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Abstract

This project presents demonstrations of selected computer scieoGthalg important in
bioinformatics, implemented in the spreadsheet program Microgoél ESpreadsheets provide an
interesting platform for demonstration of algorithms, sing@ua steps of the calculations can be
exposed in a manner that is easily comprehensible to usersttdgthrbgramming experience. The
algorithms demonstrated include two approaches to approximate stiticlymgadynamic programming
and Shift-AND numeric approximate matching), Hierarchical Clugidised in phylogenetic studies
and microarray analysis of gene expression), a Naive Bayes @la&silsimulated microarray gene
expression data, and a simple Neural Network. These demonstrationsigned¢o serve as
instructional aids in bioinformatics courses.

Dedication
To my lovely wife Katherine, for her patience, fortsare, and sense of humor.
Acknowledgements

| thank Professors Nick Ewing and Meiliu Lu for giving me ¢ipgortunity to co-instruct the
graduate course in bioinformatics at CSUS, where tha ifdeanost of these demonstrations took
form. | am grateful to Carl McMillin for helpful disssions, and for helping me past the initial
stages of bewilderment when learning to program VisuatBasApplications. He wrote the
simple string class used in the Dynamic Programming afgoriBy abstracting operations such as
left-sided concatenation, these make the algorithm cao iwleaner.

Several core software components were taken front stheces. The Java graph visualization
applet used to display clustering results is taken verlfabim the examples included with the Java
1.2 software development kit. The simulated microarras daed with the naive Bayes classifier is
part of the open source virtual molecular laboratorygmtogtwww.cybertory.org . The Tlearn
neural network system used to experiment with topologiesdettempting to use them with the
spreadsheet version is obtained friottp://crl.ucsd.edu/innate/tlearn.html
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Chapter 1. Introduction

Bioinformatics is the application of information teotmgy and computer science to
biological problems, in particular to issues involving gengtiguences. String algorithms are
centrally important in bioinformatics for dealing withgsence information. Modern
automated high throughput experimental procedures produce faogais of data for which
machine learning and data mining approaches hold great pragriigepretive means. After
a brief discussion of general biological issues, |l dgscribe some general problem in
bioinformatics, and discuss the relevance to these prsliémhe algorithms | have chosen
to demonstrate.

1.1. Biological Background

Genetic information flows from DNA to RNA to proteinhi§ principle is known as the
central dogmaof biology.

In most organisms, long-term genetic information is stamedeoxyribonucleic aciddNA)
molecules. The information in the DNA is copied froatle cell to its progeny during
replication, controlled by enzymes call@&NA polymerases Portions of the DNA
molecules (§enes$) are copied as needed into short-term “messenger” el of
ribonucleic acid RNA) in a process callemlanscription by enzymes calleBNA
polymerases These messages d@ranslated into proteins by molecular assemblies called
ribozomes

Various types of RNA molecules perform duties other #@img as messengers; for
example, transfer RNA (tRNA) molecules are tempé&raoupled to amino acids and help to
translate sequences of nucleotides in nucleic acids gnésees of amino acids in proteins.
Other specialized RNA molecules (ribosomal RNA, rRNi#Y) large portions of the
ribozymes that synthesize proteins.

Enzymesare molecules that control particular chemicaltieas. Almost all enzymes are
proteins (though some include RNA molecules, and somentirelg RNA). Enzymes act by
physically interacting with the molecules they affextd their three dimensional structures
are crucial to their activity. Complex biochemical prsses typically involve series of
chemical steps callggathways Many enzymes change their activity in response to various
conditions. For example, some enzymes interact théh own products, and become less
active when the concentration of their product is higgulation of key enzymes in
biochemical pathways is central to control of celligeowth, behavior, and metabolism.

Proteins consist of one or more chainsarhino acids There are twenty different amino
acids commonly found in the proteins of living organisms. S§dguenceof a protein is a
specification of the composition and ordering of itsraoracids.

The sequence of a protein chain igpitisnary structure . Certain local folding patterns,
including the “alpha helix” and the “beta pleated shem#, known asecondary structure
Both experimental evidence and computer simulations shdve¢bandary structures form
quickly [Snow 2002], and prediction of secondary structuregarded as a step toward
predicting higher-level organization. The way a polypeptlugEn folds in three dimensions

is itstertiary structure . If multiple chains (or “subunits”) interact to forancomplex
(“multimeric”) structure, this is calleduaternary structure. Under the appropriate
conditions, the way a protein folds and all the higheels of structure are determined by the
amino acid sequence of the protein.



Disrupting the higher-level structure of a protein (such asolmking) is called

denaturation; denatured proteins typically lose their biological atibgi Some proteins will
re-fold into their active three dimensional structune=neafter denaturation. These proteins
provide convincing evidence that the key to higher order struistinedd in the sequence of
the protein itself. Most proteins, however, will notfoéd correctly after denaturation,
because the conditions under which they originally foldedectly may not be present. For
example, in a cellular environment, some proteins fold timéir active configurations in
association with "chaperone" molecules, and some jpans chopped off or are otherwise
modified after folding.

Because the amino acid monomers in proteins are codrnegigeptide bonds, a protein
chain is gpolypeptide. Short protein chains may be called oligopeptides, or carenonly
simply peptides A peptide bond connects the carboxyl group of one amida@the alpha
amino group of the next. The first amino acid in achhus has a free amino group, and is
said to be thamino terminus of the chain (oN-terminus, because an amino group
contains nitrogen). The last amino acid contains adagkoxy group and is called the
carboxy terminus (or C-terminus). By convention, the sequence of a protein chain is
written as a series of amino acids with the N-tatrsion the left, and the C-terminus on the
right. This direction, from N-terminus to C-terminisalso the direction in which
polypeptide chains are normally synthesized by ribozometh §ngle-letter and three-letter
abbreviations of amino acid names are commonly used.

DNA molecules consist of long chains (polymers) madendit called
deoxyribonucleotides Each deoxyribonucleotide monomer comprises a moledule five
carbon sugar 5-phospho-2-deoxyribose with a nucleotide “ladiseehed to carbon number
1. The base is eithadenine(A), cytosine(C), guanine (G), orthymine (T). Monomers are
connected by phosphodiester bonds, with the oxygen aiuimder 3 carbon atom of one
ribose molecule connected to the phosphate at the nimgmesition of the next ribose
molecule. To distinguish the carbons in the riboseemdé from the carbons in the
nucleotide, those in the ribose are marked with a “grafter their number. Thus the
phosphate groups connect the 3' carbon of one monontex & ¢arbon of the next. The first
nucleotide in a DNA chain has an exposed 5' phosphate ghisifs talled thé' end of the
chain. The last nucleotide has a free 3' hydroxy group, amdsents th&8' end of the chain.
By convention, DNA sequences are written from leftight in the 5' to 3' direction.

The long covalently linked polymers of DNA are calleddstis”. DNA is normally “double
stranded”, with the two strands being connected to one emlojtrelatively weak and
reversible hydrogen bonds. The most stable hydrogen bondarggament is Watson-Crick
base pairing in which the A nucleotides match up with T nucleotidesl C's match with
G's. Two strands in which all bases are paired with gpgropriate Watson-Crick partner
are said to beomplementary. Paired strands are also described as lzitigarallel,
because the 5' end of one strand pairs with the 3' e other; that is, the complementary
sequences run in opposite directions. The sequencestofitistrands are said to beverse
complementsof one another; given the sequence of one strandgetiigence of the other
strand can be deduced by replacing A with T, T with A, th i, and G with C
(complementing), then reversing the sequence to reprimseapposite 5' to 3' direction.

Most of the DNA in most cells is organized into struetucallecchromosomesin cells that
have a nucleus €ukaryotic” cells), this is where chromosomes reside. Other DNA
molecules may exist iextrachromosomallocations. For example, eukaryotic cells contain
mitochondria, subcellular organelles intricately involved in respindaand energy
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production. Mitochondria contain their own DNA, as doc¢hiroplasts of plants,
organelles involved in photosynthesis. Mamyisesalso reproduce in extrachromosomal
locations. The full complement of DNA in the chrosomes of a cell is called igenome
The human genome contains slightly over 3 billion base

Because each strand contains all the sequence infomadtibe double stranded molecule,
one DNA molecule can be made into two identical mdéscby separating the strands and
filling in the reverse complement of each strand. Thisssentially the role played by DNA
polymerase during physical replication.

Genetic information is contained in the sequence ofshiasdne DNA. Sequences of
messenger RNAs are directly related to the sequendcbs BINA molecules from which

they are transcribed, with two notable differencestFihe thymine monomers (T) of DNA
sequences are representedigcil (U) in RNA. More drastically, the sequence of thelfina
RNA molecule may be spliced to have some regions rethohhe parts that are removed are
introns, and the parts that remain in the processed &K &xons. The order of exons in the
spliced product typically reflects their order in the &M region of DNA encoding a
particular trait is called gene Not all of an organism's genes are active in all onstances

or all cell types. Genes which are active in a giselhare said to be expressed. The human
genome is believed to contain approximately 25,000 genes.

A typical gene encoding a protein has components thatedescribed in general terms. A
promoter is a sequence of DNA where RNA polymerase can bind agid transcription. A
transcription factor binding site is a (usually short) sequence of DNA to which proteins
that regulate transcription can bind. Different regulatacyors can activate or repress
transcription under various circumstances; regulationamitription is one of several levels
at which expression of gene products (including enzymesrtiatn regulate biochemical
pathways) can be controlled. In many genes, thedrigtion start site is well defined.
Exons and introns (as described above) can usually ppeddo specific positions along the
DNA sequence.

The translation process reads three bases of RNAmedo determine which amino acid to
add to a growing protein. Each three-base unicsdon The relationship between codons
and the amino acids they encode isghretic code Almost all organisms use the same
genetic code, with notable exceptions including the genetliescof various mitochondria.
Since there are 64 codons (4 possible bases at etule®positions) and only 20 amino
acids, some amino acids are represented by multiptengynous codons. (Nucleotide
mutations that change a codon into another synonymalsnare known as silent
mutations). A DNA sequence could potentially encode diffeproteins depending on which
base is chosen to start the first three base calisns thereading frame for translation.

DNA sequences contain three potential reading framesoim strand.

Transcribed messenger RNA contains one or more nibednnding sites where interaction
with the protein translation machinery is initiated. Tingt codon translated is theitiation
codon it is almost always AUG, which encodes the amind awethionine. Location of the
initiation codon determines the actual reading framéherprotein.

Two complementary DNA strands can be separated or “diedted reassociated or
“annealed”. In living cells, the processes of separaimhreassociation are controlled by
enzymes, but in the laboratory, these reactions caotiteolled by heating and cooling. This
makes possible an experimental approach chlddization, wherein one strand of DNA,
usually containing some sort of detectable marker (suchadicactive label or a fluorescent



tag) is used as a probe under conditions that favor kmpéa detect the presence of its
complementary strand in a sample.

Specialized organic chemistry reactions can be usedadtesgathetic oligonucleotides
These can be used as very specific probes in hybrigiieatudies, or ggrimers to initiate
template-directed synthesis of DNA at a specific iocaon a template. Specialized primer
extension reactions are the basis of such techniquesiad@tmaination sequencing and the
polymerase chain reactionPCR).

1.2. Applications of Bioinformatics Algorithms

We will consider three classes of algorithms: approxirsateg matching, for comparing
biological sequences, clustering, for inducing relationshipsng sequences or samples, and
classification approaches for assigning sequences ollesatopcategories.

1.2.1. Strings

Approximate matching of a search pattern to a target (ddéetiext” in string algorithms)
is a fundamental tool in molecular biology. The patisroften called the “query” and the
text is called a “sequence database”, but we will usgepd and “text” consistent with
usage in computer science. When discussing the spacerandaimplexity of algorithms,
the length of the text will be called and the length of the pattern will be While exact
string matching is more commonly used in computer sciginisepften not useful in biology.
One reason for this is that biological sequences)erinentally determined, and may
include errors: a single error can render an exact meseless, where approximate matches
are less susceptible to errors and other sequence differémegher, perhaps more
important, reason for the importance of approximate Inivagcs that biological sequences
change and evolve. Related genes in different organ@nesien similar genes within the
same organism, most commonly have similar, but not iddrgéguences. Determining
which sequences of known function are most similarrieva gene of unknown function is
often the first step in finding out what the new genesdoe

Another application for approximate string matching is mt&t the results of hybridization
experiments. Since strands may hybridize if theysandlar to each other's reverse
complements, prediction of which strands will bind to wiotiher strands, and how stable
the binding will be, requires approximate, rather thantextitng matching.

