
Bioinformatics Algorithm Demonstrations
in Microsoft Excel

Robert M. Horton, Ph.D.

© 2004
Robert M. Horton

ALL RIGHTS RESERVED

ii

This work describes a project submitted in partial satisfaction of the requirements for the degree of
Master of Science in Computer Science at California State University, Sacramento.

An electronic version is available at http://www.cybertory.org/exercises

iii

Abstract

This project presents demonstrations of selected computer science algorithms important in
bioinformatics, implemented in the spreadsheet program Microsoft Excel. Spreadsheets provide an
interesting platform for demonstration of algorithms, since various steps of the calculations can be
exposed in a manner that is easily comprehensible to users with little programming experience. The
algorithms demonstrated include two approaches to approximate string matching (dynamic programming
and Shift-AND numeric approximate matching), Hierarchical Clustering (used in phylogenetic studies
and microarray analysis of gene expression), a Naive Bayes Classifier for simulated microarray gene
expression data, and a simple Neural Network. These demonstrations are designed to serve as
instructional aids in bioinformatics courses.

Dedication

To my lovely wife Katherine, for her patience, forbearance, and sense of humor.

Acknowledgements

I thank Professors Nick Ewing and Meiliu Lu for giving me the opportunity to co-instruct the
graduate course in bioinformatics at CSUS, where the ideas for most of these demonstrations took
form. I am grateful to Carl McMillin for helpful discussions, and for helping me past the initial
stages of bewilderment when learning to program Visual Basic for Applications. He wrote the
simple string class used in the Dynamic Programming algorithm. By abstracting operations such as
left-sided concatenation, these make the algorithm code much cleaner.

Several core software components were taken from other sources. The Java graph visualization
applet used to display clustering results is taken verbatim from the examples included with the Java
1.2 software development kit. The simulated microarray data used with the naïve Bayes classifier is
part of the open source virtual molecular laboratory project at www.cybertory.org . The Tlearn
neural network system used to experiment with topologies before attempting to use them with the
spreadsheet version is obtained from http://crl.ucsd.edu/innate/tlearn.html .

Software Specifications

The spreadsheet demonstration programs were developed in Microsoft Excel 97 on Windows XP
Home Edition, service pack 2. Each program has been briefly tested on Excel XP, and seems to
operate normally. All programs require that macros be enabled; on Excel XP this is the "low"
security setting. Design mode must be "off" for the buttons to work.

Perl scripts for reformatting data were developed with and can be run using Perl 5.8 on Windows
XP, available at no charge from www.activestate.com .

The Java graph applet used to visualize clustering results was taken from the Java 1.2 software
development kit. For the demonstrations in this report, it was used with the Java 1.4 runtime engine.

iv

Table of Contents

Abstract .. iii
Dedication... iii
Acknowledgements ... iii
Software Specifications ... iii
Table of Contents ... iv
List of Tables ..v
List of Figures...v
Chapter 1. Introduction..1

1.1. Biological Background..1
1.2. Applications of Bioinformatics Algorithms ...4

1.2.1. Strings ...4
1.2.2. Clustering ..4
1.2.3. Classification ...5

1.3. Related work ..5
1.3.1. Spreadsheets in bioinformatics..5
1.3.2. Bioinformatics tools ...6
1.3.3. Algorithm demonstrations ..7

Chapter 2. Algorithms ...8
2.1. Approximate String Matching ...8

2.1.1. Shift-AND Numeric Approximate Matching...8
2.1.2. Sequence Alignment and Alignment Scoring with Dynamic Programming..9

2.2. Hierarchical Clustering ...11
2.2.1. Unweighted Pair Group Method with Arithmetic mean (UPGMA) ..11

2.3. Classification ..11
2.3.1. Artificial Neural Networks ...12
2.3.2. Naive Bayes Classifier ...13

Chapter 3. Demonstration Programs...15
3.1. Shift-AND: Shift-AND.xls..15
3.2. Alignment by Dynamic Programming: dynamicProgramming.xls ..15
3.3. Hierarchical Clustering: UPGMA.xls ..17
3.4. Artificial Neural Networks: ANN.xls ..19
3.5. Naïve Bayes Classifier for simulated microarray gene expression data: microarrays.xls......................................22

3.5.1. Controls ...22
3.5.2. Load Training Data ..23
3.5.3. Enter Training Categories...24
3.5.4. Discretize Training Data...24
3.5.5. Calculate Probabilities..25
3.5.6. Load Unknowns ...26
3.5.7. Discretize Unknowns..28
3.5.8. Classify Unknowns ..29
3.5.9. Save Results to File..30

Chapter 4. Conclusion ...31
4.1.1. General observations ..31
Comparisons to related work..32
4.1.3. Future work..33

Appendix A. Experiments on use of Artificial Neural Networks to learn the genetic code. ..36
A.1. Software System ..36
A.2. Data...36
A.3. Testing Topologies...39
A.4. Implications of Experiments on Topology...45

Glossary..46
Bibliography ...51
Index...54

v

List of Tables

Table 1: Examples of bioinformatics tools using these and related algorithms...6
Table 2: Web sites of algorithm demonstrations ...7
Table 3: Pseudocode for “naïve” pattern matching algorithm..8
Table 4: URLs for Neural Network Software..19
Table 5: Comparison of network configuration code...21
Table 6: Altman's proposed core components of a bioinformatics curriculum..35
Table 7: Standard genetic code represented as a truth table...38
Table 8: Simplified truth table for standard genetic code...39
Table 9: Four-layer topology can learn the genetic code, but doesn't always..43

List of Figures

Figure 1: Conditional probabilities and Bayes' theorem ..13
Figure 2: Pure spreadsheet implementation of Shift-AND...15
Figure 3: Traversing the matrix to find alignments. ..16
Figure 4: Distance matrix for hierarchical clustering...17
Figure 5: Clustering results in Newick notation. ...18
Figure 6: Presentation of tree results by Java applet..18
Figure 7: Network architecture for learning Boolean functions, including XOR (prototyped in Tlearn)19
Figure 8: Spreadsheet demonstration of ANN shows layout and weights as the network learns......................................20
Figure 9: Control sheet for Naïve Bayes Classifier ...22
Figure 10: Loaded training data sheet with categories...23
Figure 11: Training data converted to discrete values. ..25
Figure 12: Spot probabilities calculated for each category...26
Figure 13: Measurements from test set ("unknowns") loaded into worksheet...27
Figure 14: Measurements from test set ("unknowns") converted to discreet values..28
Figure 15: Conditional probabilities for a particular sample. ...29
Figure 16: Classification of each unknown, with probabilities. ...30
Figure 19: The standard genetic code ...36
Figure 20: Perl script to format genetic code for machine learning experiments ..37
Figure 21: Simple network topology with no hidden nodes...40
Figure 22: Simple topology fails to learn genetic code completely ..40
Figure 24: A topology for learning Serine ..42
Figure 25: Four-layer topology capable of learning the genetic code, sometimes...44
Figure 26: The most effective topology for learning the genetic code treats Serine as a special case.44

1

Chapter 1. Introduction

Bioinformatics is the application of information technology and computer science to
biological problems, in particular to issues involving genetic sequences. String algorithms are
centrally important in bioinformatics for dealing with sequence information. Modern
automated high throughput experimental procedures produce large amounts of data for which
machine learning and data mining approaches hold great promise as interpretive means. After
a brief discussion of general biological issues, I will describe some general problem in
bioinformatics, and discuss the relevance to these problems of the algorithms I have chosen
to demonstrate.

1.1. Biological Background

Genetic information flows from DNA to RNA to protein. This principle is known as the
central dogma of biology.

In most organisms, long-term genetic information is stored in deoxyribonucleic acid (DNA)
molecules. The information in the DNA is copied from each cell to its progeny during
replication, controlled by enzymes called DNA polymerases. Portions of the DNA
molecules (“genes”) are copied as needed into short-term “messenger” molecules of
ribonucleic acid (RNA) in a process called transcription by enzymes called RNA
polymerases. These messages are translated into proteins by molecular assemblies called
ribozomes.

Various types of RNA molecules perform duties other than acting as messengers; for
example, transfer RNA (tRNA) molecules are temporarily coupled to amino acids and help to
translate sequences of nucleotides in nucleic acids and sequences of amino acids in proteins.
Other specialized RNA molecules (ribosomal RNA, rRNA) form large portions of the
ribozymes that synthesize proteins.

Enzymes are molecules that control particular chemical reactions. Almost all enzymes are
proteins (though some include RNA molecules, and some are entirely RNA). Enzymes act by
physically interacting with the molecules they affect, and their three dimensional structures
are crucial to their activity. Complex biochemical processes typically involve series of
chemical steps called pathways. Many enzymes change their activity in response to various
conditions. For example, some enzymes interact with their own products, and become less
active when the concentration of their product is high. Regulation of key enzymes in
biochemical pathways is central to control of cellular growth, behavior, and metabolism.

Proteins consist of one or more chains of amino acids. There are twenty different amino
acids commonly found in the proteins of living organisms. The sequence of a protein is a
specification of the composition and ordering of its amino acids.

The sequence of a protein chain is its primary structure . Certain local folding patterns,
including the “alpha helix” and the “beta pleated sheet”, are known as secondary structure.
Both experimental evidence and computer simulations show that secondary structures form
quickly [Snow 2002], and prediction of secondary structure is regarded as a step toward
predicting higher-level organization. The way a polypeptide chain folds in three dimensions
is its tertiary structure . If multiple chains (or “subunits”) interact to form a complex
(“multimeric”) structure, this is called quaternary structure. Under the appropriate
conditions, the way a protein folds and all the higher levels of structure are determined by the
amino acid sequence of the protein.

2

Disrupting the higher-level structure of a protein (such as by cooking) is called
denaturation; denatured proteins typically lose their biological activities. Some proteins will
re-fold into their active three dimensional structures even after denaturation. These proteins
provide convincing evidence that the key to higher order structure is held in the sequence of
the protein itself. Most proteins, however, will not re-fold correctly after denaturation,
because the conditions under which they originally folded correctly may not be present. For
example, in a cellular environment, some proteins fold into their active configurations in
association with "chaperone" molecules, and some have parts chopped off or are otherwise
modified after folding.

Because the amino acid monomers in proteins are connected by peptide bonds, a protein
chain is a polypeptide. Short protein chains may be called oligopeptides, or more commonly
simply peptides. A peptide bond connects the carboxyl group of one amino acid to the alpha
amino group of the next. The first amino acid in a chain thus has a free amino group, and is
said to be the amino terminus of the chain (or N-terminus, because an amino group
contains nitrogen). The last amino acid contains a free carboxy group and is called the
carboxy terminus (or C-terminus). By convention, the sequence of a protein chain is
written as a series of amino acids with the N-terminus on the left, and the C-terminus on the
right. This direction, from N-terminus to C-terminus, is also the direction in which
polypeptide chains are normally synthesized by ribozomes. Both single-letter and three-letter
abbreviations of amino acid names are commonly used.

DNA molecules consist of long chains (polymers) made of units called
deoxyribonucleotides. Each deoxyribonucleotide monomer comprises a molecule of the five
carbon sugar 5-phospho-2-deoxyribose with a nucleotide “base” attached to carbon number
1. The base is either adenine (A), cytosine (C), guanine (G), or thymine (T). Monomers are
connected by phosphodiester bonds, with the oxygen of the number 3 carbon atom of one
ribose molecule connected to the phosphate at the number 5 position of the next ribose
molecule. To distinguish the carbons in the ribose molecule from the carbons in the
nucleotide, those in the ribose are marked with a “prime” after their number. Thus the
phosphate groups connect the 3' carbon of one monomer to the 5' carbon of the next. The first
nucleotide in a DNA chain has an exposed 5' phosphate group; this is called the 5' end of the
chain. The last nucleotide has a free 3' hydroxy group, and represents the 3' end of the chain.
By convention, DNA sequences are written from left to right in the 5' to 3' direction.

The long covalently linked polymers of DNA are called “strands”. DNA is normally “double
stranded”, with the two strands being connected to one another by relatively weak and
reversible hydrogen bonds. The most stable hydrogen bonding arrangement is Watson-Crick
base pairing, in which the A nucleotides match up with T nucleotides, and C's match with
G's. Two strands in which all bases are paired with their appropriate Watson-Crick partner
are said to be complementary. Paired strands are also described as being antiparallel ,
because the 5' end of one strand pairs with the 3' end of the other; that is, the complementary
sequences run in opposite directions. The sequences of the two strands are said to be reverse
complements of one another; given the sequence of one strand, the sequence of the other
strand can be deduced by replacing A with T, T with A, C with G, and G with C
(complementing), then reversing the sequence to represent the opposite 5' to 3' direction.

Most of the DNA in most cells is organized into structures called chromosomes. In cells that
have a nucleus (“eukaryotic” cells), this is where chromosomes reside. Other DNA
molecules may exist in extrachromosomal locations. For example, eukaryotic cells contain
mitochondria, subcellular organelles intricately involved in respiration and energy

3

production. Mitochondria contain their own DNA, as do the chloroplasts of plants,
organelles involved in photosynthesis. Many viruses also reproduce in extrachromosomal
locations. The full complement of DNA in the chromosomes of a cell is called its genome.
The human genome contains slightly over 3 billion bases.

