' and the list
name appended.

List administrators, you can visit the list admin overview page to find the management interface for your list.

If you are having trouble using the lists, please contact mailman@®@ tron.freeswitch.org.

List Description
Freeswitch-biz [no description available]
Freeswitch-branches Freeswitch Branch Commit Logs
FreeSWITCH-dev [no description available]
Freeswitch-svn [no description available]
Freeswitch-trunk Freeswitch Trunk Commit Logs
FreeSWITCH-users [no description available]
Freeswitch-video [no description available]

Openmrcp-users [no description available]

PYTHON
powered

lists freeswitch.org Mailing Lists
Welcome!
Below is a listing of all the public mailing lists on lists.freeswitch.org. Click on a list name to get more
Y
-

New users should join only the FreeSWITCH-users list until they are comfortable with
the project. The other lists are very technical in nature, except for the Freeswitch-biz
list, which is used for discussing commercial endeavors with FreeSWITCH.

[356]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

You will need to input a username and password when subscribing to a list.

Keep this information handy so that you can make adjustments to your e-mail
subscriptions. One important setting that you can change is whether or not to

receive "digest" e-mails. A digest is an amalgamation of several e-mails into a single
transmission. The digest method is handy for those who may be casual readers of the
e-mail traffic flowing through the mailing lists. However, if you wish to interact with
others then you should not use the digest because it will be difficult to participate in
a particular discussion thread.

Some points to keep in mind when using the mailing list are as follows:
* Use an e-mail client that handles threads so that you can more easily follow

specific discussions.

* Do not "hijack" threads! A hijack occurs when someone replies to an existing
thread and changes the subject line of the e-mail. Always start with a new
message to the list if you need to discuss a new subject.

* Try not to become overwhelmed when you first join. There are lots of
messages coming through each day. You can only absorb so much, so pace
yourself and give yourself time to get acclimated.

* Use the site archives to search for discussions on a particular subject. An
example is to use Google. Search Google for site:1lists.freeswitch.org
"early media" to see all list threads that discuss the topic of "early media".

The mailing lists are a great resource for interacting with people all over the world.
However, sometimes you need to have a dialog. In cases like this you will appreciate
chatting with others in real time.

Talking in real time via IRC

IRC or Internet Relay Chat is a venerable means for chatting with other users.

The FreeSWITCH team have several chat rooms on irc. freenode.net. They are
as follows:

* #freeswitch

* f#ifreeswitch-dev

* Hfreeswitch-social

* #freetdm

[357]

www.it-ebooks.info

http://www.it-ebooks.info/

The FreeSWITCH Online Community

Various community members around the world also have chat rooms in other
languages. Some of them are as follows:

* #freeswitch-de

®* f#ifreeswitch-es

* Hfreeswitch-fr
Using IRC is simple once you know what to do. You will need an IRC client for your
computer. There are many to choose from, including the following:

e Chatzilla: A Firefox add-on

e IRSSI: A text-based IRC client

* Colloquy: An IRC client for Mac OS X

e mIRC: An IRC client for Windows

You can also join the #freeswitch channel using the Java applet on the main
FreeSWITCH website.

To use IRC you will need to choose a nickname, known as a "nick" for short. Choose
something unique, and if possible register your nick with Freenode. Visit http://
freenode.net/faq.shtml#userregistration to learn more about setting up your
nick and getting it registered.

A few nicks that you will probably see online are as follows:

* anthm: Anthony Minessale

* bkw_: Brian K West

* Miked: Michael Jerris

* mercutioviz: Michael S Collins

e pyite: Darren Schreiber

* intralanman: Raymond Chandler
* swk: Ken Rice

These are all active members of the FreeSWITCH community. There are many others
who stay online throughout the day (and night, depending on your time zone).

[358]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Following are a few things to keep in mind when using IRC:

It is a public place with people from varying backgrounds and standards
of decency.

Be polite, even when others are not.

Do not "flood" the channel with long pastes of information. If you have more
than two or three lines of information to share, then use the pastebin found at
http://pastebin.freeswitch.org.

When joining the room there is no need to ask if you may pose a question.
Simply ask your question. For example, "I'm a new user trying to set up

a gateway. Why does FreeSWITCH say that username and password are
REQUIRED parameters when my provider uses IP authentication?".

Be patient! Usually someone will answer within a few minutes, but keep
in mind that usually there are more people in the channel during North
American business hours.

People from all backgrounds are welcome. The main #freeswitch channel
is in English, but there are many who speak other languages, including
Spanish, French, Italian, German, Portuguese, and Chinese. (See also the
previously mentioned IRC channels dedicated to specific languages.)

Always respect user c888!

Feel free to join the FreeSWITCH IRC channel and see what topics are being discussed.

The FreeSWITCH main website and wiki

There are two primary websites for the FreeSWITCH project:

www . freeswitch. org: The main project page

wiki.freeswitch.org: The public wiki page

[359]

www.it-ebooks.info

http://www.it-ebooks.info/

The FreeSWITCH Online Community

The main FreeSWITCH page -

www.freeswitch.org
The FreeSWITCH main web page is the starting point for all things related to the

project. From the main page you can do many things as follows:
* Read up on FreeSWITCH and VoIP news
* Download or browse the source code
* Report bugs or feature requests
* View documentation

* Join the #freeswitch IRC channel with the Freenode Java applet

New content is added to the main page every week, so check back frequently.

The FreeSWITCH wiki page —

wiki.freeswitch.org

The FreeSWITCH wiki is the primary source for FreeSWITCH documentation. A wiki
is a website that allows users to add, edit, or delete content and link to other content.
A classic example of a wiki page is Wikipedia. The FreeSWITCH wiki page uses
MediaWiki (http://www.mediawiki.org), the same wiki engine used by Wikipedia.

The FreeSWITCH wiki is a community resource. While Michael S. Collins is the
primary wiki administrator, all FreeSWITCH users are welcome to add or update
content on the site. Like most wiki sites there is a lot of content. Sometimes searching
for information can be challenging. We recommend that you use Google site search
(site:wiki.freeswitch.org <search topics)if you are having trouble locating
a particular subject. After using the wiki for a while you will begin to get a feel for
where certain pieces of information are located.

Prospective wiki contributors should keep the following things in mind:

* Do asearch before adding content—it may be that the information you want
to add is already on the wiki and simply needs to be updated or
better indexed

* Make sure that any content you add is properly linked to
* Make sure that any content you add is part of a site category

* Feel free to make mistakes! Others will be happy to help you
make corrections

[360]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Documentation of open source software is almost always a challenge, so if you are in
a position to assist, please contact Michael at mscefreeswitch.org. There is always
a need for skills such as proofreading, verifying facts, testing configurations and
examples, and translating text into other languages.

The annual ClueCon open source
developer conference

Each year in Chicago, we have a three-day conference where open source telephony
professionals and enthusiasts gather to discuss many topics. The conference is

held in the first week of August and is a great way to interact with a wide range of
personalities in the telephony world. Visit http://www.cluecon. com to see details
about the upcoming conference and to get links to presentations and videos from
previous conferences.

Although ClueCon is "by developers, for developers", it has been growing each year
and many non-developers have been attending. Most presentations are still relatively
technical in nature; however, there are many talks that focus on non-technical aspects
of telephony, such as demonstrations of new products. The conference is designed
for users, developers, and vendors to connect with one another. Users appreciate
being able meet developers and vendors in person, and vendors appreciate the focus
being on interacting with developers and vendors rather than on spending many
hours in a sales booth.

ClueCon invites people from all open source telephony projects to come and

give presentations. Over the years there have been presentations on Asterisk,
FreeSWITCH, Kamailio, and OpenSIPS, as well as from vendors such as Sangoma
and Vestec, who have been supportive of open source telephony projects.

We encourage all FreeSWITCH users to become acquainted with one another by
means of these resources.

[361]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Asterisk
to FreeSWITCH

Special thanks to Stefan Wintermeyer for his contribution to this appendix.

This appendix is for administrators and programmers who use Asterisk but want
to learn how to switch their existing system to FreeSWITCH. Because this is a book
about FreeSWITCH and not Asterisk, we will not describe the Asterisk examples
in detail. It is assumed that the reader is familiar with the Asterisk concepts of
extensions, priorities, and applications.

The information in this appendix is not meant to be an exhaustive reference on how
to convert every configuration item on your Asterisk system over to a FreeSWITCH
installation. Rather, it is meant to get you started on such a conversion by comparing
some of the basic things you do in Asterisk and how those would be done in
FreeSWITCH. The topics presented here are:

* Stopping and starting Asterisk and FreeSWITCH

* Setting the debug verbosity levels

* Reviewing the basic configuration file directory structures for each software

* Setting up two SIP users in Asterisk and then in FreeSWITCH

* Simple voicemail configuration in each software

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Asterisk to FreeSWITCH

You can find additional information on leveraging your existing Asterisk
knowledge by consulting the "Rosetta Stone" found on the FreeSWITCH wiki:
http://wiki.freeswitch.org/wiki/Rosetta_ stone.

Use migration to FreeSWITCH not only to get a better software
platform but also to tidy up your dialplan and setup. We all know the

results of coding projects that are "improved" over time by a few new
’ functions without taking the time to optimize the total system. A new

conversion is an opportunity to start with a clean slate.

Getting started

For this documentation we run an Asterisk and a FreeSWITCH on a Debian Linux
system that has the IP address 10.0.0.10. We could run both services simultaneously,
but for the sake of easier configuration examples we manually stop Asterisk or
FreeSWITCH before starting the other. We use the latest versions of both software
but actually the version number of either is not that important to understand

the difference in architecture. The SIP phones use the IP addresses 10.0.0.20 and
10.0.0.21. See Chapter 4, SIP and the User Directory for tips on configuring different SIP
phones.

You can have Asterisk and FreeSWITCH installed on the same server.
o However, you cannot run them simultaneously unless they each
~ bind to a different IP and/or port number. For example, in /etc/
Q asterisk/sip.conf you can change the SIP port for Asterisk. As
long as they both don't try to use port 5060 on the same interface then
you will be able to run them simultaneously if you so choose.

Starting and stopping Asterisk or
FreeSWITCH

On a default installation of Asterisk you can start Asterisk with the command
asterisk. That will start Asterisk and backgrounds the process. To stop Asterisk
you can use the command-line interface with asterisk -r and type core stop
now. A typical session might look like this:

debian*CLI> core stop now
debian*CLI>

Disconnected from Asterisk server

[364]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Executing last minute cleanups
Asterisk cleanly ending (0).

root@debian:#

On a typical FreeSWITCH installation you can start FreeSWITCH in the background
with the following command:

/usr/local/freeswitch/bin/freeswitch -nc

To stop FreeSWITCH execute the same command but with the -stop argument:

/usr/local/freeswitch/bin/freeswitch -stop

Basic debugging

During the following examples you might want to see what is going on. Preferences
vary but in general you will want to see more verbose debugging. We recommend
that you try different verbosity levels to find one that suits your needs.

