
[1]

www.it-ebooks.info

http://www.it-ebooks.info/

Lucene 4 Cookbook

Over 70 hands-on recipes to quickly and effectively
integrate Lucene into your search application

Edwood Ng

Vineeth Mohan

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Lucene 4 Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1220615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-228-5

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Edwood Ng

Vineeth Mohan

Reviewers
Anders Lybecker

Sujit Pal

Commissioning Editor
James K

Acquisition Editor
Usha Iyer

Content Development Editor
Vaibhav Pawar

Technical Editor
Naveenkumar Jain

Copy Editors
Trishya Hajare

Aditya Nair

Project Coordinator
Kranti Berde

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.it-ebooks.info

http://www.it-ebooks.info/

 About the Authors

Edwood Ng is a technologist with over a decade of experience in building scalable solutions
from proprietary implementations to client-facing web-based applications. Currently, he's the
director of DevOps at Wellframe, leading infrastructure and DevOps operations.

His background in search engine began at Endeca Technologies in 2004, where he was a
technical consultant helping numerous clients to architect and implement faceted search
solutions. After Endeca, he drew on his knowledge and began designing and building
Lucene-based solutions. His first Lucene implementation that went to production was the
search engine behind http://UpDown.com. From there on, he continued to create search
applications using Lucene extensively to deliver robust and scalable systems for his clients.
Edwood is a supporter of an open source software. He has also contributed to the plugin
sfI18NGettextPluralPlugin to the Symphony project.

Vineeth Mohan is a data scientist whose major expertise lies in search analytics and data
science. His career started at Yahoo! India, working with a team facilitated by a real-time feed
processing platform based on Hadooop across all verticals in Yahoo!. He was also in the team
that migrated Right Media technologies to Yahoo! stack. He then moved to Algotree, where he
worked across many data science projects such as technical pattern detection in TimeSeries.
Later, he designed a real-time news analysis platform based on natural language processing
and machine learning approaches. He was also the architect of the search solution for this.
Vineeth is passionate about Big Data and data science and has extensive knowledge and
experience in Elasticsearch/Solr/Lucene and algorithm design.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Sujit Pal currently works in information retrieval and natural language processing in the
healthcare industry. He uses a combination of his company's manually curated medical
taxonomy and a variety of open-source tools such as Lucene, Hadoop, Mahout, Akka,
OpenNLP, and so on, to build the company's semantic search platform. His main areas of
interest are search, distributed processing, NLP, and machine learning. He believes in lifelong
learning and blogs about his experiences at http://sujitpal.blogspot.com.

He works for Healthline Networks, Inc., which is a start-up in the consumer healthcare space.

It has been a pleasure to review this book. Special thanks to the author and
publishing team for making this process so enjoyable.

Anders Lybecker is a technical evangelist for Microsoft and has more than 10 years of
experience as a solutions architect, working with multi-billion dollar revenue systems within the
travel, finance, and banking industries. A special interest in search technologies and especially
Lucene has led to more than a dozen implementations with Lucene, Solr, and ElasticSearch.

Anders has presented at numerous conferences and holds a degree in software engineering,
specializing in software development. He blogs about software development including search
technologies at http://www.lybecker.com/blog/.

www.it-ebooks.info

http://sujitpal.blogspot.com
http://www.lybecker.com/blog/
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

i

Table of Contents
Preface	 v
Chapter 1: Introducing Lucene	 1

Introduction	 2
Installing Lucene	 7
Setting up a simple Java Lucene project	 8
Obtaining an IndexWriter	 11
Creating an analyzer	 12
Creating fields	 14
Creating and writing documents to an index	 15
Deleting documents	 16
 Obtaining an IndexSearcher	 17
Creating queries with the Lucene QueryParser	 18
Performing a search	 19
Enumerating results	 21

Chapter 2: Analyzing Your Text	 23
Introduction	 23
Obtaining a common analyzer	 26
Obtaining a TokenStream	 29
Obtaining TokenAttribute values	 29
Using PositionIncrementAttribute	 32
Using PerFieldAnalyzerWrapper	 34
Defining custom TokenFilters	 36
Defining custom analyzers	 37
Defining custom tokenizers	 38
Defining custom attributes	 39

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 3: Indexing Your Data	 43
Introduction	 43
Obtaining an IndexWriter	 45
Creating a StringField	 47
Creating a TextField	 48
Creating a numeric field	 49
Creating a DocValue Field	 51
Transactional commits and index versioning	 53
Reusing field and document objects per thread	 57
Delving into field norms	 58
Changing similarity implementation used during indexing	 60

Chapter 4: Searching Your Indexes	 65
Introduction	 65
Obtaining IndexReaders	 66
Un-inverting single-valued fields in memory with FieldCache	 67
TermVectors	 69
IndexSearcher	 73
Constructing queries	 73
Specifying sort logic	 75
Forming a search result	 77
Pagination	 78
Using Collectors	 80
Sorting with custom FieldComparator	 83

Chapter 5: Near Real-time Searching	 87
Introduction	 87
Using the DirectoryReader to open index in Near Real-Time	 88
Using the SearcherManager to refresh IndexSearcher	 90
Generational indexing with TrackingIndexWriter	 93
Maintaining search sessions with SearcherLifetimeManager	 95
Performance tuning: latency and throughput	 97

Chapter 6: Querying and Filtering Data	 101
Introduction	 102
Performing advanced filtering	 102
Creating a custom filter	 108
Searching with QueryParser	 112
TermQuery and TermRangeQuery	 117
BooleanQuery	 118
PrefixQuery and WildcardQuery	 119
PhraseQuery and MultiPhraseQuery	 119

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

FuzzyQuery	 120
NumericRangeQuery	 121
DisjunctionMaxQuery	 121
RegexpQuery	 122
SpanQuery	 123
CustomScoreQuery	 126

Chapter 7: Flexible Scoring	 129
Introduction	 129
Overriding similarity	 132
Implementing the BM25 model	 140
Implementing the language model	 143
Implementing the divergence from randomness model	 145
Implementing the information-based model	 148

Chapter 8: Introducing Elasticsearch	 151
Introduction	 152
Getting Elasticsearch	 152
Creating a new index	 155
Predefine field mappings	 157
Adding a document	 158
Deleting a document	 160
Updating a document	 161
Performing bulk indexing	 162
Searching the index	 164
Scaling Elasticsearch	 166

Chapter 9: Extending Lucene with Modules	 171
Introduction	 171
Exploring spatial search	 172
Implementing joins	 176
Performing faceting	 180
Implementing grouping	 185
Employing autosuggest	 189
Implementing highlighting	 192

Index	 195

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

v

Preface
Apache Lucene 4 is the backbone of many search engine implementations, including big
names such as LinkedIn, Twitter, and IBM. It also serves as a foundation for other open
source projects such as Solr and Elasticsearch. We will dive into all the features that Lucene
offers and show you easy-to-understand recipes to get you started using Lucene.

What this book covers
Chapter 1, Introducing Lucene, introduces you to the core components of Lucene and gives
you the know-how to set up Lucene on your own.

Chapter 2, Analyzing Your Text, explores a key feature of Lucene called Analyzers. We will
show you how text analyzing works and how to customize it to suit your needs.

Chapter 3, Indexing Your Data, looks into the data injection process in Lucene and reviews
the core concepts, such as norms and similarity.

Chapter 4, Searching Your Indexes, will cover the core search components such as
FieldCache and TermVectors, and will give you all the knowledge you need to build an
effective search engine.

Chapter 5, Near Real-time Searching, will show you how near real-time search is achieved via
various methods and their trade-offs, so you can make educated decisions when designing
your search application.

Chapter 6, Querying and Filtering Data, gives you a glimpse of the various querying and
filtering features that have been proven to build successful search engines.

Chapter 7, Flexible Scoring, takes a technical dive into the mechanics of scoring, how scores
are determined, how it affects ranking positions and what you can do to customize it.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

vi

Chapter 8, Introducing Elasticsearch, gives an introduction to a Lucene-based open source
search solution that gives you everything you need to build a search application in no time.

Chapter 9, Extending Lucene with Modules, explores the additional features, such as spatial
search and faceting, that extend Lucene functionalities beyond just text search.

What you need for this book
Lucene is built in Java so all you need is a Java-supported operating system with
JDK 1.6 installed. It's preferable to use Oracle JDK; more information can be found here:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.
Lucene's project page can be found at http://lucene.apache.org/.

Lucene is a library, so there are no installation steps other than copying the library files.
One way to include Lucene into your project is through a Maven repository. Here is a sample
Maven dependency description to include in the lucene-core library.

<dependency>
 <groupId>org.apache.lucene</groupId>
 <artifactId>lucene-core</artifactId>
 <version>4.10.0</version>
</dependency>

Who this book is for
This book is for software developers who are new to Lucene and who want to explore the more
advanced topics to build a search engine. Knowledge of Java is necessary to follow the code
samples. You will learn core concepts, best practices, and also advanced features, in order to
build an effective search application.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it…, How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://lucene.apache.org/
http://www.it-ebooks.info/

Preface

vii

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the
reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "we should
let Lucene decide which implementation to use by calling FSDirectory.open (File path)."

A block of code is set as follows:

indexWriter.deleteDocuments(new Term("id", "1"));"));
 indexWriter.close();

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

Reader reader = new StringReader("Text to be passed");
Analyzer analyzer = new SimpleAnalyzer();
TokenStream tokenStream = analyzer.tokenStream("myField", reader);

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

viii

Any command-line input or output is written as follows:

curl -XDELETE 'http://localhost:9200/news/article/1'

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "The Download button
will take you to all available Apache mirrors where you can download Lucene."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

ix

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1

1
Introducing Lucene

Many applications in the modern era often require the handling of large datasets. Managing
and searching these large collections of information can be very challenging, hence the
creation of efficient and high performance search applications has become a necessity. For
decades, many data scientists' research focused on information retrieval. One can say that
the open source community now bears the fruits of this hard work as many open source data
management platforms are developed. The Apache Software Foundation's answer to this:
The Apache Lucene has gained popularity recently and is considered the go-to text search
framework by many.

Let us take a look at the recipes that we are going to cover in this chapter:

ff Installing Lucene

ff Setting up a simple Java Lucene project

ff Obtaining an IndexWriter

ff Creating an analyzer

ff Creating fields

ff Creating and writing documents to an index

ff Deleting documents

ff Obtaining an IndexSearcher

ff Creating queries with the Lucene QueryParser

ff Performing a search

ff Enumerating results

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

2

Getting Lucene and setting up a Lucene Java project serves as a guide for you to get started
with Lucene. Instructions to download and set up Lucene are covered in detail in these two
recipes. All the recipes that follow introduce basic Lucene functionalities, which do not require
in-depth knowledge to understand. We will learn how to create an index and add documents
to an index. We will practice deleting documents and searching these documents to locate
information. The Creating fields section of this chapter introduces you to Lucene's way of
handling information. Then, we will learn how to formulate search queries. At the end of this
chapter, we will show you how to retrieve search results from Lucene. Hopefully, by completing
this chapter, you will gain enough knowledge to set up Lucene and have a good grasp of
Lucene's concept of indexing and searching information.

Introduction
Before getting into the intricacies of Lucene, we will show you how a typical search application
is created. It will help you better understand the scope of Lucene. The following figure outlines
a high level indexing process for a news article search engine. For now, we will focus on the
essentials of creating a search engine:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3

The preceding diagram has a three stage process flow:

ff The first stage is data acquisition where the data we intend to make searchable is
fetched. The source of this information can be the web, or your private collection of
documents in text, pdf, xml and so on.

ff The second stage manages the fetched information where the collected data is
indexed and stored.

ff Finally, we perform a search on the index, and return the results.

Lucene is the platform where we index information and make it searchable. The first
stage is independent of Lucene — you will provide the mechanism to fetch the information.
Once you have the information, we can use Lucene-provided facilities for indexing so we can
add the news articles into the index. To search, we will use Lucene's searcher to provide
search functionality against the index. Now, let's have a quick overview of Lucene's way of
managing information.

How Lucene works
Continuing our news search application, let's assume we fetched some news bits from a
custom source. The following shows the two news items that we are going to add to our index:

News Item – 1
"Title": "Europe stocks tumble on political fears , PMI data" ,
"DOP": "30/2/2012 00:00:00",
"Content": "LONDON (MarketWatch)-European stock markets tumbled to
 a three-month low on
Monday, driven by steep losses for banks and resource firms after
 weak purchasing-managers index
readings from China and Europe. At the same time, political
 tensions in France and the Netherlands
fueled fears of further euro-zone turmoil",
"Link" : "http://www.marketwatch.com/story/europe-stocks-off-on-china-
data-french-election-
2012-04-23?siteid=rss&rss=1"

News Item –2
"Title": "Dow Rises, Gains 1.5% on Week" ,
"DOP": "3/3/2012 00:00:00",
"Content": "Solid quarterly results from consumer-oriented stocks
 including Amazon.com

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

4

AMZN +15.75% overshadowed data on slowing economic growth, pushing
 benchmarks to their biggest
weekly advance since mid-March. ",
"Link":
"http://online.wsj.com/article/SB100014240527023048113045773694712
42935722.html?
mod=rss_asia_whats_news"

For each news bit, we have a title, publishing date, content, and link, which are the
constituents of the typical information in a news article. We will treat each news item as
a document and add it to our news data store. The act of adding documents to the data
store is called indexing and the data store itself is called an index. Once the index is created,
you can query it to locate documents by search terms, and this is what's referred to as
searching the index.

So, how does Lucene maintain an index, and how's an index being leveraged in terms of
search? We can think of a scenario where you look for a certain subject from a book. Let's
say you are interested in Object Oriented Programming (OOP) and learning more about
inheritance. You then get a book on OOP and start looking for the relevant information about
inheritance. You can start from the beginning of the book; start reading until you land on the
inheritance topic. If the relevant topic is at the end of the book, it will certainly take a while
to reach. As you may notice, this is not a very efficient way to locate information. To locate
information quickly in a book, especially a reference book, you can usually rely on the index
where you will find the key value pairs of the keyword, and page numbers sorted alphabetically
by the keyword. Here, you can look for the word, inheritance, and go to the related pages
immediately without scanning through the entire book. This is a more efficient and standard
method to quickly locate the relevant information. This is also how Lucene works behind the
scene, though with more sophisticated algorithms that make searching efficient and flexible.

Internally, Lucene assigns a unique document ID (called DocId) to each document when they
are added to an index. DocId is used to quickly return details of a document in search results.
The following is an example of how Lucene maintains an index. Assuming we start a new index
and add three documents as follows:

Document id 1: Lucene
Document id 2: Lucene and Solr
Document id 3: Solr extends Lucene

Lucene indexes these documents by tokenizing the phrases into keywords and putting them
into an inverted index. Lucene's inverted index is a reverse mapping lookup between keyword
and DocId. Within the index, keywords are stored in sorted and DocIds are associated with
each keyword. Matches in keywords can bring up associated DocIds to return the matching
documents. This is a simplistic view of how Lucene maintains an index and how it should give
you a basic idea of the schematic of Lucene's architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

5

The following is an example of an inverted index table for our current sample data:

As you notice, the inverted index is designed to optimally answer such queries: get me all
documents with the term xyz. This data structure allows for a very fast full-text search to
locate the relevant documents. For example, a user searches for the term Solr. Lucene can
quickly locate Solr in the inverted index, because it's sorted, and return DocId 2 and DocId
3 as the result. Then, the search can proceed to quickly retrieve the relevant documents by
these DocIds. To a great extent, this architecture contributes to Lucene's speed and efficiency.
As you continue to read through this book, you will see Lucene's many techniques to find the
relevant information and how you can customize it to suit your needs.

One of the many Lucene features worth noting is text analysis. It's an important feature
because it provides extensibility and gives you an opportunity to massage data into a standard
format before feeding the data into an index. It's analogous to the transform layer in an
Extract Transform Load (ETL) process. An example of its typical use is the removal of stop
words. These are common words (for example, is, and, the, and so on) of little or no value
in search. For an even more flexible search application, we can also use this analyzing layer
to turn all keywords into lowercase, in order to perform a case-insensitive search. There are
many more analyses you can do with this framework; we will show you the best practices and
pitfalls to help you make a decision when customizing your search application.

Why is Lucene so popular?
A quick overview of Lucene's features is as follows:

ff Index at about 150GB of data per hour on modern hardware

ff Efficient RAM utilization (only 1 MB heap)

ff Customizable ranking models

ff Supports numerous query types

ff Restrictive search (routed to specific fields)

ff Sorting by fields

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

6

ff Real-time indexing and searching

ff Faceting, Grouping, Highlighting, and so on

ff Suggestions

Lucene makes the most out of the modern hardware, as it is very fast and efficient. Indexing
20 GB of textual content typically produces an index size in the range of 4-6 GB. Lucene's
speed and low RAM requirement is indicative of its efficiency. Its extensibility in text analysis
and search will allow you to virtually customize a search engine in any way you want.

It is becoming more apparent that there are quite a few big companies using Lucene for their
search applications. The list of Lucene users is growing at a steady pace. You can take a look
at the list of companies and websites that use Lucene on Lucene's wiki page. More and more
data giants are using Lucene nowadays: Netflix, Twitter, MySpace, LinkedIn, FedEx, Apple,
Ticketmaster, www.Salesforce.com, Encyclopedia Britannica CD-ROM/DVD, Eclipse IDE,
Mayo Clinic, New Scientist magazine, Atlassian (JIRA), Epiphany, MIT's OpenCourseWare and
DSpace, HathiTrust digital library, and Akamai's EdgeComputing platform, all come under this
list. This wide range of implementations illustrates that Lucene is a stand-out piece of search
technology that's trusted by many.

Lucene's wiki page is available at http://wiki.apache.org/lucene-java/FrontPage

Some Lucene implementations
The popularity of Lucene has driven many ports into other languages and environments.
Apache Solr and Elastic search have revolutionized search technology, and both of them are
built on top of Lucene.

The following are the various implementations of Lucene in different languages:

ff CLucene: Lucene implementation in C++ (http://sourceforge.net/
projects/clucene/)

ff Lucene.Net: Lucene implementation in Microsoft.NET (http://incubator.
apache.org/lucene.net/)

ff Lucene4c: Lucene implementation in C (http://incubator.apache.org/
lucene4c/)

ff LuceneKit: Lucene implementation in Objective-C, Cocoa/GNUstep support
(https://github.com/tcurdt/lucenekit)

ff Lupy: Lucene implementation in Python (RETIRED) (http://www.divmod.org/
projects/lupy)

www.it-ebooks.info

www.Salesforce.com
http://wiki.apache.org/lucene-java/FrontPage
http://sourceforge.net/projects/clucene/
http://sourceforge.net/projects/clucene/
http://incubator.apache.org/lucene.net/
http://incubator.apache.org/lucene.net/
http://incubator.apache.org/lucene4c/
http://incubator.apache.org/lucene4c/
https://github.com/tcurdt/lucenekit
http://www.divmod.org/projects/lupy
http://www.divmod.org/projects/lupy
http://www.it-ebooks.info/

Chapter 1

7

ff NLucene: This is another Lucene implementation in .NET (out of date)
(http://sourceforge.net/projects/nlucene/)

ff Zend Search: Lucene implementation in the Zend Framework for PHP 5
(http://framework.zend.com/manual/en/zend.search.html)

ff Plucene: Lucene implementation in Perl (http://search.cpan.org/
search?query=plucene&mode=all)

ff KinoSearch: This is a new Lucene implementation in Perl (http://www.
rectangular.com/kinosearch/)

ff PyLucene: This is GCJ-compiled version of Java Lucene integrated with Python
(http://pylucene.osafoundation.org/)

ff MUTIS: Lucene implementation in Delphi (http://mutis.sourceforge.net/)

ff Ferret: Lucene implementation in Ruby (http://ferret.davebalmain.com/
trac/)

ff Montezuma: Lucene implementation in Common Lisp (http://www.cliki.net/
Montezuma)

Installing Lucene
This section will show you what you need, in order to get started with Lucene.

How to do it...
First, let's download Lucene. Apache Lucene can be downloaded from its official download
page. As of now, the latest version of Lucene is 4.10. Here is the link to the official page of
Lucene: http://lucene.apache.org/core/

The Download button will take you to all available Apache mirrors where you can
download Lucene.

Lucene's index contains {lucene version}.zip or {lucene version}.tar.gz,
including the Lucene core library, HTML documentation, and demo application. Meanwhile,
{lucene version-src}.zip or {lucene version-src}.tar.gz contains the source
code for that particular version.

www.it-ebooks.info

http://sourceforge.net/projects/nlucene/
http://framework.zend.com/manual/en/zend.search.html
http://search.cpan.org/search?query=plucene&mode=all
http://search.cpan.org/search?query=plucene&mode=all
http://www.rectangular.com/kinosearch/
http://www.rectangular.com/kinosearch/
http://pylucene.osafoundation.org/
http://mutis.sourceforge.net/
http://ferret.davebalmain.com/trac/
http://ferret.davebalmain.com/trac/
http://www.cliki.net/Montezuma
http://www.cliki.net/Montezuma
 http://lucene.apache.org/core/
http://www.it-ebooks.info/

Introducing Lucene

8

The following is a sample of what the download page looks like:

How it works…
Lucene is written entirely in Java. The prerequisite for running Lucene is Java Runtime
Environment. Lucene runs on Java 6 or higher. If you use Java 7, make sure you install update
1 as well. Once your download is complete, you can extract the contents to a directory and
you are good to go. In case you get some errors, the links to the FAQ and mailing list of Lucene
users is as follows:

Mailing List:

http://lucene.apache.org/core/discussion.html

FAQ:

http://wiki.apache.org/lucene-java/LuceneFAQ

Setting up a simple Java Lucene project
Having Lucene downloaded, we can get started working with Lucene. Let's take a look at how
a Lucene project is set up.

Getting ready
Java Runtime is required. If you have not installed Java yet, visit Oracle's website to download
Java. Here is a link to the Java download page: http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

You may also want to use an IDE to work on a Lucene project. Many users prefer Eclipse IDE,
but you are free to make your own choice, such as NetBeans, or whatever you prefer. If you
want to give Eclipse IDE a try, you can refer to the following link: https://www.eclipse.
org/downloads/.

www.it-ebooks.info

http://lucene.apache.org/core/discussion.html
http://wiki.apache.org/lucene-java/LuceneFAQ
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
http://www.it-ebooks.info/

Chapter 1

9

Having set up a development environment, let's proceed to create our first Lucene project.

How to do it...
Thanks to the well-organized and efficient architecture of Lucene, the Lucene core JAR is only
2.4 MB in size. The core library provides the basic functionality to start a Lucene project. By
adding it to your Java classpath, you can begin to build a powerful search engine. We will
show you a couple ways to do this in Eclipse.

First, we will set up a normal Java project in Eclipse. Then, we will add Lucene libraries to the
project. To do so, follow these steps:

ff Click on the Project dropdown

ff Click on Properties

ff Select Java Build Path in left side of navigation

ff Click on the Libraries tab

ff Click on Add External JARs…

ff Browse to the folder where lucene-core is located, and then select the core JAR file

ff Also, add lucene-analyzers-common and lucene-queryparser:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

10

Another way to include the Lucene library is via Apache Maven. Maven is a project
management and build tool that provides facilities to manage project development lifecycles.
A detailed explanation of Maven is beyond the scope of this book. If you want to know more
about Maven, you can check out the following link: http://maven.apache.org/what-
is-maven.html.

To set up Lucene in Maven, you need to insert its dependency information into your project's
pom.xml. You can visit a Maven repository (http://mvnrepository.com/artifact/
org.apache.lucene) where you can find Lucene.

After you have updated pom.xml, the Lucene library will show up in your project after your IDE
sync up dependencies.

How it works...
Once the JAR files are made available to the classpath, you can go ahead and start writing
code. Both methods we described here would provide access to the Lucene library. The first
method adds JARs directly. With Maven, when you add dependency to pom.xml, the JARs will
be downloaded automatically.

www.it-ebooks.info

http://maven.apache.org/what-is-maven.html
http://maven.apache.org/what-is-maven.html
http://mvnrepository.com/artifact/org.apache.lucene
http://mvnrepository.com/artifact/org.apache.lucene
http://www.it-ebooks.info/

Chapter 1

11

Obtaining an IndexWriter
The IndexWriter class provides functionality to create and manage index. The class can
be found in Lucene-core. It handles basic operations where you can add, delete, and update
documents. It also handles more complex use cases that we will cover during the course of
this book.

An IndexWriter constructor takes two arguments:

IndexWriterDirectoryIndexWriterConfig
https://lucene.apache.org/core/4_10_0/core/org/apache/lucene/index
/IndexWriter.htmlIndexWriter(org.apache.lucene.store.Directory,
org.apache.lucene.index.IndexWriterConfig)IndexWriter
(https://lucene.apache.org/core/4_10_0/core/org/apache/lucene/
store/Directory.html
Directory d, https://lucene.apache.org/core/4_10_0/core/org/apache/
lucene/index/IndexWriterConfig.html"IndexWriterConfig conf)

Construct a new IndexWriter as per the settings given in the conf file.

The first argument is a Directory object. Directory is a location where the Lucene index
is stored. The second argument is an IndexWriterConfig object where it holds the
configuration information. Lucene provides a number of directory implementations. For
performance or quick prototyping, we can use RAMDirectory to store the index entirely in
memory. Otherwise, the index is typically stored in FSDirectory on a file system. Lucene
has several FSDirectory implementations that have different strengths and weaknesses
depending on your hardware and environment. In most cases, we should let Lucene decide
which implementation to use by calling FSDirectory.open (File path).

How to do it…
We need to first define an analyzer to initialize IndexWriterConfig. Then, a Directory
should be created to tell Lucene where to store the index. With these two objects defined,
we are ready to instantiate an IndexWriter.

The following is a code snippet that shows you how to obtain an IndexWriter:

 Analyzer analyzer = new WhitespaceAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 IndexWriter indexWriter = new IndexWriter(directory, config);

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

12

How it works…
First, we instantiate a WhitespaceAnalyzer to parse input text, and tokenize text into
word tokens. Then, we create an in-memory Directory by instantiating RAMDirectory. We
configure IndexWriterConfig with the WhitespaceAnalyzer we just created and finally,
we pass both Directory and IndexWriterConfig to create an IndexWriter. The IndexWriter
is now ready to update the index.

An IndexWriter consists of two major components, directory and analyzer. These are
necessary so that Lucene knows where to persist indexing information and what treatment to
apply to the documents before they are indexed. Analyzer's treatment is especially important
because it maintains data consistency. If an index already exists in the specified directory,
Lucene will update the existing index. Otherwise, a new index is created.

Creating an analyzer
Analyzer's job is to analyse text. It enforces configured policies (IndexWriterConfig) on
how index terms are extracted and tokenized from a raw text input. The output from Analyzer
is a set of indexable tokens ready to be processed by the indexer. This step is necessary to
ensure consistency in both the data store and search functionality. Also, note that Lucene only
accepts plain text. Whatever your data type might be—be it XML, HTML, or PDF, you need to
parse these documents into text before tossing them over to Lucene.

Imagine you have this piece of text: Lucene is an information retrieval library written in Java.
An analyzer will tokenize this text, manipulate the data to conform to a certain data formatting
policy (for example, turn to lowercase, remove stop words, and so on), and eventually output
as a set of tokens. Token is a basic element in Lucene's indexing process. Let's take a look at
the tokens generated by an analyzer for the above text:

{Lucene} {is} {an} {Information} {Retrieval} {library} {written} {in}
{Java}

Each individual unit enclosed in braces is referred to as a token. In this example, we are
leveraging WhitespaceAnalyzer to analyze text. This specific analyzer uses whitespace
as a delimiter to separate the text into individual words. Note that the separated words are
unaltered and stop words (is, an, in) are included. Essentially, every single word is extracted
as a token.

Getting ready
The Lucene-analyzers-common module contains all the major components we discussed
in this section. Most commonly-used analyzers can be found in the org.apache.lucene.
analysis.core package. For language-specific analysis, you can refer to the org.apache.
lucene.analysis {language code} packages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

How to do it...
Many analyzers in Lucene-analyzers-common require little or no configuration, so
instantiating them is almost effortless. For our current exercise, we will instantiate the
WhitespaceAnalyzer by simply using new object:

Analyzer analyzer = new WhitespaceAnalyzer();

How it works…
An analyzer is a wrapper of three major components:

ff Character filter

ff Tokenizer

ff Token filter

The analysis phase includes pre- and post-tokenization functions, and this is where the
character filter and token filter come into play. The character filter preprocesses text before
tokenization to clean up data such as striping out HTML markups, removing user-defined
patterns, and converting a special character or specific text. The token filter executes the
post tokenization filtering; its operations involve various kinds of manipulations. For instance,
stemming, stop word filtering, text normalization, and synonym expansion are all part of token
filter. As described earlier, the tokenizer splits up text into tokens. The output of these analysis
processes is TokenStream where the indexing process can consume and produce an index.

Lucene provides a number of standard analyzer implementations that should fit most of the
search applications. Here are some additional analyzers, which we haven't talked about yet:

ff StopAnalyzer: This is built with a LowerCaseTokenizer and StopWordFilter. As the
names suggest, this analyzer lowercases text, tokenizes non-letter characters and
removes stop words.

ff SimpleAnalyzer: This is built with a LowerCaseTokenizer so that it simply splits text at
non-letter characters, and lowercases the tokens.

ff StandardAnalyzer: This is slightly more complex than SimpleAnalyzer. It consists
of StandardTokenizer, StandardFilter, LowerCaseFilter, and StopWordFilter.
StandardTokenizer uses a grammar-based tokenization technique that's applicable
for most European languages. StandardFilter normalizes tokens extracted with
StandardTokenizer. Then, we have the familiar LoweCaseFilter and StopWordFilter.

ff SnowballAnalyzer: This is the most featured of the bunch. It's made up of
StandardTokenizer with StandardFilter, LowerCaseFilter, StopFilter, and SnowballFilter.
SnowballFilter stems words, so this analyzer is essentially StandardAnalyzer plus
stemming. In simple terms, stemming is a technique to reduce words to their word stem
or root form. By reducing words, we can easily find matches of words with the same
meaning, but in different forms such as plural and singular forms.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

14

Creating fields
We have learned that indexing information in Lucene requires the creation of document
objects. A Lucene document contains one or more field where each one represents a single
data point about the document. A field can be a title, description, article ID, and so on. In this
section, we will show you the basic structure and how to create a field.

A Lucene field has three attributes:

ff Name

ff Type

ff Value

Name and value are self-explanatory. You can think of a name as a column name in a table,
and value as a value in one of the records where record itself is a document. Type determines
how the field is treated. You can set FieldType to control whether to store value, to index it
or even tokenize text. A Lucene field can hold the following:

ff String

ff Reader or preanalyzed TokenStream

ff Binary(byte[])

ff Numeric value

How to do it...
This code snippet shows you how to create a simple TextField:

 Document doc = new Document();
 String text = "Lucene is an Information Retrieval library
 written in Java.";
 doc.add(new TextField("fieldname", text, Field.Store.YES));

How It Works
In this scenario, we create a document object, initialize a text, and add a field by creating
a TextField object. We also configure the field to store a value so it can be retrieved
during a search.

A Lucene document is a collection of field objects. A field is the name of the value pairs, which
you may add to the document. A field is created by simply instantiating one of the Field
classes. Field can be inserted into a document via the add method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

Creating and writing documents to an index
This recipe shows you how to index a document. In fact, here we are putting together all that
we learned so far from the previous recipes. Let's see how it is done.

How to do it...
The following code sample shows you an example of adding a simple document to an index:

public class LuceneTest {
 public static void main(String[] args) throws IOException {
 Analyzer analyzer = new WhitespaceAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 IndexWriter indexWriter = new IndexWriter(directory,
 config);
 Document doc = new Document();
 String text = "Lucene is an Information Retrieval library
 written in Java";
 doc.add(new TextField("fieldname", text, Field.Store.YES));
 indexWriter.addDocument(doc);
 indexWriter.close();
 }
}

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

How it works…
Note that the preceding code snippet combined all the sample codes we learned so far.
It first initializes an analyzer, directory, IndexWriterConfig, and IndexWriter. Once
the IndexWriter is obtained, a new Document is created with a custom TextField. The
Document is then added to IndexWriter. Also, note that we call indexWriter.close() at
the end. calling this method, will commit all changes and close the index.

The IndexWriter class exposes an addDocument(doc) method that allows you to add
documents to an index. IndexWriter will write to an index specified by directory.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Introducing Lucene

16

Deleting documents
We have learned how documents are added to an index. Now, we will see how to delete
Documents. Suppose you want to keep your index up to date by deleting documents that
are a week old. All of a sudden, the ability to remove documents becomes a very important
feature. Let's see how can we do that.

How to do it...
IndexWriter provides the interface to delete documents from an index. It takes either term or
query as argument, and will delete all the documents matching these arguments:

ff deleteDocuments(Term)

ff deleteDocuments(Term… terms)

ff deleteDocuments(Query)

ff deleteDocuments(Query… queries)

ff deleteAll()

Here is a code snippet on how deleteDocuments is called:

 indexWriter.deleteDocuments(new Term("id", "1"));"));
 indexWriter.close();

How it works…
Assuming IndexWriter is already instantiated, this code will trigger IndexWriter to delete all the
documents that contain the term id where the value equals 1. Then, we call close to commit
changes and close the IndexWriting. Note that this is a match to a Field called id; it's not the
same as DocId.

In fact, deletions do not happen at once. They are kept in the memory buffer and later
flushed to the directory. The documents are initially marked as deleted on disk so subsequent
searches will simply skip the deleted documents; however, to free the memory, you still need
to wait. We will see the underlying process in detail in due course.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

 Obtaining an IndexSearcher
Having reviewed the indexing cycle in Lucene, let's now turn our attention towards
search. Keep in mind that indexing is a necessary evil you have to go through to make
your text searchable. We take all the pain to customize a search engine now, so we can
obtain good search experiences for the users. This will be well worth the effort when users
can find information quickly and seamlessly. A well-tuned search engine is the key to every
search application.

Consider a simple search scenario where we have an index built already. User is doing
research on Lucene and wants to find all Lucene-related documents. Naturally, the term
Lucene will be used in a search query. Note that Lucene leverages an inverted index
(see the preceding image). Lucene can now locate documents quickly by stepping into
the term Lucene in the index, and returning all the related documents by their DocIds.
A term in Lucene contains two elements—the value and field in which the term occurs.

How do we specifically perform a search? We create a Query object. In simple terms, a query
can be thought of as the communication with an index. This action is also referred to as
querying an index. We issue a query to an index and get matched documents back.

The IndexSearcher class is the gateway to search an index as far as Lucene is concerned.
An IndexSearcher takes an IndexReader object and performs a search via the reader.
IndexReader talks to the index physically and returns the results. IndexSearcher
executes a search by accepting a query object. Next, we will learn how to perform a search
and create a Query object with a QueryParser. For now, let's take a look at how we can
obtain an IndexSearcher.

How to do it...
Here is a code snippet that shows you how to obtain an IndexSearcher:

Directory directory = getDirectory();
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);

How it works…
The first line assumes we can gain access to a Directory object by calling getDirectory().
Then, we obtain an IndexReader by calling DirectoryReader.open(directory). The
open method in DirectoryReader is a static method that opens an index to read, which is
analogous to IndexWriter opening a directory to write. With an IndexReader initialized,
we can instantiate an IndexSearcher with the reader.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

18

Creating queries with the Lucene
QueryParser

Now, we understand that we need to create Query objects to perform a search. We will look
at QueryParser and show you how it's done. Lucene supports a powerful query engine that
allows for a wide range of query types. You can use search modifier or operator to tell Lucene
how matches are done. You can also use fuzzy search and wild card matching.

Internally, Lucene processes Query objects to execute a search. QueryParser is an interpreter
that parses a query string into Query objects. It provides the utility to convert textual input
into objects. The key method in QueryParser is parse (String). If you want more control over
how a search is performed, you can create Query objects directly without using QueryParser,
but this would be a much more complicated process. The query string syntax Lucene uses
has a few rules. Here is an excerpt from Lucene's Javadoc: https://lucene.apache.
org/core/4_10_0/queryparser/org/apache/lucene/queryparser/classic/
QueryParser.html.

The syntax for query strings is as follows: a Query is a series of clauses. A clause can be
prefixed by:

ff A plus (+) or minus (-) sign, indicating that the clause is required or prohibited,
respectively.

ff Alternatively, a term followed by a colon, indicating the field to be searched.
This enables us to construct queries that search multiple fields.

A clause can be:

ff A term, indicating all the documents that contain this term.

ff Alternatively, a nested query, enclosed in parentheses. Note that this can be used
with a+/- prefix to require any of the set of terms.

Thus, in BNF, the query grammar is:

Query ::= (Clause)*
Clause ::= ["+", "-"] [<TERM> ":"] (<TERM> | "(" Query ")")

Note that you need to import lucene-queryparser package to use
QueryParser. It is not a part of the lucene-core package.