Because each strand contains all the sequence information of the double stranded molecule,
one DNA molecule can be made into two identical molecules by separating the strands and
filling in the reverse complement of each strand. This is essentially the role played by DNA
polymerase during physical replication.

Genetic information is contained in the sequence of bases in the DNA. Sequences of
messenger RNAs are directly related to the sequences of the DNA molecules from which
they are transcribed, with two notable differences. First, the thymine monomers (T) of DNA
sequences are represented by uracil (U) in RNA. More drastically, the sequence of the final
RNA molecule may be spliced to have some regions removed. The parts that are removed are
introns, and the parts that remain in the processed RNA are exons. The order of exons in the
spliced product typically reflects their order in the DNA. A region of DNA encoding a
particular trait is called a gene. Not all of an organism's genes are active in all circumstances
or all cell types. Genes which are active in a given cell are said to be expressed. The human
genome is believed to contain approximately 25,000 genes.

A typical gene encoding a protein has components that can be described in general terms. A
promoter is a sequence of DNA where RNA polymerase can bind and begin transcription. A
transcription factor binding site is a (usually short) sequence of DNA to which proteins
that regulate transcription can bind. Different regulatory factors can activate or repress
transcription under various circumstances; regulation of transcription is one of several levels
at which expression of gene products (including enzymes that in turn regulate biochemical
pathways) can be controlled. In many genes, the transcription start site is well defined.
Exons and introns (as described above) can usually be mapped to specific positions along the
DNA sequence.

The translation process reads three bases of RNA at a time to determine which amino acid to
add to a growing protein. Each three-base unit is a codon. The relationship between codons
and the amino acids they encode is the genetic code. Almost all organisms use the same
genetic code, with notable exceptions including the genetic codes of various mitochondria.
Since there are 64 codons (4 possible bases at each of three positions) and only 20 amino
acids, some amino acids are represented by multiple synonymous codons. (Nucleotide
mutations that change a codon into another synonymous codon are known as silent
mutations). A DNA sequence could potentially encode different proteins depending on which
base is chosen to start the first three base codon; this is the reading frame for translation.
DNA sequences contain three potential reading frames on each strand.

Transcribed messenger RNA contains one or more ribosome binding sites where interaction
with the protein translation machinery is initiated. The first codon translated is the initiation
codon; it is almost always AUG, which encodes the amino acid methionine. Location of the
initiation codon determines the actual reading frame for the protein.

Two complementary DNA strands can be separated or “melted” and reassociated or
“annealed”. In living cells, the processes of separation and reassociation are controlled by
enzymes, but in the laboratory, these reactions can be controlled by heating and cooling. This
makes possible an experimental approach called hybridization , wherein one strand of DNA,
usually containing some sort of detectable marker (such as a radioactive label or a fluorescent

4

tag) is used as a probe under conditions that favor annealing to detect the presence of its
complementary strand in a sample.

Specialized organic chemistry reactions can be used to create synthetic oligonucleotides.
These can be used as very specific probes in hybridization studies, or as primers to initiate
template-directed synthesis of DNA at a specific location on a template. Specialized primer
extension reactions are the basis of such techniques as chain termination sequencing and the
polymerase chain reaction (PCR).

1.2. Applications of Bioinformatics Algorithms

We will consider three classes of algorithms: approximate string matching, for comparing
biological sequences, clustering, for inducing relationships among sequences or samples, and
classification approaches for assigning sequences or samples to categories.

1.2.1. Strings

Approximate matching of a search pattern to a target (called the “text” in string algorithms)
is a fundamental tool in molecular biology. The pattern is often called the “query” and the
text is called a “sequence database”, but we will use “pattern” and “text” consistent with
usage in computer science. When discussing the space and time complexity of algorithms,
the length of the text will be called n, and the length of the pattern will be m. While exact
string matching is more commonly used in computer science, it is often not useful in biology.
One reason for this is that biological sequences are experimentally determined, and may
include errors: a single error can render an exact match useless, where approximate matches
are less susceptible to errors and other sequence differences. Another, perhaps more
important, reason for the importance of approximate matching is that biological sequences
change and evolve. Related genes in different organisms, or even similar genes within the
same organism, most commonly have similar, but not identical sequences. Determining
which sequences of known function are most similar to a new gene of unknown function is
often the first step in finding out what the new gene does.

Another application for approximate string matching is predicting the results of hybridization
experiments. Since strands may hybridize if they are similar to each other's reverse
complements, prediction of which strands will bind to which other strands, and how stable
the binding will be, requires approximate, rather than exact, string matching.

1.2.2. Clustering

Clustering, or grouping items by some measure of similarity, can be achieved by a wide
variety of methods, including many unsupervised learning methods. Hierarchical clustering is
a general term for the grouping of items into tree-like clusters of related groups. A common
approach is the pair-group method, where each item is compared to the others, and the two
most similar items are joined into the group. This group is then treated as an item, and its
distance to other items is calculated. This process is repeated until all items and groups have
been joined into a single cluster. The key to this approach is the use of a suitable distance
measurement, or (dis)similarity metric to measure how different two items or groups are
from one another. Common applications of hierarchical clustering in bioinformatics are
grouping of related sequences, grouping of cell or tissue samples based on their gene
expression profiles, and grouping of genes based on their expression profiles in different
samples. Hierarchical clustering is a type of unsupervised learning, useful for discovering
categories among samples.

5

High-throughput experiments yielding large amounts of data (large numbers of samples,
large numbers of measurements per sample, or both) are excellent candidates for automated
classification. Experimental results containing significant “noise” may be difficult for
humans to classify with confidence, and can be excellent applications for machine classifiers,
some of which are amenable to statistical interpretation. One such type of experiment uses
gene expression microarrays to simultaneously measure the expression levels of tens of
thousands of mRNAs within a sample.

1.2.3. Classification

The problem of assigning a sample to a category based on a set of measured attributes is
called classification. Supervised learning methods induce rules for classifying samples
from a training set of samples with known classifications. In assessing the accuracy of such
classifiers, additional samples of known classification are used as a test set. Many aspects of
medical diagnosis can be described as classification problems.

1.3. Related work

Since this project demonstrates bioinformatics algorithms in Microsoft Excel, I will briefly
review the use of spreadsheets in bioinformatics, and describe some existing programs
intended to demonstrate the target algorithms for teaching purposes.

1.3.1. Spreadsheets in bioinformatics.

Spreadsheets have been used for a variety of sequence analysis applications. Because the
twenty amino acids have such a wide variety of chemical characteristics, proteins have many
interesting properties that are determined by their amino acid composition. For example, the
molecular weight of a protein is computed by summing the weights of the amino acids
(minus the water molecules lost in the formation of peptide bonds). The isoelectric point,
which is the pH at which the number of positive and negative charges on a protein are equal,
is similarly determined by considering the contributions of the constituent amino acids.
These parameters of proteins are extremely important in laboratory investigations; when
designing a purification strategy to isolate a particular protein from a mixture, knowing such
parameters is invaluable. Calculating many such parameters is basically an exercise in
accounting, and is easily accomplished with a spreadsheet, without resorting to sophisticated
algorithms [Han 1998]. Many fundamental DNA sequence analysis procedures, such as
translating to protein sequences and determining codon usage, are also straightforward to
implement using spreadsheet functions [McEwan 1998].

By considering a short "sliding window" of a few positions at a time, many accounting-style
calculations can be used to make graphs showing how a particular average characteristic
varies along the length of a sequence. Plotting hydropobicity along a protein sequence, for
example, may reveal which portions of the molecule are likely to be associated with cell
membranes. Spreadsheets have also been used for making "dot plots" to visualize the areas of
similarity between protein or DNA sequences [Shaw 1997]. Both the sliding window style
plots and the matrix-like results of a dot plot are easily displayed in a modern spreadsheet
like Excel.

Procedural scripting languages significantly enhance the capabilities of spreadsheets. Scripts
have been written to display, analyze, and compare multiple aligned sequences [Delamarche
2000], to calculate melting temperatures of oligonucleotides using nearest-neighbor

6

thermodynamics [Schütz 1999], and to assist in the design of molecular beacon probes for
sensitive real-time detection of specific DNA sequences [Monroe 2003].

Biologists commonly use spreadsheets to design experimental protocols [Stowe 1996] and to
organize and analyze experimental data, including data from microarrays [Schageman 2002]
and real-time PCR experiments [Schageman 2002]. Indeed, the fact that many biologists are
familiar with Excel was a strong motivation to use that platform for algorithm
demonstrations.

1.3.2. Bioinformatics tools

The next table shows freely available bioinformatics tools that employ the algorithms
demonstrated in this project.

Table 1: Examples of bioinformatics tools using these and related algorithms

ClustalW http://www.ebi.ac.uk/clustalw/
agrep http://www.tgries.de/agrep/
Cluster/Treeview http://rana.lbl.gov/EisenSoftware.htm
PHYLIP http://evolution.genetics.washington.edu/

phylip.html
Bioconductor http://www.bioconductor.org
The Comprehensive R Archive Network http://cran.r-project.org/

(Only freely available software is included in this table.)

ClustalW [Higgins 1994] is a multiple-sequence alignment tool, available in both stand-alone
and web-based versions. Multiple sequence alignment is a more complex optimization
problem than the two-sequence alignments considered in the demonstration algorithm, but
dynamic programming is still used. Clustal uses clustering followed by alignment (hence the
name). It avoids the complexity of true multiple sequence alignment by first clustering the
genes by edit distance, aligning the most closely related genes (two at a time), and adding the
next most related sequence repeatedly until the whole set of sequences is included in the
alignment.

Approximate matching by the shift-AND approach (really shift-OR) is implemented by the
inventors of the algorithm in the program "agrep" [Wu]. It is named for "approximate grep",
since it can be used like the classic Unix grep utility, but allows approximate matching in
addition to a subset of regular expressions.

Hierarchical clustering of microarray data is implemented in the program "Cluster", and
described in [Eisen 1998]. Various methods for constructing phylogenetic trees, including
distance methods similar to UPGMA as well as more sophisticated approaches more suitable
to various evolutionary applications, are available in the PHYLIP package [Felsenstein 1989,
2004].

The Bioconductor toolset [Gentleman 2004] is built in the open source "R" statistical
language. Modules are available for a wide variety of classification approaches, including
Bayesian classifiers.

Neural networks can be used to diagnose cancer subtypes from gene expression data [O'Neil
2003] (that group used a commercial neural network package). The R package "nnet"
supports single hidden layer feed-forward neural networks, and may be suitable for
classifying cancer samples.

7

1.3.3. Algorithm demonstrations

Programs demonstrating algorithms, especially animations, are commonly used teaching aids
in computer science. The next table lists useful web sites that help to index these resources,
as well as some demonstrations closely related to my own.

Table 2: Web sites of algorithm demonstrations

Catalogs
The Complete Collection of Algorithm
Animations

www.cs.hope.edu/~alganim/ccaa/

Dictionary of Algorithms and Data
Structures (DADS),
National Institute of Standards and
Technology

www.nist.gov/dads/

Exact string matching algorithms:
Thierry Lecroq site

www-igm.univ-mlv.fr/~lecroq/string/index.html

Sequence comparison algorithms:
Thierry Lecroq site

www-igm.univ-mlv.fr/~lecroq/seqcomp/

Demonstrations related to those in this project
Shift Or algorithm Java animation at http://www-igm.univ-

mlv.fr/~lecroq/string/node6.html
Sequence alignment by dynamic
programming

Java animation at http://www-igm.univ-
mlv.fr/~lecroq/seqcomp/node4.html

Note that I could not find an existing animation for hierarchical clustering. Because of the
simplicity and broad applicability of this approach, I consider it very unlikely that no such
animation has ever been done. One thing that complicates the search for such demonstrations
is that the approach is known by many names, from the general "hierarchical clustering" to
the specific UPGMA and "average linkage clustering".

I was also unable to find an animation or interactive demonstration of a naïve Bayes
classifier. Again, this is not strong evidence that none exist, but it may reflect the fact that it
is hard to make a catchy animation of a Bayes classifier.

8

Chapter 2. Algorithms

As might be expected, most of the algorithms that prove useful in bioinformatics are related
to familiar problems in computer science. Clustering and classification use well-
characterized machine learning approaches. Computer science students venturing into
bioinformatics primarily need to understand and suitably frame the problems in order to
apply these approaches. The particular problem of approximate string matching, so crucial to
biological sequence analysis, is perhaps given less prominence in typical computer science
curricula, which often emphasize exact matching approaches (e.g. Boyer-Moore).

2.1. Approximate String Matching

Biological sequences can be represented as strings, but the variability implicit to the
evolution of living things renders ordinary exact matching approaches of little use.
Approximate matching algorithms that can tolerate insertions, deletions, and substitutions are
extremely important for biological sequence comparison.

