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Foreword

It is hard to imagine today a single computation that does not rely on at least one
distributed system directly or indirectly. It could be a distributed file system, a dis-
tributed database, a content distribution network, a peer-to-peer game, a remote mal-
ware detection service, a sensor network, or any other distributed computation. Dis-
tributed systems have become the equivalent of economic globalization in the world
of computing. Adopted for economic reasons, powered by highly efficient and ubig-
uitous networking, distributed systems define the default architecture for almost every
computing infrastructure in use today.

Over the last two decades, distributed systems have taken many shapes and forms.
Clusters of computers were among the earliest generations of distributed systems,
whose goal was to provide a cost-effective alternative to highly expensive parallel
machines. File servers were first to evolve from the cluster-based distributed system
model to serve an increasing hunger for storage. The World Wide Web introduced
the web server and, with it, the client-server distributed system model, on which mil-
lions of other Internet services have been built. Peer-to-peer systems appeared as an
“anti-globalization movement”, in fact an anti-corporate globalization movement that
fought against the monopoly of the service provider in the client-server model. Cloud
computing turned distributed systems into a utility that offers computing and storage
as services over the Internet. One of the emerging and least expected beneficiaries
of cloud computing will be the mobile world of smart phones and personal devices,
whose resource limitation can be solved through computation offloading. At the other
end, wireless networking has initiated the use of distributed systems in sensor net-
works and embedded devices. Finally, online social networking is providing a novel
use for distributed systems.

With this multitude of realizations, distributed systems have generated a rich set
of research problems and goals. Performance was the first one. However, although
the performance of distributed systems has increased, there has been a resultant in-
crease in the programming burden. For a decade, research in distributed systems

ix
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10  Distributed Systems

had tried to reconcile performance and programmability by making the distribution
of computation transparent to the programmer through software distributed shared
memory. In the end, things have not become simpler as achieving performance under
distributed shared memory comes with a non-negligible semantic cost caused by the
relaxed memory consistency models.

With the shift of distributed systems towards file systems and Internet-based ser-
vices, the research changed focus from performance to fault tolerance and availability.
More recently, the ubiquity of distributed system architecture has resulted in an in-
creased research interest in manageability aspects. Concerns of sustainability resulted
in energy-aware distributed servers, which essentially proposed dynamic reconfigura-
tion for energy saving without performance loss. In the mobile arena, wireless net-
working introduced the important issues of location-awareness, ad-hoc networking,
and distributed data collection and processing. Finally, as computation and storage is
increasingly offloaded to the cloud, issues of security and privacy have recently gained
momentum.

This book is a journey into three domains of this vast landscape of distributed sys-
tems: large-scale peer-to-peer systems, embedded and real-time systems, and security
in distributed systems. The authors have recognized expertise in all three areas, and,
more importantly, the experience of building real distributed systems. This book re-
flects the expertise of its authors by balancing algorithms and fundamental concepts
with concrete examples.

Peer-to-peer systems have generated a certain fascination amongst researchers. 1
see at least two reasons for this. First, peer-to-peer systems come from the position of
the challenger who wants to take away the crown from the long-reigning client-server
model. Essentially, the challenge is whether it is possible for a democratic society
of systems to function efficiently without leadership. I am not sure whether history
has ever proven that this is possible, but the peer-to-peer systems researchers have
shown it to be possible. They employed efficient peer-to-peer data structures called
distributed hash tables (DHT) to achieve scalable data retrieval when peers come and
go, fail or misbehave.

Tribal instinct might also be responsible for our interest in peer-to-peer systems: it
is more likely to seek help from our peers whenever possible rather than from the out-
siders. This may explain the popularity of peer-to-peer applications, such as Gnutella,
BitTorrent, and the peer-to-peer games discussed in the book, some of them (Gnutella)
developed even before researchers showed how to design peer-to-peer systems effi-
ciently.

However, take heed, occasionally, peer-to-peer systems can be an illusion. Popular

social networks today may look like peer-to-peer systems to the user, but, in reality,
their implementation is heavily centralized. Recent concerns of data ownership and
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privacy have triggered an appetite for building truly peer-to-peer online social net-
works. It is better to understand how peer-to-peer systems work rather than be fooled
again.

The distributed embedded and real-time systems, which make the middle part of
the book, take distributed systems’ computing labs or centers, into the real, uncon-
trollable world. Whether embedded in cars, buildings, or our own bodies, embedded
systems must function without continuous operator assistance, adapting their function-
ality to the changing demands of the physical systems they assist or control. Physical
systems may also incorporate highly inter-connected embedded computers in order
to become cyber-physical systems. Computer scientists have always been good at de-
signing systems for themselves: languages, operating systems, and network protocols.
However, embedded systems are about others. They represent a prerequisite in imple-
menting Mark Weiser’s vision of pervasive computing, according to which computers
will not just become ubiquitous, but also invisible.

Embedded computing often demands real-time guarantees, a requirement that has
been shown to be challenging for any kind of computing, not just for distributed sys-
tems. This part of the book covers distributed real-time systems, how to build adaptive
embedded systems from a software engineering perspective, and concludes with an
interesting real-world example of software design for an aerospace system using the
modeling tool they developed. After reading this book, whenever you fly, I am sure
you will hope that the engineer who designed the plane’s software has read it too.

Finally, the last part of the book covers security in distributed systems. Distributed
systems inherently require security. Whether they are clients and servers or just peers,
these parties, as in real life, rarely trust each other. The authors present key aspects
of grid systems’ security and dependability such as confidentiality, authentication,
availability, and integrity. With the increasing popularity of cloud computing, security
and privacy issues will be an even greater concern. Virtual machine environments are
shown not to be sufficiently trustworthy as long as they are in the hands of the cloud
providers. Users are likely to ask for stronger assurances, which may come from
using the Trusted Platform Module (TPM) support, presented in this book, as well as
from intelligent auditing techniques. The book’s last section is about cryptography,
the mystical part of computer science, which we always rely on when it comes to
protecting the confidentiality of our communications.

Who should read the book? The authors recommend it for engineers and masters
students. I am inclined to agree with them that this book is certainly not for the
inexperienced. It requires some background knowledge, but also the maturity to read
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further from the recommended bibliography in order to fully internalize the material.
If you finish the book and want to read more, stay tuned; this is just the first book:

more is coming.

Professor Liviu Iftode
Rutgers University
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Chapter 1

Introduction

Problematics

Most do not know but, in 1946, ENIAC, one of the first known computers (after
Z3 in 1941 and Colossus in 1943), was already a parallel machine [WIK 11a]. The
very basic programming mechanisms ! of this computer hid this capability that was
never really exploited.

Then, for years, programming remained sequential. In the 1960s, interest in paral-
lel programming increased again. Two approaches were then explored:

— supercomputers;
— multi-processor computers.

Parallel programming on supercomputers

In the 1960s, the notion of supercomputers emerged. It was a brute-force 2 com-
puter able to perform complex scientific calculi such as meteorologic predictions.

Technologies of this time made such computers extremely costly. As an example,
the Cray-1 (1976), which constituted a major achievement in this domain, cost US$

Introduction written by Serge HADDAD, Fabrice KORDON, Laurent PAUTET and Laure
PETRUCCI.

1. From documents and pictures, it is clear that ENIAC looked more like an old-fashioned telephone
center than a modern computer. It was programmed by means of cables wiring switches.

2. As a comparison, a modern laptop is far more efficient than the Cray Y-MP from 1988, the most
powerful computer at this time.

Distributed Systems: Design and Algorithms Edited by Serge Haddad, Fabrice Kordon, Laurent Pautet and L aure Petrucci
© 2011 ISTE Ltd. Published 2011 by ISTE Ltd.
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8.8 million [CRA 11]. It weighed 5 tons and performed 166 MegaFLOPS (FLOPS
means FLoating point Operations Per Second). It required a dedicated electrical
power supply and had a very complex cooling system.

Parallelism in such computers was mainly based on the “vector calculus” principle.
The idea is to apply a given operator to a vector instead of a scalar. This objective
was achieved thanks to pipe-line in processors, which enabled “pseudo-parallelism”
to process several data simultaneously. The same operation was performed on several
data but at different stages in the pipe-line.

The Cray Y-MP, in 1988, was based on this principle but also comprised parallel
configurations from four up to eight vector units. Then, two types of parallelism co-
exist: vector-based and multi-processor based.

FORTRAN was the traditional programming language for numerical applications.
It was rapidly extended to enable parallel programming. Other languages were en-
riched with new instructions or associated libraries to also handle parallelism. How-
ever, to get all benefits from such computers, a deep understanding of their architec-
ture was required. Then, when a computer was replaced by a new one implementing
a more efficient architecture, programs had to be thoroughly rewritten to exploit the
new capabilities. This additional cost could only be supported by large institutions
such as the army, aircraft manufactories, state research agencies, etc.

Parallel programming on multi-processor machines

During the second half of the 1990s, when network usage was growing, some
started to build clusters of computers. It was first a way to build “supercomputers for
the poor” by assembling PC motherboards connected via a dedicated local network.
The time of the first configurations involving 64 to 128 nodes is now gone: current
clusters are gathering thousands of machines via high-speed networks such as glass
reinforced plastic fibers. The Jaguar machine 3 is made of 18,688 processors, each one
being an hex-core (that makes 112,128 cores in total) [WIK 11b]. Its peak computing
capacity is 1.75 PetaFLOPS (10'> FLOPS).

The cost of clusters dramatically increased the affordability of supercomputers
and thus almost all the fastest machines in the world are of this type. Most companies
selling “traditional supercomputers” have reduced their activity.

Another aspect made this new generation of supercomputers popular; their pro-
gramming is much easier and reusable compared with the old ones. This is because
the programming paradigm is that of a distributed application that is not architecture

3. This was the fastest computer recorded in June 2010 [TOP 11].
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dependent. Hence, “classical” distributed programming techniques can be used and
preserved when transferring the program from one machine to another.

In fact, the Internet itself can be seen as a gigantic supercomputer, as applications
like SETIGhome [UCB 11] do. Thus, some experiments involve dozens of thousands
of machines over the Internet. The main difference with clusters is that the nodes
are not connected via a high-speed network. There is also a need to check for trust
between nodes.

Thus, the problem of distributed computing is now mainly a software problem.
However, distributed applications belong to a difficult class of problems.

Objectives of this book

This book is aimed at engineers or masters students or anyone familiar with algo-
rithmic and programming who wants to know more about distributed systems.

We deliberately chose, in this first book, to group the presentation of distributed
systems in relation to their design and their main principles. To do so, we present both
the main algorithms and replace them in their application context (i.e. consistency
management and the way they are used in distributed file systems).

Description of chapters

The first part is dedicated to large-scale peer-to-peer distributed systems. This
is currently a very active area with new improvements (especially those induced by
mobility and the numerous small devices we use daily):

— Chapter 3 presents the main principles of large-scale distributed peer-to-peer
systems. It details the main algorithms used to communicate and ensure trust in such
systems.

— Chapter 4 deals with peer-to-peer storage, an application domain which has al-
ready accumulated several years of experience. Some well-known protocols and tools,
such as BitTorrent and Gnutella, are detailed.

— Chapter 5 presents another hot application domain for such systems: gaming.
Once again, the principles adapted to this class of applications are put into a practical
perspective.

The second part is dedicated to distributed real-time embedded systems: a domain
that has always been very active. The topic of distributed systems is now gaining
importance in the design of the next real-time systems generation.
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— Chapter 7 presents the holistic analysis, a well-known method used to compute
the schedulability of distributed real-time systems. This chapter provides some back-
ground knowledge of scheduling analysis in the distributed real-time systems area.

— Chapter 8 deals with the design of adaptative real-time embedded systems. This
second contribution provides the results for some schedulability theories, it also de-
tails some of the fundamental insights of the design process of adaptative real-time
embedded systems.

— Chapter 9 presents an innovative approach to designing the new generation space
systems. This approach is supported by a toolset which is required to automate the
process where possible.

The third part is devoted to security issues in distributed systems. This is a critical
area that is of the utmost importance in such systems where trust among communicat-
ing entities and confidentiality of data are key issues:

— Chapter 11 presents the main characteristics of grid computing, with a focus on
security. The security properties that have to be guaranteed are detailed, and how they
are achieved in practice is presented through several case studies.

— Chapter 12 tackles the issue of data confidentiality using cryptography. It de-
scribes the core techniques which use symmetric key and public key protocols, and
details their main characteristics.

The MeFoSyLoMa community

MeFoSyLoMa (Méthodes Formelles pour les Systemes Logiciels et Matériels 4) is
an association gathering several world-renowned research teams from various labo-
ratories in the Paris area [MEF 11]. It is composed of people from LIP65 (P. & M.
Curie University), LIPN ¢ (University of Paris 13), LSV 7 (Ecole Normale Supérieure
de Cachan), LTCI8 (Telecom ParisTech), CEDRIC 9, (CNAM), IBISC 10 (University
of Evry-Val-d’Esssone), and LACL ! (University of Paris 12). Its members, approxi-
mately 80 researchers and PhD students, all have common interest in the construction
of distributed systems and promote a software development cycle based on modeling,
analysis (formal), and model-based implementation. This community was founded in
2005 and is federated by regular seminars from well-known researchers (inside and

. This acronym stands for Formal Methods for Software and Hardware Systems (in French).

. Laboratoire d’Informatique de Paris 6.

4
5
6. Laboratoire d’Informatique de Paris Nord.
7. Laboratoire de Spécification et de Vérification.
8. Laboratoire Traitement et Communication de 1’Information.
9. Centre d’Ftudes et de Recherche en Informatique du CNAM.
10. Informatique, Biologie Intégrative et Systtmes Complexes.

11. Laboratoire d’ Algorithmique, Complexité et Logique.
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outside the community) as well as by common research activities and the organization
of events in their domains such as conferences, workshops, or book writing.

The editors of this book, as well as most authors, are from this community.
Bibliography
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Chapter 2

Introduction to Large-Scale Peer-to-Peer
Distributed Systems

2.1. “Large-Scale” distributed systems?

For several years now, the term “Large-Scale” has applied to distributed systems.
It indicates that they involve a very large number of computers that are usually spread
worldwide.

As a typical example, we are all regular users of a large-scale distributed sys-
tem: the Internet. So, the “Internet universe” provides a rough idea of the way such
systems work. How programs contact and cope with other programs (such as the rela-
tionship between a web browser and a web server) can be easily imagined. Moreover,
it is possible to feel how the Internet is a worldwide parallel machine of which each
connected computer is a part. The structure of such distributed systems can thus be
comprehended by anyone regularly using the Internet.

However, only a few really understand the implication of “large scale” regarding
such distributed systems. Creating a program to be executed on a few (or several
dozens) nodes is completely different from the same exercise for a few thousand nodes
or more. This is a problem when ubiquitous systems ! become more and more present
in our day-to-day life.

Chapter written by Fabrice KORDON.

1. This denotes the set of devices (computer, PDA, cellular and smart phones, specialized devices, etc.)
connected into a network in a transparent way. Thus, users deal with several media in their day-to-day life
to accomplish personal or professional matters.

Distributed Systems: Design and Algorithms Edited by Serge Haddad, Fabrice Kordon, Laurent Pautet and L aure Petrucci
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2.2. Consequences of “large-scale”

What are the consequences of having “large-scale” distributed systems? Simply
the number of components in the involved systems (to illustrate the concepts, we con-
sider here that all components are programs, even if the human factor is important
too). The following are some of the problems encountered:

— communication;
— fault tolerance;

— decision making.

2.2.1. Communication in large-scale distributed systems

For distributed systems, every component can be connected to any other. However,
such a connectivity cannot be maintained when the system grows. It is obvious that
the management of dozens of thousands of connections cannot be handled by a single
program.

Point-to-point communication can no longer be adapted; new mechanisms are re-
quired, such as broadcast or multicast. It should be noted that such mechanisms al-
ready exist (for example, they are used in the Internet, when a new router is connected
to the global network).

Thus, one of the main characteristics of communications in large-scale distributed
systems is their anonymous aspect. Components of such systems communicate with-
out knowledge of their location or identity (e.g. IP2 address). This is due to the fact
that during the system execution, due to the network load, or faults mentioned in the
next section, the location of the components may change. Thus detecting a component
via its IP address is absurd.

2.2.2. Fault tolerance in large-scale distributed systems

No problems are usually encountered during one hour of computing on a single
host. This is not the case when this computation time employs 10,000 machines. The
probability of the occurrence of failure tends to 100%. In fact, the more CPUs 3 that
are involved in computing, the higher the probability that a failure will occur in the
involved machines (host crash, network breakdown, etc.).

2. 1P stands for “Internet protocol”.

3. CPU stands for “central processing units”.
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Thus, it is necessary to create dedicated mechanisms to handle such failures and
ensure that the program is able to overcome these. Such mechanisms have a dramatic
impact on the software architecture of large-scale distributed systems.

2.2.3. Decision making in large scale distributed systems

Decision making in large-scale distributed systems is a difficult task. If, when par-
allelism is limited, each component (piece of program) has a full copy of the involved
data, such hypothesis cannot be considered when the number of hosts increases: man-
aging and updating data would require too many resources.

Thus, each component in the distributed system is expected to handle decisions
based on a (very) partial view of the global system state. Collection of the involved
data remains a difficult task that also has far-reaching impacts on the software archi-
tecture.

2.3. Some large-scale distributed systems

Earlier, we mentioned the Internet as an example of a large-scale distributed sys-
tem. In fact, this example is not typical because the Internet itself consists of a world-
wide network of machines (evaluation in June 2010 was 1.97 billion users according
to [IWS 10]); most users only operate a very limited number of machines simultane-
ously (typically, a web server, composed of a cluster of machines to handle services —
most online vendors have such an architecture).

Thus, to provide a more accurate view of large-scale distributed systems, we briefly
present two examples that emphasize their main characteristics.
2.3.1. SETI@home

Our first example is an application launched in 1999. An improved version is still
in use today (the first version is now called SETI@home “classic”).

When SETI@home [UCB 11] was released, it raised a huge interest from both Inter-
net users and computer science professionals. The main objective of this application
is to exploit the useless CPU time of machines connected to the Internet to compute
and analyze radio signals coming from outer space. The objective is to look for traces
of non-human intelligence 4.

4. SETI s the acronym for Search for Extra-Terrestrial Intelligence.
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The way SETI@home operates is quite simple. Users willing to offer unused CPU
capacity download an application to create an account on a server and set-up its con-
figuration (enabling the conditions for SETI to activate, etc.).

Once launched, the application remains paused until the host computer becomes
inactive. Then, it connects to the server, downloads data to be analyzed and, once
computation is over, uploads the results to the server. If the host machine resumes its
activity, the application stops until the next inactive period.

SETI@home met great success in the Internet community and more than 5 million
people have used it since it was launched. From a performance point of view, it is
also a success as the computation strength has increased up to 364.8 TeraFLOPS 5 in
January 2008 with about 1.7 million simultaneous users. As a comparison, let us note
that the most powerful computer is about 1,759 TeraFLOPS 6 for an incredible cost.
However, no non-human activity has been detected so far.

Let us consider the three main problems noted in section 2.2 and the way they are
addressed by SETI@home:

— communications: SETI@home mainly relies on the classic Internet architecture,
the so-called client-server approach. The downloaded application connects to a server
to obtain data and sends back the results to this same server;

— fault tolerance: its management is simple. If a participating machine (a client)
does not send back results for a while, the server may resend the set of data to another
client. Let us note that users trust the system as they accept the program to run on
their computer, which communicates with another machine. They expect SETI@home
not the behave in a malicious way;

— decision making: all decisions are taken by servers, clients only analyze local
data they retrieve from the server.

2.3.2. The automated motorway

Our second example concerns intelligent transport systems (ITS). These remain a
challenge as there is no implementation yet. However, this is an important and active
research domain in the USA, Japan, and in Europe, with investments involving billions
of Euros and concerning numerous applications. Here, we will focus on one of them:
the automatic motorway (seen from the perspective of distributed systems).

The objective of the automated motorway is to let especially equipped vehicles
drive without human intervention. Such a system is of interest for main roads; it is

5. 1 TeraFLOP corresponds to 1012 FLOPS.

6. This is, in June 2010, the Jaguar system at NCSS, a 18,688 node computer (each node runs a dual hex-
core AMD Opteron 2435 (Istanbul) processors running at 2.6 GHz, 16 GB of DDR2-800 memory [WIK 11].
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also intended for trucks. Let us note that some experimentation started around the mid-
1990s in the context of the PATH project [UCC 04], whereby a platoon of automated
vehicles successfully drove along a dedicated freeway. However, due to the cost of
road adaptation, this solution got no further and was abandoned.

Based on these first successes and due to technological advances, the principle has
changed. Current solutions tends to minimize the adaptation of infrastructures and put
more “intelligence” in the vehicles.

Let us now draw a more up-to-date vision of the automated motorway. The com-
ponents if the system are:

— the motorway infrastructure, which offers lanes, communication mechanisms,
and global information about the road itself (such as speed limit, information about
traffic or accidents, etc.). The network may only exist from time to time (e.g. WIFI
communication spots may be located alongside emergency phones);

— vehicles, which are equipped with sensors and a network interface enabling lo-
cal communication with both other vehicles and the road infrastructure. Only local
communication are needed (e.g. with close vehicles only).

A priori, each vehicle communicates with its close neighbors. Information (e.g.
acceleration and speed data, emergency braking, etc.) is propagated to the surrounding
vehicles. Information then travels faster than it does from driver to driver (when they
notice other drivers’ behavior).

Vehicles can also receive messages from the road infrastructure.

Such a system can be structured as a hierarchy of subsystems (see Figure 2.1).
Here, there are two levels of hierarchy, each one dedicated to a given set of services.

E ? , _sections | section s+1, section s+2, section s+3,
83—t pooommm b b
:m_
3. LD ____ | 1 W1 R =1
= —= = =
22 5 (TS LS LS
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Figure 2.1. Possible hierarchical architecture for the automated motorway

The first level (called “local” in Figure 2.1) deals with a group of circulating ve-
hicles. Obviously, this group is composed dynamically and evolves when cars enter
or leave the motorway. It is also possible that some vehicles go from one group to
another when their speed becomes slightly higher than another group (overlapping
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between groups can also be considered, in which case, one vehicle may belong to two
groups for a while).

Inside the group, the security of each vehicle must be handled. To do so, informa-
tion is shared between vehicles and possibly the road infrastructure. In which case,
decisions are made by vehicle controllers to avoid collisions and ensure safety.

The second level (called “global” in Figure 2.1) focuses on higher-level services
and does not handle collision avoidance at all. Its objective is to propagate informa-
tion regarding unexpected events, such as an accident or bad weather conditions (e.g.
localized fog). Any change in the dynamic of the system (e.g. a sudden braking of a
group) must be analyzed and backward propagated to let later vehicles anticipate the
problem if necessary.

Traffic management (to prevent traffic-jams) can also be handled at that level. The
system may decide to reduce the speed limit of some sections to limit the number of
vehicles coming to a section where an unexpected event is occurring.

Let us consider the three main problems noted in the section 2.2 and the way they
are addressed here:

— communications: each group of vehicles must have its own broadcast mecha-
nism. If a vehicle belongs to two groups, it receives information from the two groups
and may propagate data backward (e.g. from the front group to the back group).
Thus, information goes from hop to hop. When a vehicle sends information to the
group channel, it does not have an idea of which participant will get this information
(anonymous communication). The principle is that “involved vehicles” will get the
appropriate data to operate;

— fault-tolerance: such systems require fault-tolerance mechanisms. Typically, a
vehicle losing connection with the group must continue to behave safely within the
group (until communication is back).

Vehicles must trust each other: a situation where a component sends information
to go faster than other vehicles or cause a crash must be avoided.

— decision making: at the local level, decisions are probably taken by vehicles. At
the global level, decisions could be taken by server. There may only be one server
for the motorway or a set of servers, each one dealing with a set of sections (and then
communicating together or to a higher-level server that handles the motorway).

2.4. Architectures of large scale distributed systems
During the early stages of parallel programming, computer scientists tried to ex-

tend “classical” mechanisms to produce a distributed execution. Thus, the notion of
procedure call was extended to remote procedure call (RPC) [SUN 88].
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2.4.1. Remote procedure call

Figure 2.2 shows the behavior of a RPC. The two components involved have asym-
metric behaviors. When the invoker is ready (1 in Figure 2.2), it generates a request
to the invoked that holds the code to be executed and waits for an answer. Once the
invoked receives the request (there may be a list of pending requests if the invoked
receives many of them), it is processed (2 in Figure 2.2) and then an answer is sent
back to the invoker. When the answer is received, the invoker conintues its execution
(3 in Figure 2.2).

The first message contains the parameter required by the code to be executed.
The second message contains return values (or modified parameters). When there is
no return value, an empty message is sent as the RCP is a synchronous mechanism
(the invoker must not continue its execution before the end of the remote procedure
execution).

invoker Invqked

Q
©
;

Figure 2.2. The Remote Procedure Call mechanism

Some typical characteristics of distributed systems must be outlined there:

— the two hosts executing the invoker and the invoked may have different architec-
tures. the data format may thus differ (e.g. an integer is stored on 32 bits for the first
machine, on 64 bits for the second one). It is then necessary to encode data instead of
sending a memory segment. The marshaling operation (m in Figure 2.2) encodes data
into a message and the unmarshaling operation (u in Figure 2.2) decodes this message
to reconstitute the original data. Both marshaling and unmarshaling must respect the
same conventions of course;

— identification of the invoked is explicit. Thus, each component in the system
must “know” each actor to interact with;

— finally, a crash of the machine hosting the invoked makes the RPC unavailable.
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RPC rely on two principles: message passing and point-to-point communication.
This is the case for any high-level communication mechanism that requires the ex-
change of messages over the network. A mechanism like RPC aims to structure inter-
actions between components into a protocol.

Parallel to the creation of RPC, scientists were formulating the main Internet mech-
anisms based on simple message passing such as broadcast and multicast. So, if the
Internet follows the client/server protocol (an extension of RPC presented in the next
section), it is based on message passing (this is a peer-to-peer approach that is also
presented later in this chapter).

2.4.2. The client/server model

The client/server (see Figure 2.3) is a natural extension of the RPC. In the early
1990s, middleware such as CORBA [OMG 06] extended this initial notion to the ob-
ject model. Registration mechanisms enable the dynamic identification of the server
address when necessary and it is not necessary to encode its IP address in the program.
This is an important evolution that increases the portability and enables evolution of

distributed applications.

Figure 2.3. Architecture of the client/server model
However, the client/server model remains a point-to-point protocol in which clients
initiate contact with a server. The server is reactive and only answers requests.

The context of the system (that enables decision making) is usually centralized in
the server. Thus, to tolerate faults, the server must be replicated on another machine.
This approach is often used for large servers (e-commerce, Google, etc.).

2.4.3. The master/slaves model

The master/slaves model (see Figure 2.4) is a variant of the client/server model. In
that model, all initiative is taken by the “master” that provides jobs to the “slaves”.

In that model, the “slaves” are the reactive ones and the communication employs
the point-to-point model. The “master” handles the context of the application and
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<

Figure 2.4. Architecture of the master/slaves model

takes decisions. Usually, to avoid problems in case of a crash, the context and related
data are regularly backed up. If a problems occurs, the context can be reloaded and
the execution continues from the last checkpoint (backup time).

2.4.4. The peer-to-peer model

Contrary to the “urban legend”, the peer-to-peer model is not a way to upload
files but is a way to structure distributed applications. Its architecture is presented in
Figure 2.5. It shows that no component is handling others. Each component collab-
orates to achieve a common goal. For that reason, each participant might be able to
communicate with each other. Of course, there will not be a physical dedicated com-
munication link between each executing process but, logically, we assume this is the

Cpeer! 2 Peer? D
A SV

‘ ~(_Peer*

Figure 2.5. Architecture of the peer-to-peer model

Communication mechanisms are usually based on broadcast or multicast to enable
data exchange between components. Point-to-point liaison may be used when a large
amount of data has to be passed from one component to another for performance
reasons (it is more efficient).

“Peers” may structure themselves for performance reasons. Ring-based, tree-
based, or star-based configurations are common. These structures aim to facilitate:

— actor localization in the system;

— message routing between actors.
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2.4.5. Use of these models

In some cases, distributed systems follow one architecture scheme only. This is
typically the case for Internet client/server applications where the “intelligence” usu-
ally resides in the server. However, for more complex applications, several architec-
ture models may be used at different stages of the execution, or even simultaneously
when the selected model is more efficient for the actions to be performed at this stage.

This is the case for the examples we mention in this chapter:

— the Internet, as previously stated, is built on a peer-to-peer architecture for mes-
sage routing but on a client/server one for high-level services (http, mail, etc.);

— SETI@home relies on a client/server for the connexion phase but data analysis is
provided using a master/slaves method;

— the automated motorway mixes peer-to-peer (locally between vehicles) and
client/server (to handle informations provided by the road infrastructure).

The role of an component may also change over its execution. As an example,
in some cases a component is sometimes a server and also a client (e.g. it requires
another sub-service to operate the one it offers). Such changes of roles and mix of
architectures is typical of large-scale distributed systems, as the following chapters
will show.

2.5. Objective of Part 1

The goal of this part is to show, using several existing examples, the way large-
scale distributed systems work. We are more precisely focused on peer-to-peer sys-
tems and we aim to describe their characteristics and the way they behave.

This part contains three chapters.

First, Chapter 3 defines the main basic concepts of such systems. It details their
structure and presents how messages are routed among numerous hosts. Finally, it
deals with the problem of building trust in such systems since, as for human societies,
malicious components may ruin the goal of a distributed application.

Then, Chapter 4 details two distributed storage systems: BitTorrent and Gnutella.
The analysis os these systems shows the high dynamicity of such applications and
illustrates the use of several structuring models regarding the execution of an appli-
cation. The idea is to illustrate a typical application of large-scale peer-to-peer dis-
tributed systems: file sharing.

Finally, Chapter 5 details another typical and recent example of large-scale dis-
tributed systems: massively parallel games. The authors present the limitations of
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current client/server-based approaches, such as those of Second Life or World of War-
craft, and present new approaches to be implemented in new massively multiplayer
on-line games. This chapter shows how basic mechanisms (such as those presented in
Chapter 3) must be adapted to fit new needs for this class of applications.
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Chapter 3

Design Principles of Large-Scale Distributed
System

3.1. Introduction to peer-to-peer systems

This chapter reviews the general concepts of peer-to-peer (P2P) systems. In the
last few years P2P systems have become incredibly popular among Internet users. The
key factors behind their success are scalability (in terms of number of hosts), highly
distributable without any central coordination, the resilience (to faults and churn), and
low cost of ownership. This is achieved by aggregating the resources of a large number
of computers, and using replication to mask individual faults.

P2P architectures are a alternative approach to traditional distributed schemes
based on client/server. They were particularly effective to locate resources in large
configurations consisting of millions of nodes.

The phrase “P2P” is used to describe a wide variety of applications and architec-
tures [LUA 05]. Several P2P applications have already been successfully deployed
over P2P networks, including distributed computing, such as SET/@home [SUL 97]
and XtremWeb [CAP 05], data sharing, such as Publius [WAL 00], Kazaa !, and Gnutella
[JOV 01], and instant messaging, such as ICQ 2 and Jabber3. P2P file sharing, in par-
ticular, has become the high bandwidth-consuming application, representing 20% of

Chapter written by Xavier BONNAIRE and Pierre SENS.
1. See http://www.kazaa.com
2. See http://www.icq.com
3. See http://www.jabber.org
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Internet traffic in 2009. In all these applications, network participants (peers) share a
portion of their resources, such as processing power, disk storage, or network band-
width, directly available to other peers spread on the networks.

In this chapter, we introduce first concepts that are common to P2P systems. Then,
we detail the distributed hash tables (DHT). DHT is a distributed storage service that
provides persistence and fault tolerance, and can scale to a large number of nodes. By
hiding the complexity of scalable routing, fault tolerance, and self-organizing over-
lays, DHTSs provide a powerful abstraction that greatly simplifies the task of building
large-scale distributed applications. We also focus on how to build trust services on
top of P2P systems.

3.2. The peer-to-peer paradigms

In P2P distributed systems, each participant (peer) knows a set of logical neighbors
to which it can directly send messages via IP4 protocol. These sets of neighbors form
a logical graph connecting all the nodes of the network. We call this graph an overlay
above the IP network.

Roussopoulos ef al. [ROU 04] identified as P2P systems those that meet the fol-
lowing criteria:

Self-organization: the network automatically adapts itself to the peers’ arrival or
departure without compromising the integrity of the system. Peers exploit local
information provided by its neighbors to organize the network.

Distribution: there is no centralized control to manage peer behavior.

Scalability: issues such as bottleneck, overloaded nodes, and single-point-of-failures
are avoided allowing to the system to scale up to millions of peers.
3.2.1. Classification of peer-to-peer systems

P2P systems can be classified according to two general criteria: degree of central-
ization and structure.

Degree of centralization

Decentralization is a key characteristic of P2P systems. In practice, most use a
centralized or partially centralized architecture in which some important functions,
such as handling metadata, are performed by only a few nodes in the network. In

4. 1P stands for “Internet protocol”.
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most cases a decentralized solution also exists, but is usually less efficient. In fact,
the choice between a centralized and a decentralized approach is usually a trade-off
between performance, fault tolerance, and cost.

Centralized systems

In these architectures, a set of dedicated nodes (servers) carries out critical opera-
tions, typically peer authentification or the location of resources owned by peers. This
small set of nodes is usually located in the same local-area network (LAN) or spread
geographically but connected through high bandwidth links. For instance, for file
sharing the critical operation is the identification of peers having a copy of a specific
file. This group of servers is only used to locate peers in order to link them. When
peers are connected, they directly exchange their data. The Napster file sharing sys-
tem and more recently OceanStore [KUB 00] a general purpose data storage system
from Berkeley are examples of such architectures. Figure 3.1 illustrates location of
resources in a centralized P2P system. Peer S sends a lookup request to the core to
locate some data. Then, based on its global view of data indexes, the core forwards the
request to nodes A and B. Finally A and B reply directly to S. .S usually arms a timer
at the beginning of its request, when the timer expires it then chooses its responses
among the set of replies it receives.

O Peers

O Peers having a copy of data

. Core nodes
—_—

request

------ ¥ response

Figure 3.1. Location in a centralized P2P system

The set of servers maintains a global view of all resources (meta-data). This
centralization allows servers to perform complex operations such as data indexing,
searches, ordering client requests, and trust management requiring less network com-
munications than in a decentralized design. Efficient load balancing can also be
achieved due to the low cost of reconfigurations and state migrations between nodes.
Finally, a small number of core machines are easier to manage and administrate com-
pared to thousands of machines spread all other the Internet.
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However, centralization has two important disadvantages. First, the system core
is a single point of failure. It then requires redundant hardware and network links in
order to prevent the isolation of servers due to node crashes or network partitioning.
If the core is inaccessible no client request can be satisfied. Second, this solution is
not scalable as all the localization traffic goes through the same core. Then, servers
need powerful hardware and high bandwidth links, resulting in substantial operational
costs.

To overcome these two disadvantages, most P2P systems rely on a partially cen-
tralized architecture.

Partially centralized architecture

These systems lack a single central point in the network but employ a small group
of nodes to carry out critical tasks, they are sometimes referred to as partially central-
ized, or hybrid architectures. In this approach, systems distinguish several kinds of
nodes, assigning them different roles. A two-level hierarchy is a widely used archi-
tecture, in which powerful, well-connected nodes, commonly referred as supernodes,
form a higher level overlay used to store metadata and broadcast search queries. Other
nodes connect to one or more supernodes, and in some networks may also form a
lower-level overlay through which messages can be routed.

Since supernodes are spread on the network, they are less sensitive to partion-
ing compared to centralized architectures. However, complex operations on metadata
or data searching may be more expensive since they require numerous exchanges of
message between supernodes through Internet. Nevertheless, this distribution model
meets a certain success and is the basic scheme of the most popular file-sharing sys-
tems such as Kazaa or eDonkey.

O Peers

O Peers having a copy of data

. Supernodes

request

------ + response

Figure 3.2. Example of search request in partially centralized architecture

Figure 3.2 shows the principle of a search query in a partial centralized system.
Peer S sends a request to its supernode. This request is then forwarded to the con-
nected peer, A, responding to the search criteria. The request is also forwarded to
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other supernodes, which send the request to their peers having a copy of the data, C.
Finally, A and C directly send a response to .S.

Distributed architectures

Partially centralized systems are not suitable and reach their limits when the num-
ber of resources is high or in presence of churn (i.e. the continuous process of node
arrival and departure). In these cases, a supernode cannot maintain a correct view of
its peers. When the number of peers associated with a supernode becomes too high,
the supernode becomes overloaded and views its peers incorrectly.

Distributed approaches do not consider any dedicated nodes and aim to balance
load and partition the global view among all peers. In such architectures, each peer
belongs to the global overlay network and only maintains the view of resources of its
logical neighbors. To tolerate node crashes, information from each peer is replicated
on its neighborhood in the overlay.

As decentralized systems have no single points of failure, a robust system can
withstand and recover from a variety and number of failures. However, a decentral-
ized approach can be much more inefficient than the corresponding centralized one.
Typical example are data location and search queries. A central directory can respond
to a search query providing the network address of a matching resource almost imme-
diately. Conversely, a decentralized search algorithm may require contacting tens or
hundreds of nodes, generating a considerable amount of traffic and long delays before
the result is sent to the client. Even worse, simple search algorithms (e.g. based on
flooding) may produce partial results if the resource is located too far away from the
source.

3.2.2. Structure of overlay networks

Overlay networks were designed to search information following logical links be-
tween peers. Besides the degree of centralization, overlay networks can also be clas-
sified into structured and unstructured.

Unstructured overlays are constructed in a non-deterministic manner. Therefore,
they do not have a defined topology. If a peer wants to search for a desired piece of
data in the network, the query has to be flooded through the overlay in order to find as
many peers as possible that share the data.

Structured overlays are constructed so that the node graph follows a particular
topology. Contrary to unstructured overlays, a node cannot freely choose its neigh-
bors. Instead, it selects them from a set of possible neighbors, which depends on the
node identifier.

Let us now detail these two approaches.
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Unstructured overlays

Unstructured overlays are easily built: to join the network a peer has to contact a
participant node and use its neighborhood information to built its connections. The
resulting topology is then unstructured. Therefore, these networks are not sensitive to
churn (i.e. the continuous process of peer arrival and departure). No state is transferred
to or from the joining node, and nodes do not maintain any routing information besides
that from the unique identifiers of their direct neighbors and of some remote peers to
increase the lookup process.

However, the location of resources is costly. If a peer wants to search for a piece
of data in the network, the query has to be flooded through the network in order to find
as many peers as possible that share the data. Typical search techniques are breath
first search (BFS), random walk [ZEI 04], and iterative deeping [LI 06] among others.
Basically most of these techniques forward queries to all neighbors. Neighbors orig-
inating the queries return the results, and consecutively, they will forward the query
to their respective neighborhood. The process will continue until an end condition is
reached (time-to-live: TTL). For instance, this technique is used by Gnutella unstruc-
tured networks [JOV 01].

Figure 3.3 illustrates the flooding principle. Peer S generates a search request with
aTTL of three. All peers (A, B and C) having a copy of the corresponding data which
is reachable at three hops from the source directly sends a response to .S.

ATTL R

/

/

-

Q Peer —>> request

O Peerhaving a copy of data | ------ » response

Figure 3.3. Flooding of a search request in an unstructured overlay

To reduce the flooding cost, some systems use random walks [GKA 06]. In random
walks, peers send their request to one of their neighbors chosen uniformly at random.
When a peer receives a request, it locally evaluates the request and possibly responds
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directly to source. It also forwards the request to one of its neighbors until the TTL
is reached. At the end of a random walk, the source evaluates whether it receives the
response; if the full response was received, it generates a new random walk.

Figure 3.4 illustrates the principle of random walks. Peer .S looks for three copies
of data. In the first random walk, only one peer B responds to S. Then S generates a
new walk, which discovers peers A and C.

O Peer —» request

O Peerhaving a copy of data | ------ ¥ response

Figure 3.4. Random walk search in an unstructured network

Even if random walks significantly reduce the search cost compared to flooding,
unstructured networks cannot undertake exhaustive requests as the probability to find
a data is directly proportional to the depth of the search (TTL). For instance, in Fig-
ures 3.3 and 3.4, peer D located at five hops is never found.

Structured overlays

Structured overlays have emerged to improve search requests and to find data in
an exhaustive way. These networks are totally decentralized and organized based on a
specific topology [GUM 03] (ring, butterfly, hypercube, Bruijn graphs, plaxon-trees,
and others). This topology defines a name space where each peer is associated with a
unique identifier (a node ID).

Many structured overlays have been developed, including Pastry [ROW 01a], Chord
[STO 01b], CAN [RAT 01], or D2B [FRA ]. These systems are based on the same ba-
sic principles and mainly differ in their topology.
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Systems | Topology |Average number of hops|Size of the local routing table
Pastry ring O(logN) O(logN)
CAN d-tore O(N1/d) O(1)
Tapestry tree O(logN) O(logN)
Chord ring O(logN) O(logN)
Kademlia XOR O(logN) O(logN)
Koorde |ring/de Bruijn O(logN) O(1)
D2B de Bruijn O(logN) O(1)
Viceroy | Butterfly O(logN) O(1)

Table 3.1. Characteristics of structured protocols

Data are identified by storage keys randomly chosen in the space of node IDs. Each
key is then dynamically associated with a unique node of the network called the root
of the key whose ID is the closest to the storage key.

Each node maintains a routing table to locate data from its key. This table includes
the identifier and the IP address of other nodes according to the topology. Each node
also maintains a list of its near neighbors in the space of identifiers. Knowledge of
this neighborhood allows the local node to determine the list of keys for which he is
responsible.

Application programming interface (API) of a structured overlays has three basic
primitives:

— join() function inserts the calling node in the overlay according to its ID,

— leave () function removes the calling node,

— route (k,m) routes message m to the root of the key k.

There are several protocols based on a key-based-routing (KBR). We provide here
a non-exhaustive list of other KBR designs (characteristics of these protocols are sum-
marized in Table 3.1). Tapestry [ZHA 02] uses a routing algorithm based on the work
by Plaxton et al. [PLA 99], and is therefore very similar to Pastry. CAN [RAT 01]
uses a d-dimensional Cartesian coordinate space that wraps around its edges, forming
a d-torus. Nodes maintain a list of 2d neighbors, and the average routing path length
is O(N 1/ d) where N is the total number of nodes. Chord [STO 01b], like Pastry,
uses a ring topology in which node IDs belong to a circular address space. Instead
of leaf sets, nodes keep a successor list of the s closest nodes clockwise on the ring.
Routing tables are also slightly different, each node maintaining a list of other nodes
located at exponential distances on the ring (known as the finger table). Kademlia
[MAY 02] uses a XOR metric to compute the distance between two node IDs, treating
nodes as leaves in a binary tree. The resulting number of hops for lookup operations
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is O(logN). Viceroy [MAL 02] uses a butterfly network to achieve a logarithmic
number of hops with O(1) state per node, while Koorde [KAA 03] and D2B [FRA ]
achieve the same result using de Bruijn graphs.

3.3. Services on structured overlays

This section focusses on services built on top of structured overlays.

3.3.1. Services

Similarly to the OSI layer model for network protocols, the protocol stack of a
structured P2P network can be divided into three layers, or tiers [DAB 03] as shown in
Figure 3.5. The bottom layer, known as tier 0, represents the routing layer. Routing is
accomplished using routing keys, so this layer is also referred to as KBR. The second
layer, or tier 1, corresponds to the P2P protocols that use the KBR layer to provide a
specific service, such as a DHT or a multicast service. Finally, tier 2 designates any
software that uses the services provided by tier 1.

Applications Tier2
— A A
pHT | |/poLr| Jlcast| | Te"?
A
KBR Tier O

Figure 3.5. Services on P2P systems

Several popular services have been developed at the tier 1 layer:

— DHTs are a distributed storage services. DHTs distribute <key, data> pairs on
nodes of the network. Placement of copies of data is usually constrained in the neigh-
borhood of the root of the key. This service is detailed is the following section;

— DOLRs (decentralized object location and routing) provide a distributed direc-
tory service. As DHTs, DOLRs associate a key with each data set. However, in
DOLRs clients can store objects anywhere in the system, and publish the location of
the replicas under the object key. Tapestry [ZHA 02] is a example of DOLR;

www.it-ebooks.info


http://www.it-ebooks.info/

42  Distributed Systems

— CASTs provide a group communication service. Nodes can join or leave a group
or broadcast messages to group members. Scribe [CAS 02] and Pagoda [BHA 04] are
example of CAST service.

Examples of tier 2 layers are P2P file systems, such as Ivy [MUT 02], OceanStore
[KUB 00], or Pastis [BUS 05]; resource allocation services such as Vigne [JEA 07],
or services to index databases, such as PinS [VIL 04].

Finally, in some cases, the user application may be considered as a fourth layer on
top of tier 2. This is the case, for instance, of a legacy application using a P2P file
system.

3.3.2. DHTs

DHTs provide the substrate to build scalable, fault-tolerant, and load-balanced dis-
tributed applications on top of large-scale systems. DHT is a distributed data structure
that holds pairs <key, data> in a completely distributed manner by mapping each key-
data to a P2P node or, in case of replication, a set of them. To this end, a DHT exploits
hashing techniques that provide uniform distribution. DHT-based overlays such as
Past [ROW 01a], DHash [DAB 01], or OpenDHT [RHE 05] are widely used to build
P2P applications and they can locate objects (resources) in a small number of hops
(i.e. logN among N peers). DHT provides a scalable and efficient search method. On
the contrary to unstructured networks, structured networks enable complete search.

A DHT stores a data d uniquely identified by a storage key k. To be located
quickly, the d is stored on the root node of k. The block is then replicated in the
logical neighborhood of the root on a set of nodes called the i-roots, which are defined
as follows: the i-root of a key k is the node that becomes root of k£ when all j-roots of
k for j < i have failed or left the network. Thus, if r is the degree of replication, all
copies of data are located on the i-roots 0 < ¢ < r of the storage key.

At the basic functional level, all DHTs provide the following two functions to the
application:

— the put (b, k) primitive stores a data block under the specified key k;
—the b < get (k) function returns a copy of the object inserted under key k.

Figure 3.6 illustrates the principle of storage in a DHT. Node 5230 calls the put
primitive to store the block B with key 8959. A message is then routed until it reaches
the node 8957, which is the root of key 8959 (i.e. the node in overlay whose ID is
closest to 8959). Then the block is replicated three times in the neighborhood of the
root (blocks By, B, and B5). In this example, nodes 8957, 8954 and 895D, are the
0-root, 1-root and 2-root of block B, respectively.
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—— routing

............ » duplication

3A79

Put(B, 8959)
5230

Figure 3.6. Data insertion in a DHT

3.4. Building trust in P2P systems

Building trust is a major concern in P2P systems [ABE 01, YU 04]. The self-
organization of the nodes as well as the non-existent control of whether nodes can
enter the system, makes the presence of malicious nodes inevitable. In this context,
the self-organization and maintenance of the nodes, which appears to be initially one
of the strongest features of a P2P system, becomes one of the most vulnerable areas
because of the presence of malicious nodes.

A malicious node is a node that does not follow the normal rules of the system. It
can be a byzantine node or a node that do not always behave maliciously (alternative
nodes). The behavior of malicious nodes can have various consequences on the P2P
system, as they can:

— reject queries and may not respond to Get() or Put() operations. The transaction
will then fail;

— make the routing algorithm fail, denying the forwarding of messages (this is a
typical behavior in DHT);

— provide false information to other nodes (data integrity problems);

— prevent other nodes from correctly achieving their maintenance tasks.

Using traditional solutions to build trust based on a set of servers providing cer-
tification or any kind of control over the nodes that are members of the system is
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impossible in P2P systems. The main reason is because such solutions are not scal-
able. It then becomes very difficult to manage networks that can grow from thousands
to millions of nodes.

Building trust in P2P systems is then a very difficult task. In this context, two
solutions have been shown to be feasible to ensure trust in P2P networks: reputation
systems and accountability.

3.4.1. Reputation systems

First, let us note that reputation systems [RES 00, DAM 02] are very difficult to
implement in an unstructured P2P network. This is mainly due to the lack of decid-
ability in such networks, where finding a given dataset may fail even if this dataset
exists in the network. Then we assume that we are in the context of a structured P2P
network, such as a DHT [FED 07] (see 3.3.2).

The main idea of a reputation system is to associate a reputation R(X) to each
node X in the network. The reputation is then used by an application to decide wether
or not to make a transaction with a given node. R(X) can be seen as the probability
for node X to be a trusted node, which is the probability for X to be honest. Then:

PTrusted(X) — R(X)
PMalicious (X) =1 R(X)

It is important to understand that a reputation system is never able to fully decide
whether a node can be trusted or not. In other words, PT7usted( X) or pMalicious( x)
will never be 0 or 1. Therefore, there is always a risk attached to making a trans-
action with a malicious node, even if it has a high reputation value (high probability
to be honest). A reputation system does not decide itself if a node is a trusted one.
The threshold to decide if a node can be considered as honest or not is application
dependent.

Every reputation system has to fulfill the following properties:

— reliability: the system must be able to discriminate between trusted and mali-
cious nodes. That is, the computed reputation value for node X must correspond to a
value that effectively represents the behavior of node X . This maintains the integrity
and the completeness of the reputation information, so that no node will be able to
modify or to delete its own reputation value;

— robustness: a reputation system can be the target of several types of attacks.
A collusion of nodes can artificially decrease the reputation of a given peer, or even
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to increase the reputation of the colluded nodes themselves. Rumors and false rec-
ommendations are also common problems, where nodes can lie about the behavior
of a node, or can generate false recommendations about transactions that have never
occurred;

— scalability: as with every P2P network, a reputation system must be scalable and
also self-organized to avoid central administration. However, every reputation system
also has a limit regarding the number of malicious nodes it can handle. Outside this
limit, the system usually becomes unstable and unable to discriminate among trusted
and malicious nodes.

Various reputation systems have already been proposed like Pride [DEW 04], TrustMe
[SIN 03], PeerTrust [XIO 04], TrustGuard [SRI 05], PowerTrust[ZHO 07], Pet [LIA 05],
EingenTrust [KAM 03], or WTR [BON 09]. Each reputation system is based on a
metric [SCH 05] to compute the reputation value, and possibly an associated risk.

As an example, we present in the following WTR (Worth The Risk) designed for
DHT.
Reputation computation in WIR

The computation of the reputation in WTR is based on recommendations emitted
by the clients after a transaction (see Figure 3.7).

Transaction
Nodel Node 2
. -
Client Server

Recommendation

()

Node 3
Manager of Node 2

Figure 3.7. The client side emits a recommendation after a transaction

A recommendation represents the evaluation of the client regarding the transaction.
In most of the existing reputation systems, a recommendation is a discrete value. This
is done to mitigate the effect of similar evaluations from different nodes leading to
different recommendation values. Table 3.2 lists the recommendation values used in
WTR.

A set of nodes is used to manage the reputation of node X . In a DHT, a typical set
of nodes can be chosen using the following method. A root manager M|, is assigned
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Evaluation | Recommendation Description
Excellent | Very good transaction and service fully
completed.
Good 075 Good transacu.on but service has suffered
some degradation.
The transaction has not completed cor-
Neutral 0.5 rectly but the reason could be independent
of the node.
Bad 095 Transaction ggd service not completed.
Maybe a malicious node.
Malicious 0 Fully malicious behavior of the node.

Table 3.2. Possible Recommendation Values in WTR

using My = H(X) where H is the hash function used to build the DHT. Then the set
of managers M; must be chosen such that they will be readily available. An easy way
to do this in a DHT-like Pastry [ROW 01b] is to chose the leaf set of M| as the set of
managers, or the n successors of My in Chord [STO 0O1a].

Each manager receives a copy of the recommendation emitted by the client of node
X, and maintains a list of recommendations for X. The latest m recommendations
are used to compute the reputation (sliding window).

" log(m — i + 1) x FX(X) x Cy(K)
Rr(X) = =2

__ (3.1)
> log(m —i+1) x Cy(K)
i=0

Equation (3.1) shows the computation of the reputation of node X at time 7" by a
manager of X. F/¥(X) represents the recommendation of index i, emitted by node
K in the recommendation list of node X. The log factor is used as a fading factor,
in order to give a higher weight to the latest recommendations for X, lowering the
influence of the old ones. C;(K) represents the credibility of node K when emitting
the recommendation at time ¢. The reputation is then normalized between 0 and 1.

The credibility of K is computed as follow:
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1 ifR(K)e[0.75... 1]
075 if Ry(K)€[0.5 075[
ClE) =9 02 ith(K)e[025 0.5]
0.1 ifRy(K)elo...0. 25[

The credibility is a function of K’s reputation at time ¢. This is an important point
in reputation systems, where recommendations coming from malicious nodes should
not influence the recommendation of honest ones. Note that the credibility scale is not
linear. This is done to heavily mitigate recommendations from untrusted nodes.

The initial reputation value of a node is an important problem in reputation sys-
tems. There are two existing policies for the initial value:

— negative discrimination: this consists in assigning a low reputation value to a
new node that enters the network;

— positive discrimination: this consists in assigning a high reputation value to a
new node that enters the network.

The main advantage of negative discrimination is to prevent a potential malicious
node undertaking a malicious transaction. Nevertheless, negative discrimination does
not give the opportunity to a new honest node to make a transaction, as it will not
appear as a good candidate in the system. Subsequently, most of the existing reputa-
tion systems use positive discrimination for new nodes to give them the opportunity
to make honest transactions.

In WTR, positive discrimination is controlled by the reputation computation (equa-
tion (3.1)) where it is more difficult for a node to increase its reputation than to de-
crease it. A new node will have a high reputation initially, but will rapidly become
untrusted with a very few number of malicious transactions.

Computation of the risk

The reputation of a node is not always sufficient to decide wether or not to make
a transaction with this node. For example, if the reputation of node X has been com-
puted using very few recommendations (for example, only two recommendations), the
reputation does not necessarily represent the real behavior of X. The notion of risk
associated with the reputation enables the application to decide whether it is worth
the risk to make a transaction with X, even if it has a good reputation. Most of the
existing reputation systems integrate the notion of risk.

In WTR, the risk is computed as shown in the equation below:
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> (k00 -FX)

J(X) = a (1 - %) 41— a)=0 - (32)

T T>

T is used to evaluate the risk associated with the number of recommendations
taken into account to compute the reputation of node X . The smaller the number of
available recommendations r in the sliding window of X, the higher the risk (i.e. the
less reliable) the computed reputation value;

T5 corresponds to the variance of the recommendations emitted by other nodes.
The key idea of 75 is to enable the discrimination of nodes that do not have regular
behavior. The role of the factor 4 is to normalize 75 to obtain a value in [0. .. 1].

The application can chose the value of « in order to give more weight to 7% or 75.

Security and robustness considerations

A reputation system must resist a typical attack from malicious nodes, or from a
collusion of malicious nodes. We present here the set of attacks that WTR can handle:

— false recommendations: to deal with this problem, the credibility value has been
introduced. Recommendations emitted by a node with poor credibility will have a
minor effect on the computation of the reputation of X. This prevents the reputation
system from being liable to malicious nodes that emit false recommendations. This
also avoids part of the collusion attack (see below);

— rumors: a rumor occurs when a recommendation is emitted by node A for node
X and no transaction has been undertaken between A and X. This problem is not
directly considered here, but is quite easy to take into account. A good and efficient
solution has been presented in TrustGuard where evidence of the transaction is col-
lected and a recommendation is accepted only if the transaction has actually been be
executed;

— collusion of nodes: this is one of the most difficult problems for reputation sys-
tems to which few have any solution. As it is highly probable that a collusion attack
will come from already malicious nodes, the WTR reputation metric will be able to de-
tect this using the credibility of the nodes involved in the attack. The recommendation
emitted by these nodes will have a very small effect on the reputation computation,
and it will be near impossible for a set of malicious nodes to succeed in artificially
decreasing the reputation of a given node. As in most cases, colluded nodes will try to
use rumors, this is easily to managed using evidence of transactions. Nevertheless, if
a collusion attack is started by trusted nodes (that change their behavior), it is nearly
impossible to detect as they will appear as credible nodes;
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— white washers: a white washer is a node that leaves the network and joins again
using a different identity. White washers represent a common problem in P2P net-
works and are quite a difficult task to manage for reputation systems. The risk factor
mitigates the effect of white washers. Leaving and rejoining the network with a new
identity implicitly clears the recommendation history of a node. Choosing a high value
for the o parameter will give more weight to the term 7 of the risk factor. Therefore,
it will be more risky to make a transaction with a white washer that should only regis-
ter very few transactions due to its dynamicity, leaving and rejoining the network;

— data integrity: as each node generates a self-certificate, the public key of each
manager is used to encrypt the recommendations stored by this manager. This ensure
that no other node will be able to modify this information to alter the recommenda-
tions. Thus, the managers of node X is the only node that can decrypt the recommen-
dation list to compute the reputation for X .

Scalability and portability considerations

A good reputation system must have a metric that does not rely on the network
size. Moreover, the reputation information must be readily available and should resist
attacks such as strong distributed denial of service attacks (DDoS). In order to resist
strong DDoS, a reputation system must provide a way to store a certain number of
replicas of the reputation information at an acceptable cost in terms of the number of
messages to access the information. WTR is a reputation system that provides this
facility.

WTR uses a technique called recursive replication [BON 07] to increase the num-
ber of replicas of the reputation information, without increasing the maintenance cost
of the overlay. The main idea is to make several levels of replicas using a recursive
hash computation. The recursive hash function is defined as follows:

M, = H'(X)= H(H(..H(X))

1 times

The 7 reputation managers for node X are chosen such that the root managers are:

M, = H'(X)
M, = H*(X)
M = ﬁi(X)

Then, all nodes of the leaf set of M; in Pastry, or the n successors of X in Chord
become a manager of X’s reputation.
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Performance of reputation systems

A reputation system is never able to fully decide if a node is honest or not, as
the reputation value only represents the probability of a node to be honest. However,
there is also a limit to the number of malicious nodes a reputation system can handle.
We say that the reputation system collapses when it can no longer discriminate honest
nodes from malicious ones.

The practical limit for all existing reputation systems is around 30% of malicious
nodes. Over this limit, the influence of malicious nodes is too high for the reputation
system to be able to provide credible results. WTR provides one of the best known
results. The system is completely stable up to the point where 30% of the nodes are
malicious, and collapses after 40%.

3.4.2. Accountability

Accountability is a very powerful technique to build trust in large-scale distributed
systems, but it is also a slightly complex one. Therefore, for space reasons, it is
not possible to provide full details regarding how accountability works and can be
implemented. Thus, we will give some global ideas on how accountability works. For
a complete description, please refer to [HAE 07, DRU 08].

Accountability is very well adapted to DHT. The key idea is to be able to verify
whether a node has honest behavior (i.e. whether a node is doing what it is supposed
to). In other words, accountability enables the results of a transaction to be verified,
according to its input parameters.

The principle relies on a set of witnesses that will check whether the result of a
transaction between two nodes corresponds to the expected one. Suppose that we
want to check the behavior of node X. A set of witnesses is chosen for node X.
Typically, a node is a witness for a set of the numerically closest nodes in the system.
For example, in Pastry, a node is a witness for all the nodes in its leaf set. In Chord, a
node can be a witness for its n successors. Therefore, a node X has various witnesses
in the network.

The goal of each witness is to collect evidence that node X is faulty, to declare X
as untrusted, or to declare it as honest or trusted.

Log and witnesses

Each node of the network maintains a log that contains all the input messages
received by the node, as well as all the results produced by the node. The log is
managed using strong cryptographic techniques and has the following properties:

— only node X can add events to its own log;
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Set of numerically closest nodes

/

Witness

Figure 3.8. The set of witnesses in accountability

—node X cannot modify its own log, and any other node cannot do it. If a log of
X has been altered, it is detected by the witnesses of X;

— events can only be added to the log, and events are time stamped by X .

Collecting evidence

All witnesses of node X can access its log. The use of strong cryptographic tech-
niques for data integrity management allow the witnesses to detect whether X’s log
has been altered by X . This constitutes evidence that X is faulty and must be consid-
ered as untrusted. expose(X) is raised. Each At period of time, the witnesses make
an audit of node X using its log. Auditing X requires the following assumptions:

— the algorithm or protocol that X runs is a deterministic state machine;

— a witness knows the protocol ran by X, and also has a detector module to check
the correctness of the state of X.

The detector module detects whether messages transmitted by X are not correct
(ordering problem, lack of message, etc.). It predicts what the messages produced
by the state machine of X should be, and verifies that they match the prediction.
If a witness detects evidence that the produced messages are not correct, then X is
declared as unstrusted (an expose( X ) is raised).

Due to message transmission delays, a message emitted by X could arrive late.
When a witness detects that delay, suspected(X ) is raised.

As the witnesses know the state machine used by X, they can use the log during

the audit to run the same protocol or algorithm with the same messages received by
X as the input. If the results obtained by the witnesses are different from those in X’s
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log, then evidence that X is faulty is collected. The witnesses declare X as untrusted,
and exposed(X ) is raised.

Size of the witness set

Let us suppose that N is the size of the network, and ¢ is the fraction of malicious
nodes. If there is a small probability Py > 0 that an all-faulty witness set exists, then
1) defines the number of witnesses that must be assigned to each node.

1
In(1—(1— ~
w:[ a gjwpnﬂ

The number of witnesses ¢ grows with O(logN), which makes accountability
highly scalable for P2P networks.