The Backus Normal Form (BNF) is a notation technique to specify syntax for a language, and
is often used in computer science.

www.it-ebooks.info

https://lucene.apache.org/core/4_10_0/queryparser/org/apache/lucene/queryparser/classic/QueryParser.html
https://lucene.apache.org/core/4_10_0/queryparser/org/apache/lucene/queryparser/classic/QueryParser.html
https://lucene.apache.org/core/4_10_0/queryparser/org/apache/lucene/queryparser/classic/QueryParser.html
http://www.it-ebooks.info/

Chapter 1

19

How to do it...
Here is a code snippet:

QueryParser parser = new QueryParser("Content", analyzer);
Query query = parser.parse("Lucene");

How it works…
Assuming an analyzer is already declared and available as a variable, we pass it into
QueryParser to initialize the parser. The second parameter is the name of the field where
we will perform a search. In this case, we are searching a field called Content. Then, we call
parse(String) to interpret the search string Lucene into Query object. Note that, at this point,
we only return a Query object. We have not actually executed a search yet.

Performing a search
Now that we have a Query object, we are ready to execute a search. We will leverage
IndexSearcher from two recipes ago to perform a search.

Note that, by default, Lucene sorts results based on relevance. It has a scoring mechanism
assigning a score to every matching document. This score is responsible for the sort order
in search results. A score can be affected by the rules defined in the query string (for example,
must match, AND operation, and so on). It can also be altered programmatically. We have
set aside a chapter to explore the concept of scoring and how we can leverage it to customize
a search engine.

How to do it...
Here is what we learned so far and put together into an executable program:

public class LuceneTest {
 public static void main(String[] args) throws IOException,
 ParseException {
 Analyzer analyzer = new StandardAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 IndexWriter indexWriter = new IndexWriter(directory,
 config);
 Document doc = new Document();
 String text = "Lucene is an Information Retrieval library
 written in Java";

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

20

 doc.add(new TextField("Content", text, Field.Store.YES));
 indexWriter.addDocument(doc);
 indexWriter.close();
 IndexReader indexReader = DirectoryReader.open(directory);
 IndexSearcher indexSearcher = new
 IndexSearcher(indexReader);
 QueryParser parser = new QueryParser("Content",
 analyzer);
 Query query = parser.parse("Lucene");
 int hitsPerPage = 10;
 TopDocs docs = indexSearcher.search(query, hitsPerPage);
 ScoreDoc[] hits = docs.scoreDocs;
 int end = Math.min(docs.totalHits, hitsPerPage);
 System.out.print("Total Hits: " + docs.totalHits);
 System.out.print("Results: ");
 for (int i = 0; i < end; i++) {
 Document d = indexSearcher.doc(hits[i].doc);
 System.out.println("Content: " + d.get("Content");
 }
 }
}

How it works…
The preceding code sets up a StandardAnalyzer to analyze text, uses a RAMDirectory
for index store, configures IndexWriter to put a piece of content into the index, and uses
QueryParser to generate Query object, in order to perform a search. It also has a sample
code that shows how to retrieve search results from TopDocs by displaying total hits,
and shows matching documents by DocId.

Here is a diagram showing how the search portion works between components:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

A search string enters into QueryParser.parse(String). QueryParser then uses an
analyzer to process the search string to produce a set of tokens. The tokens are then mapped
to the Query object, and get sent to IndexSearcher to execute a search. The search result
returned by IndexSearcher is a TopDocs object where it contains statistics of total matches
and DocIds of the matching documents.

Note that it is preferable to use the same analyzer for both indexing and searching to get the
best results.

Enumerating results
We have already previewed how the results are enumerated from the previous sample code.
You might have noticed that the major component in search results is TopDocs. Now, we will
show you how to leverage this object to paginate results. Lucene does not provide pagination
functionality, but we can still build pagination easily using what's available in TopDocs.

How to do it...
Here is a sample implementation on pagination:

public List<Document> getPage(int from , int size){
 List<Document> documents = new ArraList<Document>();
 Query query = parser.parse(searchTerm);
 TopDocs hits = searcher.search(query, maxNumberOfResults);
 int end = Math.min(hits.totalHits, size);
 for (int i = from; i < end; i++) {
 int docId = hits.scoreDocs[i].doc;
 //load the document
 Document doc = searcher.doc(docId);
 documents.add(doc);
 }
 return documents;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Lucene

22

How it works…
When we perform search in Lucene, actual results are not preloaded immediately. In TopDocs,
we only get back an array of ranked pointers. It's called ranked pointers because they are not
actual documents, but a list of references (DocId). By default, results are scored by the scoring
mechanism. We will see more about scoring in detail in Introduction section Chapter 7, Flexible
Scoring. For paging, we can calculate position offset, apply pagination ourselves, and leverage
something like what we showed in the sample code to return results by page. Developers at
Lucene actually recommend re-executing a search on every page, instead of storing the initial
search results (refer to http://wiki.apache.org/lucene-java/LuceneFAQ#How_
do_I_implement_paging.2C_i.e._showing_result_from_1-10.2C_11-20_
etc.3F). The reasoning is that people are usually only interested in top results and they are
confident in Lucene's performance.

This code assumes that parser (QueryParser), searcher (IndexSearcher),
and maxNumberOfResults are already initialized. Note that this
sample is for illustrative purpose only and it's not optimized.

www.it-ebooks.info

http://wiki.apache.org/lucene-java/LuceneFAQ#How_do_I_implement_paging.2C_i.e._showing_result_from_1-10.2C_11-20_etc.3F
http://wiki.apache.org/lucene-java/LuceneFAQ#How_do_I_implement_paging.2C_i.e._showing_result_from_1-10.2C_11-20_etc.3F
http://wiki.apache.org/lucene-java/LuceneFAQ#How_do_I_implement_paging.2C_i.e._showing_result_from_1-10.2C_11-20_etc.3F
http://www.it-ebooks.info/

23

2
Analyzing Your Text

In this chapter, we will cover the following recipes:

ff Obtaining a common analyzer

ff Obtaining a TokenStream

ff Obtaining TokenAttribute values

ff Using PositionIncrementAttribute

ff Using PerFieldAnalyzerWrapper

ff Defining custom TokenFilters

ff Defining custom analyzers

ff Defining custom tokenizers

ff Defining custom attributes

Introduction
Before we begin, let's review Lucene's analysis process. We learned about various
components in creating and searching an index using IndexWriter and IndexSearcher in the
previous chapter. We also looked at analyzer; how it's leveraged in tokenizing and cleansing
data; and Lucene's internal index structure, the inverted index for high-performance lookup.
We touched on Term and how it's used in querying.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

24

A term is a fundamental unit of data in a Lucene index. It associates with a Document and
itself has two attributes – field (analogous to column name in a table) and value. So how
does Lucene extract terms from text? You may already be betting on an analyzer. It's correct
that an analyzer is responsible for generating these terms. An analyzer is a container of
tokenization and filtering processes. Tokenization, as discussed, is a process that breaks up
text at word boundaries defined by a specific tokenizer component. After tokenization, filtering
kicks in to massage data before outputting to IndexWriter for indexing. This is when tokens
are transformed to terms and stored. What the analyzer produces has a significant effect
on search, so it's important to understand the analysis process and have the knowledge to
choose or build your own analyzer in order to create a good search experience. The following
figure illustrates an analyzer facilitating the analysis process:

In this illustration, a tokenizer uses a reader object to consume text. It produces a sequential
set of tokens that is called TokenStream. TokenFilter accepts the TokenStream, applies the
filtering process, and emits filtered data in TokenStream in return. TokenFilters can be chained
together to attain the desired results. A character filter can also be used to preprocess data
before tokenization. One example use case for character filters is stripping out HTML tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

25

Now we have a fair idea of what an analyzer is. Let's see how this necessary evil can be
put to good use:

ff Stopword filtering: Analyzers can help remove stopwords from text so they are not
indexed. Think of words such as a, and, the, on, of, if, and so on. These are words
that do not convey any specific meaning. The chance of users searching on these
words is very low. Considering the fact that such words usually have high occurrence
counts, it is advisable to not index these terms. The process of filtering out such
terms from text is called stopword removal.

ff Text normalization: This can be thought of as changing text to conform to a certain
standard format, such as lowercasing and the removal of special characters such as
the grave accent used in many languages. It is a way to standardize text before it is
indexed. This technique helps to improve relevancy in matching search results and
also makes comparisons easy and fast.

ff Stemming: This is another important task that helps to improve accuracy and
performance. Stemming in Lucene is a reduction of words to their most basic (root)
form, and this process is language-specific. For example, think of the word run in
the English language. There are different forms of the word depending on how it
is used—runs, running, ran, and so on—across documents. From an information
retrieval point of view, we are less concerned with these differences.

Stemming, by itself, is an algorithmic approach that processes terms individually
without context, so false positives can be prevalent on words that have similar
spelling but very different meanings. However, because the technique can still
produce highly relevant results in a majority of searches and can significantly
reduce dictionary size by reducing words to root forms, the benefits can outweigh
the negatives in some implementations.

To increase accuracy and reduce false positives, there is a more advanced technique
called lemmatization that can be employed to provide stemming that's more context-
and language-sensitive. Lemmatization is a linguistic approach to stemming that takes
word meanings and potentially grammatical rules into consideration. It will improve
matching accuracy but at the cost of computational resources and possibly money
because there are currently no lemmatization solutions that are publicly available.

Lucene provides several stemmer implementations—Snowball, PorterStem,
and KStem—that can be leveraged to handle stemmings. The best way to choose
the right stemmer is usually the empirical approach as search result quality
depends a lot on the types of content being searched on.

ff Synonym Expansion: Words can be expanded with their synonyms to further improve
search quality. As the name suggests, this technique expands a word into additional
similar-meaning words for matching, for example, beautiful and pretty or unhappy and
sad. Matching synonyms can help bring back more relevant results when searching
general ideas.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

26

Obtaining a common analyzer
Lucene provides a set of default analyzers in the lucene-analyzers-common package.
Let's take a look at them in detail.

Getting ready
The following are five common analyzers Lucene provides in the lucene-analyzers-
common module:

ff WhitespaceAnalyzer: Splits text at whitespaces, just as the name indicates.
In fact, this is the only thing this analyzer does.

ff SimpleAnalyzer: Splits text at non-letter characters and lowercases
resulting tokens.

ff StopAnalyzer: Splits text at non-letter characters, lowercases resulting tokens,
and removes stopwords. This analyzer is useful for pure text content and is not ideal
if the content contains words with special characters such as product model number.
This analyzer comes with a default set of stopwords but you can always have the
provision to provide your own set of stopwords.

ff StandardAnalyzer: Splits text using a grammar-based tokenization, normalizes
and lowercases tokens, removes stopwords, and discards punctuations. It can be
used to extract company names, e-mail addresses, model numbers, and so on.
This analyzer is great for general usage.

ff SnowballAnalyzer: This analyzer is similar to StandardAnalyzer with an
additional SnowballFilter for stemming. This provides even more flexibility than
StandardAnalyzer. However, SnowballFilter is very aggressive in stemming, so false
positive are possible. Lucene is deprecating this analyzer in the upcoming version,
5.0, and recommends you use a language-specific analyzer instead (for example,
org.apache.lucene.analysis.en.*).

Obtaining the default analyzer is very simple. Note that we don't get to see the actual output,
tokenStream, from the analyzer yet. As we progress, we will show you how it's done.

Make sure the lucene-analyzers-common.jar library is also added
to the classpath or the corresponding dependency in your pom.xml.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

27

How to do it...
Here is how you instantiate an analyzer:

Analyzer analyzer = new WhitespaceAnalyzer();

You may instantiate any analyzer in the commons package in a similar fashion. As you see,
it is simple to get default analyzers to work.

How it works...
Let's look at some examples to see how each of these analyzers differs. We will use the
following sample text – Lucene is mainly used for information retrieval and you can read
more about it at http://lucene.apache.org. In the forthcoming sections, we will learn
more about customizing analyzers. For now, we shall concern ourselves with output only
and review each analyzer's behavior.

First, let's look at WhitespaceAnalyzer. As we already learned, a WhitespaceAnalyzer
splits text at whitespaces. The following would be the output of a WhitespaceAnalyzer:

[Lucene] [is] [mainly] [used] [for] [information] [retrieval] [and]
[you] [can] [read] [more] [about] [it] [at]
[lucene.apache.org.]

Each token is separated in a pair of braces for you to understand clearly. It is quite evident
that no normalization has been applied to the text. The split tokens are left as-is. If this
analyzer is used exclusively for both indexing and searching, matches will have to be exact
(including matching cases) to be found.

Now let's see how SimpleAnalyzer analyzes the same piece of text. Here is what we
get as output:

[lucene] [is] [mainly] [used] [for] [information] [retrieval]
[and] [you] [can] [read] [more] [about] [it] [at] [lucene]
[apache] [org]

Tokens are split by non-letters and lowercased in this example. Note the web address is split
up because "." is considered as a delimiter. This analyzer expands search capability a little bit
by allowing case-insensitive searches (assuming this is used in both indexing and searching,
both index and search terms are lowercased prior to processing).

The next one is StopAnalyzer:

[lucene] [mainly] [used] [information] [retrieval] [you] [can]
[read] [more] [about] [lucene] [apache] [org]

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

28

This analyzer builds on top of the SimpleAnalyzer analyzer's tokenization and filtering
with the addition of StopFilter. Common English stopwords are removed and tokens are
lowercased and normalized, similar to SimpleAnalyzer.

Now, let's look at a more sophisticated general purpose built-in analyzer,
StandardAnalyzer. Here is what it will output:

[lucene] [mainly] [used] [information] [retrieval] [you] [can]
[read] [more] [about] [lucene.apache.org]

Note how StandardAnalyzer treated the web address
http://lucene.apache.org.

This analyzer continues to build on top of the features we reviewed so far. It uses a different
tokenizer and filter called StandardTokenizer and StandardFilter, tokenizing text by
grammar and removing punctuation. This analyzer is suitable for most implementations as it
able to handle special wording such as product model numbers and web addresses (by not
breaking them up into separate tokens).

Last but not least, the SnowballAnalyzer. Although this analyzer is getting replaced by
the language-specific analyzer in org.apach.lucene.analysis.<language code>
packages, it is powerful nonetheless, because this analyzer handles stemming quite
effectively. Here is what the output would be:

[lucen] [is] [main] [use] [for] [inform] [retriev] [and] [you]
[can] [read] [more] [about] [it] [at] [lucene.apache.org]

Note that several words are changed to their root form (for example, mainly to main), defined
by the filter. One of the reasons why this analyzer is getting deprecated is that its performance
is not as good as its alternative, another stemmer class based on PorterStemmer class.
However, some users prefer to use this implementation because the word reduction is more
accurate. The new recommended per-language analyzer (for example, EnglishAnalyzer)
uses PorterStemmer (Snowball is also based on Porter) and should give you very good
indexing performance and good results that are comparable to SnowballFilter.

There's more…
We have seen how various built-in analyzers behave and how each may be suitable for your
application. But, in real life, we generally find use cases that differ from the standard offering.
In the case of the search application, it is very common that people need to do a lot of
customization to make a search engine fulfil business requirements. Luckily, Lucene provide
such flexibility where you can create custom analyzers to suit your needs. We will continue to
dive deeper and will show you how it's done.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

29

Obtaining a TokenStream
TokenStream is an intermediate data format between components within the analysis
process. TokenStream acts as both an input and output format in all filters. For tokenizer,
it consumes text from a reader and outputs result as TokenStream. Let's explore TokenStream
in detail in this section.

Getting ready
The Analyzer class is an abstract base class containing two methods of interest.
The first one is createComponents (String fieldname, Reader reader). This is where
the analyzer is put together by chaining the tokenizer and filters. The second method is
tokenStream (String fieldname, Reader reader). This is the method we will review in this
section. We will use the tokenStream method to return a processed TokenStream so we can
examine its content after the analysis process.

How to do it...
We need two arguments to call the tokenStream method. The first is a field name and the
second is a reader:

Reader reader = new StringReader("Text to be passed");
Analyzer analyzer = new SimpleAnalyzer();
TokenStream tokenStream = analyzer.tokenStream("myField", reader);

How it works…
An analyzer processes incoming text via a Reader input. Internally, the Reader is passed
on to Tokenizer, which turns the text into a TokenStream after it's been processed. From
here on, TokenStream is passed around between filters in every step. TokenStream is
essentially an enumeration of tokens that you can iterate through. TokenStream extends from
AttributeSource and it provides an interface to return token attributes and value.

Obtaining TokenAttribute values
With a TokenStream, we can look at how token values are retrieved. From a high level,
TokenStream is an enumeration of tokens. To access the values, we will provide TokenStream
with one or more attribute objects. Note that there is only one instance that exists per
attribute. This is for performance reasons so we are not creating objects in each iteration;
instead, the same attribute instances are updated when we increment the token.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

30

Getting ready
There are several types of attributes; each type provides a different aspect, or metadata,
of a token. Here is a list of attributes we will review in this section.

This is the token attribute interface description:

ff CharTermAttribute: This exposes a token's actual textual value, equivalent to a
term's value.

ff PositionIncrementAttribute: This returns the position of the current token
relative to the previous token. This attribute is useful in phrase-matching as the
keyword order and their positions are important. If there are no gaps between the
current token and the previous token (for example, no stop words in between), it will
be set to its default value, 1.

ff OffsetAttribute: This gives you information about the start and end positions of
the corresponding term in the source text.

ff TypeAttribute: This is available if it is used in the implementation. This is usually
used to identify the data type.

ff FlagsAttribute: This is somewhat similar to TypeAttribute, but it serves a
different purpose. Suppose you need to add specific information about a token and
that information should be available down the analyzer chain, you can pass it as
flags. TokenFilters can perform any specific action based on the flags of the token.

ff PayloadAttribute: This stores the payload at each index position and is generally
useful in scoring when used with Payload-based queries. Because it's stored at
each position, it is best to have a minimum number of bytes per term in the index to
minimize overloading the index with a massive amount of data.

How to do it…
Now we will see Attribute retrieval in action. In this sample, we will use StandardAnalyzer
to process the input text and OffsetAttribute and CharTermAttribute to return each
token's value and its offsets. Here is the sample code:

StringReader reader = new StringReader("Lucene is mainly used for
information retrieval and you can read more about it at lucene.apache.
org.");
StandardAnalyzer wa = new StandardAnalyzer();
TokenStream ts = null;

try {
 ts = wa.tokenStream("field", reader);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

31

 OffsetAttribute offsetAtt = ts.addAttribute(OffsetAttribute.
class);
 CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.
class);

 ts.reset();

 while (ts.incrementToken()) {
 String token = termAtt.toString();
 System.out.println("[" + token + "]");
 System.out.println("Token starting offset: " + offsetAtt.
startOffset());
 System.out.println(" Token ending offset: " + offsetAtt.
endOffset());
 System.out.println("");
 }

 ts.end();
} catch (IOException e) {
 e.printStackTrace();
} finally {
 ts.close();
 wa.close();
}

Keep in mind that Attribute objects are reused in each iteration as we
increment tokens for performance and efficient memory management.

How it works…
In this sample, we are breaking down this text – Lucene is mainly used for information
retrieval and you can read more about it at http://lucene.apache.org. using
StandardAnalyzer. Note that we put a try catch block around TokenStream retrieval
and its iteration. This is so we can handle IOException and use the finally block to
cleanly close the TokenStream and Analyzer. The following is a step-by-step guide on what's
happening in the sample code:

1.	 To start processing text, we turn our input stream into StringReader to pass into
the Analyzer's tokenStream method.

2.	 Then we instantiate two attribute objects, OffsetAttribute and
CharTermAttribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

32

3.	 The attribute objects are then registered in TokenStream by calling its
addAttribute method.

4.	 Note that we call ts.reset() to reset TokenStream to the beginning.
This call is necessary prior to every iteration routine to ensure we always
iterate from the beginning.

5.	 We iterate TokenStream in a while loop by calling ts.incrementToken().
The loop exits when incrementToken() returns false.

6.	 We call termAtt.toString() to return the current token's value and call the
startOffset() and endOffset() methods of offsetAtt to get the offset.
Note that the variables termAtt and offsetAtt are reused in every iteration.

7.	 Now we call ts.end() to end the TokenStream. This call signals the current
TokenStream handler to execute any end-of-stream operations.

8.	 And lastly, we call the close() method to close out the TokenStream and Analyzer
to release any resources used during the analysis process.

Using PositionIncrementAttribute
The PositionIncrementAttribute class shows the position of the current token relative
to the previous token. The default value is 1. Any value greater than 1 implies that the previous
token and the current token are not consecutive – there is a gap between the two tokens where
some tokens (for example, stopwords) are omitted. This attribute is useful in phrase matching,
where the position and order of words matters. For example, say you want to execute an exact
phrase match. As we step through TokenStream, the PositionIncrementAttribute class
on each matching token should be 1 so we know the phrase we are matching is matched word
for word exactly in the same order as the search phrase.

Another use of this attribute is synonym matching in a phrase query. Synonyms can be
inserted into the TokenStream following the term that's being expanded. The position
increments for the synonyms would set to 0 as that indicates the synonym term is at the
same position as the source term (the previous token). That way, the phrase Lucene is great
for search would match Lucene is excellent for search (assuming great is synonymous with
excellent in the chosen synonym filter).

Getting ready
PositionIncrementAttribute can be retrieved by calling addAttribute(Positi
onIncrementAttribute.class) on the TokenStream object. As we already learned,
the attribute is updated when we call incrementToken to iterate through the tokens.
To illustrate how this attribute is used, we are going to write a simple Filter that will skip
stopwords and set increment positions accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

33

How to do it...
Here is a sample code snippet:

public class MyStopWordFilter extends TokenFilter {

 private CharTermAttribute charTermAtt;
 private PositionIncrementAttribute posIncrAtt;

 public MyStopWordFilter(TokenStream input) {
 super(input);
 charTermAtt = addAttribute(CharTermAttribute.class);
 posIncrAtt = addAttribute(PositionIncrementAttribute.class);
 }

 @Override
 public boolean incrementToken() throws IOException {

 int extraIncrement = 0;
 boolean returnValue = false;
 while (input.incrementToken()) {
 if (StopAnalyzer.ENGLISH_STOP_WORDS_SET.contains
 (charTermAtt.toString())) {
 extraIncrement++;// filter this word
 continue;
 }

 returnValue = true;

 break;
 }

 if(extraIncrement>0){
 posIncrAtt.setPositionIncrement
 (posIncrAtt.getPositionIncrement()+extraIncrement);
 }
 return returnValue;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

34

How it works…
In this example, we obtain two attributes, CharTermAttribute (for text value retrieval) and
PositionIncrementAttribute (to set the position increment value). Then we call input.
incrementToken() to iterate through the TokenStream (input is a variable in TokenFilter
that points to the incoming TokenStream). In each iteration, we check if the current token is a
stopword. If it's a stopword, we increment extraIncrement by 1 to account for the filtered
stopword. The while loop exits either if we find a non-stopword or if we exhaust the list of
tokens. An PositionIncrementAttribute class is set on the next non-stopword token
with the addition of extraIncrement. The updated increment tells you how many tokens
this filter filters out.

Using PerFieldAnalyzerWrapper
Imagine you are building a search engine for a retailer website where you need to index
fields such as product title, description, sku, category, rating, reviews, and so on. Using a
general-purpose analyzer for all these fields may not be the best approach. It would work to
some degree but you will soon learn that there are cases where a general-purpose analyzer
may return undesired results.

For example, say you have a sku "AB-978" and are using StandardAnalyzer for all fields. The
analyzer would break up "AB-978" into two, [ab] [978]. This will have an adverse effect in
search accuracy because differences in sku between closely related products may vary very
little. We may have another product with sku "AB-978-1". In StandardAnalyzer, both strings
would produce these two tokens [ab] [978]. When a user searches for the term "AB-978", both
products would be treated with equal weight in the search results. So, there is a possibility
that product "AB-978-1" may rank higher than "AB-978" in the search results.

You may be wondering if it's possible to use different analysis processes between fields so
we can apply one method on one field and apply another one for a different field. The answer
is yes and Lucene provides a per-field analyzer wrapper class to let us achieve that. The
PerFieldAnalyzerWrapper constructor accepts two arguments, a default analyzer and a
Map of field to analyzer mapping. During the analysis process, if a field is found in the Map,
the associated Analyzer will be used. Otherwise, the process will use the default analyzer.

Getting ready
Let's go through an example to demonstrate how PerFieldAnalyzerWrapper
works. In our scenario, we will attempt to analyze text on a known field mapped in
PerFieldAnalyzerWrapper and analyze the same text on an unmapped field.
We will see how the output differs in this exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

How to do it…
Here is the code snippet:

 Map<String,Analyzer> analyzerPerField = new
 HashMap<String,Analyzer>();
 analyzerPerField.put("myfield", new WhitespaceAnalyzer());
 PerFieldAnalyzerWrapper defanalyzer = new
 PerFieldAnalyzerWrapper(new StandardAnalyzer(),
 analyzerPerField);
 TokenStream ts = null;
 OffsetAttribute offsetAtt = null;
 CharTermAttribute charAtt = null;
 try {
 ts = defanalyzer.tokenStream("myfield", new
 StringReader("lucene.apache.org AB-978"));
 offsetAtt = ts.addAttribute(OffsetAttribute.class);
 charAtt = ts.addAttribute(CharTermAttribute.class);
 ts.reset();
 System.out.println("== Processing field 'myfield' using
 WhitespaceAnalyzer (per field) ==");
 while (ts.incrementToken()) {
 System.out.println(charAtt.toString());
 System.out.println("token start offset: " +
 offsetAtt.startOffset());
 System.out.println(" token end offset: " +
 offsetAtt.endOffset());
 }
 ts.end();

 ts = defanalyzer.tokenStream("content", new
 StringReader("lucene.apache.org AB-978"));
 offsetAtt = ts.addAttribute(OffsetAttribute.class);
 charAtt = ts.addAttribute(CharTermAttribute.class);
 ts.reset();
 System.out.println("== Processing field 'content' using
 StandardAnalyzer ==");
 while (ts.incrementToken()) {
 System.out.println(charAtt.toString());
 System.out.println("token start offset: " +
 offsetAtt.startOffset());

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

36

 System.out.println(" token end offset: " +
 offsetAtt.endOffset());
 }
 ts.end();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 ts.close();
 }

How it works…
First, we initialize a PerFieldAnalyzerWrapper class with a single field mapping
for myfield that maps to a WhitespaceAnalyzer. The default analyzer is set to
StandardAnalyzer. Then we go through the usual steps in setting attribute objects for
acquiring attributes for OffsetAttribute and CharTermAttribute. We run through the
same routine twice, once where we process text in the matching field myfield and a second
time where we process text in the non-matching field content. Note that the input string
(lucene.apache.org AB-978) for both routines is identical.

When you execute this code, the first routine will output two tokens, [lucene.apache.org] and
[AB-978], because WhitespaceAnalyzer was applied. The PerFieldAnalyzerWrapper
class found a match in its mapping for the field myfield. In the second routine, three tokens
will output instead, [lucene.apache.org] [ab] [978]. The field content was not found, so the
default analyzer StandardAnalyzer was applied.

Defining custom TokenFilters
Sometimes, search behaviors may be so specific that we need to create a custom TokenFilter
to achieve those behaviors. To create a custom filter, we will extend from the TokenFilter class
and override the incrementToken() method.

We will create a simple word-expanding TokenFilter that expands courtesy titles from the short
form to the full word. For example, Dr expands to doctor.

How to do it…
Here is the sample code:

public class CourtesyTitleFilter extends TokenFilter {
 Map<String,String> courtesyTitleMap = new
HashMap<String,String>();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

 private CharTermAttribute termAttr;
 public CourtesyTitleFilter(TokenStream input) {
 super(input);
 termAttr = addAttribute(CharTermAttribute.class);
 courtesyTitleMap.put("Dr", "doctor");
 courtesyTitleMap.put("Mr", "mister");
 courtesyTitleMap.put("Mrs", "miss");
 }
 public boolean incrementToken() throws IOException {
 if (!input.incrementToken())
 return false;
 String small = termAttr.toString();
 if(courtesyTitleMap.containsKey(small)) {
 termAttr.setEmpty().append(courtesyTitleMap.get(small));
 }
 return true;
 }
}

How it works…
We create the CourtesyTitleFilter class by extending TokenFilter. In its constructor,
we initialize a CharTermAttribute instance for reading the token value and initialize
courtesyTitleMap with the short form and word mapping for our conversion. In the
overridden method, incrementToken(), we first check if the input (inputting TokenStream)
still has a token. If no token is found, it exits with a false value. Then it checks if the
token exists in courtesyTitleMap. If a mapping is found, it resets the token value with
CharTermAttribute, setting the attribute empty by calling setEmpty() and appending it
with the new value from courtesyTitleMap.

When you run this code as part of an analysis process that splits text by whitespaces and
applies a lowercase filter at the end, the string Dr Watson would become [doctor]
[watson] in output.

Defining custom analyzers
It's necessary to create a custom analyzer when the built-in analyzers do not provide the
needed behaviors for your search application. To continue with our CourtesyTitleFilter
example, we will create CourtesyTitleAnalyzer.

The anatomy of an analyzer includes one tokenizer and one or more TokenFilters. We will
build an Analyzer by extending from the Analyzer abstract class and implement the
createComponents method.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

38

How to do it…
Here is the sample code for CourtesyTitleAnalyzer:

public class CourtesyTitleAnalyzer extends Analyzer {

 @Override
 protected TokenStreamComponents createComponents(String
 fieldName, Reader reader) {
 Tokenizer letterTokenizer = new LetterTokenizer(reader);
 TokenStream filter = new CourtesyTitleFilter
 (letterTokenizer);
 return new TokenStreamComponents(letterTokenizer,
 filter);
 }
}

How it works…
An Analyzer is created by extending from the Analyzer abstract class as shown in this
example. Then we override the createComponents method, adding a LetterTokenizer
to split text by non-letter characters and CourtesyTitleFilter as a TokenFilter. Finally, we
return a new TokenStreamComponents instance initialized by the instantiated Tokenizer
and TokenFilter.

Note that the only method we need to override is createComponents. We don't need to
override the constructor to build our Analyzer because components are not added during
construction; they are added when the createComponents method is called. Therefore, we
override the createComponents method to customize an Analyzer. Also note that we cannot
override the tokenStream method because it's declared as final.

Defining custom tokenizers
Although there are several excellent built-in tokenizers in Lucene, you may still find yourself
needing something to behave slightly differently. You will then have to custom-build a
Tokenizer. Lucene provides a character-based tokenizer called CharTokenizer that should
be suitable for most types of tokenizations. You can override its isTokenChar method to
determine what characters should be considered as part of a token and what characters
should be considered as delimiters. It's worthwhile to note that both LetterTokenizer and
WhitespaceTokenizer extend from CharTokenizer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

How to do it…
In this example, we will create our own tokenizer that splits text by space only. It is similar to
WhitespaceTokenizer but this one is simpler. Here is the sample code:

public class MyTokenizer extends CharTokenizer {

 public MyTokenizer(Reader input) {
 super(input);
 }

 public MyTokenizer(AttributeFactory factory, Reader input) {
 super(factory, input);
 }

 @Override
 protected boolean isTokenChar(int c) {
 return !Character.isSpaceChar(c);
 }
}

How it works…
In this example, we extend from an abstract class called CharTokenizer. As described
earlier, this is a character-based tokenizer. To use CharTokenizer, you need to override
the isTokenChar method. In this method, you get to examine the input stream (via Reader)
character by character and determine whether to treat the character as a token character
or a delimiting character. It handles the complexity of token extraction from a Reader for you
so you can focus on the business logic of how text should be tokenized. We want to build a
tokenizer that splits text by space only, so we leverage the isSpaceChar method from the
character class to determine if the character is a space. If it's a space, it returns false,
which means it's a token character. Otherwise, the character will be treated as a delimiting
character and a new token will form afterwards.

Defining custom attributes
The built-in Attribute classes should suffice for most of the implementation, but if you
encounter a situation where you need a custom attribute, you may do so by creating your
own Attribute class. In this section, we will create an Attribute interface and then an
implementation class extending AttributeImpl and a TokenFilter that will set the
attribute value. Our example will be a simple exercise where we determine the gender for
a token based on specific words. This is purely for illustration purpose only, so this is by no
means a useful implementation for any application.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

40

How to do it…
First, let's start with an interface:

public interface GenderAttribute extends Attribute {

 public static enum Gender {Male, Female, Undefined};

 public void setGender(Gender gender);

 public Gender getGender();
}

Let's now apply an implementation class extending from AttributeImpl:

public class GenderAttributeImpl extends AttributeImpl implements
 GenderAttribute {

 private Gender gender = Gender.Undefined;

 public void setGender(Gender gender) {
 this.gender = gender;
 }

 public Gender getGender() {
 return gender;
 };
 @Override
 public void clear() {
 gender = Gender.Undefined;
 }

 @Override
 public void copyTo(AttributeImpl target) {
 ((GenderAttribute) target).setGender(gender);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

Finally, we create a TokenFilter to let us set the Attribute value:

public class GenderFilter extends TokenFilter {
 GenderAttribute genderAtt = addAttribute(GenderAttribute.class);
 CharTermAttribute charTermAtt = addAttribute(CharTermAttribute.
class);

 protected GenderFilter(TokenStream input) {
 super(input);
 }

 public boolean incrementToken() throws IOException {
 if (!input.incrementToken()) { return false; }
 genderAtt.setGender(determineGender(charTermAtt.toString()));
 return true;
 }

 protected GenderAttribute.Gender determineGender(String term) {
 if (term.equalsIgnoreCase("mr") || term.
equalsIgnoreCase("mister")) {
 return GenderAttribute.Gender.Male;
 } else if (term.equalsIgnoreCase("mrs") || term.
equalsIgnoreCase("misters")) {
 return GenderAttribute.Gender.Female;
 }
 return GenderAttribute.Gender.Undefined;
 }
}

How it works…
Part of the requirement of creating a custom Attribute class is the creation of an interface
that's based on attribute and an implementation that's based on AttributeImpl. The
names of the classes are important because Lucene looks for the Impl suffix to locate the
implementation class of an Attribute interface.

Let's dive into the details of the implementation now. In GenderAttribute, we defined
it as an interface-extending attribute. This is what will be passed into the addAttribute
method to register this attribute to a TokenStream. We defined an enum that holds three
values – Male, Female, and Undefined. We also defined a setter and a getter for the
gender variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text

42

In the implementation class GenderAttributeImpl, we have a private variable, gender,
that will store the gender value for a token and we have implementations for the setter
and getter defined in the interface. We also overrode two methods – clear and copyTo.
Overriding the clear method allows us to customize how we clear the attribute value and
overriding copyTo allows us to customize how copy attribute is done.

And lastly, we have GenderFilter, which extends TokenFilter. We instantiate two
attributes – GenderAttribute (what we defined) and CharTermAttribute. We will
use CharTermAttribute to return the textual value of a token so we can determine
the gender from it. We implemented incrementToken so we can insert the gender into
GenderAttribute when incrementToken is called. The gender is determined in the
determineGender method. The implementation of this method just simply checks if the
current term matches a certain courtesy title to determine the gender. Then it returns the
gender value. This implementation is intentionally simplified, as the robustness of this method
is not the priority of this section.

www.it-ebooks.info

http://www.it-ebooks.info/

43

3
Indexing Your Data

We will cover the following topics in this chapter:

ff Obtaining an IndexWriter

ff Creating a StringField

ff Creating a TextField

ff Creating a numeric field

ff Creating a DocValue field

ff Transactional commits and index versioning

ff Reusing field and document objects per thread

ff Delving into field norms

ff Changing similarity implementation used during indexing

Introduction
An index in a search engine can make or break an application. A well-tuned index with a
well-thought out indexing process will not only reduce future maintenance cost, but will also
reduce any potentially expensive application failures due to corruption in the data and/or a
break down in the data processing pipeline. We will dive into the indexing process more in this
chapter to equip you with the knowledge you need to build a stable search application.

So far, we covered the basics of setting up Lucene, injecting data, and configuring the
analysis process. In this chapter, we will explore the indexing process to learn more about the
advanced techniques in configuring and tuning the process.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

44

Let's review what we've learned already on Lucene's internal index structure so far, regarding
the inverted index. Consider the following sentences passing through StandardAnalyzer
before being added to our index:

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king's horses and all the king's men
Couldn't put Humpty together again

We will treat each sentence as a document. Below is a figure showing what the documents
and inverted index look like:

The preceding diagram illustrates that the Analyzer filters out stopwords and the resulting
tokens, generated by the tokenization process, are extracted and stored as individual terms.
Note that the inverted index contains a sorted list of terms with an associated DocId for each
term. The term to DocId relationship is a one-to-many relationship. The analysis process and
the inverted index are important concepts for understanding how to use Lucene effectively.

The diagram does not represent the exact process workflow in Lucene;
it is mainly for illustration purpose only.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

45

Another important concept to learn is the segmented nature of Lucene's index file format.
Index files are physically separated by segments and they follow a naming standard, where
files are named segments_1, then segments_2, and so on. All files belonging to the
same segment share the same filename with varying extensions. Each segment is a fully
independent index that can be searched separately. Simply adding new documents can
generate a new segment.

