
www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

©2011 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Learn how to turn
data into decisions.

From startups to the Fortune 500,
smart companies are betting on
data-driven insight, seizing the
opportunities that are emerging
from the convergence of four
powerful trends:

n	 New methods of collecting, managing, and analyzing data

n	 Cloud computing that offers inexpensive storage and flexible, 	
	 on-demand computing power for massive data sets

n	 Visualization techniques that turn complex data into images
	 that tell a compelling story

n	 Tools that make the power of data available to anyone

Get control over big data and turn it into insight with
O’Reilly’s Strata offerings. Find the inspiration and
information to create new products or revive existing ones,
understand customer behavior, and get the data edge.

Visit oreilly.com/data to learn more.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Scaling CouchDB

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Scaling CouchDB
Replication, Clustering, and Administration

Bradley Holt

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info

Scaling CouchDB
by Bradley Holt

Copyright © 2011 Bradley Holt. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Kristen Borg
Proofreader: Kristen Borg

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
April 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Scaling CouchDB, the image of a chough, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30343-3

[LSI]

1300886680

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.it-ebooks.info

Table of Contents

Preface . vii

1. Defining Scaling Goals . 1
What is Scalability? 1
Capacity Planning 2
The CAP Theorem 2

Consistency 2
Availability 2
Partition Tolerance 3

2. Tuning and Designing for Scale . 5
Performance Tips 5
Document Design 8

3. Replication . 11
Filters and Specifying Documents 14
Conflict Resolution 17

Picking the Same Revision as CouchDB 20
Picking a Conflicted Revision 22
Merging Revisions 23

4. Load Balancing . 25
CouchDB Nodes 26
Replication Setup 28
Proxy Server Configuration 29
Testing 32

5. Clustering . 35
BigCouch 35
Lounge 36
Pillow 37

v

www.it-ebooks.info

http://www.it-ebooks.info

6. Distributed Load Testing . 39
Installing Tsung 40
Configuring Tsung 42
Running Tsung 49
Monitoring 54
Identifying Bottlenecks 57
Test Configuration 58

vi | Table of Contents

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

vii

www.it-ebooks.info

http://www.it-ebooks.info

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Scaling CouchDB by Bradley Holt
(O’Reilly). Copyright 2011 Bradley Holt, 978-1-449-30343-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449303433

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

viii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9781449303433
mailto:bookquestions@oreilly.com
http://www.it-ebooks.info

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’d first like to thank Damien Katz, creator of CouchDB, and all of CouchDB’s con-
tributors. I’d also like to thank all of the contributors to the other open source software
tools referenced in this book. This includes contributors to the Apache HTTP Server,
BigCouch, CouchDB Lounge, Pillow, and Tsung. Knut Ola Hellan (creator of Pillow)
and Martin Brown (from Couchbase) both provided valuable feedback which helped
to make this book better. Mike Loukides, this book’s editor, and the rest of the team
at O’Reilly Media were very responsive and helpful.

Preface | ix

www.it-ebooks.info

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1

Defining Scaling Goals

Before you can scale CouchDB, you need to define your scaling goals. Once you have
defined your goals then you can design your system. You should test the scalability of
your system before it is deployed. See Chapter 6 for information about how to perform
distributed load testing on your system using Tsung. When your system has been de-
ployed to production, you should continue to monitor its performance and resource
utilization using a tool such as Munin (a CouchDB plugin for Munin is available at
https://github.com/strattg/munin-plugin-couchdb) or Nagios. You can monitor an indi-
vidual node by issuing a GET HTTP request to /_stats which will return various statistics
about the CouchDB node.

What is Scalability?
It’s important to note the distinctions between performance, vertical scaling, and hor-
izontal scaling. Performance typically refers to properties of a system such as response
time or throughput. Vertical scaling (or scaling up) means adding computing capacity
to a single node in a system. This could be through added memory, a faster CPU, or
larger hard drives. While memory gets cheaper, CPUs get faster, and hard drives get
larger every year, at any given moment there’s an upward limit to vertical scaling. Also,
the hardware for high capacity nodes is usually more expensive per unit of computing
capacity (as defined by your application) than commodity hardware.

When someone uses the word “scalability,” they are often referring to horizontal scal-
ability. Horizontal scaling (or scaling out) is when a system’s computing capacity is
scaled by adding new nodes. In theory, each new node adds the entire amount of that
node’s computing capacity to the system. In practice, true horizontal scalability is
rarely, if ever, achieved. The network overhead of nodes communicating with each
other can detract from the overall computing capacity of the system. Also, few systems
are configured such that there is no redundant computing work between nodes.

1

www.it-ebooks.info

http://tsung.erlang-projects.org/
http://munin-monitoring.org/
https://github.com/strattg/munin-plugin-couchdb
http://www.nagios.org/
http://www.it-ebooks.info

Capacity Planning
Capacity planning is often lumped together with scaling. With capacity planning, the
focus is on creating a system that can meet an expected amount of demand. With
scalability, the focus is on creating a system that is capable of accommodating growth.
As mentioned before, both vertical and horizontal scaling each have their own limita-
tions. Given these limitations, a combination of scalability and capacity planning is
often warranted. Put another way, define a maximum capacity to which you need to
scale and test so that your system can scale to meet that capacity—there is no such
thing as infinite scalability, and attempting to create such a system would be prohibi-
tively expensive. In Chapter 6, we will take a look at testing the capacity of your system
through distributed load testing.

The CAP Theorem
CouchDB, like any database, balances three different concerns: consistency, availabil-
ity, and partition tolerance (see Chapter 2 in CouchDB: The Definitive Guide [O’Re-
illy]). By design, CouchDB focuses on availability and partition tolerance and gives up
consistency in exchange.

Consistency
Consistency is a database property whereby all clients will always see a consistent view
of the data in your database. This will be true even during concurrent updates. Once
you have more than one CouchDB node, you will typically give up consistency in ex-
change for eventual consistency. Through replication, all CouchDB nodes can eventually
be made to have a consistent view of the data. How quickly do you need your data
replicated? Do some nodes need to be consistent immediately?

Availability
Through load balancing, CouchDB can achieve a high level of availability. This means
that a large number of requests can be served concurrently while still providing all
clients with access to create, read, update, and delete data. How many requests per
second does your system need to be capable of handling? What will be the ratio of read
requests (GET) to write requests (POST, PUT, DELETE)?

2 | Chapter 1: Defining Scaling Goals

www.it-ebooks.info

http://oreilly.com/catalog/9780596155902/
http://www.it-ebooks.info

Partition Tolerance
CouchDB takes a peer-to-peer approach to replication giving it the property of partition
tolerance. Multiple CouchDB nodes can store copies of your data. CouchDB nodes can
operate in a “split-brain” scenario where the nodes are disconnected from each other
and thus cannot be replicated, but will be replicated once a connection is re-established.
How often and for how long will your CouchDB nodes be disconnected from each
other? For example, will you have CouchDB instances on mobile devices that are oc-
casionally connected? Will you be hosting CouchDB nodes in separate data centers?
Are you dealing with a Big Data problem where you need to store a dataset that is too
big for a single node?

The CAP Theorem | 3

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2

Tuning and Designing for Scale

In this chapter, we will take a look at some performance tips that you can apply when
tuning your database. While not directly related to scalability, increasing performance
can increase the overall capacity of your system. There are many options available when
tuning CouchDB to meet your needs.

We will also discuss considerations around the design of your documents. CouchDB
is a schema-less database, giving you much flexibility in designing the document boun-
daries for your data. However, the decisions you make around designing your docu-
ments can have an impact on the performance and scalability of your database.

Performance Tips
The best way to increase the capacity of your database is to not send requests to it in
the first place. Sometimes you can’t forego a database request altogether, but you can
limit the amount of work you ask the database to do. Here are a some tips to limit the
amount of work you ask of CouchDB and to increase performance (the applicability
of these tips to your application may vary):

For more information, see Chapter 23 in CouchDB: The Definitive
Guide (O’Reilly), Operating CouchDB, and Operating CouchDB II.

• Cache documents and query results using memcached or another caching system.
For systems under heavy load, even caches that expire after only a few seconds can
save many extra requests to your database. This caching can be done in your ap-
plication or by using a reverse proxy server that supports caching. Optionally, you
can use the /<db>/_changes API (replacing <db> with the name of your database)
to watch for deleted documents and/or new document revisions so that you can
immediately invalidate the cache, instead of waiting for the cache to expire.

5

www.it-ebooks.info

http://oreilly.com/catalog/9780596155902/
http://oreilly.com/catalog/9780596155902/
http://till.klampaeckel.de/blog/archives/95-Operating-CouchDB.html
http://till.klampaeckel.de/blog/archives/123-Operating-CouchDB-II.html
http://memcached.org/
http://www.it-ebooks.info

• Use Etags to send conditional requests. The response to every GET request to a
document or view includes an Etag HTTP header (for documents, the Etag’s value
is the document’s revision in double quotes). Cache the document or view results
along with its corresponding Etag. Send an If-None-Match HTTP header containing
the Etag’s value with subsequent requests to the same URL (Etags are only valid
for a given URL). If the document or view results have not changed, then CouchDB
won’t need to send the entire response to you and will instead respond with a 304
Not Modified HTTP response code, a Content-Length of 0, and no message-body.

• Don’t use the include_docs parameter (or set it to false) when querying views.
While convenient, including documents can cause performance issues. There are
two alternatives. First, you can emit the entire document as the value in your Map
function, for instance, emit(key, doc). This will increase the size of your index,
but will use less I/O resources and result in faster document retrieval. Second, you
can make a separate request for each document. Assuming you have cached your
documents, then some percentage of these requests will result in cache hits.

• Don’t use random document IDs. CouchDB will perform best with document IDs
that are mostly monotonic (in simpler terms, mostly sequential). This has to do
with the B-tree (technically B+tree) structure that CouchDB uses to store data. The
simplest way to generate mostly monotonic document IDs is to use the default
value of sequential for the algorithm option in the uuids configuration section and
let CouchDB generate your document IDs.

• Use the bulk documents API, if possible. CouchDB allows you to POST a collection
of documents to /<db>/_bulk_docs (replacing <db> with the name of your database).
Inserting documents in bulk can be many times faster than individual inserts.
CouchDB supports a non-atomic (the default) or an all-or-nothing model for bulk
updates. Using the non-atomic model, some documents may be updated and some
may not. Documents may fail to update due to a document update conflict, or
because of a power failure. Under the all-or-nothing model, either all of the docu-
ments will be updated, or none of them will be updated. Instead of causing a
document update conflict, an update to a document using the non-latest revision
will result in the document being written, but also being marked as conflicted. If
there is a power failure before all of the documents can be written, then on restart
none of the documents will have been saved.

• Use batch mode to speed up writes. In this mode, CouchDB will save documents
in memory and flush them to disk in batches. This can be triggered by setting the
batch query parameter to ok when doing a POST or PUT of a document. Since there
is no guarantee that your document will be written to disk, CouchDB returns an
HTTP response of 202 Accepted instead of 201 Created. Batch mode may not be a
good fit for your application.