3.4.3. Discussion on reputation sytems and accountability

The major problem of reputation systems is that they are not able to fully decide
wether or not a node can be trusted. The reputation only represent the probability
for the node to be trusted, and the final choice always depends on the application
requirements. However, reputation systems can be used for all kind of applications,
whatever the protocol used by the nodes during the transactions. The only requirement
is to have an upper limit for the fraction of malicious nodes (usually around 30%).

Conversely, accountability appears to be much more powerful with the ability to
fully decide whether a node can be trusted or not, by collecting evidence of faults.
Nevertheless, all witnesses need to know the complete protocol used by nodes during
a transaction (message protocol and state machine corresponding to the algorithm ran
by a node). Accountability also has a higher cost in terms the amount of data that
nodes need to manage.

Both methods are highly scalable and can easily support networks comprising mil-
lions of nodes.

3.5. Conclusion

P2P systems have been shown to be a good solution to build large-scale distributed
systems. Unstructured P2P networks such as Gnutella, are very popular, as they pro-
vide a good level of anonymity, and usually, the possibility for the node to choose
which data it accepts to store. The main problem of unstructured P2P networks is the
non-decidability of the search algorithm, which may not find existing data in the net-
work. Conversely, structured P2P networks such as DHT, provide a high availability
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of data, and a search method that is decidable. Structured networks usually have better
performance than unstructured networks but lack anonymity.

In all P2P networks, building trust is a major problem. Reputation systems and
accountability represent a great advance in this context, but much work is still re-
quired. One of the main future research areas will be to enable some kind of pseudo-
certification authority in P2P networks, able to certify that a given event has occurred
with a very low probability of failure.
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Chapter 4

Peer-to-Peer Storage

4.1. Introduction

Peer-to-peer storage applications are the main actual implementations of large-
scale distributed software. A peer-to-peer storage application offers five main opera-
tions: a lookup operation to find a file, a read operation to read a file, a write operation
to modify a file, an add operation to inject a new file and a remove operation to delete
a file. However, most current peer-to-peer storage applications are limited to file shar-
ing: they do not implement the write and the delete operations.

Implementing the lookup and add operations is challenging in a peer-to-peer stor-
age application because it does not provide a centralized host that associates file names
with their corresponding locations: the file name database is distributed among the
clients. Implementing the read operation is also challenging because it must scale
with the number of readers.

Two applications are presented in this chapter: BitTorrent and Gnutella. BitTor-
rent only provides the read operations but it proposes an efficient algorithm that scales
with the number of readers. Gnutella provides the add and lookup operations. The
first version of Gnutella relies on a gossip protocol while the second version is semi-
distributed: some clients are connected through a gossip protocol and others are con-
nected through a classical client/server architecture.
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4.2. BitTorrent

BitTorrent [COH 11, BIT 11] is a peer-to-peer file-sharing protocol that scales with
the number of clients. It is specifically designed to handle large files such as movies
or bulky software — for instance, linux distributions and games. The main idea behind
BitTorrent is: “divide and conquer”. As soon as a client has downloaded part of
a file, it becomes a new server for this part. Other clients can then download this
piece directly from this client. This mechanism avoids the bottleneck induced by a
centralized server.

Studying BitTorrent is particularly interesting because it is one of the most efficient
communication protocols enabling large files to be broadcast. This mainly explains
its success: a study undertaken in February 2009 [SCH 09] estimates that BitTorrent
generates between 27% and 55% of all Internet traffic — this value depends on geo-
graphical location.

The BitTorrent protocol relies on three main principles in order to ensure its per-
formances [LEG 06]:

— tit-for-tat: a peer sends data to another peer only if the latter has given enough in
exchange. This principle ensures the fairness of the BitTorrent network;

— priority to rare pieces: a peer downloads the rare pieces of the file first; rare
pieces are those that are hosted only on a small subset of the peers. This principle
ensures that even in the presence of churn (frequent connections/disconnections), all
the pieces of the file are present in the BitTorrent network;

— optimistic unchoke: the tit-for-tat principle prevents a new peer which has noth-
ing to share, from downloading its first pieces. The optimistic unchoke principle
counterbalances the tit-for-tat principle by periodically selecting a random peer and
sending it data freely.

4.2.1. History

The ancestor of BitTorrent is MojoNation, a communication protocol created by
the “Evil Geniuses for a Better Tomorrow” company founded by Jim McCoy in 2000.
MojoNation proposed to split a file into small pieces to avoid the bottleneck of a cen-
tralized server. The idea of tit-for-tat was already there, but with virtual money: each
peer increased its credit by transferring requests of other peers. However, transfer-
ring the money degraded the performance as it requires authentication and encryption.
The company went bankrupt in 2002. Bram Cohen left MojoNation in 2001 and began
the development of BitTorrent. The first BitTorrent specification was presented at the
CodeCon conference in 2002 in San Francisco [COH 02].

Until 2004, Bram Cohen’s main income was based on donations collected through
his web site (http://bittorrent.org), which provides the specification and free
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implementation of BitTorrent. In 2004, he founded the commercial company called
BitTorrent, Inc. (http://bittorrent.com)with his brother Ross Cohen and a busi-
ness partner Ashwin Navin. BitTorrent, Inc. sells its services to movie studios.

One of the main original aspects of the BitTorrent specification is that its evolution
has never broken the ascendant compatibility. This strength comes from the specifi-
cation, which does not provide any algorithm as to the behavior of the peers but only
defines their intention. Of course, the communication protocol (i.e. the formats of the
messages) is fixed and cannot evolve. However, the way a peer takes a decision with
respect to the information that it collects about the network is unspecified and varies
from one implementation to another. Research is still being undertaken to improve the
quality of the algorithms used by the peers.

4.2.2. Terminology

BitTorrent introduces a specific terminology to describe the architecture of the
network:

— the swarm: the set of all the peers that are downloading or sharing a file;
— a piece: a piece of a file;
— the tracker: a centralized server that has a rough knowledge of the swarm. It

knows the peers of the swarm and for every one of them, the pieces they host, which
is only used for statistical purposes;

— a client: a peer that does not have all the pieces of the file. A client is therefore
a peer that is trying to download new pieces of the file;

— a seeder: a peer that owns all the pieces of the file. When a client completes its
download, it becomes a seeder;

— aleecher: a client that is only downloading. Most of the time, a leecher is simply
a client that does not have any piece to share. However, a leecher could also be a selfish
client.

In this section and the next, we reserve the term “peer” to name a client or a seeder.

4.2.3. Joining a BitTorrent network

When a peer wants to join a BitTorrent network, it contacts the tracker of the file.
Finding the tracker is out of the scope of the protocol because BitTorrent does not
address the problem of file lookup. Most of the time, classical HTTP servers maintain
an association between file names and trackers. When the tracker receives a request
from an incoming peer, it replies with a list of network peers (generally about 50).
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Figure 4.1 illustrates the mechanism. Initially, seeder .S contacts the tracker. The
tracker sends an empty list to S7, but is now aware of the existence of S7 and adds it
to its own list. Afterwards, when C contacts the tracker, it responds with its new list
containing only .S; and adds C] locally. Finally, as Cs contacts the tracker it responds
with the list {S7, Cy }. In Figure 4.1, C; and C already have some pieces of the file,
this can happen when a client reconnects to the network after a disconnection.

[ Tracker }

Vst NS
312213
Complete File

312 13
Partial File Partial File

Figure 4.1. Exchange of pieces

4.2.4. Making the pieces available

Once a peer has acquired a list of neighbors from the tracker, it contacts all of
them. A connection is bidirectional: when peers N1 and N2 are connected, they can
exchange pieces of the file in both directions. In Figure 4.1, the graph is complete
because C, S; and S5 are all connected to one another. Such is generally not the
case: neighborhoods do not span over the entire network as several thousands of peers
can participate in the network while each peer only has around 50 neighbors.

As soon as two peers are connected, they exchange their list of available pieces.
This list is used to determine which peer has which piece, but also to determine which
pieces are sparse on the network. As the graph is not complete, a peer only estimates
the availability; statistically, this estimation is correct with 50 peers. In Figure 4.1, the
estimation corresponds to the real availability because the graph is complete.

When a peer downloads a new piece, it broadcasts this information to its neighbors
and they update their availability lists.
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A peer maintains three pieces of information about each of its neighbors:
— interested: if a peer C1 is interested in one piece of Cs, then C notifies Cy and
Cs registers that C'y is interested, otherwise, it registers that C7 is not interested;

— choked: if a peer (1 is interested in one piece of a peer C5 and if C'5 cannot send
data to C'; because it already sends pieces to other neighbors, then C5 registers that
C5 is chocked and notifies it. When C5 sends data to Cy, it marks C; as unchoked
and notifies it;

— snubbed: if a peer Co optimistically sends a piece to C, then C is marked as
snubbed for a short duration (see next section).

Figure 4.2 presents the state of two clients C; and C. Cs is interested by a piece
of C'; (the third piece) and (' is not interested by any piece of Cf.

C2: choked/interested C1: choked/uninterested

Figure 4.2. State of two neighbors

4.2.5. Priority to rare pieces

A peer will first try to download the rarest pieces offered by its neighbors. By
minimizing the number of rare pieces, BitTorrent uniformly distributes the load on
the peer and, therefore, increases the performances. In Figure 4.1, C; will therefore
download the second piece from S; because it is the rarest piece offered by S;. For
the same reason, C'; will also download the third piece from C. Symmetrically, Cs
will download the fourth piece from C; and the last piece from S (the piece is chosen
randomly among the rarest pieces, see below).

Giving a higher priority to rare pieces has a drawback. At some point, many clients
can start downloading the same piece considered as the rarest. The result is counter-
productive because these clients may therefore be unable to exchange other pieces
amongst themselves. For example, on the Figure 4.1, the protocol must try to avoid
the case where C'; and C> download the same piece. To counterbalance this effect, a
client randomly choses one of the pieces among the N rarest pieces where N is equal
to the number of active connections (i.e. number of neighbors).

Distributing the rarest piece first increases the performance of a BitTorrent network
but also has another advantage: as the seeders uniformly distribute their pieces, their
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presence is requested for a short time. For example, after the exchange represented in
the Figure 4.1, C'; and C5 can rebuild all the files even in the absence of the sender
S1.

4.2.6. The tit-for-tat principle

Neighbors exchange pieces by using a tit-for-tat algorithm: the more data a peer
sends to its neighbors, the more data are sent by its neighbors. This algorithm forces
the peer to send data: according to the tit-for-tat principle if a leecher only wants to
download without sharing, it will not be serviced by the other peers.

To avoid overloading a peer, a peer only sends pieces to a small subset of its neigh-
bors (normally four), other neighbors are just waiting (they are choked). To ensure the
tit-for-tat algorithm, a peer choses its best neighbors and sends them pieces of the file.

The BitTorrent protocol uses one single criteria to find its best neighbors: the
download rate. The download rate is equal to the number of bytes received by a
neighbor plus one divided by the number of bytes received by this neighbor plus one.
A client, i.e. a peer that does not have all the pieces, elects its best neighbors by
choosing the neighbors with the highest download rates.

However, this criteria is useless for a seeder as it does not receive data. The goal of
a seeder is different: it will try to give its piece as fast as possible. As a consequence,
the more a neighbor downloads, the more it is interesting. A seeder therefore elects
its neighbors with the smallest download rate. A client with a high network rate is
favored because it can send its pieces faster.

As soon as a peer sends data to one of its neighbors, the download rate of this
neighbor decrease. If two neighbors have approximately the same download rate and
if the peer can only serve one if them, a fibrillation phenomenon could appear because
the best neighbor will quickly become the worst. To avoid this phenomenon, the pro-
tocol defines rounds. A peer choices its best neighbors at the beginning of a round and
does not change them if their download rates change during a complete round. By de-
fault, a round is 10 seconds long. Notice that a round is too short to receive a complete
piece and that only smaller data, called data blocks, are exchanged. However, a peer
can choke a client during a round if a best neighbor is not elected at the beginning of
the round because it is not interested. In this case, if the neighbor becomes interested,
the worst unchoked neighbor is choked to unchoke the best neighbor.

4.2.7. The optimistic unchoke principle

However, applying the tit-for-tat algorithm raises two problems:
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— aclient without any pieces will never obtain a piece if all its neighbors are clients;

— only the clients that have a lot of pieces will be elected as they can send a lot of
data.

To solve this problem, a client reserves a slot to send data to a randomly elected
neighbor. We say that the neighbor is optimistically unchoked. The optimistic un-
choke algorithm is in contradiction to the tit-for-tat principle and an experience from
2006 [LOC 06] shows that a leecher can download a file without sending any pieces.
However, it takes four time longer to download the file. By default, a client chooses
optimistically a peer to unchoke every three rounds. At this round, if the client has
four slots to send data, it chooses the three best neighbors and chooses the last one
randomly.

When a client is served because it was optimistically unchoked, it is then marked
as snubbed for a small period. When a client is snubbed it can not be elected by the
optimistic unchoke algorithm.

4.2.8. The messages of the protocol

A message begins with a sequence of 4 bytes that gives the length of the message.
Then, the message contains the type of message and possibly its content:

— choked (0): message of length 1 sent by a peer to inform one of its neighbors
that it is choked and will not receive any data. This message follows an election;

—unchoked (1): message of length 1 sent by a peer to inform one of its neighbors
that it is unchoked and will receive data. This message follows an election;

— interested (2): message of length 1 sent by a peer to inform one of its neigh-
bors that it is interested in one of its pieces. This message follows a bitfield or a
have message;

—not interested (3): message of length 1 sent by a peer to inform one of
its neighbors that it is not interested in any of its pieces. This message follows a
bitfield or a piece message from another peer;

—have (4): message of length 5 sent by a peer to inform its neighbors that it
has the piece number encoded by the last four bytes. This message follows a piece
message when a peer has a new available piece;

—bitfield (5): message of length 1+N containing the list of its available pieces
that a peer sends to its neighbors. This message is only sent when two peers meet for
the first time. When a peer completes a new piece, it sends the lighter message have t
oits neighbors;

— request (6): message of length 1+(2x4)+4 sent by a peer to request a given data
block (number of the piece, number of the block, length). This message follows an
unchoke message;
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— piece (7): message of length 1+(2x4)+N that contains a data block (number of
the piece, number of the block, data block). This message follows a request;

— cancel (8): message of length 1+(2x4)+4 sent to cancel a request. This message
avoids a piece message when a peer receives the block from another peer.

4.2.9. Conclusion

The BitTorrent protocol relies on the tit-for-tat principle coupled with a priority
given to rare pieces and the optimistic unchoke algorithm. The BitTorrent protocol
optimizes the global state of the network while each peer only constructs a partial
view of the network.

BitTorrent has a centralized point: the tracker. If the tracker fails, the BitTor-
rent network will disappear. Some solutions are proposed to avoid this centralized
point. The simplest is the multi-tracker [HOF 11] which defines more than one tracker
in the BitTorrent description file. Another way by using a DHT based on Kadem-
lia [LOE 11]. The DHT does not change the communication protocol between peers
but distributes the tracker: all peers of the swarm are connected through a DHT that
lists all the peers.

4.3. Gnutella

Gnutella has remained one of the most popular peer-to-peer file sharing protocols
since its creation in 2001. By the end of 2005, the Gnutella network comprized up to
around 1, 300, 000 nodes [STU 08], accounting for a 400% growth over the previous
year. Since the appearance of the Kademlia network [KAD 11], there has been a
decrease in gnutella network with users changing to Kademlia. Gnutella is a good
example of a very large-scale network; it shows how such networks can be built.

The Gnutella protocol is semi-centralized, and relies on an unstructured overlay
(see section 3.2.2). Two categories of nodes may be distinguished: ultra nodes (or
ultrapeers) and leaf nodes. Contrary to classical semi-centralized network such as
eDonkey [KLI 11], Gnutella nodes can be promoted to ultrapeer status or demoted
to leaf status dynamically, in an effort to optimize performances on the fly as the
network load evolves. Hence Gnutella is not semi-centralized in the same sense as
its competitors, since it does not require a fixed infrastructure with predetermined
central servers. Ultrapeers that form the core of the Gnutella network are actually
promoted end-user nodes. They are interconnected on the basis of an unstructured
overlay architecture, and leaf nodes become connected to the network by maintaining
client/server links with ultrapeers.

There are several drawbacks to this architecture compared with other semi-centralized
networks. The main one is that file lookups cannot be exhaustive, and are achieved
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by flooding, this is presented in section 3.2.2. Another important drawback is that
Gnutella is very sensitive to churn (see Chapter 3): as its core is composed of end-
user nodes, it is hence highly volatile. Indeed, end-user nodes may enter and leave the
network at any time. The Gnutella protocol must therefore be fault tolerant, thus pre-
venting the untimely insertion/removal of nodes from either disturbing other nodes, or
partitioning the network — and possibly destroying it.

4.3.1. History

Gnutella was initially designed by Tom Pepper and Justin Frankel in 2000 as a side
project at NullSoft, Inc. The first prototype was only deployed for a day, on March 14,
2001 [GNU 11a], before the project was abandoned by AOL, which was then owner
of NullSoft, Inc. However, even in such a short span, several thousand downloads
were carried out: enough to establish a stable peer-to-peer network. After a few days
of reverse engineering by third parties, the first Gnutella clones started appearing, and
version 0.4 — the first official version of the Gnutella protocol — was defined.

Gnutella offered an alternative to centralized file-sharing solution such as Napster,
and to semi-centralized ones, such as FastTrack (KazaA). The Gnutella protocol v0.4
became popular with the disappearance of Napster for legal reasons: Gnutella does
not require any fixed infrastructure integrating central servers.

Version 0.4 of the Gnutella protocol assumed a fully decentralized network based
on an unstructured overlay (see Chapter 3) in which all nodes are equivalent. This
original version quickly demonstrated the limits of a such an architecture in terms of
scalability, as the generated traffic increased exponentially with respect to the num-
ber of nodes. As a consequence, the Gnutella protocol evolved in 2002 to version
0.6 and has not been upgraded since. This newer version reintroduces the notion of
ultrapeer used by semi-centralized networks. However, instead of requiring a fixed
infrastructure based on central servers, ultrapeers are elected among end-user nodes.

One of the original aspects of the Gnutella protocol is that it is defined by the
developers of the client software. No new version of the protocol has been formally
specified since version 0.4: version 0.6 has no official specification L. The latter is still
in use nowadays, and it is implemented by all clients of the network.

Gnutella version 0.6 proposes GGEP (Gnutella Generic Extension Protocol) which
enables arbitrary extensions through messages extension blocks. Clients are allowed
to discard the data encapsulated in these blocks, and thus vertical compatibility is
maintained. However, no common consensus has been reached about what these

1. An RFC draft was written by the Gnutella community for version 0.6, but no final document was
produced as Gnutella2 started appearing at the same period.
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blocks should be used for. Yet clever usages have been implemented by most client ap-
plications, and hence the protocol keeps evolving without requiring any formal speci-
fication.

The Gnutella2 protocol was designed by Michael Stockes in 2002. It is not a
successor to the Gnutella protocol being presented here, and both protocols are com-
pletely independent; they only share one type of message, and of course their name.
There is a lot of disagreement in the Gnutella community over the matter of which
protocol is the best between Gnutella v0.6 and Gnutella2. Both protocols address
the scalability issues of v0.4, and most client applications provide the ability to par-
ticipate to both networks simultaneously. This section is dedicated to a presentation
of v0.6 rather than Gnutella2, as studying the former underlines more clearly which
compromises were reached to overcome the limitations of v0.4.

4.3.2. Architecture of the Gnutella v0.4 network

Gnutella v0.6 heavily relies on the design of v0.4 [GNU 11b]. The aim of the
present section is to describe this design: it is simpler than v0.6. The overlay, routing,
and lookup aspects, before delving into the improvements brought by v0.6 will be the
focus of the following section.

Any node in the Gnutella network is called a servent — which is a contraction of
server and client. A servent is sometimes designated as client; this formulation is inad-
equate, however, as a servent does not just connect to a server but plugs itself directly
into the network. There are many servent implementations, among which some pop-
ular programs are: LimeWire [LIM 11] (Java, OS independent), Shareaza [SHA 11]
(Windows) and Gtk-gnutella [GTK 11] (Unix/MacQOS).

Neighborhood

Every servent is connected to the network through its neighbors. Figure 4.3 il-
lustrates a Gnutella network, where each servent has exactly two neighbors. Notice
that, although a node s may consider another node ¢ as its neighbor, ¢ does not have to
reciprocate this relationship. In this example, D is considered as a neighbor by nodes
B, C, E, and F; yet D limits its set of neighbors to F and G. A node maintains a set of
neighbors called its neighborhood.

More formally speaking, Gnutella’s unstructured overlay is a directed graph where

nodes are servents and arcs represent neighborhood relationships. The following three
properties must be maintained in order for the network to remain optimally efficient.
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PROPERTY 4.1 The graph must be strongly connected.

Figure 4.3. A Gnutella neighborhood example

Property 4.1 means that, given any two servents X and Y in the network, there
must be at least one path leading from X to Y. This property is fundamental in order to
avoid a partitioning of the Gnutella network into several disconnected subnetworks.

PROPERTY 4.2 Neighborhoods must be distributed uniformly.

Property 4.2 actually states that, if n is the average number of neighborhoods ev-
ery servent belongs to, then the standard deviation around n must remain low. This
property guarantees that no servent will be submitted to excessive workloads. In the
example given in Figure 4.3, D is considered as a neighbor by four other nodes; this
is significantly above the average value of two.

PROPERTY 4.3 The neighborhood set of a servent must never be empty.

A node with an empty neighborhood set will eventually be expelled from the net-
work.

An elegant technique maximizes the probability of guaranteeing properties 4.1 and
4.2: every node selects its neighbors randomly. Random selection ensures that neigh-
borhoods are distributed uniformly and prevents the formation of weakly connected
subgraphs. In order to maintain property 4.3, a threshhold value is associated with
the size of the neighborhood set, below which new neighbors have to be sought. The
Gnutella v0.4 specification recommends a threshhold value of 5.

In a nutshell, Gnutella nodes strive to maintain all three properties by selecting
neighbors randomly and by keeping track of at least five neighbors.
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Routing and overlay

Gnutella provides query mechanisms to look up files according to multiple criteria:
keywords, file size, or file type. It also enables the search for new neighbors when a
node’s lower threshold on its neighborhood size is reached.

The Gnutella protocol is based on an unstructured overlay and neighbors are se-
lected randomly. Using this class of overlays, a search operation is based on a flooding
algorithm (see Chapter 3). Hence, in order to maximize its success, a file search must
be broadcast to as many nodes as possible. The higher the number of nodes queried,
the greater the chance of getting a positive reply from one of them.

To initiate a search, a servent emits a request to all its neighbors. The initiator of
a query is the servent that instigates a flood through the network. Receiving a request
the neighbor nodes will in turn retransmit the query to their own neighbors. Flooding
algorithms raise two major issues:

—a query must terminate eventually, (i.e. it cannot be retransmitted forever
throughout the network). For this purpose, a time-to-live (TTL) counter is associ-
ated with every request message. This counter is decremented at every hop, and the
request stops being forwarded when the counter value reaches zero;

— cycles, where the same nodes forward the same message among themselves,
must be avoided. This is acheived by associating a unique identifier to every request.
A servent will forward a request it receives for the first time, but discards it when it
receives it for a second time.

Figure 4.4. Gnutella network routing

Figure 4.4 illustrates how Gnutella routes requests. The numbers on the arc labels
represent their order of transmission. Servent A instigates the search with a TTL value
of 4. Servent N will never be aware of this particular search as it is too far from A with
respect to the associated TTL. When A, B and C receive the request for the second
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time — through messages 7, 6, and 8, respectively — discard it in order to avoid routing
through the same paths.

With Gnutella, search instigators remain anonymous as a request does not retain
the address of its originating node. Ethically speaking, this mechanism for preserving
the anonymity of query initiators is disputable, as it makes it absolutely impossible to
ascertain which servent is looking for the given data. This approach prevents a servent
from responding directly to the instigator of a request. An other drawback is that this
forestalls the identification by law enforcement agents of individuals looking for illicit
content, such as illegal copies of movies or outlawed pornographic data.

A naive approach would be to respond to a request by flooding. This solution is
both inefficient and impractical as neighborhood status is asymmetric. The initial TTL
value of the request may then be insufficient for the reply to reach the query instigator,
this is the case in Figure 4.4 where node U can be reached from A in one hop, but it
requires two hops for an answer.

Gnutella provides a more efficient solution. Every time a node receives a request,
it extracts the identity of the sender from the message, logs it locally, and replaces it
by its own identity before forwarding the message. Thus a routing path to the query
instigator is maintained as a request message is being propagated. A response is sent
by passing a reply message along this path. In the example shown in bold in Figure 4.4,
node M can respond to A through route {M, C, B, X, A}. Thus a request floods the
network, while the routing tables get built so as to convey the response to the query
instigator.

Bootstrapping and acquiring new neighbors

One of the main issues that must be addressed by Gnutella is the search for new
neighbors. Indeed, servents join and leave the network continually — a phenomenon
referred to as churn — and Gnutella avoids server nodes with predetermined addresses.

The lifecycle of a servent comprises three states:
— an initial state, in which the servent knows no other node in the network;

— a startup state, in which the servent knows the addresses of other network nodes
but is not yet linked to them;

— a connected state, in which the servent is linked to at least one neighbor.

Every servent maintains a cache of potential neighbors, of which only a subset
constitutes the neighborhood set. Elements of the latter set are nodes to which the
servent is actually connected. The servent is not connected to any of the remaining
nodes in the cache, and has no clue with regards to their liveness.
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Figure 4.5 recapitulates the possible states of a servent. A servent program starts
in the initial state if its cache is empty, in the startup state otherwise. As soon as it
has achieved the connected state, a servent participates in the network and can start
launching queries. Obviously, the aim of the Gnutella protocol is to prevent servents
from falling out of the connected state.

Switching from the initial state to the startup state is called the bootstrap. The
Gnutella protocol does not handle this phase; instead, most servents use a secondary
protocol called GWebCache [DAM 03]. A GWebCache server is actually an HTTP
server that maintains a cache of live servents connected to the network. Once con-
nected, a servent registers on a GWebCache server. A servent in the initial state may
download the contents of a GWebCache and copy them to its own cache 2. This ap-
proach automates the bootstrap, but requires a fixed infrastructure. To the best of our
knowledge, the only possible technique for acquiring new neighbors in a dynamic
infrastructure is to exchange addresses among friendly acquaintances through alterna-
tive means — IRC, mail, or even over the phone.

Initial
Cache = o
Neighbors = ¢

Loss of the
last servent
address in cache

Nei

Loss of the
last connection
to a neighbour

Cache almost empty
= Look for new neighbors

Connected

Nei

Bootstrap

Add servent address to
cache

(GWebCache)

Startup )
Cache # 0
ighbors = 0

Startup
Connection to a neighbour

Cache = ?
hbors # o0

Figure 4.5. Servent initialization

Switching from the startup state to the connected state is called the startup. A
servent randomly selects nodes out of its cache and tries to connect to them. Those

2. To do so, the servent has to know at least one GWebCache server address.
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that have left the network and cause the connection to fail are deleted from the cache.
As soon as a connection is achieved, the servent switches to its connected state.

In the connected state, a servent strives to sustain its neighborhood set so that its
size remains above the threshhold value. For this purpose, it periodically connects
to new servents in its cache. The size of the neighborhood set may decrease when a
neighbor is assumed to be disconnected: this occurs when a timeout associated with
the connection expires.

Obviously, this failure-detection scheme is very basic and not really tailored to an
asynchronous network such as the Internet [FIS 85]. The suspected servent may be
too overloaded to demonstrate its own liveness, yet still alive. The problem may also
come from the network, too overloaded itself to convey messages on time. However,
mistaken failure detections have almost no impact on a Gnutella network as all nodes
are equivalent. Any node may be replaced by another, and the propagation of messages
by flooding ensures that some of these can be lost at very low cost.

In order to avoid the profusion of obsolete addresses in a servent cache, the servent
adds every new node address it discovers in received messages. Conversely, to avoid
overstretching the cache, only the most recently used addresses are kept.

A servent that is either inactive or offline may not be able to update its cache for a
long period of time. When the number of live nodes in its cache becomes too small,
it launches a neighbor search request. Receiving such a request, a servent sends its
own cache list as a reply. Thus, flooding the network with a neighbor lookup request
enables the communication of several cache lists simultaneously. Every node along
the path of such a request will benefit from it, as it also updates its own cache with
the contents it forwards. This scheme enables servent caches to be updated in a fully
distributed way, and preserves GWebCache servers from overload.

4.3.3. Implementing Gnutella 0.4

The Gnutella protocol specifies five different message types:

— Ping: a neighbor search request;

— Pong: the answer to a Ping;

— Query: afile search request;

— QueryHit: the answer to a Query sent by a servent when it knows the answer;

— Push: a control inversion scheme used by a sender and a receiver in order to
bypass a firewall.

Ping and Query messages are propagated by flooding. The others are answers:
a Pong replies to a Ping, a QueryHit replies to a Query and a Push also replies to a
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QueryHit in some circumstances. Answers are conveyed along the path built during
the flooding.

All messages used over the Gnutella 0.4 network display the same header, which
enables the routing mechanism. The composition of the header is as follows:

— a unique request identifier, used build the routing table and to prevent cycles
during a flooding;

— the TTL of a message, decremented at every hop until it reaches zero, where the
message is discarded;

— the number of hops already achieved, incremented at every hop and used to set
the TTL of a reply;

— the message type: Ping, Pong, Query, QueryHit or Push;

— the message size.

File transfer

File download/upload is a feature that is independent of the Gnutella network, in
the sense that two servents wishing to exchange a file — one of the servents shares it,
the other one downloads it — do so directly without involving any other node. This
implies that anonymity cannot be fully enforced in Gnutella, as any servent may find
out the location of nodes that share a given file.

Let [ be the servent that initiates a file search by emitting an original Query. The
search eventually terminates, at which time [ acquires a list of couples (F, O), where
F is a file name and O is the address of a node that shares F3. [ can distinguish files
that are shared at multiple locations: they are the files with the exact same F value. [
then associates a list of servents O that share it to every F, and displays all the different
values of F that were returned in response to the query to the end user. Once the end
user has selected one of the F values, [ attempts to download the file from the sharer
nodes it knows of. The transfer itself is made by chunks: the file is split in equally
sized parts, and every part can be downloaded from a different owner.

Every servent provides a small HTTP server with the ability to interpret a specific
GET command: GET /get/index/nom HTTP/1.0\n"
Connection: Keep-Alive\n\r
Range: bytes=0..n\n\r
User-Agent: Gnutella\n\r

The only original aspect of the file transfer protocol is the Range parameter, which
specifies the size of the chunks in order to allow multiple simultaneous downloads.

3. O stands for owner.
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As soon as it has successfully downloaded an entire chunk of F, [ itself becomes an
owner of the file and may send positive replies to queries regarding F. Of course, it
can only serve the chunks of F that it has already downloaded. Similarly to BitTorrent,
downloads become parallelized very quickly.

Limitations of the Gnutella v0.4 protocol

In order to associate requests with their responses — a Ping with a Pong, a Query
with a QueryHit and a QueryHit with a Pong — a servent must log all received mes-
sages. However, its memory capacity is limited; thus saved data must have a finite
lifespan. The lifespan value depends heavily on the traffic (the number of received
requests per time unit), the transit time of a request, and the available memory on the
servent.

When a servent memory becomes saturated, there are two alternatives: (i) delete
logged requests faster or (ii) let the memory saturate entirely. Neither of these solu-
tions is satisfactory.

The first solution causes a significant increase in traffic as less requests get dis-
carded for flooding when they are received more than once on the same node: this
saturates the bandwidth instead of the memory. Moreover, if a node has deleted the
address of the sender it received a request from, it can no longer convey the response
back to the query instigator. This in turn may prompt the instigator to re-emit its query,
and will lead to an even more dramatic saturation of the network.

The second approach, a full saturation of the memory, causes the servent to sig-
nificantly slow down. Therefore, the forwarding delay increases for every message
transiting on the node, as processing data takes more time. The direct consequence is
that the neighbors of the servent whose memory is saturated will be required to log
messages for longer durations, and hence risk memory saturation themselves.

This snowball effect caused by epidemic memory saturation was indeed observed
on the Gnutella v0.4 network [RIT 01] when low-speed dial-up connections were still
common.

In order to solve this problem, developers reintroduced the notion of super-peer
already in use in semi-structured networks. Super-peers are called UltraPeers in the
Gnutella network.

4.3.4. Evolution to Gnutella protocol v0.6
Version 0.6 of the protocol takes into account the aforementioned heterogenity of

nodes in terms of capacity and bandwidth. In order to prevent the entire network from
being handicapped by the slowest nodes, servents are separated into two categories:
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— ultraPeers: stable nodes with a high bandwidth;
— leaves: all the other nodes, bound to become ultraPeer clients.

UltraPeers constitute the core of a Gnutella network and use its original communi-
cation protocol: queries are sent by flooding and results are conveyed along the request
paths. Leaves, however, are simple clients of the ultraPeers. The network core thus
groups the most efficient servents and is more homogeneous, hiding the limitations of
the original protocol.

This architecture breaks the symmetry among servents, and becomes similar to the
eDonkey network, where the core is a peer-to-peer overlay and clients are connected to
the core through a client/server connection. The main difference with eDonkey resides
in the dynamicity of the core structure. eDonkey favours a static overlay where ultra-
Peers are clearly identified, whereas ultraPeer status is dynamic in Gnutella. Gnutella
leaves can be promoted to ultraPeer status if they satisfy several eligibility criteria,
and ultraPeers get demoted to leaf status when they stop satisfying them.

Both the Gnutella v0.6 architecture and protocol are very similar to that of v0.4.
The following sections describe how some mechanisms may differ from the original
version, and detail elements that were not mentioned in previous sections.

Network architecture and protocol mechanisms

Theoretically, ultraPeers have greater bandwidth then the average servent in v0.4,
hence they can handle a higher number of neighbors. The typical utlraPeer is supposed
to keep up permanent connections with 30 other ultraPeers, and to service between 30
and 45 leaves. A leaf aims to stay connected to three ultraPeers to ensure that it will
not leave the network.

In essence the Gnutella v0.6 protocol works in a similar way to v0.4: the message
structure remains the same. The fundamental difference is that only ultraPeers use
the flooding algorithm. They keep track of all the files shared by their leaves and
send responses in their stead. Figure 4.6 shows the scenario that unfolds when leaf
L1 initiates a search for file xyz in a v0.6 network. L1 sends a Query message to its
ultraPeers — U2 in this example. U2 floods the network core with this message and
waits for the results. Upon receiving this request, U1 acts as a proxy for L2: it sends
a QueryHit message back along the path to U2, which in turn forwards it to L1.

Ping and Pong messages in the network core are completely isolated from their
matching counterparts in the periphery. In the example of Figure 4.6, when L3 sends
a Ping message to its ultraPeer, U3 does not flood the core with this request and sends
its own cache back directly. However, if the cache of an ultraPeer becomes too small,
the node does flood the network core with its own Ping message and acts exactly as
described in Gnutella v0.4.
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Figure 4.6. File search example in Gnutella v0.6

Although it is privileged in terms of access to the data, an ultraPeer remains a ser-
vent node with a user behind it. Therefore, an ultraPeer may initiate its own searches,
in which case it behaves as if it were a leaf.

This architecture solves the limitations of the v0.4 network by avoiding low band-
width servents along the message paths. It also prevents the saturation of leaf node
resources that are usually more scarce.

Version 0.6 of the Gnutella protocol also offers several additional improvements,
such as the ability to cancel a request once the initiator is satisfied with the results. This
technique is particularly useful for files that are extremely popular, and get shared by
a huge number of nodes.

UltraPeer election

To become an ultraPeer, a servent must satisfy the following properties:
— it must not live behind a firewall;

— it must execute an operating system able to open a large number of socket con-
nections (Linux, Windows 2000/NT and greater, Max OS 10 and greater);

— it must have a good network rate (10 kb/s for download and 15 kb/s for upload);
— it must be stable, i.e. the servent must be connected for some hours;
— it must be powerful (good CPU, large memory).

When a servent has all these properties, it is “able to become an ultraPeer”. The
servent self-evaluates its ability to become an ultraPeer and nothing prevents a mali-
cious servent from becoming an ultraPeer even if it does not satisfy all these properties.
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The election of an ultraPeer implements a simple protocol which aims to stabilize
their number. Technically, when a peer A meets a peer B and wants to add B to its
neighborhood, different possibilities must be considered:

— Case 1. A and B are leaves:

- L.a. if B only implements Gnutella 0.4, it accepts the connection of B. B then
uses A to find other peers;

- 1.b. if B implements Gnutella 0.6. If B knows ultraPeers, it declines the
connection and send the address of an ultraPeer to A. Otherwise, B asks A to become
an ultraPeer. If A is able to become an ultraPeer, it becomes an ultraPeer, otherwise,
B becomes a neighbor of A as in the protocol 0.4;

— Case 2. A is a leaf and B is an ultraPeer: B accepts the connection of A. How-
ever, if B has too many connections, it asks A to become an ultraPeer. If A is able to
become an ultraPeer, A reconnects B as an ultraPeer (see case 4). In all cases, if A had
neighbors as a leaf (see case 1), A sends its neighbors to B and they try to connect B;

— Case 3. A is an ultraPeer and B is a leaf: this case is impossible. If A is an
ultraPeer it will never choose a leaf as a neighbor;

— Case 4. A and B are ultraPeers:
- 4.b. if A estimates that it does not have enough leaves, it will ask for B some
of its leaves. If B has no more leaves, it becomes a leaf of A.
- 4.b. otherwise, A and B become ultraPeer neighbors.

To stabilize the number of ultraPeers, two mechanisms are used. A leaf becomes an
ultraPeer when it connects an overloaded ultraPeer (case 2) or when it has neighbors
(case 1) and becomes able to be an ultraPeer. An ultraPeer becomes again a leaf
when one of its neighbors takes all its leaves (case 4). This simple algorithm balances
the number of ultraPeers in the network without requiring a global knowledge: the
balance is only local to a peer and its neighborhood, but, little by little, a balance
between leaves and ultraPeers is respected all over the network.

To summarize, the Gnutella protocol is distributed and does not require a fixed
infrastructure: Gnutella does not require clearly identified peers that never crash. The
original version of the protocol shows how to build an entirely unstructured overlay
where all peers are strictly equivalents. However, the deployment of this first version
showed degradations of performances around weak nodes.

The solution brought by the version 0.6 enhances the algorithms by defining ultra-
Peers and leaves. The backbone of the Gnutella 0.6 network is defined by gossip with
the ultraPeers. Each ultraPeer acts as a server for a small set of clients.

The main originality of this protocol is the election of ultraPeers: the overlay does
not require a fixed infrastructure and only powerful and stable leaves can become
ultraPeers. The algorithm stabilizes the number of ultraPeers without constructing
a global view of the network. When an ultraPeer has too many leaves, one of the
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leaves is promoted to become an ultraPeer and reciprocally. If two ultraPeers with
few leaves meet, one of the ultraPeers becomes a leaf. Experimentally, this simple
algorithm using a rough estimation globally stabilizes the number of ultraPeers.

4.4. Conclusion

Our study of BitTorrent and Gnutella shows how it is possible to build scalable
distributed networks without relying on global knowledge. Each peer only has a partial
view of the network and takes its decisions statistically. The algorithm that promotes
rare pieces in BitTorrent or the algorithm that elects an ultraPeer in Gnutella only
requires an estimation given by the neighborhood of a peer. Globally, these networks
stabilize some properties: pieces of files are uniformly distributed in BitTorrent and
the number of super-peers remains proportional to the number of leaves.

Studying and developing algorithms that scale with the size of the network re-
mains a complex subject because, most of the time, only experimental observations
can uncover the weaknesses or the strengths of these algorithms. For example, only
the observation of the Gnutella 0.4 network can show that the presence of some weak
peers can drastically degrade the performance ok a large portion of the network.

Both the applications studied in this chapter can intrinsically scale with the size of
the network because the manipulated data are only read. If a peer wishes to modify
a file it simply creates a new file that is in no way linked to the original. Building
a scalable network that supports writable data also remains an open subject because
different versions of the same file will exist in the network and these replicas must
eventually converge to the same value.
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Chapter 5

Large-Scale Peer-to-Peer Game Applications

5.1. Introduction

Massively multiplayer online games (MMOG) recently emerged as a popular class
of applications with up to millions of users, spread over the world, connected through
the Internet to play together. Most of these games provide a virtual environment in
which players evolve, and interact with each other. When a player moves, moves
an object, or performs any operation that has an impact on the virtual environment,
players around him can see his actions.

In a MMOG, each player runs a piece of client software on a local device (e.g. a
personal computer or a game station) called node thereafter. The local client software
is responsible for maintaining an up-to-date version of the state of the virtual world
surrounding the player and to offer him the ability to perform operations on it (i.e. to
play). To offer an acceptable gaming experience, the distributed application needs to
render the virtual world surrounding the player with minimal latency.

5.1.1. Limitations of the client-server paradigm

Current most popular MMOG such as World of Warcraft [ENT 11] or Second Li-
fe [LAB 11] are based on the client-server paradigm. Using this model, a server is
responsible for keeping the state of the virtual world up to date. Each time a player
plays (performs an action), he has to notify the server in order for his actions to be
taken into account. The server then computes the player’s neighborhood, composed of
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all the players that are potentially impacted by the performed action. It then notifies all
the impacted nodes about the changes in their virtual environment. The nodes locally
render the modification to the human player. Within a game, users are continuously
moving, and therefore their neighborhoods are continuously changing. Players also
keep modifying their virtual environment while playing. The server thus continuously
receives a large amount of notifications. It has to compute many neighborhoods and
must send even more notifications.

This client-server model is unfortunately not scalable for this kind of applica-
tion [KUM 08]. In fact, using the currently available client-server-based MMOG im-
plementations, the millions of registered users are not really playing at the same game
instance at the same time: these MMOG introduce new playing rules in order to limit
the number of participants within a single game instance. The game is partitioned into
sub-games. For instance, the Second Life world is not contiguous: it is composed by
multiple islands; World of Warcraft is split into many realms [PIT 07], etc. At a given
time, they are no more than a few hundreds players interacting in a same sub-game
connected to the same server.

Furthermore, the client-server paradigm implies an expensive financial cost for the
provider [ALV 07]. Servers need to provide high computing performances. They are
usually replicated to support failures or disconnections for maintenance. Generally, a
game instance (e.g. a Second Life island) is served by a cluster of high-performance
nodes rather than a single server. These clusters have to be sufficiently powerful to
support usage peaks (e.g. when an important event occurs within an game, like a con-
cert for instance). The cost for building and for maintaining these clusters is high.

5.1.2. The decentralized model

To circumvent these limitations, a new generation of decentralized networked
virtual environments (NVE) based on peer-to-peer overlays has emerged [KEL 03,
BEA 07a, BEA 07b, HU 06, FRE 08, LEG 10, VAR 09b, VAR 09a, IIM 04, BHA 06,
BHA 08, BHA 04] (most of these works are discussed later in the chapter). In addi-
tion to scalability and cost, these new solutions offer better availability as it is possible
to keep playing even when many players join and leave the game. In fact, several
players can play together as soon as they are connected. These new systems also offer
more freedom to the player: it becomes possible to have a game without any central
organization/company controlling it.

However, distributing such applications using the peer-to-peer paradigm is really
challenging. Most existing peer-to-peer overlays do not fulfill these emergent applica-
tion requirements. Their communication latencies are way too high, they are not able
to offer the player an acceptable gaming experience.
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Building large-scale peer-to-peer game applications requires new kinds of over-
lays, tailored for this class of application: as they are particularly dynamic, they re-
quire that the underlying overlay adapts itself to keep communications latencies low,
while communication patterns evolve.

Section 5.2 describes the requirements of this particular class of application. Then
section 5.3 explains in more details why classical overlays are not suitable for large-
scale game distributed applications and presents a new class of peer-to-peer network
overlays that fulfill these applications requirements. Then, several state-of-the-art so-
lutions are presented for the two main classes of multi-player games: first person
shooters (FPS) [BHA 04, BHA 08, BHA 06] in section 5.4 and life simulations [KEL 03,
FRE 08] in section 5.5.

5.2. Large-scale game applications: model and specific requirements

This section defines the application model. It provides several notions, and de-
tails the requirements for large-scale game applications on the underlying distributed
system. Finally it presents the main characteristics of such applications that could be
used while designing distributed systems for them.

5.2.1. Application model

The emergent MMOGs systems use different terminologies. We present here the
most important notions and the terminology used in the remainder of this chapter.

Virtual environment

MMOGs applications are based on the concept of a virtual environment. A virtual
environment is an n-dimensional applicative naming space in which players evolve.
Usually the dimensions are mapped on the coordinates of a virtual world (e.g. the x,
y and possibly z axis of a three-dimensional map), but it is also possible to use other
notions of semantic distance (e.g. players’ contact lists, hidden gates that allow the
player to jump somewhere else in the virtual world, etc.).

Avatar

Each player node manages an entity representing the player in the game. This en-
tity is a particular object of the virtual environment, usually called an avatar. Each
object, and thus each avatar, is assigned coordinates in the virtual world. When a
player plays, the player’s avatar moves (and potentially moves objects) and its coordi-
nates in the virtual environment change.
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Object manager

Regarding scalability concerns, it is not possible for a node to store and main-
tain up-to-date information retaining to the whole virtual environment: a virtual world
could contain up to hundreds of thousands of players at a given time (even millions).
Furthermore, it is continuously changing, therefore, each node would have to contin-
uously receive information from all other nodes, which is clearly not scalable. This is
exactly what happens using the client-server paradigm. Thus, in a distributed large-
scale game application, the virtual world is distributed over the nodes.

Each object is therefore managed by a set of nodes called the managers of the
object. For robustness or scalability, most of the time, each object is replicated on
more than one manager. When a node wants to read the state of an object, it must
therefore find and then contact one, some, or all the managers of the object, depending
on the design choices. Furthermore, if the node wants to modify the state of the object,
it delegates this modification to the manager, which agree on the new state of the
object.

Knowledge area

Each node therefore manages a set of objects. We define this set as the knowledge
area of the node, also called “responsibility zone”. Each time something changes in
its knowledge area, a node has to update it, either by being notified of changes by
other players or by periodically probing nodes that the avatar plays in its knowledge
area, depending on design choices.

An avatar

Its knowledge area

Figure 5.1. Knowledge areas intersect: the virtual world is replicated
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As objects are replicated among their object managers, the intersection of the
knowledge areas of two nodes contains the objects that the two nodes manage: knowl-
edge areas are shared between nodes. With simple replication protocols, the replica-
tion granularity is the knowledge area. With more advanced replication protocols, the
replication granularity is the object. Figure 5.1 illustrates an advanced protocol where
the knowledge area of a node depends on its avatar position [FRE 08]. The figure
presents avatars and their knowledge areas. In this example, a portion of the virtual
environment is often part of two or more knowledge areas: it is replicated on the nodes
running the corresponding avatars. In simple and advanced replication protocols, the
virtual environment is distributed (and replicated) among all the participating nodes.

As no node hosts a complete copy of the virtual environment, they have to collab-
orate in order to give to the players the illusion of a unique continuous virtual world.
The distributed MMOG has to ensure that every portion of the virtual world is hosted
by at least one node in the system. This means that the whole virtual world has to
remain the union of the knowledge areas.

Playing area

The client software (running on player nodes) needs to maintain an up-to-date
playing area for the player. The playing area is the zone surrounding the avatar that
needs to be rendered/displayed to the human player. Figure 5.2 illustrates this notion.
When a player plays, its avatar modifies the local playing area. Changes are propa-
gated to nodes that manage objects in this playing area: these are the nodes whose
knowledge area contains parts of the modified playing area.

Avatar outside

the playingarea ———_
= .
Avatar in the
Objects outside ~ playing area
the playing area
| |

Objects in the
playing area

Figure 5.2. Avatar A’s playing area

Elders of a playing area

To simplify the presentation, we introduce also the notion of elders [LEG 10]. The
elders of a playing area are the nodes that manage the objects in the area. In other
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words, the elders of a node N are the nodes E whose knowledge areas intersect the
playing area of N. The elders of a playing area are the servers of the objects located
inside the playing area. We also define the elders of a node as the elders of the playing
area.

Playing area/knowledge area relations

There are two main design choices.

First, on a node, the playing area can be included in the knowledge area. In this
case, the knowledge area of a node is around its avatar and the limits of this area
change as the avatar moves. With this design, elders of a node are close to the node’s
avatar inside the virtual environment. To ensure that the whole virtual environment is
replicated even if a player is alone in its playing area, knowledge areas are bigger than
playing areas. This is the model chosen by the Solipsis system [KEL 03] detailed in
section 5.5.

Conversely, the world can also be statically partitioned in responsibility zones (i.e.
knowledge areas), which are then attributed to/replicated on several peers. Therefore,
in this model a peer is a server for a part of the virtual environment, its knowledge area;
but it acts as a client: its avatar may evolve in a totally different zone and its playing
area may be far from its knowledge area in the virtual environment. In this case the
knowledge area boundaries are static and fixed while the playing areas are changing
with avatars movements. This is usually the case in systems based on peer-to-peer
distributed hash tables (DHTs) [VAR 09b, VAR (09a, IIM 04] (see section 3.2.2).

Summary of the terminology

The terminology used in large-scale game applications is summarized below:
— virtual environment: the n-dimensional applicative naming space;

— avatar: a special object that represents a player in the virtual environment;
— object managers: the set of nodes that manages an object;

— knowledge area: the set of objects managed by a node;

— playing area: the set of objects the player is interested in;

— elders of a playing area: the object managers of the objects located in the playing
area.

5.2.2. Main requirements for large-scale game applications

There are two main requirements in large-scale game applications: playability and
consistency.
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Playability

To be used, a game has to provide the user with a comfortable gaming experience.
The player should have the illusion that there is no latency at all between the moment
another player moves and the moment the player sees it. At the distributed infras-
tructure level, this implies that latency should remain very low (under certain limits).
Luckily, many graphical tricks exist at the application level to hide the inevitable net-
work latency [PAN 02, PAN 07].

The admitted latency offered by the peer-to-peer system largely depends on the
kind of game application. For instance, a life-simulation game, or a virtual visit of a
town/museum may tolerate greater latencies than FPS games. In the first case, high la-
tencies may induce slow movements, slightly degrading the playing experience, while
in the second case, a player may still be playing while its avatar is already dead, mak-
ing the game totally unplayable.

Therefore, the goal of the emergent peer-to-peer overlays for large-scale distributed
game applications is to keep communication delays as low as possible. This is chal-
lenging because while players play, their avatars move, their playing areas change,
which in turn changes the communication patterns among nodes.

Consistency

The whole game, i.e. the whole virtual world, has to remain available. As it is
dynamic and spread all over the participating nodes, replication mechanisms have to
be implemented in order to ensure that a copy of each portion of the virtual world is
available at any time. Furthermore, copies of the same portions of the virtual world
have to be mutually consistent. Therefore, nodes have to somehow synchronize their
knowledge areas.

5.2.3. Influence of the avatar mobility on the playability

Within large-scale game applications, a player shows and acts on a limited part of
the virtual environment: the objects of the playing area. Therefore, a node participat-
ing in a distributed large-scale game application is interacting with a limited number
of other nodes at a given time: its elders.

To increase the playability, it is thus possible to efficiently predict the communi-
cation patterns using the avatars coordinates in the virtual environment: avatar coor-
dinates define their playing areas which directly defines their elders. However, during
the game, the mobility of the avatar induces continuous changes in the coordinates
and thus of the elders and of the communication patterns.

To increase the playability, it is therefore important to characterize how avatars are
moving.
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Characterization of avatar mobility

The characteristics of avatar mobility may be learned from real traces. However,
all existing commercial MMOG projects are based on a client-server architecture
which, as stated above, usually implies poor scalability. Therefore, each trace of a
real game session involves at most a few hundred avatars simultaneously. Moreover,
the number of available real traces is small because they are difficult to obtain [LA 08].
Therefore, there are few real traces.

Recently, some research effort has been applied to characterizing avatar distribu-
tion and avatar mobility in large-scale game applications [LEG 10, RHE 08, LIA 08,
LA 08, MIL 09]. Avatars in virtual environments usually have total freedom of move-
ment. Resulting virtual environments are then very dynamic: data representing objects
and avatars may not be uniformly distributed all over the universe. Recent studies
of existing popular large-scale games, such as Second Life [LAB 11] and World of
Warcraft [ENT 11], have shown that the distribution of avatars was extremely dis-
parate [LA 08, PIT 07]: most of the avatars were gathered around a few hot-spots of
interest, while large parts of the virtual environment were almost deserted. Figure 5.3
shows the distribution of avatars on a Second Life island.

Figure 5.3. A sample avatar distribution in Second Life

This kind of distribution with hot-spots also corresponds to real density distribu-
tions of human populations, such as the European blue banana [BRU 02] that covers
one of the world’s highest concentrations of populations around the cities of London,
Brussels, Amsterdam, Cologne, Frankfurt, and Milan with approximately 20% of the
European population.
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Figure 5.4. Avatar movement within high density zones

Moreover, regarding player mobility in virtual environments, studies have shown
that it is quite similar to human mobility in the real world [RHE 08, LA 08]. The
mobility patterns of avatars has been shown to be highly non-uniform: avatars move
slowly and chaotically within the hot-spots as illustrated in Figure 5.4, whereas the
movement between the hot-spots is straight and fast [LIA 08]. This mobility pattern
is usually modeled with Lévy flights [RHE 08, LA 08]. Indeed, Lévy flights are a
particular sort of random walk in which the increments are distributed according to a
“heavy-tailed” probability distribution [CHE 06] with short and chaotic movements,
and sometimes, long and straight movements. Therefore, Lévy flights naturally differ-
entiate the two observed behaviors of avatars: periods of travel and periods of explo-
ration with chaotic movements. However, Lévy flights do no help to model hot-spots
because they do not ensure that avatars stay grouped around hot-spots and that den-
sity around hot-spots remains the same whatever avatar mobility is. Recent research
effort has focused on designing models able to generate realistic avatar movements
on a large scale in order to be able to test really large-scale game applications proto-
types [LEG 10].

Influence of game rules on avatar mobility

Finally, the game rules can also influence avatar movement. For instance in war
games, or quest games, avatars may be enrolled in fellowships. All the avatars belong-
ing to the same fellowship (or a same army) may move together in the same direction
with similar speeds, generating group movement [MIL 09], as illustrated in Figure 5.5.
An avatar within a moving group changes its playing area, but the objects of its play-
ing area remain almost the same because avatars located in its playing area move along
with him.
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This kind of group movement is particularly efficient for distributed MMOGs
where the playing area is included in the knowledge area. In this case, the elders
of a player within the group also remain around the player. Only avatars located on
the front line of the group have to obtain new elders ahead of the movement.

. Avatars not yet
known by the group

Front line

Movement vectors

Moving group

Figure 5.5. Avatar group movements

These characteristics can be considered while designing distributed systems for
large-scale game applications. By taking them into account, it becomes possible to
offer relatively low latency communications between peers that need to interact. The
next section presents peer-to-peer overlay networks tailored for large-scale game ap-
plications based on these characteristics.

5.3. Overview of peer-to-peer overlays for large-scale game applications

As stated in the previous section, a client of a large-scale MMOG must only have a
partial knowledge of the whole virtual environment: its playing area. The peer-to-peer
model suits this kind of application well where each node only has a local view, and
where the union of the local views offers a global view.

However, even if the peer-to-peer model seems well adapted, all peer-to-peer over-
lays are not suitable for MMOGs because they must ensure the playability of the
game: communications between a node and its elders should be efficient. The under-
lying peer-to-peer network overlay must, therefore, limit the number of hops between
anode and its elders.
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In this section we present an overview of the different overlays, from the most
inflexible to the most malleable and highlight their qualities and faults for playability.

5.3.1. Unadaptable/inflexible overlays

Considerable research effort has been conducted in the past decade in the field of
peer-to-peer overlay networks. As presented in the previous chapter, these overlays
have mainly been designed for one specific target application: large-scale read-only
file-sharing. These overlays are supposed to build a graph that connects all the nodes
together and permits efficient random search operations. Nodes choose the function
of their neighbor’s hash number if the overlay is based on a DHT or randomly if the
overlay is unstructured [ORA 01, STO 01]. Except in case of failure, the neighbors of
anode do not evolve over time because read-only file-sharing applications do not have
this need: searches are supposed random and a fixed random overlay is sufficient.

Building a distributed virtual environment over of a random inflexible overlay is a
hard task. First, a node and its elders have no reason to be close in the overlay while
they communicate. Moreover, as presented in the previous section, the elders of a
node evolve with the movement of the node’s avatar. In these inflexible overlays, the
neighborhood of a node does not change and a node can, therefore, not choose the
closest neighbors to its elders in terms of number of hops.

Varvello et al. [VAR 09b] implemented a virtual environment over a DHT. The
virtual world is partitioned into knowledge areas that are replicated among the DHT.
The authors show that the responsiveness of the DHT is acceptable with minimal
avatar mobility but not if mobility increases. In this case, implementing a reverse
binary tree on top of a DHT could help to lower the latency [VAR 09a].

Colyseus [BHA 06], a decentralized architecture to support MMOGs with tight
latency constraints (typically FPS games), which is detailed in section 5.4, is also
based on a DHT for virtual object discovery. At the storage level, Colyseus prefetches
objects.

Donnybrook [BHA 08], the sequel of Colyseus, also implements advanced dead
reckoning techniques. These techniques predict the position of an avatar based upon
its previously determined location. Dead reckoning techniques avoid a lot of messages
to update avatar locations and, therefore, decrease the network load. Donnybrook is
described in more detail in section 5.4.

5.3.2. Overlays reacting to application needs

Recent works have focused on dynamically adapting the overlay to better satisfy
application needs. For instance, semantic overlays [VOU 04] build links between se-
mantically close peers. These allow semantically close peers to be close in the overlay
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(in terms of number of hops), which is a good because they are likely to interact to
exchange data. Few recent overlays adapt their structure function to the application
needs [MON 06, VOU 06, HU 06]: they react to the evolution of the application, gen-
erally by detecting communication between nodes.

Recently, some research effort influenced by these works has focused on building
overlays tailored for distributed virtual environments. In such systems, the logical
neighborhood of a node in the overlay is determined by the playing area of its avatar
in the virtual environment: the overlay tries to keep the elders of the node in the
neighborhood of the node. As an avatar moves in the virtual environment, the playing
area of its node evolves and the overlay reacts by choosing the new relevant elders
as neighbors. Figure 5.6 illustrates how a peer-to-peer overlay adapts itself when an
avatar moves in the virtual world. The top of the figure presents the virtual environ-
ment with the avatars, and the bottom, the overlays with the nodes. Each node is
connected to the avatars located in its playing area. When node A moves, its playing
area changes and it therefore chooses new neighbors in the overlay.

/ Virtual world \ / Virtual world \
° Ps

] e
o v

_
® o )

Peer to peer overlay Peer to peer overlay

/o
%
N /o /

Figure 5.6. Peer-to-peer overlay network malleability

Recently, several of these overlays have been designed. Two main families have
been proposed. The first is based on an unstructured overlay. This is the case for
Solipsis [KEL 03], which is detailed in section 5.5.

The second is based on a structured overlay based on the virtual environment.

They use a Voronoi tessellations-based overlay. The n-dimensional applicative naming
space is divided into tiles centred around each avatar. Figure 5.7 presents a Voronoi
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tiling in a two-dimensional space where a point represents an avatar. The sizes of the
tiles are dynamically computed function of the object density: the number of objects
in each tile is approximately the same. VoroNet/RayNet or VON [BEA 07a, BEA 07b,
HU 06, HU 04] are MMOG overlays based on Voronoi. A tile is the knowledge area
of a node. The main strength of these overlays is the efficiency of search queries of
objects around a given coordinate: the query is forwarded along the shortest possible
path. However, maintaining this structure is costly because avatars are always moving.

Figure 5.7. Voronoi tessellations arround players’ avatars

5.3.3. Anticipating avatar movement to pro-actively adapt the overlays

Previous overlays react to avatar movements but they do not try to anticipate these
movements to pro-actively adapt the overlay.

An avatar movement anticipation module called Blue Banana has been proposed
in [LEG 10]. This anticipation mechanism can be implemented on top of the dis-
tributed MMOGs presented in the last subsection. Blue Banana detects the movement
of an avatar, and tries to prefetch neighbors located ahead of the anticipated move-
ment. Blue Banana is detailed in section 5.5

5.4. Overlays for FPS games

FPS, such as Quake, require very low latency: in FPS games, the fact of winning
or loosing is often based on player reactivity. If a player dies before the avatar that
shot him enters in its playing area, the game becomes unplayable.

However, this kind of game rarely involves a few thousand participants. The scale
is usually tens or hundreds than rather thousands and a DHT is sufficient.

This presents two main research efforts in this direction: Colyseus [BHA 06] and
Donnybrook [BHA 08]. These systems are based on DHTs that support range queries,
we first introduce Mercury [BHA 04] which is used by Colyseus.
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5.4.1. Malleable overlay for range queries

Classical peer-to-peer DHT, as presented in section 3.2.2, allow efficient put/get
operations. However, the key-based storage is a bit simplistic: it does not provide
either range queries, or multi-attributes queries.

Mercury [BHA 04] is a peer-to-peer system allowing both range and multi-attribu-
tes queries. To support multi-attributes queries, Mercury organizes peers in multiple
logical DHTs: one per attribute. Then, to handle range queries easily within each
logical ring, Mercury arbitrary assign ranges to peers. Therefore, each peer becomes
responsible for a sub-portion of the semantic space.