Here is an illustration of index segments:

The terms and documents can exist in any of the segments, depending on when the
new documents and terms are added. The IndexReader attributes will merge the index
segments internally so that you can access a coherent index without having to consider the
index segmentation.

Obtaining an IndexWriter
We have seen how an IndexWriter is obtained just by simply initialized with an Analyzer and
IndexWriterConfig. The default initialization behavior usually works well for the majority of
the time. However, there may be situations where you need finer control during the initialization
sequence. For example, when the default behavior creates a new index if an existing index
doesn't exist already. This may not be ideal in a production environment where an index should
always exist. Generating a new index will automatically hide the issue that an index is missing.
Perhaps there was a glitch in the backup routine where it accidentally removed the index, or
there was a data corruption issue that somehow wiped out the index directory. In any case, it
would be beneficial if we are aware of the indexing status and alerted when issues are detected.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

46

Lucene does provide options to control how an index is opened. We will talk about each
option in detail in this section and show you how it is done.

The IndexWriterConfig, a configuration object where you set the IndexWriter
attributes, provides three OpenMode options to open an index. The options are:

ff APPEND: This opens an existing index on a directory and allows IndexWriter to
update an index. No new index will be created with this option. If an existing index
doesn't exist already, an exception IndexNotFoundException will be thrown.

ff CREATE: This creates a new index, if a directory does not contain one already, or it
replaces an existing index. This option will always create a fresh index on the supplied
directory. Be careful when using this option because it will overwrite an existing index
when one already exists.

ff CREATE_OR_APPEND: This is the default option. If no index is found in the supplied
directory, a new index is created. Otherwise, IndexWriter will append to the
existing index. This is a safe option.

How to do it...
Here is a sample code snippet showing how to set the OpenMode option:

 FSDirectory directory = FSDirectory.open(new File(indexPath));
 Analyzer analyzer = new StandardAnalyzer();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 config.setOpenMode(IndexWriterConfig.OpenMode.CREATE);
 config.setRAMBufferSizeMB(64);
 config.setMaxBufferedDocs(4000);
 IndexWriter indexWriter = new IndexWriter(directory, config);

How it works...
In this code snippet, we first initialize a directory object with an indexPath
(assuming it is already defined, pointing at an index directory) and set up an Analyzer
and IndexWriterConfig. Then, we set the OpenMode on IndexWriterConfig before
we pass it onto an IndexWriter. The setOpenMode method is where you can set the
desired OpenMode.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

47

In addition to OpenMode, IndexWriterConfig has many other tuneable options. A
notable option is setRAMBufferSizeMB(double). This option allows you to tune the
amount of RAM to use for buffering changes before being flushed to the directory. The buffer
is default to 16 MB. In our example, we set it to 64 MB. Another useful tuning option is
setMaxBufferedDocs(int); it lets you set the minimum number of documents required
before the buffered documents are flushed as a new segment. The default value is 1000, but
we set it to 4000 in our sample code. When both options are set, the buffer is flushed when
whichever condition comes first.

Note that the changes to index are not visible until commit()
or close() is called on IndexWriter.

Creating a StringField
Let's look at a quick recap of field objects in Lucene; they are part of a document containing
information about the document. A field is composed of three parts: name, type, and value.
Values can be text, binary, or numeric. A field can also be stored in the index so that their
values are returned along with hits. Lucene provides a number of field implementations
out of the box that are suitable for most applications. In this section, we will cover a field
implementation that stores the literal string, StringField. Any value stored in this field can
be indexed, but not tokenized. The entire string is treated as a single token.

So why don't we want to tokenize the text since we have talked about tokenization for quite a
bit already? Consider that a part of a document is an address and that you have fields such as
street address, city, state, and country contained within it. It's not a very good idea to analyze
and tokenize the city, state, and country, because it's more preferable to match these fields
with the exact match than a partial or stemmed match that'll most likely return the undesired
results. Another usage for StringField is the product model number, phone number,
category, and so on.

How to do it...
Adding a StringField , a Field object that stores attribute,to a document is very easy.
Here is a sample code on how it's done:

 Document document = new Document();
 document.add(new StringField("telephone_number", "04735264927",
 Field.Store.YES));
 document.add(new StringField("area_code", "0484",
 Field.Store.YES));
 indexWriter.addDocument(document);
 indexWriter.commit();

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

48

How it works...
In this example, we created a StringField named telephone number to store the telephone
number of a user. The 04735264927 value will be indexed as a single token. So, a query
seeking an exact match of the telephone number will work fine in this case. Also, note the
Field.Store.Yes option. We can control whether the field value should be stored or not.
If you do not want to store the field you can use Field.Store.No. You can still sort by this
field, but this value may not be included in the search results in this case.

The creation of a StringField is straightforward. We just need to specify the field type as
StringField at the time of adding documents to the index. The options to store the field or not
is also applicable in the case of a StringField.

Creating a TextField
Don't be confused between a StringField and TextField. Although both the fields contain
textual data, there are major differences between these two fields. A StringField is not
tokenized and it's a good tool for exact match and sorting. A TextField is tokenized and it's
useful for storing any unstructured text for indexing. When you pass the text into an Analyzer
for indexing, a TextField is what's used to store the text content.

How to do it...
Similar to the way in which a StringField is set, adding a TextField is also very straightforward.
Let's review how it's done:

 Document document = new Document();
 String text = "Lucene is an Information Retrieval library
 written in Java.";
 doc.add(new TextField("text", text, Field.Store.YES));
 indexWriter.addDocument(document);
 indexWriter.commit();

How it works...
This is a very simple example showing how a TextField is added, assuming that you have an
Analyzer already created for the IndexWriter on the text field. The analysis process will run
against this field to index the content within.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

49

Creating a numeric field
We've learned how to deal with textual content using a StringField and TextField in Lucene,
so now let's take a look at how numerals are handled. Lucene provides four Field classes for
storing numeric values. They are IntField, FloatField, LongField, and DoubleField,
and are analogous to Java numeric types. Lucene, being a text search engine, treats numeral
as term internally and indexes them in a trie structure (also called ordered tree data structure)
as illustrated in the following:

Each Term is logically assigned to larger and larger predefined lower-precision brackets. For
example, let's assume that the brackets are divided by a quotient of division of a lower level
by ten as in the preceding diagram. So, under the 1 bracket (at the top level), we get DocId
associated with values in the 100s range, and under the 12 bracket, we get association with
values in the 120s range and so on. Now, let's say you want to search by numeric range of
all documents with the numeric value between 230 and 239: Lucene can simply find the 23
bracket in the index and return all the DocIds underneath. As you can see, this technique
allows Lucene to leverage its indexing power to also handle numerals with ease.

The numbers of brackets can be tuned by changing the value called precisionStep. A smaller
precisionStep value will result in a larger number of brackets that will consume more disk
space and, at the same time, will improve the search range performance. The value can
only be changed by creating a FieldType custom. The default value is 4 and is selected by
Lucene's team for a reasonable tradeoff between disk space consumption and performance.

Numeral values in Lucene can be sorted, searched by range, and matched exactly, which is
similar to what you would do in a text field. Note that if you intend to sort by a numeric field,
you should create a separate single-value field to sort purposes (by setting precisionStep to
Integer.MAX_VALUE), as this is more efficient than using thebracketed index.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

50

How to do it...
Let's look at a code sample for creating numeric fields:

IntField intField = new IntField("int_value", 100, Field.Store.YES);
LongField longField = new LongField("long_value", 100L, Field.Store.
YES);
FloatField floatField = new FloatField("float_value", 100.0F, Field.
Store.YES);
DoubleField doubleField = new DoubleField("double_value", 100.0D,
Field.Store.YES);
FieldType sortedIntField = new FieldType();
sortedIntField.setNumericType(FieldType.NumericType.INT);
sortedIntField.setNumericPrecisionStep(Integer.MAX_VALUE);
sortedIntField.setStored(false);
sortedIntField.setIndexed(true);
IntField intFieldSorted = new IntField("int_value_sort", 100,
sortedIntField);
Document document = new Document();
document.add(intField);
document.add(longField);
document.add(floatField);
document.add(doubleField);
document.add(intFieldSorted);

How it works...
The instantiation of different numeric fields are pretty much the same as you find in the code.
The first parameter is the name of the field, the second parameter is the value, and last the
parameter is FieldType. In our example, we specified that we want the field value stored by
passing in Field.Store.YES.

In the second portion, where we defined our own FieldType, we can see a demonstration of
creating a single-valued IntField to sort purposes. We set the numeric type to FieldType.
NumericType.INT and precisionStep to Integer.MAX_VALUE, so that we can ensure
the index is not bracketed. Then, we set stored to false because we are already storing the
same int value in intField, and have indexed this to true so that this field goes into an
index. Also, lastly, we created another Field called intFieldSorted to use this custom
FieldType.

The fields are now ready to add to a document as shown in the last portion of the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

51

Creating a DocValue Field
Similar to a stored field, DocValue is a part of a document. It's also created at indexing time,
and contains value that are specific to a document. The major difference between the two
concerns their underlying storage structure. The field's storage is row-oriented, whereas
DocValue's storage is column-oriented. In retrieval, all field values are returned at once per
document, so that loading the relevant information about a document is very fast. However,
if you need to scan a field for any other purpose it will be a slow process, as you will have to
iterate through all the documents and load each document's fields per iteration. The DocValue
is stored by column in DocId to value mapping, and loading the values for a specific DocValue
for all documents at once can be done quickly, as Lucene only has to scan through one
column rather than iterating through each document to load a field. In summary, the field and
DocValue both contain information about a document, but they serve a different purpose in
practical usage.

The following is an illustration of how field and DocValue differ in a storage structure:

Lucene provides the following DocValue types:

ff BinaryDocValues: This is a per-document byte[] array that can be used to store
custom data structure

ff NumericDocValues: This is a per-document single-valued numeric type value

ff SortedDocValues: This is a per-document single-valued string type that's stored
and sorted separately; the DocValue itself is a DocId to term ID mapping where the
term ID references a term in a sorted term list

ff SortedNumericDocValues: This is similar to SortedDocValues, but this is for
numeric values only

ff SortedSetDocValues: This is similar to SortedDocValues, but each document
in DocValues is mapped to a set instead of a single value

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

52

How to do it...
Let's do an exercise to create and retrieve DocValues:

 Analyzer analyzer = new StandardAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 IndexWriter indexWriter = new IndexWriter(directory, config);
 Document document = new Document();
 document.add(new SortedDocValuesField("sorted_string", new
 BytesRef("hello")));
 indexWriter.addDocument(document);
 document = new Document();
 document.add(new SortedDocValuesField("sorted_string", new
 BytesRef("world")));
 indexWriter.addDocument(document);
 indexWriter.commit();
 indexWriter.close();
 IndexReader reader = DirectoryReader.open(directory);
 document = reader.document(0);
 System.out.println("doc 0: " + document.toString());
 document = reader.document(1);
 System.out.println("doc 1: " + document.toString());
 for (AtomicReaderContext context : reader.leaves()) {
 AtomicReader atomicReader = context.reader();
 SortedDocValues sortedDocValues =
 DocValues.getSorted(atomicReader, "sorted_string");
 System.out.println("Value count: " +
 sortedDocValues.getValueCount());
 System.out.println("doc 0 sorted_string: " +
 sortedDocValues.get(0).utf8ToString());
 System.out.println("doc 1 sorted_string: " +
 sortedDocValues.get(1).utf8ToString());
 }

 reader.close();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

53

How it works...
The initial setup is very familiar. We obtain an IndexWriter by setting up an Analyzer object
StandardAnalyzer and a Directory object RAMDirectory. Then, we add two documents
with a single DocValues called SortedDocValues and no field. Note that we add a
SortedDocValues by using SortedDocValuesField, which is similar to adding a regular
field. For SortedDocValuesField, a String value needs to be converted to a bytes array
by using BytesRef. After DocValues are added, we commit the changes and close the
IndexWriter. We then open it with an IndexReader: a Reader that reads index data. Note
that there are two print statements, which show that we have two documents in the index.
Because the DocValues reader can only leverage AtomicReader, we need to iterate through
all AtomicReader in IndexReader, in order to examine all the segments. An AtomicReader
can only read one index segment, hence, the iteration. With AtomicReader, we can extract
DocValues from SortedDocValues by calling getSorted(AtomicReader, String). The
next line shows that you can get a count of values in DocValues. The following two lines show
that you can obtain DocValue by DocId. Here is the output from the sample code:

doc 0: Document<>
doc 1: Document<>
Value count: 2
doc 0 sorted_string: hello
doc 1 sorted_string: world

Transactional commits and index versioning
In the world of data management platforms, anything that supports transactional commits
would implement ACID (Atomicity, Consistency, Isolation, Durability). ACID is a set of
properties that guarantees that transactions are processed reliably. So, how does Lucene
measure against ACID?

ff Atomicity: This property requires that each transaction is all or nothing. When a
transaction fails, none of the partial changes performed by the transaction should
persist or be visible. Changes from a transaction should only persist and made visible
when the transaction completes and is committed. Lucene's IndexWriter supports
transactional commit. Changes to the index will only be made visible to IndexReader
after we call commit(). If an IndexWriter crashes for whatever reason or never calls
commit(), the partial changes will never be made visible to the IndexReader.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

54

ff Consistency: This property ensures that any committed changes will bring the system
from one valid state to another valid state. Any changes written to the disk must be
valid and conform to constraints, format, and any other rules that ensure the validity
of the data. Lucene fully supports this property as the index is always valid and the
uncommitted transactions will never be made visible. Lucene's index can survive
crashes, a power failure, and even when the process itself is killed.

ff Isolation: This property ensures that the concurrent execution of transactions is
supported and that each transaction runs under its own isolation, without interfering
with each other. Lucene handles this with an IndexWriter by not exposing the changes
to the IndexReader during a transaction (before commit() is called).

ff Durability: This property ensures that the changes remain intact once committed.
Anything that's committed should survive crashes, a power failure, and so on. Lucene
supports this by guaranteeing that when commit() is called, the changes from a
transaction are persisted on the disk, so that any immediate failure after commit
would not undo or alter the changes made through the transaction.

Lucene supports a two-phase commit where you can call prepareCommit() in
IndexWriter to do all the necessary work (and flush the changes to the disk) beforehand.
Then, you can call commit() to commit the changes or rollback() to rollback the
transaction. Note that calling rollback() will also close the IndexWriter. Calling
commit() actually triggers a call to prepareCommit() internally and calling close() will
trigger a call to commit() before IndexWriter is closed.

A Lucene index may have multiple IndexCommits. Each IndexCommit can be considered
as a point-in-time snapshot of the index. By default, Lucene uses a policy class called
IndexDeletionPolicy that would delete prior IndexCommits after a successful commit. To
keep previous IndexCommits, we will need to customize a IndexDeletionPolicy or use the
built-in NoDeletionPolicy. Here is a list of IndexDeletionPolicy provided out of the box:

ff KeepOnlyLastCommitDeletionPolicy: This keeps the most recent IndexCommit
and immediately removes the prior IndexCommits after a new commit is complete.
This is the default policy. This policy keeps the index directory tidy by removing old
commits and gives you one possible rollback by keeping the last commit.

ff NoDeletionPolicy: All the IndexCommits are kept. They are not removed until
delete() is called on each IndexCommit. This policy is especially useful if it's
important to provide a way to search the index in prior commits and maintain a set of
rollback points. One possible use case is data reconciliation where you may need to
perform a rollback when the data between data source and index are out of sync.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

55

ff SnapshotDeletionPolicy: A snapshot can be taken immediately after a commit.
When a snapshot is held on an IndexCommit, it cannot be removed. A snapshotted
IndexCommit can only be removed when the snapshot is released. This policy
maintains snapshots in memory only. Note that this class is a wrapper class of
another IndexDeletionPolicy class. This policy is useful for taking a hot backup
of the index directory. While the snapshot is held, an external backup process can
copy the index files to a backup location.

ff PersistentSnapshotDeletionPolicy: This is similar to
SnapshotDeletionPolicy; instead of keeping snapshots in memory, this policy
persists snapshots on the disk in the same directory where the index resides. This
policy is useful when you want to make sure a snapshot can survive against a system
failure so a hot backup can be taken even after a failure.

How to do it...
We will demonstrate commit, rollback, and usage of IndexDeletionPolicy:

 Analyzer analyzer = new StandardAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 SnapshotDeletionPolicy policy = new
 SnapshotDeletionPolicy(NoDeletionPolicy.INSTANCE);
 config.setIndexDeletionPolicy(policy);
 IndexWriter indexWriter = new IndexWriter(directory, config);
 IndexCommit lastSnapshot;
 Document document = new Document();
 indexWriter.addDocument(document);
 indexWriter.commit();
 lastSnapshot = policy.snapshot();
 document = new Document();
 indexWriter.addDocument(document);
 indexWriter.commit();
 lastSnapshot = policy.snapshot();
 document = new Document();
 indexWriter.addDocument(document);
 indexWriter.rollback();
 indexWriter.close();
 List<IndexCommit> commits =
 DirectoryReader.listCommits(directory);

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

56

 System.out.println("Commits count: " + commits.size());
 for (IndexCommit commit : commits) {
 IndexReader reader = DirectoryReader.open(commit);
 System.out.println("Commit " + commit.getSegmentCount());
 System.out.println("Number of docs: " + reader.numDocs());
 }

 System.out.println("\nSnapshots count: " +
 policy.getSnapshotCount());
 List<IndexCommit> snapshots = policy.getSnapshots();
 for (IndexCommit snapshot : snapshots) {
 IndexReader reader = DirectoryReader.open(snapshot);
 System.out.println("Snapshot " +
 snapshot.getSegmentCount());
 System.out.println("Number of docs: " + reader.numDocs());
 }
 policy.release(lastSnapshot);
 System.out.println("\nSnapshots count: " +
 policy.getSnapshotCount());

How it works...
In this demonstration, we first set up a policy for deletion called SnapshotDeletionPolicy
that wraps around NoDeletionPolicy. This means that all the commits are kept and the
prior commits will not be removed automatically. Then, we start adding a document to the
index, and committing and taking snapshots in between. Note that on the third document, we
call rollback to rollback the changes and we use DirectoryReader to list all the past commits
and SnapshotDeletionPolicy to list all the past snapshots.

The first print statement Commits count will output two because we added two documents
and roll backed the third one. In the first iteration, you will find two commits. First commit
should show 1 document and the second commit should show 2 documents. In the
snapshot's iteration, it should show 2 snapshots with the similar output. At last, after we
release a snapshot of one of the commits, the snapshot count should change to 1.

The output of the code is as follows:

Commits count: 2
Commit 1
Number of docs: 1
Commit 2
Number of docs: 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

57

Snapshots count: 2
Snapshot 1
Number of docs: 1
Snapshot 2
Number of docs: 2

Snapshots count: 1

Reusing field and document objects per
thread

Performance has always been a part of the main focus of Lucene's development team.
Because they are adamant about achieving high efficiency and performance, we have
all benefitted from this. To ensure that users can properly leverage Lucene's speed and
efficiency, there are best practices that we should adhere to so that we don't introduce
unnecessary inefficiency. One of the best practices is to reuse both the Document and field
objects. This minimizes the object creation cost during any massive data import operations.
It will also reduce the chance of triggering garbage collection.

There are a couple things to keep in mind when reusing Document object: we need to make
sure that we clear out all the fields before putting in the new values; for the field, we can just
simply overwrite the value.

How to do It...
Here is a sample code snippet on Document and field reuse:

 Analyzer analyzer = new StandardAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 IndexWriter indexWriter = new IndexWriter(directory, config);

 Document doc = new Document();
 StringField stringField = new StringField("name", "",
 Field.Store.YES);

 String[] names = {"John", "Mary", "Peter"};
 for (String name : names) {
 stringField.setStringValue(name);
 doc.removeField("name");

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

58

 doc.add(stringField);
 indexWriter.addDocument(doc);
 }

 indexWriter.commit();
 IndexReader reader = DirectoryReader.open(directory);
 for (int i = 0; i < 3; i++) {
 doc = reader.document(i);
 System.out.println("DocId: " + i + ", name: " +
 doc.getField("name").stringValue());
 }

How it works...
Note that both Document and StringField are only declared once and they are reused
within the For loop. Inside the loop, the "name" Field is removed before being added.
This is done so that we don't inherit the Field values from the previous iteration.
The output of the code should be as follows:

DocId: 0, name: John
DocId: 1, name: Mary
DocId: 2, name: Peter

Delving into field norms
A norm is part of the calculation of a score that's used to measure relevancy. When we search,
a score is calculated for each matching result. This score will then be used to sort the end
results. The score is what we refer to as a relevancy score.

Norms are calculated per indexed Field. This is a product of index time calculation (based on
TFIDFSimilarity) and lengthNorm (a calculated factor that favors a shorter document). The
higher value can help boost the relevancy of a document, which means that the document will
rank higher in search results.

To further influence the search results relevancy, Lucene allows for two types of boosting:
index time boost and query time boost. Index time boost is set per indexed field. It can be
used to promote documents based on certain field values. Query time boost can be set per
query clause so that all the documents matched by it are multiplied by the boost. It's useful if
a certain filter takes precedence over everything else.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

59

Norms are stored compressed in a highly lossy, single-byte format. This is mainly done to
minimize storage and conserve memory consumption. Also, it's not meant for comparing
minute details, but for big differences between documents, where relevancy differences
are more obvious.

For certain fields, such as the single-valued field, norms may not provide any added benefits.
In such a case, you an omit the norms by customizing a fieldType. Unless memory
consumption is an issue, normally, you can leave it alone.

How to do it...
Let's take a look at how boosting a norm can influence the results:

 Analyzer analyzer = new StandardAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 IndexWriter indexWriter = new IndexWriter(directory, config);

 Document doc = new Document();
 TextField textField = new TextField("name", "",
 Field.Store.YES);

 float boost = 1f;
 String[] names = {"John R Smith", "Mary Smith", "Peter
 Smith"};
 for (String name : names) {
 boost *= 1.1;
 textField.setStringValue(name);
 textField.setBoost(boost);
 doc.removeField("name");
 doc.add(textField);
 indexWriter.addDocument(doc);
 }
 indexWriter.commit();

 IndexReader indexReader = DirectoryReader.open(directory);
 IndexSearcher indexSearcher = new IndexSearcher(indexReader);
 Query query = new TermQuery(new Term("name", "smith"));
 TopDocs topDocs = indexSearcher.search(query, 100);
 System.out.println("Searching 'smith'");
 for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(doc.getField("name").stringValue());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

60

How it works...
In this example, we are adding three documents with the name Field being indexed as
TextField. We set a boost on the Field by 1.1 on each iteration, so Peter Smith will have
the highest boost, then Mary Smith, and finally John R Smith. Then, we do a search on
smith and print out the results.

If you run this code as-is, you will see the following results:

Searching 'smith'
Peter Smith
Mary Smith
John R Smith

This is as expected because the results are sorted based on the boost values, where Peter
Smith has the highest boost. Try comment out textField.setBoost(boost); and run
this again. The results should look like the following:

Searching 'smith'
Mary Smith
Peter Smith
John R Smith

Note that the order has changed. This order is not random: it's based on a default norms
calculation where the length of the field is considered. In this scenario, because all three
documents are matching the term smith, the major factor in the relevancy score calculation
is left to length.

Changing similarity implementation used
during indexing

Part of the norms calculation at the index time on is similarity. Lucene has already
implemented a complex model called TFIDFSimilarity as a default calculation for norms; you
can read more about it on Lucene's website. In this section, we will talk about how we can
tune similarity to suit our needs.

We will go through a similar scenario as we used in our example in norms. Instead of using
boost to influence relevancy, we will leverage a NumericDocValuesField called ranking that
will act as our boost. We will show you how to pull NumericDocValues at a query time within a
Similarity class and how we can use it to influence score. This exercise will give you an idea of
what you can do with similarity customization.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

61

Getting ready
To start writing your own Similarity class, you can begin by extending Similarity.
Then, you can register your new class by simply calling IndexWriterConfig.
setSimilarity(Similarity) in indexing and IndexSearcher.
setSimilarity(Similarity) in searching.

How to do it…
Let's start with our own Similarity class:

 public class MySimilarity extends Similarity {
 private Similarity sim = null;
 public MySimilarity(Similarity sim) {
 this.sim = sim;
 }
 @Override
 public long computeNorm(FieldInvertState state) {
 return sim.computeNorm(state);
 }
 @Override
 public Similarity.SimWeight computeWeight(float
 queryBoost,CollectionStatistics collectionStats,
 TermStatistics... termStats) {
 return sim.computeWeight(queryBoost, collectionStats,
 termStats);
 }
 @Override
 public Similarity.SimScorer
 simScorer(Similarity.SimWeight weight,
 AtomicReaderContext context)
 throws IOException {
 final Similarity.SimScorer scorer =
 sim.simScorer(weight, context);
 final NumericDocValues values =
 context.reader().getNumericDocValues("ranking");
 return new SimScorer() {
 @Override
 public float score(int i, float v) {
 return values.get(i) * scorer.score(i, v);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

62

 @Override
 public float computeSlopFactor(int i) {
 return scorer.computeSlopFactor(i);
 }
 @Override
 public float computePayloadFactor(int i, int i1,
 int i2, BytesRef bytesRef) {
 return scorer.computePayloadFactor(i, i1, i2,
 bytesRef);
 }
 };
 }
 }

This is our own Similarity class called MySimilarity. It extends from Similarity, and we need
to implement three methods: computeNorm, computeWeight, and simScorer. We will
focus on simScorer in this example as it provides a reference to AtomicReader, which
we can use to pull DocValues. The constructor of this class accepts a Similarity class so that
we can pass in an existing similarity implementation, such as DefaultSimilarity, as our
default calculation since we only want to augment the results, not implement the calculation
from scratch.

In the simScorer implementation, we pull NumericDocValues from AtomicReader so
that it can be used by our own simScorer. We alter the score calculation by multiplying the
score with the ranking value:

Here is the second portion of our example:
 Analyzer analyzer = new StandardAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
analyzer);
 MySimilarity similarity = new MySimilarity(new
DefaultSimilarity());
 config.setSimilarity(similarity);
 IndexWriter indexWriter = new IndexWriter(directory, config);

 Document doc = new Document();
 TextField textField = new TextField("name", "", Field.Store.YES);
 NumericDocValuesField docValuesField = new NumericDocValuesField(
"ranking", 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

63

 long ranking = 1l;
 String[] names = {"John R Smith", "Mary Smith", "Peter Smith"};
 for (String name : names) {
 ranking *= 2;
 textField.setStringValue(name);
 docValuesField.setLongValue(ranking);
 doc.removeField("name");
 doc.removeField("ranking");
 doc.add(textField);
 doc.add(docValuesField);
 indexWriter.addDocument(doc);
 }

 indexWriter.commit();

 IndexReader indexReader = DirectoryReader.open(directory);
 IndexSearcher indexSearcher = new IndexSearcher(indexReader);
 indexSearcher.setSimilarity(similarity);
 Query query = new TermQuery(new Term("name", "smith"));
 TopDocs topDocs = indexSearcher.search(query, 100);
 System.out.println("Searching 'smith'");
 for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(doc.getField("name").stringValue());
 }

Note that this portion is very similar to the norms example. We instantiate MySimilarity at the
top, and then we pass it into IndexWriterConfig and later to IndexSearcher. We are also adding
a NumericDocValues ranking to each document where the value doubles in each iteration.
The end result is as expected as follows, where the order is reversed:

Searching 'smith'
Peter Smith
Mary Smith
John R Smith

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

65

4
Searching Your Indexes

In this chapter, we will cover the following recipes:

ff Obtaining IndexReaders

ff Un-inverting single-valued fields in memory with FieldCache

ff TermVectors

ff IndexSearcher

ff Constructing queries

ff Specifying sort logic

ff Forming a search result

ff Pagination

ff Using Collectors

ff Sorting with custom FieldComparator

Introduction
So far, we have focused on indexing data and explored both the indexing and analysis
processes in great detail. As you may expect, in a search application, both indexing and
searching processes are equally important. In this chapter, we will look into search to give
you a perspective on Lucene's capability and expandability nature.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

66

Obtaining IndexReaders
As we have seen already, there are several prerequisites (for example, opening a directory,
setting up an analyzer, and writing to index) to prepare an index for a search. Lucene provides
the IndexReader class to access a point-in-time view of an index. It means that you can
concurrently write to an index, while an existing IndexReader is reading without exposing
any uncommitted data to the active IndexReader. This is an important concept to keep
in mind because this architecture allows the possibility of providing a seamless transition
between index versions by opening a new IndexReader while the old IndexReader is still
servicing a search. The DirectoryReader is a subclass of IndexReader, which is the
class that provides the facility to actually open a directory containing an index, and returns
an IndexReader. DirectoryReader also has a more optimized index opening method called
openIfChanged that will reuse the existing DirectoryReader for faster reopening of an index.

IndexReader, by itself, is an abstract class. It has two implementations: AtomicReader
and CompositeReader. This AtomicReader is a single reader that's atomic for a single
segment of an index that supports retrieval of stored fields, doc values, terms, and postings.
This CompositeReader contains a list of AtomicReaders on multiple segments. It
supports retrieval of stored fields only because the other properties (for example, norm
values and doc values) need to be merged from the underlying AtomicReaders. It's up to
the programmer to code facility classes by iterating through CompositeReader.leaves()
to merge the results, or use a built-in class called SlowCompositeReaderWrapper to
do the merge, although it has a significant performance hit from scanning the underlying
AtomicReaders.

In our example, we will be using DirectoryReader to open an index. Note that
DirectoryReader is an implementation of CompositeReader, so by calling its open
method, it will return a CompositeReader.

How to do it...
Let's take a look at how we can obtain IndexReader:

// open a directory
Directory directory = FSDirectory.open(
 new File("/data/index"));
// set up a DirectoryReader
DirectoryReader directoryReader =
 DirectoryReader.open(directory);
// pull a list of underlying AtomicReaders
List<AtomicReaderContext> atomicReaderContexts =
 directoryReader.leaves();
// retrieve the first AtomicReader from the list
AtomicReader atomicReader =

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

67

 atomicReaderContexts.get(0).reader();
// open another DirectoryReader by calling openIfChanged
DirectoryReader newDirectoryReader =
 DirectoryReader.openIfChanged(directoryReader);
// assign newDirectoryReader
if (newDirectoryReader != null) {
 IndexSearcher indexSearcher =
 new IndexSearcher(newDirectoryReader);
 // close the old DirectoryReader
 directoryReader.close();
}

How it works...
Note again that we obtained a DirectoryReader (essentially, an IndexReader) by calling
DirectoryReader.open(Directory). To gain access to the AtomicReader underneath,
we need to call the leaves() method to retrieve a list of AtomicReaderContext, and
from AtomicReaderContext, we can access AtomicReader. After we gain access to an
AtomicReader, we have a demonstration of calling openIfChanged(IndexReader). This
call will return a new DirectoryReader if there is a change to the index. It returns null if the
index has not changed.

Un-inverting single-valued fields in memory
with FieldCache

We have learned very early on that Lucene stores data in an inverted index in which terms
are sorted and DocId is associated with each term. A search is essentially finding DocId's
intersection in matched terms. The index itself allows for a very fast term lookup, but it's
not ideal for lookup by DocId. To solve the problem of finding a field value by DocId, Lucene
introduced FieldCache. FieldCache is an in-memory data structure that stored in an array
format in which the value position corresponds to DocId (since DocId is basically an ordinal
value of all documents). Because each array position can only store one value, FieldCache
should be used on single-valued fields only. In essence, Lucene uninverts data from the index
and stores them in FieldCache.

Note that when FieldCache is initialized, it stays static and it
does not synchronize with IndexReader. If you need to reopen
IndexReader, FieldCache will need to be reinitialized in order
to be in sync with the latest changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

68

How to do it...
Let's take a look at how FieldCache is set up:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config =
 new IndexWriterConfig(Version.LATEST, analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);

Document doc = new Document();
StringField stringField =
 new StringField("name", "", Field.Store.YES);

String[] contents = {"alpha", "bravo", "charlie",
 "delta", "echo", "foxtrot"};
for (String content : contents) {
 stringField.setStringValue(content);
 doc.removeField("name");
 doc.add(stringField);
 indexWriter.addDocument(doc);
}

indexWriter.commit();

IndexReader indexReader = DirectoryReader.open(directory);

BinaryDocValues cache = FieldCache.DEFAULT.getTerms(
 SlowCompositeReaderWrapper.wrap(indexReader), "name", true);

for (int i = 0; i < indexReader.maxDoc(); i++) {
 BytesRef bytesRef = cache.get(i);
 System.out.println(i + ": " + bytesRef.utf8ToString());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

69

How it works...
Here, we set up our index in a RAMDirectory using a StandardAnalyzer. The
content we added to the index is an array of strings. To initialize FieldCache, we made
a call to FieldCache.DEFAULT.getTerms(AtomicReader, String, String).
FieldCache.DEFAULT is a built-in singleton with the facilities to build and hold on
to all the FieldCache we are initializing. In this sample code, we call the getTerms
method to build a term-based FieldCache. Note that we wrap our IndexReader with a
SlowCompositeReaderWrapper to simulate an AtomicReader, which is required to build
FieldCache. The return object is a BinaryDocValues object, where we can retrieve a field
value by DocId by calling the get method. We demonstrated this functionality by iterating the
cache in a loop. This code should produce the following output:

0: alpha
1: bravo
2: charlie
3: delta
4: echo
5: foxtrot

TermVectors
TermVectors is a feature in Lucene that lets you retrieve per document term-based
statistical data from the index. These additional data points can be useful for features such as
highlighting or any term-based reports analysis. As you may expect, this feature is not enabled
by default, as it can be expensive to compute these data points and it would increase the
index size significantly.

This TermVectors provides the following additional data points for each document:

ff Term frequency

ff Term position(s)

ff Term offsets

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

70

Term frequency is the number of times the term appears in a document. Positions is the term
in a document where each position is incremented by term. offsets has a starting and ending
positions by characters where the term can be located in a document.

Let's look at an example of what you can expect to see in TermVectors. Here is a piece of
text to be added to a document:

humpty dumpty sat on a wall

Here is what you will retrieve from TermVectors:

Term Frequency Position Offset

dumpty 1 1 [7,13]

humpty 1 0 [0,6]

sat 1 2 [14,17]

wall 1 5 [23,27]

Note that we omitted the terms on and a from the list, assuming that we used
StopWordFilter.

How to do it...
Let's look at a code sample on how to set up and retrieve TermVectors:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config =
 new IndexWriterConfig(Version.LATEST, analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);

FieldType textFieldType = new FieldType();
textFieldType.setIndexed(true);
textFieldType.setTokenized(true);
textFieldType.setStored(true);
textFieldType.setStoreTermVectors(true);
textFieldType.setStoreTermVectorPositions(true);
textFieldType.setStoreTermVectorOffsets(true);

Document doc = new Document();
Field textField = new Field("content", "", textFieldType);

String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall.",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

71

for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");
 doc.add(textField);
 indexWriter.addDocument(doc);
}

indexWriter.commit();
IndexReader indexReader = DirectoryReader.open(directory);
DocsAndPositionsEnum docsAndPositionsEnum = null;
Terms termsVector = null;
TermsEnum termsEnum = null;
BytesRef term = null;
String val = null;

for (int i = 0; i < indexReader.maxDoc(); i++) {
 termsVector = indexReader.getTermVector(i, "content");
 termsEnum = termsVector.iterator(termsEnum);
 while ((term = termsEnum.next()) != null) {
 val = term.utf8ToString();
 System.out.println("DocId: " + i);
 System.out.println(" term: " + val);
 System.out.println(" length: " + term.length);
 docsAndPositionsEnum =
 termsEnum.docsAndPositions(null,
 docsAndPositionsEnum);
 if (docsAndPositionsEnum.nextDoc() >= 0) {
 int freq = docsAndPositionsEnum.freq();
 System.out.println(" freq: " +
 docsAndPositionsEnum.freq());
 for (int j = 0; j < freq; j++) {
 System.out.println(" [");
 System.out.println(" position: " +
 docsAndPositionsEnum.nextPosition());
 System.out.println(" offset start: " +
 docsAndPositionsEnum.startOffset());
 System.out.println(" offset end: " +
 docsAndPositionsEnum.endOffset());
 System.out.println("]");
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

72

How it works...
To enable TermVectors, we need to set up our own FieldType so we can turn on
the TermVectors features. In our example, we enabled TermVectors on a text field
that is analyzed by StandardAnalyzer. To retrieve the TermVectors, we called
getTermVectors on IndexReader passing in a DocId and field name. This will return
TermVectors for a particular document. Then, we iterate it using TermsEnum and retrieve
the position and offset attributes with DocsAndPositionsEnum. In TermsEnum, we can
retrieve terms and their length. In DocsAndPositionsEnum, we can retrieve term frequency,
position(s), and offset. Note that the same term may appear multiple times in a document;
hence, the second loop will iterate DocsAndPositionsEnum. Also, note that we need to call
nextPosition() to iterate through DocsAndPositionsEnum.