1.2.2. Clustering

Clustering, or grouping items by some measure of sinyjar@&n be achieved by a wide
variety of methods, including many unsupervised learning methteésarchical clustering is
a general term for the grouping of items into tree-tikesters of related groups. A common
approach is the pair-group method, where each item is cethpathe others, and the two
most similar items are joined into the group. This groupes treated as an item, and its
distance to other items is calculated. This procespisated until all items and groups have
been joined into a single cluster. The key to this amgpraathe use of a suitable distance
measurement, or (dis)similarity metric to measure hiff@rdnt two items or groups are
from one another. Common applications of hierarchilcestering in bioinformatics are
grouping of related sequences, grouping of cell or tissue saimgdéed on their gene
expression profiles, and grouping of genes based on the@ssion profiles in different
samples. Hierarchical clustering is a type of unsupervisedifeg, useful for discovering
categories among samples.



High-throughput experiments yielding large amounts of datg€lnumbers of samples,
large numbers of measurements per sample, or both) @keex candidates for automated
classification. Experimental results containing siguaifit “noise” may be difficult for
humans to classify with confidence, and can be excelgplications for machine classifiers,
some of which are amenable to statistical interpatatbne such type of experiment uses
gene expression microarrays to simultaneously measemexpression levels of tens of
thousands of mMRNAs within a sample.

1.2.3. Classification

The problem of assigning a sample to a category basadeinof measured attributes is
calledclassification Supervised learningmethods induce rules for classifying samples
from a training set of samples with known classifiaagidn assessing the accuracy of such
classifiers, additional samples of known classifmatre used as a test set. Many aspects of
medical diagnosis can be described as classificatmlems.

1.3. Related work

Since this project demonstrates bioinformatics algoritinnidicrosoft Excel, 1 will briefly
review the use of spreadsheets in bioinformatics, and desswime existing programs
intended to demonstrate the target algorithms for teaching $&spo

1.3.1. Spreadsheets in bioinformatics.

Spreadsheets have been used for a variety of sequenceisaapplications. Because the
twenty amino acids have such a wide variety of chelroltaracteristics, proteins have many
interesting properties that are determined by their am@ig composition. For example, the
molecular weight of a protein is computed by summing thight® of the amino acids
(minus the water molecules lost in the formatiopeptide bonds). The isoelectric point,
which is the pH at which the number of positive and negatinagges on a protein are equal,
is similarly determined by considering the contributiohthe constituent amino acids.
These parameters of proteins are extremely importdaboratory investigations; when
designing a purification strategy to isolate a particpfatein from a mixture, knowing such
parameters is invaluable. Calculating many such paramsteasically an exercise in
accounting, and is easily accomplished with a spreadshitiebut resorting to sophisticated
algorithms [Han 1998]. Many fundamental DNA sequence arsaysicedures, such as
translating to protein sequences and determining codon usagdsaustraightforward to
implement using spreadsheet functions [McEwan 1998].

By considering a short "sliding window" of a few positi@isa time, many accounting-style
calculations can be used to make graphs showing how eytartaverage characteristic
varies along the length of a sequence. Plotting hydropglailihg a protein sequence, for
example, may reveal which portions of the moleculdikedy to be associated with cell
membranes. Spreadsheets have also been used for makipgptsibto visualize the areas of
similarity between protein or DNA sequences [Shaw 1997]n B sliding window style
plots and the matrix-like results of a dot plot arelgdssplayed in a modern spreadsheet
like Excel.

Procedural scripting languages significantly enhance the ditipalnf spreadsheets. Scripts
have been written to display, analyze, and comparaptauitligned sequences [Delamarche
2000], to calculate melting temperatures of oligonucleotideg uearest-neighbor



thermodynamics [Schiitz 1999], and to assist in the desigolecular beacon probes for
sensitive real-time detection of specific DNA sequerfbtsroe 2003].

Biologists commonly use spreadsheets to design expdehmotocols [Stowe 1996] and to
organize and analyze experimental data, including data freroanrays [Schageman 2002]
and real-time PCR experiments [Schageman 2002]. Indeefdctitbat many biologists are
familiar with Excel was a strong motivation to use hlatform for algorithm
demonstrations.

1.3.2. Bioinformatics tools

The next table shows freely available bioinformaticssttizat employ the algorithms
demonstrated in this project.

Table 1: Examples of bioinformatics tools using these anelated algorithms

ClustalWw http://www.ebi.ac.uk/clustalw/
agrep http://www.tgries.de/agrep/
Cluster/Treeview http://rana.lbl.gov/EisenSoftware.htm
PHYLIP http://evolution.genetics.washington.edu
phylip.html

Bioconductor http://www.bioconductor.org
The Comprehensive R Archive Network http://cran.r-projegt.or

(Only freely available software is included in this table.)

ClustalW [Higgins 1994] is a multiple-sequence alignmenik; ena@ilable in both stand-alone
and web-based versions. Multiple sequence alignmennh@ea complex optimization
problem than the two-sequence alignments considered dethenstration algorithm, but
dynamic programming is still used. Clustal uses clustdaligwed by alignment (hence the
name). It avoids the complexity of true multiple seqeesmiignment by first clustering the
genes by edit distance, aligning the most closely ebigémes (two at a time), and adding the
next most related sequence repeatedly until the wkolef sequences is included in the
alignment.

Approximate matching by the shift-AND approach (really shiR)@ implemented by the
inventors of the algorithm in the program "agrep" [Wu]slhamed for "approximate grep”,
since it can be used like the classic Unix grep utility,dfloivs approximate matching in
addition to a subset of regular expressions.

Hierarchical clustering of microarray data is impleneenin the program "Cluster”, and
described in [Eisen 1998]. Various methods for constructing ghawletic trees, including
distance methods similar to UPGMA as well as more stiphied approaches more suitable
to various evolutionary applications, are available @RKHYLIP package [Felsenstein 1989,
2004].

The Bioconductor toolset [Gentleman 2004] is built in therosource "R" statistical
language. Modules are available for a wide variety okdiaation approaches, including
Bayesian classifiers.

Neural networks can be used to diagnose cancer subtypegdraexpression data [O'Nell
2003] (that group used a commercial neural network package R fackage "nnet"
supports single hidden layer feed-forward neural networksmarydbe suitable for
classifying cancer samples.



1.3.3. Algorithm demonstrations

Programs demonstrating algorithms, especially animatio@s;canmonly used teaching aids
in computer science. The next table lists useful web #i& help to index these resources,
as well as some demonstrations closely related tovamy

Table 2: Web sites of algorithm demonstrations

Catalogs

The Complete Collection of Algorithmwww.cs.hope.edu/~alganim/ccaa/
Animations

Dictionary of Algorithms and Data | www.nist.gov/dads/
Structures (DADS),

National Institute of Standards and
Technology

Exact string matching algorithms: www-igm.univ-mlv.fr/~lecrog/string/index.htm|
Thierry Lecroq site

Sequence comparison algorithms: | www-igm.univ-mlv.fr/~lecrog/seqcomp/
Thierry Lecroq site

Demonstrations related to those in this project

Shift Or algorithm Java animation at http://www-igm.univ-
mlv.fr/~lecrog/string/node6.html

Sequence alignment by dynamic Java animation at http://www-igm.univ-
programming mlv.fr/~lecrog/seqcomp/node4.html

Note that | could not find an existing animation for hienaral clustering. Because of the
simplicity and broad applicability of this approach, | sider it very unlikely that no such
animation has ever been done. One thing that compliteesearch for such demonstrations
is that the approach is known by many names, from therg€thierarchical clustering” to

the specific UPGMA and "average linkage clustering”.

| was also unable to find an animation or interactivaalgstration of a naive Bayes
classifier. Again, this is not strong evidence that rexist, but it may reflect the fact that it
is hard to make a catchy animation of a Bayes classifie



Chapter 2. Algorithms

As might be expected, most of the algorithms that pusedul in bioinformatics are related
to familiar problems in computer science. Clustering anssiflaation use well-
characterized machine learning approaches. Computer sciadeats venturing into
bioinformatics primarily need to understand and suitably é#me problems in order to
apply these approaches. The particular problem of apprtesirdng matching, so crucial to
biological sequence analysis, is perhaps given less procgne typical computer science
curricula, which often emphasize exact matching approdehgsBoyer-Moore).

2.1. Approximate String Matching

Biological sequences can be represented as stringhebudriability implicit to the

evolution of living things renders ordinary exact matchipgraaches of little use.
Approximate matching algorithms that can tolerate insestidaletions, and substitutions are
extremely important for biological sequence comparison.

2.1.1. Shift-AND Numeric Approximate Matching

The Shift-AND method uses a bit manipulation approach tela@te the process of
approximate matching. The approach can be explained by cowitaio the naive exact
matching method, in which the pattern is compared charbgteharacter at each position
along the text. This simple approach is inefficientt{itee complexity is O(n*m)) because it
contains two nested loops, where the inner loop is ez@@iteach position along the text.
Shift-AND uses bit-wise operations in entire registerperform the inner loop operations on
multiple positions in parallel. For patterns that carcbntained within the length of a
register, it has a time complexity proportionaten® length of the text being searched
(O(n)). Shift-AND actually uses a set of four regist@alled the “U” registers [Gusfield
1997] ) to contain the pattern, with one bit in eachstegito represent each base of the
pattern. Thus, a machine with 32 bit registers can eaphgsent 32 base patterns for use in
shift-AND. Longer registers, such as the 128 bit registetissoPowerPC AltiVec vector
engine, can represent proportionately longer pattéhesalgorithm can also be extended to
use multiple registers to represent longer patterngdeyiending on the architecture), this
would likely be at a cost of increased time complexity.

Table 3: Pseudocode for “naive” pattern matching algorithm.

character[] pattern, text;
integer i,j;
for (i=0;i<length text;i++){
for (j=0; j< length pattern; j++){
if (text[i+]] != pattern[j]) next i;

record_match(i);

}

Note: the command “next i” exits the current j loopheiit completing the call to
record_match.

Of course, shift-AND is more sophisticated than a sirsptart-circuit of the inner loop in the
naive exact matching approach, in that it can be extendstbw for approximate matches
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[Wu 1991]. The full algorithm allows for a given number obstitutions, insertions, or
deletions in the pattern. This is achieved by maintainirej afsnatrixes, which allow
different numbers of errors. A bit is set if the catreharacters match and the prefixes of
each string were within the error limits; if the pref had not reached the error limits, the bit
is set even if there is an error at the currenttjposiNote that in practice the whole matrix
does not need to be maintained, but only the final two amdum

2.1.2. Sequence Alignment and Alignment Scoring with Dynamic Programming

The most general and complete approach to approximate n@isho perform sequence
alignment between the pattern and the text. This aleaes approximate matching position
to be assigned a score based on how well it matchesmdst commonly used alignment
score is thedit distance measured by the number of insertions, deletions, antitstibss

it would take to transform one sequence into the otherfi@did997]. Alignment score also
serves as a widely used similarity metric to compdete@ sequences to one another.

The rules for scoring of alignments between DNA sequeace generally simple: some
number of points is given for each match, (negativeaipgpoints are given for mismatches,
and penalty points are given for each gap inserted. A eiffevumber of points may be
given for extending a gap than for initiating a new gas (gcalled an affine gap penalty).
The user may in general set how many points are givegafth match, mismatch, or gap,
and different scoring values may be useful in diffe@mumstances. For example, higher
gap penalties can be used to favor alignments with fgaes.

The same algorithm can be extended to the more congsk»of aligning amino acid
sequences through the use of a scoring table. Matchesismadteches are not generally
treated as quite so black and white for amino acids. Tweocaacids may be similar in size,
chemical behavior, electrical charge, etc., or makrimvn to be commonly interchanged
within similar proteins. A scoring table allows for “pattcredit” when aligning two amino
acids that are similar but not identical. Commonly usedisg tables ar®AM (Percent
Acceptable Mitations) andBLOSUM (Blocks Substitution_Matrix), which use different
approaches to represent the frequency with which eacatoaanid is replaced by each other
amino acid in similar positions among similar proteins.

In bioinformatics, the “gold-standard” alignment algoritlsnattributed to Smith and
Waterman [Smith 1981] for local alignments, or to NeedletWunsch [Needleman 1970]
for global alignments (but note that [Gusfield 1997] pointstbat the original Needleman-
Wunch algorithm runs in cubic rather than quadratic tifieg widely used (quadratic)
solutions to both problems can be described as minor wasabif a dynamic programming
approach [Setubal 1997]. This is done in two phases, fifsiddhe best scores and their
positions, and second to determine the alignments theraséivie first phase, an (m+1) *
(n+1) table is constructed, where each column represepbsition in the text, and each row
represents a base in the pattern.