• Leave delayed commits on. That is, leave the delayed_commits option set to true
in the couchdb configuration section. Delayed commits means that CouchDB will

6 | Chapter 2: Tuning and Designing for Scale

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

not trigger an fsync after each write (an fsync commits buffered data to disk). For
non-bulk writes, requiring an fsync will have a major performance impact.

• If you can live without the most up-to-date view results, set the stale query
parameter’s value to ok when querying views. If documents have been updated,
this saves CouchDB from recomputing views on each read. You will need to have
a system for querying these views without the stale query parameter or else your
views will never get updated. This can be done with a cron job or through another
automated process. You can use the HEAD HTTP method for these requests to save
bandwidth.

• Run database compaction, view compaction, and view cleanup when the database
is not under heavy load. Schedule these processes to happen during lower usage
periods.

• Spread your views across multiple design documents. This should speed up view
compaction and cleanup operations.

• Instead of paginating view results using the skip parameter, use the startkey and
startkey_docid parameters (endkey and endkey_docid if output is reversed). When
skipping a large number of rows, CouchDB still needs to scan the entire B-tree
index, starting from the startkey and startkey_docid (if specified). Set the skip
parameter’s value to 1 and use the key of the last row on the previous page as the
startkey parameter (endkey if output is reversed), and the document ID of the last
row on the previous page as the startkey_docid parameter (endkey_docid if output
is reversed).

• While it may seem obvious, it’s worth mentioning that faster disks, more CPUs,
and more memory should increase the performance of CouchDB. Being a database,
CouchDB is ultimately limited to your disk I/O throughput. Higher RPM drives,
solid-state drives (SSD), or a RAID configuration (the appropriate RAID level de-
pends on your needs related to data redundancy, read performance, and write
performance) could help. CouchDB (due to its Erlang underpinnings) can take
advantage of multiple CPUs. The performance of view queries can be improved by
having more RAM available with which CouchDB can cache views’ B-tree indices.

Systems can behave very differently under load than they do otherwise.
What performs well with only one node may perform very differently
when scaled out to multiple nodes. Performance tuning of large scale
systems can sometimes result in counterintuitive optimizations.

If you are experiencing performance or scaling problems, be sure that your database is,
in fact, the main source of your problems. Likely you have an application that is the
main (if not the only) client to your database. If that application is a web application,
then it has clients connecting to it through web browsers. Each tier of your application
is a potential bottleneck. You will want to make sure that you are focusing your efforts
on the right part of your system.

Performance Tips | 7

www.it-ebooks.info

http://www.it-ebooks.info

Document Design
The document boundaries of your data can have a significant impact on the ability of
your system to scale. Design your documents around transaction, distribution, and
concurrency boundaries. Let’s use two extreme scenarios to illustrate the point.

Transaction, distribution, and concurrency boundaries are also used in
domain-driven design when defining Aggregates. For more information,
see Eric Evans’ book Domain-Driven Design: Tackling Complexity in the
Heart of Software (Addison-Wesley), Chapter Six: The Life Cycle of a
Domain Object.

In the first contrived scenario, you could put all of your data in one document (let’s
ignore, for a moment, how large and awkward this document would become). Within
a single CouchDB node, an update of a single document is transactional. Putting all of
your data in one document would make all operations transactional. However, clients
would often get document update conflicts. Replication would almost always result in
conflicts. Following is an example of putting all data in one document:

The following document is an intentionally bad design. Do not structure
your CouchDB database this way!

{
 "_id":"catalog",
 "978-0-596-80579-1":{
 "title":"Building iPhone Apps with HTML, CSS, and JavaScript",
 "subtitle":"Making App Store Apps Without Objective-C or Cocoa",
 "authors":[
 "Jonathan Stark"
],
 "publisher":"O'Reilly Media",
 "formats":[
 "Print",
 "Ebook",
 "Safari Books Online"
],
 "released":"2010-01-08",
 "pages":192
 },
 "978-0-596-15589-6":{
 "title":"CouchDB: The Definitive Guide",
 "subtitle":"Time to Relax",
 "authors":[
 "J. Chris Anderson",
 "Jan Lehnardt",
 "Noah Slater"
],

8 | Chapter 2: Tuning and Designing for Scale

www.it-ebooks.info

http://www.it-ebooks.info

 "publisher":"O'Reilly Media",
 "released":"2010-01-19",
 "pages":272,
 "formats":[
 "Print",
 "Ebook",
 "Safari Books Online"
]
 },
 "978-1-565-92580-9":{
 "title":"DocBook: The Definitive Guide",
 "authors":[
 "Norman Walsh",
 "Leonard Muellner"
],
 "publisher":"O'Reilly Media",
 "formats":[
 "Print"
],
 "released":"1999-10-28",
 "pages":648
 },
 "978-0-596-52926-0":{
 "title":"RESTful Web Services",
 "subtitle":"Web services for the real world",
 "authors":[
 "Leonard Richardson",
 "Sam Ruby"
],
 "publisher":"O'Reilly Media",
 "released":"2007-05-08",
 "pages":448,
 "formats":[
 "Print",
 "Ebook",
 "Safari Books Online"
]
 }
}

In the second contrived scenario, you could put each discrete piece of data in its own
document, much like a normalized relational database. Clients would get document
update conflicts less often and replication would generate fewer conflicts. However,
related data could often be disjointed since CouchDB does not support transactions
across document boundaries. Following is an example of breaking one document into
smaller pieces of data. First, a “catalog” document:

{
 "_id":"catalog/978-0-596-80579-1",
 "collection":"catalog",
 "title":"Building iPhone Apps with HTML, CSS, and JavaScript",
 "subtitle":"Making App Store Apps Without Objective-C or Cocoa",
 "authors":[
 "author/3840"
],

Document Design | 9

www.it-ebooks.info

http://www.it-ebooks.info

 "publisher":"publisher/oreilly",
 "formats":[
 "format/book",
 "format/ebook",
 "format/saf"
],
 "released":"2010-01-08",
 "pages":192
}

The “author” document for author/3840:

{
 "_id":"author/3840",
 "collection":"author",
 "name":"Jonathan Stark",
}

The “publisher” document for publisher/oreilly:

{
 "_id":"publisher/oreilly",
 "collection":"publisher",
 "name":"O'Reilly Media",
}

The “format” document for format/book:

{
 "_id":"format/book",
 "collection":"format",
 "name":"Print",
}

The “format” document for format/ebook:

{
 "_id":"format/ebook",
 "collection":"format",
 "name":"Ebook",
}

The “format” document for format/saf:

{
 "_id":"format/saf",
 "collection":"format",
 "name":"Safari Books Online",
}

The first approach gives you a high level of consistency but reduces availability (clients
will get document update conflicts more often) and reduces partition tolerance (repli-
cation will often lead to conflicts). The second approach may reduce consistency but
can give you a higher level of availability and partition tolerance.

10 | Chapter 2: Tuning and Designing for Scale

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3

Replication

Replication in CouchDB is peer-based and bi-directional, although any given replica-
tion process is one-way, from the source to the target. Replication can be run from
Futon, CouchDB’s web administration console, or by sending a POST request to
_replicate containing a JSON object with replication parameters. Let’s assume we have
two databases, both running on the same CouchDB node, that we want to replicate:
catalog-a and catalog-b (we can also replicate databases on different CouchDB nodes).

Using Futon:

1. Navigate to http://localhost:5984/_utils/ using your web browser.

2. Create the catalog-a and catalog-b databases.

3. Create a new, empty document (with only an _id field) in the catalog-a database.

4. Under “Tools,” click “Replicator.”

5. Under “Replicate changes from,” leave “Local database” selected, and select “cat-
alog-a.”

6. Under “to,” leave “Local database” selected, and select “catalog-b.”

7. Click the “Replicate” button. Figure 3-1 shows how everything should look (the
details under “Event” will be different for you). Optionally, you could have checked
“Continuous” to trigger continuous replication.

If you would prefer to use cURL, first create the catalog-a database:

curl -X PUT http://localhost:5984/catalog-a

The response:

{"ok":true}

Create the catalog-b database:

curl -X PUT http://localhost:5984/catalog-b

The response:

{"ok":true}

11

www.it-ebooks.info

http://localhost:5984/_utils/
http://www.it-ebooks.info

Create a new, empty, document in the catalog-a database:

curl -X POST http://localhost:5984/catalog-a \
-H "Content-Type: application/json" \
-d '{}'

The response (your id and rev values will be different):

{
 "ok":true,
 "id":"a6b0e79a4a9be7359e9e83c521002cac",
 "rev":"1-967a00dff5e02add41819138abb3284d"
}

Replicate from catalog-a to catalog-b:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-a",
 "target":"catalog-b"
}'

The response (your details will be different):

{
 "ok":true,
 "session_id":"baf54178bc255b76a4a572ccbc67edcc",
 "source_last_seq":1,
 "history":[
 {
 "session_id":"baf54178bc255b76a4a572ccbc67edcc",
 "start_time":"Sun, 23 Jan 2011 23:48:18 GMT",
 "end_time":"Sun, 23 Jan 2011 23:48:18 GMT",
 "start_last_seq":0,
 "end_last_seq":1,
 "recorded_seq":1,
 "missing_checked":0,
 "missing_found":1,

Figure 3-1. Replicating from catalog-a to catalog-b using Futon

12 | Chapter 3: Replication

www.it-ebooks.info

http://www.it-ebooks.info

 "docs_read":1,
 "docs_written":1,
 "doc_write_failures":0
 }
]
}

To cancel replication:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-a",
 "target":"catalog-b",
 "cancel":true
}'

If you have a large number of documents, then you could potentially
have a time consuming replication process. This is one use case for can-
celing a replication. Another use case is to cancel a continuous replica-
tion process.

The response (your details will be different):

{
 "ok":true,
 "_local_id":"ca1f51594051677b5a5af9bfa1ec0b01"
}

To replicate from catalog-a to catalog-b continuously:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-a",
 "target":"catalog-b",
 "continuous":true
}'

CouchDB 1.0.2 does not persist continuous replication between re-
starts. If CouchDB is restarted, then you must start continuous replica-
tion again. Permanent continuous replication is planned for a future
version of CouchDB. For this reason, you may want to consider trig-
gering continuous replication from within a cron job. Attempting to
start continuous replication while continuous replication is already run-
ning is harmless.

Replication | 13

www.it-ebooks.info

http://www.it-ebooks.info

The response (your details will be different):

{
 "ok":true,
 "_local_id":"ca1f51594051677b5a5af9bfa1ec0b01"
}

To cancel continuous replication:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-a",
 "target":"catalog-b",
 "continuous":true,
 "cancel":true
}'

The response (your details will be different):

{
 "ok":true,
 "_local_id":"ca1f51594051677b5a5af9bfa1ec0b01"
}

Filters and Specifying Documents
Sometimes you do not want to replicate every document in your database. Filter func-
tions can be used to determine which documents should and should not be replicated.
A filter function will simply return true if the given document should be replicated,
and false if the given document should not be replicated. A filter function can be
defined within a design document on the source database. When initiating replication,
you can specify which filter function, from which design document, to use.