Here is a code snippet of the output:

DocId: 0
 term: dumpty
 length: 6
 freq: 1
 [
 position: 1
 offset start: 7
 offset end: 13
]
DocId: 0
 term: humpty
 length: 6
 freq: 1
 [
 position: 0
 offset start: 0
 offset end: 6
]

Note that the terms are sorted alphabetically. TermVector stats can be found within
the brackets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

73

IndexSearcher
Before we start a search, we need to obtain an IndexSearcher to help us facilitate the
querying of an index. IndexSearcher provides a number of search methods for querying
data and returning TopDocs as results. TopDocs represents hits from a search and contains
an array of ScoreDoc where it contains DocId and the score of each matching document.
Note that TopDocs contains DocId and does not actually contain any document content.
Document content retrieval will have to be relied on IndexReader or FieldCache. An
IndexSearcher requires an IndexReader as an input to its constructor to initialize.

How to do it...
Let's look at a simple code snippet to see how IndexSearcher is set up:

Directory directory =
 FSDirectory.open(new File("/data/index"));
DirectoryReader directoryReader =
 DirectoryReader.open(directory);
IndexSearcher indexSearcher =
 new IndexSearcher(directoryReader);

How it works...
First, we set up a Directory so that we can pass it onto a DirectoryReader, which is
basically an IndexReader. Then, we pass the DirectoryReader to IndexSearcher for
initialization. Note that IndexReader is fixated on a point-in-time snapshot of the index. If the
index is updated, we need to make sure we reopen the IndexReader and IndexSearcher
to expose the latest index changes to search.

Constructing queries
Now that we have an IndexSearcher, we are ready to proceed to querying. To begin, we
will need to construct a Query object to pass into IndexSearch's search method. There
are a couple ways to construct a Query. Using a QueryParser class or constructing a
Query programmatically, QueryParser provides the utility to interpret text and convert it
into a Query. If you need to use search modifiers (for example, term must exist), there is a
certain syntax to follow in order to form a query string. By default, a search phrase will return
any documents that have matches on any of the query terms. We will demonstrate both
QueryParser and constructing your own Query in this section.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

74

Note that if you use QueryParser, you must also use an analyzer to
analyze the query text.

How to do it...
Let's take a look at the following code snippets:

Code snippet 1:

Directory directory =
 FSDirectory.open(new File("/data/index"));
IndexReader indexReader =
 DirectoryReader.open(directory);
IndexSearcher indexSearcher =
 new IndexSearcher(indexReader);
Query query = new TermQuery(
 new Term("content", "alpha"));
TopDocs topDocs =
 indexSearcher.search(query, 100);

Code snippet 2:

Directory directory =
 FSDirectory.open(new File("/data/index"));
Analyzer analyzer = new StandardAnalyzer();
IndexReader indexReader =
 DirectoryReader.open(directory);
IndexSearcher indexSearcher =
 new IndexSearcher(indexReader);
QueryParser queryParser =
 new QueryParser("content", analyzer);
Query query = queryParser.parse("alpha beta");
TopDocs topDocs =
 indexSearcher.search(query, 100);

How it works...
In the first code snippet, we programmatically created a Query object by instantiating
TermQuery. Note that we don't have any analyzer in this example. Because we are not
parsing any string, we created a TermQuery directly for search.

In second code snippet, we leverage QueryParser to generate a Query object. In the
QueryParser can accept any text and turn it into a Query. Note that we also need to provide
an Analyzer to QueryParser. This is done so that we can apply the same text analysis
treatment as in the indexing process, to ensure accuracy of the search.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

75

Specifying sort logic
Lucene, by default, scores every search results and the results are sorted in descending order
of the relevance scores. The scoring ensures that the most relevant results are shown before
the less relevant ones. This generally works great for most applications. However, sometimes
user may prefer to sort results based on other criteria. For example, in an e-commerce
website, user may prefer to sort results by price. This type of a scenario brings us to the topic
of specifying sort in Lucene.

To specify sort, we first need to create one or more SortField objects. Then, we create
a sort object that wraps around SortField(s) to pass along to IndexSearcher's search
method. The Sort class itself has two static Sort:

ff RELEVANCE: This is sorting by relevance score, which is done by default (without
specifying Sort).

ff INDEX ORDER: This is sorting by index order, which is the natural order of the
documents in the index.

The SortField class can be instantiated with a Field name and SortField.type. The
types are the usual string and numeric types: DOUBLE, FLOAT, INT, and LONG. You can also
sort by BYTES or SCORE (same as Sort.RELEVANCE). If you prefer to customize Sort, you
may do so by providing your own comparator logic.

Sort is performed in memory and sorted field is stored in cache. From Lucene's
documentation, the formula to estimate memory usage in Sort is as follows:

4 * IndexReader.maxDoc() * (# of different sort fields)

The cache itself is an array of integers of length IndexReader.maxDoc(). So, be mindful of
memory consumption when you design your application.

How to do it...
Let's look at an example to see how Sort is specified:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);

Document doc = new Document();
StringField stringField = new StringField("name", "", Field.Store.
YES);

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

76

String[] contents = {"foxtrot", "echo", "delta", "charlie", "bravo",
"alpha"};
for (String content : contents) {
 stringField.setStringValue(content);
 doc.removeField("name");
 doc.add(stringField);
 indexWriter.addDocument(doc);
}

indexWriter.commit();

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
WildcardQuery query = new WildcardQuery(new Term("name","*"));
SortField sortField = new SortField("name", SortField.Type.STRING);
Sort sort = new Sort(sortField);

TopDocs topDocs = indexSearcher.search(query, null, 100, sort);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " + doc.getField("name").
stringValue());
}

How it works...
In this example, we add a list of words in reverse alphabetical order into an index. Then, we
perform a wildcard search on * so that we match on everything. Next, we create a SortField
on the name field (same as input) and wrap it in Sort. We perform a search right after, iterate
through the results, and print the score and name field to System.out. Here is the output:

NaN: alpha
NaN: bravo
NaN: charlie
NaN: delta
NaN: echo
NaN: foxtrot

A couple of observations: there are no scores and the result is sorted alphabetically as we
intended. We don't get any scores because we specified a Sort that doesn't involve scoring;
hence, no need to compute scores. Also, had we not specified a Sort, the result would be in
reverse order.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

77

Forming a search result
By now, we have seen various examples of searches, but we haven't yet talked about search
results in detail. Let's take a look at what we get in return when we perform a search. In
IndexSearcher, there are several ways to submit a search. You can search by Query, with a
Filter and Sort. You may notice that there is also an int field in which to specify the maximum
number of results to return. This value is useful when you implement pagination. The return
object from the search method is TopDocs. TopDocs has two attributes, an array of ScoreDoc
and totalHits. The ScoreDoc contains DocId and score. totalHits is the total number
of matching documents in this search. Note that the max results int value has no effect on
totalHits as totalHits is the overall count of the matching documents.

As you may have noticed, the results returned from the search are just a list of pointers
(DocId) and their scores. We don't actually get any document content from search. To retrieve
the document content, we will have to resort to calling IndexReader.document(int)
passing in DocId. This will return a document object. If a field is stored (Field.Store.YES),
we can retrieve the field value from the index by calling Document.getField(String).
Alternatively, if the field values are stored in FieldCache, you can pull the value directly from
FieldCache instead of pulling the document object (from a disk). Since FieldCache is in
memory, it will be a lot faster than getting a field value from a document object.

How to do it...
Here is a demonstration of a simple search and document retrieval routine:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);

Document doc = new Document();
TextField textField = new TextField("content", "", Field.Store.YES);

String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall.",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};
for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");
 doc.add(textField);

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

78

 indexWriter.addDocument(doc);
}

indexWriter.commit();

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
QueryParser queryParser = new QueryParser("content", analyzer);
Query query = queryParser.parse("humpty dumpty");

TopDocs topDocs = indexSearcher.search(query, 2);
System.out.println("Total hits: " + topDocs.totalHits);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " + doc.
getField("content").stringValue());
}

How it works...
In this example, we are opening a RAMDirectory with a StandardAnalyzer and
indexing content in TextField. Then, we perform a simple search on the phrase humpty
dumpty. This should give us three hits. Here is what the results will look like:

Total hits: 3
0.81518793: Humpty Dumpty sat on a wall,
0.7132894: Humpty Dumpty had a great fall.

When you run the code, you will see that the total hits is 3, but the result listing will only
show 2 records. This is because we set the max results to 2 in the search method, which is in
indexSearcher.search(query, 2).

Pagination
Traditionally, when you display results from a query (which can be expensive at times),
you may cache the results in memory and probably within a session only, so that you can
feed the results back to the user in piecemeal by iterating through the result. This is one
of the optimization techniques to minimize the number of queries to the search engine.
In Lucene, the preferable way of handling pagination is to perform separate searches per
page. Lucene's developers are confident enough that Lucene will perform well enough and
any potential performance issues will outweigh the complexity of implementing your own
pagination in memory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

79

One way to implement pagination is to use IndexSearcher's searchAfter method.
It's similar to search with the addition of a ScoreDoc parameter in which the top results
would return after the ScoreDoc. We can pass the last ScoreDoc of the previous page
to searchAfter, so we can retrieve the following page.

How to do it...
Let's look at an example:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
TextField textField = new TextField("content", "",
 Field.Store.YES);
String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall.",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};
for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");
 doc.add(textField);
 indexWriter.addDocument(doc);
}

indexWriter.commit();

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
QueryParser queryParser = new QueryParser("content", analyzer);
Query query = queryParser.parse("humpty dumpty");
TopDocs topDocs = indexSearcher.search(query, 2);
ScoreDoc lastScoreDoc = null;
int page = 1;
System.out.println("Total hits: " + topDocs.totalHits);
while (true) {
 System.out.println("Page " + page);

 for (ScoreDoc scoreDoc : topDocs.scoreDocs) {

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

80

 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " + doc.
getField("content").stringValue());
 lastScoreDoc = scoreDoc;
 }
 topDocs = indexSearcher.searchAfter(lastScoreDoc, query, 2);
 if (topDocs.scoreDocs.length == 0) {
 break;
 }
 page++;
}

How it works...
This sample code demonstrates the use of the searchAfter method for pagination. After
the initial search, we display the total hits. Then, we have a while loop with a break when
TopDocs is empty. Inside the loop, we iterate through TopDocs and set the lastSocreDoc
variable. After the loop, we pass lastScoreDoc to searchAfter. Note that the parameters
are similar to what we sent to search previously. This call will return documents after
lastScoreDoc. Here is what the results will look like:

Total hits: 3
Page 1
0.81518793: Humpty Dumpty sat on a wall,
0.7132894: Humpty Dumpty had a great fall.
Page 2
0.13417153: Couldn't put Humpty together again.

Our page size is essentially 2, so our results are broken down into two pages where
page 1 has 2 results and page 2 has 1 result.

Using Collectors
Collector is an advanced feature that deals with the low-level handling of search results data.
The implementation of this class is necessary to produce usable search results. When we
call the IndexSearcher.search methods, we are actually already using Collector under
the hood. So, what exactly is Collector? You can think of it as a refinery of search results after
documents are matched. The matched documents are sent to Collector to score and sort. The
default Collector we use in IndexSearcher.search is called TopScoreDocCollector. It
scores documents using a scorer and sorts results based on the scores.

Normally, you shouldn't have to mess with Collector. However, on a rare occasion when you
need more control over how the matched documents are scored, sorted, or even filtered,
Collector can be a good place to work on the customization. This is assuming that you have
already exhausted the options of custom filter, similarity, and/or analyzer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

81

How to do it...
Let's take a look how we build a custom Collector:

public class MyCollector extends Collector {
 private int totalHits = 0;
 private int docBase;
 private Scorer scorer;
 private List<ScoreDoc> topDocs = new ArrayList();
 private ScoreDoc[] scoreDocs;

 public MyCollector() { }

 public void setScorer(Scorer scorer) {
 this.scorer = scorer;
 }

 public boolean acceptsDocsOutOfOrder() {
 return false;
 }

 public void collect(int doc) throws IOException {
 float score = scorer.score();
 if (score > 0) {
 score += (1 / (doc + 1));
 }
 ScoreDoc scoreDoc =
 new ScoreDoc(doc + docBase, score);
 topDocs.add(scoreDoc);
 totalHits++;
 }

 public void setNextReader(AtomicReaderContext context) {
 this.docBase = context.docBase;
 }

 public int getTotalHits() {
 return totalHits;
 }

 public ScoreDoc[] getScoreDocs() {
 if (scoreDocs != null) {
 return scoreDocs;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

82

 Collections.sort(topDocs,
 new Comparator<ScoreDoc>() {
 public int compare(ScoreDoc d1, ScoreDoc d2) {
 if (d1.score > d2.score) {
 return -1;
 } else if (d1.score == d2.score) {
 return 0;
 } else {
 return 1;
 }
 }
 });
 scoreDocs = topDocs.toArray(
 new ScoreDoc[topDocs.size()]);
 return scoreDocs;
 }
}

Note that this sample code is meant to demonstrate the purpose only and it is by no means
optimized. We simply used an ArrayList to store ScoreDoc and sorted it via Collections
for illustration purposes only.

How it works...
In this example, we created our own Collector called MyCollector, extending from
the Collector class. To implement this abstract class, we need to implement the
following interfaces:

ff acceptsDocsOutOfOrder(): This returns a Boolean value, indicating whether
this Collector will accept a document out of order (by DocId).

ff collect(int): This is called once per matched document. This is where we can
score the document and even filter out unwanted documents.

ff setNextReader(AtomicReaderContext): This is called before the Collector
begins to collect from an AtomicReader.

ff setScorer(Scorer): This is called to put a Scorer in the Collector.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

83

Sorting with custom FieldComparator
Besides building your own Collector to customize how the results are stored and sorted,
another way to customize results sorting is to implement your own FieldComparator for
SortField. Note that this customization only deals with the sorting aspect of the result set;
it does not give you the flexibility to filter out results, as you would have with Collector.

To implement a FieldComparator, we need to implement two classes: FieldComparator
and FieldComparatorSource. The FieldComparator is the underlying class
that contains the methods for comparing the documents in the result set. The
FieldComparatorSource is a class that instantiates FieldComparator. It acts like a
wrapper on FieldComparator. To use it, we pass our own FieldComparatorSource in
the place of SortField.Type into the constructor of SortField.

How to do it...
Let's take a look at how FieldComparator is implemented. We will build a custom
FieldComparator to sort results on a single-valued field by length of the field value
in and then by alphabetical order, both in ascending order:

public class MyFieldComparator extends
 FieldComparator<String> {
 private String field;
 private String bottom;
 private String topValue;
 private BinaryDocValues cache;
 private String[] values;

 public MyFieldComparator(String field,
 int numHits) {
 this.field = field;
 this.values = new String[numHits];
 }
 public int compare(int slot1, int slot2) {
 return compareValues(values[slot1],
 values[slot2]);
 }
 public int compareBottom(int doc) {
 return compareValues(bottom,
 cache.get(doc).utf8ToString());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Indexes

84

 public int compareTop(int doc) {
 return compareValues(topValue,
 cache.get(doc).utf8ToString());
 }
 public int compareValues(String first,
 String second) {
 int val = first.length() - second.length();
 return val == 0 ?
 first.compareTo(second) : val;
 }
 public void copy(int slot, int doc) {
 values[slot] = cache.get(doc).utf8ToString();
 }
 public void setBottom(int slot) {
 this.bottom = values[slot];
 }
 public void setTopValue(String value) {
 this.topValue = value;
 }
 public String value(int slot) {
 return values[slot];
 }
 public FieldComparator<String> setNextReader(
 AtomicReaderContext context)
 throws IOException {
 this.cache = FieldCache.DEFAULT.getTerms(
 context.reader(), field, true);
 return this;
 }
}
public class MyFieldComparatorSource
 extends FieldComparatorSource {
 public FieldComparator newComparator(
 String fieldname, int numHits,
 int sortPos, boolean reversed) {
 return new MyFieldComparator(fieldname, numHits);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

85

How it works...
Note that there are a number of abstract methods to implement in FieldComparator.
The key method in our implementation is compareValues(String, String). This is
where we actually compare values by length and then by alphabetical order. There are two
kinds of references in the implementation: slot and doc. A slot references value relative to
the returning result set. The reference is different from DocId and if there is pagination,
a lot is in reference to the value in the current page. A doc is simply the DocId. We also hold
on to a reference to FieldCache and it's set in setNextReader when IndexReader is
passed into the FieldComparator. A field value is copied from FieldCache to slots in the
copy method.

To use our own MyFieldComparator, we need to create our own
MyFieldComparatorSource to instantiate our FieldComparator.
MyFieldComparatorSource can be used to instantiate a SortField.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

87

5
Near Real-time

Searching

These are the recipes we are going to cover in this chapter:

ff Using the DirectoryReader to open index in Near Real-time

ff Using the SearcherManager to refresh IndexSearcher

ff Generational indexing with TrackingIndexWriter

ff Maintaining search sessions with SearcherLifetimeManager

ff Performance tuning: latency and throughput

Introduction
In some search applications, it may be necessary to immediately expose any changes made
to the index to attain the best user experience. For example, such applications can be forums
where a user may search for his/her newly edited post to confirm that the submission is
successful and see how it ranked in the search results. If the application is database-backed,
post-edit searches will always be able to bring back the submitted post as index updates, and
searches are mostly real-time in a single database environment, assuming reads and writes
are on the same table. However, performance can take a toll if changes are frequent and
the search volume is high because frequent updates can cause high IO load, which in turn
contributes to performance issues. Performing a lot of searches on a frequently updated table
is not ideal as collisions between read and write requests are bound to happen and updates
can block read requests. The read requests backlog can queue up to a point where the
application becomes unresponsive.

www.it-ebooks.info

http://www.it-ebooks.info/

Near Real-time Searching

88

A natural progression in solving the locking issue is to introduce a read-only replica, so that
we can offload reads to a different database environment, preventing updates and reads
backlog on master database. It's possible to have many replicas so that the application can,
in theory, scale horizontally and is limited by the amount of hardware only. One caveat with
this approach is that we need to take extra precaution to prevent breaking the replication,
because once the replication stops, replicas will slack behind and become stale quite quickly
on a busy website. Also, a real-time search will not be consistent because of the potential
delays in replication.

Lucene, as a high performance search engine, allows you to handle scale gracefully. We can
multithread an application sharing the same IndexSearcher to scale up with as many CPU
cores as we can get our hands on. We can also replicate the index into multiple machines
so that we can spawn multiple searcher instances-though this will take some coordination
to distribute index updates. Lucene also supports Near Real-Time (NRT) searching and it
provides several utilities for handling NRT. Although the NRT feature is not exactly (or claimed
to be) real-time, the latency between updates and searches can be set close enough so that
searches will appear to the users as real-time. In this chapter, we will explore different ways
of building an NRT search application. We will look into Lucene's NRT utility classes to learn
about their purposes and see how to use them effectively.

Using the DirectoryReader to open index in
Near Real-Time

First of all, let's cover the basics. The DirectoryReader attribute that we are already
familiar with actually allows you to open an index with IndexWriter with the option to
include uncommitted changes. This gives you a point-in-time snapshot of the index, including
any updates that are not committed yet. In a typical search application, IndexSearcher
would need to be reopened periodically anyway to expose recent updates. This feature
provides an option to immediately expose index updates without waiting for IndexWriter
to commit first. Potentially, the search application may have to maintain multiple
IndexSearchers as depicted in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

89

One use case for this feature is that users may want to review their recently submitted content
to see how it ranked in search results. To provide the most up-to-date index after a user
submits an update, we can open a new IndexSearcher with uncommitted changes
to serve queries while the IndexWriter attribute committing changes in the background.
A new IndexSearcher can be scheduled to reopen periodically after the IndexWriter
commit, so we can keep search up to date. One caveat is that we will have to manage multiple
IndexSearchers and ensure that each IndexSearcher is properly closed at the end of its
lifecycle, so that we don't run into memory leaks issue.

How to do it...
Here is an example of using DirectoryReader to open an index in NRT:

Directory directory = FSDirectory.open(new File("data/index"));
StandardAnalyzer analyzer = new StandardAnalyzer();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);

Document doc = new Document();
TextField textField = new TextField("content", "", Field.Store.YES);
String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall.",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};

for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");
 doc.add(textField);
 indexWriter.addDocument(doc);
}
DirectoryReader directoryReader =
DirectoryReader.open(indexWriter, true);
IndexSearcher indexSearcher = new IndexSearcher(directoryReader);

QueryParser queryParser = new QueryParser("content", analyzer);
Query query = queryParser.parse("humpty dumpty");

TopDocs topDocs = indexSearcher.search(query, 100);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexSearcher.doc(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
 doc.getField("content").stringValue());
}
indexWriter.commit();

www.it-ebooks.info

http://www.it-ebooks.info/

Near Real-time Searching

90

How it works...
We should be very familiar with this test setup, where we create a directory and IndexWriter
to add a document to an index. One thing to take a note of in this example is that we perform
a search before an index commit, which happens at the very end. You will be able to see the
search results when you run this code, even though commit happens after the search. The
key statement in this example is DirectoryReader.open(indexWriter, true). Note
that instead of passing in a Directory to DirectoryReader, we pass in an IndexWriter
attribute. This allows DirectoryReader to merge uncommitted updates in IndexWriter
to provide a coherent index. The second argument is a Boolean value that controls whether
to apply all the outstanding deletes. The reason we are given an option as to whether to
apply deletes is because when deleting documents, they are marked as deleted, but not
removed from the index. Applying deletes will require some CPU cycles to clean up before the
changes are exposed-hence the option. If you don't care about exposing recent deletes, you
will gain better refresh timing by setting this Boolean value to false. Uncommitted updates
are exposed as a single segment, so once the DirectoryReader attribute is opened
to read uncommitted changes, the search application can function as usual, treating the
DirectoryReader attribute in the same way as reading from a committed index.

This method is a simple way to achieve an NRT search. It demonstrates that the key
component in NRT is IndexWriter. IndexWriter provides access to the index and outstanding
changes that are stored in its buffer.

Using the SearcherManager to refresh
IndexSearcher

The SearcherManager is a utility class that facilitates the sharing of IndexSearcher
across multiple threads. It provides the facilities to acquire and release IndexSearcher,
while allowing IndexSearcher to be reopened periodically. The IndexSearcher attribute
can be refreshed by calling maybeRefresh prior to acquire, though it's recommended
that this method be called periodically in a separate thread to minimize impacting a
query that happens to trigger a refresh. Note that it's very important to call release so
SearcherManager knows when IndexSearcher is not in use so that it can be closed
for a refresh.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

91

The following diagram shows SearcherManager's main responsibilities:

The SearcherManager's constructor takes three arguments: an IndexWriter, a Boolean
indicating whether to apply uncommitted deletes, and a SearcherFactory. In our example,
we will use the built-in SearcherFactory. The SearcherFactory object can be extended
to include custom configuration such as similarity, so when the IndexSearcher is refreshed,
we don't lose any custom settings in the IndexSearcher.

When building a high traffics search application where both updates and searches are
frequent, it is advisable to schedule index refreshes on a regular basis, perhaps every
second, instead of on demand (after user submitted updates). This way, we can minimize
the number of opened IndexSearchers and in turn, minimize memory consumption. With
SearcherManager, we can call maybeRefresh in a separate thread to refresh the index
in the background. The acquire and release methods encapsulate the logic of opening and
closing IndexSearcher and will always return the latest IndexSearcher. At a one second
refresh rate, the IndexSearcher will only be a second behind the real-time update. You can
certainly adjust the refresh rate based on the requirement and available memory.

The benefit of using SearcherManager is that it handles the management of the
IndexSearcher refreshes internally and lets you share a single IndexSearcher across
multiple threads. The acquire method should always return an IndexSearcher so that it
simplifies the instantiation logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Near Real-time Searching

92

How to do it...
Here is an example of using SearcherManager:

SearcherManager searcherManager = new SearcherManager(indexWriter,
true, new SearcherFactory());

// add documents to index here

searcherManager.maybeRefresh();
indexSearcher = searcherManager.acquire();

// perform search here

searcherManager.release(indexSearcher);

indexWriter.commit();

// add more documents to index here

searcherManager.maybeRefresh();
indexSearcher = searcherManager.acquire();

// perform search here

searcherManager.release(indexSearcher);

indexWriter.commit();

How it works...
In this example, we intentionally strip out the usual test setup so that we can highlight
the important statements. Make a note of how we set up SearcherManager by passing
in an IndexWriter, a true value (so we can read all the uncommitted deletes), and a
default SearcherFactory. Before we perform a search, we call maybeRefresh to check
whether there are any outstanding changes since IndexSearcher was last opened. In
this case, because we haven't opened an IndexSearcher yet, this will trigger a refresh.
Then, IndexSearcher is obtained by calling acquire. A search is performed and all the
changes from above should be visible at this point. Then, we call commit to persist the
changes. Note that we call release to tell the SearcherManager that we are done using the
IndexSearcher. More documents are then added after commit, so another maybeRefresh
and acquire is called to get a fresh IndexSearcher. The second search should include the
newly added documents. Then, we call release and commit the changes at the end.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

93

This is a very simple example that shows you what you can do with SearcherManager.
In an actual implementation, you will most likely call maybeRefresh in a separate thread
to avoid wasting CPU cycles in every query. Especially in a high-traffics application, calling
maybeRefresh periodically on a schedule is preferable than calling it on every query request.

Generational indexing with
TrackingIndexWriter

A generation is analogous to versioning in a revision control system. In TrackingIndexWriter,
when an index changes, a new generation is created and can be used to open the index in
that particular point in time. TrackingIndexWriter is a wrapper class to IndexWriter. It provides
the corresponding addDocument, updateDocument, and deleteDocument methods
to keep a track of index changes. On each update, a long value is returned, reflecting the
current index generation. This value can be used to acquire an IndexSearcher that includes
all the updates up to this specific point (generation). This class is intended to run alongside
with ControlledRealTimeReopenThread. The ControlledRealTimeReopenThread
is a utility class that runs as a separate thread managing the periodic reopening of
the IndexSearcher. It accepts the TrackingIndexWriter and SearcherManager
in its constructor to initialize this object. The generation value returned from
TrackingIndexWriter can be used to tell ControlledRealTimeReopenThread to
reopen index to a specific generation.

The relationship between components can be seen in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Near Real-time Searching

94

These utility classes can be used in conjunction with SearcherManager, with periodic
index refreshes. The ControlledRealTimeReopenThread method provides the facility to
refresh an index to a specific generation that guarantees inclusion of certain changes: say for
a particular user after an update, while SearcherManager can trigger regular refreshes to
maintain a general IndexSearcher freshness.

How to do it…
Here is the sample code on TrackingIndexWriter:

SearcherManager searcherManager = new SearcherManager(indexWriter,
true, new SearcherFactory());
TrackingIndexWriter trackingIndexWriter = new
TrackingIndexWriter(indexWriter);
ControlledRealTimeReopenThread controlledRealTimeReopenThread =
new ControlledRealTimeReopenThread(trackingIndexWriter,
searcherManager, 5, 0.001f);
controlledRealTimeReopenThread.start();

long indexGeneration = 0;

// add documents to index here

indexGeneration = trackingIndexWriter.addDocument(doc);

controlledRealTimeReopenThread.waitForGeneration(indexGeneration);
IndexSearcher indexSearcher = searcherManager.acquire();

// perform search here

searcherManager.release();
indexWriter.commit();

// add more documents to index here

indexGeneration = trackingIndexWriter.addDocument(doc);

controlledRealTimeReopenThread.waitForGeneration(indexGeneration);
indexSearcher = searcherManager.acquire();

// perform another search here

searcherManager.release();

controlledRealTimeReopenThread.close();
indexWriter.commit();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

95

How it works...
Here, we instantiated a SearcherManager instance to pass along to
TrackingIndexWriter. Then, we pass both of these objects into
ControlledRealTimeReopenThread to instantiate it. Note that we keep a long value
indexGeneration to store the generation value on each index update (for example,
addDocument). We make a call to the ControllerRealTimeReopenThread's
waitForGeneration method with indexGeneration. This tells the thread to refresh
an index to the specified generation. When we call searcherManager.acquire() to
return an IndexSearcher, the IndexSearcher should include all the changes up to
the specified generation. You can also pass a maximum wait time (in milliseconds) to
waitForGeneration so that the thread will only wait up to the specified duration instead
of indefinitely. When the time is up and the index generation is not available, it will leave the
currently opened index as it is.

This mechanism is useful when there is a need to provide a search result to a specific point in
time. For example, a search right after a user submitted a post to a forum. This is especially,
useful when it's necessary to guarantee that certain changes be included in the search.

Maintaining search sessions with
SearcherLifetimeManager

This is another utility class that Lucene provides out of the box, providing a facility to manage
multiple IndexSearchers. Why do we need multiple IndexSearchers? Let's imagine
we have multiple users in a high traffics NRT search application, searching concurrently.
Also, let's assume that some of these users are also submitting changes to the index at
the same time. If we periodically refresh our IndexSearcher for a NRT search, we will
likely encounter a scenario where a user is paginating through a result set and at the same
time, the index is updated affecting the search result. The effect can be minimal if the
newly added/updated content is irrelevant to the current search terms. However, if the new
content has any relevancy to the current search, the search result rankings will change. The
user may see repeated results between the pages as user paginating. To ensure a good
user experience, we should reuse the same IndexSearcher within a search session so
while user paginating, it will always be searched against the same IndexSearcher. This
is where SearcherLifetimeManager can help. SearcherLifetimeManager is used
to hold on to an IndexSearcher and return an identifying token. As the user paginates
through the result, we can use the token to retrieve IndexSearcher to continue with the
search without worrying about an index refresh affecting the current search session. When
the user finishes with the search, the IndexSearcher can simply be returned back to
SearcherLifetimeManager.

www.it-ebooks.info

http://www.it-ebooks.info/

Near Real-time Searching

96

As we continue to maintain IndexSearcher for each search session, it is inevitable that the
number of IndexSearchers will increase overtime. To clean up the old IndexSearchers
that are no longer in use, we can use the SearcherLifetimeManager's prune method
to perform the sweep. We will need to make sure IndexSearcher is released, by calling the
release method after every use, so that SearcherLifetimeManager knows which ones
can be dropped. When calling the prune method, we can specify a PruneByAge value to
drop IndexSearchers that are older by a certain age.

The following diagram depicts the main actions of SearcherLifetimeManager:

How to do it…
Here is the sample code on SearcherLifetimeManager:

DirectoryReader directoryReader = DirectoryReader.open(indexWriter,
true);
IndexSearcher indexSearcher = new IndexSearcher(directoryReader);

SearcherLifetimeManager searcherLifetimeManager = new
SearcherLifetimeManager();
long searcherToken = searcherLifetimeManager.record(indexSearcher);

indexSearcher = searcherLifetimeManager.acquire(searcherToken);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

97

if (indexSearcher != null) {
 try {
 // perform search here
 } finally {
 searcherLifetimeManager.release(indexSearcher);
 indexSearcher = null;
 }
} else {
 // searcher was pruned, notify user that search session has
timed out
}

searcherLifetimeManager.prune(new
SearcherLifetimeManager.PruneByAge(600.0));

How it works…
Here, we first open an IndexSearcher with an IndexWriter. Then, we instantiate
a SearcherLifetimeManager and call its record method to hold on to the current
IndexSearcher. The returning long value is a token we will use to recall this IndexSearcher
by calling the acquire method. Then, we perform a search and release the IndexSearcher.
Also, lastly, we call prune to remove any IndexSearcher that's older than 600 seconds.

Performance tuning: latency and throughput
Search latency is the measure of time between the start of a query and the delivery of a
search result. Throughput is the number of actions the system can sustain in a given time
period. Ideally, we want latency to be one second or less and throughput, obviously, to be
as high as possible. Both of these measurements are important factors in determining your
hardware needs and infrastructure design.

Latency and throughput are correlated; both depend heavily on the available system
resources, for example, CPU, IO, memory, and so on. In a single instance, lower latency will
naturally increase throughput. When lowering latency is not attainable, we will have to resort
to add more hardware to boost the number of instances to serve concurrently. Hardware
sizing, at this point, will be a simple math of the desired throughput divided by a single
instance's throughput to determine the number of servers that are needed for the search.

www.it-ebooks.info

http://www.it-ebooks.info/

Near Real-time Searching

98

How to do it…
There are a several things to consider when performance tuning a Lucene search application.
Let's review what can be done on the hardware side, which should bring us some immediate
benefits to improve latency. Here are some items to consider:

ff Use a solid-state disk for index storage. This will improve the load time and index
update time.

ff Put as much RAM as possible to your system. The ideal set up is to fit the entire index
in memory. That'll reduce latency in the index lookup compared to a hard disk drive
(HDD). Accessing data in RAM is a thousand times faster than using HDD. We can
eliminate slow IO lookup when we access everything in memory. This will bring the
most gain compared to other upgrades.

ff Get as many CPU cores as possible as this will improve throughput by allowing more
threads to run concurrently. This is also assuming that each CPU core is fast enough
to deliver results in less than a second.

Aside from hardware upgrades, there are also techniques we can leverage in configuration
and architecture to help improve performance. Let's look at some of these techniques:

ff Use NRTCachingDirectory to wrap around a Directory, to keep all the
uncommitted changes in memory for a NRT search. This will bring an immediate
improvement in latency, as all the outstanding updates can be retrieved from RAM.

ff Minimize the reopening of IndexWriter and IndexSearcher. Maintain a single
IndexSearcher for as long as possible to avoid additional memory consumption
in maintaining multiple IndexSearchers. However, in a NRT implementation, it's
inevitable to have frequent refreshes. We should use a separate thread to trigger
the refresh in the background, while keeping an existing opened IndexSearcher
serving searches until the fresh index is warmed up. This approach will maintain the
same level of latency between refreshes.

ff Profile the JVM to find out if garbage collection kicked off too frequently as
that indicates that there is insufficient memory. Maximize the amount of memory that
can be allocated to JVM: if we can allocate more than 2 GB of RAM, use a 64-bit JVM
so that we can map more memory.

ff Multithread the application, which will increase throughput as we will be able to
handle many requests at once.

ff Warm up FieldCache when the index is refreshed before using it, so that the initial
queries are not penalized by a slow response due to caches not being warmed up.

ff Use SearcherManager to share IndexSearcher among many threads and
minimize the number of opened IndexSearchers.

ff Perform all index maintenance, for example,. merging segments in the background.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

99

How it works…
It's easy to understand that more RAM equates to better performance, but how does Lucene
treat memory management behind the scenes? When we talk about warming up a reader, it's
comprised of a number of things being moved into RAM such as FieldCache, norms, and
index segments. These items are loaded lazily so it's important to have a warm up routine;
usually, a number of queries that would hit all the areas of the index, in order to allow Lucene
to load these items into cache. Once a reader is warmed up, it can then be released to the
users. Lucene also relies on the OS's IO caching scheme to cache physical index files, so that
the frequently accessed segments can benefit from OS caching. It's advisable that a memory
swap should be turned off at the OS level to minimize OS from unloading any less frequently
used FieldCache to disk. Swapping will potentially slow the search down to a crawl, as the
disk IO is a lot slower than RAM access.

In NRT, when a reader is opened, any recent updates actually get flushed into a new segment
and a new reader is opened including this new segment. More available RAM, in this case, will
benefit NRT in speedily opening a reader.

The goal of all these techniques is to reduce latency and increase throughput. As mentioned
earlier, sizing for hardware can be a simple math to determine a single instance throughput
and use that as a guide to find out how much hardware we need, in order to attain the desired
performance. Reducing latency is usually the first thing to consider when performance tuning
because that will immediately impact throughput. When a latency tuning option is exhausted,
we can look into tuning throughput. We mentioned a few techniques to help increase
throughput, but ideally we should focus on software tuning first before looking into increasing
hardware. That's because there may still be a room for improvement in a single server. For
example, by increasing a number of threads, throughput will naturally increase as long as we
have enough CPU cores to support concurrent access. Also, by increasing the JVM heap size
and increasing caching in the application, we encourage more data lookup in the memory,
which will certainly help to improve both latency and throughput.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

101

6
Querying and Filtering

Data

In this chapter, we will cover the following recipes:

ff Performing advanced filtering

ff Creating a custom filter

ff Searching with QueryParser

ff TermQuery and TermRangeQuery

ff BooleanQuery

ff PrefixQuery and WildcardQuery

ff PhraseQuery and MultiPhraseQuery

ff FuzzyQuery

ff NumericRangeQuery

ff DisjunctionMaxQuery

ff RegexpQuery

ff SpanQuery

ff CustomScoreQuery

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

102

Introduction
When it comes to search application, usability is always a key element that either makes or
breaks user impression. Lucene does an excellent job of giving you the essential tools to build
and search an index. In this chapter, we will look into some more advanced techniques to
query and filter data. We will arm you with more knowledge to put into your toolbox so that you
can leverage your Lucene knowledge to build a user-friendly search application.