The process of filling in the table is as follows. Tehare three possible ways to arrive at a
value for each cell. We will compute the scores fahez these three possibilities, and put
the highest value in the table. The first possibilitthet the base of the text represented in
the column will be paired with the base of the pattepresented by the row. If the bases
match, the score will be the score of the diagoekkthe cell in the previous row and
previous column) plus the score for pairing the base srtw of the pattern with the base in
this column of the text. For DNA, this is either thatoh score or the mismatch score,
depending on whether the pattern and text match. Thedecssibility is that a gap is
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inserted in the pattern in this position (this is equiviaiera relative deletion in the text). The
total score so far with a gap in the pattern is theesabthe previous cell on the same row,
plus the gap score. The third possibility is a gap in tk tieis is computed by adding the
gap score to the value in the previous cell of the saroenco

Once the table is filled in, the values in each agfesent the maximum alignment score that
can be obtained up to the position in the text and pattépnesented by the row and column
of that cell. The largest number in the entire tabf@esents the highest score of any local
alignment between any substring of the pattern and arstréng of the text. The score in the
last row of the last column represents the highestiplesscore of a global alignment
containing the full strings of both the text and thegyatt

The second phase is to produce the alignments that gigetée in the table. This is done by
tracing paths up and back through the table. Each path refsrasesignment. Only three
possible transitions are allowed from each cell; goingeatiagonal cell in the previous row
and column represents a pairing between the base jrattegn and the base in the text.
Going up to the previous cell in the same column represes#ging a gap in the text, and
going to the previous cell in the same row representp e&nghe pattern.

Where we choose to start and stop the paths dependsabkind of alignment we are trying
to achieve. To force the alignment to include the endeop#itern, we must start in the
bottom row. To force it to include the end of the fev® must start in the last column. To
include the beginning of the pattern, we must follow thé pathe first row, and to include
the beginning of the text, we must follow it to thesticolumn. Thus, a complete global
alignment between text and pattern is represented bydrpat the cell in the last row of
the last column to the cell in the first row of fivet column. Shorter paths represent partial
(or local) alignments.

Every path through the table (following the rule that we only go up, left, or to the upper
left diagonal from one cell to the next) represental@ynment between the pattern and text,
but we are only interested in the “best”, high-scoringrehents. These are found by
following the transitions that can account for theueah the cell (the “best score so far”
value that we calculated in the first phase of therdlgun). that is, if the score in a cell could
have been achieved by adding the gap score to the s¢beegrevious cell in the same
column, then we can transition to that cell. Sinjiaif the score could have been achieved
by adding the gap score to the value in the neighboringocee left, we can transition to
that cell, and if it could have been achieved by adding thhehnsaore (or mismatch score, if
the bases don't match) to the score in the upper &jbdal neighbor, then we can transition
to that cell.

Clearly, there may be multiple alternative alignnseiiat achieve the same score. We can
find them all by recursively tracing the paths until allgble transitions from each cell are
traversed.

In the spreadsheet demonstration, the first phasdiogfih the table is done using
spreadsheet formulas. The second phase, of recurgiaeiyg the paths through the table to
find the high-scoring alignments, is done using a recussikipt function. The user selects a
cell in the table (the cells with high scores areemoteresting, but the alignment-finding
algorithm will work starting with any cell), and repeatedicks the button until all paths are
found.
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2.2. Hierarchical Clustering

Many clustering approaches are useful for attempting to entlationships within large
data sets. Those that group elements into a hierarchngeslike structure, are of particular
interest in biology because they can describe evolutiaetationships.

2.2.1. Unweighted Pair Group Method with Arithmetic mean (UPGMA)

This is a "distance-based" method that works on a xnatdistances (or similarities)
between pairs of objects. It can be applied to esskrdiay situation where distances are
additive. In bioinformatics, it is used in such widelyatgent applications as construction of
evolutionary trees and analysis of microarray gene sgpre data. It can be used for
constructing phylogenetic trees based on edit distantesde sequences, though it only
achieves correct phylogenies if all branches evolve at eapes [Durbin 1998]. It was also
one of the early methods used to visualize overall pattdErgene expression in genome-
scale microarray experiments both by finding groups ofgeuitd similar expression

profiles [Eisen 1998], and for grouping cancer cells [Alizad@00].

In each case, the first step is to construct a distanatex, where every item in the set to be
clustered is represented on a row and a column of éiexirand the values in the matrix
represent the distance between the row item and thmoatem. The distance from an item
to itself is typically zero, so the diagonal positiomshie matrix are populated by zeros. We
assume that the distance from A to B is the santikeadistance from B to A, so the values in
the matrix are symmetrical about the diagonal. Theshtrix can be specified by filling in
just the lower (or upper) diagonal half of the matrix. s@guence comparisons, edit distance
can serve as a suitable distance metric for fillinthenxmatrix. For microarray gene
expression data, the Pearson correlation coefficsarged to measure similarity between
vectors of expression values for either a given gereset of samples [Eisen 1998], or for a
set of genes in a given sample [Alizadeh 2000].

The algorithm proceeds by identifying the smallest distamicgréatest similarity) in the
matrix, grouping those two items, and building a new mathgre the two grouped item are
treated as a new item, whose distance to the d#mesiis determined by averaging the
distances of its constituents. This process is repeatédh@nmatrix has a single cell, and all
items are in a single group. The result is a rooted dreleierarchy.

2.3. Classification

Classification is the process of assigning a sampdecitegory based on the values of its
attributes. One example is classifying an RNA sampledas the expression levels of its
genes as determined in a microarray hybridization exgatinyou might, for instance, want
to know whether the sample came from cancer celi®onal cells, or which virus a patient
is infected with. Another type of classification prahlés predicting things about sequences.
For example, one can use classification approachetsaimpt to determine which parts of a
protein sequence will assume which secondary structusegéence can be conceptually
regarded as a number of classifiable attribute vectousibg a "sliding window" a few
amino acids in length; the amino acid at each subposititre window is the value of the
subposition attribute of the window at a given positibthe window along the protein.

Supervised learning methods use a training set of pre-cldssiamples to induce rules or
patterns by which further samples can be classifieds€lalassification approaches based
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on supervised learning include decision trees, neural netvamtBayesian classifiers. Here
we will examine the latter two approaches.

2.3.1. Artificial Neural Networks

An artificial neural network is a set of interconnecteudtificial neuron s. Each neuron has
a set of inputs, and computes its output based on applyigitseo its inputs. Training the
network amounts to setting the correct weight valoeslithe cells.

Some functions can be represented using a single@itifieuron. A simple type of artificial
neuron is the perceptron, in which each input is mudtipby a weight, and the weighted sum
of the inputs is compared to a threshold. If the weten exceeds the threshold, the
perceptron produces a "1"; otherwise, it produces a "0". Tigamisingle perceptron is a
simple matter of computing the error between its oudipdtthe target from the training data,
and adjusting each input weight a small amount to mirthis error. Since the perceptron
output is thresholded, it will often learn functionsetly in a reasonably small number of
steps.

An individual neuron can only represent a linearly separtiriction, such as AND, OR, or
NOT. It cannot represent "exclusive or" (XOR), for exde. However, a multi-layer

network can represent a linearly inseparable functi@eXiOR, since this function can be
expressed by combining AND, OR, and NOT operations, fompig A XOR B = (A

AND NOT B) OR (NOT A AND B) . The exclusive or function is something of a classic
toy problem for neural networks.

Training a multi-layer network is more complex thaaining a single perceptron. The typical
approach to this task is called "backpropagation”. Errorshéoutput layer are calculated
based on how closely the output matches the targeteTdreors are propagated back to
nodes in the hidden layers by dividing the error in progotb the input weights of the
nodes receiving inputs from the hidden nodes, but also takiogccount the steepness of
the hidden node's output with regard to changes in its inputss are backpropagated
recursively all the way to the input layer. To deterntlmesteepness, backpropagation
requires that the output of each node be differentiaidéing the square step function of the
simple perceptron is not suitable. A differentiablepotifunction that maps values into a
finite range (say, from -1 to 1) is calledsgliashing functiori. A typical squashing

function is

f(y) = 1/(1+exp(-y))
where vy is the weighted sum of inputs [Mitchell 1997]. Tkeivative of this function is

df(y)/dy = f(y) * (1 - f(y))

Training can be done either by determining the errors éowntiole training set, or on an
example-by-example basis; this latter approach is csitszhastic gradient descentand is
the method used in my demonstration. The artificial @engtwork is an architecture that
allows a great degree of parallelism. At the dawn otthmaputing age, it was apparent that
massive parallelization was one of the striking défferes between how computers operated
and how the brain must work [von Neumann 1958]. Though masyrdhnetworks" are
really computer simulations of networks, ANNs canrbplemented in hardware, which is
one way to realize the advantages of this potentiallphzation.
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2.3.2. Naive Bayes Classifier

Bayes' theoremstates a relationship between conditional probabilifiee conditional
probability of A given B is written P(A|B); it repra#s the probability that A is true if B is
true. If characteristics A and B are independent, BéiB) = P(A), but if A depends on B
then the conditional probability P(A|B) will be difeent from the unconditional probability
P(A).

P(A|B)*P(B)

P(B|A)*P(A)

Figure 1. Conditional probabilities and Bayes' theorem

If the probabilities of events A and B are given bylswa a Venn diagram, then the
conditional probability of A given B is the intersiect of the two ovals, shown in gray. Since
P(AIB) is a probability relative to B, the absolute avethe gray region is P(A|B) * P(A).

But we could just as well describe the area of the gigigmeas P(B|A) * P(A), as both
descriptions apply to the same area. Thus,

P(A[B) * P(B) = P(BIA) * P(A)
Algebraic rearrangement of this equality gives Bayes Tdraor
P(A|B) = P(BJA) * P(A) / P(B)

In machine learning applications, we usually refer to prdibiabifor "hypotheses" and
"data", rather than generic events A and B, and Bayesteém is stated as follows [Mitchell
1997]:

P(h|D) = P(D|h) * P(h) / P(D)

What we want to determine is the probability of a "hyaests" h, given a set of
experimentally observed data D. For a classificatioblpro, each hypothesis is that the
sample to be classified belongs to a given category. BdngEs'em lets us compute this
probability for each category; we will classify the gdeninto the category with the highest
probability.

P(h|D) is called thposterior probability of hypothesis h because it reflects the probability
of a classification after we have observed the datd e hypothesis for which this
probability is highest is called tlmaximum aposteriori hypothesis or MAP hypothesis

P(D) is the probability of observing a particular seineasurements for any sample,
regardless of the category to which the sample bslaxgte that this probability is
independent of h. Since we are looking for the hypotlrefiat has the highest probability
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relative to the other hypotheses, and P(D) is constanssell hypotheses, we can drop this
term and just look for the hypothesis h for which P(B|Rfh) is the greatest.

P(h), the unconditional probability of hypothesis h,ls® aalled therior probability of

that hypothesis. This is the probability one would assigihe hypothesis before doing any
observations to gather the data, D. The prior probgloiight reflect prior knowledge about
a system; for example, we might know that certgiesyof cancer are common, while others
are quite rare. Such frequencies could be used to seppolgabilities in a cancer sample
classifier. In the absence of prior knowledge, it is o@m to assume that all hypotheses are
equally likely [Mitchell 1997].

The key feature of a Bayesian classifier is that arecalculate the conditional probability
P(D|h) from draining set of observations made on samples that have already be
classified. For each category (or classification higpsis) in the training set, we must
calculate the probability of a particular set of olsaéions, D. In practice, we need to make
some simplifying assumptions to be able to calculatevidiige. A particularly significant
simplification is to assume that all the individudtliautes that make up an observed set of
data D are independent of one another. Using this assumgrdates aNaive Bayes
Classifier"; it is called naive because it blissfully ignores ploasibility that attributes might
correlate with one another

In practice, naive Bayes classifiers have been showe wery effective even for cases
where the assumption of independence of attributesoirkno be inaccurate, such as
classifying text documents based on the words they ude dikiegarding the relationships
between the words [Graham2002]. As with other machine leaappgaches, naive Bayes
classifiers can be validated by determining how well thegk on test sets. Though
validation can show that a classifier works well eifehe assumption of independence is
wrong, the absolute values of the "probabilities” deteeoh by the classifier may not be
meaningful.

! For more information, see Wikipedia article on "NeBagyes Classifier”,.
http://en.wikipedia.org/wiki/Naive_Bayes
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Chapter 3. Demonstration Programs

Demonstrations of the selected bioinformatics algorithrasraplemented as five separate
Excel files. Each is described below, along with instomst on their use.

3.1. Shift-AND: Shift-AND.xls

The algorithm is demonstrated in two ways. First, spresgtsfunctions alone are used to
implement the basic, exact-match algorithm, followedhgymore complex extensions to
this basic algorithm which allow approximate matches. &ladlsw the user to closely
inspect the formula for each bit position to determioe |t is calculated.

| 7 | =| =IF(AND{1=HLOOKUR{J$4, Uvectors1 3 FALSE),1=18),1,0)
A B[ C D[ E[FeH LN ORI QRSTUN W v ZIAA A A A A A A A A A AL A AL S A AAAA ABEEEEEEEEEEEEEEEE
1 |Shift-AND Algorith m  Shift-AND is a numerical string search algorithm. It can search in time proportional to the
target text size. as long as the processed search pattern fits in available registers. 1tis
important in bicinformatics because it can be extended to perform approximate matching.