2.1.1. Shift-AND Numeric Approximate Matching

The Shift-AND method uses a bit manipulation approach to accelerate the process of
approximate matching. The approach can be explained by comparing it to the naïve exact
matching method, in which the pattern is compared character by character at each position
along the text. This simple approach is inefficient (its time complexity is O(n*m)) because it
contains two nested loops, where the inner loop is executed at each position along the text.
Shift-AND uses bit-wise operations in entire registers to perform the inner loop operations on
multiple positions in parallel. For patterns that can be contained within the length of a
register, it has a time complexity proportionate to the length of the text being searched
(O(n)). Shift-AND actually uses a set of four registers (called the “U” registers [Gusfield
1997]) to contain the pattern, with one bit in each register to represent each base of the
pattern. Thus, a machine with 32 bit registers can easily represent 32 base patterns for use in
shift-AND. Longer registers, such as the 128 bit registers of the PowerPC AltiVec vector
engine, can represent proportionately longer patterns. The algorithm can also be extended to
use multiple registers to represent longer patterns, but (depending on the architecture), this
would likely be at a cost of increased time complexity.

Table 3: Pseudocode for “naïve” pattern matching algorithm.

character[] pattern, text;
integer i,j;
for (i=0;i<length text;i++){

for (j=0; j< length pattern; j++){
if (text[i+j] != pattern[j]) next i;

}
record_match(i);

}
Note: the command “next i” exits the current j loop without completing the call to
record_match.

Of course, shift-AND is more sophisticated than a simple short-circuit of the inner loop in the
naïve exact matching approach, in that it can be extended to allow for approximate matches

9

[Wu 1991]. The full algorithm allows for a given number of substitutions, insertions, or
deletions in the pattern. This is achieved by maintaining a set of matrixes, which allow
different numbers of errors. A bit is set if the current characters match and the prefixes of
each string were within the error limits; if the prefixes had not reached the error limits, the bit
is set even if there is an error at the current position. Note that in practice the whole matrix
does not need to be maintained, but only the final two columns.

2.1.2. Sequence Alignment and Alignment Scoring with Dynamic Programming

The most general and complete approach to approximate matching is to perform sequence
alignment between the pattern and the text. This allows each approximate matching position
to be assigned a score based on how well it matches. The most commonly used alignment
score is the edit distance, measured by the number of insertions, deletions, and substitutions
it would take to transform one sequence into the other [Gusfield 1997]. Alignment score also
serves as a widely used similarity metric to compare related sequences to one another.

The rules for scoring of alignments between DNA sequences are generally simple: some
number of points is given for each match, (negative) penalty points are given for mismatches,
and penalty points are given for each gap inserted. A different number of points may be
given for extending a gap than for initiating a new gap (this is called an affine gap penalty).
The user may in general set how many points are given for each match, mismatch, or gap,
and different scoring values may be useful in different circumstances. For example, higher
gap penalties can be used to favor alignments with fewer gaps.

The same algorithm can be extended to the more complex task of aligning amino acid
sequences through the use of a scoring table. Matches and mismatches are not generally
treated as quite so black and white for amino acids. Two amino acids may be similar in size,
chemical behavior, electrical charge, etc., or may be known to be commonly interchanged
within similar proteins. A scoring table allows for “partial credit” when aligning two amino
acids that are similar but not identical. Commonly used scoring tables are PAM (Percent
Acceptable Mutations) and BLOSUM (Blocks Substitution Matrix), which use different
approaches to represent the frequency with which each amino acid is replaced by each other
amino acid in similar positions among similar proteins.

In bioinformatics, the “gold-standard” alignment algorithm is attributed to Smith and
Waterman [Smith 1981] for local alignments, or to Needleman-Wunsch [Needleman 1970]
for global alignments (but note that [Gusfield 1997] points out that the original Needleman-
Wunch algorithm runs in cubic rather than quadratic time). The widely used (quadratic)
solutions to both problems can be described as minor variations of a dynamic programming
approach [Setubal 1997]. This is done in two phases, first to find the best scores and their
positions, and second to determine the alignments themselves. In the first phase, an (m+1) *
(n+1) table is constructed, where each column represents a position in the text, and each row
represents a base in the pattern.

The process of filling in the table is as follows. There are three possible ways to arrive at a
value for each cell. We will compute the scores for each of these three possibilities, and put
the highest value in the table. The first possibility is that the base of the text represented in
the column will be paired with the base of the pattern represented by the row. If the bases
match, the score will be the score of the diagonal cell (the cell in the previous row and
previous column) plus the score for pairing the base in this row of the pattern with the base in
this column of the text. For DNA, this is either the match score or the mismatch score,
depending on whether the pattern and text match. The second possibility is that a gap is

10

inserted in the pattern in this position (this is equivalent to a relative deletion in the text). The
total score so far with a gap in the pattern is the score of the previous cell on the same row,
plus the gap score. The third possibility is a gap in the text; this is computed by adding the
gap score to the value in the previous cell of the same column.

Once the table is filled in, the values in each cell represent the maximum alignment score that
can be obtained up to the position in the text and pattern represented by the row and column
of that cell. The largest number in the entire table represents the highest score of any local
alignment between any substring of the pattern and any substring of the text. The score in the
last row of the last column represents the highest possible score of a global alignment
containing the full strings of both the text and the pattern.

The second phase is to produce the alignments that give the sores in the table. This is done by
tracing paths up and back through the table. Each path represents an alignment. Only three
possible transitions are allowed from each cell; going to the diagonal cell in the previous row
and column represents a pairing between the base in the pattern and the base in the text.
Going up to the previous cell in the same column represents inserting a gap in the text, and
going to the previous cell in the same row represents a gap in the pattern.

Where we choose to start and stop the paths depends on what kind of alignment we are trying
to achieve. To force the alignment to include the end of the pattern, we must start in the
bottom row. To force it to include the end of the text, we must start in the last column. To
include the beginning of the pattern, we must follow the path to the first row, and to include
the beginning of the text, we must follow it to the first column. Thus, a complete global
alignment between text and pattern is represented by a path from the cell in the last row of
the last column to the cell in the first row of the first column. Shorter paths represent partial
(or local) alignments.

Every path through the table (following the rule that we can only go up, left, or to the upper
left diagonal from one cell to the next) represents an alignment between the pattern and text,
but we are only interested in the “best”, high-scoring alignments. These are found by
following the transitions that can account for the value in the cell (the “best score so far”
value that we calculated in the first phase of the algorithm). that is, if the score in a cell could
have been achieved by adding the gap score to the score in the previous cell in the same
column, then we can transition to that cell. Similarly, if the score could have been achieved
by adding the gap score to the value in the neighboring cell to the left, we can transition to
that cell, and if it could have been achieved by adding the match score (or mismatch score, if
the bases don't match) to the score in the upper left diagonal neighbor, then we can transition
to that cell.

Clearly, there may be multiple alternative alignments that achieve the same score. We can
find them all by recursively tracing the paths until all possible transitions from each cell are
traversed.

In the spreadsheet demonstration, the first phase of filling in the table is done using
spreadsheet formulas. The second phase, of recursively tracing the paths through the table to
find the high-scoring alignments, is done using a recursive script function. The user selects a
cell in the table (the cells with high scores are more interesting, but the alignment-finding
algorithm will work starting with any cell), and repeatedly clicks the button until all paths are
found.

11

2.2. Hierarchical Clustering

Many clustering approaches are useful for attempting to induce relationships within large
data sets. Those that group elements into a hierarchy, or tree-like structure, are of particular
interest in biology because they can describe evolutionary relationships.

2.2.1. Unweighted Pair Group Method with Arithmetic mean (UPGMA)

This is a "distance-based" method that works on a matrix of distances (or similarities)
between pairs of objects. It can be applied to essentially any situation where distances are
additive. In bioinformatics, it is used in such widely divergent applications as construction of
evolutionary trees and analysis of microarray gene expression data. It can be used for
constructing phylogenetic trees based on edit distances between sequences, though it only
achieves correct phylogenies if all branches evolve at equal rates [Durbin 1998]. It was also
one of the early methods used to visualize overall patterns of gene expression in genome-
scale microarray experiments both by finding groups of genes with similar expression
profiles [Eisen 1998], and for grouping cancer cells [Alizadeh 2000].

In each case, the first step is to construct a distance matrix, where every item in the set to be
clustered is represented on a row and a column of the matrix, and the values in the matrix
represent the distance between the row item and the column item. The distance from an item
to itself is typically zero, so the diagonal positions in the matrix are populated by zeros. We
assume that the distance from A to B is the same as the distance from B to A, so the values in
the matrix are symmetrical about the diagonal. Thus the matrix can be specified by filling in
just the lower (or upper) diagonal half of the matrix. For sequence comparisons, edit distance
can serve as a suitable distance metric for filling in the matrix. For microarray gene
expression data, the Pearson correlation coefficient is used to measure similarity between
vectors of expression values for either a given gene in a set of samples [Eisen 1998], or for a
set of genes in a given sample [Alizadeh 2000].

The algorithm proceeds by identifying the smallest distance (or greatest similarity) in the
matrix, grouping those two items, and building a new matrix where the two grouped item are
treated as a new item, whose distance to the other items is determined by averaging the
distances of its constituents. This process is repeated until the matrix has a single cell, and all
items are in a single group. The result is a rooted tree, or hierarchy.

2.3. Classification

Classification is the process of assigning a sample to a category based on the values of its
attributes. One example is classifying an RNA sample based on the expression levels of its
genes as determined in a microarray hybridization experiment. You might, for instance, want
to know whether the sample came from cancer cells or normal cells, or which virus a patient
is infected with. Another type of classification problem is predicting things about sequences.
For example, one can use classification approaches to attempt to determine which parts of a
protein sequence will assume which secondary structure. A sequence can be conceptually
regarded as a number of classifiable attribute vectors by using a "sliding window" a few
amino acids in length; the amino acid at each subposition in the window is the value of the
subposition attribute of the window at a given position of the window along the protein.

Supervised learning methods use a training set of pre-classified examples to induce rules or
patterns by which further samples can be classified. Classic classification approaches based

12

on supervised learning include decision trees, neural networks, and Bayesian classifiers. Here
we will examine the latter two approaches.

2.3.1. Artificial Neural Networks

An artificial neural network is a set of interconnected artificial neuron s. Each neuron has
a set of inputs, and computes its output based on applying weights to its inputs. Training the
network amounts to setting the correct weight values in all the cells.

Some functions can be represented using a single artificial neuron. A simple type of artificial
neuron is the perceptron, in which each input is multiplied by a weight, and the weighted sum
of the inputs is compared to a threshold. If the weighted sum exceeds the threshold, the
perceptron produces a "1"; otherwise, it produces a "0". Training a single perceptron is a
simple matter of computing the error between its output and the target from the training data,
and adjusting each input weight a small amount to minimize this error. Since the perceptron
output is thresholded, it will often learn functions exactly in a reasonably small number of
steps.

An individual neuron can only represent a linearly separable function, such as AND, OR, or
NOT. It cannot represent "exclusive or" (XOR), for example. However, a multi-layer
network can represent a linearly inseparable function like XOR, since this function can be
expressed by combining AND, OR, and NOT operations, for example, A XOR B = (A
AND NOT B) OR (NOT A AND B) . The exclusive or function is something of a classic
toy problem for neural networks.

Training a multi-layer network is more complex than training a single perceptron. The typical
approach to this task is called "backpropagation". Errors for the output layer are calculated
based on how closely the output matches the target. These errors are propagated back to
nodes in the hidden layers by dividing the error in proportion to the input weights of the
nodes receiving inputs from the hidden nodes, but also taking into account the steepness of
the hidden node's output with regard to changes in its inputs. Errors are backpropagated
recursively all the way to the input layer. To determine the steepness, backpropagation
requires that the output of each node be differentiable, making the square step function of the
simple perceptron is not suitable. A differentiable output function that maps values into a
finite range (say, from -1 to 1) is called a "squashing function". A typical squashing
function is

f(y) = 1/(1+exp(-y))

where y is the weighted sum of inputs [Mitchell 1997]. The derivative of this function is

df(y)/dy = f(y) * (1 - f(y))

Training can be done either by determining the errors for the whole training set, or on an
example-by-example basis; this latter approach is called stochastic gradient descent, and is
the method used in my demonstration. The artificial neural network is an architecture that
allows a great degree of parallelism. At the dawn of the computing age, it was apparent that
massive parallelization was one of the striking differences between how computers operated
and how the brain must work [von Neumann 1958]. Though many "neural networks" are
really computer simulations of networks, ANNs can be implemented in hardware, which is
one way to realize the advantages of this potential parallelization.

13

2.3.2. Naive Bayes Classifier

Bayes' theorem states a relationship between conditional probabilities. The conditional
probability of A given B is written P(A|B); it represents the probability that A is true if B is
true. If characteristics A and B are independent, then P(A|B) = P(A), but if A depends on B
then the conditional probability P(A|B) will be different from the unconditional probability
P(A).