Performing advanced filtering
Before we start, let us try to revisit these questions: what is a filter and what is it for? In
simple terms, a filter is used to narrow the search space or, in another words, search within a
search. Filter and Query may seem to provide the same functionality, but there is a significant
difference between the two. Scores are calculated in querying to rank results, based on their
relevancy to the search terms, while a filter has no effect on scores. It's not uncommon that
users may prefer to navigate through a hierarchy of filters in order to land on the relevant
results. You may often find yourselves in a situation where it is necessary to refine a result
set so that users can continue to search or navigate within a subset. With the ability to apply
filters, we can easily provide such search refinements. Another situation is data security where
some parts of the data in the index are protected. You may need to include an additional filter
behind the scene that's based on user access level so that users are restricted to only seeing
items that they are permitted to access. In both of these contexts, Lucene's filtering features
will provide the capability to achieve the objectives.

Lucene has a few built-in filters that are designed to fit most of the real-world applications. If
you do find yourself in a position where none of the built-in filters are suitable for the job, you
can rest assured that Lucene's expansibility will allow you to build your own custom filters. Let
us take a look at Lucene's built-in filters:

ff TermRangeFilter: This is a filter that restricts results to a range of terms that are
defined by lower bound and upper bound of a submitted range. This filter is best used
on a single-valued field because on a tokenized field, any tokens within a range will
return by this filter. This is for textual data only.

ff NumericRangeFilter: Similar to TermRangeFilter, this filter restricts results to a
range of numeric values.

ff FieldCacheRangeFilter: This filter runs on top of the number of range filters,
including TermRangeFilter and NumericRangeFilter. It caches filtered results
using FieldCache for improved performance. FieldCache is stored in the memory,
so performance boost can be upward of 100x faster than the normal range filter.
Because it uses FieldCache, it's best to use this on a single-valued field only. This
filter will not be applicable for multivalued field and when the available memory is
limited, since it maintains FieldCache (in memory) on filtered results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

103

ff QueryWrapperFilter: This filter acts as a wrapper around a Query object. This filter is
useful when you have complex business rules that are already defined in a Query and
would like to reuse for other business purposes. It constructs a Query to act like a
filter so that it can be applied to other Queries. Because this is a filter, scoring results
from the Query within is irrelevant.

ff PrefixFilter: This filter restricts results that match what's defined in the prefix.
This is similar to a substring match, but limited to matching results with a leading
substring only.

ff FieldCacheTermsFilter: This is a term filter that uses FieldCache to store the
calculated results in memory. This filter works on a single-valued field only. One use of
it is when you have a category field where results are usually shown by categories in
different pages. The filter can be used as a demarcation by categories.

ff FieldValueFilter: This filter returns a document containing one or more values on the
specified field. This is useful as a preliminary filter to ensure that certain fields exist
before querying.

ff CachingWrapperFilter: This is a wrapper that adds a caching layer to a filter to
boost performance. Note that this filter provides a general caching layer; it should
be applied on a filter that produces a reasonably small result set, such as an exact
match. Otherwise, larger results may unnecessarily drain the system's resources and
can actually introduce performance issues.

If none of the above filters fulfill your business requirements, you can build your own,
extending the Filter class and implementing its abstract method getDocIdSet
(AtomicReaderContext, Bits).

How to do it...
Let's set up our test case with the following code:

Analyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);
 Document doc = new Document();
StringField stringField = new StringField("name", "",
 Field.Store.YES);
TextField textField = new TextField("content", "",
 Field.Store.YES);
IntField intField = new IntField("num", 0, Field.Store.YES);
doc.removeField("name"); doc.removeField("content");
doc.removeField("num");

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

104

stringField.setStringValue("First");
textField.setStringValue("Humpty Dumpty sat on a wall,");
intField.setIntValue(100);
doc.add(stringField); doc.add(textField); doc.add(intField);
indexWriter.addDocument(doc);
doc.removeField("name"); doc.removeField("content");
doc.removeField("num");
stringField.setStringValue("Second");
textField.setStringValue("Humpty Dumpty had a great fall.");
intField.setIntValue(200);
doc.add(stringField); doc.add(textField); doc.add(intField);
indexWriter.addDocument(doc);
doc.removeField("name"); doc.removeField("content");
doc.removeField("num");
stringField.setStringValue("Third");
textField.setStringValue("All the king's horses and all the king's
men");
intField.setIntValue(300);
doc.add(stringField); doc.add(textField); doc.add(intField);
indexWriter.addDocument(doc);
doc.removeField("name"); doc.removeField("content");
doc.removeField("num");
stringField.setStringValue("Fourth");
textField.setStringValue("Couldn't put Humpty together
 again.");
intField.setIntValue(400);
doc.add(stringField); doc.add(textField); doc.add(intField);
indexWriter.addDocument(doc);
indexWriter.commit();
indexWriter.close();
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);

How it works…
The preceding code adds four documents into an index. The four documents are:

ff Document 1

Name: First

Content: Humpty Dumpty sat on a wall,

Num: 100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

105

ff Document 2

Name: Second

Content: Humpty Dumpty had a great fall.

Num: 200

ff Document 3

Name: Third

Content: All the king's horses and all the king's men

Num: 300

ff Document 4

Name: Fourth

Content: Couldn't put Humpty together again.

Num: 400

Here is our standard test case:

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
Query query = new TermQuery(new Term("content", "humpty"));
TopDocs topDocs = indexSearcher.search(query, FILTER, 100);
System.out.println("Searching 'humpty'");
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println("name: " +
 doc.getField("name").stringValue() +
 " - content: " +
 doc.getField("content").stringValue() +
 " - num: " +
 doc.getField("num").stringValue());
}
indexReader.close();

Running the code as it is will produce the following output, assuming the FILTER
variable is declared:

Searching 'humpty'
name: First - content: Humpty Dumpty sat on a wall, - num: 100
name: Second - content: Humpty Dumpty had a great fall. - num: 200
name: Fourth - content: Couldn't put Humpty together again. - num:
400

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

106

This is a simple search on the word humpty. The search would return the first, second,
and fourth sentences.

Now, let's take a look at a TermRangeFilter example:

TermRangeFilter termRangeFilter =
TermRangeFilter.newStringRange("name", "A", "G", true, true);

Applying this filter to preceding search (by setting FILTER as termRangeFilter) will
produce the following output:

Searching 'humpty'
name: First - content: Humpty Dumpty sat on a wall, - num: 100
name: Fourth - content: Couldn't put Humpty together again. - num:
400

Note that the second sentence is missing from the results due to this filter. This filter removes
documents with name outside of A through G. Both first and fourth sentences start with F
that's within the range so their results are included. The second sentence's name value
Second is outside the range, so the document is not considered by the query.

Let's move on to NumericRangeFilter:

NumericRangeFilter numericRangeFilter =
NumericRangeFilter.newIntRange("num", 200, 400, true, true);

This filter will produce the following results:

Searching 'humpty'
name: Second - content: Humpty Dumpty had a great fall. - num: 200
name: Fourth - content: Couldn't put Humpty together again. - num:
400

Note that the first sentence is missing from results. It's because its num 100 is outside the
specified numeric range 200 to 400 in NumericRangeFilter.

Next one is FieldCacheRangeFilter:

FieldCacheRangeFilter fieldCacheTermRangeFilter =
FieldCacheRangeFilter.newStringRange("name", "A", "G", true, true);

The output of this filter is similar to the TermRangeFilter example:

Searching 'humpty'
name: First - content: Humpty Dumpty sat on a wall, - num: 100
name: Fourth - content: Couldn't put Humpty together again. - num: 400

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

107

This filter provides a caching layer on top of TermRangeFilter. Results are similar,
but performance is a lot better because the calculated results are cached in memory
for the next retrieval.

Next is QueryWrapperFiler:

QueryWrapperFilter queryWrapperFilter = new QueryWrapperFilter(new
TermQuery(new Term("content", "together")));

This example will produce this result:

Searching 'humpty'
name: Fourth - content: Couldn't put Humpty together again. - num:
400

This filter wraps around TermQuery on term together on the content field. Since the
fourth sentence is the only one that contains the word "together" search results is limited
to this sentence only.

Next one is PrefixFilter:

PrefixFilter prefixFilter = new PrefixFilter(new Term("name",
"F"));

This filter produces the following:

Searching 'humpty'
name: First - content: Humpty Dumpty sat on a wall, - num: 100
name: Fourth - content: Couldn't put Humpty together again. - num:
400

This filter limits results where the name field begins with letter F. In this case, the first
and fourth sentences both have the name field that begins with F (First and Fourth);
hence, the results.

Next is FieldCacheTermsFilter:

FieldCacheTermsFilter fieldCacheTermsFilter = new
FieldCacheTermsFilter("name", "First");

This filter produces the following:

Searching 'humpty'
name: First - content: Humpty Dumpty sat on a wall, - num: 100

This filter limits results with the name containing the word first. Since the first sentence is the
only one that contains first, only one sentence is returned in search results.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

108

Next is FieldValueFilter:

FieldValueFilter fieldValueFilter = new FieldValueFilter("name1");

This would produce the following:

Searching 'humpty'

Note that there are no results because this filter limits results in which there is at least one
value on the filed name1. Since the name1 field doesn't exist in our current example, no
documents are returned by this filter; hence, zero results.

Next is CachingWrapperFilter:

TermRangeFilter termRangeFilter = TermRangeFilter.
newStringRange("name", "A", "G", true, true);
CachingWrapperFilter cachingWrapperFilter = new CachingWrapperFilter(t
ermRangeFilter);

This wrapper wraps around the same TermRangeFilter from above, so the result produced
is similar:

Searching 'humpty'
name: First - content: Humpty Dumpty sat on a wall, - num: 100
name: Fourth - content: Couldn't put Humpty together again. - num:
400

Filters work in conjunction with Queries to refine the search results. As you may have already
noticed, the benefit of Filter is its ability to cache results, while Query calculates in real time.
When choosing between Filter and Query, you will want to ask yourself whether the search (or
filtering) will be repeated. Provided you have enough memory allocation, a cached Filter will
always provide a positive impact to search experiences.

Creating a custom filter
Now that we've seen numerous examples on Lucene's built-in Filters, we are ready for a more
advanced topic, custom filters. There are a few important components we need to go over
before we start: FieldCache, SortedDocValues, and DocIdSet. We will be using these
items in our example to help you gain practical knowledge on the subject.

In the FieldCache, as you already learned, is a cache that stores field values in memory
in an array structure. It's a very simple data structure as the slots in the array basically
correspond to DocIds. This is also the reason why FieldCache only works for a single-valued
field. A slot in an array can only hold a single value. Since this is just an array, the lookup time
is constant and very fast.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

109

The SortedDocValues has two internal data mappings for values' lookup: a dictionary
mapping an ordinal value to a field value and a DocId to an ordinal value (for the field value)
mapping. In the dictionary data structure, the values are deduplicated, dereferenced,
and sorted. There are two methods of interest in this class: getOrd(int) and
lookupTerm(BytesRef). The getOrd(int) returns an ordinal for a DocId (int) and
lookupTerm(BytesRef) returns an ordinal for a field value. This data structure is the
opposite of the inverted index structure, as this provides a DocId to value lookup (similar to
FieldCache), instead of value to a DocId lookup.

DocIdSet, as the name implies, is a set of DocId. A FieldCacheDocIdSet subclass we will
be using is a combination of this set and FieldCache. It iterates through the set and calls
matchDoc(int) to find all the matching documents to be returned.

In our example, we will be building a simple user security Filter to determine which documents
are eligible to be viewed by a user based on the user ID and group ID. The group ID is
assumed to be hereditary, where as a smaller ID inherits rights from a larger ID. For example,
the following will be our group ID model in our implementation:

10 – admin
20 – manager
30 – user
40 – guest

A user with group ID 10 will be able to access documents where its group ID is 10 or above.

How to do it...
Here is our custom Filter, UserSecurityFilter:

public class UserSecurityFilter extends Filter {

 private String userIdField;
 private String groupIdField;
 private String userId;
 private String groupId;

 public UserSecurityFilter(String userIdField, String
 groupIdField, String userId, String groupId) {
 this.userIdField = userIdField;
 this.groupIdField = groupIdField;
 this.userId = userId;
 this.groupId = groupId;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

110

 public DocIdSet getDocIdSet(AtomicReaderContext context, Bits
 acceptDocs) throws IOException {
 final SortedDocValues userIdDocValues =
 FieldCache.DEFAULT.getTermsIndex(context.reader(),
 userIdField);
 final SortedDocValues groupIdDocValues =
 FieldCache.DEFAULT.getTermsIndex(context.reader(),
 groupIdField);

 final int userIdOrd = userIdDocValues.lookupTerm(new
 BytesRef(userId));
 final int groupIdOrd = groupIdDocValues.lookupTerm(new
 BytesRef(groupId));

 return new FieldCacheDocIdSet(context.reader().maxDoc(),
 acceptDocs) {
 @Override
 protected final boolean matchDoc(int doc) {
 final int userIdDocOrd = userIdDocValues.getOrd(doc);
 final int groupIdDocOrd = groupIdDocValues.getOrd(doc);
 return userIdDocOrd == userIdOrd || groupIdDocOrd >=
 groupIdOrd;
 }
 };
 }
}

This Filter accepts four arguments in its constructor:

ff userIdField: This is the field name for user ID

ff groupIdField: This is the field name for group ID

ff userId: This is the current session's user ID

ff groupId: This is the current session's group ID of the user

Then, we implement getDocIdSet(AtomicReaderContext, Bits) to perform our
filtering by userId and groupId. We first acquire two SortedDocValues, one for the user
ID and one for the group ID, based on the Field names we obtained from the constructor.
Then, we look up the ordinal values for the current session's user ID and group ID. The return
value is a new FieldCacheDocIdSet object implementing its matchDoc(int) method.
This is where we compare both the user ID and group ID to determine whether a document is
viewable by the user. A match is true when the user ID matches and the document's group
ID is greater than or equal to the user's group ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

111

To test this Filter, we will set up our index as follows:

 Analyzer analyzer = new StandardAnalyzer();
 Directory directory = new RAMDirectory();
 IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
 IndexWriter indexWriter = new IndexWriter(directory, config);
 Document doc = new Document();
 StringField stringFieldFile = new StringField("file", "",
 Field.Store.YES);
 StringField stringFieldUserId = new StringField("userId", "",
 Field.Store.YES);
 StringField stringFieldGroupId = new StringField("groupId",
 "", Field.Store.YES);

 doc.removeField("file"); doc.removeField("userId");
 doc.removeField("groupId");
 stringFieldFile.setStringValue("Z:\\shared\\finance\\2014-
 sales.xls");
 stringFieldUserId.setStringValue("1001");
 stringFieldGroupId.setStringValue("20");
 doc.add(stringFieldFile); doc.add(stringFieldUserId);
 doc.add(stringFieldGroupId);
 indexWriter.addDocument(doc);

 doc.removeField("file"); doc.removeField("userId");
 doc.removeField("groupId");
 stringFieldFile.setStringValue("Z:\\shared\\company\\2014-
 policy.doc");
 stringFieldUserId.setStringValue("1101");
 stringFieldGroupId.setStringValue("30");
 doc.add(stringFieldFile); doc.add(stringFieldUserId);
 doc.add(stringFieldGroupId);
 indexWriter.addDocument(doc);
 doc.removeField("file"); doc.removeField("userId");
 doc.removeField("groupId");
 stringFieldFile.setStringValue("Z:\\shared\\company\\2014-
 terms-and-conditions.doc");
 stringFieldUserId.setStringValue("1205");
 stringFieldGroupId.setStringValue("40");
 doc.add(stringFieldFile); doc.add(stringFieldUserId);
 doc.add(stringFieldGroupId);
 indexWriter.addDocument(doc);
 indexWriter.commit();
 indexWriter.close();

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

112

The setup adds three documents to our index with different user IDs and group ID settings in
each document, as follows:

UserSecurityFilter userSecurityFilter = new
 UserSecurityFilter("userId", "groupId", "1001", "40");
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
Query query = new MatchAllDocsQuery();
TopDocs topDocs = indexSearcher.search(query, userSecurityFilter,
 100);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println("file: " +
 doc.getField("file").stringValue() +" - userId: " +
 doc.getField("userId").stringValue() + " - groupId: " +
 doc.getField("groupId").stringValue());
}
indexReader.close();

We initialize UserSecurityFilter with the matching names for user ID and group ID
fields, and set it up with user ID 1001 and group ID 40. For our test and search, we use
MatchAllDocsQuery to basically search without any queries (as it will return all the
documents). Here is the output from the code:

file: Z:\shared\finance\2014-sales.xls - userId: 1001 - groupId:
20
file: Z:\shared\company\2014-terms-and-conditions.doc - userId:
1205 - groupId: 40

The search specifically filters by user ID 1001, so the first document is returned because its
user ID is also 1001. The third document is returned because its group ID, 40, is greater than
or equal to the user's group ID, which is also 40.

Searching with QueryParser
QueryParser is an interpreter tool that transforms a search string into a series of Query
clauses. It's not absolutely necessary to use QueryParser to perform a search, but it's a great
feature that empowers users by allowing the use of search modifiers. A user can specify a
phrase match by putting quotes (") around a phrase. A user can also control whether a certain
term or phrase is required by putting a plus ("+") sign in front of the term or phrase, or use
a minus ("-") sign to indicate that the term or phrase must not exist in results. For Boolean
searches, the user can use AND and OR to control whether all terms or phrases are required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

113

To do a field-specific search, you can use a colon (":") to specify a field for a search (for
example, content:humpty would search for the term "humpty" in the field "content").
For wildcard searches, you can use the standard wildcard character asterisk ("*") to match 0
or more characters, or a question mark ("?") for matching a single character. As you can see,
the general syntax for a search query is not complicated, though the more advanced modifiers
can seem daunting to new users. In this section, we will cover more advanced QueryParser
features to show you what you can do to customize a search.

How to do it..
Let's look at the options that we can set in QueryParser. The following is a piece of code
snippet for our setup:

Analyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
StringField stringField = new StringField("name", "", Field.Store.
YES);
TextField textField = new TextField("content", "", Field.Store.YES);
IntField intField = new IntField("num", 0, Field.Store.YES);

doc.removeField("name"); doc.removeField("content"); doc.
removeField("num");
stringField.setStringValue("First");
textField.setStringValue("Humpty Dumpty sat on a wall,");
intField.setIntValue(100);
doc.add(stringField); doc.add(textField); doc.add(intField);
indexWriter.addDocument(doc);

doc.removeField("name"); doc.removeField("content"); doc.
removeField("num");
stringField.setStringValue("Second");
textField.setStringValue("Humpty Dumpty had a great fall.");
intField.setIntValue(200);
doc.add(stringField); doc.add(textField); doc.add(intField);
indexWriter.addDocument(doc);

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

114

doc.removeField("name"); doc.removeField("content"); doc.
removeField("num");
stringField.setStringValue("Third");
textField.setStringValue("All the king's horses and all the king's
men");
intField.setIntValue(300);
doc.add(stringField); doc.add(textField); doc.add(intField);
indexWriter.addDocument(doc);

doc.removeField("name"); doc.removeField("content"); doc.
removeField("num");
stringField.setStringValue("Fourth");
textField.setStringValue("Couldn't put Humpty together again.");
intField.setIntValue(400);
doc.add(stringField); doc.add(textField); doc.add(intField);
indexWriter.addDocument(doc);

indexWriter.commit();
indexWriter.close();

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
QueryParser queryParser = new QueryParser("content", analyzer);
// configure queryParser here
Query query = queryParser.parse("humpty");
TopDocs topDocs = indexSearcher.search(query, 100);

We add four documents and instantiate a QueryParser object with a default field and an
analyzer. We will be using the same analyzer that was used in indexing to ensure that we
apply the same text treatment to maximize matching capability.

Wildcard search
The query syntax for a wildcard search is the asterisk ("*") or question mark ("?") character.
Here is a sample query:

Query query = queryParser.parse("humpty*");

This query will return the first, second, and fourth sentences. By default, QueryParser does not
allow a leading wildcard character because it has a significant performance impact. A leading
wildcard would trigger a full scan on the index since any term can be a potential match. In
essence, even an inverted index would become rather useless for a leading wildcard character
search. However, it's possible to override this default setting to allow a leading wildcard
character by calling setAllowLeadingWildcard(true). You can go ahead and run this
example with different search strings to see how this feature works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

115

Depending on where the wildcard character(s) is placed, QueryParser will produce either
a PrefixQuery or WildcardQuery. In this specific example in which there is only one
wildcard character and it's not the leading character, a PrefixQuery will be produced.

Term range search
We can produce a TermRangeQuery by using TO in a search string. The range has the
following syntax:

[start TO end] – inclusive
{start TO end} – exclusive

As indicated, the angle brackets ([and]) is inclusive of start and end terms, and curly
brackets ({ and }) is exclusive of start and end terms. It's also possible to mix these brackets
to inclusive on one side and exclusive on the other side.

Here is a code snippet:

Query query = queryParser.parse("[aa TO c]");

This search will return the third and fourth sentences, as their beginning words are All and
Couldn't, which are within the range. You can optionally analyze the range terms with the
same analyzer by setting setAnalyzeRangeTerms(true).

Autogenerated phrase query
QueryParser can automatically generate a PhraseQuery when there is more than one term
in a search string. Here is a code snippet:

queryParser.setAutoGeneratePhraseQueries(true);
Query query = queryParser.parse("humpty+dumpty+sat");

This search will generate a PhraseQuery on the phrase humpty dumpty sat and will return the
first sentence.

Date resolution
If you have a date field (by using DateTools to convert date to a string format) and would like
to do a range search on date, it may be necessary to match the date resolution on a specific
field. Here is a code snippet on setting the Date resolution:

queryParser.setDateResolution("date", DateTools.Resolution.DAY);
queryParser.setLocale(Locale.US);
queryParser.setTimeZone(TimeZone.getTimeZone("Am erica/New_York"));

This example sets the resolution to day granularity, locale to US, and time zone to New York.
The locale and time zone settings are specific to the date format only.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

116

Default operator
The default operator on a multiterm search string is OR. You can change the default to
AND so all the terms are required. Here is a code snippet that will require all the terms
in a search string:

queryParser.setDefaultOperator(QueryParser.Operator.AND);
Query query = queryParser.parse("humpty dumpty");

This example will return first and second sentences as these are the only two sentences
with both humpty and dumpty.

Enable position increments
This setting is enabled by default. Its purpose is to maintain a position increment of the token
that follows an omitted token, such as a token filtered by a StopFilter. This is useful in phrase
queries when position increments may be important for scoring. Here is an example on how to
enable this setting:

queryParser.setEnablePositionIncrements(true);
Query query = queryParser.parse("\"humpty dumpty\"");

In our scenario, it won't change our search results. This attribute only enables position
increments information to be available in the resulting PhraseQuery.

Fuzzy query
Lucene's fuzzy search implementation is based on Levenshtein distance. It compares two
strings and finds out the number of single character changes that are needed to transform
one string to another. The resulting number indicates the closeness of the two strings. In a
fuzzy search, a threshold number of edits is used to determine if the two strings are matched.
To trigger a fuzzy match in QueryParser, you can use the tilde ~ character. There are a couple
configurations in QueryParser to tune this type of query. Here is a code snippet:

queryParser.setFuzzyMinSim(2f);
queryParser.setFuzzyPrefixLength(3);
Query query = queryParser.parse("hump~");

This example will return first, second, and fourth sentences as the fuzzy match matches hump
to humpty because these two words are missed by two characters. We tuned the fuzzy query
to a minimum similarity to two in this example.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

117

Lowercase expanded term
This configuration determines whether to automatically lowercase multiterm queries. An
analyzer can do this already, so this is more like an overriding configuration that forces
multiterm queries to be lowercased. Here is a code snippet:

queryParser.setLowercaseExpandedTerms(true);
Query query = queryParser.parse("\"Humpty Dumpty\"");

This code will lowercase our search string before search execution.

Phrase slop
Phrase search can be tuned to allow some flexibility in phrase matching. By default, phrase
match is exact. Setting a slop value will give it some tolerance on terms that may not always
be matched consecutively. Here is a code snippet that will demonstrate this feature:

queryParser.setPhraseSlop(3);
Query query = queryParser.parse("\"Humpty Dumpty wall\"");

Without setting a phrase slop, this phrase Humpty Dumpty wall will not have any matches.
By setting phrase slop to three, it allows some tolerance so that this search will now return
the first sentence. Go ahead and play around with this setting in order to get more familiarized
with its behavior.

TermQuery and TermRangeQuery
A TermQuery is a very simple query that matches documents containing a specific term.
The TermRangeQuery is, as its name implies, a term range with a lower and upper
boundary for matching.

How to do it..
Here are a couple of examples on TermQuery and TermRangeQuery:

query = new TermQuery(new Term("content", "humpty"));
query = new TermRangeQuery("content", new BytesRef("a"), new
BytesRef("c"), true, true);

The first line is a simple query that matches the term humpty in the content field. The second
line is a range query matching documents with the content that's sorted within a and c.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

118

BooleanQuery
A BooleanQuery is a combination of other queries in which you can specify whether each
subquery must, must not, or should match. These options provide the foundation to build up
to logical operators of AND, OR, and NOT, which you can use in QueryParser. Here is a quick
review on QueryParser syntax for BooleanQuery:

ff "+" means required; for example, a search string +humpty dumpty equates to must
match humpty and should match "dumpty"

ff "-" means must not match; for example, a search string -humpty dumpty equates to
must not match humpty and should match dumpty

ff AND, OR, and NOT are pseudo Boolean operators. Under the hood, Lucene uses
BooleanClause.Occur to model these operators. The options for occur are
MUST, MUST_NOT, and SHOULD. In an AND query, both terms must match. In an OR
query, both terms should match. Lastly, in a NOT query, the term MUST_NOT exists.
For example, humpty AND dumpty means must match both humpty and dumpty,
humpty OR dumpty means should match either or both humpty or dumpty, and NOT
humpty means the term humpty must not exist in matching.

As mentioned, rudimentary clauses of BooleanQuery have three option: must match, must
not match, and should match. These options allow us to programmatically create Boolean
operations through an API.

How to do it..
Here is a code snippet that demonstrates BooleanQuery:

BooleanQuery query = new BooleanQuery();
query.add(new BooleanClause(
 new TermQuery(new Term("content", "humpty")),
 BooleanClause.Occur.MUST));
 query.add(new BooleanClause(new TermQuery(
 new Term("content", "dumpty")),
 BooleanClause.Occur.MUST));
 query.add(new BooleanClause(new TermQuery(
 new Term("content", "wall")),
 BooleanClause.Occur.SHOULD));
 query.add(new BooleanClause(new TermQuery(
 new Term("content", "sat")),
 BooleanClause.Occur.MUST_NOT));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

119

How it works…
In this demonstration, we will use TermQuery to illustrate the building of BooleanClauses.
It's equivalent to this logic: (humpty AND dumpty) OR wall NOT sat. This code will return
the second sentence from our setup. Because of the last MUST_NOT BooleanClause on the
word "sat", the first sentence is filtered from the results. Note that BooleanClause accepts two
arguments: a Query and a BooleanClause.Occur. BooleanClause.Occur is where you
specify the matching options: MUST, MUST_NOT, and SHOULD.

PrefixQuery and WildcardQuery
PrefixQuery, as the name implies, matches documents with terms starting with a specified
prefix. WildcardQuery allows you to use wildcard characters for wildcard matching.

A PrefixQuery is somewhat similar to a WildcardQuery in which there is only one wildcard
character at the end of a search string. When doing a wildcard search in QueryParser, it would
return either a PrefixQuery or WildcardQuery, depending on the wildcard character's location.
PrefixQuery is simpler and more efficient than WildcardQuery, so it's preferable to use
PrefixQuery whenever possible. That's exactly what QueryParser does.

How to do it...
Here is a code snippet to demonstrate both Query types:

PrefixQuery query = new PrefixQuery(new Term("content", "hum"));
WildcardQuery query2 = new WildcardQuery(new Term("content",
"*um*"));

How it works…
Both queries would return the same results from our setup. The PrefixQuery will match
anything that starts with hum and the WildcardQuery would match anything that contains um.

PhraseQuery and MultiPhraseQuery
A PhraseQuery matches a particular sequence of terms, while a MultiPhraseQuery gives
you an option to match multiple terms in the same position. For example, MultiPhrasQuery
supports a phrase such as humpty (dumpty OR together) in which it matches humpty in
position 0 and dumpty or together in position 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

120

How to do it...
Here is a code snippet to demonstrate both Query types:

PhraseQuery query = new PhraseQuery();
query.add(new Term("content", "humpty"));
query.add(new Term("content", "together"));
MultiPhraseQuery query2 = new MultiPhraseQuery();
Term[] terms1 = new Term[1];
terms1[0] = new Term("content", "humpty");
Term[] terms2 = new Term[2];
terms2[0] = new Term("content", "dumpty");
terms2[1] = new Term("content", "together");
query2.add(terms1);
query2.add(terms2);

How it works…
The first Query, PhraseQuery, searches for the phrase humpty together. The second Query,
MultiPhraseQuery, searches for the phrase humpty (dumpty OR together). The first Query
would return sentence four from our setup, while the second Query would return sentence
one, two, and four. Note that in MultiPhraseQuery, multiple terms in the same position are
added as an array.

FuzzyQuery
A FuzzyQuery matches terms based on similarity, using the Damerau-Levenshtein algorithm.
We are not going into the details of the algorithm as it is outside of our topic. What we need to
know is a fuzzy match is measured in the number of edits between terms. FuzzyQuery allows
a maximum of 2 edits. For example, between "humptX" and humpty is first edit and between
humpXX and humpty are two edits. There is also a requirement that the number of edits must
be less than the minimum term length (of either the input term or candidate term). As another
example, ab and abcd would not match because the number of edits between the two terms
is 2 and it's not greater than the length of ab, which is 2.

How to do it...
Here is a code snippet to demonstrate FuzzyQuery:

FuzzyQuery query = new FuzzyQuery(new Term("content", "humpXX"));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

121

How it works…
This Query will return sentences one, two, and four from our setup, as humpXX matches
humpty within the two edits. In QueryParser, FuzzyQuery can be triggered by the tilde (~)
sign. An equivalent search string would be humpXX~.

NumericRangeQuery
NumericRangeQuery is similar to NumericRangeFilter, in which you can specify lower bound
and upper bound values for matching. To ensure search quality, make sure the numeric
type (IntField, FloatField, LongField, and DoubleField) matches between the
search and indexed field.

How to do it…
Here is a code snippet to demonstrate NumericRangeQuery:

Query query = NumericRangeQuery.newIntRange("num", 0, 200, true,
true);

How it works…
This example will return sentence one and two from our setup. Note that we need to specify a
numeric type (newIntRange) when creating a query. It accepts five parameters: name of the
field, lower bound, upper bound, inclusive of a lower value, and inclusive of an upper value.

DisjunctionMaxQuery
This query type sounds a little funny and can be confusing at first. It's like a BooleanQuery
that contains a number of subqueries. Instead of combining scores from each sub-Query, it
returns the maximum score from one of the subqueries. The reason for this is that matching
may match on multiple fields, and a match on more important fields (should have a higher
score) can sometimes have an equivalent score with matching on less important fields due
to the number of matching terms. For example, let's say we have a book store application, in
which we have a book title and body in our index, and let's say we are searching for The Old
Man and the Sea. A match on the title would return a very high score. However, it's possible
that there may be another book with the similar title, but with more matching in the body—for
example, Young Man and the Sea—that would return a higher combined (between the title and
body) score.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

122

In this case, a perfectly matched title may not be returned as a number one result. It may
instead be returned as a second result, due to combined score strategy. This is where
DisjunctionMaxQuery can help. As the name suggests, it's a disjunction of multiple Queries
and only the one that returns the maximum score matters. In the situation in which there are
ties between sub-Queries, you can use a tiebreaker multiplier to break the tie so that the term
that matched in multiple fields may get judged better than the term matching in only one field.

According to Lucene's Javadoc (http://lucene.apache.org/core/4_10_2/core/org/
apache/lucene/search/DisjunctionMaxQuery.html), the tiebreaker is described as:

The score of each nonmaximum disjunction for a document is multiplied by this weight and
added into the final score. If nonzero, the value should be small, on the order of 0.1, which
says that the 10 occurrences of the word in a lower-scored field that is also in a higher scored
field is just as good as a unique word in the lower-scored field (that is, one that is not in any
higher-scored field.

How to do it…
Here is a code snippet:

PhraseQuery phraseQuery = new PhraseQuery();
phraseQuery.add(new Term("content", "humpty"));
phraseQuery.add(new Term("content", "together"));

DisjunctionMaxQuery query = new DisjunctionMaxQuery(0.1f);
query.add(new TermQuery(new Term("name", "First")));
query.add(phraseQuery);

How it works…
In this example, we create a DisjunctionMaxQuery with two Queries. The first is a PhraseQuery
with phrase "humpty together" and the second is a TermQuery against the "name" field
with the term "First". The tiebreaker multiplier is set to 0.1f, but it's actually not applied
in this test case because we don't have to break any ties. The results will bring back sentence
four and then sentence one from our setup. This is because the match on PhraseQuery has a
better score than a match in TermQuery.

RegexpQuery
Lucene also offers regular expression support in Query. Lucene's favor of RegExp is fast
based on benchmark testing. However, it can be slow if the expression begins with ".*". For
more information about Lucene's RegExp syntax, refer to http://lucene.apache.org/
core/4_10_2/core/org/apache/lucene/search/RegexpQuery.html.

www.it-ebooks.info

http://lucene.apache.org/core/4_10_2/core/org/apache/lucene/search/DisjunctionMaxQuery.html
http://lucene.apache.org/core/4_10_2/core/org/apache/lucene/search/DisjunctionMaxQuery.html
http://lucene.apache.org/core/4_10_2/core/org/apache/lucene/search/RegexpQuery.html
http://lucene.apache.org/core/4_10_2/core/org/apache/lucene/search/RegexpQuery.html
http://www.it-ebooks.info/

Chapter 6

123

How to do it…
Here is a code snippet:

RegexpQuery query = new RegexpQuery(new Term("content", ".um.*"));

RegexpQuery accepts term as an argument where term would contain Regexp. In this test
case, we try to match anything that contains the letter "um" with one leading character. The
expression will return sentence one, two, and four from our setup.

SpanQuery
SpanQuery offers the ability to restrict matching by Term positions. It shines when you want
to match multiple terms that are close to each other, but not exactly matched as a phrase.
It's similar to PhraseQuery with a slop set greater than zero, but it gives you more options to
control how matching is done. For instance, say we want to search for terms "humpty" and
"wall" from our test setup so that we can match on the sentence "Humpty Dumpty sat
on a wall". We can perform this search using either PhraseQuery or SpanQuery with a
slop set to 4; both Queries would match. So let's say we switch the two Terms around. Now,
we have Terms in this order, "wall" and "humpty". PhraseQuery will fail to find a match
because the Terms are out of order. SpanQuery has an option to match, Terms out of order so
that we can still find a match even when the Terms' order is reversed.

SpanQuery has other useful functionalities as well. We will explore each SpanQuery type
in detail:

ff SpanTermQuery: This acts as a base unit for other SpanQuery. If this is used
as a stand-alone, it behaves just like TermQuery.

ff SpanNearQuery: This match spans (for example, SpanTermQuery) near each
other specified by a slop and whether the spans should be in order.

ff SpanFirstQuery: This match spans near the beginning of the field within a
specified end position. Say we are searching for the term sat and expect to match
Humpty Dumpty sat on a wall, then the end position will have to be 3 or higher in
order to meet the matching criteria as sat is on position 3.

ff SpanNotQuery: This Query accepts two parameters: an include SpanQuery
and an exclude SpanQuery. A match is found when the include SpanQuery match
does not overlap with the exclude SpanQuery. For example, the include SpanQuery
is "dumpty" and "wall". Running this Query alone will return "Humpty Dumpty
sat on a wall". Let's say the exclude SpanQuery is "sat". This will negate
the search because "sat" is within the include Query (between "Dumpty" and
"wall"). Thus, the results will be empty.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

124

ff SpanOrQuery: This Query type is simple; it is just as the name implies. It returns
matches when one of the SpanQueries is found.

ff SpanMultiTermQueryWrapper: This is a wrapper class that wraps around
any MultiTermQuery as a SpanQuery, so that it can be used within other
SpanQuery classes.

ff FieldMaskingSpanQuery: This wraps around a SpanQuery and masks the field
value of the SpanQuery. The SpanQuery would still execute as normal (this wrapper
does not modify the SpanQuery's matches). However, when you call getField(), it
will return the field supplied to the constructor of the FieldMaskingSpanQuery.

ff SpanPositionRangeQuery: This wraps around a SpanQuery and checks whether
the match lies between a start and end position.