2 |Exact match

HAATAGCT AACACGTTATCGAAAACAAATTTTTCGACGATTTGACAT CGAAAATTTTTTTTTTT
L T T T T O O I T O O O T O O T I O R R O A R R R BN R R R RN AR AR AR RR AR AR RRAR RN AR R AR AR AR
go110100011010000100011110111000000010010000101000111100000000000
1DDD1EFDDDDDDDDDDD1DDDDDDDDDD1DDDDDDDDDD1DDDDDD1DDDDDDWDDDDDDDDDD
goooooooO0O0DOOOOOOOO10000OD000ODOOOOOOOOOOOOOOO0O00OT0000000000000000
goooooO00O00000CO00000100000000000000000000000000001000000000000000
goooooooOO0O0DOOOOOOOOOO100000000000000000OOOOOOO0OOOOT00000000000000
goooo0oO00O00000C0O0000000M000000000000000000000000000010000000000000
goooooooOO0OODOOOOOOOOOOOOTOD0000O0OOOOOOOOOOOOOOOOOOOOOOTO000000000000

(.DD:I|:D‘.|U"\J=-LAJ
FrFEOO IR
o n s @D @ o
o T Y s T s R o Y o
o R T o T O s Y s §

Wk =0

Figure 2: Pure spreadsheet implementation of Shift-AND

Finally, an “animated” version of exact matching shows Hweext is scanned, the match
register (“d”) is shifted by one base, filling in with athe appropriate U register is chosen
for each position in the text, and the U-register vadustwise ANDed with the match
register to compute the new match register value. #&ma recorded whenever the match
register position matching the last base of the paisesat to 1. This animated version has all
values calculated by a script. In both the animated andspueadsheet versions, users may
enter their own pattern and text values in the desigraas to experiment with the
algorithm.

3.2. Alignment by Dynamic Programming: dynamicProgr amming.xls

The dynamic programming approach to sequence alignmenrg isfahe fundamental
algorithms in bioinformatics. This approach is guaranteethdiotiie alignment or alignments
between two sequences that has the maximal score agrtodh set of scoring rules. The
characters of sequences to be compared (called "S" &nhddiTespond to the columns and
rows, respectively, of a matrix. Each path throughnhérix represents an alignment
between the "S" and "T" sequences. The diagonal patbx&mple, represents an alignment
where each base in "S" is paired with one in "T"tépsn the path leading up from one cell
to its neighbor above represents a relative gap inW/B&reas a step to the left represents a
gap in "T".

Calculating the values in this matrix is the majopstethe dynamic programming

algorithm. Each cell in the matrix represents a pasiticS and a position in T, and the value
of the cell must represent the maximum possible alignis®ore of S and T up to those
positions. We begin by filling in the first row and columwhich do not depend on the
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sequences. For a "local alignment”, where we areamrigerned with the high-scoring
region of the alignment between the sequences, gtgdiw and first column are filled with
zeros. (If we wanted to penalize an alignment for unnetdases at the ends, a "global
alignment", the first row and columns would be fillediwi2, -4, -6, etc., to reflect the gap
penalty.)

Figure 3: Traversing the matrix to find alignments.

gap -2 = a a c g gt t t caarct

match 1T D[DDDDDDDDDDDDD

mismatch Ala | 00t -1 a1 1] -
a | 0O 102 0O -2-2 -2-2 -2 -2 0 2/ 0 -2

find alignments c . a1 o003 1 -1 -3 3031 -2 0 3 1
c | O-1-20 1 20 -2|-4 -4 -2 -2 -2 1 2
g O -1 -2/ 102 3] 1 -1-3-4 -3/ -3 -1 0
g | O -1-2[-3 003 2 0 -2 -4]-5 -4 -3 -2
t al -1 -2 -3 -2 10 4 3 1|-1]-3| -5 -5 -2
t aj -1 -2 -3 -4 -1 2006 4 2 0 -2 -4 -4
t al -1 -2/ -3 -4, -3 0 30 B 4| 2 0]-2 -3
co| O -1-2 -1 -3-5 -2 1 4 F 5 3| 1 -1
a |0 1 0 -2 -2/ -4 -4-1 2 5 & G 4 2
a | 0O 1 2 0O-2-3 -5 -3 0 3 6f9 7 &
c |01 0 3 1-1-3-5 -2 1 4 710 8

alignment :

aaccggttitoaac -

R RERER AN

aac—gogtttoaact

For the remaining cells, we begin in the upper left agraed consider three possibilities:
First, we can get to that cell on the diagonal, inchldase the score will equal the score of
the upper left neighbor plus the match score (if thedms8 and T match at the positions.
Second, we could come down from the neighbor above,\achia score of the above
neighbor plus the (negative) gap penalty. Third, we can @aneess from the left, to get a
score of the left neighbor plus the gap penalty. Theeseotered into this cell is the highest
of these three possibilities. This is done in the spresetusing the following formula:

cell "F4" value = MAX((F3+gap),(E4+gap),IF($C4=F$1,E3+match,E3#fmaitch))

Note that column C contains sequence T and row 1 corsinsence S. The "gap”, "match”,
and "mismatch” scores are held in named ranges of thadgireet. These determine the
score for any alignment, and changing them will resuthe matrix being automatically
updated.

To generate alignments, the user picks a cell in thexnatmark the end point. Any cell in
the matrix can be chosen as a starting point, but sefteeare more meaningful than others.
For example, the cell in the lower right cornerl give alignments that go all the way to the
end of both sequences, while the largest number in tihenboow gives the highest-scoring
local alignments that extend all the way to the enthef'S" sequence. Click the "find
alignments" button to begin tracing paths from your eha=ell back to the first row or
column. Paths follow any allowable transitions frori tecell. Note that the alignment is
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constructed in the area below the matrix as eachigpighlighted. The algorithm
recursively traces all paths that end at the chosérsecele more than one alignment can end
on the same bases and give the same score.

For some applications, the desired result is just @wemum possible score, and the
alignments themselves may not need to be determined.

3.3. Hierarchical Clustering: UPGMA xls

The UPGMA algorithm works on a distance matrix repreegragome distance metric

between the items in the set. The demonstration incketeple data showing evolutionary
distances between mitochondrial sequences form prispaiges [Weir 1996]. Since this
matrix will be modified by the algorithm, we keep the orad on a second worksheet

("Data"), so we can re-initialize easily and startroecause we are assuming that distances
are symmetrical, that is, the distance from A t@ Bqual to the distance from B to A, and
that the distances on the diagonal are all zerajakee are only filled in for the lower

triangular portion of the matrix below the diagonal. Ekeos on the diagonal and the values
in the upper triangular region are filled in by a scripew the matrix is copied from the data
worksheet during initialization.

HierarChical This is a demonstration of the Unweighted Pair-
. Group Method with Arithretic mean (UGMA), also
Cl USterlng known as Average Linkage Clustering.

Iritialize ‘ Move Smallzzt Distance to Top ‘ Merge first bwo 0T AutoRun [ go slow

AutoRBun will repeatedly move the groups separated by the smallest distance to the top
positions in the matrix. and then merge these first two "operational taxonomic units" (OTUs).
The resultis 2 tree description in Mewick notation.

Frimates  Human Chimpanzes Gorilla Orangutan  Gibbon

Hurran 0 0015 0.045 0.143 0.193
Chimpanzes 0.015 1] 0.3 0.126 0.179
Gorilla 0.045 0.3 0 0.092 0.179
Orangutan 0.143 0.126 0.092 1] 0.179
Gibhaon 0.123 0179 01739 0.179 0

Figure 4: Distance matrix for hierarchical clustering.

When the initialize button is clicked, the program wilpy whatever area of the data
worksheet has been selected; this makes it easy to kespath sets on that worksheet. If
no region has been selected, it defaults to using theaRrisample data.

The button marked "Move Smallest Distance to Top" catgepair of items separated by
the smallest distance to be moved to the first and ggpositions in the matrix. The button
marked "Merge first two OTUs" will combine items one awd into a single unit, and
shrink the matrix by one. The term "OTU" stands for fagienal taxonomic unit" [Weir
1996]; this phrase is really only applicable for using tgerthm for generating
evolutionary trees. In fact, the same approach candzkefas hierarchical clustering in a
wide variety of applications. AutoRun repeatedly movesibsest-spaced pair to the top
and merges them, until the matrix is reduced to a singllée/¢ben OTUs are merged, the
designation for the new group is written using the "N&wiotation” for trees, which
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includes a pair of OTUs in parentheses, separated by aacanmotated with the distance of
each OTU to the root of that node. This structureaansve in that each OTU in the pair can
itself be a multi-level description. After AutoRun coelas, the description of the one
remaining node actually describes the entire tree.

HierarChical This is a demonstration of the Unweighted Pair-
Group Method with Arithrmetic mean [(UGMA), also

Cl USterlng known as Average Linkage Clustering.

Initialize | Move Smallest Distance to Top ‘ kderge first o OTU 2 AutaFiun [ goslow

AutoRun will repeatedly move the groups separated by the smallest distance to the top
positions in the matrix, and then merge these first two "operational taxonomic units" (OTUs).
The resultis a tree description in Mewick notation.

Frimates ibbon: 18375 ((Chimpanzee: 015 Hurman: .015): 1535 (Orangutan: 092 Gorilla: 092): 1535): 18375)
|iGibban: 18 0

Figure 5: Clustering results in Newick notation.

Presentation of the tree by the Java graph applet.

Windows command line to convert the Newick notation results of the spreadsheet
demo through the "treedraw” Per| script to create a web page with embedded applet.
>echo (Gibbon: .18375,((Chimpanzee: .015,Human:

.015):.1535,(Orangutan: .092,Gorilla: .092): .1535):
.18375); | perl treedraw.pl > primates.html

Figure 6: Presentation of tree results by Java applet.

I have written a Perl script to reformat trees froewlick notation so that they may be
displayed using the Java Graph applet, which originallgeewith the Java Software
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Development kit as a demonstration developed by Sunsdrip takes the Newick notation
description from standard input and sends an HTML page imgutie appropriate applet
parameters to standard output. (Note that you must add ecdemat the end of the Newick
format!)

3.4. Artificial Neural Networks: ANN.xIs

A web search revealed several implementations of naatalorks in Microsoft Excel. Many
are native code add-ons to add machine learning capabilitiesathée used from within a
spreadsheet; these are generally commercial productsteandtashown in the table. Others
perform the calculations using the spreadsheet itseltiid none that take my approach of
laying out the nodes graphically, and letting the user obsbe/updating of the weights.

Neural networks were prototyped in the program Tlearn gdde for URL). This made it
possible to verify that a given artificial neural netlwtwpology was capable of learning the
problem before that topology was implemented in theeEctemo.

Table 4: URLSs for Neural Network Software

A neural network implemented in Excel

Neural Network Models in http://www.geocities.com/adotsaha/NNinExcel.htm
Excel

Tlearn, the neural network learning package | used for prototyping

Tlearn | http://crl.ucsd.edu/innate/tlearn.html

Because the ability of a neural network to learn a giueation is highly dependent on
network topology, | first set out to characterizeaachitecture that can learn the XOR
function reliably. Experiments on topology were daméhie program Tlearn, which is
described in greater detail in the appendix. The mosbteltapology for learning XOR that

| was able to find has three hidden nodes, each of whadives both inputs and connects to
the single output node. It is theoretically possiblean ANN containing only two hidden
nodes to represent XOR, and such architecture did indeedteafunction occasionally in
my experiments. However, the topology with three hiddedes was much less likely to get
stuck in local minima, and was my choice for the Exisghonstration.

Metwork Architecture =10 x|

.........

Figure 7: Network architecture for learning Boolean furctions, including XOR (prototyped in Tlearn)
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Training data for a simple 2-input, 1-output Boolean funcisostored in tabular form on the
first sheet of the workbook. The user can change thetiuin it represents by modifying the
values in the output column of the table. The seconttstheet represents a single artificial
neuron. A button marked "Next Training Case" loads a rom fthe function table; the
inputs from the table are loaded into the inputs of the meared the output value from the
table is loaded into the target value for the neuroe. TUpdate Weights" button adjusts the
weights of the neuron based on how closely the outptthmas the target. The "Auto Learn”
button repeatedly loads the next training case and updategidigs. By clicking "Next
Training Case" after the neuron has been trained, yosemhow well the output matches
the target.

