O'REILLY"

Learning

Puppet

A GUIDE TO CONFIGURATION MANAGEMENT AND AUTOMATION

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

learning puppet

Book Subtitle

Jo Rhett

Beijing + Boston + Farnham - Sebastopol + Tokyo [K@AR{={|HN&

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Puppet 4
by Jo Rhett

Copyright © 2015 Jo Rhett. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editor: Brian Anderson Proofreader: FILL IN PROOFREADER
Production Editor: FILL IN PRODUCTION EDI- Indexer: FILL IN INDEXER

TOR Interior Designer: David Futato
Copyeditor: FILL IN COPYEDITOR Cover Designer: Karen Montgomery

lllustrator: Rebecca Demarest
January -4712: First Edition

Revision History for the First Edition
2015-06-12 First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491907634 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Puppet 4, the cover image,
and related trade dress are trademarks of O’'Reilly Media, Inc.

While the publisher and the author(s) have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibil-
ity for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-90763-4
[FILL IN]

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491907634
http://www.it-ebooks.info/

Table of Contents

o] {3 iX
INEPOTUCTION. o . e e ettt et ettt et ettt ettt eneereneneensnsnsenenenns Xiii
0] 1310 (o S Xvii

Partl. Controlling with Puppet Apply

1. Thinking Declarative.ovvuiiiriiiii it iiie e ieeeieennaas 21
Handling Change 21
Idempotence 22
Declaring Final State 23
Conclusion 24

2. (Creating a Learning Environment.............coiiiiiiiiiiiiiiiiiiiiiiininnnes 25
Installing Vagrant on Mac 26
Installing Vagrant on Windows 28
Starting a Command Prompt 36
Downloading a Box 37
Initialize Vagrant System 37
Initialize Non-Vagrant System 39
Choosing a Text Editor 40

On the Virtual System 40
On your Desktop 41
Conclusion 42

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Puppet.oovniiiiit i it it i

Adding the Package Repository
What is a Package Collection?
Installing the Puppet Agent
Reviewing Dependencies
Reviewing Puppet4 Changes
Linux and Unix
Windows
Making Tests Convenient
Conclusion

Writing Manifests.cooieriieiiiiiiii ittt i iiereeeenaaes

Implementing Resources
Applying a Manifest
Declaring Resources
Viewing Resources
Executing Programs
Managing Files

Declarative Review
Testing Yourself
Conclusion

. Using Puppet Configuration Language

Defining Variables
Defining Numbers
Using Variables in Strings
Limiting Problems with Brackets
No Redefinition
Finding Facts
Retrieving Values
Avoiding Reserved Words
Modifying with Operators
Order of Operations
Using Conditional Operators
Creating Regular Expressions
Evaluating Conditional Expressions
Building Lambda Blocks
Looping through Iterations
Each
Filter
Map
Reduce

43
44
44
45
46
46
48
48
49

51
51
52
53
54
55
56
58
59
59

61
61
62
63
63
64
65
66
67
68
69
70
71
72
74
75
77
78
79
80

iv

| Table of Contents

WWW.i

t-ebooks.info

http://www.it-ebooks.info/

Slice 81

With 82
Captures-Rest Parameters 82
Summary 82
Conclusion 82

. Controlling Resource Processing.oevueeeuneeuneernereneeenneennenenns 85
Adding Aliases 85
Preventing Action 86
Auditing Changes 86
Defining Loglevel 86
Limiting by Tags 87
Limiting by Schedule 88
Defining Resource Defaults 89
Conclusion 89

. Expressing Relationships.covviiiiiiiiiiiiiiiii ittt 921
Managing Dependencies 92
Referring to Resources 92
Ordering Resources 93
Triggering Refresh Events 93
Chaining Resources with Arrows 95
Processing with Collectors 95
Understanding Puppet Ordering 96
Conclusion 97

. Upgrading Puppet 3 Manifests.oovunirieriiieeiieeiereneeenneennns 99
Validating Numbers 99
File Modes are not Numbers 100
Using Hash and Array Literals 100
Adding Else to Unless 101
Chaining Assignments 101
Expressions Can Stand Alone 101
Chaining Expressions with a Semicolon 102
Calling Functions in Strings 102
Improved Error Reporting 102
Avoiding Upgrade Problems 103
Deprecations 104

. Condusionof Partl...........coooiiiiiiiiiiiii 105
Best Practices for Writing Manifests 105
Continued Learning 106
Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

Partll. Creating Puppet Modules

10. CreatingaTestEnvironment..........ccviuiiiiiiiiiiiiiiiiiiniennenniennes 109
Verifying the Production Environment 109
Creating a Test Environment copy 110
Changing the Base Module Path 110
Skipping Ahead 111

11. Separating DatafromCode..........ccovviiiiiiiiiiiiiiiiiiiiiiiieiieennn, 113
Introducing Hiera 113
Creating Hiera Backends 114

Hiera Data in YAML 114
Hiera Data in JSON 115
Hiera Data in Puppet 116
Puppet Variable and Function Lookup 116
Configuring Hiera 116
Backends 117
Backend Configuration 117
Logger 118
Hierarchy 118
Merge Behavior 119
Complete Example 120
Doing Hiera Lookups in a Manifest 120
Testing Hiera Lookups 121

12, USingMOdUIES. .. .evneee ettt et ie e eeeeenaeenneannes 123

Finding Modules 123
Puppet Forge 123
Public GitHub Repositories 124
Internal Repositories 125

Evaluating Module Quality 125
Puppet Supported 126
Puppet Approved 127
Quality Score 128
Community Rating 129

Installing Modules 130
Installing from a Puppet Forge 130
Installing from GitHub 131

Testing a Single Module 131

Defining Config with Hiera 132

Executing Multiple Modules with Hiera 133

vi | Tableof Contents

www.it-ebooks.info

http://www.it-ebooks.info/

13.

Examining a Module
Reviewing Modules

Designing a Custom Module............coovvivvinninnns,

Choosing a Module Name
Avoiding Reserved Names
Generating a Module Skeleton
Moditying the Default Skeleton
Understanding Module Structure
Creating a Class Manifest
What is a Class?
Accepting Input
Validating Input with Types
Valid Types
Accepting Values
Testing Values
Matching Regular Expressions
Declaring Resources
Using Hiera Data
Sharing Files
Parsing Templates
Common Syntax
Using Puppet EPP Templates
Using Ruby ERB Templates
Creating Readable Templates
Building Subclasses
Understanding Variable Scope
Reusing Defined Types
Calling Other Modules

Sourcing a Common Dependency

Using a Different Module
Ordering Dependencies
Containing Classes
Documenting the Module

Learning Markdown

Updating README.md

Creating CHANGELOG.md

Documenting the Classes and Types

Peeking Beneath the Hood
Best Practices for Module Design
Modules Review

135
135

137
137
138
138
139
139
140
140
141
142
143
144
145
147
147
148
149
151
152
152
155
157
157
159
160
161
161
163
164
165
166
166
167
169
169
174
175
176

www.it-ebooks.info

Table of Contents

vii

http://www.it-ebooks.info/

14, TestingModules.ovvrriniiiiiiiiiiiiii ittt iiieenieeniesenneens 177

Installing Dependencies 177
Installing Ruby 177
Installing Gem Bundler 178
Installing Spec Helper 178

Preparing Your Module 179
Defining Fixtures 179

Defining Tests 180
Defining Main Class 181
Passing Valid Parameters 182
Failing Invalid Parameters 183
Adding an Agent Class 184
Using Hiera Input 184
Defining Parent Class Parameters 185
Improve Testing with Custom Skeletons 186

Simplifying with Tools 187
Puppet-Retrospect 187

Finding Documentation 188

Testing Modules Review 188

15. Extending Modules with Plugins............coovvviiiiiiiiiiiiiiiiiiiriinnens, 189

Adding Custom Facts 189
External Facts 190
Custom (Ruby) Facts 192
Understanding Implementation Issues 197

Defining Functions 197
Puppet Functions 197
Ruby Functions 198
Using Custom Functions 202

Providing Data in Modules 202

Module Plugins Review 202

Requirements for Module Plugins 203

16. PublishingModules.c.ooviiiiiiiiiiiii ittt i e, 205

Packaging a Module 205

Uploading a Module to the Puppet Forge 206

Publishing a Module on GitHub 207

Automating Module Publishing 209

Getting Approved Status from Puppet Labs 209

vii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book is a work in progress — new chapters will be added as they are written. We
welcome feedback - if you spot any errors or would like to suggest improvements,
you can submit errata or send email directly to jrhett@netconsonance.com.

Similarly, we've made a survey available for you to share your feedback, here.

This book will teach you how to install and use Puppet, a configuration management
system. It will introduce you to how Puppet works, and how Puppet provides value to
you. You'll learn how to setup a testing environment you can use to learn Puppet,
then keep and evolve as your Puppet knowledge grows. You'll learn how to declare
and implement configuration policy for hundreds of nodes.

This book covers modern best practices for Puppet 3 and Puppet 4. You'll find tips
throughout the book labeled Best Practice.

You'll learn how to update an existing Puppet 2 or Puppet 3 installation for the
increased features and improved parser of Puppet 4. You'll learn how to run Puppet
services over IPv6 protocol.

Most important of all, this book will cover how to scale your Puppet installation to
handle thousands of nodes. You'll learn multiple strategies for handling diverse and
heterogenous environments, and reasons why each of these approaches may be
appropriate or not for your needs.

Who this book is for

This book is primarily aimed at System Administrators and Operations or DevOps
Engineers. If you are responsible for development or production nodes, this book will
provide you with immediately useful tools to make your job easier than ever before. If
you run a high-uptime production environment, youre going to learn how Puppet

www.it-ebooks.info

http://www.oreilly.com/catalog/errata.csp?isbn=0636920034131
https://docs.google.com/forms/d/1JES-1llbWgzsDaKwADSDSJkV-SZ8xZ_tN8JQLHGovpk/viewform?c=0&w=1
http://www.it-ebooks.info/

can enforce your existing standards throughout the implementation. Within a week
you’ll wonder how you ever got along without it.

No matter what you call yourself, if you feel that you spend too much time managing
computers then this book is for you. Youd like to get it done faster so you can focus
on something else. Youd like to do it more consistently, so that you don’t have to
chase down one-off problems in your reports. Or you've got some new demands that
you're looking for a way to solve. If any of these statements fit, you will find Puppet to
be one of the best tools in your toolbox.

What to expect from me

This book will not be a heavy tome filled with reference material irrelevant to the day
to day system administrator---exactly the opposite. Throughout this book we will
never stray from one simple goal: We focus all our efforts on how Puppet can help
you do something faster or better than ever before.

This book will never tell you to run a script and not tell you what it does, or why. I
hate modeling systems to determine what an installation script did, and I won’t do
this to you. In this book you will build up the entire installation by hand. Every step
you take will be useful to you in a production deployment. You'll know where every
configuration file lives. You'll learn every configuration parameter and what it means.

By the time you have finished this book, you’ll know how Puppet works inside and
out. You will have the tools and knowledge to deploy Puppet seamlessly throughout
your environment.

What you will need

You may use any modern Linux, Mac, or Windows system and successfully follow the
hands-on tutorials in this book.

While there are some web dashboards for Puppet, the process of configuring and
enabling Puppet, and utilization of the agent will be performed through the com-
mand line. We will help you install any necessary software.

A beginner to system administration can follow every tutorial in this book. Any expe-
rience with scripts, coding, or configuration management will enhance what you can
get out of this book, but is not necessary. It is entirely possible to deploy Puppet to
manage complex environments without writing a single line of code.

Part II: Puppet Modules documents how to build custom modules for Puppet. Most
Puppet modules can be created using the Puppet configuration language that will be
taught in this book. When you’ve become an expert in building Puppet modules, you
may want to add new functions to the Puppet configuration language. New functions

x | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

are created in pure Ruby. Reference materials like http://shop.oreilly.com/product/
9780596529864.do[Learning Ruby] can be helpful when creating new functions for
use in a custom Puppet module.

What you'll find in this book

The Introduction provides an overview of what Puppet does, how it works, and why
you may want to use it.

Part I: Getting Started will get you running with a working Puppet installation. You
will learn how to write declarative Puppet policies to produce consistency in your sys-
tems. This will also cover the changes in the language that Puppet 4 has brought.

Part II: Puppet Modules will introduce you to Puppet modules, the building blocks
used for Puppet policies. You will learn where to find Puppet modules. You'll learn
how to distinguish Puppet Labs-provided and Puppet Approved modules. More
importantly, you'll learn how to build, test, and publish your own modules.

Part III: Puppet Master will help you install the Puppet master. You will learn the
integrated components that make up the Puppet infrastructure. You’'ll install and con-
figure each in a manner suitable for your specific environment.

Part IV: Advanced Puppet will review real-life deployment considerations. You will
learn about ways to scale puppet to thousands or tens of thousands of nodes. You'll
learn how to manage the infrastructure that Puppet depends upon using Puppet.

Part V: Puppet Ecosystem will show you infrastructure that ties together with, ena-
bles, or supports your Puppet installation. While each of these is worthy of their own
book, you'll install and configure each of these to provide immediate value in your
Puppet environment.

This won’t be a test environment for training that doesn’t match your real concerns;
instead you’ll perform real operations on hosts that match your production environ-
ment. You'll see how easy it is to deploy Puppet, and exactly how powerful the tools it
provides are. You'll receive hands-on tips and experiences from years of experience
deploying, scaling, and tuning Puppet environments.

Puppet has an active developer and user community. Using Community Modules
directs you to online repositories of modules built by others, as well as concrete
examples of how to use other’s modules in your environment.

How to Use this Book

This book provides explicit instructions for configuring and using Puppet from the
command line without the use of external tools beyond your favorite text editor.

Preface | xi

www.it-ebooks.info

http://www.it-ebooks.info/

The book will help you create Puppet manifests and Puppet modules which utilize
every feature of Puppet. You will find it easy to create configuration policies to handle
your specific needs from the examples in this book. Yes, with just your text editor.

The book documents a Puppet module which can be used to maintain Puppet servers
and agents across dozens of environments. This module, provided in Part II: Puppet
Modules, could be easily adjusted to manage both your Puppet servers, and the Pup-
pet agents on each node across all of your environments.

In Part V: Puppet Ecosystem, we will introduce related and integrated systems that
supplement and utilize Puppet. Some of these systems provide a web server interface
for viewing or managing the status and history of nodes managed by Puppet.

IPv6 Ready

Every example with IP addresses will include both IPv4 and IPv6 statements. If youre
only using one of these protocols you can ignore the other. Puppet will happily use
any combination of them. More details about complex IPv6 setups will be covered in
IPv6 Dual-Stack Environments.

Acknowledgements

I owe significant gratitude to Luke Kaines, who conceived of Puppet, and continues
to direct its growth in Puppet Labs. I was working on CFengine with him and others
when he left that effort to create Puppet. His vision and foresight made all of this pos-
sible.

I owe a drink and many thanks to the many people who provided input and feedback
on the book during the writing process, including but definitely not limited to the
technical reviewers:

o Chris Barbour, Taos Mountain

And finally, I'd like to thank my O’Reilly editor, Brian Anderson, who gave me excel-
lent guidance on the book and was a pleasure to work with.

Jo Rhett, DevOps Architect, Net Consonance

xii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

What is Puppet?

Puppet brings computer systems into compliance with a policy you design. Puppet
manages configuration data on these systems, including users, packages, processes,
services; any component of the system you can define. Puppet can manage complex
components to ensure compliance with the policies you write.

Puppet can ensure configuration consistency across thousands of servers. Puppet uti-
lizes node-specific data to tune the policy appropriately for each system.

As an administrator, you will utilize the Puppet configuration language to declare the
final state of your systems. Thus, we describe Puppet as “declarative.”

Why Declarative

When analyzing hand-built automation systems, you’ll invariably find commands
like the following:

$ sed -1 -e 's/regex/replacement/eg' filename

This command takes a file and replaces data within the file with a processed result.
This works properly the first time you run it. However if the same operation is run
again, the result changes. This isn't a desirable effect in configuration management.

Language which describes the actions to perform is called “procedural”. It defines
procedures that should be followed to change the target.

When managing computer systems, you want the operations applied to be idempo-
tent, where the operation achieves the same results every time it executes. This allows
you to apply and re-apply the configuration policy and always achieve the desired
state.

xXiii

www.it-ebooks.info

http://www.it-ebooks.info/

In order for a configuration state to be achieved no matter the conditions, it is essen-
tial that the configuration language avoid describing the actions involved to achieve
the desired state. Instead, the configuration language should describe the desired
state, and leave the actions up to the interpreter. Language which declares the final
state is called “declarative”

Declarative language is much easier to read, and less prone to breakage due to envi-
ronment differences. Puppet was designed to achieve consistent and repeatable
results. Every time Puppet evaluates the state of the node, it will bring the node to a
state consistent with the configuration policy.

How Puppet Works

On any node you control is an application named Puppet agent. The agent evaluates
and implements Puppet manifests, or files containing Puppet configuration language
that declare the desired state of the node. The agent evaluates the state of each com-
ponent described in a manifest, and determines whether or not any change is neces-
sary. If the component needs to be changed, the agent makes the requested changes
and logs the event.

If Puppet is configured to utilize a centralized Puppet master, Puppet will send the
node’s data to the master, and receive back a pre-compiled catalog containing only the
node’s specific policy to enforce.

Now you might be thinking to yourself, “What if I only want the command executed
on a subset of nodes?” Puppet provides many different ways to classify and categorize
nodes to limit which resources should be applied to which nodes. You can use node
facts like hostname, operating system, node type, puppet version, and many others.
Best of all, new criteria custom to your environment can be easily created.

The Puppet agent evaluates the state of only one node. In this model you can have
agents on tens, hundreds, or thousands of nodes evaluating their catalogs and imple-
menting changes on their nodes at exactly the same time. The localized state machine
ensures a scalable and fast parallel execution environment.

Why Use Puppet

As we have discussed above, Puppet provides a well-designed infrastructure for man-
aging state of many nodes simultaneously. Here are a few reasons to use it:

o Facter provides Puppet with local data to customize the policy for each specific
node: hundreds of values specific to the node including hostname, operating sys-
tem, memory, networking configuration, and many node-specific details.

o Puppet agents can handle OS-specific differences, allowing you to write a single
manifest which will work on different operating systems.

xiv | Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

o Puppet agent can be invoked with specific tags, allowing a filtered run thats only
perform operations which match those tags during a given invocation.

 Puppet agents report back success, failure, and specific return codes for each run.

o Puppet uses a decentralized approach were each node evaluates and executes
their own Puppet catalog separately. No node is waiting for another node to com-
plete.

o Orchestration systems such as the Marionette Collective (MCollective) can
invoke and control the Puppet agent for instantaneous large-scale changes.

In Part II: Puppet Modules you will create a module that uses Puppet to install and
configure the Puppet agent. This kind of recursion is not only possible but common.

In Part III: Puppet Master you will learn how to use Puppet masters and Puppet
Server to offload and centralize manifest compilation, report processing, and backup
of changed files.

In Part V: Puppet Ecosystem you will use MCollective to orchestrate immediate
changes with widespread Puppet agents.

Puppet provides a flexible framework for policy enforcement that can be customized
for any environment. After reading this book and using Puppet for a while, you’ll be
able to tune your environment to exactly your needs. Puppet’s declarative language
not only allows but encourages creativity.

Time to Get Started

As we proceed, this book will show you how Puppet can help you do more, do it
faster, and more consistently than ever before. You'll learn how to extend Puppet to
meet your specific needs:

1. You'll install Puppet and get it working seamlessly to control files, packages, serv-
ices, and the Puppet daemon.

2. You’'ll discover an active community of Puppet developers who develop modules
and other Puppet plugins on the Puppet Forge and GitHub.

3. You’'ll build your own custom Fact. You'll use this fact within your Puppet mani-
fest to handle something unique to your environment.

4. You'll build your own custom Puppet module. You’'ll learn how to test the mod-
ule safely prior to deploying in your production environment.

5. You’'ll learning how to package your module and upload it to a Puppet Forge.

6. You'll learn how to configure a Puppet Server, allowing you to provide Puppet
services across the campus or around the globe.

7. You'll tour through the ecosystem of components which utilize, extend, and
enhance Puppet within your environment.

Introduction | xv

www.it-ebooks.info

http://www.it-ebooks.info/

By the time you finish this book you will understand not just how powerful Puppet is,
but you'll know exactly how Puppet works. You'll have the knowledge and under-
standing to debug problems within any part of the infrastructure. You'll know what to
tune as your deployment grows. You’ll have a resource to use for further testing as
your knowledge and experience expands.

It’s time to get declarative.

xvi | Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

There will be something awesome here in a later revision.

Xvii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART |
Controlling with Puppet Apply

In this part you'll learn about the Puppet configuration language and how to think in
a declarative manner. You’'ll set up a testing environment you can use to learn Puppet
while reading this book. You'll be able to continue to use this setup to develop and
test your Puppet code long after you have finished this book.

You will install Puppet, and create your first Puppet manifests. You'll learn how to
utilize resources, how to associate them, and how to order and limit the changes
upon them.

When you finish this part of the book, you’ll have a solid understanding of the Pup-
pet configuration language. You'll have written and tested your own Puppet mani-
fests. You'll have a solid foundation of modern Best Practices for Puppet coding and

style.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1
Thinking Declarative

If you have any experience with conventional programming languages, or writing
shell scripts, you are used to making change by defining the operations which should
be performed. Code which defines each operation, each procedure to be executed,
and the order in which to execute them, is known as Procedural Programming code.

While it can be useful to have a background in procedural programming, a common
mistake is to attempt to use Puppet to make changes in a procedural fashion. The
very best thing you can do is forget everything about procedural programming.

If you are new to programming, don't feel intimidated. People without a background
in procedural programming can often learn good Puppet practices faster.

Writing good Puppet manifest is done with declarative programming. When it comes
to maintaining configuration on systems, you’ll find declarative programming to be
easier to create, easier to read, and easier to maintain. Let’s show you why.

Handling Change

The reason that you need to cast aside procedural programming is to handle change
better.

When you write code that performs a sequence of operations, that sequence will
make the desired change the first time it is run. If you run the same code the second
time in a row, the same operations will either fail, or will create a different state than
desired. Here’s an example:

useradd -u 1001 -g 1001 -c "Joe User" -m joe
useradd -u 1001 -g 1000 -c "Joe User" -m joe
useradd: user 'joe' already exists

So then you need to change the code to handle that situation.

21

www.it-ebooks.info

http://www.it-ebooks.info/

#!/bin/bash

USERNAME=$0

getent passwd joe > /dev/null 2> /dev/null

if [$? -ne 0]

then

useradd -u 1001 -g 1000 -c "Joe User" -m joe

fi
Okay, that’s at six lines of code and all we've done is ensure that the username isn’t
already in use. What if we need to check to ensure the UID is unique, the GID is
valid, that password expiration is set? Well, I think you know this is going to be a very
long script even before we adjust it to ensure it works properly on multiple operating
systems.

This is why we say that procedural programming doesn’t handle change very well. It
takes a lot of code to cover every situation you need to test.

|[dempotence

When managing computer systems, you want the operations applied to be idempo-
tent, where the operation achieves the same results every time it executes. Idempo-
tence allows you to apply and re-apply a configuration manifest and always achieve
the desired state.

In order for procedural code to be idempotent, it needs to have instructions for how
to compare, evaluate, and implement not just every resource, but each attribute of the
resource. As you saw in the previous section, this will quickly become ponderous and
difficult to maintain.

Idempotent: operations in mathematics and computer science that can be applied
multiple times without changing the result beyond the initial application. It literally
means (the quality of having) the same power, from latin roots idem + potent (same +
power)'. Here are some examples of idempotent and not math and code:

any number”1 idempotent Any number to the power of 1is the
same (implicit definition)

variable = variable * 2 notidempotent Will double every time

variable = variable * 2 idempotent remains the same value

/2

echo "Today is a good not idempotent file will keep growing

day!" >> /[some/file

1 http://www.jeremy-gunawardena.com/papers/intro.pdf

22 | Chapter 1: Thinking Declarative

www.it-ebooks.info

http://www.it-ebooks.info/

echo "Today is a good idempotent 2nd run file will same content every time
day!" > /some/file

The simplistic final example avoids having to compare the state of the item by simply
overwriting it every time. This means it will only be idempotent on the 2nd and fol-
lowing invocations. This only works in a limited set of situations. Most changes
require evaluation to determine what changes are necessary.

Declaring Final State

In order for a configuration state to be achieved no matter the conditions, it is essen-
tial that the configuration language avoid describing the actions involved to achieve
the desired state. Instead, the configuration language should describe the desired
state, and leave the actions up to the interpreter. Language which declares the final
state is called declarative.

Rather than writing extensive procedural code to handle every situation, it is much
simpler to declare what you want the final state to be. Rather than dozens of lines of
comparison, the code reflects only the final state that the resource (in this example a
user account) should be. Here we will introduce you to your first bit of Puppet con-
figuration language, a resource declaration for the same user we created above.

user { 'joe':

ensure => present,
uid => '1001',

gid => '1000',
comment => 'Joe User',
managehome => true,

}

As you can see above, the code is not much more than a simple text explanation of
the desired state. A user named Joe User should be present, a home directory for the
user should be created, etc. It is very clear, very easy to read. Exactly how the user
should be created is not within the code, nor are instructions for handling different
operating systems.

Declarative language is much easier to read, and less prone to breakage due to envi-
ronment differences. Puppet was designed to achieve consistent and repeatable
results. You describe what the final state of the resource should be. Puppet will com-
pare and implement any necessary changes to bring the resource into the desired
state.

Declaring Final State | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

Conventional programming languages create change by listing exact operations
which should be performed. Code which defines each procedure is known as Proce-
dural Programming.

Good Puppet manifests are written using declarative programming. Instead of defin-
ing exactly how to make changes, in which you must write code to test and compare
the system state before making that change, you instead declare how it should be. It is
up to the Puppet agent to compare, evaluate, and implement the necessary changes.

Declarative programming is easier to create, easier to read, and easier to maintain.

24 | Chapter 1: Thinking Declarative

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
Creating a Learning Environment

In this chapter we will create a virtualized environment suitable for learning and test-
ing Puppet. We will utilize Vagrant and Virtualbox to set up this environment on
your desktop or laptop. You'll keep this environment long after you have finished this
book.

If you are an experienced developer or operations engineer, you are welcome to use a
testing environment of your own choice. Anything which can host multiple Linux
nodes will work. Puppet’s needs are minimal. Any of the following would be suitable
for use as a Puppet test lab:

o A bunch of spare systems you have sitting around that you can install Linux on.
o An AWS Free Tier Amazon Web Services instance.

o An OpenStack DevStack development instance.

o An VMware Free vSphere ESXi solo instance.

« A Vagrant development environment on your personal computer.

You can build your own test lab using one of the solutions above, or you can use an
existing test lab you maintain. In all cases I recommend using an OS compatible with
RedHat Enterprise Linux 6 or 7 for learning purposes. The CentOS platform is freely
available, and fully supported by both Red Hat and Puppet Labs. This will allow you
to breeze through the learning exercises without distractions. After you have a work-
ing Puppet setup, you can detailed notes in the Appendix for usage with other operat-
ing systems.

We recommend and are going to use Vagrant for the remainder of this book, for the
following reasons:

o Itis easier for you to setup and get started quickly.
 You can more easily carry it with you, and restart it at any time.

25

www.it-ebooks.info

http://aws.amazon.com/free/
http://docs.openstack.org/developer/devstack/
http://www.vmware.com/go/get-free-esxi
http://www.vagrantup.com/
http://www.it-ebooks.info/

o The Vagrant setup we provide gives you copies of the puppet manifest and con-
figuration files used in this book.
« You can always build one of the other environments later for a comparison point.

If you plan to use your own testing environment, skip ahead to Initialize Non-
Vagrant System near the end of this chapter.

If you are going to use Vagrant as we recommend, let’s get started installing it. You'll
need to download two packages.

Go to https://www.virtualbox.org/wiki/Downloads and download the appropriate
platform package for your system.

Next, go to http://www.vagrantup.com/downloads/ and download the appropriate
platform package for your system.

You should install these packages according to the instructions for your operating
system, below:

Installing Vagrant on Mac

First you should run the VirtualBox installer. Open to Virtualbox DMG image file
you downloaded and click on the Virtualbox.pkg installer.

Figure 2-1. VirtualBox package installer for Mac

800 |_| VirtualBox

1 Double click on this icon:

VirtualBox.pkg

Run the VirtualBox application
from the Applications Folder:

Applications

TOOL

VirtualBox_Uninstall.tool

Accept the license and the installer will will complete the installation.

26 | Chapter2: Creating a Learning Environment

www.it-ebooks.info

https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads/
http://www.it-ebooks.info/

Next you should run the Vagrant installer. Open to Vagrant DMG image file you
downloaded and click on the Vagrant.pkg installer.

Figure 2-2. Vagrant package installer for Mac

[] Vagrant

-

Vagrant.pkg

TOOL

uninstall.tool

VAGRANT

Likewise, accept the license agreement and the installer will complete the installation.

Finally, you will need to install Xcode on your Macintosh, if you don't have it already.
Perform the following steps:

1. Pull down on the Apple logo at the top left of your screen.

2. Select App Store...

3. In the App Store, type “xcode” into the search bar on the right.
4. Click Install beneath the top left icon Xcode: Developer Tools

Installing Vagranton Mac | 27

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Vagrant on Windows

First, install the Git client for windows with Unix tools.

1. Browse to http://git-scm.com/ and download the Windows GUI client. (available
directly at http://git-scm.com/download/win)

Run the installer you have downloaded.

Allow it to make changes to the local system.

Accept the default components.

On the Git Setup screen, select the option to Use Git and optional Unix tools
from the Windows Command Line.

6. Finish the installation.

Rl

Figure 2-3. Git Setup for Windows

(}GitSetup l‘:' -

Adjusting your PATH environment
How would you like to use Git from the command line?

() Use Git from Git Bash only
This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line toals from Git Bash.

() Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid duttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt.

@ Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools like "find” and "sort”. Only
use this option if you understand the implications.

< Back][Mext = J[Cancel

Installing VirtualBox is very straightforward. Run the VirtualBox installer package
that you downloaded.

Figure 2-4. VirtualBox Installer for Windows

28 | Chapter2: Creating a Learning Environment

www.it-ebooks.info

http://www.it-ebooks.info/

i Oracle VM VirtualBox 4.3.18 Setup

Welcome to the Oracle VM
VirtualBox 4.3.18 Setup
Wizard

The Setup Wizard will install Orade VM VirtualBox 4.3.18 on
your computer, Click Next to continue or Cancel to exit the

/ Setup Wizard.

Version 4.3. 13 Cancel
Click Next to install all features
Figure 2-5. Install all Features
b Oracle VM VirtualBox 4.3.18 Setup
Custom Setup
Select the way you want features to be installed.
Click on the icons in the tree below to change the way features will be installed.
"""" i Oracle VM VirtualBox 4.3.18

= ~| VirtualBox USE Support application.

=l = | VirtualBox Networking

- | VirtualBox Bridge:
=3 ~ | VirtualBox Host-C
- Qvl VirtualBox Python 2.x 5L
< >

Location:

Version 4.3.18 Disk Usage

C:\Program Files\Orade\Vir tualBox,

< Back

This feature reguires 156ME on
wour hard drive. Ithas 3of 3
subfeatures selected. The
subfeatures require 812KB on vyo...

Browse

Cancel

Installing Vagrant on Windows

www.it-ebooks.info

29

http://www.it-ebooks.info/

I disable the options to create shortcuts, as these won’t be necessary for the learning
environment.

Figure 2-6. Register File Associations

fiz Oracle VM VirtualBox 4.3.18 Setup

Custom Setup
Select the way you want features to be installed.

Please choose from the options below:

[T create a shortcut on the desktop
[create a shortcut in the Quick Launch Bar

Register file associations

Version 4.3.18 < Back Mext > Cancel

Accept the warning about a short interruption to your networking.

Figure 2-7. VirtualBox Network Interruption Notice

30 | Chapter2: Creating a Learning Environment

www.it-ebooks.info

http://www.it-ebooks.info/

! Oracle VM VirtualBox 4.3.18

Warning:
Network Interfaces

Installing the Orade VM VirtualBox 4.3. 18 Networking
feature will reset your network connection and temporarily
disconnect you from the network,

Proceed with installation now?

Version 4,3.18 es Mo
Click Install to install VirtualBox.
Figure 2-8. Install VirtualBox
b Oracle VM VirtualBox 4.3.18 Setup
Ready to Install
The Setup Wizard is ready to begin the Custom installation.
Click Install to begin the installation. If you want to review or change any of your
installation settings, dick Back. Click Cancel to exit the wizard.
Version 4.3.18 < Back Install Cancel

Installing Vagrant on Windows

www.it-ebooks.info

31

http://www.it-ebooks.info/

You don’t necessarily need to install the USB drivers for our environment, but it
doesn’t hurt anything.

Figure 2-9. USB Drivers

= Windows Security

Would you like to install this device software?

Mame: Oracle Corporation Universal Serial Bus ...
e 4 Publisher: Oracle Corporation

Always trust software from "Oracle Corporation”. Install Don't Install

';jj' You should only install driver software from publishers you trust. How can | decide
which device software is safe to install?

Disable the checkbox to start VirtualBox after installation. We'll start it later in the
process.

Figure 2-10. Disable autostart
o Oracle VM VirtualBox 4.3.18 Setup

Oracle VM VirtualBox 4.3.18
installation is complete.

Click the Finish button to exit the Setup Wizard.

[] start Orade VM VirtualBox 4.3. 18 after installation

Version 4.3.18 < Back Cancel

32 | Chapter2: Creating a Learning Environment

www.it-ebooks.info

http://www.it-ebooks.info/

Now we should install Vagrant. Run the Vagrant installer package that you downloa-
ded.

Figure 2-11. Vagrant Installer for Windows
fiz Vagrant Setup = =

Welcome to the Vagrant Setup Wizard

The Setup Wizard will install Vagrant on your computer. Click
Mext to continue or Cancel to exit the Setup Wizard.

Back Next | | cancel

Accept the License Agreement

Figure 2-12. License Agreement

Installing Vagrant on Windows | 33

www.it-ebooks.info

http://www.it-ebooks.info/

! Vagrant Setup = B

End-User License Agreement
Please read the following license agreement carefully

Vagrant core is licensed under the MIT license. This "
installation also contains

extensions to Vagrant which are under a non-open source
license. Bath licenses

are visible below.

The MIT License

This license is applicable to the core of Vagrant, and any
component of v

[]1 accept the terms in the License Agreement

Print Back Cancel

Select where you want to install Vagrant. As this figure shows, I prefer to install
Vagrant in the normal system location for 64-bit programs. It doesn’t matter which
path you choose here.

Figure 2-13. Vagrant Destination Folder

34 | Chapter2: Creating a Learning Environment

www.it-ebooks.info

http://www.it-ebooks.info/

! Vagrant Setup = B

Destination Folder
Click Mext to install to the default folder or dick Change to choose another.

Install Vagrant to:

IC:\Program Files {x86)\HashCorp\Vagrant),

This acknowledged completion of the installation.

Figure 2-14. Installation Complete

i Vagrant Setup = B

p Completed the Vagrant Setup Wizard

Click the Finish button to exit the Setup Wizard.

e ——"

Installing Vagrant on Windows | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Windows systems will need to reboot at this point.

Figure 2-15. Reboot after installation

bz Vagrant Setup

Al You must restart your system for the configuration
b /.-' changes made to Vagrant to take effect. Click Yes to
— restart now or Mo if you plan to manually restart later.

Yes No

Starting a Command Prompt

At this point we'll need to start a command prompt. We'll be using the command
prompt for the remainder of this book, so now is a good time to get used to it.

