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Preface

The concept of distance is one of the basic ones in the whole of human experience. In
everyday life it usually means some degree of closeness between two physical objects or
ideas, i.e., length, time interval, gap, rank difference, coolness or remoteness, while the
term metric is often used as a standard for a measurement. But here we consider, except in
the last two chapters, the mathematical meaning of these terms. The mathematical notions
of distance metric (i.e., a function d(x, y) from X x X to the set of real numbers satisfying
d(x,y) = 0 with equality only for x = y, d(x,y) = d(y,x),and d(x,y) < d(x,2) +
d(z, y)) and of metric space (X, d) were originated a century ago by M. Fréchet (1906)
and F. Hausdorff (1914) as a special case of an infinite topological space. The triangle
inequality above appears already in Euclid. The infinite metric spaces are seen usually
as a generalization of the metric [x — y| on the real numbers. Their main classes are the
measurable spaces (add measure) and Banach spaces (add norm and completeness).

However, starting from K. Menger (1928) and, especially, L.M. Blumenthal (1953), an
explosion of interest in finite metric spaces occurred. Another trend: many mathematical
theories, in the process of their generalization, settled on the level of metric space.

Now finite distance metrics have become an essential tool in many areas of Mathemat-
ics and its applications include Geometry, Probability, Statistics, Coding/Graph Theory,
Clustering, Data Analysis, Pattern Recognition, Networks, Engineering, Computer Graph-
ics/Vision, Astronomy, Cosmology, Molecular Biology, and many other areas of science.
Devising the most suitable distance metrics has become a standard task for many re-
searchers. Especially intense ongoing searches for such distances occur, for example, in
Genetics, Image Analysis, Speech Recognition, Information Retrieval. Often the same dis-
tance metric appears independently in several different areas; for example, the edit distance
between words, the evolutionary distance in Biology, the Levenstein distance in Coding
Theory, and the Hamming+Gap or shuffle-Hamming distance.

This body of knowledge has become too large and disparate to operate within. The
number of worldwide web entries offered by Google on the topics “distance”, “metric
space” and “distance metric” approach 300 million (i.e., about 4% of all), 12 million and
6 million, respectively, not to mention all the printed information outside the Web, or the
vast “invisible Web” of searchable databases. However, this huge amount of information
on distances is too scattered: the works evaluating distance from some list usually treat
very specific areas and are hardly accessible for non-experts.

Therefore, many researchers, including us, keep and cherish a collection of distances for
use in their own areas of science. In view of the growing general need for an accessible
interdisciplinary source for a vast multitude of researchers, we have expanded our private
collection into this Dictionary. Some additional material was reworked from various en-
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viii Preface

cyclopedia, especially, Encyclopedia of Mathematics ([EM98]), MathWorld ([Weis99]),
PlanetMath ([PM]), and Wikipedia ((WFE]). However, the majority of distances should be
extracted directly from specialist literature.

The vast reservoir of concepts defined in this Dictionary, aims to be a thought-provoking
archive and a valuable resource. Besides distances themselves, we have collected here
many distance-related notions (especially in Chapter 1) and paradigms, enabling people
from applications to get those, arcane for non-specialists, research tools, in ready-to-use
fashion. This and the appearance of some distances in different contexts can be a source of
new research.

At a time when over-specialization and terminology barriers isolate researchers, this
Dictionary tries to be “centripetal” and “ecumenical”, providing some access and altitude
of vision but without taking the route of scientific vulgarization. This attempted balance
defined the structure and style of the Dictionary.

The Dictionary is divided into 28 chapters grouped into 7 Parts of about the same length.
The titles of parts are purposely approximative: they just allow a reader to figure out her/his
area of interest and competence. For example, Parts II, IIT and IV, V require some culture
in, respectively, pure and applied Mathematics. Part VII can be read by a layman.

The chapters are thematic lists, by areas of Mathematics or applications which can be
read independently. When necessary, a chapter or a section starts with a short introduction:
a field trip with the main concepts. Besides those introductions, the main properties and
uses of distances are given, within items, only exceptionally. We also tried, when it was
easy, to trace distances to their originator(s), but the proposed extensive bibliography has a
less general ambition: it is just to provide convenient sources for a quick search.

Each chapter consists of items ordered in a way that hints of connections between them.
All item titles and selected key terms can be traced in the large Subject Index (about 1400
entries); they are boldfaced unless the meaning is clear from the context. So, the definitions
are easy to locate, by subject, in chapters and/or, by alphabetic order, in the index. The
introductions and definitions are reader-friendly and as far as possible independent of each
other; still they are interconnected, in the 3-dimensional HTML manner, by hyperlink-like
boldfaced references to similar definitions.

Many nice curiosities appear in this “Who is Who” of distances. Examples of such
sundry terms are: ubiquitous Euclidean distance (“as-the-crow-flies”), flower-shop met-
ric (shortest way between two points, visiting a “flower-shop” point first), knight-move
metric on a chessboard, Gordian distance of knots, Earth Mover distance, biotope distance,
Procrustes distance, lift metric, post-office metric, Internet hop metric, WWW hyperlink
quasi-metric, Moscow metric, dogkeeper distance. Besides abstract distances, the distances
having physical meaning appear also (especially in Part VI); they range from 1.6 x 1073 m
(Planck length) to 7.4 x 1026 m (the estimated size of observable Universe, about 46 x 10%0
Planck lengths).

The number of distance metrics is infinite and therefore, our Dictionary cannot enu-
merate all of them. But we were inspired by several successful thematic dictionaries on
other infinite lists; for example, on Integer Sequences, Inequalities, Numbers, Random
Processes, and by atlases of Functions, Groups, Fullerenes, etc. On the other hand, the
largeness of the scope forced us often to switch into a laconic tutorial style.
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The target audience consists of all researchers working on some measuring schemes and,
to a certain degree, of students and a part of the general public interested in science.

We have tried to address, even if incompletely, all scientific uses of the notion of dis-
tance. However some distances did not made it into this Dictionary due to space limitations
(being too specific and/or complex) or our oversight. In general, the size/interdisciplinarity
cut-off, i.e., decision where to stop, was our main headache. We would be grateful to the
readers who send us their favorite distances missed here. Four pages at the end are reserved
for such personal additions.

We are grateful to many people for their help with this book, especially, to Jacques
Beigbeder, Mathieu Dutour, Emmanuel Guerre, Jack Koolen, Jin Ho Kwak, Hiroshi Mae-
hara, Sergey Shpectorov, Alexei Sossinsky, and Jiancang Zhuang.
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Chapter 1

General Definitions

1.1. BASIC DEFINITIONS

e Distance
Let X be a set. A functiond : X x X — R is called distance (or dissimilarity) on X if,
for all x, y € X, it holds:

1. d(x,y) = 0 (non-negativity),
2. d(x,y) =d(y, x) (symmetry);
3. dx,x)=0.

In Topology, it is also called symmetric. The vector from x to y having the length
d(x, y) is called displacement. A distance which is a squared metric, is called guad-
rance.

For any distance d, the function, defined for x # y by D(x, y) = d(x, y) + ¢, where
¢ =maxyyex(d(x,y) —d(x,2) —d(y, 2)), and D(x, x) = 0, is a metric.

e Distance space

A distance space (X, d) is a set X equipped with a distance d.

e Similarity
Let X be a set. A function s : X x X — R is called similarity (or proximity) on X if s is
non-negative, symmetric, and if s(x, y) < s{x, x) holds for all x, y € X, with equality
ifandonly if x = y.

Main transforms used to obtain a distance (dissimilarity) d from a similarity s are: d =

l—s,d=12d=T=5,d=2(1-5%),d=—1Ins,d = arccoss.

e Semi-metric

Let X be a set. A functiond : X x X — R is called semi-metric (or écart, pseudo-
metric) on X if d is non-negative, symmetric, if d(x, x) = 0 holds for all x € X, and
if

d(x,y) <d(x,z) +d(z, y)

holds for all x, y, z € X (triangle inequality).

For any distance d, the equality d(x,x) = O and the strong triangle inequality
d(x,y) <d(x, z) +d(y, z) imply that d is a semi-metric.

2
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o Metric
Let X be aset. A functiond : X x X — R is called metric on X if, forall x, y, z € X,
it holds:

1. d(x,y) = 0 (non-negativity);

2. d(x,y) =0if and only if x = y (separation or self-identity axiom);
3. d(x,y) =d(y, x) (symmetry);

4. d(x,y) <d(x,z)+d(z, y) (triangle inequality).

e Metric space
A metric space (X, d) is a set X equipped with a metric d.

A metric scheme is a metric space with an integral valued metric.

o Extended metric

An extended metric is a generalization of the notion of metric: the value oo is allowed
for a metric d.

o Near-metric

Let X be a set. A distance d on X is called near-metric if
0<d(x,y) < C(d(x,z1) +d(z1,22) + - +d(zn. ¥))

holds for all different x, v, z1,...,2, € X and a constant C > 1.

e Coarse-path metric

Let X be a set. A metric d on X is called coarse-path metric if, for a fixed C > 0 and
for every pair of points x, y € X, there exists a sequence x = xg, X1, ...,x; = y for
whichd(x;_1,x;) < Cfori=1,...,t,and

d(.x, Y) 2 d(x07-x1)+d(-xlax2)+ e +d(-xl—17xl) _C7

i.e., the weakened triangle inequality d(x, y) < Zﬁ:l d(x;—1, x;) becomes an equality
up to a bounded error.

¢ Resemblance

Let X be aset. A functiond : X x X — R s called resemblance on X if d is symmetric
and if, for all x,y € X, either d(x, x) < d(x,y) holds (in which case d is called
forward resemblance), or d(x,x) = d(x, y) holds (in which case d is called backward
resemblance).

Every resemblance d induces a strict partial order < on the set of all unordered pairs of
elements of X by defining {x, y} < {u, v} ifand only if d(x, y) < d(u, v).

For any backward resemblance d, the forward resemblance —d induces the same partial
order.
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Quasi-distance

Let X be a set. A functiond : X x X — R is called quasi-distance on X if 4 is non-
negative, and if d(x, x) = O holds for all x € X.

Quasi-semi-metric

Let X be aset. A functiond : X x X — Ris called quasi-semi-metric (or weak metric)
on X if d is non-negative, it d(x, x) = 0 holds for all x € X, and if

d(x,y) <d(x,z) +d(z, y)

holds for all x, y, z € X (oriented triangle inequality).

Albert quasi-metric

An Albert quasi-metric d is a quasi-semi-metric on X with weak definiteness, i.e., for
all x, y € X the equality d(x, y) = d(y, x) implies x = y.

Weak quasi-metric

A weak quasi-metric d is a quasi-semi-metric on X with weak symmetry, i.e., for all
x,y € X,d(x,y)=0ifand only if d(y, x) = 0.

Quasi-metric

Let X be a set. A functiond : X x X — R is called quasi-metric on X if d(x,y) > 0
holds for all x, y € X with equality if and only if x = y, and if

d(x,y) <d(x,z) +d(z, y)

holds for all x, y, z € X (oriented triangle inequality). A quasi-metric space (X, d) is
a set X equipped with a quasi-metric d.

For any quasi-metric d, the function D(x, y) = d(x, y) +d(y, x) is a metric.

2k-gonal distance
An 2k-gonal distance d is a distance on X which satisfies the 2k-gonal inequality

Z bibid(x;, x;) <0
I<i<jgn

forall b € Z" with Y /_ b; = O and > [, [b;| = 2k, and for all distinct elements
Xl,...,%x, € X.
Distance of negative type

A distance of negative type d is a distance on X which is 2k-gonal for any k > 1, i.e,,
satisfies the negative type inequality

> bibjd(xi,x;) <0
I<i<j<n
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forall b € Z" with )}, b; = 0, and for all distinct elements x1, ..., X, € X.

A distance can be of negative type without being a semi-metric. Cayley proved that a
metric d is an Lo-metric if and only if d? is a distance of negative type.

e (2k + 1)-gonal distance
An (2k + 1)-gonal distance d is a distance on X which satisfies the (2k + 1)-gonal
inequality
> bibjd(xi,x)) <0
1<i<jgn
forall b € Z" with 1 b; = land D", [b;] = 2k + 1, and for all distinct elements
Xly..., Xy € X,
The (2k + 1)-gonal inequality with k = 1 is the usual triangle inequality. The (2k + 1)-
gonal inequality implies the 2k-gonal inequality.
e Hypermetric

A hypermetric d is a distance on X which is (2k + [)-gonal for any k > 1, i.e., satisfies
the hypermetric inequality

> bibjd(xi,x)) <0
1<i<jgn

for all b € Z" with Y., b; = 1, and for all distinct elements x1, ..., x, € X. Any
hypermetric is a semi-metric and a distance of negative type. Any L-metric is a hy-
permetric.

o Ptolemaic metric

A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic inequality
d(x, y)d(u,z) < d(x,w)d(y,z) +d(x,2)d(y, u)

(shown by Ptolemy to hold in the Euclidean space) for all x, y, u, z € X.

A metric space (V, ||x — y]) (where (V, ||.||) is a normed vector space) is Ptolemaic if
and only if it is an inner product space.

e Assouad pseudo-distance

An Assouad pseudo-distance (or weak ultrametric) d is a distance on X such that for
a constant C > 1 the inequality

0<d(x,y) < Cmax{d(x, 2),d(z, y)}

holds forall x, y,z € X, x # y.

The term pseudo-distance is also used, in some applications, for a pseudo-metric (i.e.,
a semi-metric), for a quasi-distance, for a near-metric, for a distance which can be
infinite, for a distance with an error, etc.



6

[ @ Ultrametric] Fart I: Mathematics of Distances

Ultrametric

An ultrametric (or non-Archimedean metric) d is a metric on X which satisfies the
following strengthened version of the triangle inequality:

d(x,y) < max{d(x,z),d(z, y)}

forall x, y, z € X. So, at least two of d(x, y), d(z, y) and d(x, z) are the same.

A metric d is ultrametric if and only if d¥ is a metric for any real positive number «.
Any ultrametric satisfies the four-point inequality.

Four-point inequality metric

A metric d on X satisfies the four-point inequality if the following strengthened version
of the triangle inequality holds: forall x, y, z, u € X

d(x,y) +d(z, u) < max{d(x,z) +d(y,u),d(x,u)+d(y,2)}.

Equivalently, among the three sums d(x, y)+d(z, u), d(x, 2)+d(y, u), d(x, u)+d(y, 2)
the two largest sums are equal.

A metric satisfies the four-point inequality if and only if it is a tree-like metric.

Any metric, satisfying the four-point inequality, is a Ptolemaic metric.

A bush metric is a metric for which all four-point inequalities are equalities, i.e.,
d(x,y)+d(u,z) =d(x,u)+d(y,z) holds forany u, x,y,z € X.

Relaxed four-point inequality metric

A metric d on X satisfies the relaxed four-point inequality if, for all x, y,z,u € X,
among the three sums

d(x,y)+d(z,u), dx,z)+dy,u), dx,u)+d(y, z)

at least two (not necessarily two largest) are equal.

A metric satisfies the relaxed four-point inequality if and only if it is a relaxed tree-like
metric.

§-hyperbolic metric

Given a number § > 0, a metric d on a set X is called §-hyperbolic if it satisfies the
Gromov §-hyperbolic inequality (another weakening of the four-point inequality):
for all x, y, z, u € X it holds

d(x,y) +d(z, u) <28 + max{d(x,z) +d(y,u),d(x,u) + d(y,2)}.
A metric space (X, d) is §-hyperbolic if and only if it holds

(x'y))(() 2 min{(x'z)xov (y‘Z)X()} )
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forallx, y,z € X and for any xg € X, where (x.y)x, = %(d(x(), x)+d(xg, y)—d(x, y))
is the Gromov product of the points x and y of X with respect of base-point xg € X.

A metric space (X, d) is O-hyperbolic exactly when d satisfies the four-point inequal-
ity. Every bounded metric space of diameter D is D-hyperbolic. The n-dimensional
hyperbolic space is In 3-hyperbolic.

e Gromov product similarity

Given a metric space (X, d) with a fixed point xg € X, the Gromov product similarity
(or Gromov product, covariance) {.), 1s a similarity on X, defined by

1
(x-)’)x() = E(d(xvxo) + d(%x()) - d(x7 Y))

If X is a measure space with d(x, y) = u(xAy), then (x.y)y = uxNy).Ifdisa
distance of negative type, i.e.,d(x, y) = d% (x, y) for a subset X of an Euclidean space
E”, then (x.y)o is the usual inner product on E". The function dy,(x, y) = C — (x.y)x,
(called Farris transform in Phylogenetics) with C > max, yex d(u, v) is a metric. It is
an ultrametric if and only if d satisfies the four-point inequality.

1.2. MAIN DISTANCE-RELATED NOTIONS

e Metric ball

Given a metric space (X, d), thE metric ball (or closed metric ball) with center xg € X
and radius r > 0 is defined by B(xp,r) = {x € X: d(x¢, x) < r}, and the open metric
ball with center xg € X and radius r > 0 is defined by B(xg,7) = {x € X: d(xp, x) <
r}.

The metric sphere with center xg € X and radius r > 0 is defined by S(xg,7) = {x €
X: d(xg,x) =rl

For the norm metric on an n-dimensional normed vector space (V, |.[|), the closed
metric ball B = {x € V: |x|| < 1} is called unit ball, and the set "' = {x € V:
lx|| = 1} is called unit sphere (or unit hypersphere). In a two-dimensional vector space,
a metric ball (closed or open) is called metric disk (closed or open, respectively).

e Metric topology
A metric topology is a fopology on X induced by a metric d on X.
More exactly, given a metric space (X, d), define the open set in X as an arbitrary union
of (finitely or infinitely many) open metric balls B(x,r) = {y € X: d(x,y) < r},
x € X,r € R, r > 0. A closed set is defined now as the complement of an open set.
The metric topology on (X, d) is defined as the set of all open sets of X. A topological
space which can arise in this way from a metric space is called metrizable space.

e Metrization theorems

Metrization theorems are theorems which give sufficient conditions for a topological
space to be metrizable, i.e., with topology which is a metric topology.
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Metric interval

Given two different points x, y € X of a metric space (X, d), the metric interval be-
tween x and y is the set

I(x,y) ={z€X: d(x,y) =d(x,2) +d(z, »)}.

A metric space (X, d) is called antipodal metric space (or diametrical metric space) if,
for any x € X, there exists the antipode, i.e., an unique x’ € X such that [ (x, x") = X.

A metric space (X, d) is called distance monotone metric space if, for any interval
I{x,x"yand y € X\I(x, x"), there exists x” € I(x, x") withd(y, x”") > d(x, x').

Metric triangle

Three different points x, y, z € X of a metric space (X, d) form a metric triangle if the
metric intervals 7(x, y), I(y, z) and I(z, x) intersect only in the common end points.

A metric tree is a metric space all of whose metric triangles are degenerated.

Modular metric space

A metric space (X, d) is called modular if for any three different points x,y,z € X
there existu € I(x, y)NI(y,z) N I(z, x).

This should not be confused with modular distance and modulus metric.

Metric quadrangle

Four different points x, v, z, # € X of a metric space (X, d) form a metric quadrangle
ifx,zeI(y,uyand y,u € I(x,z). Itholds d(x, y) = d(z,u) and d(x,u) = d(y, z) in
such a metric quadrangle.

A metric space (X, d) is called weakly spherical if, for any three different points
x,y,z € X with y € I(x, z), there exists # € X such that x, y, z, u form a metric
quadrangle.

Metric curve

A metric curve (or, simply, curve) y in a metric space (X, d) is a continuous mapping
y I — X from an interval / of R into X. A curve is called simple if it is injective.
A curve v : [a, b] — X is called Jordan curve (or simple closed curve) if it does not
cross itself, and y(a) = y(b). The length I(y) of a curve y : [a,b] — X is defined
by I(y) = sup{d 1, dy(t), y(tic1)): mn e Nja =1 <1 < -+ <ty = b},
A rectifiable curve is a curve with the finite length.

Geodesic

A geodesic segment (or shortest path) in a metric space is a locally shortest curve be-
tween two points. In other words, a geodesic segment [x, y] from x to y is an isometric
embedding y : la, b] — X with y(a) = x and y(b) = y. A geodesic is a locally iso-
metric embedding of the whole R in X. A metric straight line (or minimizing geodesic)
is a geodesic which is minimal between any two of its points.
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A geodesic metric space is a metric space in which any two points are joined by a
geodesic segment. Given a metric space (X, d), the total convexity of aset M C X
means that for any two points of M any geodesic segment connecting them lies entirely
in M.

e Metric convexity

Given a metric space (X, d), the metric convexity of a set M C X means that, for
any different points x,y € M and any 0 < A < 1, there exists z € M such that
d(x,z) =Ad(x,y),and d(z, y) = (1 — M)d(x, y).

e Proximity graph of metric space
The proximity graph (or underlying graph) of a metric space (X, d) is a graph with the
vertex-set X and xy being an edge if I(x, y) = {x, y}, i.e., no third point z € X, for
which d(x, y) = d(x, z) + d(z, ¥), exists.

o Menger convexity

A metric space (X, d) is called Menger-convex (or M-convex) if, for any different x, y €
X, we have [I(x, y)| > 2, i.e., there exists a third point z € X for which d(x, y) =
d(x,z)+d(z, y). The Menger-convexity of a set M C X means that, moreover, z € M
if x, y € M. There exist discrete Menger-convex metric spaces.

e Hyperconvexity

A metric space (X, d) is called hyperconvex (or injective) if it is Menger-convex and
its closed metric balls have the infinite Helly property, i.e., any family of closed balls
B(x;, r;) with centers x; and radii r;, i € I, satisfying d(x;, xj) <ri+rjforalli, j €1,
has non-empty intersection (cf. injective metric space).

e Metric entropy

Given ¢ > 0, the metric entropy (or g-entropy, relative e-entropy) H,(M, X) of a set
M, lying in a metric space (X, d), is defined by

HF(Ma X) - 1Og2 NE(Mv X)7

where N, (M, X) is the smallest number of points in an &-net for the metric space (M, d),
i.e., a set of points such that the union of g-balls, centered at those points, covers M.

The absolute g-entropy of a set M is the number H,(M) = inf H.(M, X), where the
infimum is taken over all metric spaces (X, d) such that M C X.

e Metric dimension

For a metric space (X,d) and any real number ¢ > O, let Nx(g) be the minimal
number of sets with diameter at most ¢ which are needed in order to cover X (cf.
metric entropy). The number lim,_¢ % (if it exists) is called metric dimension
(or Minkowski—Bouligand dimension, Minkowski dimension, packing dimension, box-
counting dimension) of X.

If the limit above does not exist, then the following notions of dimension are considered:
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1. The number lim 90% is called lower metric dimension (or lower box dimen-
sion, Pontryagin—Schnirecfmann dimension, lower Minkowski dimension);
2. The number limqﬁ()% is called upper metric dimension (or entropy dimension,

Kolmogorov-Tihomirov dimension, upper box dimension).

In the mathematical literature other, less prominent, notions of metric dimension also
occur. For example,

1. For any ¢ > 1, the metric dimension dim.(X) of a finite metric space (X, d) is the
least dimension of a real normed space (V, .||} such that there is an embedding
fiX = Vwithd(x,y) 2 1 f () — fFOD)] = 1d(x, y);

2. The dimension of a finite metric space (X, d) is the least dimension n of an Euclidean
space E" such that (X, f(d)) is its metric subspace, where the minimum is taken over
all continuous monotone increasing functions f(¢) of t > 0;

3. The metric dimension of a metric space is the minimum size of its metric basis, i.c.,
of its smallest subset S such that no two points have the same distances to all points
of S.

4. The equilateral dimension of a metric space is the maximum cardinality of its equi-
lateral (or equidistant) subset, i.e., such that any two its distinct points are at the
same distance. For a normed space, this dimension is equal to the maximum number
of translates of its unit ball that pairwise touch.

Hausdorff dimension

For a metric space (X, d) and any real p, g > 0, let Mz (X)) = ian;r:"f(diam(Ai))/’,
where the infimum is taken over all countable coverings {A;}; of X with the diame-
ter of A; less than ¢. The Hausdorff dimension (or Hausdorff~Besicovitch dimension,
capacity dimension, fractal dimension) dimgy,,s(X, d) of X is defined by

inf{p: lim M4(X) = o}.
g—0

Any countable metric space have Hausdorff dimension 0; Hausdorft dimension of the
Euclidean space E” is equal to n.

For each totally bounded metric space, its Hausdorff dimension is bounded from above
by its metric dimension and from below by its topological dimension.

Topological dimension
For any compact metric space (X, d) its topological dimension (or Lebesgue covering
dimension) is defined by

ig/f‘{dimHauS(X, ah},

where d’ is any metric on X topologically equivalent to d, and dimgy,; is the Hausdorff
dimension.

In general, the topological dimension of a topological space X is the smallest integer

n such that, for any finite open covering of X, there exists a (finite open) sub-covering
(i.e., a refinement of it) with no point of X belonging to more than r + 1 elements.
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e Assouad-Nagata dimension

The Assonad-Nagata dimension of a metric space (X, d) is the smallest integer »n for
which there exists a constant C > 0 such that, for all s > 0, there exists a covering of X
by its subsets of diameter at most Cs with no point of X belonging to more than n + 1
elements.

For a metric space, its topological dimension does not exceed its Assouad—Nagata di-
mension. A metric space (X, d) has finite Assouad—Nagata dimension if and only if it
has finite doubling dimension, i.e., the smallest integer N such that every metric ball
can be covered by a family of at most N metric balls of half the radius.

The asymptotic dimension of a metric space (X, d) was introduced by Gromov; it is
the smallest integer n such that, for all s > 0, there exist a constant D = D(s) and a
covering of X by its subsets of diameter at most D with no point of X belonging to more
than n + 1 elements.

We say that a metric space (X, d) has Godsil-McKay dimension n > 0 if there ex-
ist an element xog € X and two positive constants ¢ and C such that ck” < [{x €
X d{(x,x9) € k}| < Ck™ holds for every integer k > 0. This notion was introduced in
[GoMc80] for the path metric of a countable locally finite graph. It was proved there
that if the group Z" acts faithfully and with a finite number of orbits on the vertices of
the graph, then this dimension is equal to .

e Fractal

For a metric space, its topological dimension does not exceed its Hausdorff dimension.
A fractal is a metric space for which this inequality is strict. (Originally, Mandelbrot
defined a fractal as a point set with non-integer Hausdorff dimension.) For example, the

Cantor set, which is an O-dimensional topological space, has the Hausdorff dimension
In2
In3

The term fractal is used also, more generally, for self-similar (i.e., roughly, looking
similar at any scale) object (usually, a subset of R").
e Length of metric space

Fremlin’s length of metric space (X, d) is one-dimensional Hausdorff outer measure
on X.

Hejcman’s length [ng(Y) of a subset ¥ of metric space (X, d) is
sup {lng(A): A C Y, |A] < o0}.

Here Ing(#) = 0 and, for a finite subset A of X, Ing(A) = min)_7_, d(x;_1, x;) over

all sequences xg, ..., x, such that {x;: i =0,1,...,n} = A.
Schechtman’s length of finite metric space (X, d) is inf /> 7, al.2 over all sequences
ai, - .., a, of positive numbers such that there exists a sequence Xy, . .., X, of partitions

of X with following properties:

. Xo={X}and X, = {{x}: x € X},
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2. X;refines X; (fori=1,...,n,
3. Fori =1,...,nand B,C C A € X;_; with B, C € X;, there exists a one-to-one
map f from B onto C such that d(x, f(x)) < g; forall x € B.

D-chromatic number

Given a metric space (X, d) and a set D of positive real numbers, the D-chromatic
number of (X, d) is the standard chromatic number of the D-distance graph of (X, d),
i.e., the graph with the vertex-set X and the edge-set {xy: d(x, y) € D}. Usually, (X, d)
is an [,-space and D = {1} (Benda—Perles chromatic number) or D = [1 — g, 1 + ¢]
(the chromatic number of the g-unit distance graph).

Polychromatic number

For a metric space (X, d), it is the minimum number of colors needed to color all the
points x € X so that for each color class C;, there is a distance d; such that no two points
of C; are at distance dj;.

For any integer t > 0, the ¢-distance chromatic number of (X, d) is the minimum
number of colors needed to color all the points x € X so that any two points whose
distance apart is < ¢ have distinct colors.

For any integer ¢ > 0, the ¢-th Babai number of (X, d) is the minimum number of
colors needed to color all the points x € X so that, for any set D of positive distances
with |D] < ¢, any two points whose distance belongs to D have distinct colors.

Rendez-vous number

Given a metric space (X, d), its rendez-vous number (or Gross number, magic number)
is a positive real number r(X, d) (if it exists), defined by the property that for each
integer n and all (not necessarily distinct) x1, ..., x, € X there exists x € X such that

1 n
X d) =~ d(x,x).
i=1

If for a metric space (X, d) the rendez-vous number r(X, d) exists, then it is said
that (X, d) has the average distance property and its magic constant is defined by

%, where diam(X, d) = max, yex d(x, y) is the diameter of (X, d).

Every compact connected metric space has the average distance property. The unit ball
{x € V. |Ix] < 1} of a Banach space (V, ||.|) has the average distance property with
the rendez-vous number 1.

Metric radius

The metric radius of a set M C X in a metric space (X, d) is the infimum of radii of
metric balls which contain M.

The covering radius of a set M C X is maxex minyep d(x, y) (directed Hausdorff
distance from X to M), i.e., the smallest number R such that the balls of radius R with
centers at the elements of M cover X. The packing radius of M is the largest r such
that the balls of radius r with centers at the elements of M are pairwise disjoint.
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A m-subset M of a metric space (X, d) is called minimax distance design of size m
if maxyex minyep d(x, y) = min{max,cx minyesd(x, y): S C X, |S| = m} holds,
and it is called maximum distance design of size m if min, ¢y minyepn(yy d(x, y) =
max{minyes minyes\(y} d(x, ¥y): S C X, |S| = m} holds.

e Metric diameter
The diameter diam(M) of a set M C X in a metric space (X, d) is defined by
sup d(x,y).

x.yeM

The diameter graph of M has, as vertices, all points x € M with d(x, y) = diam(M)
for some y € M; it has, as edges, all pairs of its vertices at distance diam(M) in (X, d).

The value
diam(X,d) = sup d(x,y)

x,veX

is called diameter of the metric space (X, d). The numbers

1 1
L Fay ™ mionon, 2 1Y

x.yeM, x#y x,yeM, x#y

are called, respectively, energy and average distance of the set M.

In Chemistry, the number d(x, y) is called Wiener number of M.

X, yeM x Ly

e Eccentricity

Given a finite metric space (X, d), the eccentricity of a point x € X is the number
e(x) = maxyex d(x, y). The numbers max,cx e¢(x) and miny,cx e(x) are the diameter
and the radius of (X, d), respectively. Some authors call radius the half of diameter.

The sets {x € X: maxyexd(x,y) < maxyexd(z,y)foranyz € X} and {x € X:
ZveX d(x,y) < ZveX d(z, y) for any z € X} are, respectively, the metric center (or
eccentricity center) and the metric median (or distance center) of (X, d).

e Steiner ratio

Given a metric space (X, d) and a finite subset V of X, consider the complete weighted
graph G = (V, E) with the vertex-set V and edge-weights d(x, y) forall x, y € V.

A spanning tree T in G is a subset of |V | — [ edges forming a tree on V with the weight
d(T) equal to the sum of weights of its edges. Let MSTy be a minimal spanning tree in
G, i.e., a spanning tree in G with the minimal weight d(MSTy ).

A minimal Steiner tree on V is a tree SMTy such that its vertex-set is a subset of X
containing V, and d(SMTvy) = infyycx. vy d(MST ).

The Steiner ratio St (X, d) of the metric space (X, d) is defined by

o d(SMTy)
ml —————.
vex d(MSTy)
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For any metric space (X, d) we have % < St(X,d) < 1. For the I-metric (i.c., the

Euclidean metric) on Rz, it is equal to g, while for the /{-metric on R2itis equal to %

e Order of congruence

A metric space (X, d) has the order of congruence r if every finite metric space which
is not isometrically embeddable in (X, d) has a subspace with at most # points which is
not isometrically embeddable in (X, d).

o Midset
Given a metric space (X, d) and distinct points y, z € X, the midset (or bisector) of X
isthe set {x € X: d(x, y) = d(x, )} of midpoints x.

A metric space is said to have r-points midset property if, for every pair of its points, the
midset has exactly n points.

e Maetric basis

Given a metric space (X, d), aset M C X is called metric basis of X if the following
condition holds: d(x, s) = d(y, s) forall s € M implies x = y. For x € X, the numbers
d(x,s),s € M, are called metric coordinates of x.

Every largest affine independent subset of an affine space (i.e., a translation of a vector
space), taken with the Euclidean metric, is a minimal metric basis.

o Element of best approximation
Given a metric space (X, d) and a subset M C X, an element ug € M is called element
of best approximation to a given element x € X if d(x, ug) = inf,epr d(x, u), ie., if
d(x, ug) is the point-set distance d(x, M).
A Chebyshev set (or gated set) in a metric space (X, d) is a subset of X containing an
unique element of best approximation for every x € X.

e Metric projection

Given a metric space (X, d) and a subset M C X, the metric projection is a multi-
valued mapping associating to each element x € X the set of elements of best approx-
imation from the set M (cf. distance map).

The set M is a Chebyshev set if and only if the corresponding metric projection is a
single-valued mapping.

e Chebyshev center

Given a metric space (X, d) and a bounded subset M C X, the Chebyshev radius of the
set M is inf,cx SUPyem d(x,y), and a Chebyshev center of M is an element xg € X
realizing this infimum.

e Distance map
Given a metric space (X, d) and a subset M C X, the distance map is a function
fm : X — Ry, where fa(x) = inf,ep d(x, u) is the point-set distance d(x, M) (cf.
metric projection).
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If the boundary B(M) of the set M is defined, then the signed distance function gy, is
defined on X by gas(x) = —infycpn d(x, u) forx € M and g(x) = inf,cpr) d(x, u),
otherwise. If M is a (closed and orientable) manifold in R”", then g3 is the solution of
the eikonal equation |Vg| = 1 for its gradient V.

Distance maps are used in Robot Motion (M being the set of obstacle points) and, espe-
cially, in Image Processing (M being the set of all or only boundary pixels of the image).
For X = R?, the graph {(x, far(x)): x € X} ofd(x, M) is called Voronoi surface of M.

e Metric transform

A metric transform is a distance obtained as a function of a given metric (cf. Chapter 4).

e Discrete dynamic system

A discrete dynamic system is a pair consisting of a non-empty metric space (X, d),
called phase space, and a continuous mapping f : X — X, called evolution law. For any
x € X, its orbit is the sequence { f"(x)},; here f(x) = f(f"~1(x)) with o) = x.
The orbit of x € X is called periodic if f"(x) = x for some n > 0.

Usually, the discrete dynamic systems are studied (for example, in Control Theory) in
the context of stability of systems; Chaos Theory concerns itself with the systems with
maximal possible instability.

An attractor is a closed subset A of X such that there exists an open neighborhood U
of A with the property that lim,,_, oo d(f"(b), A) = Oforevery b € U. Here d(x, A) =
infyeca d(x, y) is the point-set distance.

A dynamic system is called (topologically or Devaney) chaotic if it is regular (i.e., X
has a dense subset of elements having periodic orbits) and transitive (i.e., for any two
non-empty open subsets A, B of X, there exists a number n such that f"(A) N B # 0).

e Metric cone

The metric cone is a collection of all semi-metrics on the set V,, = {1, ..., n}.

e Distance matrix

Given a finite metric space (X = {x1, ..., Xy}, d), its distance matrix is the symmetric
n x nmatrix ((d;;)), where d;; = d(x;, x;) forany 1 <1, j < n.

Let s denote the number of different non-zero values of d;;. The metric space (X, d) is
said to have strength 1 if, for any integers p, ¢ > 0 with p+¢g < t, there is a polynomial

fpq(s) of degree at most min{p, g} such that ((df].”))((df].‘/)) = ((fpq (dl%.))).

e Cayley—-Menger matrix

Given a finite metric space (X = {x1,..., x,}, d), its Cayley—Menger matrix is the
symmetric (n + 1) x (n + 1) matrix

CM(X, d) = (631?),
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where D = ((d;;)) is the distance matrix of (X, d), and ¢ is the n-vector all components
of which are 1. The determinant of CM (X, d) is called Cayley—Menger determinant.

o Gram matrix

Given elements v1, ..., vr of an Euclidean space, their Gram matrix is the symmetric
k x k matrix

G, ...v) = (({vi, v)))
of pairwise inner products of vy, . .., vg.
An k x k matrix is positive-semi-definite if and only if it is a Gram matrix. An k x k
matrix is positive-definite if and only if it is a Gram matrix with linearly independent
defining vectors.
We have G(v1,...v) = 5((d%(vo, vi) + d%(vo, vj) — d2(vi, v}))), ie., the inner
product {, ) is the Gromov product similarity of the squared Euclidean distance d%:.
A k x k matrix ((dé(v;, v;))) is a distance of negative type; all such k£ x k matrices
form the (non-polyhedral) closed convex cone of all such distances on a k-set.

The determinant of a Gram matrix is called Gram determinant; it is equal to the square
of the k-dimensional volume of the parallelotope constructed on vy, ... vg.

o Isometry

Given metric spaces (X, dy) and (Y, dy), a function f: X — Y is called an iso-
metric embedding of X into Y if it is injective, and, for all x, y € X, the equality

dy(f(x), f(y)) =dx(x, y) holds.

Anisometry is a bijective isometric embedding. Two metric spaces are called isometric
(or isometrically isomorphic) if there exists an isometry between them. An isometry of
a metric space (X, d) onto itself is called motion.

A property of metric spaces which is invariant with respect to isometries (completeness,
boundedness, etc.) is called metric property (or metric invariant).

A path isometry (or arcwise isometry) is a mapping from X into Y (not necessarily
bijective) preserving the lengths of curves.

o Symmetric metric space

A metric space (X, d) is called symmetric if, for any point p € X, there exists a symme-
try relative to that point, i.e., a motion f), of this metric space such that f,(f,(x)) = x
for all x € X, and p is an isolated fixed point of f).

o Homogeneous metric space

A metric space (X, d) is called homogeneous (or highly transitive) if, for each two
finite isometric subsets ¥ = {y1,...,ym} and Z = {z1, ..., 2n} of X, there exists a
motion of X mapping Y to Z. A metric space is called point-homogeneous if, for any
two points of it, there exists a motion mapping one of the points to the other. In general,
a homogeneous space is a set together with a given transitive group of symmetries.

A metric space (X, d) is called (Griinbaum—Kelly) metrically homogeneous metric
space if {d(x,2): ze€ X} ={d(y,2): z€ X} foranyx,y € X.
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o c-uniformly perfect metric space

Every proper closed metric ball of radius » in a metric space has diameter at most 2r.
A metric space is called c-uniformly perfect, 0 < ¢ < 1, if this diameter is at least 2c¢r.

e Homeomorphic metric spaces

Two metric spaces (X, dx) and (Y, dy) are called homeomorphic (or topologically
isomorphic) if there exists a homeomorphism from X to Y, i.e., a bijective function
f 1+ X — Y suchthat f and f~! are continuous (the preimage of every open set in ¥ is
open in X).

Two metric spaces (X, dx) and (Y, dy) are called uniformly isomorphic if there exists a
bijective function f : X — Y such that f and f~! are uniformly continuous functions.
The function f is uniformly continuous if, for any ¢ > 0, there exists § > O such that,
for any x,y € X, inequality dx(x,y) < & implies inequality dy (f(x), f(¥)) < &.
A continuous function f is uniformly continuous if X is compact.

e (-quasi-conformal metrical mapping

Given metric spaces (X, dx) and (Y, dy), a homeomorphism f : X' — Y’ (where X’ C
X and Y’ C Y are open sets) is called C-quasi-conformal metrical mapping if there
exists a constant C > 1 such that

i max{dy (f(x), f(y): d(x,y)
1m sup —
r—0  min{dy(f(x), f(3)): d(x,y)

r}
r} s¢

WA

holds for each x € X'.

e Lipschitz mapping

Let ¢ be a positive constant. Given metric spaces (X,dx) and (Y, dy), a function
f: X — Y is called Lipschitz mapping (or, more exactly, c-Lipschitz mapping) if
the inequality

dy (f(x), f() < cdx(x, )

holds for all x, y € X. The minimal such ¢, i.e.,

sup dy(f(x), ()
x,yeX. x#y dx(x, Y) '

is called dilatation of f.

An c-Lipschitz mapping is called short mapping if ¢ = [, and is called contraction if
¢ < 1. Every contraction from a complete metric space into itself has an unique fixed
point.

e Bi-Lipschitz mapping
Let ¢ > 1 be a positive constant. Given metric spaces (X, dy) and (Y, dy), a function
f 1 X — Y is called bi-Lipschitz mapping (or c-bi-Lipschitz mapping, c-embedding)
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if there exists a positive real number » such that, for any x, y € X, we have the following
inequalities:

}"dX(X, }') < dY(f(X), f()’)) < C’l"dX(X, )’)

The smallest ¢ for which f is an ¢-bi-Lipschitz mapping is called distortion of f. Bour-
gain proved that every k-point metric space c-embeds into an Euclidean space with dis-
tortion O(Ink).

Two metrics di and d> on X are called bi-Lipschitz equivalent metrics if there are
positive constants ¢ and C such that cdi(x, y) < da(x,y) < Cdj(x,y) holds for all
x,y € X. In other words, the identity mapping is a bi-Lipschitz mapping from (X, d;)
into (X, da).

e Dilation

Given a metric space (X, d) and a positive real number r, a function f: X — X is
called dilation if d(f (x), f(y)) = rd(x, y) holds for any x, y € X.

e Metric Ramsey number

For a given class M of metric spaces (usually, {,,-spaces), an integer n > 1, and a real
number ¢ > 1, the metric Ramsey number (or c-metric Ramsey number) R (c, n) is
the largest integer m such that every n-point metric space has a subspace of size m that
c-embeds into a member of M (see [BLMNO5]).

e c-isomorphism of metric spaces

Given two mefric spaces (X, dx) and (Y, dy), the Lipschitz norm |.| i, on the set of all
injective mappings f : X — Y is defined by

dy (f (), D)

x,yeX. x#y dX(xa y)

”f”Lip -

Two metric spaces X and Y are called c-isomorphic if there exists an injective mapping
f: X — Y such that || f | ip | f gy < ¢

e Quasi-isometry

Given metric spaces (X, dx) and (Y, dy), a function f : X — Y is called quasi-isom-
etry if there exist real numbers C > 0 and ¢ such that

Cldy(x,y) —c <dy(f(x), () < Cd(x,y) +e¢,

and Y = |,y Ba, (f(x),0), ie., for every point y € Y, there exists a point x € X
such that dy (v, f(x)) < c.

A quasi-isometry with C = 1 is called coarse isometry.
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e Coarse embedding

Given metric spaces (X, dy) and (Y, dy), a function f : X — Y is called coarse em-
bedding if there exist non-decreasing functions pi, p2 : [0, 00) — [0, o0) such that
p1{dx(x, ) <dy(f(x), f(¥) € paldx(x, y)) Torall x,y € X, and lim; o0 p1(t) =
+00.

Metrics d; and dy on X are called coarsely equivalent metrics if there exist non-
decreasing functions £, g : [0, c0) — [0, 00) such that d) < f(dz) and d> < g(dy).

e Short mapping

Given metric spaces (X, dx) and (Y, dy), a function f : X — Y is called short map-
ping (or non-expansive mapping, semi-contraction) if

dy (f(x), f() <dx(x,y)

holds for all x, y € X. The function f is called strictly short if the inequality is strict for
all x # y. A submetry is a short mapping such that image of any metric ball is a metric
ball of the same radius. Any surjective short mapping f : X — X is an isometry if and
only if (X, dx) is a compact metric space.

Two subsets A and B of a metric space (X, d) are called (W.T. Gowers) similar if there
exist short mappings f : A = X, g : B — X and a small ¢ > 0 such that every point
of A is within ¢ of some point of B, every point of B is within ¢ of some point of A, and

ld(x, g(f(x))) —d(y, f(g(y)] < eforeveryx € Aand y € B.

e Category of metric spaces

A category W consists of a class Ob ¥, whose elements are called objects of the cate-
gory, and a class Mor ¥, elements of which are called morphisms of the category. These
classes have to satisfy the following conditions:

1. To each ordered pair of objects A, B is associated a set H(A, B) of morphisms;

2. Each morphism belongs to only one set H(A, B);

3. The composition f - g of two morphisms f: A — B, g: C — D is defined if
B = C in which case it belongs to H(A, D);

4. The composition of morphisms is associative;

5. Each set H(A, A) contains, as an identity, a morphism id 4 such that f - id4 = « and
ids -g = g for any morphisms f : X — Aandg: A —> Y.

The category of metric spaces, denoted by Mer (see [Isbe64]), is a category which has
metric spaces as objects and short mappings as morphisms. An unique injective hull
exists in this category for every one of its objects; it can be identified with its tight
span. In Met, the monomorphisms are injective short mappings, and isomorphisms are
isometries.

o Injective metric space

A metric space (X, d) is called injective (or hyperconvex) if, for every isometric em-
bedding f . X — X' of (X, d) into another metric space (X', d"), there exists a short
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mapping f’ from X' into X with f'- f = idx,i.e., X is a retract of X’. Equivalently, X
is an absolute retract, i.e., a retract of every metric space into which it embeds isometri-
cally.

e Injective hull

The notion of injective hull is a generalization of the notion of Cauchy completion.
Given a metric space (X, d), it can be embedded isometrically into an injective metric
space (X,d); given any such isometric embedding f : X — X, there exists an unique
smallest injective subspace (X, d) of ()A( , c?) containing f(X) which is called injective
hull of X. It is isometrically identified with the tight span of (X, d).

The metric space coincides with its injective hull if and only if it is an injective metric
space.

o Tight extension
An extension (X', d’) of a metric space (X, d) is called tight extension if, for every
semi-metric d” on X’ satisfying the conditions d” (x1, x2) = d(x1, x3) forall x(, x5 € X,
and d"(y1, y2) < d'(y1, y2) for any y1, y2 € X', one has d”(y1, y2) = d'(y1, y2) for all
yi, 2 € X'
The tight span is the universal tight extension of X, i.e., it contains, up to canonical
isometries, every tight extension of X, and it has no proper tight extension itself.

e Tight span

Given a metric space (X, d) of finite diameter, consider the set RX = {f : X — R}.
The tight span T(X, d) of (X, d) is defined as the set T(X,d) = {f € RX: f(x) =
sup,x(d(x,y) — f(y)) forallx € X}, endowed with the metric induced on T'(X, d)
by the sup norm || f] = sup,cx | f(x)I.

The set X can be identified with the set {h, € T(X,d): h,(y) = d(y, x)} or, equiva-
lently, with the set TO(X,d) = {f € T(X,d): 0 € f(X)}. The injective hull (X, d)
of X can be isometrically identified with the tight span T (X, d) by

X - TX,d), X— hreT(X,d): he(y) =d(f(),%).

For example, if X = {x1, x2}, then T (X, d) is the interval of length d(x1, x3). A metric
space coincides with its tight span if and only if it is an injective metric space.

The tight span of a metric space (X, d) of finite diameter can be considered as a polytopal
complex. The dimension of this complex is called Dress dimension (or combinatorial
dimension) of (X, d).

o Real tree

A complete metric space (X, d) is called real tree (or R-tree) if, for all x, y € X, there
exists an unique metric curve from x to y, and this curve is a geodesic segment. The
real trees are exactly tree-like metric spaces which are geodesic.

If X is the set of all bounded subsets of R containing their infima with the metric on
X defined by d(A, B) = 2max{supx Ay, infx, inf y} — (infx + inf y), then the metric
space (X, d) is areal tree.
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The tree-like metric spaces are by definition the metric subspaces of the real trees; real
trees are exactly the injective metric spaces among tree-like spaces. If (X, d) is a finite
metric space, then the tight span T(X, d) is a real tree and can be viewed as an edge-
weighted graph-theoretical tree. A metric space (X, d) is a real tree if and only if it is
complete, arc-wise connected, and satisfies the four-point inequality.

1.3. GENERAL DISTANCES

e Discrete metric

Given a set X, the discrete metric (or trivial metric) d is a metric on X, defined by
d(x,y) = 1 for all distinct x, y € X (and d(x, x) = 0). The metric space (X, d) is
called discrete metric space.

o Indiscrete semi-metric

Given a set X, the indiscrete semi-metric d is a semi-metric on X, defined by d(x, y) =
Oforallx,y € X.

o Equidistant metric

Given a set X and a positive real number ¢, the equidistant metric d is a metric on X,
defined by d(x, y) = ¢ for all distinct x, y € X (and d(x, x) = 0).

e (1, 2)-B-metric

Given a set X, the (1, 2)-B-metric d is a metric on X such that, for any x € X, the
number of points y € X with d(x,y) = [ is at most B, and all other distances are
equal to 2. The (1, 2)-B-metric is the truncated metric of a graph with maximal vertex
degree B.

o Induced metric

An induced metric (or relative metric) is a restriction d’ of a metric d on a set X to a
subset X’ of X.

A metric space (X', d’) is called metric subspace of the metric space (X, d), and the
metric space (X, d) is called metric extension of (X', d').

o Dominating metric

Given metrics d and d; on a set X, di dominates d if d1(x, y) > d(x, y) forall x, y €
X.

o Equivalent metrics

Two metrics di and dy on a set X are called equivalent if they define the same topology
on X, i.e., if, for every point xg € X, every open metric ball with center at xy defined
with respect to di, contains an open metric ball with the same center but defined with
respect to da, and conversely.
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Two metrics d; and d» are equivalent if and only if, for every ¢ > 0 and every x €
X, there exists § > O such that di(x, y) < § implies da(x, y) < & and, conversely,
da(x,y) < é implies di(x, y) < &.

e Complete metric

Given a metric space (X, d), a sequence {x,},, x, € X, is said to have convergence to
x* e X if limy_00d(xy, x*) = 0, ie., for any ¢ > 0, there exists ng € N such that
d(x,, x*) < ¢ forany n > ng.

A sequence {x,},, x;, € X, is called Cauchy sequence if, for any & > 0, there exists
ng € N such that d(x,, x,,) < ¢ for any m, n > ng.

A metric space (X, d) is called complete metric space if every its Cauchy sequence
converges. In this case the metric d is called complete metric.

e Cauchy completion

Given a metric space (X, d), its Cauchy completion is a metric space (X*, d*) on the
set X* of all equivalence classes of Cauchy sequences, where the sequence {x,}, is
called equivalent o {y,}, if lim;— 00 d (X, yn) = 0. The metric d* on X* is defined by

d*(x*, y*) = lim d(xp, yn)
n—00

for any x*, y* € X*, where {x,,},, (respectively, {y,},) is any element in the equivalence
class x* (respectively, y*).

The Cauchy completion (X*, d*) is unique, up to isometry, complete metric space, into
which the metric space (X, d) embeds as a dense metric subspace.

The Cauchy completion of the metric space (Q, |[x — y|) of rational numbers is the real
line (R, |[x — y|). A Banach space is the Cauchy completion of a normed vector space
(V, 1I.1) with the norm metric [ x — y||. A Hilbert space correspond to the case an inner

product norm || x|| = /{x, x).

o Bounded metric

A metric (distance) d on a set X is called bounded if there exists a constant C > 0 such
thatd(x,y) < Cforany x,y € X.

d(x,y)
1+d{x.y)’

For example, given a metric d on X, the metric D on X, defined by D(x, y) =
is bounded with C = 1.

A metric space (X, d) with a bounded metric 4 is called bounded metric space.

o Totally bounded metric space

A metric space (X, d) is called totally bounded if, for every positive real number r,
there exist finitely many open metric balls of radius r whose union is equal to X. Every
totally bounded metric space is bounded and separable.

e Separable metric space

A metric space is called separable if it contains a countable dense subset, i.e., some
countable subset with which all its elements can be approached.
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A metric space is separable if and only if it is second-countable, and if and only if it is
Lindelof. Every totally bounded metric space is separable.

Metric compactum

A metric compactum (or compact metric space) is a metric space in which every se-
quence has Cauchy subsequence, and those subsequences are convergent. A metric space
is compact if and only if it is totally bounded and complete. A subset of the Euclidean
space E” is compact if and only if it is bounded and closed.

Proper metric space

A metric space is called proper if every closed metric ball in this space is compact.
Every proper metric space is complete.

UC metric space

A metric space is called UC metric space (or Afsuji space) if any continuous function
from it into an arbitrary metric space is uniformly continuous.

Every metric compactum is an UC metric space. Every UC metric space is complete.

Polish space

A Polish space is a complete separable metric space. A metric space is called Souslin
space if it is a continuous image of a Polish space.

A metric triple (or mm-space) is a Polish space (X, d) with a Borel probability measure
W, 1.e., a non-negative real function u on the Borel sigma-algebra F of X with the
following properties: u(@) = 0, w(X) = 1, and u(lJ, An) = ), n(Ay) for any finite
or countable collection of pairwise disjoint sets A, € F.

Given a topological space (X, t), a sigma-algebra on X is a collection F of subsets
of X with the following properties: ¥ € F, X\U € F forU € F,and | J,A, € F
for a finite or countable collection {A,},, A, € F. The sigma-algebra on X which is
related to the topology of X, i.e., consists of all open and closed sets of X, is called Borel
sigma-algebra of X. Any metric space is a Borel space, i.e., a set, equipped with a Borel
sigma-algebra.

Norm metric

Given a normed vector space (V, ||.||), the norm metric on V is defined by

lx =yl

The metric space (V, |x — y||) is called Banach space if it is complete. Examples of
norm metrics are [,- and L ,-metrics, in particular, the Euclidean metric. On R all
[p-metrics coincide with the natural metric |x — y| (cf. Chapter 5).

Path metric

Given a connected graph G = (V, E), its path metric d,;, is a metric on V, defined as
the length (i.e., the number of edges) of a shortest path connecting two given vertices x
and y from V (cf. Chapter 15).
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o Editing metric

Given a finite set X and a finite set O of (unary) editing operations on X, the editing
metric on X is the path metric of the graph with the vertex-set X and xy being an edge
if y can be obtained from x by one of the operations from O.

o Gallery metric

A chamber system is a set X (whose elements are referred to as chambers) equipped with
n equivalence relations ~;, 1 < i < n. A gallery is a sequence of chambers x1, ..., xp
such that x; ~; x;41 for every i and some j depending on i. The gallery metric is
an extended metric on X which is the length of the shortest gallery connecting x and
y € X (and is equal to oo if there is no connecting gallery). The gallery metric is the
path metric of the graph with the vertex-set X and xy being an edge if x ~; y for some
1<i<n.

¢ Riemannian metric

Given a connected n-dimensional smooth manifold M", its Riemannian metric is a
collection of positive-definite symmetric bilinear forms ((g;;)) on the tangent spaces
of M" which varies smoothly from point to point. The length of a curve y on M" is

expressed as fy /2. ; 8ijdxidx;, and the intrinsic metric on M", sometimes called

also Riemannian distance (between points of M"), is defined as the infimum of lengths
of curves, connecting any two given points x, y € M" (cf. Chapter 7).

e Projective metric

A projective metric d is a continuous metric on R” which satisfies the condition
d(x,z) =d(x,y)+d(y.2)

for any collinear points x, y, z lying in that order on a common line. The Hilbert 4th
problem asked in 1900 to classify such metrics; it is done only for dimension n = 2
([Amba76]); cf. Chapter 6.

Every norm metric on R” is projective. Every projective metric on R? is a hypermetric.

e Convex distance function

Given a convex region B C R” that contains the origin in its interior, the convex dis-
tance function dp (x, y) is defined by

min{l: x —y € AB}.

If B is centrally-symmetric with respect to the origin, then dp is a Minkowskian metric
whose unit ball is B.

e Product metric
Given n metric spaces (X1, d1), (X2, d2), ..., (X, dy), the product metric is a metric
on the Cartesian product X1 X Xo X --- X X = {x = (x1,x2,...,x4): X1 € X,
..., Xy € Xy}, defined as a function of dy, . . ., d,, (cf. Chapter 4).
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e Hamming metric

The Hamming metric dy is a metric on R”, defined by
i 1<i<n, xi # wi}l
On binary vectors x, y € {0, 1}” the Hamming metric and the /| -metric coincide.

o Lee metric

Given m,n € N, m > 2, the Lee metric dj .. is a metric on Z"* = {0, 1, ..., m — 1}",

Ht
defined by

Z min{lxi —yil,m—|x; — yil}.

1€ign

The metric space (Z

1. dree) 1s a discrete analog of the elliptic space.

o Symmetric difference metric

Given a measure space (§2, A, i), the symmetric difference semi-metric (or measure
semi-metric) da is a semi-metric on the set A4, = {A € A: p(A) < 0o}, defined by
W(AAB), were AAB = (AU B)\(A N B) is the symmetric difference of the sets A and
Be A,

The value da(A, B) = O if and only if u{(AAB) = 0, i.e., if A and B are equal almost
everywhere. Identifying two sets A, B € A4, if n(AAB) = 0, we obtain the symmetric
difference metric (or Fréchet-Nikodym—Aronszayn distance, measure metric).

If 1 is the counting measure, i.e., u(A) = JA| is the number of elements in A, then
da(A, B) = |AAB]. In this case |AAB| = 0 if and only if A = B. The Johnson
distance between k-sets A and B is % =k—]|ANB|.

¢ Enomoto—Katona metric

Given a finite set X and an integer &, 2k < |X|, the Enomoto—Katona metric is the
distance between unordered pairs (X1, X») and Y1, ¥> of disjoint k-subsets of X, defined
by

min{| X1\ 1| + X2\ YaI, |X1 \ Ya| + X2\ 11]}.

e Steinhaus distance

Given a measure space (2, A, 1), the Steinhaus distance ds; is a semi-metric on the
set A, = {4 € A: u(A) < oo}, defined by

HALB) | p(ANB)
wWAUB)  u(AUB)

if w(A U B) > 0 (and is equal to 0 if u(A) = u(B) = 0). It becomes a metric on the
set of equivalence classes of elements from A,;; here A, B € A, are called equivalent
if uW(AAB) = 0.
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If d is the symmetric difference metric, then ds; = Zdz, where, for a given metric d
on a set X and a given point p € X, the transform metric d7 on X is defined by

dx, y)

r '}y =
d (xv.)) d(X,p)+d(y’ p)+d(x7y)

The biotope distance (or Tanimoto distance) K:Sg || is the special case of Steinhaus

distance, obtained for the counting measure L(A) = |A|.

o Point-set distance
Given a metric space (X, d), the point-set distance d(x, A) between a point x € X and
a subset A of X is defined as
inf d(x, y).
o (x,y)

For any x, y € X and for any non-empty subset A of X, we have the following version
of the triangle inequality: d(x, A) < d(x, y) +d(y, A) (cf. distance map).

o Set-set distance
Given a metric space (X, d), the set-set distance between two subsets A and B of X is

defined by
inf  d(x,y).

X€EA, yEB
In Data Analysis, the set-set distance between clusters is called single linkage, while
SUPye 4, yep d(x, y) is called complete linkage.

o Hausdorff metric

Given a metric space (X, d), the Hausdorff metric (or rwo-sided Hausdorff distance)
drgys 1s a metric on the family F of all compact subsets of X, defined by

max{ddHaus(A, B), daHaus(B, A)}7

where dypaus(A, B) = maxyes minyep d(x, y) is the directed Hausdorff distance (or
one-sided Hausdorff distance) from A to B. In other words, dp,,s(A, B) is the minimal
number ¢ (called also Blaschke distance) such that closed e-neighborhood of A contains
B and closed g-neighborhood of B contains A. It holds also that dy,,;(A, B) is equal to

sup|d(x, A) —d(x, B)

xeX

’

where d(x, A) = minyea d(x, y) is the point-set distance. The Hausdorff metric is not
a norm metric.
If the above definition is extended for non-compact closed subsets A and B of X, then

draus (A, B) can be infinite, i.e., it becomes an extended metric. For not necessarily
closed subsets A and B of X, the Hausdorff semi-metric between them is defined as
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the Hausdorff metric between their closures. If X is finite, dg,,s 1S @ metric on the class
of all subsets of X.

M.D. Wills proved that the Hausdorff distance between two non-empty bounded closed
convex subsets of a metric space with a norm metric is equal to the Hausdorff distance
between their boundaries.

o L ,-Hausdorff distance
Given a finite metric space (X, d), the L ,-Hausdorff distance ([Badd92]) between two
subsets A and B of X is defined by

I

<Z|d(x, A) —d(x, B)\”)F,

xeX

where d(x, A) is the point-set distance. The usual Hausdorff metric corresponds to
the case p = oc.

o Generalized G-Hausdorff metric

Given a group (G, -, ¢) acting on a metric space (X, d), the generalized G-Hausdorff
metric between two closed bounded subsets A and B of X is defined by

minG dHaus(gl (A)7 gZ(B)),

81.82€

where dggys is the Hausdorff metric. If d(g(x), g(y)) = d(x,y) forany ¢ € G
(i.e., if the metric d is left-invariant with respect of G), then above metric is equal to

mingeG dHaus(Av g(B)).

e Gromov-Hausdorff metric
The Gromov—Hausdorff metric is a metric on the set of all isometry classes of compact
metric spaces, defined by

indeaus(f(X)’ g(Y))

for any two classes X* and Y* with the representatives X and Y, respectively, where
dyaus 1s the Hausdorff metric, and the minimum is taken over all metric spaces M and
all isometric embeddings f : X — M, g : Y — M. The corresponding metric space is
called Gromov—Hausdor{f space.

o Fréchet metric

Let (X, d) be a metric space. Consider a set F of all continuous mappings f : A — X,
g:B— X,...,where A, B, ... are subsets of R”, homeomorphic to [0, 1]" for a fixed
dimension n € N.

The Fréchet semi-metric dy is a semi-metric on F, defined by

i(r}fsup d(f(x). g(o()),

xX€A
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where the infimum is taken over all orientation preserving homeomorphisms o : A —
B. It becomes the Fréchet metric on the set of equivalence classes f* = {g: dr(g, f) =
0}.

o Banach—Mazur distance

The Banach—Mazur distance dgy between two n-dimensional normed spaces V and
W is defined by

Ininf | T - [T,
nn;ll [

where the infimum is taken over all isomorphisms 7 : V — W. It can be written also
as Ind(V, W) where the number d(V, W) is the smallest positive d > 1 such that
B, W C T(B ycd BW for some linear invertible transformation 7 : V — W. Here
Bv ={xeV: |xllv <1} and BW ={x € W: |Ix|lw < 1} are the unit balls of the
normed spaces (V, [|.||v) and (W, |.]|w), respectively.

dpm(V, W) = 0 if and only if V and W are isometric, and it becomes a metric on the
set X" of all equivalence classes of n-dimensional normed spaces, where V ~ W if they
are isometric. The pair (X", dpy) is a compact metric space which is called Banach—
Mazur compactum.

Gluskin—-Khrabrov distance (or modified Banach—Mazur distance) is defined by

inf {[|T|[xy: |det T =1} - {IT|ly-x: |det T| = 1}.

e Lipschitz distance

Given two metric spaces (X, dx) and (Y, dy), the Lipschitz norm ||.||.;, on the set of all
injective functions f : X — Y is defined by

iy = sup SO
ip yyeX vy dx(r.y) .

The Lipschitz distance between metric spaces (X, dx) and (Y, dy) is defined by
ninf | fllgp - 1~ i

where the infimum is taken over all bijective functions f : X — Y. Equivalently, it
is infimum of numbers In¢ such that there exists a bijective bi-Lipschitz mapping
between (X, dx) and (Y, dy) with constants exp(—«), exp(a). It becomes a metric on
the set of all isometry classes of compact metric spaces.

This distance is an analog to the Banach-Mazur distance and, in the case of finite-
dimensional real Banach spaces, coincides with it. It coincides also with the Hilbert
projective metric on non-negative projective spaces, obtained by starting with R", and
identifying any point x with cx, ¢ > 0.
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o Lipschitz distance between measures

Given a compact metric space (X, d), the Lipschitz semi-norm ||.||Lip on the set of all
functions f : X — R is defined by

IfllLp = sup M
’ yeX.xty  d(x,¥) )

The Lipschitz distance between measures 1+ and v on X is defined by

sup /fd(u—v).

I fllzpst

If u and v are probability measures, then it is Kantorovich-Mallows—Monge—
Wasserstein metric.

An analog of the Lipschitz distance between measures for the state space of unital C*-
algebra is the Connes metric.

o Compact quantum metric space

Let V be a normed space (or, more generally, a locally convex topological vector space),
and let V' be its continuous dual, i.e., the set of all continuous linear functionals f on
V. The weak™ topology (or Gelfand topology) on V' is defined as the weakest (i.e., with
the fewest open sets) topology on V' such that, for every x € V, the map Fy : V' — R
defined by F.(f) = f(x) forall f € V’, remains continuous.

An order-unit space is a partially ordered real (complex) vector space (A, <) with a
distinguished element e, called order unit, which satisfies the following properties:

1. Forany a € A, there exists r € R witha < re;
2. Ifa € A and a < re for all positive r € R, then a < 0 (Archimedean property).

The main example of an order-unit space is the vector space of all self-adjoint elements
in an unital C*-algebra with the identity element being order unit. Here an C*-algebra
is a Banach algebra over C equipped with a special involution. It is called unital if it
has an unit (multiplicative identity element); such C*-algebras are also called, roughly,
compact non-commutative topological spaces. The typical example of an unital C*-
algebra is a complex algebra of linear operators on a complex Hilbert space which is
topologically closed in the norm topology of operators, and is closed under the operation
of taking adjoints of operators.

The state space of an order-unit space (A, <, e) isthe set S(A) = {f € A : [[f] =1}
of states, i.e., continuous linear functionals f with || f|| = f(e) = 1.

Rieffel’s compact quantum metric space is a pair (A, |.llzjp), where (A, X, e) is an
order-unit space, and ||.||;» is a semi-norm on A (with values in [0, +-00]), called Lip-
schitz semi-norm, which satisfies the following conditions:

1. Fora € A, itholds |la||; = Oif and only if a € Re;
2. the metric dpip(f, ) = SUP,ea: lall <1 | f(a) — g(a)| generates on the state space
S(A) its weak™ topology.
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So, one has an usual metric space (S(A), dr;,). If the order-unit space (A, <, e) is an
C*-algebra, then dpip is the Connes metric, and if, moreover, the C *-algebra is non-
commutative, the metric space (S(A), dpjp) is called non-commutative metric space.

The expression quantum metric space comes from the belief, by many experts in Quan-
tum Gravity and String Theory, that the Planck-scale geometry of space-time is similar to
one coming from such non-commutative C*-algebras. For example, Non-commutative
Field Theory supposes that on sufficiently small (quantum) distances, the spatial coordi-
nates do not commute, i.e., it is impossible to measure exactly the position of a particle
with respect to more than one axis.

e Universal metric space

A metric space (U, d) is called universal for a collection M of metric spaces if any
metric space (M, dyy) from M is isometrically embeddable in (U, d), i.e., there exists a
mapping f : M — U which satisfies to dys(x, y) = d(f(x), f(y)) forany x,y € M.

The Urysohn space is a homogeneous complete separable metric space which is the
universal metric space for all Polish (i.e., complete separable) metric spaces.

The Hilbert cube is the universal metric space for the class of metric spaces with a
countable base.

The graphic metric space of the random graph (which can be defined as the set of all
prime numbers p = 1 (mod 4) with pg being an edge if p is a quadratic residue modulo
g) is the universal metric space for any finite or countable metric space with distances 0,
1 and 2 only. It is a discrete analog of the Urysohn space.

e Constructive metric space

A constructive metric space is a pair (X, d), where X is some set of constructive ob-
jects (usually, words over an alphabet), and d is an algorithm converting any pair of ele-
ments of X into a constructive real number d(x, y) such that d becomes a metric on X.

o Effective metric space

Let {x,},en be a sequence of elements from a given complete metric space (X, d) such
that the set {x,: # € N}is dense in (X, d). Let N'(m, n, k) be the Cantor number of a
triple (n, m, k) € N3, and let {gi }xen be a fixed total standard numbering of the set QQ
of rational numbers.

The triple (X, d, {xs}nen) is called effective metric space ([HemmO2]) if the set
(N, m,k): d(xp,x,) < qi} is recursively enumerable.
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Topological Spaces

A topological space (X, 1) is a set X with a topology 1, i.e., a collection of subsets of X
with the following properties:

1. Xer,0er;
2.IfA,Bet,thenANB e 1;
3. For any collection {Ay }q, if all A, € 1, then Ua Ay €T

The sets in 7 are called open sets, and their complements are called closed sets. A base
of the topology 7 is a collection of open sets such that every open set is an union of sets
in the base. The coarsest topology has two open sets, the empty set and X, and is called
trivial topology (or indiscrete topology). The finest topology contains all subsets as open
sets, and is called discrete topology.

In a metric space (X, d) define the open ball asthe set B(x,r) ={y € X: d{(x,y) <r},
where x € X (the center of the ball), and r € R, r > 0 (the radius of the ball). A subset
of X which is the union of (finitely or infinitely many) open balls, is called open set.
Equivalently, a subset U of X is called open if, given any point x € U, there exists a real
number ¢ > O such that, for any point y € X with d(x, y) < &, y € U. Any metric space
is a topological space, the topology (metric topology, topology induced by the metric
d) being the set of all open sets. The metric topology is always T (see below a list of
topological spaces). A topological space which can arise in this way from a metric space,
is called metrizable space. A semi-metric topology is a topology on X induced similarly
by a semi-metric d on X. In general, this topology is not even Tjp.

Given a topological space (X, t), a neighborhood of a point x € X is a set containing
an open set which in turn contains x. The closure of a subset of a topological space is the
smallest closed set, which contains it. An open cover of X is a collection L of open sets, the
union of which is X; its subcover is a cover K such that every member of K is a member of
L; its refinement is a cover K, where every member of X is a subset of some member of L.
A collection of subsets of X is called locally finite if every point of X has a neighborhood
which meets only finitely many of these subsets. A subset A C X is called dense if it has
non-empty intersection with every non-empty open set, or, equivalently, if the only closed
set containing it is X. In a metric space (X, d), a dense set is a subset A C X such that,
for any x € X and any ¢ > 0, there exists y € A, satisfies to d(x, y) < &. A local base of
apoint x € X is a collection ¢/ of neighborhoods of x such that every neighborhood of x
contains some member of I{.

A function from one topological space to another is called continuous if the preimage
of every open set is open. Roughly, given x € X, all points close to x map to points close
to f(x). A function f from one metric space (X, dx) to another metric space (¥, dy) is

31
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continuous at the point ¢ € X if, for any positive real number &, there exists a positive real
number & such that all x € X satisfying dx (x, ¢) < 8 will also satisfy dy (f(x), f(¥)) < &;
the function is continuous on an interval [ if it is continuous at any point of 7.
The following classes of topological spaces (up to Ty) include any metric space.
o Ty-space
An Ty-space (or Kolmogorov space) is a topological space (X, t) fulfilling the Tp-
separation axiom: for every two points x, y € X there exists an open set U such that
xeUandy ¢ U,ory e Uandx ¢ U (every two points are fopologically distinguish-
able).

e Tj-space

An Ty-space (or Fréchet space) is a topological space (X, ) fulfilling the T -separation
axiom: for every two points x, y € X there exist two open sets U and V such that x € U,
ye¢U,andy € V, x ¢ V (every two points are separated). T1-spaces are always Tp.

e T,-space

An T»-space (or Hausdorff space, separated space) is a topological space (X, t) ful-
filling the T7-axiom: every two points x, y € X have disjoint neighborhoods. T>-spaces
are always T7.

e Regular space

A regular space is a topological space in which every neighborhood of a point contains
a closed neighborhood of the same point.

e T3-space

An Tz-space (or Vietoris space, regular Hausdorff space) is a topological space which
is 77 and regular.

o Completely regular space

A completely regular space (or Tychonoff space) is a Hausdorff space (X, 7) in which
any closed set A and any x ¢ A are functionally separated.

Two subsets A and B of X are functionally separated if there exists a continuous func-
tion f : X — [0, []such that f(x) =0 forany x € A, and f(y) = 1 forany y € B.

e Moore space
A Moore space is a regular space with a development.

A development is a sequence {Uy}, of open covers such that, for every x € X and every
open set A containing x, there exists n such that St(x, U,) = | J{U e U,: x e U} C A,
i.e., {St(x, Uy)}, is a neighborhood base at x.

e Normal space

A normal space is a topological space in which, for any two disjoint closed sets A
and B, there exist two disjoint open sets U and V such that A C U, and B C V.
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o Ty4-space

An Ty-space (or Tietze space, normal Hausdorff space) is a topological space which is
T and normal. Any metric space (X, d) is an Ty-space.

o Completely normal space

A completely normal space is a topological space in which any two separated sets have
disjoint neighborhoods.

Sets A and B are separated in X if each is disjoint from the other’s closure.

e Ts-space

An Ts-space (or completely normal Hausdorff space) is a topological space which is
completely normal and 77. T5-spaces are always T4.

e Separable space

A separable space is a topological space which has a countable dense subset.

o Lindelof space

A Lindel6f space is a topological space in which every open cover has a countable
subcover.

o First-countable space

A topological space is called first-countable if every point has a countable local base.
Any metric space is first-countable.

e Second-countable space

A topological space is called second-countable if its topology has a countable base.
Second-countable spaces are always separable, first-countable, and Lindelof.

For metric spaces the properties of being second-countable, separable, and Lindelof are
all equivalent.

The Euclidean space E? with its usual topology is second-countable.

e Baire space

A Baire space is a topological space in which every intersection of countably many
dense open sets is dense.

e Connected space

A topological space (X, ) is called connected if it is not the union of a pair of disjoint
non-empty open sets. In this case the set X is called connected set.

A topological space (X, 7) is called locally connected if every point x € X has a local
base consisting of connected sets.

A topological space (X, 1) is called path-connected (or O-connected) if for every points
x,y € X there is a path y from x to y, i.e., a continuous function y : [0, 1] — X with
y(x)=0,7v(y =1
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A topological space (X, 1) is called simply connected (or 1-connected) if it consists
of one piece, and has no circle-shaped “holes” or “handles” or, equivalently, if every
continuous curve of X is contractible, i.e., can be reduced to one of its points by a
continuous deformation.

Paracompact space

A topological space is called paracompact if every its open cover has an open locally
finite refinement. Any metric space (X, d) is paracompact.

Locally compact space

A topological space is called locally compact if every point has a local base consisting
of compact neighborhoods. Roughly speaking, every small portion of the space looks
like a small portion of a compact space. The Euclidean spaces [E? are locally compact.
The spaces Q, of p-adic numbers are locally compact.

o Totally bounded space

A topological space is called totally bounded if it can be covered by finitely many
subsets of any fixed size. A metric space is totally bounded if for every positive real
number 7 there exist finitely many open balls of radius r, whose union is equal to X.
Every totally bounded metric space is bounded.

o Compact space

A topological space (X, ) is called compact if every open cover of X has a finite
subcover. In this case the set X is called compact set.

Compact spaces are always Lindel6f, totally bounded, and paracompact. A metric
space is compact if and only if it is complete and totally bounded. A subset of an
Euclidean space E" is compact if and only if it is closed and bounded.

There exists a number of topological properties which are equivalent to compactness in
metric spaces, but are inequivalent in general topological spaces. Thus, a metric space
is compact if and only if it is a sequentially compact space (every sequence has a con-
vergent subsequence), or a countably compact space (every countable open cover has a
finite subcover), or a pseudo-compact space (every real-valued continuous function on
the space is bounded), or a weakly countably compact space (every infinite subset has
an accumulation point).

e Locally convex space

A topological vector space 1s a real (complex) vector space V which is a Hausdorff
space with continuous vector addition and scalar multiplication. It is called locally con-
vex if its topology has a base, where each member is a convex set.

A subset A of V is called convex if, for all x,y € A and all + € [0, 1], the point
tx + (1 — )y € A, i.e., every point on the line segment connecting x and y belongs
to A.

Any metric space (V, ||x — y||) on a real (complex) vector space V with a norm metric
lx — y] is a locally convex space; each point of V has a local base consisting of convex
sets.
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e Countably-normed space

A countably-normed space is a locally convex space (V, 7) whose topology is defined
using a countable set of compatible norms |[.[/1, ..., [.lx, . ... It means, that if a se-
quence {x,}, of elements of V that is fundamental in the norms [|.||; and ||.||; converges
to zero in one of these norms, then it also converges in the other. A countably-normed
space is a metrizable space, and its metric can be defined by

e Hyperspace

A hyperspace of a topological space (X, 7) is a topological space on the set CL(X)
of all non-empty closed (or, moreover, compact) subsets of X. The topology of a hy-
perspace of X is called hypertopology. Examples of such hit-and-miss topology are the
Vietoris topology, and the Fell topology. Examples of such weak hyperspace topology
are the Hausdorff metric topology, and the Wijsman topology.

e Discrete space

A discrete space is a topological space (X, t) with the discrete topology. It can be
considered as the metric space (X, d) with the discrete metric: d{(x,x) = 0, and
d(x,y)=1forx £ y.

o Indiscrete space

An indiscrete space is a topological space (X, t) with the indiscrete topology. It can be
considered as the semi-metric space (X, d) with the indiscrete semi-metric: d(x, y) =
Oforany x,y e X.

e Metrizable space

A topological space is called metrizable if it is homeomorphic to a metric space. Metriz-
able spaces are always 7> and paracompact (and, hence, normal and completely reg-
ular), and first-countable.

A topological space is called locally metrizable if every its point has a metrizable neigh-
borhood.



Chapter 3

Generalizations of Metric Spaces

Some immediate generalizations of the notion of metric, namely quasi-metric, near-
metric, extended metric, were defined in Chapter 1. Here were give some generalizations
in the direction of Topology, Probability, Algebra, etc.

3.1. m-METRICS

o m-hemi-metric

Let X be a set. A functiond : X! — R is called m-hemi-metric if d is non-negative,
ie,d(x1,...,xy41) = Oforall x1,...,x,41 € X, if d is totally symmetric, i.e., sat-
isfies d(x1, ..., Xpuq1) = dXz(1y, -« - Xgmy1y) Tor all x1, ..., X411 € X and for any
permutation 7w of {1, ..., m + 1}, if d is zero conditioned, i.e., d(x1, ..., Xpy1) = 0 if
and only if x1, ..., xy41 are not pairwise distinct, and if, for all x1, ..., x,42 € X, d
satisfies to the m-simplex inequality:

m+1
A1, X)) < YA, XL Xit ] Xmt),
i=l1

e 2-metric

Let X be a set. A function d : X° — R is called 2-metric if d is non-negative, totally
symmetric, zero conditioned, and satisfies the tetrahedron inequality

d(x1, x2, x3) < d(x4, x2, x3) +d(x1, x4, x3) +d(x1, X2, X4).
It is the most important case m = 2 of the m-hemi-metric.

e (m, s)-super-metric

Let X be a set, and let s be a positive real number. A function d : XM 5 R s called
(m, s)-super-metric ([DeDu03]) if d is non-negative, totally symmetric, zero condi-
tioned, and satisfies to the (m, s)-simplex inequality:

m+1
AT, o X)) < DA X1 X g 2).

i=I

An (m, s)-super-metric is an m-hemi-metric if s > 1.

36
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3.2. INDEFINITE METRICS

o Indefinite metric

An indefinite metric (or G-metric) on a real (complex) vector space V is a bilinear (in
complex case, sesquilinear) form G on V, ie., a function G : V x V — R (C), such
that, for any x, y,z € V and for any scalars o, 8, we have the following properties:
Glax + By, 2) = aG(x,z) + BG(y,2), and G(x,ay + Bz) = aG(x,z) + BG(y, 2),
where @ = a + bi = a — bi denotes the complex conjugation.

If G is a positive-definite symmetric form, then it is an inner product on V, and one can
use it to canonically introduce a norm and the corresponding norm metric on V. In the
case of a general form G, there is neither a norm, nor a metric canonically related to G,
and the term indefinite metric only recalls the close relation of positive-definite bilinear
forms with certain metrics in vector spaces (cf. Chapters 7 and 26).

The pair (V, G) is called space with an indefinite metric. A finite-dimensional space
with an indefinite metric is called bilinear metric space. A Hilbert space H, endowed
with a continuous G-metric, is called Hilbert space with an indefinite metric. The most
important example of such space is an J-space.

A subspace L in a space (V, G) with an indefinite metric is called positive subspace,
negative subspace, or neutral subspace, depending on whether G(x, x) > 0, G(x, x) <
0,or G(x,x)=0forall x € L.

¢ Hermitian G-metric

A Hermitian G-metric is an indefinite metric G on a complex vector space V such
that, for all x, y € V, we have the equality

G (x,y) = GH(y, x),

where @ = a + bi = a — bi denotes the complex conjugation.

e Regular G-metric

A regular G-metric is a continuous indefinite metric G on a Hilbert space H over C,
generated by an invertible Hermitian operator T by the formula

G(x,y) ={Tx), ),

where (, ) is the inner product on H.

A Hermitian operator on a Hilbert space H is a linear operator T on H, defined on
a dense domain D(T) of H such that (T(x),y) = {(x, T(y)) for any x,y € D(T).
A bounded Hermitian operator is either defined on the whole of H, or can be so extended
by continuity, and then 7 = T*. On a finite-dimensional space a Hermitian operator can
be described by a Hermitian matrix ((a;;)) = ({@;i)).
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o J-metric

An J-metric is a continuous indefinite metric G on a Hilbert space H over C, defined
by a certain Hermitian involution J on H by the formula

G(x,y) ={J(x), ),

where {(, ) is the inner product on H.

An involution is a mapping H onto H whose square is the identity mapping. The in-
volution J may be represented as J = Py — P_, where P; and P_ are orthogonal
projections in H, and Py + P_ = H. The rank of indefiniteness of the J-metric is
defined as min{dim P, dim P_}.

The space (H, G) is called J-space. An J-space with the finite rank of indefiniteness is
called Pontryagin space.

3.3. TOPOLOGICAL GENERALIZATIONS

e Partial metric space

A partial metric space is a pair (X, d), where X is a set, and d is a non-negative
symmetric function d : X x X — R such that d(x,x) < d{(x,y) forall x,y € X
(axiom of small self-distances), and

dx,y) <d(x,2)+d(z,y) —d(z,2)

for all x, y, z € X ( sharp triangle inequality). Any partial metric d satisfies the fol-
lowing local triangle axiom: lim,_ o (d(x, yu) — d(x, x)) = 0, lim,_ o0 (d(Yn, 2n) —
d(¥n, yn)) = 0 imply lim, 0 (d(x, z,) — d(x,x)) = O for any x € X and any two
sequences {y,}, and {z,},, of elements of X.

e 7-distance space

An r-distance space is a pair (X, f), where X is a topological space, and f is an Aamri-
Moutawakil’s t-distance on X, i.e., a non-negative function f : X x X — R such that,
for any x € X and any neighborhood U of x, there exists ¢ > Owith{y € X: f(x,y) <
g} CU.

Any distance space (X, d) 1s an 7-distance space for the topology 7 defined as follows:
A e tyif, forany x € X, thereexists s > Owith{y € X: f(x,y) <&} C A. However,
there exist non-metrizable r-distance spaces. An t-distance f(x, y) neither need be
symmetric, nor vanish for x = y; for example, e~ is an -distance on X = R with
usual topology.

e Proximity space

A proximity space is a set X with a binary relation § on the power set P(X) of all its
subsets which satisfies the following axioms:
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1. ASB if and only if BSA (symmetry);
2. AS(BUC) if and only if A§B or ASC (additivity);
3. ASA if and only if A # @ (reflexivity).

The relation & defines a proximity structure (a proximity) on X. If ASB fails, the sets A
and B are called remote sets.

Every metric space (X, d) is a proximity space: define A8B if and only if d(A, B) =
infxeA.yeB d(x,y)=0.

e Uniform space

Those topological spaces provide a generalization of metric spaces, based on set-set
distances instead of point-point distances.

An uniform space is a set X with an uniform structure U — a non-empty collection of
subsets of X x X, called entourages, with the following properties:

Every subset of X x X which contains a set of 4, belongs to U/;

Every finite intersection of sets of If belongs to If;

Every set of U contains the set {(x,x): x € X} C X x X;

If V belongs to U, then the set {(y, x): (x, y) € V} belongs to Uf;

If V belongs to U, then there exists V' € U such that (x,z) € V, whenever
(x,y),(,2eV.

Every metric space (X, d) is an uniform space. An entourage in (X, d) is a subset of
X x X which contains the set V; = {(x,y) € X x X: d(x,y) < ¢} for some positive
real number &.

AW —

Every uniform space is a proximity space: define that set A is near to the set B if A x B
has non-empty intersection with any entourage.

Every uniform space is a completely regular topological space, and, conversely, on
every completely regular space can be defined an uniform structure.

e Approach space

Those topological spaces provide a generalization of metric spaces, based on point-set
distances instead of point-point distances.

An approach space is a pair (X, D), where X is a set, and D is a point-set distance,
i.e., a function X x P(X) — [0, co] (here P(X) is the set of all subsets of X) satisfying,
forall x € X and all A, B € P(X), to the following conditions:

1. D(x,{x})=0;

2. D(x,{?}) = oc;

3. D(x, AUB) =min{D(x, A), D(x, B)};

4. D(x, A) < D(x, A®) 4+ ¢ for any ¢ € [0, o0], where A® = {x: D(x, A) < &} is the
“g-ball” with the center x.

Every metric space (X, d) (moreover, any extended quasi-semi-metric space) is an ap-
proach space: define D(x, A) =d(x, A) =infycad(x, y).
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Given a locally compact separable metric space (X, d) and the family F of its non-
empty closed subsets, the Baddeley—Molchanov distance function gives a tool for an-
other generalization. It is a function D : X x F — R which is lower semi-continuous
with respect to its first argument, measurable with respect to the second, and satis-
fies the following two conditions: F = {x € X: D(x,F) < 0} for F € F, and
D(x, F1) =2 D(x, F») for x € X whenever F, F, € Fand F| C F.

Additional conditions D(x, {y}) = D(y, {x}),and D(x, F) < D(x, {y}) + D(y, F) for
all x, y € X and for every F € F, provide analogs of symmetry and triangle inequality.
The case D(x, F) = infyer d(x, y) corresponds to the usual point-set distance.

e Metric bornology

Given a topological space X, a bornology of X is any family A of proper subsets A of
X such that the following conditions hold:

L. UAG.A A=X;

2. Aisanideal, i.e., contains all subsets and finite unions of its members.
The family A is a metric bornology ([Beer99]) if, moreover, it holds:

A contains a countable base;

4. For any A € A there exists A’ € A such that the closure of A coincides with the
interior of A'.

(oM

The metric bornology is called trivial if A is the power set (i.e., the set of all sub-
sets) P(X) of X; such metric bornology corresponds to the family of bounded sets of
some bounded metric. For any non-compact metrizable topological space X, there ex-
ists an unbounded metric compatible with this topology. A non-trivial metric bornology
on such space X corresponds to the family of bounded subsets with respect to some such
unbounded metric. A non-compact metrizable topological space X admits uncountably
many distinct such non-trivial metric bornologies.

3.4. BEYOND NUMBERS

e Probabilistic metric space

A notion of probabilistic metric space is a generalization of the notion of metric space
(see, for example, [ScSk83]) in two ways: distances become a probability distributions,
and the sum in the triangle inequality becomes a triangle operation.

Formally, let A be the set of all probability distribution functions, whose support lies in
[0, oc]. Forany a € [0, co] defineg, € Abye,(x) =1ifx >aorx =o00,andg, =0,
otherwise. Functions in A are ordered by defining F < G to mean F(x) < G(x) for all
x = 0. A commutative and associative operation 7 on A is called triangle operation if
it satisfy to T(F,e9) = F forany F € A and t(E, F) € t©(G, H) whenever E < G,
F<H.

A probabilistic metric space is a triple (X, d, ), where X is a set, d is a function
X x X — A, and 1 is a triangle operation such that, for any p, ¢, r € X, it holds:

1. d(p,q) =¢o ifand only if p = ¢;
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2. d(p,q) =d(q, p);
3. d(p,r) < t(d(pv q)vd(q’r))

The inequality 3. becomes the triangle inequality if 7 is the usual addition on R.

For any x > O, the value d(p, ¢) at x can be interpreted as “the probability that the
distance between p and ¢ is less than x”; it was approach of K. Menger, who proposed
in 1942 the original version, statistical metric space, of this notion. Several notions of
fuzzy metric space were proposed within this framework.

o Generalized metric

Let X be a set. Let (G, 4, <) be an ordered semi-group (not necessarily commutative)
having a least element 0. A function d : X x X — G is called generalized metric if
the following conditions hold:

[. d(x,y)=0ifand only if x = y;
2.d(x,y) <dx,z)+d(z, y)forallx,y € X;
3. d(x,y) =d(y, x), where & is a fixed order-preserving involution of G.

The pair (X, d) is called generalized metric space.

If the condition 2. and “only if” in 1. above are dropped, we obtain a generalized dis-
tance d, and a generalized distance space (X, d).

o Distance on building

A Coxeter group is a group (W, -, 1) generated by the elements {w1, ..., wy: (w;w;)™i
=1,1<1i,j < n}. Here M = ((m;;)) is a Coxeter matrix, i.e., an arbitrary symmetric
n x n matrix with m;; = 1, and other values are positive integers or co. The length [(x)
of x € W is the smallest number of generators wy, . .., w, needed to represent x.

Let X be a set, and let (W, -, 1) be a Coxeter group. The pair (X, d) is called building
over (W, -, 1) if the function d : X x X — W, called distance on building, has the
following properties:

d(x,y)=1lifand only if x = y;

d(y,x) = (@d@x,y)~"

the relation ~;, defined by x ~; y if d(x, y) = 1 or w;, is an equivalence relation;
given x € X and an equivalence class C of ~;, there exists an unique y € C such
that d(x, y) is shortest (i.e., of smallest length), and d{x, y') = d(x, y)w; for any
yeC.y #y.

The gallery distance on building d’ is an usual metric on X, defined by [(d(x, y)). The
distance d’ is the path metric in the graph with the vertex-set X and xy being an edge
if d(x, y) = w; for some 1 < i < n. The gallery distance on building is a special case
of gallery metric (of chamber system X).

b e

e Boolean metric space

A Boolean algebra (or Boolean lattice) is a distributive lattice (B, v, A) admitting least
element O and greatest element 1 such that every x € B has a complement X with x Vx=1
andx Ax =0.
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Let X be aset, and let (B, v, A) be a Boolean algebra. The pair (X, d) is called Boolean
metric space over B if the function d : X x X — B has the following properties:

I. d(x,y) =0ifand only if x = y;
2. d(x,y) <d(x,z)vd(z,y) forallx,y,z € X.

e Space over algebra

A space over algebra is a metric space with a differential-geometric structure, whose
points can be provided with coordinates from some algebra, as the rule, associative with
identity.

A module over an algebra is a generalization of a vector space over a field, its defini-
tion can be obtained from the definition of a vector space by replacing the field by the
associative algebra with identity. An affine space over an algebra is a similar general-
ization of an affine space over a field. In affine spaces over algebras one can specify a
Hermitian metric, while in the case of commutative algebras even a quadratic metric can
be given. To do this one defines in an unital module a scalar product (x, y), in the first
case with the property {(x, y) = J({y, x}), where J is an involution of the algebra, and
in the second case with the property (y, x) = (x, y).

The n-dimensional projective space over an algebra is defined as the variety of one-
dimensional submodules of an (# + [)-dimensional unital module over this algebra. The
introduction of a scalar product {x, y) in an unital module makes it possible to define
in a projective space constructed by means of this module Hermitian, or, in the case of
commutative algebra, quadratic elliptic and hyperbolic metrics. The metric invariant of
the points of these spaces is the cross-ratio W = (x, x) "' (x, y){y, y) Ny, x). f Wisa
real number, then the invariant w, for which W = cos? w, is called distance between x
and y in the space over algebra.

o Partially ordered distance

Let X be a set. Let (G, <) be a partially ordered set with a least element gg such that
G’ = G\{go} is non-empty and, for any g, g2 € G’, there exist g3 € G’ such that
83 < g1 and g3 < 2.

A partially ordered distance is a functiond : X x X — G such that, forany x, y € X,
d(x,y)=goifand only if x = y.

Consider the following possible properties:

1. Forany g| € G, there exists g; € G’ such that, forany x, y € X, fromd(x, y) < g2
it follows d(y, x) < g1;

2. For any g1 € G’, there exist g3, g3 € G’ such that, for any x, y,z € X, from
d(x,y) < gzand d(y, z) < gz itfollows d(x, z) < g1;

3. Forany g1 € G/, there exists g» € G’ such that, for any x, y,z € X, from d(x, y) <
g2 and d(y, z) < g2 it follows d(y, x) < g1;

4. G' has no first element;

5.d(x,y)y=d(y,x)forany x,y € X;
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6. Forany g1 € G, there exists g» € G’ such that, forany x, y, z € X, from d(x, y) <*
g2and d(y, z) <* gaitfollows d(x, z) <* g1; here p <* g means that either p < ¢,
or p is not comparable to g;

7. The order relation < is a total ordering of G.

In terms of above properties, d is called: the Appert partially ordered distance if [. and
2. hold; the Golmez partially ordered distance of first type if 4., 5., and 6. hold; the
Golmez partially ordered distance of second type if 3., 4., and 5. hold; the Kurepa—
Fréchet distance if 3., 4., 5., and 7. hold.



Chapter 4

Metric Transforms

There are many ways to obtain new distances (metrics) from given distances (metrics).
Metric transforms give new distances as a functions of given metrics (or given distances)
on the same set X. If one obtains the metric, it is called transform metric. We give some
important examples of transform metrics in the first section.

Given a metric on a set X, one can construct a new metric on an extension of X; simi-
larly, given a collection of metrics on sets X1, ..., X,, one can obtain a new metric on an
extension of X1, ..., X,;. Examples of such operations are given in the second section.

Given a metric on X, there are many distances on other structures, connected with X,
for example, on the set of all subsets of X. Main distances of such kind are considered in
the third section.

4.1. METRICS ON THE SAME SET

e Metric transform

A metric transform is a distance on a set X, obtained as a function of given metrics (or
given distances) on X.

In particular, given a continuous monotone increasing function f(x) of x > 0, called
scale, and a distance space (X, d), one obtains other distance space (X, d ), called scale
metric transform of X, defining d¢(x, y) = f(d(x, y)). For every finite distance space
(X, d), there exists a scale f, such that (X, dy) is a metric subspace of an Euclidean
space E”.

If (X, d) is a metric space and f is a continuous differentiable strictly increasing scale
with f(0) = 0 and non-increasing f’, then (X, dy) is a metric space (cf. functional
transform metric).

o Transform metric

A transform metric is a metric on a set X which is a metric transform, i.e., is obtained
as a function of a given metric (or given metrics) on X. In particular, transform metrics
can be obtained from a given metric d (or given metrics d; and d3) on X by any of the
following operations:

l. ad(x,y), o > 0 («-scaled metric, or dilated metric);
2. min{t, d(x, y)} (¢-truncated metric);
3.dx,yY)+a,a =20, forx £ y;

44
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d(x.y) .
14+d(x,y)’

d’(x,y) = T )H_Zg \)))-l—d(x oL where p is an fixed element of X;
max{d; (x, ), 2 (x, )};
adi(x, y) + Bda(x, y), where «, B > 0 (cf. metric cone).

N ke

e Functional transform metric

Let f : R — R be a twice differentiable real function, defined for x > 0 such that
f(©) =0, f'(x) > Oforall x > 0,and f"(x) < Oforall x > 0. In fact, f is concave
on [0, o0); in particular, f(x +y) < f(x) + f(»).

Given a metric space (X, d), the functional transform metric d s is a transform metric
on X, defined by

fde, »).

Metrics d ¢ and d are equivalent. If 4 is a metric on X, then, for example, ad (@ > 0),
d“(0 < a < 1), In(1 + d), arcsinhd, arccoshd, and ﬁ are functional transform
metrics on X.

o Power transform metric

Let 0 < @ < 1. Given a metric space (X, d), the power transform metric is a func-
tional transform metric on X, defined by

(d0x, m)*.

For a given metric d on X and any « > 1, the function 4% is a distance on X. It is a
metric if and only if 4 is an ultrametric.

e Schoenberg transform metric

Let A > 0. Given a metric space (X, d), the Schoenberg transform metric is a func-
tional transform metric on X, defined by

| — e M),

e g-transform metric

Given a metric space (X, d), let g : X — X be an injective function on X. The g-trans-
form metric is a transform metric on X, defined by

d(g(x), g(y).

e Internal metric

Given a metric space (X, d) in which every pair of points x, y is joined by a rectifiable
curve, the internal metric (or interior metric, induced intrinsic metric) D is a trans-
form metric on X, obtained from 4 as the infimum of the lengths of all rectifiable curves
connecting two given points x and y € X.
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The metric d on X is called intrinsic metric (or length metric) if it coincides with its
internal metric. In this case, the metric space (X, d) is called length space.