Within a virtual environment, objects are not likely to be distributed uniformly in
the space. Thus, a peer may quickly become overloaded if the portion it is responsible
for contains too many objects. Therefore, Mercury proposes a smart load balanc-
ing mechanism: each peer periodically probes the global naming space to identify
high-density zones. Underloaded peers change their hash number to join high-density
zones. Peer distribution thus converges to the objects distributed in the virtual envi-
ronment. This overlay is malleable: it adapts automatically to the object distribution
over the DHT.

However, when the distribution changes (e.g. when objects move) the load may
change quickly. This design is not tailored for high variations.

5.4.2. Colyseus

Colyseus [BHA 06] is built on top of the Mercury DHT. It is a peer-to-peer system
tailored for FPS games. It is based on a publish/subscribe mechanism: each peer
publishes its avatar state in the DHT, and each peer subscribes to the area they are
interested in (their playing area). Each time an avatar moves, the avatars in its playing
area are notified because they have subscribed to the zone in which it moves.

However, as lookups in DHTs may be too slow, Colyseus offers (i) a caching mech-
anism and (ii) a prefetch mechanism. Therefore, objects may be discovered quickly:
based on locality and predictability in data access patterns, Colyseus speculatively
prefetches objects. Furthermore, this mechanism is only used for discovery. Once
discovered, objects are cached and direct links are drawn between both the primary
copies (in the DHT) and the caches.

Colyseus has been tested with Quake II ! with hundreds of players.

1. http://www.idsoftware.com/business/index.php

www.it-ebooks.info


http://www.it-ebooks.info/

Large-Scale Peer-to-Peer Game Applications 95

5.4.3. Donnybrook

Donnybrook [BHA 08] has been designed based on Colyseus. It is also a peer-to-
peer system tailored for FPS games.

It is based on the fact that the human brain cannot pay attention to too many objects
simultaneously. Each peer, at each period, selects only five objects in its playing area.
Then these objects are kept up-to-date with high frequency in order to ensure a good
freshness quality until the next period. During the next period, a new subset will be
elected.

The selection of these five objects is based on three criteria that allows the compu-
tation of the objects requiring high-fidelity rendering:

— physical proximity: a close object is more likely to attract attention than a distant
one;

— visibility: an object in the center of the screen attracts the player’s attention
more;

— temporal proximity: an object having already attracted the player attention will
probably also attract his attention during the next period.

Other objects located in the player’s playing area are also kept up-to-date but with
a lazy mechanism: they are synchronized every second with the primary copy in the
Donnybrook system. Such a period may lead to inconsistencies: objects move con-
tinuously, they do not make “jumps” each second. To deal with these inconsistencies,
Donnybrook uses dead reckoning techniques [PAN 02]: the player’s nodes simulate
behavior of each object between two synchronizations. Therefore, the behavior of
these objects is approximate, but it is not critical: they are only secondary objects
which are not in the center of the player’s attention.

These approximations enable the network to have a reduced load and to enhance
the whole scalability of the system. They allow Donnybrook to support hundreds, and
even thousand of simultaneous players in Quake II.

To summarize, DHT can be efficient to build overlays for MMOGs if (i) the num-
ber of player remains limited, (ii) each object in a playing area of a node is cached,
(iii) only important objects are accurately updated, and (iv) the movement of other
objects are predicted.

5.5. Overlays for online life-simulation games

Life-simulation games are characterized by (i) their potentially very large scala-
bility; (ii) the lower importance of offering small latencies. Indeed, hundreds of thou-
sands of players may play simultaneously, being spread all over the world. To offer a
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pleasant gaming experience, latencies should remain low, but this is not as critical as
it is for FPS games.

Peer-to-peer systems for life simulation can be classified in two main classes:

1) overlays where the knowledge area of a node does not depend on its coordinate.
Knowledge areas are usually a statically distributed function of their hash key on a
DTH [1IM 04, VAR 09b, VAR 09a];

2) overlays where the knowledge area of a node is centered around its co-
ordinate. They use either unstructured overlays [KEL 03] or Voronoi tessella-
tions [BEA 07a, BEA 07b, HU 06, HU 04]. In these systems, the playing area is
included in, or coincides with, the knowledge area.

This section focuses on one of the state-of-the-art overlays for online life simula-
tion games: Solipsis [KEL 03] and its extension with Blue Banana [LEG 10].

5.5.1. Solipsis overview

Solipsis is an overlay designed to sustain a distributed virtual environment. Each
node of the Solipsis overlay is responsible for one avatar. In Solipsis, the knowledge
area and the playing area coincide. The objects of a playing area are, therefore, repli-
cated on the nodes that manage the avatars within this playing area. In Solipsis, elders
of a node are in its playing area: they are the nodes that manage the objects in the
playing area.

Solipsis maintains a set of direct neighbors for each node. Nodes communicate
using message passing through the overlay: latency increases with the distance (mea-
sured in number of hops) in the overlay. Solipsis tries to maintain its elders in its
neighborhood to communicate efficiently. If two avatars A and B are neighbors in the
virtual environment, the Solipsis overlay adapts itself so that B will eventually be in
A’s neighborhood and vice versa. In order to ensure that behavior, Solipsis is based
on two fundamental rules:

1) local awareness: an avatar a has a circular playing area w, centered on the
avatar. If another avatar b is inside w,, the nodes of a and b must be neighbors in
the overlay. The size of w, is dynamically adjusted to ensure that a has a number of
neighbors contained between a minimum and a maximum limit. When a node enters a
high-density zone, w,, increases, and when it enters a low-density zone, w,, decreases;

2) global connectivity: let N, be the neighbor set of a node c in the overlay. The
avatar of ¢ must be located inside the convex hull of the set formed by avatars of N,.
Figure 5.8 illustrates this property. On the left, c is located inside the convex hull and
on the right, after a move of the avatar, the property is broken. This property ensures
that the avatar does not neglect a part of its playing area, causing (i) inconsistent
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rendering and, (ii) possibly partitioning the Solipsis overlay graph (and, therefore,
making parts of the virtual world unreachable).

Figure 5.8. While a peer moves its convex hull has to be reconstructed

To ensure these rules, Solipsis implements a mechanism called spontaneous col-
laboration. At each moment, thanks to periodic updates, a node sends its coordinates
and the size of its knowledge areas to its neighbors. When a node detects that one of
its neighbors enters the knowledge area of another of its neighbors, it sends a message
to both entities to warn them that the local awareness rule is about to be broken.

Alert!
---._ S

i ~
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. \

.

\_!"'

-~

—~——

Figure 5.9. Solipsis spontaneous collaboration mechanism

This algorithm is illustrated in Figure 5.9. A and M are initially in the knowledge
area of S. S sends an alert to node A and M to warn them when it detects that M
enters the knowledge area of A. As they receive that message, the two entities (A
and M in Figure 5.9) become neighbors. Simulations showed that this technique is
very efficient: most of the time, a node receives a warning message and does not
have to initiate a costly new-neighbor query. The global connectivity rule ensures that
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a node is always surrounded by its neighbor set, making spontaneous collaboration
more efficient.

To conclude, if the local awareness rule is violated for a node n, it means that
an avatar has arrived in the playing area of n and is not yet included to the local
knowledge of n, causing a transient failure. If the global connectivity rule is violated
for a node n, it means that n is not surrounded by its neighbor set. It will then not
receive spontaneous data updates for a part of its playing area, which will necessarily
lead to transient failures.

An avatar keeps breaking fundamental rules as long as it moves because the spon-
taneous collaboration mechanism is not always able to react on time. For that reason,
a more efficient anticipation mechanism is required.

5.5.2. Anticipating avatar mobility to pro-actively adapt the overlay

Blue Banana [LEG 10] is an extension of Solipsis that pro-actively adds new
neighbors “ahead” of the player by anticipating its movements. For this purpose,
it finds nodes in the direction of the avatar’s movement and add them to a new set
called the prefeteched set. Once the moving avatar approaches a prefetched node, the
prefetched node is added to the regular neighbor set of Solipsis that defines the over-
lay topology. Hence, Blue Banana substantially helps native algorithms in Solipsis to
maintain the fundamental rules, minimizing resulting transient failures.

Algorithm description

Technically, if the algorithm observes that the avatar of a node B (for Blue Banana)
is moving fast and straight, and if the prefetched neighbor set is not full, B starts
searching for new prefetched neighbors in the movement direction. It sends a message
to its neighbor that is closest to its movement vector as illustrated by Figure 5.10. The
message contains the number of prefetched neighbors that B is willing to retrieve
(called the TTL), the position of B, its direction, and its speed.

As B is moving during the message transfer, upon receipt of a prefetching request
on a node R (for Receptor), R estimates the probable position p of B when B will
receive a response from R. For this purpose, R estimates the network latency and uses
the initial position and the speed of the avatar. It then builds a probability cone that
begins at the apex p and that has the direction of B. The shape of the cone decreases
with B’s speed. R responds to B with all its neighbors (itself included) that are in this
cone. R then sufficiently decreases the TTL and if the TTL remains greater than zero,
R forwards the request to its neighbor closest to B’s vector movement.
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Figure 5.10. Blue Banana prefetching algorithm

Network overhead

Blue Banana does not interfere with the maintenance protocol of Solipsis: the
prefetched neighbors are not placed in the regular Solipsis neighbor set, but in a sepa-
rate one. Therefore, Solipsis does not use network resources on maintaining links with
prefetched neighbors. Blue Banana does not spend network resources to maintain a
link with a node that is useless in the present as it is not yet in the playing area.

As a consequence, once inserted in the prefetched neighbor set, the position of a
node’s avatar is not updated, while it can move outside the probability cone. Blue
Banana automatically removes useless prefetched neighbors (i) when they have been
overtaken by the moving avatar, (ii) when the avatar changes its direction or (iii) when
the avatar slows down. It is possible to consider another policy by periodically updat-
ing the state of the prefetched neighbors. However, there is a risk of spending network
resources to update possibly useless nodes.

In order to compensate the small network overhead, Blue Banana nodes take ad-
vantage of the high predictability of the avatar movement in desert zones. In Solipsis,
a node periodically propagates the coordinates of its avatar to all the members of its
neighbor set, so the neighbor-nodes can update their view of the virtual environment.
Blue Banana doubles the period of such updates for nodes when it detects the avatar
is moving fast and straight. The neighbors of that node simply predict the position of
the avatar between two updates by using its initial position and its speed. This tech-
nique is a simple form of dead reckoning 2, but it could easily be enhanced with more
sophisticated mechanisms widely used in online gaming [BHA 08, PAN 02, PAN 07].

2. Recall that dead reckoning is the process of estimating one’s current position based upon a previously
determined position.
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To summarize, life-simulation games do not exhibits hard constraints in term of
game reactivity. However, the number of players involved in this kind of game can
reach hundreds of thousands. The scalability therefore becomes a problem and a DHT
becomes inefficient. Overlays tailored for MMOGs attempt to solve this scalabil-
ity problem by (i) building knowledge areas that correspond to player areas and by
(ii) using node’s elders as neighbors in the network. These topologies require fre-
quent updates when the avatars move and, therefore, require the addition of neighbor
prefetching mechanisms to increase the gaming experience.

5.6. Conclusion

Nowadays game applications become important both in terms of number of the
users and in term of the financial impact. Successful games are now multi-player:
hundreds of thousands of players are spread all over the world [LAB 11, ENT 11].
Building the software infrastructure for these applications is still challenging.

The currently deployed systems are based on the classical “client-server” paradigm
and do not scale with the number of nodes. Additional rules have been introduced to
limit the number of players interacting on the same set of servers at a given time (e.g.
Second Life “islands” or World of Warcraft “realms” [PIT 07]).

Classical overlays built for file-sharing applications also do not scale with the num-
ber of players. However, FPS games that exhibit real-time constraints that are success-
fully built on DHT.

Only really recent research work has proposed overlays tailored for MMOG:s.
These overlays try to minimize the latencies between nodes and their elders by moving
them closer in the overlay. For this purpose, they identify the knowledge and the play-
ing areas. These overlays react to player movements. Observing avatar movements to
prefetch neighbors in the movement direction, which minimizes the reaction time.

Open challenges

New overlays tailored for MMOGs minimize the communication latencies but
these systems only provide best effort “guarantees”. Therefore, how are cheaters dealt
with in such environments? How is players collusion avoided? It is mandatory to
ensure (i) privacy: unauthorized information must not be obtain about another avatar;
(ii) integrity: the game rules have to be respected; (iii) availability: the system has to
remain responsive. Few recent research works focus on these issues, however, these
are still open issues [NEU 07].

We believe that the next generation of peer-to-peer overlays for large-scale game

applications will be multi/complex overlays: malleable overlays such as Solipsis or,
such as those based on Voronoi tessellations are well adapted for local interactions,
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however they are not suitable for global search or publish/subscribe. However, such
“global” operations are likely to be needed: e.g. to maintain virtual bank accounts, to
count player “credits”, or more simply, to find information within a virtual environ-
ment.

Research in this field is still very active; new systems will emerge in the coming
years.
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Chapter 6

Introduction to Distributed
Embedded and Real-time Systems

Building distributed real-time embedded systems requires a stringent methodol-
ogy, from early requirement capture to final program implementation. Real-time sys-
tems must enforce strict timing constraints such as a deadline. Embedded systems
come with strict resource constraints, such as a restricted memory usage. But simi-
lar to most complex systems, real-time embedded systems are inherently distributed
systems. Moreover, they have to deal with fault tolerance issues and distribution can
help handle such a system requirement. However, we shall see that distribution adds
significant complexity to the design of real-time embedded systems.

Safety-critical systems are typical examples of distributed real-time embedded sys-
tems. They are used in many domains, such as aerospace, avionics, or medicine.
Control systems deployed on air and space platforms represent one of the most safety-
critical categories of software. There are stringent standards of code review and cer-
tification [RTC 92] that must be met before deployment onboard the platform. In this
chapter, we briefly depict a typical safety-critical architecture for avionics systems
and, more specifically, how distribution introduces difficult challenges.

The design of such safety-critical system architectures involves several steps and
at each level the system must be carefully specified, analyzed, implemented, and certi-
fied. We show how this development process has to be enriched to address the inherent
complexity introduced by distribution. This gives us the opportunity to highlight the
contributions of the next chapters.
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6.1. Distributed real-time embedded systems
6.1.1. Real-time systems

A real-time system is a system that has to respond to externally generated input
stimuli within a finite and specified delay [BUR 01]. The input stimuli come periodi-
cally or aperiodically from sensors, such as pressure sensors. These hardware devices
collect data from the environment and send them to the system for processing and
then reaction. As a consequence, the system changes the environment through actu-
ators such as engines. A major concern of these systems is ensuring a deterministic
behavior which is a prerequisite to guarantee timing constraints.

6.1.2. Embedded systems

There is no single definition reflecting all kinds of embedded systems. We may
define an embedded system as a special-purpose computer system designed to per-
form one or a few dedicated functions, often with real-time computing constraints
[WIK 10]. As embedded systems are dedicated to specific tasks, design engineers can
optimize them, reducing their size and cost, or increasing their reliability and perfor-
mance. Generally speaking, an embedded system also needs to check resource usage.
Typically, a strict determinism on memory usage may prevent the use of memory dy-
namic allocation.

6.1.3. Distribution in Real-Time Embedded (DRE) systems

Distribution enables the improvement of the performance or the redundancy of
real-time embedded systems. Distributed architectures are required to satisfy real-
time constraints (by increasing the computation capabilities), as well as to take into
account the geographical localization of the resources (sensor/actuator, computation,
memory) of real-time embedded systems. However, distribution makes it more diffi-
cult to guarantee the timing and resource constraints specified by real-time embedded
systems.

Safety-critical systems represent a typical category of these DRE systems. Trans-
portation systems, such as avionics systems, represent one of the most safety-critical
categories of software. They perform critical functions and contain classified data;
therefore they must be safe, reliable, and secure.

For these reasons, their design process has to conform to strict standards such as

DO-178B [RTC 92] for aircraft transport, CENELEC 50128/50129 [CEN 00, CEN 01]
for railway transport or ECSS-E40A [ESA 03] for the space industry.
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Conforming to such standards requires the definition of a rigorous design process
as described in Chapter 9. Guaranteeing the schedulability and safety properties of
the application is one of the costliest aspects of this process and Chapter 7 details the
different issues in this area.

6.2. Safety critical systems as examples of DRE systems

Avionics systems represent one of the most safety-critical categories of software.
To illustrate this chapter, we briefly introduce the main issues to address in this specific
domain.

6.2.1. Avionics safety-critical systems

A typical avionics system architecture is designed as a federated architecture of
dedicated boxes. The applications are physically distributed from one another in such
a way that failures of one or more applications do not affect others. However, such
architectures are expensive to build in terms of space, weight, and power requirements.

6.2.2. IMA

To overcome the disadvantages induced by physical separation, a new avionics
architecture model, known as integrated modular avionics (IMA), has been developed.
IMA reduces the space, weight, and power requirements of the aircraft, reduces spares
holding, and therefore, reduces complexity, costs, and time of development.

However, if the number of computing modules has been decreased from 37 units
to six or seven units, the global architecture remains distributed. To illustrate the
impact of distribution, the architecture adopted by Airbus for the new A380 generation
consists of the utilization of AFDX [ENG 03], a solution based on switched Ethernet,
which eliminates the inherent indeterminism of this technology.

6.2.3. DO-178B

In order to provide an effective IMA system, standards have to be followed to allow
for methodical development, validation, and testing, as well as providing a standards-
based application programming interface (API) to allow for software portability and
modularity.

DO-178B [RTC 92] provides guidelines for the production of software for airborne
systems and equipment. The objective of the guidelines is to ensure that the software
performs its intended function with a level of confidence in safety that complies with
airworthiness requirements.
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6.2.4. ARINC 653

ARINC 653 [ENG 97] is a standard defining operating system service to support
avionics software. ARINC 653 operating systems isolate software applications in
terms of space and time and avoid error propagation across them. These software
applications or partitions are configured and executed as if they were running on an
independent processor so that a partition at a given criticality level cannot impact
partitions that run at a different criticality level.

ARINC 653 specification forces applications to be isolated, ARINC 653 confor-
mance can be a step toward DO-178B certification and provides a framework for build-
ing an operating system environment to support IMA.

6.2.5. ARINC 653 Principles

ARINC 653 outlines specifications for a system execution environment where iso-
lated applications can run independently of one another, each in its own virtual con-
tainer called a partition. ARINC 653 partitions are isolated in terms of space and
time.

Space isolation means that each partition cannot read/write data from/to other par-
tition memories in order to preserve data integrity and confidentiality.

Time isolation means that the system schedules partitions periodically. During
their execution, partitions manage their resources and schedule their tasks.

An example of temporal partitioning would be a single core CPU (central process-
ing unit) that must be shared between partitions by giving each partition a determinis-
tic time-slice of the overall CPU schedule. An example of spatial partitioning would
be main memory that must be divided amongst the partitions (with hardware restric-
tions to prevent unauthorized access to a partition’s allocated memory by unrelated
partitions).

As a result, the presence of a partition does not affect the performance of another
unrelated partition and faults within a partition are isolated from other partitions.

Avionics systems require elaborate and thus expensive certification. The ARINC
653 standard eliminates the need to reexamine unchanged applications on an IMA
system because the guaranteed isolation it provides limits certification efforts to only
the modified partition. Certification is only required on the modified partitions because
faults are contained within partitions.
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Each partition is assigned a DO-178B criticality level from level A (highest) to
level E (lowest). The higher the criticality level, the higher the certification require-
ments are. As a consequence, the ARINC 653 executive platform must be certified to
at least the highest level of criticality of the system partitions.

The ARINC 653 standard divides the partitioning environment into three layers
(illustrated in Figure 6.1): hardware (processor, memory, I/O devices, etc.), the board
support package (interfacing with the hardware components), and operating system.

Partition 1 Partition 2 Partition 3 Partition 4
Criticality Criticality Criticality Criticality
Level A Level C Level B Level A

Ada POSIX RTEMS
AP| API API
Round Robin Time Sharing EDF
Scheduler Scheduler Scheduler Scheduler

ARINC 653 Partition Level Scheduler
(time and space isolation between partitions)

Board Support Package (BSP)

Hardware Board

Figure 6.1. Hierarchical ARINC 653 architecture

ARINC 653 services are structured as follows:

— partition service to manage partition mode;

— process service to manage processes inside partitions;

— time service to manage timed events and periodic processes;

— interpartition communication service to enable communication between par-
titions through fixed-sized messages (sampling ports) and variable-sized messages
(queuing ports);

— intrapartition communication service to enable interprocess communication
through unqueued messages (blackboards) and queued messages (buffers) but also
take over interprocess synchronization through notification (events) and control ac-
cess to shared resources (semaphores);

— health monitoring service to catch errors and to attach a recovering policy at the
process, partition, or kernel level.

The processor allocation is made according to a two-level hierarchical scheduling:
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— the partitions are cyclically activated. This partition scheduling is usually off-
line;

— the second scheduling level is related to the task scheduling inside a partition.
This scheduling may be online.

6.3. Design process of DRE systems

Building DRE systems involves many tightly coupled steps, from requirements
capture (number of tasks and their interactions, non-functional attributes) to validation
(feasibility of scheduling) down to implementation and testing.

There are numerous mature results as well as outgoing works to help the user in
one design process. In the context of safety-critical systems, we provide an overview
of the possible approaches, some of them being detailed in the following chapters.

6.3.1. Modeling

The distance between requirements and implementation must be kept minimal all
along the process: non-functional attributes have to be carefully respected when im-
plementing tasks; any change in the specification has to be carefully propagated at the
implementation level; interactions between entities have to be mapped onto run-time
entities in a safe manner (deadlock free, no starvation, no overrun, etc.).

Therefore, developers and system architects need common interchange models
to work cooperatively on their requirements and concerns. Several modeling lan-
guages help to represent safety-critical systems architectures. Some popular ones
are UML and, in particular, the MARTE profile [OMG 08], SysML [OMG 07], or
AADL [SAE 08].

In the context of our safety-critical system example, AADL offers an interesting
solution. The AADL (Architecture Analysis and Design Language) recently appeared
as an architecture description language suitable to describe systems, from high-level
concerns down to implementation.

First, it proposes a unique representation when other modeling languages may re-
quire the use of several profiles but also model transformations between these pro-
files. Second, AADL can be used as a backbone, meaning that it is involved in
all the different steps of the process (modeling, analysis, code generation). Third,
AADL comes with an ARINC 653 modeling annex, which proposes guidelines to
represent ARINC 653 systems. In particular, this aids model inter-communications,
intra-communications, and space/time isolation.
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6.3.2. Analysis

Following the modeling phase, the safety-critical avionics system previously de-
scribed has to be analyzed in order to enforce the expected functional and non-functional
properties. One approach may be to run schedulability tests to check that the system
has a correct temporal behavior.

Many schedulability tests have been created [LIU 73]. A schedulability test re-
quires that the target system fulfills a set of specific assumptions. Therefore, it may
be difficult for a designer to choose the relevant analytical method. Moreover, only
few modeling languages or engineering tools allow the designer to apply the results of
real-time scheduling.

Coupling modeling and analysis tools requires that both ends strictly comply with
the same semantic definition of the exchanged model. As far as our safety-critical
system is concerned, the Cheddar scheduling analysis tool can help us by automat-
ically checking scheduling feasability on each partition and on each processor as it
reads AADL models [SIN 07]. In a context of non-hierachical scheduling, a simi-
lar approach would have been possible with MAST [HAR 01] using MARTE as the
modeling language.

6.3.3. Implementation

The differences between the system model, analysis models, and the generated
code introduce a semantic gap, reducing the confidence in the whole process. Differ-
ences are due to:

1) the different levels of abstraction between the initial model, intermediate anal-
ysis models, and the generated code (or implementation model) and

2) the resources of the execution support (middleware) not taken into account in
relevant analysis stage.

In [BOR 05], Bordin and Vardanega state that the goal of automatic code gen-
eration is precisely to reduce the gap between the system as it has been modeled and
analysed and the system as it is produced. Such a process has been successfully imple-
mented and described in [HUG 08]. Returning to the safety-critical system domain,
this automatic code generation can also lead to the configuration of executive plat-
forms and, in the context of our avionics system example, to the configuration of the
ARINC 653 kernel as described in [DEL 11].
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6.3.4. Certification

As for code production, the configuration and execution of avionics systems need
to be certified against certification standards [RTC 92]. Most of the time, the certifica-
tion process is manually achieved and consists of ensuring that system implementation
is compliant with its specification. Due to the time required to inspect and track each
requirement from a text document (specifications) to the corresponding piece of code,
this is a very costly and error-prone.

Of course, one important trend in the design of safety-critical systems consists of
automating the design process where possible and integrating this automated process
to some of the steps required by the certification. For instance, the authors of [DEL 11]
integrate the ability to perform code coverage technics in their design process thanks
to the GNAT toolchain [BOR 10] and to the emulator QEMU [BEL 05].

6.4. Objectives of Part 2

The goal of this part is to highlight some well-known or innovative approches
to deal with distribution in the context of real-time embedded systems. The following
presentations mainly focus on safety-critical systems and aim to address one or several
steps of the design process in depth.

This part contains three chapters.

First, Chapter 7 presents holistic analysis, a well-known method used to compute
the schedulability of DRE systems. This chapter requires no specific background
about scheduling theory. It starts by presenting static priority preemptive scheduling
analysis. The authors present scheduling algorithms that guarantee schedulability for
a particular set of threads with or without jitters. Then, the approach is extended to
systems in which tasks with arbitrary deadlines communicate via messages over a
communication network. The basic idea is to interpret the message delay induced by
the communication system as a release jitter of the receiver task. This first contribution
tackles the analysis and execution steps described in the current chapter.

Second, Chapter 8 presents the design of adaptative real-time embedded systems.
These adaptation requirements may help to implement fault-tolerance mechanisms
or represent different phases of the system life cycle. The chapter focuses on mode
switches as a possible implementation of these adaptation requirements. If this chap-
ter gives some complementary schedulability results to Chapter 7, it also details some
fundamental insights in the design process of adaptative real-time embedded systems.
In particular, the chapter comes with the modeling, the analysis, and the implementa-
tion of a robot, which can operate either in automatic or manual modes. This second
contribution addresses the modeling and analysis steps described in the current chap-
ter.
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Finally, Chapter 9 presents an innovative approach to designing the new genera-
tion of space systems. This approach captures the system architecture with a modeling
language, defines the data model, proceeds to a possible schedulability analysis, en-
forces optimized code generation, and finally, combines applicative and middleware
components into an homogenous software application. This approach is supported by
a toolset in order to make the process as automated as possible. This work takes ad-
vantage of several standards (AADL, ASN.1, etc.) and the current state of the toolset
is close to a commercial product. This last contribution covers all the steps of the
design process described in the current chapter.
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Chapter 7

Scheduling in Distributed Real-Time Systems

7.1. Introduction

This chapter introduces temporal validation for distributed real-time systems. It as-
sumes some basic knowledge about operating systems, but no background knowledge
of scheduling theory is needed. It is mainly a commonly used method for validating
distributed systems: the holistic analysis. It is intended to give the reader the basic
knowledge required to deal with temporal validation and scheduling, as well as an
introduction to more advanced topics.

Temporal validation is an important step in the validation of a time-critical system.
Temporal validation usually takes place at the very end of the software development
process, but more and more research studies address the conception stage, offering
methods, such as the sensitivity analysis [VES 94, BIN 08, DOR 10], allowing a de-
signer to choose, at an early stage, valid temporal parameters for his system. These
methods rely on the fundamental theory presented in this chapter. This theory is based
on temporal and structural abstractions (models) of the concurrent software running
on the processors.

Different types of implementation are presented in section 7.2 in order to relate
them to the models used for temporal validation in section 7.3, and then introduce the
principles of holistic analysis. The holistic analysis is a conjoint validation of the tasks
and the messages, based on their WCRT analysis. Section 7.4 shows how to com-
pute the WCRT of the tasks for fixed-priority scheduling policies and deadline-driven
scheduling, then section 7.5 focuses on the WCRT of the messages on a network.
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Section 7.6 uses these techniques in order to validate a case study. The conclusion
discusses the limits and extensions of such a method.

7.2. Generalities about real-time systems

This section presents the fundamental links between the real-world (the applica-
tion) and the models used for the temporal validation. Indeed, the first step in the
validation process is to choose an accurate model for an application.

7.2.1. Real-time systems

A command and control system typically has to ensure the control of a real-world
physical process. It obtains information about the state of the process using sensors
(e.g. temperature sensor, speed sensor, attitude sensor, etc.), and acts on the physical
process using actuators (e.g. electromechanical valve, engine, switch, etc.). Once
provided with the knowledge of the instantaneous state of the system, the main role
of this kind of system is to react to it in order for the controlled process to behave in a
desired manner. The physical process can be as simple as a toy robot, or as complex
as a car or an airplane.

The main difference between a classic software and a command and control soft-
ware is that the time used by the system between the moment the sensors are read and
the moment it effects the actuators has an impact on the process behavior. Therefore,
when a system is critical, in other words when catastrophic consequences occur in
case of a failure, it is often also time-critical, which means that the designer has to
ensure that the duration between sensing and actuating is bounded. In this case, the
command and control system is called a real-time system.

In some cases, the command and control system is embedded into the physical
process, we then call it an embedded system. This kind of system has severe con-
straints of size, weight, energy consumption, physical robustness, etc. Therefore, the
processors used in embedded systems have a very low computing power compared to
industrial or personal desktop or laptop computers.

Table 7.2.1 gives some examples of applications and their usual classifications:

In the following sections, we consider real-time systems, for which a temporal
validation is required.
7.2.2. Synchronous or asynchronous system

The implementation of a system has an impact on the way it is abstracted as a
temporal model. The first question to consider is the parallelism of the actions. A
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Application Time-critical | Embedded | Distributed
Car control system yes yes yes
Airplane control system yes yes yes
UAV control system yes/no yes yes/no
Cellphone no yes no
Test bench instrumentation no no yes/no
Power plant supervision & control yes no yes

Table 7.1. Applications and their classifications

command and control system has to deal with information at different rates. For ex-
ample, an UAV control system (see Figure 7.1) has to ensure several functions at
different rates [TRA 06]:

— yaw, pitch, and speed control, using feedback loops at a frequency of 20 to 50
Hz, which use the data of an inertial measurement unit and a speed sensor as input,
and control the flight control surfaces, as well as the engine throughput, in order to
conform to an attitude (yaw and pitch) and speed command;

— sending telemetry data to a ground station using a wireless modem, a possible
rate would be 10 Hz;

— receiving commands from the ground station (mode change, waypoints, etc.), at
a typical rate of 10 Hz;

— supervision of the system: self-inspection in order to detect failures, at a possible
rate of 5 Hz;

—navigation when following waypoints, using a geographic positioning system
(GPS) in order to calculate an attitude and speed command such that the UAV is
navigating toward a waypoint, at a typical rate of 2 to 4 Hz.

For a control and command system, two kinds of implementation can be used to
ensure this parallelism: multitasking (also called multi-threading), and reactive im-
plementation. Multitasking is referred to as asynchronous implementation, while a
reactive implementation is usually a synchronous implementation.

7.2.2.1. Asynchronous implementation

Regarding scheduling point of view, a task is a thread executing a function in
parallel with the rest of the program. Most operating systems, and real-time operating
systems (RTOS), can handle several tasks in a process. A task can be seen as a function
that will occur for a processor at a certain rate. The rate is said to be time-driven if
the task release is driven by the internal clock of the system (e.g. using the internal
clock in order to send telemetry every 100 ms). The rate is said to be event-driven if
the task release is driven by an external event (e.g. every time data are received from
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Figure 7.1. UAV control system

the inertial measurement unit, an interrupt is triggered on the processor, releasing the
attitude control task).

Figure 7.2 illustrates a real-time system from the point of view of the designer and
programmer. A RTOS is the interface between the application and the hardware. The
RTOS controls the state of the tasks (running, ready, waiting, etc.), and its kernel is
in charge of scheduling the system. Scheduling a system consists of choosing a ready
task and assigning it to the processor. The scheduling decisions rely on the knowledge
of the state of the tasks, and on the events expected by non-ready tasks, for example:

— the running task state changes (e.g. waiting for an event, a semaphore, a duration,
a specific time, etc.),

— an internal event changes the state of a non-ready task into ready (such as the
internal clock, the release of a semaphore, an internal message is sent to a task waiting
for it, etc.),
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Figure 7.2. Hardware and software layers of a command and control system

— an external event triggers a task (e.g. an interrupt, such as the arrival of a message
on the network is releasing a task, making it ready).

The kernel of a RTOS (proprietary RTOS like VxWorks and RTEMS, or conform-
ing to standards like POSIX, OSEK/VDX, ARINC 653, Ada, etc.) is usually priority
based, therefore, the task chosen by the kernel in order to use the processor is the ready
task with the highest priority. Most of the RTOS are preemptive: when a high-priority
task is released, the kernel is putting a lower priority running task in the ready queue,
in order for the high-priority task to be executed.

7.2.2.2. Synchronous implementation

A synchronous implementation does not have to rely on a RTOS, because no
priority-based scheduler is required. If the computing unit is “fast enough” compared
to the dynamics of the system, then the processing time required for each functional-
ity is very small compared to the inter-arrival time between two successive events. In
this case, we can assume the treatment of an event to be instantaneous, so the system
reacts synchronously to the event. Nevertheless, in embedded systems, the processors
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are chosen in order to fulfill the computing needs of the system for obvious economi-
cal and power consumption reasons. So in reality, the synchronous hypothesis is rarely
applied in this way. However, it is possible to see the functionalities of a system as
several finite automata (e.g. for the UAV presented in Figure 7.1, there would be an au-
tomaton for every function described in section 7.2.2), then to synchronize them into
a single functionality, which is run cyclically or periodically on the processor. The
synchronous hypothesis is valid if the delay implied by the cycle duration is “short
enough” compared to the dynamics of the controlled system (i.e. such that the desired
rates are matched), but the reactivity of a synchronous system to the occurrence of
external events is as low as the cycle time of the system.

A synchronous implementation, even if less reactive than an event-driven asyn-
chronous implementation, presents some advantages: it is less subject to the spec-
ification approximations. For example, we show in the following sections that the
validation of an asynchronous task system relies on the description of a worst-case
behavior, but the actual on-line (when the system is running) execution order of the
tasks is unknown, and depends on the actual execution duration of the tasks.

In the following sections, we consider that the system is executed on a RTOS,
with an asynchronous implementation, so we consider multitask systems, either time-
driven, or event-driven. The sections concerning CPU (central processing unit) schedul-
ing are useful for asynchronous systems, while the sections concerning worst-case
message delay on different kinds of network concern both synchronous and asyn-
chronous systems.

7.3. Temporal correctness

The main characteristic of a real-time system is that the time given to the system
to react to an internal or external event is bounded in time. For example, an engineer
in aerodynamics can ask that the yaw and pitch regulation takes place every 20 ms.
This kind of time constraint is an end-to-end (from the sensor to the actuator) time
constraint. If it is violated, then the stability of the aircraft cannot be ensured. A task
reading the data bytes coming from a GPS receiver can be expected, when data are
available, to read a byte of data in less than 170 microseconds. If the task cannot
meet this time constraint, then the byte is lost, therefore, the frame containing the
positioning information is lost. In this case, the task deadline is directly deriving from
a constraint.

In the models used to validate the temporal behavior of a system, the timing con-
straints are represented by a deadline for every task of the system. Therefore, end-to-
end deadlines are translated into deadlines applied to each task implied in the chain of
treatment from one end to the other.
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There are two kinds of timing constraint: hard (must never be violated) and firm
(meeting the constraint is increasing the global quality of service). In the rest of the
chapter, we consider hard deadline systems: a late result is considered to be a fault.
The main question addressed is how to prove that the tasks of a distributed system
always meet their respective deadline, in other words if the system is feasible.

7.3.1. Feasibility

As we have to deal with temporal constraints, every task has to be characterized
with a worst-case execution time (WCET), giving the longest time necessary to its
computation on the processor where it is assigned, and by a rate (usually a periodicity)
giving its worst-case arrival pattern.

THEOREM 7.1 Feasibility: a system of tasks is feasible with a scheduling algorithm
if, and only if, for any duration of the tasks smaller than their WCET, and for every
activation pattern corresponding to the rates of the tasks, all the tasks are always
completely executed prior to their deadlines.

Example 7.1 Suppose a task system composed of four tasks, 71 and 7o are executed
on processor 1, while 75 and 74 are executed on processor 2. A network is shared be-
tween the two processors to pass a message between 71 and 74, and a message between
73 and 72. We suppose that the messages sent on the network are not preemptive (in
practice, every message requires only one frame). The schedule of the tasks on their
respective processor and of the messages on the network are shown in Figure 7.3. The
up arrows represent task activations, and deadlines are symbolized by down arrows.
A task, once activated, is sent to the ready queue, and has to be completely executed
before its deadline. Part (a) of Figure 7.3 shows a simulation of the system, where the
deadlines are met. Part (b) shows a simulation of the system where 73 is shorter, and
where the deadline of 74 is not met.

This example illustrates that, in general, a simulation cannot be used to validate a
distributed system, even when using the WCET. The observed phenomenon is called
a scheduling anomaly. In most non-trivial systems, scheduling anomalies can occur,
therefore, the validation steps consist of:

— defining worst-case scenarios for a task system;

— trying to show that the system is feasible by showing that even under these un-
favorable conditions, the deadlines are met. In order to do so, the literature provides
low computational complexity (polynomial or pseudo-polynomial) feasibility tests in
order for them to be scalable to large systems. Nevertheless, for non-trivial systems,
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Figure 7.3. A non-feasible system: a) tasks with an execution time equal to their WCET; b) a
task is shorter than its WCET

even on a single processor, the feasibility problem is NP-hard in the strong sense (there
is no polynomial or pseudo-polynomial time algorithm to solve it). As a result, the
worst-case validation can be pessimistic, which is the price paid in order to tackle
intractability.

The holistic analysis is a method showing that a distributed system is feasible using
pseudo-polynomial time algorithms.

7.3.2. Principles of the holistic analysis

The holistic analysis, introduced in [TIN 94a, TIN 94b], analyzes both the schedul-
ing of the tasks and the messages. The underlying model is made of event-driven
asynchronous tasks: a task on a CPU (node) waiting for a message is activated peri-
odically but has to wait for the expected message to arrive on the node before it can
be sent to the ready queue. This is based on the calculation of the WCRTS of the tasks
and the messages. The response time of a task is the difference between its release
time and the end of its execution. The WCRT is the longest response time achievable
by a task, depending on the context.

Suppose, as in Figure 7.4, that a task 7; sends a message m over a shared network
to a task 7;. For the task 7; waiting for the message, the best case occurs when the
message is available when the task is supposed to be released (i.e. if 7; has a duration
of 0, and the message is transmitted instantaneously), while the worst-case occurs
when the message suffers the longest possible delay. Depending on what happens
between the best and the worst-case, the task 7; is sent into the ready queue at some
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time between its release date and the worst-case arrival time of the message. This
incertitude is modeled as a release jitter.

vode, | =

J -
Network | m m

Node, g >|\\ T \I/

Figure 7.4. Release jitter of a task and a message
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The fact that a task can suffer from a release jitter on a processor has an impact on
the WCRT of this task, but also on the other tasks sharing the same processor, which
can delay some messages sent on the shared network, and so on. As a result, the holis-
tic analysis is a recurring process, taking into account the inter-dependences between
the WCRT of the tasks and the WCRT of the messages by adding or increasing a re-
lease jitter to the tasks and messages, until a fixed-point is reached. This fixed point
provides an upper bound of the WCRT of the tasks and the messages.

In the following sections, when a task 7; is waiting for a message m sent by a task
7j, we say that 7; precedes m and that m precedes 7;. In the holistic analysis, tasks and
messages are both considered as tasks sharing a computing resource: a task is using
a processor over a certain duration, and a message is using a network over a certain
duration. If the system has to be validated, then both task and message durations
must be bounded in time (a task has a worst-case execution time, and a message has a
worst-case transmission time).

In the following sections, we assume some hypothesis on the system in order to
validate it:

— the clocks are perfectly synchronized on the processors of the system;
— the network is perfect, there is no transmission error;

— the tasks are assigned to a processor and do not migrate;

— messages are read at the beginning of the tasks, and sent at the end;

— the communicating tasks are released at the same time on the different proces-
sors, and are executed at the same rate;

— the precedence graph implied by the inter-task communications does not have a
circuit;

— all the communications are loosely coupled (i.e. there is no synchronous barrier
or rendez-vous);

— tasks are non-reentrant (only one instance of a task can be ready at once) and
sequential (they cannot be parallelized).
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Suppose that n is the total number of tasks and messages in the system. We denote
t = 1.k, k < n the tasks, and ¢ = k + 1..n the messages of the system. Suppose
that we have a function WC RT computing the WCRT of a task or a message ¢ €
1..n. Giving the example shown on Figure 7.4, this function has to take into account
the release jitter of the other tasks and messages (depending on the WCRT of the
message m, the W CRT of the task 7; is affected, and can delay tasks sharing the
same CPU as 7; and output messages). Therefore, the W C'RT of a task or a message,
taking the worst-case jitter of every task and message, is given by the fixed point of
the following equation.

J© ={0Vie 1l.n}

WCRT (i)™ = WCRT(i, J©) -
Jm+1) = {max; precedes i (WCRT(5)™) Vi € 1..n} .
WCRT(#)™+t) = WCRT(i,J™)

where J(™) is the set of the worst-case release jitters of the tasks and messages at the
step n of the fixed-point lookup (it can be seen as a vector of n jitters). The function
WCRT (i, J (m)) depends on the worst-case release jitters of the tasks and messages,
on the local scheduling for a task, and on the network type for a message. The sequel
of the chapter gives the formulas used to compute this function in different contexts,
for CPU and network scheduling.

The convergence of the fixed-point lookup is dependent on the W C'RT functions:
they must be monotonically increasing functions of the release jitters. Because of this
required property, a holistic analysis is a worst-case analysis, giving an upper bound
of the WCRT of the tasks and messages of the system. This method can be pessimistic
(see [BAT 98] for an illustration) and can be improved by reducing the release jitter in
calculating the best-case response time [HEN 01].

7.4. WCRT of the tasks

The previous section showed that in order to study the feasibility of a distributed
system, we need to compute the WCRT of tasks with a release jitter. The release jit-
ter is accounting for the worst-case arrival time of the messages. Depending on the
context (scheduling algorithm, task activation scenarios), several methods exist. We
focus here on two commonly used scheduling algorithms: the fixed-priority policies
(see section 7.4.3), and the deadline-driven scheduling algorithm (Earliest Deadline
First) in section 7.4.4. Regarding the tasks, we focus on event-driven tasks, which
represent a worst-case for time-driven tasks (i.e. the WCRT of a task assuming it is
event-driven is a WCRT for the same task if it was time-driven). In the chosen con-
texts, the WCRT problem is co-NP-hard in the weak sense for the case of synchronous
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periodic task systems with a relative deadline shorter than the period [EIS 08, EIS 10]
(i.e. there are pseudo-polynomial time algorithms solving the problem).

7.4.1. Scheduling algorithms

A schedule is feasible if the WCRT of every job of every task is smaller than the
task’s relative deadline, in other words if all the deadlines are met during the life of the
system. Most researchers propose scheduling policies or feasibility tests, or consider
some quality of service or cope with more complex task models. Except for basic
problems, the feasibility problem is NP-hard, thus there are two choices: being exact
at an exponential cost, or being pessimistic at a polynomial or pseudo-polynomial
cost. Of course, it is better not to be optimistic when talking about feasibility. There
are two families of scheduling techniques for asynchronous real-time systems:

— on-line scheduling (or priority-driven scheduling): during the execution of the
system, a simple scheduling policy is used by the RTOS in order to choose the highest
priority job in the set of ready jobs. This algorithm (usually called policy) is used when
the executed job is finished or when it is blocked, or when another job is released,
or even sometimes at every time unit (quantum based scheduling). In this case, the
literature proposes efficient schedulability tests (polynomials or pseudo-polynomials)
that can be used off-line (i.e. in order to validate a scheduling policy for a system
before its actual execution). As soon as some non-preemptive parts are involved in the
system, there is no optimal online scheduling algorithm [MOK 83]. The same kind of
negative result can be found in scheduling theory for tasks including some practical
factors, like tasks with self-suspension [RID 04]. A scheduling algorithm A is optimal
if for any task system, either it is not feasible with any scheduling algorithm or it is
feasible with the algorithm A;

— off-line scheduling (or time-driven scheduling) techniques, using model-based
or branch and bound or meta-heuristic algorithms, create a feasible schedule that can
be executed endlessly by a dispatcher. In this case, techniques deal with the state
explosion problem. A major drawback of off-line scheduling is that a schedule has to
be computed every time the system is modified during the coding stage.

In this chapter, we deal with on-line scheduling algorithms. They are flexible, and
widely used in industrial processes. The WCRT analysis depends on the nature of the
scheduling algorithm:

— fixed-priority policies (FPP) assign a fixed priority to the tasks of the system.
The scheduler assigns the highest priority task to the processor. The designer has to
choose the priority to assign to the tasks. Rate monotonic is optimal in the class of FPP
[SER 72, LIU 73] (optimality restrained to the comparison with other FPP algorithms)
for independent (fully preemptive) periodic tasks with an implicit deadline (a task has
to be executed before its next release). It assigns a higher priority to the tasks with
a shorter period. The most widely used policy is deadline monotonic, which is an
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adaptation of rate monotonic to the case where the deadline of a task can be shorter
to its period: Deadline Monotonic gives a higher priority to the tasks with a higher
relative urgency (i.e. modeled as relative deadline), and is optimal in the class of
FPP for independent periodic tasks with a deadline prior to their period [LEU 82].
Audsley’s algorithm [AUD 91] for priority assignment is optimal when some tasks
are never released simultaneously (i.e. for some time-driven task systems), or when
the relative deadline can be larger than the periods; this algorithm has an exponential
time complexity;

— dynamic priority scheduling algorithms compute the priorities of the task on-
line. The most interesting algorithm of this family is the deadline-driven scheduling
algorithm [JAC 55, DER 74, LIU 73], also called earliest deadline first (EDF), which
assigns a priority to a task depending on its urgency: the closer its deadline, the higher
its priority. This algorithm is optimal for independent task systems;

— in the case of a multiprocessor, a recent family of algorithms, called PFair, has
been investigated [DAV 09]. Some algorithms of this family are optimal for multipro-
cessor systems. In this chapter, we assume the distributed system to be compounded
of uniprocessor systems, so we do not describe WCRT analysis, which is still an open
problem for non-trivial cases in the multiprocessor case.

7.4.2. Modeling the tasks

Most of the treatments of a command and control system are periodic, and are run
for a potentially infinite duration. Therefore, the common way to represent a task,
denoted 7, is based on the Liu and Layland [LIU 73] periodic task model:

— the WCET C;; is the worst possible computing time of a task 7; (see [WIL 08] for
specific information about the WCET). It should be noted that, in general, the actual
computation time of the tasks is variable between 0 and the WCET;

— the smallest task period T; is the smallest interval separating two successive
activations of 7;, we note 7; ; the jth job of the task 7;;

— the relative deadline D; represents the temporal constraint of 7;, i.e. if the job
7;,; 1s released at the time ¢, then it must be finished at the time ¢ + D; (note that in the
original model of [LIU 73], the deadlines are implicit: D; = T3;), the deadlines can be
arbitrary (i.e. we can have D; > T;);

— the release jitter J; represents the worst-case duration between the release of a
task and the time it is sent into the ready queue. This parameter is accounted for the
incertitude about the availability of an expected message.

If the system is time-driven (see 7.2.2.1), we say that the tasks are concrete. The
release date r; of the first job 7; 1 is known; moreover, in this case, the tasks are
strictly periodic, and the subsequent releases of the jobs are known, as well as the
corresponding deadlines:
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rij=ri+ (G —1T
di,j = 1ij + D;
A job 7; ; can be ready at any time in the interval:

[rig,rig + Ji

It is important to keep in mind that the release time 7; ; and the ready time are
different when dealing with release jitters. Figure 7.5 represents a time-driven task:
the up arrows represent job activations (i.e. instants when the task becomes ready in
the system), while the down arrows represent job deadlines.

Ti
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' [] time
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ZTi >T;

]
el \I/ ,—l \l/ (b)
L l [] time
0 rip=? < di; ri2 di 2=r; »*D;
<G,

Figure 7.5. a) A time-driven (concrete) task, b) an event-driven (non-concrete) task

If the system is event-driven, then the tasks are said non-concrete (i.e. their release
dates are unknown). Usually for this task model, the tasks are event-driven, and their
actual period during system execution can vary between their period and +oo (they
are called sporadic in the literature).

Giving these possible task models, the scheduling theory focuses on how to define
the worst-case scenario for a task (the conditions issuing the worst possible response
time). This scenario depends on the scheduling algorithm.

7.4.3. WCRT for fixed priority scheduling

We have seen that the delay introduced by the messages is taken into account with
release jitter. We first show how to calculate the WCRT for tasks without jitter, and
will show how jitters are taken into account.
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The most widely used scheduling policy is based on fixed priorities. These schedul-
ing algorithms are called fixed priority policies (FPP). The reason can be that most
commercial off-the-shelf RTOS offer only FPP (even if the deadline-driven schedul-
ing algorithm appeared in an annex of the Ada 2005 standard). The most important
concepts to understand are the critical instant concept (for non-concrete systems and
synchronous concrete systems) presented in section 7.4.3.1 and the busy period con-
cept introduced in section 7.4.3.2. Section 7.4.3.3 shows how to establish the WCRT
without taking release jitters into account, then section 7.4.3.4 shows how to inte-
grate jitters into the formulas. Finally section 7.4.3.5 shows how to integrate practical
factors such as mutual exclusions into the WCRT calculation.

7.4.3.1. Critical instant

As the durations, and for the sporadic tasks the periods, and for non concrete sys-
tems the first release date, may all vary, it is important to study the worst-case behavior
of the tasks. The worst-case scenario for a task is called a critical instant.

THEOREM 7.2 Critical instant theorem [LIU 73, BAR 90]: for independent task sys-
tems, where the tasks are non-concrete or where the tasks are concrete and syn-
chronous (i.e. for every task 1;, r; = 0), the critical instant for a task t;, leading
to its WCRT, occurs when T; is released simultaneously with all the higher priority
tasks.

Figure 7.6 illustrates this theorem, when tasks are subject to release jitters [TIN 94a]:
the WCRT of 7 occurs when it is released at the same time as 7;. A task is delayed
by higher priority tasks releases. It should be noted that this theorem concerns only
independent task systems. In section 7.4.3.5, we shall describe how to take mutual
exclusion into account.
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Figure 7.6. Illustration of the critical instant
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7.4.3.2. Busy period

A level-i busy period is a time period where the processor is kept busy by tasks
with a priority higher than or equal to priority(r;), where there is no idle point.
An idle point corresponds to a point where the Time Demand Function meets the
T'ime line (it corresponds to a point where all the previous requests of this priority
level have been completed). Figure 7.7 shows the “classic view” of a busy period:
initially, 7y and 72 are released; therefore, the processor has to compute C; + Cs
(with C'1 = 1 and C2 = 2) time units, and each time a task is released (77 = 4 and
T2 = 14), the processor demand increases. The processing power is given on the
diagonal: the CPU can process one time unit of work per time unit. When the time
demand function crosses the time (line Time demand = Time), it is the end of a
busy period. When there is no demand, the CPU remains idle until the next release,
which is the beginning of the next busy period. It is important not to confuse the end
of a busy period (idle slot) and idle time: in Figure 7.7, the first idle slot takes place in
the time interval [27, 28], but the end of the busy period occurs at time ¢ = 14 (an idle
point is enough to end a busy period).

THEOREM 7.3 [AUD 91, AUD 93] The WCRT for a task i occurs during the longest
level-i busy period. The longest busy period is initiated by the critical instant.

Therefore, we know the worst-case for a task 7; for the case of non-concrete task
systems and concrete synchronous task systems: we consider the critical instant, build
the first level-¢ busy period, study all the jobs of 7; occurring in the busy period, and
claim the WCRT of these jobs as the WCRT of 7;. A busy period ends if, and only if,
for a system of n tasks, the processor utilization ratio U = """, C'i/T% < 1, which
is a trivial but necessary schedulability condition on a single processor.

7.4.3.3. Worst-case response time without release jitter

7.4.3.3.1. Case of constrained deadlines (D; < T3)

[JOS 86] gives an exact pseudo-polynomial test when only one job of a task can
be found in busy period (the authors suppose that D; < T}, thus if 2 jobs of a task
7; are in the busy period, the system is not feasible with the chosen FPP). This test is
studying the tasks one by one. The exact duration of the busy period, if it is smaller
than the task’s period T3, is given by the smallest fixed point of the equation:

R =c

(
(1) _ ROV (72)
R; =Ci+ X ien) [T—J-‘ G
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Busy period

\ Idle point

usy period starting atthe critical instant

time
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Figure 7.7. Illustration of a busy period

with hp(i) the set of indexes of higher priority tasks than 7;. The part of the equa-
tion corresponding to the function W;(t) = 3,y [t/T3]C; is called the processor
demand function of priority level i: it represents the CPU time requested by tasks
with a priority greater or equal to priority() in the interval [0, ¢) (an interval [a, b)
is closed on the left, opened on the right). Using this notation, Rg*) is the smallest
fixed-point of the equation t = C; + W;(¢).

This equation consists of taking C; as the shortest possible busy period REO). For

the next step, we consider that the higher priority jobs released in the interval [0. .REO))
will increase the busy period by their WCET. We carry on until all the jobs in the busy

period have been taken into account. If Rg*) < T; (thus 7; does not occur more than
once in the busy period), following the critical instant theorem, and theorem 7.3, we
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can conclude that Rg*) is the longest busy period, and that the WCRT of 7; occurs in
this busy period. As its release time r; was assumed to be 0, the WCRT of 7; is Rg*).

What is really interesting in this test is the fact that the priority order of higher
priority jobs has no influence on the response time of 7.

7.4.3.3.2. Case of arbitrary deadlines

Nevertheless, if Rg*) is greater than T, the busy period is not over, as 7; is released
at least a second time. We thus have to continue with the test taking the following jobs
of 7; into account. This is exactly what is proposed in [LEH 90, LEH ]: k represents
the number of occurrences of 7; in the busy period. Starting with £ = 1 (obtaining
exactly the same test as in equation (7.2)):

(7.3)

If RE*)(l) > T}, then the busy period initiated by the critical instant contains at
least two occurrences of 7;, therefore, the test has to be carried out for £k = 2. If
RE*)(2) > 2T;, we have to carry on for & = 3 and so on until Rg*)(k) < kT;.
The WCRT of 7; is found in this busy period, but it is not necessarily the first job’s
response-time. The response time of the job 7; j, (k starting at 1) is RE*) (k)—(k—1)T;
(date of its termination minus date of its release).

We can remark that an accurate choice of the initial value Rg") (k) can reduce the
number of iterations needed to reach the fixed-point [DAV 08, SJO 98, BRI 03].

Let K be the smallest integer such that RE*) (K) < KT;, then the WCRT of a task
T; is given in the general case by:

WCORT(r) = max (R (k) - (k - 1)T3)

7.4.3.4. WCRT with release jitter

As the network communications are taken into account by a release jitter for the
tasks, we now see how to take them into account in the WCRT computation. First, we
need to establish the worst-case scenario for a task under analysis.
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THEOREM 7.4 Critical instant theorem [TIN 94a]: for independent task systems,
where the tasks are non-concrete or where the tasks are concrete and synchronous
(i.e. for every task T;, r; = 0), the critical instant for a task T;, leading to its WCRT,
occurs when T; is released, after suffering its maximal jitter, simultaneously with all
the higher priority tasks, which are delayed by their maximal jitter.

In order to maximize the interference of higher priority tasks on a task under anal-
ysis, we need to consider the time instant where the higher priority tasks are about to
have the largest amount of requests. Moreover, the worst-case for the task under anal-
ysis occurs when it is delayed by its maximum jitter, as the time remaining between
its arrival in the ready queue and its deadline is minimal. Figure 7.8 illustrates this
theorem: the interference of a task 7; on lower priority tasks can be seen as a stair
function, where each stair has a height of the task WCET C};, and the delay between
two successive stairs is the task period 7T;. To maximize the interference of 7; when
7; has a release jitter J;, we consider that 7; is initally released at the date —J;: this
is the release date maximizing the height of the stair function (i.e. the interference) at
any time ¢. In Figure 7.8 the dashed line interference function is always higher than
any other possible interference function.
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Figure 7.8. Illustration of the critical instant with jitter
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If we set the time origin at the critical instant, every task 7; is released at the date
—Jj. In such a configuration, the worst-case interference of a higher priority task 7;
Jj+t
T
by the smallest fixed-point of the equation:

in the time window [0, t) is [ —‘ C;. Thus, the longest level-i busy period is given

ROk  =kC

n J; R(.") (74)
Rz( 'H)(k) = kC’iJijehp(i) { ]—;“jl “Cj

Note that, since the origin of time is taking place J; time units after the release of the

task under analysis 7, if Rg*)(k) > kT; — J;, then the next job of 7; is part of the
same busy period and has to be studied. Let K be the smallest integer value such that

R (K) < KT, — J;, then the WCRT of 7; is given by:

WCORT(r) = max (R (k) + J; — (k — 1)T) (1.5)

It is important to realize that this bound is exact in the case of sporadic tasks,
but that it is an upper bound for concrete synchronous task systems because the crit-
ical instant is not always realistic in this case. In fact, forbidding the occurrence of
critical instant can be interesting in order to increase the schedulability of a system
that would otherwise not be feasible. There are two main problems: choosing the
right release dates to avoid the critical instant (offset free systems), and the WCRT
analysis. Even without release jitter, this is a difficult problem. For example, if two
tasks 7; and 7; should never be released at the same time, there are ged(T;, Tj) —1
(where gcd is the greatest common divisor) possible integer values for their relative
offset [GOO 03]. Then choosing the release times wisely may improve schedulabil-
ity; moreover, [AUD 91] proposes an optimal priority assignment for such systems by
testing O(n?) priorities (n being the number of tasks). Nevertheless, testing the feasi-
bility of a priority assignment for asynchronous independent task systems is NP-hard
[LEU 82, BAR 90].

Therefore, in this case, we have to study every busy period contained in a sim-
ulation duration. Depending on the task system, the length of the simulation du-
ration is going to be, at least lem(T;), and at most up to max(r;) + 2 x lem(T;)
[LEU 80, CHO 04] where lcm is the least common multiple.
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7.4.3.5. Critical sections

Except for deadlock potential problems, mutual exclusion introduces new prob-
lems in real-time scheduling: scheduling anomalies and priority inversion. A schedul-
ing anomaly occurs, for example, when reducing a task duration compared to its
WCET is increasing a WCRT (see Figure 7.3). Therefore, even if a system employing
a scheduling algorithm seems to be feasible during simulation, it may not be feasible
for any possible duration of the tasks (remark: it would be feasible if we were using an
off-line schedule in a dispatcher). As soon as non-preemptive parts are involved (and a
critical section implies non-preemptivity for some parts of the tasks), then scheduling
anomalies can occur.

Moreover, a specific phenomenon can occur in priority-driven systems: the priority
inversion. A priority inversion occurs when a low priority task reatins a resource.
When a high-priority task is released, and requires the same resource, the high-priority
task is blocked until the end of the low-priority task’s critical section. In the meantime,
any release of an intermediate-priority task can delay the low-priority task; therefore,
the high-priority task is delayed while waiting for the end of the critical section.

An intuitive way to avoid the priority inversion is to use the Priority Inheritance
Protocol (PIP) [SHA 90]: a task retains a resource that is blocking a higher priority
task inherits the higher priority task’s priority until it frees the resource. The PIP
avoids any priority inversion, but it does not reduce the number of times a task can be
blocked when trying to enter a critical section. Studying a graph of resource usage,
we can compute how many resources can block a job for a system, and how long the
longest critical section would be. We can deduce a blocking factor B; of a job. Note
that during a level-¢ busy period, a task can be blocked at most once (when some low-
level priority task commenced a critical section before the release of the task under
analysis); thus, the WCRT of a task 7; is found in the longest level-¢ busy period
computed with:

k) =Bi+kC
(

n+1 J;+R™
(n+ )(k) = Bi+k0i+zj€hp(i) ’V ]—;ﬂjl

W o, (7.6)

In this formula, we assume the worst-case scenario as being an instant when all
the higher priority jobs are released at the critical instant, while all the lower priority
jobs have just started their longest critical section, implying the longest blocking time.
Note that when using this protocol, a task can be delayed by a lower priority task even
if it is not sharing a resource with it. This is called indirect blocking and is due to
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priority inheritance of a lower priority task up to a higher priority than the priority of
the task under analysis.

Sha et al. [SHA 90] use PIP as an intuitive protocol but they show its inefficiency
compared to the Priority Ceiling Protocol (PCP). In PCP each resource R has a ceiling
IIr, defined as the highest priority among the tasks using it. The system ceiling is
defined as IIg = maxy resource in use R(ILg). The protocol operates exactly like
the PIP, with an additional resource access rule: a task can access a resource if its
priority is strictly higher than the system ceiling or if it is itself the cause of the value
of the system ceiling. PCP avoids any priority inversion (like PIP), moreover, a task
can be blocked only once per busy period, even if it is using several resources. A
blocking time cannot exceed the length of one critical section. This is due to the rule
introduced by PCP: if there is a critical section using a resource R; required by a
task 7; (thus, I, > priority(r;) and IIg > R;), then no other task can enter in
critical section unless its priority is strictly greater than the priority of 7; (because
IIs > priority(r;)). An interesting side effect of PCP is that no deadlock can occur.