On a Macintosh, follow these steps:

1. Open Finder

2. Click on Applications in the sidebar on the left.
3. Open the Utilities folder.

4. Start the Terminal application.

On Windows 7 and before, follow these steps:

1. Touch the Windows key on your keyboard, or click on the Start button on the
bottom left of your screen.

2. Type cmd into the Search programs and files search bar immediately above the
Start button.

On Windows 8 and later, follow these steps:

1. From the Metro screen, click on the down arrow icon at the bottom left of the
screen.

2. Scroll to the right and locate the Windows System section.

3. Click on Command Prompt.

No matter which operating system you are using, you will find yourself at a command
prompt in your home directory. This is where we will start.

36 | Chapter2: Creating a Learning Environment

www.it-ebooks.info

http://www.it-ebooks.info/

If you are an experience user you may already have a terminal or
command prompt that you prefer to use. Any alternative should
work just fine.

Downloading a Box

Now we will download a virtual box image to use as the base system for our learning
environment. As mentioned before, we'll use CentOS 7.0 as it is well supported by all
Puppet Labs programs and modules.

$ vagrant box add --provider virtualbox \
http://puppet-vagrant-boxes.puppetlabs.com/centos-65-x64-virtualbox-nocm.box
==> box: Loading metadata for box 'https://atlas.hashicorp.com/puppetlabs/boxes/centos-7.0-64-nocn
==> box: Adding box 'puppetlabs/centos-7.0-64-nocm' (v1.0.1) for provider: virtualbox
box: Downloading: https://atlas.hashicorp.com/puppetlabs/boxes/centos-7.0-64-nocm/versions/1.¢
==> box: Successfully added box 'puppetlabs/centos-7.0-64-nocm' (v1.0.1) for 'virtualbox'!

On windows this would look like this:

C:\> vagrant box add --provider virtualbox \
https://atlas.hashicorp.com/puppetlabs/boxes/centos-7.0-64-nocm
==> box: Loading metadata for box 'https://atlas.hashicorp.com/puppetlabs/boxes/centos-7.0-64-nocr
==> box: Adding box 'puppetlabs/centos-7.0-64-nocm' (v1.0.1) for provider: virtualbox
box: Downloading: https://atlas.hashicorp.com/puppetlabs/boxes/centos-7.0-64-nocm/versions/1.¢
==> box: Successfully added box 'puppetlabs/centos-7.0-64-nocm' (v1.0.1) for 'virtualbox'!

You may note that there are boxes at this site that already have Puppet installed. I

want you to go through the installation of Puppet on a barebones system so that you
have that experience before we get started.

Initialize Vagrant System

Now we shall create a project directory for your learning environment. Starting in
your home directory, take the following steps. Steps are the same for Windows or
Macintosh users, except that Windows users will have a C:\> prompt.

$ git clone https://github.com/jorhett/learning-puppet4
Cloning into 'learning-puppet4'...

remote: Counting objects: 64, done.

remote: Total 64 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (64/64), done.

Checking connectivity... done.

$ cd learning-puppet4

You'll notice that we have preinstalled a Vagrantfile which lists the systems we'll use
in this book. If you are familiar with Vagrant, you'll know that we can easily start

DownloadingaBox | 37

www.it-ebooks.info

http://www.it-ebooks.info/

these systems with vagrant up. Let’s do that now. This will initialize a client system
we'll use for learning puppet.

$ vagrant up client
Bringing machine 'client' up with 'virtualbox' provider...
==> client: Importing base box 'centos65'...
==> client: Matching MAC address for NAT networking...
==> client: Setting the name of the VM: puppet-intro_client_1415082034018_51797
==> client: Clearing any previously set network interfaces...
==> client: Preparing network interfaces based on configuration...
client: Adapter 1: nat
client: Adapter 2: hostonly
==> client: Forwarding ports...
client: 22 => 2222 (adapter 1)
==> client: Booting VM...
==> client: Waiting for machine to boot. This may take a few minutes...
client: SSH address: 127.0.0.1:2222
client: SSH username: vagrant
client: SSH auth method: private key
client: Warning: Connection timeout. Retrying...
==> client: Machine booted and ready!
==> client: Checking for guest additions in VM...
==> client: Setting hostname...
==> client: Configuring and enabling network interfaces...
==> client: Mounting shared folders...
client: /vagrant => /Users/jorhett/puppet-intro

We've started only a single machine to learn from, named client. There are several
other machines available that we will utilize in future chapters.

$ vagrant status
Current machine states:

client running (virtualbox)

puppetmaster not created (virtualbox)
web1 not created (virtualbox)
web2 not created (virtualbox)
web3 not created (virtualbox)
dashboard not created (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run ‘vagrant status NAME'.

You can suspend, resume, and destroy these instances quite easily.

$ vagrant suspend client
==> client: Saving VM state and suspending execution...

$ vagrant resume client
==> client: Resuming suspended VM...
==> client: Booting VM...

38 | (Chapter2: Creating a Learning Environment

www.it-ebooks.info

http://www.it-ebooks.info/

==> client: Waiting for machine to boot. This may take a few minutes...
client: SSH address: 127.0.0.1:2222
client: SSH username: vagrant
client: SSH auth method: private key
client: Warning: Connection refused. Retrying...
==> client: Machine booted and ready!

$ vagrant destroy client

client: Are you sure you want to destroy the 'client' VM? [y/N] n
==> client: The VM 'client' will not be destroyed, since the confirmation
==> client: was declined.

If you do destroy the instance, all you need to do is vagrant up client to create
another and start over. We're not going to spend any more time covering Vagrant
here, but remember suspend and resume when you want to stop your test environ-
ment but don’t want to have to start from scratch when you restart it later.

Now that this is running, let’s login to the client system and get started.

$ vagrant ssh client

Last login: Tue Feb 18 13:49:31 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@client ~]$

Initialize Non-Vagrant System

If you are using a virtual node of your own choice, we'll need to take a couple of steps
so that you can follow the instructions in this book. Login to the virtual node and run
the following commands:

$ git clone https://github.com/jorhett/learning-puppet4
Cloning into 'learning-puppet4'...
remote: Counting objects: 64, done.
remote: Total 64 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (64/64), done.
Checking connectivity... done.
$ sudo ln -s /home/username/learning-puppet4 /vagrant
Within this book you will many times see the following prompt shown in the exam-

ples:
[vagrant@client ~]$

You'll need to mentally replace this with whatever your virtual node’s shell prompt is.
Or if you wish to be ensure it looks like same, you can use the following environment
variable to sync them up:

$ export PS1='[vagrant@client \W]\$ '

Initialize Non-Vagrant System | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing a Text Editor

Before we go on to install Puppet on your virtual system, stop and take a moment to
ensure you have a text editor you like handy and available. There are two ways to use
text editors.

Inside the virtual system
If you are comfortable using unix text editors like vim, emacs, or nano you can
run your editor inside the virtual system.

On your desktop
The folder learning-puppet4 is mounted inside your virtual system as /
vagrant. This means you can use a text editor of your choice to edit files inside
this directory, and they will be visible and available to Puppet on your virtual sys-
tem.

One issue for both Mac and Windows users is handling of carriage returns and line-
feeds within files. Puppet and Git both work best when lines are terminated by line-
feeds without carriage returns. This is well known as “Unix file format” So it is
important to select an editor which can read files in this format, and perhaps even
more importantly, will write them out in the same format without any surprises.

Many editors on Windows open Unix format files correctly, but will quietly replace
the endings with a carriage return when saving. As your target nodes may expect
linefeed-terminated files, this can cause file corruption on the target host. Likewise,
the opposite problem can exist as well: if you are editing files to be written out to
Windows nodes, then you may need to preserve the carriage returns in the file. If you
have a mixed environment of Unix/Linux and Windows nodes, it is essential that
your editor can handle both file formats.

Here are a list of editors we recommend. I have limited this list to only include edi-
tors which handle both file formats well. If you don't have any Windows nodes, then
you can use any editor that pleases you.

On the Virtual System

There are three editors immediately available to you on the virtual system. All three
of these normally create Unix format files, but can edit Windows format files without
causing corruption. You can use the following editors from the command line inside
your virtual system.

Table 2-1. Text editors available on the virtual system

vim Install with sudo yum install vim Powerful editor for experienced users, see Learning the vi and Vim
Editors

40 | Chapter2: Creating a Learning Environment

www.it-ebooks.info

http://shop.oreilly.com/product/9780596529833.do
http://shop.oreilly.com/product/9780596529833.do
http://www.it-ebooks.info/

emacs Install with sudo yum install Powerful editor for experienced users, see Learning GNU Emacs
emacs-nox

nano Install with sudo yum install nano An easy text editor for beginners, no book required!

As it happens, all three of the above editors are installed on Macs by default, and
available with the Cygwin package for Windows. You can get quite comfortable using
these editors on your desktop.

If you use VIM, I highly recommend that you download and
install the Puppet syntax highlighter, available at https://
github.com/rodjek/vim-puppet

On your Desktop

When writing Puppet modules using a Windows system, you'll run into problems
with line-endings within templates and source files. Windows uses both a carriage-
return character and a linefeed character to end a line, whereas Mac, Linux, and Unix
systems use only the linefeed character.

If you open up the files we use in this book with the Windows Notepad editor, you
will see that they show up as a single, unbroken line. Wordpad can display the file but
will change the endings when it writes out changes. None of the built-in editors on
Windows: Notepad, Wordpad, or Word are safe to use with Unix format files.

For Windows users I highly recommend the Notepad++ editor. It can open and write
out both Unix and Windows format files without changing the line endings. It does
not reformat files without explicit action taken by you.

For Mac users I recommend the TextWrangler and TextMate editors. The built-in
TextEdit editor is minimally sufficient for Unix format files, but cannot handle files in
Windows format properly.

If you are already a fan of the Unix editor Vim, you can find a GUI version of it for
your operating system at GVim or MacVIM. Vim can safely read and write files in
both formats.

If you have experience with the Eclipse IDE, the workspace editor
can safely read, write, and convert upon request files in both Unix
and Windows formats. Later on in this book I'll show you how to
install Geppetto, an Eclipse extension that will help you develop
and debug Puppet modules and manifests within Eclipse.

Choosing a Text Editor | 41

www.it-ebooks.info

http://shop.oreilly.com/product/9780596006488.do
http://notepad-plus-plus.org/
http://www.barebones.com/products/textwrangler/index.html
http://macromates.com/
http://www.vim.org/download.php#pc
https://code.google.com/p/macvim/
http://www.it-ebooks.info/

Conclusion

In this chapter you created a virtualized environment suitable for learning and testing
Puppet without affecting any production or personal systems.

The default learning environment we recommended had you install the Git develop-
ment tools, Vagrant, and Virtualbox to provide a virtualized CentOS system on which
you can test and develop.

If you already have a virtualization platform that you prefer to work with, you are
welcome to use that instead. We did recommend using an operating system compati-
ble with RedHat Enterprise Linux 6 or 7, as it is the best tested and guaranteed ver-
sion for compatibility with Puppet Labs-provided modules that we will be using
through the book. After you feel strong in the use of Puppet, there are detailed notes
for use on other platforms in the Appendices.

You cloned a Git repository which contains Vagrant system definitions, some exam-
ple manifests, and other helpful files we'll use throughout this book.

Finally, we discussed the need for editing text files, and how you can use either an
editor on the virtualized system, or an editor on your desktop to create and edit Pup-
pet manifests.

This environment is yours to keep. It will be useful as you develop and test Puppet
manifests and modules during your learning process.

42 | Chapter2: Creating a Learning Environment

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3
Installing Puppet

In this chapter you will install the Puppet agent and its dependencies. We have delib-
erately chosen a Vagrant box that doesn’t have Puppet pre-installed, so that you can
go through and learn the process. You can repeat these exact steps on any test or pro-
duction node to install or upgrade Puppet.

Let’s get started by installing the Puppet Labs package repository.

Adding the Package Repository

Now we shall install and enable the Puppet Labs package collection 1 repository on
your fresh new system. Starting in the home directory, take the following steps.

[vagrant@client ~]$ sudo yum install -y http://yum.puppetlabs.com/puppetlabs-release-pcl-el-7.noar

This command will install and enable the Puppet Labs puppetlabs-release-pcl package
repository, which contains the Puppet 4 package. After it has finished installing, you
can confirm it is enabled with the following command.

[vagrant@client ~]$ sudo yum repolist
Loaded plugins: fastestmirror
...snip repository checks...

repo id repo name status
base/7/x86_64 Cent0S-7 - Base 8,652
extras/7/x86_64 Cent0S-7 - Extras 84
pl-puppet-agent-latest PL Repo for puppet-agent at commit latest 1
puppetlabs-pcl/x86_64 Puppet Labs PC1 Repository el 7 - x86_64 6
updates/7/x86_64 Cent0S-7 - Updates 355

repolist: 9,037

83

www.it-ebooks.info

http://www.it-ebooks.info/

This shows you that there was, at the time this book was last updated, 6 packages in
the puppetlabs-pcl repository.

What is a Package Collection?

The Puppet ecosystem contains many tightly related and dependent packages. Pup-
pet, Facter, MCollective, and the Ruby interpreter are all tightly related dependencies.
The Puppet agent, Puppet server, and PuppetDB are self-standing but interdependent
applications.

Production Puppet environments have been struggling with two conflicting needs:

o Itis important to stay up to date with the latest improvements and security fixes.
« Improvements and upgrades in an application would sometimes introduce prob-
lems for interdependent components of the Puppet ecosystem.

Puppet Labs has chosen to address these concerns with two related changes.

Puppet and all core dependencies are shipped together in a single package.
This change reduces the need to ensure compatibility across a wide variety of
versions of dependencies. It also ensures that modern versions of Ruby are avail-
able on every supported operating system.

Components of the Puppet ecosystem will be tested, packaged, and shipped together in
Package Collections.
Significant improvements and breaking changes will be introduced in a new
Package Collection. This allows Puppet environments to safely track updates
within a Package Collection, knowing that all versions within the collection are
tested and guaranteed to work together.

We'll cover how to manage upgrades of the Package Collection in Part IV of this
book.

Installing the Puppet Agent

Now let’s go ahead and install the Puppet Agent.

[vagrant@client ~]$ sudo yum install -y puppet-agent

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

* base: centos.sonn.com

* extras: mirrors.loosefoot.com

* updates: mirrors.sonic.net

Resolving Dependencies

--> Running transaction check

---> Package puppet-agent.x86_64 0:1.1.0-1.el7 will be installed
--> Finished Dependency Resolution

44 | Chapter3:Installing Puppet

www.it-ebooks.info

http://www.it-ebooks.info/

...snip lots of output...

Running transaction check
Running transaction test

Transaction test succeeded

Running transaction

Installing :
Verifying

Installed:

puppet-agent-1.1.0-1.el7.x86_64 1/1

: puppet-agent-1.1.0-1.el7.x86_64 1/1

puppet-agent.x86_64 0:1.1.0-1.el7

Complete!

Reviewing Dependencies

If you have installed previous versions of Puppet, you were used to seeing depend-
ency packages installed along with Puppet. Puppet 4 uses an All In One (AIO) instal-
ler, where all dependencies are installed together with Puppet. You can view these in

the new installation directory.

[vagrant@client ~]$ 1s

total 0

drwxr-xr-x
drwxr-xr-x
Trwxrwxrwx
Trwxrwxrwx
Trwxrwxrwx
Trwxrwxrwx
Trwxrwxrwx

2
4
1
1
1
1
1

Unlike previous

this:

root
root
root
root
root
root
root

root
root
root
root
root
root
root

-la /opt/puppetlabs/bin/

68
29
34
33
32
30
33

Apr
Apr
Apr
Apr
Apr
Apr
Apr

(o)W e) Wi« W) We) N Ne))

04:
04:
04:
04:
04:
04:
04:

41 .

41
41
41
41
41
41

cfacter -> /opt/puppetlabs/puppet/bin/cfacter
facter -> /opt/puppetlabs/puppet/bin/facter
hiera -> /opt/puppetlabs/puppet/bin/hiera

mco -> /opt/puppetlabs/puppet/bin/mco

puppet -> /opt/puppetlabs/puppet/bin/puppet

versions of Puppet, the Puppet user commands are not installed
in /usr/bin, and won’t be available in your path. There are several ways to deal with

 You can symbolically link the Puppet commands into the expected path.
o The /opt/puppetlabs/bin directory can be added to your path, and to the

secure_path in your sudoers file.

For this book, set up the symbolic links for simplicity:

[vagrant@client ~]$ ln -s /opt/puppetlabs/bin/puppet /usr/bin/puppet
[vagrant@client ~]$ ln -s [opt/puppetlabs/bin/facter /usr/bin/facter
[vagrant@client ~]$ ln -s /opt/puppetlabs/bin/mco [usr/bin/mco

Let’s review the other programs you see in this directory besides Puppet.

Reviewing Dependencies | 45

www.it-ebooks.info

http://www.it-ebooks.info/

Facter

Facter is a program which evaluates a system and provides a number of facts
about it. These facts include node-specific information like architecture, host-
name, and IP address, in addition to custom information from plugins provided
by Puppet modules. For a sneak preview, run the command facter right now
and look at all the information it has.

We'll be covering how to make use of facter facts in Using Puppet Configura-
tion Language, and how to create custom facts in Part II: Puppet Modules.

Hiera

Hiera is a component we'll use to load in the data used by Puppet manifests and
modules. Hiera provides a configurable hierarchy allowing you to provide default
values, and then override or expand them through a customizable hierarchy. This
may sound complex, but Hiera’s beauty and elegance comes from its simplicity.

You'll learn how to use Hiera in Part II: Puppet Modules, after which you’ll see
Hiera used in every following example throughout this book.

Mco

Mco is the command line client for the Marionette Collective, an orchestration
tool tightly integrated with Puppet.

You'll learn how to use MCollective in Part IV: Advanced Puppet, where we'll use
the mco client to manipulate the Puppet agent.

Reviewing Puppet4 Changes

If you have installed previous versions of Puppet, the installation packages and the
configuration file paths have all changed.

If you are new to Puppet, you can skim lightly through this sec-
tion as we'll bring up each path again as we teach you how to use
Puppet.

Linux and Unix

For Unix and Linux systems, the following changes have taken place.

Puppet is now installed using a new All-in-One (AIO) puppet-agent package.

This AIO package includes private versions of Facter, Hiera, MCollective, and
Ruby.

46

| Chapter3: Installing Puppet

www.it-ebooks.info

http://www.it-ebooks.info/

Executables are in /opt/puppetlabs/bin/
All executables have been moved to /opt/puppetlabs/puppet/bin. Executibles
which should be in your path have symlinks in /opt/puppetlabs/bin. You’ll need to
add this directory to your path, or symlink the executibles somewhere else in
your path.

A private copy of Ruby 2.1.5 is installed in /opt/puppetlabs/puppet
Ruby and supporting commands like gem are installed in /opt/puppetlabs/puppet,
to avoid them being accidentally called by users.

The configuration directory $Sconfdir is now /etc/puppetlabs/puppet
Open source Puppet now uses the same configuration directory as Puppet Enter-
prise. Files in /etc/puppet will be ignored.

$ssldir is inside Sconfdir
On most platforms Puppet put SSL keys and certificates in /var/lib/puppet/ssl.
With Puppet4 all SSL files will always be installed inside the $confdir.

MCollective configuration directory is now [etc/puppetlabs/mcollective
Files in /etc/mcollective will be ignored.

$vardir for Puppet agent/apply is now /opt/puppetlabs/puppet/cache/
This new directory is used only by the Puppet agent and Puppet apply. At the
time of this update, I cannot find a configuration variable to change this direc-
tory. and is configured in $confdir.

$rundir for Puppet agent is now /var/run/puppetlabs
This directory stores PID files only, and can be changed in $confdir.

Modules, manifests, and the hiera config file have a new directory: /etc/puppetlabs/code
Files which configure nodes have moved from $confdir to a new directory
$codedir. This directory contains:

o The environments directory for $environmentpath

o The modules directory for $basemodulepath

o The hiera.yaml config file for $hiera_config

o The hieradata directory (specified in hiera config file)

Reviewing Puppet4 Changes | 47

www.it-ebooks.info

http://www.it-ebooks.info/

The author feels strongly that placing storage of SSL certificates
within the /etc directory is a violation of the Linux Filesystem
Hierarchy Standard. The /etc directory should contain only static
configuration files. In virtualized, auto-scaled environments new
Puppet clients come and go. Some of my environments would
build and destroy 50,000 nodes in a single day. This makes the SSL directory
highly volatile, and completely unsuitable for placement within /etc/. I have
opened Bug PUP-4376 concerning this obvious mistake.

Windows

On Windows, very little has changed. The Puppet package has always been an All-In-
One (AIO) installer. The package now includes MCollective. Executables remain in
the same location, and the MSI package still adds Puppet’s tools to the PATH. The
$confdir and $rundir have not changed.

For review, the file locations are:

$confdir
COMMON_APPDATA: defaults to C:\ProgramData\PuppetLabs\puppet\etc on
modern Windows versions.

$codedir
C:\ProgramData\PuppetLabs\code

$vardir
C:\ProgramData\PuppetLabs\puppet\cache

$rundir
C:\ProgramData\PuppetLabs\puppet\var\run

Making Tests Convenient

Throughout this book we'll be having you edit files and make changes within the
Puppet configuration directory. Normally this would require you to type sudo every
time you want to change one of those files.

If you're a stickler like I am, you may want to skip this next step and type sudo when
modifying files in the puppet configuration directory. However I have found that
most people find the following change to create an easier to use environment for
learning. This command will make the vagrant user the owner of all files in that
directory.

[vagrant@client ~]$ sudo chown -R vagrant /etc/puppetlabs

48 | Chapter3:Installing Puppet

www.it-ebooks.info

https://tickets.puppetlabs.com/browse/PUP-4376
http://www.it-ebooks.info/

Obviously you won’t be doing this in real production environment. However it is not
uncommon to see something like the following done instead to give write access to all
members of a certain group.

[vagrant@client ~]$ sudo chgrp -R sysadmin [etc/puppetlabs
[vagrant@client ~]$ sudo chmod -R g+w /etc/puppetlabs

Conclusion

In this chapter you

learned how to enable the Puppet Yum repository on your system.
installed Puppet and its dependencies from this repository.

reviewed the supporting dependencies that support Puppet.

reviewed the changed paths used by Puppet 4 on Unix/Linux systems.

Ll N

Best of all, none of this was done with magic helper scripts that hid the details from
you. You can repeat these exact steps on any test or production node to install or
upgrade Puppet.

Conclusion | 49

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4
Writing Manifests

The very first concept we want to introduce you to is the Puppet manifest. A mani-
fest is a file containing Puppet configuration language that describes how resources
should be configured. The manifest is the closest thing to what one might consider a
Puppet program. It uses resources to define a policy to be enforced on a node. It is
therefore the base component for Puppet configuration policy, and a building block
for complex Puppet modules.

This chapter will focus on how to write configuration policies for Puppet 4 manifests.
Writing manifests well is the single most important part of building Puppet policies.

Let’s get started with the smallest component within a manifest.

Implementing Resources

Resources are the smallest building block of the Puppet configuration language. They
represent a singular element which you wish to evaluate, create, or remove. Puppet
comes with many built-in resources. These default resources manipulate system com-
ponents that you are already familiar with, including

o Users

o Groups
« Files

o Hosts

o Packages
o Services

..and many more. Furthermore, you can create your own resources. However, let’s get
started with one of the simplest resources--the Notify resource. Let’s start with the stereo-
typical first program written in every language.

51

www.it-ebooks.info

http://www.it-ebooks.info/

notify { 'greeting':
message => 'Hello, world!'

}

This code declares a notify resource named greeting. It has a single attribute, message
which has the value wed expect in our first program. Attributes are separated from
their values using a fat comma (also called a hash rocket), which is a very common
way to identify key/value pairs in Perl, Ruby, and PHP scripting languages.

This tiny bit of code is a fully functional and valid manifest. This manifest (with one
single resource) does only one thing, which is to output that stereotypical message
every time it is called. Let’s go ahead and use Puppet to evaluate this manifest.

As part of the definition of your virtual system, we have preinstal-
led some Puppet manifests in the /vagrant/manifests directory
for use in this class. We'll refer to these throughout the book.

[vagrant@client ~]$ cat /vagrant/manifests/helloworld.pp

notify { 'greeting':
message => 'Hello, world!'

}

As you can see from this example, manifests are text files named with a . pp file exten-
sion which describe resources using the Puppet configuration language. You can cre-
ate or modify a Puppet manifest using any text editor.

Applying a Manifest

One of the best features of Puppet is the ease of testing your code. Puppet does not
require you to set up complicated testing environments to evaluate Puppet manifests.
It is easy, nay, downright trivial to test a Puppet manifest.

Let’s go ahead and implement this manifest. We will do this using the puppet apply
command which tells Puppet to implement a single Puppet manifest.

[vagrant@client ~]$ puppet apply /vagrant/manifests/helloworld.pp

Notice: Compiled catalog for client.example.com in environment production in 0.02 seconds

Notice: Hello, world!

Notice: /Stage[main]/Main/Notify[greeting]/message: defined 'message' as 'Hello, world!'

Notice: Finished catalog run in 0.01 seconds

As you can see, Puppet has implemented the manifest. It does this in several steps:

1. Compiles the manifest into a Puppet catalog.

52 | (Chapter4: Writing Manifests

www.it-ebooks.info

http://www.it-ebooks.info/

2. Uses dependency information (covered soon) to determine which resources
should be handled first.

3. Evaluates the resource to determine if changes are necessary.

4. Creates, modifies, or removes the resource--a notification message is created.

5. Provides verbose feedback about the catalog implementation.

Don’t worry about memorizing these steps at this point in the learning process. We
simply wanted to introduce you to the ideas here, which we will be covering in
increasing depth throughout this book. We'll cover the catalog compilation and eval-
uation process in great detail at the end of Part I.

For now, just remember that you’ll use puppet apply to implement Puppet mani-
fests. It will provide you verbose feedback on actions Puppet took to bring the target
resources into alignment with the declared policy.

Declaring Resources

There are only a few rules to remember when declaring resources. The format is
always the same:

resource_type { 'resource_title':

ensure => present, # usually 'present' or 'absent'
attributel => 1234, # number
attribute2 => 'value', # string
attribute3 => ['red','blue'], # array
noop => false, # boolean
}

Don’t get hung up analyzing the data types shown in this example.
We will cover the different data types of Puppet 4 exhaustively in
Using Puppet Configuration Language.

The most important rule for resources is: There can be only one. Within a manifest
or set of manifests being applied together (the catalog for a node) a resource of a
given type can only be declared with a given title once. Any other resource of that
type should refer to a different underlying component, and have a unique title.

For example, the following manifest will fail because the same title is used for both
file resources.

[vagrant@client ~]$ cat myfile.pp
file { 'my_file':

ensure => present,

path => 'my_file.txt',
}

Declaring Resources | 53

www.it-ebooks.info

http://www.it-ebooks.info/

file { 'my_file':
ensure => present,
path => 'my_file.csv',

}

notice { 'my_file':
message => "My file is present",

}

[vagrant@client ~]$ puppet apply myfile.pp

Error: Evaluation Error: Error while evaluating a Resource Statement, Duplicate declaration:

You'll notice that no complaint was given for the Notice resource with the same title.
This is not a conflict. Only resources of the same type cannot utilize the same title.
Naming the files above with their full paths ensures no conflicts:

file { '/home/vagrant/my_file.txt':
ensure => present,
path => '/home/vagrant/my_file.txt',
}

file { '/home/vagrant/my_file.csv':
ensure => present,
path => '/home/vagrant/my_file.csv',
}

Viewing Resources

One nice feature of Puppet is that it can show you an existing resource written out in
Puppet language. This makes it easy to generate code based on existing configura-
tions. Let’s demonstrate this with an e-mail alias.

[vagrant@client ~]$ puppet resource mailalias postmaster
mailalias { 'postmaster':

ensure => 'present',
recipient => ['root'],
target => '/etc/aliases',

}

This output gives you the structure, syntax, and attributes to declare this alias within
your Puppet policies. You could write this output to a manifest file, change the recipi-

ent, and then use puppet apply on this manifest to change the postmaster alias on
this node.

Let’s examine another resource--the user you are logged in as.

[vagrant@client ~]$ puppet resource user vagrant
Error: Could not run: undefined method ‘exists?' for nil:NilClass

54 | Chapter4: Writing Manifests

www.it-ebooks.info

File]

http://www.it-ebooks.info/

This somewhat confusing error message means that you don’t have the privileges to
view that resource. So let’s escalate our privileges to complete this command with

sudo.

[vagrant@client ~]$ sudo puppet resource user vagrant
user { 'vagrant':

}

ensure =
g'Ld =>
groups =>
home =
password =>

password_max_age =>
password_min_age =>
shell =>
uid =>

'present’,

'500',

['wheel'],

' /home/vagrant',
'$15sC3NqQLSGSFsXVyW7azpoh76edOfAWml ",
'99999"',

|0|,

'/bin/bash',

'500',

If you look at the resource you'll see why root access was necesarry. The user resource
contains the user’s password hash, which required root privilege to read from the
shadow file. As with the alias above, you could write this to a file, replace the pass-
word hash, and use sudo puppet apply to change the root password.

Executing Programs

Let’s examine another resource types: commands, or execs. You can use an exec
resource to execute programs as part of your manifest. Let’s examine of these now.

exec { 'echo-holy-cow':

}

path = ['/bin'],
cwd = '/tmp',
command => 'echo "holy cow!" > testfile.txt',

creates => '/tmp/testfile.txt',

returns => [0],

logoutput => on_failure,

Now when you apply this manifest, it will create the testfile.txt file. Notice that we use
single quotes to encapsulate the values given to the attributes.

Best Practice: It is recommended within the Puppet Style Guide
to use single quotes for any value which does not contain a vari-
able. This protects you against accidental interpolation of a vari-
able that was not intended. Use double quotes with strings
containing variables.

The exec resource defined above uses the creates attribute. This attribute defines
what the expected result of the command execution will be. When the file named

Executing Programs | 55

www.it-ebooks.info

http://www.it-ebooks.info/

exists, the command is not executed. This means the manifest can be run repeatedly
and nothing will change after the file is initially created. Let’s test this out here:

[vagrant@client ~]$ puppet apply /vagrant/manifests/tmp-testfile.pp

Notice: Compiled catalog for client.example.com in environment production in 0.03 seconds
Notice: /Stage[main]/Main/Exec[echo-holy-cow]/returns: executed successfully

Notice: Finished catalog run in 0.07 seconds

[vagrant@client ~]$ puppet apply /vagrant/manifests/tmp-testfile.pp
Notice: Compiled catalog for client.example.com in environment production in 0.03 seconds
Notice: Finished catalog run in 0.01 seconds

There are a wide variety of attributes you can use to control whether or not an exec
resource will be execute, and which return codes indicate success or failure. This is a
complex and feature-rich resource. Whenever implementing an exec it’s best to test
carefully, and refer to the documentation https://docs.puppetlabs.com/references/
latest/type.html#exec.

I must beg your forgiveness, as I have deliberately led you astray

to teach you a common mistake when learning declarative pro-

gramming. While exec is an essential and sometimes crucial
\ resource type, it is best to avoid using execs whenever possible.
We'll implement the exact same result with a more appropriate File resource
below.

If you examine the exec resource above, you’ll note that we had to declare how to
make the change, and also whether or not to make the change. This is very similar to
procedural programming, and can be very difficult to maintain.

It is generally more difficult to write declarative code using an exec. One tends to fall
backwards into a procedural programming style. Except for circumstances where no
other method is possible, an exec is generally indication of a poorly written policy.

Best Practice: Avoid using exec whenever possible, especially
when a native Puppet resource can do the job.

Managing Files

How else could we create this file? We could have used the file resource. Let’s exam-
ine one now.

file { '/tmp/testfile.txt':
ensure => present,
mode => '0644"',

56 | Chapter4: Writing Manifests

www.it-ebooks.info

https://docs.puppetlabs.com/references/latest/type.html#exec
https://docs.puppetlabs.com/references/latest/type.html#exec
http://www.it-ebooks.info/

replace => true,
contents => 'holy cow!',
}
This is a properly declarative policy. We declare that the file should exist, and what
the contents of the file should be. We do not need to concern ourselves with how, or
when to make changes to the file. Furthermore, we were able to ensure the contents
of the file remained consistent, which is not possible within an echo command.

You’'ll also notice that the declarative manifest used less lines of
text, and guaranteed a more consistent output.

Let’s go ahead and apply this policy now.

[vagrant@client ~]$ puppet apply /vagrant/manifests/file-testfile.pp

Notice: Compiled catalog for client.example.com in environment production in 0.06 seconds

Notice: /Stage[main]/Main/File[/tmp/testfile.txt]/content: content changed
'{md5}0eb429526e5e170cd9ed4f84c24e442b" to '{md5}3d508c856685853ed8a168a290dd709c"’

Notice: /Stage[main]/Main/File[/tmp/testfile.txt]/mode: mode changed '0664' to '0644'

Notice: Finished catalog run in 0.03 seconds

[vagrant@client ~]$ puppet apply /vagrant/manifests/file-testfile.pp
Notice: Compiled catalog for client.example.com in environment production in 0.07 seconds
Notice: Finished catalog run in 0.02 seconds

Unlike the previous exec resource, Puppet observed that the contents were different
and changed the file to match. Now, you're probably thinking: aren’t the file contents
the same in both? Nope. It's not obvious in the exec declaration but echo appends a
trailing newline to the text. As you can see here, the file contents don’t include a new-
line.

[vagrant@client ~]$ cat /tmp/testfile.txt

holy cow![vagrant@client ~]$
You can easily adjust the file contents to include as many newline characters as you
want. Since the newline character is interpreted, you’ll need to use double quotes
around the contents. You could also change the replace attribute if you only wanted
to create the file but not replace it.

file { '/tmp/testfile.txt':
ensure => present,
mode => '0644"',
replace => false,
contents => "holy cow!\n",

Managing Files | 57

www.it-ebooks.info

http://www.it-ebooks.info/

You can find complete details of the many attributes available for the file resource at
https://docs.puppetlabs.com/references/latest/type.html#file

Declarative Review

In the previous section I told you that it was best practice to avoid using Exec resour-
ces. To understand the reason for this, let’s return our previous discussion of the word
Declarative.

If the code informs the interpreter what to do, and when to do it, and how to do it...
then it is functioning in a procedural way. If the code informs the interpreter what it
wants the result to be, then the code is declarative.

It is unfortunately common to see people new to Puppet spend a

lot of time attempting to write procedural manifests. They strug-

gle with attempting to instruction Puppet on exactly how to do

something. Eventually, they realize they are fighting against the

nature of a declarative interpreter, and come around in their way
of thinking. If you can learn this properly now, you can avoid the most common
mistakes and move directly forward to becoming a Puppet expert.

Yes, the Exec resource will let you write procedural manifests in Puppet. However,
just like we discussed in Thinking Declarative you'll find that it takes more effort, is
harder to maintain, and is less likely to produce consistent results.

The reason I advocate so strongly to not use Execs is fairly simple. The Exec resource
runs the command, but it doesn’t really know what the exec-ed command does. That
command could modify the node state in any form, and Puppet wouldn’t be aware of
it. Exec represents a fire and forget mentality, where the only piece of information
returned to Puppet is the exit code from the command.

Notice: /Stage[main]/Main/Exec[echo-holy-cow]/returns: executed successfully

All you know is that the command here returned an exit code you expected (0 by
default, which is the Unix convention for success). You don’t really know what the
command did. If someone wrote a Puppet manifest last week, and then removed it
from the execution this week, you'll have to go search backups to determine what the
command did.

When you declare the desired state using resources specific to what has been
changed, then Puppet logs each and every change made. Files which are changed are
backed up, and can be restored if necessary. For example, let's examine what hap-
pened when we implemented the File resource.

Notice: /Stage[main]/Main/File[/tmp/testfile.txt]/content: content changed
'{md5}0eb429526e5e170cd9ed4f84c24e442b' to '{md5}3d508c856685853ed8a168a290dd709c"
Notice: /Stage[main]/Main/File[/tmp/testfile.txt]/mode: mode changed '0664' to '0Q644'

58 | Chapter4: Writing Manifests

www.it-ebooks.info

https://docs.puppetlabs.com/references/latest/type.html#file
http://www.it-ebooks.info/

In this implementation, without having any access to read the original Puppet mani-
fest, you know that the file mode and the file contents were changed. You can validate
the file contents later to match the md5 hash, or restore a copy of the file as it was
before this change was made.

Using the File resource is less code, easier to read, more consistent in implementa-
tion, and best of all logs much more accurately the changes which were made. I find
this statement to be true of every situation when you can replace an Exec resource
with a native resource. Use an Exec resource only when no other choice is available.

Testing Yourself

Let’s pause for a second and utilize what you have learned to build a Puppet manifest.

» Use puppet resource to create a new manifest from the file /tmp/testfile.txt.
 Change the file mode to be group writeable. (either 0664 or ug=rw,o=r)

» Change the content to say something that amuses you.

o Run puppet apply yourmanifest.pp and observe the changes.

o Confirm the changes with the Is -la /tmp and cat /tmp/testfile.txt commands.
« Run puppet apply again and see what happens.

You won't need to use sudo to make any of these changes, as you are the owner of this
file.

Conclusion

In this chapter you learned about Manifests, single files which provide Puppet policy
to be implemented on the node. Manifests are the closest thing that could be called a
program in the conventional sense.

You learned how to create and apply Resources, the smallest building blocks of a Pup-
pet manifest. You learned the common syntax of a resource, and how to retrieve the
details of an existing resource on a system in the Puppet configuration language.

You learned how to instruct the Puppet agent to output messages during application
of the manifest for debugging purposes.

You also learned how you can execute programs in the policy, but also why this can
be bad design. You learned how using a more declarative style uses less code, and
works more consistently in all situations.

Testing Yourself | 59

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5
Using Puppet Configuration Language

Now that you've been introduced to the Puppet manifest and the Resource building
block, we are going to introduce you to the Puppet configuration language.

This chapter will introduce you to the data types, operators, conditionals, and itera-
tions which can be used to build configuration policies for Puppet 4 manifests. Writ-
ing manifests well is the single most important part of using Puppet. You'll find
yourself returning to this chapter again and again as you develop your own manifests.

This chapter is intended to provide a detailed reference for of the
configuration language. Don’t stop here if you don’t understand
how or why to use one piece of the language just yet. Just take in
what is possible, and refer to this chapter as you build and grow
your manifests, and make them into Puppet modules.

First we'll get started with how variables work in Puppet.

Defining Variables

Like many scripting languages, variables are prefaced with a $. The variable name
must start with a lower case letter, and may contain lower case letters, numbers, and
underscores.

Smyvar # valid
SMyVar # invalid
$my_var # valid
Smy-var # invalid
$_myvar # invalid

61

www.it-ebooks.info

http://www.it-ebooks.info/

$my3numbers # valid
S$3numbers # invalid

Previous versions of Puppet allowed upper case letters, periods,
and dashes with inconsistent results. Puppet 4 has improved
\ reliability by enforcing these standards.

Values are assigned with an = sign. The values can be boolean, numbers, strings,
arrays, or hashes. As 'm sure you've been introduced to these concepts many times
before, we'll jump straight to some examples.

S$not_true = false # boolean
Snum_tokens = 115 # number

Smy_name = 'Joe' # string

smy_list = [1,4,7] # items to an array
[$first,$last] = ['Jo', 'Rhett'] # array to array
Skey_pairs = {name => 'Joe', uild => 1001} # hash

As I'm sure you can guess from the examples, anything after a # mark is a comment
ignored by the interpreter.

New to Puppet 4, you can declare the data type of a variable at assignment.

Boolean $not_true = false
Integer Snum_tokens = 115
String $my_name = 'Joe'
Array[Integer] $Smy_list = [1,4,7]

Array[String] [$first,$last] = ['Jo', 'Rhett']
Hash S$Skey_pairs {name => 'Joe', uid => 1001}

As this feature has the most benefit for input validation in Puppet modules, we cover
this topic extensively in Creating Puppet Modules: Validating Input with Types. For
now just be aware that it is possible.

You can find more details about variables and Puppet’s native data types at https://
docs.puppetlabs.com/puppet/latest/reference/lang_variables.html ~ and https://
docs.puppetlabs.com/puppet/latest/reference/lang_datatypes.html.

Defining Numbers

In Puppet 4 unquoted numerals are validated as Numeric data type.

o Decimal numbers start with 1 through 9.

o Floating point numbers contain a single period within them.

o Octal numbers (most commonly used for file modes) start with a 0.

» Hexadecimal numbers (used for memory locations or colors) start with 0x.

62 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

https://docs.puppetlabs.com/puppet/latest/reference/lang_variables.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_variables.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_datatypes.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_datatypes.html
http://www.it-ebooks.info/

In previous versions of Puppet, bare numbers were evaluated as

unquoted strings. Best practice as of Puppet 3 was to quote all

numbers. In Puppet 4 numbers are their own data type which
\ have explicit validation performed against them.

Always quote numbers which may be misinterpreted, such as decimals with leading
Zeros.

$decimal = 1234 # valid decimal assignment

Soctal = 0775 # valid octal assignment
Shexadecimal = OxFFAA # valid hexadecimal assignment
$string = '001234' # decimal number with leading zeros

Using Variables in Strings
Strings with pure data should be surrounded by single quotes.

Smy_name = 'Dr. Evil'
Show_much = "100 million'

Use double quotes when interpolating variables into strings, as shown in the example
below.

S$the_greeting = "${my_name}, you've been given ${how_much} dollars!\n"
Using the correct quotes avoids difficult situations with input data.

$num_tokens = '100 million $ dollars' # US dollars, not a variable to be evaluated

Limiting Problems with Brackets

As with most scripting languages, curly brackets should be used to delineate variable
boundaries.

$the_greeting = "Hello ${myname}, you've been given ${num_tokens} tokens!\n"

notice { 'value2':
message => "The second value in the list=${my_list[1]}\n",

}

Best Practice: Use curly brackets to delineate beginning and end
of a variable name within a string.

Use curly brackets any time you use a variable within a string, but not when using the
variable by itself. As shown below, the variable is used by itself in the resource, so it
reads easier without the brackets.

Defining Variables | 63

www.it-ebooks.info

http://www.it-ebooks.info/

This time we define the strings in advance
$file_name = "/tmp/testfile2-${my_name}.txt"
$the_greeting = "Hello ${myname}, you've been given ${num_tokens} tokens!\n"

Don't use brackets for variables that stand alone
file { $file_name:

ensure => present,

mode => '0644',

replace => true,

contents => $the_greeting,

)
No Redefinition

Variables may not be redefined in Puppet within a given namespace, or scope. We'll
cover the intricacies of scope in the Part II: Creating Puppet Modules, but understand
that a manifest has a single namespace, and a variable cannot receive a new value
within that namespace.

This is one of the hardest things for experienced programmers to get used to. How-
ever, if you consider the nature of declarative programming, it makes a lot of sense.

In procedural programming, you have a specific order of events and an expected state
of change as you pass through the code.

myvariable = 10

print myvariable # prints 10

myvariable = 20

print myvariable # prints 20
However in a declarative language, the interpreter handles variable assignment inde-
pendently of usage within resources. Which assignment would be performed prior to
the resource implementation? In my experience this could change from one node to
the other or even one evaluation to another on the same node. To avoid this problem,
Puppet kicks out an error if you attempt to change a variable’s value.

[vagrant@client ~]$ cat double-assign.pp
Smyvar = 5
Smyvar = 10

[vagrant@client ~]$ puppet apply double-assign.pp
Error: Cannot reassign variable myvar at /home/vagrant/double-assign.pp:2 on node client.example.c

Consider this part of the learning process for thinking declaratively.

64 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

http://www.it-ebooks.info/

Finding Facts

Speaking of variables, Facter provides many variables for you containing node-
specific information. These are always available for use in your manifests. Go ahead
and run the facter program by hand, and look at the output.

[vagrant@client ~]$ facter
architecture => x86_64
augeasversion => 1.0.0
blockdevice_sda_model => VBOX HARDDISK
blockdevice_sda_size => 10632560640
blockdevice_sda_vendor => ATA
blockdevices => sda
domain => example.com
facterversion => 2.3.0
filesystems => ext4,1s09660
fqdn => client.example.com
gid => vagrant
hardwareisa => x86_64
hardwaremodel => x86_64
hostname => client
id => vagrant
interfaces => eth0,eth1,lo
ipaddress => 10.0.2.15

..etc

You can also use Puppet to list out facts in JSON format:

[vagrant@client ~]$ puppet facts find
$ puppet facts find
{
"name": "client.example.com",
"values": {
"puppetversion": "4.1.0",
"virtual": "virtualbox",
"{s_virtual": true,
"architecture": "x86_64",
"augeasversion": "1.3.0",
"kernel": "Linux",
"domain": "example.com",
"hardwaremodel": "x86_64",
"operatingsystem": "CentOS",

As you can see, facter produces a significant number of useful facts about the system.
From facts that won’t change over the lifetime of a system, like platform and architec-
ture, to information that can change from moment to moment, like memory free. Try

the following commands to find some of the more variable fact information pro-
vided.

FindingFacts | 65

www.it-ebooks.info

http://www.it-ebooks.info/

[vagrant@client ~]$ facter | grep version
[vagrant@client ~]$ facter | grep mb

[vagrant@client ~]$ facter | grep free

Facter can also provide the data in different formats, useful for passing to other pro-
grams. The following options output facter data in the common YAML and JSON
formats.

[vagrant@client ~]$ facter --yaml
[vagrant@client ~]$ puppet facts --render-as yaml

[vagrant@client ~]$ facter --json
[vagrant@client ~]$ puppet facts --render-as json

Retrieving Values

Now let’s cover how to access and use variables. Each data type has different ways,
and sometimes different rules, to access them.

Strings should be surrounded by single quotes. Use double quotes when interpolating
variables into strings, as shown in the example below.
notice('Beginning the program.')

notice("Hello ${myname}, glad to see you today!")

Best Practice: Use curly brackets to delineate beginning and end
of a variable name within a string.

You can access specific values within an Array or Hash by using the index or key
respectively.

notice("The second value in my list is ${my_list[1]}")
notice("The name in my key pair hash is $Skey_pair{'name'}")
As with most scripting languages, curly brackets should be used to delineate variable
boundaries. Use curly brackets any time you use a variable within a string, but not
when using the variable by itself. Here is an example of using a pre-defined variable
properly:
Don't use quotes or brackets around variables that stand alone
file { $file_name:
ensure => present,
mode => '0644',
replace => true,

66 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

http://www.it-ebooks.info/

contents => $the_greeting,

}

The facts provided by Facter can be referenced like any other variable. The facts are
available in a $facts array. For example, to customize the message shown on login to
each node, use a File resource like this.

file { '/etc/motd':

ensure => present,

mode => '0644',

replace => true,

contents => "Host ${facts['hostname']}, running ${facts['os']['release']['full']}\n",
}

When reading older Puppet manifests, you'll find that they refer

to facts using an older style with just the fact name such as $fact
\ name. This is dangerous as the fact could be overwritten either

deliberately or accidentally within the scope the code is operat-
ing in. A slight improvement is to refer to the fact explicitly in the top-level
scope with $::factname. However the variable could be altered or changed there
as well. Finally, neither of these inform the code reader whether the value was
defined in a manifest, or by a fact.

Best Practice: Refer explicitly to the fact within the $facts hash.
This ensures you will receive the unaltered output from facter,
and informs the reader where the value came from.

Avoiding Reserved Words

As you've seen in our examples, boolean values, strings, and numbers can all be used
as bare words, or without quotes.

There are a number of reserved words which have special meaning for the interpreter,
and must be quoted when used as string values. These are all fairly obvious words
that are reserved within many other programming languages:

« and

o attr

o case

o class

o default
« define
o else

o elsif

Avoiding Reserved Words | 67

www.it-ebooks.info

http://www.it-ebooks.info/

o false

« function
o if

e in

e import
o inherits
e node

e Or

e private
o true

° type

o undef
o unless

There really aren’t any surprises in this list. Any language primitive (as named above),
resource type (e.g. file, exec, etc), or function name cannot be used as a bare word
string.

You can find a complete list of all reserved words at https://docs.puppetlabs.com/
puppet/latest/reference/lang reserved.html.

There is a legitimate problem where previous working code can
break when new functions or resource types are introduced with
the same name. It is best to avoid all possibility of failure, by quot-
ing strings every time. We do this in all examples throughout the
book.

$my_variable = somestring # valid
Smy_variable = 'somestring' # safer

Modifying with Operators

You can use all standard arithmetic operators for variable assignment or evaluation.
As before, were going to provide examples and skip an explanation you've likely
learned many times in your life.

$added =10 + 5 # 15
$subtracted = 10 - 5 #5
Smultiplied = 10 * 5 # 50
$divided =10 / 5 # 2
$remainder =10 % 5 # 0
Stwo_bits_ 1 =2 << 2 # 8
Stwo_bits_r = 64 >> 2 # 16

68 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

https://docs.puppetlabs.com/puppet/latest/reference/lang_reserved.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_reserved.html
http://www.it-ebooks.info/

If bit shifting operators aren’t something youre used to, you can
safely ignore them. You don’t want to use the bit shift operators
unless youre one of us geeks fluent in binary, and know exactly
what you are doing.

New in Puppet 4, you can concatenate arrays and merge hashes with +. You might
remember these structured data types we defined in the previous section:

smy_list = [1,4,7]
Sbigger_list = $my_list + [14,17] # equals [1,4,7,14,17]

Skey_pairs = {name => 'Joe', uid => 1001}

Suser_definition = $key_pairs + { gid => 500 } # hash now has name, uid, gid...
You can append to arrays with the << operator. Watch out though, as an array
appended to an array creates a single entry in the array containing an array in the last
position.

smy_list << 33 # equals [1,4,7,33]
$my_list << [33,35] # equals [1,4,7,[33,35]]

You can also get the difference between two hashes with the - operator.

$hash_one = {name => 'Jo', uid => 1001, gid => 500 }
Shash_two = {name => 'Jo', uild => 1001, home => '/home/jo' }
Sdifference = Shash_one - Shash_two # hash with gid and home directory

Concatenation, Append, and Difference are new features of Pup-
pet 4 not available in any previous version of Puppet.

\

We'll cover the comparison operators in the next section about conditionals.

Order of Operations

The operators have the precedence used by standard math and all other program-
ming languages. If you find this statement vague, it is because I deliberately intended
it so. Very few people know all the rules for precendence.

Do yourself and whoever has to read your code a favor -- use parenthesis to make the
ordering explicit. Explicit ordering is more readable and self-documenting.

Smyvar = 5 * (10 + Smy_var) # you don't need to know operator precedence to understand this

Modifying with Operators | 69

www.it-ebooks.info

http://www.it-ebooks.info/

If you are stuck reading someone else’s code who didn’t use parenthesis, the implicit
order of operations is documented at https://docs.puppetlabs.com/puppet/latest/
reference/lang_expressions.html#order-of-operations.

Using Conditional Operators

If you have any experience programming, you'll find Puppet’s comparison operators
familiar and easy to understand. Any expression using comparison operations will
evaluate to Boolean true or false. First, let’s discuss all the ways to evaluate state-
ments. Then we'll go over how to use the boolean results.

Number comparisons operate much as you might expect.

4 1= 4.1 # number comparisons are simple equality match
Show_many_cups < 4 # any number smaller than 4.0 is true
$how_many_cups >= 3 # any number larger than 3.0 is true

String operators are a bit inconsistent. String equality comparisons are case insensi-
tive, while substring matches are case sensitive.

coffee == 'coffee' # bare word string is equivalent to quoted single word
'Coffee' == 'coffee' # string comparisons are case insensitive

Scup_of_joe != 'tea'

'tea' !in 'coffee' # you can't find tea in coffee

'fee' in 'coffee' # but you can pay your daily barista fee

'Fee' !in 'coffee' # substring matches are case sensitive

Array and Hash comparisons match only with complete equality of both length and
value. The in comparison looks for a value matches in arrays, and key matches in
hashes.

[1,2,5] '= [1,2] # array matching tests for identical arrays
51in [1,2,5] # value found in array
{name => 'Joe'} != {name => 'Jo'} # hashes aren't identical

'Jo' !in {fname => 'Jo', lname => 'Rhett'} # Jo is a value and doesn't match

When doing comparisons you'll find the standard Boolean operators and, or, and !
(not) work exactly as you might expect.

true and true # true
true and false # false
true or false # true
true and !false # true
true and !true # false

70 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

https://docs.puppetlabs.com/puppet/latest/reference/lang_expressions.html#order-of-operations
https://docs.puppetlabs.com/puppet/latest/reference/lang_expressions.html#order-of-operations
http://www.it-ebooks.info/

Except in, every one of these operators can be used by those odd

people who enjoy Backus Naur form. Yes, you, we know about

you. And no, 'm not going to initiate any of these innocent peo-

ple into your ranks. Either you already know Backus Naur, or you

should enjoy your innocence. Just be aware that they work in that
form, should you ever find yourself in need of that particular perversion.

You can find a complete list of all operands and operators with example uses at
https://docs.puppetlabs.com/puppet/latest/reference/lang_expressions.html.

Creating Regular Expressions

Puppet supports standard Ruby regular expressions, as defined at http://www.ruby-
doc.org/core/Regexp.html. The regex operator works with a string on the left, and the
regular expression on the right of the ~ operator.

S$what_did_you_drink =~ /tea/ # likely true if English
$what_did_you_drink !~ /coffee/ # likely false if up late

You can use regular expressions in four places:

o Conditional statements: if and unless
o Case statements

o Selectors

 Node definitions (deprecated)

As Regular Expressions are well documented in numerous places we won't spend
time covering how to use them here, other than to provide some examples below. You
may find O’Reilly’s reference book Regular Expressions Pocket Reference very handy.

unless S$facts['operatingsystem'] !~ /(?1-mx:centos|fedora|redhat)/ {
include yum

}

case $facts['hostname'] {
/*web\d/: { include role::webserver }
/~mail/ : { include role::mailserver }
default : { include role::base }
}

$package_name = S$facts['operatingsystem'] ? {
/(?1-mx:centos|fedora|redhat)/ => 'mcollective',
/(?2i-mx:ubuntu|debian)/ => 'mcollective’,
/(?1-mx:freebsd)/ => 'sysutils/mcollective',

}

If you need to truly master regular expressions, there is no better book than O’Reilly
Media’s Mastering Regular Expressions.

Creating Regular Expressions | 71

www.it-ebooks.info

https://docs.puppetlabs.com/puppet/latest/reference/lang_expressions.html
http://www.ruby-doc.org/core/Regexp.html
http://www.ruby-doc.org/core/Regexp.html
http://shop.oreilly.com/product/9780596514273.do
http://shop.oreilly.com/product/9780596528126.do
http://www.it-ebooks.info/

Evaluating Conditional Expressions

Now, let’s put these expressions you've learn to use with conditional statements. You
have four different ways to utilize the boolean results of a comparison.

« If/ Elsif / Else Statements
o Unless / Else Statements
o Case Statements

o Selectors

As youd expect, there’s always the basic if/elsif/else I'm sure you know and love.

if (Scoffee != 'drunk') {
notify { 'best-to-avoid': }

}

elsif ('scotch' == 'drunk') {
notify { 'party-time': }

}

else {
notify { 'party-time': }

}

There is also the unless statement which provides the inverse of If. Unless is consid-
ered bad form by some, but if it reads easier with unless then use the most readable
variant. The following example shows why unless can be tricky reading with an else.

The Sid fact tells us who i1s running the Puppet agent
unless($facts['id'] == 'root') {
notify { 'needsroot':
message => "This manifest must be executed as root.",
}
}
else {
notify { 'isroot':
message => "Running as root.",
}
}

The use of else with unless is new to Puppet 4.

\

The case operator can be used to do numerous evaluations, avoiding a long string of
multiple elsif(s). You can test explicit values, match against another variable, use reg-
ular expressions, or evaluate the results of a function. The first successful match will
execute the code within the block following a colon.

72 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

http://www.it-ebooks.info/

case Swhat_she_drank {
'wine': { include state::california }
$stumptown: { include state::portland }
/(scotch|whisky)/: { include state::scotland }
is_tea($drink): { include state::england }
default: {}

}

Always include a bare word default option when using case statements, even if the
default does nothing as with my example above.

Selectors are similar to case statements however they return a value instead of executing
a block of code. This can be useful when defining variables. A selector looks like a normal
assignment however the value to be compared is followed by a question mark and a block
of comparisons with fat commas identifying the matching values.
$native_of = $Swhat_he_drinks ? {

'wine' => 'california',

Sstumptown => 'portland',

/(scotch|whisky)/ => 'scotland',

is_tea($drink) => 'england',

default => 'unknown',

}

As a value must be returned in an assignment operation, a match is required. Always
include a bare word default option with a value.

So the drinking comparisons have been fun, but let's examine some practical compar-
isons that you may actually use in a real manifest.

Explicit comparison
if($facts['osfamily'] == 'redhat') {
include yum
}
Do a substring match
elsif(S$facts['osfamily'] in 'debian-ubuntu') {
include apt
}
New package manager is only available with FreeBSD 9 and above
elsif(S$facts['operatingsystem'] =~ /?1:freebsd/) and ($facts['os']['release']['major'] >= 9) {
include pkgng
}

This can be more compact as a case statement:

case S$facts['osfamily'] {

'redhat’': { include yum }
'debian', 'ubuntu': { include apt 1}
'freebsd' and ($facts['os']['release']['major'] >= 9) { include pkgng }
default: {}

}

There’s also unless to reverse comparisons for readability purposes.

Evaluating Conditional Expressions | 73

www.it-ebooks.info

http://www.it-ebooks.info/

unless S$facts['kernel'] == Linux {

notify { 'You are on an older machine.': }
}
else {

notify { 'We got you covered.': }
}

Selectors are also useful for handling heterogenous environments.

$libdir = $facts['osfamily'] ? {
/(?1-mx:centos|fedora|redhat)/ => '/usr/libexec/mcollective',
/(?1-mx:ubuntu|debian)/ => '/[usr/share/mcollective/plugins’,
/(?1-mx:freebsd)/ => 'Jusr/local/share',

}

You can find a complete list of all conditional statements with more example uses at
https://docs.puppetlabs.com/puppet/3.7/reference/lang_conditional.html.

Building Lambda Blocks

Lambdas are blocks of code which accept parameters to be passed in. You can think
of them as functions without a name. You will use Lambas with the iterator functions
such as each introduced in the next section to perform a set of instructions on multi-
ple values. If you are experienced with Ruby Lambdas, you’ll find the syntax to be
identical.

Lambdas are a new, advanced feature of Puppet 4 not available
in any previous version of Puppet.

\

A lambda begins with one or more variable names between pipe | | operators. These
name the variables which will be passed into the block of code.

| Sfirstvalue, $secondvalue | {
block of code which operates on these values.

}
The lambda has its own variable scope. This means that the variables named between
the pipes exist only within the block of code. You can name these variables any name
you want, as they will be filled by the values passed by the function into the lambda
on each iteration. Other variables within the context of the lambda are also available,
such as local variables or node facts.

For example, here is a policy which will output the list of disk partitions from the
hash provided by Facter. Within the loop we refer to the hostname fact on each itera-

74 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

https://docs.puppetlabs.com/puppet/3.7/reference/lang_conditional.html
http://www.it-ebooks.info/

tion. The device name and a hash of values about each device are stored in the $name
and $device variables during each loop.

$ puppet apply /vagrant/manifests/mountpoints.pp
each($facts['partitions']) |$name, S$device| {
notice("${facts['hostname']} has device ${name} with size ${device['size']}")

}

$ puppet apply /vagrant/manifests/mountpoints.pp

Notice: Scope(Class[main]): Host geode has device sdal with size 524288
Notice: Scope(Class[main]): Host geode has device sda2 with size 3906502656
Notice: Scope(Class[main]): Host geode has device sdbl with size 524288
Notice: Scope(Class[main]): Host geode has device sdb2 with size 3906502656

As shown above, you must enclose array and hash index refer-
ences within brackets to ensure that you output only the value
requested. Otherwise it will output the entire array or hash, fol-
lowed by the literal text in brackets.

Next we'll cover each of the functions which can iterate over values and pass them to
a lambda.

Looping through Iterations

In this section were going to introduce powerful new functions for iterating over sets
of data. You can use iteration to evaluate many items within an array or hash of data
using a single block of code (a lambda, described on the previous page).

Iterations are a new feature of Puppet 4 not available in any pre-
vious version of Puppet.

\

To give you can idea of how powerful and important iteration is, let’s discuss what we
used to do in previous versions of Puppet.

I wrote a number of modules that did smart things based on what networks a node
was connected to for my consulting clients. In Puppet 3, it was necessary to write
code that would make guesses about which interfaces were available on the system,
and then check each one. Or try to discover the interface names in reverse using the
IP data to tell us which interface they were bound too. It worked within a limited
sense, but remained prone to failure in any environment which didn’t tightly match

Looping through Iterations | 75

www.it-ebooks.info

http://www.it-ebooks.info/

the network and hard configuration of my consulting client. This is not how Puppet
modules should be written.

With Puppet 4 the modules have been rewritten to iterate through all available inter-
faces and IP addresses, removing all guesswork or statically configured interface
names from the modules.

Here are some practical examples available to you from the basic facts provided by
Facter. However you can use iteration with any data point which can be presented as
an array or a hash.

» Going through all IP addresses assigned to a node to see if any meet a specific
condition.

 Going through all users on a node to find ones which match a certain criteria.

+ Going through all mounted partitions to determine the total space available to
the node.

There are five functions that iterate over a set of values and pass each one to a lambda
for processing. The lambda will process each input and return a single response con-
taining the processed values. Here are the five functions, what they do to provide
input to the lambda, and what they expect the lambda to return as a response.

« each invokes the lamba once for each entry in an array, or each key-value pair in
a hash.

o filter provides a filtered subset of the array or hash containing only entries
which were matched by the lambda.

o map returns a new Array or Hash from the results of the lambda

o reduce compiles an array or hash to a single value which is passed to the lambda

o slice creates small chunks of an array or hash and passed it to the lamba

The following examples show how these functions can be invoked. They can be
invoked like traditional functions:

each($facts['partitions']) |$name, S$device| {
notice("${facts['hostname']} has device $name with size ${device['size']}")

}
You can also chain function calls to the values they operate on, which is a common
usage within Ruby:

$facts['partitions'].each() |$name, S$Sdevice| {

notice("${facts['hostname']} has device S$name with size ${device['size']}")

}
Finally, new to Puppet 4 is the ability to use a hash or array literal instead of a vari-
able. The following example demonstrates iteration over a literal array of names:

76 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

http://www.it-ebooks.info/

['sally',"'joe','nancy', 'kevin'].each() | $name | {
notice("$name wants to learn more about Puppet.")

}

Now let’s review each of the functions which can utilize a lambda.

Each

The each function invokes a lambda once for each entry in a array, or each key-value
pair in a hash. The lambda can do anything with the input value, as no response is
expected. each is most commonly used to process a list of items.

Output a list of interfaces which have IPs
split(S$facts['interfaces']).each |$interface| {

if(Sfacts["ipaddress_${interface}"] !'= "') {
notice("Interface ${interface} has IPv4 address S$facts["ipaddress_${interface}"]")
}
if($facts["ipaddress6_S${interface}"] != '") {
notice("Interface ${interface} has IPv6 address ${facts["ipaddress6_S${interface}"]")
}

}

If you want a counter for the values, providing an array with two entries gives you an
index on the first one. For example, creating a list of all the interfaces on a system
which hosts virtualization clients yields:

$ cat /vagrant/manifests/interfaces.pp

split($facts['interfaces'], ',').each |$index, Sinterface| {
notice("Interface #${index} is ${interface}")

}

$ puppet apply /vagrant/manifests/interfaces.pp

Notice: Scope(Class[main]): Interface #0 is bro

Notice: Scope(Class[main]): Interface #1 is bro_3

Notice: Scope(Class[main]): Interface #2 is bro_4

Notice: Scope(Class[main]): Interface #3 is bro_7

Notice: Scope(Class[main]): Interface #4 is eth@

Notice: Scope(Class[main]): Interface #5 is ethi

Notice: Scope(Class[main]): Interface #6 is lo

Notice: Scope(Class[main]): Interface #7 is virbro

Notice: Scope(Class[main]): Interface #8 is virbr@_nic

Notice: Scope(Class[main]): Interface #9 is vnet@

Notice: Scope(Class[main]): Interface #10 is vnetl

Notice: Scope(Class[main]): Interface #11 is vnet2

Notice: Scope(Class[main]): Interface #12 is vnet3

Notice: Compiled catalog for geode.netconsonance.com in environment production in 0.54 seconds

Notice: Finished catalog run in 0.07 seconds

Looping through Iterations | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Be aware that the index is placed in the first variable, and the
array entry in the second. This is the opposite of the same concept
used in Ruby and ERB templates provided by each_with_index,
where the array entry comes in the first variable and the index in
the second.

You can also use each on hashes. If you provide a single variable you’ll get an array
with two entries. If you provide two variables you’ll have the key in the first one, and
the value in the second one.

$ cat /vagrant/manifests/uptime.pp

each($facts['system_uptime']) |Stype, Svalue| {
notice("System has been up ${value} ${typel}")

}

$ puppet apply /vagrant/manifests/uptime.pp

Notice: Scope(Class[main]): System has been up 23:04 hours uptime

Notice: Scope(Class[main]): System has been up 83044 seconds

Notice: Scope(Class[main]): System has been up 23 hours

Notice: Scope(Class[main]): System has been up 0 days

Notice: Compiled catalog for client.example.com in environment production in 0.26 seconds
Notice: Finished catalog run in 0.07 seconds

The following manifest would provide the exact same results.

each($facts['system_uptime']) |Suptime| {
notice("System has been up Suptime[1] Suptime[O]")

}
Each returns the result of the last operation performed. In most cases, you'll use each
to process each entry and you won't care about the return, however this could be use-
ful if the value of the last entry has some meaning for you. While you might consider
calculating an aggregate value from the operations, that is exactly what the reduce
function is for.

Filter

The filter function returns a filtered subset of an array or hash containing only
entries which were matched by the lambda. The lambda block evaluates each entry
and returns a positive result if the item matches.

For an extended example, let’s examine all interfaces and find all RFC1918 IPv4 and
RFC4291 IPv6 internal-only addresses. We do this with multiple steps:

1. Filter all facts to find the facts containing IP addresses.
2. Filter the first result list to find which contain addresses which internal-only or
link-local addresses.

78 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

http://www.it-ebooks.info/

3. Tterate over the second results with each and extract the interface name to display
with the address.

$ips = S$facts.filter |Skey,S$value| {
Skey =~ /"ipaddress6?_/
}
Sprivate_ips = $ips.filter |$interface, $address| {
$address =~ /7(10]172\.(1[6-9]]2[0-97|3[0-1])|192\.168)\./
}
Sprivate_ips.each |$ip_interface,$address| {
Sinterface = regsubst($ip_interface, '~ipaddress6?_(\w+)', "\1')
notice("interface $interface has private IP $address")

}
If you apply this on a node you’ll get results like this:

$ puppet apply /vagrant/manifests/ipaddresses.pp
Notice: Scope(Class[main]): interface virbr@ has private IP 192.168.122.1
Notice: Scope(Class[main]): interface br0_7 has private IP 172.27.1.31

At the time this book was written, Facter did not return IPv6 link-
local addresses in the results. Hopefully FACT-605 will be fixed by
the time you read this, and you’ll see IPv6 link-local addresses in
the output.

Map

map returns a new Array or Hash from the results of the lambda. You call map on an array
or hash, and it returns a new array containing the results. The lambda should return only
values which will be within the new array.

Here’s an example where we create an array of IPv4 addresses. We pass in an array of
interface names. We use the interface name to look for an IP address associated with

that interface name in the ipaddress_ facts.

As with filter, when you pass in an array, the named variable contains the array
value.

$ips = split(Sfacts['interfaces']).map |$interface| {

Sfacts["ipaddress_S${interface}"]

}
You can also pass in a hash. In this case the named variable will contain an array with
the key in the first position and the value in the second. The following example uses
filter to create a hash of interfaces which have IP addresses. Then it uses map to cre-
ate separate arrays of the interfaces, and the IPs.

Sints_with_ips = $facts.filter |Skey,$value| {
Skey =~ /~ipaddress_/
}

Looping through Iterations | 79

www.it-ebooks.info

https://tickets.puppetlabs.com/browse/FACT-605
http://www.it-ebooks.info/

Create an array of ints with IPv4 addresses

$ints = Sints_with_1ips.map |$intip| {
Sintip[0] # key

}

Create an array of IPv4 addresses

Sips = $ints_with_ips.map |$intip| {
Sintip[1] # value

}

Reduce

The reduce function processes an array or hash and returns only a single value. It
takes two arguments: an array or hash and an initial seed value. If the initial seed
value is not supplied, it will use the first entry in the array or hash as the initial seed
value. The lambda should be written to perform aggregation, addition, or some other
function which will operate on many values and return a single value.

The way reduce utilizes the first entry in the array could have

unintended consequences if the entry is not the appropriate data

type for the output. As this is a common confusion, we’ll show
\ you an example of this problem first.

In the following example we pass the hash of partitions in to add together all of their
sizes. As with all other functions, each hash entry is passed in as a small array of
[key,value].

$ cat /vagrant/manifests/partitions.pp

Stotal_disk_space = $facts['partitions'].reduce |S$Stotal, S$partition| {
notice("partition $partition[0] is size $partition[1]['size']")
Stotal + Spartition[1]['size']

}

notice("Total disk space = ${total_disk_space}")

$ puppet apply /vagrant/manifests/partitions.pp

Notice: Scope(Class[main]): partition sdb2 is size 3906502656
Notice: Scope(Class[main]): partition sdal is size 524288
Notice: Scope(Class[main]): partition sda2 is size 3906502656
Notice: Scope(Class[main]): Total disk space = 7814053888

Total disk space = [sdbl, {filesystem => linux_raid_member, size => 524288}, 3906502656, 524288, -

As we didn't supply an initial value, the first entry is a small array containing the first
key, value pair from the hash (sdbl). We then performed addition to add integers to
this array, which produced the confusion you see above.

80 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

http://www.it-ebooks.info/

To resolve this situation you should seed the initial value with the appropriate data
type (integer 0 in this case). The first hash entry is then processed by the block,
adding the integer size to the seed value, creating the output we were looking for.

$ cat /vagrant/manifests/partitions.pp

Stotal_disk_space = $facts['partitions'].reduce(0) |$total, Spartition| {
notice("partition $partition[0] is size Spartition[1]['size']")
Stotal + Spartition[1]['size']

}
notice("Total disk space = ${total_disk_space}")

$ puppet apply /vagrant/manifests/partitions.pp

Notice: Scope(Class[main]): partition sdbl is size 524288
Notice: Scope(Class[main]): partition sdb2 is size 3906502656
Notice: Scope(Class[main]): partition sdal is size 524288
Notice: Scope(Class[main]): partition sda2 is size 3906502656
Notice: Scope(Class[main]): Total disk space = 7814053888

Slice

The slice function creates small chunks of a specified size from an array or hash.
This is perhaps one of the subtlest, and trickiest of the functions to use, as the output
changes depending on how you invoke it.

If you invoke slice with a single parameter specified between the pipe operators, the
value passed into the lambda will be an array containing the number of items speci-
fied by the slice size. The following example should make this clear:

[1,2,3,4,5,6].s1lice(2) |$number| {
notice("First number is $number[0]")
notice("Second number is S$number[1]")

}

If you invoke slice with the same number of parameters as the slice size, each vari-
able will contain one entry from the slice. The following example will make this clear:

[1,2,3,4,5,6].slice(2) |Sone, Stwo| {
notice("First number is $one")
notice("Second number is $two")

}
Unlike the other functions, hash entries are always passed in as a small array of
[key,value], no matter how many parameters you use. So if you have a slice of size
two from a hash, the lambda will receive two arrays, each containing two values: the
key and the value from the hash entry. Here’s an example that demonstrates the idea.

$facts['partitions'].slice(2) |$partl, Spart2| {
notice("partition names in this slice are $part1[0] and $part2[0]")

}

Looping through Iterations | 81

www.it-ebooks.info

http://www.it-ebooks.info/

Similar to each, most invocations of slice do not return a value and thus the result can
be ignored.

With

The with function invokes a lambda exactly one time, passing the variables provided
as parameters. The lambda can do anything with the input values, as no response is
expected.

You might quite rightly point out that this function doesn't iterate and thus doesn't
belong in this section of the book. Youre quite right, but I've included it here as it
behaves exactly like these other iterators, and can be quite useful for testing.

with('austin', 'powers', 'secret agent') |$first,$last,S$title| {

notice("A person named ${first} ${last}, ${title} is here to see you.")
}

The with function is most commonly used to isolate variables to a private scope,
unavailable in the main scope’s namespace.

Captures-Rest Parameters

Most of the functions only produce one or two parameters for input to a lamba, how-
ever slice and with can both send an arbitrary number of parameters to a lamba.
For ease of definition, you can proceed the final parameter with a splat or * to indi-
cate that it will accept an array of all remaining parameters.
Shostsfile_lines.each.split(' ') |$ipaddr, Shostname, *$aliases| {
Salias_display = join(S$aliases,','
notice("Host ${hostname} has IP ${ipaddr} and aliases ${alias_display}")
}

Summary

As you have seen in this section, the functions which iterate over arrays and hashes
provide a tremendous amount of power not available in any previous version of Pup-

pet.

You can invoke these functions like traditional functions or by chaining the functions
to the data they are processing.

You can find more information about iteration and lambdas at https://docs.puppet-
labs.com/puppet/latest/reference/experiments_lambdas.html.

Conclusion

This chapter introduced you to the following components of the Puppet Configura-
tion Language:

82 | Chapter5: Using Puppet Configuration Language

www.it-ebooks.info

https://docs.puppetlabs.com/puppet/latest/reference/experiments_lambdas.html
https://docs.puppetlabs.com/puppet/latest/reference/experiments_lambdas.html
http://www.it-ebooks.info/

o data types can be numbers, strings, boolean (true/false), arrays (or indexes), and
hashes (key/value pairs).

o operators perform addition, subtraction, multiplication, division, concatenation
and merges of values.

o conditional operators compare data for equality and inclusion.

o regular expressions matches ranges of values or substrings within a value.

« conditional expressions such as if/else and unless/else allow you to limit policy
application.

o case and select statements evaluate a value to determine the appropriate action or
assignment.

o lambdas are unnamed functions intended to process values passed in by iteration
fuctions.

o iterations loop over arrays or hashes performing an operation on each entry,
optionally passing to a lambda.

These are the data types and functions available for evaluating and operating on data
for use in Resource definitions within a Puppet manifest.

Conclusion | 83

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6
Controlling Resource Processing

You can control how Puppet utilizes and acts upon resources with metaparameters.
Metaparameters are common attributes which can be used with any resource, includ-
ing both built-in and custom resource types. Metaparameters control how Puppet
deals with the resource.

You can find all metaparameters documented at https://docs.puppetlabs.com/refer-
ences/latest/metaparameter.html.

Adding Aliases

The alias attribute allows you to provide a friendly name to a resource. This is iden-
tical to using a friendly name in the title. The alias parameter can be used when the
resource title is declared in a less friendly way. Either one allows you refer to the
aliased name instead of the resource title.

For example, the following two resources are identical:

alias declared in resource title
mailalias { 'postmaster-alias':

ensure => 'present',

name => 'postmaster',

recipient => ['root'],

target => '/etc/aliases',
}

name defaults to resource title, alias provides friendly name
mailalias { 'postmaster':

ensure => 'present',

recipient => ['root'],

target => '/etc/aliases',

alias => 'postmaster-alias',
}

85

www.it-ebooks.info

https://docs.puppetlabs.com/references/latest/metaparameter.html
https://docs.puppetlabs.com/references/latest/metaparameter.html
http://www.it-ebooks.info/

Preventing Action

The noop flag allows you to say that changes to this resource should not be made. For
example, if youd like to know if a newer version of the Puppet package is available
without actually performing the upgrade, you could use this syntax.

package { 'puppet':
ensure => latest,
noop => true,
}
When this manifest is processed, if a new package version is available it will update
the statistic for unprocessed resources. You'll see a message like the following in the
logs:

Notice: /Stage[main]/Main/Package[puppet]/ensure: current_value 4.00, should be latest ['4.01'] (r

Auditing Changes

The audit flag will log a message any time an audited resource is changed. This could
be useful if you don’t want to manage the content of a file, but do want to know every
time the content changes.

file { '/etc/hosts':
audit => true,
noop => true,

}

Defining Loglevel

The loglevel attribute allows you to identify what loglevel changes to this resource
should be logged at. For example, if youd like to know if a newer version of the Pup-
pet package is available without actually performing the upgrade, you could use this
syntax.

The log levels are identical to syslog loglevels, and map to those when logging on
Unix and Linux systems.

debug

info (also called verbose)
notice

warning

err

alert

emerg

NSO

86 | Chapter6: Controlling Resource Processing

www.it-ebooks.info

http://www.it-ebooks.info/

8. crit

Warn us whenever Puppet is upgraded.

package { 'puppet':
ensure => latest,
loglevel => warning,

}

Limiting by Tags

Tags can be used for selective enforcement of resources. This allows you to apply only
part of a policy, such as adding packages, without applying other parts of the policy,
such as restarting or stopping services. Let’s look at any example of this.

Tags can be added to resources as a single string, or as an array of strings. The follow-
ing policy will tag both the Package and the Service with the puppet tag, but also put a
packages tag on the Package resource.

package { 'puppet':

ensure => present,

tag => ['package', 'puppet'],
}

service { 'puppet':
ensure => running,
enable => true,
tag => 'puppet',
}
If you run this manifest it will start the Puppet agent, which perhaps isn’t desirable
right now. So you can apply the policy and limit action to resources marked with the
package tag.

[vagrant@client ~]$ sudo puppet apply /vagrant/manifests/packagetag.pp --tags package
Notice: Compiled catalog for client.example.com in environment production in 0.71 seconds
Notice: Finished catalog run in 0.26 seconds

[vagrant@client ~]$ puppet resource service puppet
service { 'puppet':

ensure => 'stopped',

enable => 'false',

}

As you can see, the policy was applied however the puppet service was not started.
This demonstrates the power of the tags to limit policy evaluation on demand.

Limitingby Tags | 87

www.it-ebooks.info

http://www.it-ebooks.info/

It wasn't necessary to add a tag of ‘package’ to the package
resource. Puppet automatically adds a tag of the resource type to
each and every resource. We could have run the policy with --
tags service and affected only the service, even though the ’ser-
vice’ tag isn’t explicitly list in the definition above.

The - -tags command line option can accept multiple comma-separated tags. So you
could invoke the same recipe with - -tags package,service to process both of them
without processing resources of a different type.

Limiting by Schedule

A schedule can be used to limit when Puppet will make changes to a resource. For
example, if we want to limit upgrades of Puppet until after the normal working day
has ended, we might declare it this way.

package { 'puppet':
ensure => present,
schedule => 'after-working-hours',

}

The value of the schedule metaparameter must be the name of a Schedule resource
you've declared. Let’s start with some examples.

schedule { 'business-hours':
period => hourly,

repeat => 1, # apply once an hour
range => '08:00 - 17:00', # between 8am and 5pm
weekday => ['Mon','Tue','Wed"', 'Thu','Fri'], # on weekdays

}

schedule { 'after-working-hours':
period => daily,
repeat = 2, # apply no more than twice a day
range => "'17:00 - 08:00', # between 5pm and 8am

}

The period can be any of the following values.

hourly
daily
weekly
monthly
5. never

-

The repeat attribute limits how many times it will be applied with the period. The
default is 1.

88 | (Chapter6: Controlling Resource Processing

www.it-ebooks.info

http://www.it-ebooks.info/

You can find the complete documentation for the Schedule resource at https://
docs.puppetlabs.com/references/latest/type.html#schedule.

Defining Resource Defaults

You can declare defaults for all resources of a given type. If a resource declaration of
the same type does not explicitly use the attribute, then the default value for that
attribute will be used.

Defaults are declared with a capitalized resource name and no title. For example, the
following resource definition would make all Packages be applied after working
hours.

Package {
schedule => 'after-working-hours',

}

Conclusion

This chapter introduced you to attributes that control how resources are processed.
Those attributes are as follows:

o aliases provide easy to use names for resources with complicated titles.

 noop can be used to prevent changes to the resource.

o audit can be used to log all changes to a resource without affecting it.

o loglevel can be used to control log output on a per-resource basis.

o tags can be used to perform limited runs which affect only certain resources in a
manifest.

o A schedule can be used to limit when changes to a resource are permitted.

o Default values for attributes can be defined for any resource which doesn’t over-
ride them.

Using these attributes provides fine-grained control over how and when your resour-
ces are updated.

Defining Resource Defaults | 89

www.it-ebooks.info

https://docs.puppetlabs.com/references/latest/type.html#schedule
https://docs.puppetlabs.com/references/latest/type.html#schedule
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER7
Expressing Relationships

This chapter focuses on metaparameters which can create and manage relationships
between resources.

The relationship between resources control which resources will be processed prior
to other resources. Puppet uses this information to build a dependency graph of rela-
tionships between resources, and thus process each in the appropriate order.

Resource relationships and ordering are perhaps the most confusing things to people
learning Puppet. Most people are familiar with linear processing, controlled by the
order expressed within the file. Puppet provides metaparameters to define dependen-
cies to be handled within and between manifests. This is significantly more powerful
than rigid, linear ordering for the following reasons:

1. Linear ordering is easy to write once, but hard to extend.

2. Linear ordering prevents the ability for one piece of code to easily extend another
piece of code.

3. Linear ordering provides a strict chain of processing, whereas expressed relation-
ships allow for multiple dependencies.

4. Many to one relationships are harder to learn, but considerably more powerful.

5. Loose ordering prevents accidental dependencies, allowing more resources to be
processed if a single dependency is not met.

You will come to understand the power and flexibility of Puppet’s resource ordering
when you build a module that extends a community-provided module. For now, sim-
ply keep in mind that Puppet will process the resources by evaluating the dependency
graph created from the metaparameters introduced in this chapter.

91

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Dependencies

There are situations where avoiding implicit dependencies of linear ordering can pro-
vide significant value.

In a linear ordering (e.g. not Puppet-like) dependency evaluation, every succeeding
statement is assumed to depend on the statement before it. In that case, nothing else
in that script should be processed as they might depend on the statement which
failed.

In a scenario where the manifest has 6 operations listed in order A ->B ->C->D ->
E -> F, if A fails then should all of B through F not happen?

This would be undesirable in Puppet, if a single resource early in the manifest was
not essential to a significant portion of the manifest. By allowing you to explicitly
declare dependencies in resources, Puppet can enforce significantly more of the cata-
log. In the example shown above, it may be that only step F depends on A, so resour-
ces B through E can be processed.

During the puppet catalog compilation, Puppet will evaluate the dependencies for
each resource. If a dependency for a resource fails, neither it nor any resource which
depends on it will be processed during the current Puppet run. This is generally
desirable behavior.

Puppet’s explicit dependency metaparameters provide for complex and powerful
dependency management. Let’s show you how to use them.

Referring to Resources

As shown throughout all previous examples, you declare a resource using the
resource type lowercase and enclose the definition in curly brackets.
package { 'puppet':

ensure => present,

}

Once the resource has been given a unique title, it is possible to refer to that resource
by name. This is called a Resource Reference. In this chapter were going to refer to
specific resources quite often, so let’s describe how to do it. To create a resource refer-
ence, uppercase the first letter of the resource type and enclose the title in square
brackets. For example, when referring to the package resource created above, youd
use Package['puppet']. Here an example which builds a service to run the puppet
agent installed above.

service { 'puppet':
ensure => running,
enabled => true,

92 | Chapter7: Expressing Relationships

www.it-ebooks.info

http://www.it-ebooks.info/

require => Package['puppet'],

}

So remember: create a resource with the lowercase type, and refer to an existing
resource with an uppercase first letter.

An easy way to remember this is the common name versus proper
name rule of English. A park is a resource type, but Golden Gate
Park is a specific instance... e.g. a proper noun, the first letter of
which is always capitalized.

Ordering Resources

In many situations some resources must be applied before others. For example, you
cannot start a service until after you install the package which contains the applica-
tion. Here we will show you the before and require metaparameters you can use to
ensure the package is installed before the service is started.

package { 'puppet':
ensure => present,
before => Service['puppet'],

}

service { 'puppet':
ensure => running,
enable => true,
require => Package['puppet'],

}

The before and require metaparameters are redundant in this case. Either one
would work by itself. Use the one which fits your manifest and is easiest to read. Belt
and suspenders people like myself often use both when possible.

Ordering resources can be a trap. Many Puppet novices try to
order every resource into a strict pattern, no matter whether the
resources are truly dependent or not. This makes an implementa-
tion very fragile and likely to fail when extended. Think less is
more list only the necessary dependencies.

Triggering Refresh Events

The before and require metaparameters ensure that dependencies are processed
before resources that require them. However, these parameters do not link or provide
data to the other resource.

Ordering Resources | 93

www.it-ebooks.info

http://www.it-ebooks.info/

The notify and subscribe metaparameters operate in a similar manner, but will also
send a refresh event to the dependent resource if the dependency is changed. The
dependent resource will take a resource-specific action. For example, a service would
restart after the configuration file has been changed.

Let’s modify our previous policy to upgrade the Puppet package whenever a newer
version is available.

package { 'puppet':
ensure => latest,
notify => Service['puppet'],

}

service { 'puppet':
ensure => running,
enable => true,
subscribe => Package['puppet'],

}

In this case, if a newer version of Puppet is available then the puppet package will be
upgraded. Any time the Puppet package is installed or upgraded, the puppet service
will be restarted.

As before, the notify and subscribe metaparameters are redundant. Either one
would send the refresh event without the other. Belt and suspenders people like
myself do both.

The refresh event means something special to Exec resources. If an Exec resource is
created with the attribute refreshonly set to true, then the Exec resource will not run
unless it receives a refresh event. In the following example, we will update the
facts.yaml file for MCollective only after Puppet has been upgraded.

Package { 'puppet':
ensure => latest,
notify => Exec['update-facts'],

}

exec { 'update-facts':
path => ['/bin',"/usr/bin'],
command => 'facter --yaml > /etc/mcollective/facts.yaml',
refreshonly => true,

}

Under normal conditions this Exec resource will not execute. However, if the Puppet
package is installed or upgraded, the Notify attribute will send a refresh event to the
Exec and the command will be run.

94 | Chapter7: Expressing Relationships

www.it-ebooks.info

http://www.it-ebooks.info/

Chaining Resources with Arrows

You can also order and related resources using Chaining Arrows. You put the
required resource on the left, and the dependent resource on the right, linked
together with ->. For example, to install puppet before starting the service you could
express it like so.

Package['puppet'] -> Service['puppet']

You can use ~> to also send a refresh event, like notify does. For example, this will
restart the Puppet service after the Puppet package is upgraded.

Package['puppet'] ~> Service['puppet']

The chaining arrow syntax is harder to read than the metaparameters, and should be
avoided when possible. In particular, right to left relationships are harder to read and
explicitly against the Puppet Style Guide.

Don't do this. Order it left -> right instead.

Service['puppet'] <~ Package['puppet']

Processing with Collectors

A collector is a grouping of many resources together. You can use Collectors to affect
many resources at once.

A Collector is declared by the capitalized type followed by <|, an optional attribute
comparison, and |>. Let’s examine some collectors.

User <||> # every User

User <| groups == 'wheel' |> # Users in the wheel group declared in a manifest
Package <||> # every Package

Package <| tag == 'packages' |> # Packages tagged with 'packages' tag in a manifest
Service <||> # every Service

Service <| enabled == true |> # Services set to start at boot time in a manifest

Search expressions may be grouped with parenthesis and combined
Service <| (ensure == running) or (enabled == true) |> # Services running OR set to start
Service <| (ensure == running) and (title != 'puppet') |> # Services other than Puppet set tc

Note the key words declared in a manifest. The user resource

mentioned in the first example would only match users who are

declared in a manifest to be within the ‘wheel” group, and not a
\ user which was added to the group outside of Puppet. To refer

back to what we know about how Manifests are processed, the
resources that are matched by a Collector must be explicitly declared within the
catalog compiled from the manifest(s).

Chaining Resources with Arrows | 95

www.it-ebooks.info

http://www.it-ebooks.info/

One place where chaining arrows have proven very useful is when processing many
resources with Collectors. By combining chaining arrows with Collectors, you can set
dependencies for every resource of one type.

For example, you could have our previous exec update the Facts whenever any pack-
age is added or removed.

Regenerate the facts whenever a package is added, upgraded, or removed
Package <||> ~> Exec['update-facts']

Likewise, you could ensure that the Puppet Labs yum repository is installed before
any packages tagged with puppet or mcollective.

Yumrepo['puppetlabs'] -> Package <| tag == 'puppet' |[>
Yumrepo['puppetlabs'] -> Package <| tag == 'mcollective' |>

Best Practice: Limit use of collectors to clearly scoped and limited
effect. A collector which matches all resources of a given type will
affect a resource a team member adds to the policy next week or
month, not realizing there is a collector in a manifest he or she
did not modify. The best usage of collectors affects only the
resources within the same manifest.

You can find more details about Collectors at https://docs.puppetlabs.com/puppet/
latest/reference/lang_collectors.html.

Understanding Puppet Ordering

During the catalog compilation, prior to implementation of any resources, Puppet
creates a dependency graph containing all resources with dependencies declared
using the metaparameters and chaining arrows discussed in this chapter. It uses this
graph to determine what order to implement the resources.

Resources without explicit ordering parameters are not guaranteed to be ordered in
any specific way. In versions of Puppet greater than 2.6, unrelated resources were
evaluated in an order which was apparently random, but was consistent from run to
run. (In versions of puppet prior to 2.6 it was not consistent from node to node or
run to run.) The only way to ensure that one resource was implemented before
another was to define dependencies explicitly.

An agent configuration option ordering was introduced in Puppet 3.3 which allowed
control of ordering for unrelated resources. This configuration option accepts three
values:

title-hash (default in all previous versions of Puppet)
Orders unrelated resources randomly but consistently between runs.

96 | Chapter7: Expressing Relationships

www.it-ebooks.info

https://docs.puppetlabs.com/puppet/latest/reference/lang_collectors.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_collectors.html
http://www.it-ebooks.info/

manifest (default in Puppet 4)
Orders unrelated resources by the order they are declared in the manifest.

random
Orders resources randomly and changes the order on each run. This is useful for
identifying missing dependencies in a manifest.

Although resources in a manifest will generally be implemented in the order defined,
never count upon implicit dependencies. Always define all dependencies explicitly.
This is especially important when utilizing or extending another manifest or module,
or when your manifest or module could be extended by someone else. Hint: always

Best Practice: State all dependencies explicitly.

You can flush out missing dependencies by testing your manifests with the random
ordering option. Each time you run the following, the resources will be ordered dif-
ferently. This almost always causes failures for any resources missing necessary
dependencies.

$ puppet apply --ordering=random testmanifest.pp

Conclusion

Puppet 4 will implement the resources in a manifest according to a dependency graph
created from the following explicit dependency controls:

 before metaparameter and the -> chaining arrow
 notify metaparameter and the ~> chaining arrow
 require metaparameter

o subscribes metaparameter

Puppet 4 will implement resources not listed in the dependency graph in the order
they are declared. This ordering can be changed using the agent configuration option
ordering. Never depend on the manifest ordering, instead declare all relationships
explicitly.

The random ordering option is useful for testing manifests for missing dependencies.

Conclusion | 97

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8
Upgrading Puppet 3 Manifests

The upgraded parser used in Puppet 4 makes several changes to the Puppet language.
This section concerns itself with changes from Puppet 3. If you are new to Puppet,
you can safely skip this section until and unless you find yourself upgrading older
Puppet code.

Validating Numbers

In previous versions of Puppet numbers were really just strings. Unquoted numbers
were unquoted strings, which happened to work most of the time. Documented best
practice in Puppet 3 was to quote all numbers to ensure they were explicitly strings,
but a lot of people (the author included) have modules with unquoted numbers in
them.

In Puppet 4 unquoted numerals are a Numeric data type. Numbers are validated as
part of the catalog compilation, and an invalid number will cause the catalog to fail to
compile.

o Decimal numbers start with 1 through 9.

o Floating point numbers contain a single period within them.

o Octal numbers (most commonly used for file modes) start with a 0.

o Hexadecimal numbers (commonly used for memory locations or colors) start
with 0x.

To avoid catalog compilations it is best to quote numbers which may be misinter-
preted, such as decimals with leading zeros.

Sdecimal = 1234 # valid decimal assignment

Soctal = 0775 # valid octal assignment

Shexadecimal = OxFFAA # valid hexadecimal assignment

$string = '001234' # decimal assignment with leading zeros

99

www.it-ebooks.info

http://www.it-ebooks.info/

Any unquoted string which starts with a number is likely to be validated as if it were a
number, and may cause a compile failure. All of the following will cause errors during
the parsing phase.

$leading_zeros = 0991 # will be mistaken for octal and raise error
$mixed_chars = 0x1x2x # will be mistaken for hexadecimal and raise error
Scolor_code = 0OxFFAh # the suffix will cause validation failure and raise error

As mentioned elsewhere, the easiest way to avoid confusion is to always quote strings.
As you can pass a string containing a number as input to anything which will accept a
number, it is useful to quote numbers which may be misinterpretted.

File Modes are not Numbers

Although it would be fantastic to use the new number validation with file modes, an
unfortunate decision' was made to require all file modes to be strings.

This decision means that modules which had unquoted numbers for the mode will
throw errors, rather than implement an unexpected file rights set. I understand the
reasoning, but I would have greatly preferred to use the implicit number validation
for file modes in Puppet 4.

Using Hash and Array Literals

Older versions of Puppet required you to assign arrays and hashes to variables before
using them in resources or functions. Puppet 4 allows you to use literal arrays and
hashes more naturally in a Puppet manifest.

notify { "(['one','two"', " 'three'][1])": } # produces the output "two"

New in Puppet 4, you can concatenate arrays and merge hashes with +

smy _list = [1,4,7]
$bigger_list = $my_list + [14,17] # equals [1,4,7,14,17]

Skey_pairs = {name => 'Joe', uild => 1001}

Suser_definition = Skey_pairs + { gid => 500 } # hash now has name, uid, gid...
Also new in Puppet 4, you can append to arrays with <<. Watch out though, as an
array appended to an array creates a single entry in the array containing an array in
the last position.

Smy_list << 33 # equals [1,4,7,33]
$my_list << [33,35] # equals [1,4,7,[33,35]]

1 https://tickets.puppetlabs.com/browse/PUP-2156 comments contain decision to force all file modes to string

100 | Chapter8: Upgrading Puppet 3 Manifests

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Else to Unless

You can now use else with unless.

unless (S$somevalue > 10) {
do this

} else {
do that

}

It is generally better to use 1f/else than unless for readability, but readable code is
the most important thing. If it reads easier with unless then use it.

Chaining Assignments

You can now change multiple assignments in the same expression. You can chain
both equality and addition operations, like so:

$security_deposit = 100

$first = 250

$last = 250

Sdown_payment = $first + S$security_deposit

could be rewritten as
$first = $last = 250
S$down_payment = $first + (S$security_deposit = 100)

Chained assignments have low precedence, so it’s necessary to use parenthesis to
ensure proper ordering.

Best Practice: As you can see from the example, chained assign-
ments are rarely more readable than the expanded version. Avoid
for documentation sake.

Expressions Can Stand Alone

Previous versions of Puppet required the results of all expressions to be assigned. In
Puppet 4 an expression can stand alone. If it is the last expression in a block of code
(e.g. a function), the result will be returned. Otherwise the value will be discarded.

The following is perfectly valid as the last expression within a block of code.
Smyvar * 10

Blocks of code / functions return the result of their last expression. You do not need
an explicit return.

Adding Else to Unless | 101

www.it-ebooks.info

http://www.it-ebooks.info/

You can safely call a function without using the returned value. Earlier versions of
Puppet would raise errors in this situation.

Chaining Expressions with a Semicolon

You can now use a semicolon to concatenate two expressions together.
$fname = 'Jo'; $lname = 'Rhett’

The semicolon can be used to prevent the last statement of a block from being
returned as the value.

{

Sfname = 'Jo'; $lname = 'Rhett'; 1 # returns 1 for success

}

Best Practice: Using a semicolon to change operations never
makes more readable code. Leave this for special case situations
where you must execute several commands on a single line.

Calling Functions in Strings

You can now call functions from within a double-quoted string.

notify { 'need_coffee':
message => "I need a cup of coffee. Come remind me in ${fqdn_rand(10)} minutes.",

}

Improved Error Reporting

Error reports are much improved with Puppet 4. You'll generally see the following
improvements:

1. Some errors now show position on line, using filename:1line_number:charac
ter_number.

2. Many block and token parsing errors which gave confusing direction about what to
fix have been improved.

3. You can now change the maximum amount of errors and warnings Puppet will
output before giving up. The following settings in puppet.conf will override the
defaults of 10 for each.

[main]
max_errors = 3
max_warnings = 3
max_deprecations = 20

102 | Chapter8: Upgrading Puppet 3 Manifests

www.it-ebooks.info

http://www.it-ebooks.info/

No matter what the limits are, a final error lists the error and warning count.

Avoiding Upgrade Problems

The improved parser in Puppet 4 has cleaned up many consistency issues from previ-
ously unclear documentation. If you are writing manifests, you should adopt these
practices immediately to avoid upgrade problems. If you maintain older manifests,
you should go through them and address these issues. Every change mentioned in
this section is backwards compatible and will work with Puppet 3 and earlier.

Variable names are now limited to lowercase letters, numbers, and underscores. Vari-
able names must contain at least one letter.

$5 = 'hello' # invalid
$5letters = 'hello' # valid

Parameters in classes and defines have the same limitations:

define mytype($21, $32) { # invalid

define mytype(S$twentyl, Sthirty2) { # valid
Bare words must start with a lowercase letter. You'll see fairly common usage of
unquoted values present, true, etc. Unquoted values (bare words) must start with a
lowercase letter, not a number.

$myvar = fourguys # valid

Smyvar = 4guys # invalid

Smyvar = some4guys # valid

S$myvar = '4guys' # quoted strings are always safest

Unquoted numbers will be validated. An error is raised if an unquoted number is not
valid. The following are situations where unquoted numbers would work in Puppet 3
but cause errors in Puppet 4.

hexadecimal

$address = 0Ox1AH # error 'H' i1s not a valid hex number
$address = 'Ox1AH' # safe as a string
$address = Ox1A # safe number decimal 26

leading zeros cause numbers to evaluated as octal
$leadingzero = 0119 # error octal has 8 bits, 0-7
$leadingzero = '0119' # safe as quoted string

octal numbers are commonly used for file modes
Smode = 1777 # sticky bit directory missing leading 0 will evaluate decimal
Smode = 01777 # valid sticky bit world writable (e.g. /tmp)
Don't forget the exception that in Puppet 4 the file and template resources won’t
accept numeric modes. You must use a string, like so:

Avoiding Upgrade Problems | 103

www.it-ebooks.info

http://www.it-ebooks.info/

file '/etc/testfile.txt' {
mode => '0644',

}

Deprecations

There are some features which were popular or necessary in Puppet 2 days which
have been deprecated in Puppet 3 and are completely gone from Puppet 4. All of
these have been known about for years, so there should be no surprises here:

o The ability to write Puppet manifests in pure Ruby has been removed. It never
worked very well in the first place.

o The limited and broken puppet kick is gone, replaced by a much more powerful
and extendable MCollective agent for Puppet.

o The import statement is gone. This was never a good idea. Best practice is to put
the code in a module class, and include the class.

o Node inheritance was the old way to apply classes to groups of similar nodes.
This has been completely obsoleted by Hiera assignment of classes.

104 | Chapter8: Upgrading Puppet 3 Manifests

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER9
Conclusion of Part |

In this section you've created a safe, risk-free learning environment you can utilize to
write and test Puppet Manifests. You've learned the following things about Puppet
policies:

 Puppet policies are written in Manifests.

 Manifests contain one or more Resource declarations.

» Resources create, alter, or remove their types: users, groups, files, etc.
o Facter provides data about the node useful for local customization.

In this Part you have learned each part of the Puppet Configuration Language and
how to utilize it to create manifests. You've used Puppet Apply to implement the
manifest on your test system. Puppet Apply:

o Parses a Puppet manifest file and reports any errors.

o Utilizes Facts about the system as variables for customization.
 Executes immediately on the local system.

« Provides verbose output informing you of what it has done.

While many people utilize Puppet Apply only for testing manifest
changes, it can be used at broad scale if a method of synchroniz-
ing the manifests to each node is available. We’ll ways to imple-
ment this, and the pros and cons of this approach in Part IV:
Puppet Server.

Best Practices for Writing Manifests

Before you move on to the next chapter, I'd like to remind you of best practices for
writing Puppet Manifests:

105

www.it-ebooks.info

http://www.it-ebooks.info/

« Quote the resource title.

 ensure should be the first attribute in a resource block.

« Align the arrows for attributes within a resource block.

» Group resources by their relationship with each other.

o Don’t use conditionals within resource declarations.

o Provide defaults for case and select statements.

o When it can be done multiple ways, always use the most readable.

You can find the Puppet Style Guide at https://docs.puppetlabs.com/guides/
style_guide.html. All of the examples in this book have been compliant with the style
guide.

Continued Learning

To expand on what you have learned in this chapter, investigate the built in resources
provided by Puppet. There are more than we have discussed in this chapter, and
you'll find many of them immediately useful. Here are just a few we didn’t mention
previously.

augeas a programatic APl for managing configuration files
cron crontab entries

host host file entries

interface networking

mailalias mail aliases

mount filesystem mount points

nagios_* type to manage nagios host, service, contact entries
router manages a connected router

sshkey SSH key management

yumrepo package repository

The complete list of built-in resources can be found at https://docs.puppetlabs.com/
references/latest/type.html

106 | Chapter9: Condusion of Part|

www.it-ebooks.info

https://docs.puppetlabs.com/guides/style_guide.html
https://docs.puppetlabs.com/guides/style_guide.html
https://docs.puppetlabs.com/references/latest/type.html
https://docs.puppetlabs.com/references/latest/type.html
http://www.it-ebooks.info/

PART I
Creating Puppet Modules

Puppet modules are bundles of Puppet code, files, templates, and data. Well-written
Puppet modules provide a clean interface for sharing re-usable code between differ-
ent teams either within your organization, or throughout the global community.

Puppet modules provide the following benefits:

o Organize code and data within the module’s namespace.
« Execute one or more manifests.
o Provide files, templates, tests, functions, and plugins.

In this part we'll discuss how to find and use Puppet modules that other people have
made available for you. We'll show you how to provide data to these modules such
that you can use them without modifying the module code.

While you may find old examples of Puppet manifests used independently, it has
been Best Practice for many years now for all manifests to reside within modules. We
will go through the process of turning the manifests built in Part I into fully formed
and well-built Puppet Modules.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10
Creating a Test Environment

Puppet provides the ability to serve clients different versions of modules and data
using Environments. You can use environments to provide unique catalogs to differ-
ent groups of machines, which can be very useful in large environments with many
teams.

However a primary usage of environments is to provide the ability to test out changes
to Puppet policy without breaking production environments.

In my opinion, Puppet environments are so necessary and useful for code testing and
deployment that I am not going to discuss using Puppet without environments. So
before we go on to install Puppet modules, let’s set up production and test environ-
ments.

Verifying the Production Environment

The default environment used by Puppet clients is named production. For this reason
every Puppet installation should have a Puppet environment named production, even
if it is not used. You should find that this already exists.

[vagrant@client ~]$ 1s -1 /etc/puppetlabs/code/environments/production
total 4

-rw-r--r-- 1 root root 879 Mar 26 19:27 environment.conf

drwxr-xr-x 2 root root 6 Mar 26 19:38 manifests

drwxr-xr-x 2 root root 6 Mar 26 19:38 modules

This environment already has an environment configuration file, and directories for
modules and manifests.

109

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Test Environment copy

Now let’s create a test environment you can use to test out new modules, or changes
to modules, prior to implementing them in production. Create the environment like
so:

[vagrant@client ~]$ mkdir -p /etc/puppetlabs/code/environments/test/modules

Now we have a place to test module changes prior without breaking any production
nodes. Now, let’s go one step farther and enable a reminder that we are using the test-
ing environment.

[vagrant@client ~]$ mkdir /etc/puppetlabs/code/environments/test/manifests
[vagrant@client ~]$ SEDITOR /etc/puppetlabs/code/environments/test/manifests/site.pp

Make the contents of this file something like this:
notice("Processing catalog from the Test environment.")

This will give you a warning any time you use this environment. This warning can be
a helpful reminder to move a node back to the production environment when testing
is complete.

Changing the Base Module Path

There is a convenience setting which allows you to share modules between all envi-
ronments.
[main]

environmentpath = /etc/puppetlabs/code/environments
basemodulepath = /etc/puppetlabs/code/modules

The environmentpath variable contains a path under which a directory for each envi-
ronment will be created.

The basemodulepath variable contains a directory which will be used as a fallback
location for modules not found in the environment’s modules directory. This allows
you to place common and well-tested modules in a single location shared by all envi-
ronments.

Both of the directory names shown are the default values, and do not need to be
specified in the configuration file.

110 | Chapter10: Creating a Test Environment

www.it-ebooks.info

http://www.it-ebooks.info/

Skipping Ahead

While there are many things you can fine tune and customize with Puppet environ-
ments, many of them wouldn’t make much sense at this point in our learning process.
The environments are ready for us to use.

We'll come back to cover environments in much greater detail in Customizing Envi-
ronments just a few more chapters later.

Skipping Ahead | 111

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11
Separating Data from Code

An important part of using modules is to separate the code from the input data. A
module written for a single target node may work fine with explicit data within the
code; however it won't be usable on other systems without changes to the code.

If the data resides within the code, you'll find yourself constantly going back to hack
if/then/else conditions into the code for each necessary difference. I'm sure you've
done this before, or may even have to do this now to maintain scripts you use today.
This chapter will introduce a better way.

Moving the data (values) out of the code (manifest) creates reusable blocks of code
which can implement policy in a flexible manner.

Introducing Hiera

Hiera is a key/value lookup tool for configuration data. Hiera is integrated seamlessly
into Puppet to provide dynamic lookup of configuration data for Puppet manifests.

Hiera allows you to provide node-specific information to a Puppet module. Hiera
uses a customizable hierarchy to lookup the data. This allows you to customize how
information is structured within your organization.

For example, at a small company you may organize your data in this way:

1. Company-wide defaults
2. Operating system specific changes
3. Site-specific information

A much large organization might have a hierarchy like the following:

1. Operating system specific configurations

113

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise-level defaults

Company specifics

Division overrides

Production / Staging / QA / Development

Region (US, EU, Asia)-specific changes
Cluster-specific changes

Alterations based on applications deployed to the node

PN

Complex multi-level hierarchies make it easy to utilize the same shared code
throughout a diverse organization.

Creating Hiera Backends

Hiera has two built-in data file backends: YAML and JSON, and then the Puppet
data provider.

Each of these backends support four data types:

1. Strings
2. true/false (Boolean)
3. Arrays
4. Hashes

Let’s go through how to utilize these data types in each backend.

Hiera Data in YAML

The easiest and most common way to provide data to Hiera is utilizing the YAML file
format. Files must be have a .yaml file extension.

Files in YAML format always start with three dashes by themselves on the first line.
The YAML format utilizes indentation to indicate the relationships between data.
YAML should always be written using spaces, never tabs, for indentation.

Here are some examples of strings, boolean, arrays, and hashes in YAML.

string
agent_running: 'running’

boolean
agent_atboot: true

array
puppet_components:
- facter
- puppet

a hash of values

114 | Chapter 11: Separating Data from Code

www.it-ebooks.info

http://www.it-ebooks.info/

puppet:
ensure: 'present'
version: '4.0.1'

A variable loopup
hostname: %{facts::hostname}

As this data is all about managing the Puppet agent, why don't we organize this
within a single hash? That could look as simple as this:

puppet:
agent_running: 'running’
agent_atboot: true
components:
- 'facter'
- 'puppet’

As you can see, YAML provides a clean, easy to read way to provide data without too
much syntax. You can find out more about YAML at http://www.yaml.org/
YAML_for_ruby.html.

It is not always necessary to quote strings in YAML. The words
‘running’, ‘facter’, and ‘puppet’ above would have been correctly
interpreted as strings without the quotes. However the rules for
when you must quote strings in YAML are many and often subtle,
so I quote them to avoid possible misinterpretations.

Hiera Data in JSON

You can also provide data to Hiera with the JSON file format. Files must have a . json
file extension.

As is common with almost every use of JSON, the root of each data source must be a
single hash. Each key within the hash names a piece of configuration data. Each value
within the hash can be any valid JSON data type.

Our previous example rewritten in JSON format would look like the following. This
example shows values of a string, a boolean, and an array of strings:

{
"puppet": {
"agent_running": "running",
"agent_atboot": true,
"components": [
"facter",
"puppet”
1
}
}

Creating Hiera Backends | 115

www.it-ebooks.info

http://www.yaml.org/YAML_for_ruby.html
http://www.yaml.org/YAML_for_ruby.html
http://www.it-ebooks.info/

You can find complete details of the JSON data format at http://www.json.org/.

Hiera Data in Puppet

A Puppet backend for Hiera is simply the name of a Puppet class in which Hiera will
check for data variables. These variables would be defined the same as in any Puppet
manifest.

Here is a simple example matching our previous two.

class 'data' {
Configuration hash for Puppet

$puppet = {
"agent_running" => "running",
"agent_atboot" => true,
"components" => ['facter', 'puppet'],
}
}
Hiera receives every Puppet variable and can use it without per-
forming a lookup, so the Puppet data source is completely unnec-
essary for a simple example as shown above. The Puppet data
source should only be enabled when the module is performing
complex operations on the lookup values to produce answers
dynamically.

Puppet Variable and Function Lookup

You can lookup Puppet variables or execute functions to interpolate data within a
Hiera value. Interpolation is performed on any value prefixed with a % and surroun-
ded by brackets {}.

To return the value of a puppet variable, just place the variable name within the
brackets. For example: %{facts: :hostname}

Functions can be invoked within the interpolation brackets as well: %
{ split([1,2,3]) }.

Configuring Hiera

Puppet looks for a Hiera configuration file at the location specified by the hiera_con
fig configuration variable. By default this is $codedir/hiera.yaml, or /etc/puppetlabs/
code/hiera.yaml in Puppet.

If you utilize Hiera command line tools or perform Hiera lookups in pure Ruby code,
they expect to find the configuration file in /etc/hiera.yaml. It is common to symboli-
cally link this to the configuration file in the puppet configuration directory.

116 | Chapter 11: Separating Data from Code

www.it-ebooks.info

http://www.json.org/
http://www.it-ebooks.info/

The Hiera configuration file is in YAML format. Each top-level item is a Ruby Symbol
prefaced with a colon. Valid Symbol names are alphanumeric with underscore, but
not containing dashes. There will always be at least three top-level items. Let’s go over
these now.

Backends

The configuration key :backends should provide an array which lists the backend
data providers that Hiera should use. There are three built-in backends, the two data
types we discussed previously, YAML and JSON, plus Hiera can utilize data from
Puppet.

If you wish to utilize both built-in file types, you could configure it as follows.

:backends:
- yaml
- json

We will only be utilizing YAML within this book.

Other Hiera plugins can be used to provide new data backends to
Hiera, however that is beyond the scope of this book.

Backend Configuration

For each backend data provider you name in the backends array, you should create a
top-level entry with the name of the provider. For each backend provide a hash of
configuration data.

For the two built-in file-based backends the only configuration key necessary is :data
dir, which identifies the directory in which the data files reside.
:yaml:
:datadir: /etc/puppetlabs/code/environments/%{::environment}/hieradata
:json:
:datadir: /etc/puppetlabs/code/environments/%{::environment}/hieradata
As the files read by each backend must be named differently, you can use the same
data directory for both data sources as shown above.

You'll note that were using the top-level environment variable (defined by puppet
master or client) to allow different environment data in each environment. Let’s go
ahead and create the hieradata directory now in the environment directories we cre-
ated in the last chapter.

Configuring Hiera | 117

www.it-ebooks.info

http://www.it-ebooks.info/

[vagrant@client ~]$ mkdir /etc/puppetlabs/code/environments/test/hieradata
[vagrant@client ~]$ mkdir /etc/puppetlabs/code/environments/production/hieradata
For the Puppet backend place the name of a Puppet module which contains the data
in a :datasource configuration key.
:puppet:
:datasource: hieradata
With this configuration variables from a module named heiradata would be

accessed for Hiera lookups. As mentioned previously this is only useful when the
module provides dynamic lookup of data.

Logger

By default Hiera logs warning and debug messages to STDOUT. You can change this
using the : logger configuration value. Valid values are

o Console: emit warnings and debug on STDERR (default)

« noop: don’t emit messages

o The name of a Ruby class named Hiera::name_logger which provides warn and
debug class methods.

Note that this value is only used for command line tools and direct Ruby access. Pup-
pet overrides the value and logs Hiera messages utilizing the Puppet internal logger.

Hierarchy

The final mandatory parameter is :hierarchy. The hierarchy defines the priority
order for lookup of configuration data. For single values Hiera will proceed through
the hierarchy until it finds a value and then stop. For arrays and hashes Hiera will
merge data from each level of the hierarchy, selecting the winner of conflicts based on
the :merge_behavior configuration setting.

There are two types of data sources: static and dynamic. Static data sources are files
explicitly named in the hierarchy which contain data. Dynamic data sources are files
which are named using interpolation of local configuration data, such as the host-
name or operating system of the node.

In a larger enterprise the data lookup hierarchy could be quite complex, however I
recommend the following for a good starting point.

1. Put default values in a file named global.yaml.
2. Put all operating system specific information in a file named for the OS family as
returned by Facter, e.g. RedHat.yaml, Debian.yaml, FreeBSD.yaml, etc.

118 | Chapter 11: Separating Data from Code

www.it-ebooks.info

http://www.it-ebooks.info/

3. Put information specific to a single node within a file named the full hostname of
the node with a.yaml extension.

You would implement this hierarchy using the following configuration syntax. As you
can see, we are interpolating data provided by Facter to choose which files will be
read.
:hierarchy:

- defaults

- "%{::hostname}"

- "%{::osfamily}"

- global
Naturally you can extend this hierarchy to use information like the domain name of
the node or any other facter-provided node value.

If you have multiple backends configured, then Hiera will evaluate the entire hierar-
chy for the first configured backend, then evaluate the entire hierarchy in order for
the 2nd configured backend, etc.

Merge Behavior

You can use the global :merge_behavior configuration parameter to change the way
that data at different levels of the hierarchy is merged.

You should avoid changing this until you have created a testbed
for evaluating the behavior before and after the change.

\

The value must be one of the following:

native Merge keys only. Values at the higher priority will return the entire array or hash intact from that priority

(default) level.

deeper Merge array and hash values recursively. If a recursive key conflicts, the higher priority value overrides the
lower priority value.

deep Merge array and hash values recursively. If a recursive key conflicts, the lower priority value overrides the
higher priority value.

The deep choice is counter-intuitive and reverse of expectations.
You don’t want this, unless you really want to bring the pain.

Anything but the default native requires the deep_merge Ruby gem to be installed.

Configuring Hiera | 119

www.it-ebooks.info

http://www.it-ebooks.info/

Complete Example

Following is a complete example of a Hiera configuration file. This example is what
we will use for the remainder of this book. It enables YAML data input from /etc/
puppetlabs/code/hieradata, with a hierarchy that uses host-specific information in
preference to operating system family information, finally defaulting to values global
to every host.

:backends:

- yaml
:yaml:

:datadir: /etc/puppetlabs/code/hieradata
:hierarchy:

- defaults

- "%{facts::clientcert}"

- "%{facts::osfamily}"

- global

Let’s go ahead and install this file now in your Puppet configuration directory.

[vagrant@client ~]$ sudo mkdir /etc/puppetlabs/code/hieradata
[vagrant@client ~]$ sudo cp /vagrant/etc-puppet/hiera.yaml /etc/puppetlabs/code/hiera.yaml

Doing Hiera Lookups in a Manifest

Let’s modify one of our manifests to utilize Hiera data. First, let’s create a manifest
which contains variables for the configuration of the Puppet agent service.

Always set a default value when performing a Hiera lookup
$running = hiera('puppet::running', 'running')
$startatboot = hiera('puppet::atboot', true)

Now the same code can be used regardless of the value
service { 'puppet':

ensure => $running,

enable => $startatboot,

}
Now, let’s create a Hiera data file containing values for this service.
$ sudo SEDITOR /etc/puppetlabs/code/hieradata/global.yaml
Within this file place the following values:

puppet:
running: 'running'
atboot: true

Finally, let’s execute our manifest utilizing the Hiera data.

120 | Chapter 11: Separating Data from Code

www.it-ebooks.info

http://www.it-ebooks.info/

$ sudo puppet apply hierasample.pp

Testing Hiera Lookups

There are two ways to test hiera lookups from the command line: using the - -config
command line argument to specify the hiera configuration file, like so:

[vagrant@client ~]$ hiera --config /etc/puppetlabs/code/hiera.yaml key...

Or you can provide hiera with its own configuration file, or better yet symbolically
link one to the other.

[vagrant@client ~]$ sudo ln -s /etc/puppetlabs/code/hiera.yaml /etc/hiera.yaml

With either of these options you can do Hiera lookups from the command line to test
your data sources:

[vagrant@client ~]$ hiera puppet::running
running

[vagrant@client ~]$ hiera puppet::packages
["hiera", "puppet"]

Testing Hiera Lookups | 121

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Using Modules

One of the most powerful benefits of using Puppet is having access to the shared
community of module developers. While Puppet provides the ability to create mod-
ules to do nearly anything, it is quite possible that somebody has already written the
module you need. You may be able to use it intact, or use it as a starting point for
further development.

In this chapter we'll go over how to find, evaluate, install, and use modules provided
by Puppet Labs and the global community.

Finding Modules

Puppet Forge

Internal Forge https://forge.example.com/

Puppet Forge
The single largest repository of Puppet modules is the Puppet Forge.

The Puppet Forge provides an easy to use interface to search for and find Puppet
modules provided by others. It is also the default repository used by the puppet mod
ule command. Let’s go over how to use it.

Start by opening a browser and going to https://forge.puppetlabs.com/. The very first
thing you’ll see is the search interface:

Figure 12-1. Puppet Forge Search

123

www.it-ebooks.info

https://forge.puppetlabs.com/
https://forge.puppetlabs.com/
http://www.it-ebooks.info/

/A puppet

forge

Enter the name of an application you wish to manage with Puppet into the search
interface, and you’ll receive a list of modules which may do what you are looking for.
For example, enter apache into the search query to see what modules exist to manage
the Apache HTTPd server.

You can also search the Puppet Forge from the command line. For example, the fol-

lowing search will provide the same results.

$ puppet module search apache
Notice: Searching https://forgeapi.puppetlabs.com ...

NAME DESCRIPTION AUTHOR KEYWORDS
puppetlabs-apache Installs, configures, and manages ... @puppetlabs apache web ssl rhel
example42-apache Puppet module for apache @example42 apache example4?2
evenup-apache Manages apache including ajp proxy ... @evenup apache vhost ajp
theforeman-apache Apache HTTP server configuration @theforeman apache foreman httpd

snip many other results

I have personally found the puppet module command-line search useful when I am
trying to remember the name of a module that I have already researched. However
the web interface provides a lot of useful information not available in the command
line output.

Public GitHub Repositories

Many people share their Puppet modules on GitHub. The following search will show
you a significant number of modules which may not be found in the Puppet Forge:
https://github.com/search?q=puppet.

A great many of the modules available on the Puppet Forge are also available on Git-
Hub. If you click on the Project URL or Report Issues links in the Puppet Forge, the
vast majority of the time you will find yourself on the GitHub repository for the mod-
ule in question. If you need to report a problem, or provide a suggested improvement
to the module, you’ll find yourself using GitHub extensively.

There are a number of reasons that authors may not have published modules avail-
able on GitHub to the Puppet Forge.

o They haven't done the work to prepare and bundle the module appropriately for
the Puppet Forge. (The author of this book falls into this category.)
 They do not feel the module is appropriate or ready for general purpose use.

124 | Chapter12: Using Modules

www.it-ebooks.info

https://github.com/search?q=puppet
http://www.it-ebooks.info/

o The module does not meet the licensing requirements for publication on the
Puppet Forge. Be careful to read the license file provided by any module on Git-
Hub!

Internal Repositories

If you work within a larger organization, you may also have an internal repository of
modules. Depending on the software used to provide the forge, the web search inter-
face will vary. However you can use the stock puppet module command with any
forge:

$ puppet module search --module_repository=http://forge.example.org/ apache

If you always or exclusively use the internal forge, you can add this parameter to your
puppet.conf file to simplify command line searches.

[main]
module_repository = http://forge.example.org/

Evaluating Module Quality

While there are many high-quality modules on the Puppet Forge or GitHub, not all
modules are created equal. It is best to examine the modules carefully before imple-
menting them in your environment.

The Puppet Forge indicates some information about each entry on the right side of
the page. It shows the results of both automated tests of the code base, and commu-
nity feedback on the module.

Figure 12-2. You might want to look carefully at a module with a score like this.

Evaluating Module Quality | 125

www.it-ebooks.info

http://www.it-ebooks.info/

Quality Score - 1.9

5% decline with last release details
Community

Rating

Based on 0 questions answered details

Let’s review some ways to identify high-quality modules.

Puppet Supported

Puppet Supported Modules are modules which are written by, and offically sup-
ported by Puppet Labs.

Figure 12-3. This module is fully supported by Puppet Labs.

Quality Score _ 5.0

3% improvement with last release details

Community _ 4.0

Rating

Based on 87 questions answered details

From the Puppet Labs website:

Puppet Labs guarantees that each supported module:

126 | Chapter 12: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

o has been tested with Puppet Enterprise

o is subject to official Puppet Labs Puppet Enterprise support

o will be maintained over the lifecycle, with bug or security patches as nec-
essary

o is tested on and ensured compatible with multiple platforms

—https://forge.puppetlabs.com/
supported

From personal experience, these modules work very well for base use cases. However
there are not very many Support modules, and they tend not to handle highly cus-
tomized situations.

Puppet Approved

Puppet Approved modules are modules which have been reviewed by Puppet Labs,
and meet their standards for quality.

Figure 12-4. This module has been reviewed and approved by Puppet Labs.

Quality Score [N 5.0

No change with last release details

Community _ 4.5

Rating

Based on 5 questions answered details

From the Puppet Labs website:
Puppet Labs ensures that Puppet Approved modules:

« Solve a discrete automation challenge

o Are developed in accordance with module best practices

o Adhere to Puppet Labs’ standards for style and design

o Have accurate and thorough documentation to help you get started
quickly

o Are regularly maintained and versioned according to SemVer rules

Evaluating Module Quality | 127

www.it-ebooks.info

http://www.it-ebooks.info/

o Provide metadata including license, issues url, and where to find source
code

» Do not deliberately inject malicious code or otherwise harm the system
they’re used with

—https://forge.puppetlabs.com/
approved

In my personal experience, I have not found a module which Puppet Labs has
approved which is of low quality, or where I was unable to get minor problems in the
module fixed in a reasonable amount of time.

Quality Score

The Quality Score of a module is the result of automated review and testing of the
module.

Figure 12-5. You might want to look carefully at a module with a score like this.

Quality Score [1.9

5% decline with last release details
Community

Rating

Based on 0 questions answered details

You can see details of the test results by clicking on Details next to the score then
scrolling down the page, or by scrolling down and clicking Scores just below the mod-
ule version.

Figure 12-6. A breakdown of the quality test results.

a

128 | Chapter12: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

At the time this book was written, a click on the Details link pro-
duced no visible effect. It did change the page to display the Scores
section farther down the page, but this was not visible on many
screens notably laptop displays. You have to click the link and
then scroll down to see the changes.

As you can see the Quality Score is broken down into three tests:

1. Code Quality
2. Puppet Compatibility
3. Metadata Quality

You are provided with a review of the issues found by each test, and a link to see
detailed test results.

Community Rating

The final piece of data provided to you about a module is the Community Rating. This
provides you information about what other users thought of the module.

Figure 12-7. This module received 4.5 out of 5 (e.g. 9 out of 10) score.

Quality Score [N 5.0

No change with last release details

Community _ 4.5

Rating

Based on 5 questions answered details

You can see details of the community rating by clicking on Details next to the rating
then scrolling down the page, or by scrolling down and clicking Scores just below the
module version. You'll find the Community Rating just below the Quality Score.

Figure 12-8. Breakdown of Feedback Rating

Evaluating Module Quality | 129

www.it-ebooks.info

http://www.it-ebooks.info/

As with the Quality Score, at the time this book was written a
click on the Details link produced no visible effect. You have to
click the link and then scroll down to see the changes.

o Installing Modules

You can install Modules from the Puppet Forge, a private internal Forge, or directly
from the developer’s code repository.

Installing from a Puppet Forge

The process for installing a module from the Puppet Forge (or an internal forge of
your choice) is very simple. Let’s go ahead and do this to install a very useful module
that many other modules depend upon: the Puppet Labs-support StdLib module.

[vagrant@client ~]$ puppet module install puppetlabs-stdlib

Notice: Preparing to install into /home/vagrant/.puppet/code/modules ...
Notice: Created target directory /home/vagrant/.puppet/code/modules
Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...
/home/vagrant/.puppet/code/modules

L— puppetlabs-stdlib (v4.5.1)

As you'll note, this command installed the module into the Vagrant user’s pri-
vate .puppet directory. This is an excellent place for you to examine the module and

determine if it meets your needs. You can build tests and run them as yourself, to
avoid the consequences of a testing failure run by root on an innocent system.

Once you decide that a module will do what you need, you can install this module in
the test environment you created at the beginning of this chapter.

$ sudo mv .puppet/modules/stdlib /etc/puppetlabs/code/environments/test/modules/

If you are certain of the module you are downloading, you can use a different com-
mand to install the module directly into the test environment.

[vagrant@client ~]$ puppet module install --modulepath=/etc/puppetlabs/code/environments/test/modt
$ puppet module install --modulepath=/etc/puppetlabs/code/environments/test/modules puppetlabs-stc
Notice: Preparing to install into /etc/puppetlabs/code/environments/test/modules ...

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/etc/puppetlabs/code/environments/test/modules

L— puppetlabs-stdlib (v4.5.1)

130 | Chapter12: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

At the time this book was written there was a bug preventing

this command from working if you were not root. Until

PUP-2012 is fixed, you may need to use sudo when supplying an
\ explicit modulepath.

Installing from GitHub

Sometimes you will find a module youd like to use on GitHub, or perhaps you need
to test bleeding-edge changes to the module without waiting for the author to update
the Puppet Forge. If that’s the case, then going straight to their source tree may be
your best bet.

If you haven't installed git already, you should do that now.

[vagrant@client ~]$ sudo yum install -y git
...snip...
Installed:

git.x86_64 0:1.8.3.1-4.el7

Dependency Installed:
libgnome-keyring.x86_64 0:3.8.0-3.el7 perl-Error.noarch 1:0.17020-2.el7 perl-Git.r

Complete!

Now we can pull directly from any Puppet module available in a Git repository. For
example, if youd like to get the latest changes to my MCollective module, you can
install it from GitHub like so:

[vagrant@client ~]$ cd [etc/puppetlabs/code/environments/test/modules
[vagrant@client modules]$ git clone https://github.com/jorhett/puppet-mcollective mcollective
Initialized empty Git repository in /etc/puppetlabs/code/environments/test/modules/mcollective/.gi
remote: Counting objects: 183, done.
Receilving objects: 100% (183/183), 51.13 KiB, done.
remote: Total 183 (delta 0), reused 0 (delta 0), pack-reused 183
Resolving deltas: 100% (98/98), done.
Do read the instructions that come with the module. Some modules published on
GitHub require steps to be taken before the module can be used successfully, and this
module is no exception. Better yet, set it aside for now as there will be an entire chap-
ter on how to use this module in part IV of this book.

Testing a Single Module

In order to test a module you will need to follow the instructions on the page where
you found the module. In most situations you will need to

1. Add the module to node’s module run list.

Testing a Single Module | 131

www.it-ebooks.info

https://tickets.puppetlabs.com/browse/PUP-2012
http://www.it-ebooks.info/

2. Define Hiera data keys under the module’s name

Lets go through this process now. Start by installing and configuring the puppetlabs-
ntp module. As this module will change system files, we'll need to run this as root so
we must install the module in the system-wide module path.

[vagrant@client ~]$ cd [etc/puppetlabs/code/environments/test/modules
[vagrant@client modules]$ puppet module install --modulepath=. puppetlabs-ntp
Notice: Preparing to install into /etc/puppetlabs/code/environments/test/modules ...
Notice: Downloading from https://forgeapi.puppetlabs.com ...
Notice: Installing -- do not interrupt ...
/etc/puppetlabs/code/environments/test/modules
L+ puppetlabs-ntp (v3.3.0)
L— puppetlabs-stdlib (v4.5.1)
If you look in the /etc/puppetlabs/code/environments/test/modules directory now you’ll
find both ntp and std1lib modules installed. The puppet module install command

will gather all dependency modules listed in the module’s metadata.

Looking at the documentation at https://forge.puppetlabs.com/puppetlabs/ntp, you'll
find that this module can operate without any input data. It will define the configura-
tion using module defaults. Let’s try that out now.

[vagrant@client ~]$ puppet apply --environment test --execute 'include ntp'

Notice: Compiled catalog for client.example.com in environment test in 0.79 seconds

Notice: /Stage[main]/Ntp::Config/File[/etc/ntp.conf]/content: content changed '{md5}7fda24f62blc7:
Notice: /Stage[main]/Ntp::Service/Service[ntp]/ensure: ensure changed 'stopped' to 'running'
Notice: Finished catalog run in 0.54 seconds

As you can see the module has modified our ntp configuration, and started the NTP
service running. The module works!

Defining Config with Hiera

Now, let’s say that you want to change the NTP configuration that the module gener-
ated. For instance, the NTP service was configured to only allow connections from
localhost. Let’s say we want to expand that to allow connections from other systems
on the same LAN.

At this point you need to define some test data in Hiera. Let’s go ahead and open up
the global.yaml file in our environment’s hieradata directory.

[vagrant@client ~]$ $SEDITOR /etc/puppetlabs/code/environments/test/hieradata/global.yaml

Looking at the documentation at https://forge.puppetlabs.com/puppetlabs/ntp, you'll
find that this module’s security can be changed by the restrict and interface
parameters.

132 | Chapter12: Using Modules

www.it-ebooks.info

https://forge.puppetlabs.com/puppetlabs/ntp
https://forge.puppetlabs.com/puppetlabs/ntp
http://www.it-ebooks.info/

To provide data for a module’s input, the data must be named modulename: : param
name. So start by defining the restrict and interface options in the YAML file.

ntp::interfaces:
ntp::restrict:

The documentation says that both of these parameters expect array values. Based on
what we learing in Configuring Hiera we use leading dashes to indicate an array. We
use single quotes to surround unparsed strings. So the input data for the ntp module
would look like this:

Data for the puppetlabs NTP module
which interfaces will accept connections
ntp::interfaces:
- '127.0.0.1'
- '192.168.250.10'
which nodes can connect
ntp::restrict:
- 'default kod nomodify notrap nopeer noquery'
- '-6 default kod nomodify notrap nopeer noquery'
- '127.0.0.1'
- -6 1!
- '192.168.250.0/24'
- '-6 fe80::'

Now that we've defined the input data, let’s re-run this command to effect our
changes.

[vagrant@client ~]$ sudo puppet apply --environment test --execute 'include ntp'

Notice: Compiled catalog for client.example.com in environment test in 0.56 seconds

Notice: /Stage[main]/Ntp::Config/File[/etc/ntp.conf]/content: content changed '{md5}c9d83653966c1e
Notice: /Stage[main]/Ntp::Service/Service[ntp]: Triggered 'refresh' from 1 events

Notice: Finished catalog run in 0.33 seconds

As you can see, Puppet has updated the configuration file and restarted the service.
You can validate the changes by examining the revised /etc/ntp.conf.

[vagrant@client ~]$ grep 192.168.250 /etc/ntp.conf
restrict 192.168.250.0/24
interface listen 192.168.250.10

Executing Multiple Modules with Hiera

The modern, best-practice way to assign modules to a node’s class list is to define the
classes within Hiera. This takes advantage of the Hiera hierarchy to customize the
load list. As you might recall, the hiera hierarchy we defined earlier includes the envi-
ronment within the hieradata load path.

Executing Multiple Modules with Hiera | 133

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s go ahead and set that up now. First, edit the following file:

[vagrant@client ~]$ SEDITOR /etc/puppetlabs/code/environments/test/manifests/site.pp

In this file we're going to tell Puppet to load every node’s class list from Hiera. Add
the following to the file:

hiera_include('classes')
Let’s go ahead and add the same to /etc/puppetlabs/code/environments/production/

manifests/site.pp while we are at it.

At this point you need to assign the class list in Hiera. Let’s go ahead and open up the
global.yaml file in our environment’s hieradata directory.

[vagrant@client ~]$ SEDITOR /etc/puppetlabs/code/environments/test/hieradata/global.yaml

Within this file create a top-level array named classes.

classes:
"ntp'

Now that the ntp module is listed in every node’s class list, you can test the module
without supplying - -execute on the command line.

[vagrant@client ~]$ puppet apply --environment test
Notice: Compiled catalog for client.example.com in environment test in 0.61 seconds
Notice: Finished catalog run in 0.14 seconds

Wait, what happened? This time it didn’t do anything. Thats because the module is
properly Idempotent. The configuration hasn’t changed and the service is still run-
ning, therefore no changes were necessary.

Let’s give the NTP module something to do by stopping the service.

[vagrant@client ~]$ sudo service ntpd stop

Shutting down ntpd: [oK]

[vagrant@client ~]$ puppet apply --environment test /etc/puppetlabs/code/environments/test/manifes
Notice: Compiled catalog for client.example.com in environment test in 0.71 seconds

Notice: /Stage[main]/Ntp::Service/Service[ntp]/ensure: ensure changed 'stopped' to 'running'
Notice: Finished catalog run in 0.18 seconds

134 | Chapter12: Using Modules

www.it-ebooks.info

http://www.it-ebooks.info/

You may find older documentation that suggests defining the

node’s data directly within the site.pp file. In large environments

this quickly devolves into a maintenance nightmare of node

assignments and inheritence. When combined with altering the

modules available in different environments, managing module
assignment consistently went from impractical to implausible.

Examining a Module

Regardless of the quality score or community rating given to a module, it is always
best to examine modules carefully to ensure they will work well in your environment.
Badly written modules can create unintended chaos when put into use within your
existing module space.

Here is a short list of things you should examine the code base to determine if the
module will work well for you.

« OS Support: May not support your operating system properly.

o Module Namespace: May require dependency modules named the same as mod-
ules you use.

o Environment Assumptions: May enforce local assumptions that won’t work in
your environment.

« Sloppy code: Could require or overwrite global variables.

» Resource Namespace: Could use simple resource names which conflict with oth-
ers used already.

o Greedy collectors: Could utilize collectors which accidentally grab unrelated
resources.

You should utilize the above list of things to check for when building your own mod-
ules.

Reviewing Modules

In this chapter we have gone through the installation, configuration, testing, and exe-
cution of a module from the Puppet Forge.

We setup the directory environments test and production. We have installed the NTP
module and its dependent StdLib into the modules directory of the test environment.
We have configured the NTP module using Hiera configuration data based on the
instructions from the modules web page. We have watched as the module operated to
configure and run the NTP service on our system.

Examininga Module | 135

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13
Designing a Custom Module

In this chapter we will go through the process of creating a custom module. We will
cover how to create each component of a module, including:

o Classes and subclasses within the module

o Files distributed by the module intact

 Templates used to create customized files

o Definitions which can be re-used for processing multiple items

o Facts which are added to each node

o Pure ruby functions which provide features unavailable in the Puppet configura-
tion language

o Tests which validate that the module works as expected

Let’s get started.

Choosing a Module Name

A module can be named anything which begins with a letter and contains only lower-
case alphanumeric characters and underscores. A hyphen is not allowed within a
module name. Here are some valid and invalid module names.

mymodule valid
3files invalid
busy_people valid

busy-people invalid

It is important to choose your module name carefully to avoid conflicts with other
modules. As each module creates its own namespace, only one module may exist

137

www.it-ebooks.info

http://www.it-ebooks.info/

within a Puppet catalog with a given name at the same time. For most intents and
purposes, this means that you can never use two modules with the same name.

When naming modules, I try to avoid naming the module anything which conflicts
with a module name available in the Puppet Forge. The reason for this is that I never
know when another team might utilize that module for their project, or when a mod-
ule I download might use the Puppet Forge module as a dependency.

It's possible to manage conflicting module names by utilizing
them within separate environments. We'll cover how to do this in
the Customizing Environments chapter.

Avoiding Reserved Names

There are namespaces which are internal to and used by Puppet itself. For this reason
you can never create a module with the following names:

main The main class contains any resources not contained by any other class.
settings The settings namespace contains variables with the Puppet configuration settings.

trusted The trusted namespace contains facts taken from the client’s certificate, as validated by a Puppet server.

Generating a Module Skeleton

Puppet will generate an empty skeleton for you with the puppet module generate
command. As mentioned at the start of the book, your first module will be made to
manage the Puppet agent itself. Let’s create that now. Use your own name or organi-
zation name instead of myorg below.

When you generate a module, it will ask you a number of questions. Default values
used if you just hit ENTER are included in brackets after each question.

$ puppet module generate myorg-puppet

We need to create a metadata.json file for this module. Please answer the
following questions; if the question is not applicable to this module, feel free
to leave it blank.

Puppet uses Semantic Versioning (semver.org) to version modules.
What version is this module? [0.1.0]
-->

After you have answered all of the questions, it will generate the module in your cur-
rent directory.

Notice: Generating module at /home/vagrant/myorg-puppet...
Notice: Populating templates...

138 | Chapter13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

Finished; module generated in myorg-puppet.
myorg-puppet/manifests
myorg-puppet/manifests/init.pp
myorg-puppet/spec
myorg-puppet/spec/classes
myorg-puppet/spec/classes/init_spec.rb
myorg-puppet/spec/spec_helper.rb
myorg-puppet/tests
myorg-puppet/tests/init.pp
myorg-puppet/Gemfile
myorg-puppet/Rakefile
myorg-puppet/README . md
myorg-puppet/metadata. json

If you prefer to skip the questions and edit the file yourself, add - -skip-interview to
the command line.

Modifying the Default Skeleton

This topic isn’t important right now, but after you've been creating modules for some
time you may to tune the default module skeleton to include things you want in your
modules. This is done by placing your revised skeleton in the ~/.puppetlabs/opt/
puppet/cache/puppet-module/skeleton directory.

Previous versions of Puppet used the ~/.puppet/var/puppet-
module/skeleton directory. You'll need to copy your skeleton to
\ the new directory.

$ cp -r ~/.puppet/var/puppet-module/skeleton ~/.puppetlabs/opt/puppet/cache/puppet-module/

There are skeletons that include better test suites, and skeletons that include common
examples for different application environments. You can find Puppet module skele-
tons by searching for “puppet skeleton” on GitHub.

You can install multiple skeletons in a directory of your choice, and select one for the
module you will be building like so:

$ puppet module --module_skeleton_dir=~/skels/passenger-app generate myorg-railsapp

Understanding Module Structure

Let’s review the files and directories created in your new module. Each of the follow-
ing are files are fixed, unchangeable paths built into Puppet’s expectations and utiliza-
tion of modules.

Understanding Module Structure | 139

www.it-ebooks.info

https://github.com/search?utf8=%E2%9C%93&q=puppet+skeleton
http://www.it-ebooks.info/

manifests/ Directory where code manifests (classes) are read.
files/ Directory containing files served by your module.

templates/ Directory containing templates parsed for custom files.

lib/ Directory containing ruby functions or facts used.
specs/ Directory containing unit tests to validate the manifests.
tests/ Directory containing test invocations of manifests.
facts.d/ Directory containing external facts to be distributed.

metadata.json File containing meta information about the module.

Creating a Class Manifest

Let’s start within the manifests/ directory of your module. In this directory you will
find a single file named init.pp. This file must exist within every Puppet module, and
it must contain the definition for the base class. The base class is a class with the same
name as the module. Let’s take a look at that now.

[vagrant@client ~]$ cd myorg-puppet/manifests
[vagrant@client manifests]$ cat init.pp
class puppet {

}

Right now this class has no definition. That is an acceptable situation--the class must
be defined, but it doesn’t have to do anything. We'll flesh it out in the very next sec-
tion, after we discuss the difference between a class and a manifest.

You will observe that the file contains a documentation template above this class defini-
tion. Go ahead and ignore this for now. We'll cover documentation after we have covered
each of these pieces that the docs will refer to, in Documenting the Module.

What is a Class?

At this point in the book you have created and used manifests. In review, manifests:

« Use Puppet configuration language to define configuration policy
« Contain Resources which describe how their target type should be configured
o Execute immediately with the puppet apply command

The good news for you is that a Class is a manifest with special properties. It uses
Puppet configuration language to declare resources exactly the same as done in a
manifest. This means that if you know how to write a manifest, then you know how
to write a class.

Before we get started, let’s review quickly the special properties that make a class dif-
ferent from a manifest. A class is different in the following ways:

140 | Chapter13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

o A Class is a manifest that can be called by name

o A Class has a namespace or variable scope within its name
o A Class is not used until called by name

« A Class may include or be included by other modules

o A Class may be passed parameters when called

Accepting Input

Let’s define parameters your Puppet module will accept. Adjust the init.pp file to look
something like this.

class puppet(
input parameters and default values for the class
Sversion = 'latest',
$status = 'running',
Senabled, # required parameter

) {

This is where you place your resources.

}

Here we have declared three input parameters. Two of them have default values,
which will only be used if input is not provided when the class is called. The third
value enabled is required, and will generate an error if a value is not provided.

Classes get their input parameters from four possible places. If the data is not avail-
able in the first place, it looks in the next according to the following flow:

1. Parameters can be explicitly passed using a resource definition in a manifest or
an ENC.

2. Parameters can be supplied by Hiera data.

3. Parameters can be supplied within the Class manifest.

Modern Puppet practice is to define all class input parameters within Hiera. Using
resource definitions for invoking classes was common prior to Hiera, but is no longer
recommended for normal use.

We'll discuss how to use ENCs in Part IV: Advanced Puppet.

Accepting Input | 141

www.it-ebooks.info

http://www.it-ebooks.info/

Validating Input with Types

Puppet 4 has a new type system which validates input parameters. This improves
code quality and improves readability of the code.

In older versions of Puppet it was common to perform input validation like this:

class puppet(
input parameters and default values for the class

Sversion = 'latest',
$status = 'running’',
Senabled,

) {

validate_string($version)

validate_string($status)

validate_bool($enabled)
...resources defined below. ..

While this looks easy with three variables, it could consume pages of text with a lot of
input variables. It was fairly common for the first resource defined in a manifest to be
down below line 180.

Puppet 4 allows you to define the type when declaring the parameter now, which
both shortens the code and improves the readability. When declaring the parameter,
simply add the type before the variable name. This declares the parameter and add
validation for the input on a single line.

I think you'll agree the following is significantly more readable:

class puppet(
input parameters and default values for the class
String $version = 'latest',
Enum['running', 'stopped'] $status = 'running',
Boolean $enabled,

) {

...class resources...

}

It is not necessary for you to declare a type. If you are passing in something which
can contain multiple types of data, simply leave the definition without a type as
shown in the previous section. A parameter without an explicit type defaults to a type
named Any.

Best Practice: Use explicit data types for all input parameters.
Avoid accepting ambiguous values which must be introspected
before use.

142 | Chapter13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

You can (and should) also declare types for lambda block parameters:

split(S$facts['interfaces']).each |String S$interface| {

...lambda block...

}

Valid Types

The type system is hierarchial, where you can allow multiple types to match by defin-
ing at a higher level in the tree. Let’s examine this now.

Scalar - accepts any of:

— Boolean - true or false
— String - ASCII and UTF8 characters

— Enum - a specified list of Strings
— Pattern - subset of Strings which match a given Regular expression
— Numeric - accepts either:

— Float - numbers with periods; fractions
— Integer - whole numbers without periods
— Regexp - a Regular Expression'
Collection - accepts any of:

— Array - list containing other data types

— Tuple - an Array with specific types in specified positions.

— Hash - key/value associated pairs. Keys are Strings, Values can be any type.
— Struct - a Hash with specified types for the key and value pairs.

All of the above are part of a type named Data. You can use Data to indicate that you
accept any of these types. There are a few special types that don't fall under Data:

Variant - a special type which matches values of a specified list of types.

Optional - a special type which accepts an optional value of a specific type.

Undef - a special type which only accepts undefined values.

Callable - a special type which refers to a lambda block.

CatalogType - a native Puppet resource type, such as Class, Node, etc.

Runtime - contains references to objects available during runtime, e.g. Ruby class
names.

All of these types are considered type Any, also refered to as Object in some error
messages. There’s no point in declaring a type of Object because youd be saying that it

1 You can learn more about Regular Expressions from Mastering Regular Expressions

Validating Input with Types | 143

www.it-ebooks.info

http://shop.oreilly.com/product/9780596528126.do
http://www.it-ebooks.info/

accepts anything, but it can be useful to help you understand when you see error
messages like this:

Error: Evaluation Error: Error while evaluating a Function Call, function 'alarm' called with mis-
expected:

alarm(Array[String] input_strings) - arg count {1}
actual:

alarm(Tuple[Integer, Float, Tuple[Integer, String, Float], String]) - arg count {1} at /vagrant,
type mismatch, an Array[Object] cannot be used where an Array[Integer] is expected

Best Practice: Even when values may be multiple data types, most
circumstances you are expecting a Scalar data type, rather than
one of the internal objects. Use Scalar for parameters where the
values can be multiple types.

Accepting Values

The type system allows for validation of not only the parameter type, but of the values
within structured data types. For example:

Integer[13,19] # teenage years

Array[Float] # an array containing only Floating point numbers
Array[Array[String] 1 # an array containing only Arrays of Strings

Array[Numeric[-10,10]] # an array of Integers or Floats between -10 and 10

For structured data types, the range parameters indicate the size of the structured
type, rather than a value comparison. You can check both the type and size of a Col-
lection (Array or Hash) using two values: the type and an array with the size parame-
ters.

Array[String,0,10] # an array of 0 to 10 string values
Hash[String,Any,2,4] 1 # a hash with 2 to 4 pairs of string keys with any value

To get even more specific about key and value types for a Hash, a Struct specifies
exactly which data types are valid for the keys and values.

This is a Hash with short string keys and floating point values
Struct[{
day => String[1,8], # keys are 1-8 characters in length
temp => Float[-100,100], # values are floating point Celcius
1

This is a Hash which can contain only 3 keys named after ducks
Struct[{

duck => enum['Huey', 'Dewey','Louie'],

loved => Boolean,

3]

144 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

Like what a Struct does for a Hash, you can specify which types of data for an Array
using the Tuple type. The Tuple can list specific types in specific positions, along with
a specified minimum and optional maximum number of entries.

an array with three integers followed by one string (explicit)
Tuple[Integer,Integer,Integer,String]

an array with 2 Integers followed by 0-2 Strings (length 2-4)
Tuple[Integer,Integer,String,2,4]

an array with 1-3 Integers, and 0-5 Strings
Tuple[Integer,Integer,Integer,String,1,8]

That last one is pretty hard to understand so let’s break it down:
o Integer in position 1 (required minimum)
o Integers in positions 2-3 are optional (above minimum length)

o String in position 4 is optional (above minimum length)
o The final type (String) may be repeated up to maximum 8

As you can see, the ability to be specific for many positions in an Array makes Tuple
a powerful type for well-structured data.

The Variant and Optional types allows you to specify valid alternatives.

Variant[Integer,Float] # the same as Numeric type
Variant[String,Array[String]] # a String or an array of Strings
Variant[String,undef] # a String or nothing
Optional[String] # same as the previous line
Optional[String,Integer] # String, Integer, or nada

You can also check the size of the value of a given type:

String[12] # a String at least 12 characters long
String[1,40] # a String between 1 and 40 characters long
Array[Integer,3] # an Array of at least 3 integers
Array[String,1,5] # an Array with 1 to 5 strings

You can use all of these together in combination:

An arrray of values which are thumbs up or thumbs down
Array[Enum['thumbsup','thumbsdown']]

An arrray of values which are thumbs up, thumbs down, or a value from 1 to 5
Array[Variant[Integer[1,5], Enum['thumbsup','thumbsdown']]]

Testing Values

In addition to defining the type of parameters passed into a class, defined type, or
lambda, you can perform explicit tests against values in a manifest. Use the =~ opera-
tor to compare a value against a type to determine if the value matches the type decla-

Validating Input with Types | 145

www.it-ebooks.info

http://www.it-ebooks.info/

ration. For instance, if a value could be one of several types, you could determine the
exact type so as to process it correctly.

class myclass(
accepts on input value of either Integer or String
Variant[Integer,String] S$input_value,

) {

if(Sinput_value =~ String) {
notice("Received string S${input_value}")
}
elsif($input_value =~ Integer) {
notice("Received integer ${input_value}")
}
}

You can also determine if a type is available within a Collection with the in operator.

if(String in $Sarray_of_values) {
notice('Found a string in the 1list of values.')

}
else {
notice('No strings found in the list of values.')

}
The with function can be useful for type checking as well:

with($password) |String[12] $secret| {
notice("The secret '${secret}' is a sufficently long password.")

}

You can likewise test value types using case and selector expressions:

case $input_value: {
Integer: { notice('Input plus ten equals ' + ($input_value+10)) }
String: { notice('Input was a string, unable to add ten.') }

}

You can test against Variant and Optional types as well

if($input =~ Variant[String, Array[String]]) {
notice('Values are strings.')

}
if($input =~ Optional[Integer]) {
notice('Values is a whole number or undefined.')

}

A type compares successfully against its exact type, and parents of it’s type, so the fol-
lowing statements will all return true:

"text' =~ String # exact

"text' =~ Scalar # Strings are children of Scalar type
"text' =~ Data # Scalars are a valid Data type
"text' =~ Object # all types are Objects

146 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

If you don't like the default messages displayed when compilation fails due to a type
mismatch, you can customize your own by using the assert_type function with a
lambda block.

assert_type(String[12], $password) |Sexpected, Sactual| {
fail "Passwords shorter than 12 characters can be cracked easily. You supplied: ${actual}

}

Matching Regular Expressions

You can evaluate Strings against regular expressions to determine if they match using
the same =~ operator. For instance, if you are evaluating filenames to determine
which ones are Puppet manifests, the follow example would be useful:

Smanifests = $filenames.filter do |$filename| {
$filename =~ Regexp[/\.pp$/]
}

You can match against multiple exact strings and regular expressions with the Pat
tern type:

S$placeholder_names = Svictims.filter do |$Sname| {
$name =~ Pattern['alice','bob','eve','(?1)*j.* doe',/(?1)*j.* roe/]

}

Only the Regexp type can use variable interpolation, placing another variable within
the match string:

$fullname =~ Regexp["${first_name} [\w\-]+"]
}

Declaring Resources

As we mentioned previously, Class manifests are almost exactly like the manifests you
used with puppet apply. To that end, I am sure that you remember (or can look back
in the book) the resources desclared to install a package and start a service. Go ahead
and fill in the class manifest with those resources right now.

When you are done, your manifest will look something like this:

class puppet(

String Sversion = 'latest',
Enum['running', 'stopped'] S$status = 'running',
Boolean $enabled,

) {

Install the Puppet agent
package { 'puppet-agent':

Declaring Resources | 147

www.it-ebooks.info

http://www.it-ebooks.info/

version => $version,
notify => Service['puppet'],

H

Manage the Puppet service
service { 'puppet':

ensure => $status,
enable => Senabled,
subscribe => Package['puppet-agent'],

}
}

This is very similar to the package and service manifest built out earlier in the book.
As per best practice, we have defined dependencies to ensure that the service is
restarted if the package is updated.

Using Hiera Data

At this point, you might be asking yourself why we didn't use Hiera calls to get the
input values for the class. As discussed in the Separating Data from Code chapter,
Hiera provides a configurable, hierachial mechanism to provide input data for mani-
fests.

One of the special properties of Class manifests is that you don’t need to use the
explicit hiera() function calls shown in that chapter. Instead, you define the hiera
values using the module’s namespace. Let’s go ahead and define those values now
in /etc/puppetlabs/code/hieradata/global.yaml.

/etc/puppetlabs/code/hieradata/global.yaml
puppet::version = 'latest'

puppet::status = 'stopped'

puppet::enabled = false

Without any function calls, these variables will be provided to the puppet module as
parameter input, overriding the default values provided in the class declaration.

You cannot define input parameters as hash keys for the module
name.

\

Given that Hiera uses the :: separator to define the data hierarchy, you might think
that it would be easier to define the input parameters as hash entries underneath the
module. And yes, I agree that the following looks very clean:

puppet:
version = 'latest'

148 | Chapter13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

status = 'stopped'

enabled = false
Unfortunately, it does not work. The key for an input parameter must match the
complete string of the module namespace plus the parameter name. So the file must
be written using the definition shown before the warning above.

Sharing Files

You are probably thinking to yourself that this manifest isn’t sufficient. One can't gen-
erally install and run software without configuring it. So it’s time to add a configura-
tion file.

The first step is to create a directory in which to store files. Puppet has a built in map
for a module’s shared files. They must reside in a files directory within the module
directory.

$ cd myorg-puppet
$ mkdir files

Now let’s create a small configuration file in that directory to test out the concept.
$ SEDITOR files/puppet.conf

For now, let’s make a very simple change to Puppet’s configuration. For a reason we'll
discuss in the next section, let's make this a very simple change. Let’s make the log-
ging a bit more verbose.

[main]

This is used for "puppet apply"
[user]
log_level = info

Now we shall add a file resource to the class manifest. Unlike how we used it in the
manifest, instead of using content attribute, we'll use a source attribute. Files speci-

fied by this attribute are copies exactly as they are. Type the source exactly as shown
below:

file { '/etc/puppetlabs/puppet/puppet.conf':

ensure => file,

owner => 'root',

group => 'wheel',

mode => '0644',

source => 'puppet:///modules/puppet/puppet.conf',
}

The target of a source directive can be another local file specified by a fully qualified
path, or it can be a URI to a file from the module. The most common specification is
to use three slashes in a row /// which leaves the server field in the URI blank. This

Sharing Files | 149

www.it-ebooks.info

http://www.it-ebooks.info/

means to get the file from the Puppet server the agent is currently talking to. The
three slashes URI also works seamlessly with puppet apply on the local system.

The path /modules/puppet is a special path which maps to the files directory in the
puppet module. You can place subdirectories within the files directory if you have
many files you need to organize.

Best Practice: Avoid specifying an explicit Puppet server in the
URI source for a file, as the module will fail if used in an environ-
ment which doesn’t have direct access to that exact server. Instead,
synchronize the dependent files to all Puppet servers which serve
the module that specifies the files.

You can specify an array of file sources. Puppet will go through the array of sources
and use the first file it finds.

We won't use it for this module, but it’s possible to synchronize all files in a directory.
With the optional recurse and purge parameters it is possible to synchronize a direc-
tory tree of files.

file { "/etc/program/":
ensure => directory,

owner => 'root',
group => 'wheel',
mode => '0444"',
recurse => true, # go into subdirectories
replace => true, # replace any files that already exist
purge => false, # don't remove files that we don't have
links => follow, # follow symbolic links and modify the link target
force => false,
source => 'puppet:///modules/puppet/puppet.conf’,
}

As you can see above, there are many parameters for controlling how files are
installed, and under what situations they will replace other files. You can find detailed
explanations for these attributes at Puppet 4 Type Reference: File.

In my experience Puppet is not well suited for synchronizing very
large directories, or very large files. I have used it very successfully
for small trees of HTML, XML, JSON, or INI configuration files,
such as those used by Java application services. When synchroniz-
ing very large directories or files nearing or greater than a giga-
byte in size it is better to synchronize files using utilities designed for those kinds
of transfers, e.g. rsync, wget --mirror, and for some purposes git can be signif-
icantly higher performance.

150 | Chapter13: Designing a Custom Module

www.it-ebooks.info

https://docs.puppetlabs.com/references/4.0.latest/type.html#file-attributes
http://www.it-ebooks.info/

It is possible to source files which are not within a module from the Puppet server.
However, this practice is deprecated and not recommended for many good reasons,
so I am not going to cover that here.

Best Practice: Always places files in the same module as the man-
ifests which use the files.

Parsing Templates

I can imagine you are saying to yourself, “Not every system will get the same configu-
ration” Good point! Let’s build a customized template for this configuration file.

First, create a directory in which to store templates. Like files, templates have their
own directory in the module structure.

$ cd myorg-puppet
$ mkdir templates

The template we are going to build will utilize four variables. Let’s build a manifest

that supplies those variables. First, let’s modify the module input to set default values
for each of these variables:

class puppet(
String Sversion = 'latest',
Enum['running', 'stopped'] $status = 'running',
Boolean $enabled,
String loglevel = 'warning',

String agent_loglevel = 'warning',

String apply_loglevel = 'warning',

String server = 'puppet.example.net',
) {

Instead of String it would be more specific to use a type of
Enum['debug', 'info', 'notice’, 'war

ning','err','alert', 'emerg', 'crit', 'verbose'] for each of
the loglevels. I didn’t do this only for page formatting/display rea-
sons.

With this declaration, we now have seven variables in our class’s scope which we can
use in a template.

There are two different template parsers within Puppet:

Parsing Templates | 151

www.it-ebooks.info

http://www.it-ebooks.info/

o The new Puppet EPP templates which use Puppet variables and Puppet func-
tions.
o The well-known Ruby ERP templates which use Ruby language and functions.

It doesn't matter which one you use, so we'll teach you to use each of these.

Common Syntax

Both Puppet EPP and Ruby ERB files are plain text files which contain some com-
mon syntax and template tags. Outside of these tags is normal, unprocessed text.
Within the tags are Puppet or Ruby variables and code.

<%= variable or code %> This tag is replaced with the value of the variable, or result of the code.
<% code %> The code is executed but no result is returned (unless the code calls an output
function)

<%# comment for an editor of the This tag is removed from the output.
file or module %>

<% code block -%> Trailing whitespace including newlines are suppressed. Useful to avoid blank lines
in output.

<%- code block %> Leading whitespace including a newline is suppressed. Useful when code is
indented for readability.

<%= variable or code -%> Result of the code with trailing whitespace removed. (Trim of leading whitespace is
not available)

<%% -or- %%gt; Doubled percent signs are replaced with single percent sign without any code
evaluation.

Don’t worry about memorizing these patterns just yet. We will use these tags in the
next few pages, and you'll get to see their use in context.

Using Puppet EPP Templates

First let's adjust the file declaration from the previous section. We'll remove the
source attribute and replace it with a content attribute. The content will be provided
by the epp() function.

file { '/etc/puppetlabs/puppet.conf':
ensure => ensure,

owner => 'root',

group => 'wheel',

mode => '0644',

content => epp('puppet:///puppet/puppet.conf.epp'),
}

The epp() function takes a two arguments:

152 | Chapter13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

URI of the Puppet EPP template
The format of that URI is always puppet:///modulename/ filename.epp. The file
should be placed in the templates directory of the module. Puppet EPP templates
end with the .epp extension to indicate that the file contains tags for the Puppet
EPP template processor.

A hash of parameters for input
An optional hash of input parameters for the template, described in Providing
Parameters below.

Let’s create a template file.

$ cd myorg-puppet/templates
$ SEDITOR puppet.conf.epp

The template should look something like this:

Generated by Puppet EPP template processor
[main]
log_level = <%= Sloglevel %>

This 1s used by "puppet agent"
[agent]
log_level = <%= $agent_loglevel %>
server = <%= $server -%>.example.net

This i1s used for "puppet apply"
[user]
log_level = <%= $apply_loglevel %>
This example utilizes four variables. Each instance of <%= $variable %> is replaced
with the Puppet variable from the current scope. We added those variables to the
manifest as our very first step.

In this declaration, the epp() function processes the EPP template and provides the
content to be placed in the file. It does this by replacing the variable lookups in the
file we created with variables from the current variable scope (within this class).

Go ahead and test this change right now with puppet apply. You will see the contents
of the puppet configuration file get updated.

You can lookup variables from another class using the modules scope, the same as
you would inside a Puppet template. For example, if we wanted to use the same logle-
vel as used by MCollective, the following would work.

loglevel = <%= $mcollective::loglevel -%>

EPP templates can do far more than variable replacement. You can put any Puppet
function within <% ... %> tags without the equals sign. Here’s an example that uses
conditional evaluation to limit duplicate assignment of loglevels which don’t differ.

Parsing Templates | 153

www.it-ebooks.info

http://www.it-ebooks.info/

[user]
<% if Sapply_loglevel != $loglevel -%>
log_level = <%= @apply_loglevel %>
<% end -%>
By placing this line of output within the Puppet if condition, the line will only be out-
put if the condition matches. This will avoid outputting the configuration line if the
loglevel matches the main loglevel, thus simplifying the configuration file.

Providing Parameters

You can optionally provide a hash of input parameters for the template. This is very
useful when the Puppet variable names don’t match the variable names used in the
template. For example:

content => epp('puppet:///puppet/puppet.conf.epp’,
{ String server => $server, String loglevel => $loglevel }

) 1
When providing parameter input, then the very first line of the template should con-
tain the following special syntax used for accepting the variables.

<%- |$server, Sloglevel = 'warning'| -%>

This input format exactly matches the input assignments used for class parameters,
where the server value is required to be provided, while the loglevel has a default
value of warning if no value is provided.

These two forms must match each other, where all required parameters must be sup-
plied for templates which define them.

Best Practice: Always place the parameters you will use in the
template at the top, and send them explicitly when declaring the
template file in your manifest. This ensures the greatest readabil-
ity, allowing a user to avoid searching multiple files to determine
where a value was sourced from.

Iterating over Values

You can use any Puppet function within the template tags. By far the most common
operation to perform within a template is to iterate through some values.

Here’s an example where we use the each() function to iterate through an array of
tags which should be used to limit which resources are applied to the node, as we dis-
cussed in Part I. This example uses the dash creatively to suppress linefeeds and out-
put multiple Puppet servers on a single line:

[agent]
tags = <% S$taglist.each do |$tagname| -%>
<%= S$tagname + ',' -%>

154 | Chapter13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

<% end -%>

an extra linefeed to terminate the line above
This function is written exactly the same as the iteration examples shown to you in
Using Puppet Configuration Language section on Looping Through Iterations.
Learning More

Complete documentation for EPP templates is available at Puppet Functions: epp.

Using Ruby ERB Templates

First, let’s adjust the file declaration from the previous section. We'lll remove the
source attribute and replace it with a content attribute.

file { '/etc/puppetlabs/puppet.conf':
ensure => ensure,

owner => 'root',

group => 'wheel',

mode => '0644',

content => template('puppet:///puppet/puppet.conf.erb'),
}

The template() function takes a single argument: the URI of the ERB template. The
format of that URI is always puppet:///modulename/ filename. The file should be
placed in the femplates directory of the module. ERB templates should end with
the .erb extension to indicate that the file contains tags for the ERB template pro-
Cessor.

Let’s create the ERB template file.

$ cd myorg-puppet/templates
$ SEDITOR templates/puppet.conf.erb

The contents of the file should look like this:

Generated by Puppet ERB template processor
[main]
log_level = <%= @loglevel %>

This is used by "puppet agent"
[agent]
log_level = <%= @agent_loglevel %>
server = <%= @server -%>.example.net

This 1s used for "puppet apply"
[user]
log_Tlevel = <%= @apply_loglevel %>

Parsing Templates | 155

www.it-ebooks.info

https://docs.puppetlabs.com/references/latest/function.html#epp
http://www.it-ebooks.info/

Just as our EPP example, this simple example uses four variables. Each instance of <%=
@variable %> is replaced with the value of the Puppet variable named after the @
sign. The variables named with the @ sign must exist in the same scope (within the
module class) as the template declaration.

There are many other things you can do within an ERB template. You can lookup
variables from another class using the scope.lookupvar() function, or use scope[]
as if it was a Hash. For example, if we wanted to use the same loglevel as used by
MCollective, either of the following would work.

loglevel
loglevel

<%= scope.lookupvar('mcollective::loglevel') -%>
<%= scope['::mcollective::loglevel'] -%>

You can call Puppet functions using scope.function_puppet_function(). For
example, you could call the Hiera function to lookup Hiera values within templates
(although this practice is strongly discouraged). This would be done by using
scope.function_hiera() to call the same heira() function we used when introduc-
ing Hiera.

server = <%= scope.function_hiera(['puppet::server']) -%>

Best Practice: Avoid placing direct Hiera calls within the tem-
plate, as it divides the source of data for the template between the
manifest file and hiera, ensuring confusion. Instead, source the
Hiera variables within the manifest so that all variables are within
scope.

As ERB templates were intended for inline Ruby development, you can put any Ruby
statement within <% ... %> tags without the equals sign. Here’s an example that
would limit duplicate assignment of loglevels which don’t differ.

[user]
<% i1f @apply_loglevel != @loglevel -%>
log_level = <%= @apply_loglevel %>
<% end -%>
By wrapping this line of the template within the Ruby block, it will skip outputting
the configuration line if the loglevel matches the main loglevel, thus simplifying the
configuration file.

Go ahead and test this change right now with puppet apply. You will see the contents
of the puppet configuration file get updated.

Iterating over Values

Here’s an example where we use the Ruby each() function to iterate through an array
of tags which should be used to limit which resources are applied to the node, as we

156 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

discussed in Part I. This example uses the dash creatively to suppress linefeeds and
output multiple Puppet servers on a single line:

[agent]

tags = <% @taglist.each do |tagname| -%>

<%= tagname + ',' -%>

<% end -%>
You'll note that we don’t put an @ sign before the variable name. That is because we
are not referencing a variable in the Puppet module class, but instead from the local
loop shown in this example.

Learning More

More documentation for using ERB syntax with Puppet can be found at Using Pup-
pet Templates. ERB is commonly used by Ruby in many other situations, so you can
find advice and help for using ERB syntax with any search engine.

Creating Readable Templates

You may have noticed that both the original template and this block sometimes utilize
a leading dash in the closure -%>. The dash tells the interpretter to supress the follow-
ing linefeed, thus avoiding blank lines in the file output. This is commonly used to
keep comments or Ruby statements from adding blank lines to a line, but can also be
used to concatenate two sequential lines.

You want to avoid trimming whitespace with the dash if that is the end of the line, or
two lines will be joined together.

Best Practice: Use Puppet EPP templates with Puppet Configura-
tion Language in both the manifests and the templates. Specify
parameters for the template explicitly for clarity and readability.

I cannot personally express the preceding suggestion strongly enough. I cannot tell
you how many hours I have spent searching through dozens of manifests to try and
determine where a variable used in a template was sourced from.

Building Subclasses

When building a module you may find yourself with several different related compo-
nents, some of which may not be utilized on every system. For example, our Puppet
class should be able to configure both the Puppet agent and a Puppet server. In situa-
tions like this, it is best to break your module up with subclasses.

Building Subclasses | 157

www.it-ebooks.info

https://docs.puppetlabs.com/guides/templating.html
https://docs.puppetlabs.com/guides/templating.html
http://www.it-ebooks.info/

Each subclass is named within the scope of the parent class. For example, the class
which configures the Puppet agent would make sense to name puppet: :agent.

Each subclass should be a separate manifest file, stored in the manifests directory of
the module, and named for the subclass followed by the .pp extension. For example,
our Puppet module could be expanded to have the following classes:

Class Name File Name
puppet manifests/init.pp
puppet::agent manifests/agent.pp
puppet::server manifests/server.pp

As our module currently only configures the Puppet Agent, let’s go ahead and move
all resources from the puppet class into the puppet: :agent class. When we are done
the files might look like this:

manifests/init.pp
class puppet(
common variables for all Puppet classes

String Sversion = 'latest',

String Sloglevel = 'warning',
) {

no resources in this class

}

manifests/agent.pp

class puppet::agent(
input parameters specific to agent subclass
Enum['running', 'stopped'] $status = 'running',
Boolean $enabled, # required parameter

)

inherits puppet {

all of the resources previously defined

}

manifests/server.pp
class puppet::server() {
we'll write this in Part III of the book

}

Best Practice: Any time you would need an if/then block in a
module to handle different needs for different nodes, use sub-
classes instead for improved readability.

158 | Chapter13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

One last change will be to adjust Hiera to reflect the revised class name:

/etc/puppetlabs/code/hieradata/global.yaml
classes:
puppet::agent

puppet::loglevel = 'info'
puppet::agent::version = 'latest'
puppet::agent::status = 'stopped'
puppet::agent::enabled = false

With these small changes we have now made it possible for a node to have the Puppet

agent configured, or the Puppet server configured, or both.

Remember that module parameters must be supplied with the

entire module class (e.g. puppet: :agent plus :: and the variable

name. You cannot define parameters as hash keys under the
\ module name.

Understanding Variable Scope

Modules may only declare variables within the module’s namespace (also called
scope). This is very important to remember when using subclasses within a module,

as each subclass has its own scope.

class puppet::agent {
these two definitions are the same
Sversion = '1.0.1'
$::puppet::agent::version = '1.0.1"'

A module may not create variables within the top scope or another module’s scope.

Any of the following declarations will cause a compilation error:

class puppet {
FAIL: can't declare top-level variables
$::version = '1.0.1'

FAIL: Can't declare variables in another class
$::mcollective::version = '1.0.1'

FAIL: no, not even in the parent class
S::puppet::version = '1.0.1'

While you cannot change variables in other scopes, you can use them within the cur-

rent scope.

notify(Svariable) # variable in current, parent, node, or top scope

notify($::puppet::variable) # variable in the parent scope
notify($::variable) # variable in the node or top scope

Understanding Variable Scope

www.it-ebooks.info

159

http://www.it-ebooks.info/

The first invocation could return a value from an in-scope variable, a variable from
the parent scope, or a top-scope variable. A person would have to search the module
to be certain a local scope variable wasn't defined. Furthermore, a declaration added
to the manifest above this could assign a value different from what you intended to
use. The latter form is explicit and clear about the source.

Best Practice: Always refer to out of scope variables with the
explicit $: : prefix for clarity.

The one and only time where you should refer to an out of scope variable without the
$:: prefix is when redeclaring the variable within the current scope.

$sumtotal = 30 # overrides the higher scope variable within this class

Ssumtotal += 10 # overrides the higher scope variable with a local addition of 10
The latter form looks like a redefinition, which as you might recall is not possible
within Puppet. However, the += operator actually creates a variable in the local scope
with a value of the higher scope variable plus the value specified.

Reusing Defined Types

Puppet classes are what’s known as singletons. No matter how many places they are
called with include or require functions, only one copy of the class exists in mem-
ory. Only one set of parameters are used, and only one set of scoped variables exist.

There will be times that you may want to invoke Puppet resources multiple times
with different input each time. For that purpose you create a defined type.

Defined types are manifests that look almost exactly like subclasses:

+ They are placed in the manifests/ directory of a module.

o They are named within the module namespace exactly like subclasses.

o The file name should be named for the defined type, and end with the .pp suffix.
o They begin with parenthesis that define parameters which are accepted.

Unlike classes, defined types can be called over and over again. This makes them suit-
able for use within the lamba of an iterator. We'll use an iterator in our puppet class in
the next section. To demonstrate the idea now, here’s an example from a users class.

modules/users/manifests/create.pp
define users::create(

Integer Suid,

Optional[Integer] $gid,

String Scomment,

) {

160 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

user { Stitle:

uid => $uid,
gid => $uid,
comment => $comment,

}
}

modules/users/manifests/init.pp
class users(Array[Hash] Suserlist = []) {
userlist.each do |[$user| {
users::create { Suser['name']:
uid => Suser['uid'],
comment => S$user['comment'],
}
}
}

The create defined type will be called once for every user in the array provided to the
users module. Unlike a class, the defined type sees fresh input parameters each time it
is called.

Calling Other Modules

In Building Subclasses we split up the module into separate subclasses for the Puppet
agent and Puppet server. A complication of this split is that both the Puppet agent
and Puppet server read the same configuration file puppet.conf. Both classes would
modify this file, and both restart their services if the configuration changes.

Lets review two different ways to deal with this complication. Both solutions have
classes depend on another module to handle configuration changes. Each of them
present different ways to deal with the complications of module dependencies, thus
we are covering both solutions to demonstrate different tactics.

Sourcing a Common Dependency

One way to solve this problem would be to create a third subclass named config.
This module would contain a template for populating the configuration file with set-
tings for both the agent and server. In this scenario, each of the classes could include
the config class. This would work like the following:

manifests/_config.pp
class puppet::_config(
Sagent = {}, # Agent params empty if not available in Hiera
Sserver = {}, # Server params empty if not available in Hiera
) {
file { 'puppet.conf':
ensure => ensure,
path => '/etc/puppetlabs/puppet/puppet.conf’,
owner => 'root',

Calling Other Modules | 161

www.it-ebooks.info

http://www.it-ebooks.info/

group => 'wheel',
mode => '0644',
content => epp(
'puppet:///puppet/puppet.conf.epp’, # template file
{ 'agent' => $Sagent, 'server' => $server } # hash of config params
),
}
}

This example shows a common practice of naming classes which are used internally
by a module with a leading underscore.

Best Practice: Name classes and types which should not be called
directly by other modules with a leading underscore.

You may notice that the file resource doesn't require the agent or server packages,
nor notify the Puppet agent or Puppet server services. This is because a Puppet
agent and server are separate classes which might not be declared for a given node®.
Those resources might not exist in the catalog.

Now let’s modify the agent class to make use of this dependency.

manifests/agent.pp
class puppet::agent(
$status = 'running',
Senabled,
) {
Include the class which defines the config
include puppet::_config

Install the Puppet agent
package { 'puppet-agent':
version => $version,
before => File['puppet.conf'],
notify => Service['puppet'],

}

Manage the Puppet service
service { 'puppet':
ensure => $status,
enable => Senabled,

2 The astute reader might point out that Puppet couldn’t possibly configure the Puppet server if the Puppet
agent isn't installed--a unique situation for only a Puppet module. This concept would be valid for any other
module which handles both client and server.

162 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

subscribe => [Package['puppet-agent'], File['puppet.conf']],
}

This example above uses before and subscribe to order the resources which must
happen before or after the configuration is written out.

You may think that require would be more appropriate than include for the _con
fig class. However, require defines a complete dependency where every resource in
the class depends on the other class. As we want the packages to be installed before
the configuration file is modified, this would introduce a circular dependency. It is
best to include the class and use per-resource dependencies.

If you imagine a server class defined the same way, this means that each one utilizes
the same configuration class. As you might remember from the preceding section,
each class is a singleton: the configuration class will only be called once, even though
it is included by both classes. If the puppet: :server class is defined with the same
dependencies as the puppet::agent class, the before and subscribe attributes
shown will ensure that implementation will happen in this order on a node which uti-
lizes either or both classes:

1.

o puppet::agent: The puppet agent package would be installed.
o puppet::server: The puppet server package would be installed.

2. puppet::_config:The puppet configuration file would be written out.
3.

o puppet::agent: The puppet agent service would be started.
o puppet: :server: The puppet server service would be started.

Using a Different Module

The previous example showed a way to solve a problem within a single Puppet mod-
ule, where you control each of the classes which need to manage a common depend-
ency. Sometimes there will be a common dependency shared across Puppet modules
maintained by different groups, or perhaps even sometimes entirely outside of Pup-

pet.

The use of templates requires the ability to manage the entire file. Even when using
modules which can build a file from multiple parts, such the PuppetLabs Concat
module, the entirety of the file must be defined within the Puppet catalog. The fol-
lowing example utilizes a module which can make individual line or section changes
to a file without any knowledge of the remainder of the file.

Calling Other Modules | 163

www.it-ebooks.info

https://forge.puppetlabs.com/puppetlabs/concat
https://forge.puppetlabs.com/puppetlabs/concat
http://www.it-ebooks.info/

manifests/agent.pp
class puppet::agent(

Sversion = 'latest',
$status = 'running',
Senabled,

Sconfig = {3}, # Agent params empty if not available in Hiera

) {

include puppetlabs::inifile

Fail if Sconfig doesn't contain a hash
validate_hash(S$config)

Write each agent configuration option to the puppet.conf file
Sconfig.each |$setting,Svalue| {
ini_setting { "agent $setting":
ensure => present,
path => '/etc/puppetlabs/puppet/puppet.conf’,
section => 'agent',
setting => $setting,
value => $value,
require => Package['puppet-agent'],
notify => Service['puppet'],
}
}

package and service resources defined here
}
This example shows a way to define each configuration setting as a unique resource
within the class. As each setting is a unique resource, the Package and Service won't
use before or subscribe attributes as the config settings list can change. Instead the
setting resources utiilze require and notify attributes to insert themselves between
the package and service resources.

This shorter, simpler definition uses a third party module to update the Puppet con-
figuration file in a non-exclusive manner. In my opinion this is significantly more
flexible than the common dependency template module shown in the previous exam-

ple.

Ordering Dependencies

As discussed in the section about variable scope, Classes and defined type instances
contain the variables and resources they declare. An instance of a Class (singular) or
defined type (multiple) becomes a container for the variables and resources defined
within in.

This affects how the ordering metaparameters are applied. If a resource defines a
dependency with a Class or Type, it will form the same relationship with every

164 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

resource inside the container. For example, say that we want the Puppet service to be
started after rsyslog is already up and running. As you might imagine, the rsyslog
module has a similar set of resources as our puppet::client module does:

class rsyslog {
package { ... }
file { ... }
service { ... }

}

Rather than setting a dependencing on each one of these resources, we can set a
dependency on the entire Class.

Manage the Puppet service
service { 'puppet':

ensure => $status,
enable => Senabled,
subscribe => Package['puppet-agent'],
after => Class['rsyslog'],
}

With this definition, the Puppet service would not start until every resource in the
rsyslog class has been processed.

Best Practice: Define dependencies on entire classes whenever
possible. When you define dependencies on specific resources, a
refactoring of the class could cause a compilation error for you.

It is possible to set a requirement on a specific instance of a defined type. To borrow
the example of our user defined type

Containing Classes

In most situations, each class declaration stands independent. While a class can
include another class, the class is defined at an equal level as the calling class--they
are both instances of the Class type. Ordering metaparameters are used to control
which classes are processed in which order.

As classes are peers, no class contains any other class. In almost every case, this is
exactly how you want class declaration to work. This allows freedom for any class to
set dependencies and ordering against any other class.

However, there is also a balance where one class should not be tightly tied to the
internals of another class. It can be useful to allow other classes to declare ordering

Containing Classes | 165

www.it-ebooks.info

http://www.it-ebooks.info/

metaparameters that refer to the parent class, yet ensure that any necessary subclasses
are processed at the same time.

For example, our top-level puppet class contains only variables, and does not process
any resources. A module which set a dependency like this would not achieve what
they intended: after => Class['puppet']

Rather than require the module to set dependencies on each subclass of the Puppet
module, we can define that each of the subclasses is contained within the main class
using the contatin function.

class puppet(
common variables for all Puppet classes

String $version = 'latest',
String Sloglevel = 'warning',
) {

Ensure that ordering includes subclasses
contain 'puppet::agent’
contain 'puppet::server'
}
With this definition, any class which declares an ordering metaparameter that refer-
ences the puppet class need not be aware of the subclasses it uses.

Documenting the Module

In this section we're going to talk about how to document your manifests well. Good
documentation ensures that others can use your module, or that you can recall what
you were thinking when you come back to refactor your manifest a year later. Trust
me, this happens.

Puppet 4 is deprecating RDoc syntax documentation in favor of using Markdown for
all documentation. As this migration is still ongoing, we’ll cover how to write docu-
mentation in both formats.

Learning Markdown

Puppet is moving away from RDoc format to the widely used Markdown format.
Markdown is much easier to learn than RDoc, and is utilized today by the Puppet
Forge, GitHub, Sourceforge, Stack Exchange, and many other code repositories and
forums.

While you should absolutely read the Markdown documentation, it is entirely possi-
ble to build a valid and working README document with just the following eight
simple rules:

1. Paragraphs should be typed as-is with no special formatting.

166 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

Code blocks should be indented four spaces.

Headers start with one # sign for each level. #headingl ##heading2
Bullet lists start with a leading asterix, dash, or plus sign.

Number lists start with a leading number and period.

Use spaces to indent for list and code block hierarchy.

Surround words or phrases with single astericks for *italic text*.
8. Surround words or phrases with double astericks for *bold text*.

N e w

These eight rules provide more than enough syntax to create valid README docu-
ments.

Markdown supports a lot more syntax than this. You can find complete documenta-
tion of the format at http://daringfireball.net/projects/markdown/syntax.

Updating README.md

An initial README.md template is generated by the puppet module generate com-
mand. You should go through each of these sections and replace the example content
with details specific to your module.

You can find Puppet Lab’s latest recommendations for style at https://docs.puppet-
labs.com/puppet/latest/reference/modules_documentation.html. However, we will
review some important guidelines below.

One thing I have found to be unclear is the proper way to indicate compatibility.
There are several parts to compatibility: operating system support, puppet require-
ments, and dependencies.

Indicating Compatibility
Operating system compatibility informs the viewer which operating systems and ver-

sions your module is known to work on. This is defined as an array of hashes in the
metadata. A match for any one hash indicates success.

Each hash contains two values:

operatingsystem
This is the value of $facts['os']['name']

operatingsystemrelease
An array of possible values, which are matched against either $facts['os']
['release']['major'] or "$facts['os']['release']['major'].$facts['os"']
['release']['minor']"

Here’s an example of compatibility which supports recent Enterprise Linux and
Debian/Ubuntu versions.

Documenting the Module | 167

www.it-ebooks.info

http://daringfireball.net/projects/markdown/syntax
https://docs.puppetlabs.com/puppet/latest/reference/modules_documentation.html
https://docs.puppetlabs.com/puppet/latest/reference/modules_documentation.html
http://www.it-ebooks.info/

"operatingsystem_support": [

"operatingsystem":"RedHat",
"operatingsystemrelease":["6", "7"]

1,
{
"operatingsystem":"Cent0S",
"operatingsystemrelease":["6", "7"]
1,
{
"operatingsystem":"Amazon",
"operatingsystemrelease":["2015.03", "2014.09", "2014.03"]
1,
{
"operatingsystem":"OracleLinux",
"operatingsystemrelease":["6", "7"]
1,
{
"operatingsystem":"Scientific",
"operatingsystemrelease":["6", "7"]
1,
{
"operatingsystem":"Debian",
"operatingsystemrelease":["6", "7"]
1,
{
"operatingsystem": "Ubuntu",
"operatingsystemrelease": ["15.04", "14.10", "14.04", "13.10", "13.04"]
}
1,

Defining Requirements

Requirements defines Puppet component versions. This is again an array of hashes. A
match for any one hash indicates success.

name
This is the value of the production. At this time I think only puppet and pe (pup-
pet Enterprise) are supported.

version_requirement
This is an expression which can utilize multiple <= and <= operators. For a mod-
ule which only works in Puppet 4 you might use the example below, whereas a
module which only supports Puppet 3 might use >= 3.7.0 < 4.0.0

"requirements": [
{ "name": "pe", "version_requirement": ">= 4.0.0" },
{ "name": "puppet", "version_requirement": ">= 4.0.0" }

1,

168 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

I wish there was a way to suggest that Puppet 3 versions which utilized the future
parser (the prototype for Puppet 4’s parsing engine) were compatible, but I've found
no way to express that.

Listing Dependencies

Dependencies lists out other Puppet modules which are necessary for this module to
function. This is also defined as an array of hashes. However, unlike the previous two
arrays, every one of the dependencies must be met.

name
This is the name of the puppet module as shown on the forge, however with the
prefix and the module name separated by a / slash.

version_requirement
This is an expression which can utilize multiple <= and <= operators to indicate a
valid range of matching versions.

"dependencies": [
{ "name": "puppetlabs/stdlib", "version_requirement": ">= 3.2.0" }

]
Creating CHANGELOG.md

This file isn't generated for you by default, but you should create this file and update it
with every version change in your module. For each version change, include some-
thing like this:

##YYYY-MM-DD - Release X.Y.Z
#HHESUmmary

This release ...
#it#Features
- Added new...

- Revised...

##t##Bugfixes
- Fixed bug where...

Documenting the Classes and Types

Each class and defined type in your module should be documented.

Documenting the Module | 169

www.it-ebooks.info

http://www.it-ebooks.info/

YARD Markdown

Puppet 4 has moved away from RDoc in favor of Markdown format documentation
for consistency. You can use Markdown format even if your module is used by Pup-
pet 3 users, as Markdown is easy to read and Puppet 3 users can install the puppet-
strings module to generate HTML and PDF documentation.

puppet doc no longer generates module documentation in Pup-
pet 4. Module documentation is generated by puppet strings,
which is made available by installing the puppetlabs-strings
module.

First, we'll install the Puppet Labs strings module:

$ puppet module install puppetlabs-strings

Notice: Preparing to install into /home/vagrant/.puppetlabs/etc/code/modules ...
Notice: Created target directory /home/vagrant/.puppetlabs/etc/code/modules
Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...
/home/vagrant/.puppetlabs/etc/code/modules

L— puppetlabs-strings (v0.2.0)

$ gem install yard --no-ri --no-rdoc
Fetching: yard-0.8.7.6.gem (100%)
Successfully installed yard-0.8.7.6
1 gem installed

Puppet Strings can process both Markdown and RDOC documentation like so:

$ cd /etc/puppetlabs/code/environments/testing/modules/puppet
$ puppet strings

iles: 1

Modules: 1 (0 undocumented)
Classes: 3 (0 undocumented)
Constants: 0 (0 undocumented)
Methods: 0 (0 undocumented)

Puppet Classes: 3 (0 undocumented)
Puppet Types: 1 (0 undocumented)
100.00% documented

true

Puppet Strings generates HTML documentation in the doc/ folder within the module.
Parameters. Parameters are documented using @param meta tag. Follow this tag with

the name of the parameter and a description of it’s use. The following lines should
document the default and expected values.

170 | Chapter13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

Here is an example for documenting the puppet::client class we built earlier in the
book.

@param status Whether Puppet client should run as a daemon
values: running (default), stopped

@param enabled Whether Puppet client should start at boot
values: true, false (value required)

class puppet::agent(
$status = 'running’',
Senabled,

) {

Examples. Examples are documented using @examples meta tag. Follow this tag with
the name of the parameter and a description of its use. The following lines should
document how to use the module, the required values, and the most likely use case.

Here is an example for documenting how to use the puppet::client class we built
earlier in the book.

@examples Hiera data

classes:

- puppet::client

puppet::client::status = 'running'
puppet::client::enabled = true

#

Evolving Effort. The migration to Markdown format is an evolving effort which will
likely iterate a few times during the development of this book, and continue after it
has finished.

You can find the latest updates for recommended style at puppetlabs-strings module
documentation.

Puppet Strings utilizes the YARD gem for formatting, so it can be useful to refer to
the YARD Documentation.

Authors and Copyright. The Authors section of the documentation is self explanatory.
List your name and the names of your co-authors. Include an e-mail address they can
contact you at with questions. If intend to publish this module on the Puppet Forge
and don't feel comfortable giving out your e-mail, you could list the address of your
issue tracking system as a contact method.

Here’s an example:

###Authors
- Jo Rhett, bug reports accepted at http://github.com/jorhett/puppet-module/issues
#

Documenting the Module | 171

www.it-ebooks.info

https://github.com/puppetlabs/puppetlabs-strings
https://github.com/puppetlabs/puppetlabs-strings
http://www.rubydoc.info/gems/yard/file/README.md
http://www.it-ebooks.info/

For the copyright section of the module list the copyright. If this is an internal mod-
ule that you won’t be publishing online, you can use Company Name, All Rights
Reserved. If you are publishing on the Puppet Forge, you should use a license which
allows others to use the module, such as one of the following:

o Apache 2.0 License http://www.apache.org/...
o LGPL License http://gnu.org/...
o BSD License http://...

If you have done this work for an organization which has employed or contracted
with you, they likely have ownership of your work. It can be even more complicated if
you work for an organization who is providing services to another organization.

Anytime someone else’s rights are involved, you should get legal advice before you
publish the work in any form. There are lots of ways to arrange for the appropriate
permission, but as the author I am going to duck this topic because I Am Not A Law-
yer. You and I are both competent technical professionals. We should listen to the
people who are competent in a completely different profession.

###Copyright

Copyright Acme Products, 2015
All Rights Reserved

#

RDoc

When you generated the Puppet module earlier in this book, the init.pp file already
contained some sample documentation. These samples are written in RDoc, the doc-
umentation format required by the Puppet Style Guide, and utilized by puppet doc
and puppet-lint.

Although the Puppet Strings Markdown syntax will eventually replace RDoc, the new
style is still being actively developed and the new standards are just now coming into
shape. If you are comfortable using RDoc format, or if you need to update an existing
module, we've included instructions here. This is also widely utilized in existing Pup-
pet modules, so expect to see and provide this format for a long time.

If you are new to Puppet and starting with Puppet 4, you can safely skip this section.
Parameters. Parameters are documented using [*param*] on a line by itself. Follow

this line with a freeform description of the parameter and its default and expected
values.

172 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

Here is an example for documenting the puppet::client class we built earlier in the
book.

=== Parameters

#

[*status*]

Whether Puppet client should run as a daemon
values: running (default), stopped

[*enabled*]

Whether Puppet client should start at boot
values: true, false (value required)

#

class puppet::agent(
$status = 'running’',
Senabled,

) {

Variables. In the Variables section of the documentation, list any variables used by
this class which are not provided by the class parameters. This can include:

o Direct access of variables from other modules and classes.
o Direct hiera lookups of data not passed as parameters.

Variables are documented using [*variable*] on a line by itself. Follow this line
with a freeform description of the variables and its default and expected values.

Here is an example for documenting the puppet: :client class we built earlier in the
book.

=== Variables
#
[*puppet::version*]
This class uses the common $version variable shared by all Puppet subclasses.
#
class puppet::agent(...) {
include '::puppet’

package { 'puppet-agent':
version => $::puppet::version,

}

Examples. Examples are documented using @examples meta tag. Follow this tag with
the name of the parameter and a description of its use. The following lines should
document how to use the module, the required values, and the most likely use case.

Here is an example for documenting how to use the puppet::client class we built
earlier in the book.

=== Examples
#

Documenting the Module | 173

www.it-ebooks.info

http://www.it-ebooks.info/

Hiera data:

classes:

- puppet::client

puppet::client::status = 'running'
puppet::client::enabled = true

#

Authors and Copyright. The Authors section of the documentation is self explanatory.
List your name and the names of your co-authors. Include an e-mail address they can
contact you at with questions. If intend to publish this module on the Puppet Forge
and don't feel comfortable giving out your e-mail, you could list the address of your
issue tracking system as a contact method.

Here’s an example:

=== Authors

#

Jo Rhett, bug reports accepted at http://github.com/jorhett/puppet-module/issues
#

For the copyright section of the module list the copyright. If this is an internal mod-
ule that you won't be publishing online, you can use Company Name, All Rights
Reserved. If you are publishing on the Puppet Forge, you should use a license which
allows others to use the module, such as one of the following:

« Apache 2.0 License http://www.apache.org/...
o LGPL License http://gnu.org/...
o BSD License http://...

See the essential comments about code ownership in the Puppet 4 Docs section.

=== Copyright

#

Copyright Acme Products 2015
All Rights Reserved

#

Peeking Beneath the Hood

In this section were going to talk about peeking beneath the hood; looking at vari-
ables and resources in other classes.

174 | Chapter 13: Designing a Custom Module

www.it-ebooks.info

http://www.it-ebooks.info/

Best Practice: Don’t use anything described here for anything
other than debugging purposes.

Class boundaries are not enforced. You can access both variables and resources in
other classes. Here’s an example:

class other_class(String $idea) {
$sentence = "an idea ${idea} wrapped in other_module's namespace"
notify { 'announcement': message => "I have ${sentence}" }

}

class my_class {
I can see the other class parameter
notice("The idea was: ${Class['other_class']['idea']}")

I can see the other class variables
notice("The sentence was: ${::other_class::sentence}")

I can see parameters of resources in another class
notice("The entire message was: ${Notify['announcement']['message']}")

}

Given an idea of games! youd see output like this:

Notice: Scope(Class[My class]): The idea was: games!
Notice: Scope(Class[My_class]): The sentence was: an idea 'games!' wrapped in other_module's names
Notice: Scope(Class[My _class]): The entire message was: I have an idea 'games!' wrapped in other_p

In Puppet4 visibility is limited:

- Puppet Runtime defines are visible to everything - everything in an environment is visi-
ble to everything in the same environment - modules without dependencies see all other
modules - modules with dependency see the module it depends on

Best Practices for Module Design

Lets review some of the best practices for module development we covered in this
section:

o Declare a class with the module name in manifests/init.pp.

o Place every subclass and defined type in a separate manifest file with the name of
the class or type.

o Update the README and CHANGELOG Markdown documents for each new
version.

o Document every manifest using Markdown (or RDoc) markup within the file.

o Validate each and every parameter for expected values in the manifest.

o Assign default values for parameters that reflect most likely case.

Best Practices for Module Design | 175

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid using top-level or nodes variables.

Reference variables from other classes with empty namespace prefix $::other
module::variable

Declare parameters with explicit types whenever possible for data validation.
Create a test for each manifest in the tests/ directory.

Tests should validate the most common case and default parameter values for
every class and defined type.

You can find more detailed guidelines in the Puppet Labs Style Guide.

Modules Review

Modules provide an independent namespace for reusable blocks of code which con-
figure or maintain something. A module provides new resource types which can be
independently used by others.

In this chapter we have covered how to configure a module to:

Provide reusable Puppet code others can utilize with their own data
Accept parameters from Hiera and ENCs

Synchronize files and directories to the managed nodes

Customize files from templates and node data

Utilize other modules to provide dependencies

Share new types and subclasses with discrete functionality

Provide documentation for users of the module

This has covered the required pieces of modules, and the most common use cases for
them. In the next section we’re going to cover how to create system and unit tests for
a module.

176

| Chapter 13: Designing a Custom Module

www.it-ebooks.info

https://docs.puppetlabs.com/guides/style_guide.html
http://www.it-ebooks.info/

CHAPTER 14
Testing Modules

Sad to say, but not many modules include good tests. Good tests help you avoid
embarrassing bugs from going out. Good tests save you a lot of time, avoiding the
exhaustive debugging of an issue in production which turns out to be a wrong type
used at the wrong point.

This chapter will teach you how to add good tests to your modules. When I got
started with them I struggled a lot due to a lack of good examples. In this section I'm
going to provide good examples of each type of test you should be doing. It's my
intention that youd be able to use the examples provided here like tinker toys, and
build a good set of tests for your modules without much effort.

This chapter won't provide exhaustive documentation of rspec or beaker, the testing
tools of choice for the Puppet ecosystem. However, you should be able to build a
good foundation of tests from what we cover in this chapter.

Let’s get started by setting up your testing tools.

Installing Dependencies

The first time you set up to do testing, you’ll need to install some software used for
testing.

Installing Ruby

You can use the version of Ruby which comes with your operating system. If you are
using the Vagrant testing setup documented in this book, it is easy to install Ruby into
the system packages.

[vagrant@client ~]$ sudo yum install -y ruby rubygems rake

177

www.it-ebooks.info

http://www.it-ebooks.info/

If you are using an older operating system which doesn't have a modern Ruby 2.0 or
higher available, you can install the software dependencies into the Ruby which came
with Puppets All-in-One (AIO) installer. This has a complication in that binaries are
installed outside of your path. For convenience when using the ruby provided with
Puppet, run the following commands to set up symbolic links for simplicity:

[vagrant@client ~]$ sudo alternatives --install /usr/bin/ruby ruby /opt/puppetlabs/puppet/bin/ruby
[vagrant@client ~]$ sudo alternatives --install /usr/bin/gem gem /opt/puppetlabs/puppet/bin/gem 5
[vagrant@client ~]$ sudo alternatives --install /usr/bin/rake rake /opt/puppetlabs/puppet/bin/rake

While I have found it handy to install the necessary Ruby gems

with the modern Ruby provided by Puppet, this is not a sup-

ported configuration. I would use this only on test and develop-
\ ment nodes, and never on a production systems.

Installing Gem Bundler

The bundler gem will help you install any and all necessary dependencies.

$ sudo gem install bundler

Fetching: bundler-1.10.3.gem (100%)
Successfully installed bundler-1.10.3
1 gem installed

If you are using gem from the Ruby installed by puppet, you may want to add the
bundle commands to your path as well. For convenience, run the following com-
mands to set up symbolic links:

$ sudo alternatives --install /usr/bin/bundle bundle /opt/puppetlabs/puppet/bin/bundle 5
$ sudo alternatives --install /usr/bin/bundler bundler /opt/puppetlabs/puppet/bin/bundler 5

Installing Spec Helper

If you haven’t done this already, you'll need to install the puppetlabs_spec_helper and
other dependency gems. The best way to do this is to run the bundler gem we just
installed from within your module directory. It reads the dependency versions from
the Gemfile and will ensure the correct versions of each gem is installed.

Bundler will pull in rspec, rspec-puppet, and all of their dependencies as well. These
are testing and template creation tools which help simplify test creation.

[vagrant@client puppet]$ bundler install

Fetching gem metadata from https://rubygems.org/..........
Fetching version metadata from https://rubygems.org/..
Resolving dependencies...

178 | Chapter 14: Testing Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Installing rake 10.4.2

Installing CFPropertylList 2.2.8
Using diff-lcs 1.2.5

Installing facter 2.4.4

Installing json_pure 1.8.2
Installing hiera 2.0.0

Using metaclass 0.0.4

Using mocha 1.1.0

Installing puppet 4.1.0

Using puppet-lint 1.1.0

Using puppet-syntax 2.0.0

Using rspec-support 3.2.2

Using rspec-core 3.2.3

Using rspec-expectations 3.2.1
Using rspec-mocks 3.2.1

Using rspec 3.2.0

Installing rspec-puppet 2.2.0

Using puppetlabs_spec_helper 0.10.3
Using bundler 1.10.3

Bundle complete! 4 Gemfile dependencies, 19 gems now installed.
Use ‘bundle show [gemname]’ to see where a bundled gem is installed.

Don’t use sudo when running bundler.

Preparing Your Module

The next step is to setup your module for testing. We'll have to modify a few files to
use the best tools for this.

Defining Fixtures

Create a .fixtures.yml file which defines the testing fixtures (dependencies) and where
to acquire them for testing purposes. The information in this file should duplicate the
dependencies in metadata.json.

The top of the file should always be the same. This tells the testing frame to copy the
current module from the module directory.

fixtures:
symlinks:
puppet: "#{source_dir}"
Then define each dependency for your module and the minimum version you sup-
port. You can list their name on the Puppet Forge or their Github URL. The following
two examples will have similar effects. From the Forge:

Preparing Your Module | 179

www.it-ebooks.info

http://www.it-ebooks.info/

forge_modules:

stdlib:
repo: "puppetlabs/stdlib"
ref: 4.5.1

From GitHub:
repositories:

stdlib:
repo: "git://github.com/puppetlabs/puppetlabs-stdlib"
ref: "4.5.1"

If you are testing development of multiple modules, you may want to use symlinks to
the source tree for each. Assuming the dependency is in the same directory structure:

symlinks:
some_dependency: "#{source_dir}/../some_dependency"

Test that dependency setup worked properly like so:

$ rake spec

(in /etc/puppetlabs/code/environments/testing/modules/puppet)

Notice: Preparing to install into /etc/puppetlabs/code/environments/testing/modules/puppet/spec/f
Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...
/etc/puppetlabs/code/environments/testing/modules/puppet/spec/fixtures/modules

L— puppetlabs-stdlib (v3.2.1)

Jusr/bin/ruby -I/usr/lib/ruby/gems/1.8/gems/rspec-support-3.2.2/1ib:/usr/1lib/ruby/gems/1.8/gems/rs
No examples found.

Finished in 0.00027 seconds (files took 0.04311 seconds to load)
0 examples, 0 failures

This shows that all fixtures (dependencies) were installed, but no examples (tests)
were available. Let’s start building one now.

Defining Tests

Now let’s build some tests for the module. We know, few people think that building
tests is fun work--but it is important work that will save you time and effort down the
road.

Following are guidelines for building useful tests. Let’s go over them now.

Test every input parameter.

Test every file, package, and service name.

Test every variation in implementation your module is designed to handle.

Test for implicit choices based around operating system or other environmental
tests.

180

| Chapter 14: Testing Modules

www.it-ebooks.info

http://www.it-ebooks.info/

o Test for invalid input as well as valid input.

Let’s look at some examples testing each one of these situations.

Defining Main Class

Within your module directory, change into the spec/classes/ directory. Inside this
directory, create a file named modulename_spec.rb.

[vagrant@client puppet]$ cd spec/classes

[vagrant@client classes]$ $EDITOR puppet_spec.rb
For our initial test, we will simply build one test that the module compiles success-
fully with the default options.

require 'spec_helper'
describe 'puppet', :type => 'class' do

context 'with defaults for all parameters' do
it do
should contain_class('puppet')
should contain_class('puppet::params')
end

it do
should compile.with_all_deps
end
end

Let’s go ahead and run the testing suite against this very basic test.

[vagrant@client puppet]$ rake spec
(in /etc/puppetlabs/code/modules/puppet)
ruby -I/opt/puppetlabs/puppet/lib/ruby/gems/2.1.0/gems/rspec-support-3.2.2/1ib:/opt/puppetlabs/pug

Finished in 10.22 seconds (files took 0.56629 seconds to load)
2 examples, 0 failures

At this time you may see the following error:
Failures:

1) puppet with defaults for all parameters should contain Class[puppet]

This is due to an older version of the puppet gem being loaded. You'll need at least
version 3.7. Any of the following commands will solve your problem. If you are test-
ing modules for maximum compatibility, run all of these commands. Notice the spe-
cial comparison operator ~> which will give you the latest available version for each
minor version of Puppet.

Defining Tests | 181

www.it-ebooks.info

http://www.it-ebooks.info/

$ gem install puppet --no-ri --no-rdoc
Fetching: puppet-4.1.0.gem (100%)
Successfully installed puppet-4.1.0

1 gem installed

$ gem install puppet --version '~> 3.8.0' --no-ri --no-rdoc
Fetching: puppet-3.8.1.gem (100%)

Successfully installed puppet-3.8.1

1 gem installed

$ gem install puppet --version '~> 3.7.0' --no-ri --no-rdoc
Fetching: puppet-3.7.5.gem (100%)

Successfully installed puppet-3.7.5

1 gem installed

Try running your test again, and you should see that it succeeds.

Now that our basic test passed, let’s go on to start checking the input parameters.

Passing Valid Parameters

How about if we expand the tests to include every possible input value? Rather than
repeating each test with a different value, we build Ruby loops to iteratively build
each of the tests from an array of values.

['1','0"].each do |repo_enabled|
['emerg','crit','alert','err','warning', 'notice', " 'info', 'debug', 'verbose'].each do |loglevel]|
context "with #{repo_enabled} for repo_enabled, #{loglevel} for loglevel" do
let :params do

{
:repo_enabled => repo_enabled,
:loglevel => loglevel,
}
end
it do

should contain_package('puppet-agent').with({
'version' => '1.1.0-1'
b
end
end
end
end

Woabh, look at that. We added 17 lines of code and yet it’s performing 36 more tests
Now.

[vagrant@client puppet]$ rake spec
(in /etc/puppetlabs/code/modules/puppet)
ruby -I/opt/puppetlabs/puppet/lib/ruby/gems/2.1.0/gems/rspec-support-3.2.2/1ib:/opt/puppetlabs/pug

182 | Chapter 14: Testing Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Finished in 10.53 seconds (files took 0.56829 seconds to load)
38 examples, 0 failures

Failing Invalid Parameters

Now let’s test to ensure some incorrect values fail. So here we define two tests that are
intended to fail.

context 'with invalid loglevel' do
let :params do
{
:loglevel => 'annoying'

}

end

it do
expect { should compile.with_all_deps }
end
end

context 'with invalid repo_enabled' do
let :params do

{
:repo_enabled => 'EPEL'
}
end
it do
expect { should compile.with_all_deps }
end

end

Now we should run the tests to see what error messages are kicked back.

[vagrant@client puppet]$ rake spec
Failures:

1) puppet4 with invalid loglevel should compile into a catalogue without dependency cycles
Failure/Error: should compile.with_all_deps
error during compilation: Parameter loglevel failed on Class[Puppet]: Invalid value "annoy:
./spec/classes/puppet_spec.rb:52:in ‘block (3 levels) in <top (required)>'

2) puppet4 with invalid repo_enabled should compile into a catalogue without dependency cycles
Failure/Error: should compile.with_all_deps
error during compilation: Expected parameter 'repo_enabled' of 'Class[Puppet]' to have type
./spec/classes/puppet_spec.rb:65:in ‘block (3 levels) in <top (required)>'

Finished in 10.81 seconds (files took 0.57989 seconds to load)
40 examples, 2 failures

Defining Tests | 183

www.it-ebooks.info

http://www.it-ebooks.info/

Now let’s change the expect lines for the errors we are expecting:

expect { should raise_error(Puppet::Error,/Invalid value "annoying". Valid values are/) }

...and the following for the repo_enabled test:
expect { should raise_error(Puppet::Error,/Expected parameter 'repo_enabled' .* to have type

Now when you run the tests, you will see the tests were successful because the bad
tests failed.

Adding an Agent Class

Within the spec/classes/ directory, create a file named agent_spec.rb. This is an exer-
cise for you. Build the agent class, testing every valid and invalid input just like we did
for the puppet class.

For this we simply want to test that the package, config file, and service resources are
all defined.

require 'spec_helper'
describe 'puppet::agent', :type => 'class' do

context 'with defaults for all parameters' do
it do
should contain_package('puppet-agent').with({ 'version' => 'latest' })
should contain_file('puppet.conf').with({ 'ensure' => 'file' })
should contain_service('puppet').with({ 'ensure' => 'running', 'enabled => true })
end

it do
should compile.with_all_deps
end
end
end

We have demonstrated the tests. Now build out new tests for valid and invalid input.

Using Hiera Input

Within your module directory, change into the spec/fixtures/ directory. Inside this
directory, create a subdirectory named hiera, containing a valid hiera.yaml file for
testing.

[vagrant@client puppet]$ cd spec/fixtures
[vagrant@client puppet]$ mkdir hiera
[vagrant@client classes]$ $EDITOR hiera/hiera.yaml

184 | Chapter 14: Testing Modules

www.it-ebooks.info

http://www.it-ebooks.info/

You can change anything you want that is valid for Hiera in this configuration file,
except for the datadir, which should reside within the fixtures path. Unless you
desire a specific change, the following file could be used unchanged in every module:

spec/fixtures/hiera/hiera.yaml
:backends:

- yaml
:yaml:

:datadir: /etc/puppetlabs/code/hieradata
:hierarchy:

- defaults

- "%{facts::osfamily}"

- global

Now, add the following lines to a test context within one of the class spec files:

let(:hiera_config) { 'spec/fixtures/hiera/hiera.yaml' }
hiera = Hiera.new(:config => 'spec/fixtures/hiera/hiera.yaml')

Now create your Hiera input files. The only necessary file is spec/fixtures/hiera/
global.yaml. The others can be added only when you want to test things.

puppet::loglevel : 'notice’

puppet::repo_enabled : '1'
puppet::agent::status : 'running'

puppet::agent::enabled: true
This hiera data can be used when configuring the tests:

let :params do

{
:repo_enabled => hiera.lookup('puppet::repo_enabled',nil,nil),
:loglevel => hiera.lookup('puppet::loglevel',nil,nil),
}
end

This configuration allows you to easily test the more common mode of using hiera-
input parameters for your modules.

Defining Parent Class Parameters

In some situations your module will depend upon a class that requires some parame-
ters to be provided. You cannot set parameters or use Hiera for that class, since it is
out of scope for the current class and test file.

The workaround is to use a pre_condition block to call the parent class in resource-
style format. Pass the necessary parameters for testing as parameters for the resource
declaration, and this module instance will be created before your module is tested.

Defining Tests | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Here is an example from my mcollective module, which had to solve exactly this prob-
lem.

describe 'mcollective::client' do
let(:pre_condition) do
'class { "mcollective":
hosts => ["middleware.example.net"],
client_password => "fakeTestingClientPassword",
server_password => "fakeTestingServerPassword",
psk_key => "fakeTestingPreSharedKey",

}l

end

...tests for the mcollective::client class...

Improve Testing with Custom Skeletons

There are a number of puppet skeletons that include frameworks for enhanced test-
ing above and beyond what we've covered. You may to tune the module skeleton you
use to include testing frameworks and datasets consistent with your release process.
Place the revised skeleton in the ~/.puppetlabs/opt/puppet/cache/puppet-module/skele-
ton directory, or specify it on the generate command line with --
module_skeleton_dir=path/to/skeleton.

Following are some skeletons I have found useful at one time or another:

garethr/puppet-module-skeleton
This skeleton is very opinionated. It's going to assume youre going to
start out with tests (both unit and system), that you care about the pup-
pet style guide, test using Travis, keep track of releases and structure

your modules according to strong conventions.
—https://github.com/garethr/
puppet-module-skeleton

This is a popular and widely used skeleton.

jimdo/puppet-skeleton
The module comes with everything you need to develop infrastructure

code with Puppet and feel confident about it.
—https://github.com/jimdo/puppet-
skeleton

This skeleton includes helpers to spin up Vagrant instances and run tests on them.

ghoneycutt/puppet-module-skeleton
At the time this book was written, Garret didn’'t have a README for this skele-
ton at all -- however Garret is an active and high-quality contributor to the Pup-
pet community.

186 | Chapter 14: Testing Modules

www.it-ebooks.info

https://github.com/garethr/puppet-module-skeleton
https://github.com/jimdo/puppet-skeleton
https://github.com/ghoneycutt/puppet-module-skeleton
http://www.it-ebooks.info/

gds-operations/puppet-skeleton
This is a skeleton project for Web Operations teams using Puppet. It ties
together a suite of sensible defaults, best current practices, and re-usable
code. The intentions of which are two-fold: * New projects can get
started and bootstrapped faster without needing to collate or re-writing
this material themselves. * The standardisation and modularisation of
these materials makes it easier for ongoing improvements to be shared,
in both directions, between different teams.
—nhttps://github.com/gds-
operations/puppet-skeleton

wavesoftware/puppet-os-skeleton
A complete working solution with:
o Puppet master and agent nodes on Puppet Open Source
o Spotify Puppet Explorer and PuppetDB
o Hiera configuration
« Dynamic GIT environments by r10k
o External puppet modules installation and maintenance by r10k
 Landrush local DNS

Coupe of bootstrap puppet classes:

« common::filebucket - use of filebucket on all files

« common:packages - central packages installation from hiera

o common::prompt - a Bash command prompt with support for Git
and Mercurial

—https://github.com/wavesoftware/
puppet-os-skeleton

You can find many others by searching for “puppet skeleton” on GitHub. In particu-
lar, you can find skeletons specialized for the frameworks the application is built in,
e.g. OpenStack, Rails, Django, etc.

Simplifying with Tools

There are a number of tools which make it easier to setup your tests, or perform addi-
tional tests, or plug in better with other testing frameworks. Let’s examine some of
these.

Puppet-Retrospect

Puppet Retrospect provides a tool which will create basic tests for each of your mani-
fests.

Retrospec makes it dead simple to get started with puppet unit testing. When
you run retrospec, retrospec will scan your puppet manifests and write some

Simplifying with Tools | 187

www.it-ebooks.info

https://github.com/gds-operations/puppet-skeleton
https://github.com/wavesoftware/puppet-os-skeleton
https://github.com/search?utf8=%E2%9C%93amp;q=puppet+skeleton
http://www.it-ebooks.info/

very basic rspec-puppet test code. Thus this gem will retrofit your existing pup-
pet module with everything needed to get going with puppet unit testing.
—https://github.com/logicminds/
puppet-retrospec
In the author’s experience, this is not a final solution by itself but a way to generate a
useful skeleton of tests. This is a good tool to run when you haven't started testing. I
often use this tool when I'm going back to add tests to an existing module that doesn’t
have any. I then take what it generates and tweak the tests and add more comprehen-
sive tests, as documented in the previous section.

Finding Documentation

You may have found a tricky problem not covered by the examples here. At this point
it is best to refer to the original vendor documentation:

o RSpec: Behavior-Driven Development for Ruby

o RSpec Tests for Puppet extension

o Puppet Labs Spec Helper: Shared Spec Helpers for Puppetlabs Projects
 Beaker: Puppet Acceptance Testing Harness

o RSpec Best Practices

Much of this documentation is dated, but still valid. There are open bugs to provide
Puppet 4.x-specific documentation, and I will update this section as soon as it is avail-
able.

Testing Modules Review

Each class and defined type should have tests defined for it. In this chapter we have
covered how to test modules for:

« Simple compilation success with default values.

o Minimum and acceptable values passed in as parameters.

o Creation of the resources they were intended to manage.

o Invalid and unacceptable values.

« Providing data using Hiera fixtures.

o Preloading parent modules with required parameters to ensure module depen-
dencies are valid.

This has covered the necessary tests which should be included in every module. In
the next section were going to cover how to create plugins to extend modules with
less common functionality.

188 | Chapter 14: Testing Modules

www.it-ebooks.info

http://rspec.info/
https://github.com/rodjek/rspec-puppet
https://github.com/puppetlabs/puppetlabs_spec_helper
https://github.com/puppetlabs/beaker
http://blog.carbonfive.com/2010/10/21/rspec-best-practices/
http://www.it-ebooks.info/

CHAPTER 15
Extending Modules with Plugins

In this chapter we are going to cover adding plugins to puppet modules. Plugins are
used to provide new Facts, Functions, and module-specific data which can be used in
the Puppet catalog.

Nothing in this chapter is required to build a working module, and there are thou-
sands of modules which don’t use plugins. You can safely skip this chapter and return
back after you are comfortable building the common features of modules.

Many of the extensions in this chapter are written in Ruby. To
build Ruby plugins, knowledge of the Ruby programming lan-
guage is required. I recommend Learning Ruby as an excellent
reference for this.

Adding Custom Facts

One of the most useful plugins a module can provide is custom Facts. These are facts
not provided by Facter, but custom to your module. Plugin facts are synced down to
the node in Master/agent environments, and available to the Puppet agent during the
convergence process for each Puppet run thereafter.

Previous versions of Puppet could only supply string values for facts. In Puppet 4,
custom facts can return any of the Scalar data types (e.g. String, Numeric, Boolean,
etc) in addition to any of the Collection types (Array, Hash, Struct, etc).

There are two ways to provide custom facts: using Ruby functions, or through exter-
nal data. Let’s go over how to build new facts using both methods.

189

www.it-ebooks.info

http://shop.oreilly.com/product/9780596529864.do
http://www.it-ebooks.info/

External Facts

Would you like to provide facts without writing Ruby? There are two ways to do this:

1. Write fact data out in YAML, JSON, or text format.
2. Provide a program or script to output fact names and values.

The program or script can be written in Bash, Python, Java, whatever. It's only neces-
sary that it can be executed by the Puppet agent.

This is what the new External Facts are for. Let’s go over how to use these.

Structured Data

You can place structured data files in the facts.d/ directory of your module with data
to assign to facts. Structured data files must be in a known formats, and must be
named with the appropriate file extension for their format.At the time this book was
written, the following formats were supported:

Type Extension Description
YAML .yaml Facts in YAML format
JSON json Facts in JSON format

Text .txt Facts in key=value format.

We introduced YAML format back in Separating Data from Code. Following is a sim-
plified YAML example that sets three facts.

three_simple_facts.yaml

my_fact: myvalue
my_effort: easy
is_dyanamic: false

The text format uses a single key=value pair on each line of the file. This only works
for String values, arrays and hashes are not supported. Here is the same example in
text format:

three_simple_facts. txt
my_fact=myvalue
my_effort=easy
is_dyanamic=false

Programs

You can place any executables program or script in the facts.d/ directory of your
module to create new facts.

190 | Chapter 15: Extending Modules with Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

The script or program must have the execute bit set for root, or the user that you are
running puppet as. The script must output each fact as key=value on a line by itself.
Following is a simplified example that sets three facts.

#!/bin/bash

echo "my_fact=myvalue"

echo "my_effort=easy"
echo "is_dyanamic=false"

Install this in the directory and test it.

$ SEDITOR facts.d/three_simple_facts.sh

$ chmod 0755 facts.d/three_simple_facts.sh
$ facts.d/three_simple_facts.sh
my_fact=myvalue

my_effort=easy

is_dyanamic=false

Windows. Executable facts on Windows work exactly the same, and require the same
execute permissions and output format. However the program or script must be
named with a known extension. At the time this book was written, the following
extensions were supported:

.com, .exe
binary executables to be executed directly

.psl PowerShell Scripts
scripts to be run by the PowerShell interpreter

.cmd, .bat Command Shell Scripts
ASCII or UTFS8 batch scripts to be processed by cmd.exe

Following is the same example from the previous page rewritten as a PowerShell
script:

Write-Host "my_fact=myvalue"
Write-Host "my_effort=easy"
Write-Host "is_dyanamic=false"

You should be able to save and execute this PowerShell script on the command line.

Debugging
Your new fact will not appear in the output of facter. To see the values of Puppet

facts you'll need to use puppet facts find instead.

If your external fact is not appearing in Facter’s output, running Facter in debug
mode should give you a meaningful reason and tell you which file is causing the
problem:

Adding Custom Facts | 191

www.it-ebooks.info

http://www.it-ebooks.info/

$ puppet facts find --debug

Debug: Loading facts from /etc/puppetlabs/code/modules/stdlib/lib/facter/facter_dot_d.rb

Debug: Loading facts from /etc/puppetlabs/modules/stdlib/1lib/facter/pe_version.rb

Debug: Loading facts from /etc/puppetlabs/code/modules/stdlib/lib/facter/puppet_vardir.rb

Debug: Loading facts from /etc/puppetlabs/code/environment/testing/modules/puppet/facts.d/three_si

If the output from your custom fact wasn't in the proper format, you’ll get errors like
this:

Fact file /etc/puppetlabs/code/environment/testing/modules/puppet/facts.d/python_sample.py was par

In those situations, run the program by hand and examine the output. Here’s the
example I used to generate the complaint above:

$ [etc/puppetlabs/code/environment/testing/modules/puppet
$ facts.d/python_sample.py

facti=this

fact2

fact3=that

The external facts per module functionality obsoletes and supercedes the less powerful
facter-dot-d functionality provided by the stdlib module. If you were using facts

installed in the node global facter/facts.d directory, move them out of there and into an
appropriate modules/modulename/facts.d directory.

Custom (Ruby) Facts

To create new facts in Ruby for Facter to use, simply create the following directory in
your module:

$ mkdir -p lib/facter

Any ruby programs in this directory will be synced down to client node at the
beginnning of the Puppet run. Within this directory create a ruby program ending
in .rb. The ruby program can contain any normal Ruby code, however the process of
defining a custom fact is implemented by two calls:

1. A Ruby code block starting with Facter.add(' fact_name')
2. Inside the Facter code block, a setcode code block which returns the fact’s value.

For an easy example, let’s assume that your hosts are grouped in clusters with the
same name. Unique numbers added to each node to keep them distinct. This results
in a common pattern with host names like:

o webserver01

192 | Chapter 15: Extending Modules with Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

o webserver02
o webserver03
o mailserver01
o mailserver02
o ...efc

Youd like to define Hiera data based on the cluster name. Right away, one might
think to use the hostname command to acquire the node name. Facter provides a
helper function to execute shell commands: Facter: :Core: : Execution.exec().

Keep in mind that this is Ruby code, and what you are passing to the function is a
Ruby String. You should escape meta characters as required by Ruby, rather than the
more permissive rules of Puppet.

The code to derive a node’s cluster name from the hostname shell command could
look like this:

cluster_name.rb
Facter.add('cluster_name') do
setcode do
Facter::Core::Execution.exec("/bin/hostname -s | /usr/bin/sed -e 's/\d//g'")
end
end

This new fact will be available as $facts['cluster_name'] in your manifests and
templates during the next Puppet run.

The value of the string should be a command to execute. Pipe |
and redirection > operators work as you might expect, however
you don't have full shell scripting available. Shell control struc-
tures like 1f or for do not work. Best practice is to run a single
command to acquire a value, and then evaluate or manipulate the value using
native Ruby code.

Here’s an example using Ruby native libraries to acquire the hostname, and then
manipulate the value to remove the domain and the numbers:

cluster_name.rb
require 'socket'
Facter.add('cluster_name') do
setcode do
hostname = Socket.gethostname
hostname.sub!(/\..*$/, '') # remove the first period and everything after it
hostname.gsub(/[0-9]/, '') # remove every number and return revised name
end
end

Adding Custom Facts | 193

www.it-ebooks.info

http://www.it-ebooks.info/

For even more optimization, you could also refer to the existing hostname fact and
use that. You can acquire the value of an existing fact using Facter.value(' fact
name'). Here is a simpler example starting with the existing hostname fact.

cluster_name.rb
Facter.add('cluster_name') do
setcode do
hostname = Facter.value(:hostname).sub(/\..*$/, '")
hostname.gsub(/[0-97/, '")
end
end

If you are running Puppet with a Puppetmaster or Puppet Server (covered in the next
part of this book), facts from modules are synced down to the agent node during the

agent configuration phase. You can run puppet facts to see the facts that have been
distributed via pluginsync.

Avoiding Delay

To limit problems with code which may run long or hang, use the timeout property
of Facter.add() to define how many seconds the code should complete within. This
causes the setcode block to halt if the timeout is exceeded. The puppet run will move
on without an error, but also without a value for the fact. This is generally preferable
to a hung Puppet client.

Returning to our example of calling a shell command, modify it as follows:

cluster_name.rb
Facter.add('cluster_name', :sleep, :timeout => 5) do
setcode do
Facter::Core::Execution.exec("/bin/hostname -s | /usr/bin/sed -e 's/\d//g'")
end
end

Best Practice: Always define a timeout for any fact which calls a
program or connects to a dependency, to avoid hanging the Pup-
pet client during a run.

Confining Facts

Some facts are inappropriate for certain systems, would not work or simply wouldn’t
provide any useful information. To limit which nodes attempt to execute the fact
code, utilize a confine statement. This statement lists another fact name and valid
values. For example, to ensure that only hosts in a certain domain provide this fact,
you could use the following:

194 | Chapter 15: Extending Modules with Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

cluster_name.rb

Facter.add('cluster_name') do
confine 'domain' => 'example.com'
setcode do

ruby code which provides the value...

You can use multiple confine statements to enforce multiple conditions, all of which
must be true. Finally, you can also test against multiple values by providing an array
of values. If you are looking for a fact only available on Debian-based systems, you
could use this:

debian_fact.rb

Facter.add('debian_fact') do
confine 'operatingsystem' => %w{ Debian Ubuntu }
setcode do

ruby code which provides the value...

Ordering by Precendence

You can define multiple methods, or resolutions, to acquire a fact’s value. Facter will
utilize the highest precendence resolution which returns a value. To provide multiple
resolutions, simply add another Facter code block with the same fact name.

This is a common technique used for facts where the source of data is different on
each operating system.

The order in which Facter evaluates possible resolutions is as follows:

1. Facter discards any resolutions where the confine statements do not match.

2. Facter tries each possible resolution, starting with the highest weight and
descending.

3. Whenever a value is found, no further code blocks are executed.

You can define a weight for a resolution using the has_weight statement. If no weight
is defined, the weight is equal to the number of confine statements in the block. This
ensures that more specific resolutions are tried first.

Below is a sample definition where we try to acquire the hostname written to the sys-
tem configuration files using two different locations.

configured_hostname.rb
Facter.add('configured_hostname') do
has_weight 10
setcode do
if File.exist? '/etc/hostname'
File.open('/etc/hostname') do |fh]|
return fh.gets
end
end

Adding Custom Facts | 195

www.it-ebooks.info

http://www.it-ebooks.info/

end
end

Facter.add('configured_hostname') do
confine "os['family']" => 'RedHat'
has_weight 5
setcode do
if File.exist? '/etc/sysconfig/network'
File.open('/etc/sysconfig/network').each do |line|
if line.match(/"HOSTNAME=(.*)S$/)
return line.match(/”"HOSTNAME=(.*)$/)[0]
end
end
end
end
end

Aggregating Results

The data provided by a fact could be created from multiple data sources. You can then
aggregate the results from all data sources together into a single result.

An aggregate fact is defined very differently than a normal fact.

Facter.add() must be invoked with a property :type => :aggregrate

Each discrete data source is defined in a chunk code block.

The chunks object will contain the results of all chunks.

. An aggregate code block should evaluate chunks to provide the final fact value
(instead of setcode).

L

Here’s a simple prototype of an aggregate fact that returns an array of results.

Facter.add('fact_name', :type => :aggregate) do
chunk('any-name-one') do
ruby code
end

chunk('any-name-two') do
different ruby code
end

aggregate do |chunks|
results = Array.new
chunks.each_value do |partial]

results.push(partial)

end
return results

end

end

196 | Chapter 15: Extending Modules with Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

The aggregate block is optional if all of the chucks return arrays or hashes. Facter
will automatically merge the results into a single array or hash in that case. If you
want a different resolution, you should define the aggregate block.

For more examples of aggregate resolutions, see the aggregate resolutions section of
the Fact Overview page.

Best Practice: Whenever possible have multiple discrete data
sources provide values in their own facts, rather than creating
large, complex facts with the aggregate function.

Understanding Implementation Issues

There are a few things to understand about how the Puppet agent implements facts:

o External facts are evaluated first, and thus cannot reference or use Facter or Ruby
facts.

o Ruby facts are evaluated later and can use values from External facts.

« External executable facts are forked instead of executed within the same process.
This can have performance implications if thousands of external fact programs
are used.

Outside of these considerations, the facts created by these programs are equal and
indistinguishable.

Defining Functions

You can create your own functions to extend and enhance the Puppet language.
These functions will be executed during compilation of the manifests. Functions can
be written in either the Puppet Configuration Language, or in pure Ruby.

Let’s cover how to define functions in either language.

Puppet Functions

New to Puppet 4 is the fully-enabled ability to write functions in the Puppet Configu-
ration Language. This gives you the freedom to write comprehensive, powerful func-
tions in the Puppet language without learning Ruby.

Each function should be declared in a separate file, stored in the functions directory
of the module, and named for the function followed by the .pp extension.

Defining Functions | 197

www.it-ebooks.info

http://www.it-ebooks.info/

For an example, we're going to create a function make_boolean which accepts many
types of input and returns a boolean value. This will allow easy string (yes/no/on/off)
and number (0/1) conversion to boolean. So our function would be placed in a file

named modules/puppet/functions/make_boolean.pp.

Each function is named within the scope of the module. For our example, the func-
tion named above would be declared like so:

functions/make_boolean.pp
function puppet::make_boolean(Variant[String,Numeric,Boolean] S$inputvalue) {
if ($inputvalue =~ Numeric) {
case S$inputvalue {
Sinputval == 0: { false }
default: { true }
}
}
elsif (Sinputvalue =~ String) {
case S$inputvalue {
/~(?-1:on|true|yes)$/ : { true }
/M(?2-1:0ff|false|no)$/: { false }
default: { fail("Cannot convert '${inputvalue}' to a boolean value.") }
}
elsif (Sinputvalue =~ Boolean) {
$inputvalue
}
}

Function alternates can be defined to expect certain types of data. This can simplify
your Puppet code by skipping type checks.

functions/make_boolean.pp
function puppet::make_boolean(Integer S$inputvalue) {
case Sinputvalue {
S$inputval == 0: { false }
default: { true }
}
}

function puppet::make_boolean(String S$inputvalue) {
case Sinputvalue {
/M(?2-1:on|true|yes)S/ : { true }
/~(?2-1:0ff|false|no)$/: { false }
default: { fail("Cannot convert '${inputvalue}' to a boolean value.") }

}

Ruby Functions

Each ruby function should be declared in a separate file, stored in the lib/puppet/func-
tions/modulename/ directory of the module, and named for the function followed by
the .rb extension.

198 | Chapter 15: Extending Modules with Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Define the function by calling Puppet: :Functions.create() with the following ele-
ments:

1. The name of the new function as a Ruby Symbol as the first parameter to the
function.

2. A :type parameter which defines whether the function returns a value or not.

3. A variable named between | pipe delimitors to accept arguments passed

4. Ruby code to implement the function within a block.

The name and arguments parameter are required, even if the function ignores the
input parameters. The value for type should be either :statement for functions
which don’t return a result, or : rvalue for functions which do return a value.

Our make_boolean() function from the previous section would look like this:

Puppet::Functions.create(: 'puppet::make_boolean', :type => :rvalue) do
def make_boolean(value)
if value.is_a? Integer

return value == 0 ? false : true
elsif value.is_a? String
case value

when nil or 0 or
return false

when 'false' or 'no' or 'off'
return false

else
return true

end

end
end
end

You can perform type validation using a dispatch block:

Puppet::Functions.create(: 'puppet::make_boolean', :type => :rvalue) do
dispatch :make_boolean do
param 'String', :value
end
...function definition...
end

Ruby functions support multiple dispatch. Set up each dispatcher with different valid

input types. The dispatcher will select the first matching type and call the named
function.

Puppet::Functions.create(: 'puppet::make_boolean', :type => :rvalue) do
dispatch :make_boolean_from_string do
param 'String', :value
end

Defining Functions | 199

www.it-ebooks.info

http://www.it-ebooks.info/

dispatch :make_boolean_from_integer do
param 'String', :value
end

def make_boolean_from_integer(value)
return value == 0 ? false : true
end

def make_boolean_from_string(value)
case value
when nil or 0 or
return false
when 'false' or 'no' or 'off'
return false
else
return true
end
end
end

It’s possible to accept a range or unlimited values as well. Here are dispatchers for
when 2 values are supplied, and for all other amounts (e.g. unlimited) values:

Puppet::Functions.create(: 'puppet::find_largest', :type => :rvalue) do
dispatch :compare_two_values do
required_param 'Integer', :first
optional_param 'Integer', :second
arg_count 1, 2
end

dispatch :compare_unlimited_values do
repeated_param 'Integer', :values

end

def compare_two_values(first, second)

end

def compare_unlimited_values(*values)

end

More examples of Ruby functions can be found at Custom Functions.

Accessing Facts and Values

Facts about the node or variables from Puppet classes can be accessed from within
Ruby functions using lookupvar(). If the fact or variable does not exist, this function
will return nil.

require 'ipaddr'
Puppet::Functions.create(: 'mymodule::get_subnet', :type => :rvalue)

200 | Chapter 15: Extending Modules with Plugins

www.it-ebooks.info

https://docs.puppetlabs.com/guides/custom_functions.html
http://www.it-ebooks.info/

def get_subnet
ipaddress = lookupvar('facts['ipaddress']')
if !ipaddress.nil?
ip = IPAddr.new(ipaddress)
return ip.mask(lookupvar('facts[netmask']'))
end
end

Calling Other Functions

You can call any Ruby function or method within your custom function as docu-
mented in any Ruby reference or documentation.

You can invoke a custom Puppet function from another custom Puppet function by
prepending function_ to the name of the custom function. This prefix causes Puppet
to scan all custom function paths to find and load the other function.

When a function is called from a Puppet class, all arguments are passed in as an
anonymous array. If you call this function from within Ruby, you'll need to send your
input as a single array to match.

Puppet::Functions.create(: 'mymodule::outer_function')
def outer_function
input_array = [['hostname'], lookupvar('facts['hostname']')]
function_inner_function(input_array)
return do_something(results)
end
end

Sending Back Errors

To send an error response back to Puppet (which will cause the Puppet compilation
to fail), raise an error of type Puppet: :ParseError. Here’s an example:

Puppet::Functions.create(: 'mymodule::outer_function', :type => :rvalue)

def outer_function
raise Puppet::ParseError, 'Fact not available!' if lookupvar('facts['my_fact']').nil?
...things you do if the fact is available...
end
end

Whenever possible it is preferred to simply return nil or some other failure value
when a function doesn’t succeed. This allows the code which called the function to

determine what action to take. This is generally better practice than causing the entire
Puppet run to fail.

Defining Functions | 201

www.it-ebooks.info

http://www.it-ebooks.info/

Using Custom Functions

Whether your function was written in Puppet or Ruby, you can use a function you've
created exactly the same as a function built into Puppet. For example, we could use
the make_boolean function we've defined to ensure that a Service receives a boolean
value, no matter what type of value was passed to it.

service { 'puppet':

ensure => $status,
enable => puppet::make_boolean($enabled),
subscribe => Package['puppet-agent'],

}

To call a custom function within a Puppet Template, you need to use the same func
tion_ prefix as used within a Ruby function. This is because, as you might guess,
templates are parsed within the scope of a Ruby function. Use brackets around the
input variables to create a single array for input.

<%= if scope.function_puppet: :make_boolean([somevalue]) -%>

Providing Data in Modules

There are plans to provide for data in Modules with Puppet 4. This did not make the
4.0 or 4.1 releases, and plans for this feature are still developing. I will update this sec-
tion as more information becomes available.

Module Plugins Review

In this chapter we have covered how to extend a module to:

o Provide new Facts that will be available for any module to reference.
— Facts can be written in Ruby, and use Ruby language features.
— Facts can be read from YAML, JSON, or text file formats
— Facts can be read from any executible program or script that outputs one fact
name and value per line.
o Provide new Functions that will be available for any module to reference.
— Facts can be written in the Puppet language and use all Puppet features.
— Facts can be written in Ruby, and use all Ruby language features.

New features for Data in Modules are being worked on, and will be documented in
the next update to this book.

202 | Chapter 15: Extending Modules with Plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Requirements for Module Plugins

There were a lot of rules around how module artifacts are named and created. Let’s go
over the rules we covered in this section:

o External fact programs should be placed in the facts.d/ directory and be executi-
ble by the Puppet user. Windows fact providers need to be named with a known
file extension.

o External fact data should be placed in the facts.d/ directory and have a file exten-
sion of .yaml, .json, or .txt.

o Functions written with the Puppet language should be placed in the functions/
directory and be named with a .pp file extension.

« Ruby functions should be placed in the lib/puppet/functions/modulename/ direc-
tory and be named the same as the function with a .rb file extension.

 Ruby functions or templates which call custom functions need to prefix the func-
tion name with function_.

 Ruby functions or templates which call custom functions need to pass all input
parameters in a single array.

You can find more detailed guidelines in the Puppet Labs Style Guide.

Requirements for Module Plugins | 203

www.it-ebooks.info

https://docs.puppetlabs.com/guides/style_guide.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16
Publishing Modules

This chapter will cover how to share your module with others, both inside and out-
side of your organization.

Packaging a Module

To share your module you must prepare the module, then package it for upload.

First, review your Module Documentation and make sure it is up to date. In particu-
lar, make sure that the README.md and CHANGELOG.md files are up to date.

Next, edit the metadata.json file to indicate the license, where to find the source code,
and where to report issues. Here is an example file:

$ cat metadata.json

{
"name": "jorhett-puppet",
"version": "1.2.1",
"author": "Jo Rhett",
"summary": "Module to configure and manage Puppet agent, master, and server.",
"license": "BSD-3-Clause",

"source": "https://github.com/jorhett/puppet”,
"project_page": 'https://github.com/jorhett/puppet’,
"issues_url": 'https://github.com/jorhett/puppet/issues’,

Within the same file, indicate the operating systems and Puppet versions supported.

Note that operatingsystem_support is a hash, while requirements and dependen
cies are arrays.

"operatingsystem_support": {
{
"operatingsystem":"RedHat",
"operatingsystemrelease":["5", "6", "7"]

1

205

www.it-ebooks.info

http://www.it-ebooks.info/

{
"operatingsystem": "Ubuntu",
"operatingsystemrelease": ["15.04", "14.04", "14.10", "13.04", "13.10"]
}
1,

"requirements": [
{
"name": "pe",
"version_requirement": "3.2.x"
1
{
"name": "puppet",
"version_requirement": ["4.x", "3.x"]
}
1,
"dependencies": [
{"version_requirement":">= 4.0.0","name":"puppetlabs-stdlib"}
{"version_requirement”":">= 1.0.0","name":"puppetlabs-inifile"}
1
}

Finally, use the puppet module build command to package up your module.

$ puppet module build
Notice: Building jorhett-puppet for release
Module built: jorhett-puppet/pkg/jorhett-puppet-1.2.1.tar.gz

Uploading a Module to the Puppet Forge

There is no API for uploading modules to the Puppet Forge. You do this manually
using a web browser. the process for uploading a new module and upgrading one of
your existing modules is identical.

Navigate to http://forge.puppetlabs.com/

Click Sign up if necessary to create a new account

Click Login if you already have an account

Click on Publish in the upper right hand corner of the screen underneath your
name

5. Click Choose File and select the module package you created in the previous step
6. Click Upload

LS

Your module will be added to the Forge. The Readme and ChangeLog from your
module will be shown as the web page for your module. The results of standard tests
and community feedback will be added to the page when they are available.

If this process has changed since this book was published, the revised process should
be documented at Publishing Modules on the Puppet Forge.

206 | Chapter 16: Publishing Modules

www.it-ebooks.info

http://forge.puppetlabs.com/
https://docs.puppetlabs.com/puppet/latest/reference/modules_publishing.html
http://www.it-ebooks.info/

Publishing a Module on GitHub

It is common and expected for you to have a place to accept bug reports and pull
requests for your module. GitHub is by far the most common location to do this. The
following steps will create a GitHub repository for your module.

If you haven't installed git already, you should do that now.

[vagrant@client ~]$ sudo yum install -y git
...snip...
Installed:

git.x86_64 0:1.8.3.1-4.el7

Dependency Installed:
libgnome-keyring.x86_64 0:3.8.0-3.el7 perl-Error.noarch 1:0.17020-2.el7

Complete!
Configure the Git software with your name and e-mail:

$ git config --global user.name "Jane Doe"

$ git config --global user.email janedoe@example.com
Next, create a GitHub account if you don't already have one at https://github.com/
join.
Create a new repository in your GitHub Account at https://github.com/new. You will
likely want to name the repository by replacing your name in the module with
puppet- as GitHub already organizes the repository under your name. Ignore the
options below the name and click Create Repository.

Setup version tracking of your module by running the following command within
your module directory.

$ git init
Initialized empty Git repository in
/home/vagrant/.puppet/modules/jorhett-puppet/.git/

There are some files to avoid uploading to the source repository. These include:
o Binary packages of the module
 Dependency fixtures created by rspec for testing
To prevent this, create a .gitignore file with the following contents:
.gitignore

/pkg/
/spec/fixtures/

Publishing a Module on GitHub | 207

www.it-ebooks.info

perl-Git.r

https://github.com/join
https://github.com/join
https://github.com/new
http://www.it-ebooks.info/

Commit your module to the Git repository by running the following commands
within your module directory:

$ git add --all

$ git commit -m "Initial commit"

[master (root-commit) e804295] initial commit
11 files changed, 197 insertions(+), 0 deletions(-)
create mode 100644 Gemfile

create mode 100644 README.md

create mode 100644 CHANGELOG.md

create mode 100644 Rakefile

create mode 100644 manifests/init.pp

create mode 100644 manifests/client.pp
create mode 100644 manifests/master.pp
create mode 100644 metadata.json

create mode 100644 spec/classes/init_spec.rb
create mode 100644 spec/spec_helper.rb
create mode 100644 tests/init.pp

You have now committed your changes to the source tree. However they are not yet
pushed up to GitHub. Let’s configure GitHub as our remote origin. If you have a dif-
ferent origin and are just pushing to GitHub as a remote branch, we expect that you
know how to do that.

$ git remote add origin https://github.com/janedoe/modulename.git
$ git push -u origin master
Counting objects: 14, done.
Compressing objects: 100% (11/11), done.
Writing objects: 100% (14/14), 3.68 KiB | 0 bytes/s, done.
Total 14 (delta 0), reused 0 (delta 0)
To https://github.com/jorhett/puppet-systemstd.git
* [new branch] master -> master
Branch master set up to track remote branch master from origin.

Whenever you wish to publish a change to the module, make sure to update the ver-
sion number and changes for the version in the following files.

» metadata.json
o« README.md
o CHANGELOG.md

Commit these changes to the repository, and then push them up to GitHub.

$ git commit -a -m "Updated documentation for version X.Y"
[master a4cc6b7] Updated documentation

Committer: jorhett vagrant@client.example.com

3 files changed, 11 insertions(+), 2 deletions(-)

$ git push
Counting objects: 14, done.

208

| Chapter 16: Publishing Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Compressing objects: 100% (11/11), done.

Automating Module Publishing

There is a community-provided Ruby gem which automates the task of updating
your module on the Forge. You can find documentation for this at https://
github.com/maestrodev/puppet-blacksmith.

I don't recommend using the version bump or all-in-one release features since you
will need to manually update the CHANGELOG.md file with the version changes any-
way. However if you really hate using a browser, it allows you to automate the upload
with a single command from within the module directory:

$ rake module:push

This involves adding two lines to the Rakefile in the Puppet module directory, and
then using the following commands to

Getting Approved Status from Puppet Labs

At the time this book was written the requirements for Approved status were not
considered stable, and were likely to evolve. At this time the requirements were as fol-
lows:

o Solve a unique problem well. Puppet Labs won't approve multiple modules which
solve the same problem.

o Compliance with Puppet Style Guide. No warnings issued by syntax checking
tools like puppet-lint.

o Regularly updated by more than one person or organization. Having Forge
updates in the last 6 months, and less than 1 month lag between source repo (e.g.
GitHub) and the Forge.

 Thorough and readable documentation.

o Licensed under Apache, MIT, or BSD licenses.

o Have every standard metadata field filled out, including Puppet version and
operating system compatibility.

o Versioned according to SemVer expectations to keep expectations consistent with
regards to upgrades.

o Should have rspec and acceptance tests for every manifest, and unit tests for
types, providers, facts, and functions.

Given the nature of supporting a community of published modules, I feel the require-
ments are straightforward, easy to understand, and generally easy to apply.

You can check for updates to the approval guidelines at https://forge.puppetlabs.com/
approved/criteria.

Automating Module Publishing | 209

www.it-ebooks.info

https://github.com/maestrodev/puppet-blacksmith
https://github.com/maestrodev/puppet-blacksmith
http://semver.org/
https://forge.puppetlabs.com/approved/criteria
https://forge.puppetlabs.com/approved/criteria
http://www.it-ebooks.info/

	Cover
	Copyright
	Table of Contents
	Preface
	Who this book is for
	What to expect from me
	What you will need
	What you’ll find in this book
	How to Use this Book
	IPv6 Ready
	Acknowledgements

	Introduction
	What is Puppet?
	Why Declarative
	How Puppet Works
	Why Use Puppet
	Time to Get Started

	Foreword
	Part I. Controlling with Puppet Apply
	Chapter 1. Thinking Declarative
	Handling Change
	Idempotence
	Declaring Final State
	Conclusion

	Chapter 2. Creating a Learning Environment
	Installing Vagrant on Mac
	Installing Vagrant on Windows
	Starting a Command Prompt
	Downloading a Box
	Initialize Vagrant System
	Initialize Non-Vagrant System
	Choosing a Text Editor
	On the Virtual System
	On your Desktop

	Conclusion

	Chapter 3. Installing Puppet
	Adding the Package Repository
	What is a Package Collection?

	Installing the Puppet Agent
	Reviewing Dependencies
	Reviewing Puppet4 Changes
	Linux and Unix
	Windows

	Making Tests Convenient
	Conclusion

	Chapter 4. Writing Manifests
	Implementing Resources
	Applying a Manifest
	Declaring Resources
	Viewing Resources
	Executing Programs
	Managing Files
	Declarative Review

	Testing Yourself
	Conclusion

	Chapter 5. Using Puppet Configuration Language
	Defining Variables
	Defining Numbers
	Using Variables in Strings
	Limiting Problems with Brackets
	No Redefinition

	Finding Facts
	Retrieving Values
	Avoiding Reserved Words
	Modifying with Operators
	Order of Operations

	Using Conditional Operators
	Creating Regular Expressions
	Evaluating Conditional Expressions
	Building Lambda Blocks
	Looping through Iterations
	Each
	Filter
	Map
	Reduce
	Slice
	With
	Captures-Rest Parameters
	Summary

	Conclusion

	Chapter 6. Controlling Resource Processing
	Adding Aliases
	Preventing Action
	Auditing Changes
	Defining Loglevel
	Limiting by Tags
	Limiting by Schedule
	Defining Resource Defaults
	Conclusion

	Chapter 7. Expressing Relationships
	Managing Dependencies
	Referring to Resources
	Ordering Resources
	Triggering Refresh Events
	Chaining Resources with Arrows
	Processing with Collectors
	Understanding Puppet Ordering
	Conclusion

	Chapter 8. Upgrading Puppet 3 Manifests
	Validating Numbers
	File Modes are not Numbers

	Using Hash and Array Literals
	Adding Else to Unless
	Chaining Assignments
	Expressions Can Stand Alone
	Chaining Expressions with a Semicolon
	Calling Functions in Strings
	Improved Error Reporting
	Avoiding Upgrade Problems
	Deprecations

	Chapter 9. Conclusion of Part I
	Best Practices for Writing Manifests
	Continued Learning

	Part II. Creating Puppet Modules
	Chapter 10. Creating a Test Environment
	Verifying the Production Environment
	Creating a Test Environment copy
	Changing the Base Module Path
	Skipping Ahead

	Chapter 11. Separating Data from Code
	Introducing Hiera
	Creating Hiera Backends
	Hiera Data in YAML
	Hiera Data in JSON
	Hiera Data in Puppet
	Puppet Variable and Function Lookup

	Configuring Hiera
	Backends
	Backend Configuration
	Logger
	Hierarchy
	Merge Behavior
	Complete Example

	Doing Hiera Lookups in a Manifest
	Testing Hiera Lookups

	Chapter 12. Using Modules
	Finding Modules
	Puppet Forge
	Public GitHub Repositories
	Internal Repositories

	Evaluating Module Quality
	Puppet Supported
	Puppet Approved
	Quality Score
	Community Rating

	Installing Modules
	Installing from a Puppet Forge
	Installing from GitHub

	Testing a Single Module
	Defining Config with Hiera
	Executing Multiple Modules with Hiera
	Examining a Module
	Reviewing Modules

	Chapter 13. Designing a Custom Module
	Choosing a Module Name
	Avoiding Reserved Names

	Generating a Module Skeleton
	Modifying the Default Skeleton

	Understanding Module Structure
	Creating a Class Manifest
	What is a Class?

	Accepting Input
	Validating Input with Types
	Valid Types
	Accepting Values
	Testing Values
	Matching Regular Expressions

	Declaring Resources
	Using Hiera Data
	Sharing Files
	Parsing Templates
	Common Syntax
	
	
	Creating Readable Templates

	Building Subclasses
	Understanding Variable Scope
	Reusing Defined Types
	Calling Other Modules
	Sourcing a Common Dependency
	Using a Different Module

	Ordering Dependencies
	Containing Classes
	Documenting the Module
	Learning Markdown
	
	Creating CHANGELOG.md
	

	Peeking Beneath the Hood
	Best Practices for Module Design
	Modules Review

	Chapter 14. Testing Modules
	Installing Dependencies
	Installing Ruby
	Installing Gem Bundler
	Installing Spec Helper

	Preparing Your Module
	Defining Fixtures

	Defining Tests
	Defining Main Class
	Passing Valid Parameters
	Failing Invalid Parameters
	Adding an Agent Class
	Using Hiera Input
	Defining Parent Class Parameters
	Improve Testing with Custom Skeletons

	Simplifying with Tools
	Puppet-Retrospect

	Finding Documentation
	Testing Modules Review

	Chapter 15. Extending Modules with Plugins
	Adding Custom Facts
	
	
	Understanding Implementation Issues

	Defining Functions
	
	
	Using Custom Functions

	Providing Data in Modules
	Module Plugins Review
	Requirements for Module Plugins

	Chapter 16. Publishing Modules
	Packaging a Module
	Uploading a Module to the Puppet Forge
	Publishing a Module on GitHub
	Automating Module Publishing
	Getting Approved Status from Puppet Labs