4.2. METRICS ON SET EXTENSIONS

e Extension distances
Ifd isadistanceon V,, = {1, ...,n},and @ € R, @ > 0, then the following extension
distances (see, for example, [DeL.a97]) are used.
The gate extension distance gat = gatg isadistanceon V,. 1 = {1, ..., n+ 1}, defined
by the following conditions:
1. gat(l,n+ 1) = o
2. gati,n+ D) =a+d(1,i)if2<i < n
3. gat(i, j)=d@, Hif 1 <i < j<n.
The distance gat‘é is called gate O-extension or, simply, 0-extension of d.

If o > maxog;<, d(1,1), then the antipodal extension distance ant = antg is a dis-
tance on V41, defined by the following conditions:

1. ant(l,n+1) = a;
2. ant(i,n+ 1) =a—d(1,i)if2<i <n;
3. ant(i, j)=d(@, jif 1 <i < j < n.
If @ > maxig;, j<n d(i, j), then the full antipodal extension distance Ant = Ant‘é isa
distance on Vo, = {1, ..., 2n}, defined by the following conditions:
1. Amt(i,n+ i) =aif 1 <i < n;
2. Ant(i,n+ j)=a —d(, j)if 1l <i#j<n
3. Am(i, j) =dU, Hifl<i#j<m
4, Antin+i,n+ j)=d@, Hif 1 <i#j < n.
It is obtained by apply the antipodal extension operation iteratively # times, starting
from d.
The spherical extension distance sph = sphg is a distance on V, 1, defined by the
following conditions:
1. sph(i,n+ 1D =aif 1 <i < n;
2. sph(i, jy=4d@, )Hif 1 <i < j<n.
o 1-sum distance

Let d; be a distance on a set X, let d; be a distance on a set X5, and suppose that
X1 N Xy = {x0}. The 1-sum distance of d; and d; is the distance d on X| U X3, defined
by the following conditions:

di(x,y), ifx,ye Xy,
d(x,y) = {da(x, y), ifx,ye X,
d(x,x0) +d(xo,y), ifxe X, yeXs.
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In Graph Theory, the 1-sum distance is a path metric, corresponding to the clique [-sum
operation for graphs.

e Product metric

Given n metric spaces (X1, d1), (X2, d2), ..., (Xu, dy), the product metric is a metric
on the Cartesian product

XixXox- - xXy={x=&,x2...,%): x1 €X1,...,% € X},
defined as a function of d, . . ., d,. The simplest product metrics are defined by
LY di(x, yi);

1
) 1
Qi d (xiyi)?, 1 < p < o0
max1g; <n di (Xi, ¥i);
Z" 1 _dilxyi) .
=120 T+d; (x;.i)°
min i gaidi (xi, ¥i), 1}

Nk e

Last two metrics are bounded and can be extended to the product of countably many
metric spaces.

IfXy=---=X, =R,andd; = --- = dy, = d, where d(x, y) = [x — y| is the
natural metric on R, all product metrics above induce the Euclidean topology on the
n-dimensional space R”. They do not coincide with the Euclidean metric on R”, but they
are equivalent to it. In particular, the set R” with the Euclidean metric can be considered
as the Cartesian product R x - - - x R of n copies of the real line (R, d) with the product

metric, defined by /> d?(xi, yi).

e Fréchet product metric

Let (X, d) be a metric space with a bounded metric d. Let X*®° = X x ... x X ... =
{x="(x1,...,%n,..): x1 € X1,...,%x; € Xy, ...} be the product space of X.

The Fréchet product metric is a product metric on X*, defined by

00
Z Apd(Xy, yn),

n=1

where > 7 | A, is any convergent series of positive terms. Usually, A, = % is used.

A metric (sometimes called Fréchet metric) on the set of all sequences {x,}, of real
(complex) numbers, defined by

S 1% — ¥l
ZAHI n y”, 7
n—1 + ‘xn - }n‘

where > 50 | A, is any convergent series of positive terms, is a Fréchet product metric
of countably many copies of R (C). Usually, A, = ,3—, or A, = % are used.
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o Hilbert cube metric

The Hilbert cube I is the Cartesian product of countable many copies of the interval
[0, 1], equipped with the metric

xO
> 2k — il
i=1

(cf. Fréchet product metric). It also can be identified up to homeomorphisms with
compact metric space formed by all sequences {x,}, of real numbers such that 0 <

Xy < ,]—l, where the metric is defined as /> o2 | (X, — yn)2.

o Warped product metric

Let (X,dx) and (Y, dy) be two complete length spaces, and let f: X — R be a
positive continuous function. Given acurve ¥ : [a, b] — X x Y, consider its projections
y1:la,b] - X and y» : [a,b] — Y to X and Y, and define the length of y by the

formula [ /1{P(0) + F2(n (o) y3 P (0)dr.

The warped product metric is a metric on X x Y, defined as the infimum of lengths of
all rectifiable curves, connected two given points in X x Y (see [BulvOl1]).

4.3. METRICS ON OTHER SETS

Given a metric space (X, d), one can construct several distances between some subsets of
X. The main such distances are: the point-set distance d(x, A) = infyc4 d(x, y) between
apoint x € X and a subset A C X, the set-set distance inf,ca, yep d(x, y) between two
subsets A and B of X, and the Hausdorff metric between compact subsets of X, which
are considered in chapter 1. In this section we list some other distances of such kind.

o Line-line distance

The line-line distance is the set-set distance in E> between two skew lines, i.c., two
straight lines that do not lie in a plane. It is the length of the segment of their common
perpendicular whose end points lie on the lines. For [ and /; with equations /j: x =
p+aqt.t € Roand lr: x = r + st,t € R, the distance is given by

[{r —p,q xs)|
llg < sz

where x is the cross product on E3, (,) is the inner product on E3, and ||| is the
Euclidean norm. For x = (x1,x2,x3), ¥y = (¥1, 2, ¥3), one has x x y = (xpy3 —
X3Y2, X3Y1 — X1Y3, X1Y2 — X2Y1).

Vertical distance between lines / and /> is the length of the vertical segment with one
endpoint on /] and one endpoint on 7, provided a unique such segment exists.
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e Point-line distance
The point-line distance is the point-set distance between a point and a line.
In E2, the distance between a point z = (z1, z2) and aline [: ax; + bxy + ¢ = O s given
by
lazi + bza + ¢
N7

In [E3, the distance between a point z and aline I: x = p + gt, ¢t € R, is given by

lg x (p— 22
llgll2

>

where x is the cross product on E3, and ||.||» is the Euclidean norm.

e Point-plane distance
The point-line distance is the point-set distance in E* between a point and a plane.
The distance between a point z = (21, 22, z3) and a plane «o: ax; + bxy +cx3+d =0
is given by
laz1 + bzp + cz3 +d|
/a2 + b2+ 2

e Prime number distance

The prime number distance is the point-set distance in (N, |n —m|) between a number
n € N and the set of prime numbers P C N. It is the absolute difference between n and
the nearest prime number.

e Distance up to nearest integer

The distance up to nearest integer is the point-set distance in (R, [x — y|) between a
number x € R and the set of integers Z C R, i.e., minyez |x — n|.

¢ Busemann metric of sets

Given a metric space (X, d), the Busemann metric of sets (see [Buse55]) is a metric on
the set of all non-empty closed subsets of X, defined by

supld(x, A) — d(x, B)|e~ 4,

xeX

where p is a fixed point of X, and d(x, A) = minyc4 d(x, y) is the point-set distance.

Instead of weighting factor e=¢-*) one can take any distance transform function which
decrease fast enough (cf. also L ,-Hausdorff distance, and the list of variations of the
Hausdorff metric in Chapter 21).



Chapter 5§

Metrics on Normed Structures

In this chapter we consider a special class of metrics, defined on some normed structures,
as the norm of difference between two given elements. This structure can be a group (with
a group norm), a vector space (with a vector norm or, simply, a norm), a vector lattice (with
a Riesz norm), a field (with a valuation), etc.

e Group norm metric

A group norm metric is a metric on a group (G, +, 0), defined by
[x+E=nlh=lx =l

where ||.]] is a group norm on G, i.e., a function ||.|| : G — Rsuch that, forallx, y € G,
we have the following properties:

1. |lx|| = 0, with [|x]] = 0 if and only if x = 0;
20 xlh =1 =l
3. x4 vl < lxll + [y]l (wiangle inequality).

Any group norm metric d is right-invariant, i.e., d(x,y) = d(x + z, y + z) for any
X, ¥,z € G.On the other hand, any right-invariant (as well as any left-invariant, and, in
particular, any bi-invariant) metric d on G is a group norm metric, since one can define
a group norm on G by || x| = d(x, 0).

o F-norm metric

A vector space (or linear space) over a field IF is a set V equipped with operations of
vector addition + : V x V. — V and scalar multiplication - : F x V — V such that
(V, +, 0) forms an Abelian group (where 0 € V is the zero vector), and, for all vectors
x,y € V and any scalars a, b € F, we have the following properties: | - x = x (where
1 is the multiplicative unit of F), (ab) -x =a-(b-x),(a+b)-x =a-x+b - x, and
a-(x+y) =a-x+a-y. Avector space over the field R of real numbers is called
real vector space. A vector space over the field C of complex numbers is called complex
vector space.

An F-norm metric is a metric on a real {(complex) vector space V, defined by

lx = yllr,

where ||.||r isan F-normon V,i.e., afunction ||.||r : V — Rsuchthat, forallx,y e V
and for any scalar ¢ with |a| = 1, we have the following properties:

50
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[. |xllF = 0, with ||x||f = O if and only if x = 0;
2. |lax]lF = lxllF3 . . .
3. Ix+ yllr € x|l + Ily|lF (triangle inequality).

An F-norm is called p-homogeneous if [lax| r = |a|” || x| F.

Any F-norm metric d is a translation invariant metric, i.e., d(x, y) = d(x +z, y+ 2)
for all x, y, z € V. Conversely, if d is a translation invariant metric on V, then ||x|r =
d(x,0)is an F-norm on V.

o F*-metric

An F*-metric is an F-norm metric [[x — y[|r on a real (complex) vector space V
such that the operations of scalar multiplication and vector addition are continuous
with respect to |.[| . It means, that |.||F is a function ||.||F : V — R such that, for
all x, y, x,, € V and for all scalars a, a,,, we have the following properties:

lxllF = 0, with ||x||F = 0 if and only if x = 0;
lax||F = ||x||  for all @ with |a| = 1;

X+ yllr < lxllF+IyllFs

laxxllF — Oif a;, — O;

lax,lFr — Oif x; — O;

layx,lr — 0ifa, — 0, x, — O.

SN kW=

The metric space (V, ||x — y|| ) with an F*-metric is called F*-space. Equivalently, an
F*-space is a metric space (V, d) with a translation invariant metric d such that the
operation of scalar multiplication and vector addition are continuous with respect to this
metric.

A modular space is an F*-space (V, || r) in which the F-norm |.|| 7 is defined by

lxlF = inf{k > 0: p(%) < k},

and p is a metrizing modular on V, i.e., a function p : V — [0, co] such that, for all
x,y,xp € V and for all scalars a, a,, we have the following properties:

p(x) =0if and only if x = 0;

plax) = p(x) implies |a| = 1;

plax +by) < p(x) + p(y) impliesa, b 2 0,a+ b = 1;
ola,x) — 0ifa, — 0and p(x) < 00;

plaxy) — 0if p(x,) — O (metrizing property);

6. For any x € V, there exists k > O such that p(kx) < oc.

SRR

A complete F*-space is called F-space. A locally convex F-space is known as Fréchet
space in Functional Analysis.

o Norm metric

A norm metric is a metric on a real (complex) vector space V, defined by

llx = ¥l
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where ||.|| is a norm on V, i.e., a function ||.|| : V — R such that, for all x, y € V and
for any scalar a, we have the following properties:

[. lx]l =2 0, with [[x]| = 0 if and only if x = 0;
2. lax|l = lalllx|l;
3. 0% + vl < llxll + [yl (wiangle inequality).

Therefore, a norm ||| is an 1-homogeneous F-norm. The vector space (V, |.||) is called
normed vector space or, simply, normed space.

On any given finite-dimensional vector space all norms are equivalent. Every finite-
dimensional normed space is complete. Any metric space can be embedded isometri-
cally in some normed vector space as a closed linearly independent subset.

The norm-angular distance between x and y is defined by

d(x,y) =

el Ayl

-l

L. Maligranda remarked the following sharpening of the triangle inequality in normed
spaces: for any x, y € V, it holds

(2—d(x, —y)) min([x [ y]) < Ix[+1yI=lIx+yI < (2—d(x, —y)) max([lx].]y]}).

o Semi-norm semi-metric

A semi-norm semi-metric is a semi-metric on a real (complex) vector space V, defined
by

[x =yl

where |.]| is a semi-norm (or pre-norm) on V, i.e., a function ||.|| : V — R such that,
for all x, y € V and for any scalar a, we have the following properties:

L Jlxll > 0, with 0] = 0;
2. Jlax| = lallx];
3. llx + yIl < llxll + |yl (riangle inequality).

The vector space (V, [|.])) is called semi-normed vector space. Many normed vector
spaces, in particular, Banach spaces, are defined as the quotient space by the subspace
of elements of semi-norm zero.

A quasi-normed space is a vector space V, on which a guasi-norm is given. A quasi-
norm on V is a non-negative function [[.| : V — R which satisfies the same axioms
as a norm, except for the triangle inequality which is replaced by the weaker require-
ment: there exists a constant C > 0 such that, for all x, y € V, we have the following
inequality:

Ix +yl < C(lxl+1yl)
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(cf. near-metric). An example of a quasi-normed space, that is not normed, is the
Lebesgue space L ,($2) with 0 < p < 1 in which a quasi-norm is defined by

I/p
||f||=</9|f(X)|”dX> . fELyS).

e Banach space

A Banach space (or B-space) is a complete metric space (V, ||x — y[|) on a vector space
V with a norm metric ||x — y||. Equivalently, it is the complete normed space (V, |.]]).
In this case, the norm ||.|| on V is called Banach norm. Some examples of Banach spaces
are:

L. I))-spaces, I°-spaces, 1 < p < oo,n € N;

2. The space C of convergent numerical sequences with the norm |x|| = sup,, |x,[;

3. The space Cy of numerical sequences which converge to zero with the norm || x| =
max;, [x,|[;

4. The space C[a bp> 1 < p < 00, of continuous functions on [a, b] with the L ,-norm

171, = (f(, [f@)1F dt)"‘

5. The space Cg of continuous functions on a compactum K with the norm [ f] =
maxsek | f{1)];

6. The space (Cj, )" of functions on [a, b] with continuous derivatives up to and in-
cluding the order n with the norm || fll, = > j_,max,<:<p FaAOIE

7. The space C"[I™] of all functions defined in an m-dimensional cube that are con-
tinuously differentiable up to and including the order n with the norm of uniform
boundedness in all derivatives of order at most »;

8. The space M|, ;| of bounded measurable functions on [a, b] with the norm

I =esssup|F(0)| = inf  sup |£(o)]:

ast<h €,1(&)=0tcla.p\e

9. The space A(A) of functions analytic in the open unit disk A = {z € C: |z] < 1}
and continuous in the closed disk A with the norm | ]| = max, z | f(2)];

10. The Lebesgue spaces L ,(£2), 1 < p < o0

11. The Sobolev spaces Wk*l’(SZ), 2 CcR", 1 < p < oo, of functions f on £2 such
that f and its derivatives, up to some order k, have a finite L ,-norm, with the norm
1 lkp = i £ D1

12. The Bohr space AP of almost-periodic functions with the norm

Ifll=sup [fO

—oo<t<+00

A finite-dimensional real Banach space is called Minkowskian space. A norm metric of
a Minkowskian space is called Minkowskian metric. In particular, any /,,-metric is a
Minkowskian metric.
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All n-dimensional Banach spaces are pairwise isomorphic; their set becomes com-
pact if one introduces the Banach—-Mazur distance by dpy(V, W) = Ininfr [T -
|71, where the infimum is taken over all operators which realize an isomorphism
T:V—>W.

o [,-metric

The [,-metric dlp, 1 € p < o0, is a norm metric on R” (or on C"), defined by

lx — )’||p,

where the [,-norm |||, is defined by

1
lxll, = (Z m") :

i=1

For p = 00, we obtain [ x]leo = limp_ee /Y 7 [xi|? = maxigi<n |%;|. The metric
space (R", dj, ) is abbreviated as I}, and is called I -space.

The [ ,,-metrie, 1 < p < oo, on the set of all sequences x = {x,,}i":] of real (complex)
numbers, for which the sum » 72, |x;[” (for p = oo, the sum Y 72, |x;]) is finite, is
defined by

For p = oo, we obtain max; 1 |x; — y;|. This metric space is abbreviated as llo)O and is
called I7°-space.

Most important are [1-, [2- and [o-metrics; the I>-metric on R” is also called Euclidean
metric. The />-metric on the set of all sequences {x,}, of real (complex) numbers, for
which 7%, [x;]? < oo, is also known as Hilbert metric.

o Euclidean metric

The Euclidean metric (or Pythagorean distance, as-crow-flies distance) dg is a metric
on R”, defined by

I = yll2 = 01 = 312 - (= ).

It is the ordinary /;-metric on R”. The metric space (R”, dg) is abbreviated as [E” and is
called Euclidean space (or real Euclidean space). Sometimes, the expression “Euclid-
ean space” stands for the case n = 3, as opposed to the Euclidean plane for the case
n = 2. The Euclidean line (or real line) is obtained for n = 1, i.e., it is the metric space
(R, |x — y|) with the natural metric |x — y|.

In fact, E” is an inner product space (and even Hilbert space), i.e., dp(x, y) = ||x —
vl = /{(x —y,x —y), where {(x, y) is an inner product on R" which is given in a
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suitably chosen (Cartesian) coordinate system by the formula (x,y) = >/ ;x;y;. In
standard coordinate system one has {x, y) = }_; ; gijxiy;, where g;; = (e;, e;), and
the metric tensor ((g;;)) is a positive-definite symmetric n x 7 matrix.

In general, an Euclidean space is defined as a space, the properties of which are described
by the axioms of Euclidean Geometry.

e Unitary metric

The unitary metric (or complex Euclidean metric) is the Iy-metric on C", defined by

I =yl = e = 3124 o — gl

The metric space (C", ||x — y||2) is called unitary space (or complex Euclidean space).
Forn = 1, we obtain the complex plane (or Argand plane), i.e., the metric space (C, |z —
u|) with the complex modulus metric |z — u|; here [z] = |21 +iz2| = ,/z% + z% is the
complex modulus (cf. also quaternion metric).

e L ,-metric

An L ,-metric de, [ € p < o0, is a norm metric on L ,(£2, A, ), defined by

”f _g”p

forany f,g € L,(£2, A, u) . The metric space (L ,(£2, A, u), dp,) is called L ,-space
(or Lebesgue space).

Here 2 is a set, and .4 is an o -algebra of subsets of £2, i.e., a collection of subsets of £2
satisfying the following properties:

1. 2 € A;
2. If A € A, then 2\A € A;
3.IFA=[J7 A with A; € A then A € A.

A function p 1 A — Ry is called measure on A if it is additive, i.c., u(U,;l A)) =
Zi>1 w(A;) for all pairwise disjoint sets A; € A, and satisfies u(#) = 0. A measure
space is a triple (§2, A, w).

Given a function f : 2 — R(C), its L ,-norm is defined by

£l = </Q\f(w)\”u(dw)>p.

Let L,(£2, A, u) = L,(£2) denotes the set of all functions f : 2 — R (C) which
satisty the condition || f||, < oo. Strictly speaking, L ,(£2, A, 1) consists of equiva-
lence classes of functions, where two functions are equivalent if they are equal almost
everywhere, i.e., the set on which they differ has measure zero. The set Lo, (82, .4, p) is
the set of equivalence classes of measurable functions f : £ — R (C) whose absolute
values are bounded almost everywhere.
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The most classical example of an L ,-metric is d, ,on the set L, (82, A, u), where £2 is
the open interval (0, 1), A is the Borel sigma-algebra on (0, 1), and u is the Lebesgue
measure. This metric space is abbreviated by L (0, 1) and is called L ,(0, 1)-space.

In the same way, one can define the L ,-metric on the set Cj, 4 of all real (complex)

|
continuous functions on [a, b]: dr,(f, g) = (f(b | f(x) — g(x)|Pdx)?. For p = o0,

1

dr. (f.g) = max,<x<p | f(x) — g(x)]. This metric space is abbreviated by C[’;’b] and
is called C{;qb]—space.

If 2 = N, A = 2% is the collection of all subsets of £2, and W is the cardinality measure
(i.e., u(A) = |A]if A is a finite subset of £2, and (A) = oo, otherwise), then the metric
space (L ,(£2, 24, [.1), de) coincides with the space lgo.

If £2 = V,, is a set of cardinality n, 4 = 2", and p is the cardinality measure, then the
metric space (L ,(V, 2% 1D, dp,) coincides with the space 17).

e Dual metrics
The [,,-metric and the [,-metric, 1 < p,g < oo, are called dualif 1/p + 1/g = 1.

In general, when dealing with a normed vector space (V, |.||v), one is interested in the
continuous linear functionals from V into the base field (R or C). These functionals
form a Banach space (V', |.|y/), called continuous dual of V. The norm ||.]|ys on V'
is defined by [[T'[[y: = sup, <1 [T ()]

The continuous dual for the metric space / ;’) (l;o) is] Z (l;o, respectively). The continuous
dual of I (I§°) is 1%, (I, respectively). The continuous duals of the Banach spaces C
(consisting of all convergent sequences, with I,-metric) and Cq (consisting of the
sequences converging to zero, with [o-metric) are both naturally identified with [°.

e Inner product space

An inner product space (or pre-Hilbert space) is a metric space (V, [|[x — y]||) on a real
(complex) vector space V with an inner product {x, y} such that the norm metric [[x — y||
is constructed using the inner product norm || x| = /{x, x).

An inner product {,) on a real (complex) vector space V is a symmetric bilinear (in

complex case, sesquilinear) form on V, i.e., a function (,) : V x V — R (C) such
that, for all x, y, z € V and for all scalars «, 8, we have the following properties:

[. {(x,x) >0, with (x, x) = 0ifand only if x = 0;
2. {x,y) = {y, x), where @ = a + bi = a — bi denotes the complex conjugation;
3. {ax + By, z) = alx, 2) + B{y, 2).

For a complex vector space, an inner product is called also Hermitian inner product, and
the corresponding metric space is called Hermitian inner product space.

A norm ||.]| in a normed space (V, ||.||) is generated by an inner product if and only if,
forall x, y € V, we have: [lx + y[* + [lx — y[|* = 2([lx > + Iy [1).
e Hilbert space

A Hilbert space is an inner product space which, as a metric space, is complete. More
precisely, a Hilbert space is a complete metric space (H, [|[x — y[|) on a real (complex)
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vector space H with an inner product (,) such that the norm metric | x — y] is con-
structed using the inner product norm || x| = /{x, x). Any Hilbert space is a Banach
space.

An example of a Hilbert space is the set of all sequences x = {x,}, of real (complex)
numbers such that > 12 |x; |2 converges, with the Hilbert metric, defined by

1

(Z lxi — )'i|2) :

i=1

Other examples of Hilbert spaces are any Ly-space, and any finite-dimensional inner
product space. In particular, any Euclidean space is a Hilbert space.

A direct product of two Hilbert spaces is called Liouville space (or line space, extended
Hilbert space).

o Riesz norm metric
A Riesz space (or vector lattice) is a partially ordered vector space (Vg;, <) in which the
following conditions hold:

1. The vector space structure and the partial order structure are compatible, i.e., from
x < yfollowsthat x4z < y+z,and fromx > 0,a € R, a > O follows thatax > O;

2. For any two elements x, y € Vg;, there exist join x V y € Vg; and meet x Ay € Vpg;
(cf. Chapter 10).

The Riesz norm metric is a norm metric on Vg;, defined by

lx = yllri>

where |.[|g; iS a Riesz norm on Vpg;, i.e., a norm such that, for any x,y € Vg;, the
inequality [x| < [y|, where [x| = (—x) Vv (x), implies [[x[g; < [|y]ri-

The space (Vg;, |- ||r:) is called rormed Riesz space. In the case of completeness, it is
called Banach lattice.

e Banach—-Mazur compactum

The Banach—Mazur distance dpys between two n-dimensional normed spaces (V, ||| v)
and (W, ||.|lw) is defined by

Ininf [T - | TV
nn;ll - 07

where the infimum is taken over all isomorphisms 7 : V. — W. It is a metric on the
set X of all equivalence classes of n-dimensional normed spaces, where V ~ W if and
only if they are isometric. Then pair (X", dpyy) is a compact metric space which is called
Banach—Mazur compactum.
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o Quotient metric

Given a normed space (V, ||.|ly) with a norm ||.[|y and a closed subspace W of V|, let
(V/W, |l.llv;w) be the normed space of cosets x + W = {x +w: w € W}, x € V, with
the quotient norm ||x + Wly,w = infyew lx + wlv.

The quotient metric is a norm metric on V/ W, defined by
[ +W) = +Wy -

o Tensor norm metric

Given normed spaces (V, ||.|ly) and (W, ||.|lw), anorm |.||g on the tensor product V&
W is called tensor norm (or cross norm) if [x @ y| @ = ||x|lv | y|lw for all decomposable
tensors x @ y.

The tensor product metric is a norm metric on V ® W, defined by

Iz =1l

Foranyz e V@ W,z =} x; ®y;,x; € V,y; € W, its projective norm (or 7~
norm) is defined by ||z, = ihfzi llx ;v Ily;llw, where the infimum is taken over all
representation of z as a sum of decomposable vectors. It is the largest tensor norm on
Vew.

e Valuation metric

A valuoation metric is a metric on a field F, defined by

lx =yl

where [.|| is a valuation on F, i.e., a function |.|| : F — R such that, for all x, y € F,
we have the following properties:

1. |lx|| = 0, with [|x]] = 0 if and only if x = 0;
20 lxeyl = Dxl iyl
3. x4+ vl < Ix ]l + [y]l (wiangle inequality).

If || x + y|l < max{[[x]], |||}, the valuation ||| is called non-Archimedean. In this case,
the valuation metric is an ultrametric. The simplest example of a valuation is the trivial
valuation ||.||;: |0l = 0, and ||x||;» = 1 for x € F\{0}. It is non-Archimedean.

There are different definitions of valuation in Mathematics. Thus, the function v : F —
R U {oo} is called valuation if v(x) = 0, v(0) = oo, v(xy) = v(x) + v(y), and
v(ix + y) = min{v(x), v(y)} for all x,y e [F. The valuation ||.] can be obtained

from the function v by the formula ||x| = ™) for some fixed 0 < a < 1 (cf.
p-adic metric). The Kiirschik valuation |.|krs is defined as a function |.|gp : F — R
such that |x|gs 2 O, |x|krs = Oif and only if x = O, |xy|gkrs = [X|grs|Y[krs, and

|x + Vigrs < Cmax{|x|grs, | V|krs} for all x, y € F and for some positive constant C,
called constant of valuation. If C < 2, one obtains the ordinary definition of the val-
uation |.|| which is non-Archimedean if C < 1. In general, any |.|x,s 1S equivalent to
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some |||, i.e., |.|}§rs = ||.|| for some p > 0. At last, given an ordered group (G, -, e, <)
equipped with zero, the Krull valuation is defined as a function |.| : F — G such that

|x] =0ifand only if x = 0, |xy| = |x||y], and |x + ¥| < max{|x], |y|} forany x, y € F.
It is a generalization of the definition of non-Archimedean valuation ||.|| (cf. generalized
metric).

e Power series metric

Let IF be an arbitrary algebraic field, and let F(x~!) be the field of power series of the
formw = o_p,x™ + - +oag+oaix L+, o; € F.Given! > 1, a non-Archimedean
valuation |.|| on F{x~1!) is defined by

lw| = mooifw #£ 0,
0, ifw=0.

The power series metric is the valuation metric |w — v| on F(x~!).
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Chapter 6

Distances in Geometry

Geometry arose as the field of knowledge dealing with spatial relationships. It was one
of the two fields of pre-modern Mathematics, the other being the study of numbers. In
modern times, geometric concepts have been generalized to a high level of abstraction and
complexity.

6.1. GEODESIC GEOMETRY

In Mathematics, the notion of “geodesic” is a generalization of the notion of “straight line”
to curved spaces. This term is taken from Geodesy, the science of measuring the size and
the shape of the Earth.

Given a metric space (X, d), a metric curve y is a continuous function y : I — X,
where [ is an interval (i.e., non-empty connected subset) of R. If y is r times continuously
differentiable, it is called regular curve of class C”; if r = oo, y is called smooth curve.

In general, a curve may cross itself. A curve is called simple curve (or arc, path) if it
does not cross itself, i.e., if it is injective. A curve y : [a, b] — X is called Jordan curve
(or simple closed curve) if it does not cross itself, and y (a) = y (b).

The length (which may be equal to co) I(y) of a curve y : [a,b] — X is defined by
sup Y ', d(y(ti—1), y(t;)), where the supremum is taken over all finite decompositions
a=1ty <t <---<t, = b n e N, of [ab]. A curve with finite length is called
rectifiable. For each regular curve y : [a, b] — X define the natural parameter s of y by
s = s(t) = I(¥{a.1])» where [(y|14.;)) is the length of the part of y, corresponding to the
interval [a, t]. The parametrization y = y(s) is called natural. In this parametrization, for
any t1,tp € I, one has [(y|[s,.5)) = It — t1l,and I(y) = [b — al.

The length of any curve y : [a, b] — X is at least the distance between its end points:
I(y) = d(y(a), y(b)). The curve y, for which I(y) = d(y(a), y (b)), is called geodesic
segment (or shortest path) from x = y(a) to y = y(b), and denoted by [x, y]. Thus, a
geodesic segment is a shortest join of its endpoints; it is an isometric embedding of [a, b]
in X. In general, geodesic segments need not exist, except for a trivial case when segment
consists of one point only. Moreover, a geodesic segment joining two points need not be
unique.

A geodesic is a curve which extends indefinitely in both directions and behaves locally
like a segment, i.e., is everywhere locally a distance minimizer. More exactly, a curve
y : R — X, given in the natural parametrization, is called geodesic if, for any ¢ € R, there
exists a neighborhood U of t such that, for any t1, t» € U, we have d(y(t1), y (&) = |11 —

62
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t2]. Thus, any geodesic is a locally isometric embedding of the whole R in X. A geodesic
is called metric straight line (or minimizing geodesic) if the equality d(y(t1), y(f)) =
|t — f2| holds for all t1, t; € R. Such geodesic is an isometric embedding of the whole real
line R in X. A geodesic is called metric great circle if it is an isometric embedding of a
circle S1(0, r) in X. In general, geodesics need not exists.

e Geodesic metric space

A metric space (X, d) is called geodesic if any two points in X can be joined by a
geodesic segment, 1.e., for any two points x,y € X, there is an isometry from the
segment [0, d(x, y)] into X.

Any complete Riemannian space is a geodesic metric space.

o Geodesic distance

The geodesic distance (or shortest path distance) is the length of a geodesic segment
(i.e., a shortest path) between two points.

o Intrinsic metric

The metric d on X is called intrinsic metric (or length metric) if the distance d(x, y)
between any pair x, y of points in X is equal to the infimum of lengths of curves con-
necting these points. A metric space (X, d) with the intrinsic metric d is called length
space (or path metric space, inner metric space).

If, moreover, any pair x, y of points can be joined by a curve of length d{x, y), then
the metric d is called strictly intrinsic, and the length space (X, d) is a geodesic metric
space.

Given a metric space (X, d) in which every pair of points is joined by a rectifiable
curve, the induced intrinsic metric (or internal metric, interior metric) D on X is
defined as the infimum of the lengths of all rectifiable curves, connecting two given
pointsx,y € X.

e Space of geodesics

A space of geodesics (or G-space) is a metric space (X, d) with the geometry character-
ized by the fact that extensions of geodesics, defined as locally shortest lines, are unique.
Such geometry is a generalization of Hilbert Geometry (see [Buse55]).

More exactly, an G-space (X, d) is defined by the following conditions:

1. It is finitely compact, i.e., a bounded infinite set in X has at least one accumulation
point;

2. It is Menger-convex, i.e., for any different x, y € X, there exists a third point z € X,
Z# x,y,suchthatd(x,z) +d(z,y) =d(x,y);

3. It is locally extendable, i.e., for any a € X, there exists r > O such that, for any
distinct points x, y in the ball B(a, r), there exists z distinct from x and y such that
d{x,y)+d(y, z) =dx, 2);

4. 1t is uniquely extendable, i.e., if in 3. above two points z; and z» were found, so that
d(y,z1) =d(y, z2), then z; = 2.
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The existence of geodesic segments is ensured by finite compactness and Menger-
convexity: any two points of a finitely compact Menger-convex set X can be joined
by a geodesic segment in X. The existence of geodesics is ensured by the axiom of local
prolongation: if a finitely compact Menger-convex set X is locally extendable, then there
exists a geodesic contains a given segment. Finally, the uniqueness of prolongation en-
sures the assumption of Differential Geometry that a line element determines a geodesic
in one way only.

All Riemannian and Finsler spaces are G-spaces. An one-dimensional G-space is a met-
ric straight line or a metric great circle. Any two-dimensional G-space is a topological
manifold.

Every G-space is a chord space, i.e., a metric space with distinguished geodesics (see
[BuPh&7]).

e Desarguesian space

A Desarguesian space is a space of geodesics (X, d) in which the role of geodesics is
played by ordinary straight lines. Thus, X may be topologically mapped into a projective
space RP" so that each geodesic of X is mapped into a straight line of RP", Any X
mapped into R P” must either cover all of RP”, and, in such a case, the geodesics of X
are all metric great circles of the same length, or X may be considered as an open convex
subset of an affine space A”.

A space (X, d) of geodesics is a Desarguesian space if and only if the following condi-
tions hold:

1. The geodesic passing through two different points is unique;
2. For dimension n = 2, both the direct and the converse Desargues theorems are valid,
and, for dimension n > 2, any three points in X lie in one plane.

Among Riemannian spaces, the only Desarguesian spaces are Euclidean, hyperbolic,
and elliptic spaces. An example of the non-Riemannian Desarguesian space is the
Minkowskian space which can be regarded as the prototype of all non-Riemannian
spaces, including Finsler spaces.

e Space of elliptic type

A space of elliptic type is a space of geodesics in which the geodesic through two
points is unique, and all geodesics are the metric great circles of the same length.

e Straight space

A straight space is a space of geodesics in which extension of a geodesic is possible
in the large. Any geodesic in a straight space is a metric straight line, and is uniquely
determined by any two of its points. Straight spaces are simply connected spaces without
conjugate points. Any two-dimensional straight space is homeomorphic to the plane.

Minkowskian spaces and all simply-connected Riemannian spaces of non-positive cur-
vature (including Euclidean and hyperbolic spaces) are straight spaces.
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e Gromov-hyperbolic metric space

A metric space (X, d) is called Gromov-hyperbolic if it is geodesic and §-hyperbolic
for some § > 0.

Any complete simply connected Riemannian space of sectional curvature k < —a? is
Gromov-hyperbolic metric space with § = % Any Euclidean space E" with n > 1
is not Gromov-hyperbolic. An important class of Gromov-hyperbolic metric spaces are
hyperbolic groups, i.e., finitely generated groups whose word metric is §-hyperbolic for
some § = 0. A metric space is a real tree exactly when it is Gromov-hyperbolic metric
space with § = 0.

A geodesic metric space (X, d) is §-hyperbolic if and only if it is Rips 45-hyperbolic, i.e.,
each of its geodesic triangles (the union of three geodesic segments [x, v], [x, 2], [y, 2])
is 43-thin (or 45-slim): every side of the triangle is contained in the 4§-neighborhood
of the other two sides (a 48-neighborhood of a subset A C X is the set {b € X:
inf,ead(b,a) < 48}).

o CAT(k) space

Let (X, d) be a complete geodesic metric space. Let M? be a simply connected two-
dimensional Riemannian manifold of constant curvature k < 0 (for k = 0 and —1, it is
the Euclidean plane E? and the real hyperbolic plane H?, respectively).

A triangle T in X consists of three points in X together with three geodesic segments
joining them pairwise; the segments are called the sides of the triangle. For a triangle
T C X, a comparison triangle for T in M? is a triangle T’ C M? together with a map
fr which sends each side of T isometrically onto a side of 7'. A triangle T is said to
satisfy the Gromov’s CAT(k) inequality (for Cartan, Alexandrov and Toponogov) if, for
every x, y € T, we have

d(x, y) < dye(fr (), fr(y),

where fr is the map associated to a comparison triangle for T in M?. So, the geodesic
triangle T is at least as “thin” as its comparison triangle in M?.

A CAT(k) space is a proper (i.c., all closed metric balls are compact) geodesic metric
space in which every triangle satisfies the CAT(k) inequality.

Gromov hyperbolic metric spaces are CAT(0) spaces and a generalization of CAT(—1)
spaces.

CAT(0) spaces are called also Hadamard spaces, because they are generalizations of
Hadamard manifolds which are simply connected, complete Riemannian manifolds such
that the sectional curvature is non-positive. A CAT(0) space is not a manifold, in general;
it can be a tree, for example.

An Alexandrov space with non-positive curvature (or non-positively curved space) is a
metric space (X, d) in which, for any x € X, there exists 7 > 0 such that the closed
metric ball B(x,r) ={y € X: d(x,y) < r}isaCAT(0) space with respect to d.
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o Tits metric

Let (X, d) be a CAT(0) space. An unit speed geodesic rayin X isacurve « : [0, +00) —
X which realizes the distance between any two of its points, i.e., o is an isometric em-
bedding of [0, 00) C R into X. Two unit speed geodesic rays a!, «® in X are called
asymptotic if there is a constant C > 0 such that lim;_, d! ), ozz(t)) < C; the cor-
responding equivalence class is denoted by ozéo(: ago). The set 9 X of all equivalence
classes of asymptotic geodesic rays of X is called boundary of X at infinity.

The Tits metric (or asymptotic angle of divergence) is a metric on 9., X, defined by

2 arcsin(ﬁ)
2

for all o), @2, € 850X, where p = lim,_, 4 Zld(ozl(t), a?(1)). The set 8,0 X equipped
with the Tits metric is called Tits boundary of X.

e Projectively flat space

A metric space is called projectively flat if it locally admits a geodesic mapping (i.e., a
mapping preserving geodesics) into an Euclidean space.

6.2. PROJECTIVE GEOMETRY

Projective Geometry is a branch of Geometry dealing with the properties and invariants of
geometric figures under projection. Affine Geometry and Euclidean Geometry are subsets
of Projective Geometry.

An n-dimensional projective space FP" is the space of one-dimensional vector sub-
spaces of a given (n + 1)-dimensional vector space V over a field . The basic construc-
tion is to form the set of equivalence classes of non-zero vectors in V under the relation
of scalar proportionality. This idea goes back to mathematical descriptions of perspective.
The use of a basis of V allows the introduction of homogeneous coordinates of a point in
K P" which are usually written as (x; : x2 : ... : X, : X,+1) — a vector of length n + 1,
other than (0 : 0 : 0 : ... : 0). Two sets of coordinates that are proportional denote the
same point of the projective space. Any point of projective space which can be represented
as (x1 : x2 1 ... x, : 0)is called point at infinity. The part of a projective space KP"
not “at infinity”, i.e., the set of points of the projective space which can be represented as
(x1:x2:...:xy 1 1), is an n-dimensional affine space A”.

The notation RP”" denotes the real projective space of dimension n, i.e., the space of
one-dimensional vector subspaces of R”*!. The notation CP" denotes the complex pro-
Jective space of complex dimension n. The projective space R P” carries a natural structure
of a compact smooth n-dimensional manifold. It can be viewed as the space of lines through
the zero element 0 of R**! (i.e., as a ray space). It can be viewed as the set R”, considered
as an gffine space, together with its points at infinity. It can be viewed also as the set of
points of an n-dimensional sphere in R**! with identified diametrically-opposite points.

The projective points, projective straight lines, projective planes, ..., projective
hyperplanes of KP" are one-dimensional, two-dimensional, three-dimensional, ...,
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n-dimensional subspaces of V, respectively. Any two projective straight lines in a pro-
jective plane have one and only one common point. A projective transformation (or
collineation, projectivity) is a bijection of a projective space onto itself, preserving
collinearity (the property of points to be on one line) in both directions. Any projective
transformation is a composition of a pair of perspective projections. Projective trans-
formations do not preserve sizes or angles but do preserve fype (that is, points remain
points, and lines remain lines), incidence (that is, whether a point lies on a line), and
cross-ratio. Here, given four collinear points x, y, z,t € FP", their cross-ratio is de-

fined by (x, y, z,1) = %, where 2=% denotes the ratio L=J @ for some affine

OE0)

bijection f from the straight line I , through the points x and y onto K. Given four
projective straight lines I, Iy, I;, l;, containing points x, y, z, t, respectively, and passing
) sin(ly ;) sin(ly 1)
sin{ly.[;) sin{ly.1;)?
incides with (x, y, z, t). The cross-ratio of four complex numbers x, y, z, f is given by

(x,y,2,t) = % It is real if and only if the four numbers are either collinear or

cocyclic.

through a given point, their cross-ratio, defined by (Iy, [y, 1, 1;) =

e Projective metric

Given a subset D of a projective space RP”, the projective metric d is a metric on
D such that shortest paths with respect to this metric are parts of or entire projective
straight lines. It is assumed that the following conditions hold:

1. D does not belong to a hyperplane;

2. For any three non-collinear points x, y, z € D, the triangle inequality holds in the
strict sense: d(x, y) < d(x,z) +d(z, y);

3. If x, y are different points in D, then the intersection of the straight line /, , through
x and y with D is either all of [y y, and forms a metric great circle (i.e., is isomeltric to
a circle), or is obtained from I , by discarding some segment (which can be reduced
to a point), and forms a metric straight line (i.e., is isometric to the whole R).

The metric space (D, d) is called projective metric space. The problem to determine
all projective metrics is the so-called fourth problem of Hilbert; it is decided only for
dimension n = 2. In fact, given a smooth measure on the space of hyperplanes in RP",
define the distance between any two points x, y € RP” as one-half the measure of all
hyperplanes intersecting the line segment joining x and y. The obtained metric is projec-
tive. It is the Busemann’s construction of projective metrics. For n = 2, Ambartzumian
([Amba76]) proved that all projective metrics can be obtained from the Busemann’s
construction.

In a projective metric space there are no, simultaneously, both types of straight lines:
they are either all metric straight lines, or they are all metric great circles of the same
length (Hamel’s theorem). Spaces of the first kind are called open. They coincide with
subspaces of an affine space; the geometry of open projective metric spaces is a Hilbert
Geometry. Hyperbolic Geometry is a Hilbert Geometry in which there exist reflections
at all straight lines. Thus, the set D has Hyperbolic Geometry if and only if it is the
interior of an ellipsoid. The geometry of open projective metric spaces whose subsets
coincide with all of affine space, is a Minkowski Geometry. Euclidean Geometry is a
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Hilbert Geometry and a Minkowski Geometry, simultaneously. Spaces of the second
kind are called closed; they coincide with the whole of RP”". Elliptic Geometry is the
geometry of a projective metric space of the second kind.

e Strip projective metric

The strip projective metric ([BuKe53]) is a projective metric on the strip St = {x €
R%: — /2 < x3 < 7/2}, defined by

\/(xl — yD? + (x2 — y2)2 + | tanxp — tan y7|.

Note, that St with the ordinary Euclidean metric \/(x1 — y1)2 + (x2 — y2)? is not a pro-
Jjective metric space .

o Half-plane projective metric

The half-plane projective metric ([BuKe53]) is a projective metric on Ri ={x e
R2: xy > 0}, defined by

1

X2 2

Jor =2+ -2 +

e Hilbert projective metric

Given a set H, the Hilbert projective metric /2 is a complete projective metric on H.
It means, that H contains, together with two arbitrary distinct points x and y also the
points z and ¢ for which A(x, z) + h(z, ¥y) = A(x, y), h(x, ¥) + h(y, t) = h(x, t), and is
homeomorphic to a convex set in an n-dimensional affine space A", the geodesics in H
being mapped to straight lines of A”. The metric space (H, h) is called Hilbert projective
space, and the geometry of a Hilbert projective space is called Hilbert Geometry.

Formally, let D be a non-empty convex open set in A” with the boundary 3D not con-
taining two proper coplanar but non-collinear segments (ordinary the boundary of D is a
strictly convex closed curve, and D is its interior). Let x, y € D be located on a straight
line which intersects 9D at z and ¢, z is on the side of y, and ¢ is on the side of x. Then
the Hilbert metric 4 on D is defined by

— In( )
2 b ’7 s b
X, y,2

where (x, y, z, t) is the cross-ratio of x, y, z, t, and r is a fixed positive constant.

The metric space (D, h) is a straight space. If D is an ellipsoid, then 4 is the hyperbolic
metric, and defines Hyperbolic Geometry on D. On the unitdisk A = {z € C: |z] < 1}
the metric # coincides with the Cayley—Klein—Hilbert metric. If # = 1, the metric &
makes D isometric to the Euclidean line.

If 3D contains coplanar but non-collinear segments, a projective metric on D can be
given by h(x, y)+d(x, y), where d is any Minkowskian metric (usually, the Euclidean
metric).
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o Minkowskian metric

The Minkowskian metric (or Minkowski—Holder distance) is the norm metric of a
finite-dimensional real Banach space.

Formally, let R" be an n-dimensional real vector space, let K be a symmetric convex
body in R", i.e., an open neighborhood of the origin which is bounded, convex, and
symmetric (x € K if and only if —x € K). Then the Minkowski functional ||.||x : R* —
[0, 00), defined by

X
lxllg = inf{a >0: — € 8K},
«
is a norm on R", and the Minkowskian metric m on R” is defined by

[x—ylk-

The metric space (R", m) is called Minkowskian space. It can be considered as an n-
dimensional affine space A" with a metric m in which the role of the unit ball is played
by a given centrally-symmetric convex body. The geometry of a Minkowskian space is
called Minkowski Geometry. For a strictly convex symmetric body Minkowskian metric
is a projective metric, and (R”, m) is a straight space. A Minkowski Geometry is
Euclidean if and only if its unit sphere is an ellipsoid.

The Minkowskian metric m is proportional to the Euclidean metric dg on every given
line [, i.e., m(x, y) = ¢(1)dg (x, y). Thus, the Minkowskian metric can be considered as
a metric which is defined in the whole affine space A" and has the property that the gffine

ratio ¢ of any three collinear points a, b, ¢ (cf. Section 3) is equal to their distance ratio

ma.c)
mia,b)"

¢ Busemann metric

The Busemann metric ([Buse55]) is a metric on the real #n-dimensional projective space
RP", defined by

forany x = (x1:...: Xp01), y=(¥1 ¢ ... Ypr1) € RP", where || x]|| = ,/Z;’Ll xl2 .

o Flag metric

n+1

2

i=1

Xi i

Il vl

Xi Yi
el vl

n+1
min Z

i=1

Given an n-dimensional projective space FP", the flag metric d is a metric on FP",
defined by an flag, i.e., an absolute consisting of a collection of m-planes oy, m =
0,...,n — 1, with «;_| belonging to «; for alli € {1,...,n — 1}. The metric space
(FP™, d) is abbreviated by F" and is called flag space.

If one chooses an affine coordinate system (x;); in a space F", so that the vectors of

the lines passing through the (n — m — 1)-plane ¢;,_,,— are defined by the condition
x] = - = x5, = 0, then the flag metric d(x, y) between the points x = (x1, ..., x,)
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and y = (y1, ..., yu) is defined by

d{x,y) =Ix1—yil, ifx;#y,
d(x,y) =Ix2—yl, ifxi=y,x2#y,...,
dx,y) =Ixg—yl, Hxi =y, .., Xk—1 = Yk=1,Xk F Yk»----

Projective determination of a metric

The projective determination of a metric is an introduction, in subsets of a projective
space, of a metric such that these subsets become isomorphic to an Euclidean, hyper-
bolic, or elliptic space.

To obtain an Euclidean determination of a metric in RP”, one should distinguish in this

space an (n — 1)-dimensional hyperplane r, called hyperplane at infinity, and define E"
as the subset of the projective space obtained by removing from it this hyperplane .

In terms of homogeneous coordinates,  consists of all points (x1 : ... : x, : 0), and

E" consists of all points (x1 : ... : x, : x,) with x, # 0. Hence, it can be written as

E'={xeRP":x=(x1:...:x,: 1)}. The Euclidean metric dg on E" is defined by
Vi =y, x—y),

where, forany x = (x; @ ... i xp 2 D,y = (1 ...y o 1) € E", one has

(x, ¥y = 20 X

To obtain a hyperbolic determination of a metric in RP", a set D of interior points of
a real oval hypersurface £2 of order two in RP" is considered. The hyperbolic metric
dpyp on D is defined by

In(x, y,z,t)

r
2l ’
where z and ¢ are the points of intersection of the straight line [, , through the points
x and y with £2, (x, y, z,t) is the cross-ratio of the points x, y, z,f, and r is a fixed
positive constant. If, forany x = (x1 : ... : x4q1),y = (y1 1 ... yuy1) € RP", the
scalar product {(x,y) = —x1y1 + ng x; y; 1s defined, the hyperbolic metric on the set
D ={x e RP": {x,x) < 0} can be written as

[{x,
V0

where r is a fixed positive constant, and arccosh denotes the non-negative values of the
inverse hyperbolic cosine.

r arccosh

To obtain an elliptic determination of a metric in R P", one should consider, for any x =
. f
(1000 i xpp1),y = (1 1 ... ypa1) € RP", the inner product (x, y) = 27; Xi Vi

The elliptic metric d.;; on RP" is defined now by

7 arccos ——————,



Chapter 6: Distances in Geometry [ @ Projective determination of a metric] 71

where r is a fixed positive constant, and arccos is the inverse cosine in [0, 7 ].

In all the considered cases, some hypersurfaces of the second order remain invariant
under given motions, i.e., projective transformations preserving a given metric. These
hypersurfaces are called absolutes. In the case of an Euclidean determination of a metric,
the absolute is an imaginary (n — 2)-dimensional oval surface of order two, in fact,
the degenerate absolute xlz + -+ x,% = 0, x,41 = 0. In the case of a hyperbolic
determination of a metric, the absolute is a real (n — 1)-dimensional oval hypersurface
of order two, in the simplest case, the absolute —xl2 +x22 +-- '—{-x,% = 0. In the case of
an elliptic determination of a metric, the absolute is an imaginary (n — 1)-dimensional
oval hypersurface of order two, in fact, the absolute xlz + e+ xg = 0.

6.3. AFFINE GEOMETRY

An n-dimensional affine space over a field IF is a set A" (the elements of which are called
points of the affine space) to which corresponds an n-dimensional vector space V over I
(called space associated to A™) such that, foranya € A", A=a+V ={a+v: veV}

) =
In the other words, if ¢ = (a1,...,a,),b = (b1,...,b,) € A", then the vector ab =
(b1 — a1, ...,by — ay,) belongs to V. In an affine space, one can add a vector to a point
to get another point, and subtract points to get vectors, but one cannot add points, since

%

there is no origin. Given points a, b, ¢, d € A” such that ¢ # d, and the vectors ab and cd

are collinear, the scalar A, defined by 4713 = )&7, is called affine ratio of ab and cd, and is
denoted by %

An affine transformation (or affinity) is a bijection of A" onto itself which preserves
collinearity (i.e., all points lying on a line initially, still lic on a line after transformation)
and ratios of distances (for example, the midpoint of a line segment remains the midpoint
after transformation). In this sense, affine indicates a special class of projective transfor-
mations that do not move any objects from the affine space to the plane at infinity or
conversely. Any affine transformation is a composition of rotations, translations, dilations,
and shears. The set of all affine transformations of A” forms a group Aff (A"), called gen-
eral affine group of A", Each element f € Aff(A) can be given by a formula f{a) = b,
b = Z_’;:l pija; + ¢;j, where ((p;;)) is an invertible matrix.

The subgroup of Aff(A"), consisting of affine transformations with det((p;;)) = 1, is
called equi-affine group of A™. An equi-affine space is an affine space with the equi-affine
group of transformations. The fundamental invariants of an equi-affine space are volumes
of parallelepipeds. In an equi-affine plane A%, any two vectors vy, v have an invariant
vy x 2| (the modulus of their cross product) — the surface area of the parallelogram
constructed on vy and vy. Given a non-rectilinear curve y = y (), its affine parameter (or
equi-affine arc length) is an invariant parameter, defined by s = flf) ly" x y”|13dt. The

2 3y . , . .
invariant k = % X % is called equi-affine curvature of y. Passing to the general affine
group, two more invariants of the curve are considered: the affine arc lengtho = [ k'2ds,

— 1 dk
and the affine curvature k = = 5.

For A", n > 2, the affine parameter (or equi-affine arch length) of a curve y = y(t)
2
is defined by s = ftf) (', v", ..., y™) 7@+ dt, where the invariant (v1, ..., v,) is the
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(oriented) volume spanned by the vectors vy, ..., v,, which is equal to the determinant of
the n x n matrix whose i-th column is the vector v;.

o Affine distance

Given an affine plane A, a line element (a, 1,) of A? consists of a pointa € A? together
with a straight line I, C A? passing through a.

The affine distance is a distance on the set of all line elements of A2, defined by
217,

where, for a given line elements (a, {,) and (b, [;,), f is the surface area of the triangle
abc if ¢ is the point of intersection of the straight lines [, and /. The affine distance
between (a, {,) and (b, ;) can be interpreted as the affine length of the arc ab of a
parabola such that [, and [}, are tangent to the parabola at the point a and b, respectively.

o Affine pseudo-distance

Let A2 be an equi-affine plane, and let ¥ = y (s) be a curve in A2, defined as a function
of the affine parameter s. The affine pseudo-distance dp; for A? is defined by

d
abx 2
d

dpaﬁ'(éhb) = s

3

. . -7

i.e., is equal to the surface area of the parallelogram constructed on the vectors ab and
%, where b is an arbitrary point in A%, a is a point on y, and ‘2—): is the tangent vector to
the curve y at the point a.

The affine pseudo-distance for an equi-affine space A can be defined in a similar

manner as
— dy dzy

ab& s Ty

ds’ ds?

where y = y(s) is a curve in A3, defined as a function of the affine parameter s, b € A3,

. . 2 . .
a is a point of y, and the vectors %, ‘27)2’ are obtained at the point a.

’

d)/ dn—ly
B %7 cee W

— l—n
trization y = y(¢), one obtains dpug(a, b) = [(ab, y', ...,y D)/, ...,y D)1,

For A", n > 3, we have dp,g(a, b) = |(577 )|. For an arbitrary parame-

o Affine metric

The affine metric is a metric on a non-developable surface r = r{uy, uz) in an equi-
affine space A3, given by its metric tensor (&ij):

a,','

87 = Yder((a )7

where a;; = (d1r, dor, 3;57), i, j € {1, 2}
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6.4. NON-EUCLIDEAN GEOMETRY

The term non-Euclidean Geometry describes both Hyperbolic Geometry (or Lobachevsky
Geometry, Lobachevsky—Bolyai—-Gauss Geometry) and Elliptic Geometry (sometimes
called also Riemannian Geometry) which are contrasted with Euclidean Geometry (or Par-
abolic Geometry). The essential difference between Euclidean and non-Euclidean Geom-
etry is the nature of parallel lines. In Euclidean Geometry, if we start with a line / and a
point a, which is not on [, then we can only draw one line through a that is parallel to .
In Hyperbolic Geometry there are infinitely many lines through a parallel to /. In Elliptic
Geometry, parallel lines do not exist.

The Spherical Geometry is also “non-Euclidean”, but it fails the axiom that any two
points determine exactly one line.

e Spherical metric
Let $*(0,r) = {x € R*t1: Z?i]l x? = r?} be a sphere in R**! with the center 0 and
the radius » > 0.

The spherical metric (or great circle metric) dy,, is a metric on $”(0, r), defined by

n+1 .

r arccos(—[ izt Hiil >
r2 ’

where arccos is the inverse cosine in [0, 7 ]. It is the length of the great circle arc, passing

through x and y. In terms of the standard inner product (x, y) = Z;’LI x;y; on R+
[0, v
Vixx) vy

The metric space (8" (0, r), dypp) is called n-dimensional spherical space. It is a space of
curvature 1/r2, and r is the radius of curvature. It is a model of n-dimensional Spherical
Geometry. The great circles of the sphere are its geodesics, all geodesics are closed and
of the same length. (See, for example, [Blum70].)

the spherical metric can be written as r arccos

o Elliptic metric
Let RP" be the real n-dimensional projective space. The elliptic metric d,;; is a metric
on RP”", defined by

|6 )
rarccos —————,

(x, x)(y, y)
Wher?, forany x = (x1 @ ... 1 X4 1),y = (1 7 ... Yuy1) € RP?, one has (x, y) =
Z;’; x;yi, r is a fixed positive constant, and arccos is the inverse cosine in [0, ].

The metric space (RP", d,y) is called n-dimensional elliptic space. It is a model of
n-dimensional Elliptic Geometry. It is the space of curvature 1/r2, and r is the radius
of curvature. As r — o0, the metric formulas of Elliptic Geometry yield formulas of
Euclidean Geometry (or become meaningless).

If RP" is viewed as the set E™(0, r), obtained from the sphere $*(0, r) = {x € R**+!:

Z;’Ill xl.z = r?} in R**! with the center 0 and the radius r by identifying diametrically-

opposite points, then the elliptic metric on E*(0,r) can be written as dyp(x, y) if
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dgpn(x,y) < Zr,and as wr —dgp(x, y) if dgpn(x, y) > 57, where dyyy, is the spherical
metric on S”(0, r). Thus, no two points of E"(0, r) have distance exceeding %r. The
elliptic space (E 20, r), dey) 1s called Poincaré sphere.

If RP" is viewed as the set E” of lines through the zero element O in R"t! then the
elliptic metric on E” is defined as the angle between the corresponding subspaces.

An n-dimensional elliptic space is a Riemannian space of constant positive curvature. It

is the only such space which is topologically equivalent to a projective space. (See, for
example, [Blum70], [Buse55].)

e Hermitian elliptic metric

Let CP" be the n-dimensional complex projective space. The Hermitian elliptic metric
d:[l[ (see, for example, [Buse55]) is a metric on CP", defined by

[{x, ¥}
F arccos ——————,
(X, x){y, ¥)
where, forany x = (x1 ...t x41), Yy = (1 ¢ ... ypar1) € CP", one has (x,y) =

1— . .. . . ..
Z:.l;r] X;yi, r 1s a fixed positive constant, and arccos is the inverse cosine in [0, 7 ].

The metric space ((CP”,deH”) is called n-dimensional Hermitian elliptic space (cf.
Fubini-Study metric).

o Elliptic plane metric

The elliptic plane metric is the elliptic metric on the elliptic plane RP?. If RP? is
viewed as the Poincaré sphere (i.e., a sphere in R? with identified diametrically-opposite
points) of diameter 1 tangent to the extended complex plane C = C U {00} at the point
z = 0, then, under the stereographic projection from the “north pole” (0, 0, 1), C with
identified points z and —% is a model of the elliptic plane, and the elliptic plane metric

2
d,y on it is defined by its line element ds? = (Ifli'lz)z.

e Pseudo-elliptic distance

The pseudo-elliptic distance (or elliptic pseudo-distance) dp.y; is a distance on the
extended complex plane C = C U {oo} with identified points z and —%, defined by

Z—u
1+zu

In fact, dpey(z, u) = tand.y(z, u), where d,y is the elliptic plane metric.

e Hyperbolic metric
Let RP" be the n-dimensional real projective space. Let, for any x = (x1 : ... :
Xnt1), ¥ = (V1 1 ... Yag1) € RP, the scalar product (x,y) = —x131 + Y15 Xi¥i
be considered.
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The hyperbolic metric dp,, is a metric on the set H* = {x € RP": (x,x) < 0},
defined by

[{x, y)
Gy

where r is a fixed positive constant, and arccosh denotes the non-negative values of
the inverse hyperbolic cosine. In this construction, the points of H” can be viewed as
the one-spaces of the pseudo-Euclidean space R™! inside the cone C = {x € R™!:
(x,x) =0}

The metric space (H", dyyp) is called n-dimensional hyperbolic space. It is a model of
n-dimensional Hyperbolic Geometry. It is the space of curvature —1/r%, and r is the
radius of curvature. Replacement of r by ir transforms all metric formulas of Hyper-
bolic Geometry into the corresponding formulas of Elliptic Geometry. As r — 00, both
systems yield formulas of Euclidean Geometry (or become meaningless).

7 arccosh

If H" is viewed as the set {x e R": Y7, )cl.2 < K}, where K > 1 is an arbitrary fixed
constant, the hyperbolic metric can be written as

ro1+J/T=y0, ) (K =Y x)(K — Zl )
—1In ,  where y(x,y) = )
2 1-—JT=70, (K =31 xiyi)?

: it i 1_ L
and r is a positive number with tanh - = N

If H" is viewed as a submanifold of the (n + 1)-dimensional pseudo-Euclidean space
R™! with the scalar product (x, y) = —x1y; + Z:Zizl x;y; (in fact, as the top sheet
{x e R*!: (x,x) = —1,x1 > 0} of the two-sheeted hyperboloid of revolution), then
the hyperbolic metric on H” is induced from the pseudo-Riemannian metric on R™!
(cf. Lorentz metric).

An n-dimensional hyperbolic space is a Riemannian space of constant negative curva-
ture. It is the only such space which is complete and topologically equivalent to an
Euclidean space. (See, for example, [Blum70], [Buse55].)

e Hermitian hyperbolic metric

Let CP" be the n-dimensional complex projective space. Let, for any x = (x1 : ... :
Xn41), ¥ = (V1 1 ...t yuy1) € CP", the scalar product (x, y) = —X1y1 + Y it X; yi
be considered.

The Hermitian hyperbolic metric d,gy (see, for example, [Buse55]) is a metric on the
set CH" = {x e CP": (x,x) < 0}, defined by

[(x, y)]
00,

7 arccosh

where r is a fixed positive constant, and arccosh denotes the non-negative values of the
inverse hyperbolic cosine.

The metric space (CH", d,ff,p) is called n-dimensional Hermitian hyperbolic space.
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e Poincaré metric

The Poincaré metric dp is the hyperbolic metric for the Poincaré disk model (or con-
formal disk model) of Hyperbolic Geometry. In this model every point of the unit disk
A = {z € C: |z] < 1} is called hyperbolic point, the disk A itself is called hyper-
bolic plane, circular arcs (and diameters) in A which are orthogonal to the absolute
2 = {z € C: |z] = 1} are called hyperbolic straight lines. Every point of £2 is called
ideal point. The angular measurements in this model are the same as in Hyperbolic
Geometry. The Poincaré metric on A is defined by its line element

g ldP _ df+dh
(I1=1[z1)?  (1—-z2—23)?

The distance between two points z and u of A can be written as

1. |1 —zul+ ]z —ul lz — ul
—1In — = arctanh —.
2 |1 —zul — |z — u] |1 — zu|

In terms of cross-ratio, it is equal to

1 R A A L))
Eln(z,u,z,u)_zln—(z*_u)(u*_z),

where z* and u* are the points of intersection of the hyperbolic straight line passing
through z and u with £2, z* on the side of u, and u* on the side of z.

In the Poincaré half-plane model of Hyperbolic Geometry the hyperbolic plane is the
upper half-plane H> = {z € C: z» > 0}, and the hyperbolic lines are semi-circles
and half-lines which are orthogonal to the real axis. The absolute (i.e., the set of ideal
points) is the real axis together with the point at infinity. The angular measurements in
the model are the same as in Hyperbolic Geometry. The line element of the Poincaré
metric on H? is given by

,  ldz?  dzf+dz3

ds® = =
(32)? 2

The distance between two points z, # can be written as

1 |lz—ul+]z—ul |z — ul
—In=——~  —arctanh —.
2 lz—u|l—|z —ul |z — ul

In terms of cross-ratio, it is equal to

1 1 * _ * _
w2ty = L & TR mw),
2 2 (@F—uwu*—2z)

where z* is the ideal point of the half-line emanating from z and passing through u, and
u* is the ideal point of the half-line emanating from « and passing through z.
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In general, the hyperbolic metric in any domain D C C with at least three boundary
points is defined as the preimage of the Poincaré metric in A under a conformal mapping
f: D — A.lts line element has the form

42 If' (@) |dz|?

(I-1f@1H*
The distance between two points z and # in D can be written as

1= F@QF+If @ — f@)

In

2 1= fFWI—1f @~ fwl

e Pseudo-hyperbolic distance

The pseudo-hyperbolic distance (or Gleason distance, hyperbolic pseudo-distance)
dppyp is a metric on the unit disk A = {z € C: |z] < 1}, defined by

Z—u

1 —Zu
In fact, dppy,(z, u) = tanhdp(z, u), where dp is the Poincaré metric on A.

e Cayley—Klein—Hilbert metric

The Cayley—Klein—Hilbert metric dcgyy is the hyperbolic metric for the Klein model
(or projective disk model, Beltrami—Klein model) tor Hyperbolic Geometry. In this
model the hyperbolic plane is realized as the unit disk A = {z € C: [z] < 1}, and
the hyperbolic straight lines are realized as the chords of A. Every point of the absolute
2 = {z € C: |z] = 1} is called ideal point. The angular measurements in this model
are distorted. The Cayley—Klein—Hilbert metric on A is given by its metric tensor

((gij),i,j=1,2

r’(1-23) r’uz r’(1—z
8§12 = 822 = 5

gll :—7 —7 77
(1—22—23)2 (1 —22—25)?2 (1—22—23)2

where r is an arbitrary positive constant. The distance between points z and # in A can
be written as

1 —ziuy — 2ou2
r arccosh ,

2 2 2 2
\/1 —z7 —zz\/l —uj —u5
where arccosh denotes the non-negative values of the inverse hyperbolic cosine.

o Weierstrass metric

Given a real n-dimensional inner product space (R”, {,)), n > 2, the Weierstrass
metric dy is a metric on R”, defined by

arccosh<\/1 + x0T+ (y, y) — (x, y>>,
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where arccosh denotes the non-negative values of the inverse hyperbolic cosine.

Here, (x, /1 + {x, x)) € R*®R are the Weierstrass coordinates of x € R, and the met-
ric space (R”, dyw) can be identified with the Weierstrass model of Hyperbolic Geometry.

The Cayley—Klein—Hilbert metric

1 ={x,y)
VI=0x)VT=(y,y)

dckr{x, y) = arccosh

on the set B = {x € R": (x,x) < 1} can be obtained from dy by dggp{x,y) =
dw (u(x), u(y)), where u : R" — B" is the Weierstrass mapping: p(x) = \/%

—{X,X

e Quasi-hyperbolic metric

Given a domain D C R?, n = 2, the quasi-hyperbolic metric is a metric on D, defined

by
d
inf/ | zl’
yel’ y IO(Z)

where the infimum is taken over the set I of all rectifiable curves connecting x and y in
D, p(2) = inf,cyp ]z — ul]2 is the distance between z and the boundary 3D of D, and
II.]l2 is the Euclidean norm on R”.

For n = 2, one can define the hyperbolic metric on D by

. 21/2)]
f ———dz|,
y”ér/y = f@r 4~

where f : D — A is any conformal mapping of D onto the unit disk A = {z € C:
|z| < 1}. For n > 3, this metric is defined only for the half-hyperplane H” and for the

open unit ball B as the infimum over all y € I' of the integrals fy @ and fy 12|ﬁ5|||2’
‘n —lizll5

respectively.

e Apollonian metric

Let D C R", D # R”", be a domain such that the complement of D is not contained in
a hyperplane or a sphere.

The Apollonian metric (or Barbilian metric, [Barb35]) is a metric on D, defined by

la —x[2llb—yla
sup In ,
abedp lla=yl2llb —x]2

where 3D is the boundary of D, and ||.||» is the Euclidean norm on R”.

o Half-Apollonian metric

Given a domain D C R*, D # R", the half-Apollonian metric is a metric on D,
defined by
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la—yl-
sup |ln ——=
aedD “a - X ”2

3

where 0D is the boundary of D, and |.]|; is the Euclidean norm on R”.

e Gehring metric

Given a domain D C R", D # R”, the Gehring metric (or jp-metric) is a metric on

D, defined by
1 —y —y
_1n<<1+”x >||2)<1+||x )Ilz)),
2 p(x) p(y)

where ||.||2 is the Euclidean norm on R”, and p(x) = inf,cyp [|x — u]|2 is the distance
between x and the boundary 8D of D.

e Vuorinen metric

Given a domain D C R", D # R”, the Vuorinen metric (or jp-metric) is a metric on
D, defined by

1n<1 . lx —yll2 )

min{o(x), p()}
where ||.||2 is the Euclidean norm on R”, and p(x) = inf,csp [|[x — u]|> is the distance
between x and the boundary 8D of D.

e Ferrand metric
Given a domain D C R", D # R”, the Ferrand metric is a metric on D, defined by

—b
inf / sup la 2 |dz],
¥

vel' Jy apenp llz —allallz = b2

where the infimum is taken over the set I” of all rectifiable curves connecting x and y in
D, 3D is the boundary of D, and [.]; is the Euclidean norm on R”.

e Seittenranta metric

Given a domain D C R", D # R”", the Seittenranta metric (or distance ratio metric,
cross-ratio metric) is a metric on D, defined by

la —Xﬂzllb—yﬂz>
In( 1 ,
P “( I PETEESIE

where 9 D is the boundary of D, and ||.| is the Euclidean norm on R”.

o Modulus metric
Let D C R", D # R", be a domain, whose boundary d D has positive capacity.
The modulus metric (or conformal metric) is a metric on D, defined by

inf M(A(Cxy, 9D. D)),
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where M (1) is the conformal modulus of the curve family I”, and C,, is a continuum
such that for some y : [0, 1] — D we have the following properties: Cyy = y ([0, 1]),
y(0) = x, and y (1) = y (cf. extremal metric).

e Ferrand second metric

Let D ¢ R", D # R", be a domain such that |[R"\{D}| > 2. The Ferrand second
metric is a metric on D, defined by

1
‘fMAC,C,,D>"”,
<c_lxr,lc). (A€, €y, D)

where M(I") is the conformal modulus of the curve family I', and C;, z = x,y, is
a continuum such that for some y;, : [0, I] — D we have the following properties:
C, =y(0, 1),z € |y,],and y,(t) — 3D ast — 1 (cf. extremal metric).

o Parabolic distance
The parabolic distance is a metric on R*t! considered as R? x R, defined by

VO =02 o G = 2 H i =57, meN,

forany x = (x1, ..., %5, %),y = V1, .-+, Yus ty) € R? x R,
The space R” x R can be interpreted as multidimensional space-time.

Usually, the value m = 2 is applied. There exist some variants of the parabolic distance,
for example, the parabolic distance

sup{lx — yil, lx2 — y2!'2}

on R?, or the half-space parabolic distance on R3 = {x € R?: x; > 0}, defined by

lx1 — y1l + |x2 — y2|
+ v 1x3 — y3l.
VX1 F S+ Vo — vl




Chapter 7

Riemannian and Hermitian Metrics

Riemannian Geometry is a multi-dimensional generalization of the intrinsic geometry
of two-dimensional surfaces in the Euclidean space E3. It studies real smooth mani-
folds equipped with Riemannian metrics, i.e., collections of positive-definite symmet-
ric bilinear forms ((g;;)) on their tangent spaces which varies smoothly from point
to point. The geometry of such (Riemannian) manifolds is based on the line element
ds? = Zi’j gijdx;dx;. This gives in particular local notions of angle, length of curves,
and volume. From those some other global quantities can be derived, by integrating local
contributions. Thus, the value ds is interpreted as the length of the vector (dx1, ..., dx,);

the arc length of a curve y is expressed by [ y o ; 8ijdxidxj; then the intrinsic met-

ric on a Riemannian manifold is defined as the infimum of lengths of curves joining two
given points of the manifold. Therefore, a Riemannian metric is not an ordinary metric, but
it induced an ordinary metric, in fact, the intrinsic metric, sometimes called Riemannian
distance, on any connected Riemannian manifold; a Riemannian metric is an infinitesimal
form of the corresponded Riemannian distance.

As particular special cases of Riemannian Geometry, there occur two standard types, El-
liptic Geometry and Hyperbolic Geometry, of Non-Euclidean Geometry, as well as Euclid-
ean Geometry itself.

If the bilinear forms ((g;;)) are non-degenerate but indefinite, one obtains the Pseudo-
Riemannian Geometry. In the case of dimension four (and signature (1, 3)) it is the main
object of the General Theory of Relativity. If ds = F(x1,..., x4, dx1,...,dxy), where
F is a real positive-definite convex function which can not be given as the square root of
a symmetric bilinear form (as in the Riemannian case), one obtains the Finsler Geometry
generalizing Riemannian Geometry.

Hermitian Geometry studies complex manifolds equipped with Hermitian metrics, i.e.,
collections of positive-definite symmetric sesquilinear forms on their tangent spaces, which
varies smoothly from point to point. It is a complex analog of Riemannian Geometry.
A special class of Hermitian metrics form Kéhler metrics which have closed fundamental
form w. A generalization of Hermitian metrics give complex Finsler metrics which can
not be written in terms of a bilinear symmetric positive-definite sesqulinear form.

7.1. RIEMANNIAN METRICS AND GENERALIZATIONS

A real n-dimensional manifold with boundary M" is a Hausdorff space in which every
point has an open neighborhood homeomorphic to either an open subset of [E”, or an open
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subset of the closed half of E”. The set of points which have an open neighborhood homeo-
morphic to E" is called interior (of the manifold); it is always non-empty. The complement
of the interior is called boundary (of the manifold); it is an (n — 1)-dimensional manifold. If
the boundary of M" is empty, one obtains a real n-dimensional manifold without boundary.

A manifold without boundary is called closed if it is compact, and open, otherwise.

An open set of M" together with a homeomorphism between the open set and an open
set of [E" is called coordinate chart. A collection of charts which cover M" is called atlas
on M". The homeomorphisms of two overlapping charts provide a transition mapping
from a subset of E” to some other subset of E". If all these mappings are continuously
differentiable, then M" is called differentiable manifold. If all the connecting mappings
are k times continuously differentiable, then the manifold is called C* manifold; if they
are infinitely often differentiable, then the manifold is called smooth manifold (or C*
manifold).

An atlas of a manifold is called oriented if the coordinate transformations between charts
are all positive, i.e., the Jacobians of the coordinate transformations between any two charts
are positive at every point. An orientable manifold is amanifold admitting an oriented atlas.

Manifolds inherit many local properties of the Euclidean space. In particular, they are
locally path-connected, locally compact, and locally metrizable.

Associated with every point on a differentiable manifold is a tangent space and its dual,
a cotangent space. Formally, let M" be an C* manifold, k > 1, and p is a point of M”".
Fix a chart ¢ : U — E", where U is an open subset of M" containing p. Suppose two
curves y! 1 (=1,1) = M" and y? : (—1,1) — M" with ' (0) = ¥?(0) = p are given
such that ¢ - ! and ¢ - ¥ are both differentiable at 0. Then y! and 2 are called tangent
at 0 if the ordinary derivatives of ¢ - ¥! and ¢ - ¥? coincide at 0: (¢ - y1)'(0) = (¢ -
yz)’(O). If the functions ¢ - )/i :(=1,1) = E", i = 1,2, are given by n real-valued
component functions (¢ - )/i)l @), ..., (g - yi),l(t), the condition above means, that their
Jacobians (d(‘”'z;)l(t ) d(‘”')"l;)"(z)) coincide at 0. This is an equivalence relation, and
the equivalence class ¥’(0) of the curve y is called tangent vector of M" at p. The rangent
space T,(M") of M" at p is defined as the set of all tangent vectors at p. The function
(de)p : T,(M") — IE", defined by (d¢),(y'(0)) = (¢ - y)'(0) is bijective, and can be
used to transfer the vector space operations from E” over to T,,(M").

All the tangent spaces 7,,(M"), p € M", “glued together”, form the tangent bundle
T(M"™) of M". Any element of T(M") is a pair (p, v), where v € T,(M"). If for an open
neighborhood U of p the function ¢ : U — R” is a coordinate chart, then preimage V of
U in T(M") admits a mapping ¥ : V — R" x R”, defined by ¥ (p, v) = (¢(p), de(p)).
It defines structure of smooth 2n-dimensional manifold on T (M"™). The cotangent bundle
T*(M"™) of M" is obtained in similar manner using cotangent spaces T;‘(M"), pe M.

A vector field on a manifold M" is a section of its tangent bundle 7 (M"), i.e., a smooth
function f : M" — T(M") which assigns to every point p € M" a vector v € T,(M").

A connection (or covariant derivative) is a way of specifying a derivative of a vector
field along another vector field on a manifold. Formally, the covariant derivative V of a
vector 1 (defined at a point p € M™) in the direction of the vector v (defined at the same
point p) is a rule that defines a third vector at p, called V,u, which has the properties
of a derivative. A Riemannian metric uniquely defines a special covariant derivative called

ey
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Levi-Civita connection. It is the torsion-free connection V of the tangent bundle, preserving
the given Riemannian metric.

The Riemann curvature tensor R is the standard way to express the curvature of Rie-
mannian manifolds. The Riemann curvature tensor can be given in terms of the Levi-Civita
connection V by the following formula:

R(u, vyw = V,Vyw — V,V,w — V[u.v]wv

where R(u, v) is a linear transformation of the tangent space of the manifold M"; it is linear
in each argument. If u = ﬁ, v= % are coordinate vector fields, then [u, v] = 0, and the
formula simplifies to R(u, v)w = V,Vy,w — V, V,w, i.e., the curvature tensor measures
anti-commutativity of the covariant derivative. The linear transformation w — R(u, v)w
is also called curvature transformation.

The Ricci curvature tensor (or Ricci curvature) Ric is obtained as the trace of the full
curvature tensor R. It can be thought of as a Laplacian of the Riemannian metric tensor in
the case of Riemannian manifolds. Ricci curvature tensor is a linear operator on the tangent

space at a point. Given an orthonormal basis (¢;); in the tangent space T,(M"), we have

Ric(u) =Y R(u. e;)e;.

The result does not depend on the choice of an orthonormal basis. Starting with dimension
four, the Ricci curvature does not describe the curvature tensor completely.

Ricci scalar (or scalar curvature) Sc of a Riemannian manifold M" is the full trace of
the curvature tensor; given an orthonormal basis (e;); at p € M", we have

Sc = Z(R(e,-, eje;, e,-) = Z(Ric(e,-), e,-).

ij i

Sectional curvature K (o) of a Riemannian manifold M" is defined as the Gauss cur-
vature of an o-section at a point p € M". Here, given an 2-plane ¢ in the tangent space
T,(M™), an o-section is a locally-defined piece of surface which has the plane o as a tan-
gent plane at p, obtained from geodesics which start at p in the directions of the image of
o under the exponential mapping.

o Metric tensor

The metric tensor (or basic tensor, fundamental tensor) is a symmetric tensor of rank
2, that is used to measure distances and angles in a real n-dimensional differentiable
manifold M”. Once a local coordinate system (x;); is chosen, the metric tensor appears
as a real symmetric n X n matrix ((g;;)).

The assignment of a metric tensor on an n-dimensional differentiable manifold M" in-
troduces a scalar product (i.e., symmetric bilinear but, in general, not positive-definite
form) (, ), on the tangent space T),(M") at any point p € M", defined by

(x, y)p =gpx,y) = Z gij(p)xi)'j,
ij
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where g;;(p) is a value of the metric tensor at the point p € M”", and x = (x1, ..., Xp),
y=01,...,yn) € T)(M"). The collection of all these scalar products is called metric
g with the metric tensor ((g;;)). The length ds of the vector (dx1, ..., dx;) is expressed
by the quadratic differential form

dsz = Zg,'j dx,- dx‘]',
i.J

which is called line element (or first fundamental form) of the metric g. The length of a
curve y is expressed by the formula /. y > ; &ijdxidx ;. In general case it may be real,
purely imaginary, or zero (an isotropic curve).

The signature of a metric tensor is the pair (p, ¢) of positive (p) and negative (q) eigen-
values of the matrix ((g;;)). The signature is said to be indefinite if both p and ¢ are
non-zero, and positive-definite if ¢ = 0. A Riemannian metric is a metric g with a
positive-definite signature (p, 0), and a pseudo-Riemannian metric is a metric g with an
indefinite signature (p, q).

o Non-degenerate metric

A non-degenerate metric is a metric g with the metric tensor ((g;;)), for which the
metric discriminant det((g;;)) # 0. All Riemannian and pseudo-Riemannian metrics
are non-degenerate.

A degenerate metric is a metric g with the metric tensor ((g;;)) for which the metric dis-
criminant det((g;;)) = O (cf. semi-Riemannian metric and semi-pseudo-Riemannian
metric). A manifold with a degenerate metric is called isotropic manifold.

e Diagonal metric

A diagonal metric is a metric g with a metric tensor ((g;;)) which is zero fori # j. The
Euclidean metric is a diagonal metric, as its metric tensor has the form g;; =1, g;; =0

fori # j.

¢ Riemannian metric

Consider a real n-dimensional differentiable manifold M” in which each tangent space is
equipped with an inner product (i.e., a symmetric positive-definite bilinear form) which
varies smoothly from point to point.

A Riemannian metric on M" is a collection of inner products (, ) , on the tangent spaces
T,(M"), one for each p € M".

Every inner product (, ), is completely defined by inner products {(¢;,e;), = gi;j(p)
of elements e1, ..., ¢, of standard basis in E”, i.e., by real symmetric and positive-
definite n x n matrix ((g;;)) = ((g;;(p))), called metric tensor. In fact, (x, y), =
Zi.‘i 8ij(p)x;iyj, where x = (x1,...,%,),y = (¥1,..., 1) € Tp(M"). The smooth
function g completely determines the Riemannian metric.

A Riemannian metric on M" is not an ordinary metric on M". However, for a connected
manifold M", every Riemannian metric on M" induces an ordinary metric on M", in
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fact, the intrinsic metric of M"; for any points p, ¢ € M" the Riemannian distance
between them is defined as

dy dy dx,dx,
f —,—} dt =inf
m/<dzd> m/ Z”dtdt

where the infimum is taken over all rectifiable curves y : [0, 1] — M", connecting p
and q.

A Riemannian manifold (or Riemannian space) is a real n-dimensional differentiable
manifold M”" equipped with a Riemannian metric. The theory of Riemannian spaces is
called Riemannian Geometry. The simplest examples of Riemannian spaces are Euclid-
ean spaces, hyperbolic spaces, and elliptic spaces. A Riemannian space is called com-
plete if it is a complete metric space.

o Conformal structure

A conformal structure on a vector space V is a class of pairwise-homothetic Euclidean
metrics on V. Any Euclidean metric dg on V defines a conformal structure {Adg : A >
0}.

A conformal structure on a manifold is a field of conformal structures on the tangent
spaces or, equivalently, a class of conformally equivalent Riemannian metrics. Two Rie-
mannian metrics g and 4 on a smooth manifold M" are called conformally equivalent if
g = f - h for some positive function f on M?, called conformal factor.

e Conformal space

The conformal space (or inversive space) is the Euclidean space E" extended by an ideal
point (at infinity). Under conformal transformations, i.e., continuous transformations
preserving local angles, the ideal point can be taken to an ordinary point. Therefore, in a
conformal space a sphere is indistinguishable from a plane: a plane is a sphere passing
through the ideal point.

Conformal spaces are considered in Conformal Geometry (or Angle-Preserving Geom-
etry, Mobius geometry, Inversive Geometry) in which properties of figures are studied
that are invariant under conformal transformations. It is the set of transformations that
map spheres into spheres, i.e., generated by the Euclidean transformations together with

2, . .
"X where r is the radius
2

of the inversion. An inversion in a sphere becomes an everywhere well-defined automor-
phism of period two. Any angle inverts into an equal angle.

inversions which in coordinate form are conjugate to x; —

The two-dimensional conformal space is the Riemann sphere, on which the conformal

transformations are given by the Mobius transformations 7 — ‘L’;J:Z ,ad —bc #0.

In general, a conformal mapping between two Riemannian manifolds is a diffeomor-
phism between them such that the pulled back metric is conformally equivalent to the
original one. A conformal Euclidean space is a Riemannian space admitting a confor-
mal mapping onto an Euclidean space.
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In the General Theory of Relativity, conformal transformations are considered on the
Minkowski space R':3 extended by two ideal points.

e Space of constant curvature

A space of constant curvature is a Riemannian space M" for which the sectional cur-
vature K (o) is constant in all two-dimensional directions o.

A space form is a connected complete space of constant curvature. A flat space is a
space form of zero curvature.

The Euclidean space and the flat torus are space forms of zero curvature (i.e., flat spaces),
the sphere is a space form of positive curvature, the hyperbolic space is a space form of
negative curvature.

e Generalized Riemannian spaces

A generalized Riemannian space is a metric space with the intrinsic metrie, subject to
certain restrictions on the curvature. Such spaces include spaces of bounded curvature,
Riemannian spaces, etc. Generalized Riemannian spaces differ from Riemannian spaces
not only by greater generality, but also by the fact that they are defined and investigated
on the basis of their metric alone, without coordinates.

A space of bounded curvature (< k and > k') is a generalized Riemannian space, defined

by the condition: for any sequence of geodesic triangles T, contracting to a point we
have

(T, (T,
k > Tim (’;) > lim (”0) >k
o(T)) o(T})

where a geodesic triangle T = xyz is the triplet of geodesic segments [x, y], [y, zl,
[z, x] (the sides of T) connecting in pairs three different points x, y, z, §(T) =« + B +
y — 7 is the excess of the geodesic triangle T, and o (T?) is the area of an Euclidean
triangle 70 with the sides of the same lengths. The intrinsic metric on the space of
bounded curvature is called metric of bounded curvature. Such a space turns out to be
Riemannian under two additional conditions: local compactness of the space (this en-
sures the condition of local existence of geodesics), and local extendibility of geodesics.
If in this case k = k', it is a Riemannian space of constant curvature k (cf. space of
geodesics).

3

A space of curvature < k is defined by the condition mfg%

point has a neighborhood in which the sum «+ 8+ y of the angles of a geodesic triangle
T does not exceed the sum ay + B + ¥ of the angles of a triangle T* with sides of
the same lengths in a space of constant curvature k. The intrinsic metric of such space is
called k-concave metric.

< k. In such space any

A space of curvature > k is defined by the condition h_m% > k. In such space any

point has a neighborhood in which & + 8 4+ y > o + B + i for triangles T and T*.
The intrinsic metric of such space is called K-concave metric.

An Alexandrov space is a generalized Riemannian space with upper, lower or integral
curvature bounds.
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e Complete Riemannian metric

A Riemannian metric g on a manifold M" is called complete if M" forms a complete
metric space with respect to g. Any Riemannian metric on a compact manifold is com-
plete.

e Ricci-flat metric
A Ricci-flat metric is a Riemannian metric with vanished Ricci curvature tensor.

A Ricci-flat manifold is a Riemannian manifold equipped with a Ricci-flat metric. Ricci-
flat manifolds represent vacuum solutions to the Einstein field equation, and are spe-
cial cases of Kdhler—Einstein manifolds. Important Ricci-flat manifolds are Calabi—Yau
manifolds, and hyper-Kdhler manifolds.

e Osserman metric

An Osserman metric is a Riemannian metric for which the Riemannian curvature ten-
sor R is Osserman. It means, that the eigenvalues of the Jacobi operator J(x) : y —
R(y, x)x are constant on the unit sphere S*~! in E”, i.e., they are independent of the
unit vectors x.

e G-invariant metric

An G-invariant metric is a Riemannian metric g on a differentiable manifold M”, that
does not change under any of the transformations of a given Lie group (G, -, id) of
transformations. The group (G, -, id) is called group of motions (or group of isometries)
of the Riemannian space (M", g).

o Ivanov—Petrova metric

Let R be the Riemannian curvature tensor of a Riemannian manifold M”, let {x, y} be
an orthogonal basis for an oriented 2-plane 7 in the tangent space 1),(M") at a point p
of M".

The Ivanov-Petrova metric is a Riemannian metric on M”, for which the eigenvalues
of the antisymmetric curvature operator R(7) = R(x, y) ([IvSt95]) depend only on the
point p of a Riemannian manifold M"”, but not upon the plane 7.

o Zoll metric

A Zoll metric is a Riemannian metric on a smooth manifold M” whose geodesics are
all simple closed curves of an equal length. A two-dimensional sphere S? admits many
such metrics, besides the obvious metrics of constant curvature. In terms of cylindrical
coordinates (z,6) (z € [—1, 1], 8 € [0, 27]), the line element
1 2
a5t = LSOV 4oy (1 2092
1—z
defines a Zoll metric on $2 for any smooth odd function f : [—1, 1] — (-1, 1) which
vanishes at the end points of the interval.
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Cycloidal metric

The cycloidal metric is a Riemannian metric on the half-plane RZ = {x € R?: x{ >
0}, defined by this line element

2 2
2 dx; —{—de.

2)6]

It is called cycloidal because its geodesics are cycloid curves. The corresponding dis-
tance d(x, y) between two points x, y € Ri is equivalent to the distance

lx1 — 1l + |x2 — y2|

VX1 Sx2 A+ Vx — vl

in the sense that d < Cp, and p < Cd for some positive constant C.

plx,y) =

Berger metric

The Berger metric is a Riemannian metric on the Berger sphere (i.e., the three-sphere
$3 squashed in one direction), defined by the line element

ds® = d6? + sin’ 6 d¢? + cos® a(dy + cos6 dp)?,

where « is a constant, and 4, ¢, i are Euler angles.

Carnot—Carathéodory metric

A distribution (or polarization) on a manifold M" is a subbundle of the tangent bundle
T(M™) of M". Given a distribution H(M™"), a vector field in H(M™) is called horizon-
tal. A curve y on M" is called horizontal (or distinguished, admissible) with respect
to H(M™) if y'(t) € Hy,(M") for any t. A distribution H(M") is called completely
non-integrable if the Lie brackets [- - - , [H(M"), H(M™)]] of H(M") span the tangent
bundle T(M"), i.e., for all p € M" any tangent vector v from T,(M") can be pre-
sented as a linear combination of vectors of the following types: u, [«, w], [u, [w, t]],
[u, [w, [2,s]1], ... € T,(M"), where all vector fields u, w, t, s, .. . are horizontal.

The Carnot—Carathéodory metric (or C-C metric) is a metric on a manifold M" with
a completely non-integrable horizontal distribution H(M"), defined as the section g¢ of
positive-definite scalar products on H(M™). The distance d¢(p, ¢) between any points
p,q € M" is defined as the infimum of the g¢-lengths of the horizontal curves, joining
the points p and q.

A sub-Riemannian manifold (or polarized manifold) is a manifold M" equipped with a
Carnot—Carathéodory metric. It is a generalization of a Riemannian manifold. Roughly,
in order to measure distances in a sub-Riemannian manifold, one is allowed to go only
along curves tangent to horizontal spaces.

Pseudo-Riemannian metric

Consider a real n-dimensional differentiable manifold M” in which every tangent space
T,(M™), p € M", is equipped with a scalar product which varies smoothly from point
to point and is non-degenerate, but indefinite.
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A pseudo-Riemannian metric on M" is a collection of scalar products (, }, on the
tangent spaces T),(M"), p € M", one for each p € M".

Every scalar product (, ), is completely defined by scalar products (¢;, ¢;), = gi;(p)
of elements e1, ..., e, of standard basis in E”, i.e., by real symmetric indefinite n X n
matrix ((g;;)) = ((g:;(p))), called metric tensor (cf. Riemannian metric in which case
the metric tensor is a real symmetric positive-definite n x n matrix). In fact, (x, y), =
ZU 8ij(p)xiyj, wherex = (x1,...,x,)and y = (31, ..., yu) € T,(M"). The smooth
function g completely determines the pseudo-Riemannian metric.

The length ds of the vector (dx, ..., dx,) is expressed by the quadratic differential
form

d52 = Z g;jdx;dx.,-.
iJ

The length of a curve y : [0, 1] — M" is expressed by the formula

In general case it may be real, purely imaginary or zero (an isotropic curve).

A pseudo-Riemannian metric on M” is a metric with a fixed, but indefinite signature
(p,q), p+ g = n. A pseudo-Riemannian metric is non-degenerate, i.e., its metric dis-
criminant det((g;;)) # 0. Therefore, it is a non-degenerate indefinite metric.

A pseudo-Riemannian manifold (or pseudo-Riemannian space) is a real n-dimensional
differentiable manifold M" equipped with a pseudo-Riemannian metric. The theory of
pseudo-Riemannian spaces is called Pseudo-Riemannian Geometry.

The model space of a pseudo-Riemannian space of signature (p, g) is the pseudo-
Euclidean space R4, p + g = n, which is a real n-dimensional vector space R”
equipped with the metric tensor ((g;;)) of signature (p, ¢), defined by g1; = -+ =
gpp = L, &pr1ipr1 = - = gun = —1, g;j = Ofori # j. The line element of the
corresponding metric is given by

dszzdxlz—i—---—{—dx[z,—dxlz)H—---—dxz.

n

o Lorentzian metric

A Lorentzian metric (or Lorentz metric) is a pseudo-Riemannian metric of signature
(1, p).

A Lorentzian manifold is a manifold equipped with a Lorentzian metric. A principal
assumption of the General Theory of Relativity is that space-time can be modeled
as a Lorentzian manifold of signature (1, 3). The Minkowski space R'3 with the flat
Minkowski metric is a model of Lorentzian manifold.
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o Osserman Lorentzian metric

An Osserman Lorentzian metric is a Lorentzian metric for which the Riemannian
curvature tensor R is Osserman. It means, that the eigenvalues of the Jacobi operator
J(x):y — R(y, x)x are independent of the unit vectors x.

A Lorentzian manifold is Osserman if and only if it is a manifold of constant curvature.

o Blaschke metric

The Blaschke metric on a non-degenerated hypersurface is a pseudo-Riemannian met-
ric, associated to the affine normal of the immersion ¢ : M" — R where M™ is an
n-dimensional manifold, and R"t! is considered as an affine space.

¢ Semi-Riemannian metric

A semi-Riemannian metric on a real n-dimensional differentiable manifold M" is a
degenerate Riemannian metric, i.e., a collection of positive-semi-definite scalar prod-
ucts {x,y), = Zi.‘i 8ij(p)x;y; on the tangent spaces 1,(M"), p € M"; the metric
discriminant det((g;;)) = 0.

A semi-Riemannian manifold (or semi-Riemannian space) is a real n-dimensional dif-
ferentiable manifold M" equipped with a semi-Riemannian metric.

The model space of a semi-Riemannian manifold is the semi-Euclidean space RZ, d=>1
(sometimes denoted also by R” _ ), i.e., a real n-dimensional vector space R” equipped
with a semi-Riemannian metric. It means, that there exists a scalar product of vectors
such that, relative to a suitably chosen basis, the scalar product (x, x) of any vector with
itself has the form (x, x) = Z?;ld x?. The number d > 1 is called defect (or deficiency)
of the space.

o Semi-pseudo-Riemannian metric

A semi-pseudo-Riemannian metric on a real n-dimensional differentiable manifold
M" is a degenerate pseudo-Riemannian metric, i.e., a collection of degenerate indefinite
scalar products (x,y), = Zi’j &ij(p)x;y; on the tangent spaces T,(M"), p € M";
the metric discriminant det((g;;)) = 0. In fact, a semi-pseudo-Riemannian metric is a
degenerate indefinite metric.

A semi-pseudo-Riemannian manifold (or semi-pseudo-Riemannian space) is a real n-
dimensional differentiable manifold M" equipped with a semi-pseudo-Riemannian met-
ric.