Asterisk

If you have an already running Asterisk you can use asterisk -r toopena
command-line interface to it. With the command core set verbose 3 you set the
log level to 3. Do not use core set debug 3 because that will overwhelm you with
debugging information for Asterisk programmers (those guys who program Asterisk
itself). Type core set debug 0 to reset the level to 0. A typical session might look
like this:

debian*CLI> core set verbose 3

Set remote console verbosity to 3

debian*CLI>

FreeSWITCH

If you have an already running FreeSWITCH, you can use the aforementioned fs_
cli command to open the command-line interface. With the command /log info
you can set the log level to 6. You can do the same with /1log info as seen in this
example session:

freeswitch@internal> /log info

+OK log level info [6]

Now that we have debugging available let's take a brief look at the example
configurations that come with Asterisk and FreeSWITCH.

[365]

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Asterisk to FreeSWITCH

Configuration files

Both Asterisk and FreeSWITCH have large directory structures for their example
configuration sets. To view the Asterisk configuration tree, execute this command:

tree /etc/asterisk

For FreeSWITCH, execute this command:

tree /usr/local/freeswitch/conf

As you can see, both projects have what appear to be intimidating file and directory
structures for their respective configurations. Like all complex software, it's
important to figure out where to focus your attention since most of the files won't
need to be edited.

The biggest difference is that each configuration file for Asterisk has a specific
meaning. For example, Asterisk will look up the dialplan in the file extensions.
conf. FreeSWITCH doesn't expect configuration in specifically named files. It reads
one big XML file that is split into smaller ones. How these are named is totally up
to you. The default files are just an example. You are free to name and order your
configuration FreeSWITCH configuration files in any way it makes sense for you.
In fact, the only configuration file that is absolutely required is freeswitch.xml.
(Be sure to review Chapter 3, Test Driving the Example Configuration if you have any
questions about the FreeSWITCH example configuration files.)

In the following sections we will look more closely at some of these configuration files.

Whenever we use the word "replace" we do mean replace. Do not try to
. open the existing file to add the given example. Just delete the file and
create a new one with the editor of your choice. Once you understand
s the basic logic of the software you can have a look into these default
files. They burst with examples and are a good source to code by cut
and paste. But they are not a good start to understand the basics.

Two SIP phones

The smallest PBX example is a two SIP phone setup. We create one with the
extension 2000 and the other one with the extension 2001. Each phone should be able
to call the other one by dialing the other's extension.

The first SIP account is 2000 with the password 1234. The second SIP account is 2001
with the password 1234. Please set up your SIP phones with these accounts.

[366]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Asterisk configuration

Asterisk stores its SIP account information in the configuration file /etc/asterisk/
sip.conf. Please replace the default sip.conf with a new one that contains the

following code:

[generall
port=5060
bindaddr=0.0.0.0

[2000]
type=friend
secret=1234
context=default
host=dynamic

[2001]
type=friend
secret=1234
context=default
host=dynamic

The dialplan is stored in /etc/asterisk/extensions.cont. Please replace it with

this code:

[default]

exten => 200[1-2],1,Dial (SIP/${EXTEN})

As we bring up Asterisk (asterisk -c)and set the verbose level to 3 (core set
verbose 3) we can see how the phones register:

*CLI> -- Registered SIP
-- Registered SIP '2001
-- Unregistered SIP '20
-- Registered SIP '2001

'2000' at 10.0.0.21:2048

''at 10.0.0.20:3072
o1
''at 10.0.0.20:3072

Now we can make a phone call from one phone to the other. During such a call
the command sip show channels will display some basic information about the

current call:

*CLI> sip show channels

Peer User/ANR
Last Message Expiry
10.0.0.21 2000

Tx: ACK

10.0.0.20 2001

Tx: ACK

2 active SIP dialogs

Call ID
Peer

150ble3879a2bff
2000

ea88263cebdd-1la
2001

Format

(ulaw)

(ulaw)

Hold

No

No

[367]

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Asterisk to FreeSWITCH

Now that we've established a call on Asterisk, let's do the equivalent on a
FreeSWITCH. If necessary shut down Asterisk with the core stop now command.

FreeSWITCH configuration

FreeSWITCH doesn't have a fixed file and directory structure. The structure you
see in /usr/local/freeswitch/conf is just an example. You could put everything
into one XML file or separate it into numerous XML files all named as you like. The
sample configuration already contains a couple of example SIP accounts and demo
extensions. However, we want to recreate the preceding Asterisk example.

Create the file /usr/local/freeswitch/conf/directory/default/2000.xml with
the following content for your first SIP account:

<include>
<user id="2000">
<params>
<param name="password" value="1234"/>
</params>
<variables>
<variable name="user context" value="default"/>
</variables>
</user>
</include>

Then create a second file, /usr/local/freeswitch/conf/directory/
default/2001.xml, with the configuration for the second SIP account:

<include>
<user id="2001">
<params>
<param name="password" value="1234"/>
</params>
<variables>
<variable name="user context" value="default"/>
</variables>
</user>
</include>

[368]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Finally, let's create a new Dialplan file for our two new SIP accounts. Create the new
file, /usr/local/freeswitch/conf/dialplan/default/01 New.xml, with this
Dialplan content:

<?xml version="1.0" encoding="utf-8"?>
<include>
<context name="default"s>
<extension name="Local Extension"s>
<condition field="destination number"
expression=""(200[1-2])%$">
<action application="export"
data="dialed extension=$1"/>
<action application="bridge"
data="user/${dialed extension}@s${domain name}"/>
</conditions>
</extensions>
</context>
</include>

After you have saved these three files, start FreeSWITCH:
/usr/local/freeswitch/bin/freeswitch -nc

Wait a few moments for the FreeSWITCH process to start, then connect to it
with fs_cli:

/usr/local/freeswitch/bin/fs_cli

Make sure that your two SIP phones are on and have attempted to register. (You will
need to restart them or perform a re-registration if they were recently connected to
your Asterisk server.) To see the status of your registrations, issue this command:

sofia status profile internal reg

[369]

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Asterisk to FreeSWITCH

The output will be like this:

freeswitch@internal> sofia status profile internal reg

Registrations:
Call-ID:

User:

Contact:
Agent:

Status:
EXPSECS (3529)

Host:

IP:

Port:
Auth-User:
Auth-Realm:
MWI-Account:

Call-ID:
User:
Contact:
Agent:

Status:
EXPSECS (3543)

Host:

IP:

Port:
Auth-User:
Auth-Realm:
MWI-Account:

a270263caa23-uocan9j61lz5y

2000@127.0.0.1

"2000" <sip:2000@10.0.0.20:3072;1line=0tqusdnm>
snom821/8.4.35

Registered (UDP) (unknown) EXP(2013-01-13 06:46:31)

debian
10.0.0.20

3072

2000

10.0.0.10
2000@127.0.0.1

3c26708e4d57-yzfzr61£7x41

2001@127.0.0.1

"2001" <sip:2001@10.0.0.21:2048;1line=9r6kyuli>
snom360/8.4.35

Registered (UDP) (unknown) EXP(2013-01-13 06:46:45)

debian
10.0.0.21

2048

2001

10.0.0.10
2001@127.0.0.1

Total items returned: 2

freeswitch@internal>

[370]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Now you can make a call from 2000 to 2001 and vice versa.

You can analyze the used channels during the call with show channels. Make a call
between the two phones, and then issue the command show channels. You will see
output like this:

freeswitch@internal> show channels

uuid,direction,created, created epoch,name,state,cid name,cid num,ip
addr,dest,application,application data,dialplan,context,read

codec,read rate,read bit rate,write codec,write rate,write bit

rate, secure,hostname,presence id,presence data,callstate,callee
name,callee num,callee direction,call uuid, sent callee name,sent callee
num

af6dc664-5cb3-11e2-ae64-41a8c0d6e735, inbound,2013-01-12
13:29:18,1357993758,sofia/internal/2000@10.0.0.10,CS_EXECUTE, 2000
,2000,10.0.0.20,2001,bridge,user/2001@127.0.0.1,XML,default, PCMU, 8
000,64000,PCMU,8000,64000, ,debian,2000@10.0.0.10, ,ACTIVE, Outbound
Call,2001,SEND,af6dc664-5cb3-11le2-ae64-41a8c0d6e735,0utbound Call, 2001

af861bd8-5cb3-1le2-ae6d-41a8c0d6e735,outbound,2013-01-12
13:29:18,1357993758,sofia/internal/sip:2001@10.0.0.21:2048,CS_EXCHANGE ME
DIA,2000,2000,10.0.0.20,2001,, ,XML,default, PCMU,8000,64000,PCMU,8000,640
00, ,debian,2001@127.0.0.1, ,ACTIVE,Outbound Call,2001,SEND,af6dc664-5cb3-
lle2-ae64-41a8c0d6e735,2000,2000

2 total.

freeswitch@internal>
You have set up SIP users on both Asterisk and FreeSWITCH.
M If you edit a FreeSWITCH XML configuration file while

Q FreeSWITCH is running, be sure to execute the command
reloadxml. Alternatively, you can press the F6 key.

[371]

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Asterisk to FreeSWITCH

Analysis

FreeSWITCH uses XML and Asterisk uses traditional "ini" files. XML has the big
advantage that it can easily be checked for syntax errors. Asterisk is somewhat
loose in this area and in some cases does not give enough feedback to the system
administrator. On several occasions we had an Asterisk Dialplan that looked fine
and which worked most times but in some edge cases it didn't. Many times this was
because of syntax errors in the Dialplan that weren't found by Asterisk itself. So
having a strict XML configuration is a good thing, but it does take some time to get
used to it. A good XML editor might be helpful in this transition phase.

Al

~ A text editor with syntax highlighting is invaluable when
reviewing or editing FreeSWITCH configuration files.

The syntax of the SIP account definitions is quite different between these two pieces
of software. The Dialplan is also very different. We defined the SIP accounts with

a default context (literally "default") for Asterisk and FreeSWITCH. Each software
searches for a default context in its configurations. Asterisk uses the configuration
file extensions.conf for that and a customized syntax. Within the [default]
context it searches for a matching extension. The regular expression _200[1-2]
matches the dialed number and starts the Dial application, which initiates a call
with the SIP protocol to $ {EXTEN}, which is a variable that was set automatically by
Asterisk and contains the dialed number.

FreeSWITCH searches for the default context too (because the SIP accounts were
defined within this context). It runs through all defined extensions within this
context until it finds one that has a matching condition field. Conditions can be
many things such as a time or as in this example a destination_number that is
matched with the regular expression * (200 [1-2]) $. A condition itself contains
code that is fired up when the condition is true. In our example it is this code:

<action application="export" data="dialed extension=$1"/>
<action application="bridge"
data="user/${dialed extension}@${domain name}"/>

We could write it in one line like this:

<action application="bridge" data:"user/$l@${domain_name} />

[372]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

But setting a dialed_extension variable is often very handy. It might remind the
Asterisk veteran of ¢ {EXTEN}. Also, we can see that FreeSWITCH's bridge is the
equivalent of Asterisk's Dial application. In FreeSWITCH we see a reference to
@${domain_name} in the bridge argument. The channel variable ${domain_ name} is
set elsewhere in the example configuration.