Here is an example of a filter function that would cause only documents with a collec
tion value of author to be replicated:

function(doc, req) { return "author" == doc.collection }

The first parameter, doc in the above example, is a candidate document for replication.
The second parameter, req in the above example, is the replication request. This second
parameter contains the details of the replication request including the HTTP headers,
HTTP method, and query parameters. See the Filters section in “What’s new in Apache
CouchDB 0.11 — Part Three: New Features in Replication” at http://blog.couchone
.com/post/468392274/whats-new-in-apache-couchdb-0-11-part-three-new. For exam-
ple, req.query is a JSON object of query parameters (query_params from the replication
request).

Each design document can have multiple named filters. Here is a design document
containing the above filter, given the name authors:

14 | Chapter 3: Replication

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://blog.couchone.com/post/468392274/whats-new-in-apache-couchdb-0-11-part-three-new
http://blog.couchone.com/post/468392274/whats-new-in-apache-couchdb-0-11-part-three-new
http://www.it-ebooks.info

{
 "_id":"_design/default",
 "filters":{
 "authors":"function(doc, req) { return \"author\" == doc.collection }"
 }
}

To use this filter during replication (the create_target parameter tells CouchDB to
create the target database before replication):

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"oreilly",
 "target":"authors",
 "create_target":true,
 "filter":"default/authors"
}'

The response:

{
 "ok":true,
 "session_id":"2f34911e5e21dc37360d1f33cc85fffa",
 "source_last_seq":3,
 "history":[
 {
 "session_id":"2f34911e5e21dc37360d1f33cc85fffa",
 "start_time":"Sun, 30 Jan 2011 21:49:04 GMT",
 "end_time":"Sun, 30 Jan 2011 21:49:06 GMT",
 "start_last_seq":0,
 "end_last_seq":3,
 "recorded_seq":3,
 "missing_checked":0,
 "missing_found":1,
 "docs_read":1,
 "docs_written":1,
 "doc_write_failures":0
 }
]
}

We could parameterize our filter function as follows:

function(doc, req) { return req.query.collection == doc.collection }

Here’s what the updated filter function would look like in a design document:

{
 "_id":"_design/default",
 "filters":{
 "collection":"function(doc, req) { return req.query.collection == doc.collection }"
 }
}

Filters and Specifying Documents | 15

www.it-ebooks.info

http://www.it-ebooks.info

To use this new, parameterized, filter:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"oreilly",
 "target":"publishers",
 "create_target":true,
 "filter":"default/collection",
 "query_params":{
 "collection":"publisher"
 }
}'

The response:

{
 "ok":true,
 "session_id":"585b3ecae989739796b5d161c28535fc",
 "source_last_seq":4,
 "history":[
 {
 "session_id":"585b3ecae989739796b5d161c28535fc",
 "start_time":"Sun, 30 Jan 2011 21:55:28 GMT",
 "end_time":"Sun, 30 Jan 2011 21:55:28 GMT",
 "start_last_seq":0,
 "end_last_seq":4,
 "recorded_seq":4,
 "missing_checked":0,
 "missing_found":1,
 "docs_read":1,
 "docs_written":1,
 "doc_write_failures":0
 }
]
}

If you know the exact IDs of the documents you want to replicate, then you can specify
those instead of using a filter:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"oreilly",
 "target":"formats",
 "create_target":true,
 "doc_ids":[
 "format/saf",
 "format/ebook",
 "format/book"
]
}'

16 | Chapter 3: Replication

www.it-ebooks.info

http://www.it-ebooks.info

The response:

{
 "ok":true,
 "start_time":"Sun, 30 Jan 2011 22:05:28 GMT",
 "end_time":"Sun, 30 Jan 2011 22:05:28 GMT",
 "docs_read":3,
 "docs_written":3,
 "doc_write_failures":0
}

Conflict Resolution
When replicating, you will inevitably run into document update conflicts. This can
happen when a document with the same ID has been updated independently on two
or more CouchDB nodes. To handle document update conflicts, you will need to create
a view to find conflicts. Here is the Map function that will let us find conflicts:

function(doc) {
 if (doc._conflicts) {
 for (var i in doc._conflicts) {
 emit(doc._conflicts[i]);
 }
 }
}

Let’s save this to a design document:

curl -X PUT http://localhost:5984/catalog-a/_design/default -d \
'{
 "_id": "_design/default",
 "language": "javascript",
 "views": {
 "conflicts": {
 "map":
"function(doc) {
 if (doc._conflicts) {
 for (var i in doc._conflicts) {
 emit(doc._conflicts[i]);
 }
 }
}" }
 }
}'

The response:

{
 "ok":true,
 "id":"_design/default",
 "rev":"1-05df67108309b2783233f27ffff31c59"
}

Conflict Resolution | 17

www.it-ebooks.info

http://www.it-ebooks.info

Now let’s create a conflict. First, create the following document within the catalog-a
database:

curl -X PUT http://localhost:5984/catalog-a/978-0-596-80579-1 \
-H "Content-Type: application/json" \
-d '{
 "title":"Building iPhone Apps with HTML, CSS, and JavaScript",
}'

The response:

{
 "ok":true,
 "id":"978-0-596-80579-1",
 "rev":"1-8e68b2b2f14a81190889dab9d04481d2"
}

Next, create the same document within the catalog-b database, but with a slightly
different title (the comma is missing after “CSS”):

curl -X PUT http://localhost:5984/catalog-b/978-0-596-80579-1 \
-H "Content-Type: application/json" \
-d '{
 "title":"Building iPhone Apps with HTML, CSS and JavaScript",
}'

The response:

{
 "ok":true,
 "id":"978-0-596-80579-1",
 "rev":"1-25042aaa901375bfd7cb63d189275197"
}

Replicate from catalog-a to catalog-b:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-a",
 "target":"catalog-b"
}'

Replicate back from catalog-b to catalog-a (so that the conflict will exist in both
databases):

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-b",
 "target":"catalog-a"
}'

18 | Chapter 3: Replication

www.it-ebooks.info

http://www.it-ebooks.info

Querying the conflicts view from catalog-a or from catalog-b should return the same
results:

curl -X GET http://localhost:5984/catalog-a/_design/default/_view/conflicts

curl -X GET http://localhost:5984/catalog-b/_design/default/_view/conflicts

The response to both queries:

{
 "total_rows":1,
 "offset":0,
 "rows":[
 {
 "id":"978-0-596-80579-1",
 "key":"1-25042aaa901375bfd7cb63d189275197",
 "value":null
 }
]
}

CouchDB uses a deterministic algorithm to pick the winner when there
is a conflict. Every CouchDB node will always pick the same winner of
any given conflict. The algorithm it uses is quite simple. First, CouchDB
looks at the incrementing part of the revision number (the part before
the "-“) and the document with the highest number wins. If both docu-
ments have the same number of revisions, then CouchDB simply does
an ASCII comparison of the revision number and the document with
the highest sort order wins. It is always a good idea to handle conflicts
within your application by automatically merging documents in a way
that makes sense to your application, or by presenting the conflict to an
end user to resolve.

This tells us that the document with an ID of 978-0-596-80579-1 has a conflict, and that
revision 1-25042aaa901375bfd7cb63d189275197 lost in the conflict resolution. If you’d
like, you can verify this by querying the conflicted document on catalog-a, setting the
conflicts query parameter to true:

curl -X GET http://localhost:5984/catalog-a/978-0-596-80579-1?conflicts=true

The response:

{
 "_id":"978-0-596-80579-1",
 "_rev":"1-8e68b2b2f14a81190889dab9d04481d2",
 "title":"Building iPhone Apps with HTML, CSS, and JavaScript",
 "_conflicts":[
 "1-25042aaa901375bfd7cb63d189275197"
]
}

Conflict Resolution | 19

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

Based on this response, we can tell that revision 1-8e68b2b2f14a81190889dab9d04481d2
(the one with the comma) was picked by CouchDB as the winner. If we take a
look at the _conflicts array, we can see that it won out against revision
1-25042aaa901375bfd7cb63d189275197 (the one without the comma). Let’s examine
revision 1-25042aaa901375bfd7cb63d189275197:

curl -X GET http://localhost:5984/catalog-a/978-0-596-80579-1\
?rev=1-25042aaa901375bfd7cb63d189275197

The response:

{
 "_id":"978-0-596-80579-1",
 "_rev":"1-25042aaa901375bfd7cb63d189275197",
 "title":"Building iPhone Apps with HTML, CSS and JavaScript"
}

We can see here that revision 1-25042aaa901375bfd7cb63d189275197 is, in fact, the one
with the missing comma. We now have three choices:

1. Pick revision 1-8e68b2b2f14a81190889dab9d04481d2 as the winner (the one
CouchDB already picked).

2. Pick revision 1-25042aaa901375bfd7cb63d189275197 as the winner.

3. Merge both revisions into a new revision.

Let’s take a look at each option. Since each is mutually exclusive, you will need to pick
one if you are following along (or start this example again from the beginning for each).

Picking the Same Revision as CouchDB
If you pick the same revision to win as CouchDB picked, then you could just do nothing.
However, the conflict will continue to be listed and, assuming you have an automated
process to deal with conflicts, your application will continue to deal with the conflict
indefinitely. To clear the conflict, you can simply delete the revision you don’t like:

curl -X DELETE http://localhost:5984/catalog-a/978-0-596-80579-1 \
-H "If-Match: 1-25042aaa901375bfd7cb63d189275197"

The response:

{
 "ok":true,
 "id":"978-0-596-80579-1",
 "rev":"2-638024b9b98a9d951519b0bf7e95953e"
}

20 | Chapter 3: Replication

www.it-ebooks.info

http://www.it-ebooks.info

Whenever CouchDB deletes a document, it creates a new revision with
_deleted field set to true. The same thing happens when you delete a
conflicted revision.