The third worksheet contains a multi-layer neural netwibsknputs and target are also
loaded from the same function table. This network b of learning the XOR function,
while the single neuron is not. Note that the netwsrot guaranteed to always learn the
given function, because it can be trapped at a logahmim.

All of the calculations for both forward data flow arackpropagation in this demonstration
are done in spreadsheet formulas, so users can study theenumbers come for at each
step. The only parts done by script are loading the inputathatdarget values from the
function table, and copying the "new weights" into therent weight cells.

The strengths of this demonstration are that is simedtasly shows the relationships
between the nodes and the adjustments of the weightg draining. It also exposes all of
the calculations, both for feeding results forward propagating errors backwards, as
spreadsheet functions. The user can click on any celétiésstinction, and thus learn how
its value is derived. None of the basic calculatioesdame behind the scenes in scripts.

This is not meant to be a general purpose ANN toolsaven@ols like Tlearn are orders of
magnitude faster, and are much better suited for studefitryserposes such as exploring
topologies, or trying to create networks to learn nmomaplex functions. | have therefor not
added common features such as graphing mean square error camiggle

A B C | D E | F G | H I 4 K LM NOHGR‘

Learning Fate Mext Training Case | Update Wweights | Auto Learn ‘ Start Over
05

1

2

a3 Input  Weight Delta  Mewwt Weighted Output Input  Weight Delta  Mewwt ‘“Weighted Output  Outputs Targets
4 |Inputs 1.00000 -2.1992 -0.0012| -2.2004) -2.1992 G%‘;.DDDD -3.5406 -0.0018) -3.5424  -3.5406 #0612 —=0.0512 1]
5 0000 55859 0.0000 55859  0.0000 -0.0023 05985 7.3959 -0.0002 7.3957  0.7383 -0.0035

B
7
g

00000 56712 0.0000) 56712 0.0000 0040 -7.8431 0.0000) -7.8431 -0.0317
5173 01990 -0.0009) 0.1981° 01030
Input  Weight Delta  Mewwt YWeighted Out
0040

£l 1.0000° -5.5067 0.0001 -5.5056 -5.5057

10 0000 36221 0.0000 36221 0.0000 O0.000
11 0000 36318 0.0000 36318  0.0000
12

13 Input  Weight Delta  Mewwt VWeighted Oufput
14 1.0000° 0.06584 -0.0001 0.0653  0.0684 #5173
15 0000 20180 0.0000 201800 0.0000 -0.0002
16 0000 21690 0.0000 216300  0.0000

Figure 8: Spreadsheet demonstration of ANN shows layout drnweights as the network learns.

The most complex part of the code for this demonstrasimot even used by the student; it
is the VBA code for laying out the network in the firtage. Once the network is laid out,
including interconnections between nodes, essentialtadulations are done by the
spreadsheet itself. The network layout process used \ljets to represent a Network and
the various Nodes. An object model is built to keep trd¢ckeconnections between the
nodes, the inputs, and the outputs. Once all nodes ard,dddebject model is used to
determine the addresses of the inputs, outputs, weiglit$raning-related cells for each
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node. These addresses are hard-coded into formulas spréaeisheet, color-coding is
applied to emphasize the locations of nodes, inputs apaditsuyind named ranges are added
to the spreadsheet for convenient access by the rurstinpgs that load the training cases.

Table 5: Comparison of network configuration code

Tlearn configuration file

NODES:
nodes = 4
inputs = 2
outputs = 1
output nodes are 4
CONNECTIONS:
groups =0
1-4 from O
1-3 from il1-i2
4 from 1-3
SPECIAL:
weight_limit = 1.00
Visual basic code to set up network
Sub makeBooleanNetwork()
Dim net As Network
Set net = New Network
" Network.init(worksheet, inputCount, outputCount )
Call net.init(Worksheets("boolean_network™), 2, 1 )
' Network.addNode(nodeNumber, inputArray, layer)
Call net.addNode(1, Array("i0", "i1", "i2"), 1)
Call net.addNode(2, Array("i0", "i1", "i2"), 1)
Call net.addNode(3, Array("i0", "i1", "i2"), 1)
Call net.addNode(4, Array("i0", "1", "2", "3"), 2 )
' Network.mapOutput(outputNumes, sourceld)
Call net.mapOutput(1, "4")
Call net.finishLayout
End Sub

The VBA object model is not used when the model is raly,  set up the spreadsheet.
This approach makes setting up an alternative topolody &maightforward for users
familiar with Visual Basic for Applications. The cogiiration code must be edited by hand,
and the subroutine containing it is then run from theA\d@bugging environment; and
example is given in the table.

The most complex part of the code that is actuallg usging the demonstration run time is
that for the "Auto learn" subroutine. The fundameaotaration is simply to load each of the
training examples, then update the weights in the netvaosingle pass through the entire set
of training examples is called a "sweep”, and training usvadjyires hundreds to thousands
of sweeps. The code is made more complex by userdtiteraequirements, such as
periodically showing status and asking if the user wiantentinue training. This subroutine
also tests to see whether the sum of squared errocsdssed a given threshold, and exits if
So.
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3.5. Naive Bayes Classifier for simulated microarra y gene expression data:
microarrays.xIs.

The Naive Bayes Classifier uses a supervised machinenigamproach to assign samples
to categories. It uses Bayes' theorem to determine tfalpility of each possible
classification given a set of observed measuremenis $ample, based on the probabilities it
has learned from its training sets of each measuremamt the known classification.

Naive Bayes Classifier
for Microarray Data

Load Traiming Diata
Erter Training Categories
Digcretize Training Data

Calculate Probabilities
Load Unkrnowrs
Discretize Unknowns

Clazzify Unknowns

Save Results to File

Figure 9: Control sheet for Naive Bayes Classifier

My demonstration uses simulated microarray data fmrachip” [Wang 2002, Wang
2003]. This microarray contains approximately 12000 spots, e@axthining a small
sequence of a conserved region from a known virus. Byichgiorg a sample of an unknown
virus to this array of segments from known viruses, agelto be able to identify which
known virus the sample most closely resembles. Thadigation simulations were done as
part of the virtual lab project at www.cybertory.orgdahe data are available at that site.

3.5.1. Controls

The first worksheet in the microarray classifieQritrols”, contains the buttons that initiate
the various steps of the process. Note that the backgnmagd shows a microarray; this is a
simulated image made with the Cybertory microarray inggegesrator (wwwi/cybertory.org).
Each spot represents a reporter for a known virus,tametensity reflects how strongly a
simulated virus sample is predicted to bind to that repofthere are 12000 spots on these
arrays, and the measurements from each sample arededua vector of 12000 floating
point numbers, reflecting the intensities of the grelgannel of each spot normalized against
the red channel.
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As you point the mouse to each button, a brief paragsdphe presented describing the
corresponding step. Running the classifier is a matteomducting the steps in order.
Various calculations are performed on the different wuekss, accessible by the tabs on the
bottom of the screen labeled "controls”, "training datdiscretized training data”,
"probabilities”, "unknowns", "discretized unknowns", awthSsified unknowns". The
spreadsheet has already been loaded with data and ruchsaf #aese worksheets should
contain valid entries when the spreadsheet is firshegpelro become familiar with the
program, users may want to examine each of these weitkdbefore loading and processing
their own data. We will describe the process by disngssach step in turn.

3.5.2. Load Training Data

All of the data for this classification exercisdrism simulated microarray experiments on
various respiratory viruses. Each sample is represént@@000 intensity values, one for
each spot on the microarray. Measurements were sigaulating two types of experimental
conditions; one set of measurements were taken using 4€edegs the hybridization
temperature, and the other using 50 degrees. The higher &¢umpggroduces cleaner results,
with lower background signal.

A, B [ D E F G H | J b~
trainingDat corona corona corona corona carana corona flus flud flus fld
SPOT Human_coHuman_coHuman_coHuman_coSARS _cor SARS _corflu_A Califflu_A Califflu_A Leniflu_A_Le

1 0013 0.183 0.043 0.031 0.005 0.08 0.074 0.058 03 0.0z
2 1.473 0.285 0805 0.178 0.705 0.222 0.463 0.7 0.35 0.76
3 0.407 0.221 0.248 0.262 0.215 032 0.224 0.303 0.267 013
4 0.032 0178 0262 0.032 0.151 0.085 0.07 0.092 0.062 0.05
7 5 017 005 0.951 0.547 0.45 0.275 0.369 0127 0.544 012~

119581 11973 1.678 0.552 0594 niez 0.547 1.028 1.701 0659 0514 0595
11982 11980 0.149 0116 0.244 011 0.108 0.526 0.073 0.183 0.087 0.51

1
2
3
4
5
4]

11983 11981 0.01 0.134 0124 0.032 0.055 0.043 0.013 0.123 0.047 0.0=
119584 11932 039 1.121 0.756 0.656 0.365 0.695 1.025 0235 0.891 0.42
11985 11983 0.1 0.172 0.201 0.049 0.031 0.319 0.023 0.044 0.085 0.05
11986 11984 0.507 1.027 1.33 0.753 0.73 0.935 0.939 1.285 1.73 0.44

11987 11985 1.659 0.441 1.205 1.409 1.608 0.731 0.52 1.456 1.106 1.72
119588 119586 0029 0.024 0027 004 0.05 0.017 0.431 0022 0.024 0oz
11983 11987 0.247 0.434 1.21 0.274 0.237 0.212 0.08 0.233 0191 0.51
11990 11988 0124 0.057 0.656 0.81 0.024 0154 0.607 0.74 0.26 0.36
11931 119332 0.83 0.751 0274 0.527 0702 0.365 0.284 0516 0322 030
11992 11930 0.1 0.054 0134 0.379 0.1 0.048 0.12 0.036 0.098 IR
11993 11991 0.365 0.125 0.051 0.0z 0124 0.055 0.155 0.095 0.292 011
11994 11952 0.025 0.033 0.064 0.023 0181 0.031 0.086 0.024 0.062 0.0z
11995 11993 0998 011 076 0.346 0.347 1.172 0623 0.548 0.596 040
11996 119594 0.404 0.857 0.03 0.031 0.139 0.227 0.392 0.133 0.879 0.2o
11997 11995 0.555 0.52 0.74 1.232 0.602 0.561 1.051 0.552 1.051 0.1
11998 11996 0.33 0.028 0.046 0.454 0.26 0.007 0.142 0027 0.355 0.04
11993 11997 0.505 0.165 0721 0.457 0.163 0.793 0.163 1.018 0.785 0.05
12000 11998 0.254 0.255 0.292 0.328 0.055 0182 0.135 0.25 0113 0.31
12001 11999 0.334 0.10a 0.415 0.1 0.41 0.407 0.418 0.202 0.559 0.26
12002 12000 0075 0.614 0179 0.835 0.264 0.552 0.754 0193 0.243 047
12005 | AVERAGE 0.433046 0.440739 0.433105 0.433091 0.440141 0439287 0.434645 0.437088 0.436065 0.44207
12004 | 5TDEY 0410734 0.412982 0402025 0397865 0403966 0404361 0.403318 0.404512 0.402454 040920

aannkl r
v

144 » [M[, contrals s training data / discretized training data £ prababilties £ |4

Figure 10: Loaded training data sheet with categories.

The collection of simulated experiments from has be@det into a "training set" and a
"test set", each representing samples from severdslaf viruses. These sets have been
saved in the four tab-delimited text files in the "data&ctory: "testData40.exp",
"testData50.exp", "trainingData40.exp", and "trainingData50.ekffien you click "Load
Training Data", you will be asked to choose one of tffieseto load. They are all in the

23



same format, and you can load test data instead ofngadiaita if you desire, though the
training set is larger, and may give better statispoater to the classifications.