Figure 1: Conditional probabilities and Bayes' theorem

If the probabilities of events A and B are given by ovals in a Venn diagram, then the
conditional probability of A given B is the intersection of the two ovals, shown in gray. Since
P(A|B) is a probability relative to B, the absolute area of the gray region is P(A|B) * P(A).
But we could just as well describe the area of the gray region as P(B|A) * P(A), as both
descriptions apply to the same area. Thus,

P(A|B) * P(B) = P(B|A) * P(A)

Algebraic rearrangement of this equality gives Bayes Theorem:

P(A|B) = P(B|A) * P(A) / P(B)

In machine learning applications, we usually refer to probabilities for "hypotheses" and
"data", rather than generic events A and B, and Bayes' theorem is stated as follows [Mitchell
1997]:

P(h|D) = P(D|h) * P(h) / P(D)

What we want to determine is the probability of a "hypothesis" h, given a set of
experimentally observed data D. For a classification problem, each hypothesis is that the
sample to be classified belongs to a given category. Bayes' theorem lets us compute this
probability for each category; we will classify the sample into the category with the highest
probability.

P(h|D) is called the posterior probability of hypothesis h because it reflects the probability
of a classification after we have observed the data D. The hypothesis for which this
probability is highest is called the maximum aposteriori hypothesis, or MAP hypothesis.

P(D) is the probability of observing a particular set of measurements for any sample,
regardless of the category to which the sample belongs. Note that this probability is
independent of h. Since we are looking for the hypothesis h that has the highest probability

14

relative to the other hypotheses, and P(D) is constant across all hypotheses, we can drop this
term and just look for the hypothesis h for which P(D|h) * P(h) is the greatest.

P(h), the unconditional probability of hypothesis h, is also called the prior probability of
that hypothesis. This is the probability one would assign to the hypothesis before doing any
observations to gather the data, D. The prior probability might reflect prior knowledge about
a system; for example, we might know that certain types of cancer are common, while others
are quite rare. Such frequencies could be used to set prior probabilities in a cancer sample
classifier. In the absence of prior knowledge, it is common to assume that all hypotheses are
equally likely [Mitchell 1997].

The key feature of a Bayesian classifier is that we can calculate the conditional probability
P(D|h) from a training set of observations made on samples that have already been
classified. For each category (or classification hypothesis) in the training set, we must
calculate the probability of a particular set of observations, D. In practice, we need to make
some simplifying assumptions to be able to calculate this value. A particularly significant
simplification is to assume that all the individual attributes that make up an observed set of
data D are independent of one another. Using this assumption creates a "Naïve Bayes
Classifier"; it is called naïve because it blissfully ignores the possibility that attributes might
correlate with one another1.

In practice, naïve Bayes classifiers have been shown to be very effective even for cases
where the assumption of independence of attributes is known to be inaccurate, such as
classifying text documents based on the words they use while disregarding the relationships
between the words [Graham2002]. As with other machine learning approaches, naïve Bayes
classifiers can be validated by determining how well they work on test sets. Though
validation can show that a classifier works well even if the assumption of independence is
wrong, the absolute values of the "probabilities" determined by the classifier may not be
meaningful.

1 For more information, see Wikipedia article on "Naive Bayes Classifier",.
http://en.wikipedia.org/wiki/Naive_Bayes

15

Chapter 3. Demonstration Programs

Demonstrations of the selected bioinformatics algorithms are implemented as five separate
Excel files. Each is described below, along with instructions on their use.

3.1. Shift-AND: Shift-AND.xls

The algorithm is demonstrated in two ways. First, spreadsheet functions alone are used to
implement the basic, exact-match algorithm, followed by the more complex extensions to
this basic algorithm which allow approximate matches. These allow the user to closely
inspect the formula for each bit position to determine how it is calculated.

Figure 2: Pure spreadsheet implementation of Shift-AND

Finally, an “animated” version of exact matching shows how the text is scanned, the match
register (“d”) is shifted by one base, filling in with a 1, the appropriate U register is chosen
for each position in the text, and the U-register value is bitwise ANDed with the match
register to compute the new match register value. A match is recorded whenever the match
register position matching the last base of the pattern is set to 1. This animated version has all
values calculated by a script. In both the animated and pure spreadsheet versions, users may
enter their own pattern and text values in the designated areas to experiment with the
algorithm.

3.2. Alignment by Dynamic Programming: dynamicProgr amming.xls

The dynamic programming approach to sequence alignment is one of the fundamental
algorithms in bioinformatics. This approach is guaranteed to find the alignment or alignments
between two sequences that has the maximal score according to a set of scoring rules. The
characters of sequences to be compared (called "S" and "T") correspond to the columns and
rows, respectively, of a matrix. Each path through the matrix represents an alignment
between the "S" and "T" sequences. The diagonal path, for example, represents an alignment
where each base in "S" is paired with one in "T". A step in the path leading up from one cell
to its neighbor above represents a relative gap in "S", whereas a step to the left represents a
gap in "T".

Calculating the values in this matrix is the major step in the dynamic programming
algorithm. Each cell in the matrix represents a position in S and a position in T, and the value
of the cell must represent the maximum possible alignment score of S and T up to those
positions. We begin by filling in the first row and column, which do not depend on the

16

sequences. For a "local alignment", where we are only concerned with the high-scoring
region of the alignment between the sequences, the first row and first column are filled with
zeros. (If we wanted to penalize an alignment for unmatched bases at the ends, a "global
alignment", the first row and columns would be filled with -2, -4, -6, etc., to reflect the gap
penalty.)

Figure 3: Traversing the matrix to find alignments.

For the remaining cells, we begin in the upper left corner, and consider three possibilities:
First, we can get to that cell on the diagonal, in which case the score will equal the score of
the upper left neighbor plus the match score (if the bases in S and T match at the positions.
Second, we could come down from the neighbor above, achieving a score of the above
neighbor plus the (negative) gap penalty. Third, we can come across from the left, to get a
score of the left neighbor plus the gap penalty. The score entered into this cell is the highest
of these three possibilities. This is done in the spreadsheet using the following formula:

cell "F4" value = MAX((F3+gap),(E4+gap),IF($C4=F$1,E3+match,E3+mismatch))

Note that column C contains sequence T and row 1 contains sequence S. The "gap", "match",
and "mismatch" scores are held in named ranges of the spreadsheet. These determine the
score for any alignment, and changing them will result in the matrix being automatically
updated.

To generate alignments, the user picks a cell in the matrix to mark the end point. Any cell in
the matrix can be chosen as a starting point, but some cells are more meaningful than others.
For example, the cell in the lower right corner will give alignments that go all the way to the
end of both sequences, while the largest number in the bottom row gives the highest-scoring
local alignments that extend all the way to the end of the "S" sequence. Click the "find
alignments" button to begin tracing paths from your chosen cell back to the first row or
column. Paths follow any allowable transitions from cell to cell. Note that the alignment is

17

constructed in the area below the matrix as each path is highlighted. The algorithm
recursively traces all paths that end at the chosen cell, since more than one alignment can end
on the same bases and give the same score.

For some applications, the desired result is just the maximum possible score, and the
alignments themselves may not need to be determined.

3.3. Hierarchical Clustering: UPGMA.xls

The UPGMA algorithm works on a distance matrix representing some distance metric
between the items in the set. The demonstration includes sample data showing evolutionary
distances between mitochondrial sequences form primate species [Weir 1996]. Since this
matrix will be modified by the algorithm, we keep the original on a second worksheet
("Data"), so we can re-initialize easily and start over. Because we are assuming that distances
are symmetrical, that is, the distance from A to B is equal to the distance from B to A, and
that the distances on the diagonal are all zero, the data are only filled in for the lower
triangular portion of the matrix below the diagonal. The zeros on the diagonal and the values
in the upper triangular region are filled in by a script when the matrix is copied from the data
worksheet during initialization.

Figure 4: Distance matrix for hierarchical clustering.

When the initialize button is clicked, the program will copy whatever area of the data
worksheet has been selected; this makes it easy to keep other data sets on that worksheet. If
no region has been selected, it defaults to using the Primate sample data.

The button marked "Move Smallest Distance to Top" causes the pair of items separated by
the smallest distance to be moved to the first and second positions in the matrix. The button
marked "Merge first two OTUs" will combine items one and two into a single unit, and
shrink the matrix by one. The term "OTU" stands for "operational taxonomic unit" [Weir
1996]; this phrase is really only applicable for using the algorithm for generating
evolutionary trees. In fact, the same approach can be used for hierarchical clustering in a
wide variety of applications. AutoRun repeatedly moves the closest-spaced pair to the top
and merges them, until the matrix is reduced to a single cell. When OTUs are merged, the
designation for the new group is written using the "Newick notation" for trees, which

18

includes a pair of OTUs in parentheses, separated by a comma, annotated with the distance of
each OTU to the root of that node. This structure is recursive in that each OTU in the pair can
itself be a multi-level description. After AutoRun completes, the description of the one
remaining node actually describes the entire tree.

Figure 5: Clustering results in Newick notation.

Presentation of the tree by the Java graph applet.

Windows command line to convert the Newick notation results of the spreadsheet
demo through the "treedraw" Perl script to create a web page with embedded applet.
>echo (Gibbon: .18375,((Chimpanzee: .015,Human:
.015):.1535,(Orangutan: .092,Gorilla: .092): .1535):
.18375); | perl treedraw.pl > primates.html

Figure 6: Presentation of tree results by Java applet.

I have written a Perl script to reformat trees from Newick notation so that they may be
displayed using the Java Graph applet, which originally came with the Java Software

19

Development kit as a demonstration developed by Sun. The script takes the Newick notation
description from standard input and sends an HTML page including the appropriate applet
parameters to standard output. (Note that you must add a semicolon at the end of the Newick
format!)

3.4. Artificial Neural Networks: ANN.xls

A web search revealed several implementations of neural networks in Microsoft Excel. Many
are native code add-ons to add machine learning capabilities that can be used from within a
spreadsheet; these are generally commercial products, and are not shown in the table. Others
perform the calculations using the spreadsheet itself. I found none that take my approach of
laying out the nodes graphically, and letting the user observe the updating of the weights.

Neural networks were prototyped in the program Tlearn (see table for URL). This made it
possible to verify that a given artificial neural network topology was capable of learning the
problem before that topology was implemented in the Excel demo.

Table 4: URLs for Neural Network Software

A neural network implemented in Excel
Neural Network Models in
Excel

http://www.geocities.com/adotsaha/NNinExcel.html

Tlearn, the neural network learning package I used for prototyping
Tlearn http://crl.ucsd.edu/innate/tlearn.html

Because the ability of a neural network to learn a given function is highly dependent on
network topology, I first set out to characterize an architecture that can learn the XOR
function reliably. Experiments on topology were done in the program Tlearn, which is
described in greater detail in the appendix. The most reliable topology for learning XOR that
I was able to find has three hidden nodes, each of which receives both inputs and connects to
the single output node. It is theoretically possible for an ANN containing only two hidden
nodes to represent XOR, and such architecture did indeed learn the function occasionally in
my experiments. However, the topology with three hidden nodes was much less likely to get
stuck in local minima, and was my choice for the Excel demonstration.

Figure 7: Network architecture for learning Boolean functions, including XOR (prototyped in Tlearn)

20

Training data for a simple 2-input, 1-output Boolean function is stored in tabular form on the
first sheet of the workbook. The user can change the function it represents by modifying the
values in the output column of the table. The second worksheet represents a single artificial
neuron. A button marked "Next Training Case" loads a row from the function table; the
inputs from the table are loaded into the inputs of the neuron, and the output value from the
table is loaded into the target value for the neuron. The "Update Weights" button adjusts the
weights of the neuron based on how closely the output matches the target. The "Auto Learn"
button repeatedly loads the next training case and updates the weights. By clicking "Next
Training Case" after the neuron has been trained, you can see how well the output matches
the target.

The third worksheet contains a multi-layer neural network. Its inputs and target are also
loaded from the same function table. This network is capable of learning the XOR function,
while the single neuron is not. Note that the network is not guaranteed to always learn the
given function, because it can be trapped at a local minimum.

All of the calculations for both forward data flow and backpropagation in this demonstration
are done in spreadsheet formulas, so users can study where the numbers come for at each
step. The only parts done by script are loading the input data and target values from the
function table, and copying the "new weights" into the current weight cells.

The strengths of this demonstration are that is simultaneously shows the relationships
between the nodes and the adjustments of the weights during training. It also exposes all of
the calculations, both for feeding results forward and propagating errors backwards, as
spreadsheet functions. The user can click on any cell to see its function, and thus learn how
its value is derived. None of the basic calculations are done behind the scenes in scripts.

This is not meant to be a general purpose ANN toolset; native tools like Tlearn are orders of
magnitude faster, and are much better suited for student use for purposes such as exploring
topologies, or trying to create networks to learn more complex functions. I have therefor not
added common features such as graphing mean square error during learning.

Figure 8: Spreadsheet demonstration of ANN shows layout and weights as the network learns.

The most complex part of the code for this demonstration is not even used by the student; it
is the VBA code for laying out the network in the first place. Once the network is laid out,
including interconnections between nodes, essentially all calculations are done by the
spreadsheet itself. The network layout process used VBA objects to represent a Network and
the various Nodes. An object model is built to keep track of the connections between the
nodes, the inputs, and the outputs. Once all nodes are added, the object model is used to
determine the addresses of the inputs, outputs, weights, and training-related cells for each

21

node. These addresses are hard-coded into formulas on the spreadsheet, color-coding is
applied to emphasize the locations of nodes, inputs and outputs, and named ranges are added
to the spreadsheet for convenient access by the run-time scripts that load the training cases.