Let’s take a look at our conflicts view to make sure that the conflict has, in fact, been
resolved:

curl -X GET http://localhost:5984/catalog-a/_design/default/_view/conflicts

The response shows us that there are now no conflicts:

{
 "total_rows":0,
 "offset":0,
 "rows":[

]
}

Let’s verify that the document has not been deleted:

curl -X GET http://localhost:5984/catalog-a/978-0-596-80579-1

The response:

{
 "_id":"978-0-596-80579-1",
 "_rev":"1-8e68b2b2f14a81190889dab9d04481d2",
 "title":"Building iPhone Apps with HTML, CSS, and JavaScript"
}

Be sure to replicate your changes to the catalog-b database:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-a",
 "target":"catalog-b"
}'

Let’s double-check that the conflict has also been resolved in the catalog-b database:

curl -X GET http://localhost:5984/catalog-b/_design/default/_view/conflicts

The response:

{
 "total_rows":0,
 "offset":0,
 "rows":[

]
}

Conflict Resolution | 21

www.it-ebooks.info

http://www.it-ebooks.info

Picking a Conflicted Revision
In this scenario, we don’t agree with CouchDB’s pick and want to instead pick a con-
flicted revision to win. Like in the previous scenario, we simply delete the revision we
don’t like (which happens to be the revision that CouchDB had picked as the winner):

curl -X DELETE http://localhost:5984/catalog-a/978-0-596-80579-1 \
-H "If-Match: 1-8e68b2b2f14a81190889dab9d04481d2"

The response:

{
 "ok":true,
 "id":"978-0-596-80579-1",
 "rev":"2-3baff9c19dbcb58cf81fdc9a21602a0c"
}

Let’s take a look at our conflicts view to make sure that the conflict has, in fact, been
resolved:

curl -X GET http://localhost:5984/catalog-a/_design/default/_view/conflicts

The response shows us that there are now no conflicts:

{
 "total_rows":0,
 "offset":0,
 "rows":[

]
}

Let’s verify that the document has not been deleted:

curl -X GET http://localhost:5984/catalog-a/978-0-596-80579-1

The response:

{
 "_id":"978-0-596-80579-1",
 "_rev":"1-25042aaa901375bfd7cb63d189275197",
 "title":"Building iPhone Apps with HTML, CSS and JavaScript"
}

Be sure to replicate your changes to the catalog-b database:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-a",
 "target":"catalog-b"
}'

Let’s double-check that the conflict has also been resolved in the catalog-b database:

curl -X GET http://localhost:5984/catalog-b/_design/default/_view/conflicts

The response:

22 | Chapter 3: Replication

www.it-ebooks.info

http://www.it-ebooks.info

{
 "total_rows":0,
 "offset":0,
 "rows":[

]
}

Merging Revisions
In this scenario, we will create a new revision, merging properties of both documents,
and then delete the conflicting document. First, let’s update the document, merging
our changes (our “merge” involves leaving out the comma but using an ampersand
instead of “and”):

curl -X PUT http://localhost:5984/catalog-a/978-0-596-80579-1 \
-H "Content-Type: application/json" \
-H "If-Match: 1-8e68b2b2f14a81190889dab9d04481d2" \
-d '{
 "title":"Building iPhone Apps with HTML, CSS & JavaScript",
}'

The response:

{
 "ok":true,
 "id":"978-0-596-80579-1",
 "rev":"2-f515785a36225fd7511ad756aa1d3bc0"
}

Next, we need to delete the conflicted version:

curl -X DELETE http://localhost:5984/catalog-a/978-0-596-80579-1 \
-H "If-Match: 1-25042aaa901375bfd7cb63d189275197"

The response:

{
 "ok":true,
 "id":"978-0-596-80579-1",
 "rev":"2-638024b9b98a9d951519b0bf7e95953e"
}

Let’s take a look at our conflicts view to make sure that the conflict has been resolved:

curl -X GET http://localhost:5984/catalog-a/_design/default/_view/conflicts

The response shows us that there are now no conflicts:

{
 "total_rows":0,
 "offset":0,
 "rows":[

]
}

Conflict Resolution | 23

www.it-ebooks.info

http://www.it-ebooks.info

Let’s verify that the document has not been deleted:

curl -X GET http://localhost:5984/catalog-a/978-0-596-80579-1

The response:

{
 "_id":"978-0-596-80579-1",
 "_rev":"2-f515785a36225fd7511ad756aa1d3bc0",
 "title":"Building iPhone Apps with HTML, CSS & JavaScript"
}

Be sure to replicate your changes to the catalog-b database:

curl -X POST http://localhost:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"catalog-a",
 "target":"catalog-b"
}'

Let’s double-check that the conflict has also been resolved in the catalog-b database:

curl -X GET http://localhost:5984/catalog-b/_design/default/_view/conflicts

The response:

{
 "total_rows":0,
 "offset":0,
 "rows":[

]
}

24 | Chapter 3: Replication

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4

Load Balancing

Load balancing allows you to distribute the workload evenly across multiple CouchDB
nodes. Since CouchDB uses an HTTP API, standard HTTP load balancing software or
hardware can be used. With simple load balancing, each CouchDB node will maintain
a full copy of your database through replication. Each document will eventually need
to be written to every node, which is a limitation of this approach since the sustained
write throughput of your entire system will be limited to that of the slowest node. You
could replicate only certain documents using filter functions or by specifying document
IDs, as discussed in Chapter 3. This approach to clustering could get complicated very
quickly. See Chapter 5 for details on an alternative way to distribute your data across
multiple CouchDB nodes.

In this scenario, we will set up a write-only master node and three read-only slave nodes.
We will send all “unsafe” HTTP write requests (POST, PUT, DELETE, MOVE, and COPY) to
the master node and load balance all “safe” HTTP read requests (GET, HEAD, and
OPTIONS) across the three slave nodes. We will set up continuous replication from the
write-only master to each of the read-only slave nodes. See Figure 4-1 for a diagram of
the configuration we will be creating in this chapter.

MOVE and COPY are non-standard HTTP methods. Only versions 0.8 and
0.9 of CouchDB supported the MOVE HTTP method. The MOVE HTTP
method was removed from CouchDB since it was really just a COPY fol-
lowed by a DELETE, but implied that there was a transaction across these
two operations (which there was not). Assuming you are using a newer
version of CouchDB, then there’s no need to concern yourself with the
MOVE HTTP method.

25

www.it-ebooks.info

http://www.it-ebooks.info

There are many load balancing software and hardware options available. A full dis-
cussion of all the available tools and how to install and configure each on every available
platform is beyond the scope of this book. Instead, we will focus on installing and
configuring the Apache HTTP Server as a load balancer. We’ll be using Ubuntu, but
these instructions should be easily adaptable to your operating system.

You may want to consider having multiple load balancers so that you
can remove the load balancer as a single point of failure. This setup
typically involves having two or more load balancers sharing the same
IP address, with one configured as a failover. The details of this config-
uration are beyond the scope of this book.

Apache was chosen as the load balancer for this scenario because it is relatively easy to
configure and has the basic capabilities needed. Other load balancers you may want to
consider are HAProxy, Varnish, Pound, Perlbal, Squid, nginx, and Linux-HA (High-
Availability Linux) on Linux Standard Base (LSB). This example illustrate a basic load
balancing setup. Hardware load balancers are also available. Your hosting provider
may also offer its own, proprietary load balancing tools. For example, Amazon has a
tool called Elastic Load Balancing and Rackspace provides a service called Rackspace
Cloud Load Balancers (in beta as of this writing).

CouchDB Nodes
In the following scenario, we will send write requests to one master node with a domain
name of couch-master.example.com and distribute read requests to three nodes on
machines with domain names of couch-a.example.com, couch-b.example.com, and
couch-c.example.com. Install CouchDB on the master node and on all three slave nodes:

sudo aptitude install couchdb

Figure 4-1. Load balancing configuration

26 | Chapter 4: Load Balancing

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://haproxy.1wt.eu/
http://www.varnish-cache.org/
http://www.apsis.ch/pound/
http://www.danga.com/perlbal/
http://www.squid-cache.org/
http://nginx.org/
http://www.linux-ha.org/
http://www.linuxbase.org/
http://aws.amazon.com/elasticloadbalancing/
http://www.it-ebooks.info

We need to configure CouchDB to allow connections from the outside world. On all
four nodes, configure CouchDB to bind to each server’s IP address by editing the
[httpd] section of /etc/couchdb/local.ini as follows, replacing <server IP address> with
your server’s IP address:

Unless your server is behind a firewall, this configuration change will
allow anyone to access your CouchDB database. You will likely want to
configure authentication and authorization. For information on this, see
Chapter 22 in CouchDB: The Definitive Guide (O’Reilly).

[httpd]
; port = 5984
bind_address = <server IP address>
; Uncomment next line to trigger basic-auth popup on unauthorized requests.
;WWW-Authenticate = Basic realm="administrator"

If your server has multiple IP addresses, you can use 0.0.0.0 as the bind_address to
bind on all IP addresses.

Restart CouchDB on all four nodes:

sudo /etc/init.d/couchdb restart

Test all four nodes by trying to connect to each from a different machine:

curl -X GET http://couch-master.example.com:5984/
curl -X GET http://couch-a.example.com:5984/
curl -X GET http://couch-b.example.com:5984/
curl -X GET http://couch-c.example.com:5984/

The response to each request should be:

{"couchdb":"Welcome","version":"1.0.1"}

If you can’t connect remotely to one or more of the CouchDB nodes, then double-check
that the bind_address in /etc/couchdb/local.ini is set to each machine’s correct IP ad-
dress, respectively, and that you have restarted CouchDB.

Create a database named api on all four nodes:

curl -X PUT http://couch-master.example.com:5984/api
curl -X PUT http://couch-a.example.com:5984/api
curl -X PUT http://couch-b.example.com:5984/api
curl -X PUT http://couch-c.example.com:5984/api

The response to each request should be:

{"ok":true}

At this point we have four CouchDB databases, on four different nodes, running in-
dependently. If we write data to the master node, it will not be replicated to any of the
slave nodes yet.

CouchDB Nodes | 27

www.it-ebooks.info

http://oreilly.com/catalog/9780596155902/
http://www.it-ebooks.info

Replication Setup

CouchDB supports both pull replication and push replication. Pull rep-
lication is when replication is triggered from the same node as the target.
Push replication is when replication is triggered from the same node as
the source.

Set up a pull replication with couch-a.example.com pulling changes from couch-
master.example.com:

curl -X POST http://couch-a.example.com:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"http://couch-master.example.com:5984/api",
 "target":"api",
 "continuous":true
}'

The response (your details will be different):

{"ok":true,"_local_id":"471f59393820994cd50fb432b17c9a96"}

Set up a pull replication with couch-b.example.com pulling changes from couch-
master.example.com:

curl -X POST http://couch-b.example.com:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"http://couch-master.example.com:5984/api",
 "target":"api",
 "continuous":true
}'

The response (your details will be different):

{"ok":true,"_local_id":"0fdc3a4b85e224e51fdb6ce63f9bcbc6"}

Set up a pull replication with couch-c.example.com pulling changes from couch-
master.example.com:

curl -X POST http://couch-c.example.com:5984/_replicate \
-H "Content-Type: application/json" \
-d \
'{
 "source":"http://couch-master.example.com:5984/api",
 "target":"api",
 "continuous":true
}'

The response (your details will be different):

{"ok":true,"_local_id":"ed8941ac5abf1cd7370b2d9a79000a11"}

28 | Chapter 4: Load Balancing

www.it-ebooks.info

http://www.it-ebooks.info

You may want to set up replication using a separate, private, network
so that you can have dedicated bandwidth for private and public
requests.

Proxy Server Configuration
The Apache HTTP server is extremely versatile. It has many features including a proxy
server and a load balancer (as of version 2.1). See Recipe 10.9 in Apache Cookbook,
Second Edition (O’Reilly). In this exercise, we will create our load balancer on a ma-
chine with a domain name of couch-proxy.example.com..