The model space of a semi-pseudo-Riemannian manifold is the semi-pseudo-Euclidean
space R}, , ie., a real a-dimensional vector space R" equipped with a semi-

By

pseudo-Riemannian metric. It means, that there exist r scalar products (x,y), =
>oei X v, wherea = 1,...,r,0=myg <my < -« <mp =n,iy =my_1 +1,
..y My, &, = =1, and —1 occurs [, times among the numbers ¢;,. The product (x, y),
1s defined for those vectors for which all coordinates x;, i < m,_y ori > m, + 1,
are zero. The first scalar square of an arbitrary vector x is a degenerate quadratic form

(x,x)] = — Zfl:l )ci2 + Z'};EIIH x?. The number I1 > 0 is called index, and the num-
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ber d = n — m is called defect of the space. If [} = --- = [, = 0, we obtain a
semi-Euclidean space. The spaces RZ and R}, are called quasi-Euclidean spaces.

m

The semi-pseudo-non-Euclidean space S;, can be defined as a hypersphere in

R1"1+1 ,  with identified antipodal points. If [} = -+ = [, = 0, the space S" is
_____ M ety
7771....,777,,71

called semi-elliptic space (or semi-non-Euclidean space). If there exist [; # 0, the space
Si..,.  iscalled semi-hyperbolic space.

e Finsler metric

Consider a real n-dimensional differentiable manifold M" in which every tangent space
T,(M"), p € M", is equipped with a Banach norm ||.|| such that the Banach norm as a
function of position is smooth, and the matrix ((g;;)),

1 92||x]|?
2 axiax‘,‘ ’

gij = gij(p,x)=

is positive-definite for any p € M" and any x € T,(M").

A Finsler metric on M" is a collection of Banach norms ||.|| on the tangent spaces
T,(M"™), one for each p € M". The line element of this metric has the form

d52 = Z 8ij dx; dx.,-.
iJ

The Finsler metric can be given by a real positive-definite convex function F(p, x) of
coordinates of p € M" and components of vectors x € T,(M") acting at the point p.
F(p, x) is positively homogeneous of degree one in x: F(p, Ax) = AF(p, x) for every
A > 0. The value of F(p, x) is interpreted as the length of the vector x. The Finsler

metric tensor has the form
19%2F%(p, x)
((gip) = [ (= —22)).
2 3)6,' 3)6‘]'

The length of a curve y : [0, 1] — M" is given by fol F(p, %) dt. For each fixed p the
Finsler metric tensor is Riemannian in the variables x.

The Finsler metric is a generalization of the Riemannian metric, where the general defi-
nition of the length ||x|| of a vector x € T,(M") is not necessarily given in the form of
the square root of a symmetric bilinear form as in the Riemannian case.

A Finsler manifold (or Finsler space) is a real n-dimensional differentiable manifold
M" equipped with a Finsler metric. The theory of Finsler spaces is called Finsler Geom-
etry. The difference between a Riemannian space and a Finsler space is that the former
behaves locally like an Euclidean, and the latter locally like a Minkowskian space, or,
analytically, that to an ellipsoid in the Riemannian case there corresponds an arbitrary
convex surface which has the origin as the center.
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A generalized Finsler space is a space with the intrinsic metric, subject to certain re-
strictions on the behavior of shortest curves, i.e., the curves with length equal to the
distance between their ends. Such spaces include spaces of geodesics, Finsler spaces,
etc. Generalized Finsler spaces differ from Finsler spaces not only in their greater gen-
erality, but also in the fact that they are defined and investigated starting from a metric,
without coordinates.

e Kropina metric
The Kropina metric is a Finsler metric Fg, on a real n-dimensional manifold M",
defined by
D i GijXiX)
> bi(p)yi

forany p € M" and x € T,(M"), where ((g;;)) is a Riemannian metric tensor, and
b(p) = (b;(p)) is a vector field.

o Randers metric

The Randers metric is a Finsler metric Fg, on a real n-dimensional manifold M",

defined by
Z gijXixj + Z bi(p)yi
\ i i

forany p € M" and x € T,(M"), where ((g;;)) is a Riemannian metric tensor, and
b(p) = (b;(p)) is a vector field.

o Funk metric

The Funk metric is a Finsler metric Fg, on the open unit ball B = {x e R": [x|» <
1} in R”, defined by

\/llyll% = X I5015 = (x, )2 + (x, y)
1= [1x113

forany x € B" and u € T, (B"), where ||| is the Euclidean norm on R", and (, ) is the
ordinary inner product on R". It is a projective metric.

o Shen metric

Given a vector a € R”, |la|l2 < 1, the Shen metric is a Finsler metric Fg; on the open
unit ball B" = {x ¢ R": |x]2 < 1} in R", defined by

JIBB = AxBIyB =, )+ gy
1 — )13 MY
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forany x € B" and y € T,(B"), where |.|» is the Euclidean norm on R”, and {, ) is the
ordinary inner product on R”, It is a projective metric. For ¢ = 1 it becomes the Funk
metric.

o Berwald metric

The Berwald metric is a Finsler metric Fp, on the open unit ball B" = {x € R":
lx]l2 < 1} in R”, defined by

(JI¥13 = (3013 = (2, 392) + x. )2

(1= 121321513 = A By 13 = x. 9)2)

for any x € B” and u € T, (B™"), where |.||7 is the Euclidean norm on R”, and (, } is the
ordinary inner product on R”. It is a projective metric.

e Bryant metric

Let « is an angle with |o| < % Let, for any x,y € R", A = ||y||‘2‘sin2 200 +
(IyI5cos 2 + [x[51¥15 — (x. y)*)? B = [ylFcos2a + [x]5lyl5 — (x, 3 C =
(x,y)sin2q, D = ||x||§ + 2||x||% cos 2 + 1. Then one obtains a (projective) Finsler
metric F by

M+<C)2 C
D

2D )
On the two-dimensional unit sphere S, it is the Bryant metric.

o Kawaguchi metric

The Kawaguchi metric is a metric on a smooth n-dimensional manifold M”, given by
the arc element ds of a regular curve x = x(t), t € [tg, 11], expressed by the formula

dx dkx
ds =Flx,—,...,— }dt,

dr’ 7 dik
where the metric function F satisfies Zermelo’s conditions: Zle sx® Foi = F,
Zf:r(‘,i)x(sfrqtl)iF(s)i = O, X(S)i = dé;t{” F(S)l = %’ and r = 2’ .. ,,k. These

conditions ensure that the arc element ds is independent of the parametrization of the
curve x = x(f).

A Kawaguchi manifold (or Kawaguchi space) is a smooth manifold equipped with a
Kawaguchi metric. It is a generalization of a Finsler manifold.

e DeWitt supermetric

The DeWitt supermetric (or Wheeler—DeWitt supermetric) G = ((G;jp)) is a gener-
alization of a Riemannian (or pseudo-Riemannian) metric ¢ = ((g;;)) used to calculate
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distances between points of a given manifold, to the case of distances between metrics
on this manifold.

More exactly, for a given connected smooth 3-dimensional manifold M3, consider the
space M(M?3) of all Riemannian (or pseudo-Riemannian) metrics on M?. Identifying
points of M(M?) that are related by a diffeomorphism of M3, one obtains the space
Geom(M?3) of 3-geometries (of fixed topology), points of which are the classes of dif-
feomorphically equivalent metrics. The space Geom(M?) is called superspace. It plays
an important role in several formulations of Quantum Gravity.

A supermetric, i.c., a “metric of metrics”, is a metric on M(M3) (or on Geom(M?))
which is used for measuring distances between metrics on M> (or between their equiv-
alence classes). Given a metric g = ((g;;)) € M(M?), we obtain

I3g12 = [ | dxGM (01813800
M.
where G/¥ is the inverse of the DeWitt supermetric

Gijk =

1
et eugi — Agiigid).
2 det((g,.j))(g’kgﬂ 8i18jk — *8ij8ki)

The value A parameterizes the distance between metrics in M(M?>), and may take any
real value except A = %, for which the supermetric is singular.

o Lund-Regge supermetric

The Lund-Regge supermetric (or simplicial supermetric) is an analog of the DeWitt
supermetric, used to measure the distances between simplicial 3-geometries in a sim-
plicial configuration space.

More exactly, given a closed simplicial 3-dimensional manifold M3 consisting of several
tetrahedra (i.e., 3-simplices), an simplicial geometry on M? is fixed by an assignment of
values to the squared edge lengths of M3, and a flat Riemannian Geometry to the inte-
rior of each tetrahedron consistent with those values. The squared edge lengths should be
positive and constrained by the triangle inequalities and their analogs for the tetrahedra,
i.e., all squared measures (lengths, areas, volumes) must be non-negative (cf. tetrahe-
dron inequality). The set 7 (M?) of all simplicial geometries on M3 is called simplicial
configuration space.

The Lund-Regge supermetric ((G,)) on T(M?) is induced from the DeWitt super-
metric on M(M?), using for representations of points in T (M?) such metrics in M(M?)
which are piecewise flat in the tetrahedra.

7.2. RIEMANNIAN METRICS IN INFORMATION THEORY

Some special Riemannian metrics are commonly used in Information Theory. A list of
such metrics is given below.
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e Fisher information metric

In Statistic, Probability, and Information Geometry, the Fisher information metric (or
Fisher metric, Rao metric) is a Riemannian metric for a statistical differential manifold
(see, for example, [Amar85], [Frie98]). It addresses the differential geometry properties
of families of classical probability densities.

Formally, let py = p(x,8) be a family of densities, indexed by n parameters § =
(61, ...,6,) which form the parameter manifold P. The Fisher information met-
ric ¢ = gy on P is a Riemannian metric, defined by the Fisher information matrix
((1(0)i;)), where

p(x,0)dx.

dlnpe 9l 31n p(x,6) dln p(x, 6
1(9),;,-:139[ “Wﬂ}:/ n p(x, ) 9 In p(x, 6)

30, a0, 30; 30,

It is a symmetric bilinear form which gives a classical measure (Rao measure) for the
statistical distinguishability of distribution parameters. Putting i(x, 8) = —In p(x, 6),
one obtains an equivalent formula

7. 7.
3 l(x,@)} :/8 l(x’e)p(x,Q)dx.

1(0);; =K
©j ”[ 36,06, 36,06,
In a coordinate free language, we get

1(8)(u, v) = Eg[u(ln po) - v(in py)].

where u and v are vectors tangent to the parameter manifold P, and u(ln py) =
% In py4u)r=0 1s the derivative of In py along the direction u.

A manifold of densities M is the image of the parameter manifold P under the mapping
6 — py with certain regularity conditions. A vector u tangent to this manifold is of the
form u = % Pé+1u)=0, and the Fisher metric g = g, on M, obtained from the metric gq
on P, can be written as

v

U
gp(”, v) = IEp|:_ : _}
P p

e Fisher—-Rao metric

LetP, ={peR": Y7 | pi =1, pi > 0} be the simplex of strictly positive probabil-
ity vectors. An element p € P, is a density of the n-point set {1, ..., n} with p(i) = p;.
An element u of the tangent space 7,(P,) = {u € R": > 7, u; = O} atapoint p € P,
is a functionon {1, ..., n} with u(i) = u,.

The Fisher—Rao metric g, on P, is a Riemannian metric, defined by

1

Uu;v;
g[)(”? U)ZZ l_l
- Pi
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for any u,v € T,(Py), ie., it is the Fisher information metric on 7,. The Fisher—
Rao metric is the unique (up to a constant factor) Riemannian metric on P, contracting
under stochastic maps ([Chen72]).

The Fisher—Rao metric is isometric, by p — 2(./p1, ..., /Pr), With the standard met-
ric on an open subset of the sphere of radius two in R”. This identification of P, allows to
obtain on P, the geodesic distance, called Fisher distance (or Bhattacharya distance

1), by
2 arccos (Z pl.l/zqil/z)
i

The Fisher—Rao metric can be extended to the set M, = {p € R", p; > 0} of all finite
strictly positive measures on the set {1, ..., n}. In this case, the geodesic distance on
M,, can be written as

(S

i
for any p, g € M, (cf. Hellinger metric).

o Monotone metric

Let M, be the set of all complex n x n matrices. Let M C M, be the manifold of all
complex positive-definite n x n matrices. Let D C M, D ={p € M: Trp = 1}, be
the manifold of all density matrices. The tangent space of M at p € M is T,(M) =
{x € M,: x = x*}, i.e, the set of all n x n Hermitian matrices. The tangent space
T,(D) at p € D is the subspace of traceless (i.e., with trace 0) matrices in T, (M).

A Riemannian metric A on M is called monotone metric if the inequality

kh(p) (/’l(bt), h(u)) < )Lp(u’ u)

holds for any p € M, any u € T,(M), and any completely positive trace preserving
mapping 4, called stochastic mapping. In fact ([Petz96]), A is monotone if and only if it
can be written as

Apu, v) =Truld,(v),

where J, is an operator of the form J, = m. Here L, and R, are the left
and the right multiplication operators, and f : (0, c0) — R is an operator monotone
function which is symmetric, i.e., f(t) = tf(~"), and normalized, ie., f(1) = 1.
Jo(v) = o~ 'vif vand p are commute, i.e., any monotone metric is equal to the Fisher
information metric on commutative submanifolds. Therefore, monotone metrics gen-
eralize the Fisher information metric on the class of probability densities (classical or
commutative case) to the class of density matrices (quantum or non-commutative case)
which are used in Quantum Statistics and Information Theory. In fact, D is the space of
faithful states of an n-level quantum system.
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. _ 1 ; —
A monotone mefric A,(u, v) = Truif(Lﬂ/Rﬂ)Rﬂ(v) can be rewritten as A,(u,v) =
Truc(L,, R,)(v), where the function c(x,y) = m is the Morozova—Chentsov
Sunction, related to A. T

The Bures metric is the smallest monotone metric, obtained for f(t) = 1—;” (for

clx,y) = xiy). In this case J,(v) = g, pg + gp = 2v, is the symmetric logarith-

mic derivative.

The right logarithmic derivative metric is the greatest monotone metric, correspond-

ing to the function f(z) = I% (to the function c(x, y) = %). In this case J,(v) =

%(p‘lv + vp~ 1) is the right logarithmic derivative.

The Bogolubov—Kubo-Mori metric is obtained for f(x) = ’l(n—_; (for c(x,y) =
_ . 32
%). It can be written as A, (u, v) = ()ET Tr(p + su) In(p + tv)ls—o-

The Wigner—Yanase—Dyson metrics )»% are monotone fora € [—3, 3]. Fora = 1, we
obtain the Bogolubov—Kubo—Mori metric; for « = £3 we obtain the right logarithmic
derivative metric. The smallest in the family is the Wigner—Yanase metric, obtained for
a=0.

o Bures metric

The Bures metric (or statistical metric) is a monotone metric on the manifold M of
all complex positive-definite n x n matrices, defined by

Ao, v) =Trud,(v),

where J,(v) = g, pg + gp = 2v, is the symmetric logarithmic derivative. It is the
smallest monotone metric.

For any pi, p» € M the Bures distance, i.e., the geodesic distance, defined by the
Bures metric, can be written as

172 172
2\/Trp1 + Trpa = 2Tr(p, > pap, 112,
On the submanifold D = {p € M: Trp = 1} of density matrices it has the form

2 arccos Tr(,oll/zpzpll/z)l/z.

e Right logarithmic derivative metric

The right logarithmic derivative metric (or RLD-metric) is a monotone metric on the
manifold M of all complex positive-definite #n x 7 matrices, defined by

Ap(, v) = Trud,(v),

—1

where J,(v) = %(p v+ vp~ 1) is the right logarithmic derivative. It is the greatest

monotone metric.
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e Bogolubov—Kubo-Mori metric
The Bogolubov—Kubo—Mori metric (or BKM-metric) is a monotone metric on the
manifold M of all complex positive-definite n x n matrices, defined by

2

Aol v) = 35

Tr(p 4 su) In(p + tv)|y 1=0-

o Wigner—Yanase—Dyson metrics

The Wigner—Yanase—Dyson metrics (or WYD-metrics) form a family of metrics on the
manifold M of all complex positive-definite n x n matrices, defined by

2

otas

An(u,v) = Tr fo(p 4 tu) f—a(p + sV)[s.1=0,

o . . .
where fy(x) = ﬁx Ta, ifoe £ 1,and is Inx, if « = 1. These metrics are monotone for

€ [—3, 3]. For @ = £1 one obtains the Bogolubov—Kubo—Mori metric; for ¢ = +3
one obtains the right logarithmic derivative metric.

The Wigner—Yanase metric (or WY-metric) A, is the Wigner—Yanase—Dyson metric 290,
obtained for & = 0. It can be written as

Ap(u,v) = 4Tru(\/L>p+ \/R>/,)2(v),

and is the smallest metric in the family. For any p1, p2 € M the geodesic distance,
defined by the WY -metric, has the form

2\/Tr,01 + Trpa —2Tr(p,"* 0.
On the submanifold D = {p € M: Trp = 1} of density matrices it is equal to

2 arccos Tr(,oll/zpzl/z).

o Connes metric

Roughly, the Connes metric is a generalization (from the space of all probability mea-
sures of a set X, to the state space of any unital C*-algebra) of the Kantorovich—
Mallows—Monge—Wasserstein metric defined as the Lipschitz distance between mea-
sures.

Let M" be a smooth n-dimensional manifold. Let A = C*(M™) be the (commuta-
tive) algebra of smooth complex-valued functions on M”, represented as multiplication
operators on the Hilbert space H = L?(M", S) of square integrable sections of the
spinor bundle on M”" by (f&)(p) = f(p)é(p) forall f € A and for all § € H.
Let D be the Dirac operator. Let the commutator [D, f] for f € A be the Clif-
ford multiplication by the gradient V f so that its operator norm |.|| in H is given by
[[D, fII = suppepm VS
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The Connes metric is the intrinsic metric on M", defined by

sup | f(p)— f(@)].

feA D fNIL]

This definition can also be applied to discrete spaces, and even generalized to “non-
commutative spaces” (unital C*-algebras). In particular, for a labeled connected locally
finite graph G = (V, E) with the vertex-set V = {v1, ..., vy, ...}, the Connes metric
on V is defined by

sup [fU[_ij[

ND. fI=ldf 1<t

forany v;,v; € V,where {f =} fy,vi: > |fy [2 < o0} is the set of formal sums f
forms a Hilbert space, and [[[ D, f]] can be obtained by [[[D, f]|| = sup; (szl(vi)(ka —

)27

7.3. HERMITIAN METRICS AND GENERALIZATIONS

A vector bundle is a geometrical construct where to every point of a topological space
M we attach a vector space so that all those vector spaces “glued together” form another
topological space E. A continuous mapping 7 : E — M is called projection E on M.
For every p € M, the vector space 7~ ' (p) is called fiber of the vector bundle. A real
(complex) vector bundle is a vector bundle 7 : E — M whose fibers 7~ (p), p € M, are
real (complex) vector spaces.

In a real vector bundle, for every p € M, the fiber a1 {p) locally looks like the vector
space R”, i.e., there is an open neighborhood U of p, a natural number n, and a homeomor-
phism ¢ : U x R" — n’l(U) such that, for all x € U, v € R”, one has 7 (p(x, v)) = v,
and the mapping v — @(x, v) yields an isomorphism between R” and 7~ (x). The set U,
together with ¢, is called local trivialization of the bundle. If there exists a “global trivial-
ization”, then a real vector bundle 7 : M x R" — M is called trivial. Similarly, in a com-
plex vector bundle, for every p € M, the fiber 7 ~!(p) locally looks like the vector space
C". The basic example of a complex vector bundle is the trivial bundle 7 : U x C* — U,
where U is an open subset of R¥.

Important special cases of a real vector bundle are the tangent bundle T(M") and the
cotangent bundle T*(M") of a real n-dimensional manifold My = M". Important special
cases of a complex vector bundle is the tangent bundle and the cotangent bundle of a
complex n-dimensional manifold.

Namely, a complex n-dimensional manifold Mg, is a topological space in which every
point has an open neighborhood homeomorphic to an open set of the n-dimensional com-
plex vector space C", and there is an atlas of charts such that the change of coordinates
between charts are analytic. The (complex) tangent bundle Tc (M) of a complex manifold
M. is a vector bundle of all (complex) tangent spaces of M. at every point p € M¢. It can
be obtained as a complexification Tr(Mp)@C = T (M")®C of the corresponding real tan-
gent bundle, and is called complexified tangent bundle of M. The complexified cotangent
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bundle of M¢. is obtained in similar manner as 7*(M") ® C. Any complex n-dimensional
manifold Mg = M" can be regarded as a special case of a real 2n-dimensional manifold
equipped with a complex structure on each tangent space. A complex structure on a real
vector space V is the structure of a complex vector space on V that is compatible with the
original real structure. It is completely determined by the operator of multiplication by the
number i, the role of which can be taken by an arbitrary linear transformation J : V — V,
J? = —id, where id is the identity mapping.

A connection (or covariant derivative) is a way of specifying a derivative of a vector
field along another vector field in a vector bundle. A metric connection is a linear con-
nection in a vector bundle 7 : E — M, equipped with a bilinear form in the fibers, for
which parallel displacement along an arbitrary piecewise-smooth curve in M preserves the
form, that is, the scalar product of two vectors remains constant under parallel displace-
ment. In the case of non-degenerative symmetric bilinear form, the metric connection is
called Euclidean connection. In the case of non-degenerate antisymmetric bilinear form,
the metric connection is called symplectic connection.

o Bundle metric

A bundle metric is a metric on a vector bundle.

o Hermitian metric

A Hermitian metric on a complex vector bundle 7 : E — M is a collection of Her-
mitian inner products (i.e., positive-definite symmetric sesquilinear forms) on every fiber
E,= 71 (p), p € M, that varies smoothly with the point p in M. Any complex vector
bundle has a Hermitian metric.

The basic example of a vector bundle is the trivial bundle 7 : U x C* — U, where U is
an open set in RF. In this case a Hermitian inner product on C", and hence, a Hermitian
metric on the bundle 7 : U x C* — U, is defined by

{u,v) = uTHi,

where H is a positive-definite Hermitian matrix, i.e., a complex n x n matrix such that
H* = ET = H,and 9T Hv > Oforallv € C"\{0}. In the simplest case, one has
(u,v) = Z;Z:I Uiv;.

An important special case is a Hermitian metric & on a complex manifold M", i.e., on
the complexified tangent bundle T (M") ® C of M". This is the Hermitian analog of
a Riemannian metric. In this case 7 = g + iw, its real part g is a Riemannian met-
ric, and its imaginary part w is a non-degenerate antisymmetric bilinear form, called
fundamental form. Here g(J(x), J(y)) = g, y), w(J(x), J(y)) = w(x,y), and
wix, y) = gx, J(y)), where the operator J is an operator of complex structure on
M", as the rule, J(x) = ix. Any of the forms g, w determines % uniquely. The term
“Hermitian metric” can also refer to the corresponding Riemannian metric g, which
gives M" a Hermitian structure.
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On a complex manifold a Hermitian metric / can be expressed in local coordinates by a
Hermitian symmetric tensor ((h;;)):

h = Zhidei ®dz;,
ij

where ((h;;)) is a positive-definite Hermitian matrix. The associated fundamental form
w is then written as w = 5 3 : hy;dz; A dz;.

A Hermitian manifold (or Hermitian space) is a complex manifold equipped with a
Hermitian metric.

o Kihler metric

A Kahler metric (or Kdhlerian metric) is a Hermitian metric 1 = g + iw on a complex
manifold M", whose fundamental form w is closed, i.e., satisfies the condition dw = 0.
A Kdéhler manifold is a complex manifold equipped with a Kdhler metric.

If & is expressed in local coordinates, i.e., & = Zi’/- hi;jdz; ® dz;, then the associated

fundamental form w can be written as w = ‘5 Zi.j hijdz; A dz;, where A is the wedge
product which is antisymmetric, i.e., dx Ady = —dy A dx (hence, dx A dx = 0). In
fact, w is a differential 2-form on M", i.e., a tensor of rank 2 that is antisymmetric under
exchange of any pair of indices: w = Zi\i f,-_idxi Adx!, where fij is a function on M".
The exterior derivative dw of w is defined by dw = Zi.j >k 3’;’; dxg ANdx; Ndxg. If
dw = 0, then w is a symplectic (i.e., closed non-degenerate) differential 2-form. Such
differential 2-forms are called Kéhler forms.

The term Kihler metric can also refer to the corresponding Riemannian metric g, which
gives M" a Kihler structure. Then a Kéihler manifold is defined as a complex manifold
which carries a Riemannian metric and a K&hler form on the underlying real manifold.

e Calabi—Yau metric
The Calabi-Yau metric is a Kidhler metric which is Ricci-flat.

A Calabi-Yau manifold (or Calabi-Yau space) is a simply-connected complex mani-
fold equipped with a Calabi—Yau metric. It can be considered as 2n-dimensional (six-
dimensional case being particularly interesting) smooth manifold with holonomy group
(i.e., the set of linear transformations of tangent vectors arising from parallel transport
along closed loops) in the special unitary group.

o Kihler—Einstein metric

A Kihler-Einstein metric (or Einstein metric) is a Kdhler metric on a complex man-
ifold M™ whose Ricci curvature tensor is proportional to the metric tensor. This propor-
tionality is an analog of the Einstein field equation in the General Theory of Relativity.

A Kdhler—Einstein manifold (or Einstein manifold) is a complex manifold equipped
with a Kihler-Einstein metric. In this case the Ricci curvature tensor, considered as an
operator on the tangent space, is just multiplication by a constant.
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Such a metric exists on any domain D C C" that is bounded and pseudo-convex. It can
be given by the line element

. . 2
where u is a solution to the boundary value problem: det( ag-a”?-) = ¢ on D, and
07
u=ooondaD.
The Kéhler—Einstein metric is a complete metric. On the unit disk A = {z € C: |z] <

1} it is coincides with the Poincaré metric.

e Hodge metric

The Hodge metric is a Kiahler metric whose fundamental form w defines an integral
cohomology class or, equivalently, has integral periods.

A Hodge manifold (or Hodge variety) is a complex manifold equipped with a Hodge
metric. A compact complex manifold is a Hodge manifold if and only if it is isomorphic
to a smooth algebraic subvariety of some complex projective space.

e Fubini-Study metric

The Fubini-Study metric is a Kéhler metric on a complex projective space CP",
defined by a Hermitian inner product (,) in C**1. It is given by the line element

Js2 {x,x){dx,dx) — (x,dx){x, dx)
R .
(x,x)?
The distance between two points (x1 @ ... Xu41), (V1 ¢ ... ¢ Yuy1) € CP", where
X =00 Xng1), Y = Oy o v oy Yug1) € CTPIN{0}, is equal to
[, )
arccos —————.
(x, )y, »)

The Fubini—Study metric is a Hodge metric. The space CP” endowed with the Fubini—
Study metric is called Hermitian elliptic space (cf. Hermitian elliptic metric).

e Bergman metric

The Bergman metric is a Kdhler metric on a bounded domain D C C", defined by the
line element

3% InK(z, 7)
ds* =y —— " dzdz;,
2 bz e

where K(z, u) is the Bergman kernel function. The Bergman metric is invariant under
all automorphisms of D; it is complete if D is homogeneous. For the unit disk A = {z €
C: |z] < 1} the Bergman metric coincides with the Poincaré metric (cf. also Bergman
p-metric).
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The Bergman kernel function is defined as follow. Consider a domain D C C”" in which
there exists analytic functions f # 0 of class L, (D) with respect to the Lebesgue mea-
sure. The set of these functions forms the Hilbert space L, (D) C L2(D) with an
orthonormal basis (¢;);. The Bergman kernel function in the domain D x D C C¥ is
defined by Kp(z, u) = K (z,u) = Y 721 $i(2)¢i ().

e Hyper-Kiihler metric

A hyper-Kihler metric is a Riemannian metric g on an 4n-dimensional Riemannian
manifold which is compatible with a quaternionic structure on the tangent bundle of
the manifold. Thus, the metric g is Kéhlerian with respect to three Kahler structures
I, wyr, 8), (J,wy, g), and (K, wg, g), corresponding to the complex structures, as en-
domorphisms of the tangent bundle which satisfy the quaternionic relationship

I?’=J>=K>=1JK=—-JIK = —1.

A hyper-Kdhler manifold is a Riemannian manifold equipped with a hyper-Kzhler met-
ric. It is a special case of a Kdhler manifold. All hyper-Kéhler manifolds are Ricci-
flat. Compact four-dimensional hyper-Kéhler manifolds are called K3-surfaces, they are
studied in Algebraic Geometry.

o Calabi metric

The Calabi metric is a hyper-Kihler metric on the cotangent bundle T*(CP"*1) of a
complex projective space CP"*1. For n = 4k + 4, this metric can be given by the line
element

2 dr? L, —4y,2 2.2 2
ds —l_r_4—{—Zr (l—r )k +r(\)1—{—v2)
1 1
+5(F2_1)(012a+022a)+5(r2+1)(212a+222a)’

where (A, v1, V2, 01y, 024, X1a> 22¢), With @ running over k values, are left-invariant
one-forms (i.e., linear real-valued functions) on the coset SU(k +2)/ U (k). Here U (k) is
the unitary group consisting of complex k x k unitary matrices, and SU(k) is the special
unitary group consisting of complex k& x k unitary matrices with determinant 1.

For k = 0, the Calabi metric coincides with the Eguchi—-Hanson metric.

o Stenzel metric

The Stenzel metric is a hyper-Kihler metric on the cotangent bundle 7*(5"*1) of a
sphere $”"*1.

o SO(3)-invariant metric

An SO(3)-invariant metric is an 4-dimensional hyper-Kéhler metric with the line ele-
ment, given, in the Bianchi-7 X formalism, by

ds? = f2(0de? + a* (o} + b (1)o? + (o,
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where the invariant one-forms o, 03, 03 of SO(3) are expressed in terms of Eler angles
0,%, ¢ asop = 5(sin Ydo —sinf cos Yde), op = —5(cos Ydf +sinf sin Yde), o3 =
%(dl/f + cos6d¢), and the normalization has been chosen so that o; Ao = %e,-_ikdak.
The coordinate ¢ of the metric can always be chosen so that f(z) = %abc, using a
suitable reparametrization.

o Atiyah—Hitchin metric

The Atiyah—Hitchin metric is a complete regular SO(3)-invariant metric with the
line element

1 dk 2
ds® = Za2b2c2<m> +a*(k)oi + b (k)os + (K)o,
where a, b, ¢ are functions of k, ab = —K((k)(E(k) — K(k)), bc = —K(k)(E(k) — (1 —
KHK (k)), ac = —K (k)E(k), and K (k), E (k) are the complete elliptic integrals of the
first and second kind, respectively, with 0 < k < 1. The coordinate ¢ is given by the

2
change of variables t = — 2157 (]é(_kk) ) up to an additive constant.

o Taub-NUT metric

The Taub-NUT metric is a complete regular SO(3)-invariant metric with the line
element

r—m
2
037

lr+m
2 _ Zr_mdr2+(rz—mz)(012+022)+4m2r+m

where m is the relevant moduli parameter, and the coordinate r is related to t by r =
m + ﬁ

ds

e Eguchi-Hanson metric

The Eguchi—-Hanson metric is a complete regular SO(3)-invariant metric with the

line element
dr? a\*
2 2f 2 2 2
R (sreei=(1-(3) )o2),

where a is the moduli parameter, and the coordinate r is related to r by r? =
a? coth(a?r).
The Eguchi—-Hanson metric coincides with the four-dimensional Calabi metric.

e Complex Finsler metric

A complex Finsler metric is an upper semi-continuous function F : T(M") — R4 on
acomplex manifold M” with the analytic tangent bundle 7 (M") satisfying the following
conditions:

1. F2is smooth on M", where M" is the complement in T (M") of the zero section;
2. F(p,x)>0forall p e M" and x € M}};
3. F(p,Ax) =|A|F(p,x)forallp e M",x € T,(M"),and A € C.
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The function G = F2 can be locally expressed in terms of the coordinates (py, .. ., pp,
X1, ..., Xxy); the Finsler metric tensor of the complex Finsler metric is given by the
matrix((G;})) = ((%%)), called Levi matrix. If the matrix ((G;})) is positive-

definite, the complex Finsler metric F is called strongly pseudo-convex.

e Distance-decreasing semi-metric

Let d be a semi-metric which can be defined on some class M of complex manifolds
containing the unit disk A = {z € C: [z] < 1}. It is called distance-decreasing for
all analytic mappings if, for any analytic mapping f : M| — M,, M, M € M, the
inequality d(f(p). f(g)) < d(p, q) holds for all p,q € M, (cf. Kobayashi metric,
Carathéodory metric, Wu metric).

o Kobayashi metric

Let D be a domain in C". Let O(A, D) be the set of all analytic mappings f : A — D,
where A = {z € C: |z] < 1} is the unit disk.

The Kobayashi metric (or Kobayashi-Royden metric) Fx is a complex Finsler met-
ric, defined by

Fg(z,uw) =inf{a > 0: 3f € O(A, D), f(0) =z, af'(0) = u}

forall z € D and u € C". It is a generalization of the Poincaré metric to higher-
dimensional domains. Fx(z, u) > Fc(z, u), where F¢ is the Carathéodory metric. If
D is convex, and d(z,u) = inf(a: z+ % € Dif e > A}, then &% < Fx(z,u) =
Fe(z,u) <d(z,u).

Given a complex manifold M”, the Kobayashi semi-metric Fx is defined by
Fg(p,uw) =inf{a > 0: 3f € O(A, M"), f(0) = p, af'(0) = u}

forall p € M" andu € T,(M"). Fx(p, u) is asemi-norm of the tangent vector u, called
Kobayashi semi-norm. Fg is a metric if M" is taut, i.e., O(A, M") is a normal family.

The Kobayashi semi-metric is an infinitesimal form of the Kobayashi semi-distance
Ky on M", defined as follow. Given p,q € M", a chain of disks « from ptog isa
collection of points p = po, pl, e pk = g of M", pairs of points al, bl ak bk
of the unit disk A, and analytic mappings f1, ... f from A into M”, such that f; (@) =
p/~land f;(b/) = p/ for all j. The length /() of a chain « is the sum dp(a', b') +
.-« + dp(aX, b*), where dp is the Poincaré metric. The Kobayashi semi-distance (or

Kobayashi pseudo-distance) K yrn on M" is a semi-metric on M", defined by
Kyn(p, ¢) = infl(a),

where the infimum is taken over all lengths /{«) of chains of disks ¢ from p to g.

The Kobayashi semi-distance is distance-decreasing for all analytic mappings. It is the
greatest semi-metric among all semi-metrics on M”, that are distance-decreasing for all
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analytic mappings from A into M", where distances on A are measured in the Poincaré
metric. K 4 coincides with the Poincaré metric, and K¢n = 0.

A manifold is called Kobayashi hyperbolic if the Kobayashi semi-distance is a metric
on it. In fact, a manifold is Kobayashi hyperbolic if and only if it is biholomorphic to a
bounded homogeneous domain.

e Kobayashi-Busemann metric

Given a complex manifold M”, the Kobayashi-Busemann semi-metric on M”" is the
double dual of the Kobayashi semi-metric on M”. It is a metric if M" is taut.

e Carathéodory metric

Let D be a domain in C". Let O(D, A) be the set of all analytic mappings f : D — A,
where A = {z € C: |z] < 1} is the unit disk.

The Carathéodory metric F¢ is a complex Finsler metric, defined by
Fc(z,u) = sup{| f'(2u|: f € O(D, A)}

forany z € D and u € C". It is a generalization of the Poincaré metric to higher-
dimensional domains. Fc(z, u) < Fk(z,u), where Fx is the Kobayashi metric. If D
is convex and d(z, u) = inf{h: z + fx—‘ € Dif |a] > A}, then @ < Fe(z,u) =
Fr(z,u) <d(z,u).

Given a complex manifold M”, the Carathéodory semi-metric F¢ is defined by

Fe(p,w) = sup{|f'(pyu|: [ e OW", 1))

forall p € M" and u € T,,(M"). Fc is a metric if M" is taut.

The Carathéodory semi-distance (or Carathéodory pseudo-distance) Cppn is a semi-
metric on a complex manifold M", defined by

Cun(p,q) = sup{dp(f(p), f(@): feO(M", A)},

where dp is the Poincaré metric. In general, the integrated semi-metric of the infinitesi-
mal Carathéodory semi-metric is internal for the Carathéodory semi-distance, but does
not coincides with it.

The Carathéodory semi-distance is distance-decreasing for all analytic mappings. It is
the smallest distance-decreasing semi-metric. C4 coincides with the Poincaré metric,
and C(Cn = 0.

o Azukawa metric

Let D be a domain in C"*. Let gp(z, u) = sup{f(u): f € Kp(z)}, where Kp(z) is the
set of all logarithmically plurisubharmonic functions f : D — [0, 1) such that there
exist M,r > O with f(u) < M|u — z|2 for all u € B(z,r) C D; here |.[» is the
I-normonC",and B(z,r) ={x € C": [z —x]|2 <r}.
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The Azukawa metric (in general, a semi-metric) F4 is a complex Finsler metric, de-
fined by

1
Fs(z,u) = lim sup — , Au
Alz, u) m sup |M@D(z Z+ Au)
forall z € D and u € C". It “lies between” the Carathéodory metric F¢ and the
Kobayashi metric Fgx: Fo(z,u) < Fa(z,u) < Fx(z,u) forallz € Dandu € C". If
D is convex, then all these metrics coincide.

The Azukawa metric is an infinitesimal form of the Azukawa semi-distance.

e Sibony metric

Let D be a domain in C". Let Kp(z) be the set of all logarithmically plurisubharmonic
functions f : D — [0, 1) such that there exist M, r > 0 with f(u) < M|u — z|; for all
u € B(z,r) C D;here |.[[»is the lr-normon C", and B(z,r) ={x € C": [z —x]l2 <

r}. Let Cfoc(z) be the set of all functions of class C? on some open neighborhood of z.

The Sibony metric (in general, a semi-metric) Fs is a complex Finsler metric, defined
by

82

Fs(z,u) = sup —(Quu;

fekp@nCi, @] 1y 049
forall z € D and u € C". It “lies between” the Carathéodory metric F¢ and the
Kobayashi metric Fg: Fe(z,u) < Fs(z,u) < Fa(z,u) < Fg(z,u) forall z € D
and u € C", where Fj4 is the Azukawa metric. If D is convex, then all these metrics
coincide.

The Sibony metric is an infinitesimal form of the Sibony semi-distance.

¢ Wu metric

The Wu metric Wy is an upper-semi-continuous Hermitian metric on a complex
manifold M”, that is distance-decreasing for all analytic mappings. In fact, for two
n-dimensional complex manifolds M and M}, the inequality Wyz(f(p), f(g)) <
VnWyr(p, g) holds for all p, g € MY.

The invariant metrics including the Carathéodory, Kobayashi, Bergman, and Kihler-
Einstein metrics play an important role in the Complex Function Theory and Convex
Geometry. The Carathéodory and Kobayashi metrics are used mostly because of the
distance-decreasing property. But they are almost never Hermitian. On the other hand,
the Bergman metric and the Kahler-Einstein metric are Hermitian (in fact, K&hlerian),
but the distance-decreasing property, in general, fails for them.

o Teichmiiller metric

A Riemann surface R is an one-dimensional complex manifold. Two Riemann surfaces
R1 and R; are called conformally equivalent if there exists a bijective analytic function
(i.e., a conformal homeomorphism) from R; into Rp. More precisely, consider a fixed
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closed Riemann surface Rg of a given genus ¢ > 2. For a closed Riemann surface R
of genus g, construct a pair (R, f), where f: Ry — R is a homeomorphism. Two
pairs (R, f) and (R, f1) are called conformally equivalent if there exists a conformal
homeomorphism 4 : R — Ry such that the mapping (f1)™' -k - f: Ry — Rg is
homotopic to the identity. An abstract Riemann surface R* = (R, f)* is the equivalence
class of all Riemann surfaces, conformally equivalent to R. The set of all equivalence
classes is called Teichmiiller space T (Ry) of the surface Ry. For closed surfaces Ry of
given genus g the spaces T (Rp) are isometrically isomorphic, and one can speak of the
Teichmiiller space Ty of surfaces of genus g. T, is a complex manifold. If Ry is obtained
from a compact surface of genus g > 2 by removing » points, then the dimension of 7,
is3g —3+n.

The Teichmiiller metric is a metric on 7T, defined by
! Ininf K (h)
—Inin
2 h

for any R}, R} € T,, where h : R| — R is a quasi-conformal homeomorphism, ho-
motopic to the identity, and K (%) is the maximal dilatation of 4.

In fact, there exists an unique extremal mapping, called Teichmiiller mapping, which
minimizes the maximal dilatation of all such 4, and the distance between R} and R is
equal to % In K, where the constant K is the dilatation of the Teichmiiller mapping.

In terms of the extremal length extg«(y), the distance between R} and R} can be written
as
1 epe(y)

—Insuyp ———,
2y extrz(y)

where the supremum is taken over all simple closed curves on Ry.

The moduli space R, of conformal classes of Riemann surfaces of genus g is obtained
by factorization of 7, by some countable group of automorphisms of it, called mod-
ular group. Examples of metrics related to moduli and Teichmiiller spaces are Teich-
miiller metric, Carathéodory metric, Kobayashi metric, Cheng—Yau-Mok’s—Kiihler—
Einstein metric, Mc-Mullen metric, Bergman metric, asymptotic Poincaré metric, Ricci
metric, perturbed Ricci metric, Weyl-Petersson metric, VHS-metric, Quillen metric,
etc.

e Weyl-Petersson metric

The Weyl-Peterson metric is a Kdhler metric on the Teichmiiller space T, ,, of abstract
Riemann surfaces of genus g with n punctures and negative Euler characteristic.

o Gibbons—-Manton metric

The Gibbons—Manton metric is an 4n-dimensional hyper-Kihler metric on the mod-
uli space of n-monopoles, admitted an isometric action of the n-dimensional torus 77",
It can be described also as a hyper-Kéhler quotient of a flat quaternionic vector space.



Chapter 7: Riemannian and Hermitian Metrics [  Metrics on determinant lines] 109

e Metrics on determinant lines

Let M" be an n-dimensional compact smooth manifold, and let F be a flat vector bun-
dle over M™. Let H*(M", F) = @/_, H(M", F) be the de Rham cohomology of
M™ with coefficients in F. Given an n-dimensional vector space V, the determinant
line det V of V is defined as the top exterior power of V, i.e., detV = A"V, Given
a finite-dimensional graded vector space V = @5]_, Vi, the determinant line of V is

defined as the tensor product det V. = (Q)]_(det Vi)(_l)[. Thus, the determinant line
det H*(M", F) of the cohomology H*(M", F)) can be written as det H*(M", F) =
Qo (det H (M, F))=D'.

The Reidemeister metric is a metric on det H*(M", F), defined by a given smooth
triangulation of M”, and the classical Reidemeister—Franz torsion.

Let g7 and 7" be smooth metrics on the vector bundle F and tangent bundle T (M"),
respectively. These metrics induce a canonical Lo-metric A7 (M"-F) on H*(M", F).
The Ray-Singler metric on det H*(M", F) is defined as the product of the metric in-
duced on det H*(M", F) by h1*M".F) with the Ray-Singler analytic torsion. The Mil-
nor metric on det H*(M", F) cabe defined in similar manner using the Milnor analytic
torsion. If gF is flat, the above two metrics coincide with the Reidemeister metric. Using
a co-Euler structure, one can define a modified Ray-Singler metric on det H*(M", F).

The Poincaré-Reidemeister metric is a metric on the cohomological determinant
line det H*(M", F) of a closed connected oriented odd-dimensional manifold M". It
can be constructed using a combination of the Reidemeister torsion with the Poincaré
duality. Equivalently, one can define the Poincaré—Reidemeister scalar product on
detH*(M", F) which completely determines the Poincaré-Reidemeister metric but
contains an additional sign or phase information.

The Quillen metric is a metric on the inverse of the cohomological determinant line of a
compact Hermitian one-dimensional complex manifold. It can be defined as the product
of the Ly-metric with the Ray—Singler analytic torsion.

e Kihler supermetric

The Kihler supermetric is a generalization of the Kéhler metric on the case of a
supermanifold. A supermanifold is a generalization of an usual manifold with fermionic
as well as bosonic coordinates. The bosonic coordinates are ordinary numbers, whereas
the fermionic coordinates are Grassmann numbers.

o Hofer metric

A symplectic manifold (M", w), n = 2k, is a smooth even-dimensional manifold M"
equipped with a symplectic form, i.e, a closed non-degenerate 2-form, w.

A Lagrangian manifold is an k-dimensional smooth submanifold L¥ of a symplectic
manifold (M", w), n = 2k, such that the form w vanishes identically on L¥, i.e., for any
pelfandanyx,ye T,,(Lk), one has w(x, y) = 0.

Let L(M", A) be the set of all Lagrangian submanifolds of a closed symplectic manifold
(M", w), diffeomorphic to a given Lagrangian submanifold A. A smooth family ¢ =
{L:};, t € [0, 1], of Lagrangian submanifolds L, € L(M", A) is called exact path,
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connecting Lo and L1, if there exists a smooth mapping ¥ : A x [0, 1] — M" such
that, for every ¢ € [0, 1], one has ¥ (A x {t}) = L;, and ¥ % w = dH; A dt for some
smooth function H : A x [0, 1] — R. The Hofer length I(«) of an exact path « is

defined by I(@) = [} {maxpea H(p, 1) — minyen H(p, 1)}dt.
The Hofer metric on the set L(M", A) is defined by

inf /()
o

for any Lo, L, € L(M", A), where the infimum is taken over all exact paths on
L(M"™, A), that connect Lo and L.

The Hofer metric can be defined in similar way on the group Ham(M", w) of Hamil-
tonian diffeomorphisms of a closed symplectic manifold (M", w), whose elements are
time one mappings of Hamiltonian flows ¢! it is inf, I(c), where the infimum is taken
over all smooth paths ¢ = {qth}, t € [0, 1], connecting ¢ and .

e Sasakian metric

A Sasakian metric is a metric of positive scalar curvature on a contact manifold, nat-
urally adapted to the contact structure. A contact manifold equipped with a Sasakian
metric is called Sasakian space, and is an odd-dimensional analog of Kahler manifolds.

o Cartan metric

A Killing form (or Cartan—Killing form) on a finite-dimensional Lie algebra £2 over a
field IF is a symmetric bilinear form

B(x,y) =Tr(ady - ady),

where Tr denotes the trace of a linear operator, and ad, is the image of x under the
adjoint representation of §2, i.e., the linear operator on the vector space §2 defined by
the rule z — [x, z], where [, ] is the Lie bracket.

Let ey, ... ¢, be a basis for the Lie algebra £2, and [¢;, ¢;] = Zzzl yi’;ek, where yl.k]. are
corresponding structure constants. Then the Killing form is given by - ‘

n
B(xi, xj) =gij = Z Vi];Vilk'
k=1

The metrie tensor ((g;;)) is called, especially in the Theoretical Physics, Cartan met-
ric.



Chapter 8

Distances on Surfaces and Knots

8.1. GENERAL SURFACE METRICS

A surface is a real two-dimensional manifold M 2 ie., a Hausdorff space, each point of
which has a neighborhood which is homeomorphic to a plane E2, or a closed half-plane
(ct. Chapter 7).

A compact orientable surface is called closed if it has no boundary, and it is called sur-
face with boundary, otherwise. There are compact non-orientable surfaces (closed or with
boundary); the simplest such surface is the Mébius strip. Non-compact surfaces without
boundary are called open.

Any closed connected surface is homeomorphic to either a sphere with, say, g (cylindric)
handles, or a sphere with, say, g cross-caps (i.e., caps with a twist like M&bius strip in
them). In both cases the number g is called genus of the surface. In the case of handles, the
surface is orientable; it is called forus (doughnut), double torus, and triple torus for g =
1, 2 and 3, respectively. In the case of cross-caps, the surface is non-orientable; it is called
real projective plane, Klein bottle, and Dyck’s surface for g = 1,2 and 3, respectively.
The genus is the maximal number of disjoint simple closed curves which can be cut from
a surface without disconnecting it (the Jordan curve theorem for surfaces).

The Euler—Poincaré characteristic of a surface is (the same for all polyhedral decompo-
sitions of a given surface) the number x = v — e + f, where v, e and f are, respectively,
the number of vertices, edges and faces of the decomposition. It holds x = 2 — 2g if the
surface is orientable, and y = 2 — g if not. Every surface with boundary is homeomorphic
to a sphere with appropriated number of (disjoint) koles (i.e., what remains if an open disk
is removed) and handles or cross-caps. If 4 is the number of holes, then y =2 —2¢ — &
holds if the surface is orientable, and x = 2 — ¢ — A if not.

The connectivity number of a surface is the largest number of closed cuts that can be
made on the surface without separating it into two or more parts. This number is equal
to 3 — x for closed surfaces, and 2 — x for surfaces with boundaries. A surface with
connectivity number 1, 2 and 3 is called, respectively, simply, doubly and triply connected.
A sphere is simply connected, while a torus is triply connected.

A surface can be considered as a metric space with its own intrinsic metric, or as a
figure in space. A surface in B3 is called complete if it is a complete metric space with
respect to its intrinsic metric.

A surface is called differentiable, regular, or analytic, respectively, if in a neighborhood
of each of its points it can be given by an expression

r=r(u,v) =r(xi(u,v), xu, v), x3(u, v)),

111
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where the position vector r = r(u, v) is a differentiable, regular (i.e., a sufficient number of
times differentiable), or real analytic, respectively, vector function satistying the condition
ry X ry # 0.

Any regular surface has the intrinsic metric with the line element (or first fundamental

form)
ds®> = dr? = E(u, v)du® + 2F (u, v) du dv + G(u, v) dv?,

where E(u,v) = {(ry,r,), F(u,v) = {ry, ry), G(u, v) = {ry, ry). The length of a curve,
defined on the surface by the equations u = u(¢), v = v(¢), t € [0, 1], is computed by

1
/ VEW? 4+ 2Fu'v + Gv? dt,
0

and the distance between any points p, g € M? is defined as the infimum of the lengths
of all curves on M?, connecting p and ¢. A Riemannian metric is a generalization of the
first fundamental form of a surface.

For surfaces, two kinds of curvature are considered: Gaussian curvature, and mean cur-
vature. To compute those curvatures at a given point of the surface, consider the intersec-
tion of the surface with a plane, containing a fixed normal vector, i.e., a vector which is
perpendicular to the surface at this point. This intersection is a plane curve. The curvature
k of this plane curve is called normal curvature of the surface at the given point. If we
vary the plane, the normal curvature k will change, and there are two extremal values —
the maximal curvature ki, and the minimal curvature ko, called principal curvatures of
the surface. A curvature is taken to be positive if the curve turns in the same direction as
the surface’s chosen normal, otherwise it is taken to be negative. The Gaussian curvature
is K = kiky (it can be given entirely in terms of the first fundamental form). The mean
curvature is H = %(kl + ko).

A minimal surface is a surface with mean curvature zero, or, equivalently, a surface of
minimum area subject to constraints on the location of its boundary.

A Riemann surface is an one-dimensional complex manifold, or a two-dimensional real
manifold with a complex structure, i.e., in which the local coordinates in neighborhoods of
points are related by complex analytic functions. It can be thought as a deformed version
of the complex plane. All Riemann surfaces are orientable. Closed Riemann surfaces are
geometrical models of complex algebraic curves. Every connected Riemann surface can
be turned into a complete two-dimensional Riemannian manifold with constant curvature
—1, 0, or 1. The Riemann surfaces with the curvature —1 are called hyperbolic, the unit
disk A = {z € C. |z] < 1} is the canonical example. The Riemann surfaces with the
curvature O are called parabolic, C is a typical example. The Riemann surfaces with the
curvature 1 are called elliptic, the Riemann sphere C U {co} is a typical example.

e Regular metric

The intrinsic metric of a surface is called regular if it can be specified using the line
element

ds? = Edu* +2F dudv + G dv?,
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where the coefficients of the form ds? are regular functions.

Any regular surface, given by an expression r = r(u, v), has a regular metric with the
line element ds?, where E(u, v) = (1, ry), F(u, v) = {ry, ry), G, v) = (ry, ry).

e Analytic metric

The intrinsic metric on a surface is called analytic if it can be specified using the line
element

ds? = Edu® + 2F dudv + G dv?,

where the coefficients of the form ds? are real analytic functions.

Any analytic surface, given by an expression r = r(u, v), has an analytic metric with
the line element ds?, where E(u, v) = (ry, ry), F(u, v) = {ry, ry), G(u, v) = {ry, ry).

e Metric of positive curvature
A metric of positive curvature is the intrinsic metric on a surface of positive curvature.

A surface of positive curvature is a surface in E3 that has positive Gaussian curvature at
every point.

e Metric of negative curvature

A metric of negative curvature is the intrinsic metric on a surface of negative curva-
ture.

A surface of negative curvature is a surface in E> that has negative Gaussian curva-
ture at every point. A surface of negative curvature locally have a saddle-like structure.
The intrinsic geometry of a surface of constant negative curvature (in particular, of a
pseudo-sphere) locally coincides with the geometry of Lobachevsky plane. There exists
no surface in B3, whose intrinsic geometry coincides completely with the geometry of
Lobachevsky plane (i.e., a complete regular surface of constant negative curvature).

e Metric of non-positive curvature
A metric of non-positive curvature is the intrinsic metric on a saddle-like surface.

A saddle-like surface is a generalization of a surface of negative curvature: a twice
continuously-differentiable surface is a saddle-like surface if and only if at each point
of the surface its Gaussian curvature is non-positive. These surfaces can be seen as an-
tipodes of convex surfaces, but they do not form such a natural class of surfaces as do
convex surfaces.

e Metric of non-negative curvature
A metric of non-negative curvature is the intrinsic metric on a convex surface.

A convex surface is a domain (i.e., a connected open set) on the boundary of a convex
body in E3 (in some sense, it is an antipode of saddle-like surface). The entire boundary
of a convex body is called complete convex surface. If the body is finite (bounded),
the complete convex surface is called closed. Otherwise, it is called infinite (an infinite
convex surface is homeomorphic to a plane or to a circular cylinder).
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Any convex surface M? in B3 is a surface of bounded curvature. The total Gaussian
curvature w(A) = ffA K(x)do(x)ofaset A C M?is always non-negative (here o (.)
is the area, and K (x) is the Gaussian curvature of M? ata point x), i.e., a convex surface
can be seen as a surface of non-negative curvature.

The intrinsic metric of a convex surface is a convex metric in the sense of surface theory,
i.e., it displays the convexity condition: the sum of the angles of any triangle whose sides
are shortest curves is not less that .

e Metric with alternating curvature

A metric with alternating curvature is the intrinsic metric on a surface with alternating
(positive or negative) Gaussian curvature.

o Flat metric

A flat metric is the intrinsic metric on a developable surface, i.e., a surface, on which
the Gaussian curvature is everywhere zero.

e Metric of bounded curvature

A metric of bounded curvature is the intrinsic metric p on a surface of bounded cur-
vature.

A surface M? with an intrinsic metric p is called surface of bounded curvature if there
exists a sequence of Riemannian metrics p,, defined on M 2 such that for any compact
set A C M? one has p, — p uniformly, and the sequence |w,|(A) is bounded, where
lwl,(A) = [[, 1K (x)|do(x) is total absolute curvature of the metric p, (here K (x) is
the Gaussian curvature of M? at a point x, and o () is the area).

e A-metric
A A-metric (or metric of type A) is a complete metric on a surface with curvature
bounded from above by a negative constant.

An A-metric does not have embeddings into 3. It is a generalization of the classi-
cal result of Hilbert (1901): no complete regular surface of constant negative curva-
ture (i.e., a surface whose intrinsic geometry coincides completely with the geometry of
Lobachevsky plane) exists in E3.

o (h, A)-metric
An (h, A)-metric is a metric on a surface with a slowly-changing negative curvature.

A complete (i, A)-metric does not permit a regular isometric embedding in three-
dimensional Euclidean space (cf. A-metric).

o G-distance

A connected set G of points on a surface M? is called geodesic region if, for each point
x € G, there exists a disk B(x, r) with center at x, such that B = G N B(x, r) has
one of the following forms: Bg = B(x,r) (x is a regular interior point of G); Bg is
a semi-disk of B(x, r) (x is a regular boundary point of G); B¢ is a sector of B(x, r)
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other than a semi-disk (x is an angular point of G); B¢ consists of a finite number of
sectors of B(x, r) with no common points except x (x is a nodal point of G).

The G-distance between any x and y € G is defined as the greatest lower bound of the
lengths of all rectifiable curves connecting x and y € G, and completely contained in
G.

e Conformally invariant metric

Let R be a Riemann surface. A local parameter (or local uniformizing parameter, local
uniformizer) is a complex variable z considered as a continuous function z,, = ¢p,(p)
of a point p € R which is defined everywhere in some neighborhood (parametric neigh-
borhood) V (pg) of a point pg € R and which realizes a homeomorphic mapping (para-
metric mapping) of V{(pg) onto the disk (parametric disk) A(py) = {z € C: |z] <
r(po)}, where ¢, (po) = 0. Under a parametric mapping, any point function g(p), de-
fined in the parametric neighborhood V (pg), goes into a function of the local parameter
z:8(p) = g(9,, (2)) = G(2).

A conformally invariant metric is a differential p(z)|dz] on the Riemann surface R
which is invariant with respect to the choice of the local parameter z. Thus, to each local
parameter z (z : U — C)a function p, : z(U) — [0, oo] is associated such that, for any
local parameters z| and z2, we have:

dzi(p)
dza(p)

pa(@2(p)) _
P @1 ()

‘ forany p € Uy NUs.

Every linear differential A(z)dz and every quadratic differential 0(z)dz? induce con-
formally invariant metrics |A(z)]dz| and 10()1/2)1dz], respectively (cf. O-metric).

e ()-metric

An Q-metric is a conformally invariant metric p(z)|dz| = |Q(z)|"/?|dz| on a Rie-
mann surface R, defined by a quadratic differential Q(z)dz’.

A guadratic differential Q(z)dz? is a non-linear differential on a Riemann surface R
which is invariant with respect to the choice of the local parameter z. Thus, to each local
parameter z (z : U — C) a function Q, : z(U) — C is associated such that, for any
local parameters z1 and zp, we have:

0, (22(p)) (dZI(p)

2
= fi Ui NU.
0., 1 (P) axm) oramyp et

o Extremal metric

An extremal metric is a conformally invariant metric in the modulus problem for
a family I' of locally rectifiable curves on a Riemann surface R which realizes the
infimum in the definition of the modulus M(I").

Formally, let I" be a family of locally rectifiable curves on a Riemann surface R, let P
be a non-empty class of conformally invariant metrics p(z)|dz| on R such that p(z) is
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square-integrable in the z-plane for every local parameter z, and the integrals
Ap(R) = // pz(z)dx dy and L,(I")= inf /p(z)|dz[
R yel y

are not simultaneously equal to O or co (each of the above integrals is understood as a
Lebesgue integral). The modulus of the family of curves I' is defined by

M(I) = inf M.
peP (L,(I))?

2
The extremal length of the family of curves I" is equal to sup ¢ p %, i.e., is the

reciprocal of M(I").

The modulus problem for I” is defined as follows: let Py be the subclass of P such that,
for any p(z)|dz] € Pr and any y € I', one has fy p(D|dz] = 1. If P # @, then the
modulus M (I") of the family I" can be written as M(I") = inf,cp, A,(R). Every metric
from P; is called admissible metric for the modulus problem on I". If there exists p*
for which

M)y = inf A,(R) = Ap(R),
PEPL
the metric p*|dz| is called extremal metric for the modulus problem on I".

o Fréchet surface metric

Let (X, d) be a metric space, M? be a compact two-dimensional manifold, f be a con-
tinuous mapping f : M> — X, called parameterized surface, and o : M?> — M? be
a homeomorphism of M? onto itself. Two parameterized surfaces fi and f> are called
equivalent if inf, max 2 d(f1(p), f2(o(p))) =0, where the infimum is taken over
all possible homeomorphisms o. A class f* of parameterized surfaces, equivalent to f,
is called Fréchet surface. It is a generalization of the notion of a surface in an Euclidean
space to the case of an arbitrary metric space (X, d).

The Fréchet surface metric is a metric on the set of all Fréchet surfaces, defined by

inf max d(f1(p), f2(0(P)))

peM
for any Fréchet surfaces f} and f;, where the infimum is taken over all possible home-
omorphisms o (cf. Fréchet metric).

8.2. INTRINSIC METRICS ON SURFACES

In this section we list intrinsic metrics, given by their line elements (which, in fact, are
two-dimensional Riemannian metrics), for some selected surfaces.
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o Quadric metric

A quadric (or quadratic surface, surface of second order) is a set of points in E3, whose
coordinates in a Cartesian coordinate system satisfy an algebraic equation of degree two.
There are 17 classes of such surfaces, among them are: ellipsoids, one-sheet and two-
sheet hyperboloids, elliptic paraboloids, hyperbolic paraboloids, elliptic, hyperbolic and
parabolic cylinders, and conical surfaces.

For example, a cylinder can be given by the following parametric equations:
xi(u,v)y =acosv, x2(u,v)=asinv, x3(u,v)=u.
The intrinsic metric on it is given by the line element
ds® = du® + a® dv?.

An elliptic cone (i.e., a cone with elliptical cross-section) has the following parametric
equations:

—u h—u
cosv, xa(u,v)=>=b

h .
x1{u,v)=a sinv, x3(u,v) =u,
where & is the height, a is the semi-major axis, and b is the semi-minor axis of the cone.
The intrinsic metric on it is given by the line element
5 h? + a%cos?v + bZsin?v 2 (@® — b¥)(h — u) cosvsinv
ds® = du“+2
h? h?
(h — w)*(a? sin® v + b% cos? v) 9
+ %) dv~”.

dudv

e Sphere metric

A sphere is a quadric, given by the Cartesian equation (x; —a)%+(x2 —b)>+(x3—c)* =
r2, where the point (a, b, ¢) is the center of the sphere, and » > 0 is the radius of the
sphere. The sphere of radius r, centered at the origin, can be given by the following
parametric equations:

x1(8,¢) =rsinfcos¢p, x2(0,¢) =rsinbsing, x3(6,¢) =rcosb,

where the azimuthal angle ¢ € [0, 2m), and the polar angle 6 € [0, w]. The intrinsic
metric on it (in fact, the two-dimensional spherical metric) is given by the line element

ds®> =r?de® + r’sin’ 6 dg>.

A sphere of radius r has constant positive Gaussian curvature equal to r.
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o Ellipsoid metric
2 2 2
An ellipsoid is a quadric given by the Cartesian equation Z—§ + Z—% + j—; = 1, or by the
following parametric equations:

x1(6,¢) =acos¢sing, x2(6,¢) =bsingsing, x3(0,¢) =ccosb,

where the azimuthal angle ¢ € [0, 27), and the polar angle 6 € [0, x]. The intrinsic
metric on it is given by the line element

ds? = (b* cos’ ¢ + a” sin® ¢) sin® 0 d¢p* + (b* — a*) cos ¢ sin ¢ cos 0 sin 0 d6 dp
+ ((a2 cos® ¢ + b sin’ ) cos? @ + ¢? sin? 0) ae’.

e Spheroid metric

A spheroid is an ellipsoid having two axes of equal length. It is also a rotation surface,
given by the following parametric equations:

xi(u,v) =asinvcosu, xo(u,v)=asinvsiny, x3(u,v)=ccosv,

where 0 < u < 2m, and 0 < v < m. The intrinsic metric on it is given by the line
element

1
ds? = a*sin® vdu® + E(a2 +¢* + (a* — ¢?) cos(2v)) dv?.

e Hyperboloid metric

A hyperboloid is a quadric which may be one- or two-sheeted. The one-sheeted hyper-

boloid is a surface of revolution obtained by rotating a hyperbola about the perpendic-

ular bisector to the line between the foci, while the two-sheeted hyperboloid is a sur-

face of revolution obtained by rotating a hyperbola about the line joining the foci. The

one—sheetegi circzular }12yperboloid, oriented along the x3-axis, is given by the Cartesian
o T J

equation z—lz +5->= 1, or by the following parametric equations:

x1(u,v) =av14+ucosv, xp(u,v)=av1+u?sinv, x3(u,v)=cu,

where v € [0, 277). The intrinsic metric on it is given by the line element

2.2
d52:<02+ au

T l)du2 +a2(u2 + l)dvz.
u

e Rotation surface metric

A rotation surface (or surface of revolution) is a surface generated by rotating a two-
dimensional curve about an axis. It is given by the following parametric equations:

x1(u, vy = ¢pwycosu, xo(u,v) =3¢ W)sinu, x3(u,v) =Y ).
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The intrinsic metric on it is given by the line element

e Pseudo-sphere metric

A pseudo-sphere is a half of the rotation surface, generated by rotating a tractrix about
its asymptote. It is given by the following parametric equations:

x1(u,v) =sechucosv, xo(u,v)=sechusinv, x3(u,v)=u —tanhu,
where u > 0, and 0 < v < 2. The intrinsic metric on it is given by the line element
ds® = tanh? u du”® + sech? u dv’.

The pseudo-sphere has constant negative Gaussian curvature equal to —1, and in this
sense is an analog of the sphere which has constant positive Gaussian curvature.

¢ Torus metric
A torus is a surface having genus one. A torus azimuthally symmetric about the x3-axis

is given by the Cartesian equation (¢ — ,/xlz + x%)2 + x% = a2, or by the following
parametric equations:

x1(u,v) =(c+acosv)cosu, x2(u,v)= (+acosv)sinu, x3(u,v)=asinv,
where ¢ > a, and u, v € [0, 27). The intrinsic metric on it is given by the line element

ds* = (¢ +acos v)2 du® + a*> dv?.

e Helical surface metric

A helical surface (or surface of screw motion) is a surface described by a plane curve y
which, while rotating around an axis at a uniform rate, also advances along that axis at
a uniform rate. If y is located in the plane of the axis of rotation x3 and is defined by the
equation x3 = f(u), the position vector of the helical surface is

r = (ucosv, usinv, f(u) =hv), h = const,
and the intrinsic metric on it is given by the line element
ds* = (1+ ) du® + 2hf' dudv + (u? + h?) dv.

If f = const, one has a helicoid; if h = 0, one has a rotation surface.
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o Catalan surface metric

The Catalan surface is a minimal surface, given by the following parametric equations:

x1(u,v) =u —sinucoshv, x2(u,v) =1—cosucoshv,

x3(u,v) = 4sin<%) sinh(%).

The intrinsic metric on it is given by the line element
2 2f v 2 2f v 2
ds = 2cosh <§>(cosh v —cosu)du® + 2cosh <§> (cosh v — COos u) dv”.

e Monkey saddle metric

The monkey saddle is a surface, given by the Cartesian equation x3 = x ()cl2 — 3x§), or
by the following parametric equations:

x1(u,v)y=u, x2(u,v)=v, x3(u,v)= S — 3uv?.

This is a surface which a monkey can straddle with both legs and his tail. The intrinsic
metric on it is given by the line element

ds? = (1 + (su2 — 3v2)2) du® — 2(18uv(u2 — vz)) dudv + (l + 36u2v2) dv?.

8.3. DISTANCES ON KNOTS

A knot is a closed, non-self-intersecting curve that is embedded in 3. The trivial knot (or
unknot) O is a closed loop that is not knotted. A knot can be generalized to a link which
is a set of disjoint knots. Every link has its Seifert surface, i.e., a compact oriented surface
with given link as boundary. Two knots (links) are called equivalent if one can be smoothly
deformed into another. Formally, a link is defined as a smooth one-dimensional submani-
fold of the 3-sphere $3; a knot is a link consisting of one component; links L, and L, are
called equivalent if there exists an orientation-preserving homeomorphism f : 3 — §3
such that f (L) = L.

All the information about a knot can be described using a knot diagram. It is a projection
of a knot onto a plane such that no more than two points of the knot are projected to the
same point on the plane, and at each such point it is indicated which strand is closest to the
plane, usually by erasing part of the lower strand. Two different knot diagrams may both
represent the same knot. Much of knot theory is devoted to telling when two knot diagrams
represent the same knot.

An unknotting operation is an operation which changes the overcrossing and the under-
crossing at a double point of a given knot diagram. The unknotting number of a knot K
is the minimum number of unknotting operations needed to deform a diagram of K into
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that of the trivial knot, where the minimum is taken over all diagrams of K. Roughly, un-
knotting number is the smallest number of times a knot K must be passed through itself to
untie it.

An f-unknotting operation in a diagram of a knot K is an analog of the unknotting
operation for a fi-part of the diagram consisting of two pairs of parallel strands with one
of the pair overcrossing another. Thus, an f-unknotting operation changes the overcrossing
and the undercrossing at each vertex of obtained quadrangle.

o Gordian distance

The Gordian distance is a metric on the set of all knots, defined, for given knots K and
K’, as the minimum number of unknotting operations needed to deform a diagram of K
into that of X', where the minimum is taken over all diagrams of K from which one can
obtain diagrams of K'. The unknotting number of K is equal to the Gordian distance
between K and the trivial knot O.

Let » K be the knot obtained from K by taking its mirror image, and let —K be the knot
with the reversed orientation. The positive reflection distance Ref , (K) is the Gordian
distance between K and r K. The negative reflection distance Ref _(K) is the Gordian
distance between K and —r K. The inversion distance Inv(K) is the Gordian distance
between K and — K.

The Gordian distance is the case k = 1 of the Cj-distance which is the minimum
number of Cy-moves needed to transform K into K’; Habiro and Goussarov proved that,
for k > 1, it is finite if and only if both knots have the same Vassiliev invariants of
order less than k. A C1-move is a single crossing change, a Ca-move (or delta-move)
is simultaneous crossing change for 3 arcs forming triangle. C»- and Cz-distances are
called delta distance and clasp-pass distance, respectively.

e #-Gordian distance

The ##-Gordian distance (see, for example, [Mura85]) is a metric on the set of all knots,
defined, for given knots K and K’, as the minimum number of #-unknotting operations
needed to deform a diagram of K into that of K', where the minimum is taken over all
diagrams of K from which one can obtain diagrams of K.

Let rK be the knot obtained from K by taking its mirror image, and let —K be the
knot with the reversed orientation. The positive f-reflection distance Refi_(K ) is the

fi-Gordian distance between K and r K. The negative fi-reflection distance Ref’ ﬁ_ (K)is
the f-Gordian distance between K and —r K. The ti-inversion distance Imv#(K) is the
#i-Gordian distance between K and —K.
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Distances on Convex Bodies, Cones, and Simplicial
Complexes

9.1. DISTANCES ON CONVEX BODIES

A convex body in the n-dimensional Euclidean space E” is a compact convex subset of E".
It is called proper if it has non-empty interior. Let K denote the space of all convex bodies
in %, and let K, be the subspace of all proper convex bodies.

Any metric space (K, d) on K is called metric space of convex bodies. Metric spaces of
convex bodies, in particular the metrization by the Hausdorff metric, or by the symmetric
difference metric, play a basic role in the foundations of analysis in Convex Geometry
(see, for example, [Grub93]).

For C, D € K\{#} the Minkowski addition and the Minkowski non-negative scalar mul-
tiplication are defined by C + D = {x+y: x € C,y € D},and «C = {ax: x € C},
a = 0, respectively. The Abelian semi-group (K, +) equipped with non-negative scalar
multiplication operators can be considered as a convex cone.

The support function he : S*~ 1 — Rof C € K is defined by he(u) = sup{{u, x): x €
C} forany u € S*!, where $"~! is the (n — 1)-dimensional unit sphere in E*, and (, ) is
the inner product in E",

Given a set X C E”, its convex hull, conv(X), is defined as the minimal convex set
containing X.

e Area deviation

The area deviation (or template metric) is a metric on the set K, in E2 (i.e., on the set
of plane convex disks), defined by

A(CAD),

where A(.) is the area, and A is the symmetric difference. If C C D, then it is equal to
A(D) — A(C).

o Perimeter deviation

The perimeter deviation is a metric on K, in E2, defined by
2p(conv(C U D)) — p(C) — p(D),
where p(.) is the perimeter. In the case C C D, itis equal to p(D) — p(C).

122
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o Mean width metric

The mean width metric is a metric on K, in E2, defined by
2W (conv(C U D)) — W(C) — W(D),

where W (.) is the mean width: W(C) = p(C)/m, and p(.) is the perimeter.

e Pompeiu-Hausdorff-Blaschke metric

The Pompeiu—Hausdorff-Blaschke metric (or Hausdorff metric) is a metric on K,
defined by

maxfsup inf [lx = yll, sup inf Jlx = yll},
xeC YED ),ereC

where ||.||2 is the Euclidean norm on E”.

In terms of support functions, respectively, using Minkowski addition, it is

sup |hc() —hp@)| = lhc — hpllso

uesn—1

=inf{A>0: CCD+AB".DCC+B"},

where B is the unit ball of E".

This metric can be defined using any norm on R” instead of the Euclidean norm. More
generally, it can be defined for the space of bounded closed subsets of an arbitrary metric
space.

o Pompeiu-Eggleston metric
The Pompeiu—-Eggleston metric is a metric on K, defined by
sup inf [lx — y[}2 + sup inf [lx — yll2,
xeC ¥YeD ),EDxeC

where ||.||2 is the Euclidean norm on [E”,

In terms of support functions, respectively, using Minkowski addition, it is

max{O, sup (hc(u)—hp(u))}—i-max{O, sup (hD(u)—hC(u))}

uesn—1 uesn—!

=inf{A >0: CCD+AB"}+inf{A>0: DCC+aB"},

where B is the unit ball of E".

This metric can be defined using any norm on R” instead of the Euclidean norm. More
generally, it can be defined for the space of bounded closed subsets of an arbitrary metric
space.
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o McClure—Vitale metric

Given 1 < p < o0, the McClure-Vitale metric is a metric on K, defined by

(/S Ihe ) = hp@l” da(w) " = lhe = hpll,.

e Florian metric

The Florian metric is a metric on K, defined by
/S . |he(u) — hp(u)|do(u) = [[he — hpl1-

It can be expressed in the form 2S5 (conv(CUD))—S(C)—S(D) for n = 2 (cf. perimeter
deviation); it can be expressed also in the form nk, QW (conv(CUD))— W (C)—W (D))
for n > 2 (cf. mean width metric). Here S(.) is the surface area, k, is the volume
of the unit ball B" of E", and W () is the mean width: W(C) = ﬁ fs,,,l(hc(u) +
hc(—u)) do(u).

e Sobolev distance

The Sobolev distance is a metric on K, defined by

“hC —hp “uu

where |.|l, is the Sobolev 1-norm on the set Cgq—1 of all continuous functions on the
unit sphere S"~1 of B

The Sobolev 1-norm is defined by || flw = (f, f)u*, where (, )y is an inner product on
Csnfl N giVen by

1

(f, 8w = / (fe+ Vo(f. 8))dwy, wo= w,
Sn—l n- kll

Vi(f, g) = (grad, f, grad g), {, ) is the inner product in E", and grad; is the gradient
on "1 (see [ArWe92]).

e Shephard metric
The Shephard metric is a metric on K, defined by

In(1+2inf{A > 0: CCD+MD—D),D CC+ArC—0O)}).

e Nikodym metric

The Nikodym metric (or symmetric difference metric) is a metric on K, defined by

V(CAD),
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where V (.) is the volume (i.e., the Lebesgue n-dimensional measure), and A is the sym-
metric difference. For n = 2, one obtains the area deviation.

e Steinhaus metric

The Steinhaus metric (or homogeneous symmetric difference metric, Steinhaus dis-
tance) is a metric on K, defined by

V(CAD)
vV(CuUD)’

where V() is the volume. So, it is %, where dp is the Nikodym metric. This

metric is bounded; it is affine invariant, while the Nikodym metric is invariant only
under volume-preserving affine transformations.

o Eggleston distance

The Eggleston distance (or symmetric surface area deviation) is a distance on K,
defined by

S(CUD)—S(CnND)j,
where S(.) is the surface area. The measure of surface deviation is not a metric.

e Asplund metric

The Asplund metric is a metric on the space K,/ of affine-equivalence classes in K,
defined by

lninf{k >1: 3T : E" — E" affine, x € E*, C C T(D) C kC+x}

for any equivalence classes C* and D* with the representatives C and D, respectively.

e Macbeath metric

The Macbeath metric is a metric on the space K/~ of affine-equivalence classes in
K, defined by

lninf{[detT - Pl: AT,P : E" — E” regular affine, C C T(D), D C P(C)}

for any equivalence classes C* and D* with the representatives C and D, respectively.

Equivalently, it can be written as
Iné((C, D) +1nd1(D, C),

where 81(C, D) = infy{ Vg/T((CD))) : C C T(D)},and T is aregular affine mapping of [£”
onto itself.
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¢ Banach—Mazur metric

The Banach—Mazur metric is a metric on the space Kpo/~ of the equivalence classes
of proper 0-symmetric convex bodies with respect to linear transformations, defined by

In inf{k >1: 3T : E" — E" linear, C C T(D) C )LC}

for any equivalence classes C* and D* with the representatives C and D, respectively.

It is a special case of the Banach-Mazur distance between n-dimensional normed
spaces.

e Separation distance

The separation distance is the minimum Euclidean distance between two disjoint con-
vex bodies C and D in [E” (in general, the set-set distance between any two disjoint
subsets of E*): inf{||lx — yll2: x € C,y € D}, while sup{||[x — y[[»: x € C,y € D}is
called the spanning distance.

e Penetration depth distance

The penetration depth distance between two inter-penetrating convex bodies C and
D in E” (in general, between any two inter-penetrating subsets of E”) is defined as the
minimum translation distance that one body undergoes to make the interiors of C and
D disjoint:

min{||¢ll2: interior(C + 1) N D = 3}.

This distance is a natural extension of the Euclidean separation distance for disjoint
objects to overlapping objects. This distance can be defined by inf{d(C, D + x): x €
E™}, or by inf; d(C, s(D)), where the infimum is taken over all similarities s : E* — [E”,
or ..., where d is one of the metrics above.

o Growth distance

For convex polyhedra, the growth distance (see [GiOn96] for details) is defined as the
amount objects must be grown from their internal seed points until their surfaces touch.

o Minkowski difference

The Minkowski difference on the set of all compact subsets, in particular, on the set of
all sculptured objects (or free form objects), of R3 is defined by

A—B={x—y: xe€A, yeB}.

If we consider object B to be free to move with fixed orientation, the Minkowski differ-
ence is a set containing all the translations that bring B to intersect with A. The closest
point from the Minkowski difference boundary, 3(A — B), to the origin gives the sep-
aration distance between A and B. If both objects intersect, the origin is inside the
Minkowski difference, and the obtained distance can be interpreted as a penetration
distance.
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e Maximum polygon distance

The maximum polygon distance is a distance between two convex polygons P =
(p1s.-.,pn)yand Q =(qi1, ..., gm), defined by

max [|p; —qjll2, i €{1,...,n}, je{l,...,m},
iJ

where ||.]|7 is the Euclidean norm.

o Grenander distance

Let P = (p1,...,pn) and @ = (q1,...,gm) be two disjoint convex polygons, and
{(pi,q;), [(pm,q) be two intersecting critical support lines for P and Q. Then the
Grenander distance between P and Q is defined by

lpi —qjlla+1pm —aqilla — X(pi, pm) — X(gj, q1),

where ||.||2 is the Euclidean norm, and X (p;, p;,) is the sum of the edges lengths of the
polynomial chain p;, ..., pm.

Here P = (p1, ..., pn) i1s a convex polygon with the vertices in standard form, i.e., the
vertices are specified according to Cartesian coordinates in a clockwise order, and no
three consecutive vertices are collinear. A line [ is a line of support of P if the interior
of P lies completely to one side of /. Given two disjoint polygons P and Q, the line
{(pi, q;) is a critical support line if it is a line of support for P at p;, a line of support
for Q at g;, and P and Q lie on opposite sides of I(p;, g;).

9.2. DISTANCES ON CONES

A convex cone C in areal vector space V isasubset C of Vsuchthat C4+C C C,AC C C
forany A > 0, and C N (—C) = {0}. A cone C induces a partial order on V by

x <y ifandonlyif y—xeC.

The order < respects the vector structure of V,i.e.,if x < yandz < u,thenx+z < y+u,
andif x < y,then Ax < Ly, A € R, A > 0. Elements x, y € V are called comparable and
denoted by x ~ y if there exist positive real numbers « and § such that oy < x < Sy.
Comparability is an equivalence relation; its equivalence classes (which belong to C or to
—C) are called parts (or components, constituents).

Given a convex cone C, asubset S = {x € C: T(x) = 1}, where T : V — R is some
positive linear functional, is called cross-section of C.

A convex cone C is called almost Archimedean if the closure of its restriction to any
two-dimensional subspace is also a cone.
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e Thompson part metric

Given a convex cone C in a real vector space V, the Thompson part metric on a part
K C C\{0} is defined by

In max{m(x, v), m(y, X)}

for any x, y € K, where m(x, y) = inf{A e R: y < Ax}.

If C is almost Archimedean, then K equipped with the Thompson part metric is a com-
plete metric space. If C is finite-dimensional, then one obtains a chord space, i.e., a
metric space in which there is a distinguished set of geodesics, satisfying certain ax-
ioms. The positive cone R’j_ ={(x1,...,xn): x; 2 0for1 < i < n}equipped with the
Thompson part metric is isometric to a normed space which one may think as being flat.

If C is a closed cone in R” with non-empty interior, then int C can be considered as
an n-dimensional manifold M". If for any tangent vector v € T,(M"), p € M", we
define a norm ||U“17; = inf{fe > 0: —ap < v < ap}, then the length of any piecewise

differentiable curve y : [0, 1] — M" can be written as [(y) = fol II)/’(t)H;(Z) dt, and
the distance between x and y is equal to inf}, /(y), where the infimum is taken over all

such curves y with y(0) = x and y (1) = y.

e Hilbert projective semi-metric

Given a convex cone C in a real vector space V, the Hilbert projective semi-metric is
a semi-metric on C\{0}, defined by

In(m(x, y) - m(y, x))

for any x, y € C\{0}, where m(x, y) = inf{A € R: y < ix}. Itis equal to O if and only
if x = Ay for some A > 0, and becomes a metric on the space of rays of the cone.
If C is finite-dimensional, and S is a cross-section of C (in particular, S = {x € C:
x|l = 1}, where ||.|| is a norm on V'), then, for any distinct points x, y € S, the distance
between them is equal to |In(x, y, z, t)|, where z, ¢ is the points of the intersection of
the line [, , with the boundary of S, and (x, y, z, 1) is the cross-ratio of x, y, z, t.

If C is almost Archimedean and finite-dimensional, then each part of C is a chord

space under the Hilbert projective metric. The Lorentz cone {(t, x1, ..., x,) € R**T:
1?2 > xlz 4+ x,%} equipped with the Hilbert projective metric is isometric to the n-
dimensional hyperbolic space. The positive cone R = {(x1,...,x,): x; = O0for1 <

i < n} with the Hilbert projective metric is isometric to a normed space which one may
think as being flat.

If C is a closed cone in R" with non-empty interior, then int C can be considered as an
n-dimensional manifold M". If for any tangent vector v € T,(M"), p € M", we define
a semi-norm ||v Hff = m(p, v)—m(v, p), then the length of any piecewise differentiable

curve y : [0, 1] — M" can be written as I[(y) = fol Hy’(t)llf(t) dt, and the distance

between x and y is equal to inf,, [{), where the infimum is taken over all such curves y
with (0) = x and y (1) = y.
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o Bushell metric

Given a convex cone C in a real vector space V, the Bushell metric on the set S = {x €
C: Y ' | Ixi| =1} (in general, on any cross-section of C) is defined by

1 —m(x,y)-m(y, x)
L+m(x,y)-m(y, x)

for any x,y € S, where m(x,y) = inf{A € R: y =< Ax}. In fact, it is equal to
tanh(%h(x, y)), where £ is the Hilbert projective semi-metric.

e k-oriented distance

A simplicial cone C in R" is defined as the intersection of n (open or closed) half-spaces,
each of whose supporting planes contain the origin 0. For any set X of n points on the
unit sphere, there is a unique simplicial cone C that contains these points. The axes of
the cone C can be constructed as the set of the n rays, where each ray originates at the
origin, and contains one of the points from X.

Given a partition {Cq, ..., Ci} of R” into a set of simplicial cones Cy, ..., Cg, the
k-oriented distance is a metric on R”, defined by

de(x — y)

for all x, y € R", where, for any x € C;, the value d(x) is the length of the shortest
path from the origin O to x traveling only in directions parallel to the axes of C;.

o Cone metric

A cone Con(X) over a metric space (X, d) is the quotient of the product X x [0, 00)
obtained by identifying all points in the fiber X x {0}. This point is called apex of the
cone.

The cone metric is a metric on Con(X), defined, for any (x, £}, (v, s) € Con(X), by

\/[2 + 52 — 2ts cos(min{d(x, y), w}).

e Suspension metric

A spherical cone (or suspension) X (X) over a metric space (X, d) is the quotient of the
product X x [0, a] obtained by identifying all points in the fibers X x {0} and X x {a}.

If (X, d) is a length space with diameter diam(X) < 7, and a = 7, the suspension
metric is a metric on X' (X), defined, for any (x, t), (y,s) € ¥(X), by

arccos(cos tcoss +sintsins cosd(x, y)).

9.3. DISTANCES ON SIMPLICIAL COMPLEXES

An r-dimensional simplex (or geometrical simplex, hypertetrahedron) is the convex hull
of r + 1 points of E” which do not lie in any (r — 1)-plane. The simplex is so-named
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because it represents the simplest possible polytope in any given space. The boundary of
an r-simplex has r + 1 O-faces (polytope vertices), @ 1-faces (polytope edges), and
(ﬁ_}) i-faces, where (%) is a binomial coefficient. The content (i.c., the hypervolume) of a
simplex can be computed using the Cayley—-Menger determinant. The regular simplex in r
dimensions with is denoted by ;.

Roughly, a geometrical simplicial complex is a space with a triangulation, i.e., a decom-
position of it into closed simplices such that any two simplices either do not intersect or
intersect along a common face.

An abstract simplicial complex S is a set, whose elements are called vertices, in which a
family of finite non-empty subsets, called simplices, is distinguished, such that every non-
empty subset of a simplex s is a simplex, called face of s, and every one-element subset is
a simplex. A simplex is called i-dimensional if it consists of i + 1 vertices. The dimension
of S is the maximal dimension of its simplices. For every simplicial complex S there exists
a triangulation of a polyhedron, whose simplicial complex is S. This geometric simplicial
complex, denoted by G S, is called geometric realization of S.

e Simplicial metric

Let S be an abstract simplicial complex, and GS be a geometric simplicial complex
which is a geometric realization of S. The points of G S can be identified with the func-
tions @ : S — [0, 1] for which the set {x € S: «(x) # 0} is a simplex in S, and
Y res@(x) = 1. The number «(x) is called x-th barycentric coordinate of c.

The simplicial metric is a metric on G S, defined by

\/Z(a(x) — B(x))?.

xeS

o Polyhedral metric

A polyhedral metric is the intrinsic metric of a connected geometric simplicial com-
plex in E" in which identified boundaries are isometric. In fact, it is defined as the infi-
mum of the lengths of the polygonal lines joining the points x and y such that each link
is within one of the simplices.

An example of a polyhedral metric is the intrinsic metric on the surface of a convex
polyhedron in [E3. A polyhedral metric can be considered on a complex of simplices in a
space of constant curvature. In general, polyhedral metrics are considered for complexes
which are manifolds or manifolds with boundary.

e Polyhedral chain metric

An r-dimensional polyhedral chain A in E” is a linear expression

m
D ditf.
i=1
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where, for any i, the value ¢/ is an r-dimensional simplex of E”. The boundary of a chain
is the linear combination of boundaries of the simplices in the chain. The boundary of
an r-dimensional chain is an (r — 1)-dimensional chain.

A polyhedral chain metric is a norm metric

A =B

on the set C,(E") of all r-dimensional polyhedral chains. As a norm ||.|| on C,(E") one

can take:

1. The mass of a polyhedral chain, i.e., [A] = >/ |d;[]t] |, where |¢"| is the volume of
the cell ];

2. The flat norm of a polyhedral chain, i.e., |A|> = infp{|A — dD| + | D|}, where | D| is

the mass of D, 3D is the boundary of D, and the infimum is taken over all (r 4+ 1)-
dimensional polyhedral chains; the completion of the metric space (C,(E"), |.|) by
the flat norm is a separable Banach space, denoted by C ,b (E™), its elements are
known as r-dimensional flat chains;

where |A|” is the flat norm of A, and the infimum is taken over all shifts v (here Tyt"
is the sell obtained by shifting ¢” by a vector v of length |v]); the completion of the
metric space (C,(E"), |.|%) by the sharp norm is a separable Banach space, denoted
by C jj(]E”) its elements are called r-dimensional sharp chains. A flat chain of finite
mass is a sharp chain. If = 0, than |A|* = |A[!.

. The sharp norm of a polyhedral chain, i.e.,

|A* =

dillt]
nf(Zl 1| { | ||U, ZdtTultl

The metric space of polyhedral co-chains (i.e., linear functions of polyhedral chains)
can be defined in similar way. As a norm of a polyhedral co-chain X one can take:

1.

2.
3.

The co-mass of a polyhedral co-chain, i.e., |X| = sup4—; [ X(A)], where X(A) is
the value of the co-chain X on a chain A;

The flat co-norm of a polyhedral co-chain, i.e., [ X" = supjap=1 | X (A)];

The sharp co-norm of a polyhedral co-chain, i.e., | X|* = sup|ap=; [ X (A)].



Part Il



Chapter 10

Distances in Algebra

10.1. GROUP METRICS

A group (G, -, ¢) is a set G of elements with a binary operation -, called group operation,
that together satisfy the four fundamental properties of closure (x-y € G forany x, y € G),
associativity (x-(y-z) = (x-y)-z forany x, y, z € G), the identity property (x-e = e-x = x
for any x € G), and the inverse property (for any x € G, there exists x| € G such
that x - x ! = x 1. x = ¢). In additive notation, a group (G, +,0) is a set G with a
binary operation 4 such that the following properties hold: x + y € G forany x, y € G,
x+(y+z20=x+y)+zforanyx,y,z€ G,x+0=0+x = x forany x € G, and, for
any x € G, there exists —x € G such that x 4+ (—x) = (—x) + x = 0. A group (G, -, €)
is called finite if the set G is finite. A group (G, -, e) is called Abelian if it is commutative,
ie.,x-y=y-xholds forany x, y € G.

Most of metrics, considered in this section, are group norm metrics on a group (G, -, e),
defined by

EXNE

(or, sometimes, by [[y~! - x||), where ||| is a group norm, i.e., a function ||.| : G — R
such that, for any x, y € G, we have the following properties:
1. |lx|| 2 0, with [|x]] =0 if and only if x = e;
2 lxl = 1x s
30 Mx -yl < lxll + DTyl (friangle inequality).

In additive notation, a group norm metric on a group (G, +, 0) is defined by [x +
(=] = llx — yl|, or, sometimes, by [[(—=y) + x]|.

The simplest example of a group norm metric is the bi-invariant ultrametric (some-
times called Hamming metric) ||x - vy~ ||, where | x|z = 1 for x # e, and [le] y = 0.
o Bi-invariant metric

A metric (in general, a semi-metric) d on a group (G, -, €) is called bi-invariant if
dx,y)=dx-z,y-2) =d(z-x,2-Y)

holds for any x, v, z € G (cf. translation invariant metric). Any group norm metric
on an Abelian group is bi-invariant.

A metric (in general, a semi-metric) d on a group (G, -, €) is called right-invariant
metric if d(x, y) = d(x - z, y - 7) holds for any x, y, z € G, i.e., the operation of right

134
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multiplication by an element z is a motion of the metric space (G, d). Any group norm
metric, defined by |x - y~!||, is right-invariant.

A metric (in general, a semi-metric) d on a group (G, -, e) is called left-invariant metric
iftd(x,y)=4d(z-x,z-y)holds for any x, v, z € G, i.e., the operation of left multipli-
cation by an element z is a motion of the metric space (G, d). Any group norm metric,
defined by [[y~! - x||, is left-invariant.

Any right-invariant, as well as any left-invariant, in particular, bi-invariant, metric d on
G is a group norm metric, since one can define a group norm on G by |[x|| = d(x, 0).

e Positively homogeneous metric

A metric (in general, a distance) d on an Abelian group (G, +, 0) is called positively
homogeneous if

d(mx,my) = md(x,y)
holds for all x, y € G and for all m € N, where mx is the sum of m terms all equal to x.

e Translation discrete metric

A group norm metric (in general, a group norm semi-metric) on a group (G, -, e) is
called translation discrete if the translation distances (or translation numbers)

7g{x) = lim ="l
n—-oo n

of the non-torsion elements x (i.e., such that x" # e for any n € N) of the group with
respect to that metric are bounded away from zero.

If the numbers 7 (x) are just non-zero, such group norm metric is called translation
proper metric.
o Word metric

Let (G, -, e) be a finitely-generated group with a set A of generators. The word length
wev(x) of an element x € G\{e} is defined by

wi (x) = inf{r: x =aj' - af", a; € A, & € {£1}},

r o

and wév(e) =0.

The word metric dév associated with A is a group norm metric on G, defined by

w’év(x . y_l).

As the word length wﬁ, is a group norm on G, then dé, is right-invariant. Sometimes it
is defined as w’v“v( y’1 -x), and then it is left-invariant. In fact, d;“v is the maximal metric
on G that is right-invariant, and such that the distance of any element of A or A~! to the
identity element e is equal to one.
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If A and B are two finite sets of generators of the group (G, -, ), then the identity
mapping between the metric spaces (G, d’v“v) and (G, dg,) is a quasi-isometry, i.c., the
word metric is unique up to quasi-isometry.

The word metric is the path metric of the Cayley graph I” of (G, -, e), constructed with
respect to A. Namely, I" is a graph with the vertex-set G in which two vertices x and
y € G are connected by an edge ifand only if y = afx, 6 = £1,a € A.

e Weighted word metric

Let (G, -, ¢) be a finitely-generated group with a set A of generators. Given a bounded
weight function w: A — (0, c0), the weighted word length wévw(x) of an element
x € G\{e} is defined by

t
Wiy (x) = inf{Zw(ai), teN: x=ai'...q]", a; €A, & € {il}},

i=1

and wiyy, () = 0.

The weighted word metric d{,?,w associated with A is a group norm metric on G,
defined by

A ~1

Www (.x -y )
As the weighted word length w’;‘vw is a group norm on G, then d;?,w is right-invariant.
Sometimes it is defined as wévw(y_I - x), and then it is left-invariant.
The metric dv/?/w is the supremum of semi-metrics d on G with the property that
d(e,a) < w(a) forany a € A.
The metric d{)‘l‘,w is a coarse-path metric, and every right-invariant coarse path metric is
a weighted word metric up to coarse isometry.
The metric d{,?,w is the path metric of the weighted Cayley graph I'y of (G, -, e) con-
structed with respect to A. Namely, I'y is a weighted graph with the vertex-set G in

which two vertices x and y € G are connected by an edge with the weight w(a) if and
onlyif y =a’x,e = £1,a € A.

e Interval norm metric

An interval norm metric is a group norm metric on a finite group (G, -, e), defined
by

|
”)C Y int’

where ||.||;ns 1S an interval norm on G, i.e., a group norm such that the values of |||
form a set of consecutive integers starting with 0.

To each interval norm |.[|;,; corresponds an ordered partition {By, ..., By} of G with
B; = {x € G: | x| = i} (cf. Sharma—Kaushik distance). The Hamming norm and
the Lee norm are special cases of interval norms. A generalized Lee norm is an interval
norm for which each class has a form B; = {a, a~!}.
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e C-metric
A C-metric d is a metric on a group (G, -, €), satistying the following conditions:
1. The values of d form a set of consecutive integers starting with 0;

2. The cardinality of the sphere S(x,r) = {y € G: d(x, y) = r} is independent of the
particular choice of x € G.

The word metric, the Hamming metric, and the Lee metric are C-metrics. Any inter-
val norm metric is a C-metric.

e Order norm metric

Let (G, -, e) be a finite Abelian group. Let ord(x) is the order of an element x € G,
i.e., the smallest positive integer n such that x” = e. Then the function |||y : G — R,
defined by [|x[[org = Inord(x), is a group norm on G, called order norm.

The order norm metric is a group norm metric on G, defined by

5™ o

o Monomorphism norm metric
Let (G, +, 0) be a group. Let (H, -, e) be a group with a group norm ||.||g.Let f : G —
H be a monomorphism of groups G and H, i.e., an injective function such that f(x +
y) = f(x)- f(y) for any x,y € G. Then the function H.Hé : G — R, defined by
lx ||é = | f ) u, is a group norm on G, called monomorphism norm.

The monomorphism norm metric is a group norm metric on G, defined by
e = yIg

e Product norm metric

Let (G, +, 0) be a group with a group norm |.||g. Let (H, -, ¢) be a group with a group
norm |.[g.Let G x H = {a = (x,y): x € G,y € H} be the Cartesian product of G
and H, and (x,y) - (z,t) = (x 4+ z, ¥ - t). Then the function |.[gxy : G X H — R,
defined by [lllGxs = (¥, WliGxs = IxllG+ ¥l is a group norm on G x H, called
product norm.