While PIP cannot be implemented efficiently and has a poor behavior regarding
the value of B;, PCP can be implemented efficiently in its immediate version (hav-
ing the behavior of the super priority protocol proposed in [KAI 82]). The exact same
worst-case behavior takes place when the inheritance occurs as soon as a task enters in
a critical section. As a result, Immediate PCP is the most widely used protocol in com-
mercial off-the-shelf real-time executives (e.g. POSIX, OSEK/VDX, Ada standards).
The difference between the existing resource access protocols is the way in which the
blocking factor of a task B; is computed. The longest busy period is computed by
equation (7.6).

Non-preemptible tasks are a particular case of task sharing resources (we can con-
sider that all the tasks share the same resource); thus scheduling anomalies can also oc-
cur (even if, of course, priority inversion cannot occur). Validating a non-preemptible
task system is NP-hard [LEN 77, JEF 91]. However, their behavior is closer to the
non-preemptible critical section [MOK 83].

7.4.4. WCRT analysis for deadline-driven scheduling

The other well-known on-line scheduling algorithm is the deadline-driven (also
called EDF) policy. It is considered to be a dynamic priority policy; contrary to fixed-
priority policies. For EDF, the closer the task’s deadline, the higher its priority. This
scheduling algorithm is not yet available in many commercial off-the-shelf RTOS for
several reasons such as the domino effect (when a task misses its deadline, several
subsequent tasks are prone to miss their deadline also), and the overhead introduced
by the dynamic attribution of the priorities. Nevertheless, this algorithm is optimal
for independent task systems. [LIU 73] shows that for independent tasks with an
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implicit deadline (D; = T}), a system of n tasks is feasible with EDF if, and only

if, U = Z?:l % < 1; therefore, it is an optimal algorithm in this context. In other

words, if a system is feasible with any scheduling algorithm, then a schedule produced
by EDF is feasible.

In order to conduct a holistic analysis, we need to show how to compute the WCRT
of a task with release jitter. The question is how to find a scenario leading to the WCRT
for a task under analysis.

7.4.4.1. Busy period

If the tasks are concrete and synchronous, the longest busy period is initiated by
a synchronous release of the tasks [JEF 93]. The difference, compared to the level-i
busy period computed for the WCRT of the tasks scheduled by a FPP, is that the busy
period here takes all the tasks into account at once (it is equivalent to the level-n busy
period in FPP, n being the lowest priority level). EDF, like the FPP algorithms, is a
conservative algorithm (i.e. the processor is never left idle if there are ready tasks).
As a consequence, the processor is idle at the exact same moments for EDF as for any
FPP scheduling algorithm. So, similar to FPP, theorem 7.3 holds true for the longest
busy period: the longest busy period is found after a critical instant initiated by a
synchronous release of all the tasks (when release jitter is present in the system, the
critical instant is taken as a synchronous arrival of all the tasks in the ready queue,
after experiencing their maximum release jitter). Therefore, for a system of n tasks,
the longest busy period, denoted L is obtained as the fixed point of the equation:

S
L) = [JﬁL(")W C. (7.7)
1= Tj ?

Regarding the set of deadlines that will occur in the busy period, the critical in-
stant corresponding to a synchronous release of the tasks is a critical instant for the
system. Nevertheless, the critical instant of the system does not correspond to the
critical instant for a task under analysis:

THEOREM 7.5 [SPU 96a]: the WCRT of a task occurs in a busy period initiated by
a synchronous release of all the other tasks.

This theorem means that while the other tasks are synchronously released, the
release of the task under analysis has to vary in order to identify its WCRT. As the
priorities are a function of the next deadline, the fact that the deadline of a job of the
task under analysis occurs before or after the deadline of another job, depending on
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the difference of release dates of the tasks, will give a higher or a lower priority to the
job of the task under analysis compared to the other jobs. We set the time origin as the
simultaneous arrival of the tasks, other than the task 7; under analysis. So the release
occurs at the date —J; for every task 7;, j # i. Note that as .J; can be greater than 7T},
several jobs of 7; can arrive in the ready queue at the time origin. We assume that one
of the release times of the analyzed task 7; happens at a date a (we will see later how
to accurately choose the set of the test dates a in order to compute the WCRT), and
we first describe how to compute the WCRT of 7; when it is released at this date. This
computation is based on the deadline-d busy period.

DEFINITION 7.6 [GEO 96] The deadline-d busy period of a deadline d is a time
interval where the processor is executing jobs with deadlines that are less than or
equal to d.

If we are studying the job 7; ,., which is released at the date a, we can see that its
first deadline occurs at the date a + D; (we always consider that ties are unfavorable
to the task under analysis), and the only jobs able to delay 7; ,, are the jobs with a
deadline occurring before or on the date a + D; situated in the same deadline-d busy
period because EDF gives a higher priority to urgent jobs. These jobs are the jobs
interfering with 7; .., and can either be due to other tasks than 7;, or be jobs from the
task 7; released in its previous periods. In order to compute this interference, we need
a function that calculates the processor required by the jobs of a higher priority than
the job with the deadline a + D; in a time interval [0, ¢).

Interf(a,t) =3 jti min (P—;J]—‘ )
D;<a+J;+D; 7

14 {a+.1j+TQiijJ) x C;

J

(7.8)

This interference represents the maximal interference applied to 7; ., by other tasks
than 7;, taking into account the jobs having a deadline prior to a + D;. Note that we
assume a critical instant where each task 7; j; is put in the ready queue at the time
origin, implying that its first release time occurs at the date —.J;. Therefore, in order
for at least one job to be included in the deadline-d busy period of 7; ., the task has to
have at least one job included, therefore we must have D; < a + J; + D;. For every
task 7; having at least one job with a deadline not later than a + D;, the Inter ference
has to take into account the amount of processor requested jobs able to interfere with

Tir, i [0,¢). It cannot be higher than the request implied by the releases of 7; in the

t+J;
T;

interval [—Jj, t), therefore it cannot be higher than C; x { _‘ (the first argument
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of the min function), and it cannot be higher than C; times the number of deadlines
encountered in the interval [0, a + D;] which is given by the second argument of the
man function.

The size of the deadline-d busy period will be obtained as the fixed-point of an
equation, taking into account the interference of other tasks (see equation (7.8)), and
the interference of the task under analysis itself. As a > 0, several jobs of 7; can take
place before the date a. Any job of 7; released in the interval [—J;, a] can be part of
the deadline-d busy period of 7; ,.,. The release date of the first job of 7; able to take
part in the busy period occurs at the date s;(a) where:

si(a) = a+ J; — {#J T, (7.9)

The self-interference introduced by 7; in the deadline-d busy period cannot be
greater than the requests in [s;(a), ¢], and cannot be greater than the requests having a
deadline prior to a + D;. Therefore, it is given by the function of time:

0 ift < si(a)
Self(a,t) = { min ([775_81'%)4_#—‘ , 14 {%J) x C; else (7.10)

Summing up these two sources of workload in a deadline-d busy period for 7; .,
we obtain the workload function giving the work that needs to be processed with
deadlines that occur before or at a + D; in an interval [0, t):

Workload(a,t) = Interf(a,t) + Self(a,t) (7.11)

The calculation of the length of the deadline-d busy period of 7; .-, is the smallest
fixed-point of the equation:

I = 1if s;(a) = 0, Oelse (7.12)
L) = LxC+ G
o (@) ZDjSafbmj ! (7.13)
L§n+1)(a) = Workload(a,Lz(-n) (a))
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Ll(-*) (a) gives the length of the deadline-d busy period containing only a workload
with a priority not lower than the priority of 7; .., ; therefore, this is the WCRT of 7;
when a job is released at the date a. As in the case where 7; is the only task in the busy
period, equation (7.12) gives 0, the corresponding WCRT is:

WCRT (a) = max(L*) (a) — a,C; + J;) (7.14)

7.4.42. WCRT

Now, giving a release date a of a job under study, we have a method by which we
can find the corresponding WCRT. The question that now arises concerns the different
release dates to test for 7; to calculate its WCRT. The release dates tested are part of
the interval [—J;, L — J; — C;] (L is the longest busy period of the system, given
by the smallest fixed point of equation (7.7)). However, we cannot test every date if
we consider non-integer values for the temporal parameters. Moreover, this interval
has an exponential size of the task system parameters. Nevertheless, [SPU 96b] notes
that the local maxima of the function WCRT (a) occur when the deadline of 7 .,
coincides with another task’s deadline, or when s;(a) = 0. We then obtain the set A
of all the release dates to test for 7;:

A= Uy sask -, {ala + Di = KT; = J; + Dy,

keNanda € [-J;..L — J; — Ci]} (7.15)

The WCRT of a task 7; is thus the maximum of the WCRT obtained for every local
maximum of WCRT (a):

WCRT(m;) = meajlc(WCRT(a)) applied on 7; (7.16)

7.4.4.3. Critical sections

As in the case of FPP scheduling policies, the EDF scheduling algorithm has been
modified to avoid priority inversion and to limit the blocking duration of a task due to
aresource access or a (dynamic) priority inheritance [CHE 90, BAK 91]. If a resource
management protocol is used, such as in FPP, a task can be delayed by a lower priority
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task once per deadline-d busy period by a blocking factor B;. In this case, equation
(7.12) is modified as follows:

I; =1if s;(a) =0, Oelse (7.17)
L(O) = I; x C; + itj C
i (@) ZngafDi+Jj ! (7.18)

Ll(-nﬂ)(a) = Workload(a,Ll(-") (a)) + B;

Moreover, equation (7.14) is modified as follows:

WCRT(a) = max(L*) (a) — a,C; + J; + B;) (7.19)

7.5. WCRT of the messages

This section presents two typical WCRT message analyses. Section 7.5.1 intro-
duces the analysis of a shared bus: a controlled area network (CAN) network, using
the analysis proposed in [DAV 07], which corrects [TIN 94c, TIN 95b]. Then, 7.5.2
presents the analysis of a commuted network, using the example of WCRT analysis
of an ATM network [ERM 97]. The reader will find response time analysis for other
kinds of deterministic networks in:

— a simple timed token passing [TIN 95a];

— areal-time priority broadcast bus [TIN 95a];
— a timed token protocol [SPU 96b];

— FDDI [MAL 93, ZHA 95];

— ARINC 629 [AUD 97];

— AFDX (ARINC 664) [BAU 10];

— FIP [PED 97].

7.5.1. CAN

Regarding scheduling, the CAN can be seen as a non-preemptive computing re-
source, scheduled by a FPP, where messages are tasks. The propagation time of a
message on the network is assimilated to the WCET of a task. If 7,;; is the propa-
gation time of a single bit of the network, then the propagation time of a frame of n
bytes (n < 8) is given by [DAV 07]:

8n— 1
Cy = Tt X Gﬁfnw Fg+13+ 8n> (7.20)
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Where g is 34 for the standard format (11 bits identifier), or 54 for the extended format
(29 bits identifier).

We consider a set of non-preemptive periodic messages, characterized by a propa-
gation time seen as a WCET. Note that if the messages are sporadic, as in the sporadic
task model, we consider the worst arrival pattern, which is the smallest inter-arrival
time between two consecutive identical messages. We consider that there is no trans-
mission error (or at least that the application is loosely fault-tolerant, e.g. an erroneous
message is lost for the current period).

Scheduling non-preemptive messages (or tasks) with FPP is similar to scheduling
preemptive tasks with a blocking factor due to resource sharing (see section 7.4.3.5).
The critical instant for a message 7; corresponds, without release jitter, to a syn-
chronous emission of all the higher priority messages (release of all the higher priority
tasks) with the message under analysis, when the longest lower priority message has
just started to use the network [GEO 96]. In this case, the message under analysis has
to suffer the interference of all the higher priority messages, plus the interference of
the longest message with a lower priority as messages cannot be preempted.

Nevertheless, specificity occurs with the use of a network: the transmission delay.
Indeed, assuming that the bus is idle and there is no higher priority message to send,
we can start to emit the message, but if within the duration of the transmission of a bit
Tuit, another node did not receive the first bit of the message, and starts to emit a higher
priority message, our message will have to be delayed. Therefore, we cannot just
observe an interval [0, bp] (where bp is the length of a busy period in a non-preemptive
processor) to find out whether there is no higher priority message and whether the
message under analysis can be sent; we have to observe an interval [0, bp + 744 ) in
order to make sure that every node of the network received the first part of the message
under analysis, and that they cannot start to send a message because they see that the
bus is not idle.

When taking release jitters into account, the critical instant occurs for a message
under analysis 7; when all the higher priority messages are ready to be sent syn-
chronously after suffering their worst release jitter, while 7; was delayed by its worst
release jitter before being ready to be sent. The release jitter will take into account the
WCRT of the task sending the message. The message under analysis can send the first
part after waiting for an interval [—J;, bp + Tp;z ).

Let C}, be the longest duration of a lower priority message, then the longest level-i
busy period during which the message under analysis 7; ;, might have to wait is the
smallest fixed-point of the equation (starting with &k = 1):
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RO = 0ot Lenpin O ’
. 721
RO (1) =Co+ (k= 1)Ci + 3 jenps) [HR%W © -

Where hp(%) is the set of the indexes of the higher priority messages. Giving K the

smallest integer value such that Rg*) (K) < C; + KT; — J;, the WCRT of a message
is given by:

WORT(r;) = max (C; + R (k) + J; — (k— 1)Ty) (7.22)

7.5.2. Asynchronous transfer mode (ATM) network

In an ATM network, a message follows a virtual circuit going from a source node
to a destination node. The message is decomposed into cells (a cell has a 5-byte
header and a 48-byte payload), and every cell uses the same virtual circuit. A virtual
circuit defines the links carrying the cells between adjacent nodes. A node is a source
node, a destination node, or an internal switch. On the output of the source node, and
on every output of the switches, the cells waiting for emission on the output link are
stored in a waiting queue. We assume that the priority-ordered queues use a first in
first out (FIFO) within priorities order, i.e. cells are ordered by priority. Cells with the
same priority are stored in FIFO order (a possible implementation uses a FIFO queue
per priority level). Figure 7.9 shows a virtual circuit going from a source node to a
destination node, passing through switches. A virtual circuit carries a stream of cells,
and is characterized by a bit rate contract. In this section, we consider a constant bit
rate contract based on the work of [ERM 97]. Note that the same authors generalized
the technique to specific traffic shapes (for example, in [SJO 99], the authors consider
multimedia messages using a multiframe model). A detailed version of the method
presented in this section can be found in [SJO 00].

Figure 7.9 shows (in bold) a virtual circuit carrying a flow of cells flow; containing
amessage sent on a virtual circuit (we consider that this circuit is static, but the method
could be used for dynamic virtual circuits, if the WCRT computation was conducted
on-line) from a source node to a destination node. Each flow has a priority (which is
not necessary unique), and on the source node, several messages can be transmitted
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Figure 7.9. Representation of a stream on an ATM network

using the same link from the node to a switch. Thus, a priority queue is used at the
output of the source node in order to sort the cells sent by the source node to the
first switch. Each flow is shaped using a cell spacer: the role of a cell spacer is to
guarantee that the bandwidth used by a flow conforms to its contract, by delaying
every successive cell of a flow by a period, similar to a leaky bucket. The local task,
executed on the source node, can send a whole message m; ; at once in the message
queue, this message is decomposed into cells, which are shaped by the cell spacer
before being sent into the output queue. The cells stored in the output queue are sent
at the bit rate of the link. In a switch, an incoming cell is stored into the priority queue
corresponding to the output of the virtual circuit, and sent to the next switch, until it
reaches the destination node.

The WCRT of a message represents the longest duration from when the message
is sent into the message queue, to when the last cell of the message arrives in the
destination node. It depends on:

— the time spent in the source node before emission on the output link:
- time spent by the last cell of the message into the cell spacer,
- delay in the output queue;

— duration of the transmission of the cell over the output link;

— for every switch crossed:
- time spent to send the cell to the right message queue of the switch,
- delay in the output queue,
- transmission duration on the output link.

In order to compute the worst-case delay in the priority queues, we need to know
all the contacts concerning the flows of a higher or the same priority as the studied
flow. Note that the lower priority flows do not have any impact on the response time
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of the message, so this method can be used to validate the real-time traffic of a general
purpose ATM network, assuming that the real-time flows have a higher priority than
the non-real-time flows.

Given the specificity of an ATM network, we need some specific additional nota-
tions for this section:

— N; is the maximal amount of ATM cells used to carry a message m; ; of the
studied flow flow;. If a message is at most z bytes long, then N; = [x/48] cells;

— T; is, as in the other sections, the period of the task required to send the messages
of flow; in the message queue, but here represents the arrival period of a message in
the message queue. As it relies on a task, which is subject to local scheduling, J;
represents the jitter of the message (accounting for the WCRT of the task sending the
messages);

— t; is the cell spacer period, and represents the minimal delay between the transfer
of a cell from the cell spacer to the output queue of the source node, we assume that
0< t;, < Tz / N, is

— 7i 1s the network jitter of the stream stream;. Initially 0, this parameter increases
along the path of the stream. This parameter is crucial to the analysis, as we can see in
Figure 7.8 that the interference due to periodic occurrences of a higher priority stream
(task on the figure) is higher when a interference has jitter. If an interference has a
period T' and jitter .J, the interference appears as if it was early by J;

— by is the bandwidth of a link [; C; the time to send one cell on a link is given by
Cy = 424/b,.

We assume that the real-time traffic uses less than the whole bandwidth, i.e.:

> > NTO <1 (7.23)

Vstream stream; Vlink | used by stream,;

7.5.2.1. Delay in the source node

For every stream, we have to compute the earliest and the latest response time,
in order to compute the jitter, which has an impact on the lower and same priority
streams.

If when a message was sent in the message queue, the cell spacer was empty
(i.e. all the previous messages have been completely sent), then the longest time
spent by a cell would be given by the time spent by the last cell of a message of the
studied stream. Nevertheless, because of the local scheduling of the task sending the
message, a message has jitter J;. So even if t; < T;/N; (i.e. there is enough time
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in a message period to send all the cells of a message), it is possible that the second
message arrives “early” at the date 7; — J;. There is no hypothesis concerning J;,
that might be arbitrary long; therefore, the message suffering the longest delay in the
spacer (assuming that the first message of the stream stream; is m; o) is m; ,, where:

" tiNi+Ji_1
- T;

which is a message arriving in the message queue when there is the largest amount of
cells still in the message queue, which belong to the previous messages, delayed by J;.
Therefore, the message m; ,, suffers the longest delay in the cell spacer. We compute
its earliest arrival time E; g,qcer in the output queue (i.e. earliest passage through the
cell spacer), as well as its latest arrival time L; spqcer. These lower and upper bounds
are used to compute the maximal jitter j; spacer applied to stream; at the cell spacer.

E; spacer = maz(0,nT; — J;)
Li spacer (n+1)N; — 1)t (7.24)

Li,spacer - Ei,spacer

Ji,spacer

7.5.2.2. Delay in a FIFO within priorities queue

After passing the cell spacer, as well as in every switch of the path, a cell is stored
in a FIFO within priorities queue. We thus need to know the worst possible amount
of higher priority cells in the queue arriving before the cell is sent on the output link,
as well as the amount of cells of same priority already in the ready queue when then
cell arrives in the queue. [SJO 00] uses two functions to compute this information:
Arrival(i, k) computes the earliest arrival date of the cell & (the first cell of a stream
is labeled by 0) of a stream stream; in the queue, and Arrived(i,t) computes the
maximal amount of cells belonging to stream, arrived before or at the time ¢.

Arrival(i,k) = max(0, LNLJ Ty — J; — ji + (k%N)t)

e (7.25)
Arrived(i,t) = V*TﬂJ N; +min(N;, (¢t + J; + j:)%t; + 1)

where a%b is the remainder of the integer division. The function Arrived(i,t) gives
the worst interference pattern of stream; in a switch when its jitter at this switch is
Ji- Note that [SJO 00] proposes more complex formula, which are less pessimistic, for
example, in a switch, Arrival (i, k) cannot be higher than Arrival(i, k—1)-+C) where
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1 is the link used by stream; to be sent to the switch. It is the same for Arrived(i,t),

which has to be less than {CLRJ + 1 where Cj,, is the lowest bandwidth of the links

used by stream; from its source node to the considered switch.

Using these functions, we can compute the worst-case queuing delay Q% of a cell k
belonging to a stream stream; in a FIFO within priorities queue (either on the source
node, or in a switch).

QF = Dequeue(i, k) — Arrival (i, k)
Dequeue(i, k) = Cour X (1+k
+ 2 jespiy Arrived(j, Arrival (i, k)
+> Arrived(j, Dequeue(i, k)))

(7.26)

JjERP(i)

where C\,; is the time needed to send a message on the output link of the queue,
sp(i) (respectively hp(7)) is the set of streams of same (respectively higher) priority
as stream;. Note that Dequeue(i, k) is obtained with a fix-point lookup, initialized
by 0. The way Dequeue is obtained relies on the fact that the worst interference on a
cell is given by at most one lower priority cell that was just starting to be sent when
the cell arrives in the queue, plus the preceding cells of the same stream, plus the
maximum amount of same priority cells in the queue when the cell arrives, plus the
interference due to the arrival of higher priority cells during the waiting time.

Finally, the worst-case queuing time for any cell of a stream is given by the max-
imum queuing time for any cell between the first cell and the cell number n (see
equation (7.23)):

Qi = max Q; (7.27)

0.n °

7.5.2.3. Summing up to obtain the WCRT of a message

The WCRT of a message is then obtained starting from the highest priority stream
down to the lowest priority stream. For a stream;, following a virtual circuit starting
from the source node, passing through a link /g going to s;, etc. outputting the cells
to a link /,,,_; to a switch s,,, linked by [,,, to a destination node, the WCRT is given
by:

WCRT (stream;) = L; spacer + Qi(source) + Cyy + Z (Qi(sp) + Clp)

p=1..m
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where Q;(s,) is the application of equation (7.27) to the queue of the switch or source
node, and C’lp is the transmission duration of a cell on its output link. Note that in the
process, the jitter of every stream has to be updated for every encountered node on the
virtual circuit associated to the stream:

Ji(so) =0

Gi(sp) = Ji(sp—1) + Qi(sp—1) (7.28)

Ji(sp) is the jitter associated with switch s,,, and s is the source node.

7.5.2.4. Conclusion and remarks

The WCRT calculation can be used either to validate a static system or to perform
an on-line acceptation test: when negotiating a real-time stream, we can use this ac-
ceptance test in order to accept or reject a new stream. We accept a new real-time
stream if it can meet its deadline, and does not make the other accepted real-time
streams miss their respective deadline. This Call Admission Control (CAC) is more
efficient than other classic methods [ERM 97]. For an on-line utilization of CAC,
several optimizations are made on the formulas and on the way they can be applied
efficiently [SJO 00].

The way the jitter is used at every FIFO within priorities queue is classic in this
kind of switched network. We can note that the WCRTSs are not always realistic, but
they are safe, in the sense that they give an upper value of the actual WCRT of the
messages. As a global analysis is not possible, the jitter computed at each switch is
a way to account for the incertitude concerning the interference of a stream on other
lower priority streams as well as on same-priority streams.

7.6. Case study

In order to illustrate the holistic analysis, we consider a numerical example of a
real-time system distributed on three processors communicating on a CAN network,
presented in Figure 7.10. On Processors and Processorc, we use a preemptive
FPP algorithm. The priority assignment for the processors using a FPP and the CAN
network are given in Figure 7.10, where 7y > 79 indicates that the priority of 7 is
higher than the priority of 7. We note that the release jitter formulas can be used also
for local message passing: this will be the case for Processorc where we assume
that a synchronization mechanism (similar to a private semaphore) is used to ensure
the precedence constraint. It should be noted that the priority of 79 is higher than
the priority of 73 in order to avoid scheduling anomalies. On Processorg, an EDF
scheduling policy is used, therefore, the priority assignment is dynamic, and is not
given in Figure 7.10.
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Processorc
FPP: T;>Tq >Tg

Processorg

Processor, CAN network EDF

FPP: T:>T, Non-preemptive FPP: m;>m3>m,

Figure 7.10. A case study

The principles of the holistic analysis were presented in section 7.3.2: it consists
of computing the WCRT of the tasks and messages, and, for a task or a message ¢
preceding a task or a message j, to inject the WCRT of ¢ as a release jitter of j (note
that if a task or message has several predecessors, then its release jitter becomes the
maximal value of the WCRT of the preceding tasks or messages). We then iterate,
modifying the release jitters of the tasks, which can increase the WCET, that will
increase some release jitters, etc. until a fixed-point is reached, i.e. until the WCRTs
are the same between one iteration and the next (see equation (7.1)).

The fixed-point of the holistic analysis is not dependent on the order used to com-
pute the WCRT; nevertheless, taking the tasks and messages dependencies into ac-
count can help to reduce the number of computation steps before a fixed-point in the
release jitter computation is reached. The dependencies are shown in Figure 7.11: the
plain arrows represent the dependencies due to jitter (e.g. a modification of the WCRT
of the message mo might have an impact on the task 75 through the value of the re-
lease jitter), and the dashed arrows represent the dependencies due to local scheduling
and the priorities. For example, on Processorc as the priority of 77 is the highest,
if no change is made to the release jitter of the other tasks, it can have an impact on
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77, while on Processorp, as the priorities are dynamic, all the tasks are interdepen-
dent. Note that on Processorp all the tasks are interdependent but they were not all
represented by the dashed arrows in order to improve readability.

---» Possible modifications due to
local scheduling and jitter

— Possible modifications due to jitter

Figure 7.11. Dependencies due to the jitter and the scheduling

The parameters of the tasks and messages are given in Table 7.6. Note that for
any message dependency, the involved tasks and messages must have the same pe-
riod. This constraint could be removed using generalized precedence constraints as in
[FOR 10] or in [RIC 01b].

As there are loops in the precedencing graph (see Figure 7.11), we decided to study
the WCRT of the tasks in this order: 7, mq, 73, T4, 75, T, M3, M2, T7, Ty, T8, To Which
does not introduce any dependency loop. As a consequence, the holistic analysis
should converge in one pass only (we will nevertheless undertake a second pass in
order to make sure that we reach the fixed-point).
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Task Cz Dl Tz Task Cz Dl Tz
o5l 52 | 200 | 100 7 28 | 60 | 60
T2 52 | 280 | 160 TS 25| 320 | 100
T3 10| 60 | 40 T9 14 | 250 | 100

T4 20 | 85 | 60 my 3 100
T 52 | 150 | 160 || mo 3 160
T6 52 1220|100 || ms3 3 100

Table 7.2. Initial parameters of tasks and messages

Task | J} | WCRT! || Task | J} | WORT!
Bl 0 52 T 0 28
Ty 110 266 78 219 337
T3 0 10 T9 177 219
s 0 33 mi 52 58
Ts 0 98 mo 98 110
T6 58 168 msz | 168 177

Table 7.3. First pass

7.6.1. First pass of the holistic analysis

For the first pass, we obtain the WCRTSs given in Table 7.6.1 and we use them to
introduce release jitters on the preceded tasks or messages. For example, the WCRT
of 7 is introduced as a release jitter for m;.

For 11, T2, 77, T3, and 79 we will use equation (7.6) in order to compute the duration
of their respective level-i busy periods, and then deduce their WCRT using equation
(7.5). For mq, mo and m3 we will consider that the 73;; is 0.02 time units and use
the equations (7.21) and (7.22). For tasks 73, 74, 75, and 74, we will use equation
(7.7) to compute the length of the longest busy period. Then equation (?? is used to
compute the set of points to test, and for each point we use equation (7.12) to compute
the deadline-d busy period duration, and then deduce the corresponding response time
using equation (7.19). The WCRT of a task will then be given by equation (7.16).

We detail the calculation made to obtain the first pass results. We trivially obtain
WCRT(11) = 52 as it is the highest priority task on Processor 4. For the message
my, the jitter is thus 52 (the WCRT of 71), and WCRT(m4) = 58 is obtained im-
mediately also, with a blocking time duration equal to C}, = 3, corresponding to the
message me or the message ms sent on the network.
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For the Processor g, we first update J¢ = WCRT (m;) = 58, and we compute
the longest busy period L = 240. For the task 75, we compute set A (see equa-
tion (7.15)) and we get A = {0, 25, 40, 80, 85, 90, 102, 120, 145, 160, 200, 202, 205}.
Then, using the equation (7.14) for every value of this set, we find a WCRT of 10,
obtained for a = 0. For 74 and 75 we find, respectively, a WCRT of 33 for a = 77 and
98 for a = 12. For 76, we find a WCET of 168 for ¢« = —58. We recall that we can
have a € [—J;,, L — J; — C;] (see section 7.4.4.2).

We can update the release jitter of mg (sent by 75) and mgs sent by 7. Then we use
equation (7.22) to compute the WCRT of mo and ms. The WCRT of the first instance
of mg in the synchronous busy period is 110, which is smaller than the period of the
message, therefore, we investigate only for £ = 1. Then we can update the release
jitter of 72 which is waiting for the message ms. For the message ms, we assume that
its blocking factor is Cp = C,,, = 3. The WCRT of the first instance of the message
is 177 > T,,, = 100; therefore, we have to study the following instance (k = 2), for
which we obtain a WCRT of 80, which is less than T,,; therefore, we do not have to
study the following instances. Thus, the WCRT of m3 is 177, enabling us to update
the release jitter of 9.

A FPP is used to schedule Processorc. First we compute the WCRT of 79 using
equation (7.6): for & = 1 we obtain a WCRT of 219, which is higher than Ty =
100; therefore we compute the WCRT for £ = 2 and find a WCRT of 133, which
is still higher than Ty. We then investigate the third job of 79 in the busy period
(k = 3) and find a WCRT of 75 which is lower than Ty. Therefore, the WCRT of
To is max(219, 133, 75) = 219. This response time gives a release jitter for the task
T3, as this task is waiting for an internal message sent by 79. For 75, with £k = 1 (i.e.
first job in the synchronous busy period), we find a WCET of 323 time units (note
that this is clearly an unrealistic upper bound because 79 is counted twice: once as
an interference, and once as delaying 753 with a release jitter). We use equation (7.6)
for £ = 2 and find a longer response time (337), which is an illustration of the fact
that the first job of a busy period does not always have the longest response time. We
then check for £ = 3,4,5,6,7,8,9 where we find, respectively, a response time of
304,271,224,191,158,111,78. So the WCRT of 75 is 337, which is the maximum
of these values (corresponding to k¥ = 2). The WCRT of 77 equals its WCET as it is
the highest priority task and it does not suffer any release jitter.

Finally, the WCRT of 7, is obtained: its release jitter is 110, the WCRT of ms.
Using equation (7.6), we find for £ = 1 a WCRT equal to 266. For k = 2, we obtain
a WCRT of 210, and for £ = 3 a WCRT of 154, which is smaller than the period
T5 = 160 and allows us to stop. Therefore, we get the WCET of 7», which is the
maximum value of 266, 210 and 154.
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7.6.2. Second pass of the holistic analysis

We picked the order in which we applied the WCRT computations wisely, but as
there are dependency loops, we need to compute the WCRT with the release jitters that
we computed. The second pass gives the same response time for each task; therefore,
we reached the fixed-point of the holistic analysis, and the WCRT that we computed
during the first pass are the actual WCRTSs. As they are lower than the respective
relative deadlines of the task, we can conclude that the system is feasible.

It should be noted that if we had not chosen the order in function of the task and
message dependencies, we would probably have needed more passes before reaching
the fixed-point of the holistic analysis.

7.7. Conclusion

We presented the holistic analysis and the scheduling methods used to compute the
WCRT of the tasks (with a FPP, and with a deadline-driven scheduling algorithm) and
messages on a CAN network, as well as the references for other kinds of networks.
This method has a relatively low complexity and is scalable to large distributed sys-
tems.

However, all the nodes of the network are supposed to start synchronously. If this
is not a realistic hypothesis, then it should be possible to add a release jitter to all
the messages, to account for the lag between the nodes of the network. The WCRT
computation methods are locally optimal (i.e. exact) for sporadic (non concrete) task
systems, but on a global system scale, they provide the upper bounds of the WCRT
as the worst-case scenario is not aways realistic. For strictly periodic, concrete task
systems, the holistic analysis and the WCRT computation methods presented in this
chapter are an upper bound on the real WCRT, because the critical instants taken into
account are not necessarily happening in the system. As a result, a negative answer to
the feasibility problem does not mean that the system is not feasible. Nevertheless, we
have validated systems with an average processor load of 70% with a holistic analysis
[RIC 02].

Some methods use the relations among the tasks in order to eliminate some non-
realistic scenarios during the analysis. As an example, [PEL 05, PEL 07] takes into
account the offset between the tasks and messages in order to propose more accurate
tests.

As the holistic analysis has a relatively low computational complexity, it is possi-
ble to use it for system dimensioning as in [DOR 08] or to help a designer to assign
priorities to tasks and messages [RIC Ola]. Moreover, polynomial approximation al-
gorithms (fully polynomial-time approximation schemes) have been studied to reduce
the time needed for WCRT computation [BIN 09, NGU 09].
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Chapter 8

Software Engineering for Adaptative
Embedded Systems

8.1. Introduction

Most real-time embedded software applications are designed to control a physi-
cal system evolving in an environment where characteristics may vary. In order to
adapt to these variations, the system might have to modify its own behavior, which
is controlled by the embedded software application. Thus, sometimes this embedded
software application has to adapt to the the modifications of the system’s environment.

The objective of this chapter is to explain and illustrate the principles that lead the
design of an adaptative distributed real-time embedded system (ADRES).

Pursuing this objective, we describe the problems raised by the design of ADRESs,
the theoretical solutions highlighted by researchers to tackle these problems and the
technical solutions those using theoretical results. We illustrate this presentation with
the design of an ADRES extracted from the field of robotics.

This chapter is organized as follows: section 8.2 presents an overview of the chal-
lenges raised by the design of ADRESs. In section 8.3, we present in more detail
the theoretical problems raised by such systems, and we present some of the existing
solutions. In section 8.4, we describe and compare the existing technologies to those
using these theoretical results. Section 8.5 is dedicated to the presentation of the
robotic example to illustrate the design of an ADRES. In section 8.6, we present the
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corresponding design, and discuss the reasons for the specification choices. Finally,
section 8.8 concludes this chapter.

8.2. Adaptation, an additional complexity factor

Considering the increasing complexity of embedded systems, software engineer-
ing activities related to embedded systems advocate splitting a system into gradually
smaller pieces which are easier to implement, analyze, and maintain. Following this
“divide and conquer” strategy, a system is split into subsystems, themselves split into
components, subcomponents, and eventually subprograms (i.e. operations). In this
context, two interconnected layers of specification are clearly identifiable: the system
architecture and software architecture.

Orthogonally to undertake this process, the adaptation mechanisms of a system
may be specified at any of these layers. At system layer, the possible abstract behav-
iors of a system are grouped into sets of functionalities (often referred as operational
modes) to which requirements are associated. At the software layer, components rep-
resent the specific behaviors of the software applications that control the system: these
have to be modified in cases of adaptation of the system’s behavior.

Considering this very synthetic presentation, it is easily understand that dealing
with adaptation brings additional complexity to appreciate the traditional design pro-
cess of embedded systems.

We illustrate this additional complexity factor all along the remainder of this chap-
ter, going through abstract and general considerations, theoretical problems and solu-
tions, as well as practical solutions that help in addressing this complexity.

8.2.1. Adaptation, a step towards autonomy

Presenting the emergence of autonomic computing in the management systems
of information technology [GAN 03] introduces adaptation as the last step towards
autonomic systems.

In order to create an autonomic system, an adaptation control loop relies on (i) a
set of sensors that monitor the state of the system and it’s environment, (ii) a supervi-
sor that aggregates and analyzes the data provided by the sensors, (iii) a planner that
produces the set of actions that need to be undertaken in order to adapt the behavior
of the system, and (iv) an executor that applies the different adaptations on the sys-
tem [COM 06]. Figure 8.1 illustrates the different steps of adaptation in an autonomic
system.
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/ Planning == Analysis

Execution Monitoring

/

Figure 8.1. Basic control loop for autonomous systems

System’s behaviour

The level of autonomy of an adaptative system lies in the capacity of the analyzer
to model and synthesize the behavior of the system and the state of its environment.
The level of autonomy of a system also lies in the capacity of the planner to decide
what the most suitable behavior to adopt is, and how to implement this behavior.

What is adaptation

In [ORE 99], a “self-adaptive software modifies its own behavior in response to
changes in its operating environment, [i.e.] anything observable by the software sys-
tem, such as end-user input, external hardware devices and sensors, or program in-
strumentation.” In this chapter, we consider adaptation as the capacity of a system to
modify its own behavior.

Different types of adaptation

Depending on its objectives, adaptation will occur at different moments of a sys-
tem’s life cycle. This led the research community studying adaptation to define three
types of adaptation:

— static adaptation: to proceed to adaptation, this system stops completely. This
type of adaptation aims to provide mechanisms that tune the system under develop-
ment. Static adaptation is mainly used for the maintenance of systems for which the
execution can be stopped [CHA 01];

— pseudo-dynamic adaptation is executed while the system is running but all the
possible adaptations are exhaustively known at the design stage [KE 07, BOR 09].
This type of adaptation excludes the maintenance activity (which cannot be provided
at design time) but is dedicated to the implementation of adaptation mechanisms for
critical embedded systems (systems that must be analyzed in depth at design time);

— dynamic adaptation is also executed while the system is running, but corresponds
to adaptations that cannot be foreseen during the design stage (corrective and evolu-
tive maintenance) [BRI 05, DAV 09, GRO 06]. This type of adaptation is very impor-
tant for the maintenance of real-time systems as most of them cannot be completely
stopped, but must continue to provide the services they were designed for.
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Rationale for adaptation

Bringing an additional factor of complexity, adaptation enables the implementation
of crucial requirements of the design and management of software systems, such as:

— evolution and maintenance [BRI 05, DAV 09], for instance to correct bugs while
the system is running;

— resource allocation management to ensure quality of service attributes [IVA 99];
or to implement fault-tolerance mechanisms [DAI 06];

— implement different phases of the system life-cycle, for instance different steps
of the mission of an unmanned vehicle.

Regarding real-time systems, an important consideration is that the transition from
one behavior to another must often be realized (i) without switching off the system;
(i1) within a given time limit, and (iii) reducing the perturbation of the system due
to the adaptation process where possible. Those two last requirements are contra-
dictory: reducing the effect on the system will increase the adaptation time and vice
versa [BRI 05].

8.2.2. Autonomy versus predictability

In the context of embedded systems controlling physical systems, predictability
may be a requirement of prime importance. Depending on the importance of the
behavior of a system, this requirement drastically influences to what extent the system
can be autonomic.

Indeed, autonomy and predictability are two characteristics opposed to one another
insofar as the first allows the system to decide by itself the behavior that best answers
its new operating environment, while the second that all the possible behaviors of the
system and their characteristics are predicted at the time of the design of the system.

To illustrate this, we can consider the two following extreme situations. On the one
hand, an extremely critical system will have only one possible behavior, configured
and analyzed by the system designer. This system is thus easier to analyze. On the
other hand, a totally autonomous system will be able to learn from previous situations
and decide by itself what new behavior to adopt.

Beyond these extreme situations, and considering the complexity of predicting the
behavior of a software system, it can be seen that the criticality of a system will limit
its adaptation mechanisms in order to improve the analysability of the system (e.g.
in terms of adaptation time, memory sizing, etc.). For instance, a critical adaptative
system will privilege static or pseudo-dynamic adaptation mechanisms to dynamic
ones. Conversely, autonomy relies on dynamic mechanisms in order (i) to decide
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behavior to adopt, and (ii) to apply these modifications to the application while it is
executing.

In the introduction to this section, we have presented adaptation as a step towards
autonomy. We have then explained that the level of autonomy will mainly impact the
supervision and planing activities. As an answer to the trade-off between predictability
and autonomy, different types of supervision and planning policy have been proposed.
Among these, we can distinguish three complexity levels in the policy:

— the condition/action-based policy: the supervision activity is described as a set
of conditions that a source state of the system must ensure in order to transit to a target
state. Following the same idea, the planning activity is defined as a set of actions that
have to be realized on the system [DAV 09];

— the goal-based policy: in this case, the supervision activity is similar to that
explained above (i.e. a set of rules on the source states). The planning activity is
slightly different as the actions executed are deduced from the specification of the
target behavior [BOR 09];

— the utility-based policy: considering that a level of utility and resources utilisa-
tion is associated to each target state, a utility function computes the more suitable
target state (analysis) from which the adaptation action executed is deduced (plan-
ning) [GRO 06].

Obviously, the level of autonomy increases from the first to the third policy while
the behavior of the system becomes more difficult to predict and to analyze.

From the general concerns we presented in this section, several theoretical prob-
lems and solutions have been highlighted in studies related to the design of ADRESs.
We present the most important in next section.

8.3. Theoretical aspects of adaptation management

In this section, we present the main issues related to an adaptation management
process in ADRES. These issues deal with the coordination of distributed adaptation
processes, the definition of a system state that allows adaptation to occur in a safe
manner, and the specificities of adaptation in real-time systems (considering timing
requirements).

8.3.1. Coordination of control loops
In a distributed real-time system, the adaptation control loop needs to be distributed

in order to control the behavior of all the computation units involved in the adaptation
process. Thus, these different control loops need to be coordinated in order to adapt
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the overall behavior of the system. In this section, we present different coordination
strategies.

Centralized coordination

In a centralized coordination, the overall behavior of the system is controlled by
a unique supervisor which has a global knowledge of the system’s state, its environ-
ment and its possible behaviors. Thus, this supervision entity is the central adaptation
unit of the system (i.e. the unique feedback and command unit). This coordination
eases the design as the adaptation process is clearly identified and is easy to manage
(local computation only). However, this central entity constitutes de facto a bottleneck
reducing the scalability (in terms of performance) of this approach. From a depend-
ability perspective, this centralized supervisor may also constitute a single point of
failure.

Decentralized Coordination

Contrasting the centralized coordination, a decentralized coordination is made of a
set of autonomous but interacting units that control their adaptation process by them-
selves [WOL 05]. This approach solves the scalability problem and offers much more
flexibility as the different entities of the system can be designed and used indepen-
dently. The main issue of a decentralized coordination is to assess the system’s global
behavior. As a consequence, this approach requires the implementation of an impor-
tant number of interactions in order to maintain the overall consistency of the sys-
tem [WOL 05].

Hierarchical coordination

An alternative to the centralized or decentralized coordination is the hierarchical
coordination. Different proposals for the hierarchical coordination of control loops
have already been published [BRO 03, DAI 06, ROY 07, ARM 03]. To summarize, a
hierarchical adaptation is organized as a set of control loops in which the adaptation
entity of higher hierarchical level controls the adaptation of the system; either by con-
trolling the entities of lower hierarchical level [DAI 06, ARM 03] or by controlling the
adaptation process in priority [BRO 03, ROY 07]. The hierarchical adaptation process
enables the implementation of a trade-off between the difficulties of implementing a
decentralized adaptation, and the scalability issues raised by a centralized adaptation.

In an adaptative system, the adaptation control loops are dedicated to the election
of the system’s behavior. In these loops, the feedback inputs represent the state of
the system (and its environment) while the output is a set of actions that have to be
undertaken in order to modify the system’s behavior. When designing the software
application that is embedded in a system in order to control its functionalities, an
important question is to determine when the software application is ready to undertake
these adaptation actions. This state of the system, in which the adaptation process can
really begin, is often referred to as the system’s “safe state”.
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Figure 8.2. Hierarchical coordination of adaptation control loops

8.3.2. The safe state problem

In a software application, adaptation is a process led by the software to modify
itself. It is thus a risky process that requires that the entities impacted (i.e. modified)
by the adaptation are isolated from the rest of the application. An initial proposition
for safe state was defined in [KRA 90] as the «quiescent state», considering the in-
teractions among software components as transactions. A transaction is the exchange
of one or more messages between two components. In this model, a transaction is
assumed (i) to be limited in time and (ii) to ensure that the initiator of a transaction
is aware of its completion. As a consequence of being involved in a transaction, a
component may initiate transactions with other components. In the meanwhile, the
initial transaction remains active. In [KRA 90], a component is in the quiescent state
when (i) it is not currently involved in a transaction, (ii) it is not waiting for the result
of an outgoing transaction, and (iii) none of its operations that are likely to produce
(directly or through intermediate entities) an incoming transaction are executing.

Due to this definition and the complexity of interactions among software compo-
nents, it is not possible to ensure that an adaptation requirement would be met during
runtime, thus producing an adaptation starvation. The «quiescent state» hypothesis
was relaxed in [VAN 06], but the associated protocol also does not prevent the adap-
tation starvation (i.e. the adaptation might never occur).

In [Hof93], the developer of the application decides and directly implements the
definition of the system’s safe state. As a consequence, it is very difficult to ensure a

priori the correctness of the adaptation.

The different definitions of safe states given in this section raise important issues
regarding their usage in a real-time and embedded system: how to limit the adaptation
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time and how to evaluate the worst-case adaptation time. To answer these questions,
the adaptation process of real-time systems has been studied using the application of
mode switch protocols.

8.3.3. Mode switch protocols

A mode is usually defined as an abstract representation of a set of functionalities
that the system must provide when the considered mode is active. On switching from
one mode to another, the system modifies the current set of provided functionalities
and thus self-modifies its own behavior (see the definition of adaptation, section 8.2.1).

Since the late 1980s, mode switch mechanisms have been intensively studied
by researchers in real-time systems. Focusing mainly on the timing requirements
in terms of the promptness of the mode switch and schedulability of the adaptative
system, these studies consider the tasks of a system as the main adaptable entities.
In [REA 04], the authors propose an exhaustive survey of modes switch protocols.
This survey proposes a categorization of protocols, as well as a set of requirements to
analyze them.

The requirements introduced are:

1) schedulability: the different tasks controlling the system must always be exe-
cuted within a given deadline, and this must remain true during the mode switch. This
requirement implies that it must be possible to easily verify the schedulability;

2) periodicity: the pattern of activation of periodic tasks should remain the same,
even in presence of a mode switch;

3) promptness: in certain situations, a mode switch must be executed as fast as
possible. The promptness represents the capacity of a system to switch from one
mode to another rapidly;

4) consistency: if data are shared among different tasks, their consistency must be
preserved. This property must remain true during a mode switch.

In order to answer those different (sometimes contradictory) requirements, differ-
ent mode switch protocols have been proposed. Those protocols are characterized by
the subset of requirements they privilege. In the remainder of this section, we provide
a brief summary of the previously mentioned survey [REA 04].

Idle time protocol [TIN 92]

This protocol is a synchronous protocol: all the active tasks in the source mode,
modified by the mode switch, must be terminated before the actual mode switch oc-
curs.
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The main idea of this protocol is to wait until all the tasks modified by the mode
switch have finished before proceeding to the mode switch. As a consequence, (i)
traditional techniques for schedulability analysis can be applied to such a protocol, (ii)
the periodicity is preserved, and (iii) the computation of the worst case mode switch
time (WCMST) is very easy (see equation (8.1)).

WCMST WCMST
T]Cj + > [T

j€Un t.q. P;>Pg

WCMST = > [

jelm

¢, B0

In this equation, C}, P}, and Tj, represent, respectively, the worst case execution
time (WCET), the priority, and the period of a task 7. Im represents the set of
tasks impacted by the mode switch, Un represents the set of tasks unchanged by the
mode switch, and Pr represents the lowest priority among the priorities of the tasks
impacted by the mode switch.
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Figure 8.3. Idie time protocol

Figure 8.3 illustrates the behavior of a set of tasks in presence of a mode change
request (MCR), the mode switch being configured with the idle time protocol.

As shown in this figure, this protocol prioritizes the schedulability to the detriment
of the promptness: the WCMST can be very long as it allows multiple execution of the
impacted tasks (see 7} in Figure 8.3, executed three times between the mode switch
request and the moment the target mode is reached).
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Minimum single offset with or without periodicity [REA 04]

In order to tackle rapidness requirements, [REA 04] proposes another mode switch
protocol that prioritizes the promptness to the detriment of periodicity. The idea of
this protocol is that during the mode switch, only the active tasks that are impacted
can finish their current release but no further release is permitted until the target mode
is reached.

In this case, the schedulability analysis is also very simple (see equation (8.2)).
WCMST = Y C; (8.2)
Jjelm

Figure 8.4 illustrates the behavior of a set of tasks in the presence of a MCR,
the mode switch being configured with the minimum single offset protocol (without
periodicity).
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Figure 8.4. Minimum single offset protocol

In the figure, the minimum offset protocol without periodicity prioritizes the prompt-
ness to the detriment of the periodicity: the WCMST is shorter than with the idle time
protocol but one release of task 75 has been missed.

This protocol can be easily extended to preserve the periodicity of non-impacted
tasks [REA 04]. Considering requirements other than periodicity, the evaluation of
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this protocol with periodicity is very close to the evaluation given when the periodicity
is not ensured.

In order to again accelerate the mode switch, asynchronous protocols have been
proposed. Contrary to the synchronous protocols, asynchronous protocols allow the
simultaneous execution of tasks in the source mode and tasks in the target mode.
Making the mode transitions faster, these protocols are much more difficult to analyze
regarding their schedulability.

Utilization based [SHA 89]

The utilization-based protocol is an asynchronous protocol based on the proces-
sor capacity and usage: using the traditional schedulability analysis techniques, it is
possible to determine whether the processor capacity can, depending on its current
usage, proceed to a mode switch. In this protocol, tasks are internally modified by a
mode switch: their WCET varies from one mode to another. A mode switch will thus
modify the processor capacity and usage.

The main disadvantages of this solution are (i) the necessity to keep track of the
processor usage (which induces an overhead in the runtime environment of tasks), and
(ii) the difficulty in analyzing the schedulability of this protocol [TIN 92].

Asynchronous protocols [TIN 92, PED 98, REA 04]

Different asynchronous protocols have been proposed in published studies about
mode switches [TIN 92, PED 98, REA 04]. These protocols result in a faster mode
switch but are much more complex to analyze with regards to the WCMST and the
schedulability. Indeed, the expression of the WCMST depends on the instant when the
mode switch request is received. The corresponding value is considered as the time
separating the last release of an impacted task with the moment of the arrival of the
mode switch request. Those different protocols do not provide any method to calculate
the instant corresponding to the occurrence of a mode switch request that leads to a
worst-case scenario. As a consequence, the analysis must be launched considering
different possible values, which limits its usability in critical real-time systems.

Sampling preserving mode switch [BOR 09]

Data sampling is another important aspect of real-time embedded systems. For in-
stance, in order to produce the speed of a mobile system, several consecutive values of
a position variable can be used. Knowing the interval separating the measure of these
positions, the computation of the speed profile is easy. When the mode switch does
not substantially modify the way values are produced, the protocols with periodicity
presented earlier preserve the integrity of the data set: the position values produced in
the source mode can be used together with the position values produced in the target
mode. The data set obtained is consistent. When the values produced are substantially
different in the source mode and in the target mode, then the computation of the speed
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might use an inconsistent value set. To avoid this problem, [BOR 09] extends the pe-
riodic protocols presented above: when a set of data is shared by synchronized tasks,
then the mode switch occurs at the hyper-period of the set of synchronised tasks.

Figure 8.5 illustrates the behavior of a set of tasks in presence of a MCR, the mode

switch being configured with the sampling preserving mode switch protocol.

MCR
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N time g k
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Figure 8.5. Sampling preserving protocol

Obviously, depending on the hyper-period of the set of synchronised tasks, the
WCMST might be long. In this case, it is important to consider if the system is robust
to the absence of updated data during one hyper-period. If it is robust, it is better to
reset the data set and to switch mode with a faster protocol. If the system is not robust
in this case, then it is necessary to wait until the hyper-period.

Time-triggered mode switch [FAR 06]

In a distributed real-time system, the coordination of mode switches must be done
considering the global state of the system. In [FAR 06], authors consider distributed
architectures deployed on a time-triggered bus. Taking advantage of this hypothesis,
the mode switch request can be globally synchronized: it is typically performed at
the end of a major cycle on the bus. The main drawback of this approach lies in the
degradation of the promptness of the mode switch: the mode switch is propagated
only once in the major cycle.
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Different practical solutions have been proposed to deal with the additional com-
plexity resulting from the dynamic adaptation of embedded systems. We present some
of these solutions in the next section.

8.4. Technical solutions for the design of adaptative embedded systems

In the previous sections of this chapter, we have presented the different problems
and theoretical solutions to address the design of ADRES. We have shown that the im-
plementation of an ADRES requires complex problems to be solved and wise choices
to be made. In this section, we present the techniques and practical solutions used
to build ADRESs; this includes specific runtime infrastructures and dedicated design
technologies.

8.4.1. Infrastructure dedicated to adaptation

Design patterns for adaptation

Usage of existing design patterns enables the implementation of the adaptation
mechanisms to be structured the using a well-defined architectural style.

In [BOI 00], the authors rely on the strategy pattern (see Figure 8.6) to modify the
implementation of a component. In this pattern, a context class provides a strategy
interface that can be implemented in different classes (Strategy_A and Strategy_B in
Figure 8.6). The idea of this pattern is that every method m provided by the interface
Strategy is implemented in the Context class as follows: currentStrategy.m(). Thus,
when calling m() on a Context object, the actual implementation is decided at runtime
depending on the implementation of the currentStrategy interface.

[ H Context ¢<:urrentStrategy [ © Strategy |
1
@ m() @ m()
implementation body
of m():
currentStrategy.m()
H Strategy A H Strategy B

Figure 8.6. Strategy design pattern
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The main problem with using such a technique is that it does not ensure that the
conditions of a “safe-state” are met when the adaptation occurs because of its con-
struction.

Middleware dedicated to adaptation.

The middleware of an application is a software layer that interfaces the applica-
tive code with its underlying execution platform. As such, the middleware is usually
responsible for ensuring the activation of components, as well as their interactions.
Thus, the middleware can keep track of the activations/communications among com-
ponents in order to ensure they are in a “safe state” when the adaptation process be-
gins. In [BRI 05], the authors not only implement some safe adaptation mechanisms
in the middleware, but also implement different adaptation policies to keep manage
the trade-off between adaptation time and unavailability of services.

Software reconfiguration in component based architectures

Component-based software engineering (CBSE) has been used many times in the
context of adaptative systems. Taking advantage of the clear separation between the
different entities that constitutes the software application, CBSE enables the set of
modification necessary to implement an adaptation to be clearly identified. Follow-
ing this idea, [DAV 09] propose a script-based language that enables the behavior of
a component-based application to be modified by applying a set of clearly identified
modifications. The process applying these modifications, which aims the software
configuration to dynamically change, is thus called reconfiguration. The main issue
when dealing with dynamic reconfiguration in ADRESs is to enable the usual require-
ments and constraints of such systems, such as strict timing requirements, limited
computation resources, and determinism to be met.

Software reconfiguration and architecture description languages

In order to provide ADRES designers with a better support for the design, imple-
mentation, and analysis of their products, certain architecture description languages
(ADL) enable the description of features dedicated to adaptation.

Darwin [MAG 95] was one of the first ADL that included the specification of
dynamic reconfigurations. The creation of this language was based on previous work
that defined the reconfiguration semantics. This semantics is mainly based on:

— the notion of “quiescent state” presented in section 8.3.2;

— the definition of three possible states for a component:
- active (the component can initiate, accept, and service transactions),
- passive (the component continues to answer new transactions but it is not
currently involved in a transaction and it does not initiate new transactions),
- and frozen (the component state will not be modified by a incoming requests).
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component navigation {
require position ;

}

component localization {
provides position ;

}

component system {
provides pos <dyn>;

inst
Nav:navigation; // component instantiation
bind
pos —— dyn localization;
Nav. position —— localization . position ; // connection of components

Listing 8.1: Example of binding specification in Darwin

Besides, Darwin enables us to describe reconfiguration actions, for instance:
— the modification of components connections;
— the instantiation of a new component;

— the removal of an existing component.

Listing 8.1 illustrates the definition of a component (system) that dynamically in-
stantiates a component of type localization when receiving a request on its port pos.
In order to go further in the description of a dynamic behavior, Darwin enables more
complex controls of the instantiation process to be specified. To do so, forall (iterator)
and when (conditional) operators are available to describe the instantiation of subcom-
ponents. However, the scope of the reconfiguration actions is limited to the dynamic
creation and binding of components, which is insufficient to control the adaptation of
an ADRES.

More recently, ADLs dedicated to the real-time systems have included features
to describe adaptation mechanisms. In the architecture analysis and design language
(AADL) [FEI 06], adaptation is modeled as a result of:

1) a set of operational modes;

2) a set of transitions between operational modes, with rules that enable to describe
when a mode transition must be triggered;

3) a set of software configurations associated with each operational mode.
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Figure 8.7 illustrates the definition of an adaptative system using the AADL. In
this figure, P is the enclosing entity; a process containing one task 7. P defines two
operational modes M1 and M2. In M1, T executes every 12 ms, while it executes every
25 ms in M2. Finally, the definition of the mode switches define that the process goes
from M1 to M2 when receiving an event on port p/.

In mode M1
LT ~ Process T
\\
N,
A Y
N
N \
S \
“~ \
—— o ) —— o — -
1 \ N
B \ Task T!
1
1

; | Period=12ms | !