On couch-proxy.example.com, install Apache 2:

sudo aptitude install apache2

On couch-proxy.example.com, install mod_proxy:

sudo aptitude install libapache2-mod-proxy-html

On couch-proxy.example.com, enable mod_proxy:

sudo a2enmod proxy

On couch-proxy.example.com, enable mod_proxy_http:

sudo a2enmod proxy_http

On couch-proxy.example.com, enable mod_proxy_balancer:

sudo a2enmod proxy_balancer

We will also need mod_headers enabled:

sudo a2enmod headers

Finally, we will need mod_rewrite enabled:

sudo a2enmod rewrite

On couch-proxy.example.com, edit /etc/apache2/httpd.conf and add the following (it is
likely that the file will be empty to start with):

Header append Vary Accept
Header add Set-Cookie "NODE=%{BALANCER_WORKER_ROUTE}e; path=/api" \
env=BALANCER_ROUTE_CHANGED

<Proxy balancer://couch-slave>
 BalancerMember http://couch-a.example.com:5984/api route=couch-a max=4
 BalancerMember http://couch-b.example.com:5984/api route=couch-b max=4
 BalancerMember http://couch-c.example.com:5984/api route=couch-c max=4
 ProxySet stickysession=NODE
 ProxySet timeout=5
</Proxy>

Proxy Server Configuration | 29

www.it-ebooks.info

http://oreilly.com/catalog/9780596529949/
http://oreilly.com/catalog/9780596529949/
http://www.it-ebooks.info

RewriteEngine On
RewriteCond %{REQUEST_METHOD} ^(POST|PUT|DELETE|MOVE|COPY)$
RewriteRule ^/api(.*)$ http://couch-master.example.com:5984/api$1 [P]
RewriteCond %{REQUEST_METHOD} ^(GET|HEAD|OPTIONS)$
RewriteRule ^/api(.*)$ balancer://couch-slave$1 [P]
ProxyPassReverse /api http://couch-master:5984/api
ProxyPassReverse /api balancer://couch-slave

Apache allows for three possible load balancer scheduler algorithms.
Traffic can be balanced based on number of requests (lbmethod=by
requests), the number of bytes transferred (lbmethod=bytraffic), or by
the number of currently pending requests (lbmethod=bybusyness). The
default is to balance by requests. To instead balance by busyness, add
a ProxySet lbmethod=bybusyness directive to the end of the <Proxy> di-
rective group (after ProxySet timeout=5 and before </Proxy>), although
the order doesn’t matter.

You will also need to configure your virtual host to enable the rewrite engine and inherit
the rewrite options from the server configuration above. Edit /etc/apache2/sites-enabled/
000-default (or the configuration file for the appropriate virtual host) and add the fol-
lowing before the closing </VirtualHost> directive group:

 RewriteEngine On
 RewriteOptions inherit

Let’s take a look at each line of the /etc/apache2/httpd.conf configuration file. The Header
append Vary Accept line appends the value Accept to the Vary HTTP header. If you have
mod_deflate enabled then this module will add a Vary HTTP header with a value of
Accept-Encoding. A Vary HTTP header informs a client as to what set of request-header
fields it is permitted to base its caching on. Since mod_deflate may be adding this header,
and CouchDB uses the Accept header to vary the media type (reflected in a Content-
Type header with either a value of text/plain or application/json), it’s a good idea to
make sure that clients know to also vary their caching based on the Accept HTTP
header, and not just the Accept-Encoding HTTP header.

The line beginning with Header add Set-Cookie sets a cookie named NODE on the client.
The value of this cookie will be the route name associated with the load balancer mem-
ber that served the request. This allows for sticky sessions meaning that, once a client
has been routed to a specific load balancer member, that client’s requests will continue
to be routed to that same load balancer member node. This provides more consistency
to the client. The path=/api part indicates to the client the URL path for which the
cookie is valid. The env=BALANCER_ROUTE_CHANGED part indicates that the cookie should
only be sent if the load balancer route has changed.

The <Proxy balancer://couch-slave> directive group defines a load balancer named
couch-slave. A later configuration directive will define what requests should be sent to
this load balancer. The three BalancerMember lines each add a member to the load bal-
ancer. The route= parameters (e.g., route=couch-a) give each route a name. The route

30 | Chapter 4: Load Balancing

www.it-ebooks.info

http://www.it-ebooks.info

name is used as the value of the NODE cookie. The max=4 parameters indicate the maxi-
mum number of connections that the proxy will allow to the backend server. The
ProxySet stickysession=NODE directive indicates to the load balancer the cookie name
to use (in this case NODE) when determining which route to use. The ProxySet time
out=5 directive instructs the proxy server to wait 5 seconds before timing out connec-
tions to the backend server.

Keep the maximum number of connections to each CouchDB node low
(e.g., max=4). This will prevent each node from getting overloaded. While
4 may seem like a very low number, CouchDB will respond to each
request very quickly and allow for a high level of throughput. If the proxy
server has enough memory and is configured to allow enough concur-
rent clients itself, then it can effectively queue requests for the backend
servers.

If we didn’t need to proxy requests based on the HTTP method, we could have used
the ProxyPass directive. However, for this added flexible we need to use mod_rewrite
with the proxy ([P]) flag. The RewriteEngine On line enables the rewrite engine. The
next line sets up a rewrite condition that says to only run the subsequent rewrite rule
if the request HTTP method is POST, PUT, DELETE, MOVE, or COPY:

RewriteCond %{REQUEST_METHOD} ^(POST|PUT|DELETE|MOVE|COPY)$

The subsequent rewrite rule then proxies all requests to URIs starting with /api to the
equivalent URI on http://couch-master.example.com:5984 (again, only if the previous
rewrite condition has been met):

RewriteRule ^/api(.*)$ http://couch-master.example.com:5984/api$1 [P]

The next line contains another rewrite condition. This one says to only run the
subsequent rewrite rule if the request HTTP method is GET, HEAD, or OPTIONS:

RewriteCond %{REQUEST_METHOD} ^(GET|HEAD|OPTIONS)$

The subsequent rewrite rule then proxies all requests to URIs starting with /api to the
equivalent URI on the couch-master load balancer (again, only if the previous rewrite
condition has been met):

RewriteRule ^/api(.*)$ balancer://couch-slave$1 [P]

The following ProxyPassReverse directives instructs Apache to adjust the URLs in the
HTTP response headers to match that of the proxy server, instead of the reverse proxied
server. This is mainly useful for the Location header that is sent when CouchDB creates
a new document:

ProxyPassReverse /api http://couch-master:5984/api
ProxyPassReverse /api balancer://couch-slave

Open /etc/apache2/apache2.conf and look for the ServerLimit, ThreadsPerChild, and
MaxClients directives. Apache limits the MaxClients to the ServerLimit multiplied by

Proxy Server Configuration | 31

www.it-ebooks.info

http://www.it-ebooks.info

the ThreadsPerChild. These directives are intended to prevent your server from running
out of memory and swapping, which would significantly decrease performance. Fol-
lowing is an example configuration with the MaxClients increased to 5,000 (this is from
a machine with 1 GB of RAM):

ServerLimit 200
ThreadsPerChild 25
MaxClients 5000

On couch-proxy.example.com, restart Apache:

sudo /etc/init.d/apache2 restart

Testing
Test your load balancer by making an HTTP request to the proxy server:

curl -X GET http://couch-proxy.example.com/api

It should proxy the request through to one of the CouchDB nodes and respond as
follows (your details will be different):

{
 "db_name":"api",
 "doc_count":0,
 "doc_del_count":0,
 "update_seq":0,
 "purge_seq":0,
 "compact_running":false,
 "disk_size":79,
 "instance_start_time":"1296720556231838",
 "disk_format_version":5,
 "committed_update_seq":0
}

Let’s try and POST a new document to the load balancer, treating it as if it’s a CouchDB
node:

curl -X POST http://couch-proxy.example.com/api \
-H "Content-Type: application/json" \
-d '{
 "_id":"doc-a"
}'

The response:

{
 "ok":true,
 "id":"doc-a",
 "rev":"1-967a00dff5e02add41819138abb3284d"
}

Let’s try and GET the newly created document from the load balancer, again treating it
as if it’s a CouchDB node:

curl -X GET http://couch-proxy.example.com/api/doc-a

32 | Chapter 4: Load Balancing

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

The response:

{
 "_id":"doc-a",
 "_rev":"1-967a00dff5e02add41819138abb3284d"
}

If you GET the newly created document from couch-a.example.com, then you should get
the exact same response:

curl -X GET http://couch-a.example.com:5984/api/doc-a

If you GET the newly created document from couch-b.example.com, then you should get
the exact same response:

curl -X GET http://couch-b.example.com:5984/api/doc-a

Finally, if you GET the newly created document from couch-c.example.com, then you
should get the exact same response:

curl -X GET http://couch-c.example.com:5984/api/doc-a

If the document did not replicate from one CouchDB node to the other, then make sure
that continuous replication is running.

See Chapter 6 for information about how to perform distributed load
testing. When load testing, watch Apache’s error log for errors such as
“server reached MaxClients setting, consider raising the MaxClients
setting” or “server is within MinSpareThreads of MaxClients, consider
raising the MaxClients setting,” and adjust Apache’s settings as descri-
bed earlier.

After changing these settings and restarting Apache, watch for startup
warnings such as “WARNING: MaxClients of 1000 would require 40
servers, and would exceed the ServerLimit value of 16. Automatically
lowering MaxClients to 400. To increase, please see the ServerLimit
directive.” As mentioned before, Apache limits the MaxClients to the
ServerLimit multiplied by the ThreadsPerChild.

Testing | 33

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5

Clustering

In Chapter 4, we looked at load balancing. Load balancing is very useful, but it alone
may not provide you with the scale you need. Sometimes it is necessary to partition
your data across multiple shards. Each shard lives on a CouchDB node and contains a
subset of your data. You can have one or more shards on each node. CouchDB does
not natively support this form of clustering. However, there are third-party tools that
allow you to create a cluster of CouchDB nodes. These tools include BigCouch, Lounge,
and Pillow.

An alternative to automatic partitioning is to manually partition your
documents into different databases by type of document. The downside
to this approach is that only documents in the same database can be
included in any given view. If you have documents that don’t need to
be queried in the same view, putting them in separate databases can
allow you to use CouchDB as-is without needing a third-party tool.

BigCouch
BigCouch is a fork of CouchDB that introduces additional clustering capabilities. It is
available under an open source license and is maintained by Cloudant. For the most
part, you can interact with a BigCouch node exactly the same way you would interact
with a CouchDB node. BigCouch introduces some new API endpoints that are needed
to manage its clustering features.

BigCouch is actively being developed. As of this writing, the current
version of BigCouch was 0.3. Features and capabilities may change in
future releases.

Each BigCouch node keeps a list of nodes that are part of its cluster. Each node is equally
capable of handling requests, so you will want to load balance requests to your
BigCouch nodes. Documents and views are partitioned by BigCouch across the shards

35

www.it-ebooks.info

https://github.com/cloudant/bigcouch
https://cloudant.com/
http://www.it-ebooks.info

using a deterministic hashing algorithm. Read and write operations are done using
quorum protocols. View results are created on each shard and then merged by the
coordinating node when queried. The _changes feed is merged in a similar way, but
without a global sort order and uses strings instead of sequence numbers. There are
four parameters that control the operation of a BigCouch cluster. These parameters are
described in Table 5-1.

Table 5-1. BigCouch Cluster Parameters

Parameter Description

Q The total number of shards, or partitions, to divide the documents in your database across. Note that multiple
shards may exist on a single node, allowing you to grow the number of nodes in your cluster without needing to
re-shard. This is configured in the default.ini file, but may be specified using the q query parameter when creating
a database. The default value is 8.

N The number of redundant replicas that should be created for each document (technically, the number of copies
of each shard), on the same number of different nodes. The default value is 3.