More information is presented in Chapter 5, Understanding the XML Dialplan, and in
Chapter 8, Advanced Dialplan Concepts.

Voicemail

We now shift our attention to a feature that is available in both systems: voicemail.

Asterisk

The Asterisk dialplan application, Dial, offers the ability to add the number of
seconds the phone can ring. It will wait for that amount of seconds (for example, 10)
for the called party to answer and then move to the next priority. In this example we
have the voiceMail application. Please replace the /etc/asterisk/extensions.
conf with this content:

[default]
exten => 200[1-2],1,Dial(SIP/${EXTEN}, 10)
exten => 200[1-2],n,VoiceMail (${EXTEN},u)

Asterisk needs some additional configuration for the voicemail boxes. Please replace
the file /etc/asterisk/voicemail . conf with:

[general]
format = wav
attach = yes
[default]
2000 => 1234,Mr. X
2001 => 1234,Mr. Y

Now you can make a call and after approximately 10 seconds the Dial application
stops calling. Asterisk increases the priority by 1 and starts the voiceMail application
for the voicemail box $ {EXTEN}, and the calling party can leave a message.

[373]

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Asterisk to FreeSWITCH

FreeSWITCH

Voicemail configuration in FreeSWITCH is very different. Please replace the file /
usr/local/freeswitch/conf/dialplan/default/Ol_New.xmlVvﬂhthﬁ(xnﬁent

<?xml version="1.0" encoding="utf-8"?>
<include>
<context name="default"s>
<extension name="Local Extension"s
<condition field="destination number"
expression=""(200[1-2])8$">
<action application="export"
data="dialed extension=$1"/>
<action application="set" data="call timeout=10"/>
<action application="set"
data="hangup_ after bridge=true"/>
<action application="set"
data="continue on fail=true"/>
<action application="bridge"
data="user/${dialed extension}@s${domain name}"/>
<action application="answer"/>
<action application="sleep" data="1000"/>
<action application="bridge"
data="loopback/app=voicemail :default ${domain name} ${dialed
extension}"/>

</condition>
</extensions>
</context>
</include>

The FreeSWITCH dialplan is a bit more complex but also gives more control.
With call_timeout=10 you can set the maximum time in seconds the bridge
application tries to call the other party. The setting hangup_after_bridge=true
tells FreeSWITCH to hang up after a bridged call has occurred. (This is also
important for when the caller goes to voicemail and hangs up.) The setting
continue_on_fail=true handles the scenario when the called party is busy.
After the bridge application we have the answer, which means that FreeSWITCH
kind of "picks up the phone" itself. After a one second sleep (which just feels a bit
more human than without it) it bridges the call to a 1oopback destination for the
voicemail application. You can also use the voicemail application without the
loopback channel; however, by using this specific syntax we allow for attended
transfers into a user's voicemail box.

[374]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Accessing voicemail

Now that we've configured the system to record voicemail messages for our users,
let's discuss how to access those messages. In each case, be sure to call and leave a
voicemail message for a user and then follow the instructions for retrieving.

We'll create dialplans that allow us to check voicemail boxes by dialing 4000.

Asterisk

Please replace the /etc/asterisk/extensions.conf file with this content:

[default]

exten => 200[1-2],1,Dial (SIP/${EXTEN}, 10)
exten => 200[1-2],n,VoiceMail (${EXTEN},u)
exten => 4000,1,VoiceMailMain (${CALLERID (num) })

The Asterisk application VoiceMailMain offers a gateway to a caller's personal
voicemail box. The function $ { CALLERID (num) } returns the number of the caller.
Don't mix it up with $ {EXTEN}, which is the number you are dialing and would be
4000 in this example.

FreeSWITCH

First we need to define a password for accessing the voicemail box by the owner. For
simplicity we use 1234 as a password again.

Open /usr/local/freeswitch/conf/directory/default/2000.xml and locate
this line:

<param name="password" value="1234"/>
Add a new param line:
<param name="password" value="1234"/>

Save the file. Repeat for /usr/local/freeswitch/conf/directory/
default/2000.xml.

At this point you can dial 4000 to retrieve a message because the example
FreeSWITCH dialplan already defines 4000 as the message retrieval extension. You
can alternatively dial *98 to access voicemail.

[375]

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating from Asterisk to FreeSWITCH

Notice that the system asks you to key in both your "ID number" (that is, 2000 or
2001) as well as your password. Some people prefer to have the system assume that
if you dial voicemail from a particular extension then it should attempt to log in to
that extension's voicemail box. This is easily achieved. Open the file /usr/local/
freeswitch/conf/dialplan/default.xml and locate this extension:

<extension name="vmain">
<condition field="destination number" expression=""vma
in$|"4000$|"*98%">
<action application="answer"/>
<action application="sleep" data="1000"/>
<action application="voicemail" data="check default ${domain
name}"/>
</conditions>
</extensions>

Notice the highlighted line with the voicemail application. Let's modify the
arguments to the voicemail application so that it assumes the caller ID number is the
voicemail box to which the caller wants access. Change the argument to this:

data="check default ${domain name} ${caller id number}"

Notice that we added ${caller id number} to the arguments. This tells the
voicemail application to assume that the caller ID number (that is, 2000 or 2001) is
the voicemail box to which the caller wants access.

Save the file and then issue the reloadxml command (or press F6) from £s_c1i. Dial
4000 and now the system only asks for the password.

FreeSWITCH global voicemail settings are found in /usr/local/
s freeswitch/conf/autoload configs/voicemail.conf.xml.

Summary

Moving from Asterisk to FreeSWITCH can be a daunting task; however, it can be
done. Think back to those days when you were first learning Asterisk, and compare
what you know now versus then. It took some time but you learned many things.
Learning FreeSWITCH requires a similar amount of time and effort. Fortunately, by
leveraging the knowledge and experience you have from your months and years of
using Asterisk you will be able to get up to speed very quickly.

[376]

www.it-ebooks.info

http://www.it-ebooks.info/

The History of FreeSWITCH

In order to properly explain the origin of FreeSWITCH, we have to go back to the
time before we even had the idea to write it. The VoIP revolution really began to
take shape at the turn of the century with the creation of both the Asterisk PBX and
OpenH323. Both of these pioneering software packages enabled many developers to
have access to VolP resources without paying for a costly commercial solution. This
led to many new innovations in both projects, and the rapid spread of the evidence
that true usability of IP telephony did indeed exist.

I first got involved in the industry in 2002, when my company at the time was selling
outsourced technical support and we needed a way to manage the calls and send the
traffic to an off-site location. We were using a commercial solution but it was costly
to deploy and had very over-priced per-seat charges on top of that. I had done a lot
of work with open source applications such as Apache and MySQL in my past duties
as a web hosting platform architect, so I decided to do some research on the existence
of any open source telephony applications. Enter Asterisk.

When I first downloaded Asterisk, I was amazed. I got some analog telephone cards
to use with it and here I was at my house, with a dial tone on a phone that was
plugged into the back of my Linux PC. Wow! That’s crazy! It wasn’t long before I
started immersing myself in the code, trying to figure out how it worked. I learned
quickly that it was possible to extend this software to do other things based on
loadable dynamic modules just like Apache. I started digging around and worked up
a few test modules. This was better than ever. Now I was not only making my phone
talk with PC, I was making it execute my own code when I dialed a certain number.

www.it-ebooks.info

http://www.it-ebooks.info/

The History of FreeSWITCH

I played around with a few ideas and then the thought dawned on me. Hey! I really
like Perl, and this telephone stuff is pretty cool too. What if I try to combine them?
I'looked into the documentation on embedding Perl into a C application and before
I knew itI had app perl.so, a loadable module for Asterisk that would allow me
to execute Perl code of my choice when a call was routed to my module. It wasn’t
perfect, and I started to learn quickly about the challenge of embedding Perl in a
multi-threaded application, but it was at least an awesome proof of concept and
quite the accomplishment for a few days of tinkering.

As time progressed, I was drawn deeper into the Asterisk online community. After
playing with the code for a few weeks, I began working on some call-center solutions
using Asterisk as the telephony engine and some home-grown web applications as a
frontend. Along the way, I encountered some bugs in Asterisk, so I submitted them
to the issue tracker for inclusion to the development branch. The more this process
repeated, the deeper my involvement in the project grew, and I began creating
improvements to the software as well as just sporadic fixes to bugs. By 2004, I was
actually fixing bugs that other people reported as well as my own. It was the least I
felt I could do for having a free solution to all of my problems. If my problems would
actually be solved still remained to be seen.

Taking things to the next level

When I was testing my application, I would make many calls to the system and
watch for the web page to update, control the queues, and watch the stats build up.
However, one thing I was not paying attention to was the number of simultaneous
calls and the call volume itself. I was really only making a call or two at a time, and
I was not really fully testing my application. When I put it into production for the
first time, it was also the first time I ever saw what happened when multi-threaded
software had an irresolvable conflict in the locking contention, better known as a
dead lock. I was quite familiar with the segmentation fault, as I had encountered
many of those along the way when I was working on my own modules, but I was
surprised to also see a rise in the number of inexplicable random ones happening
only some of the time.

[378]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C

A segmentation fault is a violation that an application commits where it makes
inappropriate access to memory by destroying the same memory more than once

or accessing memory addresses that are out of bounds or do not exist. You will run
into them a lot in C programming, since you have lower-level access to the operating
system and there is nothing to protect you from making errors besides your own
discipline. I don’t give up easily, which you could consider a curse or a blessing, so
when I started to encounter some problems, I was prepared to get to the bottom of it.
I spent countless hours studying the output from the GNU debugger and trying to
simulate the traffic that caused my problems. After a little trial-and-error, we found
success! I managed to duplicate the crash in my test lab using a load generator. I
even managed to figure out where the problem was and fixed it! That was a great
feeling that lasted right up until later that afternoon, when I learned there was
another new problem with similar symptoms somewhere else in the code.

I managed to slowly back out the features in my application that increased the
likelihood of a deadlock or segmentation fault, but I could not completely eliminate
all the problems. I eventually discovered that the app_gueue module was causing
most of my grief, which was not the best news considering that was the module I
was using the most in my call-center application. Some of the changes I wanted to
make were too intrusive for inclusion in the main code distribution, so I ended up
using my own copy of the code so I could continue to update the rest of Asterisk.
This kept things stable, but only stable enough to seek another solution.

By this time I had written a fairly large amount of features into Asterisk and was
really starting to have some big ideas for new functionality. I created a new concept
called “function variables" allowing modules to expose an interface that could be
expanded from the Dialplan (if you read the rest of this book, that idea may sound
familiar). I was still wrestling with the queue problems, so I got together with
another Asterisk community member and started brainstorming on a new ACD
queue module for Asterisk called mod_icd.