3.5.3. Enter Training Categories

The training set contains representative viruses fromwstaxonomic groups of viruses.
There are a variety of ways in which they could paadigtbe categorized. For example, all
parainfluenza viruses (PIV) could be put into a single groughey could be put into the
more detailed taxonomic groups PIV1, PIV2, and PIV3. Sitgijlall influenza viruses could
be considered as a single category, or they could be diwittethe more specific subtypes
A, B, and C. To specify how the training samples shbaldategorized, a dialog box asks
the user to enter a group name for each sample. hiaeses are copied into the top row of
the column containing the measurements for each samfble “training data" worksheet.
After a category name has been entered for eachlsathe columns are sorted by category,
to bring all samples of the same category next to nothar, and each category is assigned a
color. This makes it easy to visually inspect the trainirtg tiaensure that the intended
categories were entered correctly. Spelling errors irgogganame will create new,
unintended categories; these should be particularly obwbes the columns are sorted and
the categories color-coded. Any errors should be cauldny typing the correct category
name into the cell containing the erroneous name. Afsgrecting the "training data"
worksheet, click the "controls” tab to choose the s&ep. Clicking "Enter Training
Categories" again will re-sort and re-color the categor

3.5.4. Discretize Training Data

The next step is to turn the continuous intensity valotesdiscrete 1 (a positive spot) and 0
(a negative spot) values. Deciding whether a spot is offf & a matter of deciding whether

it is significantly brighter than the average spatie same sample. A prompt requests that
you enter a number of standard deviations to be used foofd dite mean and standard
deviation are calculated for each sample column, andoetymore than the given number of
standard deviations above the mean is considered positile,the others are negative. The
sum below each column indicates the number of pospats.
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A B C D E F G H | d 28

1 cutoff corona  corona  corona corona  corona corona flud flud, fluds flud fl
2 3 Hurnan_ctHuman_coHuman_ctHuman_ct SARS_co SARS _co flu_A_Califlu_A_Califlu_A_Len flu_A_Len flu_
3 1 0 0 0 il il 0 0 il il 0

4 2

B E

B 4

7 5

11980 11978
119581 1978
11952 11250
11983 119581
11984 11982
11985 11983
11956 11954
11987 11985
11985 11986
11958 11957
11920 119858
11991 11983
119592 11930
11993 11991
11924 11992
11935 11993
11996 11924
11997 11995
11935 11956
11995 11957
12000 119958
12001 11993
12002 12000
12003 | SUM 128 142 128 142 15

A0 d
4|4 [» [M[ controls £ training data ' discretized training data ¢ probabilities |4
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Figure 11: Training data converted to discrete values.

3.5.5. Calculate Probabilities

Among the samples within each category, the program cbomtsnany of each spot are
positive and how many are negative, and computes anveldsgrobability of the spot being
on for each category. It is not quite as simple asloligithe number of positive spots by the
number of samples in the category, however, becauseusttake care not to let
probabilities go to zero.
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A B C D E F G H | J

1 Overall Procorana flud fluB fluc pivl piv2 piva rhina

2

3 1 323E-05 0.000143 00002  Q0OO02 00002 0000333 0000333 0000333 0.0002
4 2 323E-05 0000143 00002 00002 00002 0000333 0000333 0000333 0.0002
5 3 323E-05 0000143 00002 00002 00002 0000333 0000333 0000335 0.0002
5 4 323E-05 0000143 00002  0OOO2 00002 0000333 0000335 0000335 0.0002
7 5 323E-05 0000143 00002 00002 Q00002 0000333 00003353 0000333 00002
g G 323E-05 0000143 00002 00002 Q00002 0000333 0000333 0000333 00002
g 7 323E-05 0000143 00002 00002 00002 0000333 0000333 0000333 0.0002
10 8 3.23E-05 0000143 00002 00002 00002 0000333 0000333 0000333 0.0002
11 9 323E-05 0000143 00002 00002 00002 0000333 0000333 0000335 0.0002
12 10 3.23E-05 0.000143 00002 00002 00002 0000333 0000333 0000335 0.0002
13 11 323E-05 0000143 00002 00002 00002 0000333 0000333 0000335 0.0002
14 12 3.Z3E-05 0000143 00002 00002 00002 0000333 0000333 0000333 00002
15 13 3.Z3E-05 0000143 00002 00002 00002 0000333 0000333 0000333 O.0002

11930 11933 3.23E-05 0.000143 00002 00002  0.0002 0.000333 0.000333 0.000333  0.0002
11991 11989 3.23E-05 0000143 00002 00002 00002 0.0003533 0000333 0000333 0.0002
11952 11990 3.23E-05 0000143 00002 00002 00002 0.000333 0000333 0000333 0.0002
11953 11991 3.23E-05 0000143 00002 00002 00002 0.000333 0000333 0000333 0.0002
11994 11992 3.23E-05 0000143 00002 00002  0.0002 0000333 0.000333 0.000333  0.0002
11995 11993 3.23E-05 0000143 00002 00002 0.0002 0.000333 0.000333 0.000333  0.0002
11996 11934 3.23E-05 0000143 00002 00002 0.0002 0.000333 0.000333 0.000333  0.0002
11957 11995 3.23E05 0000143 00002 00002 00002 0.0003533 0000333 0000333 0.0002
11998 11996 3.23E-05 0000143 00002 00002 00002 0.0003533 0000333 0000333 0.0002
11999 11997 3.23B-05 0000143 00002 00002 00002 0.0005333 0000333 0000333 0.0002
12000 11998 3.23BE-05 0000143 00002 00002 00002 0.000333 0000333 0000333 0.0002
12001 11999 3.23E-05 0000143 00002 00002  0.0002 0000333 0.000333 0.000333  0.0002
12002 12000 3.23E-05 0000143 00002 00002 0.0002 0000333 0.000333 0.000333  0.0002
12003

12004

12005

AT

14| 4| » [»i[3,probabilities / unknowns £ discretized unknowns £ classified unknaw | 4 |

Figure 12: Spot probabilities calculated for each category.

This is because we will be calculating the probabititythe whole set of spot intensities by
multiplying the individual spot intensities together (tladéve assumption of statistical
independence). If any spot's probability is zero, the prodwadt the probabilities will be
zero. The traditional approach adds a number of "vidaalples" to the actual observations.
Each virtual sample is fractionally positive; this fiantrepresents the apriori probability,
which is just our guess as to how many spots will be turnedlee program prompts for a
number of virtual samples and for an apriori probabilitye probability of a spot being "on"
is then given by:
P(spot on in category) = (number of positive spots mimer of virtual samples * apriori probability))
(number of samples in category + number of virtualpas)
Note that as long as you have some virtual samples, aodzaro apriori probability, the
spot probability will never be quite zero.

In addition to calculating the spot probabilities focleaategory, this button sets up the area
where conditional probabilities will be calculated.

3.5.6. Load Unknowns

The unknowns are the test set. They can be loadedtifr®tab-delimited files in the data
directory, just as the training set was loaded. You wilreed to enter categories for the
unknowns, though, because that is what the classifiedaviThe test set values will be
loaded into the "unknowns" worksheet. Note that each leaimphe test set has a name,
which shows the virus it represents. For an actualawknwe would not have that
information. The classifier does not look at the natheugh, just the values. After
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classification, we can check the names against thentietl category to see if the
classification is correct.

A, B [ D E F G H | J b =
1 |testDatadl. exp
2 |SPOT Human_RIHuman_RIHuman_coHuman_coHuman_paHuman_pa Human_rhiHoman_rhi SARS _cor SARS
3 1 0.0 0.073 0.052 0.058 0.242 0.013 0.113 0.096 0.043
4 2 0.512 0.423 0612 0.416 0165 1.264 0.293 0.683 1.065
g 3 1.251 0.124 0.877 0.149 0322 0.098 0.675 0.027 0.065
B 4 0.475 0.394 0.059 0.244 0121 0.083 0.041 0.101 0651
7 E 0.131 0.616 014 0.085 0.553 0.237 0.308 0.071 0.526
11252 119580 0.561 0.045 0.266 0116 0.036 0.279 0.572 0.047 0374
11983 11981 0.01 0.115 0.029 0.057 0.016 0.12 0.017 0.087 0.103
11284 119582 0.062 0.555 0.354 0653 0.183 0.256 0.275 0.403 1.001
11285 11983 0.067 0.272 0z 0079 0019 0.185 0.03% 0.105 0.04
11986 11984 0.235 1.331 1.213 0699 0.206 1.783 0.409 1519 1.274
11987 11985 1.704 0.203 1.4 1.172 0.951 0.637 1.1581 0.766 0.364
11255 11986 0.016 0.034 0.188 0.003 0.034 0.a7 0oz 0.064 0.0z
11989 11987 0.222 0.64 0.146 0.056 0526 0.193 0.382 0.413 0.236
11290 119588 0.204 0.266 014 0.109 0.334 0162 0.0& 0.108 0.347
11991 11989 0.279 0.216 0.458 0.342 0.968 1.132 0.243 0.124 1.03
11992 11990 0.545 0.235 0111 0.026 0.12 0.354 0.379 0.258 0216
11993 11991 0.217 0.276 0.188 0111 0.009 0.042 0.046 0.107 0108
11994 11992 0.06 0.107 0.047 0012 0112 0.139 0.007 0.057 0257
11995 11993 0.259 0.77 1.233 0.136 0126 1.389 1.025 0.337 0.239
11996 11994 0117 0.206 0.263 0.454 0.201 0.186 0.082 0.108 0111
11997 11995 0.8 1.031 0.837 0.716 0.404 0.248 0.706 054 0713
11998 11996 0.099 0.278 0.082 0.06 0.052 0.187 0.645 0.0s52 0.136
11293 11997 0892 0191 0.205 1.093 0333 1.031 0.065 0.514 0.752
12000 11998 0.219 0.145 0.215 0179 0634 0.148 0.049 0.037 0158
12001 11993 0.193 0.099 0.246 0.1 0119 0.027 0.078 0.255 0.12 .
12002 12000 0.168 1.078 034 0.159 0.268 0.467 0.144 0.401 0514 0.2
12003 | AVERAGE 0440405 044262 0446602 0441752 04335815 0437559 0.455954 0.452284 0.4355597 0.4331
12004 | STDEY 0417391 0416123 0422657 0419097 0405359 0.40604 0447909 0445071 0404522 04023
12005 —l
ITTE} M| probatilties % unknowns ¢ discretized unknowns £ classified unknaw | 4 |

Figure 13: Measurements from test set ("unknowns") loade into worksheet.

27




3.5.7. Discretize Unknowns

The test set is converted to discrete values justeasdiming set was. You will be asked to
enter a standard deviation cutoff as before. The resilltappear in the "discrete unknowns"
worksheet.

A B c D E F £ H | J K
1 |cutoff
2 3 Hurman_REHuman_ RPHuman_coHuman_coHuman_paHuman_paHuman_rhiHuman_rhi SARS cor SARS ¢
3 1 0 0 0 0 0
4 2
5 3
5] 4
7 5

119580 11975
115981 11975
119582 113580
11983 11981
11984 11952
11985 11933
11986 119584
11987 11985
11988 11986
11985 119587
11950 11955
11951 11955
11952 11950
11953 119591
11954 11992
119585 11993
119596 11984
11957 11985
11958 119596
119599 11987
12000 11955
12001 11959
12002 12000

12003 | 5UM 149 142 123 133
aann 4l

4|« » [w{ probatilties  unknowns ), discretized unknowns { classified unknow | 4 |

L o (o o
L o o o s e e e (o  w J w
OO oD oo o oo ooDDD o oo o oo o OooDD oo
L e o s s s e e o e e e e e s s ) e
oOoOoo o oo oo ooOoD oD oo o oooogOl oo oo

=
=
=

=
L0 T o o o

et I s o s s e Y s s s e
o Y e e e e Y e e s e Y e Y e e e Y e o e s s ) s e
Moo o oo oo oo o oo oo oo oooo

.
[y
)
.
=
—
=
.
[Ey]
—
[E3]

Figure 14: Measurements from test set ("unknowns") conerted to discreet values.
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3.5.8. Classify Unknowns

One by one, the unknown samples are loaded into théddugles” column on the
probabilities worksheet. Then the conditional probaésifor each spot in each category are
calculated.

k | L | m | N | o | p | o | r | s | 1 [ 1=

1 |rav I i i

7 C My 5.8779E-30R

3 | 0.000333 0000142867 00002 00002 -00002 -000033 -0.00033 -0.00033
4 | 0.000333 0000142867 00002 00002 -00002 -000033 -0.00033 -0.00033
& | 0.000333 0000142867 00002 00002 -00002 -0.00033 -0.00033 -0.00033
£ | 0.000333 0000142867 00002 00002 00002 -000033 -0.00033 -0.00033
7 | 0.000333 0000142867 00002 00002 -00002 -000033 -0.00033 -0.00033
8 | 0.000333 0000142867 00002 00002 -00002 -000033 -0.00033 -0.00033
3 | 0.000333 0000142867 00002 00002 -00002 -0.00033 -0.00033 -0.00033
10 | 0.000333 0000142867 00002 00002 00002 -0.00033 -0.00033 -0.00033
11 | 0.000333 0000142867 00002 00002 -00002 -0.00033 -0.00033 -0.00033
12 | 0.000333 0000142667 00002 00002 00002 -000033 -0.00033 -0.00033
13 | 0.000333 0000142867 00002 00002 -00002 -000033 -0.00033 -0.00033
14 | 0.000333 0000142867 00002 00002 -00002 -000033 -0.00033 -0.00033
15 | 0.000333 0000142867 00002 00002 -00002 -0.00033 -0.00033 -0.00033

11990 0.000333
11991 | 0.000333
11952 | 0.000333
11993 0.000333
11924 0.000333
11993 0.000333
11996 | 0.000333
119597 | 0.000333
11998| 0.000333
11999| 0.000333
12000] 0.000333

0000142857 -0.0002 -00002 -00002 -0.000533 -0.00033 -0.00033
0000142867  -0.0002 00002 -00002 -0.00033 -0.00033 -0.00033
0000142867 -0.0002 -00002 -00002 -0.00033 -0.00033 -0.00033
0000142867  -0.0002  -0.0002 -0.0002 -0.00033 -0.00033 -0.00033
0000142867 -0.0002  -0.0002  -0.0002 -0.00033 -0.00033 -0.00033
0000142867 -0.0002  -0.0002 -0.0002 -0.00033 -0.00033 -0.00033
0000142857 -0.0002 -00002 -00002 -0.000533 -0.00033 -0.00033
0000142857 -0.0002 -00002 -00002 -0.000533 -0.00033 -0.00033
0000142867 -0.0002 -00002 -00002 -0.00033 -0.00033 -0.00033
0000142867 -0.0002 -00002 -00002 -0.00033 -0.00033 -0.00033
0000142867 -0.0002  -0.0002  -0.0002 -0.00033 -0.00033 -0.00033
12001 0.000333 0000142867 -0.0002  -0.0002  -0.0002 -0.00033 -0.00033 -0.00033
12002 | 0.000333 -0.000142857  -0.0002 -0.0002 -00002 -000033 -0.00033 -0.00033 -
12003 9882021321 105196 978117 285582 112412 10674 111812 -

o o s o e e e s o e Y Y s e Y e o e e Y e e e o Y Y

12004 -702.81934509 786574 712738 0 -353.736 -802.022 -B82.742 -
12005 5.8779E-306 0 0 1 0 0 0

|44 | » [»i[s,probabilities 4 urknowns £ discretized unknowns 4 classified unknow |

Figure 15: Conditional probabilities for a particular sample.