1 | Period=25ms | ,
Lo ———= [LEp—
4
4

“In mode M2

.. -
~~~~~~~~

Figure 8.7. Adaptation specification in AADL

Inspired by the definition of modes and software reconfiguration proposed by the
AADL, the component-oriented architecture language (COAL) [BOR (09] proposes
the definition of the adaptation mechanisms of ADRESs by reconfiguration of generic
software components.COAL also enables the mode switch automata to be config-
ured in order to implement either of the synchronous mode switch protocols presented
in 8.3.3. This feature is not explicit when using AADL mode switches.

In the different solutions presented in this section, reconfiguration is used to im-
plement adaptation. In the latter solutions, reconfiguration is combined with mode
switch mechanisms. Mode switches can be implemented without reconfiguration and
vice versa. Used together, these artifacts enable the way the system adapts to vari-
ations of its environment to be specified. Describing the adaptative behavior of the
system early in the design process gives the opportunity to detect design errors. It also
consumes fewer resources as the adaptation mechanisms can be produced according
to the specifications, thus avoiding the overhead of a generic implementation.

However, such an approach does not address unexpected adaptations (e.g. mainte-
nance needs). As stated in the introduction of this chapter, our objective is to describe
how to design ADRESs, which led us to focus on the early stages of the design pro-
cess of such systems. We will thus focus on technologies that take advantage of the

simultaneous specification of mode switches and reconfiguration to ease the design of
ADRES.
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8.4.2. Existing technologies for the adaptation of embedded real-time embedded
systems

In this section, we present and compare different technologies that aids an ADRES
designer. As the presence of adaptivity adds complexity, this kind of technology play
a major role in the management of this complexity.

Time-triggered synchronous technologies

In order to improve the determinism of distributed real-time systems, time-triggered
architectures enable (or limit the de-synchronization of) the distributed processors to
be synchronized by sharing a global clock. Taking advantage of this hypothesis, the
framework GIOTTO [HEN 01] automates the production of distributed ADRES on a
time-triggered architecture. The corresponding approach also relies on a synchronous
hypothesis: the logical execution time (LET) of the different tasks of the system takes
Zero time.

These hypotheses (global clock and null LET) ease the design of formally defined,
analyzed and deterministic ADRES. In retirn, the reactivity of such application is
lowered.

Time and event-triggered synchronous technologies

Releasing the time-triggered hypothesis but conserving the zero LET hypothesis,
COMDES [KE 07] and xGiotto [GHO 04], have been proposed to develop ADRESs.
As a consequence of releasing the clocks synchronization hypothesis, the computation
of correct scheduling is harder and its completion is not guaranteed. As a compensa-
tion, the main benefit of these approaches is an increased reactivity.

These solutions do not emphasize the hierarchical management of control loops in
higher level of abstraction than in the software specification. In industry, the definition
of operational modes is mainly part of the system specification in the early stages of
the development process. At these stages, modes can be described in a hierarchical
manner following the system/subsystem decomposition. This aspect is weakly con-
sidered in these contributions.

Time and event-triggered asynchronous technologies

In order to prioritize rapid adaptation, MyCCM-HI [BOR 09] releases the zero
LET hypothesis and gives the software designer the possibility to rely on a time-
triggered, event-triggered, or hybrid architecture. In case of an event-triggered adap-
tation, MyCCM-HI implements one or the other of the synchronous mode switches
presented in section 8.3.3. In order to apply the desired protocol, MyCCM-HI relies
on the configuration provided by the software designer (using the COAL).

Beyond this flexibility, MyCCM-HI helps to manage the adaptation loops in a
hierarchical manner from the very beginning of the system/software specification.
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Giotto| COMDES/xGiotto| MyCCM-HI MyCCM-HI
(time-triggered) | (event-triggered)
Reactivity - -- - ++
Determinism| +++ ++ + ---

Table 8.1. Comparison of design technologies dedicated to ADRES

8.4.3. How to choose of the appropriate technology

As stated at the beginning of this chapter, the design choices of an ADRES will
vary drastically from one system to another one. In section 8.2.2, we presented these
choices with respect to the autonomy/predictability trade-off. Here, it can be seen that
the choice of one or other framework will be led by a reactivity/determinism trade-off.
Table 8.1 lists the characteristics of the considered technologies with regards to this
trade-off.

To illustrate the different aspects presented at the start of this chapter, we will
apply one of these MDE technologies to a specific example of ADRES. In order to
cover both the (i) hierarchical aspects of the adaptation loops management, (ii) the
configuration of the mode switch protocols, and (iii) the automatic implementation
of reconfiguration actions, we have used MyCCM-HI. More precisely, we rely on
MyCCM-HI using event-triggered mode switches in order to illustrate the usage of
mode switch protocols as described in 8.3.3. Before entering the details of the design
based on this technology, we present in the next chapter the case under consideration.

8.5. An example of adaptative system from the robotic domain

We present in this section a mobile robot designed to explore a disused tunnel that
requires renovated for future use. In order to evaluate the state of the tunnel, the robot
sends images of the tunnel via a camera installed in it. This video stream is also used
by the user to guide the robot inside the tunnel. As the robot travels along in the
tunnel, the bandwidth of the wifi-connection between the robot and the operator goes
down and the quality of the video stream is not sufficient to drive the robot. It is then
necessary to use the robot in an automatic mode: the robot determines the direction
to follow to join predefined points, and send pictures of the tunnel to the user upon
requests from the latter.

8.5.1. The pilot system

The example we focus on is more precisely the piloting system of the robot. This
system is compound of two subsystems; a localization and a navigation subsystem. In
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automatic mode, the localization subsystem is active and sends the current position of
the robot to the navigation subsystem. Once it has received several data corresponding
to the robot’s position, the navigation subsystem computes the robot’s current speed
and the command sent to the wheels controllers in order to maintain the desired speed.

In order to design each system and subsystem independently, modes are associated
to each level of specification: the pilot system may operate in automatic or manual
mode, the localization system may be activated or deactivated, and the navigation
system may operate in automatic or manual mode.

8.5.2. Avoid mode inconsistencies

Suppose the localization subsystem is activated while the navigation subsystem
operates in manual mode: the localization subsystem sends position information to
the navigation subsystem that will not be used by this system until it goes back to
automatic mode. Receiving these data while the navigation subsystem is in manual
mode constitutes a perturbation that may lead to faults (CPU overload, buffer overflow,
etc.). Consequently, these two modes (activated and manual) are strongly inconsistent:
they must never be simultaneously active.

Conversely, suppose the localization subsystem is deactivated while the navigation
subsystem operates in automatic mode. In this case, the direction is automatically
determined without updates of the robot’s position. Depending on the maximal speed
of the robot, this situation is acceptable during a fixed delay. Consequently, these
two modes (automatic and deactivated) are weakly inconsistent modes: they can be
simultaneously active, but only during a fixed delay.

8.6. Applying MDE techniques to the design of the robotic use-case

In order to illustrate in more details the importance of the design of the ADRESs,
we describe in this section the specification of the robot using MyCCM-HI. Thus,
we present in this section the main modeling artifacts used by the COAL in order to
describe an ADRES. These artifacts are:

— generic software components, to model the functional breakdown of the systems’
functionalities;

— real-time dedicated components to represent the real-time characteristics of the
software architecture;

— operational modes and associated (re)configurations to specify the pseudo-
dynamic reconfiguration.
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8.6.1. Functional breakdown

A generic software component is basically a functionality that can be assembled
with others to provide the full functional coverage of the system. The description of
these passive components allows the functional part of the system to be broken down
into smaller, independently manageable pieces that can be configured and assembled
by an external application. To achieve this, generic components provide the explicit
description, by means of ports, of the services that the component provides and re-
quires during its execution. It also defines some configuration attributes in order to
tune the component functions of a particular utilization context.

Thus, generic components make the deployment and configuration of the applica-
tion by another application easier. Following the same principles, component configu-
ration and deployment can also be modified by an external application (thus realising
the reconfiguration).

To describe generic software components, COAL relies on the standard Lightweight
CCM ! (standardized by the OMG 2). This choice was led by the industrial context in
which MyCCM-HI was developed. These passive components provide ports that are
either facets/receptacles (to implement synchronous operation calls), or event sinks
or sources (to implement asynchronous message passing) through which they can be
activated.

A facet represents a provided interface (i.e. a provided set of functionalities) while
a receptacle represents a required interface. Thus, when a component’s receptacle
is connected to another component’s facet, the functionalities provided by this facet
might be called through the connected receptacle. It is inside the code implementing
components’ functionalities that we can find out when a receptacle is actually used.
Lightweight CCM also enables configuration attributes to be defined in order to con-
figure the function of a component regarding its usage context. Similarly, an event
connection enables a component to emit messages through a source towards one or
several sinks.

Figure 8.8 is an illustration of a Lightweight CCM component defining one facet
(get_pos), one receptacle (compute_direction), one event sink (cur_pos) and one con-
figuration attribute (size). The behavior of this component is the following:

— when receiving position data on cur_pos, the component stores it in an array,
the size of which is defined by the configuration attribute. Once this array is full, the
component calls the component connected to compute_direction;

1. Light-weight CORBA component model revised submission, OMG document realtime/03-05-05 edn
2. Object Management Group
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Figure 8.8. Lightweight CCM example

compute direction

— when receiving a get_pos request, the component immediately returns the array
of positions.

8.6.2. Real-time systems specificities

In the realm of real-time systems, domain specific languages (such as AADL) have
proven their utility in automatic configuration and analysis of critical systems [LAS 09].
These languages aim to represent both domain-specific software components (tasks,
partitions, shared data, etc.), domain-specific hardware components (processors, mem-
ory, buses, etc.), and their specific characteristics (scheduling policy, network band-
width, processor speed, etc.). Real-time systems specific languages thus enablethe
deployment of software components onto hardware components to be modeled, as
well as the specific configuration of each of these components. Using such languages
makes the analysis and synthesis of the whole system easier.

Inspired by AADL, COAL enriches a Lightweight CCM specification due to the
real-time system characteristics such as periodic or sporadic activities. Configuring
the facet of a component instance, a periodic activity will activate this component with
the period and priority parameters provided by the software designer. Configuring an
event sink of a component instance, a sporadic activity will trigger the corresponding
component when receiving a message, and two consecutive messages will be treated
with a minimal period of time separating the treatments.

Figure 8.9 represents the usage of activities in a very simple COAL specification:
in this figure, triangles represent activities that will activate components odometer and
position. While associated with a facet, an activity is periodic and calls the activa-
tion operation of this facet every time the period of time configuring the activity has
elapsed. Thus the facet activation will be activated every 10 ms. While associated to
an event sink, an activity is sporadic. Thus, current_pos will be activated when receiv-
ing a message on port current_pos, given that at least 10 ms have passed between the
reception of two messages.
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Figure 8.9. Activities definition in COAL

8.6.3. Pseudo-dynamic reconfiguration

In order to model the pseudo-dynamic reconfiguration of an ADRES, the COAL
represents:

— the system and subsystems operational modes;
— the mode transitions logics;
— the software configuration associated with each of these modes.

We describe hereafter the corresponding artifacts available in the COAL.

Operational modes

The COAL models the operational mode of a system in a dedicated component
called “mode automaton”. A mode automaton defines the operational modes of the
system (or subsystem) it is contained in.

Regarding the robot we are designing, two operational modes have been identified:
automatic and manual. We have also identified two subsystems, localization_system
and navigation_system, which provide two operational modes: automatic/manual for
the navigation_system and on/off for the localization_system.

The mode switch logics

Beyond the definition of operational modes, a mode automaton describes the mode
transitions of the system. A mode transition is described by:

— one source mode;

— a set of conditions (received messages, timing guards, configuration attributes of
the automaton);

— a set of actions (send messages, call software components interfaces);

— a target mode.
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If different transitions share the same source mode, their relative priority must be
defined (the automaton is thus deterministic)

In the robot, in order to guarantee that strongly inconsistent modes are never si-
multaneously active, we define a mode switch sequence, from manual to automatic,
that first activates the navigation subsystem in the automatic mode and then activates
the localization subsystem. To design this behavior, we add intermediate modes to
the operational modes of the pilot system. These intermediate modes will ensure the
synchronization between the modes of the system and its subsystems in order to avoid
inconsistent modes.

Figure 8.10 illustrates the modes and mode transitions of our pilot system and its
two subsystems. In this figure, modes are represented by states while transitions are
represented by labeled arrows. Italic labels represent conditions on a mode transi-
tion and Bold labels represent actions that are executed once the target mode of the
transition is reached.

Following the transition from manual to automatic in the pilot_system mode au-
tomaton, we have the following three transitions:

1) when receiving the mode switch request from manual to automatic (Pilot_A?),
the transition to the mode Mt0A1 is activated. Reaching MtoA 1, a mode change request
(Nav_A!) is sent to the navigation subsystem. This way, an activation request is sent
to the navigation subsystem while the localization is still stopped;

2) when receiving the confirmation that the navigation is activated (Nav_A?), the
pilot system goes to MtoA2 and requests the activation of the localization subsystem
(Loc_on!). Thus we ensure that the navigation system is started before the localiza-
tion subsystem starts, avoiding strong inconsistency between the modes of the two
subsystems;

3) finally, when receiving the acknowledgment that the localization subsystem has
started, the automatic mode is reached.

Loc On? @ Loc_Off!

i Localization system . - Navigation system
pilot system  b——— = | o I
g S 1

Figure 8.10. Modes of the pilot system and its subsystems
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Another condition of the transitions between manual and automatic modes in the
navigation subsystem is that the robot’s speed is null. For commodity reasons in the
presentation of the mode automata, we did not represent the corresponding modes and
mode transitions.

Software configuration associated to each mode.

Similarly to the AADL, COAL associates some of the configuration artifacts of the
software architecture with a set of operational modes. Thus, those configuration arti-
facts are valid only if the system is in one of these modes. For instance, when defining
a connection in the model, the software architect can associate this connection to a
set of modes thanks to the keywords in modes. As a consequence, the corresponding
ports will be connected when entering one of these modes and disconnected when
entering a mode that is not part of the defined set.

Regarding the definition of an adaptation process provided at the beginning of
this chapter, the above sections illustrate the analysis and planning specification using
COAL: the analysis is specified due to the mode transition logics included in the mode
automata definition, while the planning is deduced from the difference between the
software configuration associated to the source mode and the software configuration
associated to the target mode of a transition.

Figure 8.11 synthesizes the system and software architecture of the piloting sys-
tem.

System architecture. System boundaries are drawn with dashed boxes: the pilot-
ing system is comprised of two subsystems. A localization subsystem, that provides
the current position of the system every 10 ms, and a navigation subsystem whose
behavior is different according to its current mode: in automatic mode, the navigation
subsystem computes the guidance commands when receiving the current position of
the system from the localization subsystem; in manual mode, the navigation computes
the guidance commands from orders of an end-user of the vehicle.

In figure 8.11, three mode automata are represented (Pilot_supervisor, Nav_super-
visor, and Loc_supervisor). Those automata come with event ports that enable them
to receive mode switch orders, and to send mode switch status. The mode switch
specification of these automata corresponds to the definition illustrated in figure 8.10.

Software architecture. In figure 8.11, we also represented the software architec-
ture of the different applications of this system. The behavior of the software applica-
tion is:

— in automatic mode, the guidance activity triggers the position component every
100 ms to retrieve the last 10 position of the system, compute the current speed of the
system, and store these data in the speed component (by invoking the connected facet).
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Figure 8.11. System and software architecture of the pilot system

When invoking the position component to retrieve the last positions, the connection
between the component’s position and navigation is not invoked, which is consistent
with the implementation of the position component given in section 8.6.1. Conversely,
when the navigation component is triggered by the position activity (sporadic 10 ms),
it reads the current speed of the system, computes, and sends the commands to the
actuators.

— in manual mode, the guidance activity does not trigger any component, and the
commands are sent to the robot from the manual_navigation component.

To model these different behaviors in our specification of the pilot system, con-
nections between components are either valid in a set of modes, or in every mode.
In figure 8.11, connections cnx_a_1 is only valid when the localization_supervisor is
in mode On; cnx_a_2, and cnx_a_3 are only valid when navigation_supervisor is in
automatic mode. Similarly, cnx_m_1 is only valid when Pilot_system is in manual
mode, and cnx_m_2, and cnx_m_3 are only valid when Navigation_supervisor is in
manual mode. Thus, the current position of the system is sent to the navigation sub-
system only when the localization subsystem is in on mode, and depending on the
mode of the navigation subsystem, the commands are sent to the wheels either by the
manual_navigation component or by the navigation component.

Mode switch protocol configuration

Finally, we describe hereafter how to specify the mode switch protocol associated
with a mode transition. Among the mode switch protocols presented in section 8.3.3,
a software description based on COAL can lead to the use of one of three protocols:
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—idle time protocol, which is instantiated by default if the COAL specification
does not require the usage of another protocol;

— single offset protocol with periodicity if the COAL specification states that the
port triggering this transition must be activated in “emergency” (this keyword being
associated to the considered port);

— sampling preserving mode switch protocol for periodic tasks identified as “syn-
chronized” in a COAL model.

Guidelines regarding how to choose the mode switch protocol will be given in next
section, in which the exploitation of the model (in terms of code generation for mode
switch mechanisms) is also presented.

8.7. Exploitation of the models

COAL models are interpreted by an open-source component framework called
MyCCM-HI. The main feature of MyCCM-HI is to generate code led by adaptation
requirements as explained in the previous section. We explain the corresponding code
generation patterns in this section, and present experimental results that help to com-
paring the different mode switch protocols.

Before we continue, we need to introduce an important principle with respect to
the remainder of this section: we call the “impacted task™ a task for which the control
flow depends on the value of the current mode of the system.

8.7.1. Code generation: the pseudo-dynamic execution step

The code generation process proposed by MyCCM-HI implements the execution
activity of an adaptive system (according to the definition given in section 8.2.1) in a
pseudo-dynamic fashion: configurations and reconfigurations are known at the design
stage, they are generated in the code of a software application to handle adaptations
during runtime. The objective of this approach is to ensure that reconfiguration mech-
anisms are safe, i.e.:

— associated with a synchronous mode switch protocol; synchronous here refers to
the property that no mode switch occur while an impacted task is executing;

— conforming to the safety requirement specified with COAL: schedulable mode
switch; fast mode switch; mode switch preserving data sampling consistencys;

— respecting frequent development restrictions when it comes to ADRES: dynamic
memory management is prohibited in order to improve the possibilities of analysis of
the produced code.
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Mode switch mechanism

To implement a solution to this problem, we generate and configure code according
to the principles presented hereafter: because it is read by impacted tasks and written
by tasks implementing the mode switch logic, the current mode of a system is a shared
variable that we protect with a read/write lock mechanism. The code of the automaton
locks this resource as a writer in order to modify the value of the system’s current mode.
The following execution pattern is generated for impacted task in order to ensure a
synchronous mode switch:

— at the beginning of its execution, an impacted tasks locks the resource as a reader;
— then it performs the computations associated with the current mode of the sys-
tem;

— finally, the task releases the lock at the end of its execution.

These principles ensure a synchronous mode switch protocol as the mode switch
cannot occur while an impacted task is running: running impacted tasks locks the
resource and the mode switch is blocked until all these tasks have finished executing.

The main advantage of this implementation is that it is easily configurable to adapt
the mode switch protocol used. For instance, when the single offset protocol is used,
the task implementing the mode switch is configured with a higher priority than the
highest priority of impacted tasks and the lock is configured with the immediate ceiling
priority protocol (a well-known solution in real-time systems to reduce the number of
preemptions, avoid deadlocks, etc.).

Reconfiguration

In a component-based model, basic reconfiguration actions are instantiation/dele-
tion of components, connection/disconnection of components, creation/deletion of
tasks, activation/deactivation of tasks, data initialization, and connection/disconnec-
tion of components.

The reconfiguration actions provided by MyCCM-HI are:

— the connection/disconnection of software components;

— the update of values of the software components attributes;
— the activation/deactivation of activities.

One limitation of this set of actions is related to a frequent development restriction
when it comes to ADRES: the dynamic memory management is prohibited. This
impedes the dynamic instantiation/deletion of activities or components to improve the
possibilities for analysis of the produced binary code.

In MyCCM-HLI, the execution step of the adaptation control loop is thus very sim-
ple, as it consists of (i) updating the value of the current mode, (ii) updating the
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software component attributes (according to the difference between the source mode
configuration and the target mode configuration), and (iii) invoking the components
interfaces as specified in the corresponding actions of the mode transition. Avoid-
ing dynamic memory management, a disconnection is implemented as a connection
switch that, depending on the current mode value, invokes the component connected
to this mode (or raises an exception if the component is really disconnected).

8.7.2. The choice of the mode switch policy

The choice of the mode switch will be led by the following considerations:

— Question 1: in the system does a data sampling require a specific mode transition
protocol?

— Question 2: is the promptness of the adaptation more important than the period-
icity?

Depending on the answers to these questions, different mode switch protocols will
be chosen.

First, it is interesting to note that these two questions are loosely coupled: imagine
that a system requires a specific mode transition because of data sampling as stated by
question 1. This means that the mode switch will begin when a set of synchronized
tasks have reached its hyper-period. It is still possible that other tasks of the system
are impacted by the mode switch. Thus, the software architect needs to answer to the
second question concerning those non-synchronized but impacted tasks.

Then, if it is easy to answer the second question (a choice between rapidity and
periodicity), it is more difficult to answer the first. We note here the conditions that
require the use of a specific mode transition protocol because of a data sampling:

— a set of data is sampled (produced and read at different paces);

— data produced in the source mode are substantially different from the data pro-
duced in the target mode;

— the absence of updated data over one hyper-period must never occur as it can
lead an unrecoverable failure of the system.

Answering yes to the first question implies that the sampling-based protocol must
be used. In our robot example, the sample data are the set of positions that are used to
compute the current speed of the robot. Thus, the answer to the first question depends
on the specification of the weakly incompatible modes. If the time bound associated
with the simultaneous activation of the stop mode of the localization subsystem and the
automatic mode of the navigation subsystem is inferior to the considered hyper-period,
then the sample-based protocol should be used. Otherwise, it is obvious that the navi-
gation can work without updated position data during at least one hyper-period.
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In order to help to choose the mode switch protocol, Table 8.2 summarizes the
characteristics of the protocols with regards to three important properties: periodicity,
rapidity, sampling preservation.

Criteria / Protocol P1 | P2 | P3| P4
Periodicity +++| - [+ +
Rapidity - | - |+
Sampling preserving| ++ | ++ |+++|+++
P1 : Idle time protocol without sampling
P2 : Single offset without sampling

P3 : Idle time protocol with Sampling

P4 : Single offset with sampling

Table 8.2. Comparison of the mode switch protocols
implemented by MyCCM-HI

8.7.3. Hllustration of properties of the mode switch protocols

In order to show the impact of the choice of protocol on the rapidity of the adapta-
tion, we have designed and implemented the robot example presented in this chapter.
Using MyCCM-HI, we have configured the mode switch protocol with each of the
four possibilities presented in previous section.

We have evaluated the reconfiguration time obtained functions of the chosen policy
and the complexity of functional tasks. To simulate this complexity, we implemented
active waits in the functional code, with increasing time lengths. This time constitutes
a simulation of the CPU occupation time.
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Figure 8.12. Measured reconfiguration time, functions of the policy (with synchrony) and the
simulated CPU load
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Figure 8.12 represents the reconfiguration time obtained using P1 and P2, func-
tions of the simulated CPU occupation time. These results show clearly that the re-
configuration time is smaller using P2 than using P1; this being all the more true when
the CPU occupation is high, which means that the functionalities implemented are
complex. A similar result has been obtained comparing P3 and P4: P4 gives a shorter
reconfiguration time than P3.
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Figure 8.13. Measured reconfiguration time, functions of the policy (with synchrony) and the
simulated CPU load

Figure 8.13 compares the reconfiguration time obtained using P1 and P3 as func-
tions of the simulated CPU occupation time. In this figure, we detect a gap between
the two curves due to the wait for the synchronized tasks to have reached their hyper-
period.

The results presented in Figures 8.12 and 8.13 validate comparison of mode switch
rapidity stated in Table 8.2.

8.8. Conclusion

In this chapter, we have presented the principles underlying ADRES design. Be-
yond the design principles dedicated to such systems, we have presented different
technical solutions that help in configuring and analysing such systems. We have pro-
vided an evaluation of these solutions, which stated that they mainly pursued different
types of applications (depending on the safety level required by the system under de-
sign). We then chose a concrete example from the robotics domain, and used one of the
previously described technologies to realise its design. As a conclusion, we discussed
the reasons that led to the choice of one or the other of the adaptation mechanisms.

The field of ADRESs is broad, and raises many problems, solutions, and possible
discussions. This is part of the additional complexity described at the beginning of this
chapter. Some interesting aspects have already been addressed in this chapter. One of
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the most important considerations is the link between adaptation and fault tolerance:
adaptation can be a recovery solution to faults, but also requires it to be fault tolerant.
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Chapter 9

The Design of Aerospace Systems

9.1. Introduction

In the past 20 years, space systems have assumed a tremendous importance in
our lives. There are hundreds of satellites above our heads, which provide various
services that we now continuously rely on: navigation, weather forecasting, televi-
sion, telecommunications, etc. Earth is monitored by ultra-precise sensors, while deep
space is explored by robots, with the hope of helping us to understand physical phe-
nomena that might be at the origin of human life. Exploring space is somehow similar
to the long boat travels that were undertaken by our ancestors to discover the limits of
our current world, and this is what is so exciting about it. Today we hear enthusiast
scientists talking about traveling back to the Moon or even to Mars, hoping that such
objectives, even if they are not easy to justify, will produce unexpected side effects.

The point about exploration is that it is the perfect tool for discovering paths that
are not necessarily the ones we expected. For example, in the past space research led
us to discover important innovations in many fields that are now of great use on Earth:
solar panels, textiles, medical instruments, or recycling techniques. The fact that these
outcomes are sometimes not foreseen motivates scientists to propose new ambitious
missions that can give them the freedom required to achieve any major creation. They
have to go beyond cultural and sometimes financial habits, also beyond limits that
dominant thoughts impose in order to find a new revolutionary technology that will
make our technical, intellectual, or scientific knowledge go a step further.
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9.1.1. About space systems complexity

The space system designers today master the combination of domains as complex
as mechanics, thermal, energy storage, and management, radio communications, etc.
Very precise mathematical and physical models are used in order to define the trajec-
tory of spacecraft, or to predict the effects of the hostile space environment on embed-
ded electronic boxes. However, on-board autonomy is still difficult to master using
current technology. Space systems must remain simple because software complexity
is just too hard to validate with the current development methods due to constraints
enforced, potential hazards, and safety/security issues.

It took us hundreds of years to master the wheel up to a point where they are even
embedded as means to correct the attitude of satellites; but we only recently found out
the techniques to program and automatically control the behavior of a machine. Most
terrestrial machines use software; computers are everywhere even in coffee machines,
yet many of them are simply unreliable. Home computers frequently crash, and no
technique other than end-user validation has been found to improve the overall relia-
bility of software. Users do not really complain about this situation, which, therefore,
has not significantly evolved in the past decade. What is more dangerous, car software
tends to crash more frequently, and for some reason users complain more about it.

Handling complexity poses problems, that is obvious, and as there are no real
mathematical models or scientific approaches available to develop better software, it
is hard to see how we can do better. The limit of this approach is reached when dealing
with really expensive and critical systems: nuclear power plants, aircraft, spacecraft,
and launchers. For these systems it is not an option to blindly develop software and
execute it on target, praying for correct execution at the first attempt. Everything must
be foreseen and deterministic; similar to a bridge when the first truck goes over it: we
cannot tolerate any dramatic events.

A new trend in space systems is to move from big centralized satellites to smaller,
but distributed systems: we call that formation flying, because the idea is to let several
satellites achieve complex missions by combining the capabilities of payloads when
they are distributed over several physical spacecrafts. For example, the Proba 3 mis-
sion will make use of two satellites to study sun coronas. The challenge is big, and
will address all the questions that are raised when designing a distributed system: how
to take decisions, how to detect faults, how to elect a master when none of the nodes
has complete knowledge of the state of the entire system.

To solve these issues, a fail-proof software development process must exist and be
supported by tools, so that the system designer can concentrate on what is really new
and challenging: the distributed algorithms.
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9.1.2. Aim of this chapter

This chapter explains how the space sector in Europe has tackled the problem of
defining a proper development process, and what tools have been developed to deal
with the specificities of embedded, heterogeneous systems. We first present the main
characteristics of satellite systems and software, then the issues that are faced when
developing them, what can be improved, and the solutions developed in the scope of
the TASTE project to ease the development, integration, and validation of on-board
software (OBSW).

9.2. Flight software typical architecture

Most satellites have a simple dual structure: they consist of a platform, and one or
several payloads. The platform includes software used to control the satellite, while
the payloads perform the mission itself, such as taking pictures of the Earth, acquiring
values through sensors, etc.

In this section we present the platform software; it is the part that is developed by
the space industry, in collaboration with a system team and software experts. What
we call “system” combines both the flight and ground components that are needed
to fulfill a specific space mission. The system team is a set of people who have an
overview of the complete mission, and who know what each component is supposed
to do. The platform software can be seen as an essential subsystem that is responsible
for the control of the spacecraft when it is launched.

We describe the various applications that are part of this OBSW, and discuss real-
time aspects, emphasizing the enforcement of timing constraints (for example, data
must be sent before a precise and strict deadline). We write it as a support to under-
stand the mechanisms that we have put in place to improve the development of OBSW
ensuring their reliability, robustness, and correctness.

9.2.1. OBSW applications

Basically, an OBSW comprises several major applications:

— The altitude and orbit control subsystem (AOCS) controls the position of the

satellite in space. It implements control laws that are established from mathematical
and physical models, following Kepler’s laws on the movement of objects in space.
One of these laws describes the theoretical trajectory of a satellite orbiting around the
Earth.
In practice, the movement of a satellite is affected by its environment so that it is
necessary to periodically compute and adapt its trajectory. In that purpose, the AOCS
reads information from sensors and computes commands sent to actuators. This part
of the AOCS is cyclic, executed according to a fixed period;
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— The guidance and navigation control software (GNC) performs mission-
specific maneuvers. Most of the time, GNC designers skills are more specialized
in automatics rather in software. For that reason, these functions are designed using
software such as Matlab-Simulink or SCADE to specify and validate their algorithm;

— The mode manager controls the satellite operational modes and data, depending
on the mission phase. There are usually a limited number of modes at system level,
that are further refined in sub-modes for each application. For example, there can be
an operational mode, a maintenance mode, a safe mode (in case of on-board failure),
a launcher mode corresponding to the satellite while it is still in the rocket, etc. Modes
are there to characterize a particular satellite state, and the transition from one mode to
another can be either done autonomously, or manually on reception of a ground (earth
operator) order;

— The fault detection, identification and recovery (FDIR) detects potential fail-
ures and possibly recovers them when occurring: This is a central application that im-
plements algorithms that depend on the mission. For example, a geostationary satellite
is always visible from the Earth; operation centers can at any time determine the sta-
tus of the spacecraft equipments, and possibly send data allowing a reconfiguration of
failed units; the need for autonomy is limited, and the FDIR function becomes sim-
ple, which saves on-board resources and validation effort. In the case of a deep space
exploration mission, on the other hand, it might be the case that for several days the
satellite is not visible to the Earth, and even if it is, it can take a very long time to
communicate with it. In that case a more complex FDIR function can be developed;

— The power, thermal and communication management handles power regu-
lation of satellite equipment, thermal control (temperature is within expected limits)
and sends or receives network packets to or from the Earth. Packets received from the
Earth are called telecommands (TC) while those sent to the Earth are called telemetries
(TM). Today most satellite systems are “centralized”, and communication is limited
to the exchange of single messages between Earth and space. However, in newly-
designed space systems, this is evolving towards inter-satellite communications to
support formation flying systems.

9.2.2. Applications support environment

OBSW applications are executed on top of an specific operating system that has
to respect several constraints: precise timing, low memory footprint, analyzability of
functions, etc. In the context of space-related systems in Europe, RTEMS is com-
monly used. It fulfills the requirements described above and also supports space-
specific execution environment (dedicated processors and transport buses such as LE-
ON?2 or SpaceWire).

OBSW applications also require several services to communicate with the satel-
lite environment: store data in mass memory, send/receive packets, operate satellite
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manually, update software, etc. These services are provided by a specific standardized
middleware called the Packet Utilization Standard (PUS). Several implementations
exist, most of them are available as commercial products.

9.2.3. Execution patterns of space software

The real-time aspects of most OBSW are rather simple: most functions are cyclic,
executed according to a fixed period. Some are sporadic (such as reception of telecom-
mand from Earth) but can be simplified as a cyclic activity: in fact, sporadic activity
occurs according to a minimal inter-arrival time and the maximum waiting time can
also be deduced (with pessimist approaches). This way, even sporadic tasks become
to be cyclic. According to the current state of the art in scheduling analysis, it is
considered as the simplest way to analyze the feasibility of a system.

9.3. Traditional development methods and their limits

The traditional development cycle of a space OBSW is a V-cycle [HOF 97]. It con-
tains phases for the specification, design, implementation, and testing of the product.
At the end of each phase, an independent review is conducted by the customer who
will authorize the next phase to start or not. Review requirements are specified in stan-
dards that depend on the system operating domain. In the context of space systems,
the ECSS standards are applicable (more specifically, ECSS-E-40 [ESA 03]series for
software aspects). The main purpose is to ensure that requirements are enforced as
expected. For that, developers and designers have to document, test and assess what
they produce.

This design process and review activities are conducted for both software and sys-
tem levels but each activity is loosely coupled. Moreover, as software aspects need
inputs from the system design, it is generally delayed, waiting inputs from system
designers and successful reviews. It results in a complex and hard to schedule design
process, which rarely goes to market at the expected date.

9.3.1. Traditional specification methods

In past projects, specifications were traditionally written as a list of textual require-
ments, while design was actually the code itself; there exists no shared view on how
a software design shall be documented, and lack of guidelines and tools has always
made this phase very difficult for suppliers to interpret.

As a result, verification of the software was achieved by manual reviews of the
code according to its textual specification. As this activity was not done automati-
cally and inputs were not formalized, it led to an error-prone process so that some
requirements and important aspects of the systems were not correctly reviewed.
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On testing aspects, tests have always been long and expensive partly because of a
difficult mastering the overall design, which is poorly documented. As a result, the
success of many space projects was mainly due to the experience and talent of a few
people, more than the application of scientific, rigorous, and reproducible develop-
ment methods.

9.3.2. Need for an engineering process

Recently, satellite complexity has increased together with new, more powerful
hardware (computing capacity, memory dimensioning, etc.) without considering the
potential issues it could introduce. This resulted in mission failures, some rockets ex-
ploded due to incorrect software. In fact, the traditional approach that relies on good
programmers reached its limits and it was impossible for a single person (or even a
few people) to design a complete software system, even with high skills: this indicated
that a more rigorous development process was needed.

These observations led into the space community in Europe to put some efforts
into trying to precisely define the requirements and develop the means to improve
the way we develop software. One of the first significant projects that triggered this
process was called ASSERT ! and it addressed the following subjects:

— Reference architectures: identification of common characteristics of several sys-
tems: needs in terms of reliability, availability, safety, etc. The idea came from the
fact that today, the avionics architecture (redundant computers, choice of communica-
tion means, but also software real-time architecture) is redefined for each new system,
manually from past experiences. The objective is therefore to define a systematic
method to begin with the requirements and to deduce the most adapted architecture
that fulfills these needs;

— logical software architecture description by capturing software functions with its
interfaces (sent/received data). Designers can describe their software functions/blocks
and validate them early in the development process;

— hardware architecture description that describes the environment run-time of the
system: processor boards, memory, network buses, etc.;

— definition of an execution run-time that supports system functions execution on
the hardware architecture. It consists of a middleware executed on top of the operating
system which provides generic services to software functions, such as sending/receiv-
ing data, tasks management, etc.

This software layer has to meet several constraints (bounded computation time, low
memory footprint, etc.) that have to be enforced on all space-related and high-integrity
software;

1. ASSERT was a FP6 project, involving 33 partners across Europe between 2004 and 2007. See
http://www.assert-project.net/ for more details
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— automate code production to avoid error-prone manual code that relies on human
interpretation of non-formal (textual) specifications. With most commercial tools, it
was impossible to generate the code of a complete system if all components were
not developed within the same environment; so that engineers still needed to perform
manual integration of system components, which potentially introduced errors. In
fact, automatic code generation was hardly used in practice due to this limitation. In
addition, most code generators were not meant for embedded platforms, and included
constructs that are generally not accepted by space coding standards (e.g. dynamic
memory allocation).

Following the ASSERT project, which documented most of the issues that needed
to be addressed, the European Space Agency decided to create a series of follow-
up studies with the sole objective of realizing all of the “dreams” of the ASSERT
project. This is available today in the form of a set of tools called TASTE, and which
is presented in the following sections (see [CON 10]).

The objective is not to detail all of the outcomes of the ASSERT project. A
theme such as the constantly evolving reference architectures would require details
that would go much beyond the scope of this chapter; instead we focus more on
software-specific aspects (the four other points listed above).

9.4. Modeling a software system using TASTE: philosophy

When we started this project, we first asked ourselves if there was anything that
was so typical to our systems that could explain or justify why barely any tool was
used to support the development phase: no modeling tools, no code generators, no
formal requirement capture.

We have standards that are very demanding in terms of software documentation
and quality but operational projects will hardly comply to requirements regarding the
need for early verification of the system based on models. Then by looking closer at
the existing tools, and there are many on the market, we realized that nothing really
addressed the problem sufficiently. Most of the tools in fact are not applicable for
building complete systems, because they are not meant for engineers — actually, their
target users are rather unclear; they will produce nice drawings but at the same time
will give the user a severe headache.

To be fair, that is not entirely true: if we take a few tools independently from each
other, we can create useful things: control laws, powerful state machines — but not
a single tool that addresses our systems as a whole. To explain this last statement,
look at these observations about our systems: first the nature of embedded systems
is profoundly and fundamentally heterogeneous. This heterogenity goes over at least
three axes:
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— the nature of required software capabilities;
— hardware buses and processors;

— industrial consortia making the systems.

We shall look at these three points.

First of all, inside a satellite, software realizes various functionalities that are very
different from one another: control laws to move the spacecraft in orbit and perform al-
titude maneuvers, system mode management, mission planning, thermal control, com-
munication protocols, etc. In order to achieve these functions, project teams gather
different specialized skills from scientists and software engineers.

Then regarding hardware it is similarly heterogeneous: the microprocessors we
send into space are most often derived from the SPARC architecture, in which the
internal data representation is different from those of the standard PC used to control
spacecrafts from the ground. For this reason, it is for example not an option to send
raw data to the ground without conversion to make sure it will be interpreted correctly.
On-board buses can themselves have addressing schemes that require pre-processing
involving swapping bytes. This kind of manipulation, related to endianness, is of
course well known and frequent, but remains hard to implement because programming
languages do not provide easy mechanisms for bit and byte manipulation.

Third point, in the space sector it is quite common that the development of one
OBSW involves teams from several companies, from several countries, each having
their own way of working, their own development environment, and so on.

Therefore, it is clear that our systems deal with heterogenity, and it is obviously
also the case for most embedded systems.

The philosophy driving the TASTE approach focuses on finding out how to deal
with heterogenity in an automated way. All technical issues seem easy to solve when
taken individually; but is tedious and error prone when everything has to be put to-
gether. This is even more true when systems become distributed, since defining proper
interfaces can quickly become a serious challenge.

Another observation we made is that when we build a new system — whatever
system it is — the most important issue is the aim of the system. We want to make
sure that the biggest effort is put on what makes the system novel and different from
what has already been done in the past. For instance, the orbit and trajectory of a
satellite are central issues that require an important engineering effort. During this
phase, do we want to be distracted by implementation details and to introduce so early
in the design process bulky software artifacts? If the answer seems obvious, look at
existing, real software system specifications and count how often you find references
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to semaphores, binary frame definitions, thread identifications at the very first outline
of a project.

The temptation is strong because it is important to occupy software engineers early,
when they have no direct knowledge of the system, hence no real added value regard-
ing its definition. What we want to point out here is that whatever solution we come
up with, it has to be related to the system requirements, and not to software issues.

A third observation ensues from this last point: the skills of software engineers
in this context are often misused: we ask software experts, whose aspiration it is to
solve technical challenges (such as optimal resource usage) to develop applicative
code. This code, which is often quite simple, consists of performing algorithms that
other people have conceived, as they are experts in that field. At best, this generates
frustration, and at worst the best software developers prefer to move to pure software
companies where they think they can be more efficient. The space sector is partially
protected from this extreme situation, because of its particular appeal but of course this
is not always the case. Then replacing experienced and valuable people can become
a real challenge now that many schools and universities have given up with low-level
languages and concepts to concentrate on web-based developers.

Modeling a software system using TASTE involves spending hours working only
on the system’s capabilities, and forgetting about software technical details. The phi-
losophy is to create tools that take care of all the bothersome tasks and let creative
designers quickly prototype their ideas on the platform of their choice.

9.5. Common solutions

In practice, very few solutions exist that address the problems that we have just
described. In fact, for about 15 years, it is not an exaggeration to say that an im-
portant part of the software community simply ignored them, favoring the solution
that seemed to be accepted by everybody: the UML language. Flouting all efforts
to formalize both syntax and semantics that used to be considered essential not only
to programming languages but also to most other existing modeling languages (SDL,
Lustre), UML gave up with the idea that the development of systems needed to be
supported by a process, and rather proposed a huge palette of sometimes abstruse
graphical editors.

Actually, despite the claims, very few people found a real added value in their de-
velopment when using the UML standard. As a consequence, many research groups
were created and started enhancing the language by adding new concepts, and new
profiles in an inconsistent manner. The unfortunate result is that UML is mostly used
only to create drawings for documentation, and that most tool vendors have disap-
peared from the market or were swallowed by bigger companies that buried their tools.
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In addition to this, companies feel that they have invested a lot in new technologies
and that nothing has come out if it, which of course had the disavantage of undermin-
ing the credibility of people proposing alternate technologies, since in general the
arguments used to support one or the other are close. In theory, modeling software is
a major evolution of the discipline — combined with powerful tools, it can be a break-
through in how we think and develop systems, we have no doubt about that. However,
decision makers now hardly believe it, and we cannot completely blame them for that.
The idea that a unique language can address all the facets of a software development is
absurd and unrealistic, as it amounts to denying the heterogeneous nature of systems.
In practice, who has seriously thought of replacing Matlab or SCADE with UML to
design a control law?

9.6. What TASTE specifically proposes

The TASTE process and tools propose a different solution to address the problems
of capturing system functions and implementing them using modeling techniques. As
systems are heterogeneous by nature in terms of software (different languages) and
hardware (CPU, buses, etc.), one issue is to integrate all software components and
enable communication between system nodes.

What TASTE does is to automate this integration phase by replacing manual (risky)
activity that is, by definition, error-prone. Using modeling languages early in the de-
velopment process enables the properties of the system to be checked using specialized
tools. By doing so, system developers focus on their own part of the system and do
not have to take into account integration constraints of their functions.

Only the non-functional, critical properties are captured at system level; then so-
phisticated and evolutional machinery is used that produces a consistent software set,
guaranteeing that the constraints imposed by the system designers are respected at
run-time. As a result, TASTE generates complete real-time, possibly distributed ap-
plications, running either on top of a real-time operating system combined with a
middleware, or simply on a native, non-real time environment, such as a Linux box.
In addition to this, many functionalities enable an efficient and iterative development
to be created, which facilitates testing and analysis of results at run-time.

To sum up, the TASTE process is divided into four steps:
1) a system modeling phase that abstracts software requirements and constraints;

2) a transformation phase that translates models into a real-time architecture with
all the resources to be used (tasks, semaphores, etc.);

3) a validation phase that verifies (prior to implementation) the feasibility of the
system according to the selected physical architecture;

www.it-ebooks.info


http://www.it-ebooks.info/

The Design of Aerospace Systems

4) a code generation phase that assembles functions and configures the middle-
ware/operating system for their execution. It results in one or several (in case of

distributed systems) binaries ready for execution.

The remainder of this chapter is organized as follows:
— section 9.7 describes the TASTE process;

— section 9.8 details the technology and its underlying tools;

— section 9.9 focuses on the transformation from high-level models into a real-time

execution platform;

— the final section describes the initial feedback from external users who have

worked with TASTE, and the future of the toolset.

9.7. Modeling process and tools

Data View Interface view | | Deployment view| | Functional code
Describe system functions,| | Specify depl t of syst Implementation of functions
- , pecify deployment of system | | ;
Data type definition their parameters and functions on the hardware with trad\tl_ona_\ code (C, Ada)
with ASN1 or application models
implementation language (processors, bus, ...) (SCADE, Simulink, SDL, etc.)
Buildsupport
Data types code| | Concurrency view Glue code
Contal&da_ta tlypes (:egnltlon System description that contains Contain necessary code constructs
in the implementation tasks, data and inter-process to distribute application data over
language (C, Ada, ...) connections the nodes of the distributed system.

%

Architecture code

Code that creates tasks, protected data,
enable data distribution, runtime

services that supports system functions, and

configure the underlying operating system

Implementation binary|
Executable binary that runs on the
target architecture (x86 with Linux,
LEON with RTEMS or ORK, etc.)

Figure 9.1. TASTE development workflow
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Design, analysis and implementation of application involves several languages
(ASN.1 for data modelling, AADL for functional and architecture modelling con-
cerns, etc.) and tools (asnlscc to translate data definition into implementation code,
buildsupport for the generation of application skeletons, ocarina to automate de-
ployment and configuration of applications on embedded and real-time platforms,
etc.), as depicted in Figure 9.1.

Prerequisites consist of the availability of a preliminary software system logical
architecture, which we assume results from a joint project between system engineers
(who know what they want the system to do) and a software architect. This phase is
today out of our scope. What we need is to know the main capabilities of the system,
preferably already translated into a set of functional blocks. Our tools then allow this
knowledge to be captured and make use of this important information.

The main idea is that we do not want to impose a particular language or tool to im-
plement the functional blocks: users can choose those that they consider to be the most
appropriate for each block, and let TASTE take care of the integration. In practice,
TASTE currently supports: Matlab/Simulink, SDL (ObjectGEODE and Real-Time
Developer Studio from Pragmadev), C, Ada and VHDL for hardware blocks.

To ensure data consistency between functions and also create appropriate encoder/de-
coders, data types have to be described using a standardized formalism. For that pur-
pose, the ASN.1 language [DUB 01] was chosen: it is already widely used in the
telecommunications domain and several tools already support it.

To describe the execution run-time with its requirements, the TASTE approach
relies on the Architecture Analysis and Design Language (AADL) [SAE 09]. It ab-
stracts software and hardware concerns with their constraints in a way that we can
process them to validate several requirements and also automatically generate code.

In the following, we present how the process we defined to support this process
that is the capture of high-level interfaces, the transformation to programming code,
as well as the intermediate steps to model each facet (such as deployment, behavior).

9.7.1. Interface capture

The interface view editor is a graphical tool that aims to describe the logical inter-
actions between the various functions of the system. In order to support large-scale ar-
chitectures, functions can be grouped into hierarchical containers. Each function (rep-
resented by a box in Figure 9.2) is described by its provided and required interfaces.
Provided interfaces (triangles) are themselves characterized by a set of non-functional
properties and represent activation entry points of the function.

A provided interface can possess one of the following attributes:
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— a cyclic interface has its own execution context. It does not have any parameters
and is activated according to a fixed period;

— a sporadic interface has one input parameter, its own execution context/task and
is activated at each arrival of incoming data. System designers can specify a minimal
inter-arrival time between two occurrences of an incoming data;

— a protected interface is executed in the same context as its caller. However, when
a protected interface is invoked, the execution run-time ensures that no other execution
entity is accessing the function data. This prevents race conditions that could lead to
errors and failures;

— an unprotected interface is, similar to protected ones, executed in the caller con-
text but does not enforce mutual exclusion between concurrent entities.

Restrict interfaces types ease the validation process: by doing so, the computation
model is strict and clearly defined. Thus, it eases the mapping of the model into a real-
time architecture with concurrent entities (tasks, shared resources, etc.). Finally, it can
be easily imported into scheduling validation tools so that our models can be processed
by appropriate tools to check that real-time constraints are met before implementation
efforts.

In addition, all interfaces should also specify real-time constraints, such as their
deadline (the time until the function has to be performed) and their WCET (worst-
case execution time).

Finally, required interfaces are connected to the provided interface so that the
model depicts exactly interface dependencies between each function.
9.7.2. Deployment and hardware configuration

The deployment view editor (see Figure 9.3) is another graphical tool that is used to
describe the hardware architecture of the system and allocate the functions identified
in the interface view onto partitions located on a processor.

Inter-processor communications can be specified through buses and bus drivers.
Each of these modeling entities can be characterized by a set of properties that are
necessary for further code generation. Similar to the interface view, this modeling
work is stored in an equivalent AADL textual representation.

9.7.3. Behavior modeling

What we call “behavior” is the core of a function, the only thing end users should
really care about. It corresponds to the description of what the function will do when
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Figure 9.3. TASTE deployment view editor

it is executed according to its type (cyclic/sporadic/protected or unprotected) and con-

strains (period, etc.).

Using TASTE, it is possible to express the behavior of functions using virtually
any language. The current supported subset is listed below:

— programming languages:

C, Ada;
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— modeling languages: the Specification and Description Language (SDL), using
either ObjectGEODE or Pragmadev RTDS; the SCADE tool from Esterel Technolo-
gies; Matlab-Simulink;

— hardware description languages: VHDL, System-C.

What we have developed is a technology that is capable of adapting to any tool
generating code with minimal effort, provided that the code generators are compliant
with some constraints imposed by embedded coding standards. For example, our run-
times do not tolerate dynamic memory allocation outside of initialization functions,
and most system calls have to be avoided.

VHDL and System-C are supported, which means that we can also communicate
transparently with FPGA functions.

9.7.4. Vertical transformation

The edited interface and deployment views edition can then be submitted to a “ver-
tical transformation” tool (see Figure 9.4). The aim of this fully automated activity is
to produce a complete combined software and hardware architecture encompassing all
the real-time and distribution properties of the system (in particular a set of processes,
threads, shared resources, etc.). The output of the transformation is another AADL
specification that is called the concurrency view.
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pong pong
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cyclic_activation
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ping_vt

sporadic_ping cyclic_activation

sporadic_ping
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Figure 9.4. Concurrency view

9.7.5. Concurrency view editor
Although the concurrency view can be seen only as an intermediate internal step

within the tool chain, it brings a unique opportunity to perform performance analysis
on a model of the system.
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As the concurrency view is described as a complete and legal AADL architecture,
all the existing AADL analysis tools can be used at that stage. As detailed in section
9.7.1, the computational model of TASTE models has been simplified so that it can be
easily exported to scheduling validation tools. Currently, two tools are integrated in
the TASTE tool chain to perform this validation: Cheddar and Marzhin.

Cheddar is a schedulability analysis tool that aims to perform scheduling feasibility
tests. Based on state-of-the-art scheduling theory algorithms (such as RMS, EDF), it
is able to process AADL models and assess whatever computing resources (tasks,
shared data) can meet their deadlines. If timing requirements cannot be met, it reports
which entity (task, protected data, etc.) is generating a timing error in order to assist
the designer in the refinement of the architecture.

Marzhin is a tool that simulates timing behavior from its architectural description.
It processes AADL models and shows the state of each execution entity (running,
sleeping, waiting for activation, etc.) while system is running. Marzhin details the
state of each task according to its execution constraints (period, deadline, execution
time, etc). For shared data, it shows their use by tasks and the blocking period time
(when they are locked). Using this information, system designers are able to trace
system execution and detect potential issues (such as a deadlock when using protected
data without an appropriate locking mechanism).

The following figure illustrates the use of TASTE-CV with a basic producer/con-
sumer example (a periodic task that produces data and sends it to a sporadic task). In
Figure 9.5, the left column of the tool contains the AADL definition of the system (due
to lack of space, we cannot include the entire model). The upper part of the right side
shows the result of the schedulability analysis performed by Cheddar using various
scheduling analysis techniques. In the following, the task set is schedulable using the
preemptive rate monotonic algorithm. The lower part of the right pane illustrates the
simulation of the system using Marzhin, showing the state of each task (sender and
receiver). The figure depicts the beginning of the system execution, when the sender
task is active (production of a new data) and the receiver is suspended, waiting for
fresh data to arrive on its ports.

9.7.5.1. Other schedulability analysis: MAST

Our toolset also has the ability to export AADL descriptions into MAST mod-
els to analyze system schedulability using MAST. As for Cheddar, MAST provides
several functionalities to analyze system schedulability using well-known scheduling
techniques (EDF, Holistic, Offset-based, etc.). One particular interesting feature of
MAST consists of its ability to consider distribution aspects and take into account the
time required to send or receive data from one node to another (sending through a
network device, data dependencies across distributed systems, etc.).
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Figure 9.5. TASTE concurrency view editor

MAST also provides the capability to automatically compute tasks timing proper-
ties (such as the period). For a given task, the tool deduces its priority according to
its constraints (deadline, execution time, period, etc.). By using this feature, system
designer are assisted in the definition of their architecture, ensuring deadline enforce-
ment.

The use of different tools that provide various schedulability analysis and verifica-
tion techniques strengthen our approach and makes system architecture design more
reliable and robust: designers can verify their requirements using different tools and
consider all aspects of their application, ensuring that requirements will be met before
implementation efforts.

9.7.6. Automatic code generation

The last step of the TASTE modeling process consists of building the executable
application from the functional blocks, the glue code generated by TASTE to handle
transparent communication, and the AADL architecture defining the hardware and
software interactions of the system. The Ocarina tool controls this task and generates
the complete compilable set of source files while taking into account the run time
execution characteristics of the Ravenscar computation model that has been selected
for TASTE. Then compilation and link are performed automatically by the tool-chain
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orchestrator. Several possible operating systems can be used: bare systems using the
Ada run-time (i.e. any operating system having a an implementation of the GNAT
compiler), but also the RTEMS real-time operating system (not depending on the Ada
run-time), which is a standard operating system in space and military applications.
Note, however, that using a C run-time such as RTEMS prevents the benefits of Ada
compiler checks (that can ensure the user does not use forbidden constructs in his
code). We will now give some specific examples of what you can find in TASTE
models and what important features it proposes.

9.8. Technology

With the work described in the previous section, TASTE uses a high-level archi-
tectural view of the system, which formally depicts the partitioning of the overall
system in distinct subsystems and their interfaces. This information is expressed in

the AADL.

The following is an excerpt from an actual design:

SYSTEM cyclic_function
FEATURES
cyclic_activation : PROVIDES SUBPROGRAM ACCESS
interfaceview ::FV:: cyclic_activation . others
{ Taste :: RCMoperationKind => cyclic;
Taste :: RCMperiod => 500 ms;
Taste :: Deadline => 500 ms;};
compute_data : REQUIRES SUBPROGRAM ACCESS
interfaceview :: FV::compute_data. others
{ Taste :: RCMoperationKind => unprotected; };
PROPERTIES
Source_Language => C;
END cyclic_function;
SUBPROGRAM compute_data
FEATURES
my_in : IN PARAMETER DataView::T_POS
{ Taste :: encoding => UPER; };
result : OUT PARAMETER DataView::T_POS
{ Taste :: encoding => NATIVE; };
END compute_data_obj108;

As seen in the example, the interface descriptions include information about the:

— execution profile of the interface — e.g. timing information such as period or
WCET, call type (cyclic, sporadic, etc.);

— implementation language/tool of the interface (e.g. “Simulink”);
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— naming and direction of the parameters (e.g. “result”, “in”) of the interface;

— type of the interface parameters through ASN.1 grammar specifications (in the
example above, “RequestGNC” is a type of the ASN.1 module “DataView””). ASN.1
encoding specifications (e.g. “UPER” stands for Unaligned Packed Encoding Instruc-
tions, one of the many available ASN.1 encodings).

The types of the interface parameters are described in ASN.1 specifications. ASN.1
is an ISO/IEC and ITU-T standard which enables specification of data structures, both
from the semantic as well as the encoding point of view. It is widely used in telecom-
munication protocols, and has been selected for use in TASTE.

T—POS ::= SEQUENCE {
longitude REAL (—180.0 .. 180.0),
latitude REAL (0.0 .. 90.0),
height REAL (0.0 .. 100.0),
subTypeArray Subtypearray

It includes all the semantic information about the data carried across the inter-
face’s invocation, as well as the limitations (ASN.1 constraints) on the values that are
allowed to pass through. For example, the first field (“longitude”) is a real that must
be limited in the [-180.0 .. 180.0] range.

The formal descriptions of interfaces (in AADL and ASN.1) allow TASTE to au-
tomatically handle a number of issues by using the provided information.

9.9. Model transformations

The TASTE process is made of several model transfomations step. We now detail
them.

9.9.1. Model to model

This transformation is supported for a variety of modeling tools (Simulink/RTW,
ObjectGEODE, Pragmadev RTDS, etc.) and implementation languages (Ada, C, Sys-
temC/VHDL). As it is based on the AADL/ASN.1 model, it is always guaranteed to
generate the same semantic content for the interface parameters, regardless of the im-
plementation tool/language — i.e. the “translated” definitions of the ASN.1 types are
semantically equivalent in all the supported target tools/languages. Figure 9.6 shows
the generation of Matlab/Simulink function from its definition within the Interface
View: the process creates input (my_in) and output (result) parameters to interact
with the remaining functions of the system.
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Figure 9.6. Skeleton file generated for Simulink

9.9.2. Model to code

When functional modeling is completed, the code generators of the modeling tools
are invoked, and C code is generated. Modeling tools generate code in different ways,
however — and even though (thanks to the previous step) the data structures of the gen-
erated code across different modeling tools carry semantically equivalent information,
the actual code generated cannot interoperate as is:

/= Declaration from ObjectGEODE :/

typdef struct {
GU_RG_51_10 fd_height;
GU_RG_50_9 fd_latitude;
GU_RG_49_8 fd_longitude;
GU_SEQOF _52_11 fd_subtypearray;
} GU_T_POS;

/% Declaration from Simulink =/

typedef struct {
real_T longitude ;
real_T latitude ;
real_T height;
Subtypearray_type subTypeArray;
} T_POS;

Therefore, integrating the code generated by different modeling tools requires
“data bridges” to be built that translate (at run-time) the data structures from one mod-
eling tool to those of the other and vice versa. Manually creating these data bridges
would be a very error-prone process, and would have to be repeated if the messages
were changed. In TASTE, they are automatically built by our custom-made code gen-
erators.
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9.9.3. Automated GUIs and regression checking using Python scripts

In the overall AADL system design, the designer can specify the subsystems for
which a graphical user interface should be created (see Figure 9.7). The TASTE tool
chain reads the interface information of these subsystems and automatically generates
code for interactive graphical user interfaces that operate on these interfaces. These
GUIs provide real-time access to running systems, allowing information exchange,
e.g. invoking telecommands or receiving real-time telemetry. The same information
is also used in order to build Python run-time bridges that allow real-time interaction
with a running system. Complex regression checking suites can be written easily with
the combined clarity and brevity (and developing speed) of a ubiquitous scripting
language.

Figure 9.7. GUI and tests functions provided by TASTE

Telemetry can then be piped to plotting and monitoring applications, for easy real-
time monitoring and control of running systems.
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9.9.4. Generation of interface control documents (ICDs)