W The number needed for a write quorum. A client will not receive an indication of write success (201 Created)
until this many nodes have successfully written the document. W must be less than or equal to N. If W is less than
N, then the remaining writes will still be attempted in the background. This is configured in the default.ini file,
but may be specified using the w query parameter when writing to the database. The default value is 2.

R The number needed for a read quorum. A document will not be returned to a client until this many successful
reads on different nodes have been made, all with the same revision number. R must be less than or equal to N.
This is configured in the default.ini file, but may be specified using the r query parameter when reading from
the database. The default value is 2.

Each BigCouch node needs to agree on a magic cookie value. For se-
curity reasons, be sure to change this magic cookie value to a new value
(using the same new value on each node) in each node’s vm.args file.

Lounge
Lounge is another tool that allows you to create a cluster of CouchDB nodes. It is
available under an open source license and is maintained by Meebo. Lounge takes a
different approach to clustering than BigCouch. Lounge is itself a proxy server that
manages a cluster of CouchDB nodes. Lounge requires a small patch to CouchDB that
enables design-only replication (so that only design documents and views are replica-
ted) but, other than that, uses CouchDB as-is.

Lounge actually includes two proxy servers—a dumbproxy and a smartproxy. The
dumbproxy is nginx packaged up with a custom proxying module. The dumbproxy
handles routing requests to the correct shard, or partition, for documents and for ev-
erything else that is not a view. Document IDs are hashed using a consistent hashing
algorithm. This hash determines to which node an HTTP request gets sent. Since the
document ID is included in both reads and writes, the dumbproxy will always send
both reads and writes to the correct node. The smartproxy is a Python Twisted daemon

36 | Chapter 5: Clustering

www.it-ebooks.info

http://tilgovi.github.com/couchdb-lounge/
http://www.meebo.com/
http://www.it-ebooks.info

which handles the sharding of views—see Chapter 19 in CouchDB: The Definitive
Guide (O’Reilly). Finally, Lounge includes a replicator which keeps design documents
synchronized and can replicate documents for redundancy.

Neither BigCouch nor Lounge support automatic resharding. For this
reason, you may want to consider oversharding your database. Basi-
cally, this means having multiple shards on each CouchDB node. For
example, if you have 8 shards on 2 nodes, this gives you room to grow
to 8 nodes. In this scenario, once you’ve reached 8 nodes you would not
be able to automatically reshard your database. If you wanted to reshard
to support 64 shards, this would be a manual process.

Pillow
Pillow is both a router and rereducer for CouchDB. Like Lounge, Pillow is a separate
application that sits in front of a cluster of standard CouchDB nodes. Both Lounge and
Pillow are designed to solve the same problems, but they have different approaches to
solving these problems. Pillow uses the hash of a document ID to determine which
CouchDB node should serve the request. For view requests, Pillow collects the view
results from all CouchDB nodes and merges these results for the client.

One nice feature of Pillow is that it supports automatic resharding. Resharding is done
using CouchDB’s replicator. The shard to which to send an individual document is
determined by replication filters. When asked to reshard, Pillow will create the neces-
sary replication filters and initiate the replication. You can then monitor the replication
status to see when Pillow is ready for you to switch to using the new shards. Pillow can
automatically switch to the new shards when they are ready, but it is recommended
that you make the switch manually.

Pillow | 37

www.it-ebooks.info

http://oreilly.com/catalog/9780596155902/
http://oreilly.com/catalog/9780596155902/
https://github.com/khellan/Pillow
http://www.it-ebooks.info

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6

Distributed Load Testing

Each application has its own unique usage patterns. It can be very difficult to accurately
predict these usage patterns. If you are working with an existing system, then you can
take a look at log files and analytics data to get a sense of how your application is used.
If this is a new system, then you can create scenarios based on how you expect the
application to be used. Generic benchmarking can be of some use, but a test specifically
designed for your system will be more useful.

The example load test in this chapter is intended as an illustrative
example that can be helpful when you are writing your own tests. How-
ever, writing a test that is customized to your application’s usage pat-
terns can be very difficult. An appropriate test for your system will look
very different than the example test in this chapter.

There are many tools available that allow you to create tests customized for your ap-
plication. However, when creating a distributed system it can be difficult to actually
generate enough load to push your system to its maximum capacity. In order to stress
test a distributed system, you will need a distributed load testing tool. Tsung is a dis-
tributed load and stress testing tool that we will use for the example this chapter. We
will be using Tsung on Ubuntu, but these steps can be easily adapted to other platforms.
Tsung can generate GET and POST HTTP requests and, as of version 1.2.1, PUT and
DELETE HTTP requests. Some of Tsung’s features include:

• Monitoring of client operating systems’ CPU, memory, and network traffic

• Simulation of dynamic sessions, described in an XML configuration file

• Randomized traffic patterns based on defined probabilities

• Recording of HTTP sessions for later playback during a test

• HTML reports and graphs

39

www.it-ebooks.info

http://tsung.erlang-projects.org/
http://www.it-ebooks.info

Like CouchDB, Tsung is developed in Erlang. Depending on the number of testing
servers used, Tsung can simulate hundreds of thousands of concurrent users. Given
enough servers, you could even simulate millions of concurrent users. In addition to
being able to test HTTP servers, Tsung can also test WebDAV, SOAP, PostgreSQL,
MySQL, LDAP, and Jabber/XMPP servers.

Installing Tsung
In the following examples, we will have two testing clients with domain names of test-
a.example.com and test-b.example.com, and we will be testing our couch-proxy.exam
ple.com (load balancer), couch-master.example.com (CouchDB master node), couch-
a.example.com (CouchDB read-only node), couch-b.example.com (CouchDB read-only
node), couch-c.example.com (CouchDB read-only node) servers. Install Erlang on both
test-a.example.com and test-b.example.com:

sudo aptitude install erlang

Install gnuplot on both test-a.example.com and test-b.example.com:

sudo aptitude install gnuplot

Install Perl’s Template Toolkit on both test-a.example.com and test-b.example.com:

sudo aptitude install libtemplate-perl

Install Python’s Matplotlib on both test-a.example.com and test-b.example.com:

sudo aptitude install python-matplotlib

Download the latest version of Tsung on both test-a.example.com and test-b.exam
ple.com. As of this writing, this was version 1.3.3:

wget http://tsung.erlang-projects.org/dist/tsung-1.3.3.tar.gz

Extract the downloaded file on both test-a.example.com and test-b.example.com:

tar -xzf tsung-1.3.3.tar.gz

On both test-a.example.com and test-b.example.com, change into the tsung-1.3.3
directory:

cd tsung-1.3.3

Configure on both test-a.example.com and test-b.example.com:

sudo ./configure

Make on both test-a.example.com and test-b.example.com:

sudo make

Install on both test-a.example.com and test-b.example.com:

sudo make install

40 | Chapter 6: Distributed Load Testing

www.it-ebooks.info

http://www.erlang.org/
http://www.it-ebooks.info

We will be launching our tests from test-a.example.com, so you will need to be able to
login from this client to test-b.example.com without using a password. We will do this
using public key authentication, but you could instead use ssh-agent or rsh. Install the
OpenSSH server on test-a.example.com and test-b.example.com, if it is not already:

sudo aptitude install openssh-server

Each of your testing clients should use the same username for running
tests. Setting up multiple machines will be much easier if the same user-
name is used on each. If you use Erlang-based remote monitoring, create
this same username on each server to be monitored as well. Alterna-
tively, you can configure default usernames in your users’ SSH config-
uration files.

Generate an SSH key on test-a.example.com, if you have not already:

ssh-keygen

Pick the default file in which to save the key, likely ~/.ssh/id_rsa. Enter a passphrase, if
you’d like.

From test-a.example.com, copy the ~/.ssh/id_rsa public key to test-b.example.com:

scp ~/.ssh/id_rsa.pub test-b.example.com:~

If this is the first time using SSH to connect from test-a.example.com to test-b.exam
ple.com, you will need to accept the RSA key fingerprint. Enter the user’s password and
you should see output indicating that the file has been copied.

Log into test-b.example.com and add the public key copied from test-a.example.com
to test-b.example.com’s list of authorized keys:

cat ~/id_rsa.pub >> ~/.ssh/authorized_keys

Still on test-b.example.com, remove the public key that was copied over from test-
a.example.com:

rm ~/id_rsa.pub

To test, try logging into test-b from test-a.example.com, accepting the RSA key
fingerprint if prompted, and you should not be prompted for a password:

ssh test-b

We are using the local hostname, test-b, rather than the complete host-
name, test-b.example.com, since Tsung will require us to use the local
hostname in our test configuration. Tsung will also allow you to use the
IP address of the machine, if you’d prefer.

Installing Tsung | 41

www.it-ebooks.info

http://www.it-ebooks.info

If you have additional testing clients, repeat the above steps for each, setting up test-
a.example.com to be able to log into each testing machine without using a password.
The more testing servers you have, the more simulated load you can generate.

Oddly enough, test-a.example.com will also need to be able to log into itself without
using a password. To add its own public key to its list of authorized keys, from test-
a.example.com:

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

To test, try logging into test-a from test-a.example.com (yes, from itself), accepting
the RSA key fingerprint if prompted, and you should not be prompted for a password:

ssh test-a

Configuring Tsung
Tsung comes with an example configuration file for doing distributed HTTP testing,
which you’ll find in /usr/share/doc/tsung/examples/http_distributed.xml. We will create
our own configuration file, saved to ~/http_distributed_couch_proxy.xml (see the Tsung
User’s manual at http://tsung.erlang-projects.org/user_manual.html):

The location of the DTD file, /usr/share/tsung/tsung-1.0.dtd, may be dif-
ferent on your testing client. If so, this value will need to be modified to
match the location on your client.