Table 5: Comparison of network configuration code

Tlearn configuration file
NODES:
nodes = 4
inputs = 2
outputs = 1
output nodes are 4
CONNECTIONS:
groups = 0
1-4 from 0
1-3 from i1-i2
4 from 1-3
SPECIAL:
weight_limit = 1.00

Visual basic code to set up network
Sub makeBooleanNetwork()
 Dim net As Network
 Set net = New Network
 ' Network.init(worksheet, inputCount, outputCount)
 Call net.init(Worksheets("boolean_network"), 2, 1)
 ' Network.addNode(nodeNumber, inputArray, layer)
 Call net.addNode(1, Array("i0", "i1", "i2"), 1)
 Call net.addNode(2, Array("i0", "i1", "i2"), 1)
 Call net.addNode(3, Array("i0", "i1", "i2"), 1)
 Call net.addNode(4, Array("i0", "1", "2", "3"), 2)
 ' Network.mapOutput(outputNumes, sourceId)
 Call net.mapOutput(1, "4")
 Call net.finishLayout
End Sub

The VBA object model is not used when the model is run, only to set up the spreadsheet.
This approach makes setting up an alternative topology fairly straightforward for users
familiar with Visual Basic for Applications. The configuration code must be edited by hand,
and the subroutine containing it is then run from the VBA debugging environment; and
example is given in the table.

The most complex part of the code that is actually used during the demonstration run time is
that for the "Auto learn" subroutine. The fundamental operation is simply to load each of the
training examples, then update the weights in the network. a single pass through the entire set
of training examples is called a "sweep", and training usually requires hundreds to thousands
of sweeps. The code is made more complex by user interaction requirements, such as
periodically showing status and asking if the user wants to continue training. This subroutine
also tests to see whether the sum of squared errors has crossed a given threshold, and exits if
so.

22

3.5. Naïve Bayes Classifier for simulated microarra y gene expression data:
microarrays.xls.

The Naïve Bayes Classifier uses a supervised machine learning approach to assign samples
to categories. It uses Bayes' theorem to determine the probability of each possible
classification given a set of observed measurements for a sample, based on the probabilities it
has learned from its training sets of each measurement given the known classification.

Figure 9: Control sheet for Naïve Bayes Classifier

My demonstration uses simulated microarray data for a “virochip” [Wang 2002, Wang
2003]. This microarray contains approximately 12000 spots, each containing a small
sequence of a conserved region from a known virus. By hybridizing a sample of an unknown
virus to this array of segments from known viruses, we hope to be able to identify which
known virus the sample most closely resembles. The hybridization simulations were done as
part of the virtual lab project at www.cybertory.org, and the data are available at that site.

3.5.1. Controls

The first worksheet in the microarray classifier, "controls", contains the buttons that initiate
the various steps of the process. Note that the background image shows a microarray; this is a
simulated image made with the Cybertory microarray image generator (www/cybertory.org).
Each spot represents a reporter for a known virus, and its intensity reflects how strongly a
simulated virus sample is predicted to bind to that reporter. There are 12000 spots on these
arrays, and the measurements from each sample are reduced to a vector of 12000 floating
point numbers, reflecting the intensities of the green channel of each spot normalized against
the red channel.

23

As you point the mouse to each button, a brief paragraph will be presented describing the
corresponding step. Running the classifier is a matter of conducting the steps in order.
Various calculations are performed on the different worksheets, accessible by the tabs on the
bottom of the screen labeled "controls", "training data", "discretized training data",
"probabilities", "unknowns", "discretized unknowns", and "classified unknowns". The
spreadsheet has already been loaded with data and run, so each of these worksheets should
contain valid entries when the spreadsheet is first opened. To become familiar with the
program, users may want to examine each of these worksheets before loading and processing
their own data. We will describe the process by discussing each step in turn.

3.5.2. Load Training Data

All of the data for this classification exercise is from simulated microarray experiments on
various respiratory viruses. Each sample is represented by 12000 intensity values, one for
each spot on the microarray. Measurements were simulated using two types of experimental
conditions; one set of measurements were taken using 40 degrees as the hybridization
temperature, and the other using 50 degrees. The higher temperature produces cleaner results,
with lower background signal.

Figure 10: Loaded training data sheet with categories.

The collection of simulated experiments from has been divided into a "training set" and a
"test set", each representing samples from several kinds of viruses. These sets have been
saved in the four tab-delimited text files in the "data" directory: "testData40.exp",
"testData50.exp", "trainingData40.exp", and "trainingData50.exp". When you click "Load
Training Data", you will be asked to choose one of these files to load. They are all in the

24

same format, and you can load test data instead of training data if you desire, though the
training set is larger, and may give better statistical power to the classifications.

3.5.3. Enter Training Categories

The training set contains representative viruses from various taxonomic groups of viruses.
There are a variety of ways in which they could potentially be categorized. For example, all
parainfluenza viruses (PIV) could be put into a single group, or they could be put into the
more detailed taxonomic groups PIV1, PIV2, and PIV3. Similarly, all influenza viruses could
be considered as a single category, or they could be divided into the more specific subtypes
A, B, and C. To specify how the training samples should be categorized, a dialog box asks
the user to enter a group name for each sample. These names are copied into the top row of
the column containing the measurements for each sample in the "training data" worksheet.
After a category name has been entered for each sample, the columns are sorted by category,
to bring all samples of the same category next to one another, and each category is assigned a
color. This makes it easy to visually inspect the training data to ensure that the intended
categories were entered correctly. Spelling errors in category name will create new,
unintended categories; these should be particularly obvious when the columns are sorted and
the categories color-coded. Any errors should be corrected by typing the correct category
name into the cell containing the erroneous name. After inspecting the "training data"
worksheet, click the "controls" tab to choose the next step. Clicking "Enter Training
Categories" again will re-sort and re-color the categories.

3.5.4. Discretize Training Data

The next step is to turn the continuous intensity values into discrete 1 (a positive spot) and 0
(a negative spot) values. Deciding whether a spot is on or off is a matter of deciding whether
it is significantly brighter than the average spot in the same sample. A prompt requests that
you enter a number of standard deviations to be used for a cutoff. The mean and standard
deviation are calculated for each sample column, and any spot more than the given number of
standard deviations above the mean is considered positive, while the others are negative. The
sum below each column indicates the number of positive spots.

25

Figure 11: Training data converted to discrete values.

3.5.5. Calculate Probabilities

Among the samples within each category, the program counts how many of each spot are
positive and how many are negative, and computes an observed probability of the spot being
on for each category. It is not quite as simple as dividing the number of positive spots by the
number of samples in the category, however, because we must take care not to let
probabilities go to zero.

26

Figure 12: Spot probabilities calculated for each category.

This is because we will be calculating the probability for the whole set of spot intensities by
multiplying the individual spot intensities together (the naïve assumption of statistical
independence). If any spot's probability is zero, the product of all the probabilities will be
zero. The traditional approach adds a number of "virtual samples" to the actual observations.
Each virtual sample is fractionally positive; this fraction represents the apriori probability,
which is just our guess as to how many spots will be turned on. The program prompts for a
number of virtual samples and for an apriori probability. The probability of a spot being "on"
is then given by:

P(spot on in category) = (number of positive spots + (number of virtual samples * apriori probability))
(number of samples in category + number of virtual samples)

Note that as long as you have some virtual samples, and a nonzero apriori probability, the
spot probability will never be quite zero.

In addition to calculating the spot probabilities for each category, this button sets up the area
where conditional probabilities will be calculated.

3.5.6. Load Unknowns

The unknowns are the test set. They can be loaded from the tab-delimited files in the data
directory, just as the training set was loaded. You will not need to enter categories for the
unknowns, though, because that is what the classifier will do. The test set values will be
loaded into the "unknowns" worksheet. Note that each sample in the test set has a name,
which shows the virus it represents. For an actual unknown, we would not have that
information. The classifier does not look at the name, though, just the values. After

27

classification, we can check the names against the determined category to see if the
classification is correct.

Figure 13: Measurements from test set ("unknowns") loaded into worksheet.

28

3.5.7. Discretize Unknowns

The test set is converted to discrete values just as the training set was. You will be asked to
enter a standard deviation cutoff as before. The results will appear in the "discrete unknowns"
worksheet.

Figure 14: Measurements from test set ("unknowns") converted to discreet values.

29

3.5.8. Classify Unknowns

One by one, the unknown samples are loaded into the blue "samples" column on the
probabilities worksheet. Then the conditional probabilities for each spot in each category are
calculated.

Figure 15: Conditional probabilities for a particular sample.

Unfortunately, for performance reasons, the spreadsheet formulas are converted to plain
numbers right after the calculation is done, so you can't see the formula. Therefore I will
explain it here. Say the sample column is "M" (the actual column will depend on how many
categories are used). Then the conditional probabilities for the first category will be in
column "N". The first spot is on row 3, since rows 1 and 2 are reserved for the category name
and overall probability, respectively.

The observed probabilities for the first category are in column "C". Finally, to deal with the
very small probability numbers that would result from multiplying a huge number of small
values together, we will convert everything to logarithms. The formula for cell N3 is
"LN(IF($M3,C3,1-C3))". In other words, if the spot is positive in the sample, then we take
the observed probability for the spot being positive in this category. Otherwise, we use one
minus this probability, which is the probability that the spot will be negative. Finally, we take
the logarithm of the probability, to avoid underflow problems with extremely small
multiplication products being rounded to zero.

The overall probability of the sample being in the category is reflected in the product of all
the spot probabilities. This product will need to be normalized. Assuming that the sample

30

does indeed belong to one (or more) of the categories, we will force the normalized
probabilities to add up to one. This takes a few steps to avoid underflow. Since we are
working with logarithms, we add them instead of multiplying; the sums of the logs of the
spot probabilities are given in the first row beneath the pink area. These numbers may be
fairly large negative exponents, and we may still have a rounding to zero problem if we take
e to these powers. So first we find the maximum value in the row (that is, the smallest
negative number), and subtract this from all the exponents. This is like multiplying all of the
probabilities by a constant. One of the subtracted exponents will be zero. Now we can raise e
to the power of these subtracted exponents and be confident that, even if some of the results
round to zero, not all of them will, and the sum will be nonzero. This sum is the divisor for
normalizing the category probabilities so that they add to one.

Figure 16: Classification of each unknown, with probabilities.

After the conditional category probabilities are calculated for each sample in the unknowns,
they are copied into a table on the "Classified Unknowns" worksheet. The highest probability
determines the category the sample is assigned to, and this category is written in the last
column of the table.

3.5.9. Save Results to File

The table of probabilities and classifications is copied from the "Classified Unknowns"
worksheet and appended to a tab-delimited text file called "BAYESFILE.txt" in the program
directory. This makes it somewhat more convenient to compare results from classifications
using different parameters, for example.

31

Chapter 4. Conclusion

Certain algorithms can be implemented quite conveniently in the spreadsheet computing
paradigm. Microsoft Excel's powerful scripting functions provide a general-purpose,
procedural language extension to the capabilities of the spreadsheet, and make it possible to
implement certain algorithmic steps that would otherwise be beyond the reach of the basic
spreadsheet.

4.1.1. General observations

Spreadsheet calculations have the advantages that they are explicit and exposed; each
calculated value is determined by a formula associated with a cell, and these formulas can be
examined in the formula toolbar.

Two of the algorithms, sequence alignment by dynamic programming and hierarchical
clustering by pair grouping, were particularly well suited for a scripted spreadsheet. In each
case, the major operations are done on two-dimensional arrays of numbers. Either the
numbers themselves or their presentation are manipulated by scripts during algorithm
execution, providing an animated view of the process. Students found these demonstrations
engaging and informative.

Other implementations were perhaps less successful. The shift-AND algorithm, for instance,
can be implemented entirely within the spreadsheet, with no scripting required. While this
does make it possible to see how the calculations are preformed for each bit value by
examining the formulas of various cells, students were generally underwhelmed with the first
version of this demonstration, since nothing moves. The "animated" version is flashier, but it
ends up hiding some of the formulas. I compromised by including both versions. Because the
animation capabilities of Exel are limited, I did not attempt animating the more complex
approximate matching version of this algorithm, which was only done in a non-scripted
version. This will obviously require students to study the formulas of the cells.

The artificial neural network demonstration is interesting because it exposes so much of the
inner working of the neurons. All calculations for forward flow and the major steps of
backpropagation are computed with spreadsheet formulas. The only key step done by the
script is to copy new weights over old weights. While I believe this demonstration may
provide students with some insight into the algorithms involved, is not well suited as a
general tool for experimenting with neural networks. Though much of the configuration is
done with scripts, abstracting setup to a higher level than putting formulas in cells, it is still
moderately difficult to reconfigure a new topology. The functions that handle network layout
can only be run from the VBA debugging environment, which requires some user expertise.
Perhaps more importantly, the spreadsheet is too slow to be well suited for complex training
tasks. This demonstration may be most useful as an adjunct to conventional tool sets such as
Tlearn.