Unfortunately, for performance reasons, the spreadstweetifas are converted to plain
numbers right after the calculation is done, so yout cae the formula. Therefore I will
explain it here. Say the sample column is "M" (thesalccolumn will depend on how many
categories are used). Then the conditional probabilitiethe first category will be in

column "N". The first spot is on row 3, since rows #l @nare reserved for the category name
and overall probability, respectively.

The observed probabilities for the first categoryiareolumn "C". Finally, to deal with the
very small probability numbers that would result fromitiplying a huge number of small
values together, we will convert everything to logarithntge Tormula for cell N3 is
"LN(IF($M3,C3,1-C3))". In other words, if the spot is positivn the sample, then we take
the observed probability for the spot being positive i thtegory. Otherwise, we use one
minus this probability, which is the probability that tip@tswill be negative. Finally, we take
the logarithm of the probability, to avoid underflow prab&with extremely small
multiplication products being rounded to zero.

The overall probability of the sample being in the gatg is reflected in the product of all
the spot probabilities. This product will need to be norredliAssuming that the sample
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does indeed belong to one (or more) of the categavesyill force the normalized
probabilities to add up to one. This takes a few steps id amderflow. Since we are
working with logarithms, we add them instead of multiplyitige sums of the logs of the
spot probabilities are given in the first row bendathpink area. These numbers may be
fairly large negative exponents, and we may still hak@uiading to zero problem if we take
e to these powers. So first we find the maximum valuberrow (that is, the smallest
negative number), and subtract this from all the expendihiis is like multiplying all of the
probabilities by a constant. One of the subtracted expsneall be zero. Now we can raise e
to the power of these subtracted exponents and be cartfdeneven if some of the results
round to zero, not all of them will, and the sum willfmnzero. This sum is the divisor for
normalizing the category probabilities so that they adohie.

A, B C D E F G H | J K
corona  flud fluB fluc piv piv piv3 thino rsv

Human_Rf 54E-161 26E175 11E-175 3.3E-167 34E-200 1.1E-159 1.3E-195 1.6E-288 1 raw
Human_Rf 7.8E-151 1.3E171 7.3E-184 1E-183 21E-170 1.8E-158 4.GE-188 4.6E-284 1 raw
Human_co 1 1.31E84 1.22E-87 265E-EE 4BSE-S7  2BE-7VS 298E-83 G.BE-190 S5.62E-95 corona
Human_co 1 2BE99 27E-108 528E-85 35E-118 15E-112 BEE105  1E-218 9.1E-111 corona
Human_pa 328E-21 25BE-52 1.63E-36 1.63EH1  1.1E75 1 277E74 23E-176 2.25E-B4 piv2
Human_pa 1.3E-39 3.53E-49 1.45E-50 4.39E-45 225E-E2 1 1.31E-82 1.6E-186 B.57E-O7 piv2
Hurman_rhi 1.1E-145 1.1E-134 59E13F 57E-113 SB1EZ8 2BE118  1E144 1 8.4E-135 thino
Human_rhi 88E-163  3E-133 1.6E-162 1.1E-137 237E-25 95E-138 G5E-139 1 1E-141 thino
10 |SARS cor 1 7.3E-112 GAE-106 4.39E-85 25E-122 28E-100  4E-119 S5E-208 G.57E-96 corona
11 |SARS cor 1 248E-64 4.56E-76 228E-56 285XE-93 3BE06 3VE02 34E-217 29E-118 corona
12 |flu_A_Wisi 2 B5E-33 1 4.85E-G0 BE-40 1.37E-HZ 428E-37 527E-7S ZBE-184 4 56E-G7 flud
13 [flu_ A Wiz 1.9E-49 1 24E-54 3.97E-38 425E-83 2E3E-81 3.02E-86 7.8E-196 26E-109 flus
14 [flu_B_Shig 2.2E-117 1.53E488 1 2E-110 Z9E-142 79E-147 1.5E-155 1.3E-Z26 B.2E-133 flub
15 |flu_B_Shig 1.04E-57 1.07E-EE 1 7.5BE-B6 29E-121 3BE-105 7BE-122 7.2E-208 1.8E-121 flub
16 |flu_C_Miys 1] 1] o 1 1] 1] 1] o 0 fluc
17 flu_C_Miy: 5.9E-306 1] o 1 o 1] 1] o 0 fluc

[l Rt e O TR

Figure 16: Classification of each unknown, with probabities.

After the conditional category probabilities are cadted for each sample in the unknowns,
they are copied into a table on the "Classified Unkndwuasksheet. The highest probability
determines the category the sample is assigned to, arghtégory is written in the last
column of the table.

3.5.9. Save Results to File

The table of probabilities and classifications is coffiedch the "Classified Unknowns™
worksheet and appended to a tab-delimited text file callé&VEBSFILE.txt" in the program
directory. This makes it somewhat more convenient topewe results from classifications
using different parameters, for example.
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Chapter 4. Conclusion

Certain algorithms can be implemented quite conveniémtlye spreadsheet computing
paradigm. Microsoft Excel's powerful scripting functionsyvide a general-purpose,
procedural language extension to the capabilities of tlemdpheet, and make it possible to
implement certain algorithmic steps that would otherlesd&eyond the reach of the basic
spreadsheet.

4.1.1. General observations

Spreadsheet calculations have the advantages that éheymicit and exposed; each
calculated value is determined by a formula associatédansell, and these formulas can be
examined in the formula toolbar.

Two of the algorithms, sequence alignment by dynamic prognagnamd hierarchical
clustering by pair grouping, were particularly well suitedd scripted spreadsheet. In each
case, the major operations are done on two-dimensiorats of numbers. Either the
numbers themselves or their presentation are manipugtecripts during algorithm
execution, providing an animated view of the process. Stuttemd these demonstrations
engaging and informative.

Other implementations were perhaps less successfushitteAND algorithm, for instance,
can be implemented entirely within the spreadsheet, waitbcripting required. While this
does make it possible to see how the calculations aferpred for each bit value by
examining the formulas of various cells, students werergély underwhelmed with the first
version of this demonstration, since nothing moves. "@hanated" version is flashier, but it
ends up hiding some of the formulas. | compromised by imguobth versions. Because the
animation capabilities of Exel are limited, | did noeatpt animating the more complex
approximate matching version of this algorithm, which walg done in a non-scripted
version. This will obviously require students to study thenfdas of the cells.

The artificial neural network demonstration is interggtbecause it exposes so much of the
inner working of the neurons. All calculations for foraidlow and the major steps of
backpropagation are computed with spreadsheet formulagnlihkey step done by the
script is to copy new weights over old weights. Whikelieve this demonstration may
provide students with some insight into the algorithms wea)| is not well suited as a
general tool for experimenting with neural networks. Thoengich of the configuration is
done with scripts, abstracting setup to a higher level pldting formulas in cells, it is still
moderately difficult to reconfigure a new topology. Thadtions that handle network layout
can only be run from the VBA debugging environment, whétfuires some user expertise.
Perhaps more importantly, the spreadsheet is too sloe weell suited for complex training
tasks. This demonstration may be most useful as an adguocnventional tool sets such as
Tlearn.

The Naive Bayes classifier for microarray data ismiest ambitious of these demonstrations.
The major challenge in this case stems from my detisiaise realistically sized data sets,
rather than some toy problem. Though the experimessalts are simulated, they use the
full complement of reporters from the virus idenation microarrays of the DeRisi lab
[Wang 2002]. Data sets of this size pose special problesm@adsheets. First, calculations
may be slow. This is particularly true of secondarguakions, such as taking the sum of a
column of numbers, where the values in the columniemaselves calculated by formulas.
Second, performing multiple steps in different worksheatis a data set this large pushes
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the intrinsic limits on the number of calculatiorpdadencies allowed within a workbook. |
avoided both the dependency limits and the secondaryladcuproblems by "fixing" cell
values after each step. Thus, even though spreadsheatdemnvere used for most of the
calculations, many of these formulas are replaceddahnd-coded values of their results
before the user has an opportunity to examine them.rifeNess, breaking the problem into
steps and exposing the intermediate results probably ¢n@atdeal of pedagogical value. In
addition, the ability to handle realistically sized dsg¢és may make this program useful for
various data analysis exercises for which the reav#t®f more interest than the algorithmic
details.

Students of bioinformatics usually have a background inrditioddogy or computer science.
These demonstrations generally emphasize algorithmsappdications, and were developed
with computer science students in mind. Nevertheless,tlagyprove useful for biology
students as well, because many of the calculationdcare with spreadsheet formulas, and
do not require extensive background in computer programming to bestowterStudents of
biology should be, or should become, proficient atuge of spreadsheets (but see [Zeeberg
2004] for cautionary tales, such as Excel auto-converting games to dates!) Even for
those familiar with the algorithms, implementatiorthie spreadsheet paradigm may provide
a fresh perspective, such as by exposing opportunities fdlefiaedion.

4.1.2. Comparisons to related work £ Longest common subsequences WE
The Java program from Professor Lecroq's site

that animates sequence alignment by dynamic e
programming is shown in the following figure. | clalolalTtlalelals
iS not surprising that it is very similar to my
demonstration, since both follow the approach || -1 Q
commonly used to describe this algorithm on
paper (see, for example [Setubal 1997]). My 1
version has two advantages. First, because the| ; | 5 1 Q

calculations of the matrix values are done by
spreadsheet formulas, the user can inspect thej 2 | © 1|1 O
spreadsheet to learn how the values are
computed. This may be more obvious to some
users that pseudocode or verbal explanations. | 4 | 4 1 0
Secondly, my animation recursively traces path_L
through the matrix, and creates the correspond|casa-Tasac
alignment as the path is traversed. Dr. Lecroq'qLcs: acea
animation constructs a single graph of allowabl

. . -AF--C-GR-
paths and shows the resulting alignments all atf caear-acas
once. | think my simultaneous display makes thLcs: acea
connection between path and alignment more

»

-AG---CGA-

clear. The Java version has the perhaps e
considerable advantage that it runs right on a jLes: acea
page. L/

| ‘ Reset|
The next figure shows the "shift-OR" animation ‘J oot
ava Applet Window

from the Lecroq site. This demonstration is

somewhat underwhelming, because it just Figure 17: Dynamic programming demonstration applet
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prints out a series of bit-strings, which the unfortuneser is expected to interpret as they
scroll by. In this case, | much prefer my own demonistmaivhich presents the bit vectors in
a table, so the change from one to the next is monewut

Because | was unable to locate a

=, Shift Or algotitiey =10Ixl} hedagogical demonstration of
Pattern;  |ocagagag UPGMA, | will compare it briefly to
_ the FITCH distance tree program in
String  Jueategeagagagtatacagtacy the PHYLIP package. The PHYLIP
[Start) | close | [ stang | PrOgrams work from the command
"""""""""""" line with textual menus, and can be
goatcGCAGAGAGtatacaGtany B baffling to biologists. The inputs must
l be properly formatted in a text file,
transition: 01111111.+ -= 11111111 and the Output is sent to a text file.