<?xml version="1.0"?>
<!DOCTYPE tsung SYSTEM "/usr/share/tsung/tsung-1.0.dtd">
<tsung loglevel="notice" version="1.0">

 <!-- Client side setup -->
 <clients>
 <client host="test-a" weight="1" maxusers="10000" cpu="4"/>
 <client host="test-b" weight="1" maxusers="10000" cpu="4"/>
 </clients>

 <!-- Server side setup -->
 <servers>
 <server host="couch-proxy" port="80" type="tcp"/>
 </servers>

 <!-- Load setup -->
 <load>
 <arrivalphase phase="1" duration="5" unit="minute">
 <users arrivalrate="200" unit="second"></users>
 </arrivalphase>
 </load>

 <!-- Sessions setup -->
 <sessions>

42 | Chapter 6: Distributed Load Testing

www.it-ebooks.info

http://tsung.erlang-projects.org/user_manual.html
http://www.it-ebooks.info

 <session name="post_get" probability="2.5" type="ts_http">
 <thinktime value="10" random="true"/>
 <setdynvars sourcetype="random_number" start="2008" end="2011">
 <var name="yyyy"/>
 </setdynvars>
 <setdynvars sourcetype="random_number" start="10" end="12">
 <var name="mm"/>
 </setdynvars>
 <setdynvars sourcetype="random_number" start="10" end="28">
 <var name="dd"/>
 </setdynvars>
 <request subst="true">
 <match do="abort" when="nomatch">201 Created</match>
 <dyn_variable name="id" jsonpath="$.id"/>
 <dyn_variable name="rev" jsonpath="$.rev"/>
 <http
 method="POST"
 url="/api"
 content_type="application/json"
 contents="{
 "date":[
 "%%_yyyy%%",
 "%%_mm%%",
 "%%_dd%%"]
 }"
 >
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 <for from="0" to="9" incr="1" var="x">
 <thinktime value="10" random="true"/>
 <request subst="true">
 <match do="abort" when="nomatch">304 Not Modified</match>
 <http method="GET" url="/api/%%_id%%">
 <http_header name="If-None-Match" value=""%%_rev%%""/>
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 </for>
 </session>

 <session name="put_get" probability="2.5" type="ts_http">
 <thinktime value="10" random="true"/>
 <setdynvars sourcetype="random_string" length="32">
 <var name="id"/>
 </setdynvars>
 <setdynvars sourcetype="random_number" start="2008" end="2011">
 <var name="yyyy"/>
 </setdynvars>
 <setdynvars sourcetype="random_number" start="10" end="12">
 <var name="mm"/>
 </setdynvars>
 <setdynvars sourcetype="random_number" start="10" end="28">
 <var name="dd"/>
 </setdynvars>

Configuring Tsung | 43

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

 <request subst="true">
 <match do="abort" when="nomatch">201 Created</match>
 <dyn_variable name="rev" jsonpath="$.rev"/>
 <http
 method="PUT"
 url="/api/%%_id%%"
 content_type="application/json"
 contents="{
 "date":[
 "%%_yyyy%%",
 "%%_mm%%",
 "%%_dd%%"
]
 }"
 >
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 <for from="0" to="9" incr="1" var="x">
 <thinktime value="10" random="true"/>
 <request subst="true">
 <match do="abort" when="nomatch">304 Not Modified</match>
 <dyn_variable name="rev" jsonpath="$._rev"/>
 <http method="GET" url="/api/%%_id%%">
 <http_header name="If-None-Match" value=""%%_rev%%""/>
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 </for>
 </session>

 <session name="view_pagination" probability="20" type="ts_http">
 <thinktime value="10" random="true"/>
 <request subst="true">
 <http
 method="GET"
 url="/api/_design/default/_view/dates?reduce=false&skip=0&limit=10"
 >
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 <for from="10" to="90" incr="10" var="skip">
 <thinktime value="10" random="true"/>
 <request subst="true">
 <http
 method="GET"
 url="/api/_design/default/_view/dates?reduce=false&skip=%%_skip%%
&limit=10&stale=ok"
 >
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 </for>
 </session>

44 | Chapter 6: Distributed Load Testing

www.it-ebooks.info

http://www.it-ebooks.info

 <session name="view_grouped" probability="75" type="ts_http">
 <thinktime value="10" random="true"/>
 <request>
 <http
 method="GET"
 url="/api/_design/default/_view/dates?group_level=1"
 >
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 <thinktime value="10" random="true"/>
 <request>
 <http
 method="GET"
 url="/api/_design/default/_view/dates?group_level=2&stale=ok"
 >
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 </session>

 </sessions>

</tsung>

All client hosts must be able to resolve the hostname of the machine
running the tests. In the above configuration, test-b must be able to
resolve the IP address of test-a.

Let’s walk through some parts of this configuration file. First, the clients element:

 <!-- Client side setup -->
 <clients>
 <client host="test-a" weight="1" maxusers="10000" cpu="4"/>
 <client host="test-b" weight="1" maxusers="10000" cpu="4"/>
 </clients>

This clients element contains a list of clients from which tests may be launched. The
more clients, the greater the simulated load that can be generated. Each client needs to
be configured using its local hostname or IP address using the host attribute. The
weight attribute assigns a relative weight to the client since some clients may be faster
and able to start more sessions than other clients. The maxusers attribute defines a
maximum number of users to simulate on this client. The cpu attribute declares how
many Erlang virtual machines Tsung should use and should be the same as the number
of CPUs that are available to the client.

The servers element:

 <!-- Server side setup -->
 <servers>
 <server host="couch-proxy" port="80" type="tcp"/>
 </servers>

Configuring Tsung | 45

www.it-ebooks.info

http://www.it-ebooks.info

The servers element contains a list of servers to be tested. Each server needs to be
configured using its local hostname or IP address using the host attribute. The port
attribute indicates the TCP/IP port number to use. The type attribute can either be
tcp or udp. Since HTTP uses TCP, we’re using tcp as the value here.

The load element:

 <!-- Load setup -->
 <load>
 <arrivalphase phase="1" duration="5" unit="minute">
 <users arrivalrate="200" unit="second"></users>
 </arrivalphase>
 </load>

The load element contains a list of arrivalphase elements, each simulating various types
of load. The arrivalphase element’s phase attribute represents the sequential number
of the arrival phase. Here we are only defining one arrival phase. The duration attribute
defines how long the arrival phase should last and the unit attribute defines the unit
by which to measure the duration. Possible values for the unit element are second,
minute, or hour.

Within the arrivalphase element is a users element. The arrivalrate attribute of the
users element defines the number of arrivals within the timeframe defined by the
unit element. Possible values for the unit element are second, minute, or hour. Here we
are telling Tsung to start 200 “arrivals” every second for 5 minutes.

The sessions element:

 <!-- Sessions setup -->
 <sessions>
 …
 </sessions>

The sessions element contains a list of session elements. These each represent user
sessions which may be simulated. You can define multiple sessions and each can have
its own probability, but the total probability of all sessions must add up to 100. Let’s
take a look at each session individually.

The session element with the name attribute value of post_get:

 <session name="post_get" probability="2.5" type="ts_http">
 …
 </session>

This session element contains a name attribute with the value of post_get. This name
will be used in reports to identify the session. The session element’s probability at-
tribute indicates the percent probability of this session being used for any given user.
Remember, the total probability of all sessions must add up to 100. The session ele-
ment’s type attribute can be either ts_http, ts_jabber, or ts_mysql. Since we’re using
HTTP, the type is ts_http.

46 | Chapter 6: Distributed Load Testing

www.it-ebooks.info

http://www.it-ebooks.info

The thinktime element:

 <thinktime value="10" random="true"/>

The thinktime element defines an amount of time to wait, or “think”, before continuing.
This is helpful when trying to more realistically simulate load. The thinktime element’s
value attribute is the amount of time, in seconds, to wait. Setting the thinktime ele-
ment’s random attribute to a value of true tells Tsung to randomize the wait time, using
the value attribute’s value as the mean.

The setdynvars elements:

 <setdynvars sourcetype="random_number" start="2008" end="2011">
 <var name="yyyy"/>
 </setdynvars>
 <setdynvars sourcetype="random_number" start="10" end="12">
 <var name="mm"/>
 </setdynvars>
 <setdynvars sourcetype="random_number" start="10" end="28">
 <var name="dd"/>
 </setdynvars>

Each of the setdynvars elements sets a dynamic variable. The sourcetype attribute value
of random_number tells Tsung to generate a random number. The start and end attributes
indicate the starting and ending values, respectively, to use when generating the random
number. The nested var element actually instantiates the variable, using the variable
name defined in the name attribute. Here we are generating random year, month, and
day values which we will use later in the session.

A request element:

 <request subst="true">
 <match do="abort" when="nomatch">201 Created</match>
 <dyn_variable name="id" jsonpath="$.id"/>
 <dyn_variable name="rev" jsonpath="$.rev"/>
 <http
 method="POST"
 url="/api"
 content_type="application/json"
 contents="{
 "date":[
 "%%_yyyy%%",
 "%%_mm%%",
 "%%_dd%%"
]
 }"
 >
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>

Configuring Tsung | 47

www.it-ebooks.info

http://www.it-ebooks.info

A request element defines a request to be made as part of the session. Since we’ll be
using the dynamic variables defined earlier, we need set the request element’s subst
attribute’s value to true. This tells Tsung to substitute variables for their values, when
encountered.

The match element tells Tsung to “match” on a certain condition. The do attribute value
of abort tells Tsung to abort the session if the match condition is true. Possible values
for the do attribute are continue, log, abort, restart, or loop. The when attribute can
either be match or nomatch. The text of the match element is the text to match or not
match on. In this case, if the text 201 Created is not found in the response (i.e., the
document was not created) then we abort the session.

The two dyn_variable elements define dynamic variables that will be based on the
server’s response. The name attribute defines the name of the variable to use. Tsung
allows matching using a limited subset of JSONPath (XPath for JSON), using the
jsonpath attribute. These two variables will contain the ID and revision of the created
document (once the response has been received).

The http element initiates an HTTP request. The method attribute specifies the HTTP
method to use for the request (e.g., GET, POST, PUT, DELETE). The url attribute specifies
the URL to which to make the request. This can be relative to the host set up earlier in
the servers element, or a full URL. The content_type attribute specifies the value of
the Content-Type HTTP header. The contents attribute specifies the contents of a
POST or PUT request body. Here we are using a JSON object as the request body. The
JSON object contains one field, date, with its value being an array of year, month, and
day values (using the random dynamic variables created earlier).

A for element:

 <for from="0" to="9" incr="1" var="x">
 <thinktime value="10" random="true"/>
 <request subst="true">
 <match do="abort" when="nomatch">304 Not Modified</match>
 <http method="GET" url="/api/%%_id%%">
 <http_header name="If-None-Match" value=""%%_rev%%""/>
 <http_header name="Accept" value="application/json"/>
 </http>
 </request>
 </for>

A for element will tell Tsung to repeat the enclosed directives a specified number of
times. Here we are using a from value of 0, a to value of 9, an incr value of 1, and using
a var (variable) with a name of x. This means that the variable x will start out with the
value of 0, increment by 1 in each iteration, and the loop will stop when x has reached
the value of 9.

The contained thinktime, request, match, and http elements should look familiar.
Within the http element, you’ll see two http_header elements. As you may have
guessed, these specify the name and value of HTTP headers to send as part of the request.

48 | Chapter 6: Distributed Load Testing

www.it-ebooks.info

http://goessner.net/articles/JsonPath/
http://www.it-ebooks.info

The If-None-Match HTTP header allows us to use conditional caching and the Accept
header tells CouchDB that our client can handle content of type application/json.

The remaining sessions in the configuration file should be self-explanatory.

Running Tsung
First, we need to create the view that is used in the above configuration file. This is
simply a view of dates (as an array of year, month, and day) from our documents:

curl -X PUT http://couch-proxy.example.com/api/_design/default -d \
'{
 "language": "javascript",
 "views": {
 "dates": {
 "map":
"function(doc) {
 if (doc.date) {
 emit(doc.date);
 }
}",
 "reduce": "_count"
 }
 }
}'

The response:

{
 "ok":true,
 "id":"_design/default",
 "rev":"1-edb41165ec8e4839dd7918e88e2125fa"
}

Start Tsung, telling it to use the above configuration file:

tsung -f ~/http_distributed_couch_proxy.xml start

Note that Tsung will wait for all sessions to complete before finishing, even if it takes
longer than the duration of all phases. Tsung will let you know what directory it has
logged to, for example:

"Log directory is: /home/bradley-holt/.tsung/log/20110221-23:26"

Change into the log directory and generate the HTML and graph reports using the
tsung_stats.pl script package with Tsung:

/usr/lib/tsung/bin/tsung_stats.pl

The location of the tsung_stats.pl script may be different on your testing
client. If so, you will need to locate this script and run it from the ap-
propriate location.