The Naïve Bayes classifier for microarray data is the most ambitious of these demonstrations.
The major challenge in this case stems from my decision to use realistically sized data sets,
rather than some toy problem. Though the experimental results are simulated, they use the
full complement of reporters from the virus identification microarrays of the DeRisi lab
[Wang 2002]. Data sets of this size pose special problems in spreadsheets. First, calculations
may be slow. This is particularly true of secondary calculations, such as taking the sum of a
column of numbers, where the values in the column are themselves calculated by formulas.
Second, performing multiple steps in different worksheets with a data set this large pushes

32

the intrinsic limits on the number of calculation dependencies allowed within a workbook. I
avoided both the dependency limits and the secondary calculation problems by "fixing" cell
values after each step. Thus, even though spreadsheet formulas were used for most of the
calculations, many of these formulas are replaced by the hard-coded values of their results
before the user has an opportunity to examine them. Nevertheless, breaking the problem into
steps and exposing the intermediate results probably has a great deal of pedagogical value. In
addition, the ability to handle realistically sized data sets may make this program useful for
various data analysis exercises for which the results are of more interest than the algorithmic
details.

Students of bioinformatics usually have a background in either biology or computer science.
These demonstrations generally emphasize algorithms over applications, and were developed
with computer science students in mind. Nevertheless, they may prove useful for biology
students as well, because many of the calculations are done with spreadsheet formulas, and
do not require extensive background in computer programming to be understood. Students of
biology should be, or should become, proficient at the use of spreadsheets (but see [Zeeberg
2004] for cautionary tales, such as Excel auto-converting gene names to dates!) Even for
those familiar with the algorithms, implementation in the spreadsheet paradigm may provide
a fresh perspective, such as by exposing opportunities for parallelization.

4.1.2. Comparisons to related work

The Java program from Professor Lecroq's site
that animates sequence alignment by dynamic
programming is shown in the following figure. It
is not surprising that it is very similar to my
demonstration, since both follow the approach
commonly used to describe this algorithm on
paper (see, for example [Setubal 1997]). My
version has two advantages. First, because the
calculations of the matrix values are done by
spreadsheet formulas, the user can inspect the
spreadsheet to learn how the values are
computed. This may be more obvious to some
users that pseudocode or verbal explanations.
Secondly, my animation recursively traces paths
through the matrix, and creates the corresponding
alignment as the path is traversed. Dr. Lecroq's
animation constructs a single graph of allowable
paths and shows the resulting alignments all at
once. I think my simultaneous display makes the
connection between path and alignment more
clear. The Java version has the perhaps
considerable advantage that it runs right on a web
page.

The next figure shows the "shift-OR" animation

from the Lecroq site. This demonstration is
somewhat underwhelming, because it just Figure 17: Dynamic programming demonstration applet

33

prints out a series of bit-strings, which the unfortunate user is expected to interpret as they
scroll by. In this case, I much prefer my own demonstration, which presents the bit vectors in
a table, so the change from one to the next is more obvious.

Because I was unable to locate a
pedagogical demonstration of
UPGMA, I will compare it briefly to
the FITCH distance tree program in
the PHYLIP package. The PHYLIP
programs work from the command
line with textual menus, and can be
baffling to biologists. The inputs must
be properly formatted in a text file,
and the output is sent to a text file.
Advantages of the PHYLIP programs
include their extensive
documentation, many algorithmic
variations, and years of use and
scrutiny by scientists. They share
common data formats, so outputs of
many of the programs can be used as
inputs to others. For example, the
package has programs to draw lovely
publication-quality tree diagrams in
Postscript. Of course, the PHYLIP
programs are not intended to
demonstrate how the algorithm
works, which is the main point of my
program.

Similarly, the Bayes classifier might
be compared to tools designed for
actually classifying samples, perhaps
Bioconductor R modules. The
differences are that my program

slowly takes the user through each
painful step.

For neural networks, the obvious comparison might be between my demonstration and
Tlearn. Clearly, Tlearn is better suited for experimenting with topologies and solving
moderately complex Boolean functions. My demonstration mostly provides a different view;
the user can examine the formulas for all the major calculations, and see all the weights
update in real time.

4.1.3. Future work

I will consider two aspects of this project that might be worth pursuing in the future;
improvement of the existing demonstrations, and adding more spreadsheet-based
bioinformatics algorithm demonstrations to the collection.

Probably what the existing demonstrations need most is to be used in teaching. This will
afford an opportunity to find out what students find to be unclear or confusing. Error-

Figure 18: Shift-OR applet

34

handling, interfaces (including messages to the user), and documentation all need to be tested
in a teaching environment.

Several needed improvements are already obvious. The microarray classifier is slow and
cumbersome; it is also unforgiving if steps are not carried out in the correct order. Students
will need to be familiar with Excel, so that the automated switching between worksheets is
not overly confusing. One simple "improvement" might be to merely use smaller data sets;
that would greatly speed the calculations! Depending on the teaching objective, smaller data
sets may be perfectly suitable. Another change that might improve the pedagogical value
might be to leave the formulas in the cells at the end of each computational step. Currently,
these formulas are converted to fixed numerical values at the end of each step. If they were
left as formulas until the beginning of the next step, the formulas would be available for
students to examine. Alternatively, with a sufficiently small data set, it would not be
necessary to fix the formula values at all.

The hierarchical clustering demonstration constructs a tree description in the Newick
notation used by evolutionary biologists. This description is converted to a web page
containing the appropriate parameters for the Java graph applet by an external Perl script.
Producing the applet web page would be simpler if the HTML were generated directly by the
Excel script; the user could then click a button to create the web page.

Clearly, many features could be added to the ANN demonstration. For example, the scripts
that handle network layout are currently available from the Visual Basic editor, and are only
useable by VBA programmers. Exposing these layout abilities to users might make the
demonstration more flexible. However, it may not be reasonable to try to make this into a
"complete" ANN teaching and experimentation environment. The wiser approach might be to
use this demonstration for what it is good for: it provides a view of the ANN as it learns a
function so the user can see the weights update, and it exposes the calculations in spreadsheet
formulas. It is probably not reasonable to expect this demonstration to learn complex
functions, for example, or to do the other things that are already done well by programs like
Tlearn..

The algorithms covered by the present demonstrations cover a good portion of the "key
technologies" list assembled by Altman in 1998 (see table). Since then, the rise of high-
throughput experimental methods, such as microarrays, would increase the importance of
various machine learning approaches, but the list is still reasonable.

Probably the most important type of algorithm on the list not covered in this set of
demonstrations are those using "stochastic context free grammars" [Sakakibara 1994],
including Hidden Markov Models (HMMs). Since an HMM can be represented as a graph
somewhat similar to finite automaton, it might be possible to lay the model out on the
spreadsheet in such a way as to make the connection obvious between the model and the sets
of sequences being analyzed. Bounded search algorithms might also be represented as graphs
laid out on a spreadsheet, with animated traversal. Some experimentation would be required
to see if such demonstrations might be worth pursuing; clearly spreadsheets are more suitable
for demonstrating some algorithms than others.

The other notable item on Dr. Altman's list that is missing from the current demonstration set
is a genetic algorithm. This should be of particular interest to a biological audience in that, as
with artificial neural networks, the approach is biologically inspired. A demonstration
program could serve as both a simulation of an evolving system and a machine learning
approach. A spreadsheet implementation may provide a unique twist. Genetic algorithms

35

generally operate on a population of potential solutions, each represented by a vector of
attribute values. One might display the members of the population in rows of a spreadsheet,
with the attributes in columns. a fitness measure might be calculated by spreadsheet
functions, selection might use the built-in sort functions, and recombination and mutation
could be animated.

Table 6: Altman's proposed core components of a bioinformatics curriculum

Fundamental concepts
• Pairwise sequence alignment (dynamic programming, heuristic methods, similarity

matrices)
• Multiple sequence alignment
• Hidden Markov Models (construction, use in alignment, prediction)
• Phylogenetic Trees
• Fragment and map assembly and combinatorial approaches to sequencing
• RNA Secondary structure prediction
• Sequence feature extraction/annotation
• Protein homology modeling
• Protein threading
• Protein molecular dynamics
• Protein ab initio structure prediction
• Integration of molecular biology databases
• Support of laboratory biology (sequencing, structure determination, DNA arrays, etc.)
• Design and implementation

Key technologies commonly used in bioinformatics
• Optimization (Expectation Maximization, Monte Carlo, Simulated Annealing,

gradient-based methods)
• Dynamic programming
• Bounded search algorithms
• Cluster analysis
• Classification
• Neural Networks
• Genetic Algorithms
• Bayesian Inference
• Stochastic Context Free Grammars

from [Altman 1998]

36

Appendix A. Experiments on use of Artificial Neural Networks to
learn the genetic code.

This appendix documents preliminary experiments attempting to identify a neural network
configuration to reliably learn the genetic code. The results indicate that network
configuration is important to being able to learn this function using backpropagation, as some
configurations clearly work better than others. The genetic code may be an interesting
example system for adaptive neural network configuration algorithms.

A.1. Software System

The neural network program Tlearn (http://crl.ucsd.edu/innate/tlearn.html) was used for these
experiments. This is a freely available, open-source program available for Windows in binary
form. This system uses three text files to specify a problem to be solved by the neural
network. The "data" file contains the inputs in tab-delimited format. The "teach" file contains
the expected output signals, again in tab delimited format. The "cf" (configuration) file
describes the connections between nodes.

A.2. Data

The genetic code specifies how triplets of nucleic acid sequence ("codons") are translated
into the amino acids of proteins. The standard genetic code used by most living organisms
(http://molbio.info.nih.gov/molbio/gcode.html) is given in a simple tabular format in Figure
A1. The gray columns are line numbers The codons are listed in alphabetical order, with the
first codon ('AAA') on line 1 and the last codon ('TTT') on line 64.

Figure 19: The standard genetic code

The standard genetic code was formatted into a truth table using the Perl script shown in
Figure A2. It uses a two-bit binary number to represent each of the four bases (A=00, C=01,
G=10, T=11), so that a codon can be represented in 6 bits. The 64 possible codons must be
translated into a 21 character alphabet, representing the 20 amino acids plus "termination"
(represented by a period). A termination codon signals the end of a protein reading frame.
Characters in the protein alphabet are represented in the output of the script as a 21-place bit
vector, containing a single '1' to indicate one of the 21 characters of a translated sequence.

The script generates a truth table with 6 columns of input and 21 columns of output.

37

Figure 20: Perl script to format genetic code for machine learning experiments

38

Table 7: Standard genetic code represented as a truth table

Codon
Number

Inputs Outputs

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
6 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

10 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
12 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
13 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
16 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
18 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
20 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
22 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
23 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
24 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
25 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
26 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
27 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
28 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
29 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
30 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
31 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
32 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
33 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 1 0 0 1 0 0 1 0
38 1 0 0 1 0 1 1 0
39 1 0 0 1 1 0 1 0
40 1 0 0 1 1 1 1 0
41 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
46 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
47 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
48 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
49 1 1 0 1
50 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
51 1 1 0 0 1 0 1
52 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
53 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
54 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
55 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
56 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
57 1 1 1 0 1
58 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
59 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
60 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
62 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
64 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39

This binary truth table can be simplified using standard logic minimization techniques. The
program UC Berkeley Espresso (obtained from www.dei.isep.ipp.pt/~acc/bfunc/) reduced the
table to 26 rows. I then rearranged the rows so the positive bits in the outputs are ordered
sequentially, and used the alphabet to mark the output columns. Though the rows are no
longer in order by codon, this table shows more clearly how the bitmaps represent the 21
characters of the protein alphabet.

Table 8: Simplified truth table for standard genetic code

 ACDEFGHIKLMNPQRSTVWY.
1001-- 100000000000000000000
1110-1 010000000000000000000
1000-1 001000000000000000000
1000-0 000100000000000000000
1111-1 000010000000000000000
1010-- 000001000000000000000
0100-1 000000100000000000000
00110- 000000010000000000000
0011-1 000000010000000000000
0000-0 000000001000000000000
-111-0 000000000100000000000
0111-- 000000000100000000000
001110 000000000010000000000
0000-1 000000000001000000000
0101-- 000000000000100000000
0100-0 000000000000010000000
0-10-0 000000000000001000000
0110-- 000000000000001000000
1101-- 000000000000000100000
0010-1 000000000000000100000
0001-- 000000000000000010000
1011-- 000000000000000001000
111010 000000000000000000100
1100-1 000000000000000000010
11-000 000000000000000000001
1100-0 000000000000000000001

The minimized table shows some patterns among the codons. Most notable is the
characteristic "wobble", where the third position in the codon has less significance for amino
acid selection than the first two positions. For example, the amino acid Alanine (A) is
encoded by 1001--, which represents four codons sharing GC in the first two positions,
GC[ACGT]. Cystine (C) is represented by 1110-1, or the two codons TGC and TGT. In
particular, note that Serine (S) is encoded by the conjunction of 1101-- and 0010-1, which are
the six codons TCA, TCC, TCG, TCT, AGC, and AGT.