How to do it...
Let's take a look at some sample codes:

SpanNearQuery query1 = new SpanNearQuery(
 new SpanQuery[] {
 new SpanTermQuery(new Term("content", "wall")),
 new SpanTermQuery(new Term("content", "humpty")),
 },
 4,
 false);

SpanFirstQuery query2 = new SpanFirstQuery(
 new SpanTermQuery(new Term("content", "sat")),
 3
);

SpanNotQuery query3 = new SpanNotQuery(
 query1,
 new SpanTermQuery(new Term("content", "sat"))
);

SpanOrQuery query4 = new SpanOrQuery(
 query1,
 new SpanTermQuery(new Term("content", "together"))
);

WildcardQuery wildcard = new WildcardQuery(new Term("content",
"hum*"));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

125

SpanQuery query5 = new SpanMultiTermQueryWrapper<WildcardQuery>(wildc
ard);

SpanQuery q1 = new SpanTermQuery(new Term("content", "dumpty"));
SpanQuery q2 = new SpanTermQuery(new Term("content2", "humpty"));
SpanQuery maskedQuery = new FieldMaskingSpanQuery(q2, "content");
Query query6 = new SpanNearQuery(new SpanQuery[]{q1, maskedQuery}, 4,
false);

SpanPositionRangeQuery query7 = new SpanPositionRangeQuery(
 new SpanTermQuery(new Term("content", "wall")), 5, 6);

How it works…
In query1, we set up a SpanNearQuery to search on two Terms—wall and humpty—with a
maximum distance between the Terms set to 4, and the false parameter indicates that the
Terms matching do not have to be in order. This search will match sentence one: "Humpty
Dumpty sat on a wall". If distance is set to anything less than 4, we will not have a match
because the distance between these two terms is exactly 4.

In query2, we have a SpanFirstQuery searching on the Term "sat", and the end position
is set to 3. This will match on the same sentence as well, because "sat" is on position 3. If
the end position is less than 3, we will not have a match.

In query3, we have a SpanNotQuery with query1 as include SpanQuery and Term "sat"
as exclude query. This query will not return any matches because the exclude term "sat"
is within query1's span, between "wall" and "humpty". Because there is an overlap
between the two SpanQuery, the include SpanQuery match is filtered out.

In query4, we have a SpanOrQuery with a parameter query1 and a Term "together".
This search will match on sentence one and four, where sentence four should be ranking first.
It's because a multiterm match scores higher than a single term match. The search result is a
union of each SpanQuery's matches.

In query5, we demonstrate SpanMultiTermQueryWrapper by wrapping it around a
WildcardQuery searching on the Term "hum*". This search will bring back sentences one,
two, and four as all these sentences contain the word "Humpty", matched by the wildcard
search "hum*".

In query6, we can see how FieldMaskingSpanQuery masks a field for SpanQuery q2.
This search will not find any matches. Note that q2 is a SpanTermQuery on field content2,
which doesn't exist. Even though we mask the field as content in maskedQuery, it doesn't
change the fact that q2 doesn't have a match. Because of this, the eventual SpanNearQuery
will not have a match, either.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

126

In query7, we demonstrate a SpanPositionRangeQuery, showing that the Term "wall"
exists between positions 5 and 6. If you change the start and end positions to other values, it
will not generate a match. This is a simple demonstration of how this Query is used.

CustomScoreQuery
When consideration of all the built-in features is exhausted and you still need more
flexibility, it may be time to explore how to build a custom scoring mechanism to customize
the search results ranking. Lucene has a CustomScoreQuery class that allows you to do
just that. We can provide our own score provider by extending from this class, along with
CustomScoreProvider. By extending CustomScoreProvider, we can override score
calculation with our own implementation.

How to do it…
Let's take a look at how it's done. We will build a CustomScoreQuery that favors documents
with terms that are anagrams of the querying Terms. For each anagram found, we increase
the score by 1. The search results ranking will be augmented so that the documents with
anagrammed Terms are ranked higher.

Here is the AnagramQuery class:

public class AnagramQuery extends CustomScoreQuery {
 private final String field;
 private final Set<String> terms = new HashSet<String>();
 public AnagramQuery(Query subquery, String field) {
 super(subquery);
 this.field = field;
 HashSet<Term> termSet = new HashSet<Term>();
 subquery.extractTerms(termSet);
 for (Term term : termSet) {
 terms.add(term.text());
 }
 }
 @Override
 protected CustomScoreProvider
 getCustomScoreProvider(AtomicReaderContext context) {
 return new AnagramQueryScoreProvider(context, field,
 terms);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

127

The class accepts a Query object and field name in the constructor. A set of querying
Terms is extracted from the Query so that we can look for their anagrams in the field
specified. Then, we override getCustomScoreProvider in order to return our own
AnagramQueryScoreProvider, where we augment the score.

Here is the AnagramQueryScoreProvider:

public class AnagramQueryScoreProvider extends CustomScoreProvider {
 private String field;
 private Set<String> terms;
 public AnagramQueryScoreProvider(AtomicReaderContext
 context, String field, Set<String> terms) {
 super(context);
 this.field = field;
 this.terms = terms;
 }
 public float customScore(int doc, float subQueryScore,
 float valSrcScores[]) throws IOException {
 float score = subQueryScore;
 IndexReader indexReader = context.reader();
 Terms termsVector = indexReader.getTermVector(doc,
 field);
 if (termsVector == null) {
 return score;
 }
 TermsEnum termsEnum = termsVector.iterator(null);
 BytesRef term = null;
 String val = null;
 while ((term = termsEnum.next()) != null) {
 val = term.utf8ToString();
 if (terms.contains(val)) {
 continue;
 }
 for (String t : terms) {
 if (isAnagram(t, val)) {
 score += 1f;
 }
 }
 }
 return score;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Querying and Filtering Data

128

 private boolean isAnagram(String word1, String word2) {
 if (word1.length() != word2.length()) {
 return false;
 }
 char[] chars1 = word1.toCharArray();
 char[] chars2 = word2.toCharArray();
 Arrays.sort(chars1);
 Arrays.sort(chars2);
 return Arrays.equals(chars1, chars2);
 }
}

How it works…
The constructor accepts the current AtomicReaderContext, field name, and a set of
term strings from AnagramQuery. The custom scoring happens in customScore. First, we
retrieve the existing score from a sub-Query. Then, we retrieve TermVector on the supplied
field name for the current document (TermVector should be enabled for the field during
indexing). With TermVector on hand, we can iterate through all the terms in the document
and compare with each querying terms to see if an anagram exists. For each anagram found,
the score is increased by 1.

This is it. We can start using this CustomScoreQuery by wrapping it around another Query,
such as TermQuery, in order to customize a search.

www.it-ebooks.info

http://www.it-ebooks.info/

129

7
Flexible Scoring

We will take a deep dive into Lucene's scoring methodology and explore the available options
in customization. Here is a list of topics we will cover in this chapter:

ff Overriding similarity

ff Implementing the BM25 model

ff Implementing the language model

ff Implementing the divergence from randomness model

ff Implementing the information-based model

Introduction
Scoring is fundamental to Lucene's search capability and accuracy. Normally, you don't see
scores in search results, but it's there to help sort results by relevancy. Knowing how scoring
works, its boundary will help you make informed decisions in your application design.

The goal of scoring is to objectively calculate weights to rank already matched results. The
contents that are more relevant to the search criteria are sorted before the less relevant
ones. This is called relevancy ranking. Lucene employs a number of techniques to perform
this calculation. The expandable nature of Lucene also allows you to customize scoring
and expand from the default configuration. This flexibility is part of the appeal of Lucene's
popularity. In this chapter, we will first look into Lucene's scoring methodology. Then, we
will explore customization techniques to expand from default behavior. The intention of this
chapter is to give you a primer into Lucene's scoring implementations. Hopefully, by the
end of the chapter, you will gain a deeper understanding of Lucene's scoring technique and
appreciate all the hard work that's been done by Lucene's developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

130

To begin, let's try to understand how Lucene calculates a score at a high level. Lucene
leverages both Boolean model (BM) and vector space model (VSM) of information retrieval
internally. In Information Science, information retrieval is a field that deals with data querying.
In this, there are several models of data representations. Boolean model and VSM are the
two models Lucene uses to match and score results. The first part, Boolean Model, qualifies
documents by matching a set of query terms to a set of indexed terms based on a Boolean
expression derived from a query. Since Lucene's index is inverted with terms pointing at
documents, Lucene can intersect document pointers to arrive at a result set of documents.
In the second part, vector space model, Lucene models documents and queries as vectors
where index terms are dimensions, and weights are the similarity between query terms and
documents. The default similarity algorithm used is called TFIDFSimilarity. It calculates
weight by comparing query terms to matched documents. The scores are then used to sort
the result set.

Here is a more detailed explanation of each of TFIDFSimilarity's component. This is mainly
for reference only and to show the fundamental concept of Lucene's scoring formula. It is
be explained in layman's terms. Don't worry if the concept is still unclear at the end of this
section as the actual implementation is already completed for you; you just need to know what
the components are so you can build a custom scoring method on top of the existing formula.
Although the whole concept is not simple, it's easier to digest if you take time to study one
component at a time.

TFIDF (term frequency and inverse document frequency). Term frequency, as the name
suggests, is the number of times a term appears in a document or query. Inverse document
frequency is the inverse of TF where it represents the number of indexed documents
containing a term. Building on top of this basic concept, here is a formula Lucene uses to
score according to Lucene's documentation:

() () () ()()
t in q

score (q,d) coord (q,d) queryNorm q tf t in d idf t 2 t getBoost() norm t,d= ∑

Note that this formula applies after matching; meaning documents are already found by a
Query. Lucene scores each matched document individually using this formula. The formula is
comprised of several components. We will explain each in detail:

ff tf(t in d): This is term's frequency in a given document. The higher the number
of times a term appears, the higher the score. For tf(t in q), term frequency in a
query is always assumed to be 1. The default computation to score is:

() 1/2tf t in d frequency=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

131

ff idf(t): This is inverse document frequency calculating a score based on
inverse of docFreq, which is the number of documents in which the term t appears.
The rarer the term, the higher the score that will be given. The default computation
for this scoring is:

() numDocsidf t 1 log
docFreq 1
 

= +  + 

ff coord(q,d): This determines a score based on the number of query terms
that appear in a given document. A document that contains more query terms
will receive a higher score.

ff queryNorm(q): This helps to normalize scores so that the scores between
queries are comparable. It does not affect document rankings, as its purpose is to
make a score from different queries that are comparable. The default formula is:

1queryNorm(q) queryNorm(sumOfSquaredWeights)
sumOfSquaredWeights

= =

Note that sumOfSquaredWeights is determined by the Query's
Weight Object.

ff t.getBoost(): This returns a boost value at the search time for the term t in a
Query, or returns a value that's set by the application calls to setBoost().

ff norm(t,d): This calculates a partial score at indexing time with a couple of factors:

�� Field boost: This is a boost value that's set by calling field.setBoost()
when adding a field to a document.

�� lengthNorm: This is computed based on the number of tokens in a Field.
The shorter the Field, the higher the score.

ff computeNorm(FieldInvertState): This method combines these factors into a
single score. The default computation is as follows:

field in namedas

norm(t,d) lengthNorm f boost()
f d t

= ∏

Note that this score applies at indexing time only and cannot be
altered at querying time.

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

132

Overriding similarity
The Similarity class is an abstract class that defines a set of components for score
calculation. To steer away from default scoring, we can create a new class extending from
the DefaultSimilarity (TFIDFSimilarity) or one of the other Similarity classes. We will
perform some experimentation in this section to see how each scoring components affect
the overall score.

Let's begin by reviewing Similarity's methods:

ff computeNorm(FieldInvertState): This calculates a normalization value for a
Field at indexing time.

ff computeWeight(float, CollectionStatics, TermStatistics): This
returns a SimWeight object to calculate a score. It accepts a boost (float) value for
query-time boosting.

ff coord(int, int): This returns a score factor based on term overlap in a query.
This value helps to integrate coordinate-level matching. The default is disabled with
the returning value 1.

ff queryNorm(float): This generates a normalization value for a query. The value is
also passed back to the Weight's normalize (float, float) method of each query term to
make scores from different queries comparable.

ff simScorer(Similarity.SimWeight, AtomicReaderContext): This creates a
new SimScorer object using SimWeight to score the matching documents in an index.

The Similarity class provides the basic framework in score calculation. In TFIDFSimilarity,
some of these methods are declared final so we won't able to override them. For our
experiment, we will extend from TFIDFSimilarity to see how we can influence scoring by
overriding each scoring factor.

How to do it…
Let's start by extending from DefaultSimilarity (implements TFIDFSimilarity):

public class MySimilarity extends DefaultSimilarity {
 @Override
 public float coord(int overlap, int maxOverlap) {
 return super.coord(overlap, maxOverlap);
 }
 @Override
 public float idf(long docFreq, long numDocs) {
 return super.idf(docFreq, numDocs);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

133

 @Override
 public float lengthNorm(FieldInvertState state) {
 return super.lengthNorm(state);
 }
 @Override
 public float queryNorm(float sumOfSquaredWeights) {
 return super.queryNorm(sumOfSquaredWeights);
 }
 @Override
 public float scorePayload(int doc, int start, int end,
 BytesRef payload) {
 return super.scorePayload(doc, start, end, payload);
 }
 @Override
 public float sloppyFreq(int distance) {
 return super.sloppyFreq(distance);
 }
 @Override
 public float tf(float freq) {
 return super.tf(freq);
 }
}

Here is our test setup. We will be using StandardAnalyzer:

Analyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(
 Version.LATEST, analyzer);
MySimilarity similarity = new MySimilarity();
config.setSimilarity(similarity);
IndexWriter indexWriter = new IndexWriter(directory, config);

Document doc = new Document();
TextField textField = new TextField("content", "", Field.Store.YES);

String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall.",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};
for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

134

 doc.add(textField);
 indexWriter.addDocument(doc);
}

indexWriter.commit();

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
indexSearcher.setSimilarity(similarity);
QueryParser queryParser = new QueryParser("content", analyzer);
Query query = queryParser.parse("humpty dumpty");
TopDocs topDocs = indexSearcher.search(query, 100);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
 doc.getField("content").stringValue());
}

How it works…
When you run the above code as it is, the results will appear as follows to search for the
humpty dumpty string:

0.81518793: Humpty Dumpty sat on a wall,
0.7132894: Humpty Dumpty had a great fall.
0.13417153: Couldn't put Humpty together again.

The numeric value is the default scoring calculated by TFIDFSimilarity. Now, let's try to override
each method and monitor how scoring and results change.

We will start with coord(int, int). This method calculates a score factor by dividing the
number of overlapping Query terms to documents by a maximum value. We will reverse this
effect by boosting the score when there is only one matched term with the following code:

public float coord(int overlap, int maxOverlap) {
 if (overlap > 1) {
 return overlap / maxOverlap;
 } else {
 return 10;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

135

Here is the result of this override:

2.6834307: Couldn't put Humpty together again.
0.81518793: Humpty Dumpty sat on a wall,
0.7132894: Humpty Dumpty had a great fall.

Note that the order of the result changed because we put more weight on a single-term
match than multiple terms.

Next, we will revert our previous changes to coord(int, int) and override the idf(long,
long) method:

public float idf(long docFreq, long numDocs) {
 if (docFreq > 2) {
 return super.idf(docFreq, numDocs);
 } else {
 return super.idf(docFreq * 100, numDocs);
 }
}

We give a boost on match where docFreq is less than or equal to 2. Here is the result:

1.5418293: Humpty Dumpty sat on a wall,
1.3491007: Humpty Dumpty had a great fall.
0.07093847: Couldn't put Humpty together again.

We did not change the order of the results, but we introduced a bigger gap in scores
when matched terms jump from 2 to higher numbers. Note that the first two records
with two matching terms benefit from this alteration and the last record is penalized
(by docFreq * 100). TDIDFSimilarity implemented this method with the formula:
log(numDocs/(docFreq+1)) + 1.

Next, we will revert all changes and override the lengthNorm(FieldInvertState)
method:

public float lengthNorm(FieldInvertState state) {
 if (state.getLength() % 2 == 1) {
 return super.lengthNorm(state) * 100;
 }
 return super.lengthNorm(state);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

136

In this override, we favor Field value length in an odd number by boosting lengthNorm by a
factor of 100. This change will produce the following results:

65.215034: Humpty Dumpty had a great fall.
12.267112: Couldn't put Humpty together again.
0.81518793: Humpty Dumpty sat on a wall,

Note that the second and third sentences benefit this change because their lengths are in
odd numbers.

Next is queryNorm(float). This method applies the score at a Query level so in our setup,
a boost in this score will benefit all three results.

public float queryNorm(float sumOfSquaredWeights) {
 if (Math.round(sumOfSquaredWeights * 100f) % 2 == 0) {
 return super.queryNorm(sumOfSquaredWeights) * 100;
 }
 return super.queryNorm(sumOfSquaredWeights);
}

We favor the query when sumOfSquaredWeights hundredth decimal point is an even
number when rounded up. This override will produce the following results:

81.51879: Humpty Dumpty sat on a wall,
71.32894: Humpty Dumpty had a great fall.
13.417152: Couldn't put Humpty together again.

To demonstrate scorePayload, we need to first customize an analyzer and a filter to add
Payload to a term. Here is our PayloadFilter:

public class PayloadFilter extends TokenFilter {
 PayloadAttribute payloadAtt =
 addAttribute(PayloadAttribute.class);
 CharTermAttribute charTermAtt =
 addAttribute(CharTermAttribute.class);
 protected PayloadFilter(TokenStream input) {
 super(input);
 }
 public boolean incrementToken() throws IOException {
 if (!input.incrementToken()) { return false; }
 payloadAtt.setPayload(new BytesRef(
 PayloadHelper.encodeFloat(
 determinePayload(
 charTermAtt.toString()))));
 return true;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

137

 protected float determinePayload(String term) {
 float score = 1f;
 for (char c : term.toCharArray()) {
 switch (c) {
 case 'a':
 score += 0.1f;
 case 'e':
 score += 0.2f;
 case 'i':
 score += 0.4f;
 case 'o':
 score += 0.8f;
 case 'u':
 score += 1.6f;
 break;
 }
 }
 return score;
 }

}

Also, here is our PayloadAnalyzer:

public class PayloadAnalyzer extends StopwordAnalyzerBase {
 protected TokenStreamComponents createComponents(final String
 fieldName, final Reader reader) {
 final StandardTokenizer source = new
 StandardTokenizer(reader);
 TokenStream filter = new StandardFilter(source);
 filter = new LowerCaseFilter(filter);
 filter = new StopFilter(filter, stopwords);
 filter = new PayloadFilter(filter);
 return new TokenStreamComponents(source, filter);
 }
}

In this sample filter, we favor Term with vowel characters by issuing a float value as Payload.
Next, we need to change our test setup by replacing Query with a BooleanQuery wrap around
PayloadTermQuery to include Payload into score calculation:

BooleanQuery query = new BooleanQuery();
query.add(new PayloadTermQuery(
 new Term("content", "humpty"),
 new AveragePayloadFunction(), true),
 BooleanClause.Occur.SHOULD);

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

138

 query.add(new PayloadTermQuery(
 new Term("content", "dumpty"),
 new AveragePayloadFunction(), true),
 BooleanClause.Occur.SHOULD);

This BooleanQuery is equivalent to an OR operation between the two PayloadTermQuery's on
term humpty and dumpty. Then, finally, we override the scorePayload method:

public float scorePayload(int doc, int start, int end, BytesRef
payload) {
 float val = PayloadHelper.decodeFloat(payload.bytes);
 if (start == 0 || start == 1) {
 return val * 0.1f;
 }
 return val * 100f;
}

Note that in the override, we check the start position, and penalize documents where
the term is in position 0 or 1 by reducing their Payload to a tenth of its value. The term
in other positions is awarded with 100 times the Payload value. Here is what the final
output looks like:

24.667135: Couldn't put Humpty together again.
0.11240285: Humpty Dumpty sat on a wall,
0.11240285: Humpty Dumpty had a great fall.

Note that the first and second sentences' scores are significantly less because Query terms
exist in position 0 and 1; hence, the lower score.

For the next override, we will have to change our setup a little bit to ensure the sloppyFreq
method is being called. The change is to add quotes around the query to make it a
PhraseQuery and call setPhraseSlop in QueryParser to allow for sloppy phrase match:

queryParser.setPhraseSlop(1);
Query query = queryParser.parse("\"humpty dumpty\"");

Also, here is the override:

public float sloppyFreq(int distance) {
 if (distance == 0) {
 return super.sloppyFreq(distance) * 100;
 }
 return super.sloppyFreq(distance);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

139

In this example, we favor the exact match in phrase matching. The score is a boost by
a factor of 100 when the distance between the terms is zero. This code will produce the
following result:

11.43841: Humpty Dumpty sat on a wall,
10.008609: Humpty Dumpty had a great fall.

The last override is the tf(float) method. This method calculates the score based on
term's frequency in a document. Here is the override:

public float tf(float freq) {
 if (freq > 1f) {
 return super.tf(freq) * 100;
 }
 return super.tf(freq);
}

This method favors term's frequency greater than 1. In our setup, since none of the terms
appear more than once in the documents, running with this override will return the same
results as without it.

There's more…
Outside of the default TFIDFSimilarity scoring model, Lucene also provides other
implementations out of the box. In this section, we will go over these models at high level to
give you a perspective of what scoring options are available. Here is the list of the additional
scoring models:

ff The BM25 model

ff The language model

ff The divergence from randomness model

ff The information-based model

The BM25 model
This model is usually referred to as Okapi BM25 because it was first implemented in the
Okapi information retrieval system. BM25 is one of the most developed models and is widely
used in web search engines. It's a probabilistic model matching query terms to each matching
document to calculate the document's relevance to the query. The computation is based on
the frequency of query terms that appear in a document. You may be wondering if BM25 is
similar to TF-IDF (implemented in Lucene's default Similarity). They are actually quite different
as BM25 emphasizes comparing query terms to documents, while TF-IDF is a term-based
scoring method; although in TFIDFSimilarity, document scoring is wrapped up and handled by
the vector space model.

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

140

The language model
The language model takes a different approach. Instead of calculating a document's
relevance to a query, it generates a probabilistic model from each document and calculates
the score based on the probability of the document's model to generate the query. This is
similar to the idea that when users search for specific documents, users usually try to come
up with the most relevant terms contained in the documents for the query. The documents
with the highest probability of generating the query terms would score higher.

The divergence from randomness model
This model is based on the hypothesis that the rarer the query term is in a document
collection, the higher the probability that the term is of high relevance to the document. Say,
if the query term frequency within a document is high, but the term frequency against the
entire collection is low, where the two terms' frequencies diverge, the model would conclude
that the term is of high relevance to the document. On the other hand, if the term also has a
high-term frequency in the collection, then the term is not particularly important or relevant
to the document and would have a lower score. Since term frequency in a collection depends
on what goes into the model and can change overtime as the index grows, the distribution of
terms is not exactly predictable, and hence is considered as a random distribution.

The information-based Model
The Information-based model shares some similarities with the language model and
divergence from randomness model where both the individual document and collection
are analyzed as part of the scoring components. The model is based around modeling
informativeness of terms in the document and collection. The model considers that the
documents with higher query term frequency get a higher score than documents with less
term frequency. The incremental gain in score in high query term frequency diminishes as
frequency gets higher and higher. The model also favors shorter documents compared to
longer ones as longer documents dilute the term's relevancy. It also penalizes terms that
appear in many documents because these terms are common and cannot be uniquely
associated with a specific topic.

Implementing the BM25 model
Let's take a look at how we use the BM25 model in Lucene. Lucene implements this model
as BM25Similarity. We can start using this model as simply as instantiating it with default
parameters. The constructor accepts two parameters for tuning. The first parameter controls
nonlinear term frequency normalization. Its default value is 1.2. The second parameter
controls to what degree a document length normalizes the tf values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

141

How to do It…
Here we have our sample code to demonstrate how to use BM25Similarity;

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config =
 new IndexWriterConfig(Version.LATEST, analyzer);
BM25Similarity similarity =
 new BM25Similarity(1.2f, 0.75f);
config.setSimilarity(similarity);
IndexWriter indexWriter =
 new IndexWriter(directory, config);
Document doc = new Document();
TextField textField =
 new TextField("content", "", Field.Store.YES);
String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall. " +
 "All the king's horses and all the king's men",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};
for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");
 doc.add(textField);
 indexWriter.addDocument(doc);
}
indexWriter.commit();
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher =
 new IndexSearcher(indexReader);
indexSearcher.setSimilarity(similarity);
QueryParser queryParser =
 new QueryParser("content", analyzer);
Query query = queryParser.parse("humpty");
TopDocs topDocs = indexSearcher.search(query, 100);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
 doc.getField("content").stringValue());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

142

How it works…
Note that in this setup, we made the second sentence longer. This is so we can show how the
length of a document can affect scoring. By running this code as it is, we will get this result:

0.42327404: Humpty Dumpty sat on a wall,
0.38780686: Couldn't put Humpty together again.
0.22321452: Humpty Dumpty had a great fall. All the king's horses and
all the king's men

If you change either of the parameters in BM25 Similarity's constructor to 0, you will
effectively disable the algorithm. You will get matched results in the order they were added to
the index and each document's score would be identical in our test scenario:

0.35667494: Humpty Dumpty sat on a wall,
0.35667494: Humpty Dumpty had a great fall. All the king's horses and
all the king's men
0.35667494: Couldn't put Humpty together again.

Now, let's try changing just the first parameter from 1.2 to 100. This should exaggerate the
term frequency normalization, which in turn should exaggerate scoring. Here is the result:

0.4992689: Humpty Dumpty sat on a wall,
0.41751385: Couldn't put Humpty together again.
0.17104246: Humpty Dumpty had a great fall. All the king's horses and
all the king's men

Note that the order of the documents did not change and the first couple of results have
higher scores. The last document has a lower score due to its length, which is significantly
longer than other documents.

Let's revert the changes and try changing just the second parameter from 0.75 to 100 in
order to control document length normalization. The change in the result is more drastic
because we change the model's behavior to value longer documents more. Here is the result:

0.004418654: Humpty Dumpty had a great fall. All the king's horses and
all the king's men
-0.017852472: Humpty Dumpty sat on a wall,
-0.036757033: Couldn't put Humpty together again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

143

Implementing the language model
Lucene implemented two language models, LMDirichletSimilarity and
LMJelinekMercerSimilarity, based on different distribution smoothing methods. Smoothing
is a technique that adds a constant weight so that the zero query term frequency on partially
matched documents does not result in a zero score where it's useless in ranking. We will look
at these two implementations and see how their weight distributions affect scoring.

How to do it…
We will take a look at LMDirichletSimilarity first and we will reuse our test case from the
previous section, but will revert the extended second sentence input:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);
LMDirichletSimilarity similarity = new
 LMDirichletSimilarity(2000);
config.setSimilarity(similarity);
IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
TextField textField = new TextField("content", "", Field.Store.YES);
String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall.",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};
for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");
 doc.add(textField);
 indexWriter.addDocument(doc);
}
indexWriter.commit();
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
indexSearcher.setSimilarity(similarity);
QueryParser queryParser = new QueryParser("content", analyzer);
Query query = queryParser.parse("humpty dumpty");
TopDocs topDocs = indexSearcher.search(query, 100);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
 doc.getField("content").stringValue());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

144

The default value μ for LMDirichletSimilarity is 2000. Note that the query has changed
to "humpty dumpty". We can pass in different values to see how the scoring differs.
Let's run this code as it is; we will see the following results:

0.0021194727: Humpty Dumpty sat on a wall,
8.977467E-4: Humpty Dumpty had a great fall.
1.2710997E-5: Couldn't put Humpty together again.

Now, let's reduce the value to 200. The scoring should result as follows:

0.020707529: Humpty Dumpty sat on a wall,
0.0087386025: Humpty Dumpty had a great fall.
1.2429726E-4: Couldn't put Humpty together again.

The scoring is significantly lowered by a factor of 10 and the gaps between each rank roughly
follow the same scale. The changes in scoring are somewhat linear. Staying with the default
value at 2000 should suffice for most cases. Now, let's see how document length affects
scoring. Let's revert μ to 2000 and add one more word to the first sentence so now it reads
"Humpty Dumpty sat on a wall, something". Here is the result:

0.0011885217: Humpty Dumpty sat on a wall, something
0.0011885217: Humpty Dumpty had a great fall.
1.3742637E-4: Couldn't put Humpty together again.

Note that the scoring between the first and second sentence is identical. This shows that the
document length is a significant factor in this model's scoring.

In the second model, LMJelinekMercerSimilarity, it accepts a λ value as float in its
constructor to tune the model. We will replace the similarity instantiation line to use
LMJelinekMercerSimilarity instead. Let's try 0.01 as λ. It will produce the following result:

10.035212: Humpty Dumpty sat on a wall,
9.505177: Humpty Dumpty had a great fall.
4.6099925: Couldn't put Humpty together again.

Now, let's try changing it to 0.99. We will see the following:

0.03069269: Humpty Dumpty sat on a wall,
0.023542093: Humpty Dumpty had a great fall.
0.010099145: Couldn't put Humpty together again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

145

Note that the change in scoring between 0.01 and 0.99 is nonlinear. Let's examine how
document length affects result. Let's change the first sentence by adding one word at the end
so it becomes "Humpty Dumpty sat on a wall, something" and revert λ to 0.01. It
will produce the following:

9.597424: Humpty Dumpty sat on a wall, something
9.597424: Humpty Dumpty had a great fall.
4.65606: Couldn't put Humpty together again.

Note that we get a similar behavior from our test in LMDirichletSimilarity where the first and
second sentences now return the same score.

Having seen both the language models in action, you may be wondering how to choose the
best value to tune these models. The answer is complicated because these models are based
on a complex statistical theory. It's difficult to tell from the implementation point of view what
tuning value is best for your scenario. The best approach would be experimentation with test
data and to try different values to find something that gives you the best results.

Implementing the divergence from
randomness model

In Lucene, divergence from randomness model is implemented as DFRSimilarity.
It's made up of three components: BasicModel, AfterEffect, and Normalization.
BasicModel is a model of information content, AfterEffect is the first normalization,
and Normalization is second (length) normalization. Here is an excerpt from Lucene's
Javadoc on DFRSimilarity's components:

1.	 BasicModel: This is a basic model of information content:

�� BasicModelBE: This is the limiting form of Bose-Einstein

�� BasicModelG: This is the geometric approximation of Bose-Einstein

�� BasicModelP: This is the Poisson approximation of the Binomial

�� BasicModelD: This is the divergence approximation of the Binomial

�� BasicModelIn: This is the inverse document frequency

�� BasicModelIne: This is the inverse expected document frequency
(mixture of Poisson and IDF)

�� BasicModelIF: This is the inverse term frequency (approximation of I(ne))

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

146

2.	 AfterEffect: This is the first normalization of information gain:

�� AfterEffectL: This is Laplace's law of succession

�� AfterEffectB: This is the ratio of two Bernoulli processes

�� AfterEffect.NoAfterEffect: This indicates that there is no first
normalization

3.	 Normalization: This is the second (length) normalization:

�� NormalizationH1: uniform distribution of term frequency

�� NormalizationH2: Term frequency density inversely related to length

�� NormalizationH3: Term frequency normalization provided by
Dirichlet prior

�� NormalizationZ: Term frequency normalization provided by a
Zipfian relation

�� Normalization.NoNormalization: No second normalization

How to do It…
Let's set up our test case:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);
DFRSimilarity similarity = new DFRSimilarity(
 new BasicModelIn(),
 new AfterEffectL(),
 new NormalizationH1());
config.setSimilarity(similarity);
IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
TextField textField = new TextField("content", "",
 Field.Store.YES);

String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall.",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};
for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");
 doc.add(textField);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

147

 indexWriter.addDocument(doc);
}
indexWriter.commit();

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
indexSearcher.setSimilarity(similarity);
QueryParser queryParser = new QueryParser("content", analyzer);
Query query = queryParser.parse("humpty dumpty");

TopDocs topDocs = indexSearcher.search(query, 100);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
 doc.getField("content").stringValue());
}

In our test, we are using BasicModelIn (inverse document frequency), AfterEffectL
(Laplace's law of succession), and NormalizationH1 (uniform distribution of term frequency).

How it works…
This code will produce the following result:

0.8414296: Humpty Dumpty sat on a wall,
0.74065953: Humpty Dumpty had a great fall.
0.25163758: Couldn't put Humpty together again.

The result is very much as expected where the shortest sentence (after removal of stop
words) is ranked first. Let's now try disabling the second normalization (on document lengths)
by providing Normalization.NoNormalization in the constructor instead. The results
should be as follows:

0.75728655: Humpty Dumpty sat on a wall,
0.75728655: Humpty Dumpty had a great fall.
0.25728658: Couldn't put Humpty together again.

Note that the scores between the first and second sentences are now identical because
length is not a factor anymore.

Let's try switching from a BasicModel to BasicModelIF (inverse term frequency) this time.
We will get the following result:

1.5917058: Humpty Dumpty sat on a wall,
1.4010824: Humpty Dumpty had a great fall.
0.62600094: Couldn't put Humpty together again.

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

148

Note that the scoring distribution is drastically different from BasicModelIn where the gap
between the second and third documents is a lot bigger.

So, the question arises again on what model to use and how to tune this similarity to suit your
needs. The answer again is experimentation. You may want to try different combinations to
find one that works best for your dataset.

Implementing the information-based model
The information-based model in Lucene consists of three components: Distribution, Lambda,
and Normalization. The setup is somewhat similar to DFRSimilarity where you need to
instantiate these components in its constructor. The name of the Similarity class for this
model is called IBSimilarity. Here is an excerpt from Lucene's Javadoc on the components:

1.	 Distribution: This is probabilistic distribution used to model term occurrence:

�� DistributionLL: This is the Log-logistic distribution

�� DistributionSPL: This is the Smoothed power-law distribution

2.	 Lambda: This is the λw parameter of the probability distribution:

�� LambdaDF: This is the now/nor average number of documents where w
occurs

�� LambdaTTF: This is the Fw/Nor average number of occurrences of w
in the collection

3.	 Normalization: This is term frequency normalization:

�� NormalizationH1: In this, there is a uniform distribution of term frequency

�� NormalizationH2: In this, term frequency density is inversely related to
length

�� NormalizationH3: In this, term frequency normalization is provided by
Dirichlet prior

�� NormalizationZ: In this, term frequency normalization is provided by a
Zipfian relation

�� Normalization.NoNormalization: In this, there is no second
normalization

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

149

How to do It…
We are going to set up our test case to use DistributionSPL, LambdaDF, and NormalizationH1:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
analyzer);
IBSimilarity similarity = new IBSimilarity(
 new DistributionSPL(),
 new LambdaDF(),
 new NormalizationH1());
 config.setSimilarity(similarity);
 IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
TextField textField = new TextField("content", "",
 Field.Store.YES);
String[] contents = {"Humpty Dumpty sat on a wall,",
 "Humpty Dumpty had a great fall.",
 "All the king's horses and all the king's men",
 "Couldn't put Humpty together again."};
for (String content : contents) {
 textField.setStringValue(content);
 doc.removeField("content");
 doc.add(textField);
 indexWriter.addDocument(doc);
}
indexWriter.commit();
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
indexSearcher.setSimilarity(similarity);
QueryParser queryParser = new QueryParser("content", analyzer);
Query query = queryParser.parse("humpty dumpty");
TopDocs topDocs = indexSearcher.search(query, 100);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
doc.getField("content").stringValue());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Flexible Scoring

150

How it works…
The code will produce the following result:

1.8361073: Humpty Dumpty sat on a wall,
1.5318649: Humpty Dumpty had a great fall.
0.7275219: Couldn't put Humpty together again.

Now, let's try to skip normalization by instantiating Normalization.NoNormalization
instead. The result is as follows:

1.5794742: Humpty Dumpty sat on a wall,
1.5794742: Humpty Dumpty had a great fall.
0.7504883: Couldn't put Humpty together again.

This behaves as expected where document lengths are not considered.

Let's try a different distribution this time: DistributionLL. The result is as follows:

2.0669947: Humpty Dumpty sat on a wall,
1.7403756: Humpty Dumpty had a great fall.
0.7867691: Couldn't put Humpty together again.

Note that the scoring gaps between documents are wider now.

Experimentation is the key when choosing the right model and configuration for your dataset.
Many of these models are built based on the same principle returning the most relevant
documents for a given query. There are subtle differences between each approach and there
are pros and cons depending on the type of data you are dealing with. However, for the most
part, DefaultSimilarity should be sufficient for the majority of the implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

151

8
Introducing

Elasticsearch

We have seen how Lucene can be incorporated to build a high performance search
application. We have also learned that Lucene by itself is a library, as it is not intended to run
as a stand-alone service. Because Lucene does not come with any user interfaces, in order
to use it, we need to write some codes around the library to provide our own interfaces. The
road to adapt to Lucene may not be as straightforward as using a stand-alone service, but
the many customizable options Lucene provides out of the box should outweigh the burden
of the initial setup. To make setup simpler and allow the user to deploy Lucene quickly, we
can leverage an open source product called Elasticsearch. This provides a user interface that
wraps around Lucene. It is a stand-alone server with its own facilities to manage data injection
operations and searches. It also comes with all sorts of tools to manage all aspects of
indexing and searching processes. We are going to cover the basic operations of Elasticsearch
in this chapter and we will include the following recipes to get you started:

ff Getting Elasticsearch

ff Creating a new index

ff Predefine field mappings

ff Adding a document

ff Deleting a document

ff Updating a document

ff Performing bulk indexing

ff Searching the index

ff Scaling Elasticsearch

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Elasticsearch

152

Introduction
There are currently two major open source search engine projects that are based on
Lucene. They are Solr and Elasticsearch; both are very capable search engines and their
search/indexing performance and features are comparable. Solr has a nicer admin user
interface, while Elasticsearch provides a simpler RESTful interface for its entire API.
Elasticsearch has more emphasis on sharding for distributed architecture, although Solr
also provides SolrCloud, which is Solr's answer to the distributed architecture. At the time of
writing, the latest Elasticsearch release is a stack of Elasticsearch, Logstash, and Kibana.
Elasticsearch is becoming a big player in data analytics, providing capability to slice and dice
time-series data (for example, logs analysis by Logstash) and visualization with Kibana.

Elasticsearch accepts data in JSON format. JSON is a widely accepted data format,
you can read more about it here: http://www.json.org/. It also has the ability to be
schema-less when ingesting data. You can pass any JSON documents to Elasticsearch,
and it will automatically define the appropriate schema to store the documents. This means
that you do not need to define fields in advance.

Elasticsearch exposes a RESTful interface, so you can communicate with it via HTTP
protocol. You can use any HTTP clients. In this chapter, we will be using CURL, a command
line tool, to demonstrate interfacing with Elasticsearch. You can read more about CURL here:
http://curl.haxx.se/.

Elasticsearch leverages HTTP methods such as PUT, GET, DELETE, and POST to organize its
RESTful interface. As the names suggests, PUT is for inputting configuration and settings, GET
is for retrieval, DELETE is for data removal, and POST is for data ingestion.

Getting Elasticsearch
In this section, we will look into getting and setting up Elasticsearch. The installation process
is straightforward as all you need to do is extract the downloaded file into your desired
location. Then, you can run it as it is with default settings to begin using the search engine.
We will also install a web front plugin called Elasticsearch-head to provide a user interface to
browse and interact with Elasticsearch.

Getting ready
The prerequisite to install Elasticsearch is Java 7; only Oracle's Java and OpenJDK are
supported. The installation package of Elasticsearch can be found on their official site:
https://www.elastic.co/downloads. After you have downloaded the installation
package, you can extract the package into an installation location.

www.it-ebooks.info

http://www.json.org/
http://curl.haxx.se/.
https://www.elastic.co/downloads
http://www.it-ebooks.info/

Chapter 8

153

How to do it...
You are now actually ready to run Elasticsearch, but before we start the search engine, let's
install the Elasticsearch-head plugin. You can run the following commands in command line to
perform the installation in the Elasticsearch directory:

bin/plugin -install mobz/elasticsearch-head

After you run the command, you will see the following output:

-> Installing mobz/elasticsearch-head...

Trying https://github.com/mobz/elasticsearch-head/archive/master.zip...

Downloading ...
...
...
...
...
.......................................DONE

Installed mobz/elasticsearch-head into /Users/ed/projects/
elasticsearch-1.4.4/plugins/head

Identified as a _site plugin, moving to _site structure ...

A new directory plugin should be created. If the new directory does not exist, review the
installation steps and Elasticsearch's latest documentation.

To start Elasticsearch, run the following command:

bin/elasticsearch

If you are on a Linux environment, you can start Elasticsearch in the background with
the -d switch:

bin/elasticsearch –d

After Elasticsearch is started, confirm it's running by going to the 9200 port (default port):

curl http://localhost:9200

It should return with something like the following:

{
 status: 200,
 name: "Analyzer",
 cluster_name: "elasticsearch",
 version: {
 number: "1.4.4",

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Elasticsearch

154

 build_hash: "c88f77ffc81301dfa9dfd81ca2232f09588bd512",
 build_timestamp: "2015-03-01T00:00:00Z",
 build_snapshot: false,
 lucene_version: "4.10.3"
 },
 tagline: "You Know, for Search"
}

This confirms that Elasticsearch is, in fact, running. Now, we will confirm if the Elastichsearch-
head plugin is running properly. Open a browser and enter the following URL on the browser:

http://localhost:9200/_plugin/head/

The browser should display the following:

This shows that Elasticsearch-head is responding and can be used to interface with the
Elasticsearch engine. Its functionalities should be self-explanatory. You can review the
cluster, see the fields in the index, perform a search, and perform maintenance tasks
using this web interface.

How it works...
The Elasticsearch team strives for simplicity when it comes down to interfacing with the
engine. As you saw already, the installation and start-up of Elasticsearch couldn't be simpler.
Elasticsearch is built with a pluggable architecture, so adding enhancement features can be
done easily by installing plugins. The installation of Elasticsearch-head is a demonstration of
how easy it is to install a plugin.

There's more…
The Elasticsearch-head plugin we just installed provides the facilities to interface with
Elasticsearch on a web browser. You can read more about it here: http://mobz.github.
io/elasticsearch-head/.

www.it-ebooks.info

http://mobz.github.io/elasticsearch-head/
http://mobz.github.io/elasticsearch-head/
http://www.it-ebooks.info/

Chapter 8

155

Moreover, the Elasticsearch community has built numerous plugins to extend Elasticsearch's
functionalities. More plugins can be found in the following link:

http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current/modules-plugins.html

Creating a new index
Before we start adding any documents to Elasticsearch, we need to create an index first. An
index in Elasticsearch is basically a named space where you can ingest data. Elasticsearch
supports multiple indexes, handling right out of the box. We will take advantage of it by
creating our own index for our exercise.

How to do it…
Run the following command to start a new index by using the HTTP PUT method:

curl -XPUT 'http://localhost:9200/news/'

This command should return the following:

{"acknowledged":true}

If the index already exists (for example, run the above command twice), you will see the
following error message:

{"error":"IndexAlreadyExistsException[[news] already
exists]","status":400}

To confirm the index is created, we can use the GET method:

curl -XGET 'http://localhost:9200/news/'

This should return the following:

{
 news: {
 aliases: { },
 mappings: { },
 settings: {
 index: {
 creation_date: "1425700268502",
 number_of_shards: "5",
 number_of_replicas: "1",

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html
http://www.it-ebooks.info/

Introducing Elasticsearch

156

 version: {
 created: "1040499"
 },
 uuid: "JB2xmLhaSJO4AUnJvY_bfw"
 }
 },
 warmers: { }
 }
}

Now, if we go back to Elasticsearch-head (http://localhost:9200/_plugin/head/) on
a browser, we will be able to find the new index news that we have just added:

How it works…
Elasticsearch's interface is primarily HTTP-based. In this exercise, we used the HTTP PUT
method to tell Elasticsearch that we are adding something to the index. The /news/
path indicates the name of the index to be added. Note that PUT is mainly used for
configuration updates.

In the second statement, we used the GET method to ask Elasticsearch to return the
information about the index. Note that the default number of shards is 5 and default
number of replicas is 1.

In the last screenshot of Elasticsearch-head, note that under the news index, there are
two rows of numbers 0 to 4. These numbers represent shards. We specified 5 shards and
1 replica in our exercise, and we can clearly see the configuration on the screen. The green
numbers represent the 5 active shards in the index. The 5 gray numbers represent the 1
replica. The replica's shards are grayed out because they are unassigned and are not active
at the moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

157

Predefine field mappings
A mapping is analogous to the table in a database; it contains fields that are equivalent
to the columns in a table. However, a mapping is only a logical separation; it does not
physically separate the data between mappings as tables do in a database. When data
gets added to an index, they are all stored as documents in Lucene. Although Elasticsearch
supports schema-less data ingestion, we should always predefine fields so that we know
exactly what data types are mapped instead of relying on Elasticsearch to detect data types,
which sometimes may produce undesired results. In this section, we will demonstrate field
mappings for a news article's index.

How to do it...
We will be using the put mapping API to predefine fields. Here is an example:

curl -XPUT "localhost:9200/news/_mapping/article" -d '
{
 "article" : {
 "properties" : {
 "title" : {"type" : "string", "store" : true, "index" :
"analyzed" },
 "content": {"type" : "string", "store" : true, "index" :
"analyzed" },
 "publication_date": {"type" : "date", "store" : true, "index" :
"not_analyzed" }
 }
 }
}'

This should return the following output:

{"acknowledged":true}

To confirm mapping is, in fact, stored, run the following command:

curl -XGET "localhost:9200/news/_mapping/article"

This should return this JSON:

{
 "news" : {
 "mappings" : {
 "article" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Elasticsearch

158

 "properties" : {
 "content" : {"type":"string","store":true},
 "publication_date":{ "type":"date","store":true,
"format":"dateOptionalTime"},
 "title":{"type":"string","store":true}
 }
 }
 }
 }
}

In Elasticsearch-head, under Browser tab, we should be able to find the three fields that we
just added:

How it works....
In the first command, we used the HTTP PUT method to add a new mapping called article
to the news index with three fields: title, content, and publication date. In each field, we
specified the data type, whether to store the data into document, and whether to analyze
field by an analyzer.

In the second command, we used HTTP GET to return the mapping definition. We can also
review equivalent information in Elasticsearch-head, as shown in the preceding screenshot.

Adding a document
After index and mapping are created, we can begin sending data to Elasticsearch for indexing.
We can use either HTTP PUT or POST to submit data. The difference between these two
methods is that with PUT, we need to specify a unique ID, whereas with POST, Elasticsearch
will automatically generate an ID for us. Here is the general URL format to submit a document:

http://<host>:<port>/<index>/<mapping>

Both methods accept data in JSON format. In our scenario, the JSON format should be in a flat
key value pair structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

159

How to do it...
Let's look at an example. We will use both HTTP methods to submit news articles to our index.

Using HTTP PUT:

curl -XPUT 'http://localhost:9200/news/article/1' -d '
{
 "title" : "Europe stocks tumble on political fears , PMI data" ,
 "publication_date" : "2012-03-30",
 "content" : "LONDON (MarketWatch)-European stock markets tumbled
to a three-month low on Monday, driven by steep losses for banks and
resource firms after weak purchasing-managers index readings from
China and Europe. At the same time, political tensions in France and
the Netherlands fuelled fears of further euro-zone turmoil"
}'

This should return the following:

{"_index":"news","_type":"article","_id":"1","_
version":1,"created":true}

Using HTTP POST:

curl -XPOST 'http://localhost:9200/news/article/' -d '
{
 "title" : "Dow Rises, Gains 1.5% on Week" ,
 "publication_date" : "2012-03-03",
 "content" : "Solid quarterly results from consumer-oriented
stocks including Amazon.com AMZN +15.75% overshadowed data on slowing
economic growth, pushing benchmarks to their biggest weekly advance
since mid-March."
}'

This should return the following:

{"_index":"news","_type":"article","_id":"AUv7IqVcy3AfbdbmyrgB","_
version":1,"created":true}

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Elasticsearch

160

Now, let's take a look at Elasticsearch-head:

How it works...
In the PUT method, we added /1 at the end of the URL to specify our own unique id. After the
document is accepted, it returns a created confirmation where _id is 1. In the POST method,
note that we submitted an article without any id. The created confirmation now returns a
new auto generated id AUv7IqVcy3AfbdbmyrgB. As expected, the articles are added as
documents in Lucene. We can confirm the two documents that exist by using Elasticsearch-
head, as shown in the preceding screenshot.

Deleting a document
The delete API allows you to delete a document by id. When documents are added to the
index, an id (_id field) that is either supplied by source data or automatically generated,
is always assigned. Every document in the index has to have an _id value as it's used to
uniquely identify a document within an index and type. The delete API can be triggered by
the HTTP DELETE method.

How to do it…
Here is a command to delete a document where the id is 1 in the news index, under type
to article:

curl -XDELETE 'http://localhost:9200/news/article/1'

If the document exists, it should return a message like the following:

{"found":true,"_index":"news","_type":"article","_id":"1","_version":2}

Otherwise, it would say not found:

{"found":false,"_index":"news","_type":"article","_id":"1","_version":1}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

161

How it works…
The DELETE HTTP method triggers the delete API. In our example, we specified the index as
news and type as article in the URL and document id (_id field) as 1. We can verify the
document has been deleted by going into Elasticsearch-head.

Note that _id is only unique within an index and type. The same _id
can be assigned to multiple documents of different types. This field
is different from DocId.

Updating a document
The updated API allows you to add/update fields in a document. The action can be
triggered by using the HTTP PUT or POST method. A document can be specified by their
ids (_id field).

How to do it…
Let's assume that we have an existing document in our news article index, in which id is 1 and
title is "Europe stocks tumble on political fears, PMI data". We will submit
an update action to update title to "Europe stocks tumble on political fears,
PMI data | STOCK NEWS".

Here is a PUT method example:

curl -XPUT 'http://localhost:9200/news/article/1' -d '
{
 "title" : "Europe stocks tumble on political fears, PMI data |
STOCK NEWS"
}'

If successful, it should return the following:

{"_index":"news","_type":"article","_id":"1","_
version":2,"created":false}

Here is a POST method example:

curl -XPOST 'http://localhost:9200/news/article/1/_update' -d '
{ "doc" : {
 "title" : "Europe stocks tumble on political fears, PMI data |
STOCK NEWS"
 }
}'

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Elasticsearch

162

If successful, it should return the following:

{"_index":"news","_type":"article","_id":"1","_version":7}

How it works…
Note that we used HTTP PUT to trigger an update, and we specified the document by /news/
article/1. The updated field is specified in JSON. Note that this is a similar action as adding
a document to an index. If id does not exist, this command will create a new document with
that id. Because this is similar to adding a new document to the index, this command basically
tells the engine to add/replace the document with what's provided in JSON. In this scenario,
the title is renamed, but the publication_date and content fields are wiped because we
did not specify values for these two fields.

The second example with the POST method allows for a partial document update. We specified
a value for title only, and this will be the only field in the document that gets updated.

Performing bulk indexing
Elasticsearch supports bulk operation to load/update data to the index. The advantage of
bulk update is that it reduces the number of HTTP calls, which will in turn increase throughput
by the reduction of turnarounds between calls. When using the bulk API, we should use a file
to store bulk data to prepare for an upload. In CURL, we can use the --data-binary flag
to upload a file, instead of the -d plain. This is because in bulk mode, a newline character is
treated as a record delimiter, which means no pretty print JSON.

Bulk API supports most update operations and can be broken down into four types of actions:
index, create, delete, and update. Index and create serve a similar purpose; you can use
either one to insert a document. The action composed of two rows: a row for action and
metadata, and a row for source (for example, a document we want to insert). Delete has the
same semantics as delete API and it does not require a source. Update's syntax is similar to
index/create and it can be used to update an existing document.

From Elasticsearch's documentation, they specified bulk data format, as follows:

action_and_meta_data\n
optional_source\n
action_and_meta_data\n
optional_source\n
action_and_meta_data\n
optional_source\n

The bulk API can be triggered by using the /_bulk endpoint in the URL. There are three
ways to initiate bulk operations: /_bulk, /{index}/_bulk or /{index}/{type}/_
bulk. If you don't specify an index and type, you will have to specify it in the bulk action.
We will show you what the actions look like.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

163

How to do it…
We will demonstrate bulk data load actions with the following:

{ index: { "_index" : "news", "_type" : "article", "_id" : "2" } }
{ "title" : "Debt crisis: as it happened, April 25, 2012" ,
"publication_date" : "2012-03-23", "content" : "US Federal Reserve
raises growth forecasts and says will keep interest rates low until
2014, as chairman Ben Bernanke says the bank remains prepared to do
more to help economy" }
{ index: { "_index" : "news", "_type" : "article" } }
{ "title" : "Stocks: 2013 is one for the record books." ,
"publication_date" : "2013-12-31", "content" : "The Dow Jones
industrial average (INDU) had its best year since 1998. The blue chip
index gained 26.5% this year, hitting 52 all-time highs along the way.
And the Nasdaq (COMP) surged 38%, marking its best year since 2009." }

The above should be saved to a file so that it can be referenced in the CURL.

Here is the CURL command:

curl -XPOST 'http://localhost:9200/news/article/_bulk' --data-binary @
file.txt

This is assuming the above actions are saved into a file called file.txt. If the command
runs successfully, it should return the following:

{"took":9,"errors":false,"items":[{"index":{"_index":"news","_type
":"article","_id":"2","_version":1,"status":201}},{"create":{"_ind
ex":"news","_type":"article","_id":"AUwGYt61qOavQVqFNDEW","_versio
n":1,"status":201}}]}

Here is another bulk example to update a document, changing Document 2's title to NO TITLE:

{ update: { "_index" : "news", "_type" : "article", "_id" : "2" } }
{ "doc" : { "title" : "NO TITLE" } }

This should return the following:

{"took":12,"errors":false,"items":[{"update":{"_index":"news","_ty
pe":"article","_id":"2","_version":2,"status":200}}]}

Here is another example to delete a document; this time, we are deleting Document 2:

{ delete: { "_index" : "news", "_type" : "article", "_id" : "2" } }

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Elasticsearch

164

The response value should be as follows:

{"took":1,"errors":false,"items":[{"delete":{"_index":"news","_typ
e":"article","_id":"2","_version":3,"status":200,"found":true}}]}

How it works…
In the first example, we had two index actions to create two documents. Note that each
action comprises of two rows. The first row is for action and metadata, and the second row
is for the document. There is also a slight difference between these two index actions. The
first one has a specified _id, while the second one doesn't have one. You can see it in the
result with two responses. The first result confirmed a document with id 2 that is added,
and the second result confirmed the addition of a document with an autogenerated id
AUwGYt61qOavQVqFNDEW.

In the second example, we submitted an update action to change the article id 2's title field
to "NO TITLE". Note that JSON is similar to what you would submit to the delete API.

In the third example, we submitted a delete action to remove the article id 2 from the index.
Note that the found attribute is in the result. This tells you whether the record was found.

Searching the index
Elasticsearch has a flexible search interface; it allows you to search across multiple indexes
and types, or limited to a specific index and/or type. The search interface supports the URL
search with a query string as a parameter, or using a request body in a JSON format, in
which you can use Elasticsearch's Query DSL (domain-specific language) to specify search
components. We will go over both these approaches in this section.

How to do it...
Let's look at the following examples:

curl -XGET 'http://localhost:9200/news/article/_search?q=monday'

curl -XGET 'http://localhost:9200/news,news2/article/_search?q=monday'

curl -XGET 'http://localhost:9200/news/article,article2/_search?q=monday'

curl -XGET 'http://localhost:9200/news/_search?q=monday'

curl -XGET 'http://localhost:9200/_search?q=monday'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

165

Each command represents different demonstrations of URI-based searches. We can in any
combination of indexes and types. Assuming that we do have an existing document in the
index with the term monday, we can expect to see a result that is similar to the following:

{"took":37,"timed_out":false,"_shards":{"total":5,"successful":5,
"failed":0},"hits":{"total":1,"max_score":0.038356602,"hits":[{"_
index":"news","_type":"article","_id":"1","_score":0.038356602,"_
source":{"title":"Europe stocks tumble on political fears, PMI data
| STOCK NEWS","publication_date":"2012-03-30","content":"LONDON
(MarketWatch)-European stock markets tumbled to a three-month low on
Monday, driven by steep losses for banks and resource firms after weak
purchasing-managers index readings from China and Europe. At the same
time, political tensions in France and the Netherlands fuelled fears
of further euro-zone turmoil"}}]}}

Here is an example of searching by a request body:

curl -XGET 'http://localhost:9200/news/article/_search' -d '{
 "query" : {
 "term" : { "content" : "monday" }
 }
}'

Under the same perquisites, this query should return something similar to the results from the
last test.

How it works...
The search API follows the same semantics as other APIs for which you can specify one or
more indexes and types. As shown in the example, the endpoint for search is /_search.

In the first example, in which we demonstrated the URI-based searches, we can see an index
and type can be specified in one or many forms. The q parameter is to specify a query string.
The search result also shows the total matching documents; see the total attribute.

In the second example, in which we used a request body to submit a search query, we
specified a term query to match monday on the content field.

There's more…
The request body based search only demonstrated a term query. Elasticsearch can support
many different query types such as Boolean Query and DisMax Query. They all can be found in
Elasticsearch's Query DSL page:

http://www.elastic.co/guide/en/elasticsearch/reference/current/query-
dsl-queries.html

www.it-ebooks.info

http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-queries.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-queries.html
http://www.it-ebooks.info/

Introducing Elasticsearch

166

Scaling Elasticsearch
The main selling point of Elasticsearch is its simplicity to scale. Even by running it in a default
setting, it immediately begins to showcase its scalability ability with an index of 5 shards and
1 replica (default index settings). The name Elastic in Elasticsearch refers to its clustering
flexibility. You can easily scale up Elasticsearch by adding more machines into the mix in order
to instantly increase capacity. It also includes the facility to handle automatic failover, so that
planning for scalable and high availability architecture is greatly simplified.

To better comprehend Elasticsearch's scaling strategy, you will need to understand three main
concepts: sharding, replica, and clustering. These are the core concepts that help drive
elasticity in Elasticsearch.

A shard is a single Lucene index instance; it represents a slice of a bigger dataset. Sharding
is a data partitioning strategy to make a large dataset more manageable. When dealing with
an ever-growing dataset, at some point, single instance hardware will eventually become
inadequate to handle the data volume. Obviously, hardware can be upgraded in order to
improve performance. This is called vertical scaling and is usually one of the first things that
comes to mind when dealing with the performance issue. However, there is an upper limit
on what you can upgrade on a single machine. Generally, scaling vertically and upgrading
hardware is simpler than scaling horizontally, data partitioning, and adding more machines.
This is because partitioning data on a system that has not been provisioned to do so will
require a
lot of architectural planning and consideration. It's a complex issue.

Elasticsearch's sharding capability is an elegant solution to solve the horizontal scaling
challenge. Elasticsearch can be configured easily to index on any number of shards. The
default sharding strategy is based on the _id field. It's almost always advisable to think of
your own sharding strategy to bring out the most optimal performance. For example, if your
application is reporting systems in which a user can only see his/her own data, sharding
by user id will be ideal. This is because a user's actions will only need access to one shard,
instead of accessing all shards all the time.

A replica is a copy of an index. A replication scheme is used to maintain data integrity between
a live index and replica. In Elasticsearch, replica can be used to serve read requests, help to
increase throughput, and allow for failover when one of the machines fails in a cluster. It's
highly recommended to always maintain one or more replicas in order to ensure data safety
and maintain uptime for your application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

167

An Elasticsearch cluster consists of a number of nodes. A node is a single Elasticsearch
instance and it contains one or more shards/replicas. Elasticsearch is a peer-to-peer based
system in which the cluster as a whole is self-aware. When a node enters into a cluster, the
cluster can begin to leverage the new node to store shards/replicas. With replicas, a node may
fail at any point, and the cluster will reroute traffics to avoid the affected nodes. The number
of node failures a cluster can sustain will depend on the replica configuration. There is also a
master node that oversees and manages operations. Had it failed, that master node can also be
reelected from the remaining nodes. After all, Elasticsearch's appeal is its clustering capability
and easiness to manage load balancing and fault tolerance. With all that said, Elasticsearch can
maintain a cluster, handling failover automatically without any user intervention.

How to do it…
Setting up a cluster is easy. For simplicity's sake, we will start a cluster under the same install
directory. All you have to do is start Elasticsearch twice. The second instance will automatically
move the port number up by 1 from 9200 to 9201. Elasticsearch uses multicast to detect
node; if you are on a company network in which multicast may be disabled, you may need to
unplug from your network to do this test.

Here is what you will see on the first instance startup:

version[1.4.4], pid[1490], build[c88f77f/2015-02-19T13:05:36Z]
initializing ...
loaded [], sites [head]
initialized
starting ...
bound_address {inet[/0:0:0:0:0:0:0:0:9300]}, publish_address
{inet[local/127.0.0.1:9300]}
elasticsearch/Y7usoZ3rSGOljrW7C-Si7Q
Infamnia] new_master [Infamnia][Y7usoZ3rSGOljrW7C-Si7Q][local]
[inet[local/127.0.0.1:9300]], reason: zen-disco-join (elected_as_
master)
bound_address {inet[/0:0:0:0:0:0:0:0:9200]}, publish_address
{inet[local/127.0.0.1:9200]}
started
recovered [1] indices into cluster_state
added {[Diamondhead][cHPVt8TpSaybb_0EoD0lbA][local]
[inet[/127.0.0.1:9301]],}, reason: zen-disco-receive(join
from node[[Diamondhead][cHPVt8TpSaybb_0EoD0lbA][local]
[inet[/127.0.0.1:9301]]])

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Elasticsearch

168

Here is the second instance logs:

version[1.4.4], pid[1500], build[c88f77f/2015-02-19T13:05:36Z]
initializing ...
loaded [], sites [head]
initialized
starting ...
bound_address {inet[/0:0:0:0:0:0:0:0:9301]}, publish_address
{inet[local/127.0.0.1:9301]}
elasticsearch/cHPVt8TpSaybb_0EoD0lbA
detected_master [Infamnia][Y7usoZ3rSGOljrW7C-Si7Q][local]
[inet[/127.0.0.1:9300]], added {[Infamnia][Y7usoZ3rSGOljrW7C-
Si7Q][local][inet[/127.0.0.1:9300]],}, reason: zen-disco-
receive(from master [[Infamnia][Y7usoZ3rSGOljrW7C-Si7Q][local]
[inet[/127.0.0.1:9300]]])
bound_address {inet[/0:0:0:0:0:0:0:0:9201]}, publish_address
{inet[local/127.0.0.1:9201]}
started

Note that the second instance detected the master node and joined the cluster. You can also
find a secondary node that entered the cluster from the first instance's logs.

This is what the cluster looks like in Elasticsearch-head:

How it works…
As mentioned earlier, Elasticsearch is very capable in balancing nodes all on its own, without
user intervention. A master node oversees all the nodes in a cluster and when a node fails,
the master node will be able to promote a replica shard into an active index for writes. Once
a replacement node enters into the cluster, the master node will begin to restore balance by
placing replica and primary shard back into the node. Again, this is all done without having
anyone to trigger the process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

169

In our scenario, we used the default settings of 5 shards and 1 replica for our node. We
left the default name for the cluster as elasticsearch. When the first instance started,
it sets up the shards, but with no replica. When the second instance started, it discovered
the master node in the elasticsearch cluster and joined the cluster. The first instance
detected a new node and began assigning replica shards into the second instance.

You may notice that there are some interesting names for nodes. The names are picked by
Elasticsearch if you don't specify a node name in the configuration.

There's more…
We only had a glimpse at Elasticsearch's clustering capability. There are a lot of options to
customize a cluster to suit any needs. You can find more information about Elasticsearch's
sharding/clustering capability here:

http://www.elastic.co/guide/en/elasticsearch/reference/current/index.
html

www.it-ebooks.info

http://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

171

9
Extending Lucene with

Modules

In this chapter, we will cover the following recipes:

ff Exploring spatial search

ff Implementing joins

ff Performing faceting

ff Implementing grouping

ff Employing autosuggest

ff Implementing highlighting

Introduction
So far, we have explored Lucene's core functionalities and learned how to customize Lucene's
core components. However, we haven't yet learnt any extension libraries that expand
beyond the core features. In this chapter, we will discover the add-on features in Lucene
and demonstrate how these features work and how to leverage these new functionalities
effectively. We will cover the following features: spatial search, joins, faceting, grouping,
autosuggest, and highlighting.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

172

Exploring spatial search
Spatial search provides the ability to search by location data. This is also called geo-spatial
search. We usually leverage this type of search to look for things within a certain location
proximity. It's very useful in map applications where most of the searches are about searching
nearby places. Lucene provides this feature by incorporating another open source project
called Spatial4j. This offers utilities for shape and distance calculation. Lucene uses these
utilities to generate indexable fields to perform query calculations.

When dealing with spatial search, there are several considerations. Are we indexing
points or shapes? What kind of shapes are we indexing? Can a document contain more
than one point/shape? What kind of query is supported? There is no one solution that
fits all in spatial search.

Lucene provides four built-in spatial strategies to help handle various types of spatial
search requirements:

ff BBoxStrategy: This strategy permits indexing and searching by shapes (rectangles
in particular) by storing coordinates as numeric fields. Basically, a match is when the
search rectangle intersects with any rectangles in the index. This can be useful on
basic area search where you want to find all the matching locations within a specified
rectangle boundary.

Here is a diagram that depicts what matches look like:

In this case, the shaded rectangle is our search query and the two intersecting
rectangles are matches.

ff PointVectorStrategy: As the name suggests, this strategy indexes points in x and
y coordinates. Unlike BBoxStrategy, this strategy only indexes points rather than
shapes. However, index can be queried by rectangle or circle shapes. A match is
when a point is found within a rectangle or circle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

173

Here is a diagram of this strategy:

In this scenario, the points within the rectangles are matches.

ff PrefixTreeStrategy: This is an abstract class to perform fast approximate spatial
search. It only supports shape intersection searches. The two subclasses are:

�� RecursivePrefixTreeStrategy: This strategy is based on PrefixTreeStrategy
with the support for handling nonpoint shapes.

�� TermQueryPrefixTreeStrategy: This strategy leverages TermFilter for filtering
indexed point shapes only.

Here is a diagram that shows what PrefixTreeStrategy does:

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

174

Note that this strategy approximates arbitrary shapes by using a grid of smaller
shapes at an index time. This method basically allows the strategy to support any
shapes. A match is when a searching query shape intersects with any shapes
in the index. The preceding diagram is reflective of RecursivePrefixTreeStrategy.
TermQueryPrefixTreeStrategy is slightly different; it indexes points instead of shapes
for closer approximation at the expense of larger index and slower query.

ff SerializedDVStrategy: This strategy is based on serializing the shape stored in
BinaryDocValues so it's not fast in search performance, but would be useful in high
precision per-document geometry calculations. This is not exactly a spatial index, as a
search in this strategy will essentially scan the documents and calculate intersections
per document. Precision is high as it is as good as the geometry that's stored in
BinaryDocValues.

Getting ready…
First, we need to acquire the spatial search library. We will need the following dependency
in Maven:

<dependency>
 <groupId>org.apache.lucene</groupId>
 <artifactId>lucene-spatial</artifactId>
 <version>VERSION</version>
</dependency>

How to do it…
Here is a sample implementation for performing both indexing and searching with spatial
search using BBoxStrategy:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
SpatialContext spatialContext = SpatialContext.GEO;
BBoxStrategy bBoxStrategy = new BBoxStrategy(spatialContext,
 "rectangle");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

175

Rectangle rectangle = spatialContext.makeRectangle(1.0d,
 5.0d, 1.0d, 5.0d);
Field[] fields =
 bBoxStrategy.createIndexableFields(rectangle);
for (Field field : fields) {
 doc.add(field);
}
doc.add(new StringField("name", "Rectangle 1",
 Field.Store.YES));
indexWriter.addDocument(doc);
indexWriter.commit();
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
Rectangle rectangle2 = spatialContext.makeRectangle(2.0d,
 4.0d, 0.0d, 4.0d);
SpatialArgs spatialArgs = new
 SpatialArgs(SpatialOperation.Intersects, rectangle2);
Query query = bBoxStrategy.makeQuery(spatialArgs);
TopDocs topDocs = indexSearcher.search(query, 10);
System.out.println("Total hits: " + topDocs.totalHits);
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
 doc.getField("name").stringValue());
}

How it works…
In this test code, we set up Lucene as usual with a StandardAnalyzer, RAMDirectory, and
IndexWriter. Then, we set up a SpatialContext to be used in SpatialStrategy. We used the
general GEO context in SpatialContext as this context is suitable for all the implemented
SpatialStrategy classes. We picked BBoxStrategy to search by rectangle.

We added one document into the index for indexing and search by another rectangle.
To make the rectangle indexable, we called createIndexableFields in BBoxStrategy to
generate a list of fields to be added to a Lucene document. If you step through this code and
examine the fields, you will find that four fields are generated for the coordinates that are
used to create the rectangle. The spatial operation for comparison is intersects. Note that we
specified spatial operation as part of SpatialArgs, which is to be passed on to BBoxStrategy to
generate a proper query object. The makeQuery method will create the right kind of query for
spatial search.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

176

Here is a diagram of what the shapes look like:

The red square is what we added to the index. The blue square is what we used to search.
Since the spatial operation is intersects, we are looking for shapes that intersect with the blue
square. This diagram clearly shows that the red square does intersect with the blue square,
hence the match.

There's more…
There is more information on spatial search that can be found on Spatial4j's web site:
https://github.com/spatial4j/spatial4j.

Implementing joins
Join is a relational database concept where data are typically normalized, stored in separate
tables for efficiency in storage and maintaining data integrity, and then data are joined
together between tables to provide a coherent view of the data. In Lucene, there are no
concepts of tables because all the records are supposed to be flattened and stored as
documents. Even setting up schema in advance is optional. In a document-based store
such as Lucene, joins always seem like an afterthought. However, it doesn't mean that you
can't do joins at all in Lucene. There are many techniques to simulate joins such as adding
a document type field to identify different types (tables) of records. Then, manually combine
data at runtime by issuing multiple search queries retrieving data of different types.

www.it-ebooks.info

https://github.com/spatial4j/spatial4j
http://www.it-ebooks.info/

Chapter 9

177

Lucene offers two types of join methods. One is an index-time join where documents are
added in blocks; basically, parent record and child record relationships. The other type is
query-time join where you combine records based on a specified criteria.

In an index-time join, we need to first identify the parent record and the child records that
need to be merged. The child records are then added as subdocuments alongside the
parent record in a document block. A document block is a list of document objects with
a parent document added at the end of the list. When adding documents to the index,
instead of calling addDocument(Document) IndexWriter, we will be calling addDocume
nts(Iterable<Document>) to add the document blocks. At search time, we can use
ToParentBlockJoinQuery to join child queries and roll into a regular query, which is the
query against parent documents, as a query clause.

In query-time join, the paradigm is similar to joining tables in a relational database. We will
identify a from field and to field as join keys. It'll be a two-pass search where values from the
from field are collected from the query, called from the query, and are used to match to the to
field in the second pass against the same IndexSearcher.

Getting ready…
Here is the Maven dependency that's needed to start using joins:

<dependency>
 <groupId>org.apache.lucene</groupId>
 <artifactId>lucene-join</artifactId>
 <version>VERSION</version>
</dependency>

How to do it…
Here is an example of an index-time join:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new
 IndexWriterConfig(Version.LATEST, analyzer);
IndexWriter indexWriter = new IndexWriter(directory,
 config);

List<Document> documentList = new ArrayList();

Document childDoc1 = new Document();
childDoc1.add(new StringField("name", "Child doc 1",
 Field.Store.YES));

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

178

childDoc1.add(new StringField("type", "child",
 Field.Store.YES));
childDoc1.add(new LongField("points", 10,
 Field.Store.YES));
Document childDoc2 = new Document();
childDoc2.add(new StringField("name", "Child doc 2",
 Field.Store.YES));
childDoc2.add(new StringField("type", "child",
 Field.Store.YES));
childDoc2.add(new LongField("points", 100,
 Field.Store.YES));
Document parentDoc = new Document();
parentDoc.add(new StringField("name", "Parent doc 1",
 Field.Store.YES));
parentDoc.add(new StringField("type", "parent",
 Field.Store.YES));
parentDoc.add(new LongField("points", 1000,
 Field.Store.YES));
documentList.add(childDoc1);
documentList.add(childDoc2);
documentList.add(parentDoc);
indexWriter.addDocuments(documentList);
indexWriter.commit();
IndexReader indexReader =
 DirectoryReader.open(directory);
IndexSearcher indexSearcher = new
 IndexSearcher(indexReader);
Query childQuery = new TermQuery(new Term("type",
 "child"));
Filter parentFilter = new
 FixedBitSetCachingWrapperFilter(new QueryWrapperFilter(new
TermQuery(new Term("type",
 "parent"))));
ToParentBlockJoinQuery toParentBlockJoinQuery = new
 ToParentBlockJoinQuery(childQuery, parentFilter,
 ScoreMode.Max);
ToParentBlockJoinCollector toParentBlockJoinCollector =
 new ToParentBlockJoinCollector(Sort.RELEVANCE, 10,
 true, true);
indexSearcher.search(toParentBlockJoinQuery,
 toParentBlockJoinCollector);
TopGroups topGroups =
 toParentBlockJoinCollector.getTopGroupsWithAllChildDocs
 (toParentBlockJoinQuery, Sort.RELEVANCE, 0, 0, true);
System.out.println("Total group count: " +
 topGroups.totalGroupCount);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

179

System.out.println("Total hits: " +
 topGroups.totalGroupedHitCount);
Document doc = null;
for (GroupDocs groupDocs : topGroups.groups) {
 doc = indexSearcher.doc((Integer)groupDocs.groupValue);
 System.out.println("parent: " +
 doc.getField("name").stringValue());
 for (ScoreDoc scoreDoc : groupDocs.scoreDocs) {
 doc = indexSearcher.doc(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
 doc.getField("name").stringValue());
 }
}

In this example, we added one document block with a parent document and two child
documents. The document block is then added by calling addDocuments. To query this
document block, we use ToParentBlockJoinQuery with a child query (query against
child records) and a parent filter (filter against parent records). The result is collected
using ToParentBlockJoinQueryCollector. Note that parentFilter is wrapped
in FixedBitSetCachingWrapperFilter. This is because we need to use a filter that
returns FixedBitSet in ToParentBlockJoinQueryCollector. To retrieve the results,
we called getTopGroupsWithAllChildDocs, and this method returns TopGroups that
contains DocId of both parent and child documents. There are two counts in TopGroups:
totalGroupCount, representing the total count of matching parent documents and
totalGroupedHitCount, representing the total count of matching child documents.

Here is an example of query-time join:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
doc.add(new StringField("name", "A Book", Field.Store.YES));
doc.add(new StringField("type", "book", Field.Store.YES));
doc.add(new LongField("bookAuthorId", 1, Field.Store.YES));
doc.add(new LongField("bookId", 1, Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new StringField("name", "An Author", Field.Store.YES));
doc.add(new StringField("type", "author", Field.Store.YES));
doc.add(new LongField("authorId", 1, Field.Store.YES));
indexWriter.addDocument(doc);
indexWriter.commit();

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

180

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
String fromField = "bookAuthorId";
boolean multipleValuesPerDocument = false;
String toField = "authorId";
ScoreMode scoreMode = ScoreMode.Max;
Query fromQuery = new TermQuery(new Term("type", "book"));
Query joinQuery = JoinUtil.createJoinQuery(
 fromField,
 multipleValuesPerDocument,
 toField,
 fromQuery,
 indexSearcher,
 scoreMode);
 TopDocs topDocs = indexSearcher.search(joinQuery, 10);
 System.out.println("Total hits: " + topDocs.totalHits);
 for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexReader.document(scoreDoc.doc);
 System.out.println(scoreDoc.score + ": " +
 doc.getField("name").stringValue());
}

In this example, we loaded two types of documents into the index. One is a book and another
one is an author. The book has a bookId and bookAuthorId (to link to an author by
an authorId), and author has an authorId. We called a static method JoinUtil.
createJoinQuery to formulate a join query by submitting the fromField, fromQuery, and
toField. It's a two-pass search where the first pass is filtered by fromQuery, and then the
fromField values are extracted from the results and are used to match with the toField to
return the final results. This example will find one result matching the author record.

Performing faceting
Faceting provides a way to drill down data by categories. It allows a user to refine a search
by concatenating new categories to narrow down a search to the desired results. A useful
feature in faceting is that you can preview the total hits with each category values before
selecting it. The faceted search method can be used in conjunction with a text search, so it's
okay for users to do a text search in addition to a faceted search at any point. In many search
applications where data can be systematically categorized, such as product inventory where
you have product categories, types, availability, and so on, faceting offers a convenient way for
users to refine their searches. A notable benefit of faceting is that the user will never hit a zero
results page because you can only drill down with in the available category values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

181

Let's look at an example for a fictional online bookstore; we will categorize books by subject
and author. In the following figure, note that we have two facets: subject and author.
Underneath each facet, you will find facet values along with potential hits next to each value:

Let's assume a user selects a facet value Children's Books under Subject. The search will be
narrowed down to the following figure:

Note that the search result is now narrowed down to three books and the Author facet is
updated with three remaining values for the three different authors. If you recall from the
previous screenshot, the hits for the facet value Children's Books was three. The hits number
corresponds to the actual total results after we select Children's Books. A user can further
facet search by selecting one of the authors that will narrow down the result to one book.
Since there will be no more faceting variations in the result, you will not find any facet values
and that'd be the end of the faceting search refinements.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

182

In Lucene, faceting is implemented with two indexes: an index that stores taxonomy (facets)
information and a normal index that stores documents. When building facets, we need to
define FacetFields in category and value pairs and add them to each document. Then,
we need to use FacetsConfig to build facet values and add to the taxonomy index using a
TaxonomyWriter. When executing a faceting search, we can use one of the faceting classes
such as FastTaxonomyFacetCount to return facet values and their counts. Because this is a
customized search, we will use a dedicated Collector, FacetsCollector, to collect the results.

Getting ready…
Here is the Maven dependency to acquire the library:

<dependency>
 <groupId>org.apache.lucene</groupId>
 <artifactId>lucene-facet</artifactId>
 <version>VERSION</version>
</dependency>

How to do it…
Let's take a look at some codes:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory indexDirectory = new RAMDirectory();
Directory facetDirectory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);
IndexWriter indexWriter = new IndexWriter(indexDirectory, config);
DirectoryTaxonomyWriter directoryTaxonomyWriter = new
 DirectoryTaxonomyWriter(facetDirectory);
FacetsConfig facetsConfig = new FacetsConfig();
Document doc = new Document();
doc.add(new StringField("BookId", "B1", Field.Store.YES));
doc.add(new FacetField("Author", "Author 1"));
doc.add(new FacetField("Category", "Cat 1"));
indexWriter.addDocument(facetsConfig.build(directoryTaxonomyWriter
 , doc));
doc = new Document();
doc.add(new StringField("BookId", "B2", Field.Store.YES));
doc.add(new FacetField("Author", "Author 2"));
doc.add(new FacetField("Category", "Cat 1"));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

183

indexWriter.addDocument(facetsConfig.build(directoryTaxonomyWriter
 , doc));
doc = new Document();
doc.add(new StringField("BookId", "B3", Field.Store.YES));
doc.add(new FacetField("Author", "Author 3"));
doc.add(new FacetField("Category", "Cat 2"));
indexWriter.addDocument(facetsConfig.build(directoryTaxonomyWriter
 , doc));
indexWriter.commit();
directoryTaxonomyWriter.commit();

IndexReader indexReader = DirectoryReader.open(indexDirectory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
DirectoryTaxonomyReader directoryTaxonomyReader = new
 DirectoryTaxonomyReader(facetDirectory);
FacetsCollector facetsCollector = new FacetsCollector();
FacetsCollector.search(indexSearcher, new MatchAllDocsQuery(), 10,
 facetsCollector);
Facets facets = new
 FastTaxonomyFacetCounts(directoryTaxonomyReader, facetsConfig,
 facetsCollector);
FacetResult facetResult = facets.getTopChildren(10, "Category");
for (LabelAndValue labelAndValue : facetResult.labelValues) {
 System.out.println(labelAndValue.label + ":" +
 labelAndValue.value);
}
facetResult = facets.getTopChildren(10, "Author");
for (LabelAndValue labelAndValue : facetResult.labelValues) {
 System.out.println(labelAndValue.label + ":" +
 labelAndValue.value);
}

DrillDownQuery drillDownQuery = new DrillDownQuery(facetsConfig);
drillDownQuery.add("Category", "Cat 1");
DrillSideways drillSideways = new DrillSideways(indexSearcher,
 facetsConfig, directoryTaxonomyReader);
DrillSideways.DrillSidewaysResult drillSidewaysResult =
 drillSideways.search(drillDownQuery, 10);

facetResult = drillSidewaysResult.facets.getTopChildren(10,
 "Category");

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

184

for (LabelAndValue labelAndValue : facetResult.labelValues) {
 System.out.println(labelAndValue.label + ":" +
 labelAndValue.value);
}
facetResult = drillSidewaysResult.facets.getTopChildren(10,
 "Author");
for (LabelAndValue labelAndValue : facetResult.labelValues) {
 System.out.println(labelAndValue.label + ":" +
 labelAndValue.value);
}

How it works…
We set up two facets, author and category, in this demonstration. Note that we have two
Directories: indexDirectory and facetDirectory. For the facetDirectory, we
set up DirectoryTaxonomyWriter to index facets. We added three documents, all with
two FacetFields. Note how we build facets with FacetsConfig.build to write to the
TaxonomyWriter.

In data retrieval, we instantiated DirectoryTaxonomyReader and FacetsCollector to retrieve
facet information. We called FacetsCollector.search to perform faceting search
and FastTaxonomyFacetCounts to render the results into facet values. We used
FastTaxonomyFacetCounts to retrieve hits per facet value, which is similar to the bookstore
application illustrated in this section. The first set of output would produce the following:

Cat 1:2
Cat 2:1
Author 1:1
Author 2:1
Author 3:1

These are facet values and their hit counts. The Cat 1 has 2 because we have two records,
B1 and B2, where their Category value is Cat 1.

In the second test, we used DrillDownQuery and DrillSideways to select a facet value
to drill down and return the available facet values. We picked Cat 1 in our DrillDownQuery
and we called DrillSideways.search to return the remaining facet values, which is after
selecting Cat 1. The resulting output would produce the following:

Cat 1:2
Cat 2:1
Author 1:1
Author 2:1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

185

We still see the category facet, although we selected Cat 1 because the values are shown
based on an assumption that when you select a different category value, it would replace
the existing one that's been selected. This is more of a usability suggestion. In some
implementations, categories where their values are selected are actually filtered out. The
facet that's of interest in this scenario is Author. Notice we only see Author 1 and Author
2. That's because both of these authors contain Cat 1, while Author 3 has Cat 2. We
selected Cat 1 in our facet search, hence the omission.

Implementing grouping
The Grouping feature in Lucene offers a way to group results together by a group field. Say you
may want to list books by category so it'd be convenient to display results when the resulting
documents are already grouped by the group field. Another example is a web search engine
where results may be grouped by sites, so a site with excessive numbers of matching pages
does not overwhelm the top result page. The search engine can show the top matching page
from each site so there is more variety of quality matches.

Lucene has two implementations for grouping a single-pass search and a two-pass search.
A single-pass search requires document grouping at index time and a two-pass search
requires two searches to provide both group-level and document-level results.

To set up a single-pass search, we will add a document in document blocks by calling
IndexWriter.addDocuments. We also need to add an end of the document marker, as
Field, to the last document in each document block to aid a group search. The end of the
document marker is then passed into BlockGroupingCollector as a Filter so it can retrieve
group-level data. One caveat of this method is that the GroupDocs.groupValue field is null
so, to return a group-level value, we will have to pull from one of the documents within a
group or FieldCache.

A two-pass search is more flexible as it does not require any augmentation at index-time.
Instead of using BlockGroupingCollector, we can use GroupingSearch, which implements a
two-pass search internally instead. In a two-pass search, GroupDocs.groupValue contains the
group value in BytesRef.

Getting ready…
Here is the Maven dependency to acquire the Grouping library:

<dependency>
 <groupId>org.apache.lucene</groupId>
 <artifactId>lucene-grouping</artifactId>
 <version>VERSION</version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

186

How to do it…
Let's first take a look at a single-pass search using BlockGroupingCollector:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);

FieldType groupEndFieldType = new FieldType();
groupEndFieldType.setStored(false);
groupEndFieldType.setTokenized(false);
groupEndFieldType.setIndexed(true);
groupEndFieldType.setIndexOptions(FieldInfo.IndexOptions.DOCS_ONLY
);
groupEndFieldType.setOmitNorms(true);
Field groupEndField = new Field("groupEnd", "x",
 groupEndFieldType);

List<Document> documentList = new ArrayList();
Document doc = new Document();
doc.add(new StringField("BookId", "B1", Field.Store.YES));
doc.add(new StringField("Category", "Cat 1", Field.Store.YES));
documentList.add(doc);
doc = new Document();
doc.add(new StringField("BookId", "B2", Field.Store.YES));
doc.add(new StringField("Category", "Cat 1", Field.Store.YES));
documentList.add(doc);
doc.add(groupEndField);
indexWriter.addDocuments(documentList);

documentList = new ArrayList();
doc = new Document();
doc.add(new StringField("BookId", "B3", Field.Store.YES));
doc.add(new StringField("Category", "Cat 2", Field.Store.YES));
documentList.add(doc);
doc.add(groupEndField);
indexWriter.addDocuments(documentList);

indexWriter.commit();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

187

Filter groupEndDocs = new CachingWrapperFilter(new
 QueryWrapperFilter(new TermQuery(new Term("groupEnd", "x"))));

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);

BlockGroupingCollector blockGroupingCollector = new
 BlockGroupingCollector(Sort.RELEVANCE, 10, true, groupEndDocs);
indexSearcher.search(new MatchAllDocsQuery(), null,
 blockGroupingCollector);

TopGroups topGroups = blockGroupingCollector.getTopGroups(Sort.
RELEVANCE, 0, 0, 10,
 true);

System.out.println("Total group count: " +
 topGroups.totalGroupCount);
System.out.println("Total group hit count: " +
 topGroups.totalGroupedHitCount);

for (GroupDocs groupDocs : topGroups.groups) {
 System.out.println("Group: " + groupDocs.groupValue);
 for (ScoreDoc scoreDoc : groupDocs.scoreDocs) {
 doc = indexSearcher.doc(scoreDoc.doc);
 System.out.println("Category: " +
 doc.getField("Category").stringValue() + ", BookId: " +
 doc.getField("BookId").stringValue());
 }
}

We first set up a field called groupEndField as a marker for the end of the group in a
document block. This Field is attached to the last document as we create the document
blocks. The documents are grouped by the Cat 1 and Cat 2 categories. Then, we created a
groupEndDocs filter to aid BlockGroupingCollector in identifying groups. IndexSearcher
is used to execute a search as usual, but we would use BlockGroupingCollector to collect the
results. Then, we called getTopGroups to return TopGroups (analogous to TopDocs, but
for groups) where we retrieve group-level results such as group count, group hit count, and
documents within each group.

Here is an example of a two-pass search:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

188

IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
doc.add(new StringField("BookId", "B1", Field.Store.YES));
doc.add(new StringField("Category", "Cat 1", Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new StringField("BookId", "B2", Field.Store.YES));
doc.add(new StringField("Category", "Cat 1", Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new StringField("BookId", "B3", Field.Store.YES));
doc.add(new StringField("Category", "Cat 2", Field.Store.YES));
indexWriter.addDocument(doc);
indexWriter.commit();
GroupingSearch groupingSearch = new GroupingSearch("Category");
groupingSearch.setAllGroups(true);
groupingSearch.setGroupDocsLimit(10);
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
TopGroups topGroups = groupingSearch.search(indexSearcher, new
 MatchAllDocsQuery(), 0, 10);
System.out.println("Total group count: " +
 topGroups.totalGroupCount);
System.out.println("Total group hit count: " +
 topGroups.totalGroupedHitCount);
for (GroupDocs groupDocs : topGroups.groups) {
 System.out.println("Group: " +
 ((BytesRef)groupDocs.groupValue).utf8ToString());
 for (ScoreDoc scoreDoc : groupDocs.scoreDocs) {
 doc = indexSearcher.doc(scoreDoc.doc);
 System.out.println("Category: " +
 doc.getField("Category").stringValue() + ", BookId: " +
 doc.getField("BookId").stringValue());
 }
}

In this example, we added documents to the index as normal (no document blocks). Then,
we used a class called GroupingSearch to execute a group search. This class implements
a two-pass search internally so we only have to call search once to return the search results.
To get the total group count, we enabled the all groups flag by calling groupingSearch.
setAllGroups(true). Then, we executed the search and returned TopGroups, which we
can iterate through to return grouped documents. Note that in this example, we retrieved
groupValue as BytesRef so we could display the group value in our iteration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

189

Employing autosuggest
Lucene's suggest module offers a number of implementations that can be used to support a
real-time autosuggest feature when a user types into a search box. You will find many tools in
the suggest module that helps facilitate the data ingestion process to the autosuggest index.
In our demonstrations, we will be using LuceneDictionary to ingest data as it provides the
convenience of extracting tokens from a field in an existing index.

We will go over four suggester implementations in this section:

ff AnalyzingSuggester: This suggester analyzes input text and provides suggestions
based on prefixed matches.

ff AnalyzingInfixSuggester: This suggester builds on top of AnalyzingSuggester and
provides suggestions based on the prefix matches in any tokens in the indexed text.

ff FreeTextSuggester: This suggester is an n-gram implementation that produces
suggestions based on matches to an N-gram index. N-gram is a contiguous sequence
of n items from a given text sequence. "n" represents the number of items in the
indexing sequence. In this implementation, the default configuration uses a bigram
model (sequence of 2). It can be changed to use trigram (3) if desired.

ff FuzzySuggester: This suggester builds on top of AnalyzingSuggester performing a
fuzzy search that will match terms up to 2 edits.

These suggesters all have their own strengths and weaknesses; a robust application
may use one or more of these suggesters to provide a good user experience. For example,
one may want to use AnalyzingSuggester first to find matches as user types and, when no
more suggestions are found, we may want to switch to FreeTextSuggester or FuzzySuggester
to find more potential matches. Maximizing potential matches usually helps to improve the
user experience.

Getting ready…
Here is the Maven dependency to acquire the suggest module;

<dependency>
 <groupId>org.apache.lucene</groupId>
 <artifactId>lucene-suggest</artifactId>
 <version>${lucene.version}</version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

190

We will set up our tests with the following code to initialize the index:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
doc.add(new StringField("content", "Humpty Dumpty sat on a wall",
 Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new StringField("content", "Humpty Dumpty had a great
 fall", Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new StringField("content", "All the king's horses and all
 the king's men", Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new StringField("content", "Couldn't put Humpty together
 again", Field.Store.YES));
indexWriter.addDocument(doc);
indexWriter.commit();
indexWriter.close();
IndexReader indexReader = DirectoryReader.open(directory);
Dictionary dictionary = new LuceneDictionary(indexReader,
 "content");

Here, we set up the index as usual with a number of documents and we open an IndexReader
and initialize a dictionary object to be passed on to the suggesters to build their internal index.

How to do it…
Here is an example of AnalyzingSuggester:

AnalyzingSuggester analyzingSuggester = new AnalyzingSuggester(new
 StandardAnalyzer());
analyzingSuggester.build(dictionary);

List<Lookup.LookupResult> lookupResultList =
 analyzingSuggester.lookup("humpty dum", false, 10);

for (Lookup.LookupResult lookupResult : lookupResultList) {
 System.out.println(lookupResult.key + ": " +
 lookupResult.value);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

191

This is a simple demonstration of how easy it is to initialize an AnalyzingSuggester with
an Analyzer and a Dictionary. The same Analyzer should be used between indexing search
and suggester as this will help ensure suggestion accuracy. Once the suggester is loaded
with data, we can perform a lookup to find the potential matches. In this case, it should
return the following result for humpty dum:

Humpty Dumpty had a great fall: 1
Humpty Dumpty sat on a wall: 1

Since this is a prefix match, the terms humpty dum matches the prefixes for these two field
values. Note that the value in LookupResult is the weight of the match.

Let's look at an example of AnalyzingInfixSuggester:

AnalyzingInfixSuggester analyzingInfixSuggester = new
 AnalyzingInfixSuggester(Version.LATEST, directory, analyzer);
analyzingInfixSuggester.build(dictionary);

List<Lookup.LookupResult> lookupResultList =
 analyzingInfixSuggester.lookup("put h", false, 10);

for (Lookup.LookupResult lookupResult : lookupResultList) {
 System.out.println(lookupResult.key + ": " +
 lookupResult.value);
}

The code structure is similar to the exception of the constructor where, this time, we need
to pass in a version, directory, and an analyser. The test search string we use in this case is
put h. This demonstrates this suggester's ability to match tokens anywhere within a string.
It should output the following:

Couldn't put Humpty together again: 1

Next, we will look at FreeTextSuggester:

FreeTextSuggester freeTextSuggester = new FreeTextSuggester(analyzer,
analyzer, 3);
freeTextSuggester.build(dictionary);

List<Lookup.LookupResult> lookupResultList = freeTextSuggester.
lookup("h", false, 10);

for (Lookup.LookupResult lookupResult : lookupResultList) {
 System.out.println(lookupResult.key + ": " + lookupResult.value);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

192

The FreeTextSuggester constructor requires an analyzer for both index and query. The last
number indicates the N in n-gram. In our test, we change from the default of bigram to trigram
(3). Then, we look up suggestion matching h, and here is the output with terms matching h:

humpty: 1383505805528216320
had: 461168601842738816
horses: 461168601842738816

Lastly, we will look at FuzzySuggester:

FuzzySuggester fuzzySuggester = new FuzzySuggester(new
 StandardAnalyzer());
fuzzySuggester.build(dictionary);
List<Lookup.LookupResult> lookupResultList =
 fuzzySuggester.lookup("hampty", false, 10);
for (Lookup.LookupResult lookupResult : lookupResultList) {
 System.out.println(lookupResult.key + ": " +
 lookupResult.value);
}

This test demonstrates fuzzy term matching. The search term hampty is misspelled on
purpose. This code will produce the following output:

Humpty Dumpty had a great fall: 1
Humpty Dumpty sat on a wall: 1

Implementing highlighting
Highlighting offers the ability to highlight search terms in results, in order to show where
matches occur. It helps to improve the user experience by allowing a user to see how
matching documents are found. This is especially useful when displaying a text result that
contains several lines of text.

The highlighting feature starts with the highlighter class. It can be configured with a formatter
and an encoder to render the results. Then, we retrieve a TokenStream from the matching
Field and pass it on to the Highlighter to render highlighting results.

Getting ready…
Here is the Maven dependency:

<dependency>
 <groupId>org.apache.lucene</groupId>
 <artifactId>lucene-highlighter</artifactId>
 <version>${lucene.version}</version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

193

How to do it…
Let's take a look at a sample implementation:

StandardAnalyzer analyzer = new StandardAnalyzer();
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,
 analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);
Document doc = new Document();
doc.add(new TextField("content", "Humpty Dumpty sat on a wall",
 Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new TextField("content", "Humpty Dumpty had a great fall",
 Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new TextField("content", "All the king's horses and all
 the king's men", Field.Store.YES));
indexWriter.addDocument(doc);
doc = new Document();
doc.add(new TextField("content", "Couldn't put Humpty together
 again", Field.Store.YES));
indexWriter.addDocument(doc);
indexWriter.commit();
indexWriter.close();
IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
Query query = new TermQuery(new Term("content", "humpty"));
TopDocs topDocs = indexSearcher.search(query, 10);
SimpleHTMLFormatter simpleHTMLFormatter = new
 SimpleHTMLFormatter("", "");
SimpleHTMLEncoder simpleHTMLEncoder = new SimpleHTMLEncoder();
Highlighter highlighter = new Highlighter(simpleHTMLFormatter,
 simpleHTMLEncoder, new QueryScorer(query));
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
 doc = indexSearcher.doc(scoreDoc.doc);
 String text = doc.get("content");
 TokenStream tokenStream =
 TokenSources.getAnyTokenStream(indexReader, scoreDoc.doc,
 "content", analyzer);

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Lucene with Modules

194

 TextFragment[] textFragments =
 highlighter.getBestTextFragments(tokenStream, text, false,
 10);
 for (TextFragment textFragment : textFragments) {
 if (textFragment != null && textFragment.getScore() > 0) {
 System.out.println(textFragment.toString());
 }
 }
}

How it works…
We have the usual setup for this test. In Highlighter initialization, we used both
SimpleHTMLFormatter and SimpleHTMLEncoder to help render the results. The
SimpleHTMLFormatter inserts a pre-tag and post-tag to wrap around search terms.
In our case, we customized it to wrap each search term with the tag. The
SimpleHTMLEncoder encodes a special character in HTML form. We also passed in a
QueryScorer to help identify search terms in Query that generates hits.

In our results rendering, we iterated TopDocs and used IndexSearcher to return a document
so we can retrieve a field value. To help improve performance, you may want to use FieldCache
to pull a value from the memory. Then, we leveraged TokenSources to return a TokenStream
from the IndexReader on the "content" Field (one that we searched against). TokenStream was
passed into Highlighter to generate the highlighted output. The returning TextFragment contains
the fragment with highlighted terms and a score. A score is only assigned on TextFragment when
a matching search term is found. A score is assigned by QueryScorer.

www.it-ebooks.info

http://www.it-ebooks.info/

195

Index
A
abstract class

acceptsDocsOutOfOrder() 82
collect(int) 82
setNextReader(AtomicReaderContext) 82
setScorer(Scorer) 82

acquire 90
action types

create 162
delete 162
index 162
update 162

advanced filtering
performing 102-108

analysis process
defining 24

analyzer
creating 12, 13

analyzers, Lucene
SimpleAnalyzer 26
SnowballAnalyzer 26
StandardAnalyzer 26
StopAnalyzer 26
WhitespaceAnalyzer 26

arguments, filter 110
autogenerated phrase query 115
autosuggest implementations

AnalyzingInfixSuggester 189
AnalyzingSuggester 189
FreeTextSuggester 189
FuzzySuggester 189

autosuggest module
employing 189-192

B
Backus Normal Form (BNF) 18
BBoxStrategy 172
BM25 model

about 139
implementing 140-142

Boolean model (BM) 130
BooleanQuery 118, 119
boosting

about 58
index time boost 58
query time boost 58

built-in filters, Lucene
CachingWrapperFilter 103
defining 102
FieldCacheRangeFilter 102
FieldCacheTermsFilter 103
FieldValueFilter 103
NumericRangeFilter 102
PrefixFilter 103
QueryWrapperFilter 103
TermRangeFilter 102

built-in spatial strategies
BBoxStrategy 172
PointVectorStrategy 172
PrefixTreeStrategy 173, 174
SerializedDVStrategy 174

bulk indexing
performing 162-164

www.it-ebooks.info

http://www.it-ebooks.info/

196

C
CLucene

URL 6
cluster customization

URL 169
clustering 166
collectors

using 80-82
common analyzer

obtaining 26-28
components, divergence from

randomness model
AfterEffect 146
BasicModel 145
Normalization 146

components, information-based model
Distribution 148
Lambda 148
Normalization 148

ControlledRealTimeReopenThread method 94
CURL

URL 152
custom analyzers

defining 37
custom attributes

defining 39-42
custom Collector

building 81, 82
custom FieldComparator

sorting with 83-85
custom filter

creating 108-112
CustomScoreQuery

defining 126-128
custom TokenFilters

defining 36, 37
custom tokenizers

defining 38

D
date resolution 115
default operator 116
DirectoryReader

used, for opening index in Near
Real-Time 88-90

DisjunctionMaxQuery
defining 121, 122

divergence from randomness model
about 140
implementing 145-147

DocIdSet 109
document

adding 158-160
adding, to index 15
deleting 16, 160
updating 161

document object per thread
reusing 57, 58

documents, index
defining 104, 105

DocValue field
creating 51-53

DocValue types
BinaryDocValues 51
NumericDocValues 51
SortedDocValues 51
SortedNumericDocValues 51
SortedSetDocValues 51

E
Eclipse IDE

URL 8
Elasticsearch

about 151, 152
obtaining 152-154
scaling 166-168
starting 153
URL 152

Extract Transform Load (ETL) process 5

F
faceting

benefits 180
implementing 182
performing 180-185

Ferret
URL 7

field boost 131

www.it-ebooks.info

http://www.it-ebooks.info/

197

FieldCache
about 67, 108
used, for un-inverting single-valued fields in

memory 67-69
FieldComparator

defining 83
field mappings

predefining 157, 158
field norms

delving into 58-60
Field object

name 47
type 47
value 47

field object per thread
reusing 57, 58

fields
creating 14

formula, Lucene
computeNorm(FieldInvertState) 131
coord(q,d) 131
idf(t) 131
norm(t,d) 131
queryNorm(q) 131
tf(t in d) 130
t.getBoost() 131

FuzzyQuery
defining 120

G
generational indexing, with

TrackingIndexWriter 93-95
geo-spatial search 172
grouping implementations

about 185-188
single-pass search 185
two-pass search 185

H
highlighting

implementing 192-194
HTTP PUT method

using 155

I
index

about 43
searching 164, 165

IndexDeletionPolicy
KeepOnlyLastCommitDeletionPolicy 54
NoDeletionPolicy 54
PersistentSnapshotDeletionPolicy 55
SnapshotDeletionPolicy 55

IndexReader
about 66
AtomicReader 66
CompositeReader 66
obtaining 66, 67

IndexSearcher
defining 73
obtaining 17
refreshing, SearcherManager

used 90-92
index segments 45
index time boost 58
index-time join

about 177
and query-time join, comparing 177

index versioning 53-56
IndexWriter

obtaining 11, 45-47
information-based model

about 140
implementing 148-150

inheritance 4
inverted index

defining 44

J
Javadoc, Lucene

URL 122
join

implementing 176-180
join methods, types

index-time join 177
query-time join 177

www.it-ebooks.info

http://www.it-ebooks.info/

198

K
Kibana 152
KinoSearch

URL 7

L
language model

about 140
implementing 143-145

latency
about 97-99
benefits 98

lengthNorm 131
Logstash 152
lowercase expanded term 117
Lucene

about 2, 3, 88, 102
features 5
implementations 6
installing 7
official page 7
three stage process flow 3
URL 27
working 3

Lucene4c
URL 6

LuceneKit
URL 6

Lucene.Net
URL 6

Lucene QueryParser
queries, creating with 18

Lupy
URL 6

M
Maven repository

URL 10
Montezuma

URL 7
MultiPhraseQuery

defining 119
MUTIS

URL 7

N
new index

creating 155, 156
NLucene

URL 7
node 167
norms

calculating 58
NRT

about 88, 99
benefits 99
DirectoryReader used, for opening

index in 88-90
numeric field

creating 49, 50
NumericRangeQuery

defining 121

O
Object Oriented Programming (OOP) 4
Okapi BM25 139
OpenMode options

APPEND 46
CREATE 46
CREATE_OR_APPEND 46

ordered tree data structure 49

P
pagination 78-80
PerFieldAnalyzerWrapper

example 34
using 34-36

performance
improving 98

PhraseQuery
defining 119

phrase slop 117
Plucene

URL 7
plugins, Elasticsearch

URL 155
PointVectorStrategy 172
PositionIncrementAttribute

using 32-34

www.it-ebooks.info

http://www.it-ebooks.info/

199

precisionStep 49
PrefixQuery 119
PrefixTreeStrategy

about 173, 174
RecursivePrefixTreeStrategy 173
TermQueryPrefixTreeStrategy 173

PyLucene
URL 7

Q
queries

constructing 73, 74
creating, with Lucene QueryParser 18

Query DSL page, Elasticsearch
URL 165

QueryParser
autogenerated phrase query 115
date resolution 115
default operator 116
fuzzy query 116
lowercase expanded term 117
phrase slop 117
position increments, enabling 116
searching with 112-114
term range search 115
wildcard search 114

query time boost 58
query-time join

about 177
and index-time join, comparing 177

R
RAMDirectory 11
ranking value 62
RegexpQuery

defining 122
relevancy ranking 129
replica 166
results

enumerating 21, 22

S
scoring 129
scoring models

BM25 model 139
divergence from randomness model 140
information-based model 140
language model 140

search
performing 19, 20

SearcherLifetimeManager
search sessions, maintaining with 95-97

SearcherManager
used, for refreshing IndexSearcher 90-92

search result
forming 77, 78

search sessions
maintaining, with

SearcherLifetimeManager 95-97
SerializedDVStrategy 174
sharding 166
Similarity class

computeNorm 62
computeWeight 62
overriding 132-139
simScorer 62

similarity implementation
changing 60-63

Similarity methods
computeNorm(FieldInvertState) 132
computeWeight(float, CollectionStatics,

TermStatistics) 132
coord(int, int) 132
queryNorm(float) 132
simScorer(Similarity.SimWeight,

AtomicReaderContext) 132
SimpleAnalyzer 13
simple Java Lucene project

setting up 8-10
single-pass search

defining 185
single-valued fields, in memory

un-inverting, with FieldCache 67-69

www.it-ebooks.info

http://www.it-ebooks.info/

200

SnowballAnalyzer 13
Sort class

INDEX ORDER 75
RELEVANCE 75

SortedDocValues 109
sort logic

specifying 75, 76
SpanQuery

defining 123-125
FieldMaskingSpanQuery 124
SpanFirstQuery 123
SpanMultiTermQueryWrapper 124
SpanNearQuery 123
SpanNotQuery 123
SpanOrQuery 124
SpanPositionRangeQuery 124
SpanTermQuery 123

spatial search
exploring 172-175

StandardAnalyzer 13
stemming 25
StopAnalyzer 13
stopword filtering 25
stopword removal 25
StringField

creating 47, 48
Synonym Expansion 25

T
TermQuery 117
TermRangeQuery 117
term range search 115
TermVectors

about 69, 72
retrieving from 70

TextField
creating 48

text normalization 25
TFIDFSimilarity 60, 130
TFIDF (term frequency and inverse

document frequency) 130
throughput 97-99

token attribute interface
CharTermAttribute 30
FlagsAttribute 30
OffsetAttribute 30
PayloadAttribute 30
PositionIncrementAttribute 30
TypeAttribute 30

TokenAttribute values
obtaining 29-31

TokenFilter
defining 24

TokenStream
defining 24
obtaining 29

transactional commits
about 53-56
atomicity 53
consistency 54
durability 54
isolation 54

two-pass search
defining 185
example 187

V
vector space model (VSM) 130
vertical scaling 166

W
WildcardQuery 119
wildcard search 114

Z
Zend Search

URL 7

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

Lucene 4 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Instant Lucene.NET
ISBN: 978-1-78216-594-1 Paperback: 66 pages

Learn how to index and search through unstructured
data using Lucene.NET

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate results.

2.	 Learn how to execute searches for document
indexes.

3.	 Understand scoring and influencing
search results.

ElasticSearch Cookbook
Second Edition
ISBN: 978-1-78355-483-6 Paperback: 472 pages

Over 130 advanced recipes to search, analyze, deploy,
manage, and monitor data effectively with ElasticSearch

1.	 Deploy and manage simple ElasticSearch nodes
as well as complex cluster topologies.

2.	 Write native plugins to extend the functionalities
of ElasticSearch to boost your business.

3.	 Packed with clear, step-by-step recipes to walk you
through the capabilities of ElasticSearch.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Elasticsearch
Second Edition
ISBN: 978-1-78355-379-2 Paperback: 434 pages

Further your knowledge of the Elasticsearch server
by learning more about its internals, querying, and
data handling

1.	 Understand Apache Lucene and Elasticsearch's
design and architecture.

2.	 Design your index, configure it, and distribute it,
not only with assumptions, but with the underlying
knowledge of how it works.

3.	 Improve your user search experience with
Elasticsearch functionality and learn how to
develop your own Elasticsearch plugins.

Scaling Apache Solr
ISBN: 978-1-78398-174-8 Paperback: 298 pages

Optimize your searches using high-performance
enterprise search repositories with Apache Solr

1.	 Get an introduction to the basics of Apache Solr in
a step-by-step manner with lots of examples.

2.	 Develop and understand the workings of
enterprise search solution using various
techniques and real-life use cases.

3.	 Gain a practical insight into the advanced ways
of optimizing and making an enterprise search
solution cloud ready.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Lucene
	Introduction
	Installing Lucene
	Setting up a simple Java Lucene project
	Obtaining an IndexWriter
	Creating an analyzer
	Creating fields
	Creating and writing documents to an index
	Deleting documents
	 Obtaining an IndexSearcher
	Creating queries with the Lucene QueryParser
	Performing a search
	Enumerating results

	Chapter 2: Analyzing Your Text
	Introduction
	Obtaining a common analyzer
	Obtaining a TokenStream
	Obtaining TokenAttribute values
	Using PositionIncrementAttribute
	Using PerFieldAnalyzerWrapper
	Defining custom TokenFilters
	Defining custom analyzers
	Defining custom tokenizers
	Defining custom attributes

	Chapter 3: Indexing Your Data
	Introduction
	Obtaining an IndexWriter
	Creating a StringField
	Creating a TextField
	Creating a numeric field
	Creating a DocValue Field
	Transactional commits and index versioning
	Reusing field and document objects per thread
	Delving into field norms
	Changing similarity implementation used during indexing

	Chapter 4: Searching Your Indexes
	Introduction
	Obtaining IndexReaders
	Un-inverting single-valued fields in memory with FieldCache
	TermVectors
	IndexSearcher
	Constructing queries
	Specifying sort logic
	Forming a search result
	Pagination
	Using Collectors
	Sorting with custom FieldComparator

	Chapter 5: Near Real-time Searching
	Introduction
	Using the DirectoryReader to open index in Near Real-Time
	Using the SearcherManager to refresh IndexSearcher
	Generational indexing with TrackingIndexWriter
	Maintaining search sessions with SearcherLifetimeManager
	Performance tuning: latency and throughput

	Chapter 6: Querying and Filtering Data
	Introduction
	Performing advanced filtering
	Creating a custom filter
	Searching with QueryParser
	TermQuery and TermRangeQuery
	BooleanQuery
	PrefixQuery and WildcardQuery
	PhraseQuery and MultiPhraseQuery
	FuzzyQuery
	NumericRangeQuery
	DisjunctionMaxQuery
	RegexpQuery
	SpanQuery
	CustomScoreQuery

	Chapter 7: Flexible Scoring
	Introduction
	Overriding similarity
	Implementing the BM25 model
	Implementing the language model
	Implementing the divergence from randomness model
	Implementing the information-based model

	Chapter 8: Introducing Elasticsearch
	Introduction
	Getting Elasticsearch
	Creating a new index
	Predefine field mappings
	Adding a document
	Deleting a document
	Updating a document
	Performing bulk indexing
	Searching the index
	Scaling Elasticsearch

	Chapter 9: Extending Lucene with Modules
	Introduction
	Exploring spatial search
	Implementing joins
	Performing faceting
	Implementing grouping
	Employing autosuggest
	Implementing highlighting

	Index