ICD stood for Intelligent Call Distribution, a play on the acronym ACD meaning
Automatic Call Distribution. We had identified all the shortcomings of the app_
queue module with regards to functionality, and we had a common interest in
making a more stable module that would not cause countless crashes and deadlocks.
We had a working prototype and a lot of work to do. We used state machines and
higher-level memory management abstractions with data pools and several other
inspiring concepts that we felt were lacking in the standard Asterisk. The problem
was, I think we over-engineered the module too much, almost as if we were trying to
edge out the entire Asterisk core, which was of course not completely possible being
only a loadable module within that core.

[379]

www.it-ebooks.info

http://www.it-ebooks.info/

The History of FreeSWITCH

We never quite finished mod_1icd. It was late 2004 and my opportunities with call-
center solutions lay smashed on the rocks, washed away by the unforgiving seas of
segmentation faults and deadlocks. We started focusing more on other telephony
services that did not involve queuing. I developed a new offering of toll-free
termination and fax-to-e-mail services. Using several new features I added to the
mainline Asterisk and some of my less-popular modules that were not approved, I
built a cluster of seven Asterisk boxes and connected them to a large telecom circuit.
This deployment of Asterisk was not problem-free but, on the bright side, if some of
the machines crashed, there were more to take its place while we restarted them.

New ideas and a new project

At this point I had accumulated several new ideas: some tested, some not, some

that were going to require some major changes to Asterisk. My team — Brian West,
Michael Jerris, and I —were donating a lot of time to the Asterisk project. We helped
maintain the issue tracker. We fixed bugs and helped out every week by hosting

a developer’s conference call. We even hosted a mirror of the code on our site. We
were very involved yet some of our new ideas were causing some political turmoil
in the Asterisk community, as there was an unnecessary competition among the
various developers. Every contributor to Asterisk must sign a form stating that all
the code you write that may be included in the Asterisk code base will automatically
have a royalty-free license for Digium, the owner of Asterisk, to do what it pleases
with your code. This was so they could sell the unrestricted licensing to would-be
buyers for a high price. Not exactly the spirit of open source but that’s another story.
I think this alienation caused some strife between the volunteer developers like
myself and the developers who were hired outright by Digium to work on Asterisk.

Even with the tension, we were dedicated to the project and really wanted to see it
succeed. We were having those regular weekly conference calls, and they were really
starting to help get the developers motivated. We decided that we should have a
live in-person meeting so we could all share our knowledge of telephony and hang
out for a few days. We had no idea what we were doing, but we decided to do it
anyway and call it ClueCon. Having a clue meant you knew what you were doing,
so ClueCon was a conference to help everyone to "get a clue". I do acknowledge, I
just said we did not know what we were doing either, so there was a bit of irony that
people with no clue would start a clue con. However, that turned out to be more

of a blessing than a problem, and the clue we were referring to was in regards to
telephony, not to running conferences.

[380]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C

Therefore, with several months until the first ClueCon, in the spring of 2005, we had
one of our usual weekly conference calls and began talking particularly in detail
about several shortcomings of Asterisk. This is not uncommon, because our primary
goal was to identify the problems and convert them into solutions. There was, at

the time, a fairly large unruly crowd who was tired of the endless problems they
were experiencing with Asterisk. Many of them joined this weekly call, hoping to
persuade us to look at one of their issues. The more I thought about it, the bigger the
task seemed to unravel some of the big architectural problems that were plaguing us.
Many concepts were monolithic in nature and would not scale. Many features had
several users dependent on them, and changing them with a goal of improvement
could lead to regressions in functionality. It just seemed like some of the problems
could only be solved with a sledgehammer, yanking out some older code and doing
some serious rewrites to some of the deeper recesses of the core code. This did not
seem very viable since it would render Asterisk unusable for months if not a year or
more. That’s when I had the idea: let’s make a 2.0!

It was not the worst idea; I knew it would be challenging but, hey, I thought we
could start a new code base alongside the old one, so we could tear out the parts of
the code that caused the most problems and replace them while still maintaining the
original code for the users who depended on something that worked. I was pretty
excited about the idea and equally shocked when the project leader reacted to my
suggestion of the idea, and he appeared equally shocked that I would even suggest
such a thing, so, in short, we did not make an Asterisk 2.0. Here I was, with a ton of
ideas and a clear mind on exactly what I did and did not like about Asterisk with
nowhere to write them down.

I gazed at that empty text-editor buffer open in an empty directory for an hour. I
knew what I wanted to do, but it was hard to bring it to words. I never could find
the words until I added in several oddly arranged punctuation around them. Those
were not your everyday words; they were symbol names and variable declarations.
I was writing C code. In a few days, I drafted up a basic application in C, tying
together some of my favorite tools from my past experience in programming. I had
the Apache Portable Runtime or APR library, the Perl language, and a few other
packages. I built a core and a loadable module structure, a few helper functions to
use memory pools, and I had a simple command-line prompt that would allow you
to type help if you wanted to see a sarcastic comment about there being no help for
you, and exit to shut the application down. I made a sample module that would let
you telnet to a specific TCP port and have it echo back everything you typed and a
very basic state machine. I called it Choir. I thought of my idea as a series of parts
working together to make one unified voice like a choir. After that initial coding
session, I put it down for a while. ClueCon was coming and I did not want to rush
things as I still thought that there was much to consider.

[381]

www.it-ebooks.info

http://www.it-ebooks.info/

The History of FreeSWITCH

The first ClueCon

August of 2005 was the first annual ClueCon conference. We had several open source
VolIP project leaders including Craig Southeren, one of the authors of OpenH323, and
Mark Spencer, creator of Asterisk and the same person who did not like my Asterisk
2.0 idea. However, it was awesome to get these guys in the same room. We filled the
day with presentations, with discussions going back and forth, and we really got
everyone thinking. It was a huge success, and I left the conference energized and
ready to work on my Choir code again. However, I didn’t. Instead I talked it through
on our conference call for months while trying to keep my struggling Asterisk based
platform afloat. It was Fall now and the turmoil in the Asterisk community finally
erupted into a rebellion. A sizable percentage of the community forked Asterisk into
a new application called OpenPBX.

I totally understood why they did it, and I supported them the best I could. I donated
all the code I had written for Asterisk, for them to do what they pleased. I helped
when I had a chance, but could never fully get involved with the effort because I
still had the same problem —I saw a need to really tear everything down to the basic
level and the founders of the new project were mostly interested in fixing specific
pressing issues that were not being addressed in a timely manner by the Asterisk
core team. We still had the conference calls, but mostly nobody would show up
from the Asterisk project because they were not happy with the idea of cavorting
with the rebels. I apologized one day because I could not try to solve any problem in
OpenPBX that would not boil down to totally gutting everything and writing a new
core. That's when someone asked me, "How long do you think it would take to get
your new code to make a call?" Like Mr. Owl from the Tootsie Pop commercials, I
had no idea so I decided to find out. A-one, a-two, a-three weeks (give or take).

The first module that actually produced sound was called mod_woomera; it was

an endpoint module using the Woomera protocol written by Craig Southeren, the
same person I had just met at ClueCon. I made a similar module for Asterisk and

it was a simple protocol and required no codecs or anything fancy. The idea was
that it would take the complexity out of H323 and allow applications to use it via
this simple protocol that could be easily integrated into VoIP applications, so it
seemed like a great place to start. As I started to work, I realized that I needed more
elements in my basic core and slowly started to bring the code together to a point
where I could make a call to the Woomera-powered H323 listener process and get
activity in my Pandora code. Yes, I renamed it to "Pandora" because nobody liked
the name Choir. I joyously listened to the Alan Parsons Project hit Sirius stream into
my speakers from my application for the first time. This was even more exciting than
the first time I made Asterisk work because I actually wrote this code myself from
scratch and it was doing something.

[382]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C

Now I was getting somewhere; I figured out how to make two channels bridge to
each other, then how to support some other protocols and do a few basic things
beyond a sarcastic help message and an exit routine. The idea came and went to

dub this code OpenPBX 2, and finally when I had enough with naming arguments, I
decided once and for all what I wanted to call the application: FreeSWITCH. I finally
had a name I knew I was going to stick with and some working code, and a lot of
ambition. I put my head down and just began coding. There was work to be done
everywhere. It was too overwhelming to think about it really. I just kept plowing
through the code and by the time I reached January of 2006, I had enough to share
with the public. We opened up our code repository to developers asking them to
register for a developer account to gain access to the code as a way to make sure only
those who were serious would bother to complete the registration process. We had
some people checking it out and providing feedback, and we really started to feel
like we had a real project.

We had a module to bridge calls, one to play sounds, a few codecs, some examples
of Dialplan modules, and a few other things. Oh, and did I mention it worked on
Windows too?

Our original site is still preserved, though none of the links are active:
http://www.freeswitch.org/old index.html

Introducing FreeSWITCH

Somewhere along the way from all that planning, we actually produced code that
could run on Windows as well as Linux and Mac OSX. My original teammates,
Michael and Brian, were there from the beginning, and Mike, having a lot of
experience in Windows, made sure we could compile and run the code in MSVC. It
was a struggle at first, but after having to correct tons of compiler errors on many
occasions, I began to learn how to code in a way that would be friendly on most
platforms on the first try. Time started to fly and before I knew it, it was ClueCon
time again. That year I gave my first presentation on FreeSWITCH, demonstrating
the core design and fundamentals that are outlined in the opening chapter of

this book. We saw very exciting modules, such as an endpoint module that can
communicate with Google Talk. My presentation featured a live demonstration of
several thousand calls being set up and torn down by our mod_exosip SIP module. It
was a nice demo, but we still weren’t happy.

[383]

www.it-ebooks.info

http://www.it-ebooks.info/

The History of FreeSWITCH

Exosip was a SIP library that was really nothing more than a helper library to Osip, an
open source SIP library that provided most of the functionality. The Exosip made it

a bit easier to get an endpoint moving, and we decided to use it, but we encountered
several mishaps with it, and I started to feel that same sinking feeling I had when I
was trying to get Asterisk working, so we started looking for a replacement. It didn’t
help that there was potential licensing conflicts because Exosip claimed to be GPL
despite the fact that its parent library was LGPL (which, in my opinion, is a much
more reasonable license). As we chose MPL for our project, it was forbidden by the
GPL to allow GPL'd code to be included in an MPL app. License debates are fun and a
good way to get people excited, but that was not the time for one.

We searched the land of open source far and wide, for both a new SIP stack and
an RTP stack to use in FreeSWITCH since there was quite the high demand for
SIP functionality. We auditioned several libraries for both roles and we ended up
trying at least five different stacks for both protocols. I never found an RTP stack
that satisfied me, so I wrote my own. I was not foolish enough to try the same
thing with SIP. Having a front row seat to the mess caused by Asterisk trying to
write a SIP stack from scratch and the failure with Exosip in my rear-view window,
I continued to search for a SIP stack until I found Sofia-SIP, a SIP stack written by
Nokia. We built a functional mod_sofia to test things out, and we were highly
impressed. We continued to polish the module until we reached the point where
we could drop mod_exosip and use mod_sofia as our primary SIP endpoint
module. This was only the beginning really, as I still find myself adding code to
mod_sofia on a regular basis to this day. SIP is a complicated and frightening
protocol that brings many unpleasant thoughts to mind even saying its name, but
now is not the time for that conversation.