A.3. Testing Topologies

I chose to use the full (un-minimized) table for training neural networks. I will first show the
results of the simplest topology: 6 input nodes and 21 output nodes, with no hidden nodes,
and each of the 26 output nodes receiving input from all 6 input nodes. This topology is

40

diagrammed below. The 'b' node at the beginning of the bottom (input) row provides a
constant bias input.

Figure 21: Simple network topology with no hidden nodes

The results of a typical training run are shown in the next figure, with the abscissa giving the
number of "sweeps" through the training data, and the ordinate giving the error from
comparing network output to the expected values from the training data. Note that the error
never approaches zero, but bounces around in the area of about 0.1 to 0.4. This figure uses
individual points to represent every 1000th sweep, and reveals that some error levels seem to
recur frequently, reminiscent of bifurcation diagrams. Training was repeated many times,
using a different random number seed to set the initial network weights. In no case did a
network with this topology successfully learn the complete genetic code table.

Figure 22: Simple topology fails to learn genetic code completely

The Tlearn program has a Node Activation window that shows the output of a trained
network with given inputs. The 21 output nodes are shown in order from right to left at

the top of the Node Activation window, and the seven inputs (the bias, plus the six input bits)
are shown at the bottom. Note that the bias input is always on.

41

Examples of node activation diagrams show that
the simple network learns to identify many amino
acids, but not all of them. In the top node activation
window, the first codon in the training set, AAA, is
represented by 000000. This causes the 9th output to
light up; the 9th amino acid is K (Lycine), which is
indeed encoded by AAA. The next illustrated
example shows that an input of 001000
(representing the 9th codon, AGA) produces output
number 15 (R, for Arginine), which is also correct.
In our third example, however, the network fails to
produce any high-valued output (input 001001 =
AGC should be identified as S, Serine, the 16th

letter in our amino acid alphabet. This network
produced a single, correct output for each set of
input values except codons 10 and 12 (not shown).
Both of these codons should encode S. In ten
independent attempts at training this network, eight
gave a similar result, in which codons 10 and 12
gave no output. One run gave no output for codons
10, or 12, or for 62, and 64. Codons 62 and 64
represent the 5th amino acid, F (Phenylalanine).
One of these ten trials did produce a network that
correctly identified codons 10 and 12 as S, but
failed to identify codons 53, 54, 55, and 56, which
also represent S. Since a network's topology can
affect its ability to be trained with certain datasets
by backpropagation, I set about to find a better
topology.

Adding a single layer of hidden nodes between the inputs and the outputs (to make a 3-layer
network) did not lead to networks able to learn the genetic code any better than the simple,
single layer topology. I tried various numbers of hidden nodes, all connected to all inputs and
all outputs. One of the 3-layer networks contained 26 hidden nodes. I predicted that this
network could learn the code, because there are 26 terms in the simplified truth table, each of
which can be represented by a simple Boolean equation). But even this never completely
learned the code in many long attempts.

In most cases, the 3-layer networks got "stuck" at a level where all codons were recognized
except codons 10 and 12 (for Serine). Thus, they suffered the same problem as the simple 2-
layer network. Since most topologies had trouble with Serine, I decided to try to learn its
code separately.

As mentioned above, the code for Serine is complicated because this amino acid is
represented by 6 codons. Four of them start with TC (the third base doesn't matter), while
two start with AG (codons 10 and 12 are AGC and AGT.) I reasoned that the network was
getting confused trying to learn two classes of codons (TCN and AG[CT]) for the same
output, so I experimented with a topologies in which some hidden nodes connect to the first

Figure 23: Testing network output with
specific inputs

42

four inputs (for the first two bases), and some hidden nodes connect to only the last two
inputs (for the base in the "wobble" position).

NODES:
nodes = 15
inputs = 6
outputs = 1
output nodes are 15
CONNECTIONS:
groups = 0
1-15 from 0
1-4 from i1-i4
5-6 from i5-i6
7-10 from 1-4
11-14 from 5-6
15 from 7-14
SPECIAL:

Figure 24: A topology for learning Serine

The most reliable Serine-learning network I was able to identify has two hidden layers (4
layers total). I will describe the nodes using Tlearn's conventions; input nodes are called i1
through i6; the first layer of hidden nodes are 1 through 6, the second hidden layer has seven
nodes numbered 7 through 14, and node 15 is the output. The first four hidden nodes take
input from all of the first four inputs together, and give output to all of the first four nodes in
the next layer. Nodes 5 and 6 in the first hidden layer both take input from both inputs 5 and
6, and send output to the set of nodes 11-14 on the second hidden layer. All the nodes in the
second hidden layer send results to the output node. The Tlearn Network Architecture
diagram and configuration file are shown below.

This topology was very successful in learning the Serine values from the truth table. In 40
trials (each with a maximum of 100000 sweeps, learning rate = 1, momentum = 0.2), it
learned the Serine output correctly each time.

In theory, a single hidden layer should be sufficient to represent any function (I think this is
why Tlearn diagrams the hidden nodes all on a single level). However, I was never able to
devise a topology with a single hidden layer that could learn the Serine values.

43

Table 9: Four-layer topology can learn the genetic code, but doesn't always

A. B. C.

D. E. F.

G. H. I.

J.

Network: training Options
learning rate: 0.1
momentum: 0
Train in random sequence.

K.

Some of the stuck runs go
on and on...

L. Tlearn configuration file.
NODES:
nodes = 37
inputs = 6
outputs = 21
output nodes are 17-37
CONNECTIONS:
groups = 0
1-16 from 0
1-4 from i1-i4
5-6 from i5-i6
7-12 from 1-4
13-16 from 5-6
17-37 from 7-16
SPECIAL:

Testing this topology on other amino acids showed that it could learn them also, so it is not
restricted to learning Serine. I then added more outputs to test whether similar topologies
could learn the entire genetic code at once. This is very similar to the four layer network
described above for learning Serine, except it has a few more nodes added to each of the two
groups in the second hidden layer, and the second hidden layer connects to all of the 21
outputs. Of ten trials using this topology, the network learned the genetic code in two (D and
F in the table).

44

Figure 25: Four-layer topology capable of learning the genetic code, sometimes.

In a last-ditch attempt at finding a topology that can learn the genetic code reliably, I
reasoned that if a single layer can learn all amino acids but Serine, and if the four-layer
topology described above can learn Serine alone, then I should be able to construct a hybrid
topology that treats Serine as a special case. This is shown below, along with its Tlearn
configuration.

NODES:
nodes = 34
inputs = 6
outputs = 21
output nodes are
14-34
CONNECTIONS:
groups = 0
1-34 from 0
1-4 from i1-i4
5-6 from i5-i6
7-10 from 1-4
11-13 from 5-6
29 from 7-13
14-28 from i1-i6
30-34 from i1-i6
SPECIAL:

Figure 26: The most effective topology for learning the genetic code treats Serine as a special case.

The topology treating Serine as a special case was very effective for learning the genetic
code. In 20 of 20 trials, it succeeded in learning the entire code in < 200000 sweeps (learning
rate = 1, momentum=0.5).

45

A.4. Implications of Experiments on Topology

The genetic code is a toy problem, in that it can be completely described in a look-up table,
so neural network pattern finding does not reveal anything new. It is a suitable example
problem as an application of artificial neural networks in bioinformatics only in that it may
help students become familiar with the concept that the genetic code is in fact a lookup table
(the term is commonly misused to mean "genome", more or less, in the popular press.)

These experiments demonstrate that choice of a suitable neural network topology is
extremely important in learning certain Boolean functions, such as the genetic code. One
topology (treating serine as a special case) was found which is quite reliable for learning the
genetic code. This topology is not very satisfying in a general sense, however, because it is
highly specialized for this problem. A general machine learning solution, either for finding
appropriate topologies, or for better training of standard topologies, would be more
interesting. This function could serve as a good example system for experimenting with
approaches such as using genetic algorithms for neural network topology identification; this
is called "neuroevolution"2.

Because of the complexity and specialized nature of the only topology I found that could
learn the genetic code reliably, I chose not to attempt this problem in the Excel
demonstration. The spreadsheet would be rather complicated, and conducting the required
number of training steps with so many nodes seemed impractical. Instead, the demonstration
uses the classic XOR function..

2 See also the Wikipedia article on "Neuroevolution", http://en.wikipedia.org/wiki/Neuroevolution

46

Glossary

3' end: the end of a DNA sequence where the free 3' hydroxy group is found.

5' end: the end of a DNA chain where the free 5' phosphate group is normally located. DNA
sequences are normally written with the 5' end on the left.

A: the abbreviation for adenine in a nucleic acid sequence.

adenine: a purine base found in DNA and RNA. Pairs with T in normal Watson-Crick
pairing.

amino acid: one of the basic building blocks of proteins. There are twenty "normal" amino
acids commonly found in proteins. This means that the sequences of most proteins
can be described using a twenty-character alphabet.

amino terminus: the beginning of a protein chain, where the free amino group is located.
Proteins are synthesized in the amino to carboxy terminus direction by ribozymes.
The amino terminus of a protein is encoded by sequences toward the 5' end of the
gene for that protein. By convention, protein sequences are written with the amino
terminus on the left.

antiparallel: strands running alongside one another but having opposite orientations.

artificial neural network: a set of artificial neurons connected with a certain topology.

base pairing: the hybridization of complementary nucleotides. A normally pairs with T, and
C pairs with G.

Bayes' theorem: P(A|B) = P(B|A) * P(A) / P(B)

BLOSUM: "Blocks Substitution Matrix", one of the classic types of scoring tables for amino
acid comparisons.

C: see cytosine.

carboxy terminus: the end of a protein chain that has a free carboxy group. See amino
terminus.

central dogma: the concept that genetic information flows from long-term storage in DNA,
to short term storage in mRNA, to proteins capable of carrying out biological
function. There are known exceptions to this pattern, such as the reverse
transcriptases of certain viruses (retroviruses) that copy information from RNA to
DNA. Also, some organisms, notably viruses, keep long term genetic information in
RNA molecules rather than DNA.

chloroplast: the subcellular organelle of plants wherein photosynthesis occurs.

chromosome: organized structures containing the major portion of an organism's DNA.
Eukaryotic chromosomes are located in the nucleus.

classification: the process of assigning instances to categories.

codon: a triplet of three consecutive nucleotide bases encoding a particular amino acid.

complementary: having have G match with C, and A match with T.

C-terminus: see carboxy terminus.

47

cytosine: a pyrimidine base found in DNA and RNA. Pairs with G in normal Watson-Crick
pairing.

denaturation: any process that causes the normal three dimensional structure of a protein to
be disrupted. Denaturation can have drastic effects on the properties of proteins.
Cooking egg whites, for example, causes the albumin proteins to denature, and to lose
their solubility in water, and denatured enzymes lose their catalytic activities.

deoxyribonucleotide: any of the monomers from which DNA polymers are constructed.
Deoxyribnucleotides consist of a nucleotide base (A, C, G, or T) connected to a
deoxyribose sugar molecule, which has a phosphate group that can form a
phosphodiester bond with the previous monomer in the chain.

DNA polymerase: any enzyme that produces DNA could be called a DNA polymerase. There
are many types of DNA-producing enzymes. For example, an enzyme involved in
DNA replication might be called a DNA-directed DNA polymerase. A reverse
transcriptase could be called an RNA directed DNA polymerase. There are also
enzymes that can produce DNA molecules without a template.

DNA: deoxyribonucleic acid. In most organisms, this is the genetic material.

edit distance: a similarity metric for comparing two sequences which is scored by the number
of edits (insertions, deletions, and substitutions) required to convert one sequence into
the other. Each editing operation may have its own score, which may be contained in
a scoring table.

enzyme: a biological molecule capable of acting as a catalyst for a particular biochemical
reaction. Most enzymes are proteins, but some include RNA, and some are purely
RNA ("ribozymes").

eukaryotic: a type of organism having nucleate cells. Organisms without cell nuclei, such as
bacteria, are called prokaryotic.

extrachromosomal: being located outside of a chromosome. Mitochondrial genes are said to
be extrachromosomal, for instance.

G: see guanine.

gene: a region of genetic material that carries the information for a specific trait. This is a
broad definition, since "trait" could mean many things. Simple examples of usually
encode a particular protein, including promoter regions, exons, etc. However, some
genes encode RNA molecules that are not translated to proteins (such as tRNAs),
some act as regulatory regions, and some may have no known biological effect, as
with many of the "genes" for some markers used to distinguish individuals in forensic
investigations, for example.

genetic code: a mapping of codons to amino acids. A standard genetic code is used by most
organisms.

genome: the content of all of an organism's chromosomes.

guanine: a purine base found in DNA and RNA. Normally pairs with C in double-stranded
nucleic acids.

Hierarchical Clustering: grouping of instances into a tree-like structure showing how
closely they are related to one another. Clustering is commonly done using
unsupervised machine learning methods.

48

hybridization: annealing of complementary strands, especially strands with different origins
(such as a target and a probe).

initiation codon: the first triplet in a reading frame.