Running Tsung | 49

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

If everything works correctly, a report.html file will be created in this same directory.
Open this report and you will see several statistics and graphs. Under the statistics
reports, the main statistics table shows you the highest 10 second mean, lowest 10
second mean, highest rate, mean, and count for each part of the HTTP connection. See
Table 6-1 for a sample main statistics report.

Table 6-1. Main statistics

Name Highest 10sec mean Lowest 10sec mean Highest rate Mean Count

connect 0.27 sec 0.663 msec 563.3 / sec 10.75 msec 161433

page 1.15 sec 3.91 msec 827.4 / sec 0.26 sec 229212

request 1.15 sec 3.91 msec 827.4 / sec 0.26 sec 229212

session 3min 29sec 6.41 sec 206.1 / sec 41.41 sec 56619

Tsung allows you to group requests into transactions. A transaction might be useful
when testing an HTML page as you could group the requests for the HTML and all
related assets (e.g., JavaScript, CSS, and images) into one transaction. We have not
done this here, so your transactions statistics table will be empty. The network through-
put table lets you see the size of the network traffic received and sent. See Table 6-2 for
a sample network throughput report.

Table 6-2. Network throughput

Name Highest rate Total

size_rcv 3.60 Mbits/sec 126.19 MB

size_sent 1.01 Mbits/sec 35.83 MB

The counter statistics reports let you see the total number of simulated users and related
statistics. See Tables 6-3 and 6-4 for sample counter statistics reports.

Table 6-3. Counter statistics, first table

Name Highest rate Total number

finish_users_count 206.1 / sec 56619

match 109.8 / sec 31041

match_stop 0.3 / sec 11

nomatch 0.3 / sec 11

users_count 196.3 / sec 56620

Table 6-4. Counter statistics, second table

Name Max

connected 2797

users 8191

50 | Chapter 6: Distributed Load Testing

www.it-ebooks.info

http://www.it-ebooks.info

The HTTP return code table gives you a list of return codes with the highest rate and
total number for each. See Table 6-5 for a sample HTTP return code report. In this
sample report, we can see that we got the 200 OK response code 198,157 times, and the
highest rate for that response code was 713.1 / sec.

Table 6-5. HTTP return code

Code Highest rate Total number

200 713.1 / sec 198157

201 11.5 / sec 2832

304 100.2 / sec 28209

404 0.3 / sec 11

There are also several graphs reports available. For all graphs, the x-axis represents a
progression of time throughout the test. The first graph represents mean transaction
response time. The y-axis for this graph represents the mean number of milliseconds
that the transaction response took during a given moment in the test. See Figure 6-1
for an example of this graph.

Figure 6-1. Graph of mean transaction response time

For the next graph, the y-axis represents the mean number of milliseconds that the
request or connection establishment took during a given moment in the test. See Fig-
ure 6-2 for an example of this graph.

For the next graph, the y-axis represents the number of transactions per second during
a given moment in the test. See Figure 6-3 for an example of this graph.

For the next graph, the y-axis represents the number of requests or connects during a
given moment in the test. See Figure 6-4 for an example of this graph.

For the next graph, the y-axis represents the number of kilobits per second sent or
received during a given moment in the test. See Figure 6-5 for an example of this graph.

Running Tsung | 51

www.it-ebooks.info

http://www.it-ebooks.info

Figure 6-2. Graph of mean request and connection establishment response time

Figure 6-3. Graph of transactions rate throughput

Figure 6-4. Graph of requests rate throughput

52 | Chapter 6: Distributed Load Testing

www.it-ebooks.info

http://www.it-ebooks.info

Figure 6-5. Graph of network traffic throughput

For the next graph, the y-axis represents the number of users per second arriving or
finishing during a given moment in the test. See Figure 6-6 for an example of this graph.

Figure 6-6. Graph of new users arrival rate throughput

For the next graph, the y-axis represents the number of simultaneous users arriving or
connected during a given moment in the test. See Figure 6-7 for an example of this
graph.

For the final graph, the y-axis represents the number of responses per second of a given
HTTP return code. See Figure 6-8 for an example of this graph.

Running Tsung | 53

www.it-ebooks.info

http://www.it-ebooks.info

Figure 6-7. Graph of simultaneous users

Figure 6-8. Graph of HTTP return code status rate

Monitoring
Tsung can monitor the CPU usage, memory usage, and load on your servers as they
are being tested. This data can be used to better allocate your available network re-
sources. You can use either Erlang, SNMP, or Munin to monitor your servers. In this
example, we will use Munin for monitoring. This requires Munin to be installed on
your servers. Install Munin on couch-proxy.example.com, couch-master.example.com,
couch-a.example.com, couch-b.example.com, and couch-c.example.com:

sudo aptitude install munin-node

Next, you need to configure all of your Munin nodes to allow monitoring by test-
a.example.com. Edit /etc/munin/munin-node.conf and add the following line, replacing
the IP address quadrants in ̂ 10\.179\.113\.200$ with the quadrants from the IP address
of your test-a.example.com testing server (as you may have guessed, the value of the
allow directive is a regular expression):

allow ^10\.179\.113\.200$

54 | Chapter 6: Distributed Load Testing

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

To enable monitoring, add a <monitoring> section to ~/http_distributed_couch_proxy.
xml after your server side setup:

 <!-- Monitoring setup -->
 <monitoring>
 <monitor host="couch-proxy" type="munin"></monitor>
 <monitor host="couch-master" type="munin"></monitor>
 <monitor host="couch-a" type="munin"></monitor>
 <monitor host="couch-b" type="munin"></monitor>
 <monitor host="couch-c" type="munin"></monitor>
 </monitoring>

Start Tsung, telling it to use the above configuration file, as before:

tsung -f ~/http_distributed_couch_proxy.xml start

As before, Tsung will let you know what directory it has logged to:

"Log directory is: /home/bradley-holt/.tsung/log/20110221-23:39"

Just like before, change into the log directory and generate the HTML and graph reports
using the tsung_stats.pl script:

/usr/lib/tsung/bin/tsung_stats.pl

Open the report.html file. This time you will see a few new statistics and graphs. On
the statistics report page, under server monitoring, you will see several statistics from
the monitored servers. See Table 6-6 for an example of the server monitoring report.
See Table 6-7 for a description of each measurement.

Table 6-6. Server monitoring

Name Highest 10sec mean Lowest 10sec mean

cpu:os_mon@couch-a 81.12 % 0.45 %

cpu:os_mon@couch-b 62.40 % 0.32 %

cpu:os_mon@couch-c 61.80 % 0.55 %

cpu:os_mon@couch-master 8.85 % 0.35 %

cpu:os_mon@couch-proxy 21.62 % 0.32 %

freemem:os_mon@couch-a 142.41 MB 100.57 MB

freemem:os_mon@couch-b 150.34 MB 116.84 MB

freemem:os_mon@couch-c 118.29 MB 98.40 MB

freemem:os_mon@couch-master 184.82 MB 179.22 MB

freemem:os_mon@couch-proxy 925.48 MB 450.45 MB

load:os_mon@couch-a 1.04 0.27

load:os_mon@couch-b 0.83 0.29

load:os_mon@couch-c 1.02 0.39

load:os_mon@couch-master 0.31 0.16

load:os_mon@couch-proxy 34.45 1.49

Monitoring | 55

www.it-ebooks.info

http://www.it-ebooks.info

Table 6-7. Server monitoring measurements

Measure Description

cpu CPU utilization

freemem Amount of free memory available

load Server load

Under graphs reports, you will see a new server OS monitoring section. For the first
graph, the y-axis represents the CPU utilization of your servers during a given moment
in the test. See Figure 6-9 for an example of this graph.

For the next graph, the y-axis represents the free memory available on your servers
during a given moment in the test. See Figure 6-10 for an example of this graph.

For the next graph, the y-axis represents the CPU load on your servers during a given
moment in the test. See Figure 6-11 for an example of this graph.

Figure 6-9. Graph of CPU utilization

Figure 6-10. Graph of free memory

56 | Chapter 6: Distributed Load Testing

www.it-ebooks.info

http://www.it-ebooks.info

Figure 6-11. Graph of CPU load

Identifying Bottlenecks
Based on the results of the above tests, we can attempt to make a few conclusions. First,
some analysis:

• The CPU utilization percentages on the read-only slave nodes, the write-only mas-
ter node, and the proxy server are all quite low. It appears that none of these nodes
are CPU bound.

• The free memory amounts on the read-only slave nodes, the write-only master
node, and the proxy server never drops critically low. It looks like none of the nodes
ever run out of memory, so excessive swapping should not be an issue.

• The server load averages on the read-only slave nodes and the write-only master
node are reasonable.

• The server load average on the proxy server is quite high.

Based on this analysis, we might conclude that the proxy server is a potential bottleneck
in our system. If you look back at the counter statistics, you’ll see that the maximum
number of connections reached was 2797. However, the maximum number of con-
nections allowed to each read-only node was 4. With three read-only nodes, this gives
us a total of 12 maximum connections to the backend CouchDB nodes. The write-only
node did not have a limit, but our test scenarios were read-heavy. It appears that the
proxy server is effectively queuing requests for the backend CouchDB nodes, which
could account for the high server load.

Based on the above hypothesis, adding more read-only CouchDB nodes might actually
lessen the load on the proxy server. Of course, we should test this hypothesis before
we assume its validity. We’re not going to do that here, but the point is that you should
always challenge your assumptions with an actual test.

Identifying Bottlenecks | 57

www.it-ebooks.info

http://www.it-ebooks.info

Test Configuration
The load tests in this chapter were performed using Rackspace Cloud Servers™. Each
virtual server was on a machine with a Quad-Core AMD Opteron™ Processor running
at 2200 MHz. The proxy server (couch-proxy.example.com) had 1024 MB of RAM and
all other servers had 256 MB of RAM. The storage on all machines were 7200 RPM
disks in a RAID-10 configuration (Rackspace would not disclose any more details about
the hard drives). All machines were running Ubuntu 10.10 LTS (Maverick Meerkat),
64-bit. The configuration being tested matches that described in Chapter 4.

58 | Chapter 6: Distributed Load Testing

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Defining Scaling Goals
	What is Scalability?
	Capacity Planning
	The CAP Theorem
	Consistency
	Availability
	Partition Tolerance

	Chapter 2. Tuning and Designing for Scale
	Performance Tips
	Document Design

	Chapter 3. Replication
	Filters and Specifying Documents
	Conflict Resolution
	Picking the Same Revision as CouchDB
	Picking a Conflicted Revision
	Merging Revisions

	Chapter 4. Load Balancing
	CouchDB Nodes
	Replication Setup
	Proxy Server Configuration
	Testing

	Chapter 5. Clustering
	BigCouch
	Lounge
	Pillow

	Chapter 6. Distributed Load Testing
	Installing Tsung
	Configuring Tsung
	Running Tsung
	Monitoring
	Identifying Bottlenecks
	Test Configuration