We gave another presentation on FreeSWITCH at ClueCon 2007, this time with a
new SIP module and a lot more code. Now we also had OpenZAP, a TDM library
to connect FreeSWITCH to telephone hardware. OpenZAP was later replaced to
FreeTDM and is now maintained by Sangoma Corporation. I experienced the joy
of making the very same cards I got working on Asterisk so long ago to work with
FreeSWITCH as well. We had announced that soon we would be releasing the 1.0
edition of FreeSWITCH. Anyone who read our original home page that I posted
earlier might notice we announced that an official release was "coming soon" way
back then. This was announced in January of 2006, and we were trying desperately
to make things the way we wanted them ever since. We really wanted to focus on
making a stable core before all else, and we were making real progress, but we still
were not ready to release 1.0.

[384]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C

By spring of 2008 we had stable SIP, we had the event socket to remotely control
FreeSWITCH, we had a module to interface with our API commands over HTTP,
we had XML curl and a nice big list of features. We finally decided it was the right
time for a release, so we bit the bullet and released FreeSWITCH 1.0 Phoenix. I
chose Phoenix as the release name because I felt that all of our hard work was born
from the ashes of our previous failures, and though it had been used by a lot of
others, including NASA who was launching the Phoenix to Mars at the same exact
time, I think it was the appropriate title.

ClueCon 2008 featured the announcement that 1.0 had been finally released earlier
that year in late May. Several presentations also related to FreeSWITCH as well as
the other open source projects such as Asterisk, who had produced a 1.6 release that
year. We spent the next entire year focusing on wideband audio support and other
advanced features such as on-the-fly re-sampling of unlike audio streams. We added
many new SIP features such as presence indications and other fancy things beyond
simple call setup and a follow-up 1.0.1 release.

In 2009, we released 1.0.2 to 1.0.4 versions and presented FreeSWITCH again at the
fifth annual ClueCon. Some of our early innovations matched up with reality by that
time, as we were able to demonstrate Polycom phones using high-definition audio
on their new Siren codec as well as support for the Skype protocol as an endpoint
module. The FreeSWITCH presentation was an overview of the things you probably
didn’t realize you could do unless you learn to think fourth-dimensionally, as Dr.
Emmett Brown (from Back To The Future) and I both like to put it. We have some
similarities to Asterisk in behavior, but we also have an entirely new paradigm that
opens the door to some incredible things you can do with just a PC and a telephone.

In 2010 we had ClueCon MMX at the Trump Tower! It was one of the most
memorable ClueCons ever, and the first edition of this book was released. We even
gave a few away as prizes! We gave a detailed presentation on FreeSWITCH and
performance. We released 1.0.5 and 1.0.6. The theme that year seemed to be Erlang.
Everyone was getting on the bandwagon for doing event-driven architecture, so we
were definitely in the right place at the right time!

2011 was a big transition year for the project. Inspired by our own presentation on
performance the year before we made some drastic changes to the Sofia SIP module
to try to de-serialize it at the point where the messages met the application so we
could push the message processing for each call into its own thread. This change
yielded a lot more parallelization of operations and reduced the likelihood of the
entire SIP stack getting stuck behind an issue happening on a single channel. For
ClueCon that year, we went Euro at the fabulous Sofitel. We demonstrated a bunch
of new features added to help developers, such as the concept of array variables
and scoped variables so you can set a channel variable that is only set during the
execution of a particular app.

[385]

www.it-ebooks.info

http://www.it-ebooks.info/

The History of FreeSWITCH

In early 2012 we announced a new initiative to create a stable branch to the
FreeSWITCH code repository. This is a daunting task because you must separate
your mature code from your newer code and do additional checks on changes to
respective branches to make sure everything is running smoothly. We’ve been
working hard on this, and the refresh of this book will mark the beginning of the
FreeSWITCH 1.2 stable branch. We had a great ClueCon at the Hyatt and showcased
several new features such as faxmodem emulation designed to work with Hylafax
and also mod_htttapi that is covered in an earlier chapter in this book.

At the time of the writing of this book we have most of 2013 ahead of us. Having
survived the Mayan apocalypse, we look on to bridging the gap between telephony
and HTMLS5 with support for WebRTC and the first alpha releases of FreeSWITCH
1.4. ClueCon will be held at the Hyatt again, and they have remodeled the entire
building for our enjoyment. We hope to see you all there, and I hope you have
managed to learn a little bit more about FreeSWITCH and why I decided to start
typing those first few characters in that empty text-editor that has blossomed into
nearly half a million lines of code just inside the core components of FreeSWITCH.

[386]

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

403-Forbidden 57
404-Not Found 57
408-Timeout 57

0911, extension 64
0912, extension 64
0913, extension 64
1000 - 1019, extension 64
2000, extension 64
2001, extension 64
2002, extension 64
3000 - 3399, extension 64
4000 or *98, extension 64
5000, extension 64
5900, extension 64
5901, extension 64
6000, extension 64
6001-6099, extension 64
7243, extension 64
9178, extension 64
9179, extension 64
9180, extension 64
9181, extension 64
9182, extension 64
9183, extension 64
9184, extension 64
9191, extension 64
9192, extension 64
9195, extension 64
9196, extension 64
9197, extension 64
9198, extension 64
9664, extension 64
Aleg 93

character 31

Index

@domain parameter 112
** + extension number 64
<groups> elements 67
/log command 52
<match> node 131

A

Aastra phones 58, 59

Access Control List. See ACL

accountcode variable 71

ACD 77

ACL 237,293

actions 98,174-176

addBody($value) 253

addHeader($header_name, $value) 253

admin name 57

admin password 57

advanced routing 132,133

Aleg 46

ALG (Application Layer Gateway) 290

alone-sound 328

analog telephone adapter. See ATA

announce-count parameter 328

answer application 109

anti-actions 98

Apache Portable Runtime. See APR

API 9, 243

api($command], $arguments]) 255

api command 243

application module 9

APPLICATION parameter 192

Application Programming Interface.
See API

APR 32

asr-engine 265

www.it-ebooks.info

http://www.it-ebooks.info/

asr-grammar 265
Asterisk
configuration files 366
debugging 365
migrating from, to FreeSWITCH 363, 364
SIP phones 366
starting 364
stopping 364
voicemail 373
async keyword 241
ATA 23
attribute-value pairs. See AVPs
audio content encryption
about 316
SRTP, enabling 317
SRTP, encryption with 317
ZRTP, encryption with 318-320
authentication 69
authorization 69
auth <password> 243
Automatic Call Distribution. See ACD
Automatic Speech Recognition (ASR) 9,13
auto-record parameter 325
AVPs 14

B

B2BUA 84
back-to-back user agent. See B2BUA
bad-pin-sound 329
beep-file 267
bgapi($command[, $arguments]) 255
bgapi command 244
bind_digit_action command 192
bind_meta_app command 191
B leg 93 46
blue.box 351
break 273
break flag 180
break parameter
always 180
never 180
on-false 180
on-true 180
bridge application 46,106

C

Call Detail Record (CDR) data 49
caller-controls parameter 325, 329
caller-id-name parameter 327
caller-id-number parameter 327
caller profile variables 48
callers
connecting, to conference 331
callgroup variable 72
call legs 46,92, 93
calls testing, for multiple phones
about 63
another telephone, calling 63
call, parking 63
conference, calling 63
calls testing, for single phone
ClueCon 62
demonstration IVR menu 62
echo test 62
FreeSWITCH public conference 62
information application 63
music on hold test 62
sample sub-menu 62
Tetris extension 61
channel variables
about 48, 93, 95,197
accessing 94, 95
and call setup 198, 199
chat module 9
chat rooms
in other languages 358
on irc.freenode.net 357
Chatzilla 358
check_acl 185
check command 343
cidlookup 185
ClueCon 62, 382-386

ClueCon open source developer conference

about 361
URL 361
code
building 30
codec module 9
Colloquy 358
comfort-noise parameter 327

[388]

www.it-ebooks.info

http://www.it-ebooks.info/

command line interface
used, for call making 227, 228
Command Line Interface (CLI)
about 41, 50, 294
FreeSWITCH, controlling through 50, 51
commands
executing, ESL used 229-231
conditions 173-180
condition tag 48
condition variables
about 182
ani 182
aniii 182
caller_id_name 182
caller_id_number 182
chan_name 182
context 182
destination_number 182
dialplan 182
network_addr 182
rdnis 182
source 182
uuid 182
conference
DATA 272
active conferences, controlling 332
profile 272
URL 332
conference-flags parameter 326
conference permission 279
conference profiles
about 324
alone-sound 328
announce-count parameter 328
auto-record parameter 325
bad-pin-sound 329
caller-controls parameter 325
caller-id-name parameter 327
caller-id-number parameter 327
comfort-noise parameter 327
conference-flags parameter 326
custom sounds 328
energy-level parameter 326
enter-sound 328
exit-sound 328
interval parameter 325
is-locked-sound 328

is-unlocked-sound 329
kicked-sound 328
locked-sound 328
max-members parameter 327
max-members-sound 329
member-flags parameter 326
moh-sound 329
muted-sound 328
perpetual-sound 329
pin parameter 327
pin-sound 329
rate parameter 325
sound-prefix parameter 328
suppress-events parameter 328
tts-engine parameter 327
tts-voice parameter 327
unmuted-sound 328
configuration files
Asterisk 366
FreeSWITCH 366
confirm-key attribute 122
confirm-macro attribute 122
connected() 254
contexts
about 47, 88,172
default 89
features 89
internal context 172
public 89
public context 172
continue 274
curl 185
custom events 19

D

daemon 42
database queries
about 202, 203
database table
about 335
creating, for MySQL 336
creating, for PostgreSQL 336
deaf 326
debugging
Asterisk 365
FreeSWITCH 365

[389]

www.it-ebooks.info

http://www.it-ebooks.info/

delHeader($header_name) 253
demo IVR

in HTTAPI 282-285
demonstration configuration 22,23
demonstration IVR menu 62
design, FreeSWITCH 8, 9
development branch 29
dial