Advantages of the PHYLIP programs
include their extensive
documentation, many algorithmic
variations, and years of use and

goatcGCACAGAGtatacagtacy scrutiny by scientists. They share
| common data formats, so outputs of

gquatcECAGAGAGEatacagtacg
I
transition: 11111111.s —-» 11111111

transition: 11111111.c - 11111111 many of the programs can be used as
inputs to others. For example, the
goatcGrAGRGAGEatacagtacy package has programs to draw lovely
| publication-quality tree diagrams in
transition: 11111111.g -> 01111111 Postscript. Of course, the PHYLIP
programs are not intended to
geateGLAGAGAGLatasagtary demonstrate how the algorithm
works, which is the main point of my

String length: 24
Pattern length: 8
Character inspections: Z4 Similarly, the Bayes classifier might
be compared to tools designed for
X1 | actually classifying samples, perhaps
|/ ava Applet Windaw Bioconductor R modules. The

differences are that my program
slowly takes the user through each
painful step.

program.

Figure 18: Shift-OR applet

For neural networks, the obvious comparison might bedstwny demonstration and
Tlearn. Clearly, Tlearn is better suited for experirmgntvith topologies and solving
moderately complex Boolean functions. My demonstratimstly provides a different view;
the user can examine the formulas for all the majoutaions, and see all the weights
update in real time.

4.1.3. Future work

I will consider two aspects of this project that mightmeth pursuing in the future;
improvement of the existing demonstrations, and adding spyeadsheet-based
bioinformatics algorithm demonstrations to the collection

Probably what the existing demonstrations need mostos tsed in teaching. This will
afford an opportunity to find out what students find to beearcbr confusing. Error-
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handling, interfaces (including messages to the user), anoh@mtation all need to be tested
in a teaching environment.

Several needed improvements are already obvious. Theam&yalassifier is slow and
cumbersome; it is also unforgiving if steps are not chwig in the correct order. Students
will need to be familiar with Excel, so that the@utted switching between worksheets is
not overly confusing. One simple "improvement" mightdenerely use smaller data sets;
that would greatly speed the calculations! Depending otetdwhing objective, smaller data
sets may be perfectly suitable. Another change thgihtnnmprove the pedagogical value
might be to leave the formulas in the cells at thet @freach computational step. Currently,
these formulas are converted to fixed numerical vatiéise end of each step. If they were
left as formulas until the beginning of the next step,fdtmulas would be available for
students to examine. Alternatively, with a sufficigrdginall data set, it would not be
necessary to fix the formula values at all.

The hierarchical clustering demonstration constructseadescription in the Newick
notation used by evolutionary biologists. This descripisoronverted to a web page
containing the appropriate parameters for the Java grapdt &ymn external Perl script.
Producing the applet web page would be simpler if the HTMtevgenerated directly by the
Excel script; the user could then click a button to crideeveb page.

Clearly, many features could be added to the ANN demomstr&tor example, the scripts
that handle network layout are currently availablenftbe Visual Basic editor, and are only
useable by VBA programmers. Exposing these layout abil@i@sers might make the
demonstration more flexible. However, it may not kesomable to try to make this into a
"complete” ANN teaching and experimentation environméné wiser approach might be to
use this demonstration for what it is good for: it pded a view of the ANN as it learns a
function so the user can see the weights update, argdases the calculations in spreadsheet
formulas. It is probably not reasonable to expectdbéimonstration to learn complex
functions, for example, or to do the other things #ratalready done well by programs like
Tlearn..

The algorithms covered by the present demonstrations aay@wd portion of the "key
technologies" list assembled by Altman in 1998 (see taBlage then, the rise of high-
throughput experimental methods, such as microarraysgvimrease the importance of
various machine learning approaches, but the list is estiianable.

Probably the most important type of algorithm on thenlg covered in this set of
demonstrations are those using "stochastic contexgfesamars” [Sakakibara 1994],
including Hidden Markov Models (HMMs). Since an HMM canrbpresented as a graph
somewhat similar to finite automaton, it might be aedo lay the model out on the
spreadsheet in such a way as to make the connection slngbmeen the model and the sets
of sequences being analyzed. Bounded search algorithmsatsgltie represented as graphs
laid out on a spreadsheet, with animated traversal. aperimentation would be required
to see if such demonstrations might be worth pursuingrlglspreadsheets are more suitable
for demonstrating some algorithms than others.

The other notable item on Dr. Altman's list that isgimg from the current demonstration set
is a genetic algorithm. This should be of particular egeto a biological audience in that, as
with artificial neural networks, the approach is bioladjicinspired. A demonstration
program could serve as both a simulation of an evolsystem and a machine learning
approach. A spreadsheet implementation may provide a umdgie Genetic algorithms
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generally operate on a population of potential solutieash represented by a vector of
attribute values. One might display the members optpulation in rows of a spreadsheet,
with the attributes in columns. a fithess measure niightalculated by spreadsheet
functions, selection might use the built-in sortdiions, and recombination and mutation
could be animated.

Table 6: Altman's proposed core components of a bioinforatics curriculum

Fundamental concepts
» Pairwise sequence alignment (dynamic programming, heuristitoo® similarity
matrices)
* Multiple sequence alignment
» Hidden Markov Models (construction, use in alignment, jotexh)
» Phylogenetic Trees
* Fragment and map assembly and combinatorial approaches tacague
* RNA Secondary structure prediction
* Sequence feature extraction/annotation
» Protein homology modeling
* Protein threading
* Protein molecular dynamics
» Protein ab initio structure prediction
» Integration of molecular biology databases
» Support of laboratory biology (sequencing, structure deterramafiNA arrays, etc.
» Design and implementation

Key technologies commonly used in bioinformatics
* Optimization (Expectation Maximization, Monte Carlamn8lated Annealing,
gradient-based methods)
» Dynamic programming
» Bounded search algorithms
* Cluster analysis
» Classification
* Neural Networks
» Genetic Algorithms
» Bayesian Inference
» Stochastic Context Free Grammars
from [ Altman 1998]
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Appendix A. Experiments on use of Artificial Neural Networks to
learn the genetic code.

This appendix documents preliminary experiments attemptirdentify a neural network
configuration to reliably learn the genetic code. Theltesudicate that network
configuration is important to being able to learn this fiomctising backpropagation, as some
configurations clearly work better than others. The geweide may be an interesting
example system for adaptive neural network configuratigarithms.

A.l. Software System

The neural network program Tlearn (http://crl.ucsd.edu/iritteden. html) was used for these
experiments. This is a freely available, open-source arogvailable for Windows in binary
form. This system uses three text files to specify &lpro to be solved by the neural
network. The "data" file contains the inputs in tabrdiééd format. The "teach” file contains
the expected output signals, again in tab delimited forie "cf* (configuration) file
describes the connections between nodes.

A.2. Data

The genetic code specifies how triplets of nucleic aeguence ("codons") are translated
into the amino acids of proteins. The standard genetic usetk by most living organisms
(http://molbio.info.nih.gov/molbio/gcode.html) is given isianple tabular format in Figure
Al. The gray columns are line numbers The codons aeel listalphabetical order, with the
first codon ('AAA") on line 1 and the last codon ('T)Idn line 64.

1A A A K 17 C A A 1} 33 G A A E 49 T A A -
2 A A [ H 18 C A C H 34 G A [H D 58 T A C ¥
3 A i] G K 19 C A G 1} 35 G A G E 51 T A G -
4 n i] T H 28 C A T H 36 G A T D 52 T A T ¥
5 n [H i] T 21 ¢ [H A P 37 G [H A A 53 T C A 5
6 A C C T 22 ¢ [H C P 38 G [H [H A 54 T C C 5
f A C G T 23 C H G P 39 G H G A 5 T C G 5
8 A [ T T 24 C H T P 48 G H T A 56 T C T 5
9 A G A R 25 ¢ G A R 1M G G A G 57 T G A -
18 A G H 5 26 C G C R 42 G G c G 58 T G C [
11 A G G R 27 C G G R 43 G G G G 50 T G G W
12 A G T s 28 C G T R 44 G G T G o8 T G T H
13 A T A I 20 ¢ T A L 45 G T A u 61 T T A L
14 A T C I 38 C T K L 4 G T H u 62 T T C F
15 A T G H 31 C T G L 47 G T G u 63 T T G L
16 A T T I 32 C T T L 48 G T T u 64 T T T F

Figure 19: The standard genetic code

The standard genetic code was formatted into a truthualvlg the Perl script shown in
Figure A2. It uses a two-bit binary number to represent eatte four bases (A=00, C=01,
G=10, T=11), so that a codon can be represented in @h&$4 possible codons must be
translated into a 21 character alphabet, represengngllamino acids plus "termination”
(represented by a period). A termination codon signalsritt@®a protein reading frame.
Characters in the protein alphabet are represented aqutpat of the script as a 21-place bit
vector, containing a single '1' to indicate one ofzhecharacters of a translated sequence.

The script generates a truth table with 6 columns of iapdt21 columns of output.
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H'I; C:\bob"CSUS'Masters ANN codon__data.pl

1 #t*perl —w

2 # codon_data.pl: converts the genetic code to binary format for
3 # use in machine learning experiments.
4 use strict;

5

6 while {(<{DATA>)}{

i chomp ;

8 my ($b1,5b2,5b3,%aa) = split(/\t/);

9 my ShinStr = **;

1@ foreach my $hase (5b1,5%b2,5b3)¢

11 4binstr .= baseZbinary($base);

12 3

13 $binStr .= letterZbinary{$aa,"ACDEFEHIKLHNPQRSTUWY."):
14 print join{"\t”,split{’'’,$binStr)),”\n";

15 3}

16

17 sub letter2binary {

18 my {3letter,$alphabet)=E2 ;

19 my $result = '8 x length %alphabet;

2a substr $result,index{$alphabet, $letter),1,'1';
21 return $result;

22 3}

23

24 sub baseZbinary{ # base letter ACGT to 2-bits
25 my {5hase) = @ ;

26 my %binary = (

27 A => "@a°,

28 C=>"M",

29 G => "18°,

38 T=> "11"

31 ¥i

32 return $hinary{S$hase};

33 3}

Figure 20: Perl script to format genetic code for machia learning experiments

37



Table 7: Standard genetic code represented as a truth table

Outputs

Inputs

Codon
Number
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This binary truth table can be simplified using standarctlagnimization techniques. The
program UC Berkeley Espresso (obtained from www.deiigept/~acc/bfunc/) reduced the
table to 26 rows. | then rearranged the rows so theiybits in the outputs are ordered
sequentially, and used the alphabet to mark the outpunaosluThough the rows are no
longer in order by codon, this table shows more cldarly the bitmaps represent the 21
characters of the protein alphabet.

Table 8: Simplified truth table for standard genetic cale

ACDEFGHIKLMNPQRSTVWY.
1001-- 100000000000000000000
1110-1 010000000000000000000
1000-1 001000000000000000000
1000-0 000100000000000000000
1111-1 000010000000000000000
1010-- 000001000000000000000
0100-1 000000100000000000000
00110- 000000010000000000000
0011-1 000000010000000000000
0000-0 000000001000000000000
-111-0 000000000100000000000
0111-- 000000000100000000000
001110 000000000010000000000
0000-1 000000000001000000000
0101-- 000000000000100000000
0100-0 000000000000010000000
0-10-0 000000000000001000000
0110-- 000000000000001000000
1101-- 000000000000000100000
0010-1 000000000000000100000
0001-- 000000000000000010000
1011-- 000000000000000001000
111010 000000000000000000100
1100-1 000000000000000000010
11-000 000000000000000000001
1100-0 000000000000000000001

The minimized table shows some patterns among the sobtwst notable is the
characteristic "wobble", where the third position in ¢belon has less significance for amino
acid selection than the first two positions. Faaraple, the amino acid Alanine (A) is
encoded by 1001--, which represents four codons sharing G€ fimgt two positions,
GC[ACGT]. Cystine (C) is represented by 1110-1, or the tvelmee TGC and TGT. In
particular, note that Serine (S) is encoded by the comjumef 1101-- and 0010-1, which are
the six codons TCA, TCC, TCG, TCT, AGC, and AGT.

A.3. Testing Topologies

I chose to use the full (un-minimized) table for traghneural networks. | will first show the
results of the simplest topology: 6 input nodes and 2aubumodes, with no hidden nodes,
and each of the 26 output nodes receiving input from all 6 irgues This topology is
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diagrammed below. The 'b' node at the beginning of the bdttgmt) row provides a
constant bias input.

Figure 21: Simple network topology with no hidden nodes

The results of a typical training run are shown inrtéet figure, with the abscissa giving the
number of "sweeps" through the training data, and the oedgreing the error from

comparing network output to the expected values from tivertgadata. Note that the error
never approaches zero, but bounces around in the aabawif0.1 to 0.4. This figure uses
individual points to represent every 1808weep, and reveals that some error levels seem to
recur frequently, reminiