
 COMPANION eBOOK

Shelve in
Mobile Computing

User level:
Beginning-Advancedwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

The Business of Android Apps Development shows you how to beat the
crowd and get your app noticed in the marketplace. Experienced devel-

oper Roy Sandberg and Internet technologist Mark Rollins guide you, step-
by-step, through proven, cost-effective marketing and sales techniques—no
prior business knowledge required!

You’ll learn how to:

• Prime your app for success by creating a business plan and analyzing

 the competition

• Handle important legal issues, including EULA, privacy policies,

 and copyright

• Develop apps like a pro through design and user experience testing

• Make money with ads and in-app purchases

• Create an attractive marketplace listing that will engage users

• Get the word out through advertising, public relations, trade shows,

 and more

• Develop systems to ensure sales longevity and success for your future
projects

Written for today’s Android apps developer or development shop, this book
is filled with practical tips that will help you take your app from idea to dis-
tribution on Google Play or Amazon Appstore and beyond. It gives you the
knowledge and skills you need to launch your app to success in the crowded
Android market.

Roy Sandberg | Mark Rollins

New and improved guide, overhauled for today’s
Android indie and game app developers

Sandberg
 Rollins

The Business of Android Apps Developm
ent

Companion

eBook
Available

The Business of Android
Apps Development

Making and Marketing Apps that Succeed on Google Play,
Amazon Appstore and More

SECOND EDITION

SECOND
EDITION

New and improved guide, overhauled for today’s
Android indie and game app developers

BusinessBusiness of Android

www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Contents at a Glance

About the Authors���xiii

About the Technical Reviewers��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: The Android Market: A Background■■ ��1

Chapter 2: Making Sure Your App Will Succeed■■ ���15

Chapter 3: Legal Issues: Better Safe than Sorry■■ ���31

Chapter 4: A Brief Introduction to Android Development■■ ���39

Chapter 5: Develop Apps Like a Pro■■ ���51

Chapter 6: Making Money with Ads on Your Application■■ ���63

Chapter 7: In-App Billing: Putting a Store in Your Application■■ ���79

Chapter 8: Making App Marketplaces Work for You■■ ���95

Chapter 9: Getting the Word Out■■ ���111

Chapter 10: After You Have a User Base■■ ���129

Index��141

www.it-ebooks.info

http://www.it-ebooks.info/

xix

Introduction

Hi, it’s Mark and … I’m back! Some of you might remember the first edition of this work. I focused
on the very early part of the learning curve for new Android app developers—such as what to do
even if you have never heard of the Android operating system or marketplace. I demonstrated how
to download programs such as Java and the Eclipse IDE, and showed you a thing or two about
programming using these software tools. I also introduced subjects that are basic to marketing
anything, such as reaching a target audience, establishing your application’s “culture,” spreading the
word about your applications through various online and print sources, how to publish on Google
Play (then called Android Market), and what to do after your initial launch. For the most part, I believe
that I succeeded in my endeavor, but even more is required if you really want to establish yourself in
the midst of a crowded Android market.

For this second edition of the book, I teamed up with Roy Sandberg, an experienced Android app
developer. Roy talks about his experiences developing and marketing apps under his Sandberg
Sound label (www.sandbergsound.com). Roy also does contracting work for Android, so you might
want to contact him if you need a level of support that exceeds what this and other books can
provide. You can find his e-mail address on his website, www.sandbergsound.com. Roy also has a
background in communications theory, robotics, audio, and digital signal processing. Believe me
when I say that hairy technical problems make him happy! Roy knows the technical, business, and,
in some cases, legal issues encompassing the Android development process. He created a family of
apps that use clever sound-processing algorithms to do some interesting things. More importantly,
you’ll learn from his “boots on the ground” experiences with marketing his apps. He’ll let you know
what worked for him and, perhaps more importantly, what didn’t work.

As the author of the first edition of The Business of Android Apps Development, I am quite glad to
have Roy on board. As for this second edition, it is not really a sequel, but more of a redux. Just
so I can set your mind on the right track, this isn’t really a book on how to create that million-dollar
idea for an app or how to write all the code for that million-dollar app. Of course, creating and
programming that application is a necessary part of Android marketing, and we’ll give you some
guidance in that area, but building the application is only one essential step to creating an application
that will shine in the very crowded world of Android applications.

www.it-ebooks.info

http://www.sandbergsound.com
http://www.sandbergsound.com
http://www.it-ebooks.info/

xx Introduction

This book focuses on how to navigate marketing in the world of Android, and what it takes to make
an Android app really shine. From the moment you first conceive of an app idea, all the way to
supporting an existing application, we’ll explain the best way to get things done.

The Purpose of this Book
It might be easier to explain what this book isn’t instead of going into detail about what it is. This is
not, at its heart, a programming book. Although we will give you a quick overview of programming
on Android, you will have to look elsewhere for all the details. Rather, this book gives a high-level
overview of all the considerations a developer must balance when bringing a new Android application
to market.

As far as programming goes, we will certainly point you in the right direction, so if you’re a beginning
programmer, this book is a great way to get oriented. We suggest you also check out some other
books from Apress:

Android Apps for Absolute Beginners, nn by Wallace Jackson

Beginning Android 3, nn by Mark Murphy

Pro Android, nn by Satya Komatineni, Sayed Hashimi, and Dave MacLean

Pro Android 2, nn by Satya Komatineni, Sayed Hashimi, and Dave MacLean

Pro Android 3, nn by Satya Komatineni, Sayed Hashimi, and Dave MacLean

Pro Android Web Apps, nn by Damon Oehlman and Sébastien Blanc

Android Essentials, nn by Chris Haseman

Learn Java for Android Development, nn by Jeff Friesen

It is essential that you as an Android developer continuously learn about the Android platform
(and programming in general) in order to stay current. However, just as important as the nuts and
bolts of programming is what to do once that incredible mobile app has been created.

Proper business planning, marketing, promotion, and advertising are the keys to success. If you are
in the business of making money from your Android mobile software, the information contained within
these pages is essential reading.

How to Use this Book
This book teaches you the business of Android app development, from the very genesis of your idea,
all the way through ongoing support of your published app.

Chapter 1: “The Android Market: A Background.”nn The smartphone revolution
has changed the way that we work and play. Android is a leader of the revolution,
and this chapter discusses the history of this open-source operating system for
smartphones and tablets. We also explain how Android has changed over time,
and discuss porting difficulties for programs written in other coding languages.

www.it-ebooks.info

http://www.it-ebooks.info/

xxiIntroduction

Chapter 2: “Making Sure Your App Will Succeed.”nn As you well know, the
Android Market is flooded with applications, so you have to find out what
will set yours apart from the others. We discuss what you can do to create
a product that will be in demand and how to analyze the competition. A key
factor is using a business plan to see and correct issues with your strategy,
ensuring your app finds a market. Your business plan will involve thinking about
the problem you are solving, analyzing your competition, and determining your
target market. We also analyze the technical, execution, and market risks and
how to price your app to succeed. At the end, we share a checklist you can use
to make sure your app has what it takes!

Chapter 3: “Legal Issues: Better Safe than Sorry.”nn An eye toward legal
matters is a necessary part of the app-creation process. If you are not aware
of what is at stake, you should read up on what you need to do to protect
yourself legally because no one wants to be sued. We discuss personal liability;
incorporation; EULAs; privacy policies; and intellectual property, which includes
copyrights, trademarks, patents, licensing, and nondisclosure agreements. Like
Chapter 2, it concludes with a checklist so you will be prepared!

Chapter 4: “A Brief Introduction to Android Development.”nn As stated before,
this isn’t a book about programming on Android, but we do discuss the basics
of programming on Android including the Eclipse IDE, the Java programming
language, the Android operating system, and app deployment.

Chapter 5: “Develop Apps Like a Pro.”nn Professional developers don’t just hack
code; numerous techniques and systems are also used by pros to ensure that
their code is high quality. We discuss some of these techniques in this chapter.
If you’re a professional developer, this chapter is a basic review, but if you’re
new to development, it is an excellent backgrounder. We also discuss some
coding tips and tricks that you can use to help you along the way.

Chapter 6: “Making Money with Ads on Your Application.”nn Just because
you are giving away an app for free doesn’t mean that you can’t get something
out of it. Find out how to estimate revenue and what financial model to use
on your application. We also discuss the types of ads that can appear on your
application, including banner and full-screen. It is important to know how to
understand and analyze the reporting information to better estimate revenue and
uncover revenue trends.

Chapter 7: “In-App Billing: Putting a Store in Your Application.”nn In-app
purchases are yet another way for developers to make money on their Android
apps, including offering user subscriptions and virtual products. This chapter
describes when you will best benefit from in-app purchases and when you might
want to avoid them. We also discuss numerous online stores that provide in-app
purchasing capabilities. We go into particular detail of how to implement in-app
purchases with Google Play and the Amazon Appstore.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii Introduction

Chapter 8: “Making App Market Places Work for You.”nn As an Android
developer, you have the benefit of multiple market places in which to sell your app.
We show you how your marketplace listing will attract users; what screen shots
to use; and how to create the appropriate icons, promotional graphics, feature
graphics, and videos to promote your app. We also tell you how to beta test in the
marketplace and discuss the ever-growing Amazon Appstore, among others.

Chapter 9: “Getting the Word Out.”nn Publicity is a necessary step before
getting your app out there in the world. You know the importance of publicity,
but we break it down into a number of options. You should develop a plan using
marketing techniques to get the word out about your app. We also discuss
how to do a SWOT analysis, advertising, public relations, free publicity, Internet
marketing, guerrilla marketing, trade shows, web advertising, mobile advertising,
and more.

Chapter 10: “After You Have a User Base.”nn After your app finds a user base,
your job as a developer is far from done. You might want to develop a system for
customer support, use Google Play Statistics, use Google Analytics, and even
A/B test. All these techniques ensure that your app stays relevant and continues
to fulfill the needs of your users.

www.it-ebooks.info

http://www.it-ebooks.info/

1

Chapter 1
The Android Market:
A Background

Whenever anyone writes a book, he or she always has to be mindful of the audience. If you are an
experienced Android programmer, the technical portions of this book may seem quite basic. If that
is the case, we apologize in advance. We decided that because the book is about the business
of Android apps development, some of our readers might not have any Android programming
experience at all.

If you have no experience with Android, we’ll try to point you in the right direction. Everyone starts
with no experience at one point or another, and with technology this happens all the time. It is hard
to believe that the entire idea of using a mobile “app” is less than a decade old at this writing. Ten
years ago, if you were to talk about an “app” in that sense, people wouldn’t be sure what you meant.

The Smartphone Revolution
If you think about all the things you do on a normal day, whether it is checking your e-mail while
riding on the bus, surfing the Internet while waiting for another appointment, or running the latest
application, you’ll probably agree that smartphones are part of our daily life. We’re sure that some
of us who are Facebook and Twitter junkies wonder how in the world we lived our lives before
smartphones. The technology is now something that we really take for granted, especially because
most of the technology of cell phones as computers is quite new and constantly changing.

Historically speaking, the computer is a relatively new invention. The computer industry, now a giant
in all types of business, is less than a century old. The Turing COLOSSUS, which was the earliest
general-purpose computer developed during World War II, was designed to run aerodynamics
calculations. The discoveries of Bell Telephone’s transistor in 1947 and the integrated circuit,
developed by Texas Instruments and Fairchild Semiconductor in 1969, helped computers make
great strides during the 1950s and 1960s. Soon the IBM System/360 became the standard
institutional mainframe computer. Intel co-founder Gordon Moore famously predicted that the

www.it-ebooks.info

http://www.it-ebooks.info/

2 CHAPTER 1: The Android Market: A Background

number of components in an integrated circuit would double approximately every two years.
Moore’s prediction has stood the test of time, and his simple statement has since been known as
Moore’s Law. Because integrated circuits could do more computations for the user with less real
estate, computers became smaller and smaller. The Z3 was a massive machine that took up nearly
an entire building. The processing power of this gargantuan computer is minuscule compared to
what we have today on the simplest of smartphones.

Through decades of advances in technology, computers became small enough to fit on a desk at
home or in the office. Soon the power of the desktop transitioned to the laptop, and computers
became lighter and flatter, easily transitioning from the desk to the Wi-Fi hotspot at the local
coffee shop.

As computer technology improved, so did that of cellular phones, leading to a mobile phone
revolution. Cellular phones were once a toy that only the rich could afford because they often cost a
few thousand dollars. There were phones such as the 1983 Motorola DynaTAC 8000x, and they were
a burden on their users because they weighed almost two pounds. There was a period when the
weight of cell phones worked against them, but they were very popular to have in the car during the
‘90s. Fortunately, phones such as the 1989 Motorola MicroTAC 9800X were light enough to fit in the
jacket pocket, and others, such as the Motorola StarTAC, became popular with their clamshell design.

The next logical step was to put more features on a cell phone than just phone and texting, and
they soon became “smarter.” Now all the power of being connected to the Internet was in the
palm of one’s hand. Ericsson was the first to call its phone a “smartphone,” and the Nokia 9000
Communicator had similar features and was driven by an Intel 386 CPU, the same CPU previously
used in Intel desktop computers.

Most tech enthusiasts remember when Steve Jobs unveiled the iPhone, a smartphone designed
with the consumer in mind. We ask a lot of our tech friends, “Where were you when the iPhone
was announced?” Tech enthusiasts remember when Jobs brought out his new toy, and how its
one-button goodness with its “apps” changed the mobile world forever.

The rapid development of smartphone technology in the last decade is explained by Koomey’s Law
(somewhat similar to Moore’s Law). Dr. Jonathan Koomey of Stanford University has shown that
the need for electrical power (battery capacity) halves every 1.6 years. This means that computers
don’t just get faster (owing to greater transistor counts) but they also get smaller and more portable!
Because the battery takes up less and less room on a smartphone, smartphones can pack a lot of
computing power into the remaining volume.

But the computing power is only half the equation. The other half is connectivity. Smartphones are
almost always online. Always-on connectivity creates amazing possibilities. The app store, a staple
of all modern smartphones, is a direct outgrowth of always-on connectivity.

Now we are in an age when we can do just about anything with our phones, thanks to the app
revolution. Just think about how businesses like Instagram have flourished with this new smartphone
age, something that wasn’t even possible a decade ago!

Every new technology creates new opportunities. As we mentioned before, the size of a computer has
decreased. With this decrease in size has come a decrease in the price of computers overall. The same
applies to smartphones, which are getting cheaper for the consumer thanks to contracted deals from
carriers. Today, many users in countries that can’t afford desktop or laptop computers have access to
smartphones, with mobile networks that take them to the World Wide Web and beyond.

www.it-ebooks.info

http://www.it-ebooks.info/

3CHAPTER 1: The Android Market: A Background

Though we can’t go to every place in the world and get a signal, that’s changing fast. In fact, even
today one in three people on Earth have Internet access, and many of them have access through
cellular networks.

According to the latest research from Strategy Analytics, the number of smartphones passed one
billion in the third quarter of 2012. This is a mere 16 years after the first smartphones hit the market.
Very few inventions have swept the globe so quickly.

This is great news for app developers. Smartphones have already changed the way we work and
play, but we’re sure there are many undiscovered ideas that clever app developers will unleash upon
the world.

And the good news for you, dear reader, is that Android is by far the most popular smartphone
operating system. In fact, in the last quarter of 2012, 70 percent of smartphone shipments were
Android phones!

The Beginning of Android
A lot of people hail the iPhone as the first smartphone, but as we mentioned before, it was not.
It was unique in its iOS operating system, and it may seem as if the Android operating system is a
mere imitation. However, work leading to the Android OS began long before the iPhone was released
to the public in 2007. Andy Rubin, known as one of the founders of Android (later acquired by
Google) had been working on smartphone designs since January, 2000. The company he founded
prior to Android was called Danger, Inc., which released the Hiptop (also known as the T-Mobile
Sidekick) in October, 2002, years before Apple released its first smartphone.

Andy Rubin, along with Rich Miner, Nick Sears, and Chris White, then started Android, Inc. in
2003. In Rubin’s words, there was tremendous potential in developing “smarter mobile devices
that are more aware of its owner’s location and preferences” (http://www.businessweek.com/
stories/2005-08-16/google-buys-android-for-its-mobile-arsenal). The company ran out of
money, but it had developed an open source operating system for mobile phones by the time it was
acquired by Google in 2005. Android worked rather discreetly on its mobile operating system for
about two years.

Google helped start the Open Handset Alliance (OHA), which is a consortium of a lot of
companies such as HTC, Motorola, Samsung, Sprint Nextel, T-Mobile, and other big names in the
telecommunications industry. This group eventually unveiled the mobile operating system that we
know today as Android. The first public beta of Android was released in November 2007, a mere five
months after the iPhone first hit the market.

Android and iOS are currently the two major players in the world of mobile phone operating systems.
Microsoft has only a fraction of the market with its Windows Phone 8 operating system, in spite of
some successful flagship phones from Nokia such as the Lumia 920. The BlackBerry market was once
significant, but according to comScore MobiLens, it accounts for less than six percent of the marketplace.

However, BlackBerry has recently released some new devices with a new operating system, and its
fortunes might change. In a sign of how important Android has become, the new BlackBerry devices
support a “Runtime for Android apps.” This is a series of tools that allow you to easily repackage
your existing Android apps to work on BlackBerry phones. We’ll get into this in more detail later in
the book, but rest assured, even if BlackBerry is wildly successful, you’re making the right choice by
developing for Android!

www.it-ebooks.info

http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.it-ebooks.info/

4 CHAPTER 1: The Android Market: A Background

Why Android?
Android is by far the world’s most widely used mobile phone operating system. If you want to reach
the most users with a single code base, Android is the way. As we just mentioned, you can even
easily get your app in front of BlackBerry users!

Android is quite simply crushing iPhone in user adoption rates. According to Strategy Analytics, in
2012 more than 3.5 Android smartphones shipped for every iPhone. Android has shown quite a lot of
growth. In 2010, 100,000 new devices were activated each day. In 2011, 500,000 new devices were
activated each day. According to Google chairman Eric Schmidt, as of April 2013 there are more
than 1.5 million new Android users every day!

Even better, Google Play, which once lagged behind the Apple App Store in revenue, is coming
into its own. Google Play revenue grew by 90 percent in the first quarter of 2013 relative to the last
quarter of 2012. In the same time period, Apple’s App Store revenues grew by only 25 percent.
Particularly in Asia, Google Play revenue growth rates are astounding. Japan has surpassed the
United States in Google Play revenue! South Korea is also incredibly strong. At these growth rates,
it seems like only a matter of time before the Google Play store becomes the dominant app store.
In terms of the marketplace for apps, Google Play currently has more than 700,000 applications,
which have been downloaded more than 25 billion times!

Most successful Android application stories are pretty well known. As an example, Angry Birds by
Rovio is free for Android users, and it is a mobile game giant that has produced massive funds for
the company. The mobile game had more than two million Android downloads in the three days after
its Android release, and seven million Android downloads one month after that. Rovio, the game’s
developer, is still finding ways to make money on the Angry Birds franchise with spin-offs and even
merchandise.

Of course, there are more successful applications than just the ones made for gaming. For example,
Edward Kim, the author of the Car Locator application, was initially excited to be making $20 per
day. Within five months, he was making more than $13,000 per month in sales.

You will soon discover that the massive quantity of Android applications on the market can work
against the developer, as the Android market is flooded with applications of all types. It’s not
uncommon for 20,000 new apps to appear each month.

This means that one application, as great as it might be, can get “lost in the crowd” and become
very difficult to be noticed by its intended audience. Android users might pay to download one type
of application even though a free one with more features is readily available. All this because some
of the better applications can’t get noticed in the world of many, many Android applications.

Keep in mind, however, that the Apple App Store has roughly the same number of apps as Google Play,
so iOS application developers have the same problems when it comes to standing out from the crowd.
Remember, unlike Apple, Google built its brand on the strength of its search abilities. You can be sure
that engineers at Google are hard at work figuring out the best ways to provide Google Play users with
search capabilities that let them find exactly the app they’re looking for.

In fact, Roy is happy to report that searching for his apps in Google results in first page listings
(see Figure 1-1).

4
www.it-ebooks.info

http://www.it-ebooks.info/

5CHAPTER 1: The Android Market: A Background

Android vs. iOS
When the iPhone was first unveiled, a new sort of business model was established for consumer
electronics. Although Steve Jobs and his associates at Apple were not the first to invent the
touchscreen, they were able to create a new type of software enterprise that was personable and
utilitarian. Apple’s “there’s an app for that” slogan has promised users that the mobile software they
need should be readily available where and when they need it. It works for the smartest engineer and
the dumbest consumer, and it created a new type of software market. Historically, the Apple App
Store has led the way by a wide margin in terms of number of apps and downloads. That, however,
is set to change. The Google Play App Market has nearly reached parity with Apple, both in terms
of the number of apps and the number of downloads. As of October, 2012, iOS had only 10 percent
more downloads than Android.

Although iOS still has a sizable lead in terms of total revenue, that gap is also closing fast. If the
trend lines continue at their current pace, Android could surpass iOS in total revenue by early 2014.
In the near future, we can expect Android to take the lead in terms of total apps, app downloads,
and app revenue. If we were betting types, we’d place our bets on Android!

Figure 1-1. A screen shot of the Google Play Market that shows Roy Sandberg’s app

www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1: The Android Market: A Background

The Difference Between Android and iOS
As a developer, you should know how Android compares to iOS at least at some level.

Apple’s iOS is a proprietary operating system, while Android is open source, which gives users the
right to study, change, and improve the design through ready availability of the source code. Internally,
Android uses the Linux kernel.

One of the great things about Android developer tools is they are free. This is one of the reasons
why the operating system is so popular on smartphones and tablets, and why it will probably have a
significant presence on televisions in the near future.

Another way that Android differs from Apple is that Android has no approval process when it comes
to apps placed in Google Play. Once the user has signed up, uploading and publishing becomes
a relatively simple process. Remember how we mentioned earlier that the Android marketplace is
crowded with many, many applications? A simpler approval process does mean that substandard
applications can be prominent in the market. This is what makes a single quality app hard to notice.
On the other hand, there are many app stores other than Google Play that an Android developer can
select from. Many of these app stores have a more involved approval process. For example, Roy
has seen very good results with the SlideMe store, which although much smaller than Google Play,
currently results in more than 15 percent of the downloads for one of his apps.

Android apps are written primarily in Java, and Java is extremely well known. It is the most popular
language in the langpop.com normalized comparison of computer languages. Open standards
mean lots of open source. Java is the third most popular language on Google Code (langpop.com),
which gives you an idea of how much new code is being written for it. Java also has the largest
addressable user base of any smartphone operating system. It is easy to write, easy to test, easy
to deploy, and has worldwide reach in multiple marketplaces. Both Google Play and the Amazon
Appstore are thriving marketplaces for apps, and there are others that we will discuss in later
chapters when we discuss putting your applications on the market.

BlackBerry applications are a new market for Android apps. It’s easy to port an existing Android app
(v.2.3.3 or later, with an update to Jelly Bean 4.1 forthcoming) to the BlackBerry platform.

The Android application programming interface (API) is very well documented, and most users
come up to speed very quickly. In comparison, iOS is known to have a steeper learning curve. iOS
applications are usually written using Objective C, which is rarely used outside of iOS development.
In comparison, Java is a very well-known language, which makes Android easy to learn for existing
Java developers.

For example, Roy knew some basic Java before writing his first app, and he was able to write a
complex multithreaded application in only a few weeks. Most of the learning curve relates to the
Android application life cycle, which is rather different from PC or server-side Java programming.
But once you understand this life cycle, it promotes easy code reuse and allows you to tap into the
power of applications written by other developers. The Android application life cycle also promotes
the development of energy-efficient applications that “play nicely with others.”

But the ways that the Android ecosystem makes app development easy extend past the logistics of
programming. As a novice developer, Roy was also impressed with the ease with which he was able to
access an international market. His first commercial app, the Sandberg Sound BPM Detector, allows
a user to determine the beats per minute of any song it hears. It’s used by both DJs and musicians
around the world. With a few clicks, Roy was able to deploy the app worldwide. What’s even more

www.it-ebooks.info

http://langpop.com
http://langpop.com
http://www.it-ebooks.info/

7CHAPTER 1: The Android Market: A Background

impressive is that written text describing the app was automatically translated to dozens of languages.
Users who have no knowledge of English see Roy’s apps listed in their native language, and the apps
can display their text in the user’s native language as well. Similarly, the Android ecosystem takes
care of the logistics of international banking and purchasing. Once Roy selected an app’s price in
U.S. dollars, Android automatically suggested pricing in native currencies around the world. Even
though his apps are listed in 190 countries around the world, purchases appear in his bank account in
U.S. dollars, without any intervention on his part. Such is the power of Android.

Free third-party tools also make Android easier to use, even for non-Java programmers. Scripting
Layer for Android (SL4A) allows Ruby, Python, Perl, JavaScript, and a number of other interpreted
languages to run on an Android device. They have access to most of the Android API and don’t require
a developer to follow the application life cycle. If your app is best implemented as a simple script, this
might be the way to go. Currently SL4A is in alpha, but it has been under development for many years.

If you’re a Ruby programmer, you could check out Ruboto (www.ruboto.org). Ruboto uses the JRuby
compiler (which translates Ruby to Java virtual machine code) to convert Ruby language code
into Android application code. Because JRuby supports just-in-time (JIT) compilation, Ruby code
generated by Ruboto is quite fast.

So we think Android is the easier platform to develop on. But don’t just take our word for it. In a
Developer Economics 2013 Survey of 1,200 app developers who develop for both iOS and Android,
the majority stated that Android development had both an easier learning curve and a lower
development cost than iOS.

Versions of Android
Android got off to a slow start with the HTC Dream (also known as the T-Mobile G1). Since then, Android
has been gaining popularity with the release of every new version. It is important that you know about
them when you begin developing Android applications because newer versions contain more features
than their predecessors. In terms of programming, these versions have a definite numerical designation.
We will discuss that when we get into downloading Android development tools like Android SDK and
Eclipse. For now, you should know that in addition to the version number, versions also have an informal
name that is always a sweet treat. This cute tradition began with version 1.5.

Jelly Bean (4.1 - 4.2)

Eclair (2.1)
Ice Cream Sandwich (4.0.3 - 4.0.4)

Honeycomb (3.2)

23.3%

32.3%

Froyo (2.2)

Gingerbread (2.3.3 - 2.3.7)

1.4%
3.1%

34.1%

Figure 1-2.  Percentage of the Android universe using each platform version

www.it-ebooks.info

http://www.ruboto.org/
http://www.it-ebooks.info/

8 CHAPTER 1: The Android Market: A Background

Here is a very basic summary of some the latest versions of Android:

Version 1.5 (Cupcake):	

Allows for video recording through camcorder	

Bluetooth enabling	

Widgets on homescreen	

Allows for animated screen	

Uploading of YouTube videos and Picasa photos “on the fly”	

Version 1.6 (Donut): 	

Features a camcorder, camera, and Integrated Gallery	

Voice Search	

Voice Dial	

Bookmark	

History	

Contacts Search	

WVGA screen resolution	

Comes with Google turn-by-turn navigation	

Version 2.0/2.1 (Éclair):	

HTML5 and Exchange Active Sync 2.5 support	

Improved speed	

Google Maps 3.1.2	

MS Exchange Server Integration	

Flash for Camera	

Bluetooth 2.1 integration	

Option of virtual keyboard	

Version 2.2 (Froyo): 	

Screen is 320dpi with 720p	

JIT compiler	

Chrome with JavaScript Engine version 8	

Wi-Fi hotspot tethering	

Bluetooth contacts sharing	

Adobe Flash support for version 10.1	

Apps can be installed on expandable memory like SDcard	

www.it-ebooks.info

http://www.it-ebooks.info/

9CHAPTER 1: The Android Market: A Background

Version 2.3 (Gingerbread): 	

Improved gaming graphics and audio effects	

SIP VoIP support	

WXGA (Xtra large screen size and resolution)	

Near field communication	

Copy-Paste feature	

Download manager for large downloads	

Better control of applications	

Support for multiple cameras	

Version 3.0, 3.1, and 3.2 (Honeycomb): 	

The first tablet-only release	

3-D Desktop with newer widgets	

Tabbed web browsing and “incognito” mode for anonymous browsing	

Google talk Video Chat	

Hardware acceleration	

Multicore processor support	

Multipane navigation	

Version 4 (Ice Cream Sandwich): 	

Streamlined user interface fit for both tablets and smartphones	

Advanced App framework	

Facial recognition	

Better voice recognition	

Web browser with up to 16 tabs	

Resizable widgets	

Version 4.1 and 4.2 (Jelly Bean):	

Google Now	

Voice Search	

Android Beam	

Speed enhancements	

Camera App enhancements with HDR	

Version 5 (Key Lime Pie):	

At present, we don’t know much about the features here; perhaps later 	
versions will keep us updated.

www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1: The Android Market: A Background

You will discover that specific Android devices start out as one particular version of Android, and
upgrades tend to come out slowly for certain devices. This is because Android releases a new
version, and then hardware vendors and cellular carriers modify the source to meet their needs.
In fact, the cellular carrier might not even update older phones with a new version of Android even
though the hardware is most certainly capable of it.

The Challenges of Working with Android
We have already mentioned that some of the great things about Android developer tools is they are
free, and that Android differs from Apple in that the official Google Play marketplace has no approval
process when it comes to apps. Once the user has signed up, uploading and publishing becomes a
relatively simple process.

While Android apps are both relatively easy to develop and easy to deploy, there is no guarantee that
your app will work perfectly on every Android device. You can imagine users who have a phone that
your application won’t work on. You won’t be getting a recommendation from them!

Typical problems can include simple things like failure to format correctly for different screen sizes.
Even if you follow all the best practices, sometimes a phone uses a strange resolution. Your app
might still work, but the layout might be unpleasant to the user, resulting in a bad review.

It’s possible to test different screen resolutions using the free Android phone emulator. But this
emulator often runs too slowly for computationally expensive applications. Moreover, there are a few
bugs in the emulator that can cause certain apps to behave incorrectly when emulated. Although the
emulator is good for simple testing, it isn’t foolproof.

Another common issue concerns Android phones with different hardware capabilities. Not all
phones have forward-facing cameras, for example. Some phones don’t have the “horsepower” for
computationally expensive graphics. Every hardware manufacturer is free to add custom features
and capabilities to its phone, which means not every phone provides every feature. Android
provides the developer with ways to ensure that the phone has the features you need, but these
sorts of differences between hardware platforms are one of the major challenges of programming
for Android. The iPhone is a phone, but Android is a true operating system, supporting hundreds of
unique devices from dozens of manufacturers.

As a developer, you should always think about how to write an app in the way that reaches the most
users. Often, you are better off using an older version of Android than you prefer and avoiding the
latest snazzy hardware features. This lets you reach more users. Android has an enormous installed
base of users, but few of them are using the latest version.

If you get serious about Android development, you may want to buy a used Android phone or two
in addition to your primary phone (which we assume is an Android phone!). Developing an app that
runs on older versions of Android ensures that you can address the majority of the market. The
only sure way to know whether your app works well on multiple versions is to test them. If you’re
committed to developing quality apps, you will want to test your app on at least a few different
handsets.

Another option, if you can afford it, is to use a service like www.perfectomobile.com/, which allows
you to test against hundreds of real Android phones using a cloud-based interface.

www.it-ebooks.info

http://www.perfectomobile.com/
http://www.it-ebooks.info/

11CHAPTER 1: The Android Market: A Background

Porting Difficulties
For those who want to turn their iOS app into a full-fledged Android application (or vice versa),
we want to let you know the process and pitfalls. If you’re only focusing on the Android market, you
can safely skip this section. However, many developers aim to develop for both Android and iOS in
order to maximize their revenue. We will cover how to do that by the end of this chapter.

Let’s say you’ve written an iOS app that is out right now or perhaps waiting in the app approval
process. To turn it into an Android application, you have to adapt your software so that an
executable program can be created for a computing environment that is different from the one that it
was originally designed for. This is known as porting.

iOS apps are generally written in Objective-C, while Android apps are generally written in Java. Although
the logic of these programming languages is quite similar because they are both linear, procedural, and
use notions of object orientation (OO), they are very different with respect to OS support, GUI objects,
and application life cycle. Sadly, Objective-C is not supported on Android.

As far as we know, there isn’t any magical program that will allow you to put iPhone apps in and
get Android applications out (unless you use development tools that have this in mind from the
beginning). We will talk about cross-platform development tools later, but first we’ll explain what you
can do for both Android and iOS.

Although your iOS coding can’t be reused for Android coding, you don’t have to rewrite all your
Android code from scratch. For example, you can completely reuse the icons and images, as well
as any SQLite database code. Additionally, certain types of C code in an iPhone app (for example,
code for image processing or digital signal processing) may be directly utilized in Android using the
Android Native Development Kit (NDK). Although you might think that the user interface (UI) design
would be reusable, iOS and Android have different UI elements, and forcing an Android app to
behave like an iPhone app can be a time-consuming (and costly) endeavor. In some situations, you
may be able to reuse use cases that were written for iOS apps, but you should consider the impact
that the Android UI has on your use cases. Also, the Android ecosystem tends to favor free apps
with advertising or in-app purchasing more than iOS does. In other words, a change to the overall
business plan might be in order when porting to Android.

It usually takes nearly the same amount of effort to port an iOS app to Android as it does to create
it. It really depends on how big the application is, as well as the complexity of the code, reliance on
GUI tools, and ability of the developer.

By the way, there are people who make it their business to program apps, and that could lighten
your workload. Since your app already exists in one form, it’s easy to outsource application porting;
the developer can always use the original app as a reference.

If you have written your iOS app in ANSI C or C++, perhaps using one of the many gaming engines
that are designed for that purpose, then your task may be simplified. Android has the NDK, which
allows for ANSI C or C++ code to be called from the Android Java code and vice versa.

Examples of Cross-Platform Development Tools
Chances are you want your application to be downloaded as much as possible, which means you
probably want it to be on as many devices as possible. If you want to have your application on both
iOS and Android as well as other mobile platforms, you may want to use one of the cross-platform
development kits.

www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1: The Android Market: A Background

Although we believe that the application market is headed toward a universal solution, we are not
quite there yet. This book focuses on the Android Software Development Kit (Android SDK) for
constructing Android applications. For completeness, however, we will discuss a few cross-platform
development kits, just so you know there are alternatives.

LiveCode
LiveCode is the work of RunRev, a company that creates development tools. In the words of Ben
Beaumont, product manager for RunRev, LiveCode is “a multi-platform element environment that
[has] now been moved to the mobile space.” LiveCode was originally made for Mac, Windows,
and Linux, and it boasts “compile-free coding.” Compile-free coding means that when you make
a change to your program, you will see it as you are programming. This is different from the usual
method of editing, compiling, running, and debugging.

LiveCode also has a visual development environment in which the user can drag and drop the
objects and images that will make up the final interface. The user can then attach scripts to these
objects to really bring them to life as well as lend them speed. LiveCode uses a very high-level
language, which allows the user to write in code that is very close to English. This allows users
to write in this code easily, and the code will be easier to read. All this enables the creation of live
prototypes that actually run on the device, and promises to make it easy to quickly iterate and
improve your application, because you can immediately see the results of your work.

Appcelerator
Titanium has created a free and open source application development platform that allows the
user to create native mobile, tablet, and desktop application experiences. Its Appcelerator program
allows the user to build applications full of features, as if they were written in Objective-C or Java.
The end results are native apps that are customizable with a lot of features, all built with the web
technology of JavaScript.

Appcelerator allows developers to concentrate on building the application and provides a toolset for
many platforms.

appMobi XDK
The appMobi mobile app development XDK is made for web developers, and it claims that if you
can build an application for the web using HTML5, CSS3, and JavaScript, then you can build it as
an application on the iPhone, the iPad, and Android smartphones and pads. According to appMobi,
developers can develop robust, 100 percent native API–compliant mobile applications in hours using
preferred editors, and write once and deploy to all target platforms.

The XDK includes an onscreen emulator with simple, approachable tool palettes to simulate user
interaction with a testing device. It also allows you to send your application project over a local Wi-Fi
connection or upload it to the cloud to test it from anywhere.

Note  You will need Java 6 and Google Chrome 6.0 to run the appMobi mobile app development XDK.

www.it-ebooks.info

http://www.it-ebooks.info/

13CHAPTER 1: The Android Market: A Background

appMobi also offers a service known as MobiUs, which allows any app publisher to offer its app
from anywhere on the Web. This could mean the end of frustrating and complicated processes of
submission and approval to traditional app distributors (and also the end of developers needing to
share their profits with these distributors). It is also cloud-based, which means it is possible to create
iPhone apps on a Windows PC and Android applications on a Mac.

PhoneGap
According to its web site, PhoneGap allows users to build apps with web standards based on
HTML 5.0. PhoneGap users can also access native APIs to create applications for multiple
platforms, including iOS, Android, Windows, BlackBerry, webOS, and more. PhoneGap is currently
in version 1.0.0.

Summary
The Android application market has grown rapidly in the past few years. In the near future, it is
likely to eclipse the Apple App Store and become the largest source of revenue for app developers.
However, there are so many Android applications on the market that a developer really has to have
something very different and outstanding to achieve significant revenue. Beyond that, merely having
a great app isn’t enough. You have to make sure your app connects with the right users, and you
have to make sure your business case is sound.

Let’s see how to make your app stand out from the crowd and reach the right users with a
compelling business case.

www.it-ebooks.info

http://www.it-ebooks.info/

15

Chapter 2
Making Sure Your App
Will Succeed

We’re sure you have heard the old cliché about how “Rome wasn’t built in a day.” If you want to
build a successful application, it might take several days, months, or even years, depending on its
complexity. However, we’re also sure Rome was not built without some sort of plan in mind, and
if you want to build your app empire, you will need a business plan that takes into account the
obstacles along the way of app-building.

Your App and a Business Plan
A business plan is a document that states the goals for a business, why those goals are attainable,
and how those goals can be achieved. There is no one set template for a business plan. If you are
planning to raise venture capital, you will want to consider a more formal approach than we are
going to suggest. However, most app developers won’t need to raise capital. So we’re going to
stick to an informal sort of business plan to help you vet your idea.

Why should you have a business plan? Perhaps the better question is this: what will happen if you
don’t have a business plan?

We explained in Chapter 1 that the Android world is booming. There may be hundreds of millions of
Android users, but in a world with hundreds of thousands of apps, it’s hard for one app to stand out
from the crowd.

While Android makes it easy to develop and publish your app, the bad news is that it is unlikely to
have significant sales without a carefully thought out and executed plan. A business plan will give
you critical insights into whether your application can succeed in the current Android market.

Perhaps you doubt whether you are smart enough to create a business plan and don’t think you can
foresee the conditions that will affect your Android application until it is too late. Yes, it is impossible
to foresee every possible variable that could affect the success of your application, but that’s exactly
why you need a business plan!

www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 2: Making Sure Your App Will Succeed

The biggest benefit of writing a business plan is that the process forces you to think deeply about
what exactly you are trying to accomplish. You get out of the process only what you put into it,
so don’t just skim over the next few paragraphs; open a text editor and start taking notes about
how this specifically applies to your app.

Because you are probably not writing a business plan to submit to investors, we will focus on the
key factors that will help you see critical issues before you even start writing code. We’ll call this
condensed, simplified business plan a mini-business plan. Let’s break it down into seven parts:

1. Identify the problem that you are solving.

2. Analyze your competition.

3. Determine the target market.

4. Evaluate technical, execution, and market risks.

5. Think about monetization and pricing.

6. Estimate a schedule.

7. Test your market demand hypothesis.

Think of the business plan as the oven that bakes your app idea to completion. Don’t start coding
until you’re sure your idea isn’t half-baked! Entrepreneurs (and writers) inevitably find themselves
making an elevator pitch, which is a capsulized way of pitching an idea as quickly as the duration of
an elevator ride. Hopefully, you can get your audience interested by the time the door opens on their
floor. As you work on your business plan, ask yourself how you would “elevator pitch” your idea to
your customers. This is a good gut check for your business plan.

Identify the Problem That You Are Solving
Here is the first rule about a developing a decent application: a good app solves a problem.
The question you should ask yourself is this: what can my app bring to the world? Even the simplest,
easy-to-learn games can cure the user of boredom, and a few levels of Angry Birds have made bus
rides or waits in long lines go by a lot more quickly.

Is your app a vitamin or a pain-killer? Vitamins are “nice-to-have” solutions that one takes if
they remember, but no one will ever run to in desperation. Pain-killers are the “have-to-have”
applications—the ones that we buy a smartphone or tablet to use.

If you have an Android device, we suggest taking it out and scrolling through the applications that
you have. Chances are that most of your recently used apps are pain-killers. The vitamins are often
those apps that you downloaded on a whim, but hardly ever use.

Clearly, our advice is to write an application that is a pain-killer rather than a vitamin. While gaming
apps are often vitamins, there are exceptions. The entertainment market can be fickle, but some
forms of entertainment are more of a pain-killer than others. If you are like Mark, you might even be
addicted to gaming apps. You can benefit from considering what problem your game might solve.
For example, will your game still be fun if played in short sessions? If so, it solves the problem of
short periods of boredom. Some games take a while to learn, and they might require a few hours
before a user truly enjoys them. You wouldn’t want to advertise a game like that on a local bus line.

www.it-ebooks.info

http://www.it-ebooks.info/

17CHAPTER 2: Making Sure Your App Will Succeed

Analyze Your Competition
Every idea, no matter how original, must compete with other ideas for mindshare. It is good to know
who your competition is before you set your app free in the world. If you can't figure out who your
competition is, you're flying blind.

Imagine if you built some sort of transporter that worked just like the ones in Star Trek. You might
think this idea is so original and important that it would dominate the market, making a competitive
analysis unnecessary. But what if it costs $10,000 per use? Even if the transporter can safely and
instantly get people to their destination, most people would still pick their favorite airline (or their
cars) for their domestic travel. But a competitive analysis would reveal that long-distance first class
business travel costs about the same, so that might be the best market to target.

Similarly, no one will want to use an application if there is already one on the market that does the
same thing (and, in some cases, does it better) at a lower price (or for free). In the world of apps, this
problem is even more acute than in other competitive environments. Popular apps appear higher up
in the Google Play listings, so existing favorites tend to become entrenched. You have to ask why
someone would use your application instead of a similar and competing application. Unless your
application is better, you will not displace the long-time favorites. In order to succeed, you have to
do what your competition is doing significantly better. Otherwise, you might want your application
to do something else.

There are many ways to learn about your competition, but at the very least you should be searching
the app stores for apps in your category. Read the reviews, try them out, and ask your friends to
give you feedback. You could even conduct a survey. You should also think more broadly about your
competition. Is there PC software that does something similar? What about an electronic gadget?
Your first goal is to get a sense of what is out there.

After you have collected some raw data, the best way to analyze your competition is to make a chart
called a competitor array. This chart should rank your business along with your competitors using a
number of factors. The factors are specific to your industry, but you can find a simplified example of
a competitor array in Table 2-1. Two turn-by-turn navigation apps are being compared on four factors.
Notice that the factors are weighted. It is up to you to decide which factors are most important,
thereby deriving the appropriate weighting. Once you compile this information, it can inform your
decision making regarding changes you will need to make before your app is competitive.

Table 2-1.  Using a Competitor Array to Rank Two Mobile Navigation Apps

CompetitiveFactor Analysis Weighting My App Rating My App Weighted Competitor B
Rating

Competitor B
Weighted

1 – Accuracy of Directions .4 6 2.4 3 1.2

2 – Latency of
Turn-By-Turn Navigation

.3 4 1.2 5 1.5

3 – Cost .2 3 .6 3 .6

4 – Server Latency .1 7 .7 4 .4

Totals 1.0 20 4.9 15 3.7

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 2: Making Sure Your App Will Succeed

Determine the Target Market
You might be concerned that your app will never stack up against the competition. Don’t worry!
We’re not saying that you have to create a new application category to succeed. Ideally, you will
find a target market that isn’t being adequately served by your competitors. By targeting that
market exclusively, you can appeal to customers who are being ignored by your competition.

If your analysis ends up being wrong, and the target market isn’t working out, don’t despair! Often,
with minor changes, you can focus your existing app on a new part of the market your competitors
aren’t concentrating on. Either way, by targeting a specific niche, your app will show up earlier in
searches specific to that submarket. You can then market your app as designed for that particular
submarket. In the previous example, suppose that the other mobile navigation apps had limited
capability to be used by bicyclists. Perhaps you could add features targeting the specific issues
faced by bicyclists. That would make your app the ideal solution, even if other turn-by-turn
navigation apps had much better performance for car drivers.

Let’s talk about how to determine your target market. You will discover that very few things have
universal appeal. Think about the films that you love, and you can probably find a person or group
of people who hate them. If you are smart, you will discover what kind of person will like your
application even before it is created.

Ideally, you want your product to be used by everyone, but this rarely happens in the real world.
It usually turns out that there is some particular market segment or culture that makes heavy use of
a product. Advertisers realize that and often cater their commercials or other forms of advertising to
this crowd. Think about all the ads you have seen, from the Super Bowl million-dollar ads to local
low-budget ads: they are always targeted to a specific crowd. If you can figure out what type of person
will be more likely to use your application, you have taken the first step of finding your target audience.

In other words, there is probably a specific type of crowd, whether scrapbookers, stamp collectors,
sports nuts, or any other type of enthusiast who would probably consume your Android application
more eagerly than the average consumer. This could be the most important question to consider
when deciding how to market your Android application.

As mentioned before, the Google Play marketplace has hundreds of thousands of Android
applications, so it takes a lot to make one in particular stand out. Think about how much time and
money it will take to reach your audience. If it takes more money to reach them than you expect
to make, you have a problem. We will explain exactly how to reach your audience in Chapter 9.

In short, you should determine to whom you are selling. Put yourself in the customers’ shoes, and
imagine what they’re looking for. Does narrowing your target group make it easier to reach them?
Does narrowing your target group make it easier to focus on their needs? Narrowing your market
isn’t a bad thing; it has many marketing advantages, and becoming a niche product is also a great
way to stand out from the competition.

In fact, most professional venture capitalists become worried when they hear that a company is
pursuing more than one market. It’s just too hard to focus on more than one type of customer when
you’re first starting out. If you have identified more than one target audience, you should strongly
consider just picking the best one of the bunch and focusing your initial efforts there.

Of course, you might worry that your target market is too small, but be sure you are thinking about
market size correctly. Say you are working on an app that lets people tune their kazoos. You would
probably assume that the number of kazoo-playing Android users is fairly small. But that’s actually

www.it-ebooks.info

http://www.it-ebooks.info/

19CHAPTER 2: Making Sure Your App Will Succeed

an incorrect approach when thinking about the market. The question isn’t how many kazoo-toting
Android users there are; the question is how many you can reach and how much they would be willing
to pay for a kazoo-tuning app. Imagine, for example, that there is a thriving kazoo special interest
forum that nearly every kazoo player frequents and it publicly laments the lack of kazoo-tuning apps.
In that scenario, you might actually have a very good market because it’s easy to reach. Nearly every
kazoo user would learn about your app if you posted there.

On the other hand, you might have a great app for people with cars, but have no way to let most of
them know about it. Considering that more than 95 percent of all American households own a car,
it would seem that your target market is large enough. But that high potential audience does not
necessarily mean a huge number of users. Do not ignore the difficulty of letting potential users know
about your app. Creating an app with a really clever feature is often enough to capture the interest
of journalists, and that allows you to reach users for free. We’ll talk more about that in Chapter 9.

Let’s talk about some factors you can consider when imagining what your target market might look
like. Naturally, you could start by thinking about basic demographics, which might include things
like age, location, gender, income level, education level, marital status, occupation, and ethnic
background. These factors can create an impression of a specific customer in your mind, but it’s
going to be very fuzzy.

Try to imagine your target customers in even greater detail. Think about personal characteristics
such as their personality, attitudes, values, interests, hobbies, lifestyle, and general behavior. Keep
thinking about this until you can imagine an archetypal customer. Is there an acquaintance you know
or a TV character that fits this description? Keep that image in mind.

Now imagine how your app will be used by your archetypal customers. How and when do you
imagine they would use your app? What aspect of your application would they consider to be the
most important? How will you reach out to them? Do they read newspapers or are they Facebook
users? Are they members of some sort of organization you could contact?

Now that you’ve narrowed your vision of your customer, make sure that your market is large enough.
Remember, sometimes it’s less about the absolute size of the market, and more about your ability
to reach them. But certainly there has to be enough people in the world to fit your description so that
you can reach your revenue goals. Of course, you need to be sure that your archetypal customer
can afford your app! And finally, you need to be able to reach them via some marketing technique.

Evaluate Technical, Execution, and Market Risks
Any time you want to do something, there is a risk. With every risk, there is a chance of failure, which
is a word we hate to hear, especially when our name is associated with it. We’ll let you in on a little
secret: fail fast. Evaluating risks ahead of time is a great way to determine where you might fail.
You can then decide whether the risks can be managed; if not, you can cut your losses early.

There are three reasons why you might fail:

Technical risk	

Execution risk	

Market risk	

We’ll examine each of these risks in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 2: Making Sure Your App Will Succeed

Technical Risk
Technical risk is the simple question of whether something can be done using the technology and
tools that Android provides. Hopefully, the technology is capable of doing what you want it to do,
but some apps push the limits. If you are writing a very computationally expensive app (one that
really hogs the processor), you should pay careful attention to this risk. Slower Android phones
might not even be able to run your app, and even the fastest phones will experience significant
battery drain if your app runs continuously. You might find similar technical risks when streaming
large amounts of data over the network. You should ask yourself whether slower network connections
will be able to handle your application. Other areas of technical risk include microphone sensitivity,
speaker loudness, and insufficient screen real estate or resolution. On a more general level, some
algorithms simply can’t be made to work in all cases. For example, very large vocabulary speech
recognition systems often run into problems. Visual object recognition apps might get confused
with certain objects. These sorts of issues need to be ironed out early in the development process
to avoid lots of wasted time and money.

If you have identified areas of technical risk, you should make sure to get a handle on these areas
before writing the full-fledged app. A simple prototype or even crude hacked-up software can often
give you a much better sense of whether the idea will work. Always strive to eliminate risk in your
business plan!

Execution Risk
Execution risk is a simple matter of whether you can accomplish what you set out to do. For
example, maybe your app calls for very complicated algorithms, but you are a novice programmer.
Maybe your app won’t succeed without high-quality graphics, but you’re not an experienced
graphic designer. Your app might be technically feasible, but you might lack the ability to implement
it without huge schedule delays. If you are a novice programmer, you should really get an expert
to weigh in on your plans. If you don’t have ready access to an expert, Roy, one of the authors, is
always happy to hear from fellow entrepreneurs. Even if he can’t help you himself, he might know
someone who can. You can contact him through his web site (www.sandbergsound.com). Remember,
often the things that seem easy only look that way because we know so little about the details.

Market Risk
Market risk is essentially figuring out whether the market will use your app in the volumes you
need to succeed. A very common problem faced by app developers is not being able to afford the
cost of advertising. If you’re selling your app for $1.00, but it costs $1.05 in advertising to make a
customer, you’ve got a problem. Although the cost of advertising varies depending on the medium
you use (Google, Facebook, magazines, TV, radio, and so on), you can make a back-of-the-envelope
calculation by assuming it will cost a few cents (nominally $0.05) to reach a reader via print media.
You can roughly estimate the same cost to direct a click to your web site. How many views or clicks
will result in a sale? Well, that’s impossible to say in advance, but if you have to guess, you shouldn’t
guess more than about 1 percent.

Fortunately, you don’t have to guess. Offer your product for sale on your web site and record the
number of unique visitors who express a willingness to pay (they hit the Buy button). You don’t need
to have your product ready to do this; just record the would-be buyers’ contact info and tell them

www.it-ebooks.info

http://www.sandbergsound.com/
http://www.it-ebooks.info/

21CHAPTER 2: Making Sure Your App Will Succeed

you’ll let them know when the product is ready. We’ll get into other ways of acquiring users besides
advertising in Chapter 9, but you should ensure that you have a strategy for reaching your audience.

What you shouldn’t do is think this way: “if I build it, they will come.” That might work for baseball
fields, but it definitely doesn’t work for apps. Placing your app in the Google Play store might result
in some people installing it, but you won’t get enough users for even modest success without
resorting to additional measures. One way to approach this problem is to think about the interests
of your users and how to use those interests to reach out to them. Is there an online forum in which
they congregate? Do they read certain magazines? Can you reach them using a viral technique
(friends of friends)? In short, if you can’t figure out how to reach out to your customers, you won’t
have a whole lot of them.

Think About Monetization and Pricing
A critical step in any business is pricing your offering. Customers always want to get something for
nothing, and there are many applications on Android that you can get for free. As a developer, you
can still make money with free apps by hosting ads. Or you can charge for your app. In fact, there
are a number of options available. It’s time for you to consider those options and evaluate which
choice makes the most sense for your app.

Paid Apps
You can just sell your application outright, and your application has a clear price tag. Remember
that most marketplaces take 30 percent of your listed price as their commission. You will have
to convince customers to shell out their money on the strength of your product’s description and
reviews, which is a difficult thing to accomplish without marketing. You can forget whatever dream
you have about putting your application on Google Play and sitting back and watching as your
profits rise. On the bright side, you don’t really have to update your app very frequently because
after users buy it, you don’t need to keep their interest; there is no additional money to be made
from them. Of course, you do want your users to give you a good review, so it pays (and it’s in
your best interest) to ensure that your application runs at a high level of quality without any bugs.

The difficulty is constantly exposing new users to your app. Although you’ll definitely get some
users who find the app when they search for the right keywords, in general you’ll need to find
ongoing sources of publicity in order to continue generating real revenue. For lower-cost apps,
advertising might not work unless your cost to acquire a new user is very low. If your app is very
specialized and can support a high price (say $10 or more), you can expect some success through
traditional advertising channels.

Free Apps
There might be no such thing as a free lunch, but there is such a thing as a free app. Most of us
don’t give away something for free unless we get something in return, however. So even if the users
might not be paying for the privilege of running your application, it is possible to make money on
it with advertisements.

You need to find a service that will pay you to put ads in your application. Usually you get paid each
time a user clicks an ad. We will discuss this more in Chapter 6.

www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2: Making Sure Your App Will Succeed

In contrast with paid applications, you are likely to get many more downloads of free applications,
easily ten times as many or more. Unfortunately, you will typically make less money from each user,
at least in the short term. An ad-serving company (such as Google AdMob) will serve a new ad
periodically, perhaps every minute, although this is adjustable by the developer. Because any ad might
be the one that interests the user of your app, the more ads your application serves, the more likely
you are to get a click. What this means is that applications that the user will interact with for a long
time are well-suited to the free, advertisement-backed model. In contrast, if your app solves a very
important problem, but is only used once or rarely, you are probably better off making it a paid app.

Freemium Apps
A freemium app is a light version of your application that encourages users to pay for an upgrade. The
free version can even run ads. If you use this model, it should be clear to the user at what point he or
she will need to pay for the upgrade. Don’t disguise your app as being free and later surprise your user.

Of course, this can get complicated because you have to have two versions of the same application,
which means two applications need to be submitted to Google Play.

It can be difficult to determine where the cut-off point is between the free version and the paid
version. Angry Birds made its money because the free version had a few levels, but they were
enough to leave players begging for more. This is ideal; you switch from free to paid when the users
are hooked. That’s when they are more willing to part with their money.

Beyond that, simply building users’ trust with your free app makes them more likely to feel
comfortable enough with you to upgrade to the paid version. The key is that the paid version should
deliver a feature that users really want after they start using the app. You can often artificially limit
some capability in the free version, so it’s useful, but not quite enough for power users.

Services
This technique gets the users to pay for a particular service when they download your app. You, the
developer, may not even be the person providing the service, but you might make a certain amount
from the service provider for each time you connect a customer.

There might be a subscription involved, such as several applications on the Kindle Fire. The Kindle
Fire has a place for magazine subscriptions, but some periodicals, books, and even shows choose
to be an app that one subscribes to get the latest “issue.”

As this example illustrates, this monetization technique works best when the app is being used as a
vehicle to deliver some underlying capability, such as frequently updated content. Because app users
are very price-conscious, you need to convince them they’re getting more than a mere app. Few
users would agree to pay an ongoing monthly fee for an app that doesn’t provide real-world value.

In-app Purchasing
In-app purchasing involves getting a user to pay for certain features within the application. This is
big in games, where characters pay for larger guns, or even something seemingly superficial such as
different costumes. Another example is a translation app that is free, but forces you to pay for certain
language modules.

www.it-ebooks.info

http://www.it-ebooks.info/

23CHAPTER 2: Making Sure Your App Will Succeed

In effect, this monetization strategy is very similar to the freemium model in that the user gets the
app for free and is then convinced to pay for more features. The advantage of in-app purchases is
that a user could conceivably make multiple purchases over time; so for apps that get repeated use,
this could result in a continuous revenue stream from purchases.

Other Models of Moneymaking
Some of the best business models involve creative monetization strategies. If you think about it,
some mobile applications are just a means to implement a business transaction. eBay, for example,
offers a free application that is helpful for checking on the status of auctions. Anyone who has an
auction on eBay is paying eBay a small percentage; that’s the heart of its business plan. The eBay
application is helpful for on-the-go auctioning; it pays for itself by enabling more users to buy and
sell items more easily, which means more auction purchases occur.

Flywheel, Lyft, and Uber make money by giving users a way to hail transportation (taxis, shared
rides, or town cars) from their Android phones. The users don’t pay to download it, there are no ads,
and there are no services to pay for. So how do they make money? They charge the drivers for each
fare they pick up! Often, if you can insert your app between a buyer and a seller, you can charge
sellers a small fee, and they’ll gladly pay it because you’ve brought them a customer.

Although marketplace in-app purchasing libraries don’t support the sale of physical goods
(see Chapter 7), you can certainly link to physical goods from within your app. Whether this is via
an affiliate program (see Chapter 6) or just by a link to a product on your web site, you can certainly
leverage your app as a way to promote the sale of physical goods.

Estimate a Schedule
As we explained in Chapter 1, the Android open–source development tools are completely free.
But as the proverb says, time is money. Sure, you could spend a lot of time making the perfect app,
but who will pay you to do it? Also, if you do create this perfect app, what if someone else is doing
the same thing? Take the time to create a project schedule so you know how much time it will take;
it will give you a better idea of whether it’s worth your effort to get started.

You don’t have to use complicated charts or special software to make a schedule, although you
can if you want. The important point here is to take your idea and break it down into a series of
steps. Then take those steps and break them down further. When each step takes no more than
a day to implement, you have a decent schedule.

If you don’t know how long something will take, you have identified an execution risk (as discussed
previously). You should reach out to experts and see if you can get an estimate from them. They
should be able to break down the problem into a series of steps; if they can’t, they’re not the experts
they say they are. You can also have them estimate how long it would take to implement a solution
for you and how much it would cost. This can help you decide if you have a realistic grasp of the
complexities involved.

In many cases, you can write some pseudocode for your app and get a pretty decent idea of the
implementation complexity by breaking down each subroutine as far as you can and estimating
the lines of code per routine.

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2: Making Sure Your App Will Succeed

Bill Gates said, “Measuring software productivity by lines of code is like measuring progress on an
airplane by how much it weighs.” So it’s controversial to even bring it up, but some programmers like
to estimate that they can write 80 lines of quality code per day (fully tested, including unit tests). In
some cases, that might help you better estimate your schedule.

Your schedule shouldn’t be limited to just coding, though. You should also consider the time it will
take to develop content for a web site (discussed later in this chapter and also in Chapter 9). Time
spent on marketing and sales tasks should also be included. As you learn more about these topics,
you can revisit your schedule.

Even fairly complicated project schedules can be written down on paper or implemented with a word
processor or spreadsheet. However, if you are new to project management and want to manage your
schedule in a professional manner, you should consider using project management software. At a
minimum, project management software allows you to schedule your tasks so that the task duration
is automatically calculated, including days off. Complicated schedules with lots of moving parts
will benefit the most from this sort of software. Microsoft Project is practically the industry standard
software package for project management. Fortunately, you don’t need to invest in an expensive
Microsoft product to get started.

ProjectLibre is a free open-source alternative to Microsoft Project that runs on Windows,
Mac, and Linux. It offers many of the same features available in Microsoft Project and has user
groups all over the world where you can get help. You can learn more at its official web site:
http://www.projectlibre.org/

Testing Your Market Demand Hypothesis
There is really no way to test the success of an application without actually making, marketing,
and distributing the application. If only there were some way to put a fake app out there and see
how many people download it. Sadly, that is unethical, and you would receive terrible reviews and
possibly get kicked out of App Stores as well as the Android developer program.

Yes, it just isn’t worth that risk. However, you can do the next best thing by setting up a web site that
offers your app for sale. You’ll let visitors know your app isn’t ready yet, but only after you gauge
their reactions. If it turns out that there isn’t enough demand for your app, you’ve saved yourself a lot
of trouble, and you can just tell the folks who signed up that the project was canceled. Your web site
can be designed easily and at no cost with online tools. We discuss how to quickly set up your web
site later in this chapter.

Make sure that your web site includes a detailed description of your app, including (faked) screen
shots if at all possible. There are a number of online tools that provide a quick and free way to
prototype your user interface (UI), and your work doesn’t go to waste because you’ll use what you
made later. We will discuss these tools in the next section.

When writing the description and making the screen shots, you should be answering several
questions:

What assumptions have you made in the previous sections of your business 	
plan that you can test?

Can your description be narrowly focused on your target market?	

Can your screen shot suggest the monetization strategy?	

www.it-ebooks.info

http://www.projectlibre.org/
http://www.it-ebooks.info/

25CHAPTER 2: Making Sure Your App Will Succeed

Beyond having a detailed description with screen shots, it’s very important that you offer the
reader an option to download the app. This option should also list the price of the app if it isn’t free.
By simulating the actual market conditions that real users would experience, you screen out people
who are merely curious and focus on real prospects.

When users try to download the app, you should direct them to a signup page. This page tells them
that the app isn’t yet available, but they’ll be contacted as soon as it is. If you include a field to allow
them to leave comments, you have a great way to get feedback from potential users. This is easy to
do with the free web site building tools that we will discuss in the following section.

After your hypothesis-testing web site is ready, you need to get some eyeballs to it. This is where
your initial work defining your target audience first becomes useful. You figured out how to reach
your audience, right? So post something on one of the (many) forums where your potential users
hang out, and get a few of them to visit your page. You don’t need many, but you do want to keep
track of how many people out there read your post, how many of them clicked through to your web
site, and how many reached the signup page. This will give you an idea of how popular your app is
with the target audience.

If you have more than one target audience that you’re deciding on, repeating this process for each
audience is a great way to pick the winner based on hard data. After you get some percentages
figured out, you can determine how many users you will get when you scale up and reach out to
a bigger audience.

The feedback alone makes this process worth it. It is one thing to have an idea, but quite another
when real people are telling you what they think about your idea. Often, you’ll find that you
understand your target audience a lot better simply by reading a few comments they have sent
you. Use all this information to determine whether you have what it takes to succeed. Remember,
often the idea you start off with changes dramatically after you make contact with your intended
target audience. Whatever you do, be certain that you’re listening to your potential customers.
Their opinions are the ones that matter.

Tools for Prototyping Your Screen Shots
When testing your market demand hypothesis, it’s important that your screen shots look as realistic
as possible. Fortunately, there are many tools you can use to prototype screen shots. If you
determine that your app’s future is promising, the work you put into screen shots will be time well
spent. In some cases, these prototyping tools can generate usable Android XML code.

There are numerous prototyping tools available online. Here are just a few you can pick from:

Fluid UI (	 http://fluidui.com): Fluid UI lets you quickly mock up your app
without worrying about code. Figure 2-1 shows an example mockup for Android.

www.it-ebooks.info

http://fluidui.com/
http://www.it-ebooks.info/

26 CHAPTER 2: Making Sure Your App Will Succeed

	Android GUI Prototyping (http://www.artfulbits.com/products/free):
If you’re a Microsoft Visio user, you might want to consider using this stencil.
You will need Visio 2003 or higher.

	DroidDraw (http://www.droiddraw.org/): A web-based designer/editor/builder
for cell phone and tablet application programming on the Android platform.
Currently in beta, it even generates the XML file that corresponds to the UI
you’ve built. This is a big time-saver after you start writing code.

	Pencil (http://pencil.evolus.vn/en-US/Home.aspx): Designed by the Pencil
Project, it is a free and open-source tool that can be used for graphical user
interface (GUI) prototyping. Pencil includes a stencil for Android mockups.
It comes as an application program that is available for Windows, Macintosh,
and Linux. It is also available as a Firefox extension.

	Fireworks Template for Android (http://unitid.nl/2009/11/fireworks-
template-for-android/): If you are an Adobe Fireworks user, you should
consider this template, which has the Android user interface elements redrawn
as vector images.

	Android Wireframe Templates (http://gliderguns.files.wordpress.com/2010/
01/android_wireframe_templates3.pdf): If you’re just at the ideation stage and
want to play around with the overall idea, you can always use a

Figure 2-1. An example user interface mockup made using Fluid UI

www.it-ebooks.info

http://www.artfulbits.com/products/free
http://www.droiddraw.org/
http://pencil.evolus.vn/en-US/Home.aspx
http://unitid.nl/2009/11/fireworks-template-for-android/
http://unitid.nl/2009/11/fireworks-template-for-android/
http://gliderguns.files.wordpress.com/2010/01/android_wireframe_templates3.pdf
http://gliderguns.files.wordpress.com/2010/01/android_wireframe_templates3.pdf
http://www.it-ebooks.info/

27CHAPTER 2: Making Sure Your App Will Succeed

paper and pencil to get started. These wireframe templates help you produce
a more realistic layout. Actual Android phone illustrations are included for the
HTC Dream, HTC Hero, HTC Magic, HTC Tattoo, HTC Nexus One, and
Motorola Droid.

You may be considering creating an interface that is completely original. For example, you can go
really crazy and do something like a funky style of pop-up book; or something that is more than just
the usual bundle of buttons, pull-up menus, and finger swipes. You should be aware that the UI for
Android has a certain paradigm that, if violated, could break the user’s mental model and therefore
cause frustration. You need to have an excellent justification for violating standard design rules.
Proceed with caution.

Tools for Setting up a Web Site
To test your market demand hypothesis, you will need to set up a web site so that you have a place
to host your screen shots and app description. After all, you can’t place a fake app in a real app
marketplace!

Because entire books have been written about web site construction, we won’t go into great
detail about how to create a cool site. Just be sure that it looks professional. If your site looks too
amateurish, you won’t get a good read on the market demand. We’ve all visited sites that have
made a bad impression, and that impression affects our buying decisions. If you are new to web site
development, you may wish to use a service such as Weebly (see Figure 2-2) to set up your site.

Figure 2-2.  Weebly is one of many free tools that you can use to quickly set up a web site

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2: Making Sure Your App Will Succeed

Although your web site must look professional, it doesn’t have to be highly developed. A few pages,
possibly even one page, are all you need. Just make sure that your site matches the nature of your
application. Here is where you can choose to include your icon, logo, screen shots, and any other
stylistic aspects of your application. You might want to go to Google Play and select any application.
Under each application should be a link to the developer’s web site, so you can see what they
look like. For example, Figure 2-3 shows the web site for the Waze app. The web page conveys the
essence of the app. Waze is an extremely well known app, but you’ll notice that the landing page is
actually quite simple. It won’t take very long to mock up your app’s web site to the same level
of completion.

Figure 2-3.  The Waze web site

There are numerous tools you can use to quickly build a web site. For the purposes of creating a quick
site to test your business plan, we discuss only free online web-building software that hosts your page
for free. These tools allow you to design your web site for free and they don’t cost you a penny.
Also, we selected tools that don’t fill your web site with unprofessional-looking ads. Unfortunately,
they all include a small footer at the bottom of the page, but they’re not very distracting.

	Weebly (www.weebly.com): Roy has had good results with Weebly (shown in
Figure 2-2), which he has used to host his own web site. Weebly is very easy to
use and offers a large selection of templates to choose from.

t
www.it-ebooks.info

http://www.weebly.com/
http://www.it-ebooks.info/

29CHAPTER 2: Making Sure Your App Will Succeed

	SnapPages (www.snappages.com): This site builder is simple and hassle-free, and
includes a number of web site templates.

	Webnode (www.webnode.com): This one is free for personal web sites and has
hundreds of templates to choose from. You could always use a personal site to
host your market demand hypothesis, and its paid service starts at $4.95/month.

Your Baby Might Be Ugly
It always hurts when people are quick to criticize something that took so long for you to put
together. Like parents who have an ugly baby, developers often love their app in spite of a critical
world. It’s important to remember that even though you have given birth to a new idea, an app
isn’t a baby. A good entrepreneur can accept criticism. Sometimes, the facts just aren’t in your favor,
and your time is best spent looking for a new idea.

You’re the Boss
We hope that this chapter has given you the tools you need to decide whether your idea has what
it takes. The seven points listed earlier should drive you to ask tough questions about your Android
application, and we stated some rules about what does and doesn’t succeed in the world of Android
applications. These are good rules to consider, but don’t obsess over them; in reality, they’re only
guidelines. In other words, rules can be broken, but you break them at your own risk. We tried to
spell out what rules to follow, but this is your journey to make.

Summary
Now that you know what’s up, let’s go through a little checklist:

What problem are you solving?	

Is it a pain-killer or a vitamin?	

Who is your competition? What do you have that they don’t?	

Who is the target market?	

How will you reach out to the target market?	

How long will it take to develop this app? Can you break the tasks into 	
milestones?

What technical risks must you solve? How can you prove to yourself they can 	
be solved?

Do you have the time and money to make this happen? Should you have 	
a consultant evaluate your idea?

Is the market large enough to provide your needed revenue stream?	

Is the market small enough that you can target its needs accurately?	

www.it-ebooks.info

http://www.snappages.com/
http://www.webnode.com/
http://www.it-ebooks.info/

30 CHAPTER 2: Making Sure Your App Will Succeed

Is your target customer willing to pay?	

What Android version are you targeting?	

What pricing model are you using?	

Have you tested your market hypothesis?	

Do you want to stop answering questions and just break the rules? That’s up to 	
you, but proceed at your own risk.

www.it-ebooks.info

http://www.it-ebooks.info/

31

Chapter 3
Legal Issues: Better Safe
than Sorry

Roy has been involved in a number of legal actions, and he can tell you that they’re never fun.
A basic understanding of how the law impacts you as an app developer can keep you out of trouble.
We aren’t lawyers, and so we can’t legally give you any specific legal advice. That said, maybe we can
recommend some legal resources that you might find useful to avoid unnecessary unpleasantries.

Retaining an Attorney – Controlling Costs
You may be hesitant to involve an attorney because of the cost. Although attorneys are rarely
inexpensive, they often cost a lot less than the consequences leveled against you. If you have any
doubt about the legality of your app, or if you have any uncertainty about legal matters, you should
get in touch with a lawyer immediately. Big name firms are great at what they do, but they are also
very expensive. If you are working with limited means, you should consider going to a smaller law
firm or perhaps to a single attorney working on his or her own. Often their rates will be more
reasonable than at the big firms. Although they may not have the depth of expertise that a big
firm does, they generally will do just fine at providing basic legal services. Ideally, you can find an
attorney who has previously worked at a big firm and now has struck out on their own. They will
have the experience of working at a big firm, but will charge more reasonable rates.

Remember that it is possible to negotiate rates with attorneys. If you meet with more than one
firm, you will have more leverage to negotiate. For run-of-the-mill work (such as incorporating your
company or writing generic employment contracts), it is often possible to request a fixed fee. You
can then shop around between firms to make an apples-to-apples comparison of pricing.

Young lawyers, known as “junior associates” are generally only a few years out of law school and
usually require on-the-job training. Be careful that you aren’t paying to train an attorney. You can
request the law firm not to use junior associates on your account. Typically, you will either want to have
a partner at the firm do your work, or work with a senior associate. Only work with junior associates
who have already done the type of work you are looking to have done. A typical arrangement is for the

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 3: Legal Issues: Better Safe than Sorry

junior associate to do most of the work, which is then reviewed by a partner at the firm. Naturally, if a
junior associate isn't doing things correctly, you're paying for the partner to fix his errors. You should
be careful that you aren’t paying for lawyers to meet with each other. In general, the fewer lawyers you
involve, the more efficient the process will be.

If you are developing your app with a mindset to raise money from investors, you can sometimes
convince attorneys to provide consulting without upfront costs, in an arrangement known as
“deferred compensation.” This typically results in some number of billable hours that are not charged
until your company reaches a financing threshold agreed upon by you and the attorney. The attorney
may also negotiate for some equity in your venture. Once you reach the financing threshold (often
your first round of funding), you will be required to pay your outstanding balance. This sort of
deal is generally offered only by firms who specialize in helping startups. This field is known in the
industry as “Venture Capital Law.” Often venture capital law firms will waive compensation if your
company is unsuccessful in meeting its funding goals and is forced to dissolve. The specific terms
often depend on your ability to sell yourself and your idea to the attorney. Remember, this payment
structure is contingent on the idea that you are looking to raise enough money to more than cover
your legal expenses. A venture capital law firm may offer you $10,000 to as high as $25,000 or
more, in deferred consulting services. Remember, deferred doesn’t mean free; you should be careful
you aren’t being overcharged for services. Unscrupulous attorneys may charge you more for the
equivalent service because they know you will not be as attentive to costs with this billing structure.

The process of raising money from outside investors is a topic beyond the scope of this book, but
remember that if you pursue that option you will be diluting your ownership in the company and
using a lot of your time to fund-raise instead of building out your idea. If you believe the market is big
enough, it can be a good choice, but there are pros and cons to consider.

Remember that you want to be careful about what terms you accept when you engage a lawyer.
If you go to Best Law Firms, a web site from US News and World Report
(http://bestlawfirms.usnews.com/) you will see a search engine that will help you find a law firm in
your location for practice areas such as “Venture Capital Law” or “Corporate Law.”

Forming Your Company
If you release an Android application under your own name, the law considers the business to
be a sole proprietorship. You can certainly call your business whatever you want, but as a sole
proprietorship, you are personally liable for any debt, wrongdoing, and/or negligence. For example, if
you order supplies and can’t pay them back because revenue is less than you projected, then you are
personally liable for the debt. If your mapping app causes someone to drive off a cliff, they could, in
principle, sue you personally for injuries. On the other hand, when the app is owned by a corporation
(including LLCs, or limited liability corporations), liability generally attaches to the separate legal entity.
To explain this in a bit more detail, the formation of the legal entity separates the assets and liabilities
of the business from the assets and liabilities of the owner or owners. Therefore, it is often desirable
to form a corporate entity to shield yourself against lawsuits and debts attributable to the app you
have written. There are also some potential tax advantages to forming a corporation; you will be able
to write off certain business expenses, which could save you money in the long term.

Remember that you have to be careful to honor the separation of assets and liabilities, or the courts may
not shield you from personal liability. For example, if you use the company’s funds for personal matters,
that would clearly violate the idea that your personal assets and corporate assets are separate. It’s also
illegal and could result in charges of embezzlement from your creditors or shareholders.

www.it-ebooks.info

http://bestlawfirms.usnews.com/
http://www.it-ebooks.info/

33CHAPTER 3: Legal Issues: Better Safe than Sorry

There are different types of corporate entities you can pick from. C Corporations, S Corporations,
and Limited Liability Companies (LLCs) all have their own unique advantages and tax implications.
There are many books on this subject written by legal experts, and because we are not lawyers, we
refer you to them for more details.

EULA and Privacy Policies
A EULA is an “End-User License Agreement.” Most often, a EULA presents your users with fancy
legalese that they must agree to in order to access a web site or install a software package.

In essence, a EULA is a contract between you and your users. It establishes the terms and
conditions under which an end user may use your app. A EULA provides a way to protect yourself
from lawsuits in the event that the software causes damage to the user’s computer or data, or by
users who use your app in ways you never intended. For example, if your app is used to prepare
taxes, you could use a EULA to limit damages when users use your software incorrectly and are
subsequently penalized by the IRS. And by the way, if that’s your app idea, we urge you to talk to
a lawyer before going any further.

There are many complex legal issues governing the legal enforceability of EULAs, so if you feel your
app needs one, again we urge you to contact an attorney with experience drafting contracts of this
type. Many Android apps go without EULAs, and often it is the larger app companies (which can
afford lawyers) that include them. However, each situation is unique, and you should think deeply
about whether you are willing to go without the legal protections that a EULA affords you.

Examples of EULAs can often be found online. There are an infinite variety of EULAs, and it wouldn’t
be possible for us to recommend one to suit your particular needs. As always, we urge you to speak
with an attorney if you have questions regarding this topic.

If you elect to include a EULA, you will want a way to programmatically display it in your app.
Sample code to do just that can be found here:

http://blog.donnfelker.com/2011/02/17/android-a-simple-eula-for-your-android-apps/

A number of jurisdictions worldwide consider the right to privacy to be a legally protected concept.
In particular, Europe has highly developed laws in this area. Although the United States has no
federally mandated privacy policy requirements, both California and Connecticut require privacy
policies for web sites and online services. As a result, to ensure that your app is legal in all
jurisdictions in which it may be used, you should include and follow a privacy policy. In general, you
need to be up front with the users as to what data you collect, and properly secure any personal
information such as credit card numbers, driver’s license numbers, and so forth.

The Mobile Marketing Association (a global nonprofit trade association) provides a free Mobile
Application Privacy Policy that you can use. The policy is short at six pages, and all you need to do
is fill in the blanks regarding your app’s specifics. You can get the policy from the following link:

http://www.mmaglobal.com/node/18771?filename=MMA_Mobile_Application_Privacy_Policy_15Dec2011PC_
Update_FINAL.pdf

The Google Play Marketplace considers privacy of vital importance, so in addition to showing the
user what your app will access (location, contacts, etc.) it also provides an optional link to your
privacy policy. You can also host a web site that includes your privacy policy.

www.it-ebooks.info

http://blog.donnfelker.com/2011/02/17/android-a-simple-eula-for-your-android-apps/
http://www.mmaglobal.com/node/18771?filename=MMA_Mobile_Application_Privacy_Policy_15Dec2011PC_Update_FINAL.pdf
http://www.mmaglobal.com/node/18771?filename=MMA_Mobile_Application_Privacy_Policy_15Dec2011PC_Update_FINAL.pdf
http://www.it-ebooks.info/

34 CHAPTER 3: Legal Issues: Better Safe than Sorry

Although the privacy policy is currently optional, an agreement made by Google and five other major
tech sector companies with the California Attorney General makes it likely that they will become
mandatory sometime in the near future. It should go without saying that you must comply with the
stated terms of your privacy policy. If you don’t, you could be prosecuted under a number of laws,
including California’s Unfair Competition Law and/or False Advertising Law granting “the right of the
public to protection from fraud and deceit.”

Intellectual Property
You’re planning to make money by distributing something that’s really just a bunch of programs
and data sitting in memory. Fortunately, even though software isn’t a physical object, you can still
protect it from theft just like real property. On the flip side, you can also be accused of stealing
intellectual property. We think you’ll agree that a little background on the laws of intellectual property
is something every developer should have. Let’s focus on four different flavors of intellectual
property: copyrights, trademarks, trade secrets, and patents.

Copyrights
A copyright gives a creator of an original work (such as a book, photograph, or software) an
exclusive right to it for a limited time. Specifically, a copyright holder is granted the right to dictate
who can copy, distribute, publicly perform, modify, or create derivative works from their original
work of authorship. This means that as the creator of an app, you alone have the right to copy, sell,
or transmit the app for the duration of the copyright. Of course, you can assign that right to others
if you choose. In most jurisdictions, a copyright lasts at least 50 years after the author’s death. It’s
often longer than that.

For these reasons, you might be interested in obtaining a copyright. The good news is that it’s very
easy to get. In legal terms, the moment that you put your pen to the paper or type characters into
the computer, copyright protection is granted. Copyright can protect aspects such as source code,
graphics, sound effects, and other original creative works you put in your application, but it does not
protect any facts or ideas that are not used in a creative or artistic way. To protect an invention, you
should get a patent, as discussed in the “Patents” section later in this chapter.

Obtaining a copyright can give you a base level of protection that would come in handy when suing
an obvious imitator of your work The emphasis in that last sentence is obvious because copyright
protection can extend for cases when your competitor is stealing graphics or the application itself,
but not be applied when an imitator’s application is coincidentally the same basic idea as yours.

Registering your copyright isn’t required in order to benefit from copyright protection. However,
copyright registration is prima facie evidence of a valid copyright. Registration enables the copyright
holder to seek statutory damages and attorney’s fees if filed within 3 months of publication or before
there is an infringement. Otherwise, the owner can sue only for actual damages and profits.

Registration, which can be done online, requires that you upload the first 25 and last 25 pages of
your source code (preferably in PDF format). It is up to you to decide what the first and last pages
of your application are. Every new version of your application must be re-registered. You can also
register screen shots of your application. Detailed instructions can be found here:

http://www.copyright.gov/circs/circ61.pdf

www.it-ebooks.info

http://www.copyright.gov/circs/circ61.pdf
http://www.it-ebooks.info/

35CHAPTER 3: Legal Issues: Better Safe than Sorry

Although not required to enjoy copyright protections, including a copyright notice (whether in words
or with the copyright symbol) can help to overcome a presumption of “innocent infringement.” In
other words, if the copyright violator saw that your work was copyrighted, the act of copying it
couldn’t have been innocent.

The current filing fee is $65, but it is only $35 if filed online at http://www.copyright.gov/eco/.
You can find answers to a lot of your electronic filing questions at the tutorial available at
http://www.copyright.gov/eco/eco-tutorial.pdf.

Trademarks
Now let’s talk about trademarks. Trademarks are intended to keep others from confusing your
company’s products and services with someone else’s. A trademark does not protect the concept
or idea, but it will protect you from others operating under your name and logo, or its likeness.
In today’s market, protecting your brand is extremely important. Think about companies such
as McDonald’s, Microsoft, and, for the sake of argument, Google’s very own Android. No doubt
images of their logos come to mind: the golden arches, the Windows symbol, and that green robot
guy, respectively. Trademark law keeps competitors from using those logos in a way that could
confuse consumers.

Trademark rights are not granted automatically, unlike copyrights. However, you may be able to
pursue legal action for an unlicensed trademark under a common law principle called “passing
off.” The moment you use a name or symbol as an identifier for your Android application, you may
have access to protection under that law. However, the law requires that you establish that there is
“goodwill” owned by the trader, namely you. That will be difficult to do unless you have a bunch of
customers that know you by your mark. Within the United States, you might want to secure better
protection by filing a trademark registration with the U.S. Patent and Trademark Office, which is
needed to pursue a trademark action in federal court. Once your trademark is granted, you get
protection without having to prove that your mark is well known. Outside of the United States, you
will find that most countries offer similar trademark protections as dictated by the World Trade
Organization’s TRIPS (Trade Related Aspects of Intellectual Property Rights) agreement. It can be
expensive to pursue trademark protection on a worldwide basis, so you should think about where
you will most benefit from these protections and then limit your applications to those regions.

Among other issues, if someone else is already using the trademark you are planning to use, you
may not receive any protection, and may even be infringing on their trademark. The U.S. Patent
and Trademark Office maintains a database of registered trademarks. You can search this database
using the Trademark Electronic Search System (TESS) for free, but you should employ a trademark
attorney to help you interpret the results and register your trademark. You can access the trademark
process and search details here:

http://www.uspto.gov/trademarks/

Protecting Your Trade Secrets
When developing your intellectual property, there are some things that you probably wouldn’t divulge
to the average person. As a professional blogger, Mark doesn’t state his business contacts on his
individual blog posts, and there are strategies that he doesn’t share with everyone. These sorts of
things are protected by trade secret law.

www.it-ebooks.info

http://www.copyright.gov/eco/
http://www.copyright.gov/eco/eco-tutorial.pdf
http://www.uspto.gov/trademarks/
http://www.it-ebooks.info/

36 CHAPTER 3: Legal Issues: Better Safe than Sorry

In particular under U.S. law, “A trade secret, as defined under 18 U.S.C. § 1839(3) (A), (B) (1996), has
three parts: (1) information; (2) reasonable measures taken to protect the information; and (3) which
derives independent economic value from not being publicly known.” Trade secrets do not have
a limited lifetime like a copyright, trademark, or patent. However, a third party that discovers your
secret independently is not in violation of its provisions.

As you can see, if you expect to benefit from the protections of trade secret law, you have to
take reasonable measures to protect the information in question. For example, you will want to
password protect your critical data and shred any documents that contain sensitive information.
If you have people working for you or with you on your Android application, then they need to know
the importance of keeping all application-related information on private drives and servers, and it is
important to require them to sign a confidentiality contract such as non-disclosure agreement (NDA).

There are numerous sample NDAs available online. You can use them to get started, but as with all
legal matters, you should always consult an attorney to resolve any legal questions specific to your
situation.

Here are some samples you can look over:

http://www.hbs.edu/entrepreneurship/pdf/Sample_NDA.pdf

http://www.bitlaw.com/forms/nda.html

If your trade secrets are stolen, and you can prove to a court that you made reasonable efforts to
keep your trade secrets confidential, then you are potentially entitled to different legal remedies,
including injunctions and an award of damages.

Patents
Now that we have discussed the laws of copyright, patents, and trademarks, let’s get into patents.
A patent is a written public disclosure of an invention. In return for making a public disclosure
(which, in theory, enriches the world with new knowledge) an inventor is granted the right to
stop other people from making, using, selling, offering for sale, or importing the subject of the
invention for a period of time. Most Android developers are not likely to benefit from filing for their
own patents because obtaining one is an extremely costly venture. Suing another company for
infringement is even more costly; a patent lawsuit can easily run into seven figures. The average
patent can easily cost $10,000 or more over its lifetime. Furthermore, few Android apps will qualify
for a patent.

If you decide to pursue a patent, be aware that not any idea can qualify for one. Any “new and useful
process, machine, manufacture, or composition of matter, or any new and useful improvement
thereof” may be patented, but the subject of the invention must also be novel and non-obvious.
A patent examiner will determine whether your invention meets the requirement of being both novel
(new) and non-obvious by comparing your invention with existing inventions, known as prior art.
Obviously, if your idea has already been invented, you should not expect to receive a patent for it.
Additionally, any similar inventions that taken alone or together would render your invention obvious
also preclude patentability. A good patent attorney (or a bad patent examiner!) can make it easier for
your patent to pass muster.

www.it-ebooks.info

http://www.hbs.edu/entrepreneurship/pdf/Sample_NDA.pdf
http://www.bitlaw.com/forms/nda.html
http://www.it-ebooks.info/

37CHAPTER 3: Legal Issues: Better Safe than Sorry

You will want to search to see whether your app idea already exists (is there prior art?) before
proceeding with your app. If it exists, but is not patented, then you will not be able to get a patent.
If it exists and is patented, then you will be infringing on the patent owner’s rights if you attempt to
make the app yourself. As always, we recommend you contact an attorney; in this case, a patent
attorney. However, a simple Google search is a great way to search for prior art on your own.
Additionally, Google can search specifically for patents by using this link:

http://www.google.com/?tbm=pts

Let’s say you’re certain your app meets the requirements for novelty and non-obviousness. You’re
also certain it will earn you much more than the $10,000+ plus it will cost to file for a patent. One
way to hedge your bet is the provisional patent application. This is a legal process that allows you to
send a basic description of your invention to the patent office, and use that description to establish
a patent filing date for your invention. This process costs only $130 for a small entity, but changes
annually. You have a nonextendable 1-year deadline to file a regular patent application at the normal
fee. The advantage of the provisional patent is that it allows you to claim your invention for a low
cost, and then you have a year to decide if it’s worth your trouble to spend “real money” in order to
secure your patent rights. The provisional patent also gives you the right to use the “patent pending”
term that you see attached to many product ads. In case you are wondering what it means, it simply
states to competitors that there is a patent application in the works on your product and/or service.
You can file for a provisional patent application online through this web site:
https://efs.uspto.gov/efile/portal/efs-unregistered.

Licensing
It is tempting to leverage open-source software when writing your app. There are a great many free
software libraries that do all sorts of amazing things. Most of them, however, are licensed under
a variety of open-source licenses. Failure to comply with the terms of these licenses could leave
you open to legal action. As an example, the Creative Commons license expressly forbids any
commercial use. The General Public License (GPL) raises a number of legal ambiguities regarding
linking your non-GPL software with GPL libraries. Some people believe that although statically
linking with a GPL library is a violation of the license, dynamically linking is OK. In contrast, the LPGL
(Lesser General Public License) categorically allows linking with non-LGPL software. The following
were just a few examples of licensing terms. In short, you should research the license for a piece of
free software before using it.

Many patented inventions can also be licensed. In the world of software, examples of technologies
that require licenses include MPEG, MP3, and Dolby Digital. In many cases, the phone (or tablet)
manufacturer has already negotiated for these sorts of licenses, but if you find yourself using a
standard that isn’t already included with the Android SDK, you may want to double-check to avoid
any trouble. You can find a list of commonly licensed standards in this link:

http://www.musemagic.com/papers/licensinginfo.html

Also, if you discover someone else has patented the exact idea you’re looking to implement as an
app, then it might be worth it to contact them before giving up. Often inventors are interested in
licensing their ideas, and are hoping someone contacts them with that in mind.

www.it-ebooks.info

http://www.google.com/?tbm=pts
https://efs.uspto.gov/efile/portal/efs-unregistered
http://www.musemagic.com/papers/licensinginfo.html
http://www.it-ebooks.info/

38 CHAPTER 3: Legal Issues: Better Safe than Sorry

Summary
Although you might not want to worry about legal issues and just get down to the nuts and bolts of
writing, marketing, and selling software, it pays to invest a little time up front to avoid big problems in
the future. You may have noticed that some of the topics we discussed make more sense if your app
is backed by some outside funding. In particular, incorporating as a C Corp, finding a venture capital
law firm, and considering pursuing patents are often better suited to well-funded ventures. However,
even a modest venture should at least spend some time finding a local attorney who can help with
company formation. Even if you think it makes sense to go forward as a sole proprietorship, you
can often have a short discussion with an attorney for free just to make sure. Spending a bit of
time thinking about whether you app needs a EULA or privacy policy is also a good idea for even
a modest venture. Of course, if you think you might be infringing someone else’s intellectual property
rights, you have a big problem right from the get-go. In short, do a little homework at the beginning,
and you’ll be able to approach the rest of your business planning with confidence!

The following is a checklist of potential legal issues. Remember, we recommend you consult with an
attorney before making any business decisions.

Have you incorporated or otherwise mitigated risk of personal liability?	

Have you begun thinking about your EULA and/or privacy policy?	

Are you infringing anyone else’s copyrights, trademarks, or patents? If so, can 	
you get a license?

Are you following good privacy practices, including requiring your developers 	
and partners to sign NDAs, and devising a plan to secure all personal
information?

www.it-ebooks.info

http://www.it-ebooks.info/

39

Chapter 4
A Brief Introduction to Android
Development

By now, you have seen that there is a method to the madness of marketing Android apps. Chapter 2
discussed coming up with that million-dollar idea, and Chapter 3 covered some legal technicalities.
This chapter takes you through the first steps of actually creating an Android application.

If you are an experienced programmer, you might find the information in this chapter too basic,
so it might seem more of a review. If so, by all means scan it quickly and move on to subsequent
chapters that focus on marketing Android applications.

If you are a first-time developer, you should read this chapter very carefully to understand the
concepts involved. We wrote this book so that anyone can succeed in the current Android market,
so it helps to learn as much as possible before you write that first line of code for your application.

If you are just beginning to write an application for Android, you might discover a lot of technical
terms being thrown around, and it might be difficult to navigate this sea of abbreviations. Although
we can’t teach you to write Android applications in one chapter, we can give you a very high-level
overview that we hope will give you the guidance you need for learning more on your own.

First Steps as a Developer
If you are just starting out as an Android developer, you need the Android Developer Tools (ADT)
bundle. You also need the Java Development Kit (JDK) to use the ADT because the Eclipse
integrated development environment (IDE) is written in Java. If you do not have the JDK installed on
your computer, you should install it before you install the ADT. You can download the JDK from the
Oracle web site: http://www.oracle.com/technetwork/java/javase/downloads/index.html

After you install the standard Java JDK, you can install the Android ADT bundle from the Android
software development kit (SDK) web site. This bundle includes nearly everything you need to get
started with the SDK and the Eclipse IDE. It also includes other development tools, such as

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.it-ebooks.info/

40 CHAPTER 4: A Brief Introduction to Android Development

an emulator you can use to simulate an Android device for testing. The ADT also includes
documentation for the Android application programming interface (API), source code for the
Android platform, and samples demonstrating how to use a number of the API elements. With one
click, you can download everything you need: http://developer.android.com/sdk/index.html

The ADT bundle supports Windows (with 32-bit and 64-bit options), but other bundles also exist for
Ubuntu Linux (8.04 or later) and Mac OS X (10.5.8 or later). The correct bundle for your operating
system (OS) should appear as the default.

After you install the ADT bundle, we recommend that you surf over to Android’s online developer
resources. The best way to get information about Android is from the horse’s mouth:
http://developer.android.com/index.html

Take your time and look around. Everything you need to know about Android design, development,
and distribution is available on the site. If you get confused, head back to this chapter. Our goal is to
give you some basic orientation, but the materials available online are more extensive.

If you want information specific to Android applications, the following link is also very helpful:
http://developer.android.com/guide/components/fundamentals.html

After you install the Android ADT bundle, you can review a great introduction to app development:
http://developer.android.com/training/index.html

Integrated Development Environment (IDE)
Authors tend to write by using a word processor; developers tend to code with an IDE. An IDE is an
application, somewhat similar to a word processor, that enables you to see and modify source code.
Source code is typically color-coded in a way that highlights keywords and syntax. In addition, an
IDE checks the syntax (structure) of your code as you write and is integrated (hence the name) with
development tools such as compilers and debuggers. IDEs have lots of very useful capabilities that
make writing software easier and more enjoyable.

Eclipse is a well-known, open-source IDE that is mostly written in Java and built around the idea
of plug-ins. Eclipse has plug-ins for almost everything, including development, debugging, and
revision control in many different programming languages. Although not directly related to Android
development (just as knowing how to use a word processor isn’t directly related to writing), it is very
powerful and worth understanding. You can learn more here: http://help.eclipse.org

Android provides an Eclipse plug-in that is perfect for developing Android apps. The ADT plug-in
customizes your Eclipse workspace for use with Android. It includes a guided project setup, custom
editors for Android configuration files, debug output, and more. It does everything you need, right
down to creating a release package that gets uploaded to Google Play and other marketplaces.

Alternatively, you can use commercial IDEs such as JetBrains’ IntelliJ IDEA. IntelliJ comes in a free,
open-source community edition and a commercial Ultimate Edition. Some developers swear by the
Ultimate Edition, arguing that it has superior code indexing that results in better code completion,
refactoring, and navigation. IntelliJ also supports plug-ins; that makes it a good candidate for
Android development. You can learn more about using IntelliJ IDEA for Android Development here:
http://www.jetbrains.com/idea/features/android.html

www.it-ebooks.info

http://developer.android.com/sdk/index.html
http://developer.android.com/index.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/training/index.html
http://help.eclipse.org/
http://www.jetbrains.com/idea/features/android.html
http://www.it-ebooks.info/

41CHAPTER 4: A Brief Introduction to Android Development

Perks of the Android Operating System
As discussed in Chapter 1, Android is a Linux-based OS that relies on Java to simplify software
development. It makes heavy use of Extensible Markup Language (XML) to simplify coding tasks
even more.

Android is based on the Linux open-source OS kernel. Because Linux is written in the C and Assembly
programming languages, you can develop parts of your application using the OS’s “native” language.
The Android Native Development Kit (NDK) provides this capability to developers. Note that developing
apps natively in C or C++ is not usually necessary and should be avoided unless a particular
performance issue requires it. Among other issues, C/C++ development is specific to the underlying
hardware, so your app is not guaranteed to be portable if you use C/C++ elements.

The software libraries that link the software in your application to the underlying hardware are
collectively called application programming interfaces (APIs). Java APIs exist for interfacing with all
the device hardware. A typical smartphone has quite a bit of hardware that needs to be supported.
Of course, there are multitouch user interface capabilities such as swiping, tapping, and pinching.
Internal hardware devices and sensors such as accelerometers (used to detect phone motion and
rotation) are directly supported by the OS. Cameras, GPS, microphones, and virtually everything else
a modern phone offers are accessible through Java APIs.

As a mobile OS, Android is designed from the ground up to minimize power consumption. This is
reflected in the technique used to manage multiple applications. Applications not currently used are
suspended—they wait in the background until they are needed again. This means that only the current
application usually uses battery power. It also means that there is no reason to close apps. A user can
simply start using the new app, and the suspended app waits around until it is needed again.
If memory runs low, Android deletes the apps that are least likely to be missed by the user (the ones
that have been used least). This way of managing applications is very different from how things work
on a desktop OS. We go into more detail when we talk about the app life cycle later in this chapter.

In Android, new apps are typically installed through an online connection to the Google Play Store.
New apps can be searched and perused via the Google Play application. If users choose to install a
new app, they are informed about all the resources that the application needs access to. For example,
it might need access to the user’s phone book contacts or the phone’s location. A user is therefore
informed about the app’s impact before the app is downloaded. Although not foolproof, this process
provides some protection against malicious developers.

After an app is downloaded to the device, Android has a security model that further protects
users from malicious applications. Each application runs in its own sandbox, which means that an
application has limited access to system resources and is limited in its capability to harm the user,
either through an accidental bug or via an intentionally malicious hack.

In practice, the security sandbox is implemented through a number of measures. Android is Linux at its
heart, and Linux supports multiple users. Android extends this support to apps. Just as one user is
limited in his or her ability to access other users’ data, the same is true for apps in Android. In technical
terms, each app runs in its own process. For apps written in Java, each app also runs in its own
instance of the Dalvik virtual machine. We will explain more about Dalvik later in this chapter, but
for now, you should know that it keeps apps from interacting with each other without specifically
designed message passing. There are a number of other technical aspects to the security sandbox,
but the key is that Android implements the principle of least privilege: an application gets access
only to the system resources it requires—and no more.

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 4: A Brief Introduction to Android Development

Java the Language
Java is a logical choice for mobile app development. It is the second most popular computer
language in the world, according to langpop.com, which means that many developers already know
it, and a large infrastructure of software development resources already exists.

Android uses Java in the sense that code written for Android follows all Java syntax requirements.
Android’s version of Java is, however, significantly different from Oracle’s standard version of Java,
both in terms of how it is executed and its supported libraries. We discuss these differences in the
next section, but let’s first talk about factors that are common to all variants of Java.

Even if you do not know anything about Java, it is relatively easy for any programmer to pick up.
Its syntax is similar to C, C++, C#, and Objective C. If you know any of these languages and understand the
fundamentals of object-oriented programming (OOP), you start with a big advantage over other beginners.

Java is notable in that it executes within a virtual machine. Unlike traditionally compiled languages such as
C or C++, the same Java binary (consisting of Java bytecode) can run on any hardware platform, as long
as a Java virtual machine has been written for that platform. This makes Java code extremely portable.

Like many modern programming languages, Java is object-oriented. So as a developer, you are supposed
to write your software as a collection of interacting objects, each of which solves a particular problem.
The object-oriented paradigm encourages good coding practices and makes your software easily
reusable. As you might expect, Android APIs actively support and promote this style of development.

Unlike C, C++, and Objective C, Java automatically manages the computer’s memory for you in
the background (with only a small performance penalty), so you do not have to remember to delete
data structures that are no longer being used. In fact, Java does not require the programmer to
manipulate pointers, which are common in many lower-level languages. For any developer who has
struggled with pointers and memory leaks (including Roy), this is a welcome change that definitely
reduces development and debugging times.

Another great Java feature is reflection: a program can look at its own software objects and modify
them while it is running. It’s sort of like operating on yourself, but painful only in that it can make your
head spin. Reflection has many practical benefits to you as a developer. Many testing frameworks
(such as JUnit, discussed in a later section) use reflection to provide a higher level of intelligence
about the code being tested.

Another powerful example of the benefits of reflection is found in Eclipse. Using reflection, the
Eclipse environment understands the code you write as you write it. So it can, for example, point out
errors in your code in real time.

Java is full featured. An extensive set of APIs means that nearly every data structure or software
framework you could ever want is readily available. In many cases, non–Android Java software
packages can simply be dropped into your development environment as prepackaged builds known
as Java Archive (JAR) files.

Although we could devote an entire book to learning Java, we won’t because our publisher already
sells them. Some good starting points are available in these books:

	Learn Java for Android Development, by Jeff Friesen (Apress, 2013)

	Android Apps with Eclipse, by Onur Cinar (Apress, 2012)

	Android Recipes: A Problem-Solution Approach, by Dave Smith and Jeff Friesen
(Apress, 2012)

www.it-ebooks.info

http://langpop.com/
http://www.it-ebooks.info/

43CHAPTER 4: A Brief Introduction to Android Development

Many free online resources are available and just a few mouse clicks away, including
http://www.oracle.com/technetwork/java/index-jsp-135888.html and
http://mobile.tutsplus.com/tutorials/android/java-tutorial/.

Peculiarities of Java on Android
Android is known for using its own virtual machine, Dalvik. Traditionally, Java has used the
Java Virtual Machine (JVM), which executes .class files. Dalvik converts .class files into a Dalvik
Executable (DEX) file. Dalvik is optimized for low-memory requirements and differs from a
conventional JVM (such as the one supported by Oracle) in numerous ways. Fortunately, these
differences are largely invisible to developers because of the Android build tools that automatically
converts non–Android class files into a Dalvik-compatible executable.

Unfortunately, there are practical differences that those familiar with traditional Java will encounter.
Android uses its own graphical user interface (GUI) library. Java Standard Edition (SE) provides the
Swing GUI, the primary Java GUI widget toolkit that is completely unsupported on Android. Any
Swing code has to be completely rewritten. But the Android GUI does have practical benefits. By
relying heavily on XML definitions, Android simplifies GUI design and promotes more human-readable
interfaces.

Android makes heavy use of XML, which is simply a text format that is designed to be understood
by both humans and machines. As a developer, any time you convey standard information to the
OS in a text file, you use XML. Besides their use in GUI design, XML files can store text strings
used by your app. Although you can get by without storing text strings in XML the advantages are
worth the trouble.

A well-written Android app stores its strings in XML files located in the /res/values directory.
The XML format includes identifiers that let the OS know that string text data is contained in the file.
Any time you need access to a string in your application, you can refer to it in your code using the
identifier R.string.string_name. Not only does this improve the readability of your code but it also
allows Android utilities to automatically internationalize your application.

Before you release your app, Android utilities exist to automatically translate your /res/values/
strings.xml file. It will be automatically translated into different languages so that users around the
world can use your app in their native tongue. Granted, the translations won’t be perfect, so in
most cases you’ll need to have someone look over each translation and clean up any issues. Also,
you’ll need to copy the translated files into a series of directories for each language you plan to
support. For example, the French translation could live in a directory called values-fr. Still, not bad
for a little extra effort, huh? You can learn more about automatic translation here:
http://googledevelopers.blogspot.com/2012/03/localize-your-apps-and-content-more.html

We mentioned that the string XML files are stored in the /res/values directory. The res stands for
resources, a very powerful concept in Android. Android makes heavy use of resource files and tightly
integrates them with Java. You just saw how resource file strings can be accessed in your code.
Similarly, drawable resources such as icons and images can also be accessed programmatically
through Java. The XML files used for GUI layout are also resources. Finally, arbitrary files such as
sound samples can be accessed as resources.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/index-jsp-135888.html
http://mobile.tutsplus.com/tutorials/android/java-tutorial/
http://googledevelopers.blogspot.com/2012/03/localize-your-apps-and-content-more.html
http://www.it-ebooks.info/

44 CHAPTER 4: A Brief Introduction to Android Development

There are numerous other differences between the Android API and the one used by traditional Java.
Notably, the following packages, normally a part of the Java 2 Platform Standard Edition, are missing:

	java.applet

	java.awt

	java.beans

	java.lang.management

	java.rmi

	javax.accessibility

	javax.activity

	javax.imageio

	javax.management

	javax.naming

	javax.print

	javax.rmi

	javax.security.auth.kerberos

	javax.security.auth.spi

	javax.security.sasl

	javax.swing

	javax.transaction

	javax.xml (except javax.xml.parsers)

	org.ietf.*

	org.omg.*

	org.w3c.dom.* (subpackages)

Additionally, the following third-party packages are included:

	org.apache.commons.codec: Utilities for encoding and decoding

	org.apache.commons.httpclient: HTTP authentication, cookies, methods, and protocol

	org.bluez: Bluetooth support

	org.json: JavaScript Object Notation (JSON)

A detailed description of the entire Android API can be found on Google’s developer.android.com
web site: http://developer.android.com/reference/android/package-summary.html

www.it-ebooks.info

http://developer.android.com/
http://developer.android.com/reference/android/package-summary.html
http://www.it-ebooks.info/

45CHAPTER 4: A Brief Introduction to Android Development

The App Life Cycle
The single biggest difference you will encounter when coming from a traditional Java programming
background is the Android application life cycle. If you have a background in developing applications
for personal computers, the Android application life cycle will be a revelation.

Before Android can even download an application from Google Play, it gathers some information
about it. That information is stored in an XML file called AndroidManifest.xml. This file must be in
your application’s root directory. The manifest includes information about the package and name
of your application, its components, the permissions your application needs, the minimum-level
Android API that the application requires to run, and the software libraries your application needs
to access.

Google Play uses this information to determine whether it can even show an application to an end
user. For example, if your phone doesn’t support an app’s required minimum API level, you won’t
see the app if you search for it.

If you can download the app, the manifest also dictates how the app is run. An application consists
of four basic building blocks called application components. Possible components are Activities,
Services, Content Providers, and Broadcast Receivers.

Here’s a very brief summary of these building blocks:

An Activity is a piece of code that outputs a single screen. If your app has a 	
phone book and a configuration page, they are separate Activities.

A Service provides a background task to your application. For example, if your 	
application needs to listen for data even when your application isn’t active, you
need to use a Service.

A Content Provider allows your application to share its data with other 	
applications. It isn’t likely to be necessary for a basic app.

A Broadcast Receiver lets your application listen to announcements from the OS 	
or other applications. For example, if your application needs to know that the
screen has changed from portrait to landscape mode, you can use a Broadcast
Receiver.

The manifest includes references to all the application components for your application. Using the
manifest, the OS can also determine which application Activity component is the one it should run
when you launch the application.

Let’s assume that you started your app, and the OS has determined that an Activity called “phone
book” is the one that it should initially launch. Each Activity follows an activity life cycle that supports
Android’s power-saving, always-available application model.

Even the most bare-boned Android application conforms to an Activity life cycle that governs the
life of the application. Again, an Android application is not supposed to be designed to exit. The OS
decides when apps are forced into the background and when they are stopped.

Consequently, unlike traditional application development, your application does not have a “quit”
or “exit” option. Instead, you must write code that supports certain OS hooks. These hooks are
different for each application component, but the Activity component is the most commonly used
and perhaps the most complicated.

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 4: A Brief Introduction to Android Development

Here are the essential stages in the Activity life cycle, also illustrated in Figure 4-1.

Figure 4-1. The important state paths of an Activity1

1Figure 4-1 is reproduced from work created and shared by the Android Open Source Project
and used according to terms described in the Creative Commons 2.5 Attribution License.
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle

www.it-ebooks.info

http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
http://www.it-ebooks.info/

47CHAPTER 4: A Brief Introduction to Android Development

	onCreate: Called when an Activity is first created. The Activity might start and
stop after it is created, but this stage addresses an Activity that isn’t presently in
memory and must be initialized.

	onStart: Called immediately after onCreate and also immediately after onRestart
(see the onRestart bullet that follows). It is also called any time the application
becomes visible to the user.

	onResume: Called after onStart when the Activity is capable of accepting user
input.

	onStop: Called when the Activity is no longer visible because another Activity
has replaced it in the foreground. The OS might now choose to delete the
memory currently being used by the application to reclaim system memory.
If this occurs, the application must be rerun using onCreate if it is called again.

	onRestart: Called after onStop when the Activity resumes.

	onPause: Called when the present Activity is being replaced with another
Activity. This is where you save state information, but it must be done quickly to
avoid lag. Not only will you delay the upcoming application but if you wait too
long, you could also trigger an Application Not Responding (ANR) error. Store
your persistent data and move out of the way.

	onDestroy: Called when your Activity is complete. The OS might now choose to
delete your application to conserve memory.

As you can see, this process can be quite complicated and confusing for the uninitiated.
We recommend that you spend time studying the life cycle diagram and playing with example
applications to get some grounding in this essential concept. Fortunately, all you will need are one
or two Activity components for simple applications.

Notice that we have not discussed an actual “Application” component. That’s because it doesn’t
exist. There is, however, an Application class object, but it’s created automatically in the background.
You have to worry about the Application class only if you need to track global information across
multiple application components.

App Deployment
One of the main advantages of Android app development is the ease and flexibility with which
an application can be deployed. If you are ready to deploy to a marketplace, Chapter 8 tells you
everything you need to know.

But using marketplaces are only one way to distribute your applications. Particularly if your product
is still in beta, you might want to release it through e-mail or from a protected page on your web site.

An Android app is automatically bundled as an Android Application Package (APK) file by the
development environment. Android makes it absurdly easy to install APK files via e-mail. If you
simply attach an APK file to an e-mail, recipients will see an Install button on their e-mail when they
open it in Gmail with an Android-powered device. This trick works from the Gmail app (see Figure 4-2).
When you access Gmail through a browser, there is no Install button, although the app can be
downloaded and installed without any issues.

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 4: A Brief Introduction to Android Development

Note that the recipient of the e-mail is free to forward the e-mail (and hence your app) to others.
If your app is not intended for public disclosure, be sure to have recipients agree (in writing) to
refrain from distributing your APK. Refer back to Chapter 2 for information about non-disclosure
agreements.

An Android app is also incredibly easy to distribute from your web site. Simply include a link to an
APK file on your site. When users click the link from an Android-powered device, the device prompts
them to install the application. Of course, you could also place your app on DropBox, Google Drive,
or any other file-sharing services. The Android OS understands that APK files are apps that can be
installed and then acts accordingly.

Note, however, that Android protects users from malicious apps by preventing both e-mail and
web-based distribution from unknown sources. Before users can install your app, they need to enable
their devices to allow installation of apps from sources other than Google Play. This is simple; in the
Settings app, they click either Applications or Security, and then check the option to allow Unknown
Sources. Just be sure to explain this in the e-mail or on your web site. Naturally, it is safest if the user
disables the Unknown Sources option after they finish.

Figure 4-2.  An example of an APK file sent via Gmail

www.it-ebooks.info

http://www.it-ebooks.info/

49CHAPTER 4: A Brief Introduction to Android Development

This Is So Complicated! Is There an Easier Way?
Developing software is not a trivial exercise. Software developers earn a comfortable salary, and with
good reason. This stuff isn’t learned overnight. If you’re not a programmer and you don’t have the
time to learn, however, there are a few alternatives. These options don’t help for complicated apps,
but if your app is simple, it might get you up and running faster.

MIT App Inventor is a drag-and-drop Android app development tool. It really is supported by MIT,
and it’s free. You can learn more here: http://appinventor.mit.edu/

Appnotch is another drag-and-drop service that allows you to develop apps for Android (and iOS).
The basic version of Appnotch Lite is free, but it also has paid versions—Appnotch Elite, Pro, Team,
and Enterprise: http://www.appnotch.com/

Appery.io is yet another service that allows you to develop apps for Android (and iOS and Windows
Phone). The Starter version is free, but Appery.io also hosts Pro, Premium, and Enterprise versions:
http://appery.io

There are numerous other online app builders. If you go this route, we recommend that you spend
some time exploring online. This is a rapidly evolving area, and we can’t recommend one particular
solution as being the best.

Summary
If you want to learn to program with Android, here are some questions you should answer first:

Have you set up the Android ADT?	

Do you understand the basics of Java programming?	

Have you followed the online tutorial provided by Android?	

Do you know the Android application life cycle?	

Should you learn Android app development or are you better off either 	
outsourcing your work or using an app builder? If you’re looking for an Android
developer, Roy, one of the authors, is happy to lend a hand!

www.it-ebooks.info

http://appinventor.mit.edu/
http://www.appnotch.com/
http://appery.io/
http://www.it-ebooks.info/

51

Chapter 5
Develop Apps Like a Pro

Chapter 4 provided a brief introduction to Android development. In a similar vein, we want to give
you a brief overview of professional software development techniques. Whether you’re learning to
code or simply want to evaluate the skill set of a developer you are hiring, this chapter will give you
enough background to start asking the right questions.

We will cover software engineering methodologies, debugging, revision control, issue tracking, unit
testing, and system testing. If you are serious about software development, you should be familiar
with all these topics. If you are interviewing developers, you can be sure they are inexperienced if
they can’t speak authoritatively about these subjects.

Software Engineering
Software projects are notorious for running over budget and schedule. An academic field called
software engineering creates and investigates processes that can keep this from happening. Let’s
spend a moment discussing what processes are used.

In the traditional waterfall model of software development, there is a series of steps that are followed
one after the other, like a multitiered waterfall.

The first step is requirements analysis, in which the requirements for the project are collected. One
might detail the purpose of the software and try to define its interfaces without getting into coding
issues. A lot of the principles discussed in Chapter 2 that relate to your business plan can be
considered requirements analysis.

The second step is design, in which the interaction between software components is determined.
Modern software design makes frequent use of “design patterns,” which are established ways of
architecting code. For example, Android makes heavy use of the Model-View-Controller (MVC)
design pattern. If your Android user interface (UI) isn’t consistent with MVC principles, you’re
probably not writing clean code. When it comes to the UI, you can design mockups using the
software packages mentioned in the “User Interface” section of Chapter 2.

The third step is implementation, when the code is actually written. You need to understand the
techniques and concepts discussed in Chapter 4 to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 5: Develop Apps Like a Pro

The design must then be verified, which means tested. We will talk about how to do that later in this
chapter. Finally, in an ongoing process, the code must be maintained over its useful lifetime.

The waterfall model is often criticized for being too rigid to accurately reflect the process of
designing software. For example, it is typical for new features to be added after the design stage has
been finished. New requirements often arise only after the code has been partially tested.

Agile software development, a more modern method, attempts to solve some of these problems.
In Agile, software releases occur frequently, which introduces more checkpoints to test against
customer requirements and more opportunities to add new customer requirements. Agile
development focuses on creating a tight feedback loop between the customer and the developers
(see Figure 5-1). There are many flavors of Agile software development, including Scrum and
Extreme Programming (XP).

Figure 5-1.  A model for developing software
Source: http://en.wikipedia.org/wiki/File:Agile_Software_Development_methodology.svg

www.it-ebooks.info

http://en.wikipedia.org/wiki/File:Agile_Software_Development_methodology.svg
http://www.it-ebooks.info/

53CHAPTER 5: Develop Apps Like a Pro

There are many software engineering methodologies available, and we encourage you to read about
them. To get started, we recommend the following book: Being Agile: Your Roadmap to Successful
Adoption of Agile by Mario E. Moreira (Apress, 2013). At the time of writing, the book is in the alpha
stage and is part of the Apress Alpha Program (see http://www.apress.com/9781430258391).

Documenting Your Code
Another pro development tip, and definitely not an optional one, is to document your code.
Documentation is a critical step. Even if you’re the only programmer, you will forget what your code
does soon after you write it. Think about documentation as a way of writing notes to your future self.
If you have more than one developer, or you plan to have more than one developer in the future,
documentation is a must. Undocumented code is extremely difficult for a new programmer to learn.

Documenting code doesn’t have to be difficult. With a few choice comments right in the code and
some well-named variables, you’ll be on your way. If you’re new to Java, you should have a look
at the Javadoc tool. By following its format with your comments, you can autogenerate beautiful
HTML-formatted pages that fully document your code. Most Java API documentation is generated
using Javadoc. You can learn more about Javadoc at
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html.

Debugging Android Apps
When implementing and verifying code (refer to the waterfall model of software development in
the preceding “Software Engineering” section), developers inevitably encounter errors. Anyone
who has ever done any coding knows that more time is spent tracking bugs than actually writing
code. Simple syntax errors are one thing; they are usually easy to find using a modern integrated
development environment (IDE). The real challenges are the errors in which the code compiles just
fine, but a little insidious problem keeps rearing its head. You try everything to track it down, but
to no avail. If you want to develop your app like a pro, you should use the logging and debugging
capabilities of Android.

The Logger
The logging facilities of Android are implemented in the Log class, which is built into the operating
system. Using the logger is as simple as making a call like this:
 
Log.d(MY_APP, "Hello, world.");
 
If you’re new to logging, the idea is that writing debug information out to a console is a basic way
to debug the operation of your software. By reading the log messages your code outputs to the
console, you can figure out what is happening when your code executes. You simply add calls to
the logger wherever you want insight into what your code is doing. The Log object can be called
in a number of ways. The Log.d(...) method sends a DEBUG log, the Log.e(...) method sends
an ERROR log, the Log.i(...) method sends an information log, the Log.v(...) method sends a
VERBOSE log, and the Log.w(...) method sends a warning log message.

www.it-ebooks.info

http://www.apress.com/9781430258391
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.it-ebooks.info/

54 CHAPTER 5: Develop Apps Like a Pro

These logging types can be used to represent different kinds of information. They also are assigned
a priority. For example, ERROR logs are higher priority than DEBUG logs. You can think of the
priorities as watermarks, and you configure your software for the watermark you need. If you are
testing your software, you would probably want to see DEBUG logs as well as ERROR logs. But if
your software is being released to customers, you might want to avoid the performance hit logging
causes, and only log the ERROR messages.

Notice that the “Hello world” Log.d(...) example references MY_APP. MY_APP is a placeholder for
a String class that you create. This string should be declared as follows in your app:
 
private static final String MY_APP = "MyActivity";
 
You can use any string you want, and you can later search for that string in the log output. You can
even use multiple strings to represent different types of log data.

You can view log strings using the Dalvik Debug Monitor Server (DDMS) debugger that is built into
the Android ADT version of Eclipse. Simply go to the DDMS Perspective in Eclipse, and you should
see a LogCat window in which your Log message will appear. You can filter by text by creating a
filter for that window.

The Debugger
As you might have guessed, the DDMS debugger does more than just list log messages. A debugger
is used for exactly what it sounds like. A typical debugger enables you to step line by line through
your code. You can also run your program and have it stop at a breakpoint that you set, and you can
usually examine the state of internal variables. Finally, as we just explained, debuggers usually let
you output log messages at particular points in your code. The Java DDMS debugger offers even
more because of the reflection mechanisms inherent to the Java language.

The DDMS debugger IDE provides you with a list of currently running threads in your application and
the current heap usage. It also enables you to track the memory allocated to different objects and
allows you to explore the device’s file system.

To learn more about debugging, see

http://developer.android.com/tools/debugging/debugging-projects.html.

Revision Control
When you have a particularly devious bug, you might make lots of little changes to the code to test
out different hypotheses. Sometimes you end up making things worse, and you just wish you could
get the code looking like it did originally. In other cases, you want to be able to compare differences
between previous versions to see whether the differences could explain a bug that you’re seeing.
For these reasons, you should save each version of your program in a way that allows you to track
changes and also go back and start fresh. This process is called version control or revision control.

Junior developers often think revision control is useful only for large shared projects, in which lots
of developers are touching the same code base. But that overlooks the value revision control offers
during the debugging process. There are many software tools to help manage this process. Although
they all serve the same basic function, they can work in surprisingly different ways.

www.it-ebooks.info

http://developer.android.com/tools/debugging/debugging-projects.html
http://www.it-ebooks.info/

55CHAPTER 5: Develop Apps Like a Pro

One common feature is file locking. It comes into its own in large development environments, in
which it is useful to restrict access to a particular file to one developer at a time. If you are about
to modify some code that another developer is working on, however, you might be happy to be
reminded that the file is being used elsewhere when you try to change it.

An alternative revision control mechanism is merging. The merging mechanism enables multiple
developers to edit the same file at the same time. A developer who needs to modify a particular
file must first check out the file. This creates a local copy on her machine. When the developer has
finished changing the file, she must then check in her changes, which is also known as performing a
commit. The first developer to check in any changes updates the communal copy. When the second
developer is ready to check in his changes, he will need to merge his changes with the changes
already made in the shared copy. The revision control system automatically notices that the file was
changed by someone else because it was checked out, and prompts the user to perform a merge.
Revision control systems often provide semiautomatic merge capabilities for source code. When two
developers work on the same file they typically change different sections of the file, and so a merge
is usually a painless matter.

Most revision control systems will let you tag or label particular sets of files. This is related to the
concept of creating a branch, which is a common feature in revision control systems. For example,
if you’ve checked out a handful of Pac-Man files and made some changes to the Pac-Man source
code that turns it into Ms. Pac-Man, you could label your set of files with Ms-Pacman-Branch. Then,
if you ever wanted to recall that set of changes, you could. Otherwise, you’d have to remember each
individual file that you changed, and also remember each version number for each file. Instead, you
use a human-readable label.

Some revision control systems allow you to explicitly create a branch. The system creates a new set
of files based on the original set that you are branching from. Any changes to the new branch would
then affect only the newly created files.

Many revision control systems provide mechanisms to integrate with IDEs. For example, let’s
assume that you are planning to use Git, one of the best-known revision control systems. An entire
open-source file sharing community is at GitHub (https://github.com), which uses Git as its revision
control system. GitHub allows your repository to be shared on the Web, and it’s free if you are doing
open-source development. If you are using the Eclipse IDE environment that is part of the Android
ADT Bundle that was discussed in an earlier section, consider trying EGit. EGit is a version of Git
(based on JGit) designed to integrate into your Eclipse development environment. For an overview
of EGit, see http://www.eclipse.org/egit/. You can find a complete tutorial about using EGit,
including how to use it with GitHub, at http://wiki.eclipse.org/EGit/User_Guide.

Another popular revision control environment used for Android development is Subversion. You can
integrate Subversion into the Eclipse IDE by using the Subclipse plug-in. Subclipse not only tightly
integrates into the Eclipse IDE but it also integrates into your Windows shell (if you use Windows).
To learn more, see http://subclipse.tigris.org/ or http://eclipse.org/subversive/.

If it’s not obvious by now, a final benefit of revision control systems is that they provide a way to
make backup copies of your work. In many cases, you can automatically upload your files to a
remote server. If you’re good about checking in files, even a blown hard drive won’t result in more
than a few hours of lost time. In some cases, the actual storage can be hosted by a third party at no
cost to you, the developer. You should, of course, also make your own backups of your important
work, perhaps to a portable hard drive or over your own network. That way, you do not need to
depend on third parties to maintain the integrity of your data.

www.it-ebooks.info

https://github.com/
http://www.eclipse.org/egit/
http://wiki.eclipse.org/EGit/User_Guide
http://subclipse.tigris.org/
http://eclipse.org/subversive/
http://www.it-ebooks.info/

56 CHAPTER 5: Develop Apps Like a Pro

The following are some common choices for revision control systems. We recommend Subversion or
Git for Android developers, but you might already have a favorite:

	Git: This is an open–source version control system designed to handle large
projects that are distributed over multiple repositories. It has an impressive
pedigree because it was originally authored by Linus Torvalds of Linux fame. To
get started with Git, see http://git-scm.com/.

	Repo: This is a repository management tool built on top of Git. You might bump
into it if you are taking a look at the Android source code (available at
http://source.android.com). Repo is designed to unify Git repositories as
necessary and uploads to the Android revision control system to automate parts
of the Android development workflow.

	Mercurial: This is a distributed version control system, and it efficiently handles
projects of any size and offers extensions that provide an intuitive interface. You
can download it at http://mercurial.selenic.com/.

	Subversion: Also called SVN, Subversion is maintained by the Apache Software
Foundation, originators of the Apache web server, so you know it is top-tier
open source. There are literally dozens of Subversion clients. We recommend
you pick the client that integrates best with your IDE. You can find code and
details at http://subversion.apache.org/.

Entire books have been written on revision control systems, so if this is a new area to you, consider
buying one of them. A good place to start is Foundation Version Control for Web Developers by
Chris Kemper and Ian Oxley (Apress, 2012). You will also find excellent resources online for learning more.
If you’re interested in Git, one of the best is the Pro Git book, written by Scott Chacon and published by
Apress. It’s available for free online, under a Creative Commons license, at http://git-scm.com/book.

Finally, it’s worth noting that Bitbucket by Atlassian provides free hosting for your revision control
repository, as long as you need fewer than five users. Bitbucket supports either Git or Mercurial. For
more information, see https://bitbucket.org/.

Bug and Issue Tracking
Professionals track their bugs and feature requests. Without bug and issue tracking, it’s all but
certain that problems will be forgotten. In fact, sometimes an old unresolved bug manifests itself in
a new way. A record of past issues is a great way to do some forensic investigation of a supposedly
new bug. Instead of trying to remember what happened in the past, now you have an actual record
to consult. Typically, bugs and issues are enumerated in the bug or issue tracker. It is common
practice to use bug and issue tracking in concert with revision control by creating development
branches named after the bug number being fixed. In this way, developers tie their active work
directly to the issue or bug they are supposed to be working on.

Another benefit of tracking bugs is that it allows you to prioritize problems with ease. Some bugs
can be lived with, and others cannot. But you need to know the difference before you can release
your app to the public.

You absolutely must track your bugs and issues, or else you will lose track of what work needs to be
done. Of course, you could always use a text document or spreadsheet. If you want to develop like

www.it-ebooks.info

http://git-scm.com/
http://source.android.com
http://mercurial.selenic.com/
http://subversion.apache.org/
http://git-scm.com/book
https://bitbucket.org/
http://www.it-ebooks.info/

57CHAPTER 5: Develop Apps Like a Pro

a professional, however, you should consider one of the numerous programs specifically designed
for tracking your bugs and other open issues. Many are hosted online where, for a nominal sum, you
can avoid any installation headaches. The following list provides some examples:

	JIRA: JIRA by Atlassian is a popular issue tracker that integrates very nicely
within Eclipse. It costs $10/month (the money is donated to the Room to
Read charity) for small teams up to 10 users. If you do Agile development, its
Greenhopper companion product is $10 more.

	Bugzilla: A free, server-based bug tracking software designed to help users
manage software development. You can use your own computer as the server if
you need only a small-scale deployment. Bugzilla is used internally by numerous
high-profile, open-source projects, including Firefox, Apache, and Eclipse.

	Redmine: A free, open–source, flexible project management web application.

	Trac: A free, open–source bug tracker that also integrates tightly with popular
revision control systems, including Git, Subversion, Mercurial, and others. It
focuses on offering a minimalistic approach to software project management;
it tries to impose as little as possible on a team’s established development process.

	MantisBT: A free, popular web-based bug tracking system that is also open
source. Mantis also provides the MantisTouch client optimized for smartphones,
including Android!

	FogBugz: A commercial bug tracker, available both as an online hosted version
and as a self-managed client-server version (they can be the same computer).
It’s free for students and small (one-or-two-person) startups. If you don’t
mind paying for the commercial version when you’re more successful,
it might be worth a look. You can find code and details at
http://www.fogcreek.com/fogbugz/StudentAndStartup.html.

Finally, if you’re using Eclipse, Mylyn is a great tool worth a mention. Mylyn tracks all your
development tasks and integrates right into Eclipse. It works with many tools mentioned here,
including Bugzilla, Trac, Redmine, JIRA, and GitHub. Some developers swear by Mylyn, which
claims to dramatically increase developer productivity through its task-focused interface. Mylyn uses
automated context management to integrate your bug/issue tracking software into Eclipse in a way
that presents you only with information relevant to the task at hand.

Testing
New developers often think of testing as the process of manually putting their application through
its paces. Although manual testing can be useful as a first step, it is not sufficient by itself. A good
developer writes test cases before the creation of the application and then constructs even more
while the application is under development. This process is known as test-driven development. The
test cases can be written in a way that lets them run automatically. By the time your application is
complete, you have a library of test cases that you can run each time you have a new release. The
idea of developing a library of test cases that can automatically test your application is known as
regression testing. Often, a bug fix can be fragile, where subsequent changes can cause the bug to
recur. By writing a test case for each feature and bug fix, a developer can increase the likelihood that
a regression to a previous bug is caught.

www.it-ebooks.info

http://www.fogcreek.com/fogbugz/StudentAndStartup.html
http://www.it-ebooks.info/

58 CHAPTER 5: Develop Apps Like a Pro

Developers often talk about code coverage, which refers to the percentage of code that is “covered”
by a regression test. Ideally, you should aim to have a test case for each function, statement,
decision branch, Boolean expression, internal state, and common method parameter value. Full
code coverage represents a lot of work and often is not reached, but having a sense of how much
coverage your code has is a good way to estimate the effectiveness of your regression tests.

Modern software engineering takes the concept of regression testing even further with a
development process known as continuous integration. Although many developers might be
happy simply to run their test suite before they release their app, continuous integration involves
compiling and testing the complete application automatically one or more times a day. In a tight
coupling with a revision control system, the most current main branch of code is automatically
compiled and run against all test cases. If a newly committed piece of code causes the build to fail,
often the entire team receives an email alerting them to the fault. No one wants to be the developer
who was responsible for “breaking the build.”

For a simple application, this sort of capability might not be necessary. Simply having regression
testing at all will dramatically reduce your software defect rate. But if you expect your code
base to be quite large, and particularly if the work is split among multiple developers, you might
want to take a look at continuous integration. If you are interested in this sort of capability, you might
find it worth looking at Continuous Integration: Improving Software Quality and Reducing Risk, by
Paul M. Duvall, Steve Matyas, and Andrew Glover (Addison-Wesley, 2007); and Continuous Delivery:
Reliable Software Releases through Build, Test, and Deployment Automation, by Jez Humble and
David Farley (Addison-Wesley, 2010). Both are classics of software development.

If you want to implement continuous integration for your project, many Android developers
recommend Hudson or a splinter project called Jenkins. See the following links for the details:
http://hudson-ci.org/ and http://jenkins-ci.org/. But let’s focus on the first step, which is the
process of writing good test cases.

Android Is Designed for Testing
As we have mentioned before, there are many benefits of programming for the Android OS. One very
important one is that it is easy to write good test cases.

One of the classic difficulties that developers face is testing the UI, which can change in ways that
don’t affect the logic of the application. For example, an icon can move or change size from one
revision to the next. Screen sizes and aspect ratios can change. These sorts of changes are very
difficult to test reliably. If your test looks for a particular type of icon in a certain spot, it will break if
the icon changes at all. You’d have to rewrite your test case every time you changed the slightest
detail regarding your program’s appearance.

Fortunately, the XML layout used by Android for UI development makes it easy to abstract away the
UI from the logic of your code. Android can easily support the well-known software development
pattern known as MVC, as shown in Figure 5-2. Your model represents the state of your system
on the inside, and the view represents what the end user sees. This is your UI, and it is commonly
written in XML during Android development. The controller manipulates the model to alter its state
when needed. The model updates the view to change the way it looks. The user sees the results of
the view and interacts with the controller. This functional division allows tests to be written for the
controller or the model without requiring any knowledge of the view. Tests are more robust because
changing the view (how things are rendered to the screen) does not break the tests.

www.it-ebooks.info

http://hudson-ci.org/
http://jenkins-ci.org/
http://www.it-ebooks.info/

59CHAPTER 5: Develop Apps Like a Pro

Android has also embraced the JUnit unit testing framework commonly used for Java development.
JUnit is tightly integrated with Android. In fact, Android even offers an AndroidTestCase class that is
derived from JUnit’s TestCase class. AndroidTestCase gives you access to a lot of internal Android
constructs (specifically, the Context class) which simplifies test case construction. From Eclipse,
making a new test environment for your application is as simple as selecting the New Test Project
item from the Android Tools menu. The test cases you write actually run within the Eclipse IDE.

Unit Testing versus System Testing
It’s important to distinguish between unit testing and system testing. Unit testing means testing a
small component of your software. In an object-oriented language such as Java, it is typical for each
class to be tested on its own. System testing refers to testing the entire application as a functional
entity. Although unit testing is great for making sure that each functional component of your software
is working correctly, you use system testing to ensure that all your components interact correctly.
You can’t be sure that everything works unless you’ve tested it at the system level. This typically
requires that you run the application on a phone or on an emulator. Because Android devices come
in so many flavors, you’re probably best off running your system tests on both.

When writing unit tests, a developer often has problems when his class needs to interact with
Android APIs. The Android development environment supplies an android.jar file that is used by
Eclipse to ensure that your calls to Android libraries can compile on your computer. But the android.jar
file only includes stubs; if you actually try to execute your code on the PC, it will fail the first time
it calls an Android API. You need to run the application on your phone (or in the emulator) to have
access to the full APIs.

Figure 5-2.  Model-View-Controller paradigm
Source: http://en.wikipedia.org/wiki/File:MVC-Process.png

www.it-ebooks.info

http://en.wikipedia.org/wiki/File:MVC-Process.png
http://www.it-ebooks.info/

60 CHAPTER 5: Develop Apps Like a Pro

The AndroidTestCase class can help make this possible. A developer can use AndroidTestCase to
call parts of the API when emulating his code using the Android SDK phone emulator. But it can take
a while to run through a large number of test cases on the emulator! Although this process can work
fine for system-level testing, it can be simply too slow to work effectively if you’re unit testing a large
code base.

One solution is to use mock frameworks, which are frameworks that provide all the same API calls
you’d see when running the code in the emulator or on the phone. But you can run these mock
frameworks locally on your desktop development machine and without the emulator! That can make
testing go much faster. Two well-known mock frameworks are Mockito and Android Mock:
http://code.google.com/p/mockito/ and http://code.google.com/p/android-mock/, respectively.

Sometimes mocking classes can get complicated; you have to write a lot of code to get a
meaningful test. A solution for that problem is Robolectric. It provides a very clever system that
automatically rewrites internal parts of Android functions in a way that allows you to test them
without depending on the emulator. It’s worth checking out when you find your tests becoming
laborious to write and execute: http://pivotal.github.com/robolectric/

There’s a lot more to be said about testing, but we have time to give you only a quick introduction.
If you want to learn more about Android testing, the Android web site is the best place to start:
http://developer.android.com/tools/testing/index.html

You might also consider picking up a book on JUnit testing.

User Experience Testing
One of the problems of developing an application, or creating anything for that matter, is that you
become too close to the project. Eventually, you have to see how the application does when other
people are involved. This is where you can begin to refine your app by finding outsiders who are
willing to help you test it.

When it comes to finding someone to test your application, you need to find people who have not
tried your app before and then tell them as little about it as possible. Try to find all levels of expertise,
such as people who have never even used an Android device before. It is ideal to have developers,
designers, and a handful of potential users in your group. As the old saying from the shampoo
commercial goes, you don’t get a second chance to make a first impression, so it is important to
make certain you get their first impressions right away.

The most basic form of usability testing is sometimes called hallway testing. Imagine finding
random people who are walking past you in the hallway and asking them to test your app. This is
a good approach for the early stages of testing, in which serious issues can be uncovered quickly.
You can consider this sort of user experience testing to be alpha testing; in other words, the first
testing involving potential users or customers. As shown in Figure 5-3, there is some evidence
that small groups of testers are more than sufficient, and the value of additional testers decreases
asymptotically.

www.it-ebooks.info

http://code.google.com/p/mockito/
http://code.google.com/p/android-mock/
http://pivotal.github.com/robolectric/
http://developer.android.com/tools/testing/index.html
http://www.it-ebooks.info/

61CHAPTER 5: Develop Apps Like a Pro

It is good practice to keep your testing sessions relatively short so that you do not alienate testers
who aren’t interested in wasting a lot of time on your test. You want your testers engaging with the
app, and if they are getting bored, your results won’t be as meaningful.

Often, simply watching testers work with your app without giving them any hints will give you the
best feedback. But consider that even looking over their shoulder can bias the test because it’s hard
to fight the urge to steer them to the correct solution with body language.

If you intend to follow up the testing session with a series of questions about their experience, try
to use questions that can be answered in a quantifiable way. For example, your testers can circle
one of the following multiple-choice options: strongly agree, agree, no opinion, disagree, or strongly
disagree. Now you can collect their answers and get an average score. If you ask the same question
of your testers in another round of testing, you can see whether there has been a measurable
improvement.

Beta Testing Without the MarketPlace
One important and critical part of the app development process is beta testing, which involves a
formal release to a limited group of outsiders. Outside users are liable to use your application in
ways that you never expected, and they might be using Android devices in ways that you could
not test. Solving any issues before the application goes public will ensure that the application will
run with fewer unexpected problems, which will result in better reviews. Of course, your beta users
should be warned that the software might be buggy, so their expectations are set correctly.

Figure 5-3.  Adding more testing subjects offers diminishing returns
Source: http://en.wikipedia.org/wiki/File:Virzis_Formula.PNG

www.it-ebooks.info

http://en.wikipedia.org/wiki/File:Virzis_Formula.PNG
http://www.it-ebooks.info/

62 CHAPTER 5: Develop Apps Like a Pro

Chapter 8 will discuss how to beta test using the Amazon Appstore for Android or Google Play. It
is possible to beta test without ever listing your application in the public forum. The easiest way
involves simply emailing an APK file to beta users you have selected. Your beta users will receive
an email with an Install button when they open the email on an Android device. You can also place
the APK on your web site, in a password-protected area, and users who click on the download link
have the application automatically installed on their device—assuming that they have allowed the
installation of apps from unknown sources.

Summary
If you’re an experienced developer, most of what we’ve discussed in this chapter should be old hat.
But if you’re new to the game, we hope you’ve come away with a sense of the processes that make
software development run smoothly.

To review, we highly recommend pursuing a formal software development methodology like the
Waterfall or Agile methods we discussed. You will also want to document your code, if for no other
reason than to make sure you understand what you did in the future. You should familiarize yourself
with Android debugging tools, and make sure you save incremental changes to your code using
revision control. To make certain you don’t lose track of important bugs and issues, make sure
you have a formal process for tracking them. When it comes to testing your code, we recommend
unit testing with JUnit and Android’s AndroidTestCase class. You should also system test your
application, and Android makes both relatively painless. You also definitely want to make certain you
test your app with actual users, both using informal “hallway” testing, as well as beta testing.

Here is a checklist of questions to ask:

Are you following a software engineering process?	

Have you designed your app so it can be easily tested?	

Have you thought about appropriate tests before or during app development?	

Do you have a complete regression test suite? Do all tests pass?	

Is your app under revision control?	

Do you have a bug- and issue-tracking system in place?	

Have you done user experience testing?	

Have you beta tested before publicly releasing your app?	

www.it-ebooks.info

http://www.it-ebooks.info/

63

Chapter 6
Making Money with Ads
on Your Application

Mobile advertising is on the rise! Worldwide mobile advertising is expected to reach $11.4 billion in
2013 and is projected to reach $24.5 billion in 2016. The train is leaving the station, so let’s get
on board!

Naturally, if you’re interested in mobile advertising, you’re hoping to make some money. Mobile
advertising is a numbers game; the amount of money you will make per user is quite small, so you
must have a very large user base before you can make serious revenue.

On that note, consider that putting an ad in your paid app is often a fatal combination because
no one wants to pay for an app and then have to deal with advertising. Besides, in order to make
a significant profit, you have to get a lot of downloads, and paid apps rarely reach the level of
downloads needed to make meaningful ad revenue.

Figure 6-1 gives you a sense of exactly how many users you need to make money with in-app
advertising.

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 6: Making Money with Ads on Your Application

These numbers are intended only as an estimate. The actual values will depend heavily on the
specifics of your app. We’ll soon get into the math that will allow you to calculate these numbers for
your own app. That said, as you can see, it generally requires a surprisingly large number of users to
generate enough ad revenue to surpass the “beer money” stage.

To begin, you will need to sign up with one or more ad networks. These networks, such as
AdMob, Mobclix, and Leadbolt, connect advertisers with content publishers. From an advertiser’s
perspective, you as an app developer are a content publisher. On the technical side, the ad network
will give you an application programming interface (API) with which to serve its ads.

We’ll say more about that later, but let’s talk about the types of ads you can use first.

Types of Mobile Ads
Although ads come in many shapes and sizes, there are two basic types: banner ads and interstitial ads.

Banner ads are those little rectangle ads you’ve seen on mobile devices. They come in many sizes
and can be tailored to fit portrait and landscape modes on smartphones and tablets alike. 320x50
and 300x50 are as close as the industry has to a standard size, although new sizes are always
emerging. In a useful development, AdMob (and perhaps others) has begun supporting a
“Smart Banner” that automatically resizes to support the screen size and orientation of the device it is
rendered to. Figure 6-2 shows an example of an AdMob Smart Banner ad. You can learn more about
Smart Banners at https://developers.google.com/mobile-ads-sdk/docs/admob/smart-banners.

Figure 6-1.  Ad-based revenues are proportional to your app’s user base

www.it-ebooks.info

https://developers.google.com/mobile-ads-sdk/docs/admob/smart-banners
http://www.it-ebooks.info/

65CHAPTER 6: Making Money with Ads on Your Application

Interstitial ads are a more powerful sort of ad. They are full-screen ads and often last for a fixed
time before returning the user back to the application. The specific time (generally on the order
of seconds) is often configurable by the developer so the interstitial ad can fit the pace of the
application. Alternatively, an interstitial might be configured to force the user to click in order to
return to the application, or involve streaming video. As you might expect, they pay more than
banner ads, but are also a lot more disruptive to the user experience. A common tactic is to offer
users virtual currency (for use in a gaming app, for example) in return for watching interstitial ads.
As another option, you could display them only on rare occasions (once every few days, for
example). Be careful with interstitials; they make a lot of money per impression, but you can’t make
any money if all your users uninstall your app.

Figure 6-3 shows a few examples of interstitial ads. Note that the ads completely obscure the view
of the application and have to be “cleared” to return control to the application.

Figure 6-2.  BPM Detector screen shot. This AdMob Smart Banner ad is automatically served in the local language; in this
case, Hebrew

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 6: Making Money with Ads on Your Application

Mobile Ads by the Numbers
Let’s discuss how to do a revenue analysis of the type we presented in the chart at the beginning of
this chapter. Mobile advertising has a jargon all its own, and you need to know the lingo before you
can make sense of any financial calculations. In Figure 6-4, note the attention given to statistics such
as Revenue, eCPM, Requests, Impressions, Fill Rate, and CTR in the AdMob screen shot.

Figure 6-3.  Examples of interstitial ads

www.it-ebooks.info

http://www.it-ebooks.info/

67CHAPTER 6: Making Money with Ads on Your Application

You’re going to hear a lot about eCPM, which is the estimated-cost-per-thousand (“M” is the Roman
numeral for thousand, remember). eCPM is the basic metric for evaluating your advertising revenue.
This abbreviation refers to the amount you will be paid for every 1,000 impressions. An impression
is when an ad gets displayed on your app somewhere in the world. So right away, you can see that
there are two key factors in maintaining a high eCPM. You need lots of people using your app and
you need them to use your app for a while. After all, the longer your app stays open, the more ads
will get served.

As a publisher, you will typically see eCPMs ranging between as little as $0.20 and as much as
$1.25. That’s the typical range, but there are no guarantees. Typically, advertisers pay on a sliding
scale where payment depends on the value of the ads that are served. The ad networks simply pass
on a portion of their proceeds to you, and the amount that advertisers are willing to pay depends on
the market they advertise to. For example, an insurance provider will typically be willing to pay much
more to acquire customers than a video game manufacturer.

Also, eCPMs can be seasonal. You’ll typically make more during holidays, and especially around the
holiday season in late December.

Figure 6-4. Screen shot of AdMob with statistics

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 6: Making Money with Ads on Your Application

The click-through rate (CTR) lets you know how often a user actually clicks an ad that is shown
in your app. Some ad networks hide these figures from you and simply let you know your eCPM,
without regard to click-through rates. But you should understand that the more your users click ads,
the more money you stand to make. Naturally, this means you should always have an ad available
for your users to click (subject to fill rates, as discussed in the next paragraph). If your app has
multiple screens, consider putting an ad in every one! You can even put an ad in the Settings screen,
and we’ll show you how later. But keep in mind that too many ads might alienate users, so be aware
of “ad overkill.” You will have to experiment to find the optimal balance.

An ad network’s refresh rate is how often a new ad is sent for display to your app. Many ad networks
make these figures adjustable by the developer. You will have to experiment to determine what
works best for you. Consider that each new ad is a new opportunity for a user to find something
interesting enough to click. On the other hand, if you serve ads too often, your users will find them
distracting and perhaps even annoying enough to uninstall your app. Surprisingly, at least for the
uninitiated, often your app does not get served an ad even when it wants to display one. The fill
rate refers to the percentage of time your app will have ads when it’s ready to show them. Some fill
rates can be extremely low, and this directly impacts your revenue. AdMob is not known for having
the industry’s highest eCPMs, but on the plus side, if you enable the AdSense option (which serves
you AdSense ads when a banner ad isn’t available) AdMob will provide a near 100 percent fill rate.
Unfortunately, the AdSense ads don’t pay very well.

One option to get around low fill rates is to integrate your app with more than one ad network at the
same time. Then you can display ads from whoever sends the ad first.

Ok, so that’s a background on how the mobile ad business works. So how do you make those
revenue projections? You have to estimate your eCPM. As we’ve mentioned, somewhere between
$0.20 and $1.25 is usually safe. Now you need to estimate your fill rate. This depends on your ad
network, but if you want to pull a number out of a hat, you can start with 75 percent. Your earnings
per 1,000 requests are your eCPM multiplied by your fill rate (expressed as a fraction). So now all
you need to do is estimate how many requests you will get and you have a back-of-the-envelope
estimate for revenue.

Your requests are governed by how many users you have, how long they use the app, and your
refresh rate. If you have 10,000 users, and they each use your app for 5 minutes per month, and your
app requests an ad every minute, then you will have a total of 10,000 x 5 = 50,000 requests
per month. With a fill rate of 0.75 and an eCPM of $0.50, you would generate 50,000 * 0.75
(0.50/1000) = $18.75 per month. That’s not very much. But notice that if you double the number of
minutes users spend with your app, you will double your revenue. Time spent with your app is just
as important as user base size. Once again, these calculations show that you need a very large user
base to make a living on ad revenue alone.

www.it-ebooks.info

http://www.it-ebooks.info/

69CHAPTER 6: Making Money with Ads on Your Application

Selecting a Mobile Ad Network
There are numerous mobile ad networks that would all like your business. Each of them tries to
distinguish itself by calling out its high eCPM numbers, its unique ad formats, and the ease with
which it integrates into your application. However, particularly with regard to eCPM, these values are
extremely dependent on the category of application you have written. The following chart, compiled
using data from DoubleClick Ad Exchange makes this clear. Note that this data includes all forms of
digital advertising, not just mobile advertising:

According to this chart, on average, an app in the healthcare space will make over five times the
CPM of an app in the law and government space.

It’s easy to imagine that one ad network might have a particular advertiser on its roster that
generates a lot of click-throughs with your particular app because your app is targeted correctly to the
advertiser. There might be no way to identify this outcome without actually trying the ad network.
That said, you might be able to learn something about an ad network that could suggest it would
work well with your app.

Here is a list of some ad networks for you to consider. This list is by no means exhaustive:

AdMob: Bought by Google, AdMob is probably your best place to start. 	
Integration is easy, and lots of people use it, so there’s plenty of help available
online to get started. Our technical examples will reference AdMob, but many of
the other software development kits (SDKs) are fairly similar.

LeadBolt: One of the more innovative companies, LeadBolt is known for creative 	
ad formats that supposedly deliver higher eCPMs. It’s worth a look.

MobFox: If you have a high concentration of users in Europe, MobFox is worth a 	
try. It supposedly delivers high eCPMs to European publishers.

Jampp: Based out of Buenos Aires, Jampp is a leading Latin American 	
advertising solution. It also claims to offer the highest eCPM in Latin America.

50

100

150

200

250

300

HE
AL

TH

SC
IE

NC
E

JO
BS

 &
ED

UC
AT

IO
N

IN
TE

RN
ET

 &
TE

LE
CO

M

TR
AV

EL

PE
OP

LE
 &

SO
CI

ET
Y

FO
OD

 &
DR

IN
K

CO
M

PU
TE

RS
 &

EL
EC

TR
ON

IC
S

RE
FE

RE
NC

E

GA
M

ES

NE
W

S

AR
TS

 &
EN

TE
RT

AI
NM

EN
T

PE
TS

 &
AN

IM
AL

S

FI
NA

NC
E

SH
OP

PI
NG

ON
LI

NE
CO

M
M

UN
IT

IE
S

BE
AU

TY
 &

FI
TN

ES
S

SP
OR

TS

RE
AL

 E
ST

AT
E

AU
TO

S
&

VE
HI

CL
ES

HO
BB

IE
S

&
LE

IS
UR

E

BO
OK

S
&

LI
TE

RA
TU

RE

LA
W

 &
GO

VE
RN

M
EN

T

BU
SI

NE
SS

 &
IN

DU
ST

RI
AL

HO
M

E
&

GA
RD

EN

0

Figure 6-5.  CPM Comparisons Indexed by Vertical

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 6: Making Money with Ads on Your Application

Airpush: Airpush specializes in Android, but it’s a bit controversial. It places ads 	
into a user’s task tray, which many users perceive as being very annoying. On
the other hand, supposedly it has very high eCPMs.

Buzz City: It specializes in Asia, so if you have a high concentration of Asian 	
users, Buzz City is likely to give good results.

Mobclix: Originally focused exclusively on iPhone, Mobclix now also supports 	
Android. It supposedly has a high eCPM, and offers video ads and other
nonstandard formats.

AdMob
If you’re going to start somewhere, you might as well start with AdMob. Let’s walk you through the
process of using its ad-hosting SDK. Figure 6-6 shows the AdMob home page.

Figure 6-6.  AdMob home page

AdMob’s web site is at http://www.admob.com/. When Mark visited the site, AdMob identified him from
his Gmail account, which makes sense because it is owned by Google. If you don’t have a Gmail
account, you can also log in directly to its site. Not only is the Android area good, but you might
want to check out The Guide to the App Galaxy. Registration is simple, and you will receive a
confirmation email that includes a number of useful links. In particular, you should see a link to the
AdMob help center (http://helpcenter.admob.com/).

www.it-ebooks.info

http://www.admob.com/
http://helpcenter.admob.com/
http://www.it-ebooks.info/

71CHAPTER 6: Making Money with Ads on Your Application

The help center is a great place to start learning about AdMob. If you click on the "Publishers"
section in the help center, you will find lots of useful introductory material, including how to get
started, how to add ads to your app, and how payments work. Remember that Admob considers
you to be a publisher, since you will be "publishing" their ads in your app.

Advertisers can also find information in the help center. Just as a backgrounder, the advertiser will
start a campaign that specifies how its ads will be presented on applications. The advertisers enter
in a start date, end date, budget, and delivery method. They will then be asked to choose an ad
group to meet advertising goals and will be given the opportunity to add multiple ad groups. They
can then customize which devices they want it on, not to mention the countries or operators they
want targeted. Advertisers can even customize the user demographic. Advertisers can run a Text Ad
Unit or a Banner Ad Unit, and they can design them as they see fit. The ads will then begin to run,
and advertisers can monitor the campaign’s performance.

Okay, that’s how it works for advertisers, but let’s get back to you, the developer. For app
integration, follow these steps:

1.	 Register and/or log in at http://www.admob.com/.

2.	 Click Sites and Apps.

3.	 Click Add Site/App.

4.	 Provide the information about the Android application.

5.	 Download the SDK.

6.	 While the SDK is downloading, head back to the Sites & Apps tab, hover
over your app, and click the Manage Settings button that appears. Near the
top of the page that appears is a long hexadecimal number named Publisher
ID. Copy that number and paste it somewhere. You’ll need it later in an XML
layout file so that your app can let AdMob know who you are.

7.	 You can also take a moment to explore the AdMob dashboard. You’ll be
spending a lot of time on the Sites & Apps tab. This tab shows you your
revenue for all your apps, as well as your eCPM and fill rates. It also allows
you to view your revenue trends over time.

8.	 After the SDK has finished downloading, extract the zip file into a new
directory. The directory now contains the AdMob library, which you need to
link into your application.

9.	 To do that, right-click in the left-side Package Explorer pane in Eclipse. Click
Properties and then click the Java Build Path property. In the Java Build
Path section, click the Library tab. Now just add the JAR file you previously
unzipped into the directory.

10.	 Now move over to the Order and Export tab. You should see the AdMob JAR
file listed there. Make sure it is selected and move it to the top of the list for
good measure. This makes sure that AdMob is first in the build path so we
don’t get any dependency issues.

www.it-ebooks.info

http://www.admob.com/
http://www.it-ebooks.info/

72 CHAPTER 6: Making Money with Ads on Your Application

11.	 Once the AdMob JAR file is added to the project, you’ll need to grant your
application all the permissions required by AdMob. You might already be
using these or other permissions in your app’s manifest file, but be sure
you’ve got at least the following permissions:
 
<uses-permission android:name="android.permission.INTERNET"/>
and
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
 

12.	 You’ll also need to reference the AdMob activity in your application’s manifest
file. Place the following within the application tag in the manifest .xml file:
 
 <activity android:name = "com.google.ads.AdActivity"
 android:configChanges = "screenSize|smallestScreenSize|keyboard|keyboardHidden|
orientation|screenLayout|uiMode"/>
 

13.	 That lets your app know you’ll be using the AdMob activity. You’ll want to
display the ad in at least one layout, and ideally in enough layouts so the ad
is always visible to your users. Within each layout, the ad is simply a view,
aptly named AdView. Here’s an example of an AdView layout element:
 
<RelativeLayout
 [...]
 xmlns:ads="http://schemas.android.com/apk/lib/com.google.ads"
[...]
<com.google.ads.AdView
 android:id="@+id/adView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 ads:adUnitId="1234567890abcde"
 ads:adSize="BANNER"
 ads:loadAdOnCreate="true"/>
 

14.	 Notice the adUnitId tag. That number is the publisher ID we discussed
earlier. That’s it! You should now have ads enabled in your app. It might take
a few minutes before you’re served your first ad, so be a little patient.
An example of an application hosting AdMob is shown in Figure 6-7.

www.it-ebooks.info

http://schemas.android.com/apk/lib/com.google.ads
http://www.it-ebooks.info/

73CHAPTER 6: Making Money with Ads on Your Application

With AdMob comes AdWhirl, which was acquired by AdMob. AdWhirl is an open–source ad
mediation tool that allows its users to monetize inventory as effectively as possible. Users can
allocate inventory to House Ads, AdMob ads, and ads from other networks.

Mobclix
In Mobclix’s own words, it is “the industry’s largest mobile ad exchange network via its sophisticated
open marketplace platform and comprehensive account management solution for iPhone application
developers, advertisers, ad networks, and agencies.” Don’t let the word “iPhone” put you off from
giving Mobclix a try because it also works on other platforms such as Android. Mobclix works with
many ad networks, as you can see from its web site (see Figure 6-8).

Figure 6-7.  The Sandberg Sound Free Meganome, displaying an ad via the AdMob API

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 6: Making Money with Ads on Your Application

The company boasts the highest eCPMs and claims that its monthly infographics can reveal insight
on user behavior, so that you can lay out a more thoughtful ad campaign.

Signing up for Mobclix is simple, and it is equally simple to register one’s applications. Mark found
that when I signed up, I got a confirmation e-mail that stated I had to “integrate Mobclix SDK into my
app and submit to iTunes.” I found that odd because I wanted to get started with Android.

I found that you should be able to download the Mobclix Android SDK at
http://groups.google.com/group/mobclix-android-sdk?pli=1 for the latest release. From there, you
can use its 100–percent fill rates and analytics to start making money.

Affiliate Programs
Although not precisely mobile ads, affiliate programs are similar in that you use your app to direct
users’ eyes to mobile websites. The idea of an affiliate program is that an advertiser encourages a
developer to send traffic to its retail sale web site, and a minute commission fee is given out for sales
rendered. As someone who has done a little work on the web, Mark occasionally receives some
revenue with affiliate programs such as Amazon. They are pretty easy to sign up for and set up, and
it is possible to use these same affiliates from within an Android app.

Beyond individual affiliates such as Amazon, you can also find affiliate networks. These companies
do for affiliates what ad networks do for advertisers. In other words, they connect affiliates with
publishers. Instead of an ad, a link to the affiliate’s web site is provided, and payment occurs when
a purchase occurs. In a sense, an affiliate network is a kind of ad network in which payment occurs
only if a sale is made on the referral.

Figure 6-8.  Home page for Mobclix at http://mobclix.com/

www.it-ebooks.info

http://groups.google.com/group/mobclix-android-sdk?pli=1
http://mobclix.com/
http://www.it-ebooks.info/

75CHAPTER 6: Making Money with Ads on Your Application

You should weigh the benefits of an affiliate program versus a typical ad network. Ad networks
are more common in mobile apps and they are generally easier to integrate into your application.
Although affiliate programs make more money per transaction, it is harder to close a sale than it is
merely to get eyes on a web site. In other words, it’s likely that affiliate marketing will make sense
only if something about your app makes it very likely that the user will close a sale with your affiliate.
For example, if you have a music player app, perhaps referrals to a hardware provider that sells great
speakers for Android phones would result in a high rate of sales conversions.

Rakuten Linkshare (at http://mthink.com/affiliate/) is the top affiliate network in the world.
Although it doesn’t have an API specific to Android, it can be called from within an Android
application using an HTML API. This is the same way a publisher links with an affiliate on the web.
Rakuten Linkshare has tested its service with a number of mobile platforms, including Android. To
learn more, visit its web site at http://www.linkshare.com/advertisers/publishers/.

There are many other affiliate networks. To see a few, you can investigate the following sites:

Commission Junction: 	 http://www.cj.com

ClickBank: 	 http://clickbank.com

ShareASale: 	 http://shareasale.com

AvantLink: 	 http://avantlink.com

RevenueWire: 	 http://revenuewire.com

Even though Amazon isn’t an affiliate network, its sheer size makes it the third largest affiliate
service. You can learn about Amazon’s affiliate program at https://affiliate-program.amazon.com/
gp/associates/join/landing/main.html. eBay also has a large affiliate service. You can learn about
it at https://ebaypartnernetwork.com/files/hub/en-US/index.html.

A recent announcement by AdMobix is allowing ads to be integrated into an Android application.
It seems to be one of the few affiliate networks with an SDK specifically designed for Android.
This SDK allows advertisements to be integrated in the application between levels, page loads, or
anywhere on the page.

The AdMobix program has a Pay Per Install option that allows developers and advertisers to gain
additional users, paying only when their product is installed on a customer’s device, as opposed to
paying per view or by click. Other options include Pay Per Call and Pay Per Lead.

You can find more information at the AdMobix SDK for Android site at http://blog.adcommunal.net/
admobix-sdk-for-android. At the time of this writing, it currently is in beta.

Figure 6-9 shows the e-mail address to sign up for the beta version of the AdMobix SDK for Android.

www.it-ebooks.info

http://mthink.com/affiliate/
http://www.linkshare.com/advertisers/publishers/
http://www.cj.com/
http://clickbank.com/
http://shareasale.com/
http://avantlink.com/
http://revenuewire.com/
https://affiliate-program.amazon.com/gp/associates/join/landing/main.html
https://affiliate-program.amazon.com/gp/associates/join/landing/main.html
https://ebaypartnernetwork.com/files/hub/en-US/index.html
http://blog.adcommunal.net/admobix-sdk-for-android
http://blog.adcommunal.net/admobix-sdk-for-android
http://www.it-ebooks.info/

76 CHAPTER 6: Making Money with Ads on Your Application

We wouldn’t be surprised if Android affiliate markets grow more in the near future. If there is one
thing we have learned from business on the Internet, it is that someone usually makes a product if
enough people clamor for it.

Technical Tricks
One very useful trick to improve your ad revenue is to place an ad in every screen of your app.
Many apps have a Settings screen where user preferences are selected.

Figure 6-10 shows a screen shot of Free Meganome with an ad in the Settings screen.

Figure 6-9.  E-mail address to sign up for the beta version of the AdMobix SDK for Android, an affiliate program for Android
applications

www.it-ebooks.info

http://www.it-ebooks.info/

77CHAPTER 6: Making Money with Ads on Your Application

Android provides a standard framework for Preferences, and your ads can be made to work
with that framework. First, you will need a custom preference that supports ads. Note that the
following example extends Preference, a technique that has been deprecated in Android 3.0 in
favor of PreferenceFragment. This example continues to use Preference to support the roughly
40 percent of the market that isn’t using Android 3.0 or newer. If you are targeting only Android 3.0
and later, you should consider modifying your code to follow the example found here:
http://developer.android.com/reference/android/preference/PreferenceActivity.html

public class AdmobPreference extends Preference
{
 public AdmobPreference(Context context) {
 super(context, null);
 }
 public AdmobPreference(Context context, AttributeSet attrs) {
 super(context, attrs);
 }
 @Override
 protected View onCreateView(ViewGroup parent) {
 //override here to return the admob ad instead of a regular preference display

Figure 6-10. Screen shot of Free Meganome with an ad in the Settings screen

i
www.it-ebooks.info

http://developer.android.com/reference/android/preference/PreferenceActivity.html
http://www.it-ebooks.info/

78 CHAPTER 6: Making Money with Ads on Your Application

 LayoutInflater inflater = (LayoutInflater) getContext().getSystemService
(Context.LAYOUT_INFLATER_SERVICE);
 return inflater.inflate(R.layout.admob_preference, null);
 }
}
 
This custom preference simply looks for an admob_preference layout to inflate. That’s where all the
work is done. The .xml file (minus the XML header) is reproduced here (notice the familiar AdView
layout contained within):

 
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:ads="http://schemas.android.com/apk/lib/com.google.ads"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 >
 <com.google.ads.AdView
 android:id="@+id/adView1"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:adjustViewBounds="true"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 ads:adUnitId="1234567890abcde"
 ads:adSize="BANNER"
 ads:loadAdOnCreate="true"/>
</RelativeLayout>
 
That’s it! Those two files are all you need. Simply place your AdmobPreference into your existing list
of preferences and you’ll have ads in your Preferences screen!

Summary
If you have the right kind of app, advertising is a great way to make money. Remember, the ideal app
for advertising is one that is used frequently and in which each session of use will last a while. That’s
because your ad revenue is proportional to the number of ads served. Regardless of the specifics of
your app, you can maximize your ad revenue by making sure there’s an ad on every screen in your
app. We’ve shown you how to add an ad into the preferences screen, so be sure and do at least
that. You can also consider experimenting with interstitial ads, but be sure they make sense in your
app, or else you could alienate users. Finally, be sure to experiment with different ad networks.

Here is a checklist for working with in-app ads:

Have you made ad revenue projections, and do they meet your expectations?	

Have you selected one or more ad networks?	

Have you selected the type of ad that works best for your app?	

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/lib/com.google.ads
http://www.it-ebooks.info/

79

Chapter 7
In-App Billing: Putting a Store
in Your Application

In-app billing allows a developer to charge users for app features after their app has already been
downloaded. Imagine charging users for more levels of your game or charging them for virtual goods
(such as a magic sword in a game). For non-gaming apps, you could charge for special features or
even per use if the use case is strong enough.

One example of in-app billing is Comics, by Comixology (see Figure 7-1). Comics is an application
that is designed to give Android smartphone and tablet users access to digital versions of their
favorite comic books. Downloading the application is free, but most of the comics cost the user.
We’re sure that Comixology had to make some sort of deal with the comic book companies in order
to offer this service, but after those companies receive their share of the profits, we’re also sure that
Comixology makes a healthy profit from comic book readers paying for digital comic book content.
All that is required of the user is to create an account online, and it syncs up very well.

www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 7: In-App Billing: Putting a Store in Your Application

Tap Tap Revenge also uses the same kind of marketing in order to sell tracks. Tap Tap Revenge
(see Figure 7-2) is a music game in which players tap the screen to the rhythm of their favorite tunes.
The game offers a few songs for free, but if you want more, you have to pay. We’re sure that the
music industry gets its percentage along with the developers.

Figure 7-1.  A screenshot from the store at Comixology, in which users can purchase their favorite digital comic books in
digital form

www.it-ebooks.info

http://www.it-ebooks.info/

81CHAPTER 7: In-App Billing: Putting a Store in Your Application

Many gaming applications, such as Tap Tap Revenge, have a sort of token economy that allows the
user to play the game and then use their points or coins earned within the game to buy bonuses.

In Gun Brothers (see Figure 7-3), the user has the opportunity to play a shooting game and earn a
lot of points. These points can be used to purchase gun upgrades, and so forth. If the user wants
to take a shortcut and just buy the upgrades, however, he or she is more than welcome to do that
thanks to in-app billing.

Figure 7-2.  Tap Tap Revenge 4 uses in-app billing so the user can purchase more tracks for this music-based game

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 7: In-App Billing: Putting a Store in Your Application

You may be surprised that there is a market for this type of gaming virtual goods, but people
routinely pay money for game bonuses. This is the beauty of gaming applications; there are many
gamers who are willing to lay their money down for things that exist only in a virtual gaming world.
That certainly is a positive trend for developers.

In-App Market Players
If you want to use in-app billing, the Google Play Store is not the only game in town. Amazon is
perhaps the best-known alternative, and there are others that we will discuss later in this chapter.

For now, we’ll talk briefly about the Google Play Store and the Amazon Appstore because they are the
two largest players. In general, all in-app stores take 30 percent of your list price as their transaction
fee for in-app purchases. This matches the transaction fee for app stores in general. As you can see,
the main reason to use in-app stores other than the Play Store is not the transaction fee.

In fact, the main reason you’ll end up using other in-app stores is simply a matter of compatibility.
Amazon doesn’t let you use anyone else’s in-app billing on apps downloaded from its store.
Likewise, Google doesn’t let you use anyone else’s billing on apps downloaded from the Play Store.
Smaller marketplaces such as SlideME have more permissive rules, but you generally have to
support multiple in-app billing providers if your app needs in-app billing, and you plan to list your
app in multiple marketplaces.

Figure 7-3.  The in-app billing on Gun Brothers from Glu Mobile allows the user to buy War Bucks or Coins that can be used for
armor, weapons, or power-ups

www.it-ebooks.info

http://www.it-ebooks.info/

83CHAPTER 7: In-App Billing: Putting a Store in Your Application

You might wonder why you’d even want to bother with the smaller app stores. The thing to
remember is that some of these lesser-known app stores have exclusive deals or have a very high
profile with certain devices. For example, the Amazon Appstore is the exclusive app store for all
Kindles, which make up 33 percent of U.S. Android tablet sales. If your app works well on tablets,
you give up a large part of the market if you don’t list your app on Amazon.

Likewise, the Samsung apps store is preinstalled on almost all Samsung Android devices. SlideME
is the exclusive app store on more than 20 million Android devices. Nook Apps is the exclusive app
store on all NOOK tablets, which make up 10 percent of the U.S. tablet market.

So not only do many of these app stores cater to a sizable audience but if you take the time to place
your app in their ecosystem, you also have less competition than in the Google Play Store, and
hence more visibility in that market.

We’ll have more to say about Google Play versus the Amazon Appstore later in the chapter, but for
now, here is a bit of information on some of the other players.

GetJar
GetJar (http://developer.getjar.com) is the largest independent cross-platform app store. It is also
well known for operating the largest virtual currency on Google Play (Getjar Gold, available to more
than 100 million users). If you want to get information on developing in-app purchases using the GetJar
app store, you can find it here: https://developer.getjar.com/android/getjar-app-commerce-solutions/

SlideME
SlideME (http://www.slideme.org) powers more than 140 Original Equipment Manufacturers (OEMs)
preloaded with the slideME market. Conveniently for developers, the SlideME app store supports
all in-app billing solutions other than Google Play and Amazon. Its developer site is here:
http://slideme.org/developers

Samsung Market
As the number one smartphone brand, Samsung (http://apps.samsung.com/) offers a large market
for Android applications, with support in more than 60 countries. Its in-app purchase library is called
Plasma. Developers can learn more here:
http://developer.samsung.com/android/tools-sdks/In-App-Purchase-Library

Blackberry Market
Android apps can be repackaged for the Blackberry 10 and Blackberry Tablet operating systems.
Use of the Blackberry market (http://appworld.blackberry.com) assumes that you have ported your
app to the Blackberry platform using the BlackBerry Runtime for Android. After you do that, you get
access to in-app payments through Blackberry World. You can find more information here:
http://developer.blackberry.com/android/apisupport/apisupport_inapp_payments_support.html

www.it-ebooks.info

http://developer.getjar.com
https://developer.getjar.com/android/getjar-app-commerce-solutions/
http://www.slideme.org
http://slideme.org/developers
http://apps.samsung.com/
http://developer.samsung.com/android/tools-sdks/In-App-Purchase-Library
http://appworld.blackberry.com/
http://developer.blackberry.com/android/apisupport/apisupport_inapp_payments_support.html
http://www.it-ebooks.info/

84 CHAPTER 7: In-App Billing: Putting a Store in Your Application

Nook/Fortumo
The Nook e-reader by Barnes and Nobles has an app store (http://fortumo.com/nook); and in
partnership with Fortumo (a payment processing company), Nook has very recently begun offering
in-app billing. You can learn more here: http://fortumo.com/countries

SK T Store
The SK T store (http://www.skplanet.com/Eng/services/Tstore.aspx) bills itself as Korea’s number
one mobile contests open store. It has more than 18 million users and supports in-app billing. Its
developer web site is here: http://dev.tstore.co.kr/devpoc/main/main.omp

Google Play Store versus Amazon Appstore
The Google Play Store supports both in-app purchases and subscriptions, so you can generate a
recurring revenue stream. The Amazon Appstore also supports in-app purchasing and subscriptions.

Neither Google nor Amazon allow you to use in-app billing to sell real physical products, personal
services, or anything else that requires physical delivery. To do that, you need to host your own store.
For example, you could link your app to an online store you created with http://www.shopify.com
or an equivalent provider. This isn’t all that difficult; just link to your store from within your app.
Alternatively, you could integrate the PayPal SDK into your app. You can read more about doing so
here: http://androiddevelopement.blogspot.co.il/2011/04/adding-paypal-payment-in-android.html

If you use Amazon, you benefit from the ubiquity of Amazon’s one-click payment system.
Furthermore, Amazon’s Kindle e-books are all Android-enabled devices. If your app is a particularly
good fit as an app on the Kindle, you should give the Amazon market extra consideration. Amazon’s
solution may also be a bit easier to implement than the Google Play solution.

Realize, however, that Amazon in-app billing can’t be used within apps that have been downloaded
from the Google Play Store. Likewise, Google Play in-app billing can’t be used within apps that have
been downloaded from the Amazon Appstore. The Google Play Store is much more commonly used
than the Amazon Appstore, so you’re likely to get many more downloads if you place your app there.
On the other hand, there is some evidence that the Amazon Appstore generates higher revenue
totals for in-app purchases.

Some developers have refused to settle for one or the other, and have implemented apps that
use both in-app billing solutions, depending on where the app has been downloaded from. At the
moment, that is the best (although also the most complicated) solution available. If you go that route,
there are some open source helper functions that make it easier to write software that concurrently
supports multiple app stores. This link details their use: http://www.techrepublic.com/blog/app-
builder/juggling-in-app-purchasing-from-multiple-markets/1824

When Should You Use In-App Purchasing?
Now that you are familiar with the players of the in-app purchase markets, let’s think about when you
should and shouldn’t use in-app purchasing.

www.it-ebooks.info

http://fortumo.com/nook
http://fortumo.com/countries
http://www.skplanet.com/Eng/services/Tstore.aspx
http://dev.tstore.co.kr/devpoc/main/main.omp
http://www.shopify.com/
http://androiddevelopement.blogspot.co.il/2011/04/adding-paypal-payment-in-android.html
http://www.techrepublic.com/blog/app-builder/juggling-in-app-purchasing-from-multiple-markets/1824
http://www.techrepublic.com/blog/app-builder/juggling-in-app-purchasing-from-multiple-markets/1824
http://www.it-ebooks.info/

85CHAPTER 7: In-App Billing: Putting a Store in Your Application

When to Use In-App Purchasing
When your app offers something really valuable, but you need to give your 	
users a chance to realize that it’s worth the price. Like the freemium business
model, you can let users try your app for free, but now you can get a continuous
revenue stream each time they purchase something in your app. But remember
that this works only if your users see the value in what you’re selling.

When you have lots of related ideas for your app, but you want to start with just 	
the first one. You can keep adding content to your existing app and charging for
each piece of new content. Compare this with building lots of separate apps—
they would each need to develop a user base on their own.

When you’re offering a service that makes sense to subscribe to. Maybe you’re 	
hosting content for your users, and it’s easy to justify an ongoing cost to them
because you incur an ongoing cost to host their content.

When Not to Use In-App Purchasing
In-app purchasing can be complicated to implement well. You need to do a 	
lot of testing to be sure everything works right. Users will complain, loudly and
rightfully, if they hand over money and things don’t work as expected. You
will definitely want to consider targeting your app to Android version 2.2 and
higher, which supports the simplified version 3.0 of Google’s in-app purchasing
application programming interface (API). Fortunately, this includes nearly
98 percent of the Android user base.

More user support is needed as compared with other business plans. Users 	
might not be familiar with the in-app purchase process, so expect to spend
more time answering their questions.

Some users may be upset that your “free app” requires payments for additional 	
features. This could result in bad reviews. You must be careful to fully explain
this before they even download the app.

Requirements for In-App Purchasing
If you choose to implement in-app billing, there are a number of requirements. For Google Play
in-app billing:

You must have a Google Wallet Merchant account. This is where the revenue 	
from user purchases will be placed.

Android 1.6 or higher is required for version 2.0 of the in-app purchasing API. 	
The easier-to-use and more-powerful version 3.0 of the API requires Android 2.2.

You can sell only digital content. This means you can’t sell physical goods, 	
personal services, or anything that requires physical delivery to your end user.

www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 7: In-App Billing: Putting a Store in Your Application

Your users must have an active network connection in order to purchase 	
in-app goods.

You must deliver the content; Google does not provide integrated content 	
delivery services. In many cases, you can simply build the extra content into
your app to begin with and just expose the extra features after the user has
purchased the right to access them.

For the Amazon in-app purchasing API:

Android version 2.3.3 is required.	

You can sell only digital content. This means you can’t sell physical goods, 	
personal services, or anything that requires physical delivery to your end user.

Your users must have an active network connection in order to purchase 	
in-app goods.

You must deliver the content; Amazon does not provide integrated content 	
delivery services. In many cases, you can simply build the extra content into
your app to begin with and just expose the extra features after the user has
purchased the right to access them.

Product Types
As already mentioned, both Google and Amazon support purchases and subscription-based
models. Purchases can also be consumed in Google’s version 3.0 API and in the Amazon API. For
example, perhaps you want users of your first-person shooter to buy extra lives, and those lives
can be consumed during game play. Subscriptions can be renewed monthly or annually when using
the Google API. Amazon allows renewals to occur weekly, biweekly, monthly, bimonthly, quarterly,
semiannually, or annually.

Managed in-app products are products that have their ownership tracked by Google’s servers.
Google stores the ownership status of these items so that your app can access them each time it is
run. If the product is something that can be consumed, your app must alert the Google servers that
the product has been used. This same capability is available through the Amazon service, although
storing product state is the developer’s responsibility. If you purchase what is known as “entitled
content,” the Amazon servers perpetually reflect your users’ right to use the content. This is the
case for access to new levels of a game, for example. On the other hand, if your content can be
consumed, your app still initiates the purchase, but Amazon does not record it as entitled content.
You need to track usage of the product internally and simply request another purchase when it has
run out. Of course, if your app does not correctly record the state of the consumable purchase, a
user could lose access to it.

Delivering Your Own Content
You may have noticed that both Amazon and Play in-app billing require you to deliver your own
content. When your customers’ in-app billing purchase goes through, they expect some new feature
or content to appear. If you have already built that content into the app, you can simply enable it and
you’re done. If you can do things this way, it’s certainly easier.

www.it-ebooks.info

http://www.it-ebooks.info/

87CHAPTER 7: In-App Billing: Putting a Store in Your Application

There are reasons why you may not be able to do things in this manner. Perhaps your content will
be generated after the app is released. For example, maybe you’re planning to write more levels for
your game and add them as in-app purchases later on. If so, you need to worry about delivering your
content. This is typically done using a private remote server. As you can imagine, this requirement
adds significantly to the complexity of your code base and cost of your app. A remote server
requires some back-end development, and you also need to pay any costs associated with running
a server.

One option to simplify content delivery is to use mobile back-end services. They are hosted
solutions that provide developers with a mobile API that they can use to take advantage of back-end
servers without actually having to deploy and maintain one.

Parse is one such service. Its basic plan is free and scales to up to one million requests per month.
Parse was recently acquired by Facebook, but all signs are that it will continue offering its service to
the public. You can learn more here: https://www.parse.com/products/data

Other mobile backend services include the following:

Kinvey (	 http://www.kinvey.com).

AWS SDK for Android (	 http://aws.amazon.com/sdkforandroid/).

StackMob: (	 https://www.stackmob.com/).

Integrating Your App with the Google API
Google Play offers great online help to help you implement in-app billing in your application. A good
place to start is with its sample application, which gives you a working model to start from. To get
started with its sample application, go here:

http://developer.android.com/training/in-app-billing/preparing-iab-app.html#GetSample

The old version 2.0 API included a sample app called Dungeons. In Figure 7-4, you can see the
purchase screen from that app, illustrating how you can purchase a potion (“Puts dragons to sleep.”).

www.it-ebooks.info

https://www.parse.com/products/data
http://www.kinvey.com/
http://aws.amazon.com/sdkforandroid/
https://www.stackmob.com/
http://developer.android.com/training/in-app-billing/preparing-iab-app.html#GetSample
http://www.it-ebooks.info/

88 CHAPTER 7: In-App Billing: Putting a Store in Your Application

Figure 7-4.  The example program illustrating the older version of the API for in-app purchases on Google Play

If at all possible, you should be integrating with the newer and simpler version 3.0 API, which uses a
different sample app called Trivial Drive (see Figure 7-5)

Figure 7-5.  Version 3.0 of the in-app purchase API for Google Play is illustrated using an example program called Trivial Drive

www.it-ebooks.info

http://www.it-ebooks.info/

89CHAPTER 7: In-App Billing: Putting a Store in Your Application

As far as enabling in-app billing in your own application, the following sections spell out the steps
to follow, beginning with downloading the in-app billing library. (We assume you have elected to use
version 3.0 of the API.)

Enabling Your App to Use In-App Billing
To download the in-app billing library, open the Android SDK Manager. Expand the Extras section,
select Google Play Billing Library, and install the Library.

Before you can use in-app billing, you must include a IinAppBillingService.aidl file in your project.
This file is an Android Interface Definition Language file that defines the interface to Google’s billing
service.

First, right-click the src directory of your project and select New ➤ Package. Name your new
package com.android.vending.billing. Move the IinAppBillingService.aidl class (found in
<sdk>/extras/google/play_billing/ as well as the previous sample app provided with the billing
library) into this package.

Add your product to the Google Play Developer Console. To do this, select your application in the
Developer Console and then select the In-app Products tab on the left side. You can then add a
new product. The In-app Product ID must be unique in your application’s namespace. Your product
type can be a Managed per user account, Unmanaged, or Subscription. You also need to add a
description and price.

Initial Setup For In-App Billing In Your App
You can follow the detailed instructions here for the setup process: http://developer.android.com/
training/in-app-billing/preparing-iab-app.html#GetSample

To summarize, you need to give your app permission to interact with the billing service via your
manifest file. You also need to create an Iabhelper, which is the in-app billing helper class. This
class enables a simplified synchronous style of communication that is one of the benefits of version 3.0
of the in-app billing API. The Iabhelper class uses callbacks to communicate with your code. In fact,
the setup process uses an onIabSetupFinished callback function to return success or failure.

Using In-App Billing: Requesting a List of Items For Purchase
Again, the process is described here in great detail:
https://developer.android.com/google/play/billing/billing_integrate.html

At a high level, you need to build a list of purchasable items that you are querying. The previous link
uses this example:
 
List additionalSkuList = new List();
additionalSkuList.add(SKU_APPLE);
additionalSkuList.add(SKU_BANANA);
inAppBillingHelper.queryInventoryAsync(true, additionalSkuList,
 mQueryFinishedListener);
 

www.it-ebooks.info

http://developer.android.com/training/in-app-billing/preparing-iab-app.html#GetSample
http://developer.android.com/training/in-app-billing/preparing-iab-app.html#GetSample
https://developer.android.com/google/play/billing/billing_integrate.html
http://www.it-ebooks.info/

90 CHAPTER 7: In-App Billing: Putting a Store in Your Application

As you might expect, the mQueryFinishedListener is a callback function that is called with a list of
available inventory, including their prices.

Using In-App Billing: Making the Purchase
Similarly, making a purchase involves a call the in-app billing helper, and the response is handled
with a callback listener function:
 
inAppBillingHelper.launchPurchaseFlow(this, SKU_APPLE, REQUEST_CODE_VALUE,
 mPurchaseFinishedListener, "developerPayloadString");
 
SKU_APPLE is the item to be purchased. The REQUEST_CODE_VALUE is a positive integer that will
be returned back to the caller. The developer payload string is a convenience string for use by
developers to send supplemental information. It may be empty.

Using In-App Billing: Determining Which Items Have
Already Been Purchased
Continuing the paradigm, you may determine which items have already been purchased with a query
to the in-app billing helper that is captured by a callback listener:
 
inAppBillingHelper.queryInventoryAsync(mGotInventoryListener);
 
You need to determine which items have been purchased each time your app restarts so your users
have access to capabilities that they have already purchased.

Using In-App Billing: Consumable Purchases
To consume an item that your user has purchased, you call the in-app billing helper as follows:
 
inAppBillingHelper.consumeAsync(inventory.getPurchase(SKU_APPLE),
 mConsumeFinishedListener);
 

Integrating Your App with the Amazon API
If you’ve played around with the Google Play in-app billing sample application for version 2.0 of its
API (the Dungeons program), you have a great foundation to start learning how to integrate with the
Amazon API. This link teaches you how to modify the Dungeons application to be compatible
with the Amazon in-app purchasing API:

https://developer.amazon.com/sdk/in-app-purchasing/reference/google-to-iap.html

Amazon claims that its IAP solution requires less work and has a shorter development cycle. Note,
however, that Amazon is not comparing its solution with the newer version 3.0 API.

www.it-ebooks.info

https://developer.amazon.com/sdk/in-app-purchasing/reference/google-to-iap.html
http://www.it-ebooks.info/

91CHAPTER 7: In-App Billing: Putting a Store in Your Application

Enabling Your App to Use In-App Billing
Download the Amazon Mobile App SDK package from here: https://developer.amazon.com/sdk.html

Extract the ZIP file into a directory on your computer. Within this directory, you find an /In-App-
Purchasing/lib folder. This folder contains a JAR file called in-app-purchasing, which is the in-app
purchasing library and must be added to your eclipse project’s library path. You can do this by
accessing the Project Properties menu and going to the Java Build Path. There you can select the
Libraries tab and add the JAR file.

Before you can purchase a product from within an app, you must add your product to Amazon’s
distribution portal by signing into the Distribution Portal and selecting the My Apps tab. Choose the
Manage In-App Items option from the app drop-down menu. Now you must choose whether you
will be creating a Consumable, Entitlement, or Subscription product. You also need to add a price,
description, and thumbnail image.

Initial Setup For In-App Billing In Your App
As you might expect, your application must be given access to the Amazon in-app purchasing
library. The purchasing library is implemented as a broadcast receiver, and you declare it in your
manifest by adding the following to the <application> section:
 
<receiver android:name = "com.amazon.inapp.purchasing.ResponseReceiver" >
 <intent-filter>
 <action android:name = "com.amazon.inapp.purchasing.NOTIFY"
 android:permission = "com.amazon.inapp.purchasing.Permission.NOTIFY" />
 </intent-filter>
</receiver>
 

Figure 7-6.  A visual comparison of the Amazon in-app billing API and the Google Play API

Amazon provides a visual comparison of the two APIs in Figure 7-6:

www.it-ebooks.info

https://developer.amazon.com/sdk.html
http://www.it-ebooks.info/

92 CHAPTER 7: In-App Billing: Putting a Store in Your Application

Within your Java code, you access the broadcast receiver by registering with com.amazon.inapp.
purchasing.PurchasingManager

This class initiates all in-app billing requests. To capture callbacks from the PurchasingManager, you
must create a PurchasingObserver class and register it with the PurchasingManager. To do this, you
subclass BasePurchasingObserver. (We will discuss each of the methods that need to be subclassed
later in the chapter.) The registration with PurchaseManager occurs in your onStart and looks like this:
PurchasingManager.registerObserver(new MyPurchasingObserver());

You also need to register the user using your app with the Amazon service. This also occurs in your
onStart: PurchasingManager.initiateGetUserIdRequest()

You must implement a callback for this request in your PurchasingObserver class:
PurchasingObserver.onGetUserIdResponse(GetUserIdResponse)

Using In-App Billing: Requesting a List of Items for Purchase
Similarly, a call using the PurchasingManager requests the list of items for purchase:
PurchasingManager.initiateItemDataRequest(java.util.Set skus)

You need to implement the following callback in the PurchasingObserver:
PurchasingObserver.onItemDataResponse(ItemDataResponse itemDataResponse)

Using In-App Billing: Making the Purchase
To make a purchase, call the following:
PurchasingManager.initiatePurchaseRequest(java.lang.String sku)

The callback function you need to implement is the following:

PurchasingObserver.onPurchaseResponse(PurchaseResponse purchaseResponse)

Using In-App Billing: Determining Which Items Have
Already Been Purchased
The PurchaseResponse field in the callback to the following is set to ALREADY_ENTITLED when an
item has already been purchased (of course, the item in question must be an ENTITLEMENT product
as set in the distribution portal):

Using In-App Billing: Consumable Purchases
Consumable purchases are simply non-entitled purchases. Once they are bought, the app must
track their use. They can be repurchased at any time.

www.it-ebooks.info

http://www.it-ebooks.info/

93CHAPTER 7: In-App Billing: Putting a Store in Your Application

Supporting In-App Billing with Multiple App Stores
As of this writing, there is no good solution that acts to abstract away the issues of dealing with
multiple app stores for in-app purchasing. However, an open-source project called OpenIAB is in the
works that may change that. OpenIAB is a part of the One Platform Foundation, a global initiative to
help developers submit their apps across multiple alternative app stores.

Although the code is not yet ready for prime time (or even finalized), you should track its
development because once the API is released, it will dramatically simplify the problems of dealing
with multiple in-app purchasing stores. You can learn more at the following web sites:

One Platform Foundation: 	 http://www.onepf.org/

OpenIAB (Open In-App Billing): 	 http://www.onepf.org/openiab

Summary
Android developers have an opportunity to monetize their applications in novel ways using in-app
billing. In-app billing is perfect for selling virtual goods within the application and it works well if
developers can create a subscription for their goods. It isn’t for every type of application, but it is a
great way to build a relationship with customers before requiring them to open their wallets.

Setting up an application for in-app billing can be complicated, both because the implementation
details are nontrivial and because there is a lot of fragmentation in the market, with different app
stores requiring their own in-app billing solution. Particularly if your in-app billing application is
intended primarily for tablets, you cannot address a large chunk of your customer base if you don’t
deploy your app in at least a few different app stores.

Although there are early efforts to simplify the process of writing in-app billing solutions for multiple
marketplaces, at the moment it’s a nontrivial proposition, and the benefits of in-app-billing should be
weighed against the complexity and overhead of the solution.

Checklist: In-App Purchasing
Does your app benefit from product or subscription in-app purchases? Ideally, 	
your app should be one that builds a relationship with the user, delivers
significant value, and creates an opportunity for multiple purchasing events.

Does your app meet the requirements for in-app purchasing? Network access? 	
Digital content?

Have you thought about which app store is best suited to your app? Will you 	
need to support multiple app stores?

Will you need to host purchasable content for your app?	

www.it-ebooks.info

http://www.onepf.org/
http://www.onepf.org/openiab
http://www.it-ebooks.info/

95

Chapter 8
Making App Marketplaces
Work for You

At this point, we assume that you have written your application, tested it, and found that things are
looking great. Now it is time for your app to join the more than 700,000 apps already available for
Android. How can you make your app stand out? How can you best compete for the attention of the
more than 500 million Android users in the world? Let’s find out.

Uploading to an App Store
In this chapter, we present everything you need to know about getting your application on Google
Play and other app stores. We are going to assume that your application is running without error,
which is necessary to get it on the Google Play. Other app stores might have stricter requirements.
I’m sure that you have discovered that getting the application to run without errors is just the
beginning. You might find that your application does exactly what you programmed it to do, but still
not what you want it to do. They can be two different things.

Eventually, you have to meet your launch date deadline, and if you can’t get the application to be
perfect, you should at least have it running smoothly. If you don’t get everything you want on your
application, relax! You can always update it later.

As discussed in Chapter 1, submitting to Google Play is easier than the Apple App Store because
there isn’t any approval process, which means that you don’t have to sit around and wait for Google
to get back to you. It also means that shortly after you finish all the steps in this chapter, your
application will be ready for downloading by Android users around the globe.

This is where it gets pretty exciting because you are about to have a grand opening for your
application. The potential for users and profits awaits, and your application will be available for
review on Google Play. You had better make certain that it is worthy of five stars!

www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 8: Making App Marketplaces Work for You

How Refined Is Your Android Application?
If the answer is “not very,” you might want to hold off on your marketing. Marketing is all about
showing people your best product so people fall in love with it and want it for their own. If your
product is mediocre, the relationship could be over before it even starts. Android users are a fickle
bunch; even for free apps, they expect things to work well. If you are selling a paid app, even the
smallest issue can alienate your potential customers. Furthermore, many app stores simply won’t
accept your app unless it works well.

This was the case for Mark’s first application. He knew that he wanted it out by a certain time and
he released it even though it wasn’t completely ready. Mark added a disclaimer on the splash screen
that read, “This application is still under construction. More features are coming soon. Please do not
review yet.”

Even though that disclaimer is somewhat unprofessional, it was necessary. The last thing you want is
a one-star review for your application because you haven’t finish it properly.

Eventually, Mark could make the updates necessary to alter the application, and when all the
activities worked, he felt that he could take down his “pardon our dust” disclaimer. He didn’t turn up
the marketing until he had something to brag about.

You have to shift gears, as far as marketing is concerned, as you go from pre-release buzz to
post-release buzz. That is something that we will go into detail about in the next chapter, but now
we want to briefly address those who are entering the marketplace for the first time.

What to Do Before You Submit to an App Market
Here is what you want to have sorted out in advance on your application before you submit it to the
Android Market:

The application should run without any bugs. This may sound obvious, but it 	
is sometimes difficult to find them. The last thing you need is an application
that has even one Force Close window. If this kind of error happens even once,
your users could give your application a one-star rating. Before you submit to
an Android Market, you should test every button, feature, and activity to make
certain that it runs without a problem. Ideally, you have followed best practices
for debugging—including unit testing—that we discussed in Chapter 5. You also
might want to do a round of beta testing, also discussed in Chapter 5.

Test your app layout in portrait and landscape mode. Your application might look 	
awesome, but you had better make certain that it looks just as awesome when
you turn your Android device sideways. Auto-landscape is a great built-in feature
for Android, but it may inadvertently distort your application’s look. It is possible
for a developer to turn off this feature; the emulator can show you what your
application looks like in both views. Similarly, your application might look great on
your phone, but what will it look like on an older low-res phone or on a tablet with
a giant screen? Make certain that you get a good look at your application on a few
actual Android devices and Android versions before you do an official release.

www.it-ebooks.info

http://www.it-ebooks.info/

97CHAPTER 8: Making App Marketplaces Work for You

You can also change the screen resolution on the emulator when testing layouts
for different devices. Note that it is possible to have entirely different layouts
in portrait and landscape mode. Simply make a directory called layout-land
under your application’s res directory, and those layout files will be preferentially
selected when your phone is in its landscape orientation.

Make it easy for someone to give you a review. If you have a good application 	
and you think it is worthy of five stars, make certain that the user can easily give
you the rating that you feel you richly deserve. You can set up the application to
prompt the user to give you a review.

Although it isn’t possible to go directly to the ratings page in Google Play, it is possible to bring up
your app in the marketplace. The basic code to do so looks like this:
 
Uri marketUri = Uri.parse("market://details?id=" + getPackageName());Intent intent=new
Intent(Intent.ACTION_VIEW);
Intent.setData(marketUri);
startActivity(intent);
 
Add enough logic so that your request for ratings doesn’t annoy your user. Fortunately, others have
built libraries to accomplish exactly what is needed. AppRate is a jar file that does nearly everything
you could want. You can learn more here: https://github.com/TimotheeJeannin/AppRate

Alternatively, this little code snippet also gets the job done: http://www.androidsnippets.com/
prompt-engaged-users-to-rate-your-app-in-the-android-market-appirater

If you and your company have other applications that you want to sell, you can link to those apps
in the store from within your application. The technique is very similar to what we just described,
except YOUR_OTHER_APP is a String set to your other app’s package name, as declared in the
manifest:
 
Uri marketUri = Uri.parse("market://details?id=" + YOUR_OTHER_APP);
startActivity((new Intent(Intent.ACTION_VIEW)).setData(marketUri));
 
Set up your ads. If you want to maximize your profits, make sure that those ads are in place with
AdMob, Mobclix, or whatever ad method you decide to go with. See Chapter 6 for how to set that up.

If you plan to promote other applications within your own application or plan to put a market within
your application, set up your in-app billing (see Chapter 7 for how to set it up). Remember that each
marketplace can use its own in-app billing solution, and they are generally not compatible with
each other. If you need in-app billing, you either need to stick with only one app store or build logic
into your application to handle in-app purchases differently, depending on which store the app was
purchased from.

Have a good description set up. Your Android application is required to have a description that is
fewer than 4,000 characters. It is wise to have one that is well thought out, rather than one that
sounds like you winged it. Remember that your description is a critical marketing tool. Don’t be
afraid to sell your app in the description.

www.it-ebooks.info

https://github.com/TimotheeJeannin/AppRate
http://www.androidsnippets.com/prompt-engaged-users-to-rate-your-app-in-the-android-market-appirater
http://www.androidsnippets.com/prompt-engaged-users-to-rate-your-app-in-the-android-market-appirater
http://www.it-ebooks.info/

98 CHAPTER 8: Making App Marketplaces Work for You

The Screen Shot
Part of the process of submitting to a market includes taking screen shots of your app. Although app
marketplaces have different rules about how many screen shots you can use, assume that you will
need at least three, and typically more is better. Your screen shots should tell the story behind your
app. Ideally, a potential user should be able to piece together the purpose of your app merely by
glancing at your screen shots. Also, you should have a video ready (we discuss how to make a video
in Chapter 9). When it comes to screen shots, you do not want to use anything that isn’t pulled off
the screen of the application. You need to show potential users precisely what they will be getting
when they download your application.

Grabbing a screen shot is easy if you are using the official Android IDE. Simply switch your application
into DDMS mode (Window ➤ Open Perspective ➤ DDMS) and run your app. At the top of the Devices
pane, you’ll see an icon of a camera. Pressing this button takes a screen shot for you. You can then
save this screen shot to the location of your choice—you will then have a perfect shot of what is on the
screen of the Android device at that given moment.

Selecting the Proper Screen Shot
We all know the old cliché about how a picture is worth a thousand words, and most Android users
“read” the pictures of your application on the Android Market rather than reading the description.
It is important for developers to put their best photos forward when it comes to screen shots.

In other words, don’t just go through your application and take screen shots of the main menu screen.
Your aim is to try and find the best visual example of your application in action. For this reason, you might
not want to use the menu screen because the menu screen is usually a motionless layout of buttons.
What you are looking for are screen shots that show your application in motion. If you have a gaming
application, you want to show a very exciting level. The key is to tell a story with your screen shots.

For example, BPM Detector uses four screen shots to illustrate its capabilities. The first screen shot
shows the default skin in action (see Figure 8-1). You can tell at a glance that the app is detecting
beats per minute (BPMs) in a range between 60 and 120, and the current BPM is 60.

www.it-ebooks.info

http://www.it-ebooks.info/

99CHAPTER 8: Making App Marketplaces Work for You

The next screen illustrates largely the same thing using another skin, except the BPM range is empty
(see Figure 8-2). Now it’s clear that the app supports multiple skins.

Figure 8-1.  A screen shot from BPM Detector

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 8: Making App Marketplaces Work for You

The third screen illustrates “nerd mode,” which displays a spectrogram of the sound data. This is yet
another screen in action (see Figure 8-3).

Figure 8-2.  Another screen shot for BPM Detector

www.it-ebooks.info

http://www.it-ebooks.info/

101CHAPTER 8: Making App Marketplaces Work for You

Finally, the fourth screen shows the preferences dialog box, which explains how you to select
between all these modes (see Figure 8-4).

Figure 8-3.  Another screen shot of BPM Detector

www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 8: Making App Marketplaces Work for You

In general, you should think about which features you are boasting about and find a screen shot that
exemplifies them. For example, if you are selling a document scanner that uses the Android device’s
camera, use a screen shot showing the camera view of a document being scanned, with the text
“Click camera to scan the document.”

Notice that you might have to alter the programming code a bit in order get a decent screen shot.
Sometimes this is necessary so you don’t have a screen shot that looks dull and boring. When your
application is on the Android Market, you want screen shots that are visually compelling. You want
a user to look at them and say, “Oh, I see what it is; I have to download that.”

You also need to ensure that your screen shots are the proper dimensions and file format. The Android
Market specifies 320×480, 480×800, 480×854, or 1280×800 in 24-bit PNG or JPEG. The Android IDE
captures screen shots in your phone’s native resolution. We plugged our Droid X in when running the
IDE and got an instant 480×854 screen shot. If your phone uses a nonstandard screen resolution, you
need to adjust your screen shot dimensions with a program such as Microsoft Picture Viewer. You can
also use the emulator to capture screen shots and, of course, you can set it to any screen resolution
you like. Unfortunately, for some applications, the emulator does not render graphics fast enough,
and the screen shot smears.

Figure 8-4.  A screen shot of BPM Detector to use as a screen shot to demonstrate the preferences option

www.it-ebooks.info

http://www.it-ebooks.info/

103CHAPTER 8: Making App Marketplaces Work for You

Application Description
Other than your screen shots, your application description is the primary way users learn about your
application. The best place to start is by analyzing your competitors’ descriptions. See what you
think works and endeavor to do a better job than they have.

You might want to explicitly mention why you’re better than the competition. Be sure and work in any
keywords that you think will help people find your app when they’re searching.

If you’ve been lucky enough to win any awards, be sure and include them. If not, you can still work in
a few quotes from happy users.

At some point, you should include a feature list, so that people know exactly what they’re getting.

If your users could benefit from instructions on how to use your app, you can also include that in the
description, but it should probably be near the bottom.

Many app stores don’t allow fancy formatting codes in the description, so you might have to stick
with plain text. Google Play is known to support basic emphasis tags such as , <i>, and <u>.
Embedded links don’t seem to be supported.

The Icon
There used to be a dandruff shampoo that had the slogan, “You never get a second chance to
make a first impression.” Both in the marketplace and installed on a phone, your app makes its first
impression with its icon. Remember, app marketplaces do not take kindly to flakes. Let’s say
that someone is browsing through an app marketplace and has found your application. What is
it that they will see? Along with the name of your application, design company, rating, and cost, there
is the first impression in visual form: the icon. Even though “you can’t judge a book by its cover,” the
fact is that most people do. Not only that, they look to the icon and hope to get some idea about
what the application does. That icon is more than just the square that the user taps to access your
application; it is the symbol of your application. Countries have flags, companies have logos, and
apps have icons.

Your chosen icon should epitomize the functionality of your application. Take the icon from the
company Waze, for example (see Figure 8-5). Note the happy face, which is so well known, it is,
for lack of a better word, iconic. You’ll then notice that the smiley face isn’t on a yellow circle, but
a dialog balloon, like the type in most comic panels. You’ll then notice that the dialog balloon has
wheels. You may even notice the curvy lines beside the balloon, which is an international indicator
that it is getting a signal. The sun is also out, which signifies a nice day outside. Also notice that its
smile isn’t a mouth, but something that you might see on a U-Turn sign.

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 8: Making App Marketplaces Work for You

What does a first-time user glean from this simple drawing? This happy dialog balloon is taking a
leisurely trip—but it is not alone; it is connected. It conjures up the culture that Waze is selling: it is
“a free social traffic and navigation app that uses real-time road reports from drivers nearby to save
commuting time and improve your everyday driving.” Even though this description (based on its
actual description on the Android Market) isn’t completely conveyed by the picture, it is enough to
give a potential user a hint of what it actually is.

The Waze icon represents a creative approach to describing the function of the underlying app.
However, most applications are so simple that a more direct approach will work fine. For example,
if you are creating a gaming application called Zombie Baseball, just have a picture of a zombie
holding a baseball bat. You can decide whether it is better to see the full zombie body at bat or just a
skeletal hand clutching a bat. There is an actual application from Halfbrick known as Age of Zombies
that uses the icon in Figure 8-6.

Figure 8-5.  The Waze icon, a picture that says a thousand words

www.it-ebooks.info

http://www.it-ebooks.info/

105CHAPTER 8: Making App Marketplaces Work for You

As you can see, this dinosaur is partly skeletal, which means he is a zombie dinosaur. This means
that you are facing a game with zombie dinosaur enemies, which are quite unusual video game foes.

Chances are, you’ll probably come up with several ideas for an icon and have to narrow it down to
just one.

Figure 8-7 is another example of an obvious icon. It comes from a gaming application known as
Alchemy, which is a very addictive app. The game involves mixing elements (which appear to the
user as icons) together to form new things. Considering the obvious association between alchemy
and the use of potions, why wouldn’t you use a beaker like this for an icon?

Figure 8-6.  The icon for the Age of Zombies

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 8: Making App Marketplaces Work for You

When deciding on a look for your icon, it helps to look at what your competition is doing. Please
note that you don’t want to imitate what your competitors are doing; instead, always try to figure
out what they have not thought of yet. You definitely don’t want to reproduce copyrighted or
trademarked images because doing so could lead to a lawsuit. You want to create something as
new as possible and to study your competition to make certain that your icon doesn’t bear too much
resemblance to theirs. One thing you should certainly try to do is to match the style of your icon to
the overall style of your application. For example, if you choose red and black for the colors of your
icon, you should probably feature those colors predominantly in your app. Having a unified style also
helps when designing your logo, and you should put a lot of thought into such “trivial details” as
your logo.

Google requires that your high-resolution icon have a resolution of 512x512 pixels in 32-bit PNG
format with an alpha channel. You can use most graphics-editing software to output this format.
Other app stores might require other resolutions.

Other Graphics Resources
Many app stores, including Google Play, optionally allow a promotional graphic and a feature
graphic. You should strongly consider including these graphic resources if you can.

Video
Your video should show what your application will do as well as highlight all its nifty features.
Unfortunately, it is difficult to make a video about your application when you don’t really have much
to show yet, unless you can work up some sort of teaser/trailer.

If you haven’t done so already, set up an account on YouTube. You need a place in which you can put all
your footage about your application, so you might as well do it on the most popular video-sharing site.

Making a video can be tricky, and putting up a video of low quality can tarnish the reputation of your
application. If you can get a video camera that can shoot high-definition video, you should be able to
mount it on a tripod and lock it into one position so you can get some shots of your application on an
Android device. One good example of a company that did this is PlayOn. The video is simply one person
showing how the application works on an Android device. Not surprisingly, this is the best type of demo
there is to show on video. You can watch this video at http://www.youtube.com/watch?v=Ei1otuNk8oM.

Figure 8-7.  The icon for the popular app Alchemy

www.it-ebooks.info

http://www.youtube.com/watch?v=Ei1otuNk8oM
http://www.it-ebooks.info/

107CHAPTER 8: Making App Marketplaces Work for You

Certain smartphones, such as the Samsung Galaxy S series, support video out. By recording this video
out, you can make a video screen grab for use in place of or in addition to your externally shot video.

Many video-editing packages exist to help you produce a polished finished product. Feel free
to use your favorite. If you are new to video editing, Microsoft Movie Maker is free, easy to use,
and more than adequate for new movie makers. You can download it here:

http://www.microsoft.com/en-us/download/details.aspx?id=34#Overview

Multiple Marketplaces
Even though Google Play has the largest marketplace, there are many reasons to put your
application in other stores. For example, you can go to the Amazon Appstore, which will give you
access to a worldwide audience. The Amazon Appstore is smaller, but is growing fast. In fact,
it supposedly generates far more revenue per daily user. On the other hand, there are far fewer daily
users on Amazon. The Kindle Fire is a very popular device and is responsible for a lot of downloads
per day, but it can’t hope to match the size of the overall Android user base. Amazon is currently
waiving its $99 annual developer fee, and as long as that remains true, it’s probably worth giving
it a go. Consider, however, that the Amazon app approval process is much slower than for Google
Play. Also, the Amazon team write their own description for your app. Like Google Play, Amazon
developers keep 70 percent of their app’s sale price.

If you are developing an app for tablets, you should consider that between Amazon’s app store and
Barnes and Noble’s Nook app store, over 40 percent of tablet users exclusively use app stores other
than Google Play. You would do well to consider placing your tablet app in those stores.

There are other app stores worth considering as well:

GetJar is the largest independent cross-platform app store and is also 	
well-known for operating the largest virtual currency on Google Play
(GetJar Gold, available to more than 100 million users). Like the other app
stores, GetJar gives developers 70 percent of the sales price of its apps.
You can learn more here: http://developer.getjar.com

SlideME powers more than 140 original equipment manufacturers (OEMs) 	
preloaded with the SlideME market. It supports a variety of payment processors,
including Amazon and PayPal. Developers typically keep 80 percent of the
purchase price of the app, minus a 10 cent payment. Its developer site is here:
http://slideme.org/developers

As the number one smartphone brand, Samsung offers a large market for 	
Android applications, with support in more than 60 countries. Independent
developers currently keep 100 percent of their sales revenue. That number will
drop to 80 percent after their app has been listed for 6 months, and then to 70
percent after March 2015. Developers can learn more here:
http://developer.samsung.com/distribute/app-submission-guide

Android apps can be repackaged for the BlackBerry 10 and BlackBerry Tablet 	
operating system (OS). Use of the BlackBerry market assumes that you have
ported your app to the BlackBerry platform using the BlackBerry Runtime for
Android. BlackBerry developers keep 70 percent of their sales revenue. You can
find more information here: http://appworld.blackberry.com

www.it-ebooks.info

http://www.microsoft.com/en-us/download/details.aspx?id=34#Overview
http://developer.getjar.com/
http://slideme.org/developers
http://developer.samsung.com/distribute/app-submission-guide
http://appworld.blackberry.com/
http://www.it-ebooks.info/

108 CHAPTER 8: Making App Marketplaces Work for You

In most cases, you should place your app in Google Play and then consider what other app stores
might be worth your time. Once you have developed your app and have all your graphics resources
ready, placing your app in multiple stores is actually pretty easy, as long as you don’t need in-app
purchasing.

If you have your own web site, there’s another reason to submit your app to multiple app stores:
search visibility. Each app store usually allows you to link back to your official web site, which results
in higher rankings on most search engines.

General Issues with Marketplaces
Think about how your app will appear in the listing and how it will attract users. Most applications are
found because the user actively searches for them using keywords. Make sure that your description
uses a variety of keywords, but be sure that you don’t simply list the keywords. Google in particular
penalizes pages that simply list keywords. Work important words into your description in a natural way.
If you aren’t sure which keywords you should use, ask your friends to describe your app without any
input from you. They might describe it in an unexpected way. After your app starts getting reviews, you
can see which keywords users utilize to describe your app. Make sure to revise your description to
include those keywords. It is important to pick the appropriate names as well as descriptions, and this
can go a long way toward growing your user base.

Your app description is autotranslated in Google Play to every region you opt to market to. In
your description, you should be careful to avoid idiomatic expressions that will not translate well
and would put-off potential users in these markets. For other app stores, your text might not be
autotranslated, but non-English-speaking users can still benefit from the simplified language.

Issues Specific to Google Play
The first 167 characters of your app description are the most important and should contain keywords
that describe explicitly the function of your Android app. When a user performs a search on Google
Play website, a 167-character description accompanies the app icon and is your second chance
(after the app icon) to grab a user’s attention. On a mobile device, the Google Play description is
composed of the app’s tagline and the remaining 4,000 characters, but before the user presses
More, only 6 lines are displayed (approximately 257 characters).

Google requires that product descriptions not be misleading or loaded with keywords in an attempt
to manipulate ranking or relevancy in the store’s search results. Be sure you follow Google’s
requirements, or else you could find yourself banned from the app store.

In general, give priority to the first 257 characters of the app description because they appear
prominently in the Google Market (this is what you see when you run the Google Play app on
your phone).

Also concentrate relevant keywords into the 167 characters because they are 	
the characters seen on the Android Market web site.

Google recommends that the rest of your description area outline the main 	
features of the app in an easy-to-read bulleted list.

www.it-ebooks.info

http://www.it-ebooks.info/

109CHAPTER 8: Making App Marketplaces Work for You

For additional help, you might want to head to the Android Asset Studio for icon generators
(http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html), which allows users
to quickly and easily generate icons from existing images, clip art, or text. Be sure to select the
Generate Web Icon option to get the high resolution icon that is needed.

Issues Specific to the Amazon App Store
Much like Google Play, the Amazon App store requires icons and screen shots. Videos are optional.
When browsing the Amazon App store, the description is not visible until after a user clicks your
icon. In fact, before clicking your app’s icon, all the user sees is the icon, title of the app, the author,
and the rating. Make sure that icon sends the right message!

A small icon image (114x114 pixels) is required, along with a larger 512x512 thumbnail image of the
same image. The image must be stored in PNG format.

At least three screen shots are required, although you may use as many as ten. Screen shots must
be either 1024x600 pixels or 800x480 pixels, and may be taken in either landscape or portrait mode.
The image format for screen shots may be either JPG or PNG.

A promotional image (not a screen shot) that includes your app’s name is required. This image
should be legible after being scaled down to 300x146 pixels and should be designed to be displayed
in landscape mode. The promotional image’s size should be 1024x500 and must be either PNG
or JPG format. All text should be at least 50 pixels from the edge. The promotional image should
not contain pricing information, screen shots, descriptive text, ratings, or any other content that is
presented elsewhere other than the app’s title.

Up to five videos can be placed on the product detail page. Each should be at least 720 pixels wide
and no more than 5 megabytes in size. Supported video formats are MPEG-2, WMV, Quicktime, FLV,
AVI, and H.264 MPEG-4.

The approval process for Amazon is generally quite a bit slower than that of Google Play, and
Amazon is known to be more selective. You can find the additional information here:
https://developer.amazon.com/help/faq.html

Issues Specific to the SlideME Store
It is very easy to get started with the SlideME store. First, you must create an account and then
you will be given the option to upload your application. You need to set a price, list your keywords
(to help SlideME users find your app), and select a category for your app.

Like other app stores, you will need to include a description. SlideME asks for both a short and long
description. The short description is limited to 500 characters.

If your application is optimized for phone or tablet use, you can alert SlideME users of this fact via
a check box. You must declare whether your app uses in-app billing or advertisements. If your app
uses advertisments, you must describe the ad network or networks you use.

A few more details—such as your software license, terms and conditions, and a privacy policy—are
optional.

www.it-ebooks.info

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html
https://developer.amazon.com/help/faq.html
http://www.it-ebooks.info/

110 CHAPTER 8: Making App Marketplaces Work for You

One minor sticking point is that SlideME parses your AndroidManifest.xml file to look for your
application name. The Google Play Store quite happily extracts your application name from your
activity tag (it looks for the android:label tag). Unfortunately, SlideME searches only for the android:label
contained within the application tag. If this tag is missing, SlideME can’t tell the name of your app and
does not allow you to upload it. This is a very minor change to make, but it is a bit of an annoyance.

SlideME displays at least 12 lines, perhaps more, of text when users search for apps. Screen shots
and icons are also required. SlideME has an approval process for apps that might take as long as
four days. To begin, you need to create a developer account here: http://slideme.org/developers

Other App Stores
GetJar displays 2 lines (about 15 words) of description when users search for apps.
Those first two lines are critical to getting noticed. Screen shots and icons are also required.
A detailed tutorial on uploading your app to GetJar can be found here:
http://blog.getjar.com/developer/tutorial-upload-your-app-to-getjar/

The Samsung App Store doesn’t display a description when users search for apps. Screen
shots and icons are required. You can learn how to submit your app to Samsung here:
http://developer.samsung.com/distribute/app-submission-guide

The BlackBerry World app store displays a two-line (about eight-word) description when users
search for apps. Screen shots and icons are required. Learn how to submit your Android app to the
BlackBerry market here: https://developer.blackberry.com/android/

Summary
Is your app ready to be placed in the marketplace?	

Do you have at least three great screen shots that explain the essence of 	
your app?

Do you have an application description that explains your app and catches 	
the reader’s attention?

Do your icon and other graphics resources look professional and comport with 	
all the proper formatting requirements?

Have you decided which marketplace is best for you? Or have you decided to 	
use more than one?

www.it-ebooks.info

http://slideme.org/developers
http://blog.getjar.com/developer/tutorial-upload-your-app-to-getjar/
http://developer.samsung.com/distribute/app-submission-guide
https://developer.blackberry.com/android/
http://www.it-ebooks.info/

111

Chapter 9
Getting the Word Out

As a developer, you will find that is simply not enough to put your application out on Google Play
and other app marketplaces and expect a whole bunch of downloads. Getting your application out
is only the first step, and what is needed is a marketing plan that utilizes the appropriate promotional
channels. This chapter discusses both the way to set up your marketing plan and the promotional
channels you can pick from.

It’s always good to have a plan. This chapter will introduce a number of marketing techniques you
can use, but not all of them will be a good fit for your app. Perhaps you might not have the budget
for the more expensive techniques, or your target market might not be reachable using certain
techniques. For example, if your market is international, you might not benefit from local radio ads.

A full marketing plan is probably overkill for a company with a single app. However, elements of a
marketing plan can still be useful when deciding how to best address your market.

Marketing is all about communicating the value of your product to potential customers. Before you
can communicate why a customer should use your app, you should be sure that you understand why.

A lot of the work you did (well, we hope you did it) in Chapter 2 when defining your mini-business
plan can also help you with your marketing plan. Remember when you determined the problem
your app solves, analyzed your competition, and determined the target market? It is now time to
think about those things in a different context. A SWOT (Strengths, Weaknesses, Opportunities,
Threats) analysis is a useful way to think about how to frame your message to your customers.
By understanding your internal strengths, weakness, and external opportunities and threats,
you can craft a message with an eye toward your position in the marketplace. Naturally, your
strengths and weaknesses should be considered with respect to the problem you are trying to
solve and with respect to your competitors. Your competitors also help define the threats and
opportunities in the market.

Your company’s strengths and weaknesses are internal issues. As such, reflecting on your
company’s culture and goals can help you uncover strengths and weaknesses that can keep you on
point with your message.

www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 9: Getting the Word Out

While competitors affect your view of threats and opportunities, so do your customers. So how does
your target market affect your marketing approach? When analyzing customers, you should think
about what drives their decision process. What kind of person will be buying your product? What
would this person consider to be a good “value?” These questions about your target audience,
which were addressed in Chapter 2, help you better shape your message to your customers.

When you understand yourself, your competitors, and your customers, you begin to understand how
to best promote your product. If your app is intended for business use, Facebook might not be
as useful to you as LinkedIn. If your users don’t spend a lot of time online, maybe trying to get written
up in print journals is a good approach. If your competitors aren’t getting good traction with young
blacks, and you see an opening, then maybe you should focus a lot of energy on Twitter, which
does well with both African-Americans and young adults. If your app will sell for a high price, online
advertising might make sense. If your app is ad-supported, you might need to resort to free forms of
advertising. There are endless possibilities here, but they all begin with a SWOT analysis. Keep your
SWOT analysis in mind as we talk about promotional channels. Some promotional techniques will
be right for you, and some won’t.

Establishing a marketing budget will help you make a decision about what you can and can’t afford.
We will discuss a range of marketing activities you can pursue, and many of them are completely free.
Others can be quite expensive, but the time may come when that money will be well spent. In any
case, you need to budget for marketing and sales costs. If you are serious about making money
with your app, you should at least allocate space in your budget for a web site and some business
cards. These are extremely low cost items that will go a long way toward establishing an air of
professionalism. If money is tight, you can use your personal phone number for business and work
from your home. Invest the money you’ve saved in advertising. We’ll talk about that later, but let’s
start with your web site, which is the centerpiece of any promotional effort in the Internet age.

Preparing Your Web Site
Having a web site is critical if you want to be taken seriously. Any promotion you do should direct
people to your web site, in which they can learn more about your app and then (hopefully) download
or buy it. Fortunately, these days building a basic web site is easy, even if you’re not technically
savvy. Many online tools exist that allow you to easily create your own site. In Chapter 2, we
discussed how to set up a web site for testing your market demand hypothesis. You can use the
same tools to create your real web site. Maybe now is the time to upgrade to a paid account and
host your own domain.

If it exists at all, your web site probably doesn’t look like much at this point. Maybe you used it as a
place to build your community or as a placeholder until you can get your application going. In other
words, your web site may be nothing more than a shop with “coming soon” signs on it. Now you
need to make it an effective selling tool for your applications. Remember that your goal is to convert
viewers into app users.

Now is the time to prep your web site so it is set up to sell. This means that you will make it clear
that you are in the application business. Note several elements in Figure 9-1 that show how to
display an application on your official web site.

www.it-ebooks.info

http://www.it-ebooks.info/

113CHAPTER 9: Getting the Word Out

Figure 9-1.  As your launch day approaches, your web site needs to be ready for an influx of users

Figure 9-1 shows Roy’s web site. As you can see, the taskbar at the top makes it easy for a web site
visitor to find apps. It is also set up so these applications are easily available with just a click of a
mouse. In addition to the description of the application, showing the application running on a device
is a convention for an application’s web site. For example, you can run an image of your application
running on an Android phone, but your web site can show a tablet if your application is optimized
for that.

If you like, you can put a video on your site, and we discuss how to make a video of your application
later in this chapter. After all, you might as well show the users what your app looks like running on
an actual Android device.

If you want to, you can devote an area to listing features and include benefits and requirements.
You can also put up some reviews and testimonials. For example, you can create a link that allows
the user to easily share on Facebook and Twitter. We highly suggest that you create a touchscreen
button on your application that links directly to your web site. Follow the example of the code there
so your application users can visit your official web site from your application as well as share on
Facebook and Twitter (as discussed later in this chapter).

As you can imagine, it is best if potential users can easily find your web site via a search engine.
These days, the best ways to improve your search ranking is by hosting honest and useful content.
As such, you will want to add as much useful content as you can to your site.

www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 9: Getting the Word Out

You’ll also want to make a mobile version of your site. There are many ways of doing this, and you
can consult one of these many sites to see how:

Google Conversion Utility (	 http://www.google.com/gwt/n)

Mobeezo (	 http://www.mobeezo.com/)

Mobify (	 http://mobify.com/)

mobiSiteGalore (	 http://www.mobisitegalore.com/)

Winksite (	 http://winksite.com/site/index.cfm)

Zinadoo (	 e-mail.zinadoo.com/)

Blogging
Although you might not be a blogger or even like to write, blogging is another free tool that you
can use to build a web presence. A web site with relevant blog posts almost always ranks higher in
search results. So we say, set up a blog! It’s not hard—most of the free web site tools support blogs.
As your launch date grows closer, you should blog more. The final stages of making an application
are often quite interesting, and this would be a good time to start posting about the exciting
challenges you have overcome.

Figure 9-2 is a blog entry from Mark’s web site. Note that the way the post is written conveys that
you are a human being as well as a developer. It shows that you are just trying to make something
work, not trying to do something that will make money. You might notice that there are things that
you don’t want to put in a blog, even if they are true. You might not want to state that a certain
company that you are working with is giving you a hard time because this hurts the reputation of the
company. Also, you might want to avoid Not Suitable for Work (NSFW) language.

Figure 9-2.  What a blog entry from an application’s web site might look like. This one was made with WordPress

www.it-ebooks.info

http://www.google.com/gwt/n
http://www.mobeezo.com/
http://mobify.com/
http://www.mobisitegalore.com/
http://winksite.com/site/index.cfm
http://e-mail.zinadoo.com/
http://www.it-ebooks.info/

115CHAPTER 9: Getting the Word Out

If you want to, you can write several blog posts at once, and then set it up so that they go live
exactly when you want them to. This is a trick you can use so you don’t have to spend time writing
blogs daily during the week. If you are using a WordPress template, it is quite easy to do because
you can schedule a date and time for your blog posts to go live. To do this in WordPress, click Edit in
the Publish Immediately section under the Publish column on the right.

This leads to the question of what you are going to write about. You need to think about your
company’s culture and goals to answer that. Think about what your followers on Twitter and
Facebook would be interested in hearing about. One good idea is to talk about the features that you
have been promising. Building an application is like making a movie, and we’re sure that you have
seen many making-of-a-movie features on DVDs. Because only a few of these behind-the-scenes
documentaries are really interesting to watch, by analogy, make certain that your posts have a hook.
If you can write about creating your application in an interesting way, the blog will draw readers in.

Effective Product Launches
After you have a web site set up, you can start planning your product launch. The day your
application launches will be a great time for marketing because you will actually have the mobile
software to show off to members of the media. Even if your launch is really a beta release, you can
still benefit from some marketing. Just make sure that you set expectations correctly. And remember
that a beta release isn’t a justification for shoddy software; you simply shouldn’t release it to the
public if your software is known to be bug-ridden. Our point is that when that launch date hits,
you should have an application worthy of telling the world about.

Your launch day promotional strategy will depend on what you hope to accomplish. If you are
soft-launching a beta release, you might want some publicity, but not too much. After all, if a reviewer
discovers serious problems with your app during the beta trials, you don’t want the whole world
to know about it. At a minimum, start with your web page and announce your product launch on
your home page. Post it on your blog, and generally make certain that it is known and obvious the
moment a viewer hits your site.

Your promotional strategy also depends on the marketing analysis you did (we hope) at the start
of this chapter. The rest of this chapter describes different promotional channels you can consider.
Most of the channels we propose are free or low cost. They include social networks, online media
contacts, offline media contacts, online forums, and guerilla marketing techniques. The paid
promotional strategies won’t be for everyone, but if your budget allows it, you can consider setting
up a booth at trade shows, as well as using online advertising and traditional advertising.

Marketing Using Social Networks: Facebook,
Twitter, LinkedIn
We live in the Internet age, which has many advantages. For example, if you have something to say,
you don’t have to make a video to be broadcast or type something up to be printed. These days,
all you need to do is post, and everyone across the world can see what you are doing. However,
the enormous scale of the Internet works against the lone person who is just trying to get the word
out about his or her accomplishments. Any person who is into Internet marketing will tell you that
you need to have a good social media presence.

www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 9: Getting the Word Out

Social media is a great way to get the word out on your app. It’s free, and readers are already at
their computer or smartphone, so they’re no more than a few clicks away from downloading your
creation. Let’s start talking about the different social media players, and how they can work for you.

Twitter
Perhaps you’re already a Twitter user. If so, perhaps you left tweets that informed the public of your
app development process even before it was released. By now, you have probably found a lot of
people to follow, and you should have some followers. You should then go to Twitter and make
certain that you tweet the release date, allowing your followers to know what to expect—like the
hype of a movie preview. If not, it’s not too late to develop a following on Twitter.

Although it’s somewhat difficult to work with at first, you should be comfortable with Twitter on your
computer and mobile device. If you want to, you can use a dedicated client app such as Twitterrific,
Echofon, TweetDeck, or the official Twitter app for Android to keep track of it all. You can even head
to oneforty’s comprehensive Twitter apps directory at http://oneforty.com to explore all manner of
Twitter tracking.

You should use Twitter like you use the comments on your blog. Figure out what potential users have
to say about your application and address them directly. You can then tweet about how the app is
going—microblogging, a method of communication on the status of your app with short brief posts,
is an excellent medium for addressing issues without giving away too much detail.

As you reply to comments, you put a human face on your product and show the world that you
are not just a soulless machine whose only purpose is to make money. In the same manner,
don’t constantly promote your application, or you will come off as a 24/7 advertisement that
people will find off-putting.

You also have to avoid the risk of over-advertising by remaining on topic. You don’t want to start a
whole series of tweets about things that have nothing to do with your application. It is all right to go
off on a tangent occasionally, but overdoing it can lead to another type of audience—or worse,
no audience.

Another useful Twitter tool is the hashtag. A hashtag is represented by the pound symbol (#) and
is used to mark keywords or topics in a tweet. Users put a # before relevant keywords in tweets in
order to categorize those tweets for an easier search. Other Twitter users can click a hashtagged
word in any message and it will show them all other tweets in the category. Hashtagged words that
become very popular can end up as trending topics.

The important thing to understand about Twitter and other social networks is that quality is always
better than quantity. The number of followers you have is not as important as who these followers
are. It is the difference between 10,000 Facebook friends and 100 true friends.

In the same manner, you don’t want to just start following people so you can be followed. You want to
follow someone from whom you can learn. Any Android (or even iOS) developer is fair game because
you will have to deal with similar issues. You should definitely follow journalists because they are people
of influence. Don’t forget your friends and peers as well. Finally, follow those who are following you.

You should also take the time to retweet other people’s posts, especially if they are something that
your audience would enjoy. The more you do this, the more others will eventually retweet your posts.
Think of it as Twitter karma.

www.it-ebooks.info

http://oneforty.com/
http://www.it-ebooks.info/

117CHAPTER 9: Getting the Word Out

You should take some time to create a Twitter list as well. This way, you can organize people into
groups and follow them with a quick glance every day. For example, you can name one group
Developers, and see what is trending in the Android development community.

Facebook
Facebook is the darling of social media. If your app is oriented toward consumers (as opposed to
business users), you need to have a Facebook presence.

Be sure to create a separate Facebook page for business. In the past, a business needed 25 “likes”
before it could create a custom URL on Facebook. This is no longer true, so be sure and create
an easy-to-remember URL on Facebook at the very beginning.

If you already have a personal presence on Facebook, make sure to get your friends to “like” your
business page. We humans exhibit herding behavior, so letting readers know that your page is
popular is a great way to get legitimacy. This is known as “social proof”—people look to other
people to decide what behavior is correct. If people heading to your page see lots of “likes,” they will
assume your app is generating momentum. Getting the word through your Facebook page is easy.
Simply do the following:

1.	 Click your Facebook page’s Edit Info link.

2.	 Click the Marketing link.

3.	 Click Send An Update.

You should use this method of spreading the word sparingly because messages like these are
broadcast ad nauseum throughout the Internet. Before your launch date is also a good time to
start using Facebook Insights, a free analytics service. When you log in to your Facebook page
as an admin, you can click the View Insights link to view the metrics about your Facebook page.
By studying this information, you can find out who is looking at what you are doing, which is
information that will be helpful in the future.

LinkedIn
Facebook may be the big dog for consumers, but if your app is intended for business applications,
you should be sure to have a LinkedIn presence. You can read more about how to establish a
company presence on LinkedIn here: http://marketing.linkedin.com/sites/default/files/
attachment/LinkedInCompanyPages_5Steps.pdf.

If you have attended a lot of business seminars or conventions, you have probably amassed a large
stack of business cards. We highly suggest going to LinkedIn and running a search on contacts from
every business card; then send them an Invite to your network on LinkedIn.

If you gain more than 500 connections on LinkedIn, you become a part of the 500+ club that will
show others searching on your LinkedIn profile that you are well-connected. Of course, you will also
have over 500 contacts that you can reach out to in case you may ever need anything.

www.it-ebooks.info

http://marketing.linkedin.com/sites/default/files/attachment/LinkedInCompanyPages_5Steps.pdf
http://marketing.linkedin.com/sites/default/files/attachment/LinkedInCompanyPages_5Steps.pdf
http://www.it-ebooks.info/

118 CHAPTER 9: Getting the Word Out

Making the Press Work for You
The press is a great source of free publicity. Reporters are always looking for a good story, and your
app might just be that story. Be sure to look for media sources that specialize in what your app does.
A more–narrowly focused publication is more likely to be interested in your app and it is also more
likely to connect you with potential customers.

When you are ready to release your app, you should craft a press release to alert publications that
may choose to write a story about your app.

Write a Press Release
A press release is a statement prepared for distribution to the media.

An important thing to consider is who will receive your press release. As a professional blogger,
Mark receives a lot of press releases in his inbox every day. Many of them come from PR firms, and
some are from sites that send out press releases on a daily basis.

Use the Format for a Press Release
Press releases have a format. It isn’t really a standard, but journalists get many of these every day,
and they know what to look for:

	Company logo: You should put your full-color company logo centered at the
top. If nothing else, you want journalists to at least remember your company
name, so make it prominent. Some sources say the company’s name, web
address, location address, and phone number should be at the top, but we
usually see it at the bottom.

	Title: We’ve heard some sources say that the title should be in all capitals, but it
should be at least be in bold. Do not worry about it being too long, but it should
be brief enough to explain what your application is.

	Secondary title: This is not part of the title; it is centered and not in bold.
Here you can add a sentence that discusses your product in detail.

	Date and city: In bold, you should have the date and city of where the press
release originated.

	First paragraph: This is a brief detail about what the press release is about.

	Second paragraph: This is where the journalistic five Ws and H (Who, What,
Where, When, and How) come in. In your case, you should put in who cares,
why you should care, where you can find it, and when it will happen.

	Quote: Press releases generally have a quote from someone within the
company. The quote personalizes and humanizes the press release with an
individual’s perspective.

www.it-ebooks.info

http://www.it-ebooks.info/

119CHAPTER 9: Getting the Word Out

	Final paragraph: As a tech and gadget blogger, Mark always ends his articles
with a final paragraph that explains the price of the item as well as any details
about the point-of-sale. This information is placed at the end for immediate
takeaway value, and a press release is structured the same.

	Company description: This is usually preceded by About (insert company name
here) and then discusses the company in terms of the date it was founded and
what the company does. You should then put your web site URL there.

Example of a Press Release
Here is an example of a press release for a baseball card organizer mobile app:

Your Company logo here

Baseball Card Organizer Now Available on Android Devices–Allows Users to Put Card Collections on their Android Device.

Card Collectors can now take their collection wherever they take their Android phone or tablet.

SEATTLE, WA (October 31, 2011). Company Name, a company known for creating applications on various mobile
platforms, announced today the availability of its Baseball Card Organizer application for Android. The application allows
users to put their baseball card collections on their phone or tablet with the use of the camera on their Android device.

Baseball Card Organizer includes a built-in database that allows the user to photograph the front of the card, as well as
the back with the stats. The user can then enter in information, and organize the cards by teams or just alphabetically.

Users can take their baseball card collections with them without taking their physical baseball card collections with them.
They can flip through their cards by flicking on the screen. Baseball Card Organizer is also good for organizing other types
of cards, such as movie trading cards.

“Most people who collect baseball cards have to keep them in protected cases, and they don’t have the fun of flipping
through them without bringing down the condition,” said Jack Jackson, cofounder of Sample Company. “The Baseball
Card Organizer gives the user the fun of perusing through their collection and not worry about getting sweat on their
investment. Best of all, the user can do this from anywhere.”

The Baseball Card Organizer application is now available at the Android Market, as well as the company web site at
http://www.samplecompany.com. Baseball Card Organizer Lite is free, but the full version is for $0.99.

About Sample Company :

Sample Company was started as a startup company in 2010, devoted to making applications for all mobile applications.
Since its launch, it has created many applications, including More Useful Stuff, Helpful Applications, and More Terrific
Applications.

You will notice in the end how we took advantage of the press release to advertise other
applications.

www.it-ebooks.info

http://www.samplecompany.com
http://www.it-ebooks.info/

120 CHAPTER 9: Getting the Word Out

RSS Feeds and Followers
If you are like us, you read a lot of online journals. We have discovered that you don’t want to spend
too much time clicking bookmarks and reading each online journal or blog one at a time. Yes, it is far
easier to download an RSS reader like the one at http://www.feedly.com and view articles in a short
form, like skimming headlines in a newspaper. This way, you can find out what is trending today, and
your blog or online journal should be set up so anyone with an RSS reader can see what you have
been up to.

By now, you may have a lot of subscribers to your blog’s RSS feed. There are ways of checking to
see how many RSS followers you have and to figure out what your customers might be like when
working on your SWOT analysis. In order to get more followers, you can post a link on all other
social media sites such as Twitter and Facebook every time you do a blog post.

That’s if you want to do it the hard way. We recommend setting up a web service such as Tumblr
or TypePad to automatically put your blog entries on social media sites. It is also possible to set up
blogs by using the aforementioned WordPress, as well as Blogger, LiveJournal, and Movable Type.

You should start looking at the comments on your blog. With WordPress, this is very easy to do from
the template, and it gives you an idea to hear back from what will hopefully be your application’s
following before the application is released. From users’ comments, you might get an idea of
what features might be needed before the launch date or what will need to be added to after the
application hits the market. You should also look for concerns in the comments. For example, if you
see a lot of comments saying that the application is too hard to use, it might be a good idea to take
a look at your user interface (UI).

Sadly, a lot of blog commentary is probably spam. Mark has one blog that generates quite a bit
of comments per day, but half of the comments are unrelated to the articles they are commenting
about. For example, after Mark writes an article about a certain gadget, some guy adds a comment
like this: “Nice well-written article; it reminds me of Toupees for Men.” Then there is the obvious link.
Several of the comments feel generated by a machine, and they are. There are programs designed
to sniff out sites and these machines have been programmed to leave their spam as “legitimate
commentary” on our site. Fortunately, if you use a blog service with CAPTCHA web forms and spam
filters, you can stop this spamming problem before the taint becomes an infection.

Making a Video
We discussed the idea of using a video to market your app in Chapter 8 when we talked about promoting
your app in an app marketplace. But a video is a useful tool outside of the app marketplace as well.
Video-sharing sites are a lot like social networks, and viral videos are one of the best marketing tools.

Plan to do some editing on your video to make it good enough to post online. You can probably get
away with putting an Android device on a clean table and showing people what the app can do.
As we discussed in Chapter 8, some phones also let you record video directly from their screen via
a video out connector.

You can then do a little narration, but you might have to do the audio track later. This goes for any
sound that your application may have, if the microphone on your video camera doesn’t get it.

We have some experience working with video, and we know it always takes longer than you might
think. After all, most two-hour movies take years to make. Don’t make the mistake of thinking you

www.it-ebooks.info

http://www.feedly.com/
http://www.it-ebooks.info/

121CHAPTER 9: Getting the Word Out

can knock out a video that is a few minutes long in just a few minutes. In fact, you might want to
consider hiring a video service to film your application if you can afford it.

Once you have the video, you should definitely put it on your site so people can check out how your
application works. This is especially helpful if you have an application that is difficult to explain.

Online Forums
Online forums exist for nearly any topic. Regardless of what your app is for, there is already a forum
somewhere with people who would love to find out what you are working on. LinkedIn is a great
place to discover professionals with an interest in your field. Google Plus is also a place where
experts congregate. A simple web search can reveal many more forums related to your app.

You may have discovered a number of relevant forums in the process of working on your app.
Be sure and post to the forums when the time is right. Stay humble and treat forum readers as the
experts they are–they spend time learning and talking about the sorts of things your app does. If you
treat them with respect, they will return that respect, which can translate into page hits, favorable
comments, and eventually revenue.

Public Relations and the Media
When interacting with the media, you need to wear your public relations hat. Although it might be
tempting to simply speak your mind and let the reporter do the rest, that’s generally not the best
path forward. Reporters’ jobs are to sniff out a story, and their idea of your story might not match
yours. Your job is to steer them in the right direction with facts and figures that paint the right image.

Be sure and draft some key bullet points before taking a call from the media. These bullet points
should address any concerns the media are likely to have. Remember that a reporter’s job is to
report on both sides of a story. If there is another unfavorable side to the information you are
conveying, be sure to address it in your bullet points. If you don’t, the reporter might, and he or
she might do it in a way you would prefer to avoid. Reporters worth their salt will try hard to get
you away from your bullet points. Consider whether departing from them is worth the risk, even if it
makes for a much more comfortable conversation.

Reporters generally operate by a code of ethics, and they know that deviating from that code will
seriously affect their career prospects. No one will open up to a reporter who is known to twist the
truth. On that note, consider that most reporters will honor your requests to go “off-the-record.”
This can be useful when you want to inform a reporter about something, but want to be sure your
words won’t make it into publication. A related concept is that of “unattributable” speaking terms.
If you ask a reporter to consider what you say as unattributable, it means that they can report what
you said, but they can’t attribute it to you.

Be sure and follow up with your media contacts. Often a little gentle prodding is all that is needed
to get that article out into the world. One technique to motivate a media contacts is to offer them
an exclusive. Use this only if it makes sense, but if you absolutely need coverage from a particular
source, an exclusive can be a useful tool in your tool belt. Over the long term, you should seek to
build a personal contact file with reporters. If you have any particular expertise in an area, be sure
to convey that to your contacts. Over time, you might become their go-to contact for your area of
knowledge. This can turn into frequent incidental write-ups for your app.

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 9: Getting the Word Out

When dealing with the media, you have to think of them as consumers of stories. They aren’t
necessarily interested in your product, but they are interested in your story—if it’s a good one.
For example, Mark has often reviewed applications on his blog, The Geek Church, but the ones that
have some interesting facts in them make the most interesting articles. For example, in reviewing the
application Speakerfy, the developers shared with Mark that Shaquille O’Neal gave the application
an award that the developer did not even enter to win. You had better believe that facts like that
easily end up in Mark’s articles. You should determine what facts about your app make it stand out
from other apps and make certain that you tell them to reporters who want to know.

Printed Journals
Whoever said that print is dead was quite premature, considering the number of newspapers and
magazines that are still in print. We are a long way from an all-digital media society, and you should
take note of the local and national printed journals that cover stories about digital technology.

Mark lives in a small town, and if he needed some press for his application, he would find out
whether the town paper has some sort of tech section or even one on applications. He would then
check the masthead to see who the editor of the tech section is. If the editor is not listed, he would
make a call to the editor and see if he or she would be interested in doing a report on the latest
application for Android . . .Mark’s!

The same rule applies for going to papers or magazines with a much larger circulation, but you don’t
want to be limited to talking to the guy in charge of the tech section. For example, if you have an
application that is made for the stock market, don’t you think the editor of the Investment section of
a newspaper would be interested in this? As long as it is useful, the answer is yes. You should check
the Sunday paper to see what sections your applications could apply to. You should also do the
same for any magazines that might be interested in an application like yours.

After you have carefully revised and reviewed your press releases, you can finally send out the
polished result to a bundle of media contacts. If you want to make it easy on yourself, you can
simply start a new e-mail message and copy and paste your press release. You should use plain
text e-mail format if you want media people to copy and paste your press releases to their articles.
If you are unfamiliar with the world of news blogging, you should know that many online articles
often include a copy of the official press release. In fact, Mark has worked for tech and gadget blogs
that have insisted that he attach the press release to the article.

You should also include a few screen shots with the e-mail (it’s easiest to just use the screen shots
you used when you submitted your application to the Android Market).

You can send other types of images as well, but we would focus on images that you want to see in
an online or printed journal. Every tech and gadget blog that Mark has written for has required him to
include an image of some kind. So you definitely want to make it easy for tech reporters by finding
an image that would be perfect for an article. Consider this the “cover” that readers might use to
judge your “book” (to speak in clichéd metaphors again).

This “perfect shot” doesn’t have to be a screen shot; it could be a picture showing the application in
use by an Android user. For example, if you have some application that improves a camera, wouldn’t
it be terrific to show an Android user taking a picture with your camera-improving application?
The point is that you are looking for the image that will show potential users what your application is.

www.it-ebooks.info

http://www.it-ebooks.info/

123CHAPTER 9: Getting the Word Out

The one thing that we do not recommend is attaching your press release and/or screen shots as
e-mail attachments to your media contacts. Because Mark has been on the other side of the table,
he is less likely to open an attachment, especially if it is a PDF file. PDF files open up Adobe Acrobat
or Reader, which tends to slow down computers a bit. Not only that; having an attached PDF is often
a flag for spam filters, and you don’t want your e-mail to be going there.

When sending out a batch e-mail to the press, do not put all the names in the To section. If you
do this, all the recipients of your press release e-mail will see all the other people you sent it to.
This looks really bad to anyone who works in the media because it makes them feel as if they are
just a name on a list. Worse yet, you reveal your media contacts to everyone. What you want to do
is put all your addresses in the Bcc field so each recipient receives your e-mail without seeing the
other recipients.

You should also look into the option of using campaign management software. These services
can handle not only e-mail marketing but also social media, You can run a search for “Campaign
Management Software” to find many available services, and you might want to check out Constant
Contact (http://www.constantcontact.com) and Swiftpage (http://www.swiftpage.com/).

Giving Media Contacts a Complimentary Copy of Your
Application
Media reviewers are more apt to review an application if you give it to them for free. Mark is a
professional tech blogger and reviewer, and a product can capture his interest if its press release
includes something that says, “Please let me know if we can send this to you to review.” Many
reviewers will say yes because they like getting free things from time to time. Just take Mark’s word
on that one.

Sending media people a complimentary copy is extremely easy. Simply attach your Android
Application Package (APK) file to an e-mail and send away. Keep in mind, however, that your media
contacts can forward your e-mail to friends and give away your paid app for free. This could be an
advantage in disguise because you can ask the media contact to keep your app confidential. Let
them know you trust them, and you will build a stronger more personal relationship than if they have
to enter special codes to get access to your app. On the other hand, if you want to create an air of
exclusivity, you can always place your APK on your web site, behind a password-protected page.
This should be obvious, but never send the media any trade secret information; if you do so, it will
be impossible to assert your trade secret rights later.

Even though it seems like you are buying a review in exchange for a free sample, you’re not. You
have no guarantee that the reviewer will give you a good review simply because he or she received
something for nothing. As a tech reviewer, Mark would never agree to any deal that said that he had
to give a positive review of any review model sent to him. (In fact, no company has ever had the
audacity to offer him such a deal.)

In addition to giving away free samples, it is important to maintain a good working relationship
with your media contacts. After all, these are the people who are doing you a favor by giving your
application some much-needed press. The least you can do for them is send a thank you note for
publishing your article. You don’t necessarily need to make every media person your best friend,
but at least establish a LinkedIn contact. Ideally, you can get them to follow your company’s
LinkedIn page!

www.it-ebooks.info

http://www.constantcontact.com/
http://www.swiftpage.com/
http://www.it-ebooks.info/

124 CHAPTER 9: Getting the Word Out

As someone who has worked as a tech and gadget blogger, Mark has found that he has entered
into strange relationships with tech companies and their public relations teams. There is sort of an
unspoken rule that enables the company to give the tech reviewer something and then the tech
reviewer publishes an article in return. Think of it as a quid pro quo relationship, but the reporter
can give only an honest review. If the product is not of the best quality, the review will reflect that.
Therefore, send out your best product to the media or suffer the consequences of a bad review
that could be worse than any bad review on Google Play. As a tech writer, Mark has often received
products that are so good that he has contacted the app makers to review more of what they have
to offer.

Media people often get bored of looking at the same places for news stories time and time again.
Sometimes they like to find a unique story and it is helpful when these stories come via a
press release.

As someone who is in the media, Mark likes to have contacts who are in the know more than he can
afford to be. He keeps the contact information of PR people and company representatives because
they are a source for information that he may not be able to get otherwise. This book could not have
been written without them, and we consulted them several times when it came to questions about
developing Android applications. In other words, your developer insight could make you a good
source for media people, and those media people could give you some press by quoting you. In this
way, Mark occasionally contacts people he has contacted before in order to get new story ideas.
Imagine that one of your media contacts told you that he or she was looking for new stories and you
just happened to be developing a new application at the time. This is certainly better than making
cold calls to the media!

Other Examples of Low-Cost Publicity: Guerilla Marketing
Guerilla marketing is a phrase that can mean many things, but for us it means using free or cheap
and unconventional techniques to build market share. The general idea is that you develop your
market by investing time instead of money. There are many “guerrilla” ideas that you might be able
to work into your marketing plan.

The classic example is graffiti. Although it might not make sense for an app, if you are promoting
something location-based, perhaps you can use reverse graffiti in select locations. If you aren’t
familiar with reverse graffiti, also known as “clean tagging,” the concept is rather clever. Find a wall
that has graffiti on it and then use some cleaning solution, a bristle brush (or toothbrush), and a
stencil to remove the existing graffiti in a way that leaves an image of the stencil. Your stencil can
be an ad for your app. Because you’re removing only existing graffiti, reverse graffiti exists in a legal
grey zone. After all, cleaning away graffiti can’t be illegal, right?

Twitter, Facebook, LinkedIn, and blogging can all be considered guerilla marketing. Setting up
a Google+ page is also guerilla marketing, and can help with your Google search placement.

Collaboration isn’t exactly a traditional guerrilla marketing technique, but it’s low cost and can
work very well. Find companies with a related (obviously not identical) product who would benefit
from your product. Often they will be interested in building relationships with other companies.
You can refer customers to them and they can refer customers to you. At first, it can be as simple
as linking to their web site from yours, but it can grow from there. Writing “guest” articles on other

www.it-ebooks.info

http://www.it-ebooks.info/

125CHAPTER 9: Getting the Word Out

companies’ blogs to discuss their product (perhaps in relation to yours) can also be a great way to
build a relationship. The companies are happy because you’re doing work for them, and the articles
obviously add to your product’s exposure.

If it fits your app’s description, writing a “how-to” article that mentions your app as part of a solution
to a problem is another free way to get exposure for your app. For example, web sites such as
wikiHow invite users to explain how to do basic tasks. Maybe you have an app that helps kazoo
players tune their kazoos. If so, you could write an article on wikiHow about kazoo tuning. You could
explain the process and invite users to download your app.

Guerilla marketing requires you to think outside the box. The specifics of your app determine what
makes sense for you. There are many resources online that can give you some ideas, but ultimately,
your own creativity must guide you.

Trade Shows
Trade shows are never cheap to attend. A basic booth at a show probably costs four figures and that
doesn’t include travel expenses or the cost to create your booth and advertising materials.
On the other hand, a well-targeted presence at a trade show can generate an enormous number of
customer leads. Often you can tag along to a trade show with a larger company if you play your
cards right. The ideal situation is when a larger company realizes that it can benefit from what you
are doing. The company might consider you the cool new kid on the block and can benefit from
your buzz just as much as you benefit. If that’s not an option for you, you can use guerilla marketing
techniques at trade shows. Perhaps all you can afford is a visitor’s pass to attend. If so, you can
surreptitiously place your card at places throughout the conference location. Even better, create
some swag (with your logo and web address prominently displayed) that people will want. Even if
you can’t attend the conference, you can still benefit by determining the hotels most guests will be
attending and making yourself noticed there. A great guerrilla solution is to create do-not-disturb
signs with your logo and web site displayed and place them on hotel room door knobs (or slip them
under the door if you’re worried the maid will take them away).

Online Advertising
Advertising is the traditional means of marketing. Simply put, you’re paying to get customer leads.
These days, online advertising is on a tear, and traditional advertising (print media, television, and
radio) are stagnant or even losing market share. Still, traditional print is not dead yet, but online
advertising is on the rise.

Because your app lives in the online world, in most cases, you should start your foray into advertising
by purchasing ads online. Forms of online ads can include AdWords (Google), Facebook, other
search engines, ads on specific web properties, and mobile ads (including house ads). Chapter 6
discussed how you can make money with ads as a publisher, but now you’d be on the other
side of the equation. You would be an advertiser who is paying the publishers to feature your ad.
Remember, however, that your cost to acquire a customer is an issue. Particularly for mobile apps,
whose selling price is often only a few dollars, you have to carefully consider the cost of acquiring
a new customer. If you spend $3 in advertising to add a new customer, you’re not going to do very
well if your app costs $2.99.

www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 9: Getting the Word Out

A typical foray into online advertising begins with Google. To begin, you will need to buy AdWords
(adwords.google.com/). The most common ad words are popular, so they are the most expensive.
To benefit the most from AdWords, you need to pick words that refer to your app, but are unlikely
to be used by other advertisers. AdWords supports a prepay option, which can be as little as $10.
Start small and increase your payments as you gain confidence in the results. To learn more,
go here: adwords.google.com.

Facebook doesn’t yet support prepayment for advertising, but there is no minimum advertising
budget. When placing an ad on Facebook, you can target your ad to a particular demographic of
users. To learn more, go here: http://www.facebook.com/help/326113794144384/.

Other popular web sites such as YouTube or Yahoo can also be targeted for ads. But because your
application almost certainly targets a particular submarket, you should try to find a web site that
focuses on that group. Perhaps you have written a game and you can target web sites frequented
by gamers. Or maybe you have a utility that solves a particular technical problem. Find the site
frequented by people who have that problem and you have a great place to advertise. Most Online
media outlets accept advertising, and although posting to their forums or writing an article for
publication are guerilla tactics that can get you visibility on the site, there’s nothing wrong with
running ads if your budget allows it. You’re developing a mobile app, so what better way than to
advertise on other mobile apps? You might already have a relationship with mobile ad networks as
a publisher. In many cases, the ad network can give you a discount if you run ads with their network.
Also, many ad networks support “house ads,” which are ads that you elect to place on your own
applications. For example, maybe you already have a reasonably successful application and you
have released a new application that would appeal to your existing user base. You can use a house
ad to advertise to these existing users. Best of all, house ads are generally free.

Offline Advertising
Although online advertising usually makes the most sense for apps, some applications can
benefit from offline advertising. Particularly if your app appeals to folks who have less of an online
presence, you might be able to reach a large audience by going offline. For example, suppose
that you have written an app that helps building contractors comply with building codes. Maybe
you expect to be able to charge a high price for your app because it offers a useful and highly
specialized functionality. Unfortunately, building contractors don’t spend nearly as much time online
as programmers, so they’re not likely to bump into your app during a web search. You might reach
them very effectively by advertising in conventional trade journals, however.

Ironically, the Internet is a great place to search for offline publications to advertise in. If you are
looking for narrow niches to advertise in, this Wikipedia article lists U.S. magazines by topic:
http://en.wikipedia.org/wiki/List_of_United_States_magazines

If your niche is even narrower and might be served by a technical journal, you could try searching
Springer, currently the largest journal publisher. Note that Apress, the publisher of this book,
is owned by Springer. Its web site is here: http://www.springer.com.

If you are looking for a local newspaper, this Wikipedia article lists U.S. newspapers by state:
http://en.wikipedia.org/wiki/List_of_newspapers_in_the_United_States.

www.it-ebooks.info

http://adwords.google.com/
http://adwords.google.com/
http://www.facebook.com/help/326113794144384/
http://en.wikipedia.org/wiki/List_of_United_States_magazines
http://www.springer.com/
http://en.wikipedia.org/wiki/List_of_newspapers_in_the_United_States
http://www.it-ebooks.info/

127CHAPTER 9: Getting the Word Out

Summary
As you set up your marketing plan, you should answer these questions about key issues:

Does your marketing plan have a budget, schedule, and milestones?	

Do you know your strengths and weaknesses?	

Do you know the outside opportunities and threats?	

Have you identified your customer?	

Does your app service a particular region (even initially), in which local 	
advertising might be useful?

Have you identified printed and online publications that are read by your target 	
customer?

Have you launched a web site?	

Have you blogged about your app?	

What social networking sites make sense for you to utilize?	

Does guerrilla marketing make sense for you?	

Will you be attending shows? Can you piggyback on a vendor or customer 	
of yours?

Does paid advertising (online or offline) fit your budget and your business plan?	

r
www.it-ebooks.info

http://www.it-ebooks.info/

129

Chapter 10
After You Have a User Base

At this point, we are going to assume that you have had some moderate degree of success after
releasing your application. You now need a way to maintain your user base after it has gone live.

Customer Support
Once your app is deployed, your users are sure to have questions, complaints, and suggestions.
At the very least, you should provide them with an e-mail address so they can send questions.
To reduce the time you spend fielding these questions, you will definitely want to provide some
in-app or online help.

Regardless of how you reach out to your customers, you should make sure that you interact with
them in a way that meets their needs. While it can be trying to continually answer the same sort
of silly question over and over again, you owe it to the success of your business to focus on your
customers’ needs, not your own. By the way, repeated questions can be taken care of via FAQs on
the web site.

There are a number of factors that will help make your customers’ experience great. Customers
want to have control, so they should feel that you are providing them with options that serve their
interests. Nothing is more infuriating to a customer than having a service representative apologize
for not being able to fulfill a perfectly reasonable request; or worse, not ever receiving any response
at all. An easy way to give customers a sense of control is to give them both information and
alternatives. If you tactfully spend a bit of time explaining why things are the way they are, they will
feel respected. After you explain the “why,” be sure to provide meaningful options. For example, if a
new release has broken a feature, you could say, “I’m very sorry that the feature isn’t working. Our
engineers are working on a fix for it right now. The release that broke the feature wasn’t fully tested
on your phone because our test team didn’t have access to it. If you want a complete refund,
I completely understand. If you prefer, we can upgrade you to the latest version at no cost as soon as
it becomes available.”

www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 10: After You Have a User Base

Maintaining a friendly demeanor is common sense, but it’s easy to forget this when you’re under
pressure and dealing with an angry customer. Just as jujutsu is a martial art that seeks to turn an
opponent’s strengths against them, you can use emotional jujutsu when faced with an angry customer.
If you actively empathize with a customer’s anger (“You seem very angry, what can I do to make things
right for you?”), you can neutralize it and provide great customer service at the same time.

You can turn angry customers into product evangelists if you treat them correctly. Begin by carefully
listening to their problem without interruption. Make sure that they feel they have been heard. After
you have heard the problem, thank them for sharing it with you. This is the first step in winning them
over. Let them know that they are helping you make your product better. After all, you can’t improve
on problems you never knew existed. Remember to apologize for the bad experience they had.
Customers often aren’t looking for justifications; they simply want to know that you are sorry and you
are doing the best you can to resolve the issue.

Only after you have apologized should you try to solve their problem. Remember to provide
customers with both information and solutions. Ask them what solution they are seeking if it isn’t
obvious. Be sure to reach an agreement on what the solution will be. It’s easy to miscommunicate,
so repeat the solution back to them to be sure you are talking about the same thing.

After a solution has been agreed on, solve the problem in an expedient manner. If customers see
quick results, they feel valued and will look upon your business favorably. Finally, follow up at a later
date to be certain that your solution worked. Your follow-up lets the customer know that you really
care about them.

Remember that the customers who take the time to complain are often the most influential. After all, they
cared enough about your app to contact you; most customers don’t. Even if you lose money on one
customer, if they come away with a positive experience, you might benefit from multiple follow-on sales.

Customer Relationship Management
Customer Relationship Management (CRM) refers to software that helps companies manage their
sales, marketing, and customer support. In the context of customer support, CRM software can
be as simple as a ticket system that helps you track customer issues. Often customer issues will
not be solved with a single phone call, so having a way to track the progress of customer issues
can become a logistical problem. Nothing is worse for your company’s reputation than dropping
customer issues before they are solved. CRM software can track issues, beginning with the first
e-mail and ending with a complete solution.

There are numerous CRM solutions out there, and we encourage you to Google your way to greater
understanding of the space. As a starting point, we can recommend the following two online
solutions, both of which are good enough to get you started:

	insightly.com: Integrates with Google Apps and Gmail, and provides both CRM
and project management. It is free for up to 3 users (customer service reps) and
2,500 contacts.

	mojohelpdesk.com: Basic ticket tracking system that enables you to submit
tickets by e-mail and includes alerts and reminders. The basic version (with a
30-day free trial) costs $24/month. It supports up to 11 users (customer service
reps) with an unlimited number of contacts.

www.it-ebooks.info

http://insightly.com/
http://mojohelpdesk.com/
http://www.it-ebooks.info/

131CHAPTER 10: After You Have a User Base

Online Help
Online help can be as simple as basic instructions on how to use your app. You might think the user
interface is completely intuitive, but less-savvy users might still want a written description of how to
use your app. For many apps, a basic tutorial can be written in a few paragraphs. Time you spend
writing basic instructions will save you lots of time helping customers over e-mail. Additionally, many
customers will simply uninstall your app if they can’t figure out how to use it, which will result in not
just lost opportunities but also bad reviews.

After you have help online, it is fairly straightforward to launch a browser from within your app that
points at your online help. Doing this gives you in-app help with the benefit that you have to update
your help instructions in only one place. You can also consider writing a FAQ on the web site, which
should address the most common user questions. Numerous online web site–building apps exist to
build your online help site. We have had great results with www.weebly.com.

A lot of applications include a quick tutorial window, with the option for the user to disable the
tutorial after the first use. You might consider the option of the tutorial window if your testing group
finds that your application is not as intuitive as you thought it was.

E-mail Support
E-mail is perhaps the most common way an app developer interacts with customers. Unless you
have a very established app with significant margins, you cannot afford to provide phone support.
Be sure and save all your interactions with customers. Often a previous e-mail response can be
reused for a new customer with a similar question or problem. Be careful to use good spelling and
grammar in e-mail. Nothing says “amateur” like a poorly constructed response. Another aspect of
e-mail support that says “amateur” is when you use a mail service such as gmail.com or
yahoo.com. If you haven’t done so already, take the time to create a custom domain for your e-mail
service. Because e-mail is so important, consider providing a way to launch an e-mail app from
within your Android application. This is relatively easy to do, as shown here:
 
Intent emailIntent = new Intent(android.content.Intent.ACTION_SEND);
emailIntent.setType("text/plain");
emailIntent.putExtra(Intent.EXTRA_EMAIL, new String[] { "your@email.address" });
startActivity(emailIntent);
 

Forums
Forums can be a great way to help customers help each other, which reduces the workload for the
developer. By using a forum, a developer can post help responses that will be read by the entire
community of users. Forums can be added to Weebly using the techniques discussed at this site:
http://weeblyforums.com/2011/07/how-to-create-a-forum-in-weebly/.

www.it-ebooks.info

http://www.weebly.com/
http://gmail.com/
http://yahoo.com/
http://yahoo.com/
http://weeblyforums.com/2011/07/how-to-create-a-forum-in-weebly/
http://www.it-ebooks.info/

132 CHAPTER 10: After You Have a User Base

Listening to the Customer
When you first write an app, you have specific ideas about how it will be used. Often your customers
will surprise you. By listening to your customers, you can build an app the way they actually want it
to be, instead of merely guessing.

You should always prominently list your contact information within your app, so that users have an
easy way to get in touch with you if they have comments, concerns, or issues. It is best if you have
launched a web site, and that web site also includes a way for customers to reach you. If you can
afford the cost and overhead, listing a phone number is great, too. You want all the feedback you
can get! You might even consider using an inbound call center. While not cheap, it certainly creates
the impression of professionalism. Note that although some inbound call centers charge by the
minute, they often have minimum fees, so this option makes sense only if you are expecting to earn
quite a bit on a per-customer basis.

Roy has had great feedback from his customers and has learned about use cases for some of his
apps that he never even considered. In fact, he even had one user who volunteered to improve the
user interface for his BPMDetector app for free! That’s quite a payoff just for listening to your users!

Google Play Statistics
Google Play’s Android Developer Console is a great resource that Google provides to Android
developers. The Developer Console includes statistical information on your app that enables you to
learn about your customers.

The statistics section of the Android Developer Console lets you view graphs for active device
installs and total device installs, among other things. Active device installs are the installs of your
app that people still have on their phones. Total device installs include the installs that were later
removed by users. The ratio between active and total installs lets you see how many users are
still using your app. If the ratio was (hypothetically) exactly 1.0, it would mean that every app
downloaded was still being used. You want this ratio to be as high as possible because that means
your app appeals to your target audience. It also shows that your customers actually find your
application useful and are using it instead of just trying it once out of curiosity and then removing it.

The statistics section also includes statistics for use by Android version. You can compare your
statistics to the published overall device statistics available at http://developer.android.com/
about/dashboards/index.html.

If your statistics differ significantly from the overall statistics, it might mean that your app has a
problem when running on that Android version.

Similarly, statistics on Android devices tell you the most popular hardware platforms (phones and
tablets) for your app. You can use this information to prioritize testing of your app; you should try
hard to be sure your app has been tested on the most popular platforms.

Finally, statistical information on country and language can let you know where in the world your
app is most popular. You can compare the popularity of your app to the average for your application
category. This information can be useful to uncover language issues (perhaps you should add
human-translated foreign language XML files instead of relying on auto-translate?).

www.it-ebooks.info

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www.it-ebooks.info/

133CHAPTER 10: After You Have a User Base

Also, app popularity in certain countries might mean that you should support their language in order
to further boost your app’s marketability in that region. You can see in Figure 10-1 that one of Roy’s
apps is being downloaded more often than normal in the United Kingdom, but at below average
percentage for its category in South Korea. He would probably improve downloads in that country
if he offered a good quality Korean translation.

Figure 10-1.  Active device installs by country/region for one of Roy’s apps

You can use this information to figure out important information about how your application is
progressing. For example, you might notice that your application is not being downloaded on
certain models of Android phones. Uh-oh! Does that mean that your application is having problems
downloading on that particular type of phone? That is most certainly worth looking into.

Perhaps the most useful information the Google Play Developer Console provides is information
you never want to see: crash and application not responding (ANR) reports. An ANR typically occurs
when your application hogs a resource that prevents the user interface from interacting with the user.
This is a serious problem that should be addressed right away. An application crash is exactly what it
sounds like, and is also something that should be corrected right away.

The Developer Console not only shows you statistical data on the frequency of each crash or ANR
but it also gives you specific information on where the crash or ANR occurred in your source code,
which makes it easier to track down and correct. Because the Developer Console keeps track of
how many crashes or ANRs of each type have occurred, you can prioritize your bug fixing and go
after the most commonly occurring problems first.

Hopefully, you can use this data to discover problems before your users start complaining about
them in the form of negative reviews!

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 10: After You Have a User Base

Analytics
Although Google Play Statistics gives you some information about your app, if you truly want to
see what your users are doing, you need to use Google Analytics. The Google Analytics software
development kit (SDK) for Android allows you to easily track key user engagement data, including
the number of active application users, usage of specific application features, in-app purchases, and
nearly anything else within your application.

Google Analytics supports an “EasyTracker” implementation that allows you to get up and running
quickly with basic analytics capabilities for your app. The default EasyTracker example provides
you with a way to measure app installations, active users and their demographics, screens and user
engagement, as well as crashes and exceptions. Although the Developer Console already tracks
system crashes for you, the ability to track exceptions can be a very powerful debugging tool.
Simply place code like this in your app:
 
try {
 ...
} catch (IOException e) {
 Tracker myTracker = EasyTracker.getTracker(); // Get a reference to the tracker.
 myTracker.sendException(e.getMessage(), false); // false ➤ non-fatal exception.
}
 
You can then get a message every time this exception occurs. It is great for tracking how often
nonfatal exceptions occur in your code. Often you make assumptions about how frequently
(or rarely) exceptions occur, and a better understanding of their frequency can help you improve
your application.

You can learn the steps for setting up EasyTracker here:
https://developers.google.com/analytics/devguides/collection/android/v2/#analytics-xml

The Google Analytics SDK can also measure the effectiveness of your mobile marketing campaigns.
For example, you could measure how many users were directed to download your app from the
Google Play site. Perhaps they clicked that link you have on your web site, clicked an ad you
purchased, or maybe they discovered your app from a link within a different app that you have.
Either way, you can learn the details using Google Analytics. If you want a way to quantify the
success of your marketing campaigns, this is the way to do it. Learn how from the source:
https://developers.google.com/analytics/devguides/collection/android/v2/campaigns

Similarly, you can learn about your user’s interactions with social networks. Want to know if
they’re clicking that Facebook “Like” widget? Want to find out if they’re using the Tweet button?
Google Analytics can do that as well. The details are here:
https://developers.google.com/analytics/devguides/collection/android/v2/social

Google Analytics is a very powerful, extensible API that includes the potential for custom metrics.
Nearly anything you can imagine can be measured. Learn about custom metrics here:
https://developers.google.com/analytics/devguides/collection/android/v2/customdimsmets

You can download the Google Analytics SDK for Android here:
https://developers.google.com/analytics/devguides/collection/android/resources

The API is still in beta, so there might be some rough edges, and things can change at any time.

-
www.it-ebooks.info

https://developers.google.com/analytics/devguides/collection/android/v2/#analytics-xml
https://developers.google.com/analytics/devguides/collection/android/v2/campaigns
https://developers.google.com/analytics/devguides/collection/android/v2/social
https://developers.google.com/analytics/devguides/collection/android/v2/customdimsmets
https://developers.google.com/analytics/devguides/collection/android/resources
http://www.it-ebooks.info/

135CHAPTER 10: After You Have a User Base

A/B Testing
All your feedback from users and analytics might inspire you to add a bunch of new features. But
how can you be sure which feature is best? A/B testing is the process of scientifically trying two
different features to determine which one is favored by your users.

The basic idea behind A/B testing is simple. If you deploy multiple versions of the same app, each
version having a difference in a particular feature, and you have a bunch of users who try each of the
two features, you can learn which one is better by comparing the results of the two groups of users.

For example, if you have a Click To Buy button on your app, is it better if the button is a standard
size, or does a big button generate more click-throughs? You can A/B test to find out. If 1,000 of
your users see the standard size button, and 1,000 other users see the big button, you can compare
click-through rates to determine which button size will give you better results.

Particularly when it comes to measuring ad campaigns, Google Analytics can be used to do
A/B testing. There are, however, other options that are designed from the ground up for A/B testing.

Arise.io (http://arise.io) provides developers with an easy way to A/B test their apps. By installing
a JAR file in your app and then writing simple test code, you can very easily introduce A/B tests into
your apps. See Figure 10-2 for an example. Arise.io is in beta and is currently free for personal and
nonprofit apps. When released, the commercial version will probably introduce pricing tiers, although
the lowest tiers are likely to be relatively affordable.

Figure 10-2.  An example from the Arise.io web site: http://arise.io/features/

Amazon provides A/B testing as a feature, but you need to place the app in its app store. A/B testing
with Amazon is free, and might just be the reason you need to finally deploy in its store. You can
learn more here: https://developer.amazon.com/sdk/ab-testing.html

www.it-ebooks.info

http://arise.io/
http://arise.io/features/
https://developer.amazon.com/sdk/ab-testing.html
http://www.it-ebooks.info/

136 CHAPTER 10: After You Have a User Base

Figure out the Season of Your Application
We’re sure you are quite familiar with Angry Birds because it is very difficult to talk about successful
applications without mentioning Rovio’s hit mobile game. Rovio decided that Angry Birds was not
enough for its fans so it created Angry Birds Seasons in Fall 2010. Angry Birds Seasons has the same
rules of the original game, with the slingshot and the attempt to destroy the evil green pigs. The only
difference is that the environments are “seasonal.” The first version was Trick or Treat, and it was
Halloween-themed with pumpkins as well as various other black-and-orange props (see Figure 10-3).

Figure 10-3.  Rovio’s Angry Birds Seasons is an entirely different application than its very popular Angry Birds predecessor,
designed for many seasons

Because the first Angry Birds Seasons was a hit, Rovio followed it up with an update called Seasons
Greedings, which used a Christmas holiday theme. In 2011, Rovio improved Seasons with Hogs
and Kisses (Valentine’s Day–themed), Go Green, Get Lucky (St. Patrick’s Day–themed), and Easter
Eggs (we probably don’t need to tell you its theme). Rovio released a summer-themed Angry Birds
Seasons (Summer Pignic), along with more seasons with puns related to birds and pigs. It even
released another version of Angry Birds known as Angry Birds Rio. This game is a movie tie-in from
Rio, a computer animated movie about birds. After another version called Angry Birds Space, Angry
Birds is now even embedded in another famous franchise, with the release of Angry Birds Star Wars.

Rovio realized that it needed to let Angry Birds grow and evolve. We agree with its decision not
to change the gameplay itself, which is why it created new versions, and gave them new themes,
anticipating the changing of seasons. Rovio also planned for the release of Rio, and the movie’s
success helped promote the game.

In the same manner, you can drive more traffic to your app by updating it in ways that reflect the
season. Simple things like an updated background or splash screen can renew interest in your app.
Nearly every month has a holiday you can leverage to customize your app. Some events, such
as holidays, happen on a specific day around the same time of the year. Other events are more
ambiguous, based on a mood of the season. Use the seasons to your advantage; anything that
grabs a user’s interest can help keep your app downloads rolling in.

Plan Around Holidays and Moods
When Mark worked in retail, there were sections of the store that were seasonal and planned for
consumers’ needs during certain times of the year.

www.it-ebooks.info

http://www.it-ebooks.info/

137CHAPTER 10: After You Have a User Base

In February, it was Valentine’s Day, and the seasonal aisles were decorated with red, pink, and
white cards and candy. It then shifted to Easter; the candy was in different packaging with baskets
and plastic grass. During summertime, these aisles were filled with squirt guns, portable swimming
pools, kites, and other outdoor toys. Then came Back to School time in August and September,
and these aisles were filled with pencils, paper, and other school supplies. In October, it was candy
again, with spooky Halloween costumes and paraphernalia thrown in. We’ll leave you to imagine
what was in the aisles in November and December, in anticipation of Christmas.

The reason why we bring up the subject of the seasonal aisle is that it is easy to plan what items will
sell at these given times. Holidays are just one event that you can plan around. It is more than just
holidays; also the general mood during that time.

In January, people are all about New Years’ resolutions and bettering themselves, which is a good
time to sell health and productivity applications. Because Valentine’s Day is in February, people tend
to think of love and relationships, so it is a good time to market an application related to that mood.
Any application related to vacation planning probably sells well during spring and summer periods.
By now, you can see a pattern forming, and we’ll let you guess what kind of applications sell around
Christmas time.

Because you figured out the purpose of your application in Chapter 2, you should be able to figure
out during what times of the year it will sell the most. It might be a certain holiday or just some time
of the year when people will be thinking about doing a certain thing that your application can help
them with. Plan for this time and get the word out to your contacts at this time.

Figure Out Your “Peak Period,” if Any
After your app is in the marketplace, you might discover that it has a “peak period” during which it
sells exceptionally well for whatever reasons, but has few downloads outside of this time period.

For example, if you create an application that follows NCAA college basketball games, you will see
an increase during the “March Madness” tournament, but then nothing until the next basketball
season. Perhaps your application will have a longer peak period. For a tax preparation application,
for example, you will see a lot of downloads during the months of January to April as people prepare
for the April 15th U.S. income tax deadline but only a few downloads by procrastinators in May. Your
application could be completely forgotten during summer or fall.

If one of your applications has a peak period, you might have trouble making money year-round.
A better strategy is to have many applications going at once and to focus on each app during its peak
season. You can use the nonpeak off-season to prepare for updates for next year (or simply write an
app that is less peaky). Also, remember that the holiday season is almost always the busiest time of
year, and the first few months after the holidays can be slow. These sorts of annual fluctuations are
common in many markets.

The Price
By now, your application is out on the market and has a price, even if it is free. You might be using
that suggestion in Chapter 6 about having a paid version and a free version.

Although Google Play does not let you change an unpaid app into a paid app, you can always
change the pricing of your paid apps.

www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 10: After You Have a User Base

Because the price can be changed, you might want to experiment with your application’s price, just
to see how your users react. One developer told us that he had a $.99 application, and he upped
the price from $.99 to $1.99 for a week, then to $2.99, and then to $3.99. What he learned was that
he had 100 sales in a week at $.99; then he had about 45 sales at $1.99. He made less over all…
but close. Then he upped the price of the application to $2.99, and he still had 45 sales—roughly
136 percent of the $.99 app revenue. That’s not bad.

The Economics of App Pricing
In some cases, then, you can raise the price of your app and make more money. In other cases,
raising the price will cause you to make less money than you potentially would have. Economists
talk about the “price elasticity of demand.” The idea is that for some purchases, people will be
very sensitive to pricing. The demand will decrease quickly as the price goes up. For example,
if your favorite soft drink is suddenly more expensive than all the others, you’d probably switch
to a different drink. On the other hand, some purchases are very “inelastic.” People just have to
make these purchases, regardless of price. The cost of taking your child to the pediatrician is a
good example of this. You’re going to pay for it, even if the price goes up.

So is your app more like a soft drink or more like a visit to the pediatrician? Well, this is a lot like
the vitamin versus pain-killer comparison we discussed in Chapter 2. If your app is a pain-killer, it’s
going to get something closer to pediatrician pricing. On the other hand, vitamins often get priced
like soda. You can see that the price customers are willing to pay often depends on the necessity
of the app.

There are other factors as well. If you’re the only game in town, you can charge more. So if you’re
the only solution to a problem, users will have to buy your app to solve the problem. On the other
hand, if there are lots of other equivalent solutions, at some point there will be a “race to the
bottom.” That means that all the players offering solutions will have to compete with each other on
price, which will drive the price down for everyone over time. We can call this factor the availability
of equivalent solutions.

The characteristics of your user base are other factors that determine price. If you’re selling to law
firms, you can ask for a higher price than if you sell to teenagers. Obviously, who’s paying for it is
a factor.

Finally, branding is a factor. If you know that an app is made by Oracle, Microsoft, or any other big
player, you expect a certain minimum level of quality. These companies are well-known brands,
and people will always pay more for the well-known brand. Be sure to create and foster your brand
identity as you bring new apps to market.

When to Price High
No consumer likes a price increase. But the fact is, a price increase can be very good for you. Price
increases happen all the time in the business world, and you should not hesitate to increase your
product’s price if it makes you more money. Naturally, if your app is necessary (it’s a pain-killer) with
no equivalent solutions, and you have customers with deep pockets and a great brand, you should
start with a high price. You can always lower your price and see how that affects your price elasticity
of demand curve.

www.it-ebooks.info

http://www.it-ebooks.info/

139CHAPTER 10: After You Have a User Base

You can even play around with increasing the price of your app during peak periods or your app’s
“season.” Perhaps your app has a lower elasticity-of-demand in its peak season. If so, you’ll make
more money overall with a higher price.

When to Price Low
On the other hand if your app isn’t really necessary (it’s a vitamin) with lots of equivalent solutions,
your customers have limited means, and your brand isn’t well known, you should start with a
low price. You can always increase your price and see how that affects your price elasticity of
demand curve.

Occasionally, you will discover that your application isn’t working out the way you expected it to.
You might discover that there have been very few downloads.

Besides trying new marketing routes to inform more people about your application, you can try to
increase sales by marking the app down. You can even consider making it an ad-supported app and
give it away for free. That’s better than not making any sales at all. If the application is just totally
hopeless, it might be worth taking it off the market entirely just so it doesn’t diminish your brand
simply by being associated with you.

You might have a simple problem child that just needs to be improved before the real sales on it
begin. If so, we recommend a temporary price decrease on the current version. You have to get the
word out through your media outlets, social networks, and other methods of informing your target
market that you are doing this.

We have discovered that news of a price reduction can often lead to rumors about the demise of
a product. For example, when Nintendo reduced the price of the GameCube to $99.99, it looked
pretty bad for the company. As it turns out, it was a way to compete with Sony and Microsoft until
the Wii could be launched. In other words, if you spread the word about a price reduction on your
application, don’t be surprised if someone else spreads the word saying that your application is
dying. But hey, there’s no such thing as bad press, right? This is the perfect time to prove them
wrong by releasing an updated version.

This way, Android users discover something worthwhile at a lower price. Then, by the time the
application goes back to the regular price, people are more willing to pay it because the app has
been improved.

Keep Moving Forward
We have essentially finished discussing marketing your Android Application. Let us give you one last
bit of advice: Keep moving forward when it comes to your applications. If you want to start a career
as an Android developer, you have to continually create new applications as well as improve on the
older ones. That can be a difficult juggling act.

The important thing is that you keep on trying, keep on learning, and keep advancing your career.
This is a time when you want to hold on to milestones such as your one millionth download or one
thousandth download. You keep those milestones around not so you can brag but so you can keep
track of your progress.

www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 10: After You Have a User Base

We have found that programming applications is rewarding because there is a certain joy that comes
from creating something new. Although this book is intended to teach you to be a successful app
developer, financial success is easiest to attain when your heart is in your work. Create something
that you are truly proud of and you will profit, both financially and personally.

We wish you the best in bringing your app ideas to life and hope that you find the journey as
rewarding as the destination.

Summary
Do your users have an easy way to get in touch with you? Preferably more than 	
one way?

Are you tracking customer support issues and reducing your support workload?	

Do you monitor Google statistics for trends and modify your app accordingly?	

Have you integrated analytics into your app to improve your understanding of 	
customer motivations?

Do you use A/B testing to improve your app?	

Do you need to change your app after its release?	

Is there a “peak season” for your app?	

Do you need to do a price increase/decrease?	

And the last and most important question: Are you moving forward?

www.it-ebooks.info

http://www.it-ebooks.info/

A■■
AdMob

AdView layout element, 72
app integration, 71
e-mail information, 70
home page, 70

Android developer tools (ADT) bundle, 39
Android development

Android developer tools (ADT) bundle, 39
Android operating system

application programming interfaces, 41
Linux-based OS, 41
new apps, 41
power consumption minimization, 41
security sandbox, 41

app deployment, 47
Appery.io, 49
Appnotch, 49
MIT App Inventor, 49

app life cycle
activity, 45
AndroidManifest.xml, 45
broadcast receiver, 45
content provider, 45
no “exit” option, 45
onCreate stage, 47
onDestroy stage, 47
onPause stage, 47
onRestart stage, 47
onResume stage, 47
onStart stage, 47
onStop stage, 47
service, 45

integrated development environment (IDE), 40
Java

Android API, 44
APIs, 42

automatic translation, 43
Dalvik, 43
memory management, 42
object-oriented paradigm, 42
program reflection, 42
resources, 43
Swing GUI, 43
third-party packages, 44
virtual machine, 42
XML, 43

Android Market
challenges, 10
cross-platform development tools, 11

Appcelerator, 12
appMobi XDK, 12
LiveCode, 12
PhoneGap, 13

initiation of, 3
vs. iOS, 5
and iOS differences

API, 6
app development, 6
development language, 6
processes, 6
third party tools, 7

porting difficulties, 11
smartphone revolution, 1

in businesses, 1
technology, 2

usage of, 4
games, 4
Google Play, 4–5, 7

versions, 7
Cupcake, 8
Donut, 8
Éclair, 8
Froyo, 8
Gingerbread, 9

Index

141

www.it-ebooks.info

http://www.it-ebooks.info/

Honeycomb, 9
Ice Cream Sandwich, 9
Jelly Bean, 9
Key Lime Pie, 9

Android operating system, 41
application programming

interfaces, 41
Linux-based OS, 41
new apps, 41
power consumption minimization, 41
security sandbox, 41

Appcelerator, 12
Appery.io, 49
appMobi XDK, 12
Appnotch, 49

B■■
Blackberry market, 83
Blogging, 114
Business plan

in Android market, 15
in-app purchasing, 22
benefits of, 16
competition, 17
elevator pitch, 16
execution risk, 20
free apps, 21
freemium apps, 22
hypothesis-testing web site, 24–25
market risk, 20
mini-business plan, 16
monetization strategies, 23
paid apps, 21
problem solving, 16
prototyping tools

Android GUI Prototyping, 26
Android Wireframe Templates, 26
DroidDraw, 26
Fireworks Template, Android, 26
Fluid UI, 25
Pencil, 26

schedule estimation, 23
services, 22
target market, 18–19
technical risk, 20

web site, setting up tools
SnapPages, 29
Webnode, 29
Weebly, 28

C■■
Copyrights, 34

D■■
Dalvik, 43
Dalvik Debug Monitor Server (DDMS), 54

E■■
End-User License Agreement (EULA), 33

F■■
Facebook

social proof/legitimacy, 117
View Insights link, 117

G■■
General Public License (GPL), 37
GetJar, 83
Google Play Marketplace, 33
Google Play Store versus Amazon

Appstore, 84
Guerilla marketing, 124

offline advertising, 126
online advertising, 125–126
trade shows, 125

H■■
Hashtag, 116

I■■
Icon

Age of Zombies, 105
graphics resources, 106
traditional alchemy, 105–106
Waze icon, 103–104

IDE. See Integrated development
environment (IDE)

142 Index

Android Market (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

In-app billing, 79. See also In-app purchasing
Amazon API

consumable purchases, 92
determine, 92
enable, 91
initial setup, 91
make a purchase, 92
PurchasingManager requests, 92
visual comparison, 90–91

Comixology, 79–80
Google API

callback listener function, 90
consumable purchases, 90
determine items, 90
enable, 89
initial setup, 89
older version, 87–88
purchasable items, 89
Trivial Drive, 88–89

Gun Brothers, 82
market players

Blackberry market, 83
GetJar, 83
Google Play Store vs. Amazon

Appstore, 82–84
Nook/Fortumo, 84
Samsung market, 83
SK T store, 84
SlideME, 82–83

multiple app stores, 93
Tap Tap Revenge, 80–81

In-app purchasing
checklist, 93
content, 86–87
not to use, 85
product types, 86
requirements, 85–86
use of, 84

Integrated development
environment (IDE), 40

Intellectual property
copyrights, 34
licensing, 37
patents, 36
trademarks, 35
trade secrets protection, 35

J, K■■
Java, 42

Android API, 44
APIs, 42
automatic translation, 43
Dalvik, 43
memory management, 42
object-oriented paradigm, 42
program reflection, 42
resources, 43
Swing GUI, 43
third-party packages, 44
virtual machine, 42
XML, 43

Junior associates, 31

L■■
Legal Issues

attorneys, 31
defered compensation, 32
junior associates, 31
Venture capital law, 32

checklist, 38
EULA, 33
intellectual properties, 34

copyrights, 34
licensing, 37
patents, 36
trademarks, 35
trade secrets protection, 35

privacy policies, 33
Lesser General Public

License (LGPL), 37
Licensing, 37
Limited liability corporations

(LLCs), 32
LinkedIn, 117
Linux-based OS, 41
LiveCode, 12

M■■
Marketing

blogging, 114
budget, 112

143Index

www.it-ebooks.info

http://www.it-ebooks.info/

guerilla marketing, 124
offline advertising, 126
online advertising, 125–126
trade shows, 125

media reviewers, 123
press

online forums, 121
printed journals, 122
public relations and media, 121
RSS Feeds, 120
video sharing, 120

press release, 118
example, 119
formats, 118–119

product launch, 115
product promotion, 112
social networks, 115

Facebook (see Facebook)
LinkedIn, 117
Twitter (see Twitter)

SWOT analysis, 111–112
web site, 112

Marketplaces. See also Icon
Android application, 96
application description, 103
app market, 96–97
app store upload, 95
general issues, 108

Amazon App Store, 109
BlackBerry World app store, 110
GetJar, 110
Google Play, 108–109
Samsung, 110
SlideME store, 109

multiple marketplaces, 107
proper screen shot

another screen shot
(BPM detector), 99–101

BPM detector, 98–99
preferences option

(screen shot), 101–102
screen shot, 98
video, 106–107

Media reviewers, 123
Microblogging, 116
MIT App Inventor, 49

Mobclix, 73–74
Mobile advertising

affiliate programs
AdMobix program, 75–76
benefits, 74
networks, 74
technical tricks, 76–78
web sites, 75

banner ads, 64
checklist, 78
interstitial ads, 65
network selection

AdMob, 70–72
lists, 69–70
Mobclix, 73–74

numbers
AdMob screen shot, 66–67
CRT, 68
fill rates, 68
free Meganome screen shot, 68, 70
impressions, 67
refresh rate, 68

sense, 63–64
Mobile Marketing Association, 33
Multiple app stores, 93

N■■
Non-disclosure agreement (NDA), 36
Nook/Fortumo, 84

O■■
Offline advertising, 126
Online advertising, 125–126
Online forums, 121
Original equipment manufacturers (OEMs), 107

P, Q■■
Patents, 36
PhoneGap, 13
Press

online forums, 121
printed journals, 122
public relations and media, 121
RSS Feeds, 120
video sharing, 120

144 Index

Marketing (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

Press release, 118
example, 119
formats, 118

company description, 119
company logo, 118
date and city, 118
final paragraph, 119
first paragraph, 118
quote, 118
secondary title, 118
second paragraph, 118
title, 118

Printed journals, 122
Pro Apps

debugging of
DDMS debugger, 54
DEBUG log, 54
ERROR log, 54
logger, 53
Log objects, 53

documentation, 53
software engineering

design, 51
implementation, 51
model for developing, 52
requirement analysis, 51
verification, 52
waterfall model, 52

testing, 57
alpha testing, 60
Android design, 58
beta testing, 61
code coverage, 58
continous integration, 58
hallway testing, 60
model view controller (MVC)

paradigm, 59
unit vs. system, 59
user experience testing, 60

tracking (bugs and issues), 56
Bugzilla, 57
FogBugz, 57
JIRA, 57
MantisBT, 57
Redmine, 57
Trac, 57

version control\revision control, 54
commit, 55
file lock, 55
Git, 56
Mercurial, 56
merging mechanism, 55
Repo, 56
subversion (SVN), 56
systems, 55

Product launches, 115
Program reflection, 42
ProjectLibre, 24
Public relations and media, 121

R■■
RSS Feeds, 120

S■■
Samsung Market, 83
SK T Store, 84
SlideME, 83
Social networks, 115

Facebook
social proof/legitimacy, 117
View Insights link, 117

LinkedIn, 117
Twitter

dedicated client app, 116
hashtag, 116
microblogging, 116
retweet, 116

Software engineering
design, 51
implementation, 51
requirement analysis, 51
verification, 52
waterfall model, 52

Swing GUI, 43

T■■
Trademark Electronic Search System (TESS), 35
Trademarks, 35
Trade Related Aspects of Intellectual Property

Rights (TRIPS) agreement, 35

145Index

www.it-ebooks.info

http://www.it-ebooks.info/

Trade shows, 125
Twitter, 116

dedicated client app, 116
hashtag, 116
microblogging, 116
retweet, 116

U■■
User base

analytics, 134
A/B testing, 135
Angry Birds application, 136
application figuring, 136
decrement in price, 139
EasyTracker, 134
economics of app pricing, 138
forwarding of application, 139
Google, 134
increase in price, 138
Peak Period, 137
plan around holidays and moods, 136
price, 137

customer specification, 132
customer support, 129

customer relationship management
(CRM), 130

E-mail, 131
forums, 131
helpdesk online, 131

Google Play statistics, 132
for Android version, 132
application not responding (ANR), 133
installs, 133

V■■
Venture capital law, 32
Video promotion, 120

W■■
Web site, 112

X, Y, Z■■
XML, 43

146 Index

www.it-ebooks.info

http://www.it-ebooks.info/

The Business of Android
Apps Development

Making and Marketing Apps that Succeed
on Google Play, Amazon App Store and More

Roy Sandberg
Mark Rollins

www.it-ebooks.info

http://www.it-ebooks.info/

The Business of Android Apps Development: Making and Marketing Apps that Succeed
on Google Play, Amazon App Store and More

Copyright © 2013 by Roy Sandberg and Mark Rollins

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5007-4

ISBN-13 (electronic): 978-1-4302-5008-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries.
Apress Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Tom Welsh
Technical Reviewers: Bradley Brown, Gregg Petri, Harold Shinsato
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Anamika Panchoo
Copy Editor: Nancy Sixsmith
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

�

�

�

�

�

v

Contents

About the Authors ��xiii

About the Technical Reviewers �� xv

Acknowledgments �� xvii

Introduction ��� xix

Chapter 1: The Android Market: A Background ■ ���1

The Smartphone Revolution ��1

The Beginning of Android ��3

Why Android? ��4

Android vs� iOS ��5

The Difference Between Android and iOS ���6

Versions of Android ���7

The Challenges of Working with Android ���10

Porting Difficulties ���11

Examples of Cross-Platform Development Tools ���11

LiveCode �� 12

Appcelerator �� 12

appMobi XDK ��� 12

PhoneGap �� 13

Summary ���13

www.it-ebooks.info

http://www.it-ebooks.info/

vi Contents

Chapter 2: Making Sure Your App Will Succeed■■ ���15

Your App and a Business Plan��15

Identify the Problem That You Are Solving��16

Analyze Your Competition���17

Determine the Target Market���18

Evaluate Technical, Execution, and Market Risks���19

Technical Risk��� 20

Execution Risk�� 20

Market Risk�� 20

Think About Monetization and Pricing��21

Paid Apps�� 21

Free Apps�� 21

Freemium Apps��� 22

Services�� 22

In-app Purchasing�� 22

Other Models of Moneymaking��� 23

Estimate a Schedule��� 23

Testing Your Market Demand Hypothesis���24

Tools for Prototyping Your Screen Shots��25

Tools for Setting up a Web Site��27

Your Baby Might Be Ugly��29

You’re the Boss���29

Summary��29

Chapter 3: Legal Issues: Better Safe than Sorry■■ ���31

Retaining an Attorney – Controlling Costs��31

Forming Your Company��32

EULA and Privacy Policies��33

Intellectual Property���34

Copyrights�� 34

Trademarks��� 35

www.it-ebooks.info

http://www.it-ebooks.info/

viiContents

Protecting Your Trade Secrets��� 35

Patents��� 36

Licensing�� 37

Summary��38

Chapter 4: A Brief Introduction to Android Development■■ ���39

First Steps as a Developer ��39

Integrated Development Environment (IDE)�� 40

Perks of the Android Operating System���41

Java the Language���42

Peculiarities of Java on Android���43

The App Life Cycle��45

App Deployment���47

This Is So Complicated! Is There an Easier Way?��� 49

Summary��49

Chapter 5: Develop Apps Like a Pro■■ ���51

Software Engineering���51

Documenting Your Code���53

Debugging Android Apps��53

The Logger�� 53

The Debugger��� 54

Revision Control���54

Bug and Issue Tracking��56

Testing��57

Android Is Designed for Testing�� 58

Unit Testing versus System Testing�� 59

User Experience Testing��� 60

Beta Testing Without the MarketPlace�� 61

Summary��62

www.it-ebooks.info

http://www.it-ebooks.info/

viii Contents

Chapter 6: Making Money with Ads on Your Application■■ ���63

Types of Mobile Ads��64

Mobile Ads by the Numbers�� 66

Selecting a Mobile Ad Network��69

AdMob�� 70

Mobclix��� 73

Affiliate Programs���74

Technical Tricks�� 76

Summary��78

Chapter 7: In-App Billing: Putting a Store in Your Application■■ ���79

In-App Market Players��82

GetJar��� 83

SlideME��� 83

Samsung Market�� 83

Blackberry Market�� 83

Nook/Fortumo��� 84

SK T Store��� 84

Google Play Store versus Amazon Appstore��� 84

When Should You Use In-App Purchasing?��84

When to Use In-App Purchasing��� 85

When Not to Use In-App Purchasing��� 85

Requirements for In-App Purchasing��� 85

Product Types��� 86

Delivering Your Own Content�� 86

Integrating Your App with the Google API���87

Enabling Your App to Use In-App Billing��� 89

Initial Setup For In-App Billing In Your App��� 89

Using In-App Billing: Requesting a List of Items For Purchase��� 89

Using In-App Billing: Making the Purchase�� 90

Using In-App Billing: Determining Which Items Have Already Been Purchased��� 90

Using In-App Billing: Consumable Purchases��� 90

www.it-ebooks.info

http://www.it-ebooks.info/

ixContents

Integrating Your App with the Amazon API���90

Enabling Your App to Use In-App Billing��� 91

Initial Setup For In-App Billing In Your App��� 91

Using In-App Billing: Requesting a List of Items for Purchase��� 92

Using In-App Billing: Making the Purchase�� 92

Using In-App Billing: Determining Which Items Have Already Been Purchased��� 92

Using In-App Billing: Consumable Purchases��� 92

Supporting In-App Billing with Multiple App Stores���93

Summary��93

Checklist: In-App Purchasing�� 93

Chapter 8: Making App Marketplaces Work for You■■ ���95

Uploading to an App Store��95

How Refined Is Your Android Application?��96

What to Do Before You Submit to an App Market���96

The Screen Shot���98

Selecting the Proper Screen Shot��98

Application Description��103

The Icon��103

Other Graphics Resources�� 106

Video��106

Multiple Marketplaces��107

General Issues with Marketplaces���108

Issues Specific to Google Play�� 108

Issues Specific to the Amazon App Store��� 109

Issues Specific to the SlideME Store�� 109

Other App Stores��� 110

Summary��110

www.it-ebooks.info

http://www.it-ebooks.info/

x Contents

Chapter 9: Getting the Word Out■■ ���111

Preparing Your Web Site���112

Blogging���114

Effective Product Launches��115

Marketing Using Social Networks: Facebook, Twitter, LinkedIn���115

Twitter��� 116

Facebook�� 117

LinkedIn�� 117

Making the Press Work for You��118

Write a Press Release��� 118

RSS Feeds and Followers �� 120

Making a Video �� 120

Online Forums�� 121

Public Relations and the Media�� 121

Printed Journals��� 122

Giving Media Contacts a Complimentary Copy of Your Application��123

Other Examples of Low-Cost Publicity: Guerilla Marketing��124

Trade Shows��� 125

Online Advertising��� 125

Offline Advertising�� 126

Summary��127

Chapter 10: After You Have a User Base■■ ���129

Customer Support��129

Customer Relationship Management��� 130

Online Help��� 131

E-mail Support�� 131

Forums��� 131

www.it-ebooks.info

http://www.it-ebooks.info/

xiContents

Listening to the Customer��132

Google Play Statistics���132

Analytics���134

A/B Testing�� 135

Figure out the Season of Your Application�� 136

The Price��� 137

Summary��140

Index��141

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

About the Authors

Roy Sandberg loves the intersection of business and technology. With
experience managing both engineering and operations, he has founded
multiple companies. These companies’ award-winning products have
been sold around the world, protected by multiple issued and pending
patents.

Roy trained in electrical engineering and computer science at
Carnegie-Mellon University, and graduated from law school with
honors. He has worked in a diverse range of technical fields, including
motion control, consumer electronics, telecommunications, biotech,
patent law, robotics, assistive technology, and music technology.

Roy’s Android applications, released under the Sandberg Sound brand, use cutting-edge,
signal-processing techniques to simplify the lives of musicians and DJs.

Roy lives in the Haight-Ashbury neighborhood of San Francisco. He always likes to hear from his
readers and fellow entrepreneurs, so please don’t hesitate to contact him.

Mark Rollins was born in Seattle in 1971 and attended Washington
State University in Pullman, Washington, graduating in 1994 with a
degree in English. After college, he began to write skits for college-age
groups.

In 2005, after a career at Schweitzer Engineering Laboratories (SEL),
Mark decided to pursue his dream and began writing full-time.

Mark has written for many tech and gadget blogs, including
screenhead.com, image-acquire.com, cybertheater.com,
mobilewhack.com, carbuyersnotebook.com, gearlive.com,
zmogo.com, gadgetell.com, gadgets-weblog.com, androidedge.com,

and coolest-gadgets.com. He has also written for video game blogs such as gamertell.com and
digitalbattle.com.

www.it-ebooks.info

http://screenhead.com
http://image-acquire.com
http://cybertheater.com
http://mobilewhack.com
http://carbuyersnotebook.com
http://gearlive.com
http://zmogo.com
http://gadgetell.com
http://gadgets-weblog.com
http://androidedge.com
http://coolest-gadgets.com
http://gamertell.com
http://digitalbattle.com
http://www.it-ebooks.info/

xiv About the Authors

In 2009, Mark decided to create his own tech and gadget blog known as www.TheGeekChurch.com.
The purpose of the blog was to report on the latest in technology, as well as to inform the
church-going crowd (who are often not very technically adept) on the benefits of using more
technology in the ministry. Since 2012, Mark has completely devoted his time to helping other tech
businesses succeed.

Mark currently resides in Pullman, Washington with his wife and three children.

www.it-ebooks.info

http://www.TheGeekChurch.com
http://www.it-ebooks.info/

xv

About the Technical
Reviewers

Gregg Petri has extensive experience in developing custom software applications and products,
specializing in Java and Oracle Databases. He holds a BS in Applied Computer Science from Illinois
State University, an MS in Computer Science from North Central College, and an MBA from the
University of Denver. Gregg is currently the Director of Development in the Enterprise IT Solutions
group of Rolta India, Ltd. Gregg lives in Golden, Colorado with his wife Aimee, son Chase, and twin
daughters Madigan and Taryn.

Harold Shinsato is a senior software engineer at SAP working with
Java, Perl, C++, Bash, Jenkins, Groovy, and Ruby; and has played with
Android apps on the side. He is the founder and chief facilitator of the
annual unconference, Missoula Barcamp. Harold is an Open Space
facilitator and board member of the Open Space Institute, professional
life and agile coach, private pilot, drummer, MIT grad, and alumnus
of Xerox PARC as part of the Inxight spin-out. He lives in Montana
with seven sheep, a llama, two cats, and his beloved wife, Wind, who
occasionally blogs at http://shinsato.com.

www.it-ebooks.info

http://shinsato.com
http://www.it-ebooks.info/

xvii

Acknowledgments

Roy’s dad instilled in him a love of technology, and Roy’s mom cultivated his love of books. It is only
fitting for him to dedicate this, his first book, to his parents, Robert and Dalia Sandberg.

Roy would also like to thank the editors and staff at Apress for all their help and insight.

Finally, Roy thanks Mark Rollins for extending him this opportunity, for his hard work, and for his patient
understanding when Roy made annoying last minute changes to the manuscript.

—Roy Sandberg

I would like to dedicate this book to Michelle Lowman, Steve Anglin, and Anamika Panchoo, the editors
of this book. I believe that Steve was instrumental in getting me my first book deal, which was the first
edition of this book.

I would also like to thank the technical editors for their efforts. I am certain that they worked hard.

I also want to thank Brian Dorgan, a very bright programmer without whom I could have never written the
first edition of the book.

I also want to thank Roy. He was a joy to work with, and was very good at doing the parts that I had a
hard time doing.

—Mark Rollins

www.it-ebooks.info

http://www.it-ebooks.info/

	The Business of Android Apps Development
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: The Android Market: A Background
	The Smartphone Revolution
	The Beginning of Android
	Why Android?
	Android vs. iOS
	The Difference Between Android and iOS
	Versions of Android
	The Challenges of Working with Android
	Porting Difficulties
	Examples of Cross-Platform Development Tools
	LiveCode
	Appcelerator
	appMobi XDK
	PhoneGap

	Summary

	Chapter 2: Making Sure Your App Will Succeed
	Your App and a Business Plan
	Identify the Problem That You Are Solving
	Analyze Your Competition
	Determine the Target Market
	Evaluate Technical, Execution, and Market Risks
	Technical Risk
	Execution Risk
	Market Risk

	Think About Monetization and Pricing
	Paid Apps
	Free Apps
	Freemium Apps
	Services
	In-app Purchasing
	Other Models of Moneymaking
	Estimate a Schedule

	Testing Your Market Demand Hypothesis
	Tools for Prototyping Your Screen Shots
	Tools for Setting up a Web Site
	Your Baby Might Be Ugly
	You’re the Boss
	Summary

	Chapter 3: Legal Issues: Better Safe than Sorry
	Retaining an Attorney – Controlling Costs
	Forming Your Company
	EULA and Privacy Policies
	Intellectual Property
	Copyrights
	Trademarks
	Protecting Your Trade Secrets
	Patents
	Licensing

	Summary

	Chapter 4: A Brief Introduction to Android Development
	First Steps as a Developer
	Integrated Development Environment (IDE)

	Perks of the Android Operating System
	Java the Language
	Peculiarities of Java on Android
	The App Life Cycle
	App Deployment
	This Is So Complicated! Is There an Easier Way?

	Summary

	Chapter 5: Develop Apps Like a Pro
	Software Engineering
	Documenting Your Code
	Debugging Android Apps
	The Logger
	The Debugger

	Revision Control
	Bug and Issue Tracking
	Testing
	Android Is Designed for Testing
	Unit Testing versus System Testing
	User Experience Testing
	Beta Testing Without the MarketPlace

	Summary

	Chapter 6: Making Money with Ads on Your Application
	Types of Mobile Ads
	Mobile Ads by the Numbers

	Selecting a Mobile Ad Network
	AdMob
	Mobclix

	Affiliate Programs
	Technical Tricks

	Summary

	Chapter 7: In-App Billing: Putting a Store in Your Application
	In-App Market Players
	GetJar
	SlideME
	Samsung Market
	Blackberry Market
	Nook/Fortumo
	SK T Store
	Google Play Store versus Amazon Appstore

	When Should You Use In-App Purchasing?
	When to Use In-App Purchasing
	When Not to Use In-App Purchasing
	Requirements for In-App Purchasing
	Product Types
	Delivering Your Own Content

	Integrating Your App with the Google API
	Enabling Your App to Use In-App Billing
	Initial Setup For In-App Billing In Your App
	Using In-App Billing: Requesting a List of Items For Purchase
	Using In-App Billing: Making the Purchase
	Using In-App Billing: Determining Which Items Have Already Been Purchased
	Using In-App Billing: Consumable Purchases

	Integrating Your App with the Amazon API
	Enabling Your App to Use In-App Billing
	Initial Setup For In-App Billing In Your App
	Using In-App Billing: Requesting a List of Items for Purchase
	Using In-App Billing: Making the Purchase
	Using In-App Billing: Determining Which Items Have Already Been Purchased
	Using In-App Billing: Consumable Purchases

	Supporting In-App Billing with Multiple App Stores
	Summary
	Checklist: In-App Purchasing

	Chapter 8: Making App Marketplaces Work for You
	Uploading to an App Store
	How Refined Is Your Android Application?
	What to Do Before You Submit to an App Market
	The Screen Shot
	Selecting the Proper Screen Shot
	Application Description
	The Icon
	Other Graphics Resources

	Video
	Multiple Marketplaces
	General Issues with Marketplaces
	Issues Specific to Google Play
	Issues Specific to the Amazon App Store
	Issues Specific to the SlideME Store
	Other App Stores

	Summary

	Chapter 9: Getting the Word Out
	Preparing Your Web Site
	Blogging
	Effective Product Launches
	Marketing Using Social Networks: Facebook, Twitter, LinkedIn
	Facebook
	LinkedIn

	Making the Press Work for You
	Write a Press Release
	Use the Format for a Press Release
	Example of a Press Release

	RSS Feeds and Followers
	Making a Video
	Online Forums
	Public Relations and the Media
	Printed Journals

	Giving Media Contacts a Complimentary Copy of Your Application
	Other Examples of Low-Cost Publicity: Guerilla Marketing
	Trade Shows
	Online Advertising
	Offline Advertising

	Summary

	Chapter 10: After You Have a User Base
	Customer Support
	Customer Relationship Management
	Online Help
	E-mail Support
	Forums

	Listening to the Customer
	Google Play Statistics
	Analytics
	A/B Testing
	Figure out the Season of Your Application
	Plan Around Holidays and Moods
	Figure Out Your “Peak Period,” if Any

	The Price
	The Economics of App Pricing
	When to Price High
	When to Price Low
	Keep Moving Forward

	Summary

	Index