DATA 271

caller-id-name 271

caller-id-number 271

context 271

Dialplan 271
Dialplan

about 12, 87

actions 174,175

concepts 171

conditions 173,174

contexts 172,173

overview 168-171
Dialplan applications

about 105

answer 109

bridge 106

hangup 110

ivr 109

play_and_get_digits 108

playback 106

pre_answer 110

say 106, 107

set 110

sleep 109

transfer 110
Dialplan elements, FreeSWITCH 88
Dialplan functions

about 200

database queries 202

real-time condition evaluation 201

SIP contact parameters 203, 204

string, conditioning 202
dialplan module 9
Dialplan processing

working 98-102
dial-set-context permission 279
dial-set-Dialplan permission 279
Dialstring formats 111, 113
DID 89

digest authentication 54, 69
digit-len attribute 121
digit-timeout 265, 267
directory module 9, 70
disconnect() 257

dist-dtmf 326
divert_events 246

domain 70

E

easyroute 185

eavesdrop command 193

echo test 62
effective_caller_id_name variable 71
effective_caller id_number variable 71
encryption, VoIP

about 312
media 312
signalling 312

endconf 326
endpoint module 9,11
endpoints

about 345

GSM endpoint 346, 347

mod_gsmopen, GSM with 348

mod_skypopen module,
Skype with 347, 348

Skype endpoint 346, 347

TDM, with FreeTDM 349

energy-level parameter 326
enter-sound 328

enum 185

error-file 265

error() function 164

ESL

about 215, 251, 351
ESLevent object 253
ESL object 252
supported libraries 252

ESLconnection object

about 254

bgapi($command|, $arguments]) 255
connected() 255

disconnect() 257
events($event_type,$value) 256
execute($app|, $arg][, $uuid]) 256

[390]

www.it-ebooks.info

http://www.it-ebooks.info/

executeAsync($appl[, $arg][, $uuid]) 257
filter($header, $value) 256
new ($fd) 254
new ($host, $port, $password) 254
recvEvent() 256
recvEventTimed($milliseconds) 256
send($command) 255
sendEvent($send_me) 256
sendRecv($command) 255
setAsyncExecute($value) 257
setEventLock($value) 257
socketDescriptor() 254
ESLevent object
about 253
addBody($value) 253
addHeader($header_name, $value) 253
delHeader($header_name) 253
firstHeader() 254
getBody() 253
getHeader($header_name) 253
getType() 253
nextHeader() 254
serialize([$format]) 253
setPriority([$number]) 253
ESL object
about 252
ESLconnection object 254
eslSetLogLevel($loglevel) 252
ESL scripts
versus built-in languages 229
eslSetLogLevel($loglevel) 252
eval 185
event-based modules
about 235
mod_event_socket 235, 236
event category 234
event command 245
event handlers module 9, 235
event message 233
events
about 185
from Dialplan 241
mod_event_multicast 242
sending 240
events($event_type,$value) 256
event sending, examples
custom notify messages 261

phone lights, sending 258
phone lights, setting 259
phone, rebooting 260
phone reconfiguration, requesting 260
Event Socket Library. See ESL
Event Socket Library example 258
EventSocket (Python/Twisted)
about 353
URL 353
event system architecture 16, 233, 234, 235
event system commands, FreeSWITCH
api command 243
auth <password> 243
bgapi command 244
divert_events command 246
event command 245
execute command 249
filter command 246
filter delete command 247
hangup command 250
linger command 251
log <level> command 250
noevents command 246
nolinger command 251
nolog command 250
nomedia command 250
sendevent 248
sendmsg <uuid> 248
event type 234
example config 45
example configuration. See example config
example, Dialplan
calls, testing for multiple phones 63
calls, testing for single phone 61
extension number, functions 64
testing 61
execute
DATA 270
application 270
data 270
execute($appl, $arg][, $uuid]) 256
executeAsync($appl, $arg][, $uuid]) 257
execute command 249
exit-sound attribute 119, 328
Exosip 384
export 185
versus set 205

[391]

www.it-ebooks.info

http://www.it-ebooks.info/

exposed functions 8
extended-data permission 278
Extensible 69
extension number
functions 64
extensions
about 12, 47, 89,178,179
conditions 90, 91
external profile 84

F

Fail2Ban
about 310
configurations, filtering 311
Jail configurations 311
other considerations 312
features context 89

Festival Lite text-to-speech. See TTS

file module 9

filter 246

filter($header, $value) 256

filter delete 247

firstHeader() 254

flush command 344

formats module 9

Freenode
URL 358

FreePyBX
about 350
URL 350

FreeSWITCH
about 7, 46, 383, 384
compiling, for Linux 30
compiling, for Windows 35
configuration files 366
console application 251
controlling, with CLI 50-53
debugging 365
Dialplan elements 88
event sending, examples 258
event system 233
event system commands 243
general overview 234
history 377,378
launching 41
mailing lists 355-357

migration from Asterisk 363
module types 9
on client side 299, 300
passwords 320
running, in background 42, 43
starting 365
stopping 365
URL 289
uses, in NAT 300, 301
voicemail 374
web page 360
web page, URL 359
wiki page 360
wiki page, URL 359
wiki, URL 364
FreeSWITCH API. See FSAPI
FreeSWITCH, compiling for Linux
about 31
configure script, running 31, 32
edit modules.conf 31
Makefile, running 32, 34
modules.conf.xml, editing 34
music files, installing 35
sound 35
sound files, installing 35
FreeSWITCH, compiling for MacOX. See
FreeSWITCH, compiling for Linux
FreeSWITCH, compiling for Unix. See
FreeSWITCH, compiling for Linux
FreeSWITCH, compiling for Windows
about 35
solution, MSVC/MSVCEE used 36-41
user considerations 36
FreeSWITCH environment
operating system 26
setting up 26
FreeSWITCHeR (Ruby)
about 352
URL 352
FreeSWITCH public conference 62
FreeSWITCH user directory
about 67-69
working with 70
FreeTDM
with TDM 349
FSAPI 19, 20
fs_path field 295

[392]

www.it-ebooks.info

http://www.it-ebooks.info/

FSSocket (Perl)
about 353
URL 353
full keyword 241
FusionPBX
about 350
URL 350

G

gateway

about 79

calls, making 82, 83

calls, receiving 82

setting up 79-81
getBody() 253
getHeader($header_name) 253
getInfo() 255
getType() 253
getVar

name 274

permanent 274
global variables 50, 199, 200
Graphical User Interface. See GUI
greet-long attribute 118
greet-short attribute 119
GSM

endpoint 346, 347

with mod_gsmopen module 348, 349
GUI 28

H

hangup
about 250
cause 273
hangup application 110
hard phone
Aastra phones 58, 59
about 53, 57
admin name 57
admin password 57
IP address 57
Polycom phones 59, 60
Snom phones 60, 61
help command 53
HTTAPI
about 264

child tags 264
demo IVR 282-285
params 264
syntax 264
variables 264
work 264
work actions 265
hunting phrase 190

IDE 29
information application 63
Inline execution

about 183

check_acl 185

cidlookup 185

curl 185

easyroute 185

enum 185

eval 185

event 185

export 185

ler 185

nibblebill 185

odbc_query 185

presence 185

set 185

set_global 185

set_profile_var 185

set_user 185

sleep 185

unset 185

verbose_events 185
input-timeout 265
Integrated Development Environment.

See IDE
Interactive Voice Response. See IVR
inter-digit-timeout attribute 120
internal context 172
internal profile 84
Internet Relay Chat. See IRC
Internet Telephone Service Providers
(ITSPs) 305

interval parameter 325
intruders

detecting 309

[393]

www.it-ebooks.info

http://www.it-ebooks.info/

invalid-sound attribute 119
IP address 57
IP authorization 69
IPv6 289
IRC
about 357
Chatzilla 358
clients 358
Colloquy 358
IRSSI 358
mIRC 358
pointers 359
using 358
IRSSI 358
is-locked-sound 328
is-unlocked-sound 329
IVR 47,115,135
ivr application 109
IVR concepts, advanced
about 152
database connections, LuaSQL
used 152-157
Lua patterns 163, 164
regular expressions 163, 164
web call. making 158-163
IVR engine
calls, routing to 125
menu definitions 118
menu destinations 122
nesting 125
overview 116
IVR XML configuration file 116

K

Kazoo

about 351

URL 351
KEY parameter 192
kicked-sound 328

L

language bindings
about 215, 225
configurations, generating
dynamically 225, 227
languages module 9, 22

latest source project 29
Icr 185
leg 46
length 202
libraries
about 351
EventSocket (Python/Twisted) 353
FreeSWITCHeR (Ruby) 352
FSSocket (Perl) 353
Librevox (Ruby) 352
Liverpie (Ruby) 352
Vestec Automatic Speech Recognition 353
Librevox (Ruby)
about 352
URL 352
linger 251
Linux/Unix 25
LISTEN_TO parameter 192
Liverpie (Ruby)
about 352
URL 352
locked-sound 328
log 185
clean 273
level 273
loggers module 9
log <level> 250
loops 265
Lua
about 135
running, from Dialplan 136
syntax, basic 137, 138
starting with 136

Mac OS X 27
mailing lists

about 355, 357

URL 355
main registry 50
Makefile 32
max-failures attribute 120
max-members parameter 327
max-members-sound 329
max-timeouts attribute 121
member-flags parameter 326

[394]

www.it-ebooks.info

http://www.it-ebooks.info/

menu-back action 124
menu definitions, IVR
about 118
confirm-key attribute 122
confirm-macro attribute 122, 123
digit-len attribute 121
exit-sound attribute 119
greet-long attribute 118
greet-short attribute 119
inter-digit-timeout attribute 120
invalid-sound attribute 119
max-failures attribute 120
max-timeouts attribute 121
timeout attribute 120
tts-engine attribute 121
tts-voice attribute 121
menu destinations, IVR
menu-back 124
menu-exec-app 124
menu-play-sound 124
menu-top 124
menu-exec-app action 124
menu-play-sound action 124
menu-top action 124
Microsoft Visual C++. See MSVC
milliseconds 267
mIRC 358
mod_commands command 196
mod_conference configuration
about 324
active conferences, controlling 332
advertise section 330
caller controls 329, 330
callers, connecting to 331
conference profiles 324-329
XMPP events, receiving 330
XMPP events, sending 330
mod_conference module 18, 19
mod_dptools command
about 191-194
bind_digit_action command 192
bind_meta_app command 191
eavesdrop command 193
send_display command 194
mod_event_multicast 242
mod_event_socket
about 235, 236

event socket settings, configuring 236, 237
events, reading 237, 238
mnimum event information 239
mod_event_socket module 236
mod_exosip SIP module 383
mod_gsmopen module
about 346
GSM with 348, 349
Skype 347, 348
mod_httapi configuration file
about 275, 276
data, storing across successive requests 280
exiting 280
missed parameters 281
permissions 277-280
mod_httapi module 263
mod_nibblebill
about 332
billing, default method 336, 337
billing (post-pay) 333
billing (pre-pay) 332, 333
call, billing 336
database tables 335
database tables, creating for MySQL 336
database tables, creating for PostgreSQL
336
design goals 333, 334
enabling 334
example 338
fraud, preventing 333
nibble billings, alternative for 337
pay-per-call service billing 333
use cases 332
mod_nibblebill, examples
API command 343
Application command 343
bill, B leg based 345
call hanging up, on balance depletion 342
check command 343
CLI command 343
flush command 344
funds, adding 345
funds, deducting 345
pause command 344
rates per area code, different 340
rates per service delivery, different 341, 342
rates per user, different 338, 339

[395]

www.it-ebooks.info

http://www.it-ebooks.info/

rates per user, single 339, 340

reset command 344

resume command 344

session heartbeat, enabling 345
mod_skypopen module

about 346

URL 348
mod_sofia command 194, 196
module, types

application module 9

Application Programming Interface (API) 9

Automated Speech Recognition (ASR) 9

chat module 9

codec module 9

dialplan module 9

directory module 9

endpoint module 9

event handlers module 9

file module 9

formats module 9

languages module 9

loggers module 9

say module 9

Text-To-Speech (TTS) 9

timers module 9

XML interfaces 9
mod_xml_curl

basics 216,217, 218

summary 225
mod_xml_curl configuration 222-224
mod_xml_curl Dialplan 219, 220
mod_xml_curl folder 220-222
mod_xml_curl method 215
moh-sound 329
MSVC 28
MSVCEE 28
music on hold test 62
muted-sound 328
my_status variable 20

N

NAT
about 288
advanced options 297, 298
evolution 289
FreeSWITCH, uses 300
pitfalls 290-292

settings 297, 298
settings, demystifying 292-295
versus PAT 288
NAT-PMP
URL 299
Network Address Translation. See NAT
network level protection
about 303
Fail2Ban 310
interfaces, separating 304
intruders, detecting 309
registration, monitoring 309, 310
setup sample, complex 307, 308
setup sample, simple 305, 306
traffic, restricting 304
VLANs 308
new($fd) 254
new($host, $port, $password) 254
new extension
creating 103-105
nextHeader() 254
Nibblebill. See mod_nibblebill
nibble method 336, 337
nixevents 248
noevents 246
nolinger 251
nolog 250
nomedia 250
NOTIFY event 240

(0

odbc_query 185
offset 202
onlnput function 150
OpenZAP 384
operating system
about 26
prerequisites 27
operating system, prerequisites
Linux/Unix 27
Mac OS X 27
Windows 28
originate API 215
originate command 113
outbound_caller id_name variable 72
outbound_caller_id_number variable 72

[396]

www.it-ebooks.info

http://www.it-ebooks.info/

P

PARAMETERS parameter 192
params 264
parsing
about 98
phrase 190
passwords
about 320
registration 320
voicemail passwords 321
PAT
versus NAT 288
pause
digit-timeout 268
error-file 267
input-timeout 268
loops 268
milliseconds 267
name 267
terminators 268
pause command 344
PCRE 32, 95,163
Perl Compatible Regular Expressions. See
PCRE
Perl Object Environment (POE) 353
perpetual-sound 329
Phrase Macro 17,118
phrases
Phrase Macros, calling 126
using, with IVRs 126
voicemail system 127-131
pin parameter 327
pin-sound 329
PKI (Public Key Infrastructure) 318
Plain Old Telephone Service.
See POTS lines
play_and_get_digits application 108
playback
about 265
asr-engine 265
asr-grammar 265
digit-timeout 265
error-file 265
file 265
input-timeout 265
loops 265

name 265

terminators 265
playback application 106
polycom phones 59, 60, 298
Port Address Translation. See PAT
POTS lines 8
pre_answer application 110
pre-processor 21
presence 185
proxied 170
ptime 325
public context 172

R

rate parameter 325
record

beep-file 267

digit-timeout 267

error-file 267

file 267

limit 267

name 267

terminators 267
recordCall

limit 272

name 272
recvEvent() 256
recvEventTimed($milliseconds) 256
regex command 97
regex operator

all value 186

any value 186

values 186

xor value 186
regular expression pattern-matching 12
regular expressions 46, 96, 97
reloadxml command 74, 79
reset command 344
RESPOND_ON parameter 192
resume command 344
RFC-1918 IP addresses

URL 293
RFC (request for comment) 11
ROUTING 48
RTP stream. See audio content encryption

[397]

www.it-ebooks.info

http://www.it-ebooks.info/

S

sample sub-menu 62
say

application 106

digit-timeout 269

error-file 269

gender 269

input-timeout 269

language 269

loops 269

method 269

name 269

terminators 269

text 269

type 269
say module 9
scripting tips 164, 165
Secure Sockets Layer. See SSL
send($command) 255
send_display command 194
sendevent 248
sendEvent($send_me) 256
sendevent command 240
sendmsg <uuid> 249
sendRecv($command) 255
serialize([$format]) 253
service 42
session_id parameter 280
Session Initiation Protocol. See SIP
session:ready() method 145
set 185

versus export 205
set application 110
setAsyncExecute($value) 257
setEventLock($value) 257
set_global 185
setInputCallback method 151
set-params permission 277
setPriority([$fnumber]) 253
set_profile_var 185
set_user 185
set-vars permission 277
show calls command 53
show channels command 53
SIP

about 11, 67

contact parameters 203, 204
digest authentication 54
modifying 310
settings 53
SIP Endpoint module 48
SIP phone
analysis 372
Asterisk configuration 367
configuring 53
FreeSWITCH configuration 368-371
SIP profiles 84
SIP registrar 54
SIP signalling
about 313
encryption options, selecting 313
SSL, encryption with 314
SSLV2/3, setting up 314
TLS, encryption with 315
SIP telephone 23
Skype
with mod_gsmopen module 347, 348
Skype endpoint 346, 347
slash command 51
sleep application 109, 185
sms
DATA 271
to 271
Snom phones 60, 61
socketDescriptor() 254
sofia_contact API command 279
Sofia-SIP
URL 11
Sofia SIP module 69
soft phone
about 53
X-Lite soft phone 54-56
software-based SIP softphone 23
sound-prefix parameter 328
source
downloading 29
speak
about 268
digit-timeout 268
engine 268
error-file 268
input-timeout 268
loops 268

[398]

www.it-ebooks.info

http://www.it-ebooks.info/

name 268

terminators 268

text 268

voice 268
SRTP

about 316

enabling 318

encryption with 317
SSL

encryption with 314
SSLV2/3 encryption

about 314

setting up 314, 315
stable source project 29
status command 20, 53
string conditioning 202
string.gsub function 162
subclass 19
suppress-events parameter 328
SWIG 252

T

TDM

with FreeTDM 349
telephony revolution 7, 8
temp-action 265
terminators 265
Tetris extension 61
text-only editors

about 29

Emacs 28

Notepad++ 28

Vi/Vim 28
Text-to-Speech (TTS) 13
TGML 152
three-way call 46
timeout attribute 13,120
timers module 9
TLS

encryption with 315
toll_allow variable 71

Tone Generation Markup Language.

TTS 31

tts-engine attribute 121
tts-engine parameter 327
tts-voice attribute 121
tts-voice parameter 327

U

Unix-like 25
unloop 99
unmuted-sound 328
unset 185
unstable branch 29
UPnP

URL 299
URI (Uniform Resource Identifier) 295
url parameter 276
user

adding 72-75
user agents 84
user_context variable 71
user features 70, 71
user groups 77,78

\'

var 202
variables
about 264
caller profile fields 197
channel variables 197
global variables 199, 200
passing, via call headers 206
testing, with regular expressions 197
utilizing 197
verbose_events 185
version command 53
Vestec Automatic Speech Recognition
about 353
URL 353

Visual C++ Express Edition. See MSVCEE

VLANs 308
vmname

See TGML digit-timeout 266
tone stream 49 error-file 266
transfer application 110 id 266
Transport Layer Security. See TLS input-timeout 266
loops 266
[399]

www.it-ebooks.info

http://www.it-ebooks.info/

name 266

terminators 266
voice applications

building 138, 139, 140

conditions 142-152

looping 142-151

simple IVR 141, 142
voicemail

accessing 375

auth-only 275

check 275

domain 275

id 275

in Asterisk 373

in FreeSWITCH 374

profile 275

testing 75,76
voicemail, accessing

Asterisk 375

FreeSWITCH 375, 376
Voicemail application 15-18

work 264

work actions, HTTAPI
about 265
action 265
break 273
conference 272
continue 274
dial 271
execute 270
getVar 274
hangup 273
log 273
pause 267, 268
playback 265
record 267
recordCall 272
say 269,270
sms 271
speak 268
temp-action 265
vmname 266

voicemail_message_count macro 130 voicemail 275
voicemail passwords 321

Voice over Internet Protocol (VoIP) 7 X

VoIP

encryption 312
security 303

VoIP Security
audio, protecting 316
network level protection 303
passwords, protecting 320
SIP signalling 313

w

waste 326

Web Graphical User Interfaces.

See Web GUIs
Web GUIs
about 350
blue.box 351
FreePyBX 350
FusionPBX 350
Kazoo 351
web page 360
wiki page 360
Windows 28

X-Lite soft phone 54-56
XML Dialplan applications
mod_commands command 196
mod_dptools command 191-194
mod_sofia command 194, 196
XML Dialplan cookbook
about 206
alternate outbound gateways 211
caller ID, matching by 208
DIDs, routing to extensions 210
endpoints, with enterprise originate 211,
212
IP address, matching by 206-208
number and strip digits, matching 208
number, calling 207
number call, matching by 206
registered device, calling 209
XML Dialplan module
about 176,177
actions 185, 186
anti-actions 185, 186
conditions 179-181

[400]

www.it-ebooks.info

http://www.it-ebooks.info/

condition variables 182, 183
extensions 178, 179
inline execution 183-185
nested conditions 188, 189
regex operator 186-188
XML interfaces 9
XML registry 21
XMPP events
receiving 330
sending 330
xor value 186

Y4

ZRTP
about 317
advantages 319
encryption with 318-320
URL 313

[401]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
FreeSWITCH 1.2

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

FreeSWITCH 1.0.6
ISBN: 978-1-847199-96-6 Paperback: 320 pages

Build robust high performance telephony systems
using FreeSwitch

1. Install and configure a complete telephony
system of your own even if you are using
FreeSWITCH for the first time

2. In-depth discussions of important concepts like
the dialplan, user directory, and the powerful
FreeSWITCH Event Socket

3. The first ever book on FreeSWITCH, packed
with real-world examples for Linux/Unix
systems, Mac OSX, and Windows, along with
useful screenshots and diagrams

FreeSWITCH Cookbook
ISBN: 978-1-849515-40-5 Paperback: 150 pages

Over 40 recipies to help you get the most of your
FreeSwitch server

1. Get powerful FreeSWITCH features to work for
you

-

— | 2. Route calls and handle call detailing records
F reeSWITC H 3. Written by members of the FreeSWITCH
Cookbook

development team

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Building Telephony
Systems with Asterisk

Building Telephony Systems With

Asterisk
ISBN: 978-1-904811-15-2 Paperback: 176 pages

An easy introduction to using and configuring
Asterisk to build feature-rich systems for small and
medium businesses

1. Install, configure, deploy, secure, and maintain
Asterisk

2. Build a fully-featured telephony system and
create a dial plan that suits your needs

3. Learn from example configurations for different
requirements

Building Telephony Systems with

OpenSIPS 1.6

Building Telephony System with

OpenSIPS 1.6
ISBN: 978-1-849510-74-5 Paperback: 284 pages

Build scalable and robust telephony systems using
SIP

1. Build a VoIP Provider based on the SIP Protocol

2. Cater to scores of subscribers efficiently with a
robust telephony system based in pure SIP

3. Gain a competitive edge using the most scalable
VoIP technology

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Architecture of FreeSWITCH
	A revolution has begun and secrets have been revealed
	The FreeSWITCH design – modular, scalable, and stable
	Important modules – Endpoint and Dialplan
	Complex applications made simple
	Voicemail
	Multi-party conferencing
	The FreeSWITCH API (FSAPI)
	The XML registry
	Language modules
	The demonstration configuration

	Summary

	Chapter 2: Building and Installation
	Setting up the FreeSWITCH environment
	Operating system

	Operating system prerequisites
	Linux/Unix
	Mac OS X
	Windows

	Text editors and XML
	Downloading the source
	Building from the latest code
	Compiling FreeSWITCH for Linux/Unix/Mac OS X
	Compiling FreeSWITCH
	Step 1 – edit modules.conf
	Step 2 – run the configure script
	Step 3 – run the make and make install utilities
	Step 4 – edit modules.conf.xml
	Step 5 – install sound and music files

	Compiling FreeSWITCH for Windows
	Important considerations for Windows users
	Building the solution with MSVC/MSVCEE

	Starting FreeSWITCH
	Running FreeSWITCH in the background
	Summary

	Chapter 3: Test Driving the
Example Configuration
	Important concepts to understand
	Putting FreeSWITCH to work
	Controlling FreeSWITCH with the CLI

	Configuring a SIP phone to work with FreeSWITCH
	SIP settings
	X-Lite soft phone
	Hard phones
	Aastra phones
	Polycom phones
	Snom phones

	Testing the example Dialplan
	Test calls for a single phone
	The Tetris extension
	Echo test
	Music on hold
	Demonstration IVR
	The information application

	Test calls for two or more phones
	Calling another telephone
	Parking a call
	Calling a conference

	Example Dialplan quick reference

	Summary

	Chapter 4: SIP and the User Directory
	Understanding the FreeSWITCH user directory
	Working with the FreeSWITCH user directory
	User features
	Adding a user
	Testing voicemail
	Groups of users
	Connecting to the world with gateways
	Setting up a new gateway
	Making calls
	Receiving calls
	Making calls without a gateway

	SIP profiles and user agents
	Summary

	Chapter 5: Understanding the
XML Dialplan
	FreeSWITCH XML Dialplan elements
	Contexts
	Default
	Public
	Features

	Extensions
	Conditions

	Call legs and channel variables
	Accessing channel variables
	Regular expressions
	Actions and anti-actions
	How Dialplan processing works
	Creating a new extension
	Important Dialplan applications
	bridge
	playback
	say
	play_and_get_digits
	ivr
	sleep
	answer
	pre_answer
	hangup
	set
	transfer

	Dialstring formats
	Summary

	Chapter 6: Using XML IVRs and
Phrase Macros
	IVR engine overview
	IVR XML configuration file
	IVR engine overview
	IVR menu definitions
	greet-long
	greet-short
	invalid-sound
	exit-sound
	timeout
	inter-digit-timeout
	max-failures
	max-timeouts
	digit-len
	tts-voice
	tts-engine
	confirm-key
	confirm-macro

	IVR menu destinations
	menu-exec-app
	menu-play-sound
	menu-back
	menu-top

	Routing calls to your IVR
	Nesting IVRs

	Using phrases with IVRs
	Calling Phrase Macros
	Phrase Macro examples – voicemail

	Advanced routing
	Summary

	Chapter 7: Dialplan Scripting with Lua
	Getting started with Lua
	Running Lua scripts from the Dialplan

	Basic Lua syntax
	Building voice applications
	Simple IVR – interacting with the caller
	Conditions and looping
	Even more conditions and looping

	Advanced IVR concepts
	Connecting to a database with LuaSQL
	Making a web call with curl
	Lua patterns versus regular expressions

	Scripting tips
	Summary

	Chapter 8: Advanced Dialplan Concepts
	Dialplan overview
	General Diaplan concepts
	Contexts
	Conditions
	Actions

	Putting it all together
	XML Dialplan module review
	Extensions
	Conditions
	Special condition variables
	Inline execution
	Actions and anti-actions
	The regex operator
	Nested conditions

	Pitfalls to avoid
	XML Dialplan applications
	mod_dptools
	mod_sofia
	mod_commands

	Utilizing variables
	Testing variables with regular expressions
	Caller profile fields
	Channel variables
	Channel variables and call setup

	Global variables
	Dialplan functions
	Real-time condition evaluation
	String conditioning
	Database queries
	SIP contact parameters

	Set, export, and legs
	Set versus export

	Passing variables via call headers
	XML Dialplan cookbook
	Match by IP address and call a number
	Match IP address and Caller ID
	Match number and strip digits
	Match number, strip digits, and add prefix
	Call registered device
	Try party A, then party B
	Route DIDs to extensions
	Alternate outbound gateways
	Multiple endpoints with enterprise originate

	Summary

	Chapter 9: Moving Beyond the Static XML Configuration
	The mod_xml_curl basics
	The mod_xml_curl Dialplan
	The mod_xml_curl folder
	The mod_xml_curl configuration
	The mod_xml_curl summary
	Generating configurations dynamically with language bindings
	Making calls from the command line interface
	Using ESL to execute commands
	Summary

	Chapter 10: Controlling FreeSWITCH Externally
	General overview
	Event system architecture
	Event-based modules
	mod_event_socket
	Configuring event socket settings
	Reading events
	Minimum event information

	Sending events
	Events from the Dialplan
	mod_event_multicast

	FreeSWITCH event system commands
	auth <password>
	api
	bgapi
	event
	noevents
	divert_events
	filter
	filter delete
	nixevents
	sendevent
	sendmsg <uuid>
	execute
	hangup
	nomedia
	log <level>
	nolog
	linger
	nolinger

	FreeSWITCH Console application
	Event Socket Library
	Supported libraries
	ESLObject
	eslSetLogLevel($loglevel)

	ESLevent object
	serialize([$format])
	setPriority([$number])
	getHeader($header_name)
	getBody()
	getType()
	addBody($value)
	addHeader($header_name, $value)
	delHeader($header_name)
	firstHeader()
	nextHeader()

	ESLconnection object
	new($host, $port, $password)
	new($fd)
	socketDescriptor()
	connected()
	getInfo()
	send($command)
	sendRecv($command)
	api($command[, $arguments])
	bgapi($command[, $arguments])
	sendEvent($send_me)
	recvEvent()
	recvEventTimed($milliseconds)
	filter($header, $value)
	events($event_type,$value)
	execute($app[, $arg][, $uuid])
	executeAsync($app[, $arg][, $uuid])
	setAsyncExecute($value)
	setEventLock($value)
	disconnect()

	Events in practice
	Event Socket Library example – running
a command
	Examples of sending events to FreeSWITCH
	Setting phone lights
	Rebooting a phone
	Requesting phone reconfiguration
	Custom notify messages

	Summary

	Chapter 11: Web-based Call Control
with mod_httapi
	HTTAPI syntax
	Work actions
	playback
	vmname
	record
	pause
	speak
	say
	execute
	sms
	dial
	recordCall
	conference
	hangup
	break
	log
	continue
	getVar
	voicemail

	mod_httapi configuration file
	permissions
	Exiting
	Storing data across successive requests
	Some parameters are missing from some requests
	Making it easier

	The demo IVR – in HTTAPI
	Summary

	Chapter 12: Handling NAT
	A brief introduction to NAT
	Understanding the evolution of NAT

	The four pitfalls of NAT
	Demystifying NAT settings in FreeSWITCH
	Making media flow
	Advanced options and settings
	FreeSWITCH on the client side
	Other creative uses of FreeSWITCH in a NAT situation
	Conclusion
	Summary

	Chapter 13: VoIP Security
	Network level protection
	Separating interfaces and restricting traffic
	Sample setup – simple
	Sample setup – complex

	VLANs
	Intrusion detection
	Registration monitoring
	Fail2Ban

	Encryption

	Protecting SIP signalling
	Choosing between encryption options
	Encryption with SSL
	Encryption with TLS

	Protecting audio
	Encryption with SRTP
	Encryption with ZRTP

	Protecting passwords
	Registration passwords
	Voicemail passwords

	Summary

	Chapter 14: Advanced Features
and Further Reading
	Multi-user conferencing
	Configuration
	Conference profiles
	Caller controls

	Advertise
	Sending and receiving XMPP events
	Connecting callers to the conference
	Controlling active conferences

	Nibblebill
	Use cases
	Billing (pre-pay)
	Billing (post-pay)
	Pay-per-call service billing
	Maximum credit and/or fraud prevention

	Design goals
	Installation and configuration
	Database tables
	Creating the database table for PostgreSQL
	Creating the database table for MySQL
	Billing a call
	Nibble method (default)
	Alternative to nibble billings

	Examples
	Different rates per user
	Single rate for all users
	Different rates per area code
	Different rates per service delivery
	Hang up the call when the balance is depleted
	Application/CLI/API commands
	Adding and deducting funds
	Enabling session heartbeat
	Bill based on B Leg only

	Alternative endpoints
	Skype and GSM endpoints
	Skype with mod_skypopen

	GSM with mod_gsmopen
	TDM with FreeTDM

	Configuration tools and related projects
	Web GUIs
	FusionPBX
	FreePyBX
	blue.box
	Kazoo

	Supporting libraries
	Liverpie (Ruby)
	FreeSWITCHeR (Ruby)
	Librevox (Ruby)
	EventSocket (Python/Twisted)
	FSSocket (Perl)

	Vestec Automatic Speech Recognition
	Summary

	Appendix A: The FreeSWITCH
Online Community
	The FreeSWITCH mailing lists
	Talking in real time via IRC
	The FreeSWITCH main website and wiki
	The main FreeSWITCH page –
www.freeswitch.org
	The FreeSWITCH wiki page –
wiki.freeswitch.org

	The annual ClueCon open source developer conference

	Appendix B: Migrating from Asterisk
to FreeSWITCH
	Getting started
	Starting and stopping Asterisk or FreeSWITCH
	Basic debugging
	Asterisk
	FreeSWITCH

	Configuration files
	Two SIP phones
	Asterisk configuration
	FreeSWITCH configuration
	Analysis

	Voicemail
	Asterisk
	FreeSWITCH
	Accessing voicemail
	Asterisk
	FreeSWITCH

	Summary

	Appendix C: The History of FreeSWITCH
	Taking things to the next level
	New ideas and a new project
	The first ClueCon
	Introducing FreeSWITCH

	Index