The product norm metric is a group norm metric on G x H, defined by

o8~ gr

On the Cartesian product G x H of two finite groups with the interval norms ||. ||’gt and
I.I% an interval norm ||| ,, can be defined. In fact, [l , = I, DIZ , =

IxllG + o + Dyl #, where m = max,eq llal|?.

o Quotient norm metric

Let (G, -, ¢) be a group with a group norm |.||g. Let (N, -, e) be a normal subgroup of
(G,-,e),1e, xN = Nx forany x € G. Let (G/N, -, eN) be the quotient group of G,
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e, G/IN={xN: x € G}withxN ={x-a: a€ N},and xN - yN = xyN. Then the
function [.[|g;n : G/N — R, defined by |[xN ||y = mingen l|xallx, is a group norm
on G/N, called quotient norm.

A quotient norm metric is a group norm metric on G/N, defined by

[xv - M7 xy TN

G/N = H G/N*
If G = 7Z with the norm being the absolute value, and N = mZ, m € N, then the
quotient norm on Z/m7Z = Z,, coincides with the Lee norm.

If a metric d on a group (G, -, ¢) is right-invariant, then for any normal subgroup
(N, -, e) of (G, -, e) the metric d induced a right-invariant metric (in fact, the Hausdorff
metric) d* on G/N by

d*(xN,yN) = max{max min d{a, b), max min d(a, b)}.

bevN aexN aexN beyN

o Commutation distance
Let (G, -, e) be afinite non-Abelian group. Let Z(G) = {c € G: x-c =c-x forany x €
G} be the center of G. The commutation graph of G is defined as a graph with the
vertex-set G in which distinct elements x, y € G are connected by an edge whenever
they commute, i.e., x - y = y - x. Obviously, any two distinct elements x, y € G that
are not commute, are connected in this graph by the path x, ¢, y, where c is any element
of Z(G) (for example, ¢). A path x = xLx? . xk = y in the commutation graph
is called (x — y) N-path if x' ¢ Z(G) for any i € {1,...,k}. In this case elements
X,y € G\Z(G) are called N-connected.
The commutation distance (see [DeHu98]) d is an extended distance on G, defined by
the following conditions:

1. d(x,x)y=0;

2.dx,yy=1ifx #y,andx -y =y - x;

3. d(x, y) is the minimum length of an (x — y) N-path for any N-connected elements
x and y € G\Z(G);

4. d(x,y) =o00if x, y € G\Z(G) are not connected by any N-path.

e Modular distance

Let (Zy,, +, 0), m > 2, be a finite cyclic group. Letr € N, r > 2. The modular r-weight
wy(x)ofanelementx € Z,, = {0, 1, ..., m}is defined as w,{(x) = min{w, (x), w,(m—
x)}, where w,(x) is the arithmetic r-weight of the integer x. The value w,(x) can be
obtained as the number of non-zero coefficients in the generalized non-adjacent form
X =e gt +.ceir+egwithe; € Z, le;| <1, le; +e11] < r,and |e;| < |ej41] if
e;j¢i+1 < 0 (cf. arithmetic r-norm metric).

The modular distance is a distance on Z,,, defined by

wr(x — ).
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The modular distance is a metric for w,(m) = 1, w,(m) = 2, and for several special
cases with w,(m) = 3 or 4. In particular, it is a metric form = r" orm = r" — 1;if
r = 2, it is a metric also for m = 2" 4+ 1 (see, for example, [Ernv85]).

The most popular metric on Z,,, is the Lee metric, defined by ||x — y||Lee, Where || X [[fee =
min{x, m — x} is the Lee norm of an element x € Z,,.

o G-norm metric

Consider a finite field F,» for a prime p and a natural number n. Given a compact
convex centrally-symmetric body G in R", define the G-norm of an element x € F = by
lxllc = inf{ > 0: x € pZ" + uG}.

The G-norm metric is a group norm metric on F ,», defined by
—1
lx-y HG

¢ Permutation norm metric

Given a finite metric space (X, d), the permutation norm metric is a group norm
metric on the group (Symy, -, id) of all permutations of X (id is the identity mapping),
defined by

187 sym

where the group norm ||| sym on Symy is given by || f llsym = max,ex d(x, f(x)).

e Metric of motions
Let (X, d) be a metric space, and let p € X be a fixed element of X.

The metric of motions (see [Buse55]) is a metric on the group (£2, -, id) of all motions
of X (id is the identity mapping), defined by

sup d(f(x), g(x)) . e—d{p.0)

xeX

for any f, g € £2 (cf. Busemann metric of sets). If the space (X, d) is bounded, the
similar metric on £2 can be defined as

supd(f(x),g(x)).

xeX

Given a semi-metric space (X, d), the semi-metric of motions on (£2, -, id) is defined
by

d(fp). g(p)).

e General linear group semi-metric

Let IF be a locally compact non-discrete topological field. Let (F*, [|.]|m), n = 2, be a
normed vector space over F. Let ||.|| be the operator norm associated with the normed
vector space (F", ||.[[fn). Let GL(n, F) be the general linear group over F. Then the
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function |.[,, : GL(n, F) — R, defined by |g|,, = sup{|In|gll], |In lg~ 113, is a semi-
norm on GL(n, IF).

The general linear group semi-metric is a semi-metric on the group GL(n, F), defined
by

|g : hi] ‘(}p'

It is a right-invariant semi-metric which is unique, up to coarse isometry, since any
two norms on F” are bi-Lipschitz equivalent.

o Generalized torus semi-metric

Let (T, -, €) be a generalized torus, i.e., a topological group which is isomorphic to a
direct product of n multiplicative groups I of locally compact non-discrete topolog-
ical fields F;; then there is a proper continuous homomorphism v : T — R”, namely,
v(X1, ..., xn) = (W1 (x1), ..., va(xp)), where v; : IFl* — R are proper continuous homo-
morphisms from the F; to the additive group R, given by the logarithm of the valuation.
Every other proper continuous homomorphism v’ : T — R”" is of the form v/ = « - v
with ¢ € GL(n, R). If ||.]] is a norm on R, one obtains the corresponding semi-norm
lxll7 = [ve)llonT.

The generalized torus semi-metric is a semi-metric on the group (7, -, ¢), defined by
ley™ 7 = o (™) = v — v .

¢ Heisenberg metric
Let (H, -, e) be the first Heisenberg group, i.e., a group on the set H = C ® R with the
grouplaw x -y = (z, 1) - (u, s) = (z+u, t +s+23(zu)), and the identity ¢ = (0, 0). Let
|.|Heis be the Heisenberg norm on H, defined by |x|neis = |(z, Dlneis = (1z]* + 12)1/4,
The Heisenberg metric (or gauge metric, Koranyi metric) dp,;; is a group norm
metric on H, defined by

‘xil ’y|H'

The second natural metric on (H, -, ¢) is the Carnot—Carathéodory metric (or C-C
metric, control metric) dc, defined as the intrinsic metric using horizontal vector fields
on H. The metrics dy,;is and d¢ are bi-Lipschitz equivalent; in fact, ﬁng,-s(x, y) <
dc(x, y) < dgeis(x, ¥).

The Heisenberg metric can be defined, in a similar manner, on any Heisenberg group
(H", -, e) with H" = C" @ R.

o Metric between intervals
Let G be the set of all intervals [a, b] of R. The set G forms semi-groups (G, +) and
(G, -) under addition I + J = {x + y: x € I, y € J} and under multiplication I - J =
{x-y: x el,ye J}, respectively.
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The metric between intervals is a metric on G, defined by
max{|I], |/}

forall I, J € G, where, for I = [a, b], one has [I| = |a — b]|.

o Ring semi-metric
Let (A, +, -) be a factorial ring, i.e., a ring with unique factorization.

The ring semi-metric is a semi-metric on the set A\{0}, defined by

lem.(x,y)
In ———,
g.c.d.(x,y)

where [.c.m.(x, y) is the least common multiple, and g.c.d.(x, y) is the greatest common
divisor of elements x, y € A\{0}.

10.2. METRICS ON BINARY RELATIONS

A binary relation R on a set X is a subset of X x X it is the arc-set of the directed graph
(X, R) with the vertex-set X.

A binary relation R which is symmetric ((x,y) € R implies (v, x) € R), reflexive (all
(x, x) € R), and transitive ((x, ¥), (v, z) € Rimply (x, z) € R) is called equivalence rela-

tion or a partition (of X into equivalence classes). Any g-ary sequence x = (X1, ..., Xn),
g > 2 (e, with0 < x;, < g—1for1 < i < n), corresponds to the partition
{Bo, ..., By 1}of V, ={1,...,n},where B; = {1 <i <n: x; = j} are the equivalence
classes.

A binary relation R which is antisymmetric ((x, y), (v, x) € R imply x = y), reflexive,
and transitive is called partial order, and the pair (X, R) is called poset (partially ordered
set). A partial order R on X is denoted also by < with x < y if and only if (x, y) € R. The
order < is called linear if any two elements x, y € X are compatible,i.e.,x < yory < x.

A poset (L, <) is called lattice if every two elements x, y € L have the join x v y and
the meet x A y. All partitions of X form a lattice by refinement; it is a sublattice of the
lattice (by set-inclusion) of all binary relations.

e Kemeny distance

The Kemeny distance between binary relations R} and Ry on a set X is the Hamming
metric |R] AR;|. The Kemeny distance is twice the minimal number of inversions of
pairs of adjacent elements of X which is necessary to obtain R» from R;.

If Ry, Ry are partitions, then the Kemeny distance coincides with the Mirkin—-Tcherny
distance, and

[R1ARy|

nn—1)

is the Rand index.



142 [ e Metrics between partitions] Part I1I: Distances in Classical Mathematics

The Drapal-Kepka distance between distinct quasigroups (X, +) and (X, ) is defined
by [{(x,y): x+y #x -y}l

If binary relations Ry, Ry are linear orders (or rankings, permutations) on the set X,
then the Kemeny distance coincides with the inversion metric on permutations.

e Metrics between partitions

Let X be a finite set of cardinality n = | X]|, and let A, B be non-empty subsets of X.
Let Px be the set of partitions of X, and P, Q € Px. Let By, ..., B, are blocks in the
partition P, i.e., the pairwise disjoint sets such that X = B; U ---U By, ¢ > 2. Let
P v Q be the join of P and Q, and P A Q be the meet of P and Q in the lattice Py of
partitions of X.

Consider the following editing operations on partitions:

— An augmentation transforms a partition P of A\{B} into a partition of A by either
including the objects of B in a block, or including B itself as a new block;

— An removal transforms a partition P of A into a partition of A\{B} by deleting the
objects in B from each block that contains them;

— A division transforms one partition P into another by the simultaneous removal of B
from B; (where B C B;, B # B;), and augmentation of B as a new block;

— A merging transforms one partition P into another by the simultaneous removal of B
from B; (where B = B;), and augmentation of B to B; (where j # i);

— A transfer transforms one partition P into another by the simultaneous removal of B
from B; (where B C B;), and augmentation of B to B; (where j # i).

Define (see, for example, [Day81]), in terms of above operations, the following editing
metrics on Py:

1. The minimum number of augmentations and removals of single objects needed to
transform P into Q;

2. The minimum number of divisions, mergings, and transfers of single objects needed
to transform P into Q;

3. The minimum number of divisions, mergings, and transfers needed to transform P
into Q;

4. The minimum number of divisions and mergings needed to transform P into Q; in
fact, itis equal to |P| + [Q] — 2|P Vv Q;

5. 0(P)+0(Q) —20(P A Q),where o (P) =3 pcp PP —1);

6. e(P) +e(Q) — 2e(P A Q), where e(P) =logyn + 3 p . p il log, 111,

n
The Reignier distance is the minimum number of elements that must be moved between

the blocks of partition P in order to transform it into Q. (Cf. Earth Mover distance and
above metric 2.)
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10.3. LATTICE METRICS

Consider a poset (L, <). The meet (or infimum) x A y (if it exists) of two elements x and
y is the unique element satisfying x A y < x, y,and z < x A y if z < x, y; similarly, the
Jjoin (or supremum) x V y (if it exists) is the unique element such that x, y < x v y, and
xvy=<zifx,y<z

A poset (L, <) is called lattice if every two elements x, y € L have the join x V y and
the meet x A y. A poset (L, <) is called meet semi-lattice (or lower semi-lattice) if only
meet-operation is defined. A poset (L, <) is called join semi-lattice (or upper semi-lattice)
if only join-operation is defined.

A lattice . = (L, <, Vv, A) is called semi-modular lattice (or semi-Dedekind lattice)
if the modularity relation x My is symmetric: x My implies yMx for any x, y € L. The
modularity relation here is defined as follows: two elements x and y are said to constitute
a modular pair, in symbols xMy,if x A(y vV z) = (x Ay)Vvzforany z < x. Alattice L
in which every pair of elements is modular, is called modular lattice (or Dedekind lattice).
A lattice is modular if and only if the modular law is valid: if z < x, then x A (y V 2) =
{(x A y) v z for any y. A lattice is called distributive if x A(y Vz) = (x Ay) V(X Ag)
holds for any x, y,z € L.

Given alattice L, a function v : L — Ry, satisfyingv(x vy)+v(x Ay) < v(x)+v(y)
for all x, y € L, is called subvaluation on L. A subvaluation v is called isotone if v(x) <
v(y) whenever x < y, and it is called positive if v(x) < v(y) whenever x < y, x # y.

A subvaluation v is called valuation if it is isotone and v{(x V y) +v(x A y) = v(x)+v(y)
holds for all x, y € L. Integer-valued valuation is called height (or length) of IL.

e Lattice valuation metric

Let . = (L, <, Vv, A) be alattice, and let v be an isotone subvaluation on IL. The lattice
subvaluation semi-metric d,, on L is defined by

2v(x Vy) —vlx) — v(y).

(It can be defined also on some semi-lattices.) If v is a positive subvaluation on L, one
obtains a metric, called lattice subvaluation metric. If v is a valuation, d,, can be written
as

v(x Vy) —v(x Ay) =vx) +u(y) —2v(x A y),

and is called valuation semi-metric. If v is a positive valuation on L, one obtains a metric,
called lattice valuation metric.

If L = N (the set of positive integers), x V y = [.c.m.(x, y) (least common multiple),
x Ay = g.cd.(x,y) (greatest common divisor), and the positive valuation v(x) = Inx,
then dy(x, y) = In % This metric can be generalized on any factorial ring (i.e., a
ring with unique factorization) equipped with a positive valuation v such that v(x) > 0

with equality only for the multiplicative unit of the ring, and v(xy) = v{x) + v(y).
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o Finite subgroup metric

Let (G, -, e) be a group. Let L = (L, C, N) be the meet semi-lattice of all finite sub-
groups of the group (G, -, e) with the meet X N Y and the valuation v(X) = In | X]|.

The finite subgroup metric is a valuation metric on L, defined by

|X[|Y]

e Scalar and vectorial metrics

Let . = (L, <, max, min) be a lattice with the join max{x, y}, and the meet min{x, y}
on aset L C [0, 00) which has a fixed number a as the greatest element and is closed
under negation, i.e., forany x € L,onehasx =a —x € L.

The scalar metric ¢ on L is defined, for x # y, by
d(x,y) = max{min{x,?}, min{x, y}}.
The scalar metric d* on L* = L U {x}, % ¢ L, is defined, for x # y, by

dlx,y), ifx,yelL,
d*(x,y) = {max{x, X}, ify==x%x#%,
max{y,y}, ifx ==,y # %

Given a norm ||.|] on R”, n > 2, the vectorial metric on L” is defined by

3

H (d(_X] ’ )’1), AR d(-xn’ }'n))

and the vectorial metric on (L*)" is defined by
H (d*(xl JYD e d T (X, yn)) H

The vectorial metric on L’2Z = {0, 1}"* with [1-norm on R” is the Fréchet-Nikodym-—

Aronszyan distance. The vectorial metric on L}, = {0, ﬁ,..., Z;j, 1} with
l1-norm on R" is the Sgarro m-valued metric. The vectorial metric on [0, 1]*
with /1-norm on R" is the Sgarro fuzzy metric. If L is L,, or [0,1], and x =
(X1s oo Xy Xntls e ooy Xntr)s ¥ = (V1o <oy Yo %, ..., %), Where =« stands in r places,
then the vectorial metric between x and y is the Sgarro metric (see, for example,

[CSYO1]).

e Metrics on Riesz space
A Riesz space (or vector lattice) is a partially ordered vector space (Vg;, <) in which the
following conditions hold:

1. The vector space structure and the partial order structure are compatible: fromx < y
follows that x + z < y + z, and from x > 0, A € R, A > 0 follows that Ax > 0;
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2. For any two elements x, y € Vg; there exists join x VvV y € Vg; (in particular, the join
and the meet of any finite set exist).

The Riesz norm metric is a norm metric on Vg;, defined by

lx — ylg:.

where |.[|g; iS a Riesz norm, i.e., a norm on Vg; such that, for any x,y € Vg;, the
inequality |x| < [y|, where [x| = (—x) Vv (x), implies ||x|lr; < |lylri- The space
(VRi, |- Iri) is called normed Riesz space. In the case of completeness it is called Banach
lattice. All Riesz norms on a Banach lattice are equivalent.

Anelement e € VI?;' = {x € Vg;: x > 0} is called strong unit of Vg; if for each x € Vg;
there exists A € R such that [x] < Ae. If a Riesz space Vg; has a strong unit e, then
|Ix|| = inf{A € R: |x| < Ae} is a Riesz norm, and one obtains on V; a Riesz norm
metric

inf{k eR: |x —y] < )Le}.

A weak unit of Vg; is an element e of V,;? such that e A |x| = O implies x = 0. A Riesz
space Vg; is called Archimedean if, for any two x, y € V,;? , there exists a natural number
n, such that nx < y. The uniform metric on an Archimedean Riesz space with a weak
unit e is defined by

inf{)L eR: [x—y|lrne= ke}.

o Gallery distance of flags

Let L be a lattice. A chain C in L is a subset of L which is linearly ordered, i.e., any
two elements of C are compatible. A flag is a chain in L which is maximal with respect
to inclusion. If L is a semi-modular lattice, containing a finite flag, then L. has an unique
minimal and an unique maximal element, and any two flags C, D in L. have the same
cardinality, n 4 1. Then #n is the height of the lattice L. Two flags C, D in L are called
adjacent if they are equal or D contains exactly one element not in C. A gallery from C
to D of length m is a sequence of flags C = Cp, Cy, ..., Cy, = D such that C;_1 and
C; are adjacent fori =1, ..., m.

A gallery distance of flags (see [Abel91]) is a distance on the set of all flags of a semi-
modular lattice I with finite height, defined as the minimum of lengths of galleries from
C to D. It can be written as

ICvD[—|C|=ICVD|-[D|,

where Cv D = {cvd: c € C, d € D} is the upper sub-semi-lattice generated by C
and D.

The gallery distance of flags is a special case of the gallery metric (of the chamber
system consisting of flags).



Chapter 11

Distances on Strings and Permutations

An alphabet is a finite set A, | A| > 2, elements of which are called characters (or sym-
bols). A string (or word) is a sequence of characters over a given finite alphabet .A. The set
of all finite strings over the alphabet A is denoted by W (.A). The strings below are finite
except for Baire, Duncan, and Fréchet permutation metrics.

A substring (or factor, chain, block) of the string x = x{...x, is any its contiguous
subsequence x;x;41...x, with 1 < i < k < n. A prefix of a string x;1 ... x, is any its
substring starting with x1; a suffix is any its substring finishing with x,,. If a string is a part
of a text, then the delimiters (a space, a dot, a comma, etc.) are added to the alphabet .A.

A vector is any finite sequence consisting of real numbers, i.e., a finite string over infinite
alphabet R. A frequency vector (or discrete probability distribution) is any string xi ... X,

with all x; > 0 and Z:}:l x; = 1. A permutation (or ranking) is any string x1 . .. x, with
all x; being different numbers from {1, ..., n}.

An editing operation is an operation on strings, i.e., a symmetric binary relation on the
set of all considered strings. Given a set of editing operations O = {01, ..., Oy}, the

corresponding unit cost edit distance between strings x and y is the minimum number
of editing operations from O needed to obtain y from x. It is a metric; moreover, it is the
path metric of a graph with the vertex-set W(.4) and xy being an edge if y can be obtained
from x by one of the operations from O. In some applications, a cost function is assigned
to each type of editing operation; then the distance is the minimal total cost of transforming
X into y.

Main editing operations on strings are:

o Character indel, i.e., insertion or deletion of a character;
o Character replacement;

e Substring move, i.e., transforming, say, the string x = Xxi1...x, into the string
X1 Xi—1Xj . Xk—1X] - X1 XE .. i #794

o Substring copy, i.e., transforming, say, X = X1...X, inf0O X1 ... X; 1Xj... XKk 1% ... Xy}

o Substring uncopy, i.e., the removal of a substring provided that a copy of it remains in
the string.

We list below main distances on strings. However, some string distances will appear in
Chapters 15, 21 and 23, where they fit better, with respect to the needed level of general-
ization or specification.

146
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11.1. DISTANCES ON GENERAL STRINGS

o Levenstein metric

The Levenstein metric (or shuffle-Hamming distance, Hamming+Gap metric, the edit-
ing metric) is an editing metric on W(A), obtained for O consisting of only character
replacements and indels.

The Levenstein metric between strings x = x1...x, and y = y1 ...y, is equal to
min{dpy (x*, y*)},

where x*, y* are strings of length k, k > max{m, n}, over alphabet A* = A U {x}, so
that after deleting all new characters =, strings x* and y* shrink to x and y, respectively.
Here, the gap is the new symbol %, and x*, y* are shuffles of strings x and y with strings
consisting of only .

o Editing metric with moves

The editing metric with moves is an editing metric on W(A4) ([Corm03]), obtained for
O consisting of only substring moves and indels.

o Editing compression metric

The editing compression metric is an editing metric on W(A) ([Corm03]), obtained
for O consisting of only indels, copy and uncopy operations.

¢ Indel metric
The indel metric is an editing metric on W (A), obtained for O consisting of only indels.

It is an analog of the Hamming metric | X AY| between sets X and Y. For strings x =
X]...xp and y = y1...y, it is equal to m + n — 2LCS(x, y), where the similarity
LCS(x, y) is the length of the longest common subsequence of x and y.

The factor distance on W(A) is defined by m + n — 2LCF(x, y), where the similarity
LCF(x, y) is the length of the longest common substring (factor) of x and y.

e Multiset metric
The multiset metric is a metric on W(.4), defined by

max{|X — Y|, |¥Y — X|}

for any strings x and y, where X, Y are bags of symbols (multisets of characters) in
strings x, y, respectively.
e Normalized information distance

The normalized information distance d is a symmetric function on W({0, 1})
([LCLMO04]), defined by

max{K (x]y*), K(y|x*)}
max{K (x), K(»}
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for every two binary strings x and y. Here, for binary strings u and v, u* is a shortest
binary program to compute # on an appropriated universal computer, the Kolmogorov
complexity (or algorithmic entropy) K (1) is the length of u* (the ultimate compressed
version of u), and K (u|v) is the length of the shortest program to compute u if v is
provided as an auxiliary input.

The function d(x, y) is a metric up to small error term: d(x, x) = O (K (x))~!), and
d(x,2) —d(x,y) —d(y,z) = O((max{K (x), K (), K@} ™). (Cf. d(x, y) with the
following information metric (or entropy metric) H(X|Y)+ H(Y]X) between stochas-
tic sources X and Y.)

The normalized compression distance is a distance on W ({0, 1}) ([LCLMO04],
[BGLVZ98]), defined by

Clxy) —min{C(x), C(y)}
max{C(x), C()}

for any binary strings x and y, where C(x), C(y), and C(xy) denote the size of com-

pressed (by fixed compressor C, such as gzip, bzip2, or PPMZ) of strings x, y, and their

concatenation xy. This distance is not a metric. It is an approximation of the normalized
Clxy) 1

information distance. A similar distance is defined by TOICH 2

e Marking metric

The marking metric is a metric on W (A) ([EhHa88]), defined by

Iny ((diff (x, ¥) + 1) (diff (v, x) + 1))

for any strings x = x1...x, and y = y...y,, where diff (x, y) is the minimal size
|M| of asubset M C {1, ..., m}such that any substring of x, not containing any x; with
i € M, is asubstring of y.

Another metric, defined in [EhHa88], is Ina (diff (x, y) + diff (v, x) + 1).

e Jaro similarity

Given strings x = x1...Xy and y = y1...Yy, call a character x; common with y if
x; = yj, where |i — j| < % Let x’ = x{...x/, be the all characters of x, which
are common with y (in the same order as they appear in x), and let y’ = y{ ...y, be the
analogous string for y.

The Jaro similarity Jaro(x, y) between strings x and y is defined by

Lm w0 S S mint ') =0Ty
3\ m n min{m’, n'}

This and following two similarities are used in Record Linkage.
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e Jaro—WinKkler similarity

The Jaro—Winkler similarity between strings x and y is defined by

max{4, LCP(x, y)}
10

Jaro(x, y) + (1 —Jaro(x, y)),

where Jaro(x, y) is the Jaro similarity, and LCP(x, y) is the length of the longest com-
mon prefix of x and y.

e g-gram similarity

The g-gram similarity between strings x and y is defined by

q(x,y) +q(y, x)
2 bl
where g (x, y) is the number of substrings of length ¢ in the string y, which occur also
as substrings in x, divided by the number of all substrings of length ¢ in y.

This similarity is an example of token-based similarities, i.c., ones defined in terms of
tokens (selected substrings or words). Here tokens are g-grams, i.e., substrings of length
g. Examples of other token-based similarities on strings, used in Record Linkage, are
Jaccard similarity of community and TF-IDF (a version of cosine similarity).

o Prefix-Hamming metric
The prefix~-Hamming metric between strings x = x1 ... x,, and y = y; ... y, is defined
by
(max{m, n} — min{m, n}) + Hl <i < min{m, n}: x; # yi}\.

o Weighted Hamming metric
If (A, d) is a metric space, the weighted Hamming metric d,,;(x, y) between strings
X =X].. - Xy, Yy = V1. Ym € W{A) is defined by

m

> dxi, o).
i=1

o Needleman—Wunsch—Sellers metric

If (A, d) is a metric space, the Needleman—Wunsch—Sellers metric (or Levenstein
metric with costs, global alignment metric) is an editing metric with costs on W(A4)
([NeWu70]), obtained for O consisting of only indels, each of fixed cost ¢ > 0, and
character replacements, where the cost of replacement of i by j is d(i, j). This metric is
the minimal total cost of transforming x into y by those operations.

Equivalently, it is equal to

min{d,y (x*, y*)},
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where x*, y* are strings of length &, k > max{m, n}, over alphabet A* = A U {x},
so that after deleting all new characters * strings x* and y* shrink to x and y, respec-
tively. Here d,p(x*, y*) is the weighted Hamming metric between x* and y* with
weight d(x}, y¥) = ¢ (i.e., the editing operation is an indel) if one of x7, y7 is *, and
d(x}, y}) = d(i, j), otherwise.

The Gotoh—Smith—Waterman distance (or string distance with affine gaps) is a more
specialized editing metric with costs (see [Coto82]). It discounts mismatching parts in
the beginning and in the end of the strings x, y, and introduces two indel costs: one for
starting an affine gap (contiguous block of indels), and another one (lower) for extending

a gap.

e Martin metric

The Martin metric d“ between strings x = x1...x, and y = y1 ... y, is defined by

max{m,n}

‘2_'" _ 2—"‘ + Z |jl_t|t Sup|k(Z, x) —k(z, y)"
=1 ¢

where z is any string of the length ¢, k(z, x) is the Martin kernel ((MaSt99]) of a Markov
chain M = {M;}7°, and the sequence a € {a = {a;}]°,: a; > 0, Yoia <oo)isa
parameter.

e Baire metric

The Baire metric is an ultrametric between finite or infinite strings x = x1...Xp ...
andy =y;...¥,...,defined, for x # y, by

1
1+LCP(x,y)

where LCP(x, y) is the length of the longest common prefix of x and y.

LCP(x,y

Moreover, the function a ) is an ultrametric, for any a with 0 < a < 1, on the set

of all infinite strings.

o Duncan metric

Consider the set X of all strictly increasing infinite sequences x = {x,}, of positive
integers. Define N(n, x) as the number of elements in x = {x,}, which are less than
n, and §(x) as the density of x, i.e., §(x) = lim, o N(Z"x). Let Y be the subset of X
consisting of all sequences x = {x,}, for which §(x) < oc.

The Duncan metric is a metric on Y, defined, for x # y, by

m + |5(X) - 5(Y)‘,

where LCP(x, y) is the length of the longest common prefix of x and y. The metric
space (Y, d) is called Duncan space.
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11.2. DISTANCES ON PERMUTATIONS

A permutation (or ranking) is any string x1 . .. x, with all x; being different numbers from
{1,..., n}; asigned permutation is any string x1 . .. x, with all |x;| being different numbers
from {1, ..., n}. Denote by (Sym,,, -, id) the group of all permutations of the set {1, ..., n},
where id is the identity mapping.

The restriction, on the set Sym,, of all n-permutation vectors, of any metric on R” is a
metric on Sym, ; main example is the [,-metric Qi lxi — i [1’)1—I> ,p= 1.

Main editing operations on permutations are:

e Block transposition, 1.e., a substring move;
e Character move, i.e., a transposition of a block consisting of only one character;

e Character swap, i.e., a move of character only on one position to the right or the left (it
interchanges adjacent characters);

e Character exchange, i.e., interchanging of any two characters (in Group Theory, it is
called transposition);

o One-level character exchange, i.e., exchange of characters x; and x;, i < j, such that,
for any k with i < k < j, it holds either min{x;, x;} > xi, or x; > max{x;, x;};

e Block reversal, i.e., transforming, say, the permutation x = x1 ... x,, into the permutation
X1 X 1X5Xj 1 ... Xir1XiX /4] . . . X (SO, a swap is areversal of a block consisting only
of two characters);

e Signed reversal, i.e., areversal in signed permutation, followed by multiplication on —1
all characters of reversed block.

Below we list most used editing and other metrics on Sym,,.

¢ Hamming metric on permutations

The Hamming metric on permutations dy is an editing metric on Sym,,, obtained

for O consisting of only character replacements. It is a bi-invariant metric. Also, n —

dy (x, y) is the number of fixed points of xy !

e Spearman p distance

The Spearman p distance is the Euclidean metric on Sym,,:

3 G — i

i=1

(Cf. Spearman p rank correlation similarity in Statistics.)
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e Spearman footrule distance

The Spearman footrule distance is the /-metric on Sym,:

n
D lxi = yil.
i=1

(Cf. Spearman footrule similarity in Statistics.)

Both Spearman distances are bi-invariant.

o Kendall T distance

The Kendall t distance (or inversion metric, swap metric) I is an editing metric on
Sym,,, obtained for O consisting of only character swaps.

In terms of Group Theory, I (x, y) is the number of adjacent transpositions needed to
obtain x from y. Also, I (x, y) is the number of relative inversions of x and y, i.e., pairs
(i, 7),1 <i < j<n, with (x; —x;)(yi — y;) < 0. (Cf. Kendall 7 rank correlation
similarity in Statistics.)

In [BCFES97] were also given the following metrics, associated with metric 7 (x, y):

minzeSymn I(x,2)+ I(Zil s }'71));

maxzeSym, I(zx, zy);

mingesym, 1(zx, 2y) = T(x, y), where T is the Cayley metric;

Editing metric, obtained for O consisting of only one-level character exchanges.

w =

e Daniels—Guilbaund semi-metric
The Daniels—Guilbaud semi-metric is a semi-metric on Sym,,, defined, for any x, y €
Sym,,, as the number of triples (i, j, k), | < i < j < k < n, such that (x;, x;, x) is
not a cyclic shift of (y;, y;, yx); so, it is 0 if and only if x is a cyclical shift of y (see
[Monj98]).

e Cayley metric

The Cayley metric T is an editing metric on Sym,,, obtained for O consisting of only
character exchanges.

In terms of Group Theory, T'(x, y) is the minimum number of transpositions needed to
obtain x from y. Also, n — T(x, y) is the number of cycles in xy_l. The metric T is
bi-invariant.

o Ulam metric

The Ulam metric (or permutation editing metric) U is an editing metric on Sym,,,
obtained for O consisting of only character moves.

Equivalently, it is an editing metric, obtained for O consisting of only indels. Also,
n—U(x,y) = LCS(x,y) = LIS(xy™ 1), where LCS(x, y) is the length of longest
common subsequence (not necessarily a substring) of x and y, while LIS(z) is the length
of longest increasing subsequence of z € Sym,,.

This and above six metrics are right-invariant.
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e Reversal metric

The reversal metric is an editing metric on Sym,,, obtained for O consisting of only
block reversals.

o Signed reversal metric

The signed reversal metric is an editing metric on the set of all 2”#n! signed permuta-
tions of the set {1, ..., n}, obtained for O consisting of only signed reversals.

This metric is used in Biology, where a signed permutation represents a single-
chromosome genome, seen as a permutation of genes (along the chromosome) having
each a direction (so, a sign + or —).

o Chain metric

The chain metric (or rearrangement metric) is a metric on Sym,, ([Page65]), defined, for
any x, y € Sym,, as the minimum number, minus 1, of chains (substrings) y;, R yz’ of
¥, so that x can be parsed (concatenated) into, i.e., x = y] ... y,.

e Lexicographic metric

The lexicographic metric is a metric on Sym,,, defined by

IN(x) = N(»|,
where N(x) is the ordinal number of the position (among 1, ..., n!) occupied by the
permutation x in the lexicographic ordering of the set Sym,,.
In the lexicographic ordering of Sym,, x = x1...x, < ¥y = y1...yy if there exists
1 <i<nsuchthatx) = x1,...,x—1 = yi—1, but x; < y;.

e Fréchet permutation metric

The Fréchet permutation metric is the Fréchet product metric on the set Sym, of
permutations of positive integers, defined by

z : l l
2 |

i xt_)t‘



Chapter 12

Distances on Numbers, Polynomials, and Matrices

12.1. METRICS ON NUMBERS

Here we consider some most important metrics on the classical number systems: the semi-
ring N of natural numbers, the ring Z of integers, and the fields Q, R, and C of rational,
real, and complex numbers, respectively. We consider also the algebra @ of quaternions.

o Metrics on natural numbers

There are several well-known metrics on the set N of natural numbers:

1. |n — m]; the restriction of the natural metric (from R) on N;
2. p~“, where « is the highest power of a given prime number p dividing m — n, for
m # n (and equal to O for m = n); the restriction of the p-adic metric (from Q) on
N;

%, an example of the lattice valuation metric;
4. w,(n —m), where w,(n) is the arithmetic r-weight of n; the restriction of the arith-

metic 7-norm metric (from Z) on N;
5. In’;_l;nI (cf. M-relative metric);

6. 1+ man for m # n (and equal to O for m = n); the Sierpinski metric.

L

Most of these metrics on N can be extended on Z. Moreover, any above metric can be
used in the case of an arbitrary countable set X. For example, the Sierpinski metric is
defined, in general, on a countable set X = {x,: n € N} by | + ﬁ for all x;;, x, € X
with m # n (and is equal to O, otherwise).

o Arithmetic r-norm metric

Letr € N, r > 2. The modified r-ary form of an integer x is a representation
x=eyr"+ - +er+ e,

where ¢; € Z, and |¢;| < r foralli = 0,...,n. An r-ary form is called minimal
if the number of non-zero coefficients is minimal. The minimal form is not unique, in
general. But if the coefficients ¢;, 0 < i < n — 1, satisfy the conditions |e; + ;41| <
r,and |e;] < lejy1] if ¢;e;41 < O, then the above form is unique and minimal; it is
called generalized non-adjacent form. The arithmetic r-weight w,(x) of an integer x is
the number of non-zero coefficients in a minimal r-ary form of x, in particular, in the
generalized non-adjacent form.

154
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The arithmetic 7-norm metric (see, for example, [Ernv85]) is a metric on Z, defined
by

wr(x — ).

e p-adic metric

Let p be a prime number. Any non-zero rational number x can be represented as x =
p¥ 7, where ¢ and d are integers not divisible by p, and « is an unique integer. The
p-adic norm of x is defined by [x], = p~%. Moreover, [0],, = 0 holds.

The p-adic metric is a norm metric on the set Q of rational numbers, defined by
lx — y|p~

This metric forms the basis for the algebra of p-adic numbers. In fact, the Cauchy
completion of the metric space (Q, |x — y|,) gives the field Q, of p-adic numbers, as
well as the Cauchy completion of the metric space (Q, |x — y|) with the natural metric
|x — y| gives the field R of real numbers.

o Natural metric

The natural metric (or absolute value metric) is a metric on R, defined by

y—ux, ifx—y<0,
x—yl= .
x—y, ifx—y=0.

On R all [ ,-metries coincide with it. The metric space (R, |x — y[) is called real line (or
FEuclidean line).

There exist many other useful metrics on R. In particular, for a given 0 < « < 1, the
generalized absolute value metric on R is defined by |x — y|*.

e Zero bias metric

The zero bias metric is a metric on R, defined by
I+ [x =yl
if one and only one of x and y is strictly positive, and by
lx =yl
otherwise, where |x — y| is the natural metric (see, for example, [Gile87]).

o Extended real line metric

An extended real line metric is a metric on R U {+o00} U {—o00}. Main example (see,
for example, [Cops68]) of such metric is given by

[f) = f],



156 [ e Complex modulus metric] Part HI: Distances in Classical Mathematics

where f(x) = fm forx € R, f(400) = 1, and f(—00) = —1. Another metric,
commonly used on R U {400} U {—00}, is defined by

| arctan x — arctan y|,

where —%JT < arctan x < %n for —oo < x < 00, and arctan(400) = i%n.

¢ Complex modulus metric

The complex modulus metric is a metric on the set C of complex numbers, defined by
lz —ul,

where, for any z € C, the real number |z| = |z1 + 22i] = 1/z% + z% is the complex
modulus. The metric space (C, |z — ul) is called complex plane (or Argand plane).

Examples of other useful metrics on C are: the British Rail metric, defined by
lz| + [u]

for z £ u (and is equal to O, otherwise); the p-relative metric, 1 < p < oo (cf. (p, g)-
relative metric), defined by

|z — ul
(12]? + |ulP)?

for |z| + |u] # O (and is equal to 0, otherwise); for p = oo one obtains the relative
metric, written for |z] + [¢]| # O as

|z — ul
max{|z|, [u[}”

e Chordal metric
The chordal metric (or spherical metric) dy is a metric on the set C = CU{oo}, defined
by
2]z — u|

d,(z,u) =
O T e+ e

for all z, u € C, and by
2

V14 z2

for all z € C (cf. M-relative metric). The metric space (C, dy) is called extended
complex plane. It is homeomorphic and conformally equivalent to the Riemann sphere.

dy(z,00) =

In fact, a Riemann sphere is a sphere in the Euclidean space E3, considered as a metric
subspace of E3, onto which the extended complex plane is one-to-one mapped under
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stereographic projection. The unit sphere §2 = {(x1, x2,x3) € E3: x] + x2 + )c3 =1}
can be taken as the Riemann sphere, and the plane C can be identified with the plane
x3 = 0 such the real axis coincides with the xj-axis, and the imaginary axis with the
xp-axis. Under stereographic projection, each point z € C corresponds to the point
(x1,x2,X3) € $2 obtained as the point of intersection of the ray drawn from the “north
pole” (0, 0, 1) of the sphere to the point z with the sphere $2; the “north pole” corre-
sponds to the point at infinity co. The chordal (spherical) distance between two points
p.q € S? is taken to be the distance between their prelmages zueC.

The chordal metric can be defined equivalently on R' = R"U {oo}. Thus, for any
x,y € R", one has

2/x —yl2

T+ I3/ 1+ 1y

dy(x,y) =

and for any x € R”, one has
2

V1 I3

where |.[[2 is the ordinary Euclidean norm on R”. The metric space (R", dy ) is called
Mébius space. It is a Ptolemaic metric space (cf. Ptolemaic metric).

dy(x,00) =

Givena > 0, 8 > 0, p > 1, the generalized chordal metric is a metric on C (in
general, on (R”, ||.]2) and even on any Prolemaic space (V, |[|.]])), defined by

lz — ul

(o + BlzlP)T - (a+ Blu)?

It can be easy generalized on C (on RY.

e Quaternion metric

Quaternions are members of a non-commutative division algebra Q over the field R,
geometrically realizable in a four-dimensional space ([Hami66]). The quaternions can
be written in the form g = q1 + g2i + g3j + gak, ¢; € R, where the quaternions i,
J, and k, called basic units, satisfy the following identities, known as Hamilton’s rules:
2=j?=k¥=—1,andij = —ji = k.

The quaternion norm ||q|| of g = q1 + q2i + q3j + qak € Q is defined by

Il = Vag = @ + @+ a3 +ah T=q1— @i — 3] — gak.

The quaternion metric is a norm metric on the set @ of all quaternions, defined by
lx =yl
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12.2. METRICS ON POLYNOMIALS

A polynomial is an expression involving a sum of powers in one or more variables multi-
plied by coefficients. A polynomial in one variable (or univariate polynomial) with con-
stant real (complex) coefficients is given by P = P(z) = ZZ:O arzt, ar € R (ar € C).
The set P of all real (complex) polynomials forms a ring (P, +, -, 0). It is also a vector
space over R (over C).

o Polynomial norm metric

A polynomial norm metric (or polynomial bar metric) is a norm metric on the set P
of all real (complex) polynomials, defined by

P —Ql,
where ||| is a polynomial norm, i.e., a function ||.| : P — R such that, forall P, Q € P
and for any scalar k, we have the following properties:

1. |P] =0, with [P =0ifand only if P = 0;
2. [[kP[ = [kl P
3. |P + Q| < | P+ |Qll (triangle inequality).

For the set P several classes of norms are commonly used. The {,-norm, 1 < p < 00,
of a polynomial P(z) = > }_, arz* is defined by

n 1/p
1P, = (Z |ak1"> :

k=0

giving the special cases |P[1 = g laxl. [Pla = /Y glal? and | Pl

maxog<i<n lak]. The value || Pl is called polynomial height. The L -norm, 1 < p <
oo, of a polynomial P(z) = > 7 _,axz* is defined by

2 . )de %
12l = ([ IpE)

giving the special cases | Pllz, = [ [P, [P, = /[ [P(e?)24L, and
[Pl = SUP|z|=1 [P(2)].

o Bombieri metric

The Bombieri metric (or polynomial bracket metric) is a polynomial norm metric
on the set P of all real (complex) polynomials, defined by

[P - Q]p,
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where [.], 0 < p < 00, is the Bombieri p-norm. For a polynomial P(z) = ZZ:O a7k
it is defined by

1
[P], = (Z(;:)l—”lau”) ,
k=0

where (}) is a binomial coefficient.

12.3. METRICS ON MATRICES

Anm x n matrix A = ({(q;;)) over a field F is a table consisting of m rows and n columns
with the entries a;; from F. The set of all m x n matrices with real (complex) entries is
denoted by My, ,,. It forms a group (M, », +, Om ), where ((a;;))+((bi;)) = ((ai;j+bij)),
and the matrix 0,, , = 0, i.e., all its entries are equal to 0. It is also an mn-dimensional
vector space over R (over C). The transpose of a matrix A = ((a;;)) € My, is the matrix
AT = ((aji)) € M, 1. The conjugate transpose (or adjoint) of a matrix A = ((a;;)) €
My, , is the matrix A* = ((@j;)) € My m.

A matrix is called square matrix it m = n. The set of all square n x n matrices with
real (complex) entries is denoted by M,,. It forms a ring (M, +, -, 0,), where + and 0,
are defined as above, and ((g;;)) - ((b;;)) = ((ZZ:I aixbi;)). It is also an n2-dimensional
vector space over R (over C). A matrix A = ((a;;)) € M, is called symmetric if a;; = aj;
foralli, j € {1,...,n},i.e.,if A = AT. Special types of square n x n matrices include
the identity matrix 1, = ((¢;;)) with ¢;; = 1, and ¢;; = 0,1 # j. An unitary matrix
U = ((u;;)) is a square matrix, defined by U~! = U*, where U~! is the inverse matrix for
U,ie., U U~ = 1,. An orthonormal matrix is a matrix A € M, , such that A*A = 1,,.

If for a matrix A € M,, there is a vector x such that Ax = Ax for some scalar A, then
A is called eigenvalue of A with corresponding eigenvector x. Given a complex matrix
A € My, p, its singular values s;(A) are defined as the square roots of the eigenvalues
of the matrix A*A, where A* is the conjugate transpose of A. They are non-negative real
numbers $1(A) = s2(A) > -+ -.

¢ Matrix norm metric

A matrix norm metric is a norm metric on the set M, , of all real (complex) m x n
matrices, defined by

A — B,

where [|.|| is a matrix norm, i.e., a function |.|| : M,, , — R such that, for all A, B €
M, », and for any scalar k, we have the following properties:

1. JA]] = 0, with |A|| = Oifand only if A = 0y, p;
2. kAl = [k[IlALl;
3. JA+ B|| < [|All + [ B]] (triangle inequality).

All matrix norm metrics on My, , are equivalent. A matrix norm ||.|| on the set M, of all
real (complex) square rn x n matrices is called sub-multiplicative if it is compatible with
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matrix multiplication, i.e., |[AB]| < ||A] - ||B] forall A, B € M,. The set M,, with a
sub-multiplicative norm is a Banach algebra.

The simplest example of a matrix norm metric is the Hamming metric on M,, , (in
general, on the set M, ,,(IF) of all m x n matrices with entries from a field ), defined
by |A — By, where [[A] g is the Hamming norm of A € M, ,, i.e., the number of
non-zero entries in A.

e Natural norm metric

A natural norm metric (or induced norm metric, subordinate norm metric) is a
matrix norm metric on the set M,, of all real (complex) square n x n matrices, defined
by

HA —B “rmz,

where |[[.|qq 1S a natural norm on M,,. The natural norm ||.||nes on M, induced by the
vector norm [[x |, x € R” (x € C"), is a sub-multiplicative matrix norm, defined by

o lAx] B
Al 4ar = sup = sup [|Ax|| = sup [Ax].
xizo X[ =1 Ixl<

The natural norm metric can be defined in similar way on the set M,, , of all m x n real
(complex) matrices: given vector norms ||.|[gm on R™ and [|.||gs on R”, the natural norm
| All s of a matrix A € M,, ,, induced by ||.||g and ||.||gm, is a matrix norm, defined by

| Allnar = SUP|xpa=1 1 AX R

e Matrix p-norm metric

A matrix p-norm metric is a natural norm metric on M, defined by
A = Bl

where ||.||2,, is the matrix p-norm, i.e., a natural norm, induced by the vector / p-horn,
I<p<goo

n 1/p
[Allhy = max ||Ax|,, where [lxll, = [ D |x[?

=1
|X|p i1

The maximum absolute column metric (more exactly, maximum absolute column
sum norm metric) is the matrix 1-norm metric ||[A — B|| ,Iml on M,,. The matrix 1-norm
I ,Im, induced by the vector [1-norm, is called also maximum absolute column sum
norm. For a matrix A = ((a;;)) € M, it can be written as

n

I
[A],,, = max la;i].
nat 1<) <n — iy
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The maximum absolute row metric (more exactly, maximum absolute row sum
norm metric) is the matrix co-norm metric ||[A — B|[}°, on M. The matrix co-norm

.15, induced by the vector ls-norm, is called also maximum absolute row sum norm.

For a matrix A = ((a;;)) € M, it can be written as
n

A%, = max Z a;il.

1Al 2 laij|

The spectral norm metric is the matrix 2-norm metric | A — B H,zml on M,,. The matrix
2-norm ||.||,%m, induced by the vector I-norm, is called also spectral norm and denoted
by |.llsp. For a matrix A = ((a;;)) € My, it can be written as

1
[ Allsp = (maximum eigenvalue of A*A)2,

where A* = ((@;)) € M, is the conjugate transpose of A (cf. Ky-Fan norm metric).

e Frobenius norm metric

The Frobenius norm metric is a matrix norm metric on M, ,, defined by

[A— Bl
where ||| is the Frobenius norm. For amatrix A = ((a;;)) € My, 5, itis defined by
m n

ZZ laij|2.

i=1 j=1

It is also equal to the square root of the matrix trace of A*A, where A* = ((@;;)) is the
conjugate transpose of A, or, equivalently, to the square root of the sum of eigenvalues

A of A*A: |AllFpr = V/Tr(A*A) = ,/Zmin{m""} A; (cf. Schatten norm metric). This

i=1
norm comes from an inner product on the space My, ,, but it is not sub-multiplicative
form = n.

e (c, p)-norm metric
Letk e N,k <min{m,n},ce R, ci >y > >cr>0,and 1 < p < o0,

The (c, p)-norm metric is a matrix norm metric on M, ,, defined by
k
1A = B, ).
where H.||l(<ap) is the (c, p)-norm on My, ,. For a matrix A € M, ,, it is defined by

k ’
1AL, = (Z cis,.”<A>> :

i=1
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where s1(A) > 52(A) = -+ = s5¢(A) are the first k singular values of A. If p = 1, one
obtains the ¢c-norm. If, moreover, ¢ = - -- = ¢x = 1, one obtains the Ky-Fan k-norm.
e Ky-Fan norm metric

Given k € N, k < min{m, n}, the Ky-Fan norm metric is 2 matrix norm metric on
M, n, defined by

IA — Bl

where ||.||11<(F is the Ky-Fan k-norm on M, ,,. For a matrix A € M, ,, it is defined as the
sum of its first k singular values:

k
[Alke =D si(A).

i=1
For k = 1, one obtains the spectral norm. For k = min{m, n}, one obtains the frace
norm.
e Schatten norm metric

Given 1 < p < o0, the Schatten norm metric is a matrix norm metric on M, ,.
defined by

A = Bl

where H.chh is the Schatten p-norm on M, . For a matrix A € M, ,, it is defined as
the p-th root of the sum of the p-th powers of all its singular values:

min{m,n} %
nm@z(Zsmﬂ.

i=1
For p = 2, one obtains the Frobenius norm, and, for p = 1, one obtains the trace norm.

o Trace norm metric

The trace norm metric is a matrix norm metric on ¥, ,, defined by
A — Bllw,

where ||. | is the trace norm on My, ,. For a matrix A € My, ,, it is defined as the sum
of all its singular values:

min{m,n}

1Al = D si(A).
i=1
o Rosenbloom-Tsfasman metric

Let M, ,(IF,) be the set of all m x n matrices with entries from a finite field I¥,. The
Rosenbloom—Tsfasman norm ||.||gr on My, »(Fy) is defined as follow: if m = 1 and
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a = (&1,62,...,8&) € My ,(F,), then |01 ,llrr = 0, and ||la||gr = max{i[§; # O} for
a#0 it A=(ai,..., am)T € Mm,n(]Fq), aj € Ml,n(Fq): 1 < j < m,then

m

IAlrr = lajlzr.

J=l

The Rosenbloom—-Tsfasman metric ([RoTs96]) is a matrix norm metric (in fact, an
ultrametric) on M, ,(IF,), defined by

A — Bllgr.

o Angle distances between subspaces

Consider the Grassmannian space G(m, n) of all n-dimensional subspaces of Euclidean
space E™; it is a compact Riemannian manifold of dimension n(m — n).

Given two subspaces A, B € G(m, n), the principal angles % =261 226,20
between them are defined, for k = 1, ..., n, inductively by

T
cos O = maxmaxx’ y = (x*)" y
X€A veB

subject to the conditions ||x[l2 = [[yll2 = I, xTx' =0, yTy =0, for | <i <k—1,
where ||.||2 is the Euclidean norm. The principal angles can also be defined in terms of
orthonormal matrices Q4 and Qp spanning subspaces A and B, respectively: in fact,
n ordered singular values of the matrix Q4Qp € M, can be expressed as cosines
cosfi,...,cos0,.

The geodesic distance between subspaces A and B is (Wong, 1967) defined by

In the case, when subspaces represent autoregressive models, the Martin distance can
be expressed in terms of cepstrum of the autocorrelation functions of the models (cf.
Martin cepstrum distance).

The Asimov distance between subspaces A and B is defined by
01.

It can be expressed also in terms of the Finsler metric on the manifold G (m, n).
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The gap distance between subspaces A and B is defined by
sin @ 1.
It can be expressed also in terms of orthogonal projectors as the Iy -norm of the difference

of the projectors onto A and B, respectively. Many versions of this distance are used in
Control Theory (cf. gap metric).

The Frobenius distance between subspaces A and B is defined by

It can be expressed also in terms of orthogonal projectors as the Frobenius norm of the

difference of the projectors onto A and B, respectively. A similar distance /Y 7, sin® g;
is called chordal distance.

¢ Semi-metrics on resemblances

The following two semi-metrics are defined for any two resemblances d; and d> on a
given finite set X (moreover, for any two real symmetric matrices).

The Lerman semi-metric (cf. Kendall t distance on permutations) is defined by

‘{({xv )'}, {M, U}): (dl (X, )’) - d] (I/t, U))(dQ(x, }') - dZ(u’ 'U)) < O}‘
(|X|2+1)2

3

where ({x, ¥}, {«, v}) is any pair of unordered pairs {x, vy}, {«, v} of elements x, y, u, v
from X.

The Kaufman semi-metric is defined by

{{x, y), {u, v (di(x, y) — diu, 1) (da(x, y) — da(u, v)) < O}

{xs yh {u, v (di(x, y) — diu, v)(da(x, ¥) — da(u, v)) # O}




Chapter 13

Distances in Functional Analysis

Functional Analysis is the branch of Mathematics, concerned with the study of spaces of
functions. This usage of the word functional goes back to the calculus of variations, imply-
ing a function whose argument is a function. In the modern view, Functional Analysis is
seen as the study of complete normed vector spaces, i.e., Banach spaces. For any real num-
ber p > 1, an example of a Banach space is given by L ,-space of all Lebesgue-measurable
functions whose absolute value’s p-th power has finite integral. A Hilbert space is a Ba-
nach space in which the norm arises from an inner product. Also, in Functional Analysis
are considered the continuous linear operators defined on Banach and Hilbert spaces.

13.1. METRICS ON FUNCTION SPACES

Let I C R be an open interval (i.e., a non-empty connected open set) in R. A real func-
tion f: I — R is called real analytic on I if it agrees with its Taylor series in an open
neighborhood Uy, of every point xg € I:

(e8]
™ x0)
fx) = Z T(x —xo)* forany x € Uy,.
n=0
Let D C C be a domain (i.e., a convex open set) in C. A complex function f : D — Cis
called complex analytic (or, simply, analytic) on D if it agrees with its Taylor series in an

open neighborhood of every point zgp € D. A complex function f is analytic on D if and
only if it is holomorphic on D, i.e., if it has a complex derivative

. z)— f(z

) — tim L@~ IG)
20 Z— 20

at every point zg € D.

o Integral metric

The integral metric is the L{-metric on the set C|, p of all continuous real (complex)
functions on a given segment [a, b], defined by

b
/ |f(x) — g(x)|dx.

a
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The corresponding metric space is abbreviated by C[Ia, p)- It 1s a Banach space.

In general, for any compact (or countably compact) topological space X the inte-
gral metric can be defined on the set of all continuous functions f : X — R (C) by

Jx 1f(x) — g(x)dx.

o Uniform metric

The uniform metric (or sup metric) is the L.,-metric on the set Cj, ;) of all real
(complex) continuous functions on a given segment [a, b], defined by

sup | f(x) — g(x)].

x€la.b]

The corresponding metric space is abbreviated by C[@(’Io. p It is a Banach space.

A generalization of C, [‘;o p) 1s the space of continuous functions C(X), i.e., a metric space

on the set of all continuous (more generally, bounded) functions f : X — C of a topo-
logical space X with the Loo-metric sup, .y | f(x) — g(x)|.

In the case of the metric space C(X, Y) of continuous (more generally, bounded) func-
tions f: X — Y from one metric compactum (X, dy) to another (Y, dy), the sup
metric between two functions f, g € C(X, Y) is defined by sup, .y dy (f(x), g(x)).

o)
la,b]?

cases of the metric space C[’; ppp 1 < p < 00, on the set g py with the L ,-metric

The metric space C, as well as the metric space C l]a p|» are two of the most important

|
(fab | f(x) — g(x)]Pdx)r. The space Cl[:l’b] is an example of L ,-space.

e Dogkeeper distance

Given a metric space (X, d), the dogkeeper distance is a metric on the set of all func-
tions f : [0, 1] — X, defined by

inf sup d(f(t),g(o®)),

7 1e]0,1]

where o : [0,1] — [0, 1] is a continuous, monotone increasing function such that
o(0) = 0, o(1) = 1. This metric is a special case of the Fréchet metric. It is used
for measuring the distances between curves.

o Bohr metric

Let R be a metric space with a metric p. A continuous function f : R — R is called
almost-periodic if, for every ¢ > 0, there exists [ = [(¢) > 0 such that every interval
[to, to + I(e)] contains at least one number t for which p(f(t), f(t + 1)) < ¢ for
—00 < I < +00.

The Bohr metric is the norm metric || f — g| on the set AP of all almost-periodic
functions, defined by the norm

Ifll=sup |f@)]

—o0<t<+00
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It makes AP a Banach space. Some generalizations of almost-periodic functions were
obtained using other norms by Besicovitch, Stepanov, Weyl, von Neumann, Turing,
Bochner, and others (cf. Stepanov distance, Weyl distance, and Besicovitch distance).

e Stepanov distance

The Stepanov distance is a distance on the set of all measurable functions f : R — C
with summable p-th power on each bounded integral, defined by

1 x+ ) 1/p
sup(;/ |f(x) — g(x)|’ dx) .

xeR

The Weyl distance is a distance on the same set, defined by

. 1 x+1 » 1/p
lim sup(;/ |f(x) —g(x)| dx) .

=00 ycR

Corresponding to these distances one has the generalized Stepanov and Weyl almost-
periodic functions.

e Besicovitch distance

The Besicovitch distance is a distance on the set of all measurable functions f : R — C
with summable p-th power on each bounded integral, defined by

T

_ 1 , 1/p
(mhooﬁ T\f(x)—g(x)‘ldx> )

Corresponding to this distance one has the generalized Besicovitch almost-periodic func-
tions.

e Bergman p-metric

Given 1 < p < oo, let L ,(A) be the L ,-space of Lebesgue measurable functions f on
the unit disk A = {z € C: |z] < 1} with

I£ll, = (/A |f(z)|”u(dz)> ey

The Bergman space L‘l‘)(A) is the subspace of L ,(A) consisting of analytic functions,
and the Bergman p-metric is the L ,-metric on L‘l‘)(A) (cf. Bergman metric). Any
Bergman space is a Banach space.

e Bloch metric

The Bloch space B on the unit disk A = {z € C: |z] < 1} is the set of all analytic
functions f on A such that | f]s = sup,co(1 — [2/)]f'(z)| < oo. Using complete
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semi-norm ||.| g, a norm on B is defined by

1A= fO[+ 171

The Bloch metric is the norm metric || f — g|| on B. It makes B a Banach space.

o Besov metric

Given 1 < p < oo, the Besov space B, on the unit disk A = {z € C: |z] < 1} is the
set of all analytic functions f in A such that

p(dz)

“f“B,, _ (/A(l B [ZIZ)”‘f/(Z)‘pdA(Z)>F < 00, whered\(z)= m

is the M&bius invariant measure on A. Using complete semi-norm ||.| 5, a norm on B,
is defined by

I£1 = [£O)]+ £z,

The Besov metric is the norm metric || f — g| on B),. It makes B, a Banach space.

The set B; is the classical Dirichlet space of analytic on A functions with square inte-
grable derivative, equipped with the Dirichlet metric. The Bloch space B can be con-
sidered as Bo.

e Hardy metric

Given 1 < p < oo, the Hardy space HP(A) is the class of functions, analytic on the
unit disk A = {z € C: |z| < 1}, and satisfying the following growth condition for the
Hardy norm |||\ gr:

1 2 ) R 717
| flzray = sup (—2 / | £ (re™)]! d@) < 0.
T Jo

O<r<l

The Hardy metric is the norm metric || /' — gl[nr(a) on H”(A). It makes H”(A) a
Banach space.

In Complex Analysis, the Hardy spaces are analogs of the L ,-spaces of Functional
Analysis. Such spaces are applied in Mathematical Analysis itself, and also to Scattering
Theory and Control Theory (cf. Chapter 17).

e Part metric

The part metric is a metric on a domain D of RZ, defined by

(7))
n
VA6))
for any x, y € R?, where H7 is the set of all positive harmonic functions on the do-
main D.

sup
feHT
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A twice-differentiable real function f : D — R is called harmonic on D if its Laplacian
BRI
Af =55+ 02 vanishes on D.

e Orlicz metric

Let M (u) be an even convex function of a real variable which is increasing for u positive,
and lim,—ou~ "M ) = limy—eo u(Mu))~™" = 0. In this case the function p(v) =
M'(v) does not decrease on [0, o), p(0) = lim,_o p(v) = 0, and p(v) > 0 when
v > 0. Writing M (1) = Olul p(v)dv, and defining N(u) = Olul p~(v)dv, one obtains
a pair (M (u), N(u)) of complementary functions.

Let (M(u), N(u)) be a pair of complementary functions, and let G be a bounded closed
set in R". The Orlicz space L},(G) is the set of Lebesgue-measurable functions f on G
satisfying the following growth condition for the Orlicz norm || f || p:

IIfIIMzsup{/Gf(t)g(t)dt: /GN(g(t))dt<1}<oo.

The Orlicz metric is the norm metric || f — gl on L3,(G). It makes L},(G) a Banach
space ([Orli32]).

When M(u) = u?, 1 < p < oo, L}(G) coincides with the space L,(G), and, up to
scalar factor, the L ,-norm || £, coincides with | f|| 4. Orlicz norm is equivalent to the
Luxemburg norm || f | (my = Inf{x > 0: fG MO @) dr < 1); in fact, Ifllan <
If s < 201 Nl ary-

e Orlicz—Lorentz metric
Let w: (0, 00) — (0, o0) be a non-increasing function. Let M : [0, co) — [0, co) be
a non-decreasing and convex function with M(0) = 0. Let G be a bounded closed set
in R",
The Orlicz—Lorentz space L, y(G) is the set of all Lebesgue-measurable functions f
on G satisfying the following growth condition for the Orlicz—Lorentz norm || f |y m:

T inf{x -0 /OO w(x)M(f*)fx)>dx < 1} <o
0

where f*(x) = sup{t: w(|f| > t) > x} is the non-increasing rearrangement of f.

The Orlicz-Lorentz metric is the norm metric || f — gl/,.» on Ly, 3 (G). It makes
Ly, m(G) a Banach space.

The Orlicz-Lorentz space is a generalization of the Orlicz space L3,(G) (cf. Orlicz
metric), and the Lorentz space Ly, 4(G), 1 < g < oo, of all Lebesgue-measurable func-
tions f on G satisfying the following growth condition for the Lorentz norm || f |14

1

“f“w,q = <‘/0 u}(x)(f*(x))q>‘1 < co.
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o Holder metric
Let LY(G) be the set of all bounded continuous functions f, defined on a subset G of
R", and satisfying the Héolder condition on G. Here, a function f satisfies the Hdolder
condition at a point y € G with index (or order) ¢, 0 < « < 1, and with coefficient
AW, I [f(x) — f < AW)|x — y|* forall x € G sufficiently close to y. If A =

supye; (A(y)) < oo, the Holder condition is called uniform on G, and A is called Holder
coefficient of G. The quantity | flo = sup, e L=IIL 0 <o < 1, is called Holder
a-semi-norm of f, and the Holder norm of f is defined by

I f Loy = sup| )] + | fla-

xeG

The Holder metric is the norm metric || f — gllzo(G) on L*(G). It makes L¥(G) a
Banach space.

e Sobolev metric

The Sobolev space W57 is a subset of an L p-space such that f and its derivatives up to
order k have a finite L ,-norm. Formally, given a subset G of R", define

Whr = WP (G) = {f e Lp(G): [P e L,y(G),1<i <k,

where £ = 87! ... 35" f, a1 + - -+ + a, = i, and the derivatives are taken in a weak
sense. The Sobolev norm on W7 is defined by

k
£y =Y 170,
i=0

In fact, it is enough to take only the first and last in the sequence, i.e., the norm defined
by [l £ k. p = I £, + 1 £ ®1l, is equivalent to the norm above. For p = 0o, the Sobolev
norm is equal to the essential supremum of | f|: || fllk.co = €SSSUP . | f(X)], 1.e., 1t 1S
the infimum of all numbers a € R for which | f(x)| > a holds on a set of measure zero.

The Sobolev metric is the norm metric || f — gl , on WP 1t makes WX-” a Banach
space.

The Sobolev space W*2 is denoted by HX. It is a Hilbert space for the inner product
(o =2 (D, 8D, = Y J rP20 ndw).

Sobolev spaces are the modern replacement for the space C! (of functions having con-
tinuous derivatives) for solutions of partial differential equations.

e Variable exponent space metrics

Let G be a non-empty open subset of R”, and let p: G — [1, o0) be a measurable
bounded function, called variable exponent. The variable exponent Lebesgue space
L ,()(G) is the set of all measurable functions f: G — R for which the modular
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0p()(f) = [ | f(x)|P® dx is finite. The Luxemburg norm on this space is defined by

£ 1pey = inf{x > 0: 0,0y (f/2) < 1.

The variable exponent Lebesgue space metric is the norm metric || f — gl on
Lpy(G).

A variable exponent Sobolev space WP)(G) is a subspace of L ,y(G) consisting
of functions f whose distributional gradient exists almost everywhere and satisfies the
condition |V f| € L,,(G). The norm

0 =10 TV L0

makes W!-?0(G) a Banach space. The variable exponent Sobolev space metric is the
norm metric || f — gll1,p() on wirQ),

o Schwartz metric

The Schwartz space (or space of rapidly decreasing functions) S(R™) is the class of all
Schwartz functions, i.e., infinitely-differentiable functions f : R® — C that decrease at
infinity, as do all their derivatives, faster than any inverse power of x. More precisely, f
is a Schwartz function if we have the following growth condition:

o1t toy
_ Bi P Fxi, ..., xn)
= sup |x oo X
Il xel[g’ : " 3)6‘1)[1 CLAxyr

for any non-negative integer vectors « and . The family of semi-norms |.|lqp defines
a locally convex topology of S(R") which is metrizable and complete. The Schwartz
metric is a metric on S(R™) which can be obtained using this topology (cf. countably
normed space).

The corresponding metric space on S(IR") is a Fréchet space in the sense of Functional
Analysis, i.e., a locally convex F-space.

e Bregman quasi-distance

Let G C R” be a closed set with the non-empty interior G°. Let f be a Bregman function
with zone G.

The Bregman quasi-distance Dy : G x G — R q is defined by

Dy(x,y) = fx) = fO) — (V) x =),

where Vf = (%, e (;)an ).Dy(x,yy=0ifandonlyif x =y, Ds(x, y) + Dy(y,2) —

Dy(x,2) = (Vf(z) = Vf(y), x —y),but, in general, Dy does not satisfy the triangle
inequality, and is not symmetric.

A real-valued function f whose effective domain contains G is called Bregman function
with zone G if the following conditions hold:
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1. f is continuously differentiable on G%;

2. f is strictly convex and continuous on G;

3. For all § € R the partial level sets I'(x,8) = {y € G°: Dy(x,y) < 8} are bounded
forall x € G;

4. If {y,}, C G converges to y*, then D¢ (y*, y,) converges to 0;

5. If {xu}y € G and {yu}, C GO are sequences such that {x,}, is bounded, lim, o, =
¥*, and lim, - Dy (xn, yn) =0, then limy, 00 X = y*.

When G = R”, a sufficient condition for a strictly convex function to be a Bregman
function has the form: limy, o0 ﬁ = 00.

13.2. METRICS ON LINEAR OPERATORS

A linear operator is a function T : V — W between two vector spaces V, W over a field
F, that is compatible with their linear structures, i.e., forany x, y € V and any scalar k € F,
we have the following properties: T(x + y) = T(x) + T(y), and T (kx) = kT (x).

o Operator norm metric

Consider the set of all linear operators from a normed space (V, ||.|ly) into a normed
space (W, [.[lw). The operator norm || T|| of a linear operator T : V. — W is defined
as the largest value by which T stretches an element of V, i.e.,

T
IT] = sup T w = sup [[Tw)w = sup [T(W)]w.
ivo  vllv lolly =1 olly <1

A linear operator 7 : V — W from a normed space V into a normed space W is called
bounded if its operator norm is finite. For normed spaces, a linear operator is bounded if
and only if it is continuous.

The operator norm metric is a norm metric on the set B(V, W) of all bounded linear
operators from V into W, defined by

IT — Pl

The space (B(V, W), ||.]|) is called space of bounded linear operators. This metric space
is complete if W is. If V = W is complete, the space B(V, V) is a Banach algebra, as
the operator norm is a sub-multiplicative norm.

A linear operator T : V — W from a Banach space V into another Banach space
W is called compact if the image of any bounded subset of V is a relatively compact
subset of W. Any compact operator is bounded (and, hence, continuous). The space
(K(V, W), |.]) on the set K(V, W) of all compact operators from V into W with the
operator norm ||| is called space of compact operators.
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e Nuclear norm metric

Let B(V, W) be the space of all bounded linear operators mapping a Banach space
(V, |l.lly) into another Banach space (W, ||.|lw). Let the Banach dual of V be denoted by
V', and the value of a functional x" € V' at a vector x € V by {x, x’}. A linear operator
T € B(V,W) is called nuclear operator if it can be represented in the form x
Tx) = Z;’il (x, x{)y,-, where {x{}i and {y;}; are sequences in V' and W, respectively,
such that ) 72, Hxl.’HV/Hyi lw < oo. This representation is called nuclear, and can be
regarded as an expansion of 7' as a sum of operators of rank 1 (i.e., with one-dimensional
range). The nuclear norm of T is defined as

IT e = inf Y Nl v i [ w
i=1

where the infimum is taken over all possible nuclear representations of 7.

The nuclear norm metric is the norm metric |7 — PJ,,u on the set N(V, W) of
all nuclear operators mapping V into W. The space (N(V, W), ||.]nuc), called space of
nuclear operators, is a Banach space.

A nuclear space is defined as a locally convex space for which all continuous linear
functions into an arbitrary Banach space are nuclear operators. A nuclear space is con-
structed as a projective limit of Hilbert spaces H, with the property that, foreach o € I,
one can find 8 € I such that Hg C Hy, and the embedding operator Hg > x — x € Hy
is a Hilbert—Schmidt operator. A normed space is nuclear if and only if it is finite-
dimensional.

o Finite nuclear norm metric

Let F(V, W) be the space of all linear operators of finite rank (i.e., with finite-
dimensional range) mapping a Banach space (V, [.|y) into another Banach space
(W, [l.llw). Allinear operator T € F(V, W) can be represented in the form x — T(x) =
Yot i {x, x!)yi, where {x[}; and {y;}; are sequences in V' (Banach dual of V) and W,
respectively, and (x, x) is the value of a functional x” € V' at a vector x € V. The finite
nuclear norm of T is defined as

n
1T llpuae = inf > [ llye [yl
i=1

where the infimum is taken over all possible finite representations of 7.

The finite nuclear norm metric is the norm metric |7 — P||fye on F(V, W). The
space (F(V, W), |I.llfue) is called space of operators of finite rank. It is a dense linear
subspace of the space of nuclear operators N(V, W).

o Hilbert—Schmidt norm metric

Consider the set of all linear operators from a Hilbert space (1, ||.[ #,) into a Hilbert
space (Ha, ||| i,)- The Hilbert—Schmidt norm || T || gs of a linear operator T : H1 — H>
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is defined by

172

2

1T llas = (ZHT@@HHZ) :
ael

where (¢q)qe; 1S an orthonormal basis in Hy. A linear operator T : H; — Hj is called

Hilbert—Schmidt operator if ||T||12-15 < 00.

The Hilbert-Schmidt norm metric is the norm metric |7 — P || g5 on the set S(H, H»)

of all Hilbert—Schmidt operators from Hj into Hj.

For Hl = H> = H, the algebra S(H, H) = S(H) with the Hilbert—-Schmidt norm is a

Banach algebra. 1t contains operators of finite rank as a dense subset, and is contained

in the space K (H) of compact operators. An inner product {, }ys on S(H) is defined

172 .
by (T, Pyus = Y o1 {T(eq), Pley)), and | T|lns = (T, T)H/S. Therefore, S(H) is a
Hilbert space (independent on the choice basis (ey)aer).

o Trace-class norm metric

Given a Hilbert space H, the trace-class norm of a linear operator T : H — H is
defined by

1T le =) {IT1(€a). €a).

ael
where |T| is the absolute value of T in the Banach algebra B(H) of all bounded op-
erators from H into itself, and (ey)qes i an orthonormal basis of H. An operator
T: H — H is called trace-class operator if ||T|;c < oo. Any such operator is a
product of two Hilbert—Schmidt operators.
The trace-class norm metric is the norm metric |7 — P||;. on the set L(H) of all trace-
class operators from H into itself. The set L(H) with the norm ||.||;. forms a Banach
algebra which is contained in the algebra K (H) (of all compact operators from H into
itself), and contains the algebra S(H) (of all Hilbert—Schmidt operators from H into
itself).

e Schatten p-class norm metric

Let 1 < p < oo. Given a separable Hilbert space H, the Schatten p-class norm of a
compact linear operator T : H — H is defined by

|
P P ’
TS = (Y lsul” )
n

where {s,}, is the sequence of singular values of T. A compact operator T : H — H
is called Schatten p-class operator, if HTHgCh < 00.

The Schatten p-class norm metric is the norm metric |7 — P || gch on the set §,(H) of
all Schatten p-class operators from H onto itself. The set S,(H) with the norm ||. ] gch
forms a Banach space. S1(H) is the trace-class of H, and Sy (H) is the Hilbert—Schmidt
class of H (cf. also Schatten norm metric).
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e Continuous dual space

Let (V, |I.1) be a normed vector space. Let V' be the set of all continuous linear func-
tionals 7 from V into the base field (R or C). Let ||.||" be the operator norm on V',
defined by
ITI" = sup |T(x).
lxl<1

The space (V’, |.|I") is a Banach space which is called continuous dual (or Banach
dual) of (V, |..1)).

In fact, the continuous dual of the metric space lz (ll‘io) is lZ (1%°, respectively). The
continuous dual of I (I§°) is [Z, (I, respectively). The continuous duals of the Banach
spaces C (consisting of all convergent sequences, with the /,-metric) and Cq (consist-

ing of all sequences converging to zero, with the /o,-metric) are both naturally identified
with [$°.
1

¢ Distance constant of operator algebra

Let A be an operator algebra contained in B(H), the set of all bounded operators on a
Hilbert space H. For any operator T € B(H) let S(T, A) = sup{|P'TP|: Pisa
projection, and P AP = (0)}. Let dist(T, A) be the distance of T from the algebra A,
i.e., the smallest norm of an operator T — A, where A runs over 4. The smallest positive
constant C (if it exists) such that, for any operator T € B(H),

dist(T, A) < CB(T, A)

holds, is called distance constant for the algebra A.
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Distances in Probability Theory

A probability space is a measurable space (§2, A, P), where A is the set of all measurable
subsets of §2, and P is a measure on A with P(£2) = 1. The set §2 is called sample space.
Anelementa € Ais called an event, in particular, an elementary event is a subset of §2 that
contains only one element; P(a) is called probability of the event a. The measure P on
A is called probability measure, or (probability) distribution law, or simply (probability)
distribution.

A random variable X is a measurable function from a probability space (£2, A, P) into
a measurable space, called a state space of possible values of the variable; it is usually
taken to be the real numbers with the Borel o-algebra, so X : £ — R. The range & of
random variable X is called support of distribution P; an element x € & is called a state.

A distribution law can be uniquely described via a cumulative distribution function
(CDF, distribution function, cumulative density function) F (x) which describes the proba-
bility that a random value X takes on a value at most x: F(x) = P(X €< x) = P(w € £2:
X(w) < x).

So, any random variable X gives rise to a probability distribution which assigns to the
interval [a, b] the probability P(a < X < b) = P(w € £2: a < X(w) < b), i.e., the
probability that the variable X will take a value in the interval [a, b].

A distribution is called discrete if F(x) consists of a sequence of finite jumps at x;; a dis-
tribution is called continuous if F(x) is continuous. We consider (as in majority of applica-
tions) only discrete or absolutely continuous distributions, i.e., CDF function ¥ : R - R
is absolutely continuous. It means that, for every number & > 0, there is a number § > 0
such that, for any sequence of pairwise disjoint intervals [xg, yx], 1 < k < n, the inequality
Zlgkgn(y/c — xg) < & implies the inequality Zlgk@ |F(yr) — F(xp)] < e.

A distribution law also can be uniquely defined via a probability density function (PDF,
density function, probability function) p(x) of the underlying random variable. For an ab-
solutely continuous distribution, CDF is almost everywhere differentiable, and PDF is de-
fined as the derivative p(x) = F'(x) of the CDF; so, F(x) = P(X < x) = ffoo p(t)ydt,

and f‘ f p(tydt = P(a < X < b). In the discrete case, PDF (the density of the random
variable X) is defined by its values p(x;) = P(X = x);so F(x) = ZX[@ p(xi). In
contrast, each elementary events has probability zero in any continuous case.

The random variable X is used to “push-forward” the measure P on £2 to a measure
dF on R. The underlying probability space is a technical device used to guarantee the
existence of random variables and sometimes to construct them.

Probability metrics between distributions are called simple metrics, while metrics be-
tween random variables are called compound metrics; see [Rach91]. For simplicity, we
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usually present the discrete version of probability metrics, but many of them are defined
on any measurable space. For probability metrics d, the condition P(X = Y) = 1 implies
(and characterizes) d(X, Y) = 0. In many cases, some ground distance d is given on the
state space & and presented distance is a lifting of it to a distance on distributions.

In Statistics, many of distances below, between distributions P; and P,, are used as
measures of goodness of fit between estimated, P;, and theoretical, Py, distributions.

Below we use notation E[X] for the expected value (or mean) of the random variable X:
in discrete case E[X] = ), xp(x), in continuous case E[X] = f xp(x)dx. The variance
of X is E[(X —E[X])?]. Also we denote px =px)=PX =x),Fx =F(x)=P(X <
x), plx,y)=P(X =x,Y =y).

14.1. DISTANCES ON RANDOM VARIABLES

All distances in this section are defined on the set Z of all random variables with the same
support X’; here X, Y € Z.

e L ,-metric between variables

The L ,-metric between variables is a metric on Z with X C R and E[|Z]”] < oo for
all Z € Z, defined by

1/p
(E[1x — v |P])"” = ( Yo k= yPp, y)) -
(x.y)eXxX

For p = 1,2 and oo, it is called, respectively, engineer metric, mean-square distance
and essential supremum distance between variables.

o Indicator metric

The indicator metric is a metric on Z, defined by

Ellxzrl= Y lLepp@y)= Y. pE ).

(x,y)eXxX (x,y)eEX XX, x#y

(Cf. Hamming metric.)

e Ky-Fan metric K
The Ky-Fan metric K is a metric K on Z, defined by

inf{s > 0: P([X —Y| > 8) < 8}.

It is the case d(x, y) = | X — Y| of the probability distance below.
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e Ky-Fan metric K*
The Ky-Fan metric K* is a metric K* on Z, defined by

|X — 7] |x —yl
mor) = e
(x,y)eXxX

e Probability distance
Given a metric space (X, d), the probability distance on Z is defined by

inf{s: P(d(X, Y) > 8) < 5}.

14.2. DISTANCES ON DISTRIBUTION LAWS

All distances in this section are defined on the set P of all distribution laws such that
corresponding random variables have the same range X’; here Py, P, € P.
o L ,-metric between densities

The L ,-metric between densities is a metric on P (for a countable A’), defined, for any
p > 0,by

X min(l,[—l))
<Z\P1(X) - pz(x)|1> .

X
For p = 1, its half is called total variation metric (or distance in variation, trace-
distance). The point metric sup, |p1(x) — pa(x)| corresponds to p = oo.
o Mahalanobis semi-metric

The Mahalanobis semi-metric (or quadratic distance, quadratic metric) is a semi-
metric on P (for X C R"), defined by

\/(Epl [X] = Ep[XDTANEp [X] — Ep,[X])

for a given positive-definite matrix A.

e Engineer semi-metric

The engineer semi-metric is a semi-metric on P (for X C R), defined by

Ep[X]—Ep,[X]| = > x(p1(x) — pa()|-

X

e Stop-loss metric of order m
The stop-loss metric of order m is a metric on P (for X C R), defined by

(x _ t)}'ll
m!

(p1(x) — p2(x)).

sup
leRx}z
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o Kolmogorov—Smirnov metric

The Kolmogorov—Smirnov metric (or Kolmogorov metric, uniform metric) is a metric
on P (for X C R), defined by

sup| P (X < x) — Py(X < x)|.

xR
The Kuiper distance on P is defined by

sup(P1(X <x) = P2(X < x)) + sup(P2(X <x) — PI(X < x)).
xeR xeR

(Cf. Pompeiu—Eggleston metric on convex bodies.)

The Anderson-Darling distance on P is defined by

sup (P (X
ek In /(P (X

Xy — Py(X < x)|
DI —P(X<x)

<
<

The Crnkovic—Drachma distance is defined by

1
SUp(PUX <) = PaX <) In s
1
AV (16 )y To ek

Above three distances are used in Statistics as measures of goodness of fit, especially,
for VaR (Value at Risk) measurements in Finance.

o Cramer—von Mises distance

The Cramer—von Mises distance is a distance on P (for X C R), defined by

+0o0 3
/ (PI(X < x)— Po(X < x)) dx.

—00
This is the squared Lj;-metric between cumulative density functions.

e Levy metric

The Levy metric is a metric on P (for ¥ C R only), defined by
inf{e >0 PIiX €x—8)—e < PAX <) K PIX<x+¢e)+eforanyx € R}.

It is a special case of the Prokhorov metric for (X, d) = (R, |x — y|).
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e Prokhorov metric

Given a metric space (X, d), the Prokhorov metric on P is defined by
inf{e > 0: PI(X € B) < Po(X € B*) + ¢ and Pa(X € B) < P|(X € B®) +¢},

where B is any Borel subset of X', and B = {x: d(x,y) <&,y € B}.

It is the smallest (over all joint distributions of pairs (X, Y) of random variables X, Y
such that marginal distributions of X and Y are P; and P,, respectively) probability
distance between random variables X and Y.

e Dudley metric
Given a metric space (X, d), the Dudley metric on P is defined by

D@ (P — pa) .

xeX

sup|Ep, [ f(X)] = Ep,[f(X)]| = sup
feF ferF

where

F={ft X =R |fllootLing(f) <1} and Lipg(f)= sup LO—TON
x.yeX . x#£y d(x, )’)

e Szulga metric

Given a metric space (X, d), the Szulga metric on P is defined by

1/p 1/p
(Z |f<x)|”p1<x>) - (Z |f<x)|”p2<x>)
xeX

xeX

>

sup
‘eF

where F = {f: X — R, Lipy(f) < 1}, and Lipg(f) = sup, yex vy Lo

e Zolotarev semi-metric

The Zolotarev semi-metric is a semi-metric on P, defined by

D F@(px) = pa).

xeX

sup
feF

where F is any set of functions f : X — R (in the continuous case, F is any set of such
bounded continuous functions); cf. Szulga metric, Dudley metric.

o Convolution metric

Let G be a separable locally compact Abelian group, and let C(G) be the set of all real
bounded continuous function on G vanishing at infinity. Fix a function g € C{G) such
that |g] is integrable with respect to Haar measure on G, and {8 € G*: g(8) = 0} has
empty interior; here G* is the dual group of G, and g is the Fourier transform of g.
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Yukich’s convolution metric (or smoothing metric) is defined, for any two finite signed
Baire measures, P and P>, on G, by

sup
xeG

/ sl —dr)),

This metric can also be seen as the difference Tp, (g) — Tp,(g) of convolution operators
on C(G), where, for any f € C(G), the operator Tp f(x) is fveG Fxy™HdP@y).
e Discrepancy metric

Given a metric space (X, d), the discrepancy metric on P is defined by

sup{‘PI (XeB)— P(Xe B)|: B is any closed ball}.

e Bi-discrepancy semi-metric

The bi-discrepancy semi-metric is a semi-metric, evaluating the proximity of distribu-
tions Py, P, defined over different collections A1, A, of measurable sets in the following
way:

D(Py, P) + D(P, Py),
where D(P;, Pp) = sup{inf{P,(C): B C C € Ay} — P|(B): B € A} (discrepancy).

o Le Cam distance

The Le Cam distance is a semi-metric, evaluating the proximity of probability distrib-
utions Py, P» defined on different spaces A7, &> in the following way:

max{8(Py, P2),8(Ps, P},

where §( Py, P;) = infp szeXz |[BP\(Xy = x3) — BP»(Xy = x»)| is the Le Cam
deficiency. Here BP1 (X2 = x2) = lee;\q p1(x1)b(x2|x1), where B is a probability
distribution over X7 x A», and

BXi=x1,Xo=x)  BXi=x,X2=x)

b)) = =15 S e, BX1 =x1, X2 =x)

So, B P>(X = x»3) is a probability distribution over A3, since ZXZEXz b(xa2]x1) = 1.

Le Cam distance is not a probability distance, since P; and P, are defined over different
spaces; it is a distance between statistical experiments (models).

e Skorokhod-Billingsley metric
The Skorokhod-Billingsley metric is a metric on P, defined by

FO) = fx)
y—x

In

ir}fmax{sup|P1(X <x)— Pz(X < f(x))

,sup|f(x)—x,sup },
X xF£y

where f : R — R is any strictly increasing continuous function.
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e Skorokhod metric

The Skorokhod metric is a metric on P, defined by

inf{g > 0: max{sup|P1(X < X)— PQ(X < f(x)) ,sup|f(x) —x|} < e},

where f : R — R is a strictly increasing continuous function.

e Birnbaum-Orlicz distance

The Birnbaum-Orlicz distance is a distance on P, defined by

).

sup f(|P1(X <x) — Py(X < x)

xelR

where f : Ry — Ry is any non-decreasing continuous function with f(0) = 0, and
fQ@t) < Kf(r) for any t > 0 and some fixed K. It is a near-metric, since it holds
d(P1, Py) < K(d(P1, P3) +d(P3, P)).

Birnbaum-Orlicz distance is also used, in Functional Analysis, on the set of all inte-

grable functions on the segment [0, 1], where it is defined by fol H(f(x)—gkx)hdx,
where H is a non-decreasing continuous function from [0, co) onto [0, co) which van-
ishes at the origin and satisfies the Orlicz condition: sup,..q 1}11(_(2;)) < 00.

o Kruglov distance

The Kruglov distance is a distance on P, defined by

/f(Pl(X <x) = PA(X < x))dx,

where f: Ry — R, is any even strictly increasing function with f(0) = 0, and
fls+1) < K(f(s)+ f(r)) forany s, > 0and some fixed K > 1. It is a near-metric,
since it holds d(P1, P») < K(d(Py, P3) +d(Ps3, P»)).

o Burbea—Rao distance

Consider a continuous convex function ¢ (¢) : (0, co) — R and put ¢ (0) = lim;_,¢ ¢ (¢)
€ (—00, 0o]. The convexity of ¢ implies non-negativity of the function & : [0, 1?2 >
(—00, 00], defined by 84 (x, y) = LEHEOL o (XAVy it (¢ y) £ (0, 0), and 54(0, 0)
=0.

The corresponding Burbea—Rao distance on P is defined by

Y 85 (p1(x), pa(x)).

e Bregman distance

Consider a differentiable convex function ¢(¢) : (0,00) — R, and put ¢(0) =
lim; 9 ¢ (t) € (—00, oo]. The convexity of ¢ implies that the function 84 : [0, 1?2 >
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(—00, 00] defined by continuous extension of 84 (i, v) = ¢(u) — ¢(v) — ¢’ (V)(u — v),
O<u,v<1,on]0, 1]2 is non-negative.

The corresponding Bregman distance on P is defined by

m
> 8o(pi,ai).
1

(Cf. Bregman quasi-distance.)

e f-divergence of Csizar
The f-divergence of Csizar is a function on P x P, defined by

ZPz(Mf(pl(x)),

p2(x)

where f is a convex function f : Ry — R.

The cases f(t) = tInt and () = (¢t — 1)%/2 correspond to the Kullback-Leibler
distance and to the x >-distance below, respectively. The case (1) = |t—1| corresponds
to the L1-metric between densities, and the case f(#) = 4(1 — /1) (as well as f(t) =
2(t + 1) — 44/1) corresponds to the squared Hellinger metric.

Semi-metrics can also be obtained, as the square root of the f-divergence of Csizar, in
the cases f(r) = (t — D?/(t + 1) (the Vajda—Kus semi-metric), f(z) = [r¢ — 1]!/¢
with 0 < a < 1 (the Matusita semi-metric), and

(ta 4 1)1/(1 _ 2(1—(1)/(10 + 1)
1— 1/a

f@) =

(the Osterreicher semi-metric).

o Fidelity similarity
The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity) on P is defined
by

p(P1, P2y = \/p1(x)pa(x).

e Hellinger metric

In terms of fidelity similarity, the Hellinger metric (or Hellinger—Kakutani metric) on
‘P is defined by

1
(2 Y ) - m(xnz)z = 21— p(Pr, P2).

This is the L>-metric between the square roots of density functions.
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¢ Harmonic mean similarity

The harmonic mean similarity is a similarity on P, defined by

Z p1x)pa(x)
p1(x) + pa(x)’

o Bhattacharya distance 1
In terms of fidelity similarity, the Bhattacharya distance 1 on P is defined by

(arccos p(Py, Pz))z.

Twice this distance is used also in Statistics and Machine Learning, where it is called
Fisher distance.

o Bhattacharya distance 2
In terms of fidelity similarity, the Bhattacharya distance 2 on P is defined by

—1Inp(Py, Py).

e x2-distance
The x2-distance (or Neyman y 2-distance) is a quasi-distance on P, defined by

3 (p1(x) — pa(x))?
p2(x) '

X

The Pearson x 2-distance is

3 (p1(x) — pa(x))?
p1(x) '

X
Probabilistic symmetric x 2-measure is a distance on P, defined by

(p1(x) — pa(x))?
2 -
Z p1(x) + pa(x)

X

e Separation distance
The separation distance is a quasi-distance on P (for any countable &), defined by

< Pl(x)>
max| 1 — .
x pa{x)

(Not to be confused with separation distance between convex bodies.)
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o Kullback—Leibler distance

The Kullback-Leibler distance (or relative entropy, information deviation, KL-dis-
tance) is a quasi-distance on P, defined by

KL(Pi, Py) =Ep[InL] = Z pr(x)In 2 ;z

)
pa(x)’
pi(x)

is the likelihood ratio. Therefore,
p2(x)

where L =

KL(P1, Py) ==Y (p1@)Inpa(0)) + > _(p1(x) In p1(x)) = H(P1, P2) — H(PD),

X

where H (Py) is the entropy of Py, and H(Py, P») is the cross-entropy of Py and P,.

If P, is the product of marginals of Pp, the KL-distance KL(Pi, P») is called Shannon

information quantity and is equal to D, e xsx P1(x, ) In % (cf. Shannon
distance). ) '

o Skew divergence

The skew divergence is a quasi-distance on P, defined by
KL(Py,aPy + (1 —a)Py),

where a € [0, 1] is a constant, and KL is the Kullback-Leibler distance. So, the
case a = | corresponds to KL(Pq, P»). The skew divergence with a = % is called

K-divergence.

o Jeffrey divergence

The Jeffrey divergence (or J-divergence) is a symmetric version of the Kullback—
Leibler distance, defined by

KL(P1, Py) + KL(P2, Py) = Z(m(x) In

X

p1(x) p2(x)
1 .
oy T P2 p1<x>>

For Py — P, the Jeffrey divergence behaves like the Xz-distance.

¢ Jensen—Shannon divergence

The Jensen—Shannon divergence is defined by
aKL(Py, P3) + (1 — a)KL(P;, P3),

where P3 = aP; + (1 —a) Py, and a € [0, 1] is a constant (cf. clarity similarity).

In terms of entropy H(P) = Y, p(x)In p(x), the Jensen—Shannon divergence is equal
toH@P1+ (1 —a)Py) —aH(P1)— (1 —a)H(P>).
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The Topsge distance is a symmetric version of the Kullback—Leibler distance on P,
defined by

1
pto PO

KL(Py, P3) + KL(Py, P3) = Z(m(x) In

X

p1(x) pz(ﬂ)

where P; = %(Pl + P3). The Topsge distance is twice the Jensen—Shannon divergence
witha = % Some authors use term “Jensen—Shannon divergence” only for this value of

a. It is not a metric, but its square root is a metric.
¢ Resistor-average distance

Johnson—Simanovié’s resistor-average distance is a symmetric version of the Kullback—
Leibler distance on P which is defined by the harmonic sum

1 . 1 !
KL(P, Py)  KL(P,, P1))
(Cf. resistance metric for graphs.)
o Ali-Silvey distance
The Ali-Silvey distance is a quasi-distance on P, defined by the functional
f(Eplg(D)]),

where I = ﬁ;g% is the likelihood ratio, f is a non-decreasing function, and g is a

continuous convex function (cf. f-divergence of Csizar).

The case f(x) = x, g(x) = x Inx corresponds to the Kullback-Leibler distance; the
case f(x) = —Inx, g(x) = x! corresponds to the Chernoff distance.

e Chernoff distance
The Chernoff distance (or Rényi cross-entropy) is a distance on P, defined by

max D;(P, P;),
tel0,1]

where D;(P1, P2) = —InY_ (p1(x))! (p2(x))!~!, which is proportional to the Rényi
distance.

The case t = % corresponds to the Bhattacharya distance 2.

e Rényi distance

The Rényi distance (or order t Rényi entropy) is a quasi-distance on P, defined by

1 1
— 1HXX:P2(X)<pI(X)> ,

pa(x)

wherer > 0,1 # 1.
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The limit of the Rényi distance, for t — 1, is the Kullback-Leibler distance. For
t = %, the half of the Rényi distance is the Bhattacharya distance 2 (cf. f-divergence
of Csizar and Chernoff distance).

o Clarity similarity

The clarity similarity is a similarity on P, defined by
(KL(Py, P3) + KL(Py, P3)) — (KL(Py, Py) + KL(Ps, Py))

pa(x) p1(x)
EX (Pl(x) n s + p2(x) In p3(x)>,

where KL is the Kullback—Leibler distance, and P; is a fixed referential probability
law. It was introduced in [CCLO1] with P3 being the probability distribution of General
English.

o Shannon distance

Given a measure space (§2, A, P), where the set 2 is finite, and P is a probability
measure, the entropy of a function f : £2 — X, where X is a finite set, is defined by

H(f)=Y_ P(f=x)In(P(f =x));

xeX

so, f can be seen as a partition of the measure space. For any two such partitions
f:2 — X and g: 2 — Y, denote by H(f, g) the entropy of the partition
(f,g): 2 — X XY (joint entropy), and by H(f|g) the conditional entropy; then
the Shannon distance between f and g is defined by

2H(f,8) —H(f) —H(g) = H(flg) + Hlf).
It is a metric. The Shannon information quantity is defined by

p(f=x,8=1Y)
p(f=x)p(g=y)

H(f,8)—H(f)—H@® =Y p(f=x,g=yn

(x.y)

If P is uniform probability law, then V. Goppa showed that the Shannon distance can be
obtained as a limit case of the finite subgroup metric.

In general, the information metric (or entropy metric) between two random variables
(information sources) X and Y is defined by

H(X|Y)+ H(Y|X),

where the conditional entropy H(X|Y) is defined by > v > .y p(x, y)In p(x|y),
and p(x|y) = P(X = x|Y = y) is the conditional probability.
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The normalized information metric is defined by

H(X|Y)+ H(Y[X)
HX,Y) '

Itisequal to 1 if X and Y are independent. (Cf. a different one, normalized information
distance).
¢ Kantorovich-Mallows—Monge—Wasserstein metric

Given a metric space (X, d), the Kantorovich—Mallows—Monge—Wasserstein metric
is defined by

inf Es[d(X, V)],

where the infimum is taken over all joint distributions S of pairs (X, Y) of random
variables X, ¥ such that marginal distributions of X and ¥ are P; and P,.

For any separable metric space (X, d), this is equivalent to the Lipschitz distance
between measures sup [ fd(Py—P»), where the supremum is taken over all functions
fowith [ f(x) — f(¥)] <d(x, y) forany x, y € X.

More generally, the L ,-Wasserstein distance for X = R” is defined by

(infEs[d”(x, V)])"",

and, for p = 1, it is called also p-distance. For (X,d) = (R, |[x — y|), it is called also
L j-metric between distribution functions (CDF), and can be written as

1/p
(infE[|X — ¥|"])"/* = </R\F1 () — P’ dX)

1 1/p
= (/0 |F ) — le(x)\”dx>

with ' (x) = sup, (Pi(X < x) < u).
The case p = 1 of this metric is called Monge—Kantorovich metric (or Hutchinson
metric in Fractal theory), Wasserstein metric (or Fortet—Mourier metric).
e Ornstein d-metric
The Ornstein d-metric is a metric on P (for X = R”"), defined by

1 n
— inf / > Ly | dS.
" Y Ni=t

where the infimum is taken over all joint distributions S of pairs (X, Y) of random
variables X, ¥ such that marginal distributions of X and ¥ are P; and P>.