In order to support legacy development, one of the TASTE tools (the ICD gener-
ator) automatically creates an interface control document that describes all interface
parameters as they are encoded at the bit-level from ASN.1 encoding (see Figure 9.8).
This allows interoperability with other development teams that choose — for whatever
reason — to not use the TASTE tools. Following the same philosophy as the rest of
the TASTE tools, the ICD generator allows the designers to get free and immediate
updates of their ICD, without the cost (and potential errors) involved in a manually
maintained ICD.

Figure 9.8. Generation of ICD

9.9.5. ASNISCC and ACN (ASN.1 Encoding Control Notation)

As the primary target of the TASTE process and tools is the space domain, we cre-
ated a custom ASN.1 compiler (ASN1SCC) that generates code specifically designed
to be executed in limited-resource environments. It involves no dynamic memory, it
uses no system calls, and is portable to all the target architectures, including Leon
(i.e. the generated code includes no outside references to “black-box” libraries). To
support legacy encodings and be able to communicate with existing protocols and im-
plementations, the ASN.1 compiler was enhanced with the ASN.1 encoding control
notation (ACN) which enables direct control of the encoding — i.e. the binary format
of the generated streams.

9.9.6. Support for hardware development

The TASTE method and tools have been recently upgraded to also support devel-
opment (and automatic integration) of hardware components. If a subsystem is marked
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with “VHDL” or “SystemC” in the high-level AADL specification of the interfaces, it
automatically acquires VHDL and SystemC skeletons (in the “model-to-model” phase
described before) as well as the appropriate device drivers (in the “model-to-code”
phase) that communicate with the chip at run-time (see Figure 9.9).

x
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Write your VHDL finish_compute : out std_logic;
code by filling the rst_compute : in std_logic;
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. )i
template. Integration end compute;

is then automated

architecture archicompute of compute is

Figure 9.9. VHDL integration within TASTE

9.10. The TASTE run-time

Modeling time and effort is a valuable asset that is to be used and reserved for the
construction of the final system. To do so, the TASTE tool-chain integrates a set of
code generation tools to map all models down to the source code targeting a dedicated
run-time environment.

Let us describe it from a top-down perspective. From the full set of models (ASN.1
and AADL), we have a complete description of the system: types manipulated, in-
terfaces of processes and threads, connection topology, and flow of information and
interaction. These models are used as direct inputs to build an appilcation-specific
run-time using the Ocarina code generator, and the PolyORB-HI set of run-times.
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9.10.1. The Ocarina code generator

We rely on Ocarina code generation facilities (see [HUG 08]) to generate opti-
mized code for all entities which can be optimized through a careful examination of
the architecture: communication buffers, structure of requests, request marshaling/un-
marshaling, optimized task body, so as to avoid dead code. We have extended the
Ocarina AADL-to-code tool-chain to also integrate device drivers as model artifacts.
Such modeling allows seamless integration of both functional code (as application
blocks), and device drivers.

In the context of TASTE, functional code is the output of the previous code gener-
ation steps: code generated for marshaling ASN.1 data types definition, or generated
from other modeling framework supported by TASTE: SDL, Simulink, etc. Device
drivers are integrated as functional models with a specific interface for (1) initializing
the driver using dedicated API provided by the underlying RTOS, (2) sending or re-
ceiving data. Point (2) is modeled as any functional block using the same modeling
artifacts as the functional code for concurrency (e.g. how to process data in parallel,
etc.), and the call to the driver API to perform the actual send/receive.

Such an approach greatly eases the integration of protocols or drivers: they are
seen at the same level as the functional block, and take advantage of the whole TASTE
tool-chain to combine functional blocks, drivers and the generated code.

9.10.2. The PolyORB-HI middleware and the operating system

The generated code targets the high-integrity run-time infrastructure PolyORB-HI.
This infrastructure acts as a portability layer for the integration of multiple languages
(C or Ada), RTOS APIs (Ada Ravenscar, RT-POSIX, RTEMS), but also for the inte-
gration of device drivers (serial, Ethernet, SpaceWire). PolyORB-HI acts as an AADL
run-time: it provides support for each model pattern defined at the upper-level. Two
variants of PolyORB-HI have been implemented: an Ada variant, which relies on the
RCM. It defines a set of patterns for deterministic concurrency. It makes provision for
analyzability through the RMA and RTA frameworks. In addition, great care has been
taken to ensure that the code meets more stringent requirements for high-integrity: the
compiler to ease code review, and strengthen quality enforces restrictions that explic-
itly forbid dynamic memory, object-orientation or pointers. This variant runs either
on native systems, RTEMS, or on the bare-board ORK+ [VAR 05] or GNAT Pro for
high-integrity run-times.

A C variant, that uses the same concepts from the RCM, on top of the RTEMS
operating system, or the RT-POSIX. Although C provides less support to check code
quality, great care has been taken to ensure a level of quality similar to the Ada vari-
ant. The choice of one variant is mainly dictated by the availability of specific device
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drivers (e.g. CAN, MIL-1553, GPS receiver, etc.), or non-functional properties like
memory overhead of the RTOS, run-time performance (such as WCET or jitter), and
analyzability features. Current case studies did not fully evaluate schedulability of sys-
tems; this is currently on-going work. We have evaluated the impact of each variant in
terms of memory consumption. Ada on top of RTEMS is obviously more demanding
in terms of memory, than RTEMS/C and ORB+, which is a restricted kernel. Let us
note that ORK+ also provides better safety capabilities thanks to the use of Ada, yet it
lacks the driver support of RTEMS/C.

In general, we consider that TASTE does not generate any particular overhead,
compared with an equivalent code that would be hand written. As an example, a
simple binary containing a couple of threads will not occupy more than 15-20 kbytes,
including everything, and running on Linux.

Both Ada and C variants provide the same level of support to the application: the
same patterns can be applied. In addition, we are currently integrating more drivers to
ORKH+ to ensure both variants are equal from the designer perspective.

9.11. Illustrating our process by designing heterogeneous systems

We shall illustrate the development process using a specific example, which is a
simple system with several producer/consumer, deployed on heterogeneous hardware.
It shows the overall deployment process, describes how we specify each view (data
view, interface view and deployment view) and presents some metrics about memory
consumption, emphasizing the low overhead introduced by the code generation.

9.11.1. Case study overview

Pinger | serialbus Pingee1
(x86/Linux) (LEON/RTEMS)
Spacewire
bus
Final Pingee|seriaibus | Pingee2
(x86/Linux) (LEON/RTEMS)

Figure 9.10. Case study: overview

The overall architecture of the case study is depicted in Figure 9.10. It is composed
of four distributed nodes that communicate over several networks. The first node,
“pinger” periodically produces data and sends them to the “pingeel” node through a
serial bus. The “pingeel” node forwards the data to the “pingee2” node through the
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serial bus. Then, the data are finally transmitted to a last node, “finalpingee”, through
a serial bus. This last node on the chain prints the data initially produced by “pinger”.

Nodes “pinger” and “finalpingee” are running a traditional x86 processor with
a regular Linux operating system (such as Debian or Ubuntu) while “pingeel” and
“pingee2” use a LEON processor (SPARC architecture) with the RTEMS operating
system.

This case study is then the opportunity to demonstrate the following points:
— smooth integration of application languages into distributed architectures;

— automatic handling of architecture-dependent concerns, such as data encoding
across the distributed nodes;

— schedulability validation prior to implementation efforts;

— integration flexibility: each node communicates with another using different
buses (serial or spacewire).

Each following subsection illustrates these points more precisely by describing the
development process. We first define the data view which describes types to be used
within the distributed system. Then, we present the interface view which contains
functions executed by each node and its associated deployment view which specifies
the execution platform with its constraints (processor architecture, buses, etc.) and
describe the distribution strategy of each function over the nodes.

9.11.2. Data view

As we have reduced the data of the system to the minimum, we only exchange
integers across system functions. For that reason, the data view of our system is quite
basic and defines an basic integer using ASN.1. The definition is shown below:

DataView DEFINITIONS AUTOMATIC TAGS ::= BEGIN
My-Integer ::= INTEGER (0 .. 65535)
END

From this ASN.1 specification, appropriate tools export data types definitions into
AADL models so that they can be integrated by the other tools. This export func-
tionality provides an exchange format for the data types and eases the integration of
ASN.1 types in other models.
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Figure 9.11. Case study: interface view

9.11.3. Interface view

Once the data types have been defined, we specify system functions in an interface
view, illustrated in Figure 9.11. Four functions are defined (one function per node):

1) “pinger”, which produces the initial integer and transmits it to “pingeel”. As
this function is executed on a periodic basis, it has a cyclic interface that triggers
system activation according to a fixed period (1 second);

2) “pingeel”, which provides a sporadic interface to receive data from the “pinger”
function. Application code is then triggered when incoming data are received and
forwards them to the “pingee2” function;

3) “pingee2” is similar to the “pingeel” function (and so, uses a sporadic interface)
and transmits received data to the “finalpingee” function;

4) “finalpingee” function provides a sporadic interface that prints the data received
from “pingee2”.

9.11.4. Generating code skeletons and write application code

Once the interface view has been defined, TASTE tools generate:

— application skeletons, which contain function interface prototypes to be com-
pleted by system developers;

— glue code, which automates data communications through system functions. For
example, in our system, the glue code provides a function to send data across the
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nodes so that developers do not have to worry about the underlying bus on the remote
target that receives the data. These functions automatically request the appropriate
encoding functions so that all architecture-dependent concerns (such as endianess) are
dealt with.

The following listing describes the application skeleton generated for the “pinger”
function.

extern void pinger_RI_receive_int(const asniSccMy_Integer *);

void pinger_startup()

{
}
void pinger_PI_activator()
{
/* Write your code here! */
}

The pinger_startup() function can be filled by the developer to perform ini-
tialization procedures (data to be created, etc.). Then, the pinger_PI_activator()
routine is called periodically, when the interface is triggered. As the activator interface
is periodic, it is triggered cyclically, each second. Finally, the generated code also con-
tains the pinger_RI_receive_int (). This function corresponds to the glue code,
which automatically encodes its argument and sends it on the appropriate required
interface: in that case, it transmits data to the “pingeel” function.

Developers then completes the code, the following listing shows a code example
for the “pinger” function:

void pinger_startup()
{

printf ("PINGER STARTS\n");
}

int foo = 0;

void pinger_PI_activator()

{
printf ("PINGER SENDS %d\n", foo);
asnlSccMy_Integer tmp = foo++;
pinger_RI_receive_int (&foo);

}

According to its code, the function prints a message when the function is ini-
tialized. Then, at each second (when the cyclic interface is triggered), it increments
a global variable and sends its contents to the “pingeel” function using the routine
pinger_RI_receive_int () provided by the glue code.
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9.11.5. Deployment view

Then, we define the execution environment (processors, boards, buses, and de-
vices) and bind each function to a platform by defining the deployment view, illus-
trated in Figure 9.12.
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Figure 9.12. Case study: deployment view

As the system is executed on four separated nodes that communicate with each
other, we define four boards, one for each function. Then, on each platform, we add
devices that aims at enabling communication links across the nodes:

—nodes for the “pinger” and “finalpingee” functions host a serial line device to
communicate with the LEON over the serial protocol;

—nodes for the “pingeel” and “pingee2” functions contain two devices: a se-
rial line device to exchange data with “pinger” and “finalpingee” functions and a
SpaceWire device to communication between the two LEON boards.

Finally, devices share communication buses, modeling the specific cables that are
connected through the nodes. Aggregation of these components aims to depict the
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execution environment, providing all necessary elements to generate the complete run-
time system.

9.11.6. Concurrency view and schedulability analysis

Once data, interface and deployment views have been defined, our tool translate
these models into a concurrency view that instantiate system functions and adds all the
required resources to implement the system. The result is an AADL model that con-
tains execution components, such as processes, tasks, or shared resources (variables,
mutexes, semaphores, etc.) with all their properties (period, deadline, priority, etc.).

As this description contains all the non-functional requirements regarding the ex-
ecution, dedicated tools can process and analyze it. In the context of high-integrity
system, one major concern is the real-time requirements and the system designer may
want to check their enforcement as early as possible in the process. Our tool chain
interfaces the so-called concurrency view with two scheduling analysis tools: TASTE-
CV and MAST. The following paragraphs illustrate their use in the case study.

TASTE-CV analyzes the generated concurrency view for the simulation or the val-
idation of scheduling aspect of the system. For scheduling validation, it relies on the
Cheddar scheduling validation tool: TASTE-CV transforms the concurrency view into
a suitable representation for Cheddar. Then, the Cheddar [SIN 08] tool analyzes the
system and its executable entities, ensuring that real-time constraints can be met (dead-
line, execution time, etc.). Depending on system entities and requirements, Cheddar
outputs the result, detailing whether scheduling constraints are met or not. The upper
part of Figure 9.13 shows the scheduling analysis performed in the case study.

TASTE-CV also embeds Marzhin, a system simulator. This analyzes the sys-
tem and simulates it, showing the execution of system tasks, shared resources, and
mutexes. To do so, it takes into account specific system requirements, such as the
scheduling policy, tasks and shared resources properties (priority, period, deadline,
locking policy, etc.). The bottom part of Figure 9.13 shows the simulation in the case
study.

MAST [HAR 01] also provides scheduling validation functionalities to ensure that
timing requirements of the system are met. Even if the approach is similar to TASTE-
CV and its associated Cheddar tool, it also provides other functionalities, such as the
analysis of distributed aspects. Indeed, MAST is able to analyze timing aspects with
respect to communication concerns (such as buses latency). As a result, depending
on system deployment and environment, scheduling validation is more accurate with
either MAST or Cheddar.
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Figure 9.13. Case study: concurrency view edition with scheduling validation functions

To interface the generated concurrency view with MAST, our tool chain converts
it into a new representation for MAST (a XML file). This translator transforms exe-
cution entities (tasks, shared resources, processors, buses) from AADL to a suitable
representation. Then, MAST analyzes the system according to a specific scheduling
protocol and indicates whether scheduling constraints can be met or not. Figure 9.14
shows the result of the scheduling validation in the case study.

These validation functionalities are quite useful for system designers: they ensure
enforcement of real-time constraints early in the development process. However, it is
possible to do that for two main reasons:

1) the language used to describe system architecture and its associated execution
entities (AADL) does not introduce ambiguous notation and clearly defines each entity
property or constraint. Then, these models can be processed later and can be translated
into another representation, such as that used by Cheddar or MAST;

2) the concurrent execution model introduces important assumptions and is clearly
defined from a semantic point of view so that it can be easily processed by scheduling
validation tools. Indeed, our approach relies on four different types of execution model
to execute system code (cyclic, sporadic, protected, and non-protected). In this way,
task constraints are clearly defined and their execution does not introduce construction
that can break scheduling analysis.
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System-file Resultsfile Help

|Mode|ing and Analysis Suite for Real-Time Applications| I MAST

|Current System[ ]|

System | Processing Resources |Transaction5 | Shared Resources

Model Name[ ]
Maodel Date[ ]
Generation Tool [MAST Schedulability Analysis, version 1.3.8.0 ]

Generation Profile [mast_analysis offset_based_optimized !tmprlSdWOhrPchmast-model.tx'tJ

Generation Date [2011-01-20T14:58:43 ]
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Figure 9.14. Case study: scheduling feasibility analysis with MAST

9.11.7. Memory overhead metrics

Generated applications were analyzed to assess their compliance regarding high-
integrity requirements. The previous section presented the validation of real-time con-
straints, the following paragraphs shows how our approach deals with embedded re-
quirements.

In embedded systems, one major concern is the memory footprint. Indeed, high-
integrity systems use specific memory footprints (protected against various hazards
that occur in hostile environment) that are very expensive. In addition, application
binaries must contain only required functions and avoid so-called dead-code (code
that should not be executed but could be invoked in case of security or safety issues,
such as buffer overflow).

Memory analysis of generated applications was performed, results are illustrated
in the table below. In Table 9.1, we report memory metrics for each layer of the
system:

— application size (code written by the user);

— glue size (code that encodes/decodes data and interfaces the middleware with the
application code);
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Pinger Pingeel Pingee2 Final Pingee
Memory (stripped) |23 kB 275 kB 274 kB 24 kB
Function size 3kB (12%) |3kB (2%) 3kB 2%) 4 kB (18%)
Glue size 12 kB (46%) |12 kB (7%) 12kB (7%) |8 kB (35%)
Middleware size 11 kB (42%) |33 kB (18%) |(32kB (18%) |11kB (47%)
Executive/OS size |N/A 133 kB (73%) {133 kB (73%) |N/A kB

Table 9.1. Metrics for each system layer

— middleware size (functions that manage all executable entities of the system,
handle device drivers and adapt the generated code to the underlying operating sys-
tem);

— execution run-time/OS size.

Function/application size is quite small. This result is expected as we only write
some C code that outputs data on system terminal. The size of the glue represents
only a few kilobytes. It means that the implementation approach avoids many com-
mon issues of high-integrity system design by introducing a small memory overhead.
Middleware size is also quite small: a few kilobytes to integrate the generated code
and system functions with the underlying hardware, as other middleware (such as
CORBA) traditionally introduces dedicated programs that consume several megabytes
of memory just for framework implementation. Finally, the size of the execution plat-
form can be measured only for the LEON target as it is contained in a single object
file. For Linux nodes, it is difficult to evaluate the size of the run-time as it relies on a
monolithic kernel and a specific C-library. One solution would be to consider the size
of the kernel and its associated C-library, but the result would not be accurate as the
kernel was built to run a complete system that collocate many other applications.

Our design approach introduced only a few kilobytes of memory overhead. Com-
pared to other approach, it reduces the amount of code used to interface application-
level concerns with the execution environment. In other words, the cost of automatic
application integration can be considered as quite small compared to the benefits it
brings to system developers: no integration problems of heterogeneous systems, au-
tomatic integration with device drivers, etc. Then, the decision to use such a method
to design high-integrity systems would reside in the assessment of its accuracy: is it
better to continue to use traditional approaches and deal with all these well-known and
old problems? Ofr is it possible to afford a small memory overhead and avoid all these
implementation traps and pitfalls from the beginning of the development? The choice
is up to developers and designers; solutions are now available to them.
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9.12. First user feedback and TASTE future

The complete development of TASTE required a significant amount of work and
time to reach the level of a full working prototype with an appropriate level of maturity.
Most of the work was initially concentrated on the development process that TASTE
is supporting as we consider it more important than the technologies used. Then,
we focused on the modeling languages and integration issues to deliver something
that requires a small effort at the beginning but affords many benefits in the end, by
automating most of the development phases and ensuring system consistency.

When the initial prototype turned out to be an efficient product, we decided to give
the system and software designers a chance to experiment it. As for any new product
or technology, potential users are initially confused by the richness and complexity
of the proposed solution. Developers and users have to work together with an open
mind to succeed. The very first steps on user side were carefully accompanied by
strong support provided by the tool’s developers. Questions were asked and answered,
comments were processed and disagreements about the way TASTE was dealing with
the process were expressed and discussed.

Strong cooperation between teams was essential to overcome the initial barriers
and address the real issues. Although we claim that TASTE was compatible with
different kinds of existing programming or modeling languages that were familiar to
software designers, using the toolset requires the use of two additional languages:
AADL and ASN.1, but TASTE designers were clever enough to simplify its use by
providing a graphical user interface that hides the AADL description. This clearly
speeds up the learning curve while keeping the advantage of using a system design
language backstage for possible future property verification and connection to addi-
tional tools. Using such an approach maintains the benefits with a limited disavantage
at the system design level. ASN.1 was somewhat newer to most of the users but at
the same time quite close to very well known programming languages. The idea of
having a data model that was fully integrated to system design and used consistently
to produce full software by ensuring the right integration of software components, was
really new to many users. In existing projects, data models are not formally defined
and nothing exist to ensure automatic consistency from top to bottom, except the Inter-
face Control Documents but they are just papers. Most of the users found ASN.1 very
valuable up to the point where they could envisage the use of this language outside the
TASTE environment.

Although the benefits were clearly identified (a user even claimed he success-
fully generated a complete software implementation that exhibits higher performances
than the manually coded version), some limitations were found. A category of users
claimed they did not need such technology as they usually do not have heterogeneous
systems. In a sense they were right when they see software development as a pure
programming activity and not as a combination of modeling and programming. Other

www.it-ebooks.info


http://www.it-ebooks.info/

The Design of Aerospace Systems 225

users regretted the absence of key support functions, such as traceability management
tools, configuration management facilities, or document generation features. At least
such remarks prove that the core facilities offered by the tool were found efficient up
to the point where people may envisage the full deployment of the tool.

9.12.1. The future of TASTE

Following the long and hard development phases of TASTE, and having analyzed
the first user’s feedback, we are now at a point where the future of this technology
will be carefully defined. Part of this future is made of technical perspectives; the
rest is dealing with the toolset itself as a potential commercial product. From the
technical side, we see many open opportunities related to the use of standard languages
or coming from user feedback. The use of AADL is clearly a strong advantage as it
ensures that TASTE can be easily integrated into a system development process using
the language to capture and verify system designs.

The flexible architecture also guarantees the future inclusion of additional lan-
guages in a way similar to that achieved for the currently supported languages. User
suggestions provided us with many interesting ideas to improve the usability in a real
industrial environment (connection to process support tools, extension of testing fea-
tures, etc.). TASTE in its current state is close to a commercial product that would
be usable in an industrial context. Each underlying technology (AADL, ASN.1, etc.)
can be used independently having already a positive impact on a standard develop-
ment process, but TASTE by itself is more than the sum of its components and brings
additional benefits when used in its entirety: automatic design and code generation,
consistency insurance with the data model, flexibility with respect to the various de-
velopment platforms. This led us to open discussions with the development team and
potential users to clearly identify commercial interest and build a commercialization
strategy for TASTE, possibly outside the space domain. Regarding licensing schemes,
at the moment most of the TASTE tools follow a GPL license for non-commercial use.

9.13. Conclusion

The flexibility brought to digital systems by software components is so high that
it seems that there is no limit to the functions those systems can handle. However,
increasing system complexity is now pushing software engineering to the limits of
currently used technologies and this convinced the initiators of ASSERT to propose a
new approach. The main drivers of this new process are first to capture a minimal set
of inputs from the system designer, to automate most of the software implementation
tasks and to restrain programmers with the use of rigorous rules. As a positive result,
a good consistency is preserved during system design, multiple implementations can
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be generated from one unique model, and the time from design to code is drastically
reduced.

This new approach is the result of initial efforts partially funded by the European
Commission under the FP6 ASSERT Project and further completed by ESA fund-
ing. TASTE is now a fully operational toolset that captures the system architecture
with AADL, defines the data model with ASN.1, and finally, combines heterogeneous
components into an homogenous software application to be uploaded on different tar-
gets up to the flight model. Different extensions are today undergoing research or
planned by the community with the financial and technical support of ESA (links to
system modeling tasks, introduction of hardware components, and connection to de-
velopment process support tools such as configuration management tools).

The choice of standard languages, such as AADL and ASN.1, together with the
open architecture of the tool implementation leaves many doors open for extensions to
better cover all the design steps from system requirement capture down to software de-
ployment. Initial user feedback clearly indicates that TASTE does not have everything
a system designer may wish to have but provides strong support to ensure consistency
down to software deployment and reduces the risk of having integration difficulties,
which generally impact on the development schedule. The community that created
ASSERT is now contemplating the different options to disseminate and possibly com-
mercialize TASTE, while maintaining a steady effort to extend its capacity: the main
goal is to push forward the current technological barriers and release the system de-
signer to develop new ambitious missions in the space sector within acceptable budget,
and quality envelopes.

A last word: many thanks to the development team for providing input to this
chapter, and for the excellent work they undertake on a daily basis for TASTE. In par-
ticular we are very grateful to Thanassis Tsiodras and George Mamais from Semantix,
Eric Conquet from ESA, and Pierre Dissaux from Ellidiss.
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Chapter 10

Introduction to Security Issues in Distributed
Systems

10.1. Problem

Distributed systems intrinsically exhibit communication between processes that
can be situated at different locations, on different machines. Their functioning should
satisfy two categories of properties:

— safety properties, which guarantee the correct operation of the system itself. In a
standard operating regime, no undesired event or situation should occur [BER 01];

— security properties, which prevent an intruder from misbehaving.

These two categories of properties are generally necessary for the correct behavior
of any distributed system. The techniques employed to guarantee these two kinds of
properties differ.

10.1.1. Safety
As mentioned in the previous parts of this book, numerous applications present
critical aspects, in particular embedded systems. A failure of such a critical system

may have severe consequences, be it economic (loss of costly hardware material), or
human (such as the malfunction of healthcare equipment or a nuclear power plant).
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A communication protocol constitutes a typical example of a system exhibiting
safety characteristics: messages must transit from an emitting process to one or sev-
eral reception processes. Even though the communication medium loses messages,
the protocol should ensure that any message sent will eventually be received (safety

property).

When designing such critical systems, an a priori analysis ensures that desired
properties will effectively be satisfied. For that purpose, several steps are followed, as
detailed in Volume 2, Part 1:

— a formal model of the system is designed. The target language depends on the
kind of system modeled, its expected qualitative and/or quantitative properties;

— the expected properties are expressed in some logics, compatible with the chosen
modeling language;

— model-checking techniques then help to formally, i.e. mathematically, check that
the properties hold for the model [BER 01, CLA 00].

However, when designing large critical systems, these model-checking techniques
may fail. Indeed they perform an exhaustive exploration of all states the system can
reach. Then, the “state space explosion problem” often occurs. Some techniques, such
as those presented in Volume 2, Part 2, cope with this problem by reducing the state
space, but this may not be enough to guarantee the properties remain.

Middlewares (e.g. AADL [SAE 10], see also Volume 2, Chapter 5), as in the air-
traffic control project of Chapter 9, provide a software environment for which part of
the system properties are correct by construction, as the tool suite handles the devel-
opment from the modeling phase until code generation.

10.1.2. Security

The security problem is concerned with the possible intrusion of a misbehaving
party within the distributed system. An external actor may spy upon the communica-
tion between two processes and can even change the content of messages exchanged.
The actions of this external actor can thus modify the normal behavior of the system,
and may cause dramatic consequences, such as the modification of a bank transaction,
a critical calculus result, etc. Hence, several problems arise:

— confidentiality of the exchanged information: an external party should not be
able to understand the information he accesses. If he is aware of some information, he
does not have the means to interpret it;

— integrity: a third-party must not be able to alter data;

— authenticity of a message guarantees that the receiver knows the actual sender;
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— finally, a message cannot be repudiated by its receiver, which cannot then pre-
tend it was not received.

The following sections introduce the security issues that will be further described
in Chapters 11 and 12 of this book.

10.2. Secure data exchange

In order to represent data exchange between processes or users, the paradigm of
two persons, Alice and Bob, is often used, where Alice wants to send a message to Bob.
This message is a secret and should not be read by anybody else. Hence, an intruder,
usually named Charlie, must not read the message. Moreover, Charlie should not be
able to alter Alice’s message, nor replace it with his own, or make Bob believe he is
Alice.

EXAMPLE.— Let us consider this example with a surface mail message (included in a
packet). The packet is such that padlocks can be used to secure the contents. The post-
man has some grudge against Bob and Alice, and thus is motivated by bad intentions.
Initially, each person has his/her own padlock and the corresponding key. A possible
communication among these different actors is depicted in Figure 10.1.

Alice Charlie Bob
A
A A
A A
A A

Figure 10.1. Communication between Alice and Bob, spied on by Charlie
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In this scenario, Alice sends a packet with her padlock. The postman, Charlie,
intercepts the packet, adds his padlock, and sends it back to Alice. She then believes
the new padlock belongs to Bob, and thus removes her own, before sending the packet
again. Charlie can then intercept it, remove his own padlock, read the message, and
then transmit the packet to Bob, operating as Alice would have.

This example exhibits several problems:
— Charlie obtained knowledge of the secret message;
— when Charlie reads the message, he can also modify it;

— Alice and Bob believe they communicate with one another (the addresses of
both the sender and the receiver are correct) and they do not suspect the postman of
any misbehavior.

The techniques used in this simple example give the feeling that some security
is guaranteed; however, it is not the case. The famous Needham-Schréder proto-
col [NEE 78] has widely been used before a weakness was discovered [LOW 95].
Hence, efficient techniques are rather elaborate and complex.

10.3. Security in specific distributed systems

Section 10.2 has given evidence of some general security issues, which may hap-
pen during communications within a distributed system. These problems also occur in
more specific frameworks, such as grid computing. The solutions used in such cases
are adapted to the specifics of the system configuration, its hardware and software
characteristics. The mechanisms used to guarantee the system security derive e.g.
from the system operating on an open network (which can then possibly be accessed
by external intruders), or not (as is the case when using an institutional grid).

10.4. Outline of Part I1I

This part aims to present the security problems inherent to distributed systems, as
well as the techniques used to counter these problems. This part is divided into two
chapters, the first showing the techniques specific to grid computing, while the other
has a more general nature, addressing ciphering issues.

Chapter 11 tackles the security problem in grid computing. In such a context,
security and safety issues are intertwined. The main types of grids are presented. They
are dedicated to support different sorts of applications. Criteria and practical aspects
are presented. The main grid computing systems use specific methods to address
security problems, depending on the intended use of the system and on the particular
attacks that the grid is vulnerable to.
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Chapter 12 introduces cryptography and ciphering. First, the basic concepts are
described, along with the expected properties of the ciphering systems. As intru-
sions operate with numerous mechanisms, the safety of a cryptographic system can
be measured by criteria for resisting particular attacks. Two main classes of cryp-
tographic algorithms are distinguished: symmetric algorithms and public-key algo-
rithms. Chapter 12 describes their characteristics, how they operate, and details the
classic algorithms.
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Chapter 11

Practical Security in Distributed Systems

11.1. Introduction

Among the large number of available distributed systems, such as client-server,
peer-to-peer (P2P) systems to name a few, this chapter focuses on one type of dis-
tributed system: namely, the grid paradigm. The concept, and some of its variants,
will be introduced later in the chapter. For this architecture, we mainly discuss se-
curity and safety issues in this chapter. We cover the following topics after a general
presentation of the notions:

— confidentiality;

— authentication;

— availability;

— ensuring resource integrity;
— result checking.
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11.1.1. Grid typology

Grid computing [FOS 01] is a term referring to the combination of computer re-
sources taken from multiple administrative domains to solve a certain problem requir-
ing a lot of computing power. We can say that grid computing is mainly about coordi-
nating computation across domains. This is a key property. Grid computing is distin-
guished from conventional high-performance computing systems (HPC), such as clus-
ter computing, in the sense that grids tend to be more loosely coupled, heterogenous,
and geographically dispersed. Grids are often constructed on top of general-purpose
grid software libraries known as middleware. In grid computing, many middlewares
have been developed in recent years, such as Globus and Unicore. Many developments
are still running under the supervision of the Open Grid Forum ! (OGF). Large grids
with dependable computing resources under the control of large supervising coun-
cils (the union of the members, each providing a significant amount of resources) are
called production grids. Some of these grids have open access (for free, for an annual
fee, for a per-job fee), others are not (they act as private clusters; they are sometimes
called enterprise grids). National grids are another specific case, where the supervis-
ing entity is a public organization affiliated to the Ministry of Science (or equivalent).

A grid is characterized by its hardware infrastructure as well as the middleware it
uses. The chosen middleware is therefore a key aspect of a grid definition. For in-
stance, the Simple API for Grid Applications (SAGA) is an open standard defined and
maintained by the Open Grid Forum (OGF) that describes a high-level interface for
programming grid applications. In fact, SAGA is ultimately a set of OGF documents:

— SAGA use cases: an experimental OGF document describing the target use cases
for SAGA;

— SAGA requirement analysis: another experimental OGF document that extracts
specific requirements from the use case document;

— The SAGA core API specification: the basis of the standard, defining the look
and feel of the SAGA API,;

— SAGA API extensions: additional functional API extensions that use the look
and feel of the SAGA API,;

— SAGA API language binding: mapping of the language-neutral SAGA API to
various programming languages.

OGF is a group of people promoting grid infrastructures. OGF also promotes
standards and, more specifically, the subgroup working on security issues promotes
the following standards:

— Certificate Authority Operations Working Group (caops-wg);

1. http://www.ogf.org.
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— Firewall Issues Research Group (fi-rg);
— Levels of Authentication Assurance Research Group (loa-rg);

— OGSA Authorization Working Group (ogsa-authz-wg).

Contrary to production grids, desktop grid systems represent an alternative to su-
percomputers and parallel machines, offering computing power at low cost. The nodes
of such distributed systems are made of personal computers (PCs), located at home
and the underlying network is the Internet. The key idea is also based on volunteer
computing: if a computer becomes available, then it downloads a code and data from
a server, computes a result, then returns the result to the server. This concept has been
popularized by the Seti@Home project from the University of Berkeley, over 10 years
ago.

Desktop grid [KON 04, AND 02, CHI 03, LO 04] systems are attractive when
running distributed applications with significant computational requirements. The
Seti@Home [AND 02] project is one of the many success stories. While the increas-
ing number of users of such systems does demonstrate the potential of desktop grid,
current implementations, for instance BOINC [BOI10, AND 04], United Devices?2,
Distributed.Net 3, and Xtrem-Web [FED 01, CAP 05b] still follow the client-server or
master/slave paradigm. The computing power that can be obtained from these systems
is constrained by the performance of the master node 4. This is particularly the case
for data-intensive applications. Then, depending on the performance of the master
node, with thousands of workers (or slaves) and user applications, the central sched-
uler could become a bottleneck. Such a problem does not occur with a decentralized
resources’ management. Furthermore, this kind of platform requires full supervision
by administrative staff who guarantee that the master remains operational. Although
the master crashes infrequently and replication techniques can resolve this problem
when it occurs, we still believe in the need for decentralized approaches, as with Pas-
tryGrid, in which case the control of faults becomes a challenging problem.

Indeed, desktop grids have important features that explain the large number of
international projects aimed at better exploiting this computational potential. Many
desktop grid systems have been developed using a centralized model. These infras-
tructures run in a dynamic environment and the number of resources may increase dy-
namically. Hence, the need for decentralization is becoming increasingly important.
BonjourGrid [ABB 09] is a new decentralized approach of desktop grid systems. Its
main objective is to provide a decentralized infrastructure of multi-coordinators, us-
ing the services offered by a publish/subscribe system. Unlike classical desktop grid

2. http://www.ud.com.
3. http://www.distributed.net.

4. Or set of master nodes, in some middlewares that allow replication.
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systems, BonjourGrid can create a dynamic and decentralized execution environment
for each user on-demand, based on existing computing systems, such as XtremWeb
[CAP 05b], or Condor [THA 05], to run any kind of application without the interven-
tion of a system administrator.

11.1.2. General introduction to security

The world of grid computing is made of a large number of computer systems that
interact with one another to form a distributed system able to mobilize resources for
some computation work, typically involving heavy calculation and data processing.

Even if grid computing usually involves the aggregation of resources that are ge-
ographically and administratively diverse, the main characteristic of grid computing
is the heterogenity of the resources, combined with the low bandwidth of the weakest
data links. Some parts of the grid may have high bandwidths (some high-end clusters
are part of some grids, especially nationwide grids); the main fact is that connecting
these local computing facilities at the software level is the goal of grid computing.

Grids often cross usual boundaries of trust in high-performance computing. Even
if large companies are capable of building homemade grids by assembling their local
facilities (what we shall call a cluster of clusters), grid computing often involves using
public networks, when not using many 3 private desktop computers or state-owned or
companies’ office computers during “inactive” hours (what we shall call a desktop
grid). From this description, it should be clear that private trust is difficult to assert.

More complex projects also involve cooperation between countries. For example,
the following projects show that the success of these multinational initiatives must
bring security to these users that come from very different locations:

— EuMedGrid (development of a transnational grid spanning both sides of the
Mediterranean Sea);

— EGI (European Grid Initiative);
— BRIDGE (Cooperation between Europe and China).

What is desired by the users of grids is many-fold. The term security©® covers
security against [ISO05]:

— thieves and eavesdroppers (information theft, confidentiality);
— error-laden work (user-made errors, integrity);
— transient and chronic failures (machine-made errors, availability);

5. “Many” as in two millions users for the BOINC project.

6. Also safety, see Chapter 10. The distinction is blurry in grid computing.
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Figure 11.1. Concepts linked to security

— other factors (that will be detailed in section 11.1.2).

These problems are different facets of the same concept: trust. Establishing trust
between the various human, hardware, and software components of the grid is the

challenge of Grid Computing. Security is articulated around several ideas (see Fig-
ure 11.1).

The goal of security is to create trust between all legitimate parties and prevent
other parties from accessing non-disclosed information. As stated above, parties need
to create trust because grids extend over administrative domains. This trust is not
given with the grid infrastructure; it has to be built both in the hardware and software
assemblage that constitutes the grid network, but also in the P2P relations between the
users and the managers of the grid resources.

Security in computer engineering is essentially threefold: reliability, integrity, and
confidentiality.
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Confidentiality is a major component of security. The data submitted by the users
are often of great importance for the user, and the specificity of the grid 7 is the fact that
resources are shared with other users. The contractual obligations of confidentiality is
not sufficient to build trust between parties on its own merits. The technical interface
must also prevent the leakage of any information that is not officially abandoned.
The information can spread very quickly and some tools are usually not controlled
or easily accessible to participants, such as the monitoring ofinformation (sometimes
for good technical reasons, but this means that information about the activity of some
user can be tracked, giving potential information about current research of the user).
The volunteer computing aspect guarantees that some grids need exposure to a large
public (since the volunteer base should be as large as possible).

Another problem in grid computing is creating high reliability. As the users of the
grid need high computing power 8, the grid must be trustworthy, thus, reliable. Secu-
rity lies in the usefulness of the available resources, if they are available for a cost.
Reliability means controlling the availability of resources so that the user can gain
access to more power with a grid than the power he can access without (especially
massive computing power; massive data usage can also be undertaken, but moving
around massive data requires high bandwiths, which a grid does not have, unless it
is made of clusters of high-performance clusters). General efficiency is a security
point in the sense that if user-submitted jobs cannot complete because of the lack of
resources (either at start of the job or in the course of the computation), it renders
trust in the system pointless. However, a policy of quality assurance (which includes,
amongst other things, a quest for more power) and technical solutions for high avail-
ability of each resource makes a sound system. This also ensures that usable resources
are given only to the participants of the project, which make authentication a crucial
point of the systems. Reliability is ensured at the system level through the techniques
of monitoring.

The question of integrity is more acute. The integrity must be devised by thinking
from the resource owner’s point of view (external computations must not damage the
resources, and in some cases, these resources must be able to be removed from the
grid infrastructure quickly); and also from the job submitter’s point of view, which
requires that the results are not tampered with.

Cryptography is a key point in ensuring integrity of data (using signature func-
tions) and confidentiality (using encryption, either asymmetric or symmetric). The
details of cryptography will not be described here, as they constitute the core of Chap-
ter 12.

7. Especially in the desktop grid model, but more generally in all the shared grids models. Most of the
grids are shared, except the rented clouds.

8. TeraGrid, for example, includes more than a petaflop of raw computing power.
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11.1.3. Case studies

11.1.3.1. OASIS

As stated on their web site, “OASIS 9 (Organization for the Advancement of Struc-
tured Information Standards), is a non-profit consortium that drives the development,
convergence, and adoption of open standards for the global information society”. The
consortium produces web services standards including standards for security. The
WS-Security 1.1 standard is the last release of the standard and dates from 2006.

Current grid middleware, such as Globus or gLite 19, provide functionalities that
are based on WSS but we note that such specifications do not intensively investigate
the problems of anonymity for instance. In contrast, we can find the following speci-
fications promoted by the OASIS Security Services (SAML) Technical Committee:

— OASIS SAML (Security Assertion Markup Language) is an initiative that defines
a standard mean for communicating in a secure way, information about authentication,
and delegation of rights for the web services. SAML is designed to make “single
sign on” (SSO), manually or automatically between systems. It allows participants
to connect to a domain other than the original one, and it defines permissions and
manages the exchange between them,;

— OASIS XACML (XML Access Control Markup Language) is a complementary
technology of SAML, which allows policies for the access control to be expressed.

The WSS Technical Committee also promotes the SOAP (Simple Object Access Pro-
tocol) communication protocol. The SOAP Message Security module describes en-
hancements to SOAP messaging to provide message integrity and confidentiality.

11.1.3.2. Globus 4

The Globus Toolkit is a well-know middleware that provides a set of packages
for using, administrating, and managing computational grids. Since the third release
of Globus, the toolkit has integrated the concept of web services (introduced in the
previous subsection). The major challenge is to find the best coherency between web
services and the specificities of grids. For instance, a typical user session in a comput-
ing grid typically follows the following sequence of actions:

1) authentication of participants;

2) submission of a job;

3) transfer of code and data to accomplish the job;
4) starting the application;

9. http://www.oasis-open.org/who/.
10. http://glite.web.cern.ch/glite/.
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5) pick-up and transfers of results.

The global security infrastructure (GSI) 11 module of Globus 4 [FOS 97] is re-
sponsible for the security issues of the Globus middleware. It belongs to the “core
service” layer, and is devoted to confidentiality, authentication, and non-repudiation.

A user session involves different resources. The underlying security problem is
to ensure that they are all used by the same user. A unique authentication of the user
must be maintained along the session. This mechanism is called SSO. This mechanism
requires a delegation mechanism that allows some entity to use resources in the name
of a user. We distinguish two types of delegation that must be efficient, restricted in
time, and revocable:

1) delegation of rights, which allows data to be accessed with the same rights as a
user;

2) delegation of responsibility, which allows jobs to be started.

For all these operations, GSI relies on public key cryptography and more precisely
on a Public Key Infrastructure (PKI). Each entity (user, resource, task) is associated
with a digital certificate asserted (i.e. signed) by a trusted third party. This ensures a
homogenous global vision of the grid components. From a technical point of view,
the GSI certificates are encoded into the X.509 format, which is a standard of the In-
ternet Engineering Task Force (IETF). From a conceptual point of view, if two entities
have certificates and if these entities trust the Certification Authority (CA), then both
entities can mutually prove to each other that they are what they pretend to be. This
will be detailed in section 11.3.5. The mechanisms for delegation are obtained, with
GSI, according to the delivery of delegated certificates and temporary certificates (they
typically expire after 12 or 24 hours). They are generated and signed on demand by
another certificate such that they can act as proxies of their signer. This mechanism is
standardized and is the subject of a specific RFC (Request For Comments) [TUE 04].
In a distributed context, they ensure SSO for the users at each step of their grid usage.
Therefore we can find user proxies (UPs, that act under the rights of a given user)
and resource proxies (which act for resources or services). A trust path is exhibited
between all these entities as shown in Figure 11.2.

To interact with the local security policy of each involved institution, a mechanism
to establish in a unique and reliable way a correspondence between a global identity
and a local one is required. This enables the local policy to be applied so as to autho-
rize (or not) the access to the resources managed by the local institution. In practice,
two approaches are available:

— using a correspondence table called grid-mapfile;

11. http://www.globus.org/toolkit/docs/4.0/security/.
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Figure 11.2. Trust path in GSI between the grid entities.

— using the SAML standard so as to request the Community Authorization Service
(CAS) responsible for allocation policies.

Furthermore, the GSI module is built according to the model depicted in Fig-
ure 11.3, which illustrates the different steps of secure task execution on a grid com-
posed by two virtual organizations. It assumes that the correspondence mechanism
between global and local entities has been configured. Then, a UP is created such
that it can act in place of the user, which minimizes the circulation of the real user
credentials on the network. All allocation and scheduling strategies of a local site are
handled by a resource proxy (RP). This interacts directly with the UPs. After a mutual
authentication between them (detailed in section 11.3.5), the RP can check the local
access policy to authorize or deny the UP. It follows the creation of the tasks to be
executed on the grid, each of them identified by a certificate signed by both the UP
and RP.

Finally, Globus 4 uses the SOAP service to implement secure communication
over TLS (a variant of SSL). Moreover, secured data transfers are performed using
GridFTP. GridFTP can use GSI to ensure authentication and secure the communi-
cations. It is an extension of the popular File Transfer Protocol (FTP) with com-
munication strategies that are particularly adapted to the communication media that
are available on grids (e.g.data stripping to aggregate bandwidth). The Reliable File
Transfer service (RTF) uses GridFTP to enable file transfer as a service. For example,
the user can provide a list of files to be transferred, and disconnect from the grid. The
data transfers will be performed on the grid in batch mode. One interesting feature
of RFT is its fault-tolerance capabilities. Replicas can be used to avoid having the
data on a single server on the grid. If the server fails during a file transfer, the client
knows from which point it must be resumed. If the client crashes, RFT provides a way
to recover and resume the transfer from a previous point. It can also handle network
failures with retries with exponential backoff.
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Figure 11.3. Overview of the Globus GSI module

11.1.3.3. ALADDIN-G5K

ALADDIN-G5K is a testbed for experiments in large-scale grid computing at-
tached to the French academic community [CAP 05a]. Grid’5000 (the first name of
the project, ALADDIN being the name of the continuation of the project) is a multi-
site (10 sites located in metropolitan France) federation of clusters (ranging from 236
to 684 nodes; 736 to 1804 cores). The clusters are heterogeneous (different proces-
sors and network types). ALADDIN-G5K is different from the other case studies
presented here in the sense that it is not a grid framework (or middleware), but a real
grid (with hardware attached to it). Some features detailed here pertain to the physical
infrastructure adopted for the project.

The target community of this grid is more specifically the researchers in grid com-
puting that need a great variety of highly reconfigurable nodes, sometimes with root
access. The advantages of Grid’5000 are the following:

— a reservation system capable of managing the complexity of the heterogenity
of the grids: OARGRID (a grid-enabled version of OAR, a reservation system for a
cluster);

— a system to quickly reconfigure thousands of nodes with complete reinstallation
from a disk image with root access: kadeploy (which uses taktuk for deployment);

— a global network infrastructure designed to protect experiments from outside in-
terference and the Internet from the power of what could amount to a small bottleneck.
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Grid’5000 is not a production grid: the reservations or usage are not paid for (ei-
ther in money or reciprocity) and the hardware support is done at the national or re-
gional level through public grants and funding. The nodes may be reserved for specific
large-scale experiments by mutual agreement of the executive board. This grid is quite
similar in some aspects to the production grids of many national academic grids, for
example the National Grid Service (NGS) in the UK. The underlying communication
network relies on standard Unix protocols to communicate between clients (ssh ac-
cess to individual nodes) on a ready-made disk image. The bandwidth is provided
by Renater 12, which provides a very solid service quality but comes with a network
usage charter with many constraints (which are not problematic in this professional
example).

Each cluster is designed to have several nodes behind a single front-end that has
access to user accounts by NFS (individual nodes can also access data through NFS,
but this prevents scalability and work on the data is done on local disks). The front-
ends are the only entry points to the clusters (including from a network point of view),
and serve as outgoing proxies. This helps to monitor the full Grid’5000 charter (which
states that no external services should be provided through the grid, and this means
not being able to create distributed denial of services; the external connectivity of
the cluster is maximized by the proxy). The front-end node also acts as a router to
the other sites of Grid’5000 (with a large bandwidth I3 and specific physical links
entirely dedicated to the connectivity of the cluster of clusters). The physical links are
dark fiber to ensure physical separation of inter-cluster communications and general
Internet traffic.

The versatility of this grid is further enhanced by the availability of several and
even customizable disk images for booting (large disk images can be stored in the
user’s account). The software that can reinstall and remotely reboot machines so that
they get is called kadeploy [KADOS]. At reservation time (or later by shell access,
which is the most used method by large), a disk image that is available on the front-end
(by NFS) can be specified and a machine can be rebooted on this disk. Physical cards
inside (most) nodes enable monitoring of the remote boot process as if watching from
the terminal. This tool uses taktuk [CLA 09] to deploy itself very quickly (taktuk
uses work-stealing techniques to share the sending data the cluster).

OARGRID offers the possibility to use several clusters installed with the OAR
batch scheduler. It coordinates cross-cluster reservations, manages the resources at
grid level by coordinating the various cluster-level resource managers and federates

12. Réseau national de télécommunications pour la technologie, 1’enseignement et la recherche / National
Telecom Network for Technology, Teaching and Research.

13. Most inter-cluster links are at 10 Gb/s, some are only at 1 Gb/s.
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all the resources in a single job. OAR enhances security and confidentiality be-
tween users by integrating SSH with OAR, through the oarsh communication utility.
Among other things, oarsh verifies that the source and destination machines involved
in a communication are part of the same job. Hence, people cannot connect to ma-
chines that have been reserved by other people. When a reservation has been issued
by oargrid, all the cluster-level reservations are considered to be part of a single job,
and oarsh allows communication with one another across the grid.

11.1.3.4. BOINC

BOINC [BOI10, AND 04] is one of the reference middlewares that exploits desk-
top grids and, therefore, perfectly illustrates the management of a volunteer comput-
ing (VC) system. Reusing the concepts of the historical SETI@Home project, BOINC
enables the idle cycles of our CPUs (or GPUs) to be shared for many volunteer com-
puting projects (and not only one as was the case for SETI@Home). These projects
are typically based in universities and research labs, and it is up to the user to decide
to participate in any number of these projects. The general BOINC architecture is
illustrated in Figure 11.4.

From a client’s point of view, contributing to BOINC consists of downloading and
installing the BOINC software. This software is divided into several elements:

— the BOINC client (or core client), which takes care of communications with the
BOINC servers. It also downloads application code for the projects and the input
data files, ensures the binaries are up-to-date, and schedules CPU (or GPU) resources
between the different projects (assuming several ones have been installed). Once a job
is computed, the BOINC client is also responsible for uploading the output files to the
project server and reporting the results;

— the BOINC manager, which provides a GUI interface to control BOINC clients
on the same machine or, if necessary, on others (which makes the BOINC integration
in cluster environments easier);

— a screensaver that notifies the core client about idle periods.

On the project server’s side, the two main software components are the scheduler
(responsible for scheduling application jobs among different clients, checking job re-
sults, etc.) and the data servers that take care of hosting the application code and
input data files. BOINC uses digital signatures to allow the core client to authenticate
and verify these files. Additionally, the data server collects the output files. Finally,
the project’s server keeps track of how much work (or credit) has been done by each
client.
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Figure 11.4. General software architecture in BOINC
11.2. Confidentiality

Large-scale computing platforms are subject to various threats and security issues.
Among them, confidentiality is probably one of the most difficult properties to ad-
dress, but also the least studied domain in the grid context. The reason for this last
statement is mainly due to the historical open characteristic of the distributed archi-
tectures. It obviously applies to VC systems, but also to most clusters and computing
grids where the confidentiality of the data put on the grid or the privacy of the compu-
tation performed were not considered as a critical feature. What makes confidentiality
so hard in the distributed context comes from the following facts:

— it is impossible to fully trust a remote software that runs on a resource where we
have no complete control;

— encryption schemes, especially to protect code execution, are still under heavy
investigation;
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— last, but not least, formal proof of confidentiality remains very hard to obtain,
even in the general case.

The purpose of this section is to provide a brief overview of the state-of-the-art tech-
niques applied in this domain.

11.2.1. Data confidentiality

Encrypting the data transferred to avoid eavesdropping from external attacker spy-
ing on the communication channel can be easily done using e.g. various protocols over
a TCP/IP network (TLS [RES 01, DIE 99b], IPSec [NOR 03] or SSH [BAR 01b]). It
becomes trickier to protect data manipulated before, during, and after the execution of
a program from an attacker having full access to the computing node (and therefore
to the registers, the RAM, the hard-drive, the CPU controllers etc.). Actually this is
one of the reasons companies are so reluctant to use public, large-scale computing
platforms.

One approach is called encrypted computations. Cryptography is described more
thoroughly in Chapter 12. The idea is to transform an algorithm into an isomorphic
algorithm that acts on ciphered input and produces ciphered output instead. Some
encryption systems are already homomorphic for one operator, for example unpadded
RSA [KAL 98] is homomorphic for the multiplication, which means that anybody
multiply two encrypted messages c; and co without knowing the messages m; and
mg. This property is intrinsic to RSA encryption/decryption scheme. Considering the
two encrypted messages using the public key (n, e):

c1 =m§ modn
c2 =m$modn
The product of the two previous messages is the following:
c1.c2 =mi.m§ = (my.mz2)°mod n
This product corresponds exactly to the encryption of the message mj 2 = mj.ma:
c1.2 = (mq1.2)°mod n
= (m1.m2)¢ modn

The owner of the private key then has access to the multiplication of the two messages
without the need to decrypt messages m; and mg. Similarly the Paillier encryption
system [PAI 99] is homomorphic for the addition. But until 2009, no cryptographic
scheme was homomorphic for both multiplication and addition. Craig Gentry devel-
oped in his thesis [GEN 09] a fully homomorphic encryption scheme using lattice-
based public key encryption.
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It is also possible to add some authentication mechanisms to certify that the com-
putation is done. Efficient isomorphic algorithms exist for some simple algorithms
(i.e. relying on very small set of instructions) but, unfortunately, this seducing ap-
proach has an intractable complexity for real-life programs [LOU 02]. Since basic
computations (such as, for example, floating point operations that are highly opti-
mized in modern processors), are transformed in elementary operations executed to
emulate some enciphered circuits, the expected efficiency on grids is no longer pos-
sible. Further effort is required to find novel ways of dealing with this issue and it is
one of the current academic challenges in this domain.

11.2.2. Code confidentiality

Furthermore, if industrial companies were so sceptical about the use of grid com-
puting environment, it is not only because of the data privacy issues but also of exe-
cuting confidentiality problems. Indeed the main fear resides in reverse engineering of
proprietary code, motivating major investments in buying expensive private computing
clusters where companies keep full control. These aspects become of prior importance
over the cloud computing paradigm as user’s programs are executed successively (and
eventually concurrently) on computing nodes where the user has no complete con-
trol (and potentially trust). Researches in the domain of execution privacy are mainly
limited to studying embedded environments, such as java cards [COL 02] which are
limited by huge constraints in terms of the atomic operations elligible in the program.

In addition to encrypted computation mentioned above, other approaches, such as
code obfuscation (where the code is transformed at the source or binary level to ren-
der its readability more complex and also change the data coding). However, Barak et
al. [BAR 0la] have proven that a “virtual black box” obfuscation is impossible. Never-
theless, time-limited blackbox security could be used [HOH 98]. However, evaluating
the security of these schemes assumes a metric able to quantify the level of obfusca-
tion achieved i.e. the difficulty of the reverse engineering task required to recover the
initial code; currently, such a metric does not exist.

11.2.3. Other aspects of confidentiality

As stated in section 11.1.2, other aspects can be leaked that may matter to the user.
The monitoring facilities of large grids often require either no authentication or only
basic authentication that can be easy to unravel (by submitting resources in a volunteer
project). Some projects are even constitutionally bound to publish information.

The monitoring information may contain three kinds of valuable information: the

user list, information regarding their jobs, and the nature of the resources (probably the
least important of all). User lists may be readily available through the authentication
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scheme. LDAP access is often available. Also, job information most often cites the
project or the individual that made a reservation, and therefore provides a list of the
active users. Job information in itself may give some indication of the work being
achieved. In heterogenous grids especially, the kind of job that has been submitted
can be guessed by cross-referencing the choice of nodes (RAM, power, and quantity),
the installed system, the activity of the processor, and of the network. This can be
hidden by steganographic use of the resources, but in grids, a kind of monetary-like
accounting is often done. The information about the resources is often given, and is a
good element for advertising the grid. The openness of the monitoring systems may,
however, signal a problem with availability, which can damage the trust of the users.
Also, as written above, the resource statistics can help to guess the nature of the work.

11.3. Authentication

Authentication is one of the key components of distributed systems as its permits
the allocation and the access to the resources while ensuring monitoring of their usage
by the users. The security of this component is of course essential (for instance to
prevent usage abuse) yet the security level strongly depends on the type of distributed
system considered (see section 11.1.1):

— desktop grids (or volunteer systems) rely on nearly anonymous resources, so
authentication at this level only ensures usage monitoring, for instance to fill the well-
known hall of fame of these systems that ranks the users depending on their contribu-
tion;

— clusters and institutional grids, on the contrary, assume a strong and secure au-
thentication system able to deny unauthorized users access to resources. This applies
also in the context of the cloud paradigm that typically involves money-oriented in-
centives.

After providing a quick overview of classical authentication schemes (in section 11.3.1),
we detail the authentication systems used in the above classes of distributed systems.

11.3.1. Overview of classical authentication schemes

Formally speaking, we focus in this section on entity authentication generally de-
fined as the process whereby one party is assured (through acquisition of corroborative
evidence) of the identity of a second party involved in a protocol, and that the second
has actually participated (i.e. is active at, or immediately prior to, the time the evidence
is acquired) [MEN 96].

In our case, the considered entities are the user and the resource of the distributed
system.
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Entity authentication techniques may be divided into three main categories, de-
pending on which of the following the security is based:

1) something known, such as a password, Personal Identification Numbers (PINs),
or a private key whose knowledge is demonstrated in challenge-response protocols;

2) something possessed, such as a physical accessory (a smart card for instance)
or the private part of a digital certificate;

3) something inherent (to a human individual), which mainly applies to biometric-
based authentication, which is not considered here.

Based on these categories, we now describe the most common entity authentication
schemes. For more details, the reader should refer to [MEN 96].

Password-based authentication

Conventional password schemes involve time-invariant passwords, which provide
so-called weak authentication. The user submits a pair (userID, password), and the
system checks that the password matches corresponding data it is holding for that
userID, and that the stated identity is authorized to access the resource. Demonstration
of knowledge of this secret (by revealing the password itself) is accepted by the system
as corroboration of the entity’s identity.

On the system, the passwords are generally salted, i.e. each password, upon ini-
tial entry, is augmented with a ¢-bit random string (the salf) before applying a one-
way function. This is the case, for instance, with traditional UNIX passwords. The
salted passwords are then stored (eventually encrypted) in files (/etc/passwd or
/etc/shadow typically on UNIX systems) or databases. Time-invariant password-
based authentication have been qualified as weak schemes: a major security concern
is eavesdropping and subsequent replay of the password. Even without considering
eavesdropping, such schemes are subject to password-guessing and dictionary attacks,
which are more than common against interconnected systems as considered in this
chapter.

A partial solution to these issues are one-time passwords (OTPs): each password is
used only once. Several approaches are possible at this level: shared lists of OTPs, se-
quentially updated OTPs (e.g. using hash chains linked with S/Key [HAL 95]) or OTP
sequences based on a one-way function such as Lamport’s scheme [LAM 81]. It is
worth mentioning that many OTP technologies are patented, even if some standardiza-
tion efforts exists (see for example RFC 2289 [HAL 98], RFC 4226 (HOTP) [M’R 05]
or the RSA Labs OTP standardization proposal (OTPS) [OTPO5].

Challenge-response authentication

The idea behind cryptographic challenge-response protocols is that one entity (the
claimant) “proves” its identity to another entity (the verifier) by demonstrating knowl-
edge of a secret known to be associated with that entity, without revealing the secret
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itself to the verifier during the protocol. This is done by providing a response to a
time-variant challenge, where the response depends on both the entity’s secret and the
challenge. The challenge is typically a number chosen by one entity (randomly and
secretly) at the outset of the protocol. Several variations of this scheme exists, some
based on a symmetric-key technique, other on public-key approaches (typically via
certificates) or on zero-knowledge concepts. The details of these variants are outside
the scope of this chapter, even if some protocols based on challenge-response schemes
will be presented in the sequel. Some are described in Chapter 12. We encourage the
interested reader to refer to ISO/IEC 9798 [ISO10] parts 2 through 5 which specify
entity authentication protocols respectively based on symmetric encryption [ISO0S8],
digital signatures [ISO98], keyed one-way functions [ISO99], and zero-knowledge
techniques [ISO09b].

Among the most used challenge-response protocols (involving random numbers
and digital certificates), the standards FIPS 196 [U.S97] and TLS [DIE 99a] can be
cited. Variation used in the authentication protocols are presented in the following
sections.

11.3.2. Authentication in the main operating systems

All systems at the basis of distributed computing systems run an operating sys-
tem (OS) — UNIx-like or Windows — that integrate authentication mechanisms. This
section briefly discusses the availability and the extensibility of these mechanisms.

Authentication in UNIX machines

UNIX is a family of extremely mature operating systems, recognized for the quality
of their architectures and their stability. It includes many commercial variations, such
as Solaris from Sun, HP-UX from Hewlett Packard, Irix from Silicon Graphics (now
SGI), AIX from IBM, Mac OS X from Apple, as well as open source versions like
Linux, FreeBSD, NetBSD or OpenBSD.

The management of the access rights of the file system (files and repertories) is
associated with the concept of privilege, but also with the concept of a root adminis-
trator having all the privileges on the system. Another strong point of the UNIX file
system security is the possibility to isolate a user or a process in a defined portion of
the file system tree.

Traditional UNIX authentication is performed using a salted password scheme as
described in section 11.3.1. Some years ago, the authentication mechanism was hard-
coded inside programs that needed to identify and authenticate the user, so any modi-
fication to the authentication scheme was very tiresome as all these programs had then
to be modified (if they were open-source) or replaced.
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To allow the easier replacement of the authentication scheme, some proposals have
been implemented in some systems, such as BSD auth or NSS [GNU 01], but these
schemes still needed the modification of a library to add a new mechanism. The real
advance was the introduction of PAM (Pluggable Authentication Modules) by Sun
in Solaris. With this system, adding a new authentication scheme only requires the
addition of a file (a library implementing some basic primitives for this new scheme),
and the modification of some configuration files to use it! Neither more recompilation
nor modifications of the existing program is needed. This scheme was then integrated
by the X/Open Group in the XSSO proposal [GRO 97] and informally standardized.
PAM is currently used by most major UNIX systems, such as Linux, Solaris, Mac OS
X, or FreeBSD.

Nowadays most authentication schemes are available as PAM modules, in par-
ticular for advanced network authentication protocols (Kerberos) and naming service
based-authentication (NIS, NIS+, LDAP, etc.) that are used in clusters as it will be
seen in section 11.3.4.

Authentication in Windows machines

Recently, Microsoft Windows imposed itself on the desktop computer market and
as a possible alternative to UNIX for server systems. Initially, no credible authenti-
cation mechanisms existed on Windows desktop versions. Current versions based on
Windows NT address this problem.

As for UNIX systems, it is possible to open an interactive session, authenticated
by the local user repository called a SAM database (Security Accounts Manager) or
with network authentication, by using a user accounts repository stored on a network
server (mechanism implemented for the Windows domains).

In practice, a user stored in the users repository of the domain can connect to any
workstation of the domain, having the choice between local authentication, which
enables working in standalone mode without benefiting from networks services pro-
vided by the company, or an authentication on the domain, which affords access to the
information system.

The network authentication can be managed by the old NTLM (NT LAN Man-
ager) protocol or by Kerberos (see section 11.3.4), which is the default authentication
mechanism for such sessions in Windows 2000, XP, and later versions. The domain
controller, which acts as a Kerberos server, can use a users database stored in the active
directory.

11.3.3. Authentication in volunteer grids

As mentioned above, desktop grids rely on nearly anonymous resources. Authen-
tication at this level only ensures usage monitoring, for instance to rank the users

www.it-ebooks.info


http://www.it-ebooks.info/

256  Distributed Systems

depending on their credits, i.e. their contribution. It follows that the authentication
schemes are generally weak on these systems, as in BOINC.

An overview of BOINC middleware has been given in section 11.1.1. Authentica-
tion in BOINC works on a per project basis: joining a project comes with the creation
of an associated account key, i.e. a 32-byte random and unique identifier string that
allows the participant to identify itself on the project server. The account key is issued
upon request and delivered to the person that made the request through the email ad-
dress provided when joining the project. All the account keys are stored locally in the
BOINC data folder (as illustrated in Figure 11.4 page 249). They are used to establish
the identity of the participant to the project servers during each communication ses-
sion. Of course, the usage of any sniffing tool can permit an attacker to easily recover
the account key so as to impersonate the user on the project server. It explains why
this scheme has been qualified as “weak”.

It should be noted that the current policy for most BOINC projects is that the loss
of an account key will require the establishment of a brand new account and all the
work effort in the other account stays there.

11.3.4. Authentication in clusters

As most clusters run a UNIX-like operating system (95.6% of the systems rep-
resented in the Top500 project 14, we focus here on authentication systems for this
environment. Without pretending to be exhaustive, we list the most used systems.

Kerberos

Kerberos [NEU 94, NEU 04] is a network authentication protocol (today IETF
standard). It has been designed to provide strong authentication for client/server ap-
plications by using secret-key cryptography. Many implementations of Kerberos exist,
the most well known remains the open source one developed at MIT [KER].
Under Kerberos, a client (generally either a user or a service) sends a request for a
ticket to the key distribution center (KDC). The KDC creates a ticket-granting ticket
(TGT) for the client, encrypts it using the client’s password as the key, and sends back
the encrypted TGT. The client then attempts to decrypt the TGT, using its password.
If the decryption is successful (i.e. if the client provided the correct password), a pri-
vate session key can be recovered that will be used later as a proof of the client’s
identity. The TGT and its integrated session key are time-stamped: they expire at a
specified time. They allow the client to obtain additional tickets, which give permis-
sion to access specific services. The request and granting of these additional tickets is
user-transparent, i.e. the SSO feature is ensured.

14. http://www.top500.org.
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As the Kerberos protocol is supported by most operating systems including Win-
dows, it is often used in confined environments such as clusters. Various extensions
and improvements of the Kerberos infrastructure have been proposed in the literature.
Among them, it is worth mentioning KryptoKnight [MOL 92, BIR 95], a network
authentication protocol designed by IBM and similar to Kerberos. It uses message
authentication codes (MAC) to identify and encrypt the tickets. This permits the size
of the protocol messages to be reduced and adds interesting integrity features.

Whether for Kerberos or for KryptoKnight, scaling to computing grids is not yet
operational for these systems. Yet within a local institution those authentication sys-
tem relying on Kerberos can still be integrated into a Globus infrastructure (see section
11.3.5) as there is an option in the GSI module of Globus to use Kerberos credentials
locally.

Network authentication based on naming services

NIS

Introduced by Sun in 1985, the Network Information Service (NIS) is used to cen-
tralize the administration of systems information. The information is stored in maps
under indexed databases (db, dbm) reachable by RPC 15, Based on a master/slave
model, NIS does not allow the treatment of important volumes of data as each modi-
fication involves the transfer of the totality of the base. Furthermore, it is particularly
hard to organize the data in a hierarchical way and the access security remains weak.
In spite of all these drawbacks, NIS remains a well used system at the level of clusters
and local networks, mainly because it is simple to install.

NIS+

NIS+ was SUN’s answer to the drawbacks of NIS. NIS+ introduces the distribution
of the data between master and slave servers in an incremental way, in particular by
adding the notion of hierarchical tree for the data. Many of the security issues of NIS
were addressed by the introduction of certificates. Yet, the lack of flexibility in the
hierarchical structure together with a complicated installation procedure have slowed
down the transition from NIS to NIS+.

Directory-based authentication using LDAP

A directory is like a database, but tends to contain more descriptive information.
Directories are tuned to give quick-response to high-volume lookup or search opera-
tions. They may have the ability to replicate information widely in order to increase
availability and reliability, while reducing response time.

15. Remote Procedure Call
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Based on the X.500 protocol (ISO standard for the management of electronic di-
rectories), LDAP [WAH 97] (Lightweight Directory Access Protocol) is a lightweight
version of the specialization of this standard adapted to TCP/IP networks. Created in
1993, LDAP is an access protocol to electronic directories allowing researches and
modifications to be performed. LDAP is based on the model of DNS: data are natu-
rally organized in a tree structure and each branch of the tree can easily be distributed
among different servers. LDAP technology has been adopted by many large com-
panies. The generalization of LDAP has also been implemented in the applicative
bases (some operating systems, like Mac OS X or Solaris 9, integrate a LDAP direc-
tory). In terms of security, LDAP provides various guarantees thanks to the integration
of cypher and authentication standard mechanisms (SSL/TLS and more importantly
SASL 16, allowing easy integration of new authentication schemes such as Kerberos)
coupled with Access Control Lists. These mechanisms enable efficient protection of
transactions and access to the data incorporated in the LDAP directory. Thereafter,
practical experiments on LDAP were carried out through an open-source and reliable
implementation: OpenLDAP !7. LDAP data are organized in a tree structure called
Directory Information Tree (DIT). An example of DIT is provided in Figure 11.5.
Each node of the tree corresponds to an entry of the directory and is referred to in a
unique way by its distinguished name (DN).

DIT

\ - de=grid5000,de=fr " ~~__

List of attributes with an entry
e \ Format <type>:<value>
-~ ou=People ou=Group ' \

cn: g5k

objectClass: posixGroup
, objectClass: top

t uid=svarrett uid:geor\get cn:Equipar cn:gSk userPassword: {cryptl}x

L gidNumber: 24560
/ TN memberUid: svarrett
R 2 \ memberUid: georget

entry

-

Distinguished Name: ‘ dn: cn=g5k.,ou=Group, dc=grid5000,dc=Ffr ‘

RDN (Relative Distinguished Name)
from ou=group,dc=grid5000,dc=fr

Figure 11.5. Example of DIT: users management

The directory service provided by LDAP is based on a client/server model. Yet,
the servers can be organized in various configurations:

16. Simple Authentication and Security Layer.
17. http://www.openldap.org.
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1) local directory service: only one server is able to deal with all the clients’ re-
quests;

2) local directory service with referrals: the server is configured to provide direc-
tory services for a local domain and to return referrals (i.e. a pointer) to a superior
service capable of handling requests outside the local domain;

3) replicated directory service: partial replication can be operated between master
and slave servers;

4) distributed local directory service: the database is divided into subparts (even-
tually replicated) that are accessible through a set of referrals between the servers.

The last two modes are particularly interesting in the context of authentication in
clusters grids, mainly because in the context of a distributed environment, the authen-
tication system has to address the following constraints:

— availability: the system should work even in case of punctual disconnections;
— security: privacy and integrity of the data should be guaranteed;

— delegation: each administrator of a site should be able to manage its own users.

Therefore the idea is to use LDAP as a naming service for the broadcast of system
information which can then be used for authentication purposes via the appropriate
PAM module. The tree structure used to store the data in the LDAP server follows the
organization of the sites in the grid: each site is responsible for a sub-tree containing
data relative to the users and the resources of the site. Figure 11.6 illustrates this ar-
chitecture, which has been applied in the framework of the ALADDIN-G5K project
presented in section 11.1.1. In particular, as demonstrated in [VAR 05], a partial repli-
cated approach is able to solve the problem of availability. Security is ensured by
the protocol LDAP itself whereas delegation is due to the tables’ distribution in the
proposed architecture. This approach is therefore a particularly good candidate for a
robust authentication system in a distributed cluster environment.

11.3.5. Authentication in computational grids

At this level, public key cryptography (also known as asymetric cryptography) is
used as as the basis for every functionality. This is the case in Globus (via its GSI
module) or gLite. The primary motivations for this are:

— the need for secure communication (authenticated and perhaps confidential) be-
tween elements of a computational grid;

— the need to support security across organizational boundaries, thus prohibiting a
centrally-managed security system;

— the need to support “single sign-on” for users of the grid, including delegation
of credentials for computations that involve multiple resources and/or sites.
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ldap.grenoble.grid5000. fr

l’ [ —=  Referral or Replica ]

Grenoble

de=grid5000,dc=fr

o=Nice 0=Grenoble

' ou=People ou=Group  ou=Hosts ' e
3 (letc/passwd) (fetc/group) (/etc/hosts) 3
[ S (etefshadow) i - ﬁ

e Sophia
de=grid5000,dc=fr
_/ €
o=Sophia o=Grenoble
ou=People ou=Group  ou=Hosts

1 (fete/passwd) (fetc/group (fetc/hosts)
! (fetc/shadow)

Figure 11.6. Flat distribution for an authentication system based on LDAP in a grid composed
of two clusters, one located in Grenoble (France), the other in Sophia (France). This
configuration is used in the Grid5000 project for instance.

As mentioned in section 11.1.3.2, each entity in Globus owns a certificate. The
GSI modules use the secure sockets layer (SSL) for its mutual authentication protocol,
which is described below. Before mutual authentication can occur, the parties involved
must first trust the CAs that signed each other’s certificates. In practice, this means that
they must have copies of the CAs’ certificates — which contain the CAs’ public keys —
and that they must trust that these certificates actually belong to the CAs. To mutually
authenticate, the first person (A) establishes a connection to the second person (B). To
start the authentication process, A gives B his certificate. The certificate tells B who
A is claiming to be (the identity), what A’s public key is, and what CA is being used
to certify the certificate. B will first make sure that the certificate is valid by checking
the CA’s digital signature to make sure that the CA actually signed the certificate and
that the certificate has not been tampered with. (This is where B must trust the CA that
signed A’s certificate.) Once B has checked out A’s certificate, B must make sure that
A really is the person identified in the certificate. B generates a random message and
sends it to A, asking A to encryptit. A encrypts the message using his private key, and
sends it back to B. B decrypts the message using A’s public key. If this results in the
original random message, then B knows that A is who he says he is. Now that B trusts
A’s identity, the same operation must happen the other way around. B sends A her
certificate, A validates the certificate and sends a challenge message to be encrypted.
B encrypts the message and sends it back to A, and A decrypts it and compares it with
the original. If it matches, then A knows that B is who she says she is. At this point,
A and B have established a connection to each other and are certain that they know
each other’s identity. In practice, authentication and confidentiality of communication
transfers are combined in the GSI-OpenSSH 18 service.

18. http://dev.globus.org/wiki/GSI-OpenSSH.
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11.4. Availability and fault tolerance
11.4.1. Monitoring

Especially with large-scale systems, monitoring is a key element to ensuring that
confidentiality is unbroken. However, monitoring also encompasses such things as
availability accounting, and provides essential feedback to the users of these systems.
Monitoring can be seen from essentially two points of view: information gathering on
remote systems and intrusion detection.

System monitoring

Monitoring can proceed in two modes: active polling, passive information gather-
ing (of course, some hybrid mechanisms were devised).

Using syslog. System monitoring can be very simple; the UNIX syslog mech-
anism, for example, is used almost everywhere. This service can be configured to
forward information through the network. As this is a clear-text protocol, the nature
of information sharing on the grid will possibly require the use of SSL or SSH-enabled
tunnels. Windows uses a similar mechanism called Windows Event Log. However,
this information is fragile; administrator rights are sufficient to tamper with these.
The usual safe way is to remotely send every log line to a central server with different
authentication credentials; this prevents altering past records.

Passive monitoring by check-summing. The difficulty of detecting tampering at
the system level is that once a system has been broken, the perpetrator usually has
the means to delete any tracks left by the intrusion. Efficient monitoring relies on
fast distribution of any information and frequent check-summing of the monitoring to
detect alteration of the log files. As all the chain of monitoring, logging, and com-
putation must be kept intact, a file analysis system (using either signature or simple
check-summing) is a standard part of a monitoring chain.

Passive monitoring by hypervisor. Nowadays, virtualization techniques are suf-
ficiently evolved for the computation to be achieved in virtual machines. The host
system is capable of monitoring the guest system and uses any other technique to
transmit the information.

Using active monitoring. The polling techniques are more intrusive, but they allow
for better failure detection. However, they exploit more resources as they are not in-
tegrated in the normal flow of operation of the systems. Moreover, as they interact on
distinct systems, they may be able to detect tampering not detected by passive meth-
ods. They can also gather other kinds of data, especially numeric values (average load,
usual network statistics, etc.). The most well-known program for this is Nagios (and
derivatives). Most of these programs are completed with an interface to present the
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data in an efficient way. The efficient representation of monitoring information com-
ing from thousands of machines is a difficult task. This is, for example, the task of the
Ganglia software (developed at UC Berkeley). This will be detailed in section 11.5.1.

Monitoring confidentiality. As one can see, the monitoring data itself may convey
some information about the processes being run, some authentication information, and
many other trivial or important data (some custom systems logged the attempted pass-
words, which were then transmitted in clear-text to the monitoring software through
the Internet).

Network monitoring

The goal of network monitoring is the same as system monitoring: providing feed-
back about the usage (bandwidth usage may also be a limitation or a bill as well as the
CPU usage in large-scale distributed systems); and preventing or signaling intrusions
in the networks. Due to the high usage of network in a typical grid application, it
is not possible to log every network packet. Network delays also typically imply that
passive monitoring is much more intrusive than in the system case (where input/output
delays allow the treatment of logging inside the delays). Pure data gathering can take
place using the same methods as system monitoring, as long as they are accumulated
data (or averaged data, which is the same). Network monitoring thus has to revolve
around statistical analysis (in real time or a posteriori), or based on patterns analysis
(trying to detect unusual behavior in the packets going through). These can take place
at each node, or (more generally) in the network infrastructure (firewall, routers; see
e.g. [SCH 07] for a good survey of these methods).

Firewalls. Firewalls are a normal part of a network intrusion detection system;
however, firewalls prevent access, whereas IDS analyze data a posteriori.

Signatures. Most systems detect intrusions based on heuristics based on known
attacks. These attacks are summed up to patterns of events (that have to be monitored,
either at the system or at the network level). Each pattern is recorded and compared to
normal behavior. When the pattern does not trigger any false positive, it is recorded.
At run-time, events are scanned (either in real-time or after operation) and an alarm
is raised in the IDS when a pattern is recognized. This system has the advantage of
labeling the attack (as it is mapped to known attacks).

Statistical anomalies. The other way to detect intrusions is to use statistical laws
to detect unusual behavior. This approach is more complicated and a bit tougher to
integrate in the reporting systems (as they are not systematically mapped to known
attacks), but this is the only process capable of detecting unknown attacks.

Monitoring reporting

Reporting for large scale systems is complicated. Most systems use three forms of
reports:
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— individual (long) reports on each node or link (usually accessible through a se-
lection, not directly);

— graphs usually produced by the RRD software 19 or some equivalent; this soft-
ware manages several rates of sampling according to the age of the data, and produces
different hourly, daily, monthly, and yearly graphs for data without keeping all inter-
mediate data;

— simple state (usually color-coded) display for nodes or groups of nodes (clus-
ters). The green/yellow/red range is conventional for such systems. Expanded reports
are where the detailed failure information is stored.

Almost all systems allow the alarms (usually in the simple state only, possibly also in
the expanded reports) to be silenced (temporarily or definitely).

11.4.2. Failure detection

One key issue for ensuring resource availability is detecting resource failures. The
rest of the system (or part of it) needs to be notified that a failure has occurred in
order to take the appropriate measures. For example, a recovery protocol may be
triggered the moment the failure is detected. Surviving nodes may simply stop sending
messages to the dead node.

Consistent knowledge of the members of a set of processes (called a group) is
called Group Membership Service (GMS). When a failure occurs and disconnects a
process from the distributed system, this process leaves the set of processes forming
the distributed system. When a process joins the computation (e.g.after a recovery
protocol is used), it joins the distributed system. Hence, failure detection under the
fail-stop model can use a group membership service. The GMS has been proved im-
possible in an asynchronous system with failures in [CHA 96]. The asynchronous
hypothesis makes it impossible to determine whether a process is slow or if it is really
dead. Moreover, the requirement for a consistent view between the surviving pro-
cesses of the system reaches the same impossibility result under these hypothesis as
the consensus problem [FIS 85].

Heartbeat [AGU 97] is a failure detector that is unreliable and eventually perfect.
For the aforementioned reasons, it cannot be reliable at a given moment. However,
if a process dies, it is eventually detected and, conversely, if a process is alive there
is a time after which it is not suspected to have crashed. The heartbeat mechanism
refers to the fact that each process periodically sends a message to the other processes.
Each process maintains a vector of counters corresponding to the heartbeats it has
received from the other processes. Each process maintains a local list of processes

19. Round-Robin Database Tool, see http://oss.oetiker.ch/rrdtool/.
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that are suspected to have crashed. Some processes may be wrongfully put in this
list, e.g. if their heartbeat has been received late. This is why the failure detector is
unreliable. If a process notices later that a process it has put in this list is actually alive,
it removes it from the list. It must be noticed that this failure detector does not use any
time-out, nor does it make any assumption on relative process speeds or time-limited
communications.

Finally, the Simple Network Management Protocol (SNMP) [CAS 90] can be used
to detect hardware and software failures on nodes and network disconnections. SNMP-
FD [WIE 06] uses SNMP messages between network equipments and hosts to detect
failures (using heartbeats and time-out, hardware link down traps and OS notifica-
tions) and notify other equipments when a failure occurs.

11.4.3. Fault tolerance in distributed systems

System robustness

Defining robustness is not an easy task and many contributions come with their
own interpretation of what robustness is. Actually, there exists a systematic frame-
work that permits the characteristics of a robust system to be unambiguously defined.
In fact, this should be probably applied to any system or approach claiming to pro-
pose fault-tolerance mechanism. This framework, formalized in [ALI 04], answers
the following three questions:

1) What behavior of the system makes it robust?
2) What uncertainties is the system robust against?

3) Quantitatively, exactly how robust is the system?

The first question is generally linked to the technique or the algorithm applied.
The idea is to explain the general approach used. The second question explicitly lists
the type of faults or disturbing elements targeted by the system. Unfortunately, too
many studies in the literature miss this part so that there is always a case that breaks
the proposed approach. Consequently, answering this question is critical to delimit the
application range of the designed system and to avoid counter examples selected in a
context not addressed by the robust mechanism. The third and last question is probably
the most difficult to answer, and at the same time the most vital to characterize the
limits of the system. Indeed, there is nearly always a threshold on the error/fault rate
above which the proposed infrastructure fails to remain robust and breaks (in some
sense). Answering this last question enables the following to be formally detailed:

— the robustness metric used to quantify the resilience of the system in a given
context at a given time;

— a set of bounds related to the robustness metric above which the system fails i.e.
stops to be considered robust.
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Fault classification

Faults in a system can be classified according to several criteria:
— whether the fault is temporary or permanent;
— whether the fault is intentional or not;

— the impact of the fault on the system.

[AVI 04] makes a distinction between failures, errors and faults:

— a failure is when the service provided by the system is in deviation from the
expected service;

—an error is when the behavior of a system is in deviation from the expected
behavior;

— a fault is the cause of an error.

Permanent failures cause the system to stop working normally, and the system
will not start providing a normal service again without any intervention. A system hit
by a temporary failure will eventually resume its normal service. A typical example
of transient faults is a temporary, external phenomenon that prevents some messages
from being delivered on a network (e.g.radio interference on a wireless network). This
fault causes a temporary failure, in a sense that the system (i.e. the network) does not
deliver the expected service (i.e. does not transmit the messages) during a finite period
of time. When the cause of the failure is over (i.e. the radio waves are no longer
disturbed), the system can deliver its normal service again.

Failures and errors can be classified into the following categories based on their
semantics:

— crash-stop failures, also called fail-stop: the system stops working and does not
execute any operation, nor does it send any signals;

— omission is a communication failure: typically, a message is not transmitted by
a communication channel, or not sent by the sending process (send-omission), or not
received by the receiving process (receive-omission);

— duplication is the opposite from omission: a message is sent or received twice;

— timing if the system’s behavior deviation concerns only a time criterion (reaction
time to a given event for instance);

— byzantine errors are arbitrary errors: the system arbitrarily does not have the
expected behavior or has an erroneous one;

Detection of fail-stop failures is described in section 11.4.2. Omission and du-
plication are often detected by the underlying communication protocol (e.g. packet
numbering). Byzantine errors are the hardest to detect, as the behavior of the system
is often similar to the expected one. A typical example of byzantine failure comes
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from volunteer computing where it is sometimes referred to as cheating faults. In-
deed, the motivation for the users to contribute to desktop grids are manifold, in-
cluding the altruistic desire to help or, more importantly, the assignment of credit
points proportionally to a user’s contribution. These points reward hard-working
clients in different ways [KWO 07]. Unfortunately, incentives also attract cheaters
who seek to obtain these rewards with little or no contribution to the system. Such
selfish behavior can be achieved by modifying the client software as experienced in
Seti@Home 20 [MOL 00]. Whether the consequences of malicious acts or not, this
example illustrates a scenario where the results of a computation conducted by a re-
mote client are corrupted by cheaters (hence the reference to cheating faults). What
makes this kind of fault byzantine and difficult to catch is that the data sent to the
server, although erroneous, generally respect the expected format and do not raise
alarm regarding the integrity of the data itself.

The presence of cheaters in grid computing systems is well-known and many coun-
termeasures have been proposed in literature. They will be presented in section 11.6.

Failure risks in distributed systems

Generally, distributed systems are subjected to many different threats. The most
common are listed below:

— scans corresponding to search phases in order to list available services with a
maximum of details (running daemon version, machine bandwidth etc.). Unix tools
such as nmap [NMA] can be used in this context;

— denial of services (DoS), eventually distributed;

— system intrusion/extrusion, typically exploiting software vulnerabilities and/or
malwares so as to execute malicious code.

All of these threats naturally increase failure risks. Yet we would like to high-
light here that even by considering only the aging of the hardware, the probability
of failure in a distributed system quickly tends to 1 with an increasing number of
processors [TRI 01]. More precisely, let us consider a distributed system composed
by n processors. By definition, the reliability R(t) of this system is the probability
that no failure occurs i.e. that the system remains functional during the interval [0, ¢].
In [DEV 98, SIE 91], it was shown that R(t) = e~*", where )\ is a constant rep-
resenting the failure rate of a processing element. In practice, A corresponds to the

inverse of the mean time between failures (MTBF) of the system: A = ﬁ. It

20. Some volunteers modified the client executed on local machines to “better” compute the fast Fourier
transform (FFT) in order to send results faster. Yet the modification made to the software had so many
glitches that incorrect results were sent back from client using the altered version of the software. This
leads to the loss of several months of computations.
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follows that the probability that the system fail during the interval [0, ¢] is [SIE 91]:

—1— e—)\tn

F(t)=1-R(t) (11.1)
Figure 11.7 exhibits the evolution of the failing probability in a distributed system
composed by n processors. It illustrates the tendency to quickly converge to 1 as
the number of processors (and the execution time) increases. It should be seen as a
minimal failing probability as, again, a distributed system is subjected to many more
threats than the regular hardware aging.

B ;;l_._.,.«-

0.8

fx*“

Failing Probability F(t)

—— execution time: 1 day
---m--- execution time: 5 days
---#--- execution time: 10 days
4 execution time: 20 days
- -+ - execution tirqe: 30 days

1000 2000

Number of processors

4000 5000

Figure 11.7. Evolution of the failing probability in a distributed system composed by n
processors. Only the aging criterion is considered with processors MTBF estimated to
MTBF = 2000 days ~ 6 years leading to A = 0.0005

11.4.4. Rollback recovery

The state of a process can be saved during its execution and restored later. For
example, the process can be migrated on another machine and resume its execution.
Checkpointing consists of saving the state of a process by writing a snapshot of its
current state on a disk, potentially to restart this process from this state. It can be
used for fault-tolerance purposes: processes are checkpointed on a regular basis, and
rollback to a previously stored state after a failure has occurred. Rollback recovery can
be used to restore the state of a single process. Distributed systems, on the other hand,
are not only made of a set of processes, but also include communication channels.
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Hence, interactions between processes need to be taken into account when saving and
recovering the state of a process.

When a failure occurs and some processes of the system are killed, the recovery
protocol must make it reach a state that could have been reached if no failure had
occurred. This state is called a coherent state.

Rollback recovery protocols are classified in two categories: coordinated and non-
coordinated checkpointing protocols. In coordinated protocols, processes are check-
pointed in a coordinated fashion. In non-coordinated protocols, they are checkpointed
independently from each other.

Coordinated checkpointing

Most coordinated checkpointing protocols are based on the Chandy-Lamport algo-
rithm [CHA 85]. Coordination relies on a wave algorithm: a marker is sent between
processes to trigger local checkpoints. When a failure occurs in the system, all the
processes are restarted from a checkpoint that is part of the latest complete checkpoint
wave. The set of checkpoints taken by all the processes of the application during a
checkpoint wave forms a cut. Moreover, this cut is such that the set of process states
saved by the checkpoints forms a coherent state. Hence, this cut is called a coherent
cut. If all the processes rollback to the latest set of checkpoints, the application is re-
stored in a coherent state. Each process is checkpointed upon reception of this marker.
It forwards the marker to the other processes using the same communication channels
as used for regular communications. Assuming that communication channels follow
the FIFO property, messages from a given process that are received after the marker
coming from this process have been sent after the marker. Messages sent and received
before the checkpoint wave are part of the portion of execution that precedes it. Mes-
sages sent and received after the checkpoint wave are part of the portion of execution
that comes after the checkpoint wave. If the application is restarted from the latest
checkpoint wave, these messages will be sent and received again.

Messages that cross the checkpoint wave (i.e. that are sent during the checkpoint
wave) need some specific treatment. They can be handled in two ways. The first
consists of blocking communications during the checkpoint wave. Each process stops
communicating when it enters the checkpoint wave and performs a local checkpoint
after it has received markers from all the other processes of the system. It communi-
cates again after the checkpoint wave. As a consequence, no message can cross the
checkpoint wave.

The other solution consists of storing the contents of the messages (i.e. logging
them) sent during the checkpoint wave. This involves some participation from the
communication library and complexifies its critical path, but the checkpoint wave does
not have any preempting effect on the execution of the processes, such as with the
blocking implementation.
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A comparison of a blocking and a non-blocking implementation of the Chandy-
Lamport coordinated rollback recovery protocol in a parallel communication library
has been studied and published in [BUN 08]. The architecture of this fault-tolerant
library will be described further in section 11.4.6.

The comparison between these two approaches shows that for applications made
of a limited number of nodes and using a high-speed network (e.g. a cluster), the cost
of logging messages during the checkpoint wave has more impact on the performance
than the blocking synchronization. This synchronization has a relatively low cost be-
cause of the limited size of this kind of system and the low latency of the network.
Logging messages, on the other hand, adds a significant overhead to inter-process
communications, regarding the low latency of the network. On large-scale systems
with a higher latency between processes (e.g. a grid), the global synchronization in-
volved by the blocking implementation extends the duration of checkpoint waves and,
as a consequence, the periods of time during which processes are blocked. Henceforth,
the non-blocking implementation gets better performance on grids.

Non-coordinated checkpointing

The two main drawbacks of coordinated rollback recovery are the cost of the syn-
chronization required to coordinate the checkpoints, and the fact that all the processes
must rollback upon failures, even processes that have not been hit by the failure.

Non-coordinated protocols rely on the notion of determinism in the execution of
a process. A process is said to be deterministic if for a given initial state, it always
reaches the same final state. In a distributed application, processes interact with each
other and have causal dependencies with one another (i.e. a message sent by a process
can have an influence on the state of the receiver). As a consequence, they cannot
be considered as deterministic. However, their execution can be split into phases of
deterministic execution separated by non-deterministic events. These events are typi-
cally interactions with the rest of the world (I/O, inter-process communications). This
is called the piecewise deterministic assumption (PWD) [STR 85]. A direct conse-
quence of the PWD is that for a given initial state, if all the non-deterministic events
of the first execution are replayed in re-executions, a process will always reach the
same final state.

Non-coordinated checkpointing and rollback recovery rely on this assumption.
Processes are checkpointed independently from each other. Upon a failure, the pro-
cess that has been hit by the failure rolls back to a previous checkpoint while the others
continue their execution. Non-deterministic events that occurred during the first exe-
cution are replayed in order to reach a coherent state.

Non-deterministic events are inputs and, more specifically, interactions with other
processes and with the rest of the world. For parallel applications that follow the
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message-passing communication model, these events are messages that are received
by the process. When processes communicate with one another, the message must
be saved. If the receiver of the message is hit by a failure and has to rollback, this
message and all the other messages that have been received by this process between
the moment when it has saved its state and the failure will be replayed in the same
order. Sending a message is not a non-deterministic event, but messages must be
sent exactly once; messages that have been sent during the first execution are not sent
again during the re-execution of a process that has been restarted. As a consequence,
the system will eventually reach a coherent state with no pending communication.

In practice, messages are stored locally by the sender (sender-based message-
logging [JOH 87]) or the receiver (receiver-based message-logging [BOR 83]) in their
volatile memory. The causality information between them is the only piece of infor-
mation that needs to be stored on a stable storage support (called event logger). This
information is used to replay the messages in the same order as during the initial ex-
ecution, and consists of a vector of logic clocks [LAM 78]. The messages that have
been stored locally will be included in further checkpoints of each process.

The way this causality information is saved makes the difference between the var-
ious message-logging protocols.

Pessimistic message-logging

Pessimistic message-logging waits for the causality information to be acknowl-
edged by the event logger before proceeding with sending the message [JOH 87]. If
a failure occurs on the receiver before the causality information has been saved, then
the message has not yet been sent so the sender cannot have had any influence on the
receiver.

Pessimistic message-logging ensures the fact that the system will always be re-
stored in a coherent state, regardless of when the failure occurs. However, this proto-
col adds some latency to message communications.

Optimistic message-logging

Optimistic message-logging makes the assumption that no failure will occur be-
tween the moment when the causality information is sent to the event logger and the
moment when a message is delivered to its receiver [JOH 90]. The sender of a mes-
sage sends this information to the event logger and, as soon as it has finished sending
it, proceeds with sending the message.

If a failure happens after the message is delivered to the receiver and while the

causality information is still in the communication channel between the sender and
the event logger, this information is lost and the message cannot be replayed. For this
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reason, optimistic message-logging assumes that failures are rare. It does not increase
the latency of the communications as much as pessimistic message-logging does.

Causal message-logging

Causal message-logging does not require waiting for the acknowledgment from
the event logger, and cannot lose any information. The sender of a message sends
the causality information to the event logger and proceeds to send the message im-
mediately, adding the causality information with message. This information is kept
with the message as long as the event logger has not acknowledged safe storage of
the causality information [ALV 95]. As a consequence, the causality information is
kept in the system until it is stored on a reliable storage support. If a failure occurs
before the information has been stored, it can be retrieved from the piggyback of the
messages that have been sent since the message has been sent.

Several protocols define how the causality information can be maintained in the
piggyback of the messages. For example, Manetho maintains the causality informa-
tion in an antecedence graph, which is propagated with messages [ELN 92].

Comparison between protocols

Fault-tolerance protocols induce overheads on two parts of the execution: during
fault-free execution (i.e. cost of the protocol used to save the state of the system), and
upon failures (i.e. cost of rollback recovery protocol).

Coordinated checkpointing protocols add few overheads on failure-free execu-
tions, as they do not do anything between two checkpoint waves. Non-coordinated
protocols, on the other hand, require to log messages sent between processes, which
induces a significant overhead on the communication performance. This overhead
varies between message-logging protocols: besides of the cost of saving a local copy
of the message, pessimistic message-logging adds the point-to-point latency (by re-
quiring a communication with the event logger and an acknowledgement) and causal
message-logging reduces the bandwith available to messages. Optimistic message-
logging does not involve any overhead aside from the cost of the local copy, but it
does not guarantee that the system stays in a coherent state.

Upon failure, coordinated protocols require all/ the processes of the system to roll-
back on the latest checkpoint wave. Computation made by processes since their latest
checkpoint is lost. Moreover, if a failure occurs before the next checkpoint wave,
the execution cannot progress beyond failures. As a consequence, coordinated check-
pointing protocols are not suited to highly volatile environments. Non-coordinated
checkpointing protocols, on the other hand, do not require all the processes to roll
back upon failures: only processes that have been hit by the failure roll back to their
latest checkpoint. However, if the parallel application requires some synchronization
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between a process that has rolled back and a process that has not, the latter has to wait
for the former.

In a given environment, the choice for a fault-tolerance protocol is a trade-off
between overheads on fault-free executions and the cost of rollback recovery when
failures occur.

11.4.5. Application-driven fault tolerance

In section 11.4.4, we described transparent rollback recovery mechanisms. An-
other way to achieve fault tolerance in parallel applications consists of letting the
application handle failures itself. The application knows which processes have failed
and adapts itself to the new set of available resources. The responsibility to recover
the data that have been lost by the failure and adapt the algorithm (e.g. re-calculate
the load balancing) is left to the application. This approach is called algorithm-based
fault-tolerance (ABFT) [CHE 05].

For that purpose, the application can have two kinds of behavior. The first con-
sists of continuing the computation without the failed processes. For example, if the
application was executed initially by n processes, and m processes have been hit by
failures, the rest of the computation is made by n — m processes. Another solution
consists of spawning new processes that replace the failed processes, and proceed with
the execution on the same number of processes.

ABFT require that the application must be supported by an appropriate middleware
that can keep supporting the application in spite of failures (and therefore, have some
self-healing properties to maintain a correct computational environment) and provides
some features to implement fault-tolerance in the application. The MPI middleware
FT-MPI [FAG 04] provides these options to notify the application that one or several
processes have failed and features an interface to implement the actions that must be
taken upon failures by the application.

FT-MPI provides four policies to organize processes beyond failures:

— shrink: the failed processes are not replaced and the naming of the surviving
processes is modified so that the names form a continuous set of numbers;

— blank: the failed processes are not replaced and the naming of the surviving
processes is not modified. As a consequence, the numbering of the processes is not
continuous. Messages sent to the failed process are not sent and the communication
routines return as if it had been done with no error;

— rebuild: new processes are spawned to replace the failed processes given the
same names as the failed ones. As a consequence, the application can recover its state
with the same number of processes. A process that has been respawned knows that it
is a clone of a former process;
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A B C

Figure 11.8. Redundancy for ABFT in iterative matrix-matrix multiplication

— abort: the application is terminated.

Diskless checkpointing [PLA 97] is a possible technique for the application to re-
store the state of the failed processes. It consists of saving the data that are necessary
to restore the state of a given process in the memory of other processes. For example,
in many iterative computations, the state of a process can be restored from the entries
of a matrix at the end of the previous iteration completed by this process. Processes
can send the entries of their matrix at the end of each iteration to a set of distinct pro-
cesses; the number of processes determines the number of failures that the application
can tolerate. When a failure occurs, the state of the application can be restored by
spawning a new process to replace the failed one and sending it the corresponding
matrix so that it can restore its state.

The FT-LA package [BOS 09] implements a set of fault-tolerant linear algebra
kernels using algorithm-based fault-tolerance. Redundant data are stored in additional
processes and used to recover upon failures. If processes used for the computation are
organized as an m X n grid, an extra column and an extra line of processes are used to
store this redundant data. A checksum is calculated over a set of processes (typically,
a line or a column) and stored in one of these additional processes. This approach
guarantees the recovery of the data of one process per set of processes (i.e. per line or
per column) and detection of flip-bit errors (e.g.communication errors).

Figure 11.8 depicts how fault-tolerant matrix-matrix multiplication can be per-
formed using ABFT. If a matrix A is multiplied by a matrix B, A and B are pre-
conditioned by calculating the checksum of each line and each column of processes
(represented by dotted areas on each matrix). This pre-conditioning introduces the
aforementioned redundancy and expands the matrices from over the m x n grid that
contains the initial matrices A and B to over the full set of processes (m+1) x (n+1).
Then the product AB is calculated normally, including the additional processes in
the multiplication. The data contained in the additional columns of A and the addi-
tional lines of B is not used in the computation. The result of the multiplication gives
C = AB with additional lines and additional columns that contain the checksum of
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each line and each column of processes. If a failure occurs during the computation,
the data that should have been contained in the failed process can be retrieved by using
the data contained in the processes of its line and the checksum of his line, or doing
the same thing in the failed process’s column.

Practical experiments and performance measurements on this matrix-matrix mul-
tiplication algorithm showed not only that the fault-tolerant approach has a small
overhead on failure-free executions, but also that low-performance degradation occurs
when failures occur: with one failure, the fault-tolerant matrix-matrix multiplication
had 12% overhead with respect to the fastest, non-fault-tolerant implementation.

Whereas the above ABFT approaches apply in the context of crash faults, some
recent work has investigated such techniques in the framework of the cheating faults
introduced in the section 11.4.3. More precisely, the authors of [VAR 11] show that
evolutionary algorithms (EAs), including their distributed implementation, are inher-
ently resilient to a limited number of falsified results produced by cheaters on global
computing platforms such as BOINC. This is the first formal analysis of the impact
of cheating faults in this context, together with a theoretical proof of convergence
towards valid solutions despite the presence of malicious acts. By the variety of prob-
lems addressed by EAs, this study will hopefully promote their usage in the future
developments around distributed computing platforms.

11.4.6. Case study

This section presents implementation of fault-tolerant parallel environments. These
three systems implement different strategies to proceed with the execution in spite of
failures in the system. We describe here how these approaches are integrated in the
parallel model followed by these environments.

MPICH-V

MPI [FOR 94, GEI 96] is the de facto standard for programming parallel applica-
tions on distributed memory. It defines a standard interface for inter-process commu-
nications (point-to-point and collective communications) with the characteristics of
portability, flexibility, and performance. However, neither the first [FOR 94] nor the
second [GEI 96] release of the standard addresses the issue of recovering from fail-
ures. The default behavior consists of terminating the application as soon as a failure
has been detected. The MPICH-V framework was designed to permit implementa-
tions and experimental evaluations of transparent fault-tolerance protocols for parallel
applications written using MPI. Fault tolerance is handled by the MPI middleware:
the fault tolerance mechanism is implemented by the communication library and the
run-time environment. Hence, the parallel application does not have to be modified
nor to support any fault-tolerance feature.
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Figure 11.9. Architecture of the MPICH-V framework

MPICH-V 2! is based on MPICH [GRO 96] (and MPICH2 in the latest release),
one major open-source MPI implementation. It extends the run-time environment of
MPICH with additional components that are necessary to support the fault-tolerance
protocols. The architecture of MPICH-V is depicted in Figure 11.9. The MPI applica-
tion is started by the mpiexec process, which is a sort of orchestrator of the application
and the fault-tolerance protocol. It deploys the MPI processes. Rollback recovery
protocols require the checkpoints to be stored on a reliable storage support: one or
several checkpoint servers are added to the run-time environment. Some protocols
require information on the messages that are sent between processes to be logged. An
event logger is used to store these data on a reliable storage device.

MPICH-V1 [BOS 02] implements a non-coordinated checkpointing protocol that
logs all the inter-process communications on a reliable storage device called chan-
nel memory. Each message is sent to the channel memory that saves it and then
forwards it to the receiver. MPICH-V2 [BOU 03] implements a pessimistic, sender-
based message-logging, non-coordinated checkpointing protocol in order to evaluate
the performance of this protocol. MPICH-Vcausal [BOU 05] implements a causal

21. http://mpich-v.Iri.fr.
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message-logging protocol and several methods to reduce the size of the information
piggybacked on messages. Two versions of Chandy and Lamport’s coordinated roll-
back recovery protocol have been implemented. A non-blocking version, which logs
all the messages sent during a checkpoint wave, has been implemented in MPICH-
Vel [LEM 04]. A blocking implementation is featured in MPICH-Pcl [BUN 08].
These protocols follow a simplified version of the architecture depicted on Figure 11.9,
and do not require any event logger. These implementations allow experimental com-
parisons between protocols to be made. These protocols must be compared in two
situations: failure-free execution, and in the presence of failures [BOU 06]. Perfor-
mance evaluation on fault-free executions gives an idea of the overhead induced by the
protocol (cost of fault-tolerance). Evaluating the performance with respect to the num-
ber of failures gives an idea of the cost of each failure with a given failure-recovery
protocol.

Practical comparisons showed that message-logging protocols have a more signif-
icant overhead on fault-free executions than coordinated checkpoints, especially on
high-speed networks. Large-scale, high-latency systems such as institutional grids
must avoid synchronization (such as that involving a blocking implementation of co-
ordinated checkpointing). Smaller systems interconnected by low-latency networks,
on the other hand, can be synchronized more quickly and benefit from a simpler pro-
tocol that does not log any messages, even those sent during the checkpoint wave
of a non-blocking coordinated checkpointing protocol. When failures occur, coor-
dinated checkpointing protocols require all the protocols to rollback, losing all the
computation made by the other processes since the latest checkpoint wave. As ex-
pected, non-coordinated rollback recovery protocols have better performance when
failures occur, except for very low fault frequencies where coordinated checkpointing
performs better.

KAAPI

KAAPI [GAU 07] is a scheduling system that executes tasks in distributed systems
based on their dependency graph. It uses a dynamic, greedy scheduling algorithm
based on work-stealing. A KAAPI application can be reconfigured dynamically at
run-time using modifications on the graph of tasks, as long as these modifications
respect the semantics of the original program. At a given moment, the state of a
program is represented by the current dataflow graph. As a consequence, the state of
the application can be recovered from a snapshot of each process and the local state
of the dataflow [JAF 05b]. In the context of KAAPI, the snapshot of the local process
and the local state of the dataflow will be referred to as the local checkpoint of a task.

The main idea of the work-stealing algorithm is that idle tasks steal work from
other processes. As a consequence, stealing work from one another is the only possi-
ble dependency between two tasks. KAAPI implements a theft-induced checkpointing
protocol [JAF 05b], which is an adaptation of the communication-induced checkpoint-
ing protocol [HEL 99] in the context of the KAAPI model. Communication-inducted
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checkpointing protocols are based on two kinds of checkpoints. Tasks or processes
take checkpoints on a regular basis to make sure that the recovery line is progress-
ing: these checkpoints are called local checkpoints. The other kind of checkpoints is
triggered by communications (i.e. causal dependencies between tasks or processes):
these checkpoints are called forced checkpoints. With KAAPI, forced checkpoints are
triggered by work stealing between tasks.

Distributed applications in KAAPI are assumed to respect the piecewise determi-
nistic assumption (defined in section 11.4.4). We have seen that in the context of
KAAPI, the only causal dependencies between tasks are tied to the work-stealing
mechanism. As a consequence, non-deterministic events in a KAAPI application are
those that require a modification of the dataflow graph.

KAAPI implements a systematic event logging protocol [JAF 05a] that logs all the
modifications that are made at run-time on the dataflow graph (e.g.creations of new
nodes). This protocol is an adaptation of the message-logging protocols used in the
message-passing model to the context of KAAPI. Since the state of the application
is represented by the data flow graph at a given moment, a global, distributed check-
point of the system can be taken by saving the state of all the processes of the tasks
of a KAAPI application and the state of the graph. KAAPI uses the knowledge it
has on future communications provided by the dependency graph of the application to
implement the coordination mechanism that is necessary to take a global checkpoint
of the application. Coordination is made between processes that will communicate
with one another in the future of the execution of the application, rather than with
all the processes of the application. This optimization reduces the number of mes-
sages sent during the coordination phase while keeping the state of the application
consistent [BES 08].

Charm++

Charm-++ [Kal 93] is a parallel programming language based on C++. A paral-
lel Charm++ application consists of two kinds of objects: concurrent objects (called
chares), scheduled by the Charm+ run-time environment, and messages sent between
chares. Messages are used to invoke methods on a remote chare. Charm++ takes
advantage from C++ features, such as data marshalling, to implement its run-time
system efficiently and in a portable way.

Several fault-tolerance strategies are available with Charm++. One particularity of
these protocols is that they use in-memory checkpointing to speed up the checkpoint-
ing process. Rather than transferring the checkpoint on a remote server, processes
save them in other processes’ memory. The checkpointing time is therefore reduced,
since the data transfer can take advantage of the low latency of the local network.
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In-memory checkpoints are not as reliable as stable data storage systems. To make
this protocol more reliable, FTC-Charm++ [ZHE 04] is a coordinated rollback re-
covery protocol that uses double checkpointing: checkpoints are replicated on two
different processes executed on two different processors, called its buddy processors.
Double checkpointing is more robust than storing only one copy of a checkpoint on a
single process, as long as the three processes that keep a process’s state (the process it-
self and the processes executed on its two buddy processors) are not killed. In-memory
checkpointing involves a memory overhead that can be high if the application has a
large memory footprint. Another variation of in-memory checkpoints is called in-disk
checkpointing: checkpoints are stored by processes on a local disk rather than in their
volatile memory.

FTL-Charm++ [CHA 04] is a pessimistic sender-based message-logging proto-
col. Before sending a message, a process coordinates with the receiver to emit a ticket,
which will be used to replay the sequence of messages in the same order in a similar
way to determinants described in section 11.4.4 for non-coordinated protocols. Unlike
traditional message-logging protocols, FTL-Charm++ does not save this ticket on an
event logger supposed to be located on a stable storage support, but on a buddy pro-
cessor, similarly to the buddy processors used for double checkpointing. The recovery
protocols take advantage of the dynamic scheduling and process migration features of
Charm++. Since the run-time environment of Charm++ schedules the chares of an ap-
plication on the available resources dynamically at run-time and, in general, schedules
several chares on each physical processor (oversubscription), there is no absolute need
for spare resources to restart the failed processes. A fast restart protocol which takes
advantage of the process migration and dynamic scheduling features of Charm++’s
run-time system, reduces the time required to re-execute a process after it has rolled
back to the previous checkpoint in the non-coordinated protocol [CHA 07]. Process
migration is also used for another fault-tolerance strategy. Assuming that some fail-
ures are predictable (e.g. an abnormal increase of the CPU temperature), processes
that are very likely to be hit by a failure can be migrated before the failure actually
occurs. This proactive approach [CHA 06] takes advantage of alarms raised by hard-
ware signals and fault prediction schemes to evacuate processes before the failure
actually occurs. As a consequence, the processes do not have to rollback ar all.

11.5. Ensuring resource security

The security, and especially the integrity, of a resource is one of the user’s primary
concerns in the distributed system. Indeed the user needs to be sure that the computing
resources he is using are not modified, i.e. that no malicious software or backdoors are
installed.
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11.5.1. System enforcing

The problem of how to secure a computing resource has been studied since the
early foundations of computer science. It has increased with the development of the
networks and especially with the expansion of the Internet. As already mentioned in
section 11.4.3, connected systems are subjected to many threats and potential attacks
such as DoS, intrusions or theft of information are conducted every day on connected
systems. The inherent security of each machine strongly depends on the type of op-
erating system (OS) running on the computer. Nowadays, Unix-based systems are
considered the most secure, assuming of course they are correctly configured. We list
here the general approaches (not only linked to these systems) used in system enforc-
ing. This applies to every computing component including our commodity machines
and it should be seen as advice for protecting computers.

Taking care of the security of each individual computer is one of the challenges for
cluster/grid system administrators as a secure distributed system assumes a reasonable
security level for each node composing the system. In this context, the following
elements should be taken into account:

— activating the system firewall. Of course, network flow can be controlled at the
backbone level (via the creation of dedicated VLANS with specific access rules) yet it
does not prevent a connected node from protecting itself against undesirable network
traffic. The network services provided by servers are bound to port numbers. These are
like doors the user is connecting to, in order to receive or send information. Without
any specific protection, a program running on a computer system can open any port
on the machine and let anybody access this system. A way to block any unwanted
services to open ports is to block them using a firewall. More generally, firewalls
control the network flow originating (or targeting) a machine. This is useful to block
any port numbers known to be used by common malwares. Figure 11.10 illustrates a
firewall activated on a cluster access front-end that typically runs a web server and a
SSH server to permit connection from the outside. As all web requests are handled on
ports 80 and 443, and the SSH connection is bound by default to port 22, there is no
need to open other ports on the machine;

. _ports 22,80,443 )47
!\
<Out5|de other ports _a

Network

Cluster access
Frontend

Figure 11.10. /llustration of a firewall activated on a cluster access front-end
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— ensuring an up-to-date system. All OSs come with a way to update the system.
It should be done on a regular basis to ensure that discovered vulnerabilities are fixed
as soon as a patch is available for the system;

— restricting the available services and place quotas. On too many systems, the
default installation integrates more services than required, and each of them is a poten-
tial source of attacks and vulnerability. Among the exceptions to this behavior, we can
cite the Debian OS, which explains why it is one of the favorite Linux distributions
for system administrators. In all cases, the running services should be restricted to
the minimum. For instance, a cluster access front-end will not need more than a SSH
server (for the connection) and eventually a web server (the front-end generally has a
public IP, it is available from the Internet so it is probably a good host for a website
displaying cluster information). Additionally, it is possible to limit resource usage via
quota configuration;

— use sandbox environments to confine program execution. This is often used to
execute untested code, or untrusted programs from unverified third-parties, suppliers,
and untrusted users. Classic examples of sandboxes include virtual machines, kernel
jails on FreeBSD systems 22, and cgroups 23, chroot environment;

— monitor resource usage. The activity of each computing resource should be
monitored. Several tools can be used at this level, among which we can mention:

- Ganglia24, a scalable distributed monitoring system for high-performance
computing systems such as clusters and grids,

- Nagios 25, a powerful monitoring system of a complete IT infrastructure, such
as a cluster, to ensure systems, applications, and services are functioning properly. In
the event of a failure, the technical staff are alerted of the problem, allowing them to
begin remediation processes,

- Tripwire 26 is an integrity tool for checking any modifications on the files of
the disk. This is done by logging a fingerprint of the binaries and configuration files of
the system like their hash-values, and checking afterwards, periodically or on demand,
that these fingerprints have not changed, i.e. that the files have not been tampered with.
It is useful for detecting rootkits or malwares,

- Logcheck 27, a simple utility that is designed to allow a system administrator
to view the logfiles that are produced upon hosts under their control. This is done by
mailing summaries of the logfiles to them, after first filtering out “normal” entries.

In addition to these tools, Intrusion Detection Systems (IDS) can be used.

22. http://www.freebsd.org/doc/en/books/arch-handbook/jail.html.
23. http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt.
24. http://ganglia.sourceforge.net.

25. http://www.nagios.org.

26. http://sourceforge.net/projects/tripwire.

27. http://logcheck.org/.
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11.5.2. Trusted computing

The concept of trusted computing was introduced in the computer security litera-
ture a long time ago and the initial ideas are now incorporated in PCs, mobile phones
as well as more dedicated material: servers, disk, and storage infrastructures.

Two recent papers [MAR 08, CHE 09] synthesize the issues of trusted computing:
“the re-design of systems architecture in such a way as to support its factorization
into relatively discrete components with well-defined characteristics”. The definition
is about software security in a broad sense and it impacts privacy, digital rights man-
agement, and certification. It impacts also on the way we communicate in a trusted
network and the way we store data with a trusted storage component.

The Trusted Computing Group 28 is an industry consortium promoting the devel-
opment of Trusted Computing. For instance, it promotes the use of a special hardware,
namely the Trusted Platform Module (TPM) and it proposes standards for it.

11.5.3. TPM (Trusted Platform Modules): Hardware for Trusted Computing

The naive approach to software integrity is to compare the running software to
well-known hash sums. However, this method of software integrity does not resist
simple attacks by simulating the target hardware and software in a virtual machine,
thereby exposing the software and the processed data to analysis in specific environ-
ments.

The media industry have been the main proponents of a solution that could push the
encryption to the hardware level and integrity checking to the point where no software
could spy upon the target code. Password protection is touted as the main advantage of
the proponents of such a hardware protection, but management of licenses (to media
content or to software) is clearly the target of such hardware.

The largest and by far most successful hardware elements that are capable of
checking the state of the software and hardware stack it is running on (without be-
ing fooled) are those responding to the TPM specification [ISO09a]. 29

Other implementations of this concept do exist: for example, the CryptoPage ar-
chitecture [DUC 06] uses strong cryptography in the processor between the internal
cache and the external bus with a cache line cipher (to shuffle the memory addresses
in an opaque manner) and a memory verifier based on Merkle tree hash function.

28. http://www.trustedcomputinggroup.org/.
29. The hardware piece implementing the specification is also called the TPM chip.
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The goal is to obtain software processes able to resist various attacks, such as replay
attacks.

However, TPM chips is the only implementation that received strong support from
the industrial community and can now be found in many computers (especially lap-
tops, but also desktop computers and cell phones). Microcontrollers implementing
the specification are produced by Intel, Broadcom, and STMicroelectronics, among
others.

The heart of the TPM chip comprises three parts: a cryptographic processor, the
permanent memory, and the normal memory (plus an I/O bus connected to the rest
of the board). The cryptographic processor is a common architecture capable of per-
forming encryption, decryption, signature checking, 2048 bits RSA-key generation,
SHA1 hashing, and of course, a good RNG. 30 The normal memory contains various
keys used for the normal co-processor operation, such as storage keys, etc. It is partly
non-volatile. The permanent memory contains essentially two keys: a 2048 bit RSA
key pair (PUBEK and PRIVEK). The private part is built into the chip at the factory
and should never be revealed.

With sufficient care (and this is what the TPM specification amounts to), the TPM
chip is able to keep PRIVEK private and thus issue unfalsifiable data signatures (which
are gathered from the main CPU). This is the key point to authenticating the controlled
data. The virtual machine scenario is of course eliminated as the virtual machine
cannot use the TPM chip as if it were native.

The use of the key also allows platform authentication to be performed (the system
with the TPM can digitally sign a message that can only come from itself, and can thus
prove the identity of the system to the authentication system). Other uses are also full-
disk encryption.

This TPM module is not compatible with the cloud computing approach, how-
ever, and is subject to either cryptanalysis or physical attacks. Cryptanalysis allows
PRIVEK (from PUBEK or from messages) to be retrieved; physical attacks allow in-
memory data to be found, so that data protected by TPM may still be retrieved, even
if only authorized software is executed at the time of the decoding of the data. For
example, a physical access to the memory modules after the system has been stopped
brutally while operating leaves a window of several hours during which data can still
be read when put inside another board.

30. A random number generator is necessary to create key pairs.
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For Linux users, we can also depend on different software, among them Trousers
and the tpm-tools3! and also the TPM emulator 32, which is a very active project.
The objective of this project is the implementation of a software-based TPM/MTM 33
emulator as well as of an appropriate TCG Device Driver Library (TDDL). The TPM
emulator package comprises three main parts: a user-space daemon (tpmd), which
implements the actual TPM emulator, a TPM device driver library (tddl) as the regular
interface to access the emulator, and a kernel module (tpmd_dev), which provides the
character device /dev/tpm for low-level compatibility with TPM device drivers.

Finally, we must recognize that this kind of technology is not yet integrated in
software projects, notably those in grid computing. In February 2010, Christopher
Tarnovsky announced that he had been able to hack into an Infineon TPM chip using
an electron microscope 34. TPMs were never intended to be invulnerable to an attacker
with physical access to the machine hosting the chip.

11.6. Result checking in distributed computations

This section presents methods for a posteriori verification of the integrity of the
system by checking the correctness of the results produced by this system.

11.6.1. Overview

The integrity of executions is handled at two levels. First, at the scale of the execu-
tion itself by the guaranteeing that it is correct despite the dynamicity of the computing
resources. This introduces the setting of appropriate fault tolerance mechanisms, such
as those presented in this chapter (see section 11.4 typically).

Such mechanisms are not sufficient to ensure integrity, as resources and results
produced by the different tasks may be corrupted. Concerning the protection against
the corruption of computing resources, several approaches involving both hardware
and software mechanisms can be considered, as described in section 11.5.

This section is dedicated to the protection against the second aspect, i.e. results’
corruption. We have already introduced this type of fault in section 11.4.3, when
classification of the different types of faults was introduced. Result falsifications are
often referred to as cheating faults. As mentioned in section 11.4.3, such byzantine
errors are quite hard to detect in the sense that the data produced by the execution of

31. http://trousers.sourceforge.net/.
32. http://tpm-emulator.berlios.de/.
33. MTM: Mobile Trusted Module.
34. http://abcnews.go.com/Technology/wireStoryid=9780148.
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the program, although erroneous, generally respects the expected format and does not
raise the alarm on the integrity of the data itself. Again, an eloquent example already
mentioned is the famous SETI@home problem: some collaborators have substituted
the initial FFT computation with their own code, which is inadequate [MOL 00]. We
do not really know if it was a simple blunder or a true malicious attack — the goal was
to improve the collaborator’s rank in the SETI hall of fame. Nevertheless, the forgery
of results has caused the loss of several months of computation.

More generally, result forgery i.e. cheating comes from incentives associated with
the execution. Some recent analysis has demonstrated that this behavior is not marginal.
In [KON 07], it was shown that a remarkably high percentage of hosts — about 35% —
in BOINC that were monitored via the XtremLab project [XTR 09] returned at least
one corrupt result in the 3 month time frame over which the experiment was con-
ducted. The current trend is an increase of this behavior, mainly because of the en-
thusiasm around the cloud paradigm. Indeed, incentives at this level have become
clearly money-oriented, which is an additional motivation for cheaters and sabotages
to intervene.

The presence of cheaters in distributed systems is well-known and many counter
measures have been proposed in literature. A major reference in this domain is the
work of Sarmenta [SAR 02]. Two complementary strategies can be put forward:

1) prevention of a priori forgery by making it harder to perpetrate. The question is
then to strengthen the architecture of global computing as expounded in section 11.5,
e.g.through quotas (on disks and/or CPU), firewalls, or confinement of execution or
appropriate rights on resources;

2) a posteriori control of the output generated by the tasks by adopting techniques
of quantitative evaluation of the accuracy of results in such a way that corrections may
be applied on-the-fly.

We now focus exclusively on this second point and describe the different ap-
proaches followed during the result certification step and integrity control mechanisms
used in distributed systems.

11.6.2. Result-checking by post-condition

A result certification mechanism is composed of two aspects:

1) the program’s formal verification [BOY 82] before its execution. It consists of
verifying a set of properties on a downloaded application through a formal proof that
comes with the application. The conclusions of the proof are then compared with the
security policy of the target machine in charge of the execution in order to determine
whether running the application is safe or not. We can also use a specific assembler
language such as [MOR 99]. This approach remains specific as the existence of a
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validity proof is not guaranteed: it depends on the program and is also costly. In addi-
tion, it does not improve confidence in the results as they are returned by a potentially
corrupted resource;

2) the program testing [BLU 89] or property testing [GOL 98]. In the first case,
we evaluate the outputs of the program on predetermined inputs for which we already
know the result. In the second case, we check whether the generated outputs are close
to a given property established for the program.

If the program testing method can easily be circumvented, the approach by test-
ing a property falls within the general mechanism of simple checkers introduced in
[WAS 97]. This involves a post-condition checking on the results generated when the
cost of this checking is lower than the computation itself. The idea is that for some
problems, the time required to carry out the computation is asymptotically greater than
the time required to determine whether or not a given result is correct. This is possible
thanks to a post-condition the output have to conform to. For instance, let us consider
the discrete logarithm problem (DLP): given a group (G, .), a generator g of this group
and an element . € G, output x such that h = ¢g®. Checking a given output x is far
more simple (using fast exponentiation typically) than computing this output.

The post-condition approach remains the most efficient one for a problem P given
at the beginning. Yet it remains specific: it is often impossible to automatically extract
such a post-condition on a program. Additionally, it does not isolate all the resources
responsible for the forgery of the result.

11.6.3. Result-checking by duplication

Another method uses duplicated computations to evaluate the correctness of the
results produced by computing resources. Generic approaches are based on duplica-
tion.

Task replication for batch certification and reinforcement.

At this level, most previous studies [SAR 02, GER 05, KON 07] consider pro-
grams with multiple parameters that summarize to a set of batches scheduled by a
reliable server which can be distributed. A batch is composed of n independent tasks
{T:}1<i<n each task T; receiving the inputs a) and generating the output s_f The
tasks are executed in parallel on resources of a global computing system: a set of
workers. The results of the executions are returned to the scheduler.

In the remainder of this subsection we assume that the workers run at the same
speed. When the scheduler has collected all the results {S_i>}1§i§n, it validates them,
and then generates the next batch. This procedure is repeated until completion of the
whole computation. Moreover, due to the execution in an hostile environment, result

www.it-ebooks.info


http://www.it-ebooks.info/

286  Distributed Systems

corruption may occur. In general, it is assumed that the program supports a proportion,
denoted 4, of falsified results for each batch. For some applications, this threshold can
be relatively high (1% or more). This applies, for example, to applications of image
rendering and videos where the presence of a few erroneous pixels remains unseen by
the human eye.

Furthermore, result falsification have been often modeled by assuming a fraction
of w saboters behaving as Bernoulli processes with an unknown constant probability
s. Consequently, falsified results in a batch of size n is a random variable 7,, which
conforms to a binomial law B(n,p) with p = ws. Using those hypothesis, two ap-
proaches are proposed in the literature:

— Germain et al. [GER 05] tried to certify the quality of the batch as soon as pos-
sible through a test 7 and probabilistic checks;

— Sarmenta [SAR 02] enforced the batch quality by making the falsification prob-
ability lower than the tolerance threshold § of the application.

Oracle | |Oracle| - @
| | |

‘ 71 o T

ACCEPT REJECT

Figure 11.11. Result certification by task duplication in [GER 05]

The first approach to ensure the validity of a batch [s_f, cee Ei] is illustrated in Fig-

ure 11.11 and consists of certifying the quality of the batch as soon as possible through
atester 7 operating a probabilistic hypothesis testing. The correctness of a given result
s; is checked in a deterministic way by an oracle, typically by re-executing the task
T; on reliable resources and giving a binary answer x; (O=correct,1=falsified). There-
fore, given € € [0, 1], the certification algorithm .A(J, €) should determine whether the
falsification probability p of the initial batch is under the tolerance threshold ¢ of the
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application. e corresponds to a “false-positive” (i.e. the probability of answering AC-
CEPT while p > §) the user is ready to accept. In the framework of statistical testing,
and more precisely of sequential analysis, [GER 05] proposed a probabilistic test that
certifies the batch in an adaptive way, without unduly eliminating results which are
actually correct and with a relatively low cost (defined as the number of oracle calls).

In the second approach, initiated in [SAR 02], various techniques are proposed to
reinforce the quality of the batch. More precisely, concepts like voting, spot-checking,
blacklisting, or credibility-based fault-tolerance are applied to decrease the error rate
of the batch (characterized by the falsification probability p) under the threshold 4.
This approach is illustrated in Figure 11.12.

>

El @l El @l n, workers, w saboteurs

(falsification probability: s)
J CJ [ CJ

= B =1 =7 < errorrate of the batch: p=w.s

A(9)

Sabotage—tolerance

mechanisms

Reinforced Batch S0

— error rate of the reinforced batch: p <0 <p

Figure 11.12. General configuration of batch reinforcement proposed in [SAR 02]

Result-checking by partial duplication based on data-flow graphs

The preceding approaches are limited to the restricted context of independent tasks
with a modelization of attacker behavior.

Falsification in systems with task dependencies are addressed in [GAO 04] where
tasks are determined to execute on reliable or non-reliable nodes in order to maximize
the expected number of correct results. The problem is shown to be NP-hard. Whereas
the approach considers the critical issue of fault propagation, it is deterministic and
therefore could be exploited by a clever adversary.

Indeed, it is possible to extend the probabilistic approaches for direct certification
presented in section 11.6.3 to any parallel computation with dependent tasks, making
no particular assumption on the attack or on the distribution of errors. The approach
is based on an abstract and portable representation of the distributed execution of a
parallel program P over a fixed input: a bipartite direct acyclic graph G = (V, &)
known as a macro-dataflow graph.

Specifically, V is the finite set of vertices v; and £ is the set of edges ejx, j # k,
representing precedence relations between v;, vy € V. The vertex set consists of two
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kinds of tasks. The first class of vertices is associated with the tasks (in the sequen-
tial scheduling sense when a task is seen as the smallest program unit of execution)
whereas the second represents the parameters of the tasks — either inputs or outputs
according to the direction of the edge. The total number of tasks 7} in G is denoted
by |G| = n. An example of such a dataflow graph is proposed in Figure 11.13 where
tasks and data are represented as circles and squares respectively.

Output

Figure 11.13. Instance of a data-flow graph associated with the execution of five tasks
{f1, ..., f5}, with input parameters {ex, ..., es}. The produced results are {s1, s2}

Modeling an execution by a data-flow graph is part of many parallel programming
languages such as Jade [RIN 98] or Athapascan [GAL 98]. Furthermore, some effi-
cient execution engines like KAAPI [GAU 07], introduced in section 11.4.6, use the
graph G to build, schedule, and execute programs on distributed architectures. In ad-
dition, the graph describes a consistent global state of the execution, which can be
used for some checkpointing mechanisms able to ensure fault-tolerance against crash-
faults [JAF 04] (see again section 11.4.6 for more details). Finally, the checkpoint
could be applied to extract the context of a task in order to re-execute it on safe re-
sources. This assumed a checkpoint server (eventually distributed) hosted on reliable
and secured resources. It permits the duplication of a single task for further compar-
ison in a result-checking algorithm, an operation typically conducted by the oracles
introduced in [GER 05].

The impact of a result falsification, whether in the context of independent or depen-
dent tasks, is illustrated in Figures 11.14 and 11.15, respectively. Cleverly used, the in-
formation presented in the graph limits the overhead of the the tasks re-executed on the
oracles. This leads to a probabilistic certification that establishes whether the results of
the computation are correct or not, as introduced in [VAR 04]. Actually, [VAR 04] but
also [KRI 05a, KRI 05b] described various certification algorithms based on macro-
dataflow graphs to check the results of an execution composed by dependent tasks. An
experimental study conducted in [VAR 06] made use of those results in the framework
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Figure 11.14. Correct and falsified execution of a parallel application composed of three
independent tasks

Figure 11.15. Correct and falsified execution of a parallel application composed of five
dependent tasks

of a medical application. Furthermore, a more developed cost analysis based on on-
line scheduling by work-stealing has been conducted in [ROC 07]. Finally, the reader
may be interested by the consistent view of these works summarized in [VAR 07].

BOINC case study

The BOINC middleware is a popular volunteer computing system that enables
huge computing power using thousands of Internet resources, typically PCs. This
has been introduced in Chapter 10. Many types of attacks are possible on volunteer
computing systems and more specifically on BOINC. The most common attacks are
listed below:

— result falsification: attackers return incorrect results;

— credit falsification: attackers return results claiming more CPU time than was
actually used;

— malicious executable distribution: attackers break into a BOINC server and, by
modifying the database and files, attempt to distribute their own executable (e.g. a
virus program, a malware, and/or a worm) disguised as a BOINC application;
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— denial of service on the data server: attackers repeatedly send large files to
BOINC data servers, filling up their disks, and making them unusable;

— theft of participant account information by server attack: attackers break into a
BOINC server and steal email addresses and other account information;

— theft of participant account information by network attack: attackers exploit the
BOINC network protocols to steal account information;

— theft of project files: attackers steal input and/or output files.

BOINC provides mechanisms to reduce the likelihood of some of these attacks.
For instance, result and credit falsification can be limited by using replication and
result checking techniques as described in section 11.6. To be protected against mali-
cious executable distribution, BOINC relies on code signing with a trusted certification
authority (CA) independent from the project server so that even if attackers break into
a project’s BOINC server, they will not be able to cause clients to accept a tampered
code file. There is no real solution against denial of service attacks, as for any system
connected to the Internet. BOINC attempts to bound output file size and rely on digi-
tal certificates for uploading operation but this is clearly insufficient. Finally, theft of
information is not directly treated in BOINC.

The different levels protecting the system are the following:

— the security model aims to enforce the trust between volunteers and the project
itself. At installation time, the project owner produces a pair of public/private keys
and stores them in a safe place, typically, in a machine isolated from the network,
as recommended on the BOINC web site. When volunteers contribute for the first
time to the project, they obtain the public key of the project. Project owners have to
digitally sign the project application files, so that volunteers can verify that the binary
codes downloaded by the BOINC client really belong to the project. This mechanism
ensures that, if a pirate gets access to one of the BOINC servers, he would not be able
to upload malicious code to hundreds of thousands resources. If volunteers trust the
projects, the opposite is not true;

— to protect against malicious users [SAR 02], BOINC implements a result cer-
tification mechanism, based on redundant computation. BOINC gives the ability to
project administrators to write their own custom results certifying code according to
their application. As stated in [AND 04], BOINC implements redundant computing
using several server daemon processes:

- the transitioner implements the redundant computing logic: it generates new
results as needed and identifies error conditions,

- the validator examines sets of results and selects canonical results. It includes
an application-specific result-comparison function,

- the assimilator handles newly-found canonical results. It includes an
application-specific function that typically parses the result and inserts it into a sci-
ence database,
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- the file deleter deletes input and output files from data servers when they are
no longer needed.

In this architecture servers and daemons can run on different hosts and can be
replicated, so BOINC servers are scalable as stated by D. Anderson in [AND 04].
Auvailability is enhanced because some daemons can run even while parts of the project
are down (for example, the scheduling server and transitioner can operate even if the
science database is down).

Moreover, BOINC provides a feature called homogenous redundancy for scientific
applications, in particular those that generate many floating point values. When this
feature is enabled, the BOINC scheduler sends results for a given task only to hosts
with the same operating system name and CPU vendor. In this case, strict equality can
be used to compare results.

11.7. Conclusion

In this chapter, we have covered many practical and fundamental aspects of safety
in a broad sense for one class of distributed systems, namely grid systems. After an
introduction to grid technologies, we have visited the main concepts of safety in grid
systems: confidentiality, authentication, availability, integrity, and resource integrity.
We have also introduced one specific technique used for desktop grids, namely result
checking.

As grid systems are now evolving towards cloud systems, we may observe a re-
vitalization of research topics and we are now moving from coordination issues to
provisioning issues. People from the community will probably have to envisage secu-
rity and safety issues according to this new context and paradigm.

In clouds that provide Internet-based services (computing and storage), security is-
sues are becoming a key differentiator and competitive edge between cloud providers.
For instance, if we consider a cloud infrastructure for journalists made of services for
writing articles, reporting with experts, data consulting, and on-line storage, it can be
noted that if not all the previous human activities are secured, democracies are at risk.

To prevent damage, the TPM monitors and reports on what is running on the user’s
machine. This monitoring and reporting are particularly important in the virtualized
environment of cloud computing. In the previous example, trusted network connec-
tion is also important, as well as trusted storage: these two issues are inherently tack-
led with TPM. The Cloud Security Alliance (CSA)35 released a report that identi-
fies many areas for concern in cloud computing. This new environment cannot be
protected using traditional security approaches, even those inherited from grid com-
puting. We would like to mention the separation between customers (TPM could

35. http://cloudsecurityalliance.org.
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provide hardware-based verification of hypervisor and virtual machine integrity) and
the cloud’s legal and regulatory issues (to verify that a cloud provider has a strong pol-
icy and practice that address legal and regulatory issues for provisioning customers,
for instance). In the areas of data retention and deletion, trusted storage and TPM
techniques may play a major role in the future.
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Chapter 12

Enforcing Security with Cryptography

12.1. Introduction

The world famous International Standards Organization (ISO) defines in its norm
ISO 27001:2005 (Information technology - security techniques - information security
management systems - requirements) the term “confidentiality” as follows: Confi-
dentiality is a characteristic that applies to information. To protect and preserve the
confidentiality of information means to ensure that it is not made available or dis-
closed to unauthorized entities. In this context, entities include both individuals and
processes.

One way to ensure a high level of confidentiality should be to use some private
communication network, with native devices of information protection; for instance
some privately operated optical fiber networks between two buildings of a financial
institution. Nevertheless, the cost for establishing and maintaining such networks is
clearly not compatible with scaling. What is the alternative? Cryptography. What
is cryptography? A collection of involved mathematical notions, miscellaneous engi-
neering designs, and a large amount of frequently used software that allow thousands
of people per hour to buy or sell many articles on the Internet.

The very objective of cryptography is to allow confidential communications be-
tween two entities, namely human beings, computers, or any processes, through a
public network. A public network is an unrestricted communication medium with
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no access control such as the telephone network or the Internet, for instance. Crypto-
graphic devices should make it impossible to obtain and use information illegitimately
“sniffed” out on the public network.

When confidentiality must be guaranteed, for instance for military messages or fi-
nancial transactions, it is fundamental to employ cryptography. Such techniques may
be successfully used to achieve other security requirements, such as integrity, authen-
ticity, and non-repudiation. Even though we acknowledge the previous ideas, this
chapter is mainly devoted to the protection of confidentiality.

Generally cryptographic communication between two individuals (or computers
or processes), say Alice and Bob, is composed in the following way. Before sending
information (on the public network) to Bob, Alice modifies it using a cryprographic
system (a cryptosystem for short), into a new message called ciphertext or cryptogram,
which has the essential property of dissimulating the very nature of the original mes-
sage, called cleartext or plaintext, to every entity other than Bob. Bob, the legitimate
recipient of Alice’s message, retrieves and decrypts the ciphertext in order to recover
the original message from Alice. As the network is public and, therefore, freely ac-
cessible, any person may be able to intercept the ciphertext. However, because it is
encrypted for Bob, this message seems to be without meaning and, in fact, unusable.
In this way, in principle, the requirement of confidentiality is ensured.

All cryptosystems are quite similar in form and principle, and they all share the
same operating process and fulfill similar tasks. Therefore, the first part of this chapter
is devoted to the general description of these common features: an accurate definition
for cryptosystems will be given as well as a description of high-level functionalities
provided by cryptosystem devices. Furthermore the very existence of cryptography
is related to threats on communication media; this is the reason why the concept of
cryptanalysis is also introduced in the first part. Cryptosystems are classified in one of
the following two species: symmetric (or secret-key) cryptosystems, and public-key
cryptosystems. A part of this chapter is dedicated to both families. In section 12.3
we deal with the former; we provide a general description for secret-key cryptosys-
tems, and we deal with some popular algorithms, namely the data encryption standard
(DES), international data encryption algorithm (IDEA) and advanced encryption stan-
dard (AES), in order to illustrate the development of mathematical technologies in
this area. The world famous RSA algorithm, as a relevant instance of public key cryp-
tosystems, is detailed in section 12.4. Then we stress the fundamental role played by
prime numbers in asymmetric encryption: different techniques to prove primality or
to provide prime numbers are presented.
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12.2. Cryptography: from a general perspective

In this section we introduce general definitions and the main principles used in the
remainder of this chapter.

12.2.1. Cryptosystems

The notion of cryptographic systems, although quite imprecise, may be given a
rigorous mathematical definition (which is inspired from [STI 06]). Mathematically
speaking, an enciphering algorithm, also called cryptosystem or cipher system !, can
be described as a collection of three non-empty sets, P, C and K (in general these
sets are finite), called sets of plaintexts, ciphertexts, and keys, and two functions?
E: K — CP, which maps a key k € K to a enciphering (or encryption) function
Ey: P — C,and D: K — PC, which associates with every k € K its deciphering (or
decryption) function Dy, : C — P, which are required to satisfy a decryption rule: for
every plaintext z € P,

Dk(Ek(x)) =X.

This rule is fundamental for the decryption process, and more precisely to make
such a process possible. Indeed, let us assume that y € C is the ciphertext Ey () for
some plaintext z € P (and key & € K). The decryption rule indicates that we can
recover this plaintext from the ciphertext by an application of the decryption function
Dy Di(y) = Di(Eg(x)) = x. While quite simple, this is the most important feature
of a cryptosystem, and this leads to the search for invertible functions3 Ej, and Dj,
(for every key k). This is the reason why we will present some cryptographic algo-
rithms emphasizing the property of invertibility satisfied by the encryption/decryption
functions.

From this formalism we deduce that Alice must know the map E}, while Dy, has
to be known by Bob in order to make possible the decryption process. If someone
else than Bob is acquainted with the use of Dy, then he is able to decrypt any message
enciphered by Ej, and the protection of confidentiality probably fails (except if the
person under consideration is Alice!).

1. In the following we will freely use the terms “cryptographic” or “cipher” or “encryption” in order to
avoid monotony.

2. Recall that the set of all maps from X to Y is usually denoted Y X .

3. The decryption rule only implies that for each k& € K, Dy, is onto and E, is one-to-one. Nevertheless,
when P and C are finite with the same cardinal number, both maps are invertible (we also say that they are
“bijective” or “one-one correspondences”).
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Example 12.1 The following (secret-key) cryptosystem, called one-time pad, was
invented by G.S. Vernam in 1917 (while published in 1926 in [VER 26]). Let us
denote by Z the set {0, 1} of bits and let & be the addition of bits modulo two, also
called exclusive or (shorter: XOR), given by the following (addition) table:

(0|1
010
111

Vernam’s cryptosystem is formalized in the following fashion: P = C = K = (Z)*
where / is a positive integer. Therefore plaintexts, ciphertexts, and keys are are /-
tuples of bits. For each key k = (k1, ..., k¢) (wWhere each k; is a bit) the encryption is
defined

Eki (Zg)é — (Zg)g
x=(T1,...,20) — xz®k=(x1Dk1,...,z0eDPks).

So the ciphertext Ej(z) corresponding to the plaintext = is equal to the component-
wise modulo-two sum, which, by abuse, is also called XOR (or exclusive or), of x
and k. The decryption function Dy, is equal to Fy. It is quite easy to check that the
decryption rule is satisfied. First of all, let us note that for every z,y € (Z3)* it holds
that (z @ y) @ y = x (this is due to the definition of & at the bit level). It follows that

Di(Er(z)) = Di(x1®ki,...,z0D k)
= (z1®k1)@k,...,(xe ® ko) D k)
= (wla"'axf)
= X.

In order to illustrate the encryption process, let us suppose that £ = 4, z = (0, 1,1, 0),
and k = (1,1,0,1). Then Ex(z) = (04 1,191,146 0,04 1) =(1,0,1,1).

12.2.2. Two dissimilar worlds

As described in the Introduction, there are two principal classes of cryptosystems,
distinguished by the management of the secret on F and Dy,.

Conventional, symmetric or secret-key cryptosystems are the encryption schemes
where nobody knows the key k used to communicate, except the legitimate corre-
spondents, say Alice and Bob. In this context, k is called the secret key. Functions
E and Dy, are secret quantities shared by the two interlocutors. In order to use such
a cryptosystem Alice and Bob need to choose the secret key together, or at least one
of them determines then communicates it to the other. In short Alice and Bob must
agree on the choice of the secret key before any encrypted communication. In order to
make this choice, they must meet physically in a secure area or use a private network.
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The one-time pad of example 12.1, and also DES, IDEA and AES (described later)
are secret key cryptosystems.

The other main class of encryption processes is given by the so-called asymmet-
ric or public-key cryptosystems. The key k and the decryption function Dy, are secret
quantities only known by the receiver of confidential messages, Bob, while the en-
cryption function Ej (and not the key k) is published by Bob (on his web page for
instance) so that everybody who wishes to communicate with him can use it. In this
situation Bob is the unique individual able to decrypt messages Ey(x) since Dy, is its
own secret. The different roles played by the public Ej on one side and the secrets k,
Dj; on the other side, justify the term “asymmetric” for such cryptosystems; obviously
“public-key” comes from the existence of this public quantity £;. The RSA algorithm
belongs to this class of algorithms.

We emphasize the fact that both classes of cryptosystems are based on very dif-
ferent mathematical techniques: invertible functions over some algebraic structures,
probability theory and statistical analysis usually occurred in conventional cryptogra-
phy, while prime numbers, computability, and complexity theories are the main ingre-
dients of the mathematical foundation for asymmetric encryption schemes.

12.2.3. Functionalities provided by cryptographic devices

The application of cryptographic tools is not restricted to the protection of in-
formation confidentiality. It is actually possible to define four primitive functionali-
ties provided by encryption devices: confidentiality, authenticity, integrity, and non-
repudiation. Each of them represents a means of defense against a particular kind of
threat. These cryptographic characteristics are described below:

— confidentiality means that information, after encryption, loses all meaning for
all people except the legitimate protagonists of a cryptographic communication. An
enemy that intercepts the plaintext must be unable to decrypt it for confidentiality to
be preserved;

— integrity: in every communication (encrypted or not) it is expected that the mes-
sage be received with no modifications, exactly as it was sent. Moreover, if a received
message is different from the transmitted message, then the receiver must be able to
detect it. We say that “integrity of messages against modifications is ensured” if the
preservation of these two properties is secured;

— authenticity: the mission assigned to authentication consists of guaranteeing that
the received message comes from the entity (human, computer, process) that is sup-
posed to send it. If an enemy — playing the role of Alice — sends a message to Bob,
then the authenticity of the message must be questioned. Otherwise, Bob, believing
the enemy is Alice, would send confidential information to her/him;
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— non-repudiation is the means that avoid the receiver of a message to deny its
transmission. This a fundamental protection, for instance, in the context of financial
transactions.

In this chapter we only deal with integrity, which is the heart of cryptography, and we
do not develop the other cryptographic notions.

12.2.4. Cryptanalysis: the dark side of cryptology?

In the world of cryptography two kinds of entities coexist: the legitimate players
of a enciphered communication, Alice and Bob, and an adversary (also called crypt-
analyst, enemy, opponent, attacker) who tries to discover the key used to encipher; if
he succeeds in this attempt, then the enemy has “broken” the cryptosystem: the crypt-
analysis is successful.

Cryptography and cryptanalysis form the two sides of cryptology, the science of
secrets. In appearance, but only in appearance, the dark side of cryptology is crypt-
analysis. This notion is also used to design systems to be invulnerable against some
classes of cryptanalysis. Then it becomes essential to define models of the strength of
an attacker so as to measure how strong the cryptosystem is. At this step Kerckhoffs’
principle is often assumed. This assumption — defined by A. Kerckhoffs — means that
the encryption algorithm is known by the enemy [KER 83a, KER 83b].

There exists a very basic cryptanalysis for every cryptosystem, called brute-force
attack, which in theory should be able to break any encryption algorithm. It is not
sophisticated at all as it consists of trying to decrypt a ciphertext with all possible keys
until an understandable plaintext is obtained. An adversary will find the key after an
average of “;—l attempts 4,

The number |K| of possible keys is clearly a fundamental parameter to measure
how strong a cryptosystem is, with respect to a brute-force attack. Modern crypto-
systems with a size of at least 160 bits to encode a key are considered secure against
this trivial attack because, even for very advanced computers, an exhaustive search
in a set of 2159 seems to be impossible in practice. Usually, an attack is considered
successful when it requires less time to get the key than a brute-force attack.

4. The quantity | X| is the number of elements or cardinal of the finite set X.
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Obviously more sophisticated cryptanalysis may be encountered. Their common
goal is always to find the key used to encrypt messages. The most common types of
attacks are classified by increasing order of adversary’s power. The list is given below:

— known-ciphertext attacks. The adversary is assumed to only have access to a set
of ciphertexts (from unknown plaintexts and a fixed unknown key);

— known-plaintext attacks. The enemy has samples of both the plaintext and its
encrypted version (by a given and unknown key), the ciphertext, and is free to make
use of them to reveal the key;

— chosen-plaintext attacks. This mode assumes that the attacker has the capabil-
ity of choosing arbitrary plaintexts to be encrypted and can obtain the corresponding
ciphertexts;

— chosen-ciphertext attacks. The opponent collects information by choosing one
or several ciphertexts and obtaining their decryption under an unknown key.

This classification allows us to define several degrees of cryptographic resistance. For
instance, it is possible to prove that the one-time pad is invulnerable with respect to a
known-ciphertext attack while it is easily broken by a known-plaintext attack: let us
assume that a plaintext m and its ciphertext ¢ = m @ k are known, then the key is
immediately found by computing m & ¢ = k.

12.2.5. General requirements to avoid vulnerabilities

There are three theoretical models to measure the level of security of a crypto-
graphic device. In 1949, Claude Shannon, founder of modern cryptography, gave the
mathematical bases of contemporary cryptology in his famous article [SHA 49]. In
this paper he introduced the two first criteria for a cryptosystem to be secure: uncon-
ditional security and statistical security.

A cryptosystem is said to provide unconditional security when any kind of knowl-
edge of a ciphertext does not reveal any information about the corresponding plaintext.
As an example we can prove that for Vernam’s cryptosystem such a cryptographic
property holds whenever a new randomly chosen key is used for each encryption.
This very strong feature ensures invulnerability against every known-plaintext attack.

Nevertheless, one-time pad, as with all secret-key algorithms, involves a key ex-
change among the legitimate interlocutors, but to satisfy unconditional security they
are forced to use a new key for each of their confidential communications. We easily
see the limitation of such a process in practice. In order to get around it, Shannon
defined another resistance criterion, namely statistical security, which is based on two
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more fundamental properties called diffusion and confusion.

Using the name diffusion Shannon defined the fact that every letter (or more gener-
ally symbol) of a ciphertext should be dependent of every letter of the corresponding
plaintext and of the key. The goal of this is the following: two ciphertexts, where one
of them is due to a modification — even a minimal one — of the plaintext or of the key,
must be very different. Therefore, the ciphertexts are dependent on the initial condi-
tion (plaintext or key used). A slight difference at the input of a cryptosystem must
produce a large difference in its output.

Confusion refers to making the relationship between the key and the ciphertext as
complex and involved as possible in order to hide any statistical structures that could
be used to discover information from the plaintext without knowledge of the key. For
instance, statistics of natural languages must be destroyed during the encryption pro-
cess so that they become inpractical for an adversary. We will observe soon that these
two properties, diffusion and confusion, establish the architectural pattern of modern
symmetric encryption algorithms.

The last approach to cryptographic security, called computational security, intro-
duced by Whitfield Diffie and Martin Hellman in their joint work [DIF 76], only con-
cerns public-key encryption schemes. Such an algorithm is said to provide computa-
tional security if the best known attack requires too many computations to be feasible
in practice. In general we prove that breaking a cryptosystem is equivalent to solving
a problem known to be difficult in the sense that the construction of an explicit solu-
tion is impossible in practice (but not in theory!). Notice also that a computationally
secure scheme is not unconditionally secure.

12.3. Symmetric encryption schemes

This section is devoted to symmetric encryption schemes: the high-level design is
presented at first, followed by famous instances of such schemes.

12.3.1. The secret key

Let us briefly recall how a secret-key algorithm is implemented. For a symmetri-
cally ciphered communication, Alice and Bob, and no other entity, have the common
secret key. Thus Alice encrypts her message with this key, and sends it to Bob, who
can recover the original message from the ciphertext he received by using the key.
Even if the cryptosystem used is known by everybody — in accordance with Kerck-
offs’ principle — an adversary cannot decrypt any intercepted confidential message as
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he does not possess the key.

The choice of the key by Alice and Bob is a tricky problem. Indeed, either they
physically meet or one of them sends the key to the other using a communication net-
work secured in some way, for instance a private optic fiber between two buildings,
or by the use of a key-exchange protocol. This problem is not treated in this chap-
ter. See [MEN 97], available on-line at http://www.cacr.math.uwaterloo.ca/hac/, for a
good reference on key-exchange protocols.

12.3.2. Iterated structures and block ciphers

For the sake of efficiency, encryption processes are performed by computers. Thus,
the messages (plain or cipher) are treated as blocks of bits (or bytes) built following an
iterated architecture that allows a high level of confusion and diffusion. An internal
round function T is used. It takes two arguments: a message m and a secret-subkey or
round subkey k (both are blocks of bits). The subkey is produced from the secret key,
called master key, by some derivation algorithm. Even though they are required for a
symmetric encryption scheme, these algorithms are not treated in more detail in this
chapter.

The round function is required to satisfy the following property to make decryp-
tion possible. With a fixed round subkey k, the function Tj: m — T'(m, k) must be
invertible. This is actually the realization of the decryption rule in this particular con-
text. The argument m is called round plaintext and T'(m, k) is the round ciphertext.
The round function consists of a sequence of complex mathematical transformations
in order to make its result 7'(m, k) unintelligible. More precisely, T must implement
confusion and diffusion requirements. In particular an output block of such a function
must be dependent of an important number (at least half the number) of bits of plain-
text and round subkey.

In order to confuse and diffuse, the round function is iterated some number r of
times as follows. Let m be the message to encrypt. The following sequence of com-
putations is done.

mo = mj;

mi+1 = TkHl(mi) fOI‘OSiST‘—l
where k; denotes the subkey related to the ith round. The ciphertext c, obtained as
output of the last round, is given by formulae:

C = My
= Tk, (mr—1)
= TkTOTkr,lO"'OTkQOTkl(m)~
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where “o” is the usual composition of functions. This iterated architecture turns out
to be unavoidable to obtain convenient levels of confusion and diffusion in order to
ensure statistical security. More precisely, iteration increases the diffusion.

Let us take a look at the deciphering process. Recall that for a given round subkey

k, the function T}, is required to be invertible, which implies that there exists a map
T, ! such that for any block z, T}, '(Ty(z)) = x. Decryption is performed by “re-
versing the time”. More precisely, it is done by replacing the round function T} by its
inverse T}, ! and running the sequence of subkeys in the reverse order. Formally from
the ciphertext c the plaintext m is obtained by:

Co = G

Ci+1 = Til (Ci)fOIOSiST—l

i+1

where %i denotes the subkey k,;_; related to the r 4+ 1 — ith round so that:

ko= k.
k2 - kr—l
ko o= k.

According to the invertibility of the round function (with a fixed round subkey), the
final block c, is clearly equal to the original plaintext m.

12.3.3. Some famous algorithms: a short story of the evolution of mathematical
techniques

Most of the famous symmetric encryption schemes make use of an iterated struc-
ture with some possible minor modifications at the first and final rounds. Therefore
such cryptosystems only differ from the point of view of the size of data (plain and ci-
phertext, secret key, subkey), of the number of rounds, of the internal round function,
and the derivation algorithm used. In what follows three of the most renowned secret-
key ciphers, namely DES, IDEA, and AES, are described, which use the evolution of
mathematical constructions in these algorithms.

The 1970s: DES - data encryption standard

DES was designed by IBM during the 1970s, and became an encryption standard
in 1977 for United States of America’s official documents. Its status as a standard —
for 5 years — was evaluated several times: the last time being in 1999.

In [FIP 99] the DES is completely described and in [FIP 87] its different operation
modes are presented. This symmetric algorithm operates on 64-bit plaintexts, cipher-
texts, and secret-keys. Actually, 8 bits from the key are parity bits: the 8th bit of each
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byte of the key takes the value such that the number of bits equal to 1 in this byte is
an even number. A subkey (for a given round) is given by 48 bits of the master key —
except parity bits — in some specific order. The ciphertext is obtained after 16 rounds.

Let us study the round function of the DES. It is formally defined as a Feistel struc-
ture or Feistel scheme named after the American cryptographer Horst Feistel [FEI 73].
In such a scheme, blocks have an even number 2¢ of bits (¢ = 32 in the case of DES).
The first ¢ consecutive bits of some block B are denoted, as a block, by L, while R is
given by B’s last £ bits in such a way that B = (L, R). Let f be a function that takes
two blocks as input, the first block having length ¢. This function produces as output
also a block of size ¢. The round function 7" for the Feistel structure associated with
f operates as follows: it takes B = (L, R) and a round subkey k as entries, it flips
L and R, and transforms L into f(R, k) @& L. This can be written in a mathematical
form:

T(B,k) T((L,R), k)

(R, f(R,k)® L).

It can easily be checked that given any map f as above, the round function 7', with
a fixed round key k, is invertible. This is an essential property for the decipher-
ing process in such a cryptosystem. Let us prove this property. We define the map
Ui(L, R) := (f(L, k)® R, L) which will be shown to be the inverse of T},: (L, R) —
T((L, R), k). Notice that if we denote by o the permutation o (L, R) = (R, L), then
Uy = 00Ty 00. Moreover Uy, (T (L, R)) = (L, R). Indeed let us define L’ = R and
R' = f(R,k) @ L.

U(Ti(L,R)) = Ux(R, f(R,k)® L)
U(L',R)
(f(L'. k)& R, L)
(f(R.k) & (f(R.k) ® L), R)
= (L,R).

As a result, such a Feistel scheme may be used as a round function in an iterated
symmetric encryption algorithm.

In order to complete the description of the round function of the DES, a description
of the function f used in this system is needed. This is an important function because
confusion is based on it, while diffusion is obtained by the iterated structure itself.
The function f takes as its first argument a block of size 32 (the 32 first or last bits of
the block to encrypt), which is denoted by X. The second argument is a subkey, so
here a block, say Y, of 48 bits. The result f(X,Y") is a block of 32 bits (according to
the specifications of Feistel structures). The function f carries out a computation in
four steps:

1) X is transformed by a function E, that takes 32 bits in input and produces a
block of 48 bits, in such a way that E/(X) consists of the bits of X in another order
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where 16 of them are duplicated. More precisely the 48 bits of F(X) are obtained by
selecting the bits of X according to the order induced by the following table:

Function £
321 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Thus, as an example, the first 4 bits of F(X) are the bits 32, 1, 2, and 3 of X whereas
the last 3 bits are the bits 31, 32, and 1 of X;

2) the result E(X) @Y is then computed and written as a concatenation of eight
subblocks, each of them consisting of 6 bits:

E(X) ®Y = B1B>yB3B,B5BgB7Bsg

where foreach i € {1,...,8}, B; has a length of 6 bits;

3) foreachi =1,...,8, B; goes through a function S;, called a substitution or an
S-box. Such a box takes 6 bits in input and gives 4 bits as output. The result of this
step is given by the concatenation of the S;(B;), i.e. the block of 32 bits:

S = S1(B1)S2(B2)S3(B3)S4(B4)Ss5(Bs)Se(Bs)S7(B7)Ss(Bs).

Each S-box S; is represented by a table with 4 rows and 16 columns. Its rows are
indexed from the top to the bottom with integers from 0 to 3 and its columns from the
left to the right by integers from O to 15. Each entry contains an integer between 0 and
15. For instance, the S-box 57 is given by the following table:

51
4 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 156 12 9 7 3 10 5 O
5 12 8 24 9 1 7 5 11 3 14 10 0 6 13

Let us see the action of an S-box, say S;, on a block B; of 6 bits. The first and last
bits of B; are interpreted as a binary representation of an integer, say a, between 0
and 3. The four other bits represent a binary representation of an other integer, say
b, between 0 and 15. The entry (a,b) of the table associated with S;, i.e. the integer
given at the intersection of the ath row and the bth column, may be written as a block
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of 4 bits in its binary representation (since, by definition, it is an integer between 0
and 15). This block is taken as the output of S;, or in other terms, the value S;(B;).
For instance, let By be the block 011011. The corresponding index for the row of .Sy
is represented by 01 so it is equal to 0 x 2* + 1 x 2° = 1 in decimal representation.
The corresponding index for the column of Sy is given by 1101, which is the binary
representation of 1 x 23 + 1 x 22 + 0 x 2! + 1 x 20 = 13. Therefore, S;(B) is the
binary representation of the integer 5 given as the entry (1, 13). Since 5 is represented
by 0101, the result is S1(B7) = 0101.

These S-boxes are nonlinear in the sense that in general S;(B; & B.) # S;(B;) ®
S;(Bf). They destroy the algebraic structure and, therefore, produce confusion for
this cryptogram;

4) at the input of these eight S-boxes we have a block S of 32 bits. The last step
of internal computations of f is a re-ordering of these bits using a permutation P. It
is represented in the table below:

Permutation P
16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

The output P(S) is obtained from .S by taking the 16th bit of S for the 1st bit of P(.S),
the 7th bit of S for the 2nd bit of P(.S), etc. (at the end, the 25th bit of S is used as the
32nd bit of P(5)). P(S) is taken as the result of f(X,Y") for the round function.

In order to summarize this situation, to compute f(X,Y’), By, ..., Bg are defined as
blocks of 6 bits each by

B1B5...Bg :E(X)@Y
then the block f(X,Y) is defined by
f(X,Y) = P(51(B1)S2(B2) ... Ss(Bs)).
The DES round function is now fully described. We are in position to conclude
with the presentation of the encryption process by the DES algorithm. An initial step,

before the 16 rounds, is applied to the block that represents the plaintext: it goes
through a permutation /P, called the initial permutation, the operation of which is
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given by the following table.

Permutation IP

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 22 14
57 49 41 33 25 17 9

59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

N UTW OO RN

Therefore, the permuted block has a bit number of 58 from the original block as its
first bit, then bit 50 for its second, and so on. This initial step is followed by the
16 iterations of the round function. Finally if (L6, R16) denotes the 64-bits blocks
produced at the 16th, and last, round, then the encryption process is ended by applying
to 0(L1g, Ri6) = (Rig, L1g) the inverse IP~! of IP.

We are now in position to present this algorithm in a more compact way. Let k
be the master key, and k; be the subkey from round number . Let E,?ES be the
DES encryption function. The ciphertext E,PES (m) of a plaintext m is computed as

follows.

(Lo, Ro) = IP(m);
(Li+1,Ri+1) = Tk1+1(LuR1) for ¢ :(),,].57
EDPES(m) = IP Y (Ry, Lig).

Using a more condensed notation:
EEES(m) = (IP_l oo OTle o> OT/ﬂ o ]P) (m) .

Notice that the final permutation is not applied to (L1¢, R16) but to o(L1¢, R16), i.€.
(R16, L16)- Since this permutation, IPfl, is the inverse of /P, in order to perform de-
cryption the same algorithm is applied on E,?ES (m), subkeys being used in a reverse
order from k4 to k;. In other terms, the decryption function is defined by

DPES(¢) = (IP oo 0Ty, 0---0Ty, o IP)(c) .

In order to check the decryption rule, we only need to notice that T} L= 6oTo0,
and for every (L, R), (0 o ¢)(L, R) = (L, R). Therefore,

DPPS(EP®S (1m)) =

(IP"'oooTy 00Ty, o IP)(EP®S(m)) =

IP ' o(00Ty, 00)0---0(0 0Tk, 00)ooolP(EPES(m)) =

IP 0T o 0T L oo o IP(EPES (m)) =
IP_loT,;lo---OTl;mooO]POIP_loUOTleO---OTk1 o IP(m)=m
(eliminating consecutive compositions of a map and its inverse).
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Document [FIP 99] also contains the description of another algorithm for symmetric
encryption, TDEA (for Triple Data Encryption Algorithm), called triple DES. It is
defined as an iteration of the original DES. Let &), k(®) and k() be three master
keys subject to particular independence properties (given in [FIP 99]). Let m be a 64
bits long block to encode:

1) encryption algorithm: block m is transformed into a new block c (64 bits) as
follows:
¢ = Bs (Ds® (Bi5° (m));
2) decryption algorithm: m is recovered from the ciphertext ¢ by computing:

m = DS (B3> (D55 (0)) -

The 1990s: IDEA - International Data Encryption Algorithm

The IDEA, invented by Xuejia Lai and James L. Massey, is described in [LAI 90]
and [LAI 92].

IDEA was explictly designed to fulfill confusion and diffusion requirements. Sim-
ilar to DES, it is based on an iterated structure. However, the method used to produce
invertible functions — in order to make possible the decryption process — is not based
on Feistel structures. IDEA round function relies on more involved mathematical
structures, namely the groups. An internal composition law, denoted by *, on a set E/
is a function that associates an ordered pair (z,y) of members of E with some z that
belongs to E: we denote this z by x * y. A group is then defined as a non-empty set
G together with an internal composition law that satisfies the following axioms:

1) associativity: for every z,y, 2 in G, z * (y * z) = (z * y) * 2;

2) neutral element: there is some e € G such thatforeveryz € G, xxe = exx =
z;

3) inversion: for every x € G, there is aunique y,, € G suchthat xxy, = y, xx =

e. This element y,, is usually denoted by 2.

For instance if p is a prime number — that is a positive integer > 1 with 1 and the num-
ber itself as only divisors (such that 2, 3, 5, 7, 11, etc.) — then modulo p multiplication
of positive integers is an internal composition group law on the set {1,2,--- ,p — 1}.
Similarly for every positive integer n, the set {0, --- ,n — 1} becomes a group under
modulo n addition. Finally, the set of all blocks of n bits with bit-wise modulo 2 sum,
that is XOR, is another example of a group. IDEA is precisely based on these three
algebraic structures.

In order to describe the round function of IDEA, the following notations will be

used. Let n be an integer so that 22" + 1 is a prime number (for instance n = 1 or
n =2orn = 16).
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— As usual the symbol “@®” is used to denote XOR operation between two blocks
of 2™. For instance with n = 2, (0,1,1,0) ¢ (1,1,0,1) = (1,0, 1, 1);

— each 2™-bit long block can be identified with a unique integer between 0 and
22" _ 1 written in binary representation. More generally, let us assume given a ¢-bit

-1
block (x¢—1,2¢—2,- -+ ,x1,20), 2; € {0,1}. It represents the integer z = Zxﬂi,
i=0

and satisfies 0 < = < 2 — 1. It is thereby possible to compute a modulo 22" addition
under this identification (take ¢ = 2™). This operation is denoted by “H”. For n = 2
so that 22" = 16, (0,1, 1,0) represents the integer 6, and (1,1,0,1) the integer 13.
Addition modulo 16 of 6 and 13 is, in binary notation, is equal to (0, 0, 1, 1). Therefore
(0,1,1,0)H (1,1,0,1) = (0,0,1,1);

— each 2"-bit long block, such that at least one of its bits is not zero, represents
a unique integer between 1 and 22" — 1. The block, given by 2" bits equal to zero,
is declared to represent the integer 22" . Since 22" 4 1 is assumed to be prime, the
set {1,2,...,22"}, under modulo 22" 4 1 multiplication of integers, is a group. Ac-
cording to this identification between blocks and integers, we can apply this product,
denoted by “®”, to any two blocks (each of them composed of 2" bits). For instance,
(0,1,1,0)®(1,1,0,1) = (1,0,1,0) since 6 x 13 is equal to 10 modulo 2* +1 = 17,
and 10 is represented as (1,0, 1, 0) in base two.

Basic components of IDEA being known, it is possible to describe the round func-
tion. IDEA handles blocks of 64 bits for plain and ciphertexts, and uses a master
key of size 128 bits. The derivation algorithm produces at each round, from a given
master key, subkeys of 96 bits. The block m;_1, produced at the (¢ — 1)th round, is
used as the input of the round function for the ¢th round. It is divided into four blocks,
each of 16 bits, while the ith subkey is divided into six blocks of 16 bits, so that
mi—1 =mi_ym?,md  m}  andk; =k} k? k3 k} kP kS where m?_| and k! are
blocks of 16 bits for each j = 1,2,3,4and [ = 1,2, 3,4, 5, 6. Notice that 16 satisfies
the requirement that 26 +1 = 65537 is a prime number. As a consequence it is possi-
ble to use the three group laws previously introduced on blocks of 16 bits. The round
function is based on a particular operation, denoted by MA, and called multiplication-
addition or MA-structure, that takes four blocks =1, z2, y1, y2, each of 16 bits, in input
and produces two blocks, MA1 (1, 22,y1,y2) and MAs(x1, z2,y1,y2), also 16 bits
long. Mathematical relations between inputs and outputs of MA are the following:

MA(z1,22,y1,y2) = MAy(21,22,91,Y2) MAz(21,22,y1,Y2)
MA (1, 22,y1,92) = MAz(z1,22,91,y2) B (x1 ©y1)
MA2(€U1»$2»y1ay2) = ((1'1 © yl) & (EQ) © Y2

where the second member of the first equality represents the concatenation of the
blocks MA1(x1,z2,y1,y2) and MAs (21, 2, y1,y2). The MA-structure is therefore
composed of sophisticated and involved use of two of the three group operations,
multiplication ® modulo 216 4-1 and addition B modulo 2. The MA-structure plays
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the same role as the function f from DES in fulfillment of confusion and diffusion, but
unlike the latter, it is invertible whenever the inputs y; and y, are fixed. Indeed from
the knowledge of the outputs z3 = MA;(z1, 22, Y1, Y2), 22 = MAs(x1,x2,y1,y2) Of
the MA-structure together with y1, 3o, it is possible to recover x1, z2. The equation
21 = MAs(z1,22,y1,92) B (21 ©® y1) leads to the value of x;. In fact, let us denote
by a~? (respectively —a) the inverse of a with respect to the operation © (respectively
().

21 = 2zl (z1On)
& —zmHBzn = 1100
= (7228321)®y171 = .

Then, injecting this value for 1 into the equation 2o = ((z1 ©®y1)Bx2) ®ya, recovers
the value of z5. Indeed,

22 = ((z10y1)Ba2) Oy
& Zz®y2_1 = (z10y1)Ba
& —(11oy)B (o) = X2
& —(—2Bxn)oy ) oy B(2oy ') = .

IDEA does not use any Feistel structure, invertible by construction, but we will see
later the round function of IDEA to be also invertible. Surprisingly, invertibility of the
MA-structure does not play any role in the deciphering process.

Let us precisely examine any round of IDEA. The th round produces a block ¢;
of 64 bits divided into four blocks (16 bits each of them), which we denote by ¢}, ¢?,
¢} and ¢} such that ¢; = ¢} ¢? ¢} ¢!. From a purely mathematical point of view, an

IDEA round is given by the following formulae.

¢ = MAy®(md,BE);
2 = MA & (mt  BED; (12.1)
¢} = MAy® (mi_, Okj); .
¢ = MA®(mi, 0k
where we define
MA, = MA((m}y © k)& (mi BR). (m?y ©k2) & (miy Bk, K, k):
MA;s = MA((ml_, © k)@ (mi_, B, (m, ©k2) & (md_, Bk, k3, k9.
(12.2)

The IDEA enciphering process is given as a sequence of eight rounds for which the
output ¢; from the ¢th round is chosen as input for the following round. The ciphertext
corresponding to the plaintext m = my is not the block cg, output of the eighth round.

Indeed there is a final step: the ciphertext cg = ¢} 2 ¢3 cg is computed by

cé = cé ® ké;
Cg = CS @ kg,
= Wk (12.3)
cé = c‘é H kg
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where ko = k§ k2 k3 kg is a subkey of 64 bits (each of the k) being composed of 16
bits), which also comes from the derivation algorithm applied to the master key.

Let us review the decryption process. First of all, let us explore how to recover the
inputs m?_, for j = 1,...,4 of round number i (for 1 < ¢ < 8) from the outputs ¢
and subkeys kﬁ (Il =1,...,6). Recall that the inverse of a block x under & operation
is x itself. In particular, x @ x is equal to the block with all bits equal to zero, neutral
element for ®. From the definitions of ¢} given by equations (12.1), the following
result can be checked.

cded = MAemd,BE)e Mo (ml_, 0k}
& daocd = (m,BE)eml, ok
Similarly
cdoc = MA@ (ml, BE)®MA ®(m?, Ok
& Gocg = (miBE)® (mi, 0kF).

Then notice that (¢} ® ¢) (respectively ¢? @ c}) is the first (respectively the second)
argument of the MA function according to equations (12.2). From this we see that
under knowledge of all ¢/ and k2, k¢, MA, and MA; can be computed. Finally using

formulae (12.1) inputs from round number 4, namely m]_,, can be deduced since
subkeys k:f are also known. For instance,

o — MAy 0 (i, B
& ol @ MA, = mj_ Bk
54 (Cll &) MAQ) =3 (—k?) = m?ﬁl.

From ¢} and subkeys k&, k2, k3, k&, cs = ¢} ¢ ¢ ¢} is recovered: the equations (12.3)
are used. It can be easily shown that:

Cg © (kg); = Cg;
B (—ks) = o
B (—kd) = ci

As previously claimed, invertibility of the MA-structure is not involved in the de-
cryption process. In other terms, if f is any function that takes four blocks of 16
bits as input and produces two blocks of 16 bits as outputs, the encryption algorithm
obtained, after substitution of the MA-structure by f in the IDEA algorithm, remains
invertible and allows decryption process. So after all, what is the role of this function ?
Actually diffusion requirement is based on MA. Indeed, each output subblock of MA
depends on all input subblocks, in such a way that it ensures diffusion in a number of
rounds less than DES.
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Confusion is obtained by the mixed use of the three group operations, which, in a
specific sense, are mutually incompatible, and thus allow the algebraic structures used
to be hidden. As an example, the following properties can be listed. Let # and % be
two different operations from &, H and ® (for instance # is & and % is H, or # is B
and % is ©).

1) No such pairs of operations #, % satisfy distributivity from one over the other,
that is there are at least three blocks x, y, 2z, each of 16 bits, such that:

r#(ykz) # (vfy) Kk (v#2);

2) no such pairs of operations #, ¥ satisfy associativity, that is there are at least
three blocks x, ¢, z of 16 bits such that:

v (k=) # (efty) .

Presently: AES - Advanced Encryption Standard

On September 2, 1997, the NIST (National Institute of Standards and Technology)
launched a call for proposals about a new cryptosystem to replace DES as a stan-
dard. The requirements were the following: a symmetric encryption algorithm, called
the AES, supporting blocks of size 128 bits, and keys of lengths 128, 192, and 256
bits. On August 20, 1998, the NIST announced the application of 15 algorithms from
twelve countries. A year later, after a detailed review of candidates, the NIST retained
only five proposals, namely MARS, RC6, Rijndael, Serpent, and Twofish. A second
and last round was led by the NIST with help from the worldwide cryptographic com-
munity in order to select the winner. Dramatically no attacks were able to break any of
the five last candidates [NEC 01]. Nevertheless, in 2000, other criteria, as algorithmic
complexity or implementation characteristics, were applied to select Joan Daemen
and Vincent Rijmen’s Rinjdael algorithm as the new encryption standard AES. The
official document [FIP 01], dated from November 26, 2001, approved AES as a cryp-
tographic protection of sensitive electronic data (unclassified) of Federal agencies and
departments of the US government. In the same document are presented the full AES
specifications in detail.

AES supports 128, 192, or 256 bits long blocks as key formats, and plaintexts,
ciphertexts have 128 bits. The choice of key length depends on the level of protec-
tion needed by the communications (the longer they are, the greater the security); for
instance, in a note from the American federal government [NSA 03], the National
Security Agency (NSA) recommends the use of 192 or 256 bit keys for top-secret
documents. Notice that the original Rinjdael was conceived to also manipulate other
lengths for blocks and keys, but these were not retained in the final AES version. Sim-
ilar to its predecessor DES, AES operates on a certain number of rounds that depends
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on the length of the keys in a way described in the following table.

Keys | Number of rounds
128 10
192 12
256 14

Contrary to DES or IDEA, plaintexts and ciphertexts are not treated as blocks of bits,
but as matrices of bytes, called states: the input of a round is a 4 x 4 matrix (four rows,
and four columns) of bytes entries. Thus a state is represented as the following matrix

ao,0 | @o,1 | @Go,2 | 0,3
aio | 1,1 | A1,2 | G1,3
az,0 | 2,1 | A22 | G233
as,o | 3,1 | 3,2 | 43,3

where a; ; is a byte. Such a state represents the block

ao,0 @1,0 @2,0 a3,0 40,1 G1,1 G2,1 A3;1 ... 0,3 41,3 42,3 (3 3-

Whatever the size chosen for the secret key, round subkeys are also represented by
such 4 x 4 arrays of bytes (so they contain 128 bits).

In order to describe the AES round function in detail, some mathematical notions
are required. We use the same notations as in the official document [DAE 99] available
at http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf.

AES uses operations that are defined on a finite field. A (commutative) field K
is a set with at least two distinct elements, 0 and 1, and equipped with two internal
composition laws, + and X (to denote the second law, juxtaposition will also be used
as the usual multiplication), such that

1) K with + is a group with 0 for its neutral element (the inverse of = under this
law will be denoted by —z, thatis « + (—z) = (—x) + 2 = 0);

2) addition + is commutative: forevery xz,yin K,z +y =y + x;

3) the set K* of elements of K distinct from 0 is a group for multiplication x and
its neutral element is 1 (the inverse of a non zero x in K for multiplication is denoted
by 27! and thus 2~ ! = 271z = 1);

4) 0 is an absorbing element for multiplication: for every x € K, 20 = 0z = 0;
5) multiplication is commutative: xy = yx for every z,y € K;

6) multiplication distributes over addition: x(y 4+ z) = zy + a2 for all z,y, z in
K.
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Among the class of all fields some have an infinite cardinality, while others, more
interesting from an implementation point of view, have only finitely many elements.
They are called the finite fields. A byte may be represented as an element of the finite
field GF(2®) with 28 = 256 elements (“GF” stands for “Galois Field”). Thus a state
may be seen as a 4 x 4 array with entries in this field.

The AES round function has four basic components. Each of them is invertible,
which is an important difference compared to DES and IDEA. Indeed, the AES round
function is invertible as the composite of invertible maps while the corresponding
property in DES or IDEA is not based upon invertible internal components. The first
three components are independent of the round subkey, while the fourth is just entry-
by-entry addition of bytes from the current state and those of the subkey. Each of
these operations acts in a specific way on a state and promotes diffusion. A round thus
consists of four stages as follows:

1) the function ByteSub (for Byte Substitution) is applied to a matrix A, which
represents the state at the input of the round. This map acts independently on each
entry of A via an invertible transformation Sgp : GF(2%) — GF(2®). This function is
essentially defined using

RN 0 ifx =0,
nve b ifz#£0

where z is a byte seen as en element of GF(2%). More precisely Skp = A o inv
where A is an affine and invertible transformation of bytes; the term “affine” means
that there exists a function « such that for all bytes z, y, a(z + y) = a(x) + a(y) («
is said to be linear), and a fixed byte 3, interpreted as en element of GF(28), such that
M) = a(z) + B. The linear map « also is invertible, and A\~1(z) = a~(z — ).
Therefore the inverse of Sgp is obtained as SRof1 = invo\~! since, as easily checked,
inv is its own inverse.
Graphically, ByteSub may be described as follows:

ap,0 o1 Qo2 @03 boo bo,1 bo2 bo3

aio ai1 ai2 13 _ bl,O b1,1 b1,2 b1,3
ByteSub =

azo0 a1 a2 G23 bz,o b2,1 b2,2 bz,3

aso Gs1 432 033 bs,o b3 bso b33

where each b; ; = Srp(a;,;)-

Theoretical results assert that this function provides a very good level of confu-
sion [DAE 02]; in particular, Srp, like DES S-boxes, is not linear since in general,
Sro(z + y) # Sro(z) + Srp(y). This first step “destroys” the group structure of
GF(2®) under addition. It is therefore an essential part in achieving the confusion
within the cryptosystem. We also notice that ByteSub is invertible: in order to recover
an input state A from B = ByteSub(A), it is sufficient to apply Srp " on each entry
of B; in other terms, the transformation obtained from ByteSub after substitution of
Srp by its inverse Srp ! is the inverse of ByteSub;
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2) a shift, from left to right, is applied on the rows of the matrix B = ByteSub(A),
output of ByteSub. These are cyclic shifts: for instance applying shift operation two
consecutive times on the row

ENEAENEN

gives

ENENENEY

This operation on the rows of the current state is called ShiftRow. The way the shift
operates on a row depends on the row index. The first row is not shifted, while the
second is shifted one step to the right, the third two steps, and the fourth, three steps.
Graphically ShiftRow acts on a matrix B with entries b; ; as follows.

boo bo,1 bo2 bos3 boo bo,1 bo2 bo3
ShiftRow bio b bz big || _ b1 bz bz bipo
bao b2 bao Dbags bao b2z bao boa
bso bs1 b3 b3 bss bso b3 bs3po

Like ByteSub, the ShiftRow function is invertible. In order to recover the output
matrix B of ByteSub it is sufficient to apply ShiftRow modified by the value of the
applied shifts: the first row is not shifted, the second is now shifted three steps to the
left, the third, two steps, and the fourth, only one step. This transformation aims to
promote diffusion in the cryptosystem;

3) the third step of the round, called MixColumn, operates at the column level
of the current state. It is a matrix multiplication of each column of the state by the
same invertible 4 x 4 matrix M. Let C' = ShiftRow(B) be the current state, re-
sult of ShiftRow, with entries denoted by ¢; ; (i = 0,...,3, 5 = 0,...,3). Let
Cop, C1,Co, Cs be the four columns of C, from left to right, in such a way C' can be
seen as concatenation, [Cy | C1 | Cy | Cs), of its columns. It follows that column
number j (for 7 = 0, ..., 3) has the following form:

€o,j

_ |Gy
Ci=|."
2,5

€35

The multiplication of the column C}; by the matrix M (its entries, m; ;, belong to the

do,;
. dy; . .
field GF(28)) gives an other column D; = d Y 1. So D; = MC}, and in matrix
2,7
_ d3,j
representation:
do,; mo,0 Mo,1 Moz2 Mo,3 €o,j
di i mq m m m C1.q
R ) Jo|l — ,0 1,1 1,2 1,3 1,5
D; = MCj < P _
2,5 m2o0 M21 M22 1M23 €25
ds,; m3o M31 M32 M33 3,j
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Matrix multiplications lead to the following result concerning the values of d; ; for
1=0,...,3.

di,j = mi0Co,j + Mi1C15 + My 2C2 5 + My 3C3,5.

The matrix multiplication of the columns of C produces four new columns
Dy, D1, Ds, D3 that can be concatenated to build a 4 x 4 matrix D as D =
[Do | D1 | Do | D3]. In short, MixColumn is formally defined as

D = MixColumn(C) = [MCy | MCy | MCy | MC3] .

The fact that M is an invertible matrix is essential for the invertibility of MixColumn.
For the matrix M to be invertible it means that there is another 4 x 4 matrix, denoted
by M~1, such that for every 1 x 4 matrix X (that is a matrix of one row and four
columns, similar to a column C; for instance)

M~ (MX) = X. (12.4)

In other terms, if M~! is multiplied by the column that results from the product MX,
then X is obtained. Using this property we can prove MixColumn to be invertible. In-
deed, let MixColumn ™! be the operation obtained from MixColumn after replacement
of M by its inverse M—'. Let us check that by applying MixColumn™" to the state
D = MixColumn(C), C'is recovered.

MixColumn (D) = [M~'Dy|M~'D; |M~1Dy| M~ D3]
(because D = [Dg | D1 | D2 | Ds))

= [M~Y(MCp) | M~YMC}) | M~ (MCs) | M—1(MC3)]
(since D = MixColumn(C))

[Co | C1|C2 | Cs
(by property (12.4)).
4) The fourth and final step of an AES round is given by an addition of the

MixColumn result D and the round subkey &, seen under the form of a 4 x 4 ma-
trix of bytes. Therefore the following holds:

doo doy do2 dogs koo ko1 ko2 ko3
dio diyg diz digs kio ki1 k12 ki3
D+k = |OL0 G di2oa 0 F1EL2 KL
* doo doy das dog | T | koo Kan koo ko
d3o d31 d3o d3gs k3o ks kso k33

do,o + koo dog+ ko1 doa2+ koo dosH+kos
dio+kio dig+kig dipg+kio disg+kis
doo+ koo do1+ko1 doo+kao daz+kas
d3o+kso d3i+ks1 dso+ksa d3sz+kags
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So the result of D + k is a 4 x 4 matrix E with byte entries e; ; given by
€5 =dij + ki
This operation of round subkey addition is also invertible because
E=D+k & D=F+k
since addition in GF(2%) is nothing else than a usual XOR, and thus (D +k)+k = D.

12.4. Prime numbers and public key cryptography

This section is dedicated to the notion of public key cryptography (through one
of its famous instance: the RSA) and its relation with arithmetic and, more precisely,
prime numbers.

12.4.1. Introduction

Many cryptosystems use prime numbers. Most of them belong to the class of
asymmetric encryption algorithms. In this section is briefly described one of the most
famous, namely the RSA cryptosystem, and then the construction of “cryptographic”
prime numbers will be reviewed.

The very principle of public-key encryption was introduced by Diffie and Hell-
man [DIF 76] in 1976, but the authors were unable to provide an example of such
algorithms. In asymmetric cryptography, two kinds of keys are involved: a public key
and a private key. The first is used for encryption, while the second enters the scene
during the decryption process.

Let us review a communication between Alice and Bob, made confidential using
a public-key algorithm. Let us assume that Alice wishes to send to Bob a confidential
message. Alice finds Bob’s public key k%“b which, as public, is known to everybody.
Then, she encrypts her message, with this key, and sends it to Bob. Bob, who is the
only one to know his private key k%', recovers the plaintext as a result of a decryp-
tion algorithm. Notice that for Bob to send a confidential message to Alice, he must
use Alice’s public key kf;”b who will recover Bob’s message with her own private key
k:fi{iv. In such a scenario, everybody has access to public keys, while private keys are
kept secret.

Security of public-key encryption process is provided by infeasibility to solve
some mathematical problem in a practical way, that is without requiring too much
memory or time. In particular, the RSA algorithm is based on the problem of integer
factorization or prime factorization of a number into its prime factors.
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12.4.2. The RSA

One of the first public-key algorithms, the RSA, was developed by Rivest, Shamir
and Adleman [RIV 78].

Given two prime numbers p, g, it is easy to compute their product n = pq, even
if both of them a very large. However, it is difficult to factorize n, that is to recover
its prime divisors when p, g are large enough (one thousand of decimal digits). The
security of RSA is based on this assumption.

Keys generation step

Let p, g be two distinct prime numbers. Let n = pq be the RSA modulus. An
integer e < (p — 1)(q — 1), coprime3 to (p — 1)(g — 1), is chosen. It is called the
encryption exponent. Its inverse, d, modulo (p—1)(g—1) is computed: d is the unique
positive integer z < (p — 1)(¢ — 1) such that

er=alp—1)(¢g—1)+1 (12.5)

for some integer a. The number d is called the decryption exponent. The ordered pair
(n, e) is the public key, while (p, g, d) is the private key.
Enciphering step

A plaintext m is a non-negative integer < n. Its corresponding ciphertext is the
non-negative integer ¢, 0 < ¢ < n, given by

c=mmodn .

Notice that everybody is able to compute ¢ from m, because n, e are given in the
public key.

Deciphering step

In order to recover the plaintext m from the ciphertext ¢, computed as above, it is

sufficient to compute

m = c?modn .

We notice that only a person with knowledge of d, part of the private key, is able to

compute c?.

5. Two integers a, b are coprime if, and only if, their greatest common divisor is 1.
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Let us check the equality above to be true:

cdmodn = (m?)®modn

me mod n

mm®*®=1@=1) 1mod n (according to (12.5))
m(m®P=D@=1)e mod n

= mmodn

= m

since it can be checked that m®=1@=1) = 1 mod n = m.

12.4.3. Primality and pseudo-primality

Many asymmetric encryption schemes use prime numbers. It follows that the ways
to test a number to be prime, or to construct prime numbers are very important issues
in this context. The end of this chapter is devoted to a short presentation of some of
these methods.

A problem must be solved in order to use a given prime number p in a public-
key encryption: one must be sure that p is prime. This problem is obviously solved
for small numbers, but it requires some techniques, called primality tests, for crypto-
graphic relevant numbers (i.e. very large numbers).

In order to know whether a given number is a prime number or not, it is possible
to factorize this number. The Sieve of Eratosthenes is one of the oldest methods to
achieve this. Nevertheless, it becomes unusable when the number of decimal digits is
large. The best factorization algorithms are able to compute the prime factors of num-
bers with an order of 200 decimal digits, but they are much lower than those needed
in cryptography, and criteria, other than factorization, to determine an integer to be
prime must be used.

Fermat’s theorem states that if p is a prime number, then for every integer a, 1 <
a < p — 1, the following holds

a?~ ! =1 mod p.
Its reciprocal is false but may be used to develop weak and strong pseudo-primality
tests [MEN 97]. Guaranteed primality tests have also been worked out. They are based

on another reciprocal due to Lehmer and put into practice by Pocklington. Some of
them will be reviewed; however, they are only used on pseudo-prime inputs.
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12.4.4. Pseudo-primality test

The reciprocal of Fermat’s theorem is false: for a non-prime integer n there is at
least one integer a such that

a” ' =1 modn.

This allows a base a weak pseudo-primality test for n to be defined:
1) compute a™ 'mod n;

2) if the result is different from 1, then the integer n is a composite (it is not a
prime number);

3) if it is equal to 1, then n is said to be a base a weak pseudo-prime.

Any prime number obviously is a pseudo-prime with respect to every base.

An algorithm, due to Strassen [SCH 71], computes ™~ !mod n with a complexity
O(loga n), which is a multiplicative version of “Russian peasant” algorithm. It is an
iterative program that connects the computation of a™ to that of a"/2.

Strong pseudo-primality

Let n be an integer, pseudo-prime of base a. Let n — 1 = d2°, with an odd
d. If a® = 1 mod n or a®™" = 1 mod n with r < s, then n is said to be strong
pseudo-prime of base a. Experimentally, it is known that non-prime strong pseudo-
prime are less numerous than non-prime weak pseudo-prime numbers. For instance,
there are only 13 non-prime strong pseudo-prime numbers of bases 2, 3, 5 smaller
than 25 10°. Therefore, as primality test, strong pseudo-primality is better than weak
pseudo-primality tests (for instance, for the same bases, they are an order of 2600
non-prime weak pseudo-prime smaller than 25 10%).

12.4.5. Guaranteed primality tests

There is a theoretic primality test based on a reciprocal of Fermat’s theorem, which
was conjectured and proven by Lehmer [LEH 35]. An implementation has been de-
veloped by Pocklington [POC 14].

Let N be an integer for which primality should be proved. Let N — 1 = R x F'
be a partial factorization of N — 1, F' being a product of prime divisors of N — 1,
while R is not factorized. Let us assume that R and F' are coprime, and R < F'. Let

n
F= H qf 7 with prime numbers ;. If there is some integer a such that (N —1)/% —1

j=1
and N are coprime forevery j = 1,--- ,n,and ¢ ~! = 1 mod N, then N is a prime
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number.

The implementation is difficult to use because the choice of a is not deterministic.
Nevertheless, only a partial number of prime factors of N — 1 are needed to prove [N
to be prime (without any error).

Associated construction algorithm

It is possible to use primality test in order to construct prime numbers relevant
for a cryptographic use. Let R be a prime integer, for instance obtained by a sieve
method. Then smaller prime integers (one of them is 2) are chosen to constitute the
part F'. Using the previous algorithm, it is possible to find a new prime integer of
length the double of that of R. Iterating this process, prime numbers p of arbitrary
large value may be constructed with the property that p — 1 has a large prime factor
which is interesting to avoid factorization.

A method to obtain prime numbers is then the following:

Dletj =1;

2) let p; be a prime integer with 10 digits, obtained by a sieve method;

3) compute a set of small prime numbers, and some of their powers, called a base
of primes;

4) pick at random in the base of primes some integers such that their product F} is
even, I; > pj;

5) test weak pseudo-primality of pj 1 = Fj.p; +1;

6) if weak pseudo-primality does not hold, then change F; and start again;

7) change pseudo-primality base and check pseudo-primality with respect to this
new base;

8) iterate 10 times instruction (7);

9) increment j. Iterate instructions (2)—(8) until a number p; of expected size is
obtained;

10) test strong pseudo-primality of p;. If it does not hold, then return to instruction
2;
11) apply Pocklington’s algorithm to p;.

The integer p; is a prime number with the expected number of digits.

12.5. Conclusion

In this chapter we focused on general principles of cryptography and on some of
the famous encryption algorithms. It should be clear to everybody that an algorithm
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may be considered as reliable only for a short period of time, and never in an absolute
fashion. Indeed, cryptanalytic techniques are developed to break cryptosystems.

The evolution of mathematical technology to produce invertible functions relevant
for a cryptographic use was highlighted in the second part of this chapter, where DES,
IDEA, and AES were presented in detail and in chronological order. This evolution
follows the discovery of new mathematical objects (Feistel structures, more involved
group structures, computations in finite fields, and so on). Therefore, it is quite clear
that new cipher algorithms will be designed in the future just as new mathematical
objects will be discovered.

A new direction will perhaps be followed, namely quantum cryptography [BEN 84].

It is different from the kind of cryptography presented in this chapter, as it is based
on principles of quantum mechanics rather than on mathematics. Security of those
cryptosystems is ensured by the impossibility to duplicate an unknown wave func-
tion (Heisenberg uncertainty principle), or in other terms, the impossibility to perform
non-perturbative measures on a quantum system. Thus an adversary will measure
some quantities (such as the spin of photons) in order to spy on confidential commu-
nications. Therefore, the system will be perturbated so that Alice and Bob will be
aware of the attack.
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