MAP hypothesis: see "maximum aposteriori hypothesis"

maximum aposteriori hypothesis: the hypothesis with the highest posterior probability.

mitochondria: a subcellular organelle found in most nucleated cells. Mitochondria are
centrally important in the process of respiration.

naïve Bayes classifier: a classifier based on Bayes' theorem in which the simplifying
assumption is made that the probabilities of all attribute values are independent of one
another.

N-terminus: see amino terminus.

Operational Taxonomic Unit: (OTU) a node in an evolutionary tree.

PAM: "Percent Acceptable Mutations", one of the classic types of scoring tables for amino
acid comparisons.

pathway: a series of biochemical reactions leading from one or more starting materials to
metabolic products. The steps in a pathway are usually catalyzed by enzymes.

PCR: see "polymerase chain reaction".

peptide: a short protein chain. Peptides typically do not have enzymatic activity, since they
are too small to form the molecular machines we call enzymes. Many peptides have
biological activities as neurotransmitters or immunological targets. The name refers
to the type of amino-ester bonds used to join amino acids together.

polymerase chain reaction: (PCR) a process by which targeted regions of DNA molecules
can be reproduced under experimental conditions. It is a recursive application or
primer extension.

polypeptide: a chain of amino acids joined by peptide bonds (a protein chain).

posterior probability: the probability of a hypothesis, given the observed data.

primary structure: the sequence of a protein chain. This can be though of as a one-
dimensional description of the protein.

primer: a single-stranded nucleic acid molecule (usually a synthetic oligonucleotide) that
hybridizes to a template molecule and serves to initiate template-directed synthesis by
DNA polymerase.

prior probability: the assumed probability of a hypothesis before observations are made.

promoter : a region of a gene directing RNA polymerase activity at a particular transcription
start site.

protein: a polymer of amino acids linked by peptide bonds. Many proteins have biological
functions that depend on their three-dimensional structures. A principle determinant
of how one or more protein chains of amino acids folds into a three dimensional
structure is the sequence of amino acids in the chains. The process of protein folding
is an important step in converting one-dimensional sequence information (as stored in
DNA) into biological activities.

49

quaternary structure: the association of multiple protein chains into a single three-
dimensional structure.

reading frame: The modulus or register in which a nucleic acid sequence is or could be
translated into protein. A strand of DNA has three possible reading frames, and its
complementary strand ahs three more.

replication: the process of reproducing molecules or simple organisms (viruses are said to
replicate, for example).

reverse complement: the sequence of the strand that would pair exactly with a given strand.
Matching strands must be both complementary and antiparallel.

ribozome: a macromolecular assembly responsible for translation of RNA sequences to
proteins.

RNA polymerase: an enzyme that catalyzes the production of polymers of ribonucleic acid.

RNA: ribonucleic acid. Similar in structure to DNA, RNA is typically less stable. RNA
performs many vital functions in living things. Some types of RNA molecules
(mRNA) act as messengers in the process of protein production. Others (tRNA)
couple to activated amino acids to help match them to their codons. Ribosomes
contain large amounts of structural rRNA. Other RNA molecules are intimately
involved in other enzymatic functions, such as splicing.

secondary structure: local three-dimensional structure within a polymer chain. Common
secondary structures in proteins include the alpha helix, the beta pleated sheet, and
"turns" or "coils". Prediction of secondary structure from a protein sequence is easier
that predicting its complete three-dimensional structure, and is widely considered to
be a first step in structure prediction.

sequence: the order of monomers within a polymer, or of characters within a string. Genetic
information is contained in the sequence of bases in DNA.

squashing function: a differentiable function that maps the output of an artificial neuron into
a finite range.

stochastic gradient descent: an approach to training a neural network wherein errors are
back-propagated for each individual example, rather than for the entire training set at
once.

supervised learning: the process by which a program induces rules for classifying instances,
based on pre-classified examples given in a training set.

synthetic oligonucleotide: a short strand of DNA created using techniques of organic
chemistry.

T: see thymine.

tertiary structure: the three dimensional arrangement of a single protein chain.

thymine: a pyrimidine base found in DNA. (The thymines of DNA sequences are transcribed
into uracils in RNA). Normally pairs with A.

training set: a group of pre-classified examples that can be used with machine learning
approaches.

transcription factor: a protein that interacts with a gene sequence to control RNA
polymerase activity at that gene.

50

transcription: the process of copying information from DNA to RNA. This is done by DNA-
dependant RNA polymerase.

translation: the process of creating a protein molecule based on the sequence information
contained in a molecule of messenger RNA.

uracil : the pyrimidine base that takes the place of thymine in RNA.

virus: an acellular infectious particle that replicates within cells of a host organism.

51

Bibliography

Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick,
J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T.,
Hudson, J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner,
T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Staudt, L.M. (2000). Distinct
Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling.
Nature 403, 503-11. http://rana.lbl.gov/papers/Alizadeh_Nature_2000.pdf

Altman, R. (1998) A curriculum for bioinformatics: the time is ripe (editorial).
Bioinformatics 14(7):549-550. http://www-smi.stanford.edu/pubs/SMI_Reports/SMI-
98-0744.pdf

Delamarche, C. (2000) Color and Graphic Display (CGD): Programs for Multiple Sequence
Alignment Analysis in Spreadsheet Software. BioTechniques 29:100-107.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998) Biological Sequence Analysis:
probabilistic models of proteins and nucleic acids. Cambridge University Oress.

Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998). Cluster Analysis and
Display of Genome-Wide Expression Patterns. Proc Natl Acad Sci U S A 95, 14863-
8.

Felsenstein, J. (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:
164-166.

Felsenstein, J. (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by
the author. Department of Genome Sciences, University of Washington, Seattle.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,
Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry,
R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G.,
Tierney, L., Yang, J.Y., and Zhang, J. (2004) Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol.
;5(10):R80. http://genomebiology.com/2004/5/10/R80

Graham, P. (2002) A Plan for Spam. Retrieved December 4th, 2004 from
http://www.paulgraham.com/spam.html

Gusfield, D. (1997) Algorithms on Strings, Trees, and Sequences. Cambridge University
Press.

Han, B., and Tashjian, A. H. (1998) User-Friendly and Versatile Software for Analysis of
Protein Hydrophobicity. BioTechniques 25:256-263.

Higgins D., Thompson J., Gibson T.Thompson J.D., Higgins D.G., Gibson T.J. (1994).
CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment
through sequence weighting,position-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 22:4673-4680.
http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=EBI&pubmedid=7984417&a
ction=stream&blobtype=pdf

McEwan, N. R., and Gatherer, D. (1998) Adaptation of Standard Spreadsheet Software for
the Analysis of DNA Sequences. BioTechniques 24:131-138.

Mitchell, T.M. (1997) Machine Learning. WCB/McGraw-Hill.

52

Monroe, W.T., and Haselton, F.R. (2003) Molecular Beacon Sequence Design Algorithm.
BioTechniques 34:68-73.

Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology
48:443-453.

O'Neill, M.C., and Song, L. (2003) Neural network analysis of lymphoma microarray data:
prognosis and diagnosis near-perfect. BMC Bioinformatics 4:13.
http://www.biomedcentral.com/1471-2105/4/13

Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjolander, K., Underwood, R.C.,
Haussler, D. (1994) Stochastic context-free grammars for tRNA modeling. Nucleic
Acids Research. 22(23):5112-20.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=7800
507

Schageman, J.J., Basit, M., Gallardo, T.D., Garner, H.R., and Shohet, R.V. (2002) MarC-V: a
spreadsheet-based tool for analysis, normalization, and visualization of single cDNA
microarray experiments. BioTechniques 32:338-344

Schütz, E., and von Ahsen, N. (1999) Spreadsheet Software for Thermodynamic Melting
Point Prediction of Oligonucleotide Hybridization with and without Mismatches.
BioTechniques 27:1218-1224.

Setubal, J. and Meidanis, J. (1997) Introduction to Computational Molecular Biology. PWS
Publishing Company, Boston.

Shaw, G. (1997) "Spreadsheets in Molecular Biology". Chapter 7 of "Spreadsheets in
Science and Engineering", pages 203-228, Editor Gordon Filby, Springer-Verlag,
Heidelberg, Germany.

Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subsequences.
Journal of Molecular Biology 147:195-197.

Snow C.D., Nguyen, H., Pande, V.S., and Gruebele, M. (2002) Absolute comparison of
simulated and experimental protein-folding dynamics. Nature 420(6911):102-10.
http://vsp27.stanford.edu/papers/SnowNature2002.pdf

Stowe, R. P., and Pierson, D. L. (1996) Spreadsheet Macro for Setting Up PCR Assay Tubes.
BioTechniques 20:1088-1089.

Tobler, J.B., Molla, M.N., Nuwaysir, E.F., Green, R.D., Shavlik, J.W. (2002) Evaluating
machine learning approaches for aiding probe selection for gene-expression arrays.
Bioinformatics. 2002;18 Suppl 1:S164-71.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=A
bstract&list_uids=12169544

von Neumann, J. (1958) The Computer and the Brain, Yale University Press, New Haven.

Wang, D., Coscoy, L., Zylberberg, M., Avila, P.C., Boushey, H.A., Ganem, D., and DeRisi,
J.L. (2002) Microarray-based detection and genotyping of viral pathogens.
Proceedings of the National Acadamy of Sciences USA , 99(24):15687-92.
http://derisilab.ucsf.edu/publications/pdfs/VirusChip.pdf

Wang, D., Urisman, A., Liu, Y.-T., Springer, M., Ksiazek, T.G., Erdman, D.D., Mardis, E.R.,
Hickenbotham, M., Magrini, V., Eldred, J., Latreille, J.P., Wilson, R.K., Ganem, D.,

53

and DeRisi, J.L. (2003) Viral discovery and sequence recovery using DNA
microarrays. PLoS Biology, 1(2):E2 http://www.plosbiology.org/archive/1545-
7885/1/2/pdf/10.1371_journal.pbio.0000002-L.pdf

Weir, B.S. (1996) Genetic Data Analysis II: Methods for discrete population genetic data,
Sinauer Associates, Sunderland MA

Wu, S., and Manber, U. (1991) Fast text searching with errors. University of Arizona
Technical Report TR 91-11. ftp.cs.arizona.edu/agrep/agrep.ps.1

Zeeberg, B.R., Riss, J., Kane, D.W., Bussey, K.J., Uchio, E., Linehan, W.M., Barrett, J.C.,
and Weinstein, J.N. (2004) Mistaken Identifiers: Gene name errors can be introduced
inadvertently when using Excel in bioinformatics. BioMed BMC Bioinformatics 5:80
www.biomedcentral.com/1471-2105/5/80

54

Index

adenine, 2, 46
amino acid, 1, 2, 3, 9, 11, 36, 39, 41, 43, 44,

46
amino terminus, 2, 46
antiparallel, 2, 46
artificial neural network, 12, 19, 45, 46
base pairing, 2, 46
Bayes' theorem, 13, 22, 46
BLOSUM, 9, 46
carboxy terminus, 2, 46
central dogma, 1, 46
chloroplast, 46
chromosome, 46
classification, 5, 11, 13, 14, 22, 23, 27, 46
clustering, 4, 11, 17, 47
codon, 3, 36, 39, 41, 46, 48
complementary, 2, 3, 46
C-terminus, 2, 46
cytosine, 2, 46, 47
denaturation, 2, 47
deoxyribonucleotide, 2, 47
DNA, 1, 2, 3, 4, 9, 47, 49
DNA polymerase, 1, 3, 47
edit distance, 9, 11, 47
enzyme, 47
eukaryotic, 2, 47
extrachromosomal, 2, 47
gene, 3, 4, 5, 11, 22, 47
genetic code, 3, 19, 36, 37, 38, 40, 41, 43, 44,

45, 47
genome, 3, 45, 47
guanine, 2, 47
hybridization, 3, 4, 11, 22, 23, 48
initiation codon, 3, 48
machine learning, 5, 11, 12, 14, 22, 23, 24, 26,

28, 41, 49
MAP hypothesis, 13, 48

maximum aposteriori hypothesis, 13, 48
mitochondria, 2, 3, 48
naïve Bayes classifier, 14, 48
N-terminus, 2, 48
Operational Taxonomic Unit, 17, 48
PAM, 9, 48
pathway, 48
PCR, 4, 48
peptide, 2, 48
polymerase chain reaction, 4, 48
polypeptide, 1, 2, 48
posterior probability, 13, 48
primary structure, 1, 48
primer, 4, 48
prior probability, 14, 48
promoter, 3, 48
protein, 1, 2, 3, 11, 36, 39, 48
quaternary structure, 1, 49
reading frame, 3, 36, 48, 49
replication, 1, 3, 49
reverse complement, 2, 3, 4, 49
ribozome, 49
RNA, 1, 3, 11, 49
RNA polymerase, 1, 3, 49
secondary structure, 1, 11, 49
sequence, 1, 2, 3, 4, 9, 11, 15, 16, 22, 36, 43,

49
squashing function, 12, 49
stochastic gradient descent, 12, 49
synthetic oligonucleotide, 4, 49
tertiary structure, 1, 49
thymine, 2, 3, 49
transcription, 1, 3, 50
transcription factor, 3, 49
translation, 3, 50
uracil, 3, 50
virus, 11, 22, 26, 50