This metric is used in Stationary Stochastic Processes, Dynamic Systems, and Coding
Theory.
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Chapter 15

Distances in Graph Theory

A graph is apair G = (V, E), where V is a set, called set of vertices of the graph G, and
E is a set of unordered pairs of vertices, called edges of the graph G. A directed graph (or
digraph) is a pair D = (V, E), where V is a set, called set of vertices of the digraph D,
and E is a set of ordered pairs of vertices, called arcs of the digraph D.

A graph in which at most one edge may connect any two vertices, is called simple graph.
If multiple edges are allowed between vertices, the graph is called multi-graph. The graph
is called finite (infinite) if the set V of its vertices is finite (infinite, respectively). The order
of a finite graph is the number of its vertices; the size of a finite graph is the number of its
edges.

A graph or directed graph, together with a function which assigns a positive weight to
each edge, is called weighted graph or network. A network also called framework if the
weights are interpreted as edge-lengths of a putative embedding into an Euclidean space.
In terms of Rigidity Theory, the edges of a framework are graph bars (usually, of equal
length); a tensegrity is a framework in which graph bars are either cables (i.e., cannot get
further apart), or struts (i.e., cannot get closer together).

A subgraph of a graph G is a graph G’ whose vertices and edges form subsets of the
vertices and edges of G. If G’ is a subgraph of G, then G is called supergraph of G'. An
induced subgraph is a subset of the vertices of a graph G together with all edges whose
endpoints are both in this subset.

A graph G = (V, E) is called connected if, for any vertices u, v € V, there exists an
(u —v) path, i.e., asequence of edges uwi = wowi, Wiwsz, ..., Wyp_1 Wy = Wy—1v from E
such thatw; # w; fori # j,i, j €{0,1,...,n}. Adigraph D = (V, E) is called strongly
connected if, for any vertices u, v € V, both, the directed (v — v) path and the directed
(v — u) path, exist. A maximal connected subgraph of a graph G is called its connected
component.

Vertices connected by an edge are called adjacent. The degree deg(v) of a vertex v € V
of a graph G = (V, E) is the number of its vertices adjacent to v.

A complete graph is a graph in which each pair of vertices is connected by an edge.
A bipartite graph is a graph in which the set V of vertices is decomposed into two disjoint
subsets so that no two vertices within the same subset are adjacent. A path is a simple
connected graph in which two vertices have degree one, and other vertices (if they exist)
have the degree two; the length of a path is the number of its edges. A cycle is a closed
path, i.e., asimple connected graph in which every vertex has degree two. A tree is a simple
connected graph without cycles.

190
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Two graphs which contain the same number of vertices connected in the same way called
isomorphic. Formally, two graphs G = (V(G), E(G)) and H = (V(H), E(H)) are called
isomorphic if there is a bijection f : V(G) — V(H) such that, for any u,v € V(G),
uv € E(G) if and only if f(u) f(v) € E(H).

We will consider only simple finite graphs and digraphs, more exactly, the equivalence
classes of such isomorphic graphs.

15.1. DISTANCES ON VERTICES OF A GRAPH

o Path metric

The path metric (or graphic metric, shortest path metric) dpqy, is a metric on the
vertex-set V of a connected graph G = (V, E), defined, for any u,v € V, as the
length of a shortest (# — v) path in G. A shortest (# — v) path is called geodesic. The
corresponding metric space is called graphic metric space, associated with the graph G.

The path metric of the Cayley graph I' of a finitely-generated group (G, -, e) is called
word metric. The path metric of a graph G = (V, E), such that V can be cyclically
ordered in a Hamiltonian cycle, is called Hamiltonian metric. The hypercube metric
is the path metric of a hypercube graph H(m, 2) with the vertex-set V = {0, 1}, and
whose edges are the pairs of vectors x, y € {0, 1}" such that |{i € {1,...,n}: x; #
yvill = Lyitisequal to |{i € {1,...,n}: x; = UA{i e {l,...,n}: y; = 1}
The graphic metric space associated with a hypercube graph is called hypercube met-
ric space. It coincides with the metric space ({0, 1}, d,).

o Weighted path metric

The weighted path metric d,,,, is a metric on the vertex-set V of a connected weighted
graph G = (V, E) with positive edge-weights (w(e)).ck, defined by

mPin Z w(e),

ecP
where the minimum is taken over all (# — v) paths P in G.

e Detour distance

The detour distance is a distance on the vertex-set V of a connected graph G = (V, E),
defined as the length of a longest induced path (i.e., a path, that is an induced subgraph
of G)fromutov e V.

In general, it is not a metric. A graph is called detour graph if its detour distance coin-
cides with its path metric (see, for example, [CIT93]).

o Path quasi-metric in digraphs
The path quasi-metric in digraphs dgp.;, is a quasi-metric on the vertex-set V of a

strongly connected directed graph D = (V, E), defined, for any u, v € V, as the length
of a shortest directed (# — v) path in D.
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e Circular metric in digraphs

The circular metric in digraphs is a metric on the vertex-set V of a strongly connected
directed graph D = (V, E), defined by

ddpath(uv v) + ddpath(vv u),
where dypam 1s the path quasi-metric in digraphs.

e Y -metric

Given a class 7" of connected graphs, the metric d of a metric space (X, d) is called
T -metric if (X, d) is isometric to a subspace of a metric space (V, dypasm), where G =
(V,E) € 7, and dypuy, is the weighted path metric on the vertex-set V of G with
positive edge-weight function w (see tree-like metric).

o Tree-like metric

A tree-like metric (or weighted tree metric) d on a set X is an 7 -metric for the class
T of all trees, i.e., the metric space (X, d) is isometric to a subspace of a metric space
(V, dwpann), where T = (V, E) is a tree, and dypay, is the weighted path metric on the
vertex-set V of T with a positive weight function w. A metric is a tree-like metric if and
only if it satisfied the four-point inequality.

A metric d on a set X is called relaxed tree-like metric if the set X can be embedding in
some (not necessary positively) edge-weighted tree such that, for any x, y € X, d(x, y)
is equal to the sum of all edge’s weights along the (unique) path between corresponding
vertices x and y in the tree. A metric is a relaxed tree-like metric if and only if it satisfied
the relaxed four-point inequality.

e Resistance metric

Given a connected graph G = (V, E) with positive edge-weight function w =
(w(e))ecE, let us interpret the edge-weights as resistances. For any two different ver-
tices u and v, suppose that a battery is connected across them, so that one unit of a
current flows in at # and out in v. The voltage (potential) difference, required for this,
is, by Ohm’s law, the effective resistance between u# and v in an electrical network; it
is called resistance metric §2 (i, v) between them ([KIRa93], cf. resistor-average dis-
tance). The number m can be seen, like electrical conductance, as a measure of
connectivity between u and v. In fact, it holds £2(u, v) < minp ZeeP ﬁ, where P is
any (4 — v) path, with equality if and only if such path P is unique; so, if w(e) = 1
for all edges, the equality means that G is a tree. The resistance metric is applied (in
Physics, Chemistry, and Networks) when the number of paths between any two vertices
should be taken into account.

If w(e) = 1 for all edges, then

2, v) = (uu + &uv) — (uv + Guu)>

where ((g;;)) is the generalized inverse of the Laplacian matrix ((I;;)) of the graph
G: here I;; is the degree of vertex i, while, for i # j, [;; = 1 if the vertices i and
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J are adjacent, and I;; = 0, otherwise. A probabilistic interpretation is: £2(u,v) =
(deg(u)Pr(u — v))~!, where deg(u) is the degree of the vertex u, and Pr(u — v) is
the probability for a random walk leaving u to arrive to v before returning to u.

e Truncated metric

The truncated metric is a metric on the vertex-set of a graph, which is equal to [ for
any two adjacent vertices, and is equal to 2 for any non-adjacent different vertices. It is
the 2-truncated metric for the path metric of the graph. It is the (1, 2)- B-metric if the
degree of any vertex is at most B.

e Multiply-sure distance

The multiply-sure distance is a distance on the vertex-set V of an m-connected
weighted graph G = (V, E), defined, for any u,v € V, as the minimum weighted
sum of lengths of m disjoint (¢ — v) paths. It is a generalization of the concept of dis-
tance to situations in which one wishes to find several disjoint paths between two points,
for example, in a communication networks, where m — 1 of (¢ — v) paths are used to
code the message sent by the remaining (# — v) path (see [McCa97]).

A graph G is called m-connected if there is no set of m — 1| edges whose removal
disconnects the graph. A connected graph is 1-connected.

A cut is a partition of a set into two parts. Given asubset S of V,, = {1, ..., n}, we obtain
the partition {S, V,\S} of V,. The cut-semi-metric on V,,, defined by this partition, can be
seen as a special semi-metric on the vertex-set of the complete bipartite graph K y,\s.
where the distance between vertices is equal to 1 if they belong to different parts of this
graph, and is equal to 0, otherwise.

o Cut semi-metric

Given a subset S of V,, = {1, ..., n}, the cut semi-metric (or split semi-metric) §s is a
semi-metric on V;, defined by

1, ifi#j, |SNn{i,jil=1,
0, otherwise.

8s(i, J) :{

Usually, it is considered as a vector in RIEr E(n) = {{i, j}: 1<i < j <n}.

A circular cut of V,, is defined by a subset Sjxy1 = (k+ 1,...,[}J(modn) C V,: if
we consider the points {1, ..., rn} as being ordered along a circle in that circular order,
then Sjx41,4 is the set of its consecutive vertices from & 4- 1 to /. For a circular cut, the
corresponding cut-semi-metric is called circular cut semi-metric.

An even cut semi-metric is 55 on V,, with even |S]. An odd cut semi-metric is §s on
V,, with odd |S|. An k-uniform cut semi-metric is §s on V,, with |S| € {k,n — k}. An
equicut semi-metric is 55 on V,, with |S| € {[5], [5]}. An inequicut semi-metric is
8s on V,, with |S| ¢ {|5], [51} (see, for example, [DeLa97]).
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e Decomposable semi-metric

A decomposable semi-metric is a semi-metric on V;, = {1, ..., n} which can be repre-
sented as a non-negative linear combination of cut semi-metrics. The set of all decom-
posable semi-metrics on V), is a convex cone, called cut cone CUT,,.

A semi-metric on V,, is decomposable if and only if it is a finite /{-semi-metric.

A circular decomposable semi-metric is a semi-metric on V,, = {1, ..., n} which can
be represented as a non-negative linear combination of circular cut semi-metrics.

A semi-metric on V,, is circular decomposable if and only if it is a Kalmanson semi-
metric with respect to the same ordering (see [ChFi98]).

e Finite /,-semi-metric

Given a finite set X, the finite /,-semi-metric is a semi-metric d on X such that the
metric space (X, d) is a semi-metric subspace of the l;’}-space (R™, dy,) forsomem € N,
If X = {0, 1}", the metric space (X, d) is called lZ-cube. The [}-cube is called Hamming
cube.

o Kalmanson semi-metric

A Kalmanson semi-metric 4 is a semi-metric on V,, = {1, ..., n} which satisfies the
condition

max{d(i, j) +d(r,s),d,s) +d(j, )} <di,r)+d(,s)

forall 1 < i < j € r < s < 7. In this definition the ordering of the elements is
important; so, d is a Kalmanson semi-metric with respect to the ordering 1, ..., n.

Equivalently, if we consider the points {1, ..., n} as being ordered along a circle C, in
that circular order, then the distance d on V), is a Kalmanson semi-metric if the inequality

aii,r)+d(j,s)<d, jy+dr,s)

holds for all i, j,r, s € V, such that the segments [i, j] and [r, s] are crossing chords
of C,,.

A tree-like metric is a Kalmanson metric for some ordering of the vertices of the tree.
The Euclidean metric, restricted to the points that form a convex polygon in the plane,
is a Kalmanson metric.

o Multi-cut semi-metric

Let {S1,...,8;}, ¢ = 2, be a partition of the set V,, = {1, ..., n}, i.e., a collection
S1, ..., 8 of pairwise disjoint subsets of V,, such that S{U---U S, = V.

The multi-cut semi-metric ds, s, is a semi-metric on V,, defined by

yores

5o oy |0 (i€ Syforsomeh, 1<k <q,
l’ = .
Slﬁ...,Sq ] 1’ OtherWISe.
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e Oriented cut quasi-semi-metric

Given a subset S of V,, = {1, ..., n}, the oriented cut quasi-semi-metric 8’S is a quasi-
semi-metric on V,,, defined by

. I, ifieS, jg¢s
8/ , — ) .3 *
s J) {O, otherwise.

Usually, it is considered as the vector of Rl I(n) = {(i, j): 1 <i # j < n}. The cut
semi-metric 85 is 55 + 8{/"\5.

e Oriented multi-cut quasi-semi-metric

Given a partition {S1, ..., S4},q = 2, of V;,, the oriented multi-cut quasi-semi-metric
LY is a quasi-semi-metric on Vj,, defined by
1.0y

[P

. I, ifieSy, jeSu h<m
5 =1k A ’
Stenn$y (0 J) {0, otherwise .

15.2. DISTANCE-DEFINED GRAPHS

e Geodetic graph

A connected graph is called geodetic if there exists exactly one shortest path between
any two its vertices. Every tree is a geodetic graph.

e Isometric subgraph

A subgraph H of a graph G = (V, E) is called isometric subgraph if the path metric
between any two points of H is the same as their path metric in G.

e Retract subgraph

A subgraph H of a graph G = (V, E) is called retract subgraph if it is induced
by an idempotent short mapping of G into itself, ie., f2 = f:V — V with
dpan(f W), [ () < dpan(u, v) forall u, v € V. Any retract subgraph is isometric.

e Distance-regular graph

A connected graph G = (V, E) of diameter T is called distance-regular if, for any
its vertices u, v and any integers 0 < i, j < T, the number of vertices w, such that
dparn(u, w) = i and dpu, (v, w) = j, depends only on i, j and k = dpyy(u, v), but not
on the choice of vertices u and v.

A special case of it is a distance-transitive graph, i.e., such that its group of au-
tomorphisms is transitive, for any 0 < i < T, on the pairs of vertices (u, v) with
dpath(”v v) =1i.

For any 2 < i < T, denote by G; the graph with the same vertex-set as G, and with
edges uv such that dp, (1, v) = i. The graph G is called distance-polynomial graph if
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the adjacency matrix of any G;, 2 < i < T, can be expressed as a polynomial in terms
of the adjacency matrix of G. Any distance-regular graph is distance-polynomial.

Any distance regular-graph is also distance-balanced graph, i.e., [{x € V: d(x,u) <
dx,v)}| = {x € V: d(x,v) < d(x,u)}| for any its edge uv, and distance degree
regular graph, i.e, |[{x € V: d(x,u) =i} dependsonlyoni butnotonu € V.

Another name for a distance-regular graph is a P-polynomial association scheme. A fi-
nite polynomial metric space is a P- and Q-polynomial association scheme. The term
infinite polynomial metric spaces is used for compact connected two-point homoge-
neous spaces; Wang classified them as the Euclidean unit spheres, the real, complex,
and quaternionic projective spaces or the Cayley projective plane.

e Distance-hereditary graph

A connected graph is called distance-hereditary if each of its connected induced sub-
graphs is isometric. A graph is distance-hereditary if each of its induced paths is iso-
metric. Any co-graph, i.e., a graph containing no induced path of four vertices, is
distance-hereditary. A graph is distance-hereditary if and only if its path metric satisfy
the relaxed four-point inequality. A graph is: distance-hereditary, bipartite distance-
hereditary, block graph, or tree if and only if its path metric is a relaxed tree-like
metric for edge-weights being, respectively, non-zero half-integers, non-zero integers,
positive half-integers, or positive integers.

e Block graph

A graph is called block graph if each its block, i.e., a maximal 2-connected induced
subgraph, is a complete graph. Any tree is a block graph. A graph is a block graph if
and only if its path metric is a tree-like metric or, equivalently, satisfies the four-point
inequality.

e Ptolemaic graph

A graph is called Ptolemaic if its path metric satisfies the Ptolemaic inequality

dx, )du,z) <dx,u)d(y,z) +d(x,2)d(y, u).

A graph is Ptolemaic if and only if it is distance-hereditary and chordal, i.e., every cycle
of length greater than 3 has a chord. In particular, any block graph is Ptolemaic.

e D-distance graph

Given a set D of positive numbers containing 1 and a metric space (X, d), the D-
distance graph D(X, d) is a graph with the vertex-set X and the edge-set {uv: d(u, v) €
D} (cf. D-chromatic number).

An D-distance graph is called unit-distance graph if D = {1}, e-unit graph it D = [1 —
g, 1 + ], unit-neighborhood graph it D = (0, 1], integral-distance graph it D = Z,
rational-distance graph it D = Q., prime-distance graph if D is the set of prime
numbers (with 1).

Usually, the metric space (X, d) is a subspace of an Euclidean space E". Moreover,
every finite graph G = (V, E) can be represented by an D-distance graph in some E”.
The minimum dimension of such Euclidean space is called D-dimension of G.
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e [-spanner

A subgraph H = (V, E(H)) of a connected graph G = (V, F) is called r-spanner of
G if, for every u, v € V, the inequality d[ffnh(u, v)/d[?mh(u, v) < t holds. The value ¢ is
called stretch factor of H.

A graph is distance-hereditary if and only if every its induced subgraph is 1-spanner.

A spanning tree of a connected graph G = (V, E) is a subset of | V| — 1 edges that form
a tree on the vertex-set V.

e Steiner distance of a set

The Steiner distance of a set S C V of vertices in a connected graph G = (V, E)
is the minimum number of edges of a connected subgraph of G, containing S. Such a
subgraph is, obviously, a tree, and is called Steiner tree for S. The vertices of Steiner
tree, that are not in S, are called Steiner points.

¢ Distance labelling scheme

A graph family A is said (D. Peleg, 2000) to have an [(n) distance labelling scheme if
there is a function L labelling the vertices of each n-vertex graph in A with distinct labels
of up to [(rn) bits, and there exists an algorithm, called distance decoder, that decides
the distance between any two vertices u, v in a graph from A in time polynomial in the
length of their labels L(u), L(v).

15.3. DISTANCES ON GRAPHS

e Subgraph-supergraph distances

A common subgraph of graphs G and H is a graph which is isomorphic to induced
subgraphs of both G and H. A common supergraph of graphs G and H is a graph which
contains induced subgraphs isomorphic to G and H.

The Zelinka distance dz on the set G of all graphs (more exactly, on the set of all
equivalence classes of isomorphic graphs) is defined by

max{n(G1), n(G2)} — n(G1, G2)

for any G1, G» € G, where n(Gj) is the number of vertices in G;, i = 1,2, and
n(G1, G7) is the maximum number of vertices of a common subgraph of G and G3.

Given an arbitrary set M of graphs, the common subgraph distance d3; on M is defined
by

and the common supergraph distance dj, on M is defined by

N(G1, G2) — min{n(G1), n(G2)}

for any G1, G> € M, where n(G;) is the number of vertices in G;,i = 1,2, n(G1, G2)
is the maximum number of vertices of a common subgraph G € M of G1 and G5, and
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N{(G1, G7) is the minimum number of vertices of a common supergraph H € M of G
and G».

dyr 1s a metric on M if the following condition (i) holds: if H € M is a common su-
pergraph of G, G2 € M, then there exists a common subgraph G € M of G| and G»
with n(G) > n(G1) + n(Gz) — n(H). dj; is a metric on M if the following condition
(i1) holds: if G € M is a common subgraph of G|, G2 € M, then there exists a com-
mon supergraph H € M of G and G, with n(H) < n(G1) + n(G3) — n(G). One has
dy < dj, if the condition (i) holds, and dy; > dj, if the condition (ii) holds.

The distance djs is a metric on the set G of all graphs, the set of all cycle-free graphs,
the set of all bipartite graphs, and the set of all trees. The distance dj, is a metric on
the set G of all graphs, the set of all connected graphs, the set of all connected bipartite
graphs, and the set of all trees. The Zelinka distance dz coincides with dy and dj; on
the set G of all graphs. On the set T of all trees the distances dy; and d}, are identical,
but different from the Zelinka distance restricted to T.

The Zelinka distance dz is a metric on the set G(r) of all graphs with » vertices, and is
equal ton — k orto K — n for all G1, G; € G(n), where k is the maximum number of
vertices of a common subgraph of G1 and G, and K is the minimum number of vertices
of a common supergraph of G1 and G,. On the set T(n) of all trees with n vertices the
distance d is called Zelinka tree distance (see, for example, [Zeli75]).

o Edge distance
The edge distance is a distance on the set G of all graphs, defined by

|E1| 4 |Ea| — 2|E2] + [IVi] — V2l

for any graphs G| = (V1, E1) and G2 = (Va, E3), where G12 = (V13, E13) is a com-
mon subgraph of G and G, with maximal number of edges. This distance has many
applications in Organic and Medical Chemistry.

o Contraction distance
The contraction distance is a distance on the set G(n) of all graphs with n vertices,
defined by
n—k

for any G1, G, € G(n), where k is the maximum number of vertices of a graph which is
isomorphic simultaneously to a graph, obtained from each of graphs G1, G2 by a finite
number of edge contractions.

To perform the contraction of the edge uv € E of a graph G = (V, E) means to replace
u and v by one vertex that is adjacent to all vertices of V\{u, v} which were adjacent to
u ortouv.

e Edge move distance

The edge move distance is a metric on the set G(n, m) of all graphs with n vertices and
m edges, defined, for any G, G2 € G(m, n), as the minimum number of edge moves



Chapter 15: Distances in Graph Theory [ » Edge jump distance] 199

necessary for transforming the graph G into the graph G;. It is equal to m — k, where
k is the maximum number of edges in a common subgraph of G| and G».

An edge move is one of the edges transformations, defined as follow: H can be obtained
from G by an edge move if there exist (not necessarily distinct) vertices u, v, w, and x
in G such that uv € E(G), wx ¢ E(G),and H = G — uv + wx.

e Edge jump distance

The edge jump distance is an extended metric (which in general can take value co) on
the set G(n, m) of all graphs with n vertices and m edges, defined, for any G, G2 €
G(m, n), as the minimum number of edge jumps necessary for transforming the graph
G into the graph G.

An edge jump is one of the edges transformations, defined as follow: H can be obtained
from G by an edge jump if there exist four distinct vertices u, v, w, and x in G, such
that uv € E(G), wx ¢ E(G),and H = G — uv + wx.

o Edge rotation distance

The edge rotation distance is a metric on the set G(n, m) of all graphs with n vertices
and m edges, defined, for any G1, Gy € G(m, n), as the minimum number of edge
rotations necessary for transforming the graph G into the graph G».

An edge rotation is one of the edges transformations, defined as follow: H can be ob-
tained from G by an edge rotation if there exist distinct vertices u, v, and w in G, such
that uv € E(G),uw ¢ E(G),and H = G — uv + uw.

o Tree rotation distance

The tree rotation distance is a metric on the set T(#n) of all trees with n vertices, defined,
for all 71, b € T(n), as the minimum number of free edge rotations necessary for
transforming 77 into 7». For T(#) the tree rotation distance and the edge rotation distance
may differ.

A tree edge rotation is an edge rotation performed on a tree, and resulting in a tree.

o Edge shift distance

The edge shift distance (or edge slide distance) is a metric on the set G.(n, m) of all
connected graphs with n vertices and m edges, defined, for any G, G> € G.(m, n), as
the minimum number of edge shifts necessary for transforming the graph G into the
graph G».

An edge shift is one of the edges transformations, defined as follow: H can be ob-
tained from G by an edge shift if there exist distinct vertices u, v, and w in G such that
uv,vw € E(G), uw ¢ E(G),and H = G — uv + uw. Edge shift is a special kind of
the edge rotation in the case when the vertices v, w are adjacent in G.

The edge shift distance can be defined between any graphs G and H with components
G (1 £i < k)and H; (1 < i < k), respectively, such that G; and H; have the same
order and same size.
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e F-rotation distance

The F -rotation distance is a distance on the set G (n, m) of all graphs with n vertices
and m edges, containing a subgraph isomorphic to a given graph F of order at least 2,
defined, for all G1, G3 € GFf(m, n), as the minimum number of F-rotations necessary
for transforming the graph G into the graph G».

An F-rotation is one of the edges transformations, defined as follow: let F' be a sub-
graph of a graph G, isomorphic to F, let #, v, w be three distinct vertices of the graph G
such that u ¢ V(F"), v,w € V(F'), uv € E(G), and uw ¢ E(G); H can be obtained
from G by the F-rotation of the edge uv into the position uw if H = G — uv + uw.

e Binary relation distance

Let R be a non-reflexive binary relation between graphs, i.e., R C G x G, and there
exists G € G such that (G, G) ¢ R.

The binary relation distance is an extended metric (which in general can take value co)
on the set G of all graphs, defined, for any graphs G and G, as the minimum number
of R-transformations necessary for transforming the graph G into the graph G.

We say, that a graph H can be obtained from a graph G by an R-transformation if
(H,G) € R.

An example is the distance between two triangular embeddings of a complete graph
(i.e., its cellular embeddings in a surface with only 3-gonal faces) defined as the minimal
number ¢ such that, up to replacing ¢ faces, the embeddings are isomorphic.

o Crossing-free transformation metrics

Given a set S of n points in R?, a non-crossing spanning tree of S is a tree whose vertices
are points of S, and whose edges are pairwise non-crossing straight line segments.

The crossing-free edge move metric (see [AAHOQ]) is a metric on the set T of all non-
crossing spanning trees of a set S, defined, for any 71, 75 € T, as the minimum number
of crossing-free edge moves necessary for transforming 77 into 7. A crossing-free edge
move 1S a edges transformation which consists of adding some edge ¢ in T € Ts and
removing some edge f from the induced cycle so that ¢ and f do not cross.

The crossing-free edge slide metric is a metric on the set T of all non-crossing span-
ning trees of a set S, defined, for any 77, T; € Tg, as the minimum number of crossing-
free edge slides necessary for transforming 77 into T,. A crossing-free edge slide is one
of the edges transformations which consists of taking some edge ¢ in T € Ts and mov-
ing one of its endpoints along some edge adjacent to e in T, without introducing edge
crossings and without sweeping across points in S (that gives a new edge f instead of
). The edge slide is a special kind of crossing-free edge move: the new tree is obtained
by closing with f acycle C of length three in 7', and removing e from C, in a way such
that f avoids the interior of the triangle C.

e Traveling salesman tours distances

The traveling salesman problem is the problem of finding the shortest tour that visits a
set of cities. We shall consider only traveling salesman problem with undirected links.
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For an N-city traveling salesman problem, the space Ty of tours is the set of M
cyclic permutations of the cities 1,2, ..., N.

The metric D on 7y is defined in terms of the difference in form: if tours 7, T’ € Ty
differ in m links, then D(T, T') = m.

A k-OPT transformation of a tour T is obtained by deleting & links from T, and recon-
necting. A tour 7’, obtained from T by an k-OPT transformation, is called k-OPT of T
The distance d on the set Ty is defined in terms of the 2-OPT transformations: d(T, T")
is the minimal i, for which there exists a sequence of i 2-OPT transformations which
transforms 7 to 7.

In fact, d(T, Ty < D(T,T") forany T, T' € Ty (see, for example, [MaMo095]).

e Subgraphs distances

The standard distance on the set of all subgraphs of a connected graph G = (V, E) is
defined by

min{dpan(u, v): u € V(F),ve V(H)}

for any subgraphs F, H of G. For any subgraphs F, H of a strongly connected digraph
D = (V, E), the standard quasi-distance is defined by

min{dypqn(u, v): uw € V(F),ve V(H)}

The edge rotation distance on the set S(G) of all edge-induced subgraphs with k edges
in a connected graph G is defined as the minimum number of edge rotations required
to transform F € Sk(G) into H € SK(G). We say, that H can be obtained from F by
an edge rotation if there exist distinct vertices u«, v, and w in G such that uv € E(F),
uw € E(G\E(F),and H = F —uv+uw.

The edge shift distance on the set S¥(G) of all edge-induced subgraphs with k edges
in a connected graph G is defined as the minimum number of edge shifts required to
transform F € SK(G) into H € SK(G). We say, that H can be obtained from F by
an edge shift if there exist distinct vertices #, v and w in G such that uv, vw € E(F),
uw € E(G)\E(F),and H = F — uv + uw.

The edge move distance on the set S*(G) of all edge-induced subgraphs with k edges of
a graph G (not necessary connected) is defined as the minimum number of edge moves
required to transform F € S¥(G) into H € SK(G). We say, that H can be obtained from
F by an edge move if there exist (not necessarily distinct) vertices u, v, w, and x in G
such that uv € E(F), wx € E(G)\E(F),and H = F — uv + wx. The edge move
distance is a metric on S(G). If F and H have s edges in common, then it is equal to
k—s.

The edge jump distance (which in general can take value co) on the set SK(G) of
all edge-induced subgraphs with & edges of a graph G (not necessary connected) is
defined as the minimum number of edge jumps required to transform F € S*(G) into
H e SK(G). We say, that H can be obtained from F by an edge jump if there exist
four distinct vertices u, v, w, and x in G such that uv € E(F), wx € E(G)\E(F), and
H=F —uv+wx.



202 [ e Tree edit distance] Part IV: Distances in Applied Mathematics
15.4. DISTANCES ON TREES

Let T be a rooted tree, i.e., a tree with one of its vertices being chosen as the root. The depth
of a vertex v, depth(v), is the number of edges on the path from v to the root. A vertex v is
called parent of a vertex u, v = par(u), if they are adjacent, and depth(u) = depth(v) + 1;
in this case u is called child of v. Two vertices are siblings if they have the same parent.
The in-degree of a vertex is the number of its children. T (v) is the subtree of T, rooted at
anodev € V(T).If w € V(T (v)), then v is an ancestor of w, and w is a descendant of v,
nca(u, v) is the nearest common ancestor of the vertices 1 and v. T is called labeled tree
if a symbol from a fixed finite alphabet .4 is assigned to each node. T is called ordered tree
if a left-to-right order among siblings in T is given.
On the set T, of all rooted labeled ordered trees there are three editing operations:

e Relabel — change the label of a vertex v;

e Deletion — delete a non-rooted vertex v with parent v’, making the children of v become
the children of v'; the children are inserted in the place of v as a subsequence in the
left-to-right order of the children of v’;

o Insertion — the complement of deletion; insert a vertex v as a child of a v’ making v the
parent of a consecutive subsequence of the children of v'.

For unordered trees the editing operations can be defined similarly, but insert and delete
operations work on a subset instead of a subsequence.

We assume that there is a cost function defined on each editing operation, and the cost
of a sequence of editing operations is the sum of costs of these operations.

The ordered edit distance mapping is a representation of the editing operations. For-
mally, define the triple (M, T1, T») to be an ordered edit distance mapping from T; to T3,
T1,Tp € Ty, if M C V(T1) x V(T3) and, for any (v1, w), (v2, w2) € M, the following
conditions hold: v1 = vy if and only if w1 = wy (one-to-one condition), v is an ancestor
of vy if and only if w; is an ancestor of wy (ancestor condition), v is to the left of vy if
and only if w is to the left of wy (sibling condition).

We say that a vertex v in 71 and T3 is touched by a line in M if v occurs in some pair
in M. Let N1 and N, be the set of vertices in 77 and T3, respectively, not touched by any
line in M. The cost of M is given by y (M) = Z(v.w)eM y(v — w)+ ZveNI y(v —
A+ ZWGNZ y (A — w), where y(a — b) = y(a, b) is the cost of an editing operation
a — b which is arelabel if a, b € A, a deletion if b = A, and an insertion if ¢ = A. Here
» ¢ A is a special blank symbol, and y is a metric on the set A U A (excepting the value

y (&, A)).
o Tree edit distance

The tree edit distance (see [Tai79]) is a distance on the set T, of all rooted labeled
ordered trees, defined, for any 77, 7> € T,,, as the minimum cost of a sequence of
editing operations (relabels, insertions, and deletions) turning 77 into 7>.

In terms of ordered edit distance mappings, it is equal to mingy, 7,,75) ¥ (M), where the
minimum is taken over all ordered edit distance mappings (M, 11, T»).
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The edit tree distance can be defined in similar way on the set of all rooted labeled
unordered trees.

o Selkow distance

The Selkow distance (or top-down edit distance, [-degree edit distance) is a distance
on the set T, of all rooted labeled ordered trees, defined, for any 71, T» € Ty, as the
minimum cost of a sequence of editing operations (relabels, insertions, and deletions)
turning 77 into 7> if insertions and deletions are restricted to leaves of the trees (see
[Selk77]). The root of 71 must be mapped to the root of 7,, and if a node v is to be
deleted (inserted) in M, then subtree rooted at v, if any, is to be deleted (inserted).

In terms of ordered edit distance mappings, it is equal to mingy.7,.75) ¥ (M), where
the minimum is taken over all ordered edit distance mappings (M, T1, T») satisfy-
ing the following condition: if (v, w) € M, where neither v, nor w is the root, then
(par (), par{w)) € M.

e Constrained edit distance

The constrained edit distance (or restricted edit distance) is a distance on the set Ty,
of all rooted labeled ordered trees, defined, for any 77, 7> € T,y,, as the minimum cost
of a sequence of editing operations (relabels, insertions, and deletions) turning 77 into
T, with the restriction that disjoint subtrees should be mapped to disjoint subtrees.

In terms of ordered edit distance mappings, it is equal to mingss 7,.75) ¥ (M), where the
minimum is taken over all ordered edit distance mappings (M, 11, T>) satisfying the
following condition: for all (v, w1), (va, w2), (v3, w3) € M, nca(vy, vy) is a proper
ancestor of vy if and only if nca(wi, wa) is a proper ancestor of ws.

This distance is equivalent to the structure respecting edit distance, defined by
mingy 7,.7) ¥ (M), where the minimum is taken over all ordered edit distance mappings
(M, T, T»), satisfying the following condition: for all (v, w1), (v2, w2), (v3, w3) € M,
such that none of vy, vy, and v3 is an ancestor of the others, nca(vy, v2) = nca(vy, v3) if
and only if nca(w, wy) = nca(wi, ws).

o Unit cost edit distance

The unit cost edit distance is a distance on the set T, of all rooted labeled ordered
trees, defined, for any 71, 7> € T,y, as the minimum number of editing operations
(relabels, insertions, and deletions) turning 77 into 7.

e Alignment distance

The alignment distance (see [JWZ94]) is a distance on the set T,, of all rooted labeled
ordered trees, defined, for any 71, T, € Ty, as the minimum cost of an alignment
of T and T3. It corresponds to a restricted edit distance, where all insertions must be
performed before any deletions.

Thus, one inserts spaces, i.e., vertices labeled with a blank symbol A, into T1 and T3 so
they become isomorphic when labels are ignored; the resulting trees are overlayed on
top of each other giving the alignment T 4 which is a tree, where each vertex is labeled
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by a pair of labels. The cost of T 4 is the sum of costs of all pairs of opposite labels
in T4.

o Splitting-merging distance
The splitting-merging distance (see [ChLu85]) is a distance on the set Ty, of all rooted

labeled ordered trees, defined, for any 77, 7> € T,,, as the minimum number of vertex
splittings and mergings needed to transform 77 into 75.

e Degree-2 distance

The degree-2 distance is a metric on the set T; of all labeled trees (labeled free trees),
defined, for any 71, T» € Ty, as the minimum weighted number of editing operations (re-
labels, insertions, and deletions) turning 77 into T3 if any vertex to be inserted (deleted)
has no more than two neighbors. This metric is a natural extension of the tree edit dis-
tance, and the Selkow distance.

A phylogenetic X -tree is an unordered, unrooted tree with the labeled leaf set X and no
vertices of degree two. If every interior vertex has degree three, the tree is called binary (or
fully resolved).

A cut A|B of X is a partition of X into two subsets A and B (see cut semi-metric).
Removing an edge e from a phylogenetic X-tree induces a cut of the leaf set X which is
called cut associated with e.

¢ Robinson-Foulds metric

The Robinson-Foulds metric (or closest partition metric, cut distance) is a metric on
the set T(X) of all phylogenetic X-trees, defined by

1 1 1
5\2(T1>A2<T2)| = E\Em) - X(D)|+ §|E(T2) — ()|

for all Ty, T, € T(X), where X (T) is the collection of all cuts of X associated with
edgesof T.

o Robinson—Foulds weighted metric.

The Robinson-Foulds weighted metric is a metric on the set T(X) of all phylogenetic
X -trees, defined by

> |wi(AIB) —wa(AlB)|

A|BeX(THUX(T»)

for all 1, T, € T(X), where w; = (w(e))eck(r;) is the collection of positive weights,
associated with the edges of the X-tree 7;, X'(7;) is the collection of all cuts of X,
associated with edges of T;, and w;(A|B) is the weight of the edge, corresponding to the
cut A|[Bof X,i =1,2.

o Nearest neighbor interchange metric
The nearest neighbor interchange metric (or crossover metric) is a metric on the
set T(X) of all phylogenetic X-trees, defined, for all 77, 7> € T(X), as the minimum
number of nearest neighbor interchanges required to transform 77 into 75.
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A nearest neighbor interchange consists of swapping two subtrees in a tree that are
adjacent to the same internal edge; the remainder of the tree is unchanged.

e Subtree prune and regraft distance

The subtree prune and regraft distance is a metric on the set T(X) of all phylogenetic
X-trees, defined, for all T7, T, € T(X), as the minimum number of subtree prune and
regraft transformations required to transform 77 into 7.

A subtree prune and regraft transformation proceeds in three steps: one selects and
removes an edge uv of the tree, thereby dividing the tree into two subtrees 7}, (containing
u) and T, (containing v); then one selects and subdivides an edge of T,, giving a new
vertex w; finally, one connects # and w by an edge, and removes all vertices of degree
two.

o Tree bisection-reconnection metric

The tree bisection-reconnection metric is a metric on the set T(X) of all phylogenetic
X-trees, defined, for all 77, 7> € T(X), as the minimum number of tree bisection and
reconnection transformations required to transform 77 into 75.

A tree bisection and reconnection transformation proceeds in three steps: one selects and
removes an edge uv of the tree, thereby dividing the tree into two subtrees 7, (containing
u) and T, (containing v); then one selects and subdivides an edge of T,, giving a new
vertex w, and an edge of T;,, giving a new vertex z; finally one connects w and z by an
edge, and removes all vertices of degree two.

o Quartet distance

The quartet distance (see [EMMSS]) is a distance of the set T,(X) of all binary phy-
logenetic X-trees, defined, for all 77, T» € Ty(X), as the number mismatched quartets
(from the total number (}) possible quartets) for 71 and T>.

This distance is based on the fact that given four leaves {1, 2, 3, 4} of a tree, they can
only be combined in a binary subtree in 3 different ways: (12]34), (13|24), or (14]|23): a
notation (12[34) refers to the binary tree with the leaf set {1, 2, 3, 4} in which removing
the inner edge yields the trees with the leave sets {1, 2} and {3, 4}.

o Triples distance

The triples distance (see [CPQ96]) is a distance of the set T;(X) of all binary phylo-
genetic X-trees, defined, for all 71, T, € T,(X), as the number of triples (from the total
number (3) possible triples) that differ (for example, by which leaf is the outlier) for T;
and 7».

e Perfect matching distance

The perfect matching distance is a distance on the set T,(X) of all rooted binary phy-
logenetic X-trees with the set X of n labeled leaves, defined, for any 77, T € Tp,(X),
as the minimum number of interchanges necessary to bring the perfect matching of 7;
to the perfect matching of 7.
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Given set A = {1, ..., 2k} of 2k points, a perfect matching of A is a partition A into
k pairs. A rooted binary phylogenetic tree with n labeled leaves has a root and n — 2
internal vertices distinct from the root. It can be identified with a perfect matching on
2n — 2, different from the root, vertices by following construction: label the internal
vertices with numbers n 4 1, ..., 2n — 2 by putting the smallest available label as the
parent of the pair of labeled children of which one has the smallest label among pairs of
labeled children; now a matching is formed by peeling off the children, or sibling pairs,
two by two.

e Attributed tree metrics

An attributed tree is a triple (V, E, ), where T = (V, E) is the underlying tree, and «
is a function which assigns an attribute vector a(v) to every vertex v € V. Given two
attributed trees (V1, E1, &) and (V, E3, B), consider the set of all subtree isomorphisms
between them, i.e., the set of all isomorphisms f : Hy — H», Hy C Vi, H» C V3, be-
tween their induced subtrees. Given a similarity s on the set of attributes, the similarity
between isomorphic induced subtrees is defined as Wi (f) = ZueHl s(a(v), B(fF (V).
The isomorphism ¢ with maximal similarity W, (¢) = W (¢) is called maximum simi-
larity subtree isomorphism.

The following semi-metrics on the set T, of all attributed trees are used:

L. max{|V1], [Va]} — W(@);
2. Vil + [V = 2W(¢);
W(g)

3. 1 — s
41— W@
: ViTFIV2 —W(g) "

They become metrics on the set of equivalences classes of attributed trees: two attributed
trees (V1, E1, @) and (V3, E2, B) are called equivalent if they are attribute-isomorphic,
i.e., if there exists an isomorphism g : V; — V» between the trees 77 and 73, such that,
for any v € V1, we have o(v) = B(g(v)). In this case |V|| = | V2| = W(g).

o Greatest agreement subtree distance

The greatest agreement subtree distance is a distance of the set T of all trees, defined,
for all 71, 7> € T, as the minimum number of leaves removed to obtain a (greatest)
agreement subtree.

An agreement subtree (or common pruned tree) of two trees is an identical subtree that
can be obtained from both trees by pruning leaves with the same label.



Chapter 16

Distances in Coding Theory

Coding Theory deals with the design and the properties of error-correcting codes for the
reliable transmission of information across noisy channels in transmission lines and storage
devices. The aim of Coding Theory is to find codes which transmit and decode fast, contain
many valid code words, and can correct, or at least detect, many errors. These aims are
mutually exclusive, however; so, each application has its own good code.

In communications, a code is a rule for converting a piece of information (for example, a
letter, word, or phrase) into another form or representation, not necessarily of the same sort.
Encoding is the process by which a source (object) performs this conversion of information
into data, which is then sent to a receiver (observer), such as a data processing system.
Decoding is the reverse process of converting data, which has been sent by a source, into
information understandable by a receiver.

An error-correcting code is a code in which every data signal conforms to specific rules
of construction so that departures from this construction in the received signal can generally
be automatically detected and corrected. It is used in computer data storage, for example
in dynamic RAM, and in data transmission. Error detection is much simpler than error
correction, and one or more “check” digits are commonly embedded in credit card numbers
in order to detect mistakes. The two main classes of error-correcting codes are block codes,
and convolutional codes.

A block code (or uniform code) of length n over an alphabet A, usually, over a finite field
F, =1{0,...,g9—1},isasubset C C A";every vector x € C is called codeword, M = |C]|
is called size of the code; given metric d on ]FZ (usually, the Hamming metric dp ), the
value d* = d*(C) = miny yec,xzy d(x, y) is called minimum distance of the code C.
The weight w(x) of a codeword x € C is defined as w(x) = d{(x, 0). An (n, M, d*)-code
is an g-ary block code of length #, size M, and minimum distance d*. A binary code is a
code over IFs.

When codewords are chosen such that the distance between them is maximized, the code
is called error-correcting, since slightly garbled vectors can be recovered by choosing the
nearest codeword. A code C is an t-error-correcting code (and an 2¢-error-detecting code)
if d*(C) > 2t+1. In this case each neighborhood Uy (x) = {y € C: d(x,y) < t}ofx € C
is disjoint with U, (y) forany y € C, y # x. A perfect code is an g-ary (n, M, 2t + 1)-code
for which the M spheres U, (x) or radius ¢ centered on the codewords fill the whole space
[F;, completely, without overlapping.

A block code C C ]FZ is called linear if C is a vector subspace of ]FZ An [n, k]-code

is an k-dimensional linear code C C IFZ (with the minimum distance d*); it has size ¢*,

207
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ie., is an (n, ¢*, d*)-code. The Hamming code is the linear perfect one-error correcting
(‘;IT_]I, % —r, 3)-code.

An k x n matrix G with rows that are basis vectors for a linear [n, k]-code C is called
generator matrix of C. In standard form it can be written as (15| A), where 1; is the k x k
identity matrix. Each message (or information symbol, source symbol) u = (uy, ..., ux) €
]F(’; can be encoded by multiplying it (on the right) with the generator matrix: uG € C.
The matrix H = (—AT|1,_;) is called parity-check matrix of C. The number r = n — k
corresponds to the number of parity check digits in the code, and is called redundancy of

logo M
—a - F

the code C. The information rate (or code rate) of a code C is the number R = or

an g-ary [n, k]-code R = % log, ¢; for a binary [n, k]-code R = f—l

A convolutional code is a type of error-correction code in which each k-bit information
symbol to be encoded is transformed into an n-bit codeword, where R = % is the code
rate (n > k), and the transformation is a function of the last m information symbols, where
m is the constraint length of the code. Convolutional codes are often used to improve the
performance of radio and satellite links. A variable length code is a code with codewords
of different lengths.

In contrast to error-correcting codes which are designed only to increase the reliability of
data communications, cryptographic codes are designed to increase their security. In Cryp-
tography, the sender uses a key to encrypt a message before it is sent through a insecure
channel, and an authorized receiver at the other end then uses a key to decrypt the received
data to a message. Often, data compression algorithms and error-correcting codes are used
in tandem with cryptographic codes to yield communications that are both efficient, robust
to data transmission errors, and secure to eavesdropping and tampering. Encrypted mes-
sages which are, moreover, hidden in text, image, etc., are called stenographic messages.

16.1. MINIMUM DISTANCE AND RELATIVES

¢ Minimum distance

Given a code C C V, where V is an n-dimensional vector space equipped with a metric
d, the minimum distance d* = d*(C) of the code C is defined by

min  d(x, y).

x,veC, x#y

The metric d depends on the nature of the errors for the correction of which the code is
intended. For a prescribed correcting capacity it is necessary to use codes with maximum
number of codewords. The most widely investigated such codes are the g-ary block
codes in the Hamming metric dy(x, y) = [{i: x; Z yi,i = 1,...,n}|.

For a linear code C the minimum distance d*(C) = w(C), where w(C) =
minfw(x): x € C}is a minimum weight of the code C. As there are rank(H) < n —k
independent columns in the parity check matrix H of an [n, k]-code C, then d*(C) <
n —k + 1 (Singleton upper bound).
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e Dual distance
The dual distance d- of a linear [n, k]-code C C IFZ is the minimum distance of the
dual code C of C.
The dual code CL of C is defined as the set of all vectors of ]FZ, that are orthogonal to
every codeword of C: C+ = {v € IFZ: (v,u) = Oforany u € C}. The code Ct is a

linear [n, n —k]-code. The (n — k) x n generator matrix of C is the parity-check matrix
of C.

e Bar product distance

Given linear codes Cy and C; of length n with C; C Cy, their bar product C1|C3 is a
linear code of length 2n, defined by C1|Co = {x[x +y: x € C1,y € Ca}.

The bar product distance is the minimum distance d*(C1|C,) of the bar product C1|Ca.

e Design distance

A linear code is called cyclic code if all cyclic shifts of a codeword also belong to C,
i.e., if for any (ag,...,a,—1) € C the vector (ay_1,a0,...,a,—2) € C. It is conve-
nient to identify a codeword (ay, ..., a,—1) with the polynomial ¢(x) = ag + ajx +
oo+ ay_1x" L then every cyclic [n, k]-code can be represented as the principal ideal
(g(x)) ={r(x)gx): rx) € R,} of thering R, = F,(x)/(x" — 1), generated by the
polynomial g(x) = go + g1x + - - - + x"~, called generator polynomial of the code C.

Given an element « of order # in a finite field Fys, a Bose—Chaudhuri-Hocquenghem
[n, k]-code of design distance d is a cyclic code of length 7, generated by a polynomial
g(x) inF,(x) of degree n — k, that has roots at «, @?, ..., a?"! The minimum distance

d* of a Bose-Chaudhuri-Hocquenghem code of odd design distance d is at least d.

A Reed-Solomon code is a Bose—Chaudhuri-Hocquenghem code with s = 1. The gener-
ator polynomial of a Reed—Solomon code of design distance d is g(x) = (x —a) - - - (x —
a? _1) with degree n — k = d — 1; that is, for a Reed—Solomon code the design distance
d = n — k + 1, and the minimum distance d* > d. Since for a linear [n, k]-code the
minimum distance d* < n — k + 1 (Singleton upper bound), a Reed—Solomon code has
the minimum distance d* = n —k+ 1 and achieves the Singleton upper bound. Compact
disk players use a double-error correcting (255, 251, 5) Reed—Solomon code over Fas56.

e Goppa designed minimum distance

Goppa designed minimum distance ([Gopp71]) is a lower bound d*(m) for the mini-
mum distance of one-point geometric Goppa codes (or algebraic geometry codes) G(m).
For G(m), associated to the divisors D and mP, m € N, of a smooth projective ab-
solutely irreducible algebraic curve of genus g > O over a finite field F,, one has
d*m)=m+2—-2gif2¢g -2 <m < n.

In fact, for a Goppa code C(m) the structure of the gap sequence at P may allow one to
give a better lower bound of the minimum distance (cf. Feng—Rao distance).

e Feng—Rao distance

The Feng—Rao distance §rr(m) is a lower bound for the minimum distance of one-
point geometric Goppa codes G (m) which is better than the Goppa designed minimum
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distance. The method of Feng and Rao for encoding the code C(m) decodes errors up to
half the Feng—Rao distance § pg(m), and gives an improvement of the number of errors
that one can correct for one-point geometric Goppa codes.

Formally, the Feng—Rao distance is defined as follow. Let S be a numerical semi-group,
i.e., a sub-semi-group S of N U {0} such that the genus g = [N U {0}\S] of S is fi-
nite, and 0 € S. The Feng—Rao distance on S is a function §pg: § — N U {0}
such that g (m) = min{v(r): r = m,r € S}, where v(r) = |{(a,b) € §?: a +
b = r}|. The generalized r-th Feng—Rao distance on S is defined by &} ,(m) =

min{v[my,...,m,|: m < m; < -+« < m,,m; € S}, where vimy,...,m,] = [{a €
S: m; —a € Sforsomei = 1,...,r}|. Then §pr(m) = 8;R(m). (See, for example,
[FaMu03].)

o Free distance

The free distance is the minimum non-zero Hamming weight of any codeword in a
convolutional code or a variable length code.

Formally, the k-th minimum distance d;’ of a convolutional code or a variable length
code is the smallest Hamming distance between any two initial codeword segments k
frame long that disagree in the initial frame. The sequence df, d5, d5, ... (df < dj <
di < ---)is called distance profile of the code. The free distance of a convolutional
code or a variable length code is max; d;" = lim; o d) = d3,.

o Effective free distance

A turbo code is along block code in which there are L input bits, and each of these bits is
encoded ¢ times. In the j-th encoding, the L bits are sent through a permutation box P;,
and then encoded via an [N, L] block encoder (code fragment encoder) which can be
thought of as an L x N; matrix. The overall turbo code is then a linear [N1+- - -+N,, L]-
code (see, for example, [BGT93]).

The weight-i input minimum distance d' (C) of a turbo-code C is the minimum weight
among codewords corresponding to input words of weight i. The effective free distance
of C is its weight-2 input minimum distance d*(C), i.e., the minimum weight among
codewords corresponding to input words of weight 2.

e Distance distribution

Given a code C over a finite metric space (X, d) with the diameter diam(X,d) = D,
the distance distribution of C is an (D + 1)-vector (Ag,..., Ap), where A; =
ﬁH(c, ¢y € C%: d(c,¢’) = i}|. That is, one considers A;(c) as the number of
code words at distance i from the codeword ¢, and takes A; as the average of A;(c)
overall c € C. Ay = 1, and if d* = 4*(C) is the minimum distance of C, then
A= - =Ap 1 =0.

The distance distribution of a code with given parameters is important, in particular, for
bounding the probability of decoding error under different decoding procedures from
maximum likelihood decoding to error detection. Apart from this, it can be helpful in
revealing structural properties of codes and establish nonexistence of some codes.
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e Unicity distance

The unicity distance of a cryptosystem is the minimal length of cyphertext that is re-
quired in order to expect that there exists only one meaningful decryption for it. For
classic cryptosystems with fixed key space, the unicity distance is approximated by the
formula H(K)/D, where H(K) is the key space entropy (roughly log, N, where N is
the number of keys), and D measures the redundancy of the plain text source language
in bits per letter.

A cryptosystem offers perfect secrecy if its unicity distance is infinite. For example, the
one-time pads offer perfect secrecy; they were used for the “red telephone” between
Kremlin and White House.

16.2. MAIN CODING DISTANCES

e Arithmetic codes distance

An arithmetic code (or code with correction of arithmetic errors) C is a finite subset
of the set Z of integers (usually, non-negative integers). It is intended for the control
of the functioning of an adder (a module performing addition). When adding numbers
represented in the binary number system, a single slip in the functioning of the adder
leads to a change in the result by some power of 2, thus, to a single arithmetic error.
Formally, a single arithmetic error on Z is defined as a transformation of a number
neZtoanumbern' =n+21i=1,2,....

The arithmetic codes distance is a metric on Z, defined, for any ni,n, € 7Z, as the
minimum number of arithmetic errors taking n1 to na. It can be written as ws(n1 — n2),
where wy(n) is the arithmetic 2-weight of n, i.e., the smallest possible number of non-
zero coefficients in representations n = Zf:o ¢;2, where ¢; = 0, £1, and k is some
non-negative integer. In fact, for each » there is an unique such representation with
ey 7= 0,e;e;r1 =0foralli =0,...,k — 1, which has the smallest number of non-zero
coefficients (cf. arithmetic »-norm metric).

o Sharma—Kaushik distance

Let g = 2, m > 2. A partition {By, By, ... By_1} of Zy, is called Sharma—Kaushik
partition if the following conditions hold:

1. By = {O};

2. Foranyi € Z,,,i € Byifandonlyifm —i € B;,s =1,2,...,9 — 1;

3. Ifi € By, j € By,and s > ¢, then min{i, m — i} > min{j, m — j};

4. Ifts =2 t,s,t =0,1,...,9g — 1, |Bg| = |B;] except fors = g — | in which case
|By—1] > |By—al.

Given a Sharma—Kaushik partition of Z,,, the Sharma—Kaushik weight wsk(x) of any
element x € Z,, is defined by wsg(x) =iifx € B;,i € {0,1,...,g —1}.

The Sharma—Kaushik distance (see, for example, [ShKa97]) is a metric on Z,,, defined
by

wsg(x — y).
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The Sharma—Kaushik distance on ZJ, is defined by w¢ (x — y), where, for x =
(x1,...%,) € Z},, one has w (x) = > i wsk (x;).

The Hamming metric and the Lee metric arise from two specific partitions of the above
type: Py = {Bo, B1}, where B1 = {1,2,...,q9 — 1}, and P, = {Bg, By, ..., Biy/21}
where By = {i,m —i},i=1,...,[%].

o Absolute summation distance

The absolute summation distance (or Lee distance) is the Lee metric on the set Z,,
defined by

Wiee(X — ),

where wre.(x) = Y i minfx;, m — x;} is the Lee weight of x = (x1, ..., x,) € Z.

If Z;,, is equipped with the absolute summation distance, then a subset C of Z},, is called
Lee distance code. Lee distance codes are used for phase-modulated and multilevel
quantized-pulse-modulated channels, and have several applications to the toroidal in-
terconnection networks. Most important Lee distance codes are negacyclic codes.

o Mannheim distance

Let Z[i] = {a + bi: a,b € Z} be the set of Gaussian integers. Let 1 = a + bi
(a > b > 0) be a Gaussian prime. It means, that (a 4+ bi)(a — bi) = a4+ p? = p, where
p =1 (mod 4) is a prime number, or thatw = p4+0-i = p, where p=3 (mod4) isa
prime number.

The Mannheim distance is a distance on Z[i], defined, for any two Gaussian integers
x and y, as the sum of the absolute values of real and imaginary part of the difference
x — y (mod 7). The modulo reduction, before summing the absolute values of real and
imaginary part, is the difference between the Manhattan metric and the Mannheim
distance.

The elements of the finite field F, = {0,1,...,p — 1} for p = 1 (mod4), p =
a® + b?%, and the elements of the finite field F[,z for p = 3 (mod4), p = a, can
be mapped on a subset of the Gaussian integers using the complex modulo function
wk) =k — [@](a +bi),k=0,..., p— 1, where [.] denotes rounding to the clos-
est Gaussian integer. The set of the selected Gaussian integers with the minimal Galois
norms is called constellation. This representation gives a new way to construct codes
for two-dimensional signals. Mannheim distance was introduced to make QAM-like sig-
nals more susceptible for algebraic decoding methods. For codes over hexagonal signal
constellations a similar metric can be introduced over the set of the Eisenstein—Jacobi
integers. It is useful for block codes over tori. (See, for example, [Hube93], [Hube94].)

o Poset distance

Let (V,, <) be a poseton V,, = {1,...,n}. A subset I of V,, is called ideal if x € I
and y < x imply that y € I. If J C V,, then (J) denotes the smallest ideal of V,,
which contains J. Consider the vector space ]FZ over a finite field F;. The P-weight of
an element x = (x1,...,x,) € ]FZ is defined as the cardinality of the smallest ideal of
Vy, containing the support of x: wp(x) = [{(supp(x))|, where supp(x) = {i: x; % 0}.
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The poset distance (see [BGL95]) is a metric on F”, defined by
wp(x —y).

If Fj, is equipped with a poset distance, then a subset C of IF is called poset code. If V,,
forms the chain 1 < 2 < -+ < n, then the linear code C of dimension k consisting of
all vectors (0,...,0,a5—k+1,...,an) € ]FZ is a perfect poset code with the minimum
(poset) distance d} (C) = n — k + 1. If V,, forms an antichain, then the poset distance
coincides with the Hamming metric.

o Rank distance

Let I, be a finite field, K = F,» be an extension of degree m of F,, and E = K" be
a vector space of dimension n over K. For any ¢ = (a1, ...a,) € E define its rank,
rank(a), as the dimension of the vector space over F,,, generated by {a;, ..., a,}.

The rank distance is a metric on E, defined by
rank(a — b).

Since the rank distance between two codewords is at most the Hamming distance be-
tween them, for any code C C E its minimum (rank) distance dzx(C) < min{m,n —
log,m |C]+1}. A code C with dpg(C) =n— log,m |Cl+1,n < m, is called Gabidulin
code (see [Gabi85]). A code C with dgp(C) = m, m < n, is called full rank distance
code. Such code has at most ¢” elements. A maximal full rank distance code is a full
rank distance code with ¢” elements; it exists if and only if m divides 7.

o Gabidulin—Simonis metrics

Consider the vector space ]FZ (over a finite field F;) and a finite family F = {F;: i € I}
of'its subsets such that U;¢; F; = ]FZ Without loss of generality, ' can be an antichain of
linear subspaces of ]FZ The F-weight wr of a vector x = (x,...,X,) € ]FZ is defined
as the cardinality of the smallest subset J of I such that x € U;c; F;.

A Gabidulin—-Simonis metric (or F-distance, sce [GaSi98]) is a metric on F?, defined
by
wrx — y).

The Hamming metric corresponds to the case of F;,i € I, forming the standard basis.
The Vandermonde metric is F-distance with F;,i € I, being the columns of a general-
ized Vandermonde matrix. Amongst other coding Gabidulin—Simonis metrics are: rank
distance, b-burst distance, Gabidulin’s combinatorial metrics (cf. poset distance), etc.

o Rosenbloom-Tsfasman distance

Let My, »(F,) be the set of all m x n matrices with entries from a finite field I, (in

general, from any finite alphabet A = {ay, ..., ay}). The Rosenbloom—Tsfasman norm
l.lrT on My, n(Fy) is defined as follow: if m = 1and a = (§1, &2, ..., &) € My ,(Fy),
then [0 ,]rr = 0, and ||lal|lrr = max{i|§ # 0} fora # 0143 if A = (a1,...,am)" €

Mm,rl(]Fq)a aj € Ml.ll(]FC[)7 1 < j<m,then |Allgr = Zf?:l “aj”RT-
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The Rosenbloom—-Tsfasman distance ([RoTs96]) is a metric (in fact, an ultrametric)
on My, ,(F,), defined by

[A — Blrr.

For every matrix code C C M), ,(F,) with qk elements the minimum (Rosenbloom—
Tsfasman) distance dp(C) < mn—k+1. Codes meeting this bound are called maximum
distance separable codes.

The most used distance between codewords of a matrix code C C M, ,(F,) is the
Hamming metric on M,, ,(F,), defined by |A — By, where | Al g is the Hamming
weight of a matrix A € My, ,(F,), i.e., the number of non-zero entries of A.

o Interchange distance

The interchange distance is a metric on the code C C A" over an alphabet A, de-
fined, for any x, y € C, as the minimum number of franspositions, i.e., interchanges of
adjacent pairs of symbols, converting x into y.

¢ ACME distance
The ACME distance is a metric on a code C C A" over an alphabet .4, defined by

min{dH(x, ¥),di(x, y)},
where dy is the Hamming metric, and d; is the interchange distance.

o Indel distance

Let W be the set of all words over an alphabet A. A deletion of a letter in a word 8 =
by ...by of the length n is a transformation of B into a word 8’ = b1 ...b;_1bix1...by,
of the length n — 1. An insertion of a letter in a word 8 = by ... b, of the lengthn is a
transformation of B into a word B” = by ...b;bb;y| ... by, of the length n + 1.

The indel distance (or distance of codes with correction of deletions and insertions)
is a metric on W, defined, for any «, 8 € W, as the minimum number of deletions and
insertions of letters converting « into .

A code C with correction of deletions and insertions is an arbitrary finite subset of W.
An example of such code is the set of words 8 = by ... b, of length n over the alphabet
A = {0, 1} for which >"]"_, ib; = 0 (mod n + 1). The number of words in this code is
equal to m Yk @ (k)20 +D/% where the sum is taken over all odd divisors k of n + 1,
and ¢ is the Euler function.

o Interval distance
The interval distance (see, for example, [Bata95]) is a metric on a finite group
(G, +, 0), defined by
Win(x — ¥),

where w;,; (x) is an interval weight on G, i.e., a group norm which values are consecu-
tive non-negative integers 0, . . ., m. This distance is used for group codes C C G.
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o Fano metric

The Fano metric is a decoding metric with the goal to find the best sequence estimate
used for the Fano algorithm of sequential decoding of convolutional codes.

A convolutional code is a type of error-correction code in which each k-bit information
symbol to be encoded is transformed into an r-bit codeword, where R = % is the code
rate (n > k), and the transformation is a function of the last m information symbols. The
linear time-invariant decoder (fixed convolutional decoder) maps an information symbol

wj € {u1,...,un}, u; = (U1, ... uix), uij € Fa, into a codeword x; € {x1,..., xn},
x; = (X1, ..., Xin), Xij € F2,soone has acode {x1,...,xy} with N codewords which
occur with probabilities {p(x1), ..., p(xy)}. A sequence of [ codewords form a stream
(or path) x = x[1,1 = {x1, ..., x;} which is transmitted through a discrete memoryless

channel, resulting in the received sequence y = (1. The task of a decoder which
minimizes the sequence error probability is to find a sequence which maximizes the joint
probability of input and output channel sequences p(y, x) = p(y|x) - p(x). Usually it is
sufficient to find a procedure that maximizes p(y|x), and a decoder that always chooses
as its estimate one of the sequences that maximizes it or, equivalently, the Fano metric,
is called max-likelihood decoder.

Roughly, we consider each code as a tree, where each branch represents one codeword.
The decoder begins at the first vertex in the tree, and computes the branch metric for
each possible branch, determined the best branch to be the one corresponding to the
codeword x; resulting in the largest branch metric, w g (x ;). This branch is added to the
path, and the algorithm continues from the new node which represents the sum of the
previous node and the number of bits in the current best codeword. Through iterating
until a terminal node of the tree is reached, the algorithm traces the most likely path. In
this construction, the bit Fano metric is defined by

og p{yilxi)
2 0w

’

the branch Fano metric is defined by
- p(yilxji)
pr(x)) = (log — —R>,
’ ; 2 p0w)
and the path Fano metric is defined by

I

wE{xL) = Z/LF(X‘/'L

J=l1

where p(y;|x;) are the channel transition probabilities,

p(yi) = Z Pxm) POyl Xm)

Xm
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is the probability distribution of the output given the input symbols averaged over all
input symbols, and R = % is the code rate.

For a hard-decision decoder p(y; =0lx; = 1) =p(y; =1lx; =0)=p,0 < p < %,
the Fano metric for a path x1 ;| can be written as

wrx) = —eda (s xpa) + 81 -n,

where ¢ = —log, Ii’p >0, 8 =1—R+log,(1 — p), and dg is the Hamming metric.

The generalized Fano metric for sequential decoding is defined by

In

' p(yjlx v
wrlxi) = <log ——— —wR,
F\AMLI ; 2 p(yj)l_w

0 < w < 1. When w = 1/2, the generalized Fano metric reduces to the Fano metric
with a multiplicative constant 1/2.

e Metric recursion of a MAP decoding

Maximum a posteriori sequence estimation, or MAP decoding for variable length codes,
used the Viterbi algorithm, is based on the metric recursion

" Cm)
m) _ (m) oy, POralx, =+
A=A+ Zxk’n log, T ™

+2log, p(u,({m)),
=1 POk |xk.,, =

where A,(cm) is the branch metric of branch m at time (level) k, x; ,, is the r-th bit of the

codeword having [ ,Em) bits labeled at each branch, yy ,, is the respective received soft-bit,
uy is the source symbol of branch m at time k, and assuming statistical independence of

the source symbols, the probability p(u,((m)) is equivalent to the probability of the source
symbol labeled at branch m, that may be known or estimated. The metric increment
is computed for each branch, and the largest value, when using log-likelihood-values,
of each state is used for further recursion. The decoder first computes the metric of all
branches, and then the branch sequence with largest metric starting from the final state
backward is selected.



Chapter 17

Distances and Similarities in Data Analysis

A data set is a finite set comprised of m sequences (x{, .. x)), jef{l,...,m},of length
n. The values xl.l, ..., x" represent aftribute S;. It can be numerical, including contin-
uous (real numbers) and binary (presence/absence expressed by 1/0), ordinal (numbers
expressing rank only), or nominal (which are not ordered).

Cluster Analysis (or Classification, Taxonomy, Pattern Recognition) consists mainly of
partition of data A into relatively small number of clusters, i.e., such sets of objects, that
(with respect of selected measure of distance) the objects, at best possible degree, are
“close” if they belong to the same cluster, “far” if they belong to different clusters, and
further subdivision into clusters will impair above two conditions.

We give three typical examples. In Information Retrieval applications, nodes of peer-
to-peer database network export a data (collection of text documents); each document is
characterized by a vector from R”. An user guery consists of a vector x € R”, and user
needs all documents in database which are relevant to it, i.e., belong to the ball in R”,
centered in x, of fixed radius and with convenient distance function. In Record Linkage,
each document (database record) is represented by a term-frequency vector x € R” or a
string, and one wants to measure semantic relevancy of syntactically different records. In
Ecology, let x, y be species abundance distributions, obtained by two sample methods (i.e.,
xj, yj are the numbers of individuals of species j, observed in corresponding sample); one
needs a measure of distance between x and y, in order to compare two methaods.

Once a distance d between objects is selected, the linkage metric, i.e., a distance be-
tween clusters A = {a1,...,an} and B = {by, ..., b,} is usually one of the following:

average linkage: the average of the distances between the all members of those clusters,
e, i)

single rlnirlllkage: the distance between the nearest members of those clusters, i.e.,
min; ; d{a;, bj);

complete linkage: the distance between the furthest members of those clusters, i.e.,
max; ;d(a;, b;);

centroid linkage: the distance between the centroids of those clusters, i.e, ||a — bla,

" s ~ b
where @ = %,andb: %

s

>

Ward linkage: the distance n’:Tn la —bl.

Multi-dimensional Scaling is a technique developed in the behavioral and social sciences
for studying the structure of objects or people. Together with Cluster Analysis, it is based
on distance methods. But in Multi-dimensional Scaling, as opposite to Cluster Analysis,
one starts only with some m x m matrix D of distances of the objects and (iteratively) looks

217
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for a representation of objects in R” with low #, so that their Euclidean distance matrix has
minimal square deviation from the original matrix D.

There are many similarities used in Data Analysis; the choice depends on the nature of
data and is not an exact science. We list below main such similarities and distances.

Given two objects, represented by non-zero vectors x = (x1,...,x,) and y = (y1, .. .,
yr) from R”, the following notation are used in this chapter.

> x; means ) ;| x;.

1 is the characteristic function of event F: 1y = 1if F happens, and 1 = 0, other-
wise.

Ixll2 =4/ lez is the ordinary Euclidean norm on R,

By X is denoted an", i.e., the mean value of components of x. So, ¥ = % if xis a
Sfrequency vector (discrete probability distribution), ie., all x; > 0, and > x; = 1, and
X = % if x is a ranking (permutation), i.e., all x; are different numbers from {1, ..., n}.

In the binary case x € {0, 1}" (i.e., when x is a binary n-sequence), let X = {1 < i <
n:x;=1and X = {1 <i<n: x; =0).Let|XNY|,|XUY],|X\Y|and | XAY| denote
the cardinality of intersection, union, difference and symmetric difference (X\Y) U (Y\X)
of the sets X and Y, respectively.

17.1. SIMILARITIES AND DISTANCES FOR NUMERICAL DATA

o Ruzicka similarity

The Ruzicka similarity is a similarity on R”?, defined by
>_min{x;, yi}
> max{x;, yi}’
o Roberts similarity
The Roberts similarity is a similarity on R”, defined by
P O
(x4 yi)

e Ellenberg similarity
The Ellenberg similarity is a similarity on R”, defined by

Z(xi + yi)IX[~)7i;£O
Z(xi + y1+ 1)([)7[:0).

Binary cases of Ellenberg and Ruzicka similarities coincide; it is called Tanimoto sim-
ilarity (or Jaccard similarity of community):

X NY]|

IXUY]
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The Tanimoto distance (or biotope distance) is a distance on {0, 1}", defined by

IXNY|  |XAY|
IXuY| XUyl

e Gleason similarity

The Gleason similarity is a similarity on R”, defined by

Z(xi + yi)lx,--y,-géo
Doxi+ )

Binary cases of Cleason, Motyka and Bray—Curtis similarities coincide; it is called
Dice similarity (or Sorensen similarity, Czekanowsky similarity):

21X NY| _21XnY
IXUY|+|XNnY| |X|+|Y]

The Czekanowsky—Dice distance (or Bray—Curtis non-metric coefficient, normalized
symmetric difference distance) is a near-metric on {0, 1}, defined by

2XNY|  |XAY]
X[ +1Y]  |IX|+]Y]

o Intersection distance

The intersection distance is a distance on R”, defined by

| 2 mintx;, yi}
min{}_x;, 3 yi}

e Motyka similarity
The Motyka similarity is a similarity on R”, defined by

Y min{x;, yi} , > min{x;, yi}

2 G+ o) x+y

e Bray—Curtis similarity

The Bray—Curtis similarity is a similarity on R", defined by

2 .
m Z min{x;, y;}.

It is called Renkonen %similarity (or percentage similarity) if x, y are frequency vectors.
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e Bray—Curtis distance

The Bray—Curtis distance is a distance on R”, defined by

2o lxi — il
Do+ )
o Canberra distance

The Canberra distance is a distance on R”, defined by
Z lx; — yil
[xi| =+ 1yl

o Kulczynski similarity 1

The Kulczynski similarity 1 is a similarity on R”?, defined by
> minfxi, yi)
> i = yil
The corresponding distance is
> lxi — il
>_min{x;, y;}
o Kulczynski similarity 2

The Kulczynski similarity 2 is a similarity on R”?, defined by

n{l 1 .
§<§ + §> me{xh yi}.

In binary case it takes form
XnY[-(X[+1Y])
21X[- 1Y

¢ Baroni-Urbani—Buser similarity

The Baroni—-Urbani—Buser similarity is a similarity on R”, defined by

> min{x;, y;} + /> min{x;, y;} > (maxi j<n X; — max{x;, yi})
> max{x;, y;} + /Y. min{x;, yi} Y. (maxigj<n ¥; — max{x;, y;})

In binary case it takes form

IXNY|+V]XNY[-XUY|
IXUY+VXNY[- [XUY|
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17.2. RELATIVES OF EUCLIDEAN DISTANCE

e Power (p, r)-distance

The power (p, r)-distance is a distance on R”, defined by

(Z(xi - )’i)”) g

For p = r > 1, it is the {,-metric, including Euclidean, Manhattan (or magnitude)
and Chebyshev (or maximum-value) metrics for n = 2, 1 and oo, respectively.

The case 0 < p = r < 1 is called fractional distance (not a metric); it is used for
“dimensionality-coursed” data, i.e., when there are few observations and the number n
of variables is large.

[
The weighted versions (3 w;{(x; —y;)”)? (with non-negative weights w;) are also used,
for p = 1, 2, in applications.

e Penrose size distance

The Penrose size distance is a distance on R”, defined by
Vn Z 1xi — yil.

It is proportional to the Manhattan metric. The Czekanowsky mean character differ-

ence is defined by W

e Penrose shape distance

The Penrose shape distance is a distance on R", defined by

\/Z«xi —X) — (i — M2

The sum of squares of two above Penrose distances is the squared Euclidean distance.

e Lorentzian distance

The Lorentzian distance is a distance on R”, defined by

Zln(l + [xi — yil).

e Binary Euclidean distance

The binary Euclidean distance is a distance on R”, defined by

\/Z(lx,->0 — 1y,20)%
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e Mean censored Euclidean distance

The mean censored Euclidean distance is a distance on R”, defined by

(i — yi)?
> 1x,.2+y,.2¢0

e Normalized [/, -distance

The normalized [,-distance, | < p < 00, is a distance on R”, defined by

“x _’y“p
lxllp + Uyl

The only integer value p, for which normalized [,-distance is a metric, is p = 2. More-
over, in [Yian91] it is shown that, for any a, b > 0, the distance iIs a

M=yl
. a+b(lxll2+1yl2)
metric.

e Clark distance
The Clark distance is a distance on R”, defined by

1

(o))
n [xi ]+ [yil ’
e Meehl distance

The Meehl distance (or Meehl index) is a distance on R”, defined by

2
Z (Xi = Yi = X1+ yir)™
1€ign—1

e Hellinger distance

The Hellinger distance is a distance on R’i, defined by

FE

(Cf. Hellinger metric in Probability Theory.)

The Whittaker index of association is defined by % 3 |% — % .

e Symmetric x%-measure

The symmetric x>-measure is a distance on R”, defined by

3 2 iy —y®)?
Y xi+y
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e Symmetric x*-distance

The symmetric x 2_distance (or chi-distance) is a distance on R”, defined by

\/Z x+y x_,__ Z X+ (Y — yi¥)?
nx; + yi) n(x-y)? X + Vi

¢ Mahalanobis distance

The Mahalanobis distance (or statistical distance) is a distance on R”, defined by

1
\/(detA)ﬁ(x —NATIx =T,

where A is a positive-definite matrix (usually, the covariance matrix of a finite subset of
R”, consisting of observation vectors); cf. Mahalanobis semi-metric.

17.3. SIMILARITIES AND DISTANCES FOR BINARY DATA

Usually, such similarities s range from 0 to 1 or from —1 to 1; the corresponding distances

are usually 1 — s or %, respectively.

¢ Hamann similarity

The Hamann similarity is a similarity on {0, 1}", defined by

AXAY| | _n—2XAY

n n

e Rand similarity

The Rand similarity (or Sokal-Michener similarity, simple matching) is a similarity on
{0, 1}7, defined by

IXAY]
—.

is called variance (it is the binary case of Czekanowsky
|XAY|

Corresponding metric X AZY|

mean character difference), and 1 — is called Gower similarity.

o Sokal-Sneath similarity 1
The Sokal-Sneath similarity [ is a similarity on {0, 1}, defined by

2[XAY]
n+|XAY|
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e Sokal-Sneath similarity 2
The Sokal-Sneath similarity 2 is a similarity on {0, 1}", defined by

IXNY]
[XUY|+|XAY]

e Sokal-Sneath similarity 3
The Sokal-Sneath similarity 3 is a similarity on {0, 1}", defined by

IXAY|

IXAY|

e Russel-Rao similarity

The Russel-Rao similarity is a similarity on {0, 1}”, defined by

X NY|

n

e Simpson similarity
The Simpson similarity (overlap similarity) is a similarity on {0, 1}", defined by

X NY|
min{|X|, [Y |}’

e Braun-Blanquet similarity

The Braun-Blanquet similarity is a similarity on {0, 1}", defined by

X NY|
max{| X[, |Y]}’

e Roger-Tanimoto similarity

The Roger-Tanimoto similarity is a similarity on {0, 1}", defined by

IXAY|
n+ |XAY|

o Faith similarity

The Faith similarity is a similarity on {0, 1}", defined by

IXNY|+ |XAY|
2n ’




Chapter 17: Distances and Similarities in Data Analysis [  Tversky similarity] 225

o Tversky similarity

The Tversky similarity is a similarity on {0, 1}?, defined by

X NY]
alXAY|+b|XNY|

It becomes Tanimoto, Dice and (the binary case of) Kulczynsky 1 similarities for
(a,b) = (1, 1), (%, 1) and (1, 0), respectively.

o Gower-Legendre similarity

The Gower-Legendre similarity is a similarity on {0, 1}", defined by

[XAY| B [XAY|
a|lXAY|+|XAY| n+(@@—1DXAY|

e Anderberg similarity

The Anderberg similarity (or Sokal-Sneath 4 similarity) is a similarity on {0, 1}", de-

fined by
|XOY|<L+_>+|XUY|<_+ 1)
4 \|x| |y 4 \|x| 7]

e Yule Q similarity

The Yule Q similarity is a similarity on {0, 1}", defined by

IXNY]-[XUY| = [X\¥]-[V\X]
IXNY|-[XUY|+|X\Y|-|Y\X]|

e Yule Y similarity of colligation

The Yule Y similarity of colligation is a similarity on {0, 1}", defined by

VIXNY[ I XUY| - /IX\IT- [7\X]
VXY [XUY|+ XY [\X]

e Dispersion similarity

The dispersion similarity is a similarity on {0, 1}, defined by

[XNY[-[XUY]—[X\Y]-|Y\X]
n? '
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e Pearson ¢ similarity

The Pearson ¢ similarity is a similarity on {0, 1}", defined by

IXNY|-[XUY|— [X\Y||Y\X]|
VIX| X |Y] [T

o Gower similarity 2
The Gower similarity 2 (or Sokal-Sneath 5 similarity) is a similarity on {0, 1}", defined
by

IXNY| - [XUY]

VIX|-X]-|Y]- [T

e Pattern difference

The pattern difference is a distance on {0, 1}”, defined by

AXAY[-[FAX]

n2

e (o-difference
The Qq-difference is a distance on {0, 1}", defined by

[X\Y] - [Y\X]
IXNY|-|XUY|

17.4. CORRELATION SIMILARITIES AND DISTANCES

e Covariance similarity

The covariance similarity is a similarity on R”, defined by

D =00 =) _ DXy _ 5

—X-y
n n

e Correlation similarity

The correlation similarity (or Pearson correlation, or, by its full name, Pearson
product-moment correlation linear coefficient) s is a similarity on R”, defined by

20 =00 =)
JE G - D0, - P
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The dissimilarities 1 —s and 1 —s2 are called correlation distance (or Pearson distance)
and squared Pearson distance, respectively. Moreover,

20 —5) = Z( Xp—X . yi—y >
N SCTIRE SR D ST

is a normalization of the Euclidean distance (cf. a different one, normalized [,-dis-
tance).

In the case ¥ = y = 0, the correlation similarity becomes m

e Cosine similarity

The cosine similarity (or Orchini similarity, angular similarity, normalized dot product)
is a similarity on R”, defined by

(x, y)

- ols ¢

where ¢ is the angle between vectors x and y. In binary case, it becomes

X NY]|
[X]-1Y]

and called Ochiai—Otsuka similarity.

In Record Linkage, cosine similarity is called TF-IDF (for term Frequency — Inverse
Document Frequency).

The cosine distance is defined by [ — cos ¢.

e Angular semi-metric
The angular semi-metric on R” is the angle (measured in radians) between vectors x
and y:
{(x,y)

lxl2- Iyl

(Not to be confused with geodesic distance in Probability Theory.)

arccos

e Orloci distance

The Orloci distance (or chord distance) is a distance on R”, defined by

2(1 _ ey )
lxl2-lyl2

(Cf. normalized Euclidean distance.)
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o Similarity ratio

The similarity ratio (or Kohonen similarity) is a similarity on R”, defined by

(x,y)
)+ e =yl

Its binary case is the Tanimoto similarity.

e Morisita—Horn similarity
The Morisita—-Horn similarity is a similarity on R”, defined by

'<H><I

205
2 -+ 1y02-

e Spearman rank correlation

In the case, when x, y € R" are rankings (or permutations), i.e., the components of each
of them are different numbers 1,...,n, onehasx =y = ”H . For such ordinal data,
the correlation similarity becomes

n(n 1)2(1_ i

It is the Spearman p rank correlation, called also Spearman rho metric, but it is not a
distance. Spearman p distance is the Euclidean metric on permutations.

The Spearman footrule is defined by

3
T > xi = yil.

It is I1-version of the Spearman rank correlation. Spearman footrule distance is the
[1-metric on permutations.

1 —

Another correlation similarity for rankings is Kendall t rank correlation, called also
Kendall T metric (but it is not a distance), which is defined by

22 1<i<jgn Sign(xi — x;)sign(yi — yj)
nin—1) '

Kendall t distance on permutations is defined by
{1 1<t < <nG —x) 00 = yy) <0},

o Cook distance

The Cook distance is a distance on R”, giving a statistical measure of deciding if some
i-th observation alone affects much regression estimates. It is a normalized squared
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Euclidean distance between estimated parameters from regression models constructed
from all data and from data without i-th observation.

Main similar distances, used in Regression Analysis for detecting influential observa-
tions, are DFITS distance, Welsch distance, and Hadi distance.

e Distance-based machine learning

The following setting is used for many real-world applications (neural networks, etc.),
where data are incomplete and have both, continuous and nominal, attributes. Given

anm x (n + 1) matrix ((x;;)), its row (x;0, X;1, ..., Xiz) Means instance input vector
x; = (xi1, ..., xiy) with output class x;o; the set of m instances represents a training
set during learning. For any new input vector y = (y1, ..., ¥n), the closest (in terms of

selected distance d) instance x; is sought, in order to classify y, i.e., predict its output
class as x;g.

The distance ([WiMa97]) d(x;, y) is defined by

n
Z d3(xij, y7)

Jj=1

with d;(x;;, ;) = 1if x;; or y; is unknown. If the attribute j (i.e., the range of values
x;j for 1 < i < m) is nominal, then d; (x;;, y;) is defined, for example, as 1, -y, or as

2

a

{1 < M. X0 = a, Xij = Xjj}| _ {1 <
| t |

IN| N

t : t
{I<t<m: x5 = xij} {1
for ¢ = 1 or 2; the sum is taken by all output classes, i.e., values a from {x;9: [ <
t < m}. For continuous attributes j, the number d; is taken to be |x;; — y;| divided by

max; X;; — min; x;;, or by % of the standard deviation of values x;;, 1 <t < m.
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Distances in Mathematical Engineering

In this chapter we group main distances used in Robot Motion, Cellular Automata, Feed-
back Systems and Multi-objective Optimization.

18.1. MOTION PLANNING DISTANCES

Automatic motion planning methods are applied in Robotics, Virtual Reality Systems and
Computer Aided Design. A motion planning metric is a metric used in automatic motion
planning methods.

Let a robot be a finite collection of rigid links organized in a kinematic hierarchy. If
the robot has n degrees of freedom, this leads to an n-dimensional manifold C, called
configuration space (or C-space) of the robot. The workspace W of the robot is the space
in which the robot moves. Usually, it is modeled as the Euclidean space E>. The obstacle
region CB is the set of all configurations ¢ € C, that either cause the robot to collide
with obstacles B, or cause different links of the robot to collide among them. The closure
cl(Cpre) of Cpree = C\[{CB} is called space of collision-free configurations. A motion
planning algorithm must find a collision-free path from an initial configuration to a goal
configuration.

A configuration metric is a motion planning metric on the configuration space C of a
robot.

Usually, the configuration space C consists of six-tuples (x, y, z, «, B, ), where the
first three coordinates define the position, and the last three the orientation. The orien-
tation coordinates are the degrees in radians. Intuitively, a good measure of the distance
between two configurations is a measure of the workspace region swept by the robot as it
moves between them (the swept volume). However, the computation of such a metric is
prohibitively expensive.

The simplest approach has been to consider C-space as a Cartesian space and to use
Euclidean distance or its generalizations. For such configuration metrics, one normalizes
the orientation coordinates so that they get the same magnitude as the position coordinates.
Roughly, one multiplies the orientation coordinates by the maximum x, y or z range of the
workspace bounding box. Examples of such configuration metrics are given below.

More generally, the configuration space of three-dimensional rigid body can be identified
with the Lie group ISO(3): C = R3 x R P3. The general form of a matrix in ISO(3) is given

230
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RX
(&%)

where R € SO3) = RP3 and X € R’ If X, and R, represent the translation and
rotation components of the configuration ¢ = (X,, Ry) € ISO(3), then a configuration
metric between configurations ¢ and r is given by wy | X, — X, |l + wrr f (Ry, Ry), where
the translation distance | X, — X, || is obtained using some norm ||.|| on IR3, and the
rotation distance f(R,, R,) is a positive scalar function which gives the distance between
the rotations R,, R, € SO(3). The rotation distance is scaled relative to the translation
distance via the weights wy and wyys.

A workspace metric is a motion planning metric in the workspace R3.

There are many other types of metrics used in motion planning methods, in particular,
the Riemannian metrics, the Hausdorff metric, the growth distance, etc.

by

o Weighted Euclidean distance

The weighted Euclidean distance is a configuration metric on R®, defined by
1

3 6 2
(Z i =il Y (wilx — }'i|)2>
i=4

i=1

for any x,y € R®, where x = (x1,...,X6), X1,X2,x3 are the position coordi-
nates, x4, x5, Xg are the orientation coordinates, and w; is the normalization factor. The
weighted Euclidean distance in RS gives to position and orientation the same impor-
tance.

o Scaled Euclidean distance

The scaled Euclidean distance is a configuration metric on RO, defined by

3 6 3
(sZ = i (=) Y (wilx — y,-|)2>

i=1 i—d

for any x, y € R®. The scaled Euclidean distance changes the relative importance of the
position and orientation components through the scale parameter s.

o Weighted Minkowskian distance

The weighted Minkowskian distance is a configuration metric on R, defined by

6

3 ’
(Z i = yil? + Y (wilxi — }'i|)p)

i=1 i=4

for any x,y € R, 1t uses a parameter p > 1; as with Euclidean, both position and
orientation have the same importance.
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¢ Modified Minkowskian distance

The modified Minkowskian distance is a configuration metric on R®, defined by

1

3 6 7
(Z i =il Y (wilx — }'i|)p2>
i=4

i=1

for all x, y € R®. It distinguishes between position and orientation coordinates using the
parameters p; > 1 (for the position) and p; > 1 (for the orientation).

e Weighted Manhattan distance
The weighted Manhattan distance is a configuration metric on R, defined by

3

6
D =il + > wilk — il
i=4

i=1

forany x,y € RS. It coincides, up to normalization factor, with the usual /;-metric on
RS.

¢ Robot displacement metric

The robot displacement metric is a configuration metric on a configuration space C
of a robot, defined by

{f‘jj‘”“(‘l) —a(p)|

for any configurations g,r € C, where a{g) is the position of the point a in the
workspace R3, when the robot is at configuration ¢, and |.|| is one of the norms on
IR3, usually the Euclidean norm. Intuitively, the metric yields the maximum amount in
workspace that any part of the robot is displaced when moving from one configuration
to another (cf. bounded box metric).

e Euler angle metric

The Euler angle metric is a rotation metric on the group SO(3) (for the case of using
roll-pitch-yaw Euler angles for rotation), defined by

Wi/ AO1,02)2 + A1, 62)? + Alr1. 1)’

for all Ry, R, € SO(3), given by Euler angles (61, ¢1, 1), (62, 92, n2), respectively,
where A(01, 62) = min{|0; — 03], 27 — |6 — 6»|}, 6; € [0, 27], is the metric between
angles, and w,,, is a scaling factor.

e Unit quaternions metric

The unit quaternions metric is a rotation metric on the unit quaternion representation
of SO(3), i.e., a representation of SO(3) as the set of points (unit quaternions) on the unit
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sphere S* in R* with identified antipodal points (¢ ~ —¢). This representation of SO(3)
suggests a number of possible metrics on it, for example, the following ones:

In(g '),

Wror(1 — |2, A = S0 qiri,
min{llg —r|, g +rll},
arccos A, A =Y |, qiri,

»

>

where ¢ = g1+ ¢qoi +¢3j +qak, Z?:1 gi =1, .1 is a norm on R*, and wy,; is a scaling
factor.

o Center of mass metric

The center of mass metric is a workspace metric, defined as the Euclidean distance
between the center of mass of the robot in the two configurations. The center of mass is
approximated by averaging all object vertices.

o Bounded box metric

The bounded box metric is a workspace metric, defined as the maximum Euclidean
distance between any vertex of the bounding box of the robot in one configuration and
its corresponding vertex in the other configuration.

e Pose distance

The pose distance provides a measure of dissimilarity between actions of agents (in-
cluding robots and humans) for Learning by Imitation in Robotics.

In this context, agents are considered as kinematic chains, and are represented in the
form of a kinematic tree, such that every link in the kinematic chain is represented by an
unique edge in the corresponding tree. The configuration of the chain is represented by
pose of the corresponding tree which is obtained by an assignment of the pair (n;, /;) to
every edge ¢;. Here n; is the unit normal, representing the orientation of the correspond-
ing link in the chain, and /; is the length of the link. The pose class consists of all poses
of a given kinematic tree.

The pose distance is a distance on a given pose class which is the sum of measures of
dissimilarity for every pair of compatible segments in the given two poses.

e Millibot metrics

Millibot is a team of heterogeneous, resource-limited robots. Robot teams can collec-
tively share information. They are able to fuse range information from a variety of dif-
ferent platforms to build a global occupancy map that represent a single collective view
of the environment. In the motion planning of the millibots for the construction of a mo-
tion planning metric, one casts a series of random points about a robot and pose each
point as a candidate position for movement. The point with the highest overall utility is
then selected, and the robot is directed to that point. Thus, the free space metric, deter-
mined by free space contour, only allows candidate points that do not drive robot through
obstructions; obstacle avoidance metric penalizes for moves that get too close to obsta-
cles; frontier metric rewards for moves that take robot towards open space; formation
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metric rewards for moves that maintain formation; localization metric, based on sep-
aration angle between one or more localization pairs, rewards for moves that maximize
localization (see [GKCO04]); cf. collision avoidance distance, piano movers distance.

18.2. CELLULAR AUTOMATA DISTANCES

Let S, 2 < [S] < 00, denote a finite set (alphabet), and let S*° denote the set of bi-infinite
sequences {x;}?°_ _ (configurations) of elements (letters) of S. An (one-dimensional) cel-
lular automaton is a continuous mapping f : S — S$°° that commutes with the transla-
tion map g : S — S, defined by g(x;) = x;11. Once a metric on S is defined, the
resulting metric space together with the self-mapping f form a discrete dynamic system.
Cellular automata (generally, bi-infinite arrays instead of sequences) are used in Symbolic
Dynamics, Computer Science and, as models, in Physics and Biology. The main distances

between configurations {x;}; and {y;}; from S (see [BFK99]) follow.

¢ Cantor metric

The Cantor metric is a metric on S, defined by

o= min{ZZ0: [ =i+l —y—; 170}

The corresponding metric space is compact.

o Besicovitch semi-metric
The Besicovitch semi-metric is a semi-metric on S, defined by
[—1<i <l x # il

limlﬁoo .

20 +1

The corresponding semi-metric space is complete. (Cf. Besicovitch distance on mea-
surable functions.)

e Weyl semi-metric
The Weyl semi-metric is a semi-metric on S, defined by
+1<i<k+1: x # yil

limy_s oo Mmax .
keZ l

This and above semi-metric are translation invariant, but neither separable, nor locally
compact. (Cf. Weyl distance on measurable functions.)

18.3. DISTANCES IN CONTROL THEORY

Control Theory consider feedback loop of a plant P (a function representing the object to
be controlled, a system) and a controller C (a function to design). The output y, measured
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by a sensor, is fed back to the reference value r. Then controller takes the errore =r — y
to make inputs u = Ce. Subject to zero initial conditions, the input and output signals to
the plant are related by y = Pu, where r, u, v and P, C are functions of the frequency
variable s. So, y = lf%r and y ~ r (i.e., one controls the output by simply setting the
reference) if PC is large for any value of s. If the system is modeled by a system of linear
differential equations, then its transfer function HI_)% is a rational function. The plant P is
stable if it has no poles in the closed right half-plane C,={s € C: Rs > 0}.

The robust stabilization problem is: given a nominal plant (a model) Py and some metric
d on plants, find the centered in Py open ball of maximal radius, such that some controller
(rational function) C stabilizes every element of this ball.

The graph G (P) of the plant P is the set of all bounded input-output pairs (¢, y = Pu).
Both, u and y, belong to the Hardy space H*(C,.) of the right half-plane; the graph is a
closed subspace of H>(C) + H>(C). In fact, G(P) = f(P)H?*(C?) for some function
F(P), called graph symbol, and G(P) is a closed subspace of H>(C?).

All metrics below are gap-like metrics; they are topologically equivalent, and the stabi-
lization is a robust property with respect of each of them.

e Gap metric

The gap metric between plants P; and P, (introduced in Control Theory by Zames and
El-Sakkary) is defined by

gap(Pi, P) = | II(Py) — I1(P»)

2?

where IT(P;),i = 1,2, is the orthogonal projection of the graph G(P;) of P; seen as a
closed subspace of H 2(C?).

We have

gap(Py, Py) = max{81(Py, P2), 81(Ps, P1)},
where 81(Pr, P») = infgep>= [ f(P1) — f(P2)Qllux=, and f(P) is a graph symbol.

If Aisan m x n matrix with m < n, then its n columns span an n-dimensional sub-
space, and the matrix B of the orthogonal projection onto the column space of A is
A(ATA)_lAT. If the basis is orthonormal, then B = AAT. In general, the gap met-
ric between two subspaces of the same dimension is [5-norm of the difference of their
orthogonal projections; see also the definition of this distance as an angle distance be-
tween subspaces.

In some applications (for example, when subspaces correspond to autoregressive mod-
els) the Frobenius norm is used instead of [5-norm; cf. Frobenius distance.

e Vidyasagar metric

The Vidyasagar metric (or graph metric) between plants Py and P; is defined by
max{82(P1, P2), 82( P2, P1)},

where 82(P1, P2) = infy o<1 | f(P1) — f(P2) Ol ae=.
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The behavioral distance is the gap between extended graphs of P| and P; a term is
added to the graph G(P), in order to reflect all possible initial conditions (instead of
usual setup with the initial conditions being zero).

e Vinnicombe metric

The Vinnicombe metric (v-gap metric) between plants Py and Ps is defined by
[ 1
8u(P1, Py) = [|(14+ P,P3)"3(Py — P)(1 + P{P)™2

if wao(f*(P2) f(P1)) = 0, and it is equal to 1, otherwise. Here f(P) is graph symbol
function of plant P. See [ Youn98] for the definition of the winding number wrno(f) of a
rational function f and for good introduction in Feedback Stabilization.

18.4. MOEA DISTANCES

Most optimization problems have several objectives, but, for simplicity, only one of them
is optimized, and others are handled as constraints. Multi-objective optimization consider
(besides some inequality constraints) an objective vector function f : X C R* — RF
from the search (or genotype, decision variables) space X to the objective (or phenotype,
decision vectors) space f(X) ={f(x): x € X} C R A point x* € X is Pareto optimal
if, for every other x € X, the decision vector f(x) does not Pareto dominate f(x*), i.e.,
fx)y < f(x®). Pareto optimal front is the set PF* = {f(x): x € X*}, where X* is the
set of all Pareto optimal points.

Multi-objective evolutionary algorithms (MOEA, for short) produce, at each generation,
an approximation set (found Pareto front PF ;.. approximating wished Pareto front PF*)
in objective space in which no element Pareto dominates another element. Examples of
MOEA metrics, i.c., measures evaluating how close PF s is to PF*, follow.

o Generational distance

The generational distance is defined by

¥ 1
XCrid):?

m b
where m = |PFyuownl, and d; is the Euclidean distance (in the objective space) between

f Txy (e, j-th member of PFy,,wn) and the nearest member of PF*. This distance is
zero if and only if PFyown = PF*.

The term generational distance (or rate of turnover) is used also for the minimal num-
ber of branches between two positions in any system of ranked descent represented by
an hierarchical tree. Examples are: phylogenetic distance on a phylogenetic tree, the
number of generations separating a photocopy from original block print, the number of
generations separating audience of a memorial from the commemorated event.
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e Spacing
The spacing is defined by
Y@ —dpP\
m—1 ’

where m = |PFyu0wnl, d; is the [1-distance (in the objective space) between f o) (e,

Jj-th member of PFy,,yy) and the nearest other member of PF iy, While d is the mean
ofalld;.

e Overall non-dominated vector ratio

The overall non-dominated vector ratio is defined by %.
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Chapter 19

Distances on Real and Digital Planes

19.1. METRICS ON REAL PLANE

In the plane R? we can use many various metrics. In particular, any ! p-metric (as well
as any norm metric for a given norm .|| on R?) can be used on the plane, and the most
natural is the />-metric, i.e., the Euclidean metric dg(x, y) = \/(x1 — V)2 + (x2 — )2
which gives the length of the straight line segment [x, y], and is the intrinsic metric of
the plane. However, there are other, often “exotic”, metrics on R2. Many of them are used
for the construction of generalized Voronoi diagrams on R? (see, for example, Moscow
metric, network metric, nice metric). Some of them are used in Digital Geometry.

Erdés-type distance problems (given, usually, for Euclidean metric on R?) are of in-
terest for R¢ and for other metrics on R%. Examples of such problems are to find out the
following:

— the fewest number of different distances (or largest occurence of given distance) in an
n-subset of R?; the largest size of a subset of R? determining at most m distances;

— the minimum diameter of an n-subset of R? with only integral distances (or, say, without
a pair (d), d») of distances with 0 < [d] — da] < 1);

— existence of an n-subset of R? with, for each 1 < i < n, a distance occuring exactly i
times (examples are known for n < 8);

— forbidden distances of a partition of R2, i.e., distances not occuring within each part.

o City-block metric
The city-block metric is the /1-metric on R2, defined by

lx — yll1 = Ix1 — y1l + |x2 — y2l.

This metric has many different names, for example, it is called taxicab metric, Man-
hattan metric, rectilinear metric, right-angle metric; on 72 it is called greed metric,
and 4-metric.

o Chebyshev metric
The Chebyshev metric is the /o-metric on R2, defined by

[x = yloo = max{|x1 — y1l, [x2 — y2l}.

240
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This metric is called also uniform metric, sup metric, and box metric; on 72 itis called
lattice metric, chessboard metric, king-move metric, and 8-metric.

e (p, q)-relative metric

Let0 < g < 1, p 2 max{l — ¢, 2%’}, and let ||.]» be the Euclidean norm on R? (in
general, on R").

The (p, ¢)-relative metric is a metric on R? (in general, on R"), defined by
Ix —yll2
q
(zUx]5 + [y15))7

for x or y # 0 (and is equal to 0, otherwise). In the case of p = oo it has the form

Ix = yll2
(max{llx 2, [yll2})?”

Forg = 1 and any 1 < p < 0o one obtains the p-relative metric; forg = 1 and p = o0
one obtains the relative metric.

The construction above can be used for any Prolemaic space (V, |.]|).

o M -relative metric

Let f : [0, 0c0) — (0, 00) be a convex increasing function such that @ is decreasing

for x > 0. Let ||.]2 be the Euclidean norm on R? (in general, on R").

The M-relative metric is a metric on R? (in general, on R") defined by

lx —yl2
FAixl2) - fAyl2)

In particular, the distance
lx —yll2
J1+ x5 1+ x5

is a metric on R? (on R") if and only if p > 1. A similar metric on R*\{0} (on R™\{0})
can be defined by

lx—yla
lxll2 - [yl2

The constructions above can be used for any Ptolemaic space (V, [.]]).

o French Metro metric

Given a norm ||.|| on R2, the French metro metric is a metric on R?, defined by

llx = yll
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if x = cy for some ¢ € R, and by
lxll + Iyl

otherwise. For the Euclidean norm [[.[|2, it is called hedgehog metric, Paris metric, or
radial metric. In this case it can be defined as the minimum Euclidean length of all
admissible connecting curves between two given points x and y, where a curve is called
admissible if it consists of only segments of straight lines passing through the origin.

In graph terms, this metric is similar to the path metric of the tree consisting of a point
from which radiate several disjoint paths.

e Moscow metric

The Moscow metric (or Karlsruhe metric) is a metric on R2, defined as the minimum
Euclidean length of all admissible connecting curves between x and y € R?, where a
curve is called admissible if it consists of only segments of straight lines passing through
the origin, and of segments of circles centered at the origin (see, for example, [Klei88]).

If the polar coordinates for points x, y € R? are (rx,0yx), (ry, By), respectively, then the
distance between them is equal to min{ry, ry} A0, —0y)+|ry —ry| i[O < A0, 0y) < 2,
and is equal to ry + ry if 2 < A(6x, 0y) < 7, where A0, 6y) = min{|0, — 0,], 27 —
|6 — 6y}, Oy, By € [0, 27), is the metric between angles.

o Lift metric

The lift metric (or raspberry picker metric) is a metric on R?, defined by
lx1 — y1l

if x = y», and by
[x1] + |x2 = ya + [y1l

if xp # y2 (see, for example, [Brya85]). It can be defined as the minimum Euclidean
length of all admissible connecting curves between two given points x and y, where
a curve is called admissible if it consists of only segments of straight lines parallel to
x1-axis, and of segments of x;-axis.

o British Rail metric
Given a norm ||| on R? (in general, on R"), the British Rail metric is a metric on R?

(in general, on R"), defined by
lll + Nyl

for x # y (and it is equal to 0, otherwise).

It is also called caterpillar metric, and shuttle metric. For the Euclidean norm |.||7 it
is called post-office metric.

o Radar screen metric

Given a norm |.|| on R2 (in general, on R"), the radar screen metric is a metric on R?
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(in general, on R"), defined by

min{l, [x — yH}.

e Burago-Ivanov metric

The Burago—Ivanov metric ([BulvO1]) is a metric on R?, defined by
Hxllz =yl +min{lxll2, [yl2} - v £(x, ),

where Z(x, y) is the angle between vectors x and y, and ||.||2 is the Euclidean norm on
IR?. The corresponding internal metric on R? is equal to | x|z — ||y 2] if Z(x, y) =0,
and is equal to |lx ||z + [|y[]2, otherwise.

e Flower-shop metric
Let d be a metric on R?, and let f be a fixed point (a flower-shop) in the plane.

The flower-shop metric is a metric on R2, defined by
d(x, fY+d(f.y)

for x # y (and is equal to 0, otherwise). So, a person living at point x, who wants to
visit someone else living at point y, first goes to f, to buy some flowers. In the case
d(x,y) =[x — yll and f = (0, 0), it is the British rail metric.

If £ > 1 flower-shops fi,..., fr are available, one buys the flowers, where the
detour is a minimum, i.e., the distance between distinct points x,y is equal to
miny i<k (d(x, fi) +d(fi, y)).

e 2n-gon metric

Given a centrally symmetric regular 2rn-gon K on the plane, the 2n-gon metric is a
metric on R?, defined, for any x, y € R?, as the shortest Euclidean length of a polygonal
line from x to y with each of its sides parallel to some edge of K. The plane R? equipped
with the 2n-gon metric is called 2n-gonal plane.

If K is a square with the vertices {(£1, 1)}, one obtains the Manhattan metric.

o Central Park metric

The Central Park metric is a metric on RZ, defined as the length of a shortest /-
path (Manhattan path) between two points x, y € R? at the presence of a given set of
areas which are traversed by a shortest Euclidean path (for example, Central Park in
Manhattan).

e Collision avoidance distance

Let O = {01, ..., Oy} be a collection of pairwise disjoint polygons on the Euclidean
plane, represents a set of obstacles which are neither transparent, nor traversable.

The collision avoidance distance (or piano movers distance, shortest path metric
with obstacles) is a metric on the set R?\{O}, defined, for any x,y € R2\ {0}, as the
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length of the shortest path among all possible continuous paths, connecting x and y, that
do not intersect obstacles O;\d O; (a path can pass through points on the boundary 3 O;
of 0)),i=1,...m.

Rectilinear distance with barriers

Let © = {O1,..., Oy} be a set of pairwise disjoint open polygonal barriers on R2.
An rectilinear path (or Manhattan path) Py, from x to y is a collection of horizontal
and vertical segments on the plane, joining x and y. The path Py, is called feasible if
P, N(UL, B) =0.

The rectilinear distance with barriers (or rectilinear distance in the presence of barri-
ers) is a metric on R?\ {0}, defined, for any x, y € R*\{©}, as the length of the shortest
feasible rectilinear path from x to y.

The rectilinear distance in the presence of barriers is a restriction of the Manhattan
metric, and usually it is considered on the set {g1, ..., g} C R2 of n origin-destination
points: the problem to find a path of such kind arises, for example, in Urban Transporta-
tion, or in Plant and Facility Layout (see, for example, [LaLi81]).

Link distance

Let P C R? be a polygonal domain (on n vertices and h holes), i.e., a closed multiply-
connected region whose boundary is a union of » line segments, forming 4 4 1 closed
polygonal cycles. The link distance is a metric on P, defined, for any x,y € P, as
the minimum number of edges in a polygonal path from x to y within the polynomial
domain P.

If the path is restricted to be rectilinear, one obtains the rectilinear link distance. If the
path is C-oriented (i.e., each its edge is parallel to one of a set C fixed orientation), one
obtains the C-oriented link distance.

o Facility layout distances

A layout is a partition of a rectangular plane region into smaller rectangles, called
departments, by lines parallel to the sides of original rectangle. All interior vertices
should be three-valent, and some of them, at least one on the boundary of each depart-
ment, are doors, 1.e., input-output locations. The problem is to design convenient notion
of distance d(x, y) between departments x and y which minimizes the cost function
Zx,y F(x,y)d(x, y), where F(x, y) is some material flow between x and y. Main dis-
tances used are:

The centroid distance, i.e., the shortest Euclidean or Manhattan distance between cen-
troids (the intersections of the diagonals) of x and y;

The perimeter distance, i.e., the shortest rectilinear distance between doors of x and y,
but going only along the walls, i.e., department perimeters.

o Quickest path metric
A quickest path metric (or network metric) is a metric on R? (or on a subset of R?)
in the presence of a given network, i.e., a planar weighted graph G = (V, E). For any
x,y € R?, it is the time needed for a quickest path between x and y in the presence of
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the network G, i.e., a path minimizing the travel time between x and y. After having
accessed to G one can travel at some speed v > 1 along its edges. Movement off the
network take place with unit speed with respect to a given metric d on the plane (for
example, the Euclidean metric, or the Manhattan metric).

The airlift metric is a quickest path metric on R? in the presence of an airports network,
i.e., a planar graph G = (V, E) on n vertices (airports) with positive edge weights
(we)eer (flight durations). The graph may be entered and exited only at the airports.
Movement off the network takes place with unit speed with respect to the Euclidean
metric. We assume that going by car takes time equal to the Euclidean distance dg,
whereas the flight along an edge ¢ = uv of G takes time w, < dg(u, v). In the simplest
case, when there is an airlift between two points @, b € R2, the distance between x and
y is equal to

min{dg (x, y),dg(x, @) + w +de(b, y), dp(x, b) + w + de(a, y)},

where w < da(a, b) is the flight duration from a to b.

The city metric is a quickest path metric on R? in the presence of a city public trans-
portation network, i.e., a planar straight line graph G with horizontal or vertical edges.
G may be composed of many connected components, and may contain cycles. One is
free to enter G at any point, be it at a vertex or on a edge (it is possible to postulate fixed
entry points, too). Once having accessed G, one travels at fixed speed v > 1 in one of the
available directions. Movement off the network takes place with unit speed with respect
to the Manhattan metric (we imagine a large modern-style city with streets arranged
in north-south and east-west directions).

The subway metric is a quickest path metric on R? which is a variant of the city metric:
a subway (in the form of a line in the plane) is used to alter walking distance within a
city grid.

e Periodic metric

A metric d on R? is called periodic, if there exists two linearly independent vectors
v and u such that the translation by any vector w = mv + nu, m,n € Z, preserves
distances, i.e.,d(x,y) =d(x +w,y+ w) forany x, y € R? (cf. translation invariant
metric).

o Nice metric

A metric d on R? is called nice if it enjoys the following properties:

d induces the Euclidean topology;

The d-circles are bounded with respect to the Euclidean metric;

If x, y € R? and x # y, then there exists a point z, z # x, z # y, such that d(x, y) =
d(x,z)+d(z,y) holds;

4. If x,y € R?, x < y (where < is a fixed order on R?, the lexicographic order, for
example), C(x, y) = {z € R2: d(x,z) <d(y,2}, D(x,y)={z € RZ: d{x,z) <
d(y, z), and D(x, y) is the closure of D(x, y), then J(x,y) = C(x,y) N D(x,y)
is a curve homeomorphic to (0, 1). The intersection of two such curves consists of
finitely many connected components.

W=
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Every norm metric fulfills 1., 2., and 3. Property 2. means that the metric d is contin-
uous at infinity with respect to the Euclidean metric. Property 4. is to ensure that the
boundaries of the correspondent Voronoi diagrams are curves, and that not too many
intersections exist in a neighborhood of a point, or at infinity. A nice metric d has a nice
Voronoi diagram: in the Voronoi diagram V (P, d, ]Rz) (where P ={p1, ..., pr}, k =2 2,
is the set of generator points) each Voronoi region V (p;) is a path-connected set with a
non-empty interior, and the system {V{(p1), ... V(py)} forms a partition of the plane.

e Radar discrimination distance

The radar discrimination distance is a distance on R?, defined by
lox — py + 9xy|

if x, y € R?\{0}, and by

lox — py‘
if x = 0 or y = 0, where, for each “location” x € R2, px denote the radial distance of x
from the origin, and, for any x, y € Rz\{O}, 0y denote the radian angle between them.
o Ehrenfeucht—Haussler semi-metric

Let S be a subset of RZ such that x] > x; — | > 0 for any x € S.
The Ehrenfeucht—Haussler semi-metric (see [EnHa88]) on S is defined by

()20

The circle metric is the intrinsic metric on the unit circle S' in the plane. As ST =
{(x,y): x24+y2 =1} ={e!: 0< 6 < 27}, it is the length of the shorter of two arcs,
joining the points e'?, ¢ € §1. and can be written by

e Circle metric

|0 — 01, ifO< 9 -0l <,

min{l0 — 91,27 — 10 = 21} = {271 —p—6|, iflp—6]>m.

(Cf. metric between angles.)

e Toroidal metric
The torus T C R2 is the set [0, Dx[0,)={x € RZ: 0< x5, 5 < 1}.

The toroidal metric is a metric on T defined by

/2 2
tl "‘l_tza

forany x,y € R2, where f; = min{|x; — y;|, |x; — y; + 1|} for i = 1, 2. (Cf. torus
metric.)
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e Angular distance

The angular distance traveled around a circle is the number of radians the path sub-
tends, i.e.,

6 ==,
"

where [ is the length of the path, and r is the radius of the circle.

e Metric between angles
The metric between angles A is a metric on the set of all angles in the plane, defined
by

o — 6], ifO< |9 -0 <7,

min{|6 — #],27 — |6 — ¥|} = 2 — 9 —0|, if|9—6|>n

forany 6, ¢ € [0, 27) (cf. circle metric).

o Metric between directions

On IR2, the direction [ is the class of all straight lines which are parallel to a given strait
line / C R?. The metric between directions is a metric on the set £ of all directions on
the plane, defined, for any directions [, m € L, as the angle between any two represen-
tatives.

e Circular-railroad quasi-metric

The circular-railroad quasi-metric is a quasi-metric on the unit circle S C R?, de-
fined, for any x, y € S', as the length of counterclockwise circular arc from x to y in
st

e Inversive distance

The inversive distance between two non-intersecting circles in the plane is defined as
the natural logarithm of the ratio of the radii (the larger to the smaller) of two concentric
circles into which the given circles can be inverted.

Let ¢ be the distance between the centers of two non-intersecting circles of radii ¢ and

b < a. Then their inversive distance is given by

a2 b2
2ab '

cosh™!

The circumcircle and incircle of a triangle with circumradius R and inradius r are at the
inversive distance 2 sinh ™! (%, [ %)

Given three non-collinear points, construct three tangent circles such that one is centered
at each point and the circles are pairwise tangent to one another. Then there exist exactly
two non-intersecting circles that are tangent to all three circles. These are called the inner
and outer Soddy circles. The inversive distance between the Soddy circles is 2 cosh™! 2.



248 [ e Grid metric] Part V: Computer-Related Distunces
19.2. DIGITAL METRICS

Here we list special metrics which are used in Computer Vision (or Pattern Recognition,
Robot Vision, Digital Geometry).

A computer picture (or computer image) is a subset of Z" which is called digital nD
space. Usually, pictures are represented in the digital plane (or image plane) 72, or in the
digital space (or image space) 7. The points of Z" are called pixels. An nD m-quantized
space is a scaling %Z".

A digital metric (see, for example, [RoPf68]) is any metric on a digital nD space.
Usually, it should take integer values.

The metrics on Z" that are mainly used are the [;- and /o,-metrics, as well as the /-
metric after rounding to the nearest upper (or lower) integer. In general, given a list of
neighbors of a pixel, it can be seen as a list of permitted one-step moves on Z2. Let associate
a prime distance, i.e., a positive weight, to each type of such move. Many digital metrics
can be obtained now as the minimum, over all admissible paths (i.e., sequences of permitted
moves), of the sum of corresponding prime distances.

In practice, the subset (Z,)" = {0,1,...,m — 1}" is considered instead of the full
space Z". (Zy)? and (Z,,)? are called m-grill and m-framework, respectively. The most
used metrics on (Z,)" are the Hamming metric, and the Lee metric.

o Grid metric

The grid metric is the /;-metric on Z". The [;-metric on Z" can be seen as the path
metric of an infinite graph: two points of Z" are adjacent if their /;-distance is equal
to one. For Z? this graph is the usual grid. Since each point has exactly four closest
neighbors in 72 for the [ 1-metric, it is called also 4-metric.

For n = 2, this metric is the restriction on Z2 of the city-block metric which is called
also taxicab metrie, rectilinear metric, or Manhattan metric.

o Lattice metric

The lattice metric is the [o-metric on Z". The [,-metric on Z" can be seen as the path
metric of an infinite graph: two points of Z" are adjacent if their /o -distance is equal to
one. For Z?, the adjacency corresponds to the king move in chessboard terms, and this
graph is called l/-grid, while this metric is called also chessboard metric, king-move
metric, or king metric. Since each point has exactly eight closest neighbors in Z2 for
the [ -metric, it is called also 8-metric.

This metric is the restriction on Z" of the Chebyshev metric which is called also sup
metric, or uniform metric.

e Hexagonal metric

The hexagonal metric is a metric on Z? with an unit sphere S'(x) (centered at x € 7%,
defined by S'(x) = Sl]I W U{x1 =1, x2 =1, (x1 — 1, x2+ D} for x even (i.e., with
even xz), and by S'(x) = S} (\)U{(x1+1, x2— 1), (x1 + 1, x2+ 1)} for x 0dd (i.e., with
odd x7). Since any unit sphere S'(x) contains exactly six integral points, the hexagonal
metric is called also 6-metric (see [LuRo76]).
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Forany x,y € 72, it can be written as

max luzl,l(luzl—i-uz)—{— el el —uy,
2 2 2

1 1 ) 1
-2+ 251 ]

where u1 = x1 — y;, and uy = x5 — y».

The hexagonal metric can be defined as the path metric on the hexagonal grid of the
plane. In hexagonal coordinates (h1, h2) (in which &1- and hj-axes are parallel to the
grid’s edges) hexagonal distance between points {(h1, h2) and (i1, i2) can be written as
|hy — i1 + [ha — io| if (A1 —i1)(h2 —i2) = 0, and as max{|h; — 1], |h2 — ial} if
(h1 — i1)(hy —ip) < 0. Here hexagonal coordinates (A1, h7) of a point x are related
to its Cartesian coordinates (x1, x2) by A1 = x| — L%zj, h> = x; for x even, and by
hi = x1 — 2], hy = x, for x odd.

The hexagonal metric is a better approximation to the Euclidean metric than either /-
metric, or [,,-metric.

e Neighborhood sequence metric

On the digital plane Z2, consider two types of motions: the city-block motion, restricting
movements only to the horizontal or vertical directions, and the chessboard motion,
also allowing diagonal movements. The use of both these motions is determined by a
neighborhood sequence B = {b(1), b(2), ..., b(I}}, where b(i) € {1, 2} is a particular
type of neighborhood, with b(i) = [ signifying unit change in 1 coordinate (city-block
neighborhood), and b(i) = 2 meaning unit change also in 2 coordinates (chessboard
neighborhood). The sequence B defines the type of motion to be used at every step (see
[Das90]).

The neighborhood sequence metric is a metric on 7?2, defined as the length of a shortest
path between x and y € Z?, determined by a given neighborhood sequence B. It can be
written as

max{dp(u), dj (u)},

where u) = x1 — yi, us = x3 — ya2,

[t | + [uz2] +g(j)J

!
d}z(u):max{lml,luzl}, dé(”):ZL I10)

j=l1

fOY=0,fO)=2b(N.1<i<LgN=fD—-fG-D-1L1<j<L
For B = {1} one obtains the city-block metric, for B = {2} one obtains the chess-
board metric. The case B = {1, 2}, i.e., the alternative use of these motions, results in
octagonal metric, introduced in [RoPf68§].
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A proper selection of the B-sequence can make the corresponding metric very close to
the Euclidean metric. It is always greater than the chessboard distance, but smaller than
the city-block distance.

e nD-neighborhood sequence metric

The n D-neighborhood sequence metric is a metric on Z”, defined as the length of a
shortest path between x and y € Z", determined by a given n D-neighborhood sequence
B (see [Faze99]).

Formally, two points x, y € Z" are called m-neighbors,0 < m < n,if 0 < |x;—y;[ < 1,
1 <i<nand )] | [x — yl < m. A finite sequence B = {b(1),...,b(D)}, b(i) €
{1,2,...,n}, is called nD-neighborhood sequence with period l. For any x,y € Z"
the point sequence x = X0 xl Xk = y, where xiand ¥ 0 <i < k—1,are
r-neighbors, r = b((i mod I) + 1), is called path from x to y determined by B with
length k. The distance between x and y can be written as

l -
max d;(u) withd;(x,y) = Ztai +gi(])J’

I<ign i—1 ft(l)

where u = (luy|, [uzl, ..., [u,]) is the non-increasing ordering of |u,|, m = Xm — Y,
m=1,...n thatis [u;| < lu;lifi < jiar = Y 27wy bi(j) = b(j) if b(j) <
n—i—+2,andisn — i+ 1, otherwise; fi(j) = Z)Z:l bitkyif1 < j <I[,andis Oif
J=0g(H=fO-fiG-D-LI</j<L

The set of 3D-neighborhood sequence metrics forms a complete distributive lattice un-
der the natural comparison relation. This lattice has an important role in the approxima-
tion of the Euclidean metric by digital metrics.

e Path-generated metric

Consider loo-grid, i.e., the graph with the vertex-set Z2, and two vertices being neighbors
if their /,o-distance is equal to one. Let P be a collection of paths in [-grid such that,
for any x, y € 7?2, there exists at least one path from P between x and y, and if P
contains a path @, then it also contains every path contained in Q. Let dp(x, y) be the
length of the shortest path from P between x and y € Z>. If dp is a metric on Z?, then
it is called path-generated metric (see, for example, [Melt91]).

Let G be one of the sets: G1 = {1, =}, Gaa = {1, "}, Gag = (NN}, Gac =
{7\ Gop = {(—. N} G3a = {—=, 1, "} G3pl—, NN} Gaa = (=, 7, N}
Gap{t, /N, 1 Gs = {—, 1, 7, N\J. Let P(G) be the set of paths which are obtained
by concatenation of paths in G and the corresponding paths in the opposite directions.
Any path-generated metric coincides with one of the metrics dp(gy. Moreover, one can
obtain the following formulas:

1. dp)(x,y) = |ur] + |uzl;

2. dp(Gy)(x, y) = max{|2u; — uzl, luz[};
3. dp(Gyp)(x, ¥) = max{|2u; + uzl, luzl};
4. dpGyey(x, y) = max{|2uy + uyl, lu1l};
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5. dpGypy(x, y) = max{|2us — uql, [u1l};

6. dp(Gy)(x, y) = max{|ui|, uzl, lu1 — uz|};

7. dp(Gypy(x, y) = max{lurl, uzl, lu1 +uzl};

8. dpGy(x, y) = max{2[(lu1| — |uz[)/21, 0} + |uzl;
9. dp(Gp)(x, y) = max{2[([ua] — [u1])/21, O} + |u1];
10. dpGs(x, y) = max{|u1], |uz|},

where u; = x1 — y1, up = x2 — y2, and [.] is the ceiling function: for any real x the
number [x7] is the least integer greater than or equal to x.

The metric spaces obtained from G-sets which have the same numerical index are iso-
metric. dp(g,) is the city-block metric, and dp (g, is the chessboard metric.

e Knight metric

The knight metric is a metric on 72, defined as the minimum number of moves a chess
knight would take to travel from x to y € Z2. Its unit sphere S,lm. 5 centered at the
origin, contains exactly 8 integral points {(£2, £1), (£1, £2)}, and can be written as
S,lm.g,” = 5131 N 512x7 where Sf denotes the [1-sphere of radius 3, and SlzDc denotes the
l~o-sphere of radius 2, centered at the origin (see [DaCh88]).

The distance between x and y is equal to 3 if (M, m) = (1, 0), is equal to 4 if (M, m) =
(2,2), and is equal to max{[ %47, [¥21} + (M + m) — max{[ 21, 2427} (mod 2),
otherwise, where M = max({[u1], luz]}, m = min{|u|, luzl}, u; = x1—y1, u2 = x2— 2.

e Super-knight metric
Let p, g € Nsuch that p 4+ g is odd, and (p, g¢) = 1.
An (p, q)-super-knight (or (p, q)-leaper) is a (variant) chess piece a move of which
consists of a leap p squares in one orthogonal direction followed by a 90 degree direction
change, and ¢ squares leap to the destination square. Chess-variant terms exist for an
(p, 1)-leaper with p = 0, 1, 2, 3, 4 (Wazir, Ferz, usual Knight, Camel, Giraffe), and for
an (p, 2)-leaper with p = 0, 1, 2, 3 (Dabbaba, usual Knight, Alfil, Zebra).
An (p, q)-super-knight metric (or (p, q)-leaper metric) is a metric on 7?2, defined as
the minimum number of moves a chess (p, g)-super-knight would take to travel from x
to y € Z2. Thus, its unit sphere S}). 4> centered at the origin, contains exactly 8 integral
points {(£p, £q), (g, £p)}. (See [DaMu90].)
The knight metric is the (1, 2)-super-knight metric. The city-block metric can be con-
sidered as the Wazir metric, i.e., (0, 1)-super-knight metric.

¢ Rook metric

The rook metric is a metric on 72, defined as the minimum number of moves a chess
rook would take to travel from x to y € Z?2. This metric can take only the values {0, 1, 2},
and coincides with the Hamming metric on Z2.

o Chamfer metric

Given two positive numbers ¢, 8 with o < 8 < 2¢, consider («, B)-weighted |~ -grid,
i.e., the infinite graph with the vertex-set Z>, two vertices being adjacent if their /oo-
distance is one, while horizontal/vertical and diagonal edges having weights o and S,
respectively.
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A chamfer metric (or (&, 8)-chamfer metric, [Borg86]) is the weighted path metric in
this graph. For any x, y € Z? it can be written as

where M = max{lu1l, [uzl}, m = min{lu;[, luzl}, ur = x1 — y1, u2 = x2 — y2.

If the weights « and B are equal to the Euclidean lengths 1, /2 of horizontal/vertical
and diagonal edges, respectively, then one obtains the Euclidean length of the shortest
chessboard path between x and y. If « = 8 = 1, one obtains the chessboard metric.
The (3, 4)-chamfer metric is the most used one for digital images; it is called simply
(3, 4)-metric.

An 3 D-chamfer metric is the weighted path metric of the graph with the vertex-set Z
of voxels, two voxels being adjacent if their [,-distance is one, while weights «, 8, and
y are associated, respectively, to the distance from 6 face neighbors, 12 edge neighbors,
and 8 corner neighbors.

e Weighted cut metric

Consider weighted lso-grid, i.c., the graph with the vertex-set Z2, two vertices being
adjacent if their /-distance is one, and each edge having some positive weight (or cost).
Usual weighted path metric between two pixels is the minimal cost of a path connecting
them. The weighted cut metric between two pixels is the minimal cost (defined now as
the sum of costs of crossed edges) of a cut, i.e., a plane curve connecting them while
avoiding pixels.

e Digital volume metric
The digital volume metric is a metric on the set K of all bounded subsets (pictures, or
images) of Z? (in general, of Z"), defined by

vol(AAB),

where vol(A) = |A|, i.e., the number of pixels contained in A, and AA B is the symmetric
difference between sets A and B.

This metric is a digital analog of the Nikodym metric.

e Hexagonal Hausdorff metric

The hexagonal Hausdorff metric is a metric on the set of all bounded subsets (pictures,
or images) of the hexagonal greed on the plane, defined by

inf{p,q: ACB+qH, BC A+ pH}

for any pictures A and B, where p H is the regular hexagon of size p (i.e., with p+1 pix-
els on each edge), centered at the origin and including its interior, and + is the Minkowski
addition: A+B = {x+y: x € A, y € B} (cf. Pompeiu—-Hausdorff-Blaschke metric).
If A is a pixel x, then the distance between x and B is equal to sup,,. g de(x, y), where
dg is the hexagonal metric, i.e., the path metric on the hexagonal grid.
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Voronoi Diagram Distances

Given a finite set A of objects A; in a space S, computing Voronoi diagram of A means
partitioning the space S into Voronoi regions V (A;) in such a way that V(A;) contains all
points of S that are “closer” to A; than to any other object A; in A.

Given a generator set P = {p1, ... px}, k = 2, of distinct points (generators) from R",
n 2z 2, the ordinary Voronoi polygon V(p;) associated with a generator p; is defined by

V(pi) ={x e R": de(x, p;) <dg(x, pj) forany j # i},

where d is the ordinary Euclidean distance on R". The set

V(P,dg,R") ={V(pD, ..., V(pp)}

is called n-dimensional ordinary Voronoi diagram, generated by P. The boundaries of (n-
dimensional) Voronoi polygons are called ((n — 1)-dimensional) Voronoi facets, the bound-
aries of Voronoi facets are called (n — 2)-dimensional Voronoi faces, . . ., the boundaries of
two-dimensional Voronoi faces are called Voronoi edges, the boundaries of Voronoi edges
are called Voronoi vertices.

A generalization of the ordinary Voronoi diagram is possible in three following ways:

1. The generalization with respect to the generator set A = {A1, ..., Ax} which can be a
set of lines, a set of areas, etc.;

2. The generalization with respect to the space S which can be a sphere (spherical Voronoi
diagram), a cylinder (cylindrical Voronoi diagram), a cone (conic Voronoi diagram), a
polyhedral surface (polyhedral Voronoi diagram), etc.;

3. The generalization with respect to the function d, where d(x, A;) measures the “dis-
tance” from a point x € S to a generator A; € A.

This generalized distance function d is called Voronoi generation distance (or Voronoi
distance, V-distance), and allows many more functions than an ordinary metric on S. If
F is a strictly increasing function of an V-distance d, i.e., F(d(x, A;)) < F(d{(x, A;)) if
and only if d(x, A;) < d(x, Aj), then the generalized Voronoi diagrams V (A, F(d), )
and V(A,d, S) coincide, and one says that the V-distance F(d) is transformable to the
V-distance d, and that the generalized Voronoi diagram V(A, F(d), S) is a trivial gener-
alization of the generalized Voronoi diagram V (A, d, S). In applications, one often uses for
trivial generalization of ordinary Voronoi diagram V (P, d, R") the exponential distance,
the logarithmic distance, and the power distance. There are generalized Voronoi dia-
grams V(P, D, R"), defined by V-distances, that are not transformable to the Euclidean
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distance dg: the multiplicatively weighted Voronoi distance, the additively weighted
Voronoi distance, etc.
For an additional information see, for example, [OBS92], [Klei89].

20.1. CLASSICAL VORONOI GENERATION DISTANCES

o Exponential distance
The exponential distance is the Voronoi generation distance

Dexp(x’ pi) = et pi)

for the trivial generalization V (P, Dey,, R") of the ordinary Voronoi diagram V (P, dg, R"),
where d is the Euclidean distance.

e Logarithmic distance
The logarithmic distance is the Voronoi generation distance

Dn(x, pi) = Indg(x, p;)

for the trivial generalization V (P, Dy, R") of the ordinary Voronoi diagram V (P, dg, R"),
where d is the Euclidean distance.

o Power distance

The power distance is the Voronoi generation distance
Dot(xvpi):dE(x3pi)av 0l>0,

for the trivial generalization V (P, Dy, R") of the ordinary Voronoi diagram V (P, dg, R™),
where d is the Euclidean distance.

o Multiplicatively weighted distance

The multiplicatively weighted distance dyw is the Voronoi generation distance of the
generalized Voronoi diagram V (P, dyw, R™) (multiplicatively weighted Voronoi dia-
gram), defined by

1
duw(x, pi) = ;dE(X, pi)

i

for any point x € R” and any generator point p; € P = {p1,..., px}, k > 2, where
w; € w = {w;,...,wg} 1S a given positive multiplicative weight of the generator p;,
and dp is the ordinary Euclidean distance.

For R?, the multiplicatively weighted Voronoi diagram is called circular Dirichlet tes-
sellation. An edge in this diagram is a circular arc or a straight line.

In the plane R?, there exists a generalization of the multiplicatively weighted Voronoi
diagram, the crystal Voronoi diagram, with the same definition of the distance (where
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w; 1s the speed of growth of the crystal p;), but a different partition of the plane, as the
crystals can grow only in an empty area.

o Additively weighted distance

The additively weighted distance d 4y is the Voronoi generation distance of the gener-
alized Voronoi diagram V (P, daw, R") (additively weighted Voronoi diagram), defined
by

daw(x, pi) = de(x, pi) —w;

for any point x € R” and any generator point p; € P = {p1,..., px}, k = 2, where
w; € w = {w;, ..., wg} is a given additive weight of the generator p;, and dr is the
ordinary Euclidean distance.

For R?, the additively weighted Voronoi diagram is called hyperbolic Dirichlet tessella-
tion. An edge in this Voronoi diagram is a hyperbolic arc or a straight line segment.

o Additively weighted power distance

The additively weighted power distance dpy is the Voronoi generation distance of
the generalized Voronoi diagram V (P, dpw, R™) (additively weighted power Voronoi
diagram), defined by

dpw(x, pi) = dz(x, pi) — w;

for any point x € R" and any generator point p; € P = {p1, ..., pr}, k > 2, where
w; € w = {w, ..., w} is a given additive weight of the generator p;, and df is the
ordinary Euclidean distance.

This diagram can be regarded as a Voronoi diagram of circles or as a Voronoi diagram
with the Laguerre geometry.

The multiplicatively weighted power distance dypw(x, pi) = %d% (x, pi), wi > 0,
is transformable to the multiplicatively weighted distance, and gives a trivial extension

of the multiplicatively weighted Voronoi diagram.

o Compoundly weighted distance

The compoundly weighted distance dcyw is the Voronoi generation distance of the gen-
eralized Voronoi diagram V (P, dcw, R") (compoundly weighted Voronoi diagram), de-
fined by

1
dew(x, p;) = EdE(X, pi) — ;i

l

for any point x € R” and any generator point p; € P = {py,..., pr}, k = 2, where
w; € w = {w;, ..., w} is a given positive multiplicative weight of the generator p;,
v; € v = {v1,..., v} is a given additive weight of the generator p;, and dg is the

ordinary Euclidean distance.

An edge in the two-dimensional compoundly weighted Voronoi diagram is a part of a
fourth-order polynomial curve, a hyperbolic arc, a circular arc, or a straight line.
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20.2. PLANE VORONOI GENERATION DISTANCES

o Shortest path distance with obstacles

Let O = {01, ..., Oy} be a collection of pairwise disjoint polygons on the Euclidean
plane, representing a set of obstacles which are neither transparent nor traversable.

The shortest path distance with obstacles dy, is the Voronoi generation distance of the
generalized Voronoi diagram V (P, dgp, R2\{O}) (shortest path Voronoi diagram with
obstacles), defined, for any x, y € R?\{0}, as the length of the shortest path among all
possible continuous paths, connecting x and y, that do not intersect obstacles O;\3 O;
(a path can pass through points on the boundary 3 0; of O;),i =1, ...m.

The shortest path is constructed with the aid of the visibility polygon and the visibility
graph of V (P, dy,, R\{O}).

e Visibility shortest path distance

Let © = {0y, ..., Oy} be a collection of pairwise disjoint line segments O; = [a;, b;]
in the Euclidean plane, P = {py, ..., pi}, k = 2, is the set of generator points,

VIS(pi) = {x € R?: [x, pilNla, byl =@ foralll =1,...,m}

is the visibility polygon of the generator p;, and dg is the ordinary Euclidean distance.
The visibility shortest path distance d,, is the Voronoi generation distance of the gen-
eralized Voronoi diagram V (P, dygp, Rz\{(ﬁ}) (visibility shortest path Voronoi diagram
with line obstacles), defined by

dg(x, pi), ifx € VIS(p;),
00, otherwise.

dvsp(xy pi) = {

o Network distances

A network on R? is a connected planar geometrical graph G = (V, E) with the set V of
vertices and the set E of edges (links).

Let the generator set P = {p1,..., px} be a subset of the set V = {p1,..., pi} of
vertices of G, and the set L be given by points of links of G.

The network distance d,,., on the set V is the Voronoi generation distance of the net-
work Voronoi node diagram V (P, dpern,, V), defined as the shortest path along the links
of G from p; € V to p; € V. Itis the weighted path metric of the graph G, where w,
is the Euclidean length of the link e € E.

The network distance d,,.; on the set L is the Voronoi generation distance of the net-
work Voronoi link diagram V (P, dyey, L), defined as the shortest path along the links
fromx € Ltoy e L.

The access network distance d e on R2 is the Voronoi generation distance of the
network Voronoi area diagram V (P, dycener, ]Rz), defined by

dacener(X, ¥) = dnert (l (x), Z(Y)) + dace(x) + duce(¥),
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where dye.(x) = mingep d(x,1l) = dp(x,1(x)) is the access distance of a point x. In
fact, dy.(x) is the Euclidean distance from x to the access point [(x) € L of x which is
the nearest to x point on the links of G.

o Airlift distance

An airports network is an arbitrary planar graph G on n vertices (airports) with posi-
tive edge weights (flight durations). This graph may be entered and exited only at the
airports. Once having accessed G, one travels at fixed speed v > 1 within the network.
Movement off the network takes place with the unit speed with respect to the ordinary
Euclidean distance.

The airlift distance d, is the Voronoi generation distance of the airlift Voronoi diagram
V(P,dy, ]Rz), defined as the time needed for a quickest path between x and y in the
presence of the airports network G, i.e., a path minimizing the travel time between x
and y.

o City distance

A city public transportation network, like a subway or a bus transportation system, is
a planar straight line graph G with horizontal or vertical edges. G may be composed
of many connected components, and may contain cycles. One is free to enter G at any
point, be it at a vertex or on an edge (it is possible to postulate fixed entry points, too).
Once having accessed G, one travels at a fixed speed v > 1 in one of the available
directions. Movement off the network takes place with the unit speed with respect to
the Manhattan metric (we imagine a large modern-style city with streets arranged in
north-south and east-west directions).

The city distance d.;;y is the Voronoi generation distance of the city Voronoi diagram
V(P,deity, R?), defined as the time needed for the quickest path between x and y in the
presence of the network G, i.e., a path minimizing the travel time between x and y.

The set P = {p1,..., pr}, k = 2, can be seen as a set of some city facilities (for
example, post offices or hospitals): for some people several facilities of the same kind
are equally attractive, and they want to find out which facility is reachable first.

e Distance in a river

The distance in a river d,;, is the Voronoi generation distance of the generalized Voronoi
diagram V (P, dy, R2) (Voronoi diagram in a river), defined by

—a(xr — y1) + v — )2+ (1 —a?)(x2 — y2)?
v(l —a?)

driv(x, y) =

’

where v is the speed of the boat on the still water, w > 0 is the speed of constant flow in
the positive direction of the x1-axis, and o« = ¥ (0 < a < 1) is the relative flow speed.

e Boat-sail distance

Let 2 C R? be a domain in the plane (water surface), let f: §2 — R? be a con-
tinuous vector field on §2, representing the velocity of the water flow (flow field); let
P=Ap1,...,pr} C 2,k > 2, be aset of k points in 2 (harbors).
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The boat-sail distance ([NiSu03]) dj, is the Voronoi generation distance of the gener-
alized Voronoi diagram V (P, dps, §2) (boat-sail Voronoi diagram), defined by

dps(x,y) = irylfé(y, x,y)

forall x, y € §2, where

1 / —1
(w,x,y):/ \F PO psn| ds
L T

is the time necessary for the boat with the maximum speed F on the still water to move

from x to y along the curve y : [0, 1] — £2, y(0) = x, y(1) = y, and the infimum is
taken over all possible curves y.

e Peeper distance

Let S = {(x1,x0) € R2: x| > 0} be the half-plane in R2, let P = {p1,....pK} k=22,
be a set of points contained in the half-plane {(x1, x2) € R%: x; < 0}, and let the
window be the open line segment la, b[ with @ = (0, 1) and b = (0, —1).

The peeper distance dj,.. is the Voronoi generation distance of the generalized Voronoi
diagram V (P, dpe., S) (peeper’s Voronoi diagram), defined by

de(x, pi), if[x, plNla, bl # 9,
00, otherwise,

dpee(x, pi) = {

where df is the ordinary Euclidean distance.

¢ Snowmobile distance

Let 2 C R? be a domain in the x1x;-plane of the space R> (a two-dimensional map-
ping), and 2% = {(q,h(q)): q = (x1(¢9), x2(q)) € $2,h(q) € R} be the three-
dimensional land surface, associated with the mapping §2. Let P = {p1, ..., px} C 2,
k > 2, be a set of k points in £2 (snowmobile stations).

The snowmobile distance d,, is the Voronoi generation distance of the generalized
Voronoi diagram V (P, dgy,, §2) (snowmobile Voronoi diagram), defined by

1
dsm(q,r):inf/ S P
P ), F( = TG)

for any g, r € §2, and calculating the minimum time necessary for the snowmobile with
the speed F on a flat land to move from (g, h(gq)) to (r, h(r)) along the land path y*:
y*(s) = (y(s), h(y(s))), associated with the domain path y : [0, 1] — 2, y(0) = ¢,
y (1) = r (the infimum is taken over all possible paths y, and ¢ is a positive constant).

A snowmobile goes uphill more slowly than goes downhill. The situation is opposite for
a forest fire: the frontier of the fire goes uphill faster than goes downhill. This situation
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can be modeled using a negative value of «. The resulting distance is called forest-fire
distance, and the resulting Voronoi diagram is called forest-fire Voronoi diagram.

o Skew distance

Let T be a tilted plane in R, obtained by rotation the xxs-plane around the x-axis
through the angle &, 0 < o < 7, with the coordinate system obtained by taking the
coordinate system of the xjx;-plane, accordingly rotated. For a pointg € T, g =
(x1(q), x2(q)), define height h(g) as its x3-coordinate in R3. Thus, 4(g) = x2(g) - sinc.
LetP={p1,....,pk} C T, k=2

The skew distance ([AACL98]) dy, is the Voronoi generation distance of the general-
ized Voronoi diagram V (P, dsgew, T) (skew Voronoi diagram), defined by

dkew(q, 1) = dE(g, 1) + (A(r) — h(g)) = dE(q, r) + sine(x2(r) — x2(q))

or, more generally, by

dskew(q. 1) = dE(q, 1) + k(x2(r) — x2(9))

for all ¢, r € T, where dg is the ordinary Euclidean distance, and k > 0 is a constant.

20.3. OTHER VORONOI GENERATION DISTANCES

e Voronoi distance for line segments

The Voronoi distance for (a set of) line segments dy; is the Voronoi generation distance
of the generalized Voronoi diagram V (A, dj, R?) (line Voronoi diagram, generated by
straight line segments), defined by

dg(x, A;) = inf dp(x, y),
VEA;

where the generator set A = {A1, ..., Ax}, k = 2, is a set of pairwise disjoint straight
line segments A; = [a;, b;], and dg is the ordinary Euclidean distance. In fact,

dE(xaai)v if)C € R(l,‘a
d[s(.x, Al) = dE(‘x7 bi)7 ifx € Rb,‘a
o w=a)Thi—a) oy : 2
dg <X aj, di-(zu,b,-) (b; al))? ifx eR \{Ra,- U Rb,- }s
where R;, = {x € R?: (bj—a)T (x—a;) < 0}, Rp, =1{x € R?: (a;—b)T (x—b;) < O}.

e Voronoi distance for arcs

The Voronoi distance for (a set of circle) arcs d., is the Voronoi generation distance
of the generalized Voronoi diagram V (A, e, R?) (line Voronoi diagram, generated by
circle arcs), defined by

dea(x, Ay) = inf de(x, y),
YEA;
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where the generator set A = {Ay, ..., Ar}, k = 2, is a set of pairwise disjoint circle
arcs A; (less than or equal to a semicircles) with radius r; centered at x.,, and dg is the
ordinary Euclidean distance. In fact,

dea(x, A)) = min{dg(x, @;), dg(x, b)), |de(x, xe) — 1y

where a; and b; are end points of A;.

e Voronoi distance for circles

The Voronoi distance for (a set of) circles d,, is the Voronoi generation distance of
a generalized Voronoi diagram V (A, d.;, R?) (line Voronoi diagram, generated by cir-
cles), defined by

dafx, Ay) = inf de(x,y),
VEA;

where the generator set A = {A1, ..., A}, k = 2, is a set of pairwise disjoint circles
A; with radius r; centered at x.,, and dg, is the ordinary Euclidean distance. In fact,

dca(x’ Al) - ‘dE(x3xL‘i) - 7'['|.

There exist different distances for the line Voronoi diagram, generated by circles. For
example, d%/(x, A;) = dg(x, x;;) —ri, or dy(x, A;) = d%(x, Xg) — ”52 (the Laguerre
Voronoi diagram).

e Voronoi distance for areas

The Voronoi distance for areas d,, is the Voronoi generation distance of the generalized
Voronoi diagram V(A, d;, R?) (area Voronoi diagram), defined by

dyr(x, A;) = inf dg(x, y),
VEA;

where A = {A1, ..., Ax}, k = 2, is a collection of pairwise disjoint connected closed
sets (areas), and dg is the ordinary Euclidean distance.

Note, that for any generalized generator set A = {Ay, ..., Ax}, k = 2, one can use
as the Voronoi generation distance the Hausdorff distance from a point x to a set A;:
draus(x, A;) = Supyey4, de(x, y), where dg is the ordinary Euclidean distance.

e Cylindrical distance

The cylindrical distance d.; is the intrinsic metric on the surface of a cylinder §
which is used as the Voronoi generation distance in the cylindrical Voronoi diagram
V(P, dey, §). If the axis of a cylinder with unit radius is placed at the x3-axis in R3,
the cylindrical distance between any points x, y € S with the cylindrical coordinates
(1,6, zx) and (1, 6y, zy) is given by

\/(ex — 002 + (25 — 22)%, if0, — 0, <7,
\/(ex F2m =02+ (25 — 202 if6y — 6, > 7.

dcyl(X, y) =
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o Cone distance

The cone distance d_,,, is the intrinsic metric on the surface of a cone S which is used
as the Voronoi generation distance in the conic Voronoi diagram V (P, dcon, S). If the
axis of the cone S is placed at the x3-axis in R3, and the radius of the circle made by
the intersection of the cone S with the x| x2-plane is equal to one, then the cone distance
between any points x, y € S is given by

Jri 4= 2nry cos(0;, = 0)),
if 9_; < 0] + 7 sinee/2),

\/r)% +r2 = 2rery cos(8; + 27 sin(e/2) — 6}),
if «9_\/, > 6, + 7 sin(a/2),

deon(x,y) =

where (x1, x2, x3) are the Cartesian coordinates of a point x on S, « is the top angle of
the cone, 6, is the counterclockwise angle from the x{-axis to the ray from the origin

to the point (x1, x2, 0), 6, = 8, sin(a/2), ry = \/xlz —f—x% + (x3 — coth(/2))? is the
straight line distance from the top of the cone to the point (x1, x2, x3).

e Voronoi distances of order m

Given a finite set A of objects in a metric space (S, d), and an integer m > 1, consider
the set of all m-subsets M; of A (i.e., M; C A, and |M;| = m). The Voronoi diagram of
order m of A is a partition of S into Voronoi regions V(M;) of m-subsets of A in such
a way that V(M;) contains all points s € S which are “closer” to M; than to any other
m-set M;:d(s,x) < d(s,y) forany x € M; and y € S\M;. This diagram provides first,
second, ..., m-th closest neighbors of a point in S.

Such diagrams can be defined in terms of some “distance function” D(s, M;), in par-
ticular, some m-hemi-metric on S. For M; = {a;, b;}, there were considered the func-
tions [d(s,a;) — d(s, b)), d(s,a;) + d(s, b;), d(s,a;) - d(s, b;), as well as 2-metrics
d(s,a;) +d(s, b;) + d(a;i, b;) and the area of triangle (s, a;, b;).
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Image and Audio Distances

21.1. IMAGE DISTANCES

Image Processing treat signals such as photographs, video, or tomographic output. In par-
ticular, Computer Graphics consists of image synthesis from some abstract models, while
Computer Vision extracts some abstract information: say, the 3D (i.e., 3-dimensional) de-
scription of a scene from video footage of it. From about 2000, the analog image process-
ing (by optical devices) gave way to the digital processing, and, in particular, digital image
editing (for example, processing of images taken by popular digital cameras).

Computer graphics (and our brains) deals with vector graphics images, i.e., those repre-
sented geometrically by curves, polygons, etc. A raster graphics image (or digital image,
bitmap) in 2D is a representation of 2D image as a finite set of digital values, called pixels
(short for picture elements) placed on square grid Z? or hexagonal grid. Typically, the im-
age raster is a square 2 x 2% grid with k = 8, 9 or 10. Video images and tomographic (i.e.,
obtained by sections) images are 3D (2D plus time); their digital values are called voxels
(volume elements).

A digital binary image corresponds to only two values 0,1 with 1 being interpreted as
logical “true” and displayed as black; so, such image is identified with the set of black
pixels. The elements of binary 2D image can be seen as complex numbers x + iy, where
(x, y) are coordinates of a point on the real plane R2. A continuous binary image is a
(usually, compact) subset of a locally compact metric space (usually, Euclidean space E”
with n = 2, 3).

The gray-scale images can be seen as point-weighted binary images. In general, a fuzzy
set is a point-weighted set with weights (membership values). For the gray-scale images,
Xxyi-representation is used, where plane coordinates (x, y) indicate shape, while the weight
i (short for intensity, i.e., brightness) indicate fexture (intensity pattern). Sometimes, the
matrix ((ixy)) of gray-levels is used. Brightness histogram of a gray-scale image provides
the frequency of each brightness value found in that image. If image has m brightness levels
(bins of gray-scale), then there are 2™ different possible intensities. Usually, m = 8 and
numbers 0, 1, ..., 255 represent intensity range from black to white; other typical values
are m = 10, 12, 14, 16. Humans can differ between around 350000 different colors but
between only 30 different gray-levels; so, color has much higher discriminatory power.

For color images, (RGB)-representation is most known, where space coordinates R,
G, B indicate red, green and blue level; 3D histogram provides brightness at each point.
Among many other 3D color models (spaces) are: (CMY) cube (Cyan, Magenta, Yellow
colors), (HSL) cone (Hue-color type given as angle, Saturation in %, Luminosity in %),
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and (YUV), (YIQ) used, respectively, in PAL, NTSC television. CIE-approved conversion
of (RGB) into luminance (luminosity) of gray-level is 0.299R 4 0.587G + 0.114B. Color
histogram is a feature vector of length r (usually, n = 64, 256) with components repre-
senting ether the total number of pixels, or the percentage of pixels of given color in the
image.

Images are often represented by feature vectors, including color histograms, color mo-
ments, textures, shape descriptors, etc. Examples of feature spaces are: raw intensity (pixel
values), edges (boundaries, contours, surfaces), salient features (corners, line intersections,
points of high curvature), and statistical features (moment invariants, centroids). Typical
video features are in terms of overlapping frames and motions. Image Retrieval (similarity
search) consists of (as for other data: audio recordings, DNA sequences, text documents,
time-series, etc.) finding images whose features have values ether similar between them,
or similar to given query or in given range.

There are two methods to compare images directly: intensity-based (color and texture
histograms), and geometry-based (shape representations by medial axis, skeletons, etc.).
Unprecise term shape is used for the extent (silhouette) of the object, for its local geome-
try or geometrical pattern (conspicuous geometric details, points, curves, etc.), or for that
pattern modulo a similarity transformation group (translations, rotations, and scalings).
Unprecise term texture means all what is left after color and shape have been considered,
or it is defined via structure and randomness.

The similarity between vector representations of images is measured by usual practical
distances: {,-metrics, weighted editing metrics, Tanimoto distance, cosine distance,
Mahalanobis distance and its extension, Earth Mover distance. Among probability dis-
tances, the following ones are most used: Bhattacharya 2, Hellinger, Kullback—Leibler,
Jeffrey and (especially, for histograms) x -, Kolmogorov—Smirnov, Kuiper distances.

The main distances applied for compact subsets X and ¥ of R” (usually, n = 2, 3)
or their digital versions are: Asplund metric, Shephard metric, symmetric difference
semi-metric Vo/(X AY) (see Nikodym metric, area deviation, digital volume metric
and their normalizations) and variations of the Hausdorff distance (see below).

For Image Processing, the distances below are between “true” and approximated digital
images, in order to assess the performance of algorithms. For Image Retrieval, distances
are between feature vectors of a query and reference.

o Color distances

A color space is a 3-parameter description of colors. The need for exactly 3 parameters
comes from the existence of 3 kinds of receptors in the human eye: for short, middle and
long wavelengths, corresponding to blue, green, and red.

The CIE (International Commission on Illumination) derived (XYZ) color space in 1931
from (RGB)-model and measurements of the human eye. In the CIE (XYZ) color space,
the values X, Y and Z are also roughly red, green and blue, respectively.

The basic assumption of Colorimetry, supported experimentally (Indow, 1991), is that
the perceptual color space admits a metric, the true color distance. This metric is ex-
pected to be locally Euclidean, i.e., a Riemannian metric. Another assumption is that
there is a continuous mapping from the metric space of photic (light) stimuli to this



264 [ e Average color distance] Part V: Computer-Related Distunces

metric space. Cf. probability-distance hypothesis in Psychophysics that the probabil-
ity with which one stimulus is discriminated from another is a (continuously increasing)
function of some subjective quasi-metric between these stimuli.

Such uniform color scale, where equal distances in the color space correspond to equal
differences in color, is not obtained yet and existing color distances are various approx-
imations of it. First step in this direction was given by MacAdam ellipses, i.e., regions on
a chromaticity (x, y) diagram which contains all colors looking indistinguishable to the
average human eye. Those 25 ellipses define a metric in a color space. Here x = ﬁ
and y = rﬁ-z are projective coordinates, and the colors of the chromaticity diagram
occupy a region of the real projective plane. The CIE (L*a*b*) (CIELAB) is an adap-
tation of CIE 1931 (XYZ) color space; it gives a partial linearization of the metric indi-
cated by MacAdam ellipses. The parameters L*, a*, b* of the most complete model are
derived from L, a, b which are: the luminance L of the color from black L = 0 to white
L = 100, its position a between green a < 0 and red @ > 0, and its position b between
green b < 0 and yellow b > 0.

e Average color distance

For a given 3D color space and a list of n colors, let (¢;1, ¢;j2, ¢;3) be the representation
of the i-th color of the list in this space. For a color histogram x = (x1,..., x,), its
average color is the vector (x(1), X(2), X(3)), where x¢jy = > 1 x;c;; (for example, the
average red, blue and green values in (RGB)) of the pixels in the image.

The average color distance between two color histograms ((HSEFN95]) is the Euclid-
ean distance of their average colors.

e Color component distances

Given an image (as a subset of R?), let p; denote the area percentage of this image
occupied by the color ¢;. A color component of the image is a pair (¢;, p;).

The Ma-Deng-Manjunath distance between color components (c;, p;) and (c;, p;)
is defined by

|pi — pjl-dci,cy),

where d(c;, ;) is the distance between colors ¢; and ¢; in a given color space. Mo-
jsilovi¢ et al. developed Earth Mover distance-like modification of this distance.

e Histogram intersection quasi-distance

Given two color histograms x = (x1,...,x,) and y = (yi, ..., ) (with x;, y; rep-
resenting number of pixels in the bin i), the Swain-Ballard’s histogram intersection
quasi-distance between them (cf. intersection distance) is defined by

- > i—y minfx;, y;}
1 i
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For normalized histograms (total sum is 1) above quasi-distance became the usual /-
metric Y 7| [x; — y;|. The Rosenfeld—Kak’s normalized cross correlation between x

and y is a similarity, defined by 22:14)(;
=1
e Histogram quadratic distance
Given two color histograms x = (x1,...,x,)and y = (y1, ..., yu) (usually, n = 256 or

n = 64) representing the color percentages of two images, their histogram quadratic
distance (used in IBM’s Query By Image Content system) is Mahalanobis distance,
defined by

\/(x - NTAGx =),
where A = ((a;;)) is a symmetric positive-definite matrix, and weight ¢;; is some, per-
ceptually justified, similarity between colors i and j. For example (see [HSEFN95]),
i
maxi<p.g<n dpg
resenting i and j in some color space. Another definition is given by a;; = 1 —
\L@((v[ — v_,~)2 + (s;cosh; — s;j cos hj)2 + (s; sink; — s sin hj)z)%, where (h;, s;, v;)
and (A}, s;, v;) are the representations of the colors i and j in the color space (HSV).

aij = 1— where d;; is the Euclidean distance between 3-vectors rep-

e Gray-scale image distances

Let f(x) and g(x) denote brightness values of two digital gray-scale images f and g
at the pixel x € X, where X is a raster of pixels. Any distance between point-weighted
sets (X, f) and (X, g) (for example, the Earth Mover distance) can be applied for
measuring distances between f and g. However, the main used distances (called also
errors) between images f and g are:

|
1. The root mean-square error RMS(f, g) = (|>1(_| Yoeex(fx) — g(x))2)7 (a variant is

to use [1-norm | f(x) — g(x)| instead of lr-norm);

b2 L
2. The signal-to-noise ratio SNR(f, g) = (%) 2
xeX -

3. The pixel misclassification error rate ﬁ|{x € X: f(x) # g(x)}| (normalized Ham-
ming distance);

1
4. The frequency root mean-square error (L ZueU(F(u) — G(u))z) 2 where F and

U2
G are the discrete Fourier transforms of f and g, respectively, and U is the frequency
domain;
1
5. The Sobolev norm of order § error (ﬁ Y owey 1+ I (F(u) — G(u))z) 2, where

0 < 6 < 1is fixed (usually, %), and 7, is the 2D frequency vector associated with
position u in the frequency domain U.

e Image compression L ,-metric
Given a number r, 0 < r < 1, the image compression L ,-metric is the usual L -

. 2 . . . .
metric on R (the set of gray-scale images seen as n x n matrices) with p being a

_ p—1
- 2p—1

solution of the equation r -ezr-1, So, p = 1,2, or oo for, respectively, r = 0,
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r= %e 3~ 065 orr = f 22 0.82. Here r estimates informative (i.e., filled with non-
zeros) part of the image. Accordmg to [KKNO2], it is the best quality metric to select a
lossy compression scheme.

e Chamfering distances

The chamfering distances are distances approximating Euclidean distance by a
weighted path distance on the graph G = (Z?, E), where two pixels are neighbors
if one can be obtained from another by an one-step move on Z?. The list of permitted
moves is given, and a prime distance, i.e., a positive weight, is associated to each type
of such move.

An (o, B)-chamfer metric corresponds to two permitted moves — with /q-distance 1
and with [y -distance 1 (diagonal moves only) — weighted « and S, respectively. The
main applied cases are (¢, 8) = (1, 0) (the city-block metric, or 4-metric), (1,1) (the
chessboard metric, or 8-metric), (1, v/2) (the Montanari metric), (3, 4) (the (3, 4)-
metric), (2, 3) (the Hilditch-Rutovitz metric), (5, 7) (the Verwer metric).

The Borgefors metric corresponds to three permitted moves — with /-distance 1, with
~o-distance 1 (diagonal moves only), and knight moves — weighted 5, 7 and 11, respec-
tively.

An 3D-chamfer metric (or («, 8, y)-chamfer metric) is the weighted path metric of
the infinite graph with the vertex-set Z> of voxels, two vertices being adjacent if their /oo-
distance is one, while weights «, 8 and y are associated to 6 face, 12 edge and 8 corner
neighbors, respectively. If « = 8 = y = 1, we obtain the /o-metric. The (3, 4, 5)- and
(1, 2, 3)-chamfer metrics are the most used ones for digital 3D images.

o Earth Mover distance

The Earth Mover distance is a discrete form of the Monge—Kantorovich distance.
Roughly, it is minimal amount of work needed to transform earth or mass from one po-
sition (properly spread in space) to the other (a collection of holes). For any two finite se-
quences (xq, ..., Xy) and (y1, ..., y,) over a metric space (X, d), consider signatures,
i.e., point-weighted sets P; = (p1(x1), ..., p1(xn)) and Py = (p2(y1), - -, p2(yn))-
For example ([RTGO0]), signatures can represent clustered color or texture content of
images: elements of X are centroids of clusters, and p1(x;), p2(y;) are sizes of corre-
sponding clusters. The ground distance d is a color distance, say, the Euclidean distance
in 3D CIE (L*a*b*) color space.

Let Wi =), p1(x;) and W = ) ; p2(y;) are the fotal weights of Py and P,, respec-
tively. Then the Earth Mover distance (or transport distance) between signatures Py
and P, is defined as the function

2y fd i yp)
iy
where the m x n matrix S* = ((f* )) is an optimal, i.e., minimizing Z fiid(xi, yi),

fow. A flow (of the weight of the earth) is an m x n matrix $ = ((fi;)) w1th following
constraints:



Chapter 21: Image and Audio Distances [ ® Parameterized curves distance] 267

1 All £ > 0;
2. Zitj fij = min{W1, Wa};
3.3 fij < pa(yp),and Y-, fij < pr(x).

So, this distance is the average ground distance d that weights travel during an optimal
flow.

In the case Wi = W, above two inequalities 3. became equalities. Normalizing sig-
natures to Wi = W> = 1 (which not changes the distance) allow us to see Py and P,
as probability distributions of random variables, say, X and Y. Then }, ; fi;d(xi, y;)
is just Eg[d(X, Y)], i.e., the Earth Mover distance coincides, in this case, with the
Kantorovich—Mallows—Monge—Wasserstein metric. For, say, W; < W, it is not a
metric in general. However, replacing, in above definition, the inequalities 3. by equali-
ties:

OW
3. Y fip =2y, and X fyy = LGN,

produces Giannopoulos—Veltkamp’s proportional transport semi-metric.

o Parameterized curves distance

The shape can be represented by a parameterized curve on the plane. Usually, such curve
is simple, i.e., it has no self-intersections. Let X = X (x(¢)) and ¥ = Y (y(t)) be two
parameterized curves, where (continuous) parametrization functions x(¢) and y(¢) on
[0, 1] satisfy x(0) = y(0) =0 and x(1) = y(1) = 1.

The most used parameterized curves distance is the minimum, over all monotone in-
creasing parameterizations x{t) and y(t), of the maximal Euclidean distance
de(X(x(1)), Y(y(1))). It is Euclidean special case of the dogkeeper distance which
is, in turn, the Fréchet metric for the case of curves. Among variations of this distance
are dropping the monotonicity condition of the parametrization, or finding the part of
one curve to which the other has the smallest such distance ([VeHa01]).

e Non-linear elastic matching distances

Consider a digital representation of curves. Let r > 1 be a constant, and let A =
{ar,...,an}, B = {b1,..., by} be finite ordered sets of consecutive points on two
closed curves. For any order-preserving correspondence f between all points of A and
all points of B, the stretch s(a;, b;) of (a;, fa;) = b;) is r if either f(a;_1) = b; or
f(a;) = bj_1, or zero, otherwise.

The relaxed non-linear elastic matching distance is the minimum, over all such f, of
> (s(a;, bj) + d(a;, b;)), where d(g;, b;) is the difference between the tangent angles
of a; and b;. It is a near-metric for some r. For r = 1, it is called non-linear elastic
matching distance.

e Turning function distance

For a plane polygon P, its turning function Tp(s) is the angle between the counterclock-
wise tangent and the x-axis as the function of the arc length s. This function increases
with each left hand turn and decreases with right hand turns.
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Given two polygons of equal perimeters, their turning function distance is the L -
metric between their turning functions.

e Size function distance

For a plane graph G = (V, E) and a measuring function f on its vertex-set V (for
example, the distance from v € V to the center of mass of V), the size function Sg(x, y)
is defined, on the points (x, y) € R2, as the number of connected components of the
restriction of G on vertices {v € V: f(v) < y} which contain a point v’ with f(v') < x.

Given two plane graphs with vertex-sets belonging to araster R C Z?2, their Uras—Verri’s
size function distance is the normalized [;-distance between their size functions over
raster pixels.

e Reflection distance

For a finite union A of plane curves and each point x € R?, let Vv denote the union of
open line segments |x, a[, a € A, which are visible from x, i.e., ]x,a[ N A = @. Denote
by p) the areaof the set {x +v € Vi: x —v € Vi}.

The Hagedoorn—Veltkamp’s reflection distance between finite unions A and B of plane

curves is the normalized [;-distance between the corresponding functions o7} and o3,
defined by

Sz lp% — p3ldx
S max{p%, pyldx’

e Distance transform

Given a metric space (X = 72, d) and a binary digital image M C X, the distance
transform is a function fp; : X — R, where far(x) = inf,cp d{x, u) is the point-
set distance d (x, M). Therefore, a distance transform can be seen as a gray-scale digital
image where each pixel is given a label (a gray-level) which corresponds to the dis-
tance to the nearest pixel of the background. Distance transforms, in Image Processing,
are also called distance fields and, especially, distance maps; but we reserve the last
term only for this notion in any metric space. A distance transform of a shape is the
distance transform with M being the boundary of the image. For X = RZ, the graph
{(x, f(x)): x € X} ofd(x, M) is called Voronoi surface of M.

e Medial axis and skeleton

Let (X, d) be a metric space, and let M be a subset of X. The medial axis of X is the set
MAX)={xe X: |lme M: d(x,m) =d(x, M)} = 2}, i.e., all points of X which
have in M at least two elements of best approximation. M A(X) consists of all points
of boundaries of Voronoi regions of points of M. The skeleton Skel/(X) of X is the set of
the centers of all balls, in terms of the distance d which are inscribed in X and maximal,
i.e., not belong to any other such ball. The cut locus of X is the closure MA(X) of the
medial axis. In general, MA(X) C Skel(X) C MA(X). The medial axis, skeleton and cut
locus transforms are point-weighted sets MA(X), Skel(X) and MA(X) (the restriction of
the distance transform on those sets) with d(x, M) being the weight of x € X.
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Usually, X C E", and M is the boundary of X. The medial axis with M being contin-
uous boundary can be considered as a limit of Voronoi diagram as the number of the
generating points becomes infinite. For 2D binary images X, the skeleton is a curve, a
single-pixel thin one, in digital case. The exoskeleton of X is the skeleton of the com-
plement of X, i.e., of the background of the image for which X is the foreground.

e Procrustes distance

The shape of a form (configuration of points in R?), seen as expression of translation-,
rotation- and scale-invariant properties of form, can be represented by a sequence of
landmarks, i.e., specific points on the form, selected accordingly to some rule. Each
landmark point a can be seen as an element (', a”) € R? or an element @’ + a”i € C.

Consider two shapes x and y, represented by theirs landmark vectors (x1, ..., x,) and
(O, ..., yn) from C". Suppose that x and y are corrected for translation by setting
Y Xt =Y, yi = 0. Then their Procrustes distance is defined by

where two forms are, first, optimally (by least squares criterion) aligned to correct for
scale, and their Kendall shape distance is defined by

(Zt xty:)(z: yt)_ct)
areees \/ x5

where @ = a’ — a”’i is the complex conjugate of « = a’ + a’’i.

e Tangent distance

For any x € R” and a family of transformations t(x,a), where @ € RF is the
vector of k parameters (for example, the scaling factor and rotation angle), the set
M, = {t(x,a): « € RF} ¢ R" is a manifold of dimension at most k. It is a curve
if k = 1. The minimum Euclidean distance between manifolds M, and M, would be
useful distance since it is invariant with respect to transformations ¢ (x, «¢). However, the
computation of such distance is too difficult in general; so, M, is approximated by its
tangent subspace at point x: {x + Zf'{:l arx’s o € R} ¢ R", where tangent vectors
x!, 1 < i < k, spanning it, are partial derivatives of #(x, o) with respect of «. The one-
sided (or directed) tangent distance between elements x and y of R” is a quasi-distance
d, defined by

2

k
x—{—Zockxi -y

i=1

min
o

The Simard—Le Cun—Denker’s tangent distance is defined by min{d (x, y), d(y, x)}.
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In general, the tangent set of a metric space X at a point x is defined (by Gromov) as
any limit point of the family of its dilations, for the dilation parameter going to infinity,
taken in the pointed Gromov—Hausdorff topology (cf. Gromov—Hausdorff distance).

o Figure of merit quasi-distance

Given two binary images, seen as non-empty finite subsets A and B of a finite metric
space (X, d), their Pratt’s figure of merit quasi-distance is defined by

| —1
(max{lAL B} D m> ,

xeB

where « is a scaling constant (usually, é), and d(x, A) = minye4 d(x, y) is the point-set
distance.

Similar quasi-distances are Peli-Malah’s mean error distance ﬁ >
d(x, A)>.

d{x, A), and

xeB

mean square error distance ﬁ Y e

e p-th order mean Hausdorff distance

Given two binary images, seen as non-empty subsets A and B of a finite metric space
(say, araster of pixels) (X, d), their p-th order mean Hausdorff distance is ([Badd92])
a normalized L ,-Hausdorff distance, defined by

<|)1(—| > ldix, A) —d(x, B)|”> F,

xeX

where d(x, A) = minyea d(x, y) is the point-set distance. Usual Hausdorff metric is
proportional to co order mean Hausdorff distance.

Venkatasubraminian’s X -Hausdorff distance d;z,,(A, B) + dyr.us(B, A) is equal to
erAUB |d(x, A) — d(x, B)|, i.e., it is a version of L-Hausdorff distance.

Another version of 1-st order mean Hausdorft distance is Lindstrom—Turk’s mean geo-
metric error between two images, seen as surfaces A and B. It is defined by

1
Area(A) + Area(B) </xeA d(x, B)dS + /XEB d(x, A)ds>,

where Area(A) denotes the area of surface A. If the images are seen as finite sets A
and B, their mean geometric error is defined by

> dx, A)).

xeB

1
S — §dx,B+
|A|+|B|< . B)
xeA
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o Modified Hausdorff distance

Given two binary images, seen as non-empty finite subsets A and B of a finite metric
space (X, d), their Dubuisson-Jain’s modified Hausdorff distance is defined as the
maximum of point-set distances averaged over A and B:

max{llm Zd(x,B) Zd(x A)}
X€EA

xeB

e Partial Hausdorff quasi-distance

Given two binary images, seen as non-empty subsets A, B of a finite metric space (X, d),
and integers k, [ with 1 < k < [A], 1 <[ < |B], their Huttenlocher—Rucklidge’s partial
(k, I)-Hausdorff quasi-distance is defined by

max{k™ ,d(x, B), "

xXe

pd(x, A)},

th
where kiL 4

distances d(x, B) ranked in increasing order. The case k = L%J, = L%j corresponds
to the modified median Hausdorff quasi-distance.

d(x, B) means k-th (rather than the largest |A|-th ranked one) among |A|

o Bottleneck distance

Given two binary images, seen as non-empty subsets A, B with |A| = |B| = m, of a
metric space (X, d), their bottleneck distance is defined by

mfm maxd( f(x))

where f is any bijective mapping between A and B.

Variations of above distance are:

1. The minimum weight matching: min; > _, d(x, f(x));
2. The uniform matching: min s (maxyea d(x, f(x)) — mingea d(x, f(x));
3. The minimum deviation matching: min s (maxea d(x, f(x))—ﬁ D eendx, f(x)).

Given an integer ¢t with 1 < ¢ < |A|, the r-bottleneck distance between A and B
([InVe00]) is above minimum but with f being any mapping from A to B such that
Hx € A: f(x) = y}| < t. Thecasest = | and t+ = |A| correspond, respec-
tively, to the bottleneck distance, and the directed Hausdorff distance d (A, B) =
maxXyeca Minyep d(x, y).

e Hausdorff distance up to G

Given a group (G, -, id) acting on the Euclidean space E”, the Hausdorff distance up to
G between two compact subsets A and B (used in Image Processing) is their generalized
G-Hausdorff distance, i.e., the minimum of dy,,s(A, g(B)) over all g € G. Usually,
G is the group of all isometries or all translations of E”.
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e Hyperbolic Hausdorff distance

For any compact subset A of R", denote by MAT (A) its Blum’s medial axis transform,
i.e., the subset of X = R" xR, whose elements are all pairs x = (x’, ry) of the centers
x' and the radii r, of the maximal inscribed balls, in terms of the Euclidean distance dg
in R”. (Cf. medial axis and skeleton transforms for the general case.)

The hyperbolic Hausdorff distance ([ChSe00]) is the Hausdorff metric on non-empty
compact subsets MAT(A) of the metric space (X, d), where the hyperbolic distance d
on X is defined, for its elements x = (x, ry) and y = (y', ry), by

max{O, dp(x',y") — (ry — Vx)}'

o Non-linear Hausdorff metric

Given two compact subsets A and B of a metric space (X, d), their non-linear Haus-
dorff metric (or Szatmdri—Rekeczky—Roska wave distance) is the Hausdorff distance
dHus(ANB, (AUB)*), where (AU B)* is the subset of AU B which forms a closed con-
tiguous region with A N B, and the distances between points are allowed to be measured
only along paths wholly in A U B.

e Video quality metrics

Those metrics are between test and reference color video sequences, usually aimed at
optimization of encoding/compression/decoding algorithms. Each of them is based on
some perceptual model of human vision system, the simplest one being RMSE (root-
mean-square error) and PSNR (peak signal-to-noise ratio) error measures. Among oth-
ers, threshold metrics estimate the probability of detecting in video an artifact (i.e., a
visible distortion that get added to a video signal during digital encoding). Examples
are: Sarnoff’s IND (just-noticeable differences) metric, Winkler’s PDM (perceptual dis-
tortion metric), and Watson’s DVQ (digital video quality) metric. DVQ is [ ,-metric be-
tween feature vectors representing two video sequences. Some metrics measure special
artifacts in the video: the appearance of block structure, blurriness, added “mosquito”
noise (ambiguity in the edge direction), texture distortion, etc.

o Time series video distances

The time series video distances are objective wavelet-based spatial-temporal video
quality metrics. A video stream x is processed into time series x(f) (seen as a curve on
coordinate plane) which then (piecewise linearly) approximated by a set of n contiguous
line segments that can be defined by n + [ endpoints (x;, x{), 0 <i € n, on coordinate
plane. In [WoPi99] are given following (cf. Meehl distance) distances between video
streams x and y:

—1
1. Shape(x,y) = 720 |(xl{+1 _ xl{) _ (yi/+1 _ ym;
2. Offset(x,y) = ZZZ;(} [L;Xi _ »Vi+12+.w .
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21.2. AUDIO DISTANCES

Audio (speech, music, etc.) Signal Processing is the processing of analog (continuous) or,
mainly, digital representation of the air pressure waveform of the sound. A sound spectro-
gram (or sonogram) is a visual three-dimensional representation of an acoustic signal. It is
obtained either by series of bandpass filters (an analog processing), or by application of the
short-time Fourier transform to the electronic analog of an acoustic wave. Three axes rep-
resent time, frequency and intensity (acoustic energy). Often this three-dimensional curve
is reduced to two dimensions by indicating the intensity with more thick lines or more
intense gray or color values.

Sound is called fone if it is periodic (the lowest fundamental frequency plus its multiples,
harmonics or overtones) and noise, otherwise. The frequency is measured in cps (the num-
ber of complete cycles per second) or Hz (hertz). The range of audible sound frequencies
to humans is typically 20 Hz — 20 kHz.

Signal’s power P(f) is energy per unit of time; it is proportional to the square of signal’s
amplitude A(f). Decibel dB is the unit used to express relative strength of two signals.
One tenth of 1 dB is bel, the original outdated unit. Audio signal’s amplitude in dB is
201ogyp % AL — 10 logio %, where f/ia a reference signal selected to correspond 0 dB
(usually, the threshold of human hearing). The threshold of pain is about 120-140 dB.

Pitch and loudness are auditory subjective terms for frequency and amplitude.

Mel scale is a perceptual frequency scale, corresponding to the auditory sensation of
tone height and based on mel, a unit of perceived frequency (pltch) It is connected to the
acoustic frequency f hertz scale by Mel(f) = 1127 In(1 + 700) (or, simply, Mel(f) =

1000 1log, (1 + 5 000)) so that 1000 Hz correspond to 1000 mels.

Bark scale (named after Barkhausen) is a psycho-acoustic scale of perceived intensity
(loudness): it range from 1 to 24 corresponding to the first 24 critical bands of hearing
(0, 100, 200, ..., 1270, 1480, 1720, ..., 950, 12000, 15500 Hz). Those bands correspond
to spatial regions of the basilar membrane (of the inner ear), where oscillations, produced
by the sound of given frequency, activate the hair cells and neurons. Bark scale is con-
nected to the acoustic frequency f kilohertz scale by Bark(f) = 13arctan(0.76f) +
3.5 arctan(o s )2,

The main way humans control their phonation (speech, song, laughter) is by control over
the vocal tract (the throat and mouth) shape. This shape, i.e., the cross-sectional profile of
the tube from the closure in the glottis (the space between the vocal cords) to the opening
(lips), is represented by the cross-sectional area function Area(x), where x is the distance
to glottis. The vocal tract acts as a resonator during vowel phonation, because it is kept
relatively open. Those resonances reinforce the source sound (ongoing flow of lung air)
at particular resonant frequencies (or formants) of the vocal tract, producing peaks in the
spectrum of the sound. Each vowel has two characteristic formants, depending of the ver-
tical and horizontal position of the tongue in the mouth. Source sound function is modified
by frequency response function for a given area function. If the vocal tract is approximated

as a sequence of concatenated tubes of constant cross-sectional area (of equal length, or

Area(xi i) o

epilarynx-pharynx-oral cavity, etc.), then area ratio coefficients are the ratios = weH)

consecutive tubes; those coefficients can be computed by LPC (see below).
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The spectrum of a sound is the distribution of magnitude (dB) (and sometimes the
phases) in frequency (kHz) of the components of the wave. The spectral envelope is a
smooth contour that connects the spectral peaks. The estimation of the spectral envelopes
is based on either LPC (linear predictive coding), or FTT (fast Fourier transform using real
cepstrum, i.e., the log amplitude spectrum of the sound).

FT (Fourier transform) maps time-domain functions into frequency-domain represen-
tations. The cepstrum of the signal f(¢) is FT(In(FT(f(t) + 2nmi))), where m is the
integer needed to unwrap the angle or imaginary part of the complex logarithm function.
The complex and real cepstrum use, respectively, complex and real log function. The real
cepstrum uses only the magnitude of the original signal f(¢), while the complex cepstrum
uses also phase of f(¢). FFT method is based on linear spectral analysis. FFT performs
Fourier transform on the signal and sample the discrete transform output at the desired
frequencies usually in the me! scale.

Parameter-based distances used in recognition and processing of speech data are usually
derived by LPC, modeling speech spectrum as a linear combination of the previous sam-
ples (as in autoregressive process). Roughly, LPC process each word of the speech signal
in the following 6 steps: filtering, energy normalization, partition into frames, windowing
(to minimize discontinuities at the borders of frames), obtaining LPC parameters by the
autocorrelation method and conversion to the LPC-derived cepstral coefficients. LPC as-
sumes that speech is produced by a buzzer at the glottis (with occasionally added hissing
and popping sounds), and it removes the formants by filtering.

Majority of distortion measures between sonograms are variations of squared Euclid-
ean distance (including covariance-weighted one, i.e., Mahalanobis, distance) and proba-
bilistic distances belonging to following general types: generalized total variation metric,
f-divergence of Csizar and Chernoff distance.

The distances for sound processing below are between vectors x and y representing
two signals to compare. For recognition, they are a template reference and input signal,
while for noise reduction, they are original (reference) and distorted signal (see, for ex-
ample, [OASMO3]). Often distances are calculated for small segments, between vectors
representing short-time spectra, and then averaged.

o Segmented signal-to-noise ratio

The segmented signal-to-noise ratio SNVR,..(x, y) between signals x = (x;) and y =
() is defined by

M—1 nm+n 2
10 X!
— log ——— 1,
m ( 10 Z (xi _ yi)2>

m=0 i=nm+1

where 7 is the number of frames, and M is the number of segments.

Usual signal-to-noise ratio SNR(x, y) between x and y is given by

Z?:l xi2

Ologyg =————.
10 ?:1(%' - yi)2
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Another measure, used to compare two waveforms x and y in time-domain, is their
Czekanovski—Dice distance, defined by

1&(1 ~ 2min{x,-,y,~}>
n = xi+yio /)

e Spectral magnitude-phase distortion

The spectral magnitude-phase distortion between signals x = x(w) and y = y(w) is
defined by

S| =

(A S (@)l = ly@)l)* + (1 =) Y (La(w) — zy(w>)2),

i=1 i=1

where |x(w)|, |y(w)| are magnitude spectra, and Zx(w), Zy(w) are phase spectra of x
and y, respectively, while parameter A, 0 < A < 1, is chosen in order to attach commen-
surate weights to the magnitude and phase terms. The case A = 0 corresponds to the
spectral phase distance.

—bt a

A b+iw?
and its phase spectrum (in

u(t), a, b > 0, which has Fourier transform x(w) =
a

Nerrw?’
1w

radians) is ¢(x) = tan~ " ., i.e., x(w) = |x|e!® = |x|(cosa + i sine).

Given a signal f(t) = ae
its magnitude (or amplitude) spectrum is |x| =

o RMS log spectral distance

The RMS log spectral distance (or root-mean-square distance) LSD(x, y) between dis-
crete spectra x = (x;) and y = (y;) is the following Euclidean distance:

1 n
- Z(ln x; —Iny;)2.
e

The square of RMS log spectral distance, via cepstrum representation Inx(w) =
Zﬁ_oo cje” Y (where x(w) is the power spectrum, i.e., magnitude-squared Fourier
transform) became, in complex cepstral space, the cepstral distance.

The log area ratio distance LAR(x, y) between x and y is defined by

1 n
o Z lO(loglOArea(xi) — 10g10Area(yi))2,

i=1

where Area(z;) means cross-sectional area of the segment of the vocal tract tube corre-
sponding to z;.
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e Bark spectral distance

The Bark spectral distance is a perceptual distance, defined by

BSD(x,y) = Y (xi — y)°,

i=1
i.e., is the squared Euclidean distance between Bark spectra (x;) and (y;) of x and y,

where i-th component corresponds to i-th auditory critical band in Bark scale.

A modification of Bark spectral distance excludes critical bands i on which the loudness
distortion |x; — ;| is less than the noise masking threshold.

o Itakura-Saito quasi-distance

The Itakura—Saito quasi-distance (or maximum likelihood distance) IS(x, y) between
LPC-derived spectral envelopes x = x{(w) and y = y(w) is defined by

i ﬂ(lnx(w)—{—y(w)—l)dw
21 y(w)  x(w)

The cosh distance is defined by IS(x, y) + IS(y, x), i.e., is equal to

1 ”(x(u))+)’(w) > :_/ 2 cos h<1n x(w) 1>dw,
27 J o \y(w)  x(w) y(w)

where cosh(t) = % is the hyperbolic cosine function.

e Log likelihood ratio quasi-distance

The log likelihood ratio quasi-distance (or Kullback—Leibler distance) KL(x, y) be-
tween LPC-derived spectral envelopes x = x(w) and y = y(w) is defined by

L /ﬂ x(w)ln x(w)dw
2r J y(w)

The Jeffrey divergence KL(x, y) + KL(y, x) is also used.

The weighted likelihood ratio distance between spectral envelopes x = x(w) and
y = y(w) is defined by

I <(1n(’;§:11§) + Sy~ Dx@)  (n(E) + 563 - 1)y<w>>
P + dw&
2 Px Py

where P(x) and P(y) denote the power of the spectra x{(w) and y(w), respectively.

e Cepstral distance

The cepstral distance (or squared Euclidean cepstrum metric) CEP(x, y) between
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LPC-derived spectral envelopes x = x(w) and y = y(w) is defined by

bz 2 bt oo
: <1n x(w)) dw = % ﬁﬂ (lnx(w) —In y(w))zdw = Z (c_i(x) — c.,-(y))z,

2 [\ yw) =

7 e In|z(w)| dw is j-th cepstral (real) coefficient of z derived

by Fourier transform or LPC.

where ¢;(z) = %f

e Quefrency-weighted cepstral distance

The quefrency-weighted cepstral distance (or weighted slope distance) between x and
y is defined by
o0
3 (e - am)™
[=—00
“Quetrency” and “cepstrum” are anagrams of “frequency” and “spectrum”, respectively.

The Martin cepstrum distance between two AR (autoregressive) models is defined, in
terms of their cepstrums, by

oo

> i(ein) —a)”.

i=0

(Cf. general Martin distance, defined as an angle distance between subspaces, and
Martin metric between strings which is an /-analog of it.)

The Klatt slope metric between discrete spectra x = (x;) and y = (y;) with n channel
filters is defined by

D (i —x) = Qi — )™

i=1

o Phone distances

A phone is a sound segment that possess distinct acoustic properties, the basis sound
unit. Cf. phoneme, i.e., a family of phones that speakers usually hear as a single sound;
the number of phonemes range, among about 6000 languages spoken now, from 11 in
Rotokas to 112 in X606 (languages spoken by about 4000 people in Papua New Guinea
and Botswana, respectively).

Two main classes of phone distance (distances between two phones x and y) are:

1. Spectrogram-based distances which are physical-acoustic distortion measures be-
tween the sound spectrograms of x and y;

2. Feature-based phone distances which are usually Manhattan distance ) ; |x; — y;|
between vectors (x;) and (y;) representing phones x and y with respect to given in-
ventory of phonetic features (for example, nasality, stricture, palatalization, rounding,
sillability).
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e Phonetic word distance

The phonetic word distance between two words x and y is the following cost-based
editing metric (i.e., the minimal cost of transforming x into y by substitution, deletion
and insertion of phones). A word is seen as a string of phones. Given a phone distance
function r{u, v) on the International Phonetic Alphabet with additional phone O (the
silence), the cost of substitution of phone u by v is r(u, v), while r(u, 0) is the cost of
insertion or deletion of u. (Cf. distances for protein data based on Dayhoff distance on
the set of 20 amino acids.)

e Linguistic distance

In Computational Linguistics, the linguistic distance (or dialectology distance) be-
tween language varieties X and Y is the mean, for fixed sample S of notions, phonetic
word distance between cognate (i.e., having the same meaning) words sy and sy, rep-
resenting the same notion s € S in X and Y, respectively.

Stover distance (see http://sakla.net/concordances/index.html) between phrases with
the same key word is the sum >, ., a;x;, where 0 < @; < 1 and x; is the propor-
tion of non-mathched words between the phrases within a moving window. Phrases are
first aligned, by the common key word, to compare the uses of it in context; also, the
rarest words are replaced with a common pseudo-token.

e Acoustics distances

The wavelength is the distance the sound wave travels to complete one cycle. This dis-
tance is measured perpendicular to the wavefront in the direction of propagation between
one peak of a sine wave and the next corresponding peak. The wavelength of any fre-
quency may be found by dividing the speed of sound (331.4 m/s at sea level) in the
medium by the fundamental frequency.

The far field is the part of a sound field in which sound waves can be considered planar
and sound pressure decreases inversely with distance from the source. It corresponds to
a reduction of about 6 dB in sound level for each doubling of distance.

The near field is the part of a sound field (usually within about two wavelengths from
the source) where there is no simple relationship between sound level and distance.

The proximity effect is the anomaly of low frequencies being enhanced when a direc-
tional microphone is very close to the source.

The critical distance is the distance from the sound source at which the direct sound
(produced by the sound source) and reverberant sound (produced by the direct sound
bouncing off the walls, floor, etc.) are equal in intensity level.

The blanking distance is the minimum sensing range of an ultrasonic proximity sen-
sor.

The acoustic metric is the term used occasionally for some distances between vowels;
for example, Euclidean distance between vectors of formant frequencies of pronounced
and intended vowel. (Not to be confused with acoustic metrics in General Relativity
and Quantum Gravity.)



Chapter 22

Distances in Internet and Similar Networks

22.1. SCALE-FREE NETWORKS

A network is a graph, directed or undirected, with a positive number (weight) assigned to
each of its arcs or edges. Real-world complex networks usually have a gigantic number N
of vertices and are sparse, i.e., with relatively few edges.

They tend to be small-world ([Watt99]), i.e., interpolate between regular geometric lat-
tices and random graphs in the following sense: they have large clustering coefficient (as
lattices in local neighborhood), while average path distance between two vertices is small,
about In N, as in a random graph.

The main subcase of a small-world network is a scale-free network ( [Bara0O1]) in which
the probability for a vertex to have degree & is similar to £~ for some positive constant y
which usually belongs to the segment [2, 3]. This power law implies that very few vertices,
called hubs (connectors, super-spreaders), are far more connected than other vertices. The
power law (or long range dependent, heavy-fail) distributions, in space or time, were
observed in many natural phenomena (both, physical and sociological).

e Collaboration distance

The collaboration distance is the path metric (see http://www.ams.org/msnmain/cgd/)
of the Collaboration graph, having about 0.4 million vertices (authors in Mathematical
Reviews database) with xy being an edge if authors x and y have a joint publication
among about 2 million papers itemized in this database. The vertex of largest degree,
1416, corresponds to Paul Erdss; the Erdds number of a mathematician is his collabora-
tion distance to Paul Erdés.

The Barr’s collaboration metric (http://www.oakland.edu/enp/barr.pdf) is the resis-
tance distance in the following extension of the Collaboration graph. First, put 1-ohm
resistor between any two authors for every joint 2-authors paper. Then, for each n-
authors paper, n > 2, add new vertex and connect it by Z-ohm resistor to each of its
co-authors.

e Co-starring distance

The co-starring distance is the path metric of the Hollywood graph, having about
250000 vertices (actors in the Internet Movie database) with xy being an edge if the
actors x and y appeared in a feature film together. The vertices of largest degree are
Christofer Lee and Kevin Bacon; the trivia game Six degrees of Kevin Bacon uses the
Bacon number, i.e., the co-starring distance to this actor.

279
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Similar popular examples of such social scale-free networks are graphs of musicians
(who played in the same rock band), baseball players (as team-mates), scientific publica-
tions (who cite each other), chess-players (who played each other), acquaintances among
classmates in a college, business board membership, sexual contacts among members of
a given group. The path metric of the last network is called sexual distance. Among
other studied scale-free networks are air travel connections, word co-occurrences in hu-
man language, power grid of Western US, network of neurons of a worm, protein in-
teraction networks and metabolic networks (with two substrates forming an edge if a
reaction occurs between them via enzymes).

e Forward quasi-distance

In a directed network, where edge-weights correspond to a point in time, the forward
quasi-distance (backward quasi-distance) is the length of shortest directed path, but
only among paths on which consecutive edge-weights are increasing (decreasing, re-
spectively). The forward quasi-distance is useful in epidemiological networks (disease
spreading by contact, or, say, heresy spreading within a church), while backward quasi-
distance is appropriated in peer-to-peer file-sharing networks.

o Betweenness centrality

For a geodesic metric space (X, d) (in particular, for the path metric of a graph), the
betweenness centrality of a point x € X is defined by

Number of shortest (y — z) paths through x
g =Y P £

vaeX Number of shortest (y — z) paths

and the distance-mass function is a function M : Ry — @, defined by

{yeX: dlx,y)+d(y,z) =a forsome x, y € X}
H(x,2) e X x X: d(x,2) = a}|

Ma) =

It was conjectured in [GOJKKO2] that many scale-free networks satisty to power law
277 (for the probability, for a vertex, to have betweenness centrality g), where y is
either 2, or ~ 2.2 with distance-mass function M (a) being either linear, or non-linear,
respectively. In the linear case, for example, @ ~ 4.5 for the Internet AS metric,
and ~ 1 for the Web hyperlink quasi-metric.

o Drift distance

The drift distance is the absolute value of the difference between observed and actual
coordinates of a node in a NVE (Networked Virtual Environment). In models of such
large-scale peer-to-peer NVE (for example, Massively Multiplayer Online Games), the
users are represented as coordinate points on the plane (nodes) which can move at dis-
crete time-steps, and each have a visibility range called Area of Interest. NVE creates a
synthetic 3D world where each user assumes avatar (a virtual identity) to interact with
other users or computer Al
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The term drift distance is also used for the current going through a material, in tire
production, etc.

e Semantic proximity

For the words in a document, there are short range syntactic relations and long range
semantic correlations. The main document networks are Web and bibliographic data-
bases (digital libraries, scientific databases, etc.); the documents in them are related by,
respectively, hyperlinks and citation or collaboration.

Also, some semantic tags (keywords) can be attached to the documents in order to index
(classify) them: terms selected by author, title words, journal titles, etc.

The semantic proximity between two keywords x and y is their Tanimoto similarity
IXA%] ' where X and Y are the sets of documents indexed by x and y, respectively. Their

| XAY].
XNy’

it is not a metric.

keyword distance is defined by

22.2. NETWORK-BASED SEMANTIC DISTANCES

Among main lexical networks (such as WordNet, Medical Search Headings, Roget’s
Thesaurus, Longman’s Dictionary of Contemporary English) WordNet is the most pop-
ular lexical resource used in Natural Language Processing and Computational Linguis-
tics. WordNet (see http://wordnet.princeton.edu) is an on-line lexical database in which
English nouns, verbs, adjectives and adverbs are organized into synsets (synonym sets),
each representing one underlying lexical concept. Two synsets can be linked semanti-
cally by one of following links: upwards x (hyponym) IS-A y (hypernym) link, downwards
x (meronym) CONTAINS y (holonym) link, or a horizontal link expressing frequent co-
occurrence (antonymy, etc.). IS-A links induce a partial order, called IS-A taxonomy. The
version 2.0 of WordNet has 80000 noun concepts and 13500 verb concepts, organized in
9 and 554 separate IS-A hierarchies, respectively. In the resulting directed acyclic graph
of concepts, for any two synsets (or concepts) x and y, let [(x, y) denotes the length of
shortest path between them, using only /S-A links, and let L PS(x, y) denotes their least
common subsumer {ancestor) by IS-A taxonomy. Let d(x) denote the depth of x (i.e., its
distance from the root in IS-A taxonomy) and let D = max, d(x). The list of main related
semantic similarities and distances follows.

o Path similarity

The path similarity between synsets x and y is defined by
-1
path(x, y) = (I(x, y))" .

e Leacock—Chodorow similarity

The Leacock—Chodorow similarity between synsets x and y is defined by

I(x, y)

lch =—1
ch(x, y) n—r=
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and the conceptual distance between them is defined by @
o Wu-Palmer similarity

The Wu—Palmer similarity between synsets x and y is defined by

2d(LPS(x, y))

wup( ) = e+ d0)

e Resnik similarity
The Resnik similarity between synsets x and y is defined by

res(x,y) = —In p(LPS(x, y)),

where p(z) is the probability of encountering an instance of concept z in a large corpus,
and — In p(z) is called information content of z.
e Lin similarity

The Lin similarity between synsets x and y is defined by

21n p(LPS(x, y))

. y) = e T 0

e Jiang—Conrath distance
The Jiang—Conrath distance between synsets x and y is defined by

jen(x,y) =2In p(LPS(x, y)) — (ln p(x)+In p(y)).

o Lesk similarities

A gloss of a synonym set z is the member of this set giving a definition or explanation
of underlying concept. The Lesk similarities are those defined by a function of overlap
of glosses of corresponding concepts; for example, the gloss overlap is

2t(x,y)
t(x)+t(y)’

where 7(z) is the number of words in the synset z, and ¢(x, y) is the number of common
words in x and y.

e Hirst-St-Onge similarity
The Hirst—St-Onge similarity between synsets x and y is defined by

hso(x, y) = C — L(x, y) — ck,

where L(x, y) is the length of a shortest path between x and y using all links, k& is the
number of changes of direction in that path, and C, ¢ are constants.
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The Hirst—St-Onge distance is defined by @

22.3. DISTANCES IN INTERNET AND WEB

Let us consider in detail the graphs of Web and of its hardware substrate, Internet, which
are small-world and scale-free.

The Internet is a publicly available worldwide computer network which came from
ARPANET (started in 1969 by US Department of Defense), NSFNet, Usenet, Bitnet, and
other networks. In 1995, the National Science Foundation in the US gave up the steward-
ship of the Internet.

Its nodes are routers, i.e., devices that forward packets of data along networks from one
computer to another, using IP (Internet Protocol relating names and numbers), TCP and
UDP (for sending data), and (build on top of them) HTTP, Telnet, FTP and many other
protocols (i.e., technical specifications of data transfer). Routers are located at gateways,
i.e., at the places where at least two networks connect. The links that join the nodes to-
gether are various physical connectors, such as telephone wires, optical cables and satellite
networks. Internet use packet switching, i.e., data (fragmented if needed) are forwarded not
along a previously established path, but so as to optimize the use of available bandwidth
(bit rate, in million bits per second) and minimize the latency (the time, in milliseconds,
needed for a request to arrive).

Each computer linked to the Internet is given usually an unique “address”, called its IP
address. The number of possible IP addresses is 232 22 4.3 billion only. The most popular
applications supported by the Internet are e-mail, file transfer, Web, and some multimedia.

The Internet IP graph has, as the vertex-set, the IP addresses of all computers linked
to Internet; two vertices are adjacent if a router connects them directly, i.e., the passing
datagram makes only one Aop.

Internet also can be partitioned into ASs (administratively Autonomous Systems or do-
mains). Within each AS the intra-domain routing is done by IGP (Interior Gateway Proto-
col), while inter-domain routing is done by BGP (Border Gateway Protocol) which assigns
an ASN (16-bit number) to each AS. The Internet AS graph has ASs as vertices and edges
represent the existence of a BGP peer connection between corresponding ASs.

The World Wide Web (WWW or Web, for short) is a major part of Internet content consist-
ing of interconnected documents (resources). It corresponds to HTTP (Hyper Text Transfer
Protocol) between browser and server, HTML (Hyper Text Markup Language) of encod-
ing information for a display, and URLs (Uniform Resource Locators), giving unique “ad-
dress” to web pages. The Web was started in 1989 in CERN which gave it for public use
in 1993.

The Web digraph is a virtual network, the nodes of which are documents (i.e., static
HTML pages or their URLs) which are connected by incoming or outcoming hyperlinks,
i.e., hypertext links.

The number of nodes in the Web digraph was about 10 billion at 2005, and new pages
are created at the rate of 7.3 million per day. Moreover, besides it lies the Deep or Invisible
Web, i.e., searchable databases with number of pages (if not actual content) being about
500 times more than on static web pages. Those pages are not indexed by search engines;
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they have dynamic URL and so, can be retrieved only by a direct query in real time. About
56%, 8%, 6% and 5% of web pages are in English, German, French and Japanese, respec-
tively. In 2005, about 0.82 billion, i.e., 13% of the global population, were online. On the
other hand, in the first 6 months of 2005 spam accounted for 61% of all e-mail traffic and
10.866 new Windows viruses and worms were detected.

There are several hundred thousand cyber-communities, 1.¢., clusters of nodes of the Web
digraph, where link density is greater among members than between members and the rest.
The cyber-communities (a customer group, a social network, a concept in a technical paper,
etc.) are usually focused around a definite topic and contain a bipartite hubs-authorities
subgraph, where all hubs (guides and resource lists) point to all authorities (useful and
relevant pages on the topic). Examples of new media, created by Web: (we)blogs (digital
diaries posted on Web), Wikipedia (the collaborative encyclopedia) and (in the project
Semantic Web by WWW Consortium) linking to metadata.

In the average, nodes of the Web digraph are of size 10 Kilobytes, out-degree 7.2, and
probability k2 to have out-degree or in-degree k. A study in [BKMROO] of over 200
million web pages gave, approximatively, the largest connected component “core” of 56
million pages, with other 44 million of pages, connected to the core (newcomers?), 44
million to which the giant core is connected (corporations?) and 44 million connected to
the core only by directed path. For randomly chosen nodes x and y, the probability of
existence of directed path from x to y was 0.25 and the average length of such shortest
path (if it exists) was 16, while maximal length of shortest path was over 28 in the core and
over 500 in the whole digraph.

Distances below are examples of host-to-host routing metrics, i.e., values used by rout-
ing algorithms in the Internet, in order to compare possible routes. Examples of other
such measures are: bandwidth consumption, communication cost, reliability (probability
of packet loss).

e Internet IP metric

The Internet IP metric (or hop count, RIP metric, IP path length) is the path metric
in the Internet IP graph, i.e., the minimal number of hops (or, equivalently, routers,
represented by their IP addresses) needed to forward a packet of data. RIP imposes a
maximum distance of 15 and advertises by 16 non-reachable routes.

o Internet AS metric

The Internet AS metric (or BGP-metric) is the path metric in the Internet AS graph,
i.e., the minimal number of ISPs (Independent Service Providers), represented by their
ASs, needed to forward a packet of data.

e Geographic distance

The geographic distance is the great circle distance on the Earth from client x (des-
tination) to the server y (source). However, for economical reasons, the data often do
not follow such geodesics; for example, most data from Japan to Europe transit via
US.
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o RTT-distance

The RTT-distance is the RTT (Round Trip Time) of transmission between x and y,
measured (in milliseconds) during the previous day; see [HFPMCO2] for variations of
this metric and connections with above three metrics.

o Administrative cost distance

The administrative cost distance is the nominal number (rating the trustworthiness of
arouting information), assigned by the network to the route between x and y. For exam-
ple, Cisco assigns values 0, 1, ..., 200, 255 for Connected Interface, Static Route, ...,
Internal BGP, Unknown, respectively.

o DRP-metrics

DD (Distributed Director) system of Cisco use (with priorities and weights) the admin-
istrative cost distance, the random metric (selecting a random number for each IP
address) and the DRP (Direct Response Protocol) metrics. DRP-metrics ask from all
DRP-associated routers one of the following distances:

1. The DRP-external metric, i.e., the number of BGP (Border Gateway Protocol) hops
between the client requesting service and the DRP server agent;

2. The DRP-internal metric, i.e., the number of IGP hops between the DRP server
agent and the closest border router at the edge of the autonomous system;

3. The DRP-server metric, i.c., the number of IGP hops between the DRP server agent
and the associated server.

e Web hyperlink quasi-metric

The Web hyperlink quasi-metric (or click count) is the length of the shortest directed
path (if it exists) between two web pages (vertices in the Web digraph), i.e., the minimal
number of needed mouse-clicks in this digraph.

e Average-clicks Web quasi-distance
The average-clicks Web quasi-distance between two web pages x and y in the Web
+
digraph ([YOI03]) is the minimum )/ ; In p% over all directed paths x = zg, 71,

..., Zm = y connecting x and y, where zl.+ is the out-degree of the page z;. The parame-
ter o is 1 or 0.85, while p (the average out-degree) is 7 or 6.

e Dodge-Shiode WebX quasi-distance

The Dodge—Shiode WebX quasi-distance between two web pages x and y of the Web
digraph is the number m, where A(x, y) is the number of shortest directed paths
connecting x and y. )

e Web similarity metrics

Web similarity metrics form a family of indicators used to quantify the extent of relat-
edness (in content, links or/and usage) between two web pages x and y. For example:
topical resemblance in overlap terms, co-citation (the number of pages, where both are
given as hyperlinks), bibliographical coupling (the number of hyperlinks in common)
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and co-occurrence frequency min{ P (x|y), P(y|x)}, where P(x|y) is the probability that
a visitor of the page y will visit the page x.

In particular, search-centric change metrics are metrics used by search engines on
Web, in order to measure the degree of change between two versions x and y of a
web page. If X and Y are the set of all words (excluding HTML markup) in x and y,
respectively, then the word page distance is the Dice distance

XAY] o 2XUY]

|X] + Y] |X] + Y]

If vy and vy are TF-IDF (Frequency — Inverse Document Frequency) weighted vector
representations of x and y, then their cosine page distance is given by

. (U, Vy)
lvella - vyl

e Network tomography metrics

Consider a network with fixed routing protocol, i.e., a strongly connected digraph
D = (V, E) with unique directed path T (u, v) selected for any pair (u, v) of vertices.
The routing protocol is described by binary routing matrix A = ((a;;)), where a;; = 1if
the arc ¢ € F, indexed i, belongs to the directed path T (u, v), indexed j. The Hamming
distance between two rows (columns) of A is called distance between corresponding
arcs (directed paths) of the network.

Consider two networks with the same digraph, but different routing protocols with rout-
ing matrices A and A’, respectively. Then a routing protocol semi-metric ([Var04])
is the smallest Hamming distance between A and a matrix B, obtained from A’ by
permutations of rows and columns (both matrices are seen as strings).
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Chapter 23

Distances in Biology

The distances are mainly used in Biology in order to reconstruct the evolutionary history of
organisms in the form of phylogenetic trees. In the classical approach those distances were
based on the comparative morphology and physiology. The modern Molecular Biology
compares DNA/protein sequences between organisms.

DNA is a sequence of nucleotides (or nuclei acids) A, T, G and C, and it can be seen as
a word over this alphabet of 4 letters. The nucleotides A, G (short for adenine a guanine)
are called purines, while T, C (short for thymine and cytosine) are called pyrimidines (in
RNA, it is uracil U instead of T). Two strands of DNA are held together (in the form of a
double helix) by weak hydrogen bonds between corresponding nucleotides (necessarily, a
purine and a pyrimidine) in the strands alignment. Those pairs are called base pairs.

A transition mutation is a substitution of a base pair, so that a purine/pyrimidine is re-
placed by another purine/pyrimidine; for example, GC is replaced by AT. A transversion
mutation is a substitution of a base pair, so that a purine/pyrimidine is replaced by a pyrim-
idine/purine base pair, or vice versa; for example, GC is replaced by TA.

DNA molecules occur (in the nuclei of eukaryote cells) in the form of long strings, called
chromosomes. Most human cells contain 23 pairs of chromosomes, one set of 23 from
each parent; human gamete (sperm or egg) is a haploid, i.e., contains only one set of 23
chromosomes. The (normal) males and females differ only in 23rd pair of chromosomes:
XY for males, and X X for female.

A gene is a contiguous stretch of DNA which encodes (via transcription to RNA and
then, translation) a protein or an RNA molecule. The location of a gene on its specific
chromosome is called gene locus. Different versions (states) of a gene are called its alleles.
Only less than 2% of human DNA are in genes; the functions, if any, of the remainder are
unknown.

A protein is a large molecule which is a chain of amino acids; among them are hormones,
catalysts (enzymes), antibodies, etc. There are twenty amino acids; the three-dimensional
shape of a protein is defined by the (linear) sequence of amino acids, i.e., by a word in this
alphabet in 20 letters.

The genetic code is universal to (almost) all organisms correspondence between some
codons (i.e., ordered triples of nucleotides) and 20 amino acids. It express the genotype
(information contained in genes, i.e., in DNA) as the phenotype (proteins). Three stop
codons (UAA, UAG, and UGA) signify the end of a protein; any two, among 61 remaining
codons, are called syrnonymous if they correspond to the same amino acids.

288
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A genome is entire genetic constitution of a species or of a living organism. For example,
the human genome is the set of 23 chromosomes consisting of about 3000 million base
pairs of DNA and organized into about 20000-25000 genes.

IAM (for infinite-alleles model of evolution) assumes that an allele can change from any
given state into any other given state. It corresponds to primary role for genetic drift (i.e.,
random variation in gene frequencies from one generation to another); especially, in small
populations over natural selection (stepwise mutations). IAM is convenient for allozyme
data (allozyme is a form of a protein which is encoded by one allele at a specific gene locus).
SMM (for step-wise mutation model of evolution) is more convenient for (recently, most
popular) micro-satellite data. Micro-satellites are highly variable repeating short sequences
of DNA; their mutation rate is 1 per 1000—10000 replication events, while it is 1 /1000000
for allozymes. It turns out that micro-satellites alone contain enough information to plot
the lineage tree of a organism. Micro-satellite data (for example, for DNA fingerprinting)
consists of numbers of repeats of micro-satellites for each allele.

Evolutionary distance between two populations (or taxa) is a measure of genetic diver-
gence estimating the divergence time, i.e., the time that has past since those populations
existed as a single population.

Phylogenetic distance (or genealogical distance) between two taxa is the branch
length, i.e., a minimum number of edges, separating them on a phylogenetic tree.

Immunological distance between two populations is a measure of the strength of
antigen-antibody reactions, indicating the evolutionary distance separating them.

23.1. GENETIC DISTANCES FOR GENE-FREQUENCY DATA

In this section, a genetic distance between populations is a way of measuring the amount
of evolutionary divergence by counting the number of allelic substitutions by loci.

A population is represented by a double-indexed vector x = (x;;) with 27:1 m; com-
ponents, where x;; is the frequency of i-th allele (the label for a state of a gene) at the j-th
gene locus (the position of a gene on a chromosome), m ; is the number of alleles at the
Jj-th locus, and 7 is the number of considered loci.

Denote by > summation over all i and j. Since x;; is the frequency, it holds x;; > 0,

and Z;n:jl Xij = 1.
o Stephens et al. shared allele distance

The Stephens et al. shared allele distance between populations is defined by

_ SAGLY)
SA(xX) + SA(y)

where, for two individuals ¢ and b, SA(a, b) denotes the number of shared alleles
summed over all # loci and divided by 2#, while SA(x), SA(y), and SA(x, y) are SA(a, b)
averaged over all pairs (a, b) with individuals a, b being in populations, represented by
x, by y and, respectively, between them.
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e Dps distance

The Dps distance between populations is defined by

1 Z min{x;j, y,'j}
Zj:l mj

¢ Prevosti-Ocana—Alonso distance
The Prevosti—-Ocana—Alonso distance between populations is defined (cf. L!-metric)
by
2n '
e Roger distance

The Roger distance is a metric between populations, defined by

mj

1 n j
—= Z Z(xij = yij)*
Van =1\ i=1

o Cavalli-Sforza—Edvards chord distance

The Cavalli-Sforza—Edvards chord distance between populations is defined by

i

2\/§ n
TZ 1= i
j=1

i=1

It is a metric. (Cf. Hellinger distance.)

o Cavalli-Sforza arc distance

The Cavalli-Sforza arc distance between populations is defined by

2
; arccos Z XijYij )
(Cf. Fisher distance in Probability.)

e Nei-Tajima-Tateno distance

The Nei-Tajima-Tateno distance between populations is defined by

I
L= = JE
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e Nei minimum genetic distance

The Nei minimum genetic distance between populations is defined by

1 2
o D Gy = i)
(Cf. squared Euclidean distance.)
e Nei standard genetic distance
The Nei standard genetic distance between populations is defined by

—Inl,

where I is Nei normalized identity of genes, defined by m (cf. Bhattacharya
distances in Probability and angular semi-metric). '

e Sangvi x? distance

The Sangvi x? distance between populations is defined by
z Z (xij — )’ij)2
n~ xijt+yij

o F-statistics distance
The F -statistics distance between populations is defined by

S (xij— vij)?
20n — 3 xijyij)
e Fuzzy set distance

The Dubois—Prade’s fuzzy set distance between populations is defined by

Z 1Xi/¢)’[j
n

¢ Kinship distance
The kinship distance between populations is defined by

_1n<x7 y>7

and (x, y) is called kinship coefficient.

e Reynolds—Weir—Cockerham distance
The Reynolds—Weir—Cockerham distance (or co-ancestry distance) between popula-
tions is defined by

—1In(1 —6),
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where co-ancestry coefficient 6 of two individuals (or two populations) is the proba-
bility that a randomly picked allele from one individual (or from genetic pool of one
population) is identical by descent (i.e., corresponding genes are physical copies of the
same ancestral gene) to a randomly picked allele in another. Two genes can be identical
by state (i.e., with the same allele label), but not identical by descent. The co-ancestry
coefficient 6 of two individuals is the inbreeding coefficient of their following genera-
tion.

o Goldstein and al. distance

The Goldstein and al. distance between populations is defined by

1 . :
P Z(lxij —iyi))*.

e Average square distance
The average square distance between populations is defined by

%Z( N —j)zxik)’_;'k).
k=1

= I<i<j<m;

e Shriver-Boerwinkle stepwise distance
The Shriver-Boerwinkle stepwise distance between populations is defined by

1 n . )
p DT> i = JI@xikyjk — Xikxjk — Yik¥jk)-

k=1 1<, j<mg

23.2. DISTANCES FOR DNA DATA

Distances between DNA or protein sequences are usually measured in terms of sub-
stitutions, i.e., mutations, between them. A DNA sequence will be seen as a sequence
x = (x1, ..., xp) over 4-letter alphabet of four nucleotides A, T, C, G; > denotes Z;l:l.

e No. of differences
The No. of DNA differences is just the Hamming metric between DNA sequences:

Z Ly

o p-distance

The p-distance d,, between DNA sequences is defined by

> Ly
P
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o Jukes—Cantor nucleotide distance
The Jukes—Cantor nucleotide distance between DNA sequences is defined by

3 4
_Zln 1—§d1)(X,Y) 5

where d, is the p-distance. If the rate of substitution varies with the gamma distribution,
and a is the parameter describing the shape of this distribution, then the gamma distance
for the Jukes—Cantor model is defined by

3a 4 —1/a
I((l —gdp(x,y)> — 1)
e Tajima-Nei distance

The Tajima—Nei distance between DNA sequences is defined by

—pin(1— B2
b b

b 1 l Z 1in\’[:f 2 + 1 Z 1)(’-;&\7[ 2 d
— — — _ 7 — —_ s an
2 . G n c n

1 5 O L yn=0.0)*
(Z 1Xi:)’i:j)(z lxi:_w:k) .

where

i,ke{AT,G,C}, j#k

Let P = {1 <i <n: {x,y) = {A,Glor {T,C}},and @ = JI{1 <i < n:
{x;, vi} ={A, T} or {G, C}}|, i.e., P and Q are the frequencies of, respectively, transition
and transversion mutations between x and y. The following four distances are given in
terms of P and Q.

o Jin—Nei gamma distance
The Jin—Nei gamma distance between DNA sequences is defined by

a —1/a l —1/a 3

—{(1—-2P— —(1-2 - =1,

3 (( Q) T+ o Q) 5
where the rate of substitution varies with the gamma distribution, and g is the parameter
describing the shape of this distribution.

e Kimura 2-parameter distance
The Kimura 2-parameter distance between DNA sequences is defined by

—%m(l —2p— Q)—%lnm.
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e Tamura 3-parameter distance

The Tamura 3-parameter distance between DNA sequences is defined by
P 1
—bln(l -5~ Q) — 5(1 —b)In(1 —2Q),

where fy = L[{1 <i<n: x;=GorCll, fy=L{I <i <n: yy =GorC}|,and
b:fx+fv_2fov~

Inthe case fy = fy = % (so,b = %), it is the Kimura 2-parameter distance.

o Tamura-Nei distance

The Tamura—Nei distance between DNA sequences is defined by

—2fAfG 1n<1 fr Psc — LPRY) — 2fr fe 1n<1 fr Pr¢c — LPRY)

fr " 2fafc 2fr fr " 2frfc 2fy
fafcfr  frfcfr 1
— — — In{ 1=
2<fRfY fr fr ) “( e fy PRY)’

where f; = % Y (y—j+ly=pforj=A,G,T,C,and fr = fa+fc, fr = fr+fc,
while Py = {1 < i < n: |{xi, yi} N {A G = [{xi, i} N {T.C} = 1} (the
proportion of transversion differences), Pag = %[{l <i<n: {x, 5} ={A, G}} (the
proportion of transitions within purines), and Prc = %l{l <i<n: {x,y) =1{T,C}}|
(the proportion of transitions within pyrimidines).

e Garson et al. hybridization metric
H-measure between two DNA n-sequences x and y is defined by

H(x,y) = min Tozys
J —n<k<n RN

where indexes i 4+ k are modulo n, and y* is the reversal of y followed by Watson—Crick
complementation, i.e., interchange of all A, T, G, C by T, A, C, G, respectively.

An DNA cube is any maximal set of DNA n-sequences, such that H(x, y) = 0 for any
two of them. The Garson at al. hybridization metric between DNA cubes A and B is
defined by

min  H(x, y).

xeA.yeB

23.3. DISTANCES FOR PROTEIN DATA

A protein sequence will be seen as a sequence x = (x1, ..., x,) over 20-letter alphabet of
20 amino acids; ) denotes > ;.
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There are several notions of similarity/distance on the set of 20 amino acids, based, for

example, on their hydrophilicity, polarity, charge, shape, etc. Most important are 20 x 20
Dayhoff PAM250 matrix which express relative mutability of 20 amino acids.

PAM distance

The PAM distance (or Dayhoff-Eck distance, PAM value) between protein sequences
is defined as the minimal number of accepted (i.e., fixed) point mutations per 100 amino
acids needed to transform one protein into another. I PAM is an unit of evolution: it
corresponds to 1 point mutation per 100 amino acids. PAM values 80, 100, 200, 250
correspond to the distance (in %) 50, 60, 75, 92 between proteins.

No. of protein differences
The No. of protein differences is just the Hamming metric between protein sequences:

Z L2y,

Amino p-distance

The amino p-distance (or uncorrected distance) d, between protein sequences is de-
fined by

> Ly 2y,
n
Amino Poisson correction distance
The amino Poisson correction distance between protein sequences is defined, via
amino p-distance d,, by

—In(1 —d,(x, y).

Amino gamma distance

The amino gamma distance (or Poisson correction gamma distance) between protein
sequences is defined, via amino p-distance d,, by

a((1 —dyx. ) = 1),

where the substitution rate varies with i = 1, ..., n according to gamma distribution,
and ¢ is the parameter describing the shape of the distribution. Fora = 2.25 and a =
0.65, it estimates Dayhoff and Grishin distances, respectively. In some applications,
this distance with a = 2.25 is called simply Dayhoff distance.

Jukes—Cantor protein distance

The Jukes—Cantor protein distance between protein sequences is defined, via amino
p-distance d,, by

19 20
_%ln<l — Ed,,(x, y)).
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¢ Kimura protein distance

The Kimura protein distance between protein sequences is defined, via amino p-
distance d,,, by

d2(x, y))

—1n<1 —dp(x,y) — 5

e Grishin distance

The Grishin distance d between protein sequences can be obtained, via amino p-
distance d,,, from the formula

In(1 4 2d(x, y))

=1—-d , V).
2d(x, y) P )

o Edgar k-mer distance

The Edgar k-mer distance between sequences x = (x1, ..., xp) and y = (y1, ..., ¥u)
over a compressed amino acid alphabet is defined by

1n<i n Z{, min{x{a), y(a)}>7
10 min{m,n}—k+1

where a is any k-mer (a word of length k over the alphabet), while x(a) and y(a) are the
number of times a occurs in x and y, respectively, as a block (contiguous subsequence).
(Cf. g-gram similarity.)

23.4. OTHER BIOLOGICAL DISTANCES

o RNA structural distance

An RNA (sequence) is a string over the alphabet {A, C, G, T} of nucleotides (bases).
Inside a cell, such string folds in 3D space, because of pairing of nucleotide bases (usu-
ally, by bonds A-U, G—C and G-U). The secondary structure of an RNA is, roughly,
the set of helices (or the list of paired bases) making up the RNA. This structure can
be represented as planar graph and further, as rooted tree. The fertiary structure is the
geometric form the RNA takes in space.

An RNA structural distance between two RNA sequences is a distance between their
secondary structures. Examples of such RNA distances are: tree edit distance (and other
distances on rooted trees given in Chapter 15), and the base-pair distance, i.c., the
symmetric difference metric between secondary structures seen as sets of paired bases.

In in silico (i.e., computer-simulated) RNA evolution, the fitness of an RNA sequence x
is the metric transform f(d(x, x7)), where f : R>9 — R is a scaling function, and
d(x, x7) is an RNA structural distance between the sequence x and the selected fixed
target RNA sequence x7.
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e Distances for genome permutations

The genomes of two related species, given by the order of genes along chromosomes,
for large (i.e., happening on large portion of the chromosome) mutations, can be seen
as genome rearrangements and, so, as permutations (or rankings) of homologous genes.
Therefore, many chromosomal rearrangements can be presented then as indels (inser-
tions or deletions), inversions, transpositions, reversals and other editing operations.
Some of those operations have biological meaning for DNA/protein sequences as well.

A distance for genome permutations is the edit distance with respect of given set
of editing operations, i.e., the minimal number of those editing operations needed to
transform one permutation into another. If one attach a positive number (cost or weight)
to each permitted editing operation, then the distance is minimal sum of weights in
a sequence of operations transforming one permutation into another. If one takes into
account the directionality of the genes, a chromosome is described by a signed permu-
tation, i.e., by a vector x = (x1, ..., X5), where |x;| are different numbers 1, ..., n, and
any x; can be positive or negative.

An example of distance measures between genomes (or species), seen as collections of
sets of genes, is Ferretti-Nadeau—Sankoff syntenic distance. It is the minimal number
of mutation moves — translocations (exchanges of genes between two chromosomes),
fusions (of two chromosomes in one) and fissions (of one chromosome in two) — needed
to transfer one genome into another.

o Genome distance

The genome distance between two loci on a chromosome is the number of base pairs
separating them on the chromosome.

e Map distance

The map distance between two loci on a genetic map is the recombination frequency
expressed as a percentage; it is measured in centimorgans ¢cM (or map units), where 1
cM corresponds to their statistically corrected recombination frequency 1%.

Typically, a linkage map distance of 1 cM (genetic scale) corresponds to a genome
distance (physical scale) of about one megabase (million base pairs).

o Metabolic distance

The metabolic distance (or pathway distance) between enzymes is the minimum num-
ber of metabolic steps separating two enzymes in the metabolic pathways.

o Gendron et al. distance

The Gendron et al. distance between two base-base interactions, represented by 4 x 4
homogeneous transformation matrices X and Y, is defined by

S(XYy " Hh+sxly)
2 b

where S(M) = /12 + (6/a)?2, [ is the length of translation, 4 is the angle of rotation,
and « represents a scaling factor between the translation and rotation contributions.
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e Biotope distance

The biotopes here are represented as binary sequences x = (xi, ..., x,), where x; =
1 means the presence of the species i. The biotope distance (or Tanimoto distance)
between biotopes x and y is defined by

{1 <

1<i<n: x # il
Hl <i<n:

Xi =+ yi > O}

o Taxonomic distance

Given a finite metric space (X, d) (usually, an Euclidean space) and a selected, as typical
by some criterion, vertex xg € X, called prototype (or centroid), the taxonomic distance
of every x € X is the number d{(x, x¢). Usually, the elements of X represent phenotypes
or morphological traits. The average of d(x, xg) by x € X estimates corresponding
variability.

The term taxonomic distance is also used in Phylogenetic Taxonomy for every dissim-
ilarity between two faxa, i.e., entities or groups which are arranged into an hierarchy.

e Victor—Purpura distance

A spike train x is a time sequence (x1, . .., X, ) of n events (for example, neuronal spikes,
or hearth beats). The time sequence lists either absolute spike times, or inter-spike time
intervals. A human brain has about 100 billion of neurons (nerve cells). A neuron reacts
on a stimulus by producing a spike train which is a sequence of short electrical pulses
called spikes.

The Victor-Purpura distance between two spike trains x and y is a cost-based editing
metric (i.e., the minimal cost of transforming x into y) by the following operations with
their associated costs: insert a spike (cost 1), delete a spike (cost 1), shift a spike by an
amount of time ¢ (cost gz, where ¢ > 0 is a parameter).

In order to compare reactions of a population of neurons on two different stimuli, the
Chernoff distance between corresponding distributions of spike counts is used.

e Oliva et al. perception distance

Let {s1,...,s,} be the set of stimuli, and let g;; be the conditional probability that a
subject will perceive stimulus s;, when the stimulus s; was shown; so, ¢;; = 0, and
Z_’}:l gij = 1. Let g; is the probability of presenting stimulus s;.

The Oliva at al. perception distance ((OSLMO04]) between stimuli s; and s; is defined
by

n

1
9 +4; 5

dik _ 4k
qi qj

e Probability-distance hypothesis

In Psychophysics, the probability-distance hypothesis is a hypothesis that the probabil-
ity with which one stimulus is discriminated from another is a (continuously increasing)
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function of some subjective quasi-metric between these stimuli (see [DzhaO1]). Under
this hypothesis, such subjective metric is a Finsler metric if and only if it coincides in
the small with the intrinsic metric (i.e., the infimum of the lengths of all paths connect-
ing two stimuli).

e Marital distance
The marital distance is a distance between birthplaces of spouses (or zygotes).

¢ Isolation-by-distance

Isolation-by-distance is a biological model predicting that the genetic distance be-
tween populations increases exponentially with respect to geographic distance. There-
fore, emergence of regional differences (races) and new species is explained by restricted
gene flow and adaptive variations. Isolation-by-distance was studied, for example, via
surname structure (cf. Lasker distance).

e Malecot’s distance model

The Malecot’s distance model is a migratory model of isolation by distance, expressed
by the following Malecot’s equation for dependency of alleles at two loci (allelic asso-
ciation, or linkage disequilibrium) py:

pa=(1—L)Me* + L,

where d is distance between two loci (either genome distance in base pairs, or map
distance in centimorgans), £ is a constant for a specified region, L = limy_.¢ py, and
M < 1 is a parameter expressing mutation rate.

o Lasker distance

The Lasker distance (Rodrigues-Larralde et al., 1989) between two human popula-
tions x and y, characterized by surname frequency vectors (x;) and (y;), is the number
—In2R, y, where Ry y, = % > x;y; is Lasker’s coefficient of relationship by isonymy.
Surname structure is related to inbreeding and (in patrilinear societies) to random ge-
netic drift, mutation and migration. Surnames can be considered as alleles of one locus,
and their distribution can be analyzed by the theory of neutral mutations; an isonymy
points to a common ancestry.

e Surname distance model

A surname distance model was used in [CORO05], in order to estimate the preference
transmission from parents to children by comparing, for 47 provinces of mainland Spain,
the 47 x 47 distance matrices for surname distance with those of consumption dis-
tance and cultural distance. The distances were /-distances ) ; [x; — y;| between the
frequency vectors (x;), (y;) of provinces x, y, where z; is, for the province z, either the
frequency of i-th surname (surname distance, or the budget share of i-th good con-
sumption distance, or cultural distance the population rate for i-th cultural issue (rate
of weddings, newspaper readership, etc.), respectively.

Other considered there (matrices of) distances are:
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the geographical distance (in kilometers, between the capitals of two provinces);

the income distance |m(x) — m(y)|, where m(z) is mean income in the province z;

— the c{imatic di;tance > i<igi2 X — yil, where z; is the average temperature in the
province z during i-th month;

Fhe migratign distance Z] <i<4T |)fi —i |, where z; is the percentage of people (living
in the province z) born in the province i.

Strong vertical preference transmission, i.e., correlation between surname and consump-
tion distances, was detected only for food items.

Distance model of altruism

In Evolutionary Ecology, altruism is explained by kin selection and group selection,
and it supposed to be a driving force of the transition from unicellular organisms to
multicellularity. The distance model of altruism (see [Koel00]) suggests that altruists
spread locally, i.e., with small interaction distance and offspring dispersal distance, while
the evolutionary response of egoists is to invest in increasing of those distances. The
intermediate behaviors are not maintained, and evolution will lead to a stable bimodal
spatial pattern.

Distance running model

The distance running model is a model of antropogenesis proposed in [BrLi04].
Bipedality is a key derived behavior of hominids which appeared 4.5—6 million years
ago. However, australopithecines were still animals. The genus Homo which emerged
about 2 million years ago already could produce rudimentary tools. Bramble—Lieberman
model attributes this transition to a suite of adaptations specific to running long distances
in the savanna. They specify how endurance running, a derived capability of Homo, de-
fined the human body form, producing balanced head, low/wide shoulders, narrow chest,
short forearms, large hip, etc.



Chapter 24

Distances in Physics and Chemistry

24.1. DISTANCES IN PHYSICS

Physics studies the behavior and properties of matter in a wide variety of contexts, rang-
ing from the sub-microscopic particles from which all ordinary matter is made (Particle
Physics) to the behavior of the material Universe as a whole (Cosmology). Physics forces
which act at a distance (i.e., a push or pull which acts without “physical contact™) are nu-
clear and molecular attraction, and, beyond atomic level, gravity (completed, perhaps, by
anti-gravity), static electricity, and magnetism. Last two forces can be both, push and pull.
Distances on small scale are treated in this chapter, while large distances (in Astronomy
and Cosmology) are object of chapters 25 and 26. In fact, the distances having physical
meaning range from 1.6 x 1073% m (Planck length) to 7.4 x 10%® m (the estimated size
of observable Universe). At present, Theory of Relativity, Quantum Theory and Newton’s
laws permit to describe and predict the behavior of physical systems in range 10~15 — 102
m.

e Mechanic distance

The mechanic distance is the position of a particle as a function of time ¢. For a particle
with initial position x¢ and initial speed vg, which acted upon by a constant acceleration
a, it is given by

1
x(t) = xo + vot + Eatz.

The distance fallen under uniform acceleration @, in order to reach a speed v, is given
U2

by x = 7.

A free falling body is a body which is falling subject only to acceleration by gravity g.

The distance fallen by it, after a time ¢, is % gtz; it is called the free fall distance.

o Terminal distance
The terminal distance is a distance of an object, moving in a resistive medium, from an
initial position to a stop.

Given an object of mass m moving in a resistive medium (where the drag per unit mass
is proportional to speed with constant of proportionality S, and there is no other force
acting on a body), the position x(¢) of a body with initial position x¢ and initial velocity
vg is given by x(1) = xp + %(l — e™P"). The speed of the body v(t) = x'(t) = vge "

301
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decreases to zero over time, and the body reaches a maximum terminal distance

. vg
Xterminal = tl_l)rgox(t) =Xxo0+ —.

For a projectile, moving with initial position gxo, vo) and initial velocity (zi)x(), Uy, ), the
position (x(r), y(1)) is given by x(t) = x0+ (1 — ¢ #), (1) = o+ 5 — £) +
U’V‘)ﬁﬁe’m . The horizontal motion gets stopped to reach a maximum terminal distance

N Uxg
Xterminal = X0 + B .
o Ballistics distances

Ballistics is the study of the motion of projectiles, i.e., bodies which are propelled (or
thrown) with some initial velocity, and then allowed to be acted upon by the forces of
gravity and possible drag.

The horizontal distance traveled by a projectile is called range, the maximum upward
distance reached by it is called height, and the path of the object is called trajectory.

For a projectile launched with a velocity vg at an angle 8 to the horizontal, the range is
given by

x(t) = vt cos b,
where ¢ is the time of motion. On a level plane, where the projectile lands at the same

altitude as it was launched, the full range is

v(z) sin 20
Xmax = —

8

which is maximized when 8 = /4. If the altitude of the landing point is A% higher that
of the launch point, then

vg sin 20 (1 4 (1 2Ahg )1/2>
Xpay = ———— - )
e 2g vg sin® @

The height is given by
vg sin? 0
28

3

and is maximized when 6 = 7 /2.

The arc length of the trajectory is given by

2
v
iy (sin 6 + cos? chf1 (9)),
g
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where gd(x) = (f Co‘éﬁ is the Gudermannian function. The arch length is maximized

when gd~'(0)sing = (f(f cg%) sin@ = 1, and approximate solution is given by 6 =~
0.9855.

e Acoustic metric

In Acoustics, the acoustic metric (or sonic metric) is a characteristic of sound-carrying
properties of a given medium: air, water, etc.

In General Relativity and Quantum Gravity, it is a characteristic of signal-carrying prop-
erties in a given analog model (with respect to Condense Matter Physics), where, for
example, the propagation of scalar fields in curved space-time is modeled (see, for ex-
ample, a survey [BLLV05]) as the propagation of sound in a moving fluid, or slow light in
moving fluid dielectric, or superfluid (quasi-particles in quantum fluid), etc. The passage
of a signal through an acoustic metric itself modifies the metric; for example, the motion
of sound in air moves air and modifies the local speed of the sound. Such “effective”
(i.e., recognized by its “effects”) Lorentzian metric governs, instead of the background
metric, the propagation of fluctuations: the particles associated to the perturbations fol-
low geodesics of that metric.

In fact, if a fluid is barotropic and inviscid, and the flow is irrotational, then the propa-
gation of sound is described by an acoustic metric which depends on the density p of
flow, velocity v of flow and local speed s of sound in the fluid. It can be given by the
acoustic tensor

P —(sz—vz)f—vT
g:g(l7x):? ,

-V 13
where 13 is the 3 x 3 identity matrix, and v = ||v||. The acoustic line element can be
written as
ds? = 2(—(s? = v?) dr? — 2vaxdi + (@0?) = 2(=s2di* + @dx — var)?).
s s

The signature of this metric is (3, 1), i.e., it is a Lorentzian metric. If the speed of the
fluid becomes supersonic, then the sound waves will be unable to come back, i.e., there
exists a mute hole, the acoustic analog of a black hole.

e Healing length

For a superfluid, the healing length is a length over which the wave function can vary
while still minimizing energy.

For Bose—Einstein condensates, the healing length is the width of the bounding region
over which the probability density of the condensate drops to zero.

e Optical distance

In Optics and Telecommunications, the optical distance (or optical path length) is a
distance traveled by light: the physical distance in a medium multiplied by the index of
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refraction of the medium. By Fermat’s principle light always follows the shortest optical
path.

For a series of continuous layers with index of refraction r(s) as a function of distance

s, it is given by
/ n(s)ds.
c

For a series of discrete layers with indices of refraction n; and thicknesses s;, it is equal
to

N s
an s

where § is the phase shift, and kg is the vacuum wave number.

o Spatial coherence length

The spatial coherence length is the propagation distance from a coherent source to
a point where an electromagnetic wave maintains a specific degree of coherence. This
notion is used in Telecommunication Engineering (usually, for optical regime) and in
synchrotron X-ray Optics (the advanced characteristics of synchrotron sources provide
highly coherent X-rays). The spatial coherence length is about 20 cm, 100 m, and 100 km
for helium-neon, semiconductor and fiber lasers, respectively. Cf. temporal coherence
length which describes the correlation between signals observed at different moments of
time.

For vortex-loop phase transitions (superconductors, superfluid, etc.), coherence length
is the diameter of the largest loop which is thermally exited.

o Inverse-square distance laws

Any law stating that some physical quantity is inversely proportional to the square of the
distance from the source that quantity.

Law of universal gravitation (Newton—Bullialdus): the gravitational attraction between
two massive point-like objects is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them. The existence of extra
dimensions, thought by M-theory, will be experimentally checked in 2007 (the opening
at CERN, near Geneva, of LHC, i.e., large hadron collider), basing on the inverse pro-
portionality of the gravitational attraction in 7z-dimensional space to the (n — 1)-degree
of the distance between objects; if the Universe have 4-th dimension, LHC will find out
the inverse proportionality to the cube of the small inter-particle distance.

Coulomb’s law: the force of attraction or repulsion between two (stationary) charged
point particles is directly proportional to the product of charges and inversely propor-
tional to the square of the distance between them.

The intensity (power per unit area in the direction of propagation) of a spherical wave-
front (light, sound, etc.) radiating from a point source decreases (assuming that there are
no losses caused by absorption or scattering) is inversely proportional to the square 2
of the distance from the source. However, for a radio wave, it decrease like %
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e Range of fundamental forces

The fundamental forces (or interactions) are gravity and electromagnetic, weak and
strong forces. The range of a force is considered short if it decays (approach 0) ex-
ponentially as d increases. Both, electromagnetic force and gravity, are forces of infinite
range which obey inverse-square distance laws. Both, weak and strong forces, are very
short range (about 10~!8 m and 10~'3 m) which is limited by the uncertainty principle.

e Long range order

A physical system has long range order if remote portions of the same sample ex-
hibit correlated behavior. For example, in crystals and some liquids, the positions of an
atom and its neighbors define positions of all other atoms. Examples of long range order
in solids are: magnetism, charge density waves, superconductivity. Short range is the
first- or second-nearest neighbors of an atom. More precisely, the system has long range
order, quasi-long range order or is disordered if corresponding correlation function de-
cays, for large distances, to a constant, to zero as a polynomial, or to zero exponentially
(cf. long range dependency).

e Action at a distance (in Physics)

An action at a distance is the interaction, without known mediator, of two objects sep-
arated in space. Einstein used term spooky action at a distance for quantum mechanical
interaction (like entanglement and quantum non-locality) which is instantaneous, regard-
less of distance. Main conceptions of interaction at a distance are Newton instantaneous
long range interaction and Faraday—Maxwell short range interaction. Already controver-
sial (since speed of light is maximal) long range interaction reach status of marginality
for “mental action at a distance”: telepathy, clairvoyance, precognition, psychokinesis,
etc.

The term short range interaction is also used for the transmission of action on distance
by a material medium from a point to a point with certain velocity dependent on proper-
ties of this medium. Also, in Information Storage, the term near-field interaction is used
for very short distance interaction using scanning probe techniques.

e Interaction distance

The interaction distance between two particles is the farthest distance of their approach
at which it is discernible that they will not pass at the impact parameter, i.e. their distance
of closest approach if they had continued to move in their original direction at their
original speed.

e Hopping distance

The hopping is atomic-scale long range dynamics that control diffusivity and conduc-
tivity. For example, oxidation of DNA (loss of an electron) generates a radical cation
which can migrate long (more that 20 nanometers) distance, called hopping distance,
from site to site (to “hop” from one aggregate to another) before it is trapped by reaction
with water.
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e Skin depth

The skin depth of a substance is the distance to which incident electromagnetic radiation
penetrates. The skin depth is given by

[

S2ropw’

where ¢ is the speed of light, ¢ is the electrical conductivity, u is the permeability, and
w is the angular frequency. (Not to be confused with source-skin medical distance).

e Gyroradius

The gyroradius (or cyclotron radius) is the radius of the circular orbit of a charged
particle (for example, energetic electron that is ejected from Sun) gyrating around its
gliding center.

24.2. DISTANCES IN CHEMISTRY

Main chemical substances are ionic (held together by ionic bonds), metallic (giant close
packed structures held together by metallic bonds), giant covalent (as diamond and
graphite), or molecular small covalent). Molecules are made of fixed number of atoms
joined together by covalent bonds; they range from small (single-atom molecules in the
noble gases) to very large ones (as in polymers, proteins or DNA). The interatomic dis-
tance of two atoms is the distance (in angstroms or picometers) between their nuclei.

e Atomic radius

Quantum Mechanics implies that an atom is not a ball having exactly defined boundary.
Hence, atomic radius is defined as the distance from the atomic nucleus to the outmost
stable electron orbital in a atom that is at equilibrium. Atomic radii represent the sizes
of isolated, electrically neutral atoms, unaffected by bonding.

Atomic radii are estimated from bond distances if the atoms of the element form bonds;
otherwise (like the noble gases), only Van-der-Waals radii are used.

The atomic radii of elements increase as one moves dawn the column (or to the left the
row) in the Periodic Table of Elements.

e Bond distance

The bond distance (or bond length) is the distance between the nuclei of two bonded
atoms. For example, typical bond distances for carbon-carbon bonds in an organic mole-
cule are 1.53, 1.34 and 1.20 angstroms for single, double and triple bonds, respectively.

Depending on the type of bonding of the element, its atomic radius is called covalent or

metallic. The metallic radius is one half of the metallic distance, i.e., closest internu-
clear distance in a metallic crystal (a closely packed crystal lattice of metallic element).

Covalent radii of atoms (of elements that form covalent bonds) are inferred from bond
distances between pairs of covalently-bonded atoms: they are equal to the sum of the
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covalent radii of two atoms. If the two atoms are of the same kind, then their covalent
radius is one half of their bond distance. Covalent radii for elements whose atoms cannot
bond to each another is inferred by combining, in various molecules, radii of those that
bond with bond distances between pairs of atoms of different kind.

e Van-der-Waals contact distance

Intermolecular distance data are interpreted by viewing atoms as hard spheres. The
spheres of two neighboring non-bonded atoms (in touching molecules or atoms) are sup-
posed just touch. So, their interatomic distance, called Van-der-Waals contact distance,
is the sum of radii, called Van-der-Waals radii, of their hard spheres. Van-der-Waals
radius of carbon is 1.7 angstroms, while its covalent radius is 0.76. Van-der-Waals con-
tact distance corresponds to a “weak bond”, when repulsion forces of electronic shells
exceed London (attractive electrostatic) forces.

e Interionic distance

An ion is an atom that has an positive or negative electrical charge. The interionic
distance is the distance between the centers of two adjacent (bonded) ions. Ionic radii
are inferred from ionic bond distances in real molecules and crystals.

The ion radii of cations (positive ions, for example, sodium Na™) are smaller than the
atomic radii of the atoms they come from, while anions (negative ions, for example,
chlorine C17) are larger than their atoms.

e Hydrodynamic radius

The hydrodynamic radius of a molecule, undergoing diffusion in a solution, is the
hypothetical radius of a hard sphere which diffuses with the same speed.

e Range of molecular forces

Molecular forces (or interactions) are the following electromagnetic forces: ionic bonds
(charges), hydrogen bonds (dipolar), dipole-dipole interactions, London forces (the at-
traction part of Van-der-Waals forces) and steric repulsion (the repulsion part of Van-der-
Waals forces). If the distance (between two molecules or atoms) is d, then (experimental
observation) potential energy function P inversely relate to " withn = 1,3,3,6, 12
for five above forces, respectively. The range (or the radius) of an interaction is consid-
ered short if P approach O rapidly as d increases. It also called short if it is at most 3
angstroms; so, only the range of steric repulsion is short. (Cf. inverse-square distance
laws.)

o Chemical distance

Various chemical systems (single molecules, their fragments, crystals, polymers, clus-
ters) are well represented by graphs where vertices (say, atoms, molecules acting as
monomers, molecular fragments) are linked by, say, chemical bonding, Van-der-Waals
interactions, hydrogen bonding, reactions path. In Organic Chemistry, a molecular graph
G(x) = (V(x), E(x)) is a graph representing a molecule x, so that the vertices v € V(x)
are atoms and the edges e € E(x) correspond to electron pair bonds. The Wiener num-
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ber of a molecule is one half of the sum of all pairwise distances between vertices of its
molecular graph.

The (bonds and electrons) BE-matrix of a molecule x is the |V (x)] x |V (x)| matrix
((eij(x))), where e;; (x) is the number of free unshared valence electrons of the atom A;,
and, fori # j, e;;(x) = e;;(x) = 1 if there is a bond between atoms A; and A, and
= 0, otherwise.

Given two stoichiometric (i.e., with the same number of atoms) molecules x and y, their
Dugundji-Ugi chemical distance is the Hamming metric

> e — e ()]
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and their Pospichal-Kvasnic¢ka chemical distance is

’
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where P is any permutation of atoms.

Above distance is equal to |E(x)| 4+ |E(y)] — 2| E(x, y¥)|, where E(x, y) is the edge-set
of the maximum common subgraph (not induced, in general) of the molecular graphs
G(x) and G(y). (Cf. Zelinka distance and Mahalanobis distance.)

The Pospichal-Kvasnicka reaction distance, assigned to a molecular transformation
x — v, is the minimum number of elementary transformations needed to transform
G(x) onto G(y).

e Molecular rms radius

The molecular rms radius (or radius of gyration) is the root-mean-square distance of
atoms in a molecule from their common center of gravity; it is defined by

2
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where n is the number of atoms, dy; is the Euclidean distance of i-th atom from the
center of gravity of the molecule (in a specified conformation), and d;; is the Euclidean
distance between i-th and j-th atoms.

o Mean molecular radius

The mean molecular radius is the number %, where n is the number of atoms in the

. . . . ~ . s Xii
molecule, and r; is the Euclidean distance of i-th atom from the geometric center %
of the molecule (here x;; is i-th Cartesian coordinate of the j-th atom).
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Distances in Geography, Geophysics, and Astronomy

25.1. DISTANCES IN GEOGRAPHY AND GEOPHYSICS

o Great circle distance

The great circle distance (or spherical distance, orthodromic distance) is the shortest
distance between points x and y on the surface of the Earth measured along a path on
the Earth’s surface. It is the length of the great circle arc, passing through x and y, in
the spherical model of the planet.

Let 81 and ¢ be, respectively, the latitude and the longitude of x, and &> and ¢; those of
y; let r be the Earth’s radius. Then the great circle distance is equal to

r arccos(sin 81sinédy + cos 81 cos §; cos(p — (]52)).

In the spherical coordinates (6, ¢), where ¢ is the azimuthal angle, and 9 is the colati-
tude, the great circle distance between x = (61, ¢1) and y = (62, ¢2) is equal to

r arccos(cos 01 cos 0 + sin0; sin 6y cos(¢1 — $2)).

For ¢, = ¢, the formula above reduces to r|8; — 6>].

The spheroidal distance is the distance between two points on the Earth’s surface in
the spheroidal model of the planet. The shape of the Earth more closely resembles a
flattened spheroid with extreme values for the radius of curvature of 6336 km at the
equator and 6399 km at the poles.

¢ Loxodromic distance

The loxodromic distance is a distance between two points on the Earth’s surface on a
path with a constant direction on the compass. It is never shorter than the great circle
distance.

o Nautical distance

The nautical distance is the length in nautical miles of the rhumb line (a curve that
crosses each meridian at the same angle) joining any two places on the Earth’s surface.
One nautical mile is equal to 1852 m.

¢ Horizon distance

In Television, the horizon distance is the distance of the farthest point on the Earth’s
surface visible from a transmitting antenna.

309
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In Radio, the horizon distance is the distance on the Earth’s surface reached by a direct
wave; due to atmospheric refraction, it is sometimes greater than the distance to the
visible horizon.

o SKkip distance

The skip distance is the shortest distance that permits a radio signal (of given frequency)
to travel from the transmitter to the receiver by reflection (hop) in the ionosphere.

o Tolerance distance

In GIS (computer-based Geographic Information System), the tolerance distance is the
maximal distance between points which must be established so that gaps and overshoots
can be corrected (lines snapped together) as long as they fall within tolerance distance.

For a sensor, the tolerance distance is a range distance within which a localization
error is acceptable to the application.

e Map’s distance

The map’s distance is the distance between two points on the map; cf. map distance
between two loci on a genetic map.

The horizontal distance is determined by multiplying the map’s distance by the numer-
ical scale of the map.

o Horizontal distance

The horizontal distance (or ground distance) is the distance on a true level plane be-
tween two points, as scaled off of the map (it does not take into account the relief be-
tween two points). There are two types of horizontal distance: straight-line distance
(the length of the straight-line segment between two points as scaled off of the map),
and distance of travel (the length of the shortest path between two points as scaled off
of the map, in the presence of roads, rivers, etc.).

o Slope distance

The slope distance (or slant distance) is the inclined distance (as opposed to true hori-
zontal or vertical distance) between two points.

e Road travel distance

The road travel distance (or actual distance, wheel distance, road distance) between
any two points (for example, two cities) of a region is the length of the shortest road
connecting them. Since it is often not feasible to measure the actual distances for all
pairs of points, it is a common practice to use distance estimators.

Empirical observation shows that road travel distances are often simply a linear function
of great circle distances; in Swedish towns one can let road distance = 1.21-d, where d
is the great circle distance. In USA the multiplier is about 1.15 in an east-west direction,
and about 1.21 in the north-south direction.

Cf. official distance: the driving distance used for payment of travel.
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e Moho distance

The Moho distance is the distance from a point on the Earth’s surface to the Moho
interface (or Mohorovicic seismic discontinuity) beneath it. The Moho interface is the
boundary between the Earth’s brittle outer crust and the hotter softer mantle; Moho
distance ranges between 5—10 km beneath the ocean floor to 35-65 km beneath the con-
tinents. Cf. the world deepest cave (Krubera, Caucasus: 2.1 km), deepest mine (Western
Deep Levels gold mine, South Africa: about 4 km) and deepest drill (Kola Superdeep
Borehole: 12.3 km). The temperature rises usually by 1° every 33 m. Japanese research
vessel Chikyu is scheduled to drill (from September 2007, 200 km off Nagoya cost) till
Moho interface.

The Earth’s mantle extends from the Moho discontinuity to the mantle-core boundary
at a depth of approximately 2890 km. The mantle is divided into the upper and the
lower mantle by a discontinuity at about 660 km. Other seismic discontinuities are at
about 60-90 km (Hales discontinuity), 50-150 km (Gutenberg discontinuity), 220 km
(Lehmann discontinuity), 410 km, 520 km, and 710 km.

e Distances in Seismology

The Earth’s crust is broken into tectonic plates that move around (at some centimeters
per year) driven by the thermal convection of the deeper mantle and by gravity. At their
boundaries, plates stick most of the time and slip suddenly. An earthquake, i.e., a sudden
(several seconds) motion or trembling in the Earth, caused by abrupt release of slowly
accumulated strain, was, from 1906, seen mainly as a rupture (sudden appearance, nu-
cleation and propagation of new crack or fault) due to elastic rebound. However, from
1966, it is seen within the framework of slippage along pre-existing fault or plate in-
terface, as the result of stick-slip frictional instability. So, an earthquake happens when
dynamic friction becomes less than static friction. The advancing boundary of the slip
region is called rupture front. The standard approach assumes that the fault is a definite
surface of tangential displacement discontinuity, embedded in a liner elastic crust.

90% of earthquakes are of tectonic origin, but they can be caused also by volcanic erup-
tion, nuclear explosion and work in a large dam, well or mine. Earthquake can be mea-
sured by focal depth, speed of slip, intensity (modified Mercali scale of earthquake
effects), magnitude, acceleration (main destruction factor), etc. The Richter logarithmic
scale of magnitude is computed from the amplitude and frequency of shock waves re-
ceived by seismograph, adjusted to account for epicentral distance. An increase of 0.1
of the Richter magnitude corresponds to an increase of 10 times in amplitude of the
waves; the largest recorded value is 9.5 (Chile, 1960).

Distance attenuation models, used in earthquake engineering for buildings and bridges,
derive usually acceleration decay with increase of some site-source distance, i.e., the
distance between seismological stations and the crucial (for the given model) “central”
point of the earthquake.

The simplest model is the Aypocenter (or focus), i.e., the point inside the Earth from
which an earthquake originates (the waves first emanate, the seismic rupture or slip be-
gins). The epicenter is the point of the Earth’s surface directly above the hypocenter.
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The terminology below is also used for other catastrophes, such as an impact or explo-
sion of a nuclear weapon, meteorite or comet, but for an explosion in the air, the term
hypocenter refers to the point on the Earth surface directly below the burst. The list of
main Seismology distances follows.

The focal depth: the distance between hypocenter and epicenter; the average focal depth
is 100-300 km.

The hypocentral distance: the distance from the station to the hypocenter.

The epicentral distance (or earthquake distance): the great circle distance from the
station to epicenter.

The Joyner-Boore distance: the distance from the station to the closest point of the
Earth’s surface, located over the rupture surface, i.e., the rupturing portion of the fault
plane.

The rupture distance: the distance from the station to the closest point on the rupture
surface.

The seismogenic depth distance: the distance from the station to the closest point of the
rupture surface within the seismogenic zone, i.e., the depth range where the earthquake
may occur; usually, at depth 8—12 km.

Also used are the distances from the station to:
— the center of static energy release and the center of static deformation of the fault
plane;

— the surface point of maximal macroseismic intensity, i.e., of maximal ground acceler-
ation (it can be different from epicenter);

— the epicenter such that the reflection of body waves from the Moho interface (the
crust-mantle boundary) contribute more to ground motion than directly arriving shear
waves (it called critical Moho distance);,

— sources of noise and disturbances: oceans, lakes, rivers, railroads, buildings.

The space-time link distance between two earthquakes x and y is defined by

Ja2 @ )+ Clty — 12,

where d(x, y) is the distance between their epicenters or hypocenters, |, — ty] is the
time lag, and C is a scaling constant needed to connect distance d(x, y) and time.

25.2. DISTANCES IN ASTRONOMY

A celestial object (or celestial body) is a term describing astronomical objects such as stars
and planets. The celestial sphere is the projection of celestial objects into their apparent
positions in the sky as viewed from the Earth. The celestial equator is the projection of
the Earth’s equator onto the celestial sphere. The celestial poles are the projections of
Earth’s North and South poles onto the celestial sphere. The hour circle of a celestial
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object is the great circle of the celestial sphere, passing through the object and the celestial
poles. The ecliptic is the intersection of the plane that contains the orbit of the Earth with
the celestial sphere: seen from the Earth, it is the path that the Sun appears to follow
across the sky over the course of a year. The vernal equinox point (or the First point in
Aries) is one of the two points on the celestial sphere, where the celestial equator intersects
the ecliptic: it is the position of the Sun on the celestial sphere at the time of the vernal
equinox.

The horizon is the line that separates Earth from sky. It divides the sky into the upper
hemisphere that the observer can see, and the lower hemisphere that he can not. The pole
of the upper hemisphere (the point of the sky directly overhead) is called zenith, the pole
of the lower hemisphere is called nadir.

In general, an astronomical distance is a distance from one celestial body to another
(measured in light-years, parsecs, or Astronomical Units). The average distance between
stars (in a galaxy like our own) is several light-years. The average distance between galax-
ies (in a cluster) is only about 20 times their diameter, i.e., several megaparsecs.

e Latitude

In spherical coordinates (r, 6, ¢), the latitude is the angular distance § from the xy-
plane (fundamental plane) to a point, measured from the origin; § = 90° — §, where 6
is the colatitude.

In geographic coordinate system (or earth-mapping coordinate system), the latitude is
the angular distance from the Earth’s equator to an object, measured from the center
of the Earth. Latitude is measured in degrees, from —90° (South pole) to +90° (North
pole). Parallels are the lines of constant latitude.

In Astronomy, the celestial latitude is the latitude of a celestial object on the celestial
sphere from the intersection of the fundamental plane with the celestial sphere in given
celestial coordinate system. In the equatorial coordinate system the fundamental plane
is the plane of the Earth’s equator; in the ecliptic coordinate system the fundamental
plane is the plane of ecliptic; in the galactic coordinate system the fundamental plane is
the plane of Milky Way; in the horizontal coordinate system the fundamental plane is
the observer’s horizon. Celestial latitude is measured in degrees.

o Longitude

In spherical coordinates (r, 6, ¢), the longitude is the angular distance ¢ in the xy-
plane from x-axis to the intersection of a great circle, that passes through a point, with
xy-plane.

In geographic coordinate system (or earth-mapping coordinate system), the longitude
is the angular distance measured eastward along the Earth’s equator from the Greenwich
meridian (or Prime meridian) to the intersection of the meridian that passes through the
object. Longitude is measured in degrees, from 0° to 360°. A meridian is a great circle,
passing through Earth’s North and South poles; the meridians are the lines of constant
longitude.

In Astronomy, the celestial longitude is the longitude of a celestial object on the ce-
lestial sphere measured eastward, along the intersection of the fundamental plane with
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the celestial sphere in given celestial coordinate system, from the chosen point. In the
equatorial coordinate system the fundamental plane is the plane of the Earth’s equator;
in the ecliptic coordinate system — the plane of ecliptic; in the galactic coordinate system
— the plane of Milky Way; in the horizontal coordinate system — the observer’s horizon.
Celestial longitude is measured in units of time.

o Colatitude

In spherical coordinates (r, 8, ¢), the colatitude is the angular distance 6 from the
z-axis to a point, measured from the origin; 8 = 90° — §, where § is the latitude.

In geographic coordinate system (or earth-mapping coordinate system), the colatitude
is the angular distance from the Earth’s North pole to an object, measured from the
center of the Earth. Colatitude is measured in degrees.

e Declination

In the equatorial coordinate system (or geocentric coordinate system), the declination
é is the celestial latitude of a celestial object on the celestial sphere, measured from the
celestial equator. Declination is measured in degrees, from —90° to +90°.

o Right ascension

In the equatorial coordinate system (or geocentric coordinate system), fixed to the stars,
the right ascension RA is the celestial longitude of a celestial object on the celestial
sphere, measured eastward along the celestial equator from the First point in Aries to
the intersection of the hour circle of the celestial object. Right ascension is measured in
units of time (hours, minutes and seconds) with one hour of time approximately equal to
15°. The time needed for one complete cycle of the precession of the equinoxes is called
Platonic year (or Great year); it is about 257 centures and slightly decreases. This cycle
is important in Astrology and Maya calendar.

e Hour angle

In the equatorial coordinate system (or geocentric coordinate system), fixed to the Earth,
the hour angle is the celestial longitude of a celestial object on the celestial sphere,
measured along the celestial equator from the observer’s meridian to the intersection
of the circle of the celestial object. Hour angle is measured in units of time (hours,
minutes and seconds). It gives the time elapsed since the celestial object’s last transit at
the observer’s meridian (for a positive hour angle), or the time unit the next transit (for
a negative hour angle).

e Polar distance

In the equatorial coordinate system (or geocentric coordinate system), the polar dis-
tance (or codeclination) PD is the colatitude of a celestial object, i.e., the angular
distance from the celestial pole to a celestial object on the celestial sphere, similar as
declination § is measured from the celestial equator: PD = 90° &£ §. Polar distance is
expressed in degrees, and cannot exceed 90° in magnitude. An object on the celestial
equator has PD = 90°.
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o Ecliptic latitude

In the ecliptic coordinate system, the ecliptic latitude is the celestial latitude of a ce-
lestial object on the celestial sphere from the ecliptic. Ecliptic latitude is measured in
degrees.

o Ecliptic longitude

In ecliptic coordinate system, the ecliptic longitude is the celestial longitude of a ce-
lestial object on the celestial sphere measured eastward along the ecliptic from the First
point in Aries. Ecliptic longitude is measure in units of time.

o Altitude

In the horizontal coordinate system (or Alt/Az coordinate system) , the altitude ALT is
the celestial latitude of an object from the horizon. It is the complement of the zenith
angle ZA: ALT = 90° — ZA. Altitude is measured in degrees.

e Azimuth

In the horizontal coordinate system (or Alt/Az coordinate system), the azimuth is the
celestial longitude of an object, measured eastward along the horizon from the North
point. Azimuth is measured in degrees, from 0 to 360°.

e Zenith angle
In the horizontal coordinate system (or Alt/Az coordinate system), the zenith angle ZA
is the colatitude of an object, measured from the zenith.

e Lunar distance
The lunar distance is the angular distance between the Moon and another celestial
object.

o Elliptic orbit distance

The elliptic orbit distance is a distance from a mass M which a body has in an elliptic
orbit about the mass M at the focus. This distance is given by

a(l —é?)
1+ecosf’

where a is the semi-major axis, e is the eccentricity, and 6 is the orbital angle.

The semi-major axis a of an ellipse (or an elliptic orbit) is half of its major axis; it is the
average (over the eccentric anomaly) elliptic orbit distance. Such average distance over
the true anomaly is the semi-minor axis, i.e., the half of its minor axis.

The eccentricity e of an ellipse (or an elliptic orbit) is the ratio of half the distance

between the foci ¢ and the semi-major axis a: e = £. For an elliptic orbit, e = :L_r:: ,

where r is the apoapsis distance, and r_ is the periapsis distance.

e Periapsis distance

The periapsis distance is the closest distance r_ a body reaches in an elliptic orbit about
amass M. r_ = a(l — e), where a is the semi-major axis, and e is the eccentricity.
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The perigee is the periapsis of an elliptical orbit around the Earth. The perihelion is
the periapsis of an elliptical orbit around the Sun. The periastron is the point of closest
approach of two stars which are in orbit around each other.

e Apoapsis distance

The apoapsis distance is the farthest distance r a body reaches in an elliptic orbit about
amass M. ry = a(l + e), where a is the semi-major axis, and e is the eccentricity.

The apogee is the apoapsis of an elliptical orbit around the Earth. The aphelion is the
apoapsis of an elliptical orbit around the Sun. The apastron is the point of greatest
separation between two stars which are in orbit around each other.

e True anomaly

The true anomaly is the angular distance of a point in an orbit past the point of peri-
apsis measured in degrees.

o Titius—Bode law

Titius—Bode law is an empirical (not explained well yet) law approximating the mean
planetary distance from Sun (i.e. its orbital semi-major axis) by % AU. Here 1 AU
denotes such mean distance for Earth (i.e., about 1.5 x 108 km =~ 8.3 light-minutes) and
k=0,2021 22 23 24 25 26 57 for Mercury, Venus, Earth, Mars, Ceres (the largest
one in Asteroid Belt), Jupiter, Saturn, Uranus, Pluto. However, Neptune not fits in the
law while Pluto fits Neptune’s spot k = 27.

e Primary-satellite distances

Consider two celestial bodies: a primary M and a smaller one m (a satellite, orbiting
around M, or a secondary star, or a comet passing by).

The mean distance is the arithmetic mean of the maximum and minimum distances of
a body m from its primary M.

Let pay, pm and Ruy, Ry, denote densities and radii of M and m. Then the Roche limit
of the pair (M, m) is the maximal distance between them within which m will disin-
tegrate due to tidal forces of M exceeding the gravitational self-attraction of m. This

distance is Ry J3 2% ~ 1.26Ruy 3/%’ if m is a rigid spherical body, and it is about

2.423Rpy Y ’[’)—M if body m is fluid. The Roche limit is relevant only if it exceeds Ry;. It

is 0.80Rys, 1.49R s and 2.80Ry, for pairs (the Sun, the Earth), (the Earth, the Moon)
and (the Earth, a comet), respectively. A possible origin of the rings of Saturn is a moon
which came closer to Saturn than its Roche limit.

Let d(m, M) denote the distance between m and M; let S, and Sp; denote masses of
m and M. Then the Hill sphere of m in presence of M is an approximation of the
gravitational sphere of influence of m in the face of perturbation from M. Its radius is
about d(m, M)J gﬁ For example, the radius of Hill sphere of the Earth is 0.01 AU;
the Moon, at distance 0.0025 AU, is well within the Hill sphere of the Earth.
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The pair (M, m) can be characterized by five Lagrange points L;, | < i < 5, where
a third, much smaller body (say, a spacecraft), will be relatively stable because its cen-
trifugal force is equal to combined gravitational attraction of M and m. Those points
are:

L1, Ly, L3 lying on the line trough centers of M and m so that d(L3, m) = 2d{M, m),
d(M, L) =d(M, L) +d(Ly,m)+d(m, Ly), and d(Ly, m) = d(m, Ly);
L4 and Ls lying on the orbit of m around M and forming equilateral triangles with the

centers of M and m. Those two points are more stable; each of them form with M and
m a partial solution of (unsolved) gravitational three-body problem.



Chapter 26

Distances in Cosmology and Theory of Relativity

26.1. DISTANCES IN COSMOLOGY

The Universe is defined as the whole space-time continuum in which we exist, together
with all the energy and matter within it.

Cosmology is the study of the large-scale structure of the Universe. Specific cosmolog-
ical questions of interest include the isotropy of the Universe (on the largest scales, the
Universe looks the same in all directions, i.e., is invariant to rotations), the homogeneous-
ness of the Universe (any measurable property of the Universe is the same everywhere,
i.e., it is invariant to translations), the density of the Universe, the equality of matter and
anti-matter, and the origin of density fluctuations in galaxies.

In the 1929, E. Hubble discovered that all galaxies have a positive redshift, i.e., all galax-
ies, except for a few nearby galaxies like Andromeda, are receding from the Milky Way.
By the Copernican principle (that we are not at a special place in the Universe), we de-
duce that all galaxies are receding from each other, i.e., we live in a dynamic, expanding
Universe, and the further a galaxy is away from us, the faster it is moving away (this is
now called Hubble law). The Hubble flow is the general outward movement of galaxies
and clusters of galaxies resulting from the expansion of the Universe. It occurs radially
away from the observer, and obeys the Hubble law. Galaxies can overcome this expansion
on scales smaller than that of clusters of galaxies; the clusters, however, are being forever
driven apart by the Hubble flow.

In Cosmology, the prevailing scientific theory about the early development and shape of
the Universe is the Big Bang Theory. The observation that galaxies appear to be receding
from each other can be combined with the General Theory of Relativity to extrapolate the
condition of the Universe back in time. This leads to the construction that as one goes back
in time, the Universe becomes increasingly hot and dense, then leads to a gravitational
singularity, at which all distances become zero, and temperatures and pressures become
infinite. The term Big Bang is used to refer to a hypothesized point in time when the
observed expansion of the Universe began. Based on measurements of the expansion of the
Universe, it is currently believed that the Universe has an age of 13.7 £ 0.2 billion years. It
should be longer if the expansion accelerates, as was supposed recently. N. Dauphas, basing
on the abundance ratio of uranium/thorium chondritic meteorites, estimated ([Dau05]) this
age as 14.5 £ 2 billion years.

In Cosmology (or, more exactly, Cosmography, the measurement of the Universe) there
are many ways to specify the distance between two points, because in the expanding Uni-
verse, the distances between comoving objects are constantly changing, and Earth-bound
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observers look back in time as they look out in distance. The unifying aspect is that all
distance measures somehow measure the separation between events on radial null trajec-
tories, i.e., trajectories of photons with terminate at the observer. In general, the cosmolog-
ical distance is a distance far beyond the boundaries of our Galaxy.

The geometry of the Universe is determined by several cosmological parameters: the
expansion parameter (or the scale factor) a, the Hubble constant H, the density p and
the critical density per; (the density required for the Universe to stop expansion and,
eventually, collapse back onto itself), the cosmological constant A, the curvature of the
Universe k. Many of these quantities are related under the assumptions of a given cosmo-
logical model. The most common cosmological models are closed and open Friedmann—
Lemaitre cosmological models and Einstein—de Sitter cosmological model (cf. also Ein-
stein cosmological model, de Sitter cosmological model, Eddington—Lemaitre cosmologi-
cal model). The Einstein—de Sitter cosmological model assumes a homogeneous, isotropic,
constant curvature Universe with zero cosmological constant A and pressure P. For con-
stant mass M of the Universe, H? = %nG,o, t = %H‘l, a = %(%TM)I/%Z/{ where

1,
Z is the absolute

G = 6.67 x 10" m3kg=1s72 is the gravitational constant, Rc = |k|
value of the radius of curvature, and t is the age of the Universe.

Expansion parameter a = a(t) is a scale factor, related the size of the Universe R =
R(1) at time ¢ to the size of the Universe Ry = R(#y) at time fo by R = aRy. Most
commonly in modern usage it is chosen to be dimensionless, with a(t,psr) = 1, where
topser 18 the present age of the Universe.

The Hubble constant H is the constant of proportionality between the speed of expan-
sion v and the size of the Universe R, i.e., v = H R. This equality is just the Hubble law

with the Hubble constant H = ‘Zl((lt)) . The current value of the Hubble constant, as estimated

recently, Hy = 71 & 4 kms~! Mpc™!, where the subscript O refers to the present epoch
because, in general, H changes with time. The Hubble time and the Hubble distance are
defined by ty = HLO and Dy = H(_() (here c is the speed of light), respectively.

The mass density p = pg in the present epoch and the value of the cosmological constant
A are dynamical properties of the Universe. They can be made into dimensionless density
parameters §2y and §£24 by 2y = %, 24 = 3/‘? A third density parameter §2g
measures the “curvature of space”, and ca;)l be defined by()the relation 2y + 2, +2r = 1.

These parameters totally determine the geometry of the Universe if it is homogeneous,
isotropic, and matter-dominated.

The velocity of a galaxy is measured by the Doppler effect, i.¢., the fact that light emitted
from a source is shifted in wavelength by the motion of the source. A relativistic form of

the Doppler shift exists for objects traveling very fast, and is given by )‘k"’% = %,
g

where Agyir 18 the emitted wavelength, and A pgr 1s the shifted (observed) wavelength. The

change in wavelength with respect to the source at rest is called redshift (if moving away),

and is denoted by the letter z. Relativistic redshift z for a particle is given by z = Bhobser —

Aemit
Aobser 1 — [erv
Aemit - c—v :
The cosmological redshift is directly related to the scale factora = a(¢): z+1 = %

Here a(t,pser) is the value of the scale factor at the time the light from the object is observed,
and a(t.mi;) 1s the value of the scale factor at the time it was emitted.
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o Hubble distance

The Hubble distance is a constant

Dy = Hi — 4220 Mpe ~ 1.3 x 10% m ~ 1.377 x 10'° light-years,
0

where ¢ is the speed of light, and Hy = 71 & 4 kms~! Mpc™! is the Hubble constant.

It is the distance from us to the cosmic light horizon which marks the edge of the visible
Universe, i.e., the radius of a sphere, centered upon the Earth which is approximately
13.7 billion light-years. It is often referred as lookback distance because astronomers,
who view distant objects, are “looking back” into the history of the Universe.

For small v/c or small distance d in the expanding Universe the velocity is proportional
to the distance, and all distance measures, for example, angular diameter distance,
luminosity distance, etc., converge. Taking the linear approximation, this reduces to
d ~ zDp, where z is the redshift. But this is true only for small redshifts.

o Comoving distance

In the standard Big Bang model are used comoving coordinates, where the spatial refer-
ence frame is attached to the average positions of galaxies. With this set of coordinates,
both time and expansion of the Universe can be ignored and the shape of space is seen
as a spatial hypersurface at constant cosmological time.

The comoving distance (or coordinate distance, cosmological distance, x) is a distance
in comoving coordinates between two points in space at a single cosmological time, i.e.,
the distance between two nearby objects in the Universe which remains constant with
epoch if the two objects are moving with the Hubble flow. It is the distance between them
which would be measured with rulers at the time they are being observed (the proper
distance) divided by the ratio of the scale factor of the Universe then to now. In other
words, it is the proper distance multiplied by (1 + z), where z is the redshift:

) allobser) )
deomov(X, y) = dpr()per(x7 == dproper(x7 y) - (1+2).
a(temir)
At the time fypser, 1.€., In the present epoch, @ = a(topser) = 1, and deomov = dpropers

i.e., the comoving distance between two nearby events (close in redshift or distance)

is the proper distance between them. In general, for a cosmological time ¢, it holds

d _ d]n‘oper
comov = Tq(1) -

The total line-of sight comoving distance D¢ from us to a distant object is computed
by integrating the infinitesimal d,n,y (X, y) contributions between nearby events along
the time ray from the time 7,,,;;, when the light from the object was emitted, to the time
tobsers when the object is observed:

Lobser cdt
D = / car
Lomit Cl(t)
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In terms of redshift, D¢ from us to a distant object is computed by integrating the in-
finitesimal d ,mov(x, ¥) contributions between nearby events along the radial ray from
z = 0 to the object: D¢ = Dy foz %, where Dy is the Hubble distance, and
E@) = (@2u(1+2)° + 21 +2)° + 24)2.

In a sense, the comoving distance is the fundamental distance measure in Cosmology
since all other distances can simply derived in terms of it.

e Proper distance

The proper distance (or physical distance, ordinary distance) is a distance between
two nearby events in the frame in which they happen at the same time. It is the distance
measured by a ruler at the time of observation. So, for a cosmological time ¢, it holds

Aproper(X, ¥) = deomov - a(t),

where deomoy 1S the comoving distance, and a(t) is the scale factor.

In the present epoch (i.e., at the time Z,pse,) it holds a = a(topser) = 1, and dppoper =
deomov- S0, the proper distance between two nearby events (i.e., close in redshift or dis-
tance) is the distance which we would measure locally between the events today if those
two points were locked into the Hubble flow.

e Proper motion distance

The proper motion distance (or transverse comoving distance, contemporary angular
diameter distance) Dy is a distance from us to a distant object, defined as the ratio of
the actual transverse velocity (in distance over time) of the object to its proper motion
(in radians per unit time). It is given by

Dy \/EQ_R sinh(/$2rDc/Dp),  forf2g > 0,
Dy =y Dc. for 2 =0,
DH\/LEQ_R < sin(y/12r[Dc/Dp),  for2r <0,

where Dy is the Hubble distance, and D¢ is the line-of-sight comoving distance. For
24 = 0, there is an analytic solution (z is the redshift):

2Q - 201 —2) — Q= 2u)V 1T+ 242)
Dy =Dy 3 .

25,0+ 2)
The proper motion distance Dy coincides with the line-of-sight comoving distance D¢
if and only if the curvature of the Universe is equal to zero. The comoving distance
between two events at the same redshift or distance but separated on the sky by some
angle 66 is equal to Dy 86.

The distance Dy is related to the luminosity distance Dy by Dy = DL and to the

14z
angular diameter distance D4 by Dy = (1 +2)Dy.
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e Luminosity distance

The luminosity distance D; is a distance from us to a distant object, defined by the
relationship between observed flux S and emitted luminosity L:

D_/L
L= S

This distance is related to the proper motion distance Dy by Dy, = (1 + z)Dyy, and
to the angular diameter distance D4 by D; = (1 + z)zD A, Where z is the redshift.

The luminosity distance does take into account the fact that the observed luminosity is
attenuated by two factors, the relativistic redshift and the Doppler shift of emission, each
of which contributes an (1 4 z) attenuation: Lpser = Lemiss

(1+2)%
The corrected luminosity distance D/, is defined by D} = IDTL.
Z

e Distance modulus

The distance modulus DM is defined by DM = 51In( 11()) [fc), where D is the luminos-
ity distance. The distance modulus is the difference between the absolute magnitude
and apparent magnitude of an astronomical object. Distance moduli are most commonly
used when expressing the distances to other galaxies. For example, the Large Magellanic
Cloud is at a distance modulus 18.5, the Andromeda Galaxy’s distance modulus is 24.5,

and the Virgo Cluster has the DM equal to 31.7.

e Angular diameter distance

The angular diameter distance (or angular size distance) D4 is a distance from us to
a distant object, defined as the ratio of an object’s physical transverse size to its angular
size (in radians). It is used to convert angular separations in telescope images into proper
separations at the source. It is special for not increasing indefinitely as z — o0 it turns
over at z ~ 1, and thereafter more distant objects actually appear larger in angular size.
Angular diameter distance is related to the proper motion distance Dy by Dy =

where z is the redshift.

Dy
1+z°
and to the luminosity distance D; by D4 = (Ig—g)z,
e Light-travel distance

The light-travel distance (or light-travel time distance) Dy is a distance from us to a
distant object, defined by Dy = c(tsbser — temir) Where typser 1s the time, when the object
was observed, and f.,,;; is the time, when the light from the object was emitted.

It is not a very useful distance, because it is very hard to determine #.,,;;, the age of the
Universe at the time of emission of the light which we see.

e Parallax distance

The parallax distance Dp is a distance from us to a distant object, defined from measur-
ing of parallaxes, i.e., its apparent changes of position in the sky caused by the motion
of the observer on the Earth around the Sun.

The cosmological parallax is measured as the difference in the angles of line of sight to
the object from two endpoints of the diameter of the orbit of the Earth which is used as
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a baseline. Given a baseline, the parallax ¢ — 8 depends on the distance, and knowing
this and the length of the baseline (two astronomical units AU, where AU 2 150 million
kilometers is the distance from the Earth to the Sun) one can compute the distance to the
star by the formula

Do — 2
PEL_p

where Dp is in parsecs, « and § are in arc-seconds.

In Astronomy, “parallax™ usually means the annual parallax p which is the difference
in the angles of a star seen from the Earth and from the Sun. Therefore the distance of a

star (in parsecs) is given by Dp = %

e Radar distance
The radar distance Dy, is a distance from us to a distant object, measured by a radar.

Radar typically consists of a high frequency radio pulse sent out for a short interval
of time. When it encounters a conducting object, sufficient energy is reflected back to
allow the radar system to detect it. Since radio waves travel in air at close to their speed
in vacuum, one can calculate the distance Dy of the detected object from the round-trip
time ¢ between the transmitted and received pulses as

where ¢ is the speed of light.

e Cosmological distance ladder

For measuring distances to astronomical objects, one uses a kind of “ladder” of different
methods; each method goes only to a limited distance, and each method which goes to a
larger distance builds on the data of the preceding methods.

The starting point is knowing the distance from the Earth to the Sun; this distance is
called one astronomical unit (AU), and is roughly 150 million kilometers. Copernicus
made the first, roughly accurate, solar system model, using data taken in ancient times,
in his famous De Revolutionibus (1543). Distances in inner solar system are measured
by bouncing radar signals off planets or asteroids, and measuring the time until the echo
is received. Modern models are very accurate.

The next step in the ladder consists of simple geometrical methods; with them, one
can go to a few hundred light-years. The distance to nearby stars can be determined by
their parallaxes: using Earth’s orbit as a baseline, the distances to stars are measured by
triangulation. This is accurate to about 1% at 50 light-years, 10% at 500 light-years.

Using data acquired by the geometrical methods, and adding photometry (i.e., measure-
ments of the brightness) and spectroscopy, one gets the next step in the ladder for stars
so far away that their parallaxes are not measurable yet. As the brightness decreases
proportionally to the square of the distance, if we know the absolute brightness of a star
(i.e., its in the standard reference distance 10 parsecs), and its apparent brightness (i.e.,
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the actual brightness which we observe on the Earth) we can say how far away the star
is. To define the absolute brightness, one can use a Hertzsprung—Russel diagram: stars
of similar type have similar brightnesses; thus, if we know a star’s type (from its color
and/or spectrum), we can find its distance by comparing its apparent with its absolute
magnitude; the latter derived from geometric parallaxes to nearby stars.

For even larger distances in the Universe, one need an additional element: standard
candles, i.e., several types of cosmological objects, for which one can determine their
absolute brightness without knowing their distances. Primary standard candles are
Cepheids variable stars. They periodically change their size and temperature. There is
a relationship between the brightness of these pulsating stars and the period of their
oscillations, and this relationship can be used to determine their absolute brightness.
Cepheids can be identified as far as in the Virgo Cluster (60 million light-years). Another
type of standard candle (secondary standard candles) which is brighter than Cepheids
and, hence, can be used to determine the distances to galaxies even hundreds of millions
of light-years away, are supernovae and entire galaxies.

For really large distances (several hundreds of millions of light-years or even several
billions of light-years), the cosmological redshift and the Hubble law are used. A com-
plication is that it is not clear what is meant by “distance” here, and there are several
types of distances used in Cosmology (luminosity distance, proper motion distance,
angular diameter distance, etc.).

Depending of situation, there is a large variety of special techniques to measure distances
in Cosmology, such as secular parallax distance, statistical parallax distance, Bondi
radar distance, kinematic distance, expansion parallax distance, light echo distance,
spectroscopic parallax distance, RR Lyrae distance, etc.

26.2. DISTANCES IN THEORY OF RELATIVITY

The Minkowski space-time (or Minkowski space, Lorentz space-time, flat space-time) is
the usual geometric setting for the Einstein Special Theory of Relativity. In this setting the
three ordinary dimensions of space are combined with a single dimension of time to form
a four-dimensional space-time R'3 in the absence of gravity.

Vectors in R are called four-vectors (or events). They can be written as (ct, x, v, 2),
where the first component is called time-like component (c is the speed of light, and ¢ is
the time) while the other three components are called spatial components. In spherical
coordinates, they can be written as (ct, r, 8, ¢). In the Theory of Relativity, the spherical
coordinates are a system of curvilinear coordinates (ct, r, 8, ¢), where c is the speed of
light, ¢ is the time, r is the radius from a point to the origin with 0 < r < o0, ¢ is
the azimuthal angle in the xy-plane from x-axis with 0 < ¢ < 27 (longitude), and 9 is
the polar angle from the z-axis with 0 < 6 < 7 (colatitude). Four-vectors are classified
according to the sign of their squared norm:

[vlI? = (v, v) = c*? — x? — y2 — 2%
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They are said to be time-like, space-like, and light-like (isotropic) if their squared norms
are positive, negative, or equal to zero, respectively.

The set of all light-like vectors forms the light cone. If the coordinate origin is singled
out, the space can be broken up into three domains: domains of absolute future and absolute
past, falling into the light cone, whose points are joined to the origin by time-like vectors
with positive or negative value of time coordinate, respectively, and domain of absolute
elsewhere, falling out of the light cone, whose points are joined to the origin by space-like
vectors.

A world line of an object is the sequence of events, that marks the time history of the
object. A world line traces out the path of a single point in the Minkowski space. It is
an one-dimensional curve, represented by the coordinates as a function of one parameter.
World line is a time-like curve in space-time, i.e., at any point its tangent vector is a time-
like four-vector. All world lines fall within the light cone, formed by light-like curves, i.e.,
the curves which tangent vectors are light-like four-vectors, corresponded to the motion of
light and other particles of zero rest mass.

World lines of particles at constant speed (equivalently, of free falling particles) are
called geodesics. In Minkowski space they are straight lines.

A geodesic in the Minkowski space, which joins two given events x and y, is the longest
curve among all world lines which join these two events. This follows from the inverse
triangle inequality

e+ xl =[xl + [yl

according to which a time-like broken line joining two events is shorter than the single
time-like geodesic joining them, i.e., the proper time of the particle moving freely from
X to y is greater than the proper time of any other particle whose world line joins these
events. This fact is usually called rwin paradox.

The space-time is a four-dimensional manifold which is the usual mathematical setting
for the Einstein General Theory of Relativity. Here the three spatial components with a
single time-like component form a four-dimensional space-time in the presence of gravity.
Gravity is equivalent to the geometric properties of space-time, and in the presence of
gravity the geometry of space-time is curved. Thus, the space-time is a four-dimensional
curved manifold for which the tangent space to any point is the Minkowski space, i.e., it is
a pseudo-Riemannian manifold of signature (1, 3).

In the General Theory of Relativity, gravity is described by the properties of the local
geometry of space-time. In particular, the gravitational field can be built out of a metric
tensor, a quantity describing geometrical properties space-time such as distance, area, and
angle. Matter is described by its stress-energy tensor, a quantity which contains the density
and pressure of matter. The strength of coupling between matter and gravity is determined
by the gravitational constant.

The Einstein field equation is an equation in the General Theory of Relativity, that de-
scribes how matter creates gravity and, conversely, how gravity affects matter. A solution
of the Einstein field equation is a certain Einstein metric appropriate for the given mass
and pressure distribution of the matter.

Black hole is a massive astrophysical object that is theorized to be created from the
collapse of a neutron star. The gravitational forces are so strong in a black hole that they
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overcome neutron degeneracy pressure and, roughly speaking, collapse to a point (known
as a singularity). Even light cannot escape the gravitational pull of a black hole within
the black hole’s so-called Schwarzschild radius (or gravitational radius). Uncharged, zero
angular momentum black holes are called Schwarzschild black holes. Uncharged non-zero
angular momentum black holes are called Kerr black holes. Non-spinning charged black
holes are called Reissner—Nordstrom black holes. Charged, spinning black holes are called
Kerr—Newman black holes. Corresponding metrics describe how space-time is curved by
matter in the presence of these black holes.
For an additional information see, for example, [Wein72].

e Minkowski metric

The Minkowski metric is a pseudo-Riemannian metric, defined on the Minkowski
space R'3, i.e., a four-dimensional real vector space which is considered as the pseudo-
Euclidean space of signature (1, 3). It is defined by its metric tensor
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The line element ds?, and the space-time interval element ds of this metric are given by
ds? = c*dr®> —dx* — dy2 —dz°.

In spherical coordinates (ct,r, 8, ¢), one has ds? = c%dr? — dr? — r24e? —
r2sin? 6 d¢?.
The pseudo-Euclidean space R*! of signature (3, 1) with the line element

ds® = —c*dr® +dx* + dy2 +dz?

can also be used as a space-time model of the Einstein Special Theory of Relativity.
The metric of signature (1, 3) is commonly used by people from a Particle Physics
background, whereas the metric of signature (3, 1) is typically used by people from
a Relativity background.

o Lorentz metric

A Lorentz metric (or Lorentzian metric) is a pseudo-Riemannian metric of signature
1, p).

A Lorentzian manifold is a manifold equipped with the Lorentz metric. The curved
space-time of the General Theory of Relativity can be modeled as a Lorentzian man-
ifold M of signature (1, 3). The Minkowski space R'> with the flat Minkowski metric
is a model of a flat Lorentzian manifold.

In the Lorentzian Geometry the following definition of distance is commonly used.
Given a rectifiable non-space-like curve y : [0, 1] — M in the space-time M, the
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length of the curve is defined as [(y) = fol —(‘fl—)t’, ‘2—);)511. For a space-like curve we set

{(y) = 0. Then the Lorentz distance between two points p, g € M is defined as

sup {(y)
vel

if p < g, i.e., if the set I' of future directed non-space-like curves from p to g is non-
empty. Otherwise, the Lorentz distance is equal to 0.

o Lorentz—Minkowski distance

The Lorentz—Minkowski distance is a distance on R" (or on C"), defined by

=2 =) — vl

i=2

e Galilean distance

The Galilean distance is a distance on R”, defined by
[x1 = y1l

if x| # y1, and by

\/(XZ - )’2)2 ot (- )‘n)z

if x; = y1. The space R” equipped with the Galilean distance is called Galilean space.
For n = 4, it is a mathematical setting for the space-time of classical mechanics ac-
cording to Galilei—-Newton in which the distance between two events taking place at the
points p and ¢ at the moments of time #; and £, is defined as the time interval |t} — 2],
while if these events take place at the same time, it is defined as the distance between
the points p and q.

o Einstein metric

In the General Theory of Relativity, described how space-time is curved by matter, the
Einstein metric is a solution to the Einstein field equation

giiR 3G
Rij — % + Agij = —5—

i.e., a metric tensor ((g;;)) of signature (1, 3), appropriate for the given mass and pres-
C . 2i; R . Lo

sure distribution of the matter. Here E;; = R;; — &”2 + Ag;; is the Einstein curvature

tensor, R;; is the Ricci curvature tensor, R is the Ricci scalar, A is the cosmological

constant, G is the gravitational constant, and T;; is a stress-energy tensor. Empty space

(vacuum) corresponds to the case of vanished Ricci tensor: R;; = 0.
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The static Einstein metric for a homogeneous and isotropic Universe is given by the line
element

d 2
ds? = —di? + (17';{2) + rz(d&2 + sin? 9d¢2),
—kr

where k is the curvature of the space-time, and the scale factor is equal to 1.

o de Sitter metric

The de Sitter metric is a maximally symmetric vacuum solution to the Einstein field
equation with a positive cosmological constant A, given by the line element

A
ds? — it + M 3 (dr? +r2d6? + r’sin’ 0 d¢?).

Without a cosmological constant (i.e., with A = 0), the most symmetric solution to the
Einstein field equation in the vacuum is the flat Minkowski metric.

The anti-de Sitter metric corresponds to the negative value of A.

o Schwarzschild metric

The Schwarzschild metric is a solution to the Einstein field equation for empty space
(vacuum) around a spherically symmetric mass distribution; this metric gives a repre-
sentation of an Universe around a black hole of a given mass, from which no energy
can be extracted. It was found by K. Schwarzschild in 1916, only a few months after
the publication of the Einstein field equation, and was the first exact solution of this
equation.

The line element of this metric is given by

1
ds? = (1 - r—g>c2 dt* — ———dr? — r?(d6* + sin® 6 d¢?),
r (-5

where r, = 2?2’" is the Schwarzschild radius, m is the mass of the black hole, and G is
the gravitational constant.

This solution is only valid for radii larger than rg, as at r = r, there is a coordinate sin-
gularity. This problem can be removed by a transformation to a different choice of space-
time coordinates, called Kruskal-Szekeres coordinates. As r — +00, the Schwarzschild
metric approaches the Minkowski metric.

o Kruskal-Szekeres metric

The Kruskal-Szekeres metric is a solution to the Einstein field equation for empty
space (vacuum) around a static spherically symmetric mass distribution, given by the
line element

2
ds? = 45(%) P (02 dr’? — dr/z) — rz(de2 +sin%6 d¢2),
r
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where r, = 2?{” is the Schwarzschild radius, m is the mass of the black hole, G is the

gravitational constant, R is a constant, and Kruskal-Szekeres coordinates (¢',r', 8, ¢)
are obtained from the spherical coordinates (ct, r, 8, ¢) by Kruskal-Szekeres transfor-
mation r'? — ct'’? = R2( — 1)@5, ‘r—l// = tanh(%).

In fact, the Kruskal-Szekeres metric is the Schwarzschild metric, written in Kruskal—
Szekeres coordinates. It shows, that the singularity of the space-time in the Schwarz-
schild metric at the Schwarzschild radius r, is not a real physical singularity.

i
ry
8

o Kottler metric

The Kottler metric is the unique spherically symmetric vacuum solution to the Einstein
field equation with a cosmological constant A. It is given by the line element

2m Ar? 2m Ar:\ 7!
d32:_<1——m_7”)d12+<1——m—7r) dr® + r?(d6? + sin2 6 dg?).

It is called also Schwarzschild—de Sitter metric for A > 0, and Schwarzschild-anti-
de Sitter metric for A < 0.

e Reissner—-Nordstrom metric

The Reissner—-Nordstrom metric is a solution to the Einstein field equation for empty
space (vacuum) around a spherically symmetric mass distribution in the presence of a
charge; this metric gives a representation of an Universe around a charged black hole.

The line element of this metric is given by
2 2 2 2N — !
ds? = (1 -2y e—2>dt2 = <1 -y e—2> dr? — r2(do* + sin? 0 dg?),
r r r r

where m is the mass of the hole, e is the charge (¢ < m), and we have used units with
the speed of light ¢ and the gravitational constant G equal to one.

o Kerr metric

The Kerr metric (or Kerr—Schild metric) is an exact solution to the Einstein field equa-
tion for empty space (vacuum) around an axial symmetric, rotating mass distribution;
this metric gives a representation of an Universe around a rotating black hole.

Its line element is given (in Boyer—Lindquist form) by
2 2 dr? 2 2 2\ win2 2 2 2mro o 2
ds’=p T—i—d@ + (r* +a%)sin® 0 dp* — dt* + —-(asin® 0 dp — dr)",
0

where ,02 =12 +4%cos?9, and A = r? — 2mr + a2. Here m is the mass of the black
hole, and a is the angular velocity as measured by a distant observer.

The generalization of the Kerr metric for charged black hole is known as the Kerr—
Newman metric. When a = 0, the Kerr metric becomes the Schwarzschild metric.
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o Kerr—Newman metric

The Kerr—-Newman metric is an exact, unique, and complete solution to the Einstein
field equation for empty space (vacuum) around an axial symmetric, rotating mass dis-
tribution in the presence of a charge; this metric gives a representation of an Universe
around a rotating charged black hole.

The line element of the exterior metric is given by

A in” 0
ds® = =S (dt —asin®0.dg)” + =
P

2
(2 +a*) dg —adi)’ + T ar? + p2ae?,

where ,o2 =r2+a%cos?0,and A = r? — 2mr + a® + &%. Here m is the mass of the
black hole, e is the charge, and « is the angular velocity. When e = 0, the Kerr-Newman
metric becomes the Kerr metric.

e Static isotropic metric

The static isotropic metric is a most general solution to the Einstein field equation for
empty space (vacuum); this metric can represent a static isotropic gravitational field. The
line element of this metric is given by

ds® = B(r)dt* — A(r)dr® — r*(d6* + sin 0 d¢?),
where B(r) and A(r) are arbitrary functions.

o Eddington-Robertson metric

The Eddington—Robertson metric is a generalization of the Schwarzschild metric
to assume that mass m, the gravitational constant G, and the density p are altered by
unknown dimensionless parameters «, 8, and y (all equal to 1 in the Einstein field equa-
tion).

The line element of this metric is given by

G G\? G
d52:<1—2a—m +2(ﬁ_ocy)<m—> +"')d12—<1+2ym—+"’)di’2
r r r
— r*(do? + sin® 0 d¢?).

e Janis—Newman—Wincour metric

The Janis—Newman—Wincour metric is the most general spherically symmetric static
and asymptotically flat solution to the Einstein field equation coupled to a massless
scalar field. It is given by the line element

2m\? 2m\ Y 2m\ 'Y
ds? — _(1 _ _m) dr? + (1 _ _’”> dr? + (1 - _m) r?(d6* + sin* 0 dg?),
yr vr yr

where m and y are constants. For y = 1 one obtains the Schwarzschild metric. In this
case the scalar field vanishes.
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¢ Robertson—Walker metric

The Robertson—-Walker metric (or Friedmann-Lemaitre—Robertson—Walker met-
ric) is a solution to the Einstein field equation for an isotropic and homogeneous Uni-
verse filled with a constant density and negligible pressure; this metric gives a represen-
tation of an Universe filled with a pressureless dust. The line element of this metric is
usually written in the spherical coordinates (ct,r, 0, ¢):

ds* = c*dr? — a(t)2 (W + i’z(dgz +sin’ 0 d¢2)>,
—kr

where a(t) is the scale factor, and k is the curvature of the space-time.

There exists other form for the line element:
ds? = 2 dr* — a(t)*(dr'* + 7F*(d0? + sin* 0 d¢?)),

where r’ gives the comoving distance from the observer, and 7 gives the proper mo-
tion distance, i.c., 7 = R¢sinh(+'/Rc), or v/, or Rc sin(r’/R¢) for negative, zero or
positive curvature, respectively, where Rc = 1/./]k| is the absolute value of the radius
of curvature.

o GCSS metric

A GCSS (i.e., general cylindrically symmetric stationary) metric is a solution to the
Einstein field equation, given by the line element

ds* = —fdt* +2kdtdg + " (dr® + dz*) + 1d¢?,

where the space-time is divided into two regions: the interior, with 0 < r < R, to a
cylindrical surface of radius R centered along z, and the exterior, with R < r < o0.
Here f, k, it and [ are functions only of r, and —o0 < £,z < 00,0 < ¢ < 2m, the
hypersurfaces ¢ = 0 and ¢ = 27 are identical.

o Lewis metric

The Lewis metric is a cylindrically symmetric stationary metric which is a solution
to the Einstein field equation for empty space (vacuum) in the exterior of a cylindrical
surface. The line element of this metric has the form

ds* = —fdi? + 2k dtdp — " (dr?® +dz?) +1d¢>?,

2 2 1,2 .
where f = ar "1 — ncz—ar”“, k=—-Af1="5%- A% f, et = r2 =D with A =
ot . .
“,’l Z 7 + b. The constants #, a, b, and ¢ can be either real, or complex, the corresponding

solutions belong to the Wey! class or Lewis class, respectively. In the last case, the metric
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coefficients become

f= r(a]2 — b%) cos(mInr)+ 2raib; sin(mlInr),
k = —r(a1ay — b1by)cos(mInr) — r(aiby 4+ azb;) sin(m Inr),
[ =—r (a% - b%) cos(m Inr) — 2rashy sin(m Inr),
e = pmr D),
where m, ay, az, by, and by are real constants with a1b> — axb; = 1. Such metrics form
a subclass of Kasner type metrics.

e Van Stockum metric

The van Stockum metric is a stationary cylindrically symmetric solution to the Einstein
field equation for empty space (vacuum) with a rigidly rotating infinitely long dust cylin-
der. The line element of this metric for the interior of the cylinder is given (in comoving,
i.e., corotating coordinates) by

ds®> = —di* +2ar*dt d¢ + e (dr2 + dzz) + r2(l — azrz) d¢?,

where 0 < r < R, R is the radius of the cylinder, and a is the angular velocity of
the dust particles. There are three vacuum exterior solutions (i.e., Lewis metrics) that
can be matched to the interior solution, depending on the mass per unit length of the
interior (the low mass case, the null case, and the ultrarelativistic case). Under some
conditions (for example, if ar > 1), the existence of closed time-like curves (and, hence,
time-travel) is allowed.

Levi-Civita metric

The Levi-Civita metric is a static cylindrically symmetric vacuum solution to the Ein-
stein field equation, with the line element, given (in the Weyl form) by

d52 — _r4(7 dt2 _{_r4a(2671)(d},2 +dZ2) _{_C72r2740 d¢v

where the constant C refers to the deficit angle, and the parameter o is mostly understood
in accordance with the Newtonian analogy of the Levi-Civita solution — the gravitational
field of an infinite uniform line-mass (infinite wire) with the linear mass density ¢. In
the case 0 = —%, C = 1 this metric can be transformed either into the Taub’s plane
symmetric metric, or into the Robinson—Trautman metric.

Weyl-Papapetrou metric

The Weyl-Papapetrou metric is a stationary axially symmetric solution to the Einstein
field equation, given by the line element

ds* = Fdt* — e"(dz? + dr*) — Ld¢? — 2K d¢ dt,

where F, K, L and u are functions only of r and z, LF + K? = rz, 00 < 1,7 < 00,
0<r<o0,and 0 < ¢ < 27, the hypersurfaces ¢ = 0 and ¢ — 2 are identical.
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e Bonnor dust metric

The Bonnor dust metric is a solution to the Einstein field equation, which is an axially
symmetric metric, describing a cloud of rigidly rotating dust particles moving along
circular geodesics about the z-axis in hypersurfaces of z = constant. The line element
of this metric is given by

ds> = dt* + (r* — n’)d¢* + 2ndt d¢ + e (dr® + dz°),

2hr? _ 112r2(r2—8z2)
rRFOH= RS’
R? = r? 4 72, and h is a rotation parameter. As R — 00, the metric coefficients tend to
Minkowski values.

where, in Bonnor’s comoving (i.e., corotating) coordinates, n =

o Weyl metric

The Weyl metric is a general static axially symmetric vacuum solution to the Einstein
field equation, given, in Weyl canonical coordinates, by the line element

ds? = e dt? — e (e (dr? + d2?) + r? d¢?),

. . 2h 1 ah 4 3% o
where A and p are functions only of r and z such that Fr +o- 5t = 0, 9 =
A2 Al I _ H . kDA
V(W W),andx—zrwg
e Zipoy—Voorhees metric

The Zipoy—Voorhees metric (or y-metric) is a Weyl metric, obtained for

e <R1 Ry — 2m>V o ((Rl + Ry + 2m)(R| + Ry — 2m)>V2
Ri+Ry+2m/) 4RI R) ’
where R12 =r24+(z—m)?, R% =r2 4+ (z +m)?. Here A corresponds to the Newtonian
potential of a line segment of mass density ¥ /2 and length 2m, symmetrically distributed
along the z-axis. The case y = 1 corresponds to the Schwarzschild metric, the cases
y > 1 (y < 1) correspond to an oblate (prolate) spheroid, and for y = O one obtains

the flat Minkowski space-time.

e Straight spinning string metric

The straight spinning string metric is given by the line element
ds* = —(dt —adp)® +dz> + dr® + k*r? de?,

where a and k > O are constants. It describes the space-time around a straight spinning
string. The constant k is related to the string’s mass-per-length & by k = 1 — 4u, and
the constant a is a measure for the string’s spin. For ¢ = 0 and k& = 1, one obtains the
Minkowski metric in cylindrical coordinates.
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o Tomimatsu—Sato metric

A Tomimatsu—Sato metric ([ToSa73]) is one of the metrics from an infinite family
of spinning mass solutions to the Einstein field equation, each of which has the form
& = U/W, where U and W are some polynomials. The simplest solution has U =
prat =D+ q>(y* = 1) = 2ipgxy(x® — y?), W = 2px(x> — 1) = 2igy(1 — y?), where
p* + g% = 1. The line element for this solution is given by

ds* = ¥ (adt + Bd¢)* — ri(y dt + 8 d¢)?) — (dz* +dr?),

pH(x? — y2)t
27,2 2 2 2\2 _ 2 2,2 2 2

where @ = p?(x* = 1)’ +¢*(1=y»)% B = =L W (P> = D(x* = y) +2(px + DW),

y = =2pq(x?=y%),8 = a+4((* =D+ 2+ D(px+ 1)), ¥ = ad—py = [U+W|%.

o Godel metric

The Godel metric is an exact solution to the Einstein field equation with cosmological
constant for a rotating Universe, given by the line element

ds? = —(di* + C(r)d¢)’ + D*(r)d¢? + dr? + d2%,

where (¢, r, ¢, z) are the usual cylindrical coordinates. The Gddel Universe is homoge-

neous if C(r) = % sinhz(%), D(r) = % sinh(mr), where m and £2 are constants. The

Godel Universe allows the possibility of closed time-like curves, and hence, time-travel.
The condition required to avoid such curves is m? > 4£2°.

e Plane wave metric

The plane wave metric is a vacuum solution to the Einstein field equation, given by the
line element

ds? =2dwdu +2f ) (x* + y?) du® — dx* — dy*.

It is conformally flat, and describes a pure radiation field. The space-time with this metric
is called plane gravitational wave.

o Wils metric

The Wils metric is a solution to the FEinstein field equation, given by the line element
ds?> =2xdwdu —2wdudx + (Zf(u)x()c2 + y2) — wz)du2 —dx? - dyz.
It is conformally flat, and describes a pure radiation field which is not a plane wave.

o Koutras—McIntosh metric

The Koutras—McIntosh metric is a solution to the Einstein field equation, given by the
line element

ds® = 2(ax + bydwdu —2awdudx + (2f(u)(ax + b)(x2 + yz) — azwz) du?®
—dx* — dyz.
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It is conformally flat and describes a pure radiation field which, in general, is not a plane
wave. It gives the plane wave metric for a = 0, b = 1, and the Wils metric fora = 1,
b=0.

o Edgar-Ludwig metric

The Edgar—Ludwig metric is a solution to the Einstein field equation, given by the line
element

ds* = 2(ax + b)dw du — 2aw du dx
+ (2f )ax + b)(gw)y + h(w) + x* +y*) — a’w?)du® — dx* — dy*.

This metric is a generalization of the Koutras—McIntosh metric. It is the most general
metric, describing a conformally flat pure radiation (or null fluid) field which, in general,
is not a plane wave. If plane waves are excluded, it has the form

ds? =2xdwdu — 2wdudx + (Zf(u)x(g(u)y + h(u) +x2+ y2) — wz)du2
— dx? —dyz.

¢ Bondi radiating metric

The Bondi radiating metric describes the asymptotic form of a radiating solution to the
Einstein field equation, given by the line element

1%
ds? = —(—ezﬁ - U2r2e2y>du2 — 2 dudr —2Ur%e® du do
r

+r?(e? d6? + e sin? 6 dg?),

where u is the retarded time, r is the luminosity distance, 0 < 8 < 7,0 < ¢ < 2m, and
U, V, B, y are functions of u, r, and 8. This metric is used in the theory of gravitation
waves.

o Taub-NUT de Sitter metric

The Taub—NUT de Sitter metric is a positive-definite (i.e., Riemannian) solution to the
Einstein field equation with a cosmological constant A, given by the line element

, rP—L* 5, L?A ,, P L?
ds® = dr —i—rz_Lz(dxp—{—cosqub) +

v (d6? +sin” 6 d¢?),

where A = r2 —2Mr + L>+ 4 (L*+2L%r% — 1r*), L and M are parameters, and 0, ¢,
Y are Euler angles. If A = 0, one obtains the Taub—NUT metric, using some regularity
conditions.
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e Eguchi-Hanson de Sitter metric

The Eguchi—-Hanson de Sitter metric is a positive-definite (i.e., Riemannian) solution
to the Einstein field equation with a cosmological constant A, given by the line element

4 A 2\ —1 2 4 A 2
ds2:<1—ff—4—%) dr2+%<l—il—4—%>(dw+coséd¢)2
r? 2 2 2
+Z(d9 +sin“ 6 d¢?),

where g is a parameter, and 8, ¢, ¥ are Euler angles. If A = 0, one obtains the Eguchi—
Hanson metric.

¢ Barriola—Vilenkin monopole metric

The Barriola—Vilenkin monopole metric is given by the line element
ds? = —dt* + dr* + k*r*(d0* + sin® 0 d¢?),

with a constant & < 1. There is a deficit solid angle and a singularity at r = O; the plane
t = constant, § = 7 has the geometry of a cone. This metric is an example of a conical
singularity; it can be used as a model for monopoles that might exist in the Universe (cf.
monopole metric).

A magnetic monopole is a hypothetical isolated magnetic pole, “a magnet with only one
pole”. It has been theorized that such things might exist in the form of tiny particles
similar to electrons or protons, forming from topological defects in a similar manner to
cosmic strings, but no such particle has ever been found.

o Bertotti-Robinson metric

The Bertotti—Robinson metric is a solution to the Einstein field equation in an Universe
with an uniform magnetic field. The line element of this metric is given by

ds* = Q*(—dr* + sin’ t dw® + d6* + sin® 0 d¢?),
where Q is aconstant, r € [0, 7], w € (—o0, +00),6 € [0, 7], and ¢ € [0, 27].

e Morris-Thorne metric
The Morris—Thorne metric is a wormhole solution to the Einstein field equation with
the line element

20 (w)

ds* =e 2 c?dr* —dw? — r(w)?(d6? + sin? 0 d¢?),

where w € [—o0, +00], ¥ is a function of w, that reaches some minimal value above
zero at some finite value of w, and @ (w) is a gravitational potential allowed by the
space-time geometry.
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A wormhole is a hypothetical “tube” in space connecting widely separated positions
in an Universe. All wormholes require exotic material with negative energy density, in
order to hold them open.

o Misner metric

The Misner metric is a metric, representing two black holes. Misner (1960) provided
a prescription for writing a metric connecting a pair of black holes, instantaneously at
rest, whose throats are connected by a wormhole. The line element of this metric has the
form

ds? = —dt* +y* (dx* + dy* + d2?),

where the conformal factor i is given by

W:Z 1 1

Wy SR /32 32 4 (2 + coth(pom)?

The parameter w1 is a measure of the ratio of mass to separation of the throats (equiva-
lently, a measure of the distance of a loop in the surface, passing through one throat and
out the other). The summation limit N tends to infinity.

The topology of the Minsler space-time is that of a pair of asymptotically flat sheets
connected by a number of Einstein—Rosen bridges. In the simplest case, the Misner
space can be considered as a two-dimensional space with topology R x $! in which
light progressively tilt as one moves forward in time, and has closed time-like curves
after certain point.

e Alcubierre metric

The Alcubierre metric is a solution to the Einstein field equation, representing warp
drive space-time in which the existence of closed time-like curves is allowed. What is
violated in this case is only the relativistic principle that a space-going traveler may move
with any velocity up to, but not including or overcoming, the speed of light. Alcubierre’s
construction corresponds to a wrap drive in that it causes space-time to contract in front
of spaceship bubble and expand behind, thus providing the spaceship with a velocity
that can be much greater than the speed of light relative to distant objects, while the
spaceship never locally travels faster than light.

The line element of this metric has the form
ds? = —di® + (dx — vf (r) di)’ + dy* + d2?,

with v = % the apparent velocity of the warp drive spaceship, x,(¢) the trajectory

of the spaceship along coordinate x, the radial coordinate being defined by r = ((x —
xs () +y2+2%) %, and f(r) an arbitrary function subjected to the boundary conditions
that f = 1 at r = O (the location of the spaceship), and f = O at infinity.
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e Rotating C-metric

The rotating C-metric is a solution to the Einstein-Maxwell equations, describing two
oppositely charged black holes, uniformly accelerating in opposite directions. The line
element of this metric has the form

dy? dx? -2 2 242 2)
— + —— 4+ kG X)dop — kA F(y)d R
Fo) T G (X)do (y)dt

ds? = A2 (x + y)_2<
where F(y) = —1 + y? —2mAy® + 2 A%y*, G(x) = | — x® — 2mAx> — 2 A%x* m,
e, and A are parameters related to the mass, charge and acceleration of the black holes,
and k is a constant fixed by regularity conditions.

o Kaluza—Klein metric

The Kaluza—Klein metric is a metric in the Kaluza—Klein model of 5-dimensional (in
general, multi-dimensional) space-time which sought to unify classical gravity and elec-
tromagnetism.

T. Kaluza (1919) obtained that if the Einstein theory of pure gravitation is extended
to a five-dimensional space-time, the Einstein field equations can be split into ordinary
four-dimensional gravitation tensor field, plus an extra vector field which is equivalent
to Maxwell’s equation for the electromagnetic field, plus an extra scalar field (known as
the “dilation”) which is equivalent to the massless Klein—-Gordon equation.

O.Klein (1926) assumed the fifth dimension to have circular topology, so that the fifth
coordinate is periodic, and extra dimension is curled up to an unobservable size. An
alternative proposal is that the extra dimension is (extra dimensions are) extended, and
the matter is trapped in four-dimensional submanifold. This approach has properties
similar to four-dimensional — all dimensions are extended and equal at the beginning,
and the signature has the form (p, 1).

In a model of large extra dimension, the fifth-dimensional metric of an Universe can be
written in Gaussian normal coordinates in the form

ds? = —(dxs)2 + }»Z(X5) Z Nap dxo dxg,
a.p

where nyg is the four-dimensional metric tensor, and 12 (xs) is the arbitrary function of
the fifth coordinate.

o Quantum metrics

A quantum metric is a general term used for a metric expected to describe the space-
time at quantum scales (of order Planck-length Ip). Extrapolating the predictions of
both, Quantum Mechanics and General Relativity, the metric structure of this space-time
is determined by vacuum fluctuations of very high energy (10'° GeV corresponding to
the Planck-mass m p) creating black holes with radii of order [ p. The space-time became
“quantum foam”: violent warping and turbulence. It looses smooth continuous structure
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(apparent macroscopically) of a Riemannian manifold, to become discrete, fractal, non-
differentiable: breakdown at Ip of the functional integral in the classical field equations.

Examples of quantum metric spaces are given by: Rieffel’s compact quantum metric
space, Fubini-Study metric on quantum states, statistical geometry of fuzzy lumps
([ReRo01]) and quantization of the metric cone in [[sKuPe90].



Part VI



Chapter 27

Length Measures and Scales

Here we give selected information on most important length units and present, in length
terms, a list of interesting objects.

27.1. LENGTH SCALES

The main length measure systems are: Metric, Imperial (British and American), Japanese,
Thai, Chinese Imperial, Old Russian, Ancient Roman, Ancient Greek, Biblical, Astronom-
ical, Nautical, and Typographical.

There are many other specialized length scales; for example, to measure cloth, shoe size,
gauges (as interior diameters of shotguns, wires, jewelry rings), sizes for abrasive grit, sheet
metal thickness, etc. Also, many units express relative or reciprocal distances.

e International Metric System

The International Metric System (or SI, short for Systeme International) is a mod-
ernized version of the metric system of units, established by an international treaty (the
Treaty of the Meter from 20 May 1[875), which provides a logical and interconnected
framework for all measurements in science, industry and commerce. The system is built
on a foundation consisting of following seven SI base units, assumed to be mutually
independent:

[. length: meter (m); it is equal to the distance traveled by light in a vacuum in
1/299792458 of a second; 2. time: second (s); 3. mass: kilogram (kg); 4. temperature:
kelvin (K); 5. electric current: ampere (A); 6. luminous intensity: candela (cd); 7. amount
of substance: mole (mol).

Originally, on 26 March 1791, the métre (French for meter) was defined as m of
the distance from the North pole to the equator along the meridian that passes through
Paris. In 1799 the standard of métre became a meter-long platinum—iridium bar kept in
Seévres, a town outside Paris, for people to come and compare their rulers with. (The
metric system, introduced in 1793, was so unpopular that Napoleon was forced to aban-
don it and France returned to the métre only in 1837.) In 1960, the meter was officially
defined in terms of wavelength.

e Metrication

The metrication is ongoing (especially, in US and UK) process of conversion to Inter-
national Metric System SI. Officially, only US, Liberia and Muanmar do not switched
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to SI. For example, US uses only miles for road distance signs (milestones). The alti-
tudes in aviation are usually described in feet; in shipping, nautical miles and knots are
used.

Hard metric means designing in the metric measures from the start and conformation,
where appropriate, to internationally recognized sizes and designs.

Soft metric means multiplying an inch-pound number by a metric conversion factor and
rounding it to an appropriate level of precision; so, the soft converted products do not
change size. American Metric System consists of converting traditional units to embrace
the uniform base 10 method that the Metric System uses. Such SI-Imperial hybrid units,
used in soft metrication, are, for example, kyloyard (914.4 m), kylofoot (304.8 m), mil
(24.5 micron), and microinch (or min, 25.4 nm).

o Meter-related terms
We present this large family of terms by following typical examples.

Meter: besides the unit of length, this term is used in poetry, music and for any of various
measuring instruments.

Metrometer: in Medicine, an instrument measuring the size of the womb; the same term
is used for a computer tool analyzing French Verse.

Metering: an equivalent term for a measuring.

Metrology: scientific study of measurement.

Metrosophy: a Cosmology based on strict number correspondences.
Metronomy: measurement of time by an instrument.

Allometry: the study of the change of proportions of various parts of an organism as a
consequence of growth; archeometry: science of exact measuring referring remote past,
and so on.

e Metric length measures
kilometer (km) = 1000 meters = 10° m;
meter (m) = 10 decimeters = 10° m;
decimeter (dm) = 10 centimeters = 10~ m;
centimeter (cm) = 10 millimeters = 1072 m;
millimeter (mm) = 1000 micrometers = 1073 m;
micrometer (micron) = 1000 nanometers = 1070 m;
nanometer (nm) = 10 angstréms = 1079 m.

The lengths 10%m,t = —8,—7,...,—1,1,...,7,8, are given by prefixes: yocto-,
zepto-, atto-, fempto-, pico-, nano-, micro-, milli-, kilo-, mega-, giga-, tera-, peta-, exa-,
zetta-, yotta-, respectively.

e Imperial length measures

The Imperial length measures (as slightly adjusted by international agreement of July
1, 1959) are:
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league = 3 miles;

(US survey) mile = 5280 feet ~ 1609.347 m;

international mile = 1609.344 m;

yard = 3 feet = 0.9144 m;

foot = 12 inches = 0.3048 m;

inch = 2.54 cm (for firearms, caliber);

line = % inch;

mickey = ﬁ inch;

mil (British thou) = ﬁ inch (mil is also an angle measure % 2 (0.001 radian).

The following are old measures: barleycorn = % inch; digit = % inches; palm = 3

inches; hand = 4 inches; shaftment = 6 inches; s‘ban = 9 inches; cubit = 18 inches.

In addition, Surveyor’s Chain measures are: furlong = 10 chains = é mile; chain =
100 links = 66 feet; rope = 20 feet; rod (or pole) = 16.5 feet; link = 7.92 inches.
Mile, furlong and fathom (6 feet) come from the slightly shorter Greco-Roman milos
(milliare), stadion and orguia, mentioned in the New Testament.

Prototypical Biblical measures were: cubit and its multiples by 4, %, % and 21—4 called
fathom, span, palm and digit, respectively. But the basic length of the Biblical cubit is
unknown; it is estimated now as about 17.6 inches for the common (used in commerce)
cubit and 20-22 inches for the sacred one (used for building). The Talmudic cubit is
56.02 cm, i.e., slightly longer than 22 inches.

Accordingly to http://en.wikipedia.org/wiki/List_of_Strange_units_of_measurement,
an old unit, called distance and equal to = 221763 inches (about 5633 m) has the
following strange definition: it is equal to 3 miles + 3 furlongs + 9 chains + 3 rods + 9
feet + 9 shaftements + 9 hands + 9 barleycorns.

For measuring cloth, old measures are used: bolt = 40 yards; ell = % yard; goad = %
yard; quarter (or span) = % yard; finger = é yard; nail = % yard.

Nautical length units

The nautical length units (also used in aerial navigation) are:
sea league = 3 sea (nautical) miles;

nautical mile = 1852 m;

geographical mile ~ 1855 m (the average distance on the Earth’s surface, represented
by one minute of latitude);

cable = 120 fathoms = 720 feet = 219.456 m;
short cable = 11—0 nautical mile ~ 608 feet;
fathom = 6 feet.

ISO paper sizes

In the widely used ISO paper size system, the height-to-width ratio of all pages is the
Lichtenberg ratio, i.e., /2. The system consists of formats An, Bn and (used for en-
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velopes) Cn with 0 < n < 10, having widths 2’%’%, 272 and 2_%_%, respectively.
Above measures are in meters; so, the area of An is 277 square meter. They are rounded
and expressed usually in millimeters; for example, format A4 is 210 x 297 and format
B7 (used also for EU and US passports) is 88 x 125.

e Typographical length units
The ATA system (British and American) uses:
line = 5 inch ~ 2.117 x 1073 m;
agate line = 1]—4 inch;
pica[PostScript] = 2 lines;
point[PostScript] (or agate[Adobe]) = % line = 100 gutenbergs;
pica = 12 points & 1.99925 lines ~ 4.218 x 1073 m;
point=5= inch = 20 twips &~ 3.515 x 10~ m;
pixel = 15 twips;
kyu (or Q) 2.5 x 1073 m =~ 14.173 twips;
twip (short for twentieth of a points) ~ 1.764 x 107> m.
The Didot system (European) uses:
cicero = 12 Didot points ~ 1.07 pica;
Didot point ~ 21.397 twips & 3.761 x 10~* m.

e Very small length units
Angstrom (A) = 10719 m;

angstrom star (or Bearden unit): A* ~ 1.0000148 angstrom (used, from 1965, to mea-
sure wavelengths of X-rays and distances between atoms in crystals);

X unit (or Siegbahn unit) ~ 1.0021 x 10713 m (used formerly to measure wavelength of
X-rays and gamma-rays);

bohr (the atomic unit of length): «g, the mean radius, &~ 5.291772 x 10~ m, of orbit
of the electron of an hydrogen atom (in the Bohr model);

n
i > me
m, where 4 is the reduced Planck’s constant (or Dirac’s constant), c is the speed of light,
and ¢ ~ % is the fine-structure constant,

reduced Compton wavelength (i.e. ) for electron mass m,: Ac = aoo 3.862x 10713

classical electron radius: r, = ahe = aag ~ 2.81794 x 1075 m

Planck length (the smallest physical length): [p = ./ EL—? ~ 1.6162x1073% m, where G is
the Newton universal gravitational constant. It is the reduced Compton wavelength and
also half of the Schwarzschild radius, for the Plank mass mp = / %‘ 7~ 2.176 x 1078
kg. Planck time is t) = clp ~ 5.4 x 107%s.

In fact, 10331p a2 1 US mile, 10¥Tp ~ 54 s and 10°mp ~ 21.76 kg ~ 1 (classical)
talent. L. Cottrell (http://planck.com/humanscale.htm) proposed a “postmetric”” human-
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scale adaptation of Planck units system based on above three units, calling them (Planck)
mile, minute, and talent.

o Astronomical length units
The Hubble distance (the edge of the cosmic light horizon) is Dy = HLO ~ 4.22 giga-

parsec & 13.7 light-Gyr (used to measure, as percents of Dy, distances d > % mega-

z+1)2-1
(z+1)24+1

parsec in terms of redshift z: d = zDpy ifz < 1, and d = Dy, otherwise);

gigaparsec = 10° megaparsec;

hubble (or light-gigayear, light-Gyr, light-Ga) = 10° (billion) light-years ~ 306.595
megaparsec;

megaparsec = 10% kiloparsec & 3.262 MLY;

MLY = 10% (million) light-years;

kiloparsec = 10° parsecs;

parsec = S8 AU~ 3.261634 light-years = 3.08568 x 10'® m (the distance from
an imaginary star, when lines drawn from it to both, the Earth and the Sun, form the
maximum angle, i.e., parallax, of one second);

light-year ~ 9.46073 x 1013 m & 5.2595 x 10° light-minutes &~ 7 x 107 light-seconds
(the distance light travels in vacuum in a year; used to measure interstellar distances);

spat (used formerly) = 1012 m ~ 6.6846 AU;

astronomical unit (AU) = 1.49597871 x 10! m a 8.32 light-minutes (the average
distance between the Earth and the Sun; used to measure distances within the solar
system);

light-second = 2.998 x 108 m;

picoparsec = 30.86 km (cf. other funny units such as microcentury ~ 52.5 minutes,
usual length of lectures, and nanocentury ~ m seconds).

27.2. ORDERS OF MAGNITUDE FOR LENGTH

In this section we present a selection of orders of length magnitudes, expressed in meters.

1.616 x 1073 Planck length (smallest possible physical length): probably, the “quantum
foam” (violent warping and turbulence of space-time, no smooth spatial geometry); the
dominant structures are little (multiply-connected) wormholes and bubbles popping into
existence and back out of it;

1073%: length of a putative string: M-Theory suppose that all forces and all 25 elemen-
tary particles come by vibration of such strings (which smooth quantum foam on sub-
Planck distances) and hope to unify Quantum Mechanics and General Relativity;

107% = | yoctometer;

10721 = | zeptometer;

10~18 = 1 attometer: weak nuclear force range, size of a quark;

1015 = 1 femtometer (formerly, fermi);
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1.3 x 10715; strong nuclear force range, medium-sized nucleus;

10~12 = 1 picometer (formerly, bicron or stigma): distance between atomic nuclei in a
White Dwarf star;

10~ '1: wavelength of hardest (shortest) X-rays and largest wavelength of gamma rays;

5 x 107 !: diameter of the smallest (hydrogen H) atom; 1.5 x 107 10: diameter of the
smallest (hydrogen H>) molecule;

10719 = 1 angstrom: diameter of a typical atom, limit of resolution of the electron
microscope;

1.54 x 10719: length of a typical covalent bond (C-C);

10~% = 1 nanometer: diameter of typical molecule;

2 x 1077: diameter of the DNA helix:

10~8: wavelengths of softest X-rays and most extreme ultraviolet;

1.1 x 10~8: diameter of prion (smallest self-replicating biological entity);

9 x 1078: the smallest feature of computer chip in 2005, human immunodeficiency
virus, HIV; in general, known viruses range from 2 x 108 (parvovirus B-19) to 8 x 1077
(Mimivirus);

1077 size of chromosomes, maximum size of a particle that can fit through a surgical
mask;

2 x 1077: limit of resolution of the light microscope;

3.8 — 7.4 x 1077 wavelength of visible (to humans) light, i.e., the color range of violet
through red;

10~° = 1 micrometer (formerly, micron);

10=% — 107> diameter of a typical bacterium; in general, known (in non-dormant state)
bacteria range from 1.5 x 10~7 (Micoplasma genitalium: “minimal cell”) to 7 x 1074
(Thiomargarita of Namibia);

7 x 1075: diameter of the nucleus of a typical eukaryotic cell;

8 x 107%: mean width of human hair (ranges from 1.8 x 107 to 18 x 107%);

1073: typical size of (a fog, mist, or cloud) water droplet;

1075, 1.5 x 1075, and 2 x 10~ widths of cotton, silk, and wool fibers;

5 x 10~*: diameter of a human ovum, MEMS micro-engine;

1073 = 1 millimeter: farthest infrared wavelength;

5 x 1073 length of average red ant; in general, insects range from 1.7 x 1074
(Megaphragma caribea) to 3.6 x 10~! (Pharnacia kirbyi);

8.9 x 1073: Schwarzschild radius (ZCGQ’": the one below which mass m collapses into a
black hole) of the Earth;

1072 = [ centimeter;

107! = 1 decimeter: wavelengths of lowest microwave and highest UHF radio fre-
quency, 3 GHz;

1 meter: wavelength of lowest UHF and highest VHF radio frequency, 300 MHz;

1.435: standard gauge of a railway track;

2.77-3.44: wavelength of the broadcast radio FM band, 108-87 MHz;

5.5 and 30.1: height of the tallest animal, the giraffe, and length of a blue whale, the
largest animal;

10 = 1 decameter: wavelength of the lowest VHF and highest shortwave radio fre-
quency, 30 MHz;
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26: highest measured ocean wave;

100 = 1 hectometer: wavelength of the lowest shortwave radio frequency and highest
medium wave radio frequency, 3 MHz;

112.8: height of the world’s tallest tree, a Coast Redwood;

137, 300, 508, and 541: heights of the Great Pyramid of Giza, of the Eiffel Tower, of
Taipei 101 Tower (tallest in 2005), and of the planned Freedom Tower at the World Trade
Center site;

187-555: wavelength of the broadcast radio AM band, 1600540 kHz;

340: distance which sound travels in air in one second;

10° = 1 kilometer:

2.95 x 10°: Schwarzschild radius of the Sun;

3.79 x 10°: mean depth of oceans;

4 x 103: the radius of the asteroid that may have killed off the dinosaurs;

10*: wavelength of the lowest medium wave radio frequency, 300 kHz;

8.8 x 10% and 10.9 x 10%: height of the highest mountain, Mount Everest and depth of
the Mindanao Trench;

5 x 10* = 50 km: the maximal distance on which the light of a match can be seen (at
least 10 photons arrive on the retina during 0.1 s);

1.11 x 10° = 111 km: one degree of latitude on the Earth;

10°-10°%: range of voice frequency;

1.69 x 10%: length of Delaware Water Supply Tunnel (New York), the world’s longest
tunnel;

2 x 10%: wavelength of tsunami;

10° = 1 megameter;

3.48 x 10%: diameter of the Moon;

5 x 10%: diameter of LHS 4033, the smallest known White Dwarf star;

6.4 x 10° and 6.65 x 10°: length of the Great Wall of China and length of Nile river;

1.28 x 107 and 4.01 x 107: equatorial diameter of the Earth and length of the Earth’s
equator;

3.84 x 108: Moon’s orbital distance from the Earth;

10° = 1 gigameter;

1.39 x 10°: diameter of the Sun;

5.8 x 10'9: orbital distance of Mercury;

1.496 x 10! (1 astronomical unit, AU): mean distance between the Earth and the Sun
(orbital distance of the Earth);

5.7 x 10': length of longest observed comet tail (Hyakutake, 1996);

102 = 1 terameter (formerly, spat);

2.1 x 1012 & 7 AU: diameter of the largest known supergiant star, KY Cygni;

4.5 x 10'2 ~ 30 AU: orbital distance of Neptune;

30-50 AU: distance from the Sun to Kuiper asteroid belt; the diameter of NGC 4061,
the largest known black hole, is within 30-270 AU;

108 =1 petameter;

50000-100000 AU: distance from the Sun to Oort cloud (supposed spherical cloud of
comets);
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3.99 x 106 = 266715 AU = 4.22 light-years = 1.3 parsec: distance to Proxima
Centauri, the nearest star;

1018 = 1 exameter;

1.57 x 10'8 & 50.9 parsec: distance to supernova 1987A;

9.46 x 10'® ~ 306.6 parsec & 10° light-years: diameter of the galactic disk of our Milky
Way galaxy;

2.62 x 102 ~ 8.5 kiloparsec (2.77 x 10* light-years): the distance from the Sun to the
Galactic Center (in Sagittarius A™);

3.98 x 10?2V & 12.9 kiloparsec: distance to Canis Major Dwarf, the nearest galaxy;

102! = 1 zettameter;

2.23 x 10%? = 725 kiloparsec: distance to Andromeda Nebula, the closest large galaxy;

5 x 10?2 = 1.6 megaparsec: diameter of Local Group of galaxies;

5.7 x 10?* = 60 MLY: distance to Virgo cluster, the nearest major cluster (which dom-
inates the Local Supercluster and where was found the first dark matter galaxy and first
extragalactic stars);

10% =1 yottameter;

2 x 10%* = 60 megaparsec: diameter of the Local (or Virgo) Supercluster;

2.36 x 10%* = 250 MLY: distance to the Great Attractor (a gravitational anomaly in the
Local Supercluster);

200 MLY: width of the Great Wall and Lyman alpha blobs, largest observed superstruc-
tures in the Universe (the space looks uniform on larger scales);

12080 MLY = 3704 megaparsec: distance to the farthest known quasar SDSS J1148+
5251 (redshift 6.43, while 6.5 is supposed to be the “wall of invisibility” for visible light);
13230 MLY: distance to the farthest known galaxy Abell 1835 IR1916 (redshift 10);

1.3x 10%° = 13.7 light-Gyr = 4.22 gigaparsec: the distance (estimated by the Wilkinson
Microwave Anisotropy Probe) that cosmic background radiation has traveled since the Big
Bang (Hubble radius Dy = f‘l—"(), the cosmic light horizon, age of Universe);

7.4 x 10?6 = 78000 MLY: the present (comoving) distance to the edge of the observable
Universe (the size of observable Universe is larger than Hubble radius, since Universe is
expanding);

The hypothesis of parallel universes estimate that one can find another identical copy of
our Universe within the distance 101" m.



Chapter 28

Non-Mathematical and Figurative Meaning of
Distance

In this chapter we present selected practical distances, used in daily life and work outside
of science, as well as examples of distances used as a metaphor for remoteness (the fact of
being apart, being unknown, coldness of manner, etc.).

28.1. REMOTENESS-RELATED DISTANCES

e Approximative human-scale distances

The arm’s length is a distance (about 0.7 m, i.e., within personal distance) discour-
aging familiarity or conflict (analogs: Italian braccio, Turkish pik, and Old Russian
sazhen). The reach distance is the difference between maximum reach and arm’s length
distance.

The shouting distance is short, easily reachable distance. The spitting distance is a
very close distance.

The striking distance is the distance through which an object can be reached by striking.
The stone’s throw is a distance about 25 fathoms (46 m).
The hailing distance is the distance within which the human voice can be heard.

The walking distance is the distance normally (depending on the context) reachable by
walking. For example, some UK high schools define 2 and 3 miles as statutory walking
distance for children before and after 11 years.

o Distances between people

In [Hall69], four interpersonal bodily distances were introduced: the intimate distance
for embracing or whispering (15—45 cm), the personal-casual distance tfor conversa-
tions among good friends (45—120 cm), the social-consultive distance for conversations
among acquaintances (1.2-3.6 m), and the public distance used for public speaking (over
3.6 m). What distance is appropriate for a given social situation depends on culture and
personal preference. For example, under Islamic law, proximity (being in the same room
or secluded place) between a man and a woman is permitted only in the presence of their
mahram (a spouse or anybody from the same sex or pre-puberty one from the opposite
sex). For an average westerner, personal space is about 70 cm in front, 40 cm behind and
60 cm on either side.

350



Chapter 28: Non-Mathematical and Figurative Meaning of Distance [ e Emotional distance] 351

Distancing behavior of people can be measured, for example, by stop distance (when
the subject stops approach since she/he begins to feel uncomfortable), or by quotient of
approach, i.e., the percentage of moves made that reduce the interpersonal distance to
all moves made.

The people angular distance in a posture is the spatial orientation, measured in de-
grees, of an individual’s shoulders relative to those of another; the position of a speaker’s
upper body in relation to a listener’s (for example, facing or angled away); the degree of
body alignment between a speaker and a listener as measured in the coronal (vertical)
plane which divides the body into front and back. This distance reveals how one feels
about people nearby: the upper body unwittingly angles away from disliked persons and
during disagreement.

¢ Emotional distance

The emotional distance (or psychic distance) is the degree of emotional detachment
toward a person, group of people or events; indifference by personal withdrawal, reserve.

Bogardus Social Distance Scale measures, in fact, not social but this distance; it offers
following eight response items: would marry, would have as a guest in household, would
have as next door neighbor, would have in neighborhood, would keep in the same town,
would keep out of my town, would exile, would kill. Dodd and Nehnevasja attached, in
1954, increasing distances 10 meters, 0 < t < 7, to 8 levels of Bogardus scale.

The propinquity effect is the tendency for people to get emotionally involved, as to
form friendships or romantic relationships, with those who have higher propinquity
(physical/psychological proximity) with them, i.e., whom they encounter often. Walm-
sley proposed that emotional involvement decreases as d =3 with increasing subjective
distance d.

o Social distance

In Sociology, the social distance is the extent to which individuals or groups are re-
moved from or excluded from participating in one another’s lives; a degree of under-
standing and intimacy which characterize personal and social relations generally. This
notion was originated by G. Simmel in 1903; in his view, forms are the stable outcomes
of distances interposed between subject and object (which in turn is a division of self).

Bogardus Social Distance Scale (cf. emotional distance above) is scored so that the
responses for each ethnic/racial group are averaged across all respondents which yields
a RDQ (racial distance quotient) ranging from 1.00 to 8.00.

An example of relevant models: [Aker97] defines an agent x as a pair (x1, x2) of num-
bers, where x| represents the initial, i.e., inherited, social position, and the position ex-
pected to be acquired, x»>. The agent x chooses the value x; so as to maximize

[4
xi =y + x2— )’

fo+> Uy
Y#X
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where e, h, g are parameters, f(x1) represents the intrinsic value of x, and |x; — y1/,
|x2 — y1| are inherited and acquired social distances of x from any agent y (with the
social position y1) of the given society.

¢ Rummel sociocultural distances

R.J. Rummel defined ([Rumm?76]) the main sociocultural distances between two persons
as follows.

1. Personal distance: one at which people begin to encroach on each other’s territory
of personal space.

2. Psychological distance: perceived difference in motivation, temperaments, abilities,
moods, and states (subsuming intellectual distance).

3. Interests-distance: perceived difference in wants, means, and goals (including ideo-
logical distance on socio-political programs).

4. Affine distance: degree of sympathy, liking or affection between two.

5. Social attributes distance: differences in income, education, race, sex, occupation,
etc.

6. Status-distance: differences in wealth, power, and prestige (including power dis-
tance).

7. Class-distance: degree to which one person is in general authoritatively superordi-
nate to the other.

8. Cultural distance: differences in meanings, values and norms reflected in differences
in philosophy-religion, science, ethics-law, language, and fine arts.

o Cultural distance

In [KoSi88], the cultural distance between countries x = (x1,...,xs)and y = (y1,
., ¥5) (usually, US) is derived as the following composite index

5

(xi — yi)?
2y

i=1

where V; is the variance of the index i, and indexes are ([Hofs80]):

1. Power distance;

2. Uncertainty avoidance (the extent to which the members of a culture feel threatened
by uncertain or unknown situations);

Individualism versus collectivism;

Masculinity versus femininity;

Confucian dynamism (ranges from long-term to short-term orientation).

AW

The power distance above, measures the extent to which the less powerful members of
institutions and organizations within a country expect and accept that power is distrib-
uted unequally, i.e., how much a culture has respect for authority. For example, Latin
Europe and Japan fall in the middle range.

o Effective trade distance

The effective trade distance between countries x and y with populations xi, ..., X
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and y1, ..., y, of their main agglomerations is defined in [HeMa02] as

< X, },/ dr)r
t] ’
X )
1iem Ziism ¥ Sy isia

where d;; is bilateral distance (in kilometers) of corresponding agglomerations, and r
measures the sensitivity of trade flows to d;;.

As an internal distance of a country, measuring the average distance between produc-

ers and consumers, [HeMa02] proposes .67, /4244,

e Technology distances

The technological distance between two firms is a distance (usually, x%- or cosine
distance) between their patent portfolio, i.e., vectors of the number of patents granted
in (usually, 36) technological sub-categories. Another measures are based on the number
of patent citations, co-authorship networks etc.

Granstrand’s cognitive distance between two firms is the Steinhaus distance £ (ALB) _

w(AUBY —
11— zgﬁggg between their technological profiles (sets of ideas) A and B seen as subsets

of a measure space (2, A, 1).

Economic model of O.Olsson defines the metric space (7, d) of all ideas (as in human
thinking), I C R”%, with some intellectual distance d. The closed, bounded and con-
nected knowledge set A; C I extends with time ¢. New elements are, normally, convex
combinations of previous ones: innovations within gradual technological progress. Ex-
ceptionally, breakthroughs (Kuhn’s paradigm shifts) occur.

Patel’s economic distance between two countries is the time (in years) for a lagging
country to catch up to the same per capita income level as the present one of an advanced
country. Fukuchi—Satoh’s technology distance between countries is the time (in years)
when a lagging country realizes a similar technical structure as advanced one has now.
The basic assumption of the popular Convergence Hypothesis is that the technology
distance between two countries is smaller than the economic one.

In Production Economics, a technology is modeled as a set of pairs (x, y), where x € R}
is an input vector, y € R} is an output vector, and x can produce y. Such set 7 should
satisfy standard economical regularity conditions. The technology directional distance
function of input/output x, y toward (projected and evaluated) direction (—dy, dy) €
R™” x R is sup{k > 0: ((x — kdy), (y +kd,)) € T}. The Shephard output distance
function is sup{k > 0: (x, ']‘C—’) € T}. The frontier fy(x) is the maximum feasible output
given input x in a given system or year s. The distance to frontier of a production point
(y = gs(x),x) is f}zg ; The Malmaquist index measuring TFP (total factor productivity)
change between periods s, s” (or comparing to another unit in the same period) is ‘;z gi
The term distance to frontier is also used for the inverse of TFP in a given industr‘j} (or
of GDP per worker in a given country) relative to the existing maximum (the frontier,

usually, US).
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e Death of Distance

Death of Distance is the title of the influential book [CairO1] arguing that the telecom-
munication revolution (the Internet, mobile telephones, digital television, etc.) initiated
the “death of distance” implying fundamental changes: three-shift work, lower taxes,
prominence of English, outsourcing, new ways of government control and citizens com-
munication, etc. The proportion of long-distance relationships in foreign relations in-
creased. But the “death of distance” allows also both, management-at-a-distance and
concentration of elites within the “latte belt”.

Similarly (see [Ferg03]), the steam-powered ships and the telegraph (as railroads before
and cars later) led, via falling transportation costs, to the “annihilation of distance” in
the 19th and 20th centuries. Further in the past, archaeological evidence points out the
appearance of systematic long-distance object exchange (/140000 years ago), and the
innovation of projectile weapons (40000 years ago) which allowed humans to kill large
game (and other humans) from safe distance.

However, modern technology eclipsed distance only in that the time to reach a destina-
tion has shrunk. In fact, the distance (cultural, political, geographic, and economic) “still
matters” for, say, a company’s strategy on the emerging markets, for political legitimacy,
etc.

e Moral distance

The moral distance is a measure of moral indifference or empathy, toward a person,
group of people, or events.

The distancing is a separation in time or space that reduces the empathy that a person
may have for the suffering of others, i.e., that increases moral distance. The term distanc-
ing is also used (in books by M.D. Kantor) for APD (Avoidant Personality Disorder):
fear of intimacy and commitment (confirmed bachelors, “femmes fatales”, etc.)

e Technology-related distancing

The Moral Distancing Hypothesis postulates that technology increases the propensity
for unethical conduct by creating a moral distance between an act and the moral re-
sponsibility for it.

Print technologies divided people into separate communication systems and distanced
them from face-to-face response, sound and touch. Television involved audile-tactile
senses and made the distance less inhibiting, but it exacerbated the cognitive distancing:
story and image are biased against space/place and time/memory. This distancing has
not diminished with computers; only interactivity increased. In terms of M. Hunter:
technology only re-articulates communication distance, because it also must be regarded
as the space between understanding and not. The collapsing of spatial barriers diminish
economic but not social and cognitive distance.

On the other hand, the Psychological Distancing Model in [Well86] relates the imme-
diacy of communication to the number of information channels: sensory modalities de-
crease progressively as one moves from face-to-face to telephone, videophone, and e-
mail. On-line settings tend to filter out social and relation cues. Also, the lack of instant
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feedback, because of e-mail communication, is asynchronous and can be isolating. For
example, moral and cognitive effects of distancing in on-line education are not known
at present.

e Transactional distance

The transactional distance is a perceived degree of separation during interaction be-
tween students and teachers, and within each group. This distance decreases with dialog
(a purposeful positive interaction meant to improve the understanding of the student),
with larger autonomy of the learner, and with lesser predetermined structure of instruc-
tional program. This notion was introduced by M.G. Moore in 1993 as a paradigm for
distance education.

e Antinomy of distance

The antinomy of distance, as introduced in [Bull12] for aesthetic experiences by be-
holder and artist, is that both should find the right amount of emotional distance (nei-
ther too involved, nor too detached), in order to create or appreciate art. The fine line
between objectivity and subjectivity can be crossed easily, and the amount of distance
can fluctuate in time.

The aesthetic distance is a degree of emotional involvement of the individual, who
undergoes experiences and objective reality of the art, in a work of art. Some examples
are: the perspective of a member of the audience in relation to the performance, the
psychological and the emotional distance between the text and the reader, the actor-
character distance in Stanislavsky system of acting.

A variation of antinomy of distance appears in critical thinking: need to put some emo-
tional and intellectual distance between oneself and ideas, in order to better evaluate their
validity. Another variation is detailed in Paradox of Dominance: Distance and Connec-
tion (http://www.leatherpage.com/rscurrent.htm/)

The historical distance, in terms of [Tail04], is the position the historian adopts vis-a-vis
his objects — whether far-removed, up-close, or somewhere in between; it is the fantasy
through which the living mind of the historian, encountering the inert and unrecoverable,
positions itself to make the material look alive. The antinomy of distance appears again
because historians engage the past not just intellectually but morally and emotionally.
The formal properties of historical accounts are influenced by their affective, ideological
and cognitive commitments.

Related problem is how much distance people must put between themselves and their
pasts in order to remain psychologically viable; S.Freud showed that often there is no
such distance with childhoods.

¢ Kristeva non-metric space

J. Kristeva’s (1980) basic psychoanalytic distinction is between pre-Oedipal and Oedi-
pal aspects of personality development. Narcissistic identification and maternal depen-
dency, anarchic component drives, polymorphic erotogenicism, and primary processes
characterize the pre-Oedipal. Paternal competition and identification, specific drives,
phallic erotogenicism, and secondary processes characterize Oedipal aspects. Kristeva
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describes the pre-Oedipal feminine phase by an enveloping, amorphous, non-metric
space (Plato’s chora) that both nourishes and threatens; it also defines and limits self-
identity. She characterizes the Oedipal male phase by a metric space (Aristotle’s topos);
the self and the self-to-space are more precise and well defined in topos. Kristeva posits
also that the semiotic process is rooted in feminine libidinal, pre-Oedipal energy which
needs channeling for social cohesion.

J. Deleuze and F. Guattari (1980) divided their multiplicities (networks, manifolds,
spaces) into striated (metric, hierarchical, centered and numerical) and smooth (“non-
metric, rhizomic and acentered, that occupy space without counting it and can be ex-
plored only by legwork™).

Above French poststructuralists use metaphor non-metric in line with systematic use
of topological terms by psychoanalyst J. Lacan. In particular, he sought space J (of
Jouissance, i.e., sexual relations) as a bounded metric space.

Back to Mathematics, the non-metricity tensor is the covariant derivative of a met-
ric tensor. It can be non-zero for pseudo-Riemannian metrics and vanishes for Rie-
mannian metrics.

o Simone Weil distance

“The Distance” is the title of a philosophico-theological essay by Simone Weil from her
Waiting for God, Putnam, New York, 1951. She connects God love to the distance; so,
his absence can be interpreted as a presence: “every separation is a link”. Therefore, she
posits, the crucifixion of Christ (the greatest love/distance) was necessary “in order that
we should realize the distance between ourselves and God ... for we do not realize dis-
tance except in the downward direction”. Cf. Lurian kabbalistic notions of tzimzum (God
contraction, “withdrawal”), and shattering of the vessels (evil as the force of separation
which lost its distancing function and become husks).

Also, a song “From a Distance”, written by Julie Gold, is about how God is watching
us and how, despite the distance (physical and emotional) distorting perceptions, there
is still a little peace and love in this world.

o Swedenborg heaven distances

Famous scientist and visionary E. Swedenborg, in Section 22 (Nos. 191-199, Space in
Heaven) of his main work Heaven and Hell (1952, first edition in Latin, London, 1758),
posits: “distances and so, space, depend completely on interior state of angels”. A move
in heaven is just a change of such state, the length of a way corresponds to the will of a
walker, approaching reflects similarity of states. In the spiritual realm and afterlife, for
him, “instead of distances and space, exist only states and their changes”.

o Far Near Distance

Far Near Distance is the name of the program of the House of World Cultures in Berlin
which present a panorama of contemporary positions of all artists of Iranian origin.
Examples of similar use of distance terms in modern popular culture are: “Some near
distance” is the title of art exhibition of Mark Lewis (Bilbao, 2003), “A Near Distance”
is a paper collage by Perle Fine (New York, 1961), “Quiet Distance” is a fine art print by
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Ed Mell, “Distance” is a Japanese movie by Hirokazu Koreeda (2001), “The Distance”
is an album by American rock “The Silver Bullet Band”, “Near Distance” is a musical
composition by Chen Yi (New York, 1988), “Near Distance” is a lyrics by Manchester
quartet “Puressence”.

The terms near distance and far distance are also used in Ophthalmology and for settings
in some sensor devices.

o Quotes on “near-far” distances
“Better is a nearby neighbor, than a far off brother.” (Bible)

“It is when suffering seems near to them that men have pity; as for disasters that are ten
thousand years off in the past or the future, men cannot anticipate them, and either feel
no pity for them, or at all events feel it in no comparable measure.” (Aristotle)

“The path of duty lies in what is near, and man seeks for it in what is remote.” (Mencius)
“Sight not what is near through aiming at what is far.”” (Euripides)

“Good government occurs when those who are near are made happy, and those who are
far off are attracted.”” (Confucius)

“By what road”, I asked a little boy, sitting at a cross-road, “do we go to the town?” —
“This one”, he replied, “is short but long and that one is long but short”. I proceeded
along the “short but long road”. When I approached the town, I discovered that it was
hedged in by gardens and orchards. Turning back I said to him, “My son, did you not tell
me that this road was short?” — “And”, he replied, “Did I not also tell you: “But long?”
I kissed him upon his head and said to him, “Happy are you, O Israel, all of you are
wise, both young and old”. (Erubin, Talmud)

“The Prophet Muhammad was heard saying: “The smallest reward for the people of
paradise is an abode where there are 80000 servants and 72 wives, over which stands
a dome decorated with pearls, aquamarine, and ruby, as wide as the distance from Al-
Jabiyyah [a Damascus suburb] to Sana’a [Yemen]”. (Hadith, Islamic Tradition)

“There is no object so large ... that at great distance from the eye it does not appear
smaller than a smaller object near.” (Leonardo da Vinci)

“Nothing makes Earth seems so spacious as to have friends at a distance; they make the
latitudes and longitudes.” (Henri David Thoreau)

Tobler’s first law of Geography: everything is related to everything else, but near things
are more related than distant things. Nearness principle (or least effort principle): given

a distribution of equally desirable locations, the closest destination is most frequently
chosen.

28.2. VISION-RELATED DISTANCES

e Vision distances

The inter-pupillary distance (or inter-ocular distance): in Ophthalmology, the distance
between the centers of the pupils of the two eyes when the visual axes are parallel.
Typically, it is 2.5 inches (6.35 cm).
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The near acuity is the eye’s ability to distinguish an object’s shape and details at a near
distance such as 40 cm; the distance acuity is the eye’s ability to do it at a far distance
such as 6 m.

The optical near devices are designed for magnifying close objects and print; the op-
tical distance devices are for magnifying things in the distance (from about 3 m to far
away).

The near distance: in Ophthalmology, the distance between the object plane and the
spectacle (eyeglasses) plane.

The infinite distance: in Ophthalmology, the distance of 20 feet (6.1 m) or more; so
called because rays entering the eye from an object at that distance are practically as
parallel as if they came from a point at an infinite distance.

Distance vision is a vision for objects that at least 20 feets from the viewer.

The angular eye distance is the aperture of the angle made at the eye by lines drawn
from the eye to two objects.

The RPV-distance (or resting point of vergence) is the distance at which the eyes are set
to converge (turn inward toward the nose) when there is no close object to converge on. It
averages about 45 inches (1.14 m) when looking straight ahead and comes in to about 35
inches (0.89 m) with 30-degree downward gaze angle. Ergonomists recommend RPV-
distance as eye-screen distance in sustained viewing, in order to minimize eyestrain.

The default accommodation distance (or resting point of accommodation, RPA-
distance) is the distance at which the eyes focus when there is nothing to focus on.

e Size-distance paradox

Emmert’s law states that a retinal image is proportional in perceived size (apparent
height) to the perceived distance of the surface it is projected upon. This law is based
on the fact that the perceived size of an object doubles every time its perceived distance
from the observer is cut in half and vice versa. Emmert’s law accounts for constancy
scaling, 1.e., the fact that the size of an object is perceived to remain constant despite
the changes in the retinal image (as objects become more distant they begin, because of
visual perspective, appear smaller).

The size-distance invariance hypothesis posits that the ratio of perceived size and per-
ceived distance is the tangent of the physical visual angle. In particular, the objects
which appear closer should also appear smaller. But with moon illusion it comes to
size-distance paradox. The Moon (and, similarly, the Sun) illusion is that, despite of
constancy of its visual angle (roughly, 0.52 degree), the horizon moon may appear to be
about twice the diameter of the zenith moon. This illusion is still not understood com-
pletely; it is supposed to be cognitive: the size of the zenith moon is underestimated
since it is perceived as approaching.

The most common optical illusions distort size or length; for example, Mueller-Lyer,
Sander, and Ponzo illusions.
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e Symbolic distance effect

In Psychology, the brain compares two concepts (or objects) with higher accuracy and
faster reaction time if they differ more on the relevant dimension.

e Subjective distance

The subjective distance (or cognitive distance) is a mental representation of actual dis-
tance molded by an individual’s social, cultural and general life experiences. Cognitive
distance errors occur either because information about two points is not coded/stored in
the same branch of memory, or because of errors in retrieval of this information. For
example, the length of a route with many turns and landmarks is usually overestimated.

e Egocentric distance

In Psychophysiology, the egocentric distance is the perceived absolute distance from
the self (observer or listener) to an object or a stimulus (such as a sound source). Usually,
visual egocentric distance underestimates actual physical distance to far objects, and
overestimates it for near objects. In Visual Perception, the action space of a subject
is 1-30 m; the smaller and larger spaces are called personal space, and vista space,
respectively.

The exocentric distance is perceived relative distance between objects.

Distance cues

The distance cues are cues used to estimate the egocentric distance.

For a listener from a fixed location, main auditory distance cues include: intensity (in
open space it decreases of 5 dB for each doubling of the distance), direct-to-reverberant
energy ratio (in the presence of sound reflecting surfaces), spectrum, and binaural dif-
ferences.

For an observer, main visual distance cues include:

— relative size, relative brightness, light and shade;

— height in the visual field (in the case of flat surfaces lying below the level of the eye,
the more distant parts appear higher);

— interposition (when one object partially occludes another from view);

— binocular disparities, convergence (depending on the angle of the optical axes of the
eyes), accommodation (the state of focus of the eyes);

— aerial perspective (the objects in the distance became bluer and paler), distance haz-
ing (the objects in the distance became decreased in contrast, more fuzzy);

— motion perspective (the stationary objects appear, to moving observer, to glide past).

Examples of the techniques, using above distance cues to create an optical illusion for

the viewer, are:

— distance fog: an 3D computer graphics technique so that objects further from the
camera are progressively more blurred (obscured by haze);

— forced perspective: a film-making technique to make objects appear either far away,
or vice versa depending on their positions to the camera and each other.
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o Distance-related shots

A film shot is what is recorded between the time the camera starts (the director’s call for
“action”), and the time it stops (the call to “cut™).

Main distance-related shots (camera set-ups) are:
— establishing shot: a shot, at the beginning of a sequence which establish the location
of the action and/or the time of day;

— long shot: a shot taken from at least 50 yards (45.72 m) from the action;

— medium shot: a shot from 5-15 yards (4.57-13.72 m) including a small group entirely,
shows group/objects in relation to surroundings;

— close-up: a shot taking the actor from the neck upwards, or an object from a similarly
close position;

— two-shot: a shot that features two persons in the foreground;

— insert: an inserted shot (usually a close up) used to reveal greater detail.

28.3. EQUIPMENT DISTANCES

e Focus distances

The working distance: the distance from the front lens of a microscope to the object
when the instrument is correctly focused.

The object distance: the distance from the lens of camera to the object being pho-
tographed, i.e., being focused on.

The image distance: the distance from the lens to the image (picture on the screen);
when a converging lens is placed between the object and the screen, the sum of inverse
object and image distances is equal to inverse focal distance.

The focal distance (focal length): the distance from the optical center of a lens (or a
curved mirror) to the focus (to the image).

The depth of field: the distance in front of and behind the subject which appear to be in
focus, i.e., the region where the blurring is tolerated.

The hyperfocal distance: the distance from the lens to the nearest point (hyperfocal
point) that is in focus when the lens is focused at infinity; beyond this point all objects
are well defined and clear. It is the nearest distance at which the far end of the depth of
field stretches to infinity. (Cf. infinite distance).

e Distances in Stereoscopy
A way of 3D imaging is creating a pair of 2D images by a two-camera system.

The inter-camera distance (or base line length, inter-ocular lens spacing) is the dis-
tance between the two cameras from which the left and right eye images are rendered.

The convergence distance is the distance between the center of camera base line to
the convergence point where the two lenses should converge for good stereoscopy. This
distance should be 15-30 times inter-camera distance.
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The picture plane distance is the distance at which the object will appear on (but not
behind or in front) the picture plane (the apparent surface of the image). The window is
a masking border of the screen frame such that objects, appearing at (but not behind or
outside) it, appear to be at the same distance from the viewer as this frame. In human
viewing, the picture plane distance is about 30 times inter-ocular distance.

e Miss distance

The miss distance is the distance between the lines of sight representing two estimates
from two sensor sites to the target. (Cf. line-line distance.)

o Offset distance

In nuclear warfare, the offset distance is the distance the desired (or actual) ground zero
is offset from the center of the area (or point) target.

In Computation, offset is the distance from the beginning of a string to the end of the
segment on that string. For a vehicle, offset of a wheel is the distance from its hub
mounting surface to the centerline of the wheel.

o Standoff distance

The standoff distance is the distance of object from the source of the explosion (in
warfare), or from the laser beam delivery point (in laser material processing). Also, in
mechanics and electronics, it is the distance separating two parts from one another (for
example, for insulating: cf. clearance distance).

e Proximity fuse

The proximity fuse is a fuse that is designed to detonate an explosive automatically
when close enough to the target.

o Proximity sensors

Proximity sensors are variety of ultrasonic, laser, photoelectric and fiber optic sensors
designed to measure distance from itself to a target.

Compare with following simple distance estimation (for prey recognition) by some in-
sects: the velocity of the mantid’s head movement is kept constant during peering, and
so, the distance to the target is inversely proportional to the velocity of the retinal image.

e Precise distance measurement

The resolution of TEM (transmission electronic microscope) is about 0.2 nm (2 x 10719
m), i.e., the typical separation between two atoms in a solid. This resolution is 1000 times
greater than a light microscope and about 500000 times greater than that of a human eye.
However, only nanoparticles can fit in the vision field of an electronic microscope.

The methods, based on measuring the wavelength of laser light, are used to measure
macroscopic distances non-treatable by electronic microscope. However, the uncertainty
of such methods is at least the wavelength of light, say, 633 nm.

The recent adaptation of Fabry—Perot metrology (measuring the frequency of light stored
between two highly reflective mirrors) to laser light permit to measure relatively long (up
to 5 cm) distances with uncertainty only 0.01 nm.
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e Radio distance measurement

Distance measuring equipment (DME) is an air navigation technology that measures
distances by timing the propagation delay of UHF signals to a transponder (receiver-
transmitter that will generate a reply signal upon proper interrogation) and back. DME
is expected to be phased out by global satellite-based systems: GPS and, planned for
2010, Galileo (EU) and GLOSNASS (Russia/India).

The GPS (Global Positioning System) is a radio navigation system which permits one to
get her/his exact position on the globe (anywhere, anytime). It consists of 24 satellites
and a monitoring system operated by the US Department of Defense. Non-military part
of GPS can be used just by the purchase of an adequate receiver and the accuracy is 10
m.

The GPS pseudo-distance (or pseudo-range) from a receiver to a satellite is the travel
time of a satellite time signal to a receiver multiplied by propagation time of radio signal
(about the speed of light). It is called pseudo-distance because of the error: the receiver
clock is not so perfect as ultra-precise clock of satellite. The GPS receiver calculates its
position (in latitude, longitude, altitude, etc.) by solving a system of equations using its
pseudo-distances from at least four satellites and the knowledge of their positions.

e Radio distances

Line-of-sight distance is the distance which radio signal travel, from one antenna to
another, by a path where both antennas are visible to one another, and there are no
obstructions. In fact, waves can travel below the horizon, since the signal can interact
with the ground and/or the ionosphere.

If two frequencies of radio are used (for instance, 12,5 kHz and 25 kHz in maritime com-
munication), the interoperability distance and adjacent channel separation distance
are the range within which all receivers work with all transmitters, and, respectively, the
minimal distance which should separate adjacently tunes narrow-band transmitter and
wide-band receiver, in order to avoid interference.

DX is amateur radio slang (and Morse code) for distance; DXing is a distant radio ex-
change (amplifiers required).

o Transmission distance

The transmission distance is a range distance: for a given signal transmission system
(fiber optic cable, wireless, etc.), it is the maximal distance the system can support within
acceptable path loss level.

For a given network of contact that can transmit an infection (or, say, an idea with the be-
lief system considered as the immune system), the transmission distance is the graphic
metric (edges correspond to events of infection) via the most recent common ancestor,
between (infectious agents isolated from) infected individuals.

o Instrument distances

The load distance: the distance (on a lever) from the fulcrum to the load. The effort
distance (or resistance distance): the distance (on a lever) from the fulcrum to the effort.
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The K-distance: the distance from the outside fiber of a rolled steel beam to the web toe
of the fillet of a rolled shape.

The end distance: the distance from a bolt, screw, or nail to the end of a (wood) struc-
tural member. The edge distance: the distance from a bolt, screw, or nail to the edge of
a (wood) structural member.

e Creepage distance

The creepage distance is the shortest path along the surface of the insulation mater-
ial between two conductive parts. The clearance distance is the shortest (straight-line)
distance between two conductive parts.

e Solvent migration distance

In Chromatography, the solvent migration distance is the distance traveled by the front
line of the liquid or gas entering chromatographic bed for elution (the process of using
a solvent to extract an absorbed substance from a solid medium).

e Spray distance

The spray distance is the distance maintained between the thermal spraying gun nozzle
tip and the surface of the workpiece during spraying.

e Vertical separation distance

The vertical separation distance is the distance between the bottom of a sewage sep-
tic system’s drain field and the underlying water table. This separation distance allows
pathogens (disease-causing bacteria, viruses, or protozoa) in the effluent to be removed
by the soil before it comes in contact with the groundwater.

e Protective action distance

The protective action distance is the distance downwind from the incident (a spill in-
volving dangerous goods which are considered toxic by inhalation) in which persons
may become incapacitated.

o Sight distances

Sight distance (or clear sight distance) is the length of highway visible to a driver.
A safe sight distance is the necessary sight distance needed by the driver in order to
accomplish fixed task; the main safe distances, used in road design, are:

stopping sight distance — to stop the vehicle before reaching an unexpected obstacle,
maneuver sight distance — to drive around an unexpected small obstacle,
passing sight distance — to overtake safely,

road view sight distance — to anticipate on the alignment (eventually curved and hori-
zontal/vertical) of the road (for instance, choosing a speed).

Also, adequate sight distances are required locally: at intersections and in order to
process information on traffic signs.
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o Vehicle distances

The braking distance: the distance a motor vehicle travels from the moment the brakes
are applied until the vehicle completely stops.

The reaction distance: the distance a motor vehicle travels from the moment the driver
sees a hazard until he applies the brakes (corresponding to human perception time plus
human reaction time). (Not to be confused with reaction animal distance.)

The stopping distance: the distance a motor vehicle travels from where the driver per-
ceives the need to stop to the actual stopping point (corresponding to vehicle reaction
time plus vehicle braking capability).

The official distance: the DoD (US Department of Defense) recognized driving dis-
tance between two locations that will be used for travel or payment of billing (not to be
confused with administrative cost distance in Internet.)

The distance-based exit number: a number assigned to a road junction, usually an exit
from a freeway, expressing in miles (or kilometers) the distance from the beginning of
the highway to the exit. A milestone (or kilometer sign) is one of a series of numbered
markers placed along a road at regular intervals. Zero Milestone in Washington, DC is
attended as the reference point for all road distances in US.

The accelerate-stop distance: the runway plus stop-way length declared available and
suitable for the acceleration and deceleration of an airplane aborting a takeoff.

The endurance distance: total distance that a ground vehicle or ship can be self-
propelled at any specified endurance speed.

The distance made good is a nautical term: the distance traveled after correction for
current, leeway (the sideways movement of the boat away from the wind) and other
errors that may not have been included in the original distance measurement. Log is a
device to measure the distance traveled through the water which further corrected to a
distance made good.

The distance line: in Diving, a temporary marker (typically, 50 meters of thin polypro-
pylene line) of shortest route between two points. It is used to navigate back to the start
in poor visibility.

28.4. MISCELLANY

o Range distances

The range distances are practical distances emphasizing a maximum distance for effec-
tive operation such as vehicle travel without refueling, a bullet reach, visibility, move-
ment limit, home range of an animal, etc.

For example, the dispersal distance in Biology can refer to seed dispersal by pollination,
to natal dispersal, to breeding dispersal, to migration dispersal, etc.

The range of a risk factor (toxicity, blast etc.) indicates minimal safe distancing. The
range of a device (for example, a remote control), which is specified by the manufacturer
and used as a reference, is called operating distance (or nominal sensing distance). The
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maximal distance allowed for activation of a sensor-operated switch is called activation
distance.

e Spacing distances

The following examples illustrate this large family of practical distances emphasizing
a minimum distance (cf. minimum distance in Coding, nearest-neighbor animal dis-
tance and first-neighbor distance for atoms in a solid).

The miles in trail: a specified minimum distance, in nautical miles, required to be main-
tained between airplanes.

The isolation distance: a specified minimum distance required (because of pollination)
to be maintained between variations of the same species of crop for the purpose to keep
seed pure (for example, 10 feet & 3 m for rice).

The stop-spacing distance: the interval between stops of a bus; the mean stop-spacing
distance in the US (for light rail systems) ranges from 500 m (Philadelphia) to 1742 m
(Los Angeles).

The character spacing: the interval between characters in a given computer font.
The music distance: the interval between notes.

The just noticeable difference (JND): the smallest percent change in a dimension (for
distance/position, etc.) that can be reliably perceived.

e Quality metrics

This vast family of measures (or standards of measure) concern different attributes of
objects (usually, equipment). In such terms, our distances and similarities are “similar-
ity metrics”, i.e., metrics (measures) quantifying the extent of relatedness between two
objects. Examples of more abstract quality metrics are given below.

The software metric is a measure of software quality which indicate the complexity,
understandability, description, testability and intricacy of code.

The trust metric is: in Computer Security, a measure to evaluate a set of peer certificates
resulting in a set of accounts accepted, and, in Sociology, a measure of how a member
of the group is trusted by the others in the group. For example, UNIX access metric is
a combination of only read, write and execute kinds of access to a resource. Much finer
Advogato trust metric (used in the community of open source developers to rank them)
is based on bonds of trust formed when a person issues a certificate about someone else.

The risk metric is used in Insurance and (to evaluate a portfolio) in Finance.

e Action at a distance (in Computing)

The action at a distance (in Computing) is a class of programming problems in which
the state in one part of a program’s data structure varies wildly because of difficult-to-
identify operations in another part of the program. The Law of Demeter is a guideline
for developing software: “only talk to your immediate friends” (units closely related to
it), and each unit should have only limited knowledge about other units.
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e Action distance

The action distance is the distance between the set of information generated by the Ac-
tive Business Intelligence system and the set of actions appropriate to a specific business
situation. Action distance is the measure of the effort required to understand information
and to affect action based on that information. It could be the physical distance between
information displayed and action controlled.

e Distance decay

The distance decay (or distance lapse rate) is the attenuation of a pattern or process
with distance. In spatial interaction, it is the mathematical representation of inverse ratio
between quantity of obtained substance and the distance from its source. This decay
measures the effect of distance on accessibility: it can reflect a reduction in demand due
to the increasing travel cost. Examples of distance-decay curves: Pareto model In /;; =
a — blnd;;, and the model In [;; = a — bdl.[;. with p = %, 1, or 2 (here /;; and d;; are
interaction and distance between points i, j, while ¢ and b are parameters).

e Distance curve

A distance curve is a plot (or a graph) of a given parameter against corresponding
distance. Examples of distance curves, in terms of a process under consideration, are:
time-distance curve (for travel time of wave-train, seismic signals, etc.), drawdown-
distance curve, melting-distance curve and wear volume versus distance curve.

Force-distance curve is, in SPM (Scanning Probe Microscopy), a plot of the ver-
tical force that the tip of the probe applies to the sample surface, while a contact-
AFM (Atomic Force Microscopy) image is being taken. Also, frequency-distance and
amplitude-distance curves are used in SPM.

The term distance curve is also used for charting growth, for instance, a child’s height
or weight at each birthday. A plot of the rate of growth against age is called velocity-
distance curve. The last term is also used for speed of aircraft.

o Mass-distance function

A mass-distance function is a function proportional to ﬁ It also called gravity func-
tion because it express the gravitational attraction between masses x and y at (Euclidean)
distance d{x, y); cf. inverse-square laws. Such functions are often used in social sci-
ences; for example, it can express the communication with x and y being the population
of the sender and the receiver location, where d(x, y) is the physical distance between
them.

A mass-distance decay curve is a plot of “mass” decay when the distance to the center
of “gravity” increases. Such curves are used to find out offender’s heaven (the point of
origin; cf. distances in Criminology), the galactic mass within a given radius from its
center (using rotation-distance curves), etc.

e Long range dependence

A (second order stationary) stochastic process X, k € Z, is called long range depen-
dent (or long memory) if there exist numbers @, 0 < « < 1, and ¢, > 0 such that
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limy_, o ¢,k% pr = 1 holds, where p (k) is the autocorrelation function. So, correlations
decay very slowly (asymptotically hyperbolic) to zero implying that ), |ox| = oo,
and that events that far apart are correlated (long memory). If above sum is finite and
decay is exponential, then process is short range. Examples of such processes are the ex-
ponential, normal and Poisson processes, which are memoryless, and, in physical terms,
the systems in thermodynamic equilibrium. Above power law decay for correlations as a
function of time, translates into a power law decay of the Fourier spectrum as a function
of frequency f and called % noise.

A process has self-similarity exponent (or Hust parameter) H if X; and t ~ X, have the
same finite-dimensional distributions for any positive . The cases H = % and H =1
correspond, respectively, to purely random process and to exact self-similarity (or scale-
invariance): the same behavior on all scales (cf. fractal and scale-free network). The
processes with % < H < 1 are long range dependent with ¢ = 2(1 — H).

Long range dependence corresponds to heavy-tailed (or power low) distributions. The
distribution function and fail of a non-negative random variable X is F(x) = P(X < x)
and F(x) = P(X > x). A distribution F(X) is heavy-tailed if there exist a number
o,0 < o < 1, such that limy_, oo x* F(x) = 1. Many such distributions occur in real
world (for example, in Physics, Economics, Internet) in both, space (distances) and time
(durations). A standard example is the Pareto distribution F(x) = x~%, x > 1, where
« > 0 is a parameter. (Cf. distance decay above.)

e Distances in Medicine

The inter-occlusal distance: in Dentistry, the distance between the occluding surfaces
of the maxillary and mandibular teeth when the mandible is in physiologic rest position.

The inter-arch distance: in Dentistry, the vertical distance between the maxillary and
mandibular arches. The inter-ridge distance: the vertical distance between the maxil-
lary and mandibular ridges.

The inter-proximal distance: the spacing distance between adjacent teeth; mesial drift
is the movement of the teeth slowly toward the front of the mouth with decreasing of the
inter-proximal distance by wear.

The inter-pediculate distance: the distance between the vertebral pedicles as measured
on the radiograph.

The source-skin distance: the distance from the focal spot on the target of the x-ray
tube to the skin of the subject as measured along the central ray.

The inter-aural distance: the distance between the ears. The inter-ocular distance: the
distance between the eyes.

The anogenital distance: the length of the perineum, i.e., the region between anus and
genital area (the anterior base of the penis for a male). For a male it is normally twice
what it is for a female; so, this distance is a measure of physical masculinity. Other such
measures are second-to-forth digit (index to ring finger) ratio which is lower for men in
the same population, and mental rotation ability, higher for men.
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The sedimentation distance (or ESR, erythrocyte sedimentation rate): the distance red
blood cells travel in one hour in a sample of blood as they settle to the bottom of a test
tube. ESR indicates inflammation and increases in many diseases.

Examples of distances considered, in brain MRI imaging, for cortical maps (i.e., outer
layer regions of cerebral hemispheres representing sensory inputs or motor outputs) are:
MRI distance map from gray/white matter interface, cortical distance (say, between
activation locations of spatially adjacent stimuli), cortical thickness and lateralization
metrics.

e Distances in Criminology

The geographic profiling (or geoforensic analysis) aims to identify the spatial behav-
ior (target selection and, especially, likely point of origin, i.e., the residence or work-
place) of a serial criminal offender as it relates to the spatial distribution of linked crime
sites.

The offender’s buffer zone (or coal-sack effect) is an area surrounding offender’s
heaven (point of origin) from which little or no criminal activity will be observed;
usually, such zone occurs for premeditated personal offenses. The primary streets and
network arterials, that lead into the buffer zone, tend to intersect near the estimated of-
fender’s heaven. An 1 km buffer zone was found for UK serial rapists. Most personal
oftenses occur within about 2 km from offender’s heaven, while property theft occur
further away.

The journey-to-crime decay function is a graphical distance curve used to rep-
resent how the number of offenses committed by an offender decreases as the
distance from his/her residence increases. Such functions are variations of cen-
ter of gravity functions based on Newton’s law of attraction between two bod-
ies.

Given n crime sites (x;, y;), | < i < n (where x; and y; are latitude and longitude of
i-th site), the Newton—Swoope Model predicts offender’s heaven to be within the circle

(g

around the point , =k

) with search radius being

max |x;, — X, | - max |y, — yi|
m(n — 1)2

>

where maxima are by (i1, i), 1 < i1 < iy < n. The Ganter—Gregory Circle Model pre-
dicts offender’s heaven to be within a circle around first offense crime site with diameter
being the maximum distance between crime sites.

The centrographic models estimate offender’s haven as a center, i.e., a point from which
a given function of travel distances to all crime sites is minimized; the distances are the
Euclidean distance, the Manhattan distance, the wheel distance (i.e., the actual travel
path), perceived travel time, etc. Many of those models are reverse of Location Theory
models aiming to maximize the placement of distribution facilities in order to minimize
travel costs. Those models (Voronoi polygons, etc.) are based on the nearness principle
(least effort principle).



Chapter 28: Non-Mathematical and Figurative Meaning of Distance [ ® Animal distances] 369

o Animal distances

The individual distance: the distance which an animal attempts to maintain between
itself and other animals.

The group distance: the distance which a group of animals attempts to maintain be-
tween it and other groups.

The reaction distance: the distance on which the animal reacts to the appear-
ance of prey; catching distance: the distance on which the predator can strike a
prey.

The escape distance: the distance on which the animal reacts on the appearance of
a predator or dominating animal of the same species. This flight initiation distance is
related to (shorter) corresponding alert distance.

The nearest-neighbor distance: more or less constant distance which an animal main-
tain, in directional movement of large groups (such as schools of fish or flocks of birds),
from its immediate neighbors. The mechanism of allelomimesis (‘“‘do what your neigh-
bor does™) prevents the structural breakdown of a group and can generate seemingly
intelligent evasive maneuvers in the presence of predators.

The distance-to-shore: the distance to the coastline used, for example, to study clus-
tering of whale strandings by distorted echolocations, anomalies of magnetic field
etc.

A distance pheromone is a soluble (for example, in the urine) substance emitted by an
animal, as an olfactory chemosensory cue, in order to obtain mates. In contrast, a con-
tact pheromone is such unsoluble substance; it coats the animal’s body and is a contact
cue.

e Horse-racing distances

The horse-racing distances are measured in the approximate length of a horse, i.e.,
about 8 feet (2.44 m). Winning margins are measured in lengths, ranging from half
the length to the distance, i.e., more than 20 lengths. Smaller margins are: short-head,
head, or neck. Also, the hand, i.e., 4 inches (10.2 cm), is used for measuring the height
of horses.

e Triathlon race distances

The Ironman distance (started in Hawaii, 1978): 3.5 km swim followed by 180 km
bike followed by 42.2 km (marathon distance) run.

The international Olympic distance (started in Sydney, 2000) is 1.5 km (metric mile),
40 km and 10 km of swim, bike and run, respectively.

Also used: the sprint distance (0.75 km, 20 km, 5 km), and the long distance (2 km, 80
km, 20 km).

e Sabbath distance

The Sabbath distance (or rabbinical mile) is a range distance: 2000 Talmudic cubits
(1120.4 m) which an observant Jew should not exceed in a public thoroughfare from
any given private place on the Sabbath day.
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Other Talmudic length units are: day’s march, parsa, stadium (40, 4, % of rabbinical

mile, respectively), and span, hasit, hand-breath, thumb, middle finger, little finger (%,

11 1 1 1 : : .
3> 6 34> 30° 36 of Talmudic cubit, respectively).

e Galactocentric distance

The star’s Galactocentric distance is its distance from the Galactic Center. The Sun’s
Galactocentric distance is about 8.5 kiloparsec, i.e., 27700 light-years.

e Cosmic light horizon

The cosmic light horizon (or Hubble distance, age of Universe) is an increasing range
distance: the maximum distance that a light signal could have traveled since Big Bang,
the beginning of the Universe. At present, 13—14 x 10° light-years, i.e., about 46 x 10%°
Planck lengths.
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(1, 2)-B-metric, 21
-degree edit distance, 203
[-sum distance, 46
2-metric, 36

(2k + 1)-gonal distance, 5
(2k + 1)-gonal inequality, 5
2k-gonal distance, 4
2k-gonal inequality, 4
2n-gon metric, 243

(3, 4)-metric, 266
3D-chamfer metric, 266
4-metric, 248

6-metric, 248

8-metric, 248

a-scaled metric, 44
xz—distance, 184
8-hyperbolic metric, 6
y-metric, 333

#-Gordian distance, 121
i-inversion distance, 121

X -Hausdorff distance, 270
t-distance space, 38

T -metric, 192

absolute summation distance, 212
absolute value metric, 155

ACME distance, 214

acoustic metric, 303

acoustics distances, 278

action at a distance (in Computing), 365
action at a distance (in Physics), 305
action distance, 366

activation distance, 365

actual distance, 310

additively weighted distance, 255
additively weighted power distance, 255
administrative cost distance, 285
aesthetic distance, 355

affine distance, 72

affine metric, 72

affine pseudo-distance, 72

airlift distance, 257
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Albert quasi-metric, 4

Alcubierre metric, 337

Ali-Silvey distance, 186

alignment distance, 203

altitude, 315

amino gamma distance, 295

amino p-distance, 295

amino Poisson correction distance, 295
analytic metric, 113

Anderberg similarity, 225
Anderson-Darling distance, 179
angle distances between subspaces, 163
angular diameter distance, 322
angular distance, 247

angular semi-metric, 227

animal distances, 369

anti-de Sitter metric, 328

antinomy of distance, 355

antipodal extension distance, 46
antipodal metric space, 8

aphelion, 316

apoapsis distance, 316

apogee, 316

Apollonian metric, 78

Appert partially ordered distance, 43
approach space, 39

approximative human-scale distances, 350

area deviation, 122

arithmetic codes distance, 211
arithmetic r-norm metric, 154
as-crow-flies distance, 54
Asplund metric, 125

Assouad pseudo-distance, 5
Assouad—Nagata dimension, 11
astronomical distance, 313
astronomical length units, 346
asymptotic dimension, 11
Atiyah—Hitchin metric, 104
atomic radius, 306

attributed tree metrics, 206
average color distance, 264
average distance, 13
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average distance property, 12 bottleneck distance, 271
average linkage, 217 bounded box metric, 233
average square distance, 292 bounded metric, 22
average-clicks Web quasi-distance, 285 bounded metric space, 22
azimuth, 315 box metric, 241
Azukawa metric, 106 Braun—Blanquet similarity, 224
Azukawa semi-distance, 107 Bray—Curtis distance, 220
Bray—Curtis similarity, 219
Baddeley—Molchanov distance function, 40 Bregman distance, 182
Baire metric, 150 Bregman quasi-distance, 171
Baite space, 33 British Rail metric, 242
ballistics distances, 302 Bryant metric, 93
Banach space, 53 bundle metric, 100
Banach—Mazur compactum, 57 Burago-Ivanov metric, 243

Banach-Mazur distance, 28 Burbea—Rao distance, 182
Banach—Mazur metric, 126

bar product distance, 209

Barbilian metric, 78

Bark spectral distance, 276
Baroni-Urbani-Buser similarity, 220
Barriola—Vilenkin monopole metric, 336
base-pair distance, 296

Berger metric, 88

Bergman metric, 102

Bergman p-metric, 167
Bertotti-Robinson metric, 336
Berwald metric, 93

Besicovitch distance, 167
Besicovitch semi-metric, 234

Besov metric, 168

betweenness centrality, 280
Bhattacharya distance 1, 184
Bhattacharya distance 2, 184
bi-discrepancy semi-metric, 81
bi-invariant metric, 134

bi-Lipschitz equivalent metrics, 18
bi-Lipschitz mapping, 17

binary Euclidean distance, 221

Bures distance, 97

Bures metric, 97

Busemann metric, 69
Busemann metric of sets, 49
bush metric, 6

Bushell metric, 129

(¢, p)-norm metric, 161
c-isomorphism of metric spaces, 18
C-metric, 137

C-quasi-conformal metrical mapping, 17
c-uniformly perfect metric space, 17
Calabi metric, 103

Calabi-Yau metric, 101

Canberra distance, 220

Cantor metric, 234

Carathéodory metric, 106
Carathéodory semi-distance, 106
Carnot—Carathéodory metric, 88
Cartan metric, 110

Catalan surface metric, 120
category of metric spaces, 19

binary relation distance, 200 caterpillar metric, 242

biotope distance, 298 CAT(k) space, 65
Birnbaum-Orlicz distance, 182 Cauchy completion, 22
Blaschke distance, 26 Cavalli—Sforza arc distance, 290
Blaschke metric, 90 Cavalli-Sforza—Edvards chord distance, 290
Bloch metric, 167 Cayley metric, 152

block graph, 196 Cayley—Klein—Hilbert metric, 77
boat-sail distance, 257 Cayley—Menger matrix, 15
Bogolubov—Kubo—Mori metric, 98 center of mass metric, 233

Bohr metric, 166 Central Park metric, 243
Bombieri metric, 158 centroid distance, 244

bond distance, 306 centroid linkage, 217

Bondi radiating metric, 335 cepstral distance, 276

Bonnor dust metric, 333 chain metric, 153

Boolean metric space, 41 chamfer metric, 251

Borgefors metric, 266 chamfering distances, 266



380

Chebyshev center, 14
Chebyshev metric, 240
Chebyshev set, 14

chemical distance, 307
Chernoff distance, 186
chessboard metric, 248
chordal distance, 164
chordal metric, 156

circle metric, 246

circular cut semi-metric, 193

circular decomposable semi-metric, 194

circular metric in digraphs, 192

circular-railroad quasi-metric, 247

city distance, 257
city-block metric, 240
clarity similarity, 187

Clark distance, 222
clearance distance, 363
closest partition metric, 204
co-starring distance, 279
coarse embedding, 19
coarse isometry, 18
coarse-path metric, 3
coarsely equivalent metrics, 19
colatitude, 314
collaboration distance, 279

collision avoidance distance, 243

color component distances, 264
color distances, 263

common subgraph distance, 197
common supergraph distance, 197

commutation distance, 138
comoving distance, 320

compact quantum metric space, 29

compact space, 34
complete linkage, 217
complete metric, 22
complete metric space, 22

complete Riemannian metric, 87

completely normal space, 33
completely regular space, 32
complex Finsler metric, 104
complex modulus metric, 156

compoundly weighted distance, 255

cone distance, 261

cone metric, 129
configuration metric, 230
conformal metric, 79
conformal space, 85
conformal structure, 85

conformally invariant metric, 115

connected space, 33
Connes metric, 98
constrained edit distance, 203

constructive metric space, 30
continuous dual space, 175
contraction, 17

contraction distance, 198
convex distance function, 24
convex metric, 114
convolution metric, 180
Cook distance, 228
correlation distance, 227
correlation similarity, 226
cosh distance, 276

cosine distance, 227

cosine page distance, 286
cosine similarity, 227
cosmic light horizon, 370
cosmological distance, 319

cosmological distance ladder, 323

countably-normed space, 35
covariance similarity, 226
covering radius, 12

Cramer-von Mises distance, 179

creepage distance, 363

Crnkovic-Drachma distance, 179
crossing-free edge move metric, 200
crossing-free edge slide metric, 200
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crossing-free transformation metrics, 200

crossover metric, 204
cultural distance, 352
cut semi-metric, 193
cycloidal metric, 88
cylindrical distance, 260

Czekanowsky-Dice distance, 219

D-chromatic number, 12
D-distance graph, 196

Daniels—Guilbaud semi-metric, 152

Dayhoff—Eck distance, 295
de Sitter metric, 328
Death of Distance, 354
declination, 314

decomposable semi-metric, 194

degenerate metric, 84
degree-2 distance, 204
delta distance, 121
Desarguesian space, 64
design distance, 209
detour distance, 191
DeWitt supermetric, 93
diagonal metric, 84
dialectology distance, 278
digital metric, 248

digital volume metric, 252
dilated metric, 44
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dilation, 18

directed Hausdorff distance, 26
Dirichlet metric, 168

discrepancy metric, 181

discrete dynamic system, 15
discrete metric, 21

discrete space, 35

dispersion similarity, 225
dissimilarity, 2

distance, 2

distance constant of operator algebra, 175
distance cues, 359

distance curve, 366

distance decay, 366

distance decoder, 197

distance degree regular graph, 196
distance distribution, 210

distance in a river, 257

distance labelling scheme, 197
distance map, 14

distance matrix, 15

distance measuring equipment, 362
distance model of altruism, 300
distance modulus, 322

distance monotone metric space, 8
distance of negative type, 4
distance of travel, 310

distance on building, 41

distance pheromone, 369

distance ratio metric, 79

distance running model, 300
distance space, 2

distance to frontier, 353

distance transform, 268

distance up to nearest integer, 49
distance vision, 358
distance-balanced graph, 196
distance-based machine learning, 229
distance-decreasing semi-metric, 105
distance-hereditary graph, 196
distance-polynomial graph, 195
distance-regular graph, 195
distance-related shots, 360
distance-transitive graph, 195
distances between people, 350
distances for genome permutations, 297
distances in Criminology, 368
distances in Medicine, 367
distances in Seismology, 311
distances in Stereoscopy, 360
distancing, 354

distortion, 18

Dodge-Shiode WebX quasi-distance, 285
dogkeeper distance, 166
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dominating metric, 21

Dps distance, 290
Drapal-Kepka distance, 142
Dress dimension, 20

drift distance, 280
DRP-metrics, 285

dual distance, 209

dual metrics, 56

Dudley metric, 180
Dugundji—Ugi chemical distance, 308
Duncan metric, 150

DXing, 362

Earth Mover distance, 266
earthquake distance, 312
eccentricity, 13

ecliptic latitude, 315

ecliptic longitude, 315
Eddington—Robertson metric, 330
Edgar k-mer distance, 296
Edgar-Ludwig metric, 335

edge distance, 198

edge jump distance, 199

edge move distance, 198

edge rotation distance, 199

edge shift distance, 199

edge slide distance, 199

editing compression metric, 147
editing metric, 24

editing metric with moves, 147
effective free distance, 210
effective metric space, 30
effective trade distance, 352
Eggleston distance, 125
egocentric distance, 359
Eguchi—Hanson de Sitter metric, 336
Eguchi—Hanson metric, 104
Ehrenfeucht—Haussler semi-metric, 246
Einstein metric, 327

element of best approximation, 14
Ellenberg similarity, 218

ellipsoid metric, 118

elliptic metric, 73

elliptic orbit distance, 315
emotional distance, 351

energy, 13

engineer semi-metric, 178
Enomoto—Katona metric, 25
entropy metric, 187

epicentral distance, 312

equicut semi-metric, 193
equidistant metric, 21

equivalent metrics, 21
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Erd@s-type distance problems, 240

escape distance, 369
Euclidean metric, 54
Euclidean space, 54

Euler angle metric, 232
even cut semi-metric, 193
evolutionary distance, 289
exponential distance, 254
extended metric, 3
extended real line metric, 155
extension distances, 46
extremal metric, 115

f-divergence of Csizar, 183
F-norm metric, 50

F-rotation distance, 200

F -statistics distance, 291
F*-metric, 51

facility layout distances, 244
factor distance, 147

Faith similarity, 224

Fano metric, 215

Far Near Distance, 356
Feng—Rao distance, 209
Ferrand metric, 79

Ferrand second metric, 80
fidelity similarity, 183

figure of merit quasi-distance, 270
finite l[,—semi—metric, 194
finite nuclear norm metric, 173

finite polynomial metric space, 196

finite subgroup metric, 144
Finsler metric, 91
first-countable space, 33
Fisher distance, 96

Fisher information metric, 95
Fisher—Rao metric, 95

flag metric, 69

flat metric, 114

flat space, 86

Florian metric, 124
flower-shop metric, 243
focus distances, 360
force-distance curve, 366
forest-fire distance, 259
formation metric, 234
forward quasi-distance, 280
four-point inequality, 6
four-point inequality metric, 6
fractal, 11

fractional distance, 221
framework, 190

Fréchet metric, 27

Fréchet permutation metric, 153
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Fréchet product metric, 47
Fréchet surface metric, 116
Fréchet-Nikodym-Aronszayn distance, 25
free distance, 210

free fall distance, 301

free space metric, 233

French Metro metric, 241
Frobenius distance, 164
Frobenius norm metric, 161
frontier metric, 233
Fubini—Study metric, 102
functional transform metric, 45
Funk metric, 92

fuzzy set distance, 291

G-distance, 114

G-invariant metric, 87

G-norm metric, 139

g-transform metric, 45
Gabidulin—Simonis metrics, 213
galactocentric distance, 370
Galilean distance, 327

gallery distance of flags, 145
gallery distance on building, 41
gallery metric, 24

gap distance, 164

gap metric, 235

Garson et al. hybridization metric, 294
gate extension distance, 46

gauge metric, 140

GCSS metric, 331

Gehring metric, 79

Gendron et al. distance, 297
genealogical distance, 289

general linear group semi-metric, 139
generalized absolute value metric, 155
generalized chordal metric, 157
generalized Fano metric, 216
generalized G-Hausdorff metric, 27
generalized metric, 41

generalized Riemannian spaces, 86
generalized torus semi-metric, 140
generational distance, 236

genetic distance, 289

genome distance, 297

geodesic, 8

geodesic distance, 63

geodesic metric space, 63

geodetic graph, 195

geographic distance, 284
Gibbons—Manton metric, 108
Gleason distance, 77

Gleason similarity, 219
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Gluskin—Khrabrov distance, 28
Gédel metric, 334

Godsil-McKay dimension, [1
Goldstein and al. distance, 292
Golmez partially ordered distance, 43
Goppa designed minimum distance, 209
Gordian distance, 121

Gower similarity 2, 226
Gower-Legendre similarity, 225

GPS pseudo-distance, 362

Gram matrix, 16

graphic metric, 191

gray-scale image distances, 265

great circle distance, 309

great circle metric, 73

greatest agreement subtree distance, 206
Grenander distance, 127

grid metric, 248

Grishin distance, 296

Gromov §-hyperbolic inequality, 6
Gromov product similarity, 7
Gromov-Hausdorff metric, 27
Gromov-hyperbolic metric space, 65
ground distance, 310

group norm metric, 50

growth distance, 126

gyroradius, 306

(h, A)-metric, 114
half-Apollonian metric, 78
half-plane projective metric, 68
half-space parabolic distance, 80
Hamann similarity, 223
Hamiltonian metric, 191
Hamming metric, 25
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hard metric, 343

Hardy metric, 168

harmonic mean similarity, 184
Hausdorff dimension, 10
Hausdorff distance up to G, 271
Hausdorff metric, 26

Hausdorff space, 32

healing length, 303

hedgehog metric, 242
Heisenberg metric, 140

helical surface metric, 119
Hellinger distance, 222
Hellinger metric, 183

Hermitian elliptic metric, 74
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Hermitian hyperbolic metric, 75
Hermitian metric, 100
hexagonal Hausdorff metric, 252

hexagonal metric, 248

Hilbert cube metric, 48

Hilbert metric, 57
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Hilbert projective semi-metric, 128
Hilbert space, 56
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hour angle, 314

Hubble distance, 320
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hyper-Kéhler metric, 103
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hyperbolic metric, 74
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hyperconvexity, 9
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hypermetric, 5

hypermetric inequality, 5
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image compression L j,-metric, 265
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imperial length measures, 343
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indel distance, 214

indel metric, 147
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indiscrete space, 35

induced intrinsic metric, 45
induced metric, 21
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infinite distance, 358
information metric, 187
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injective metric space, 19
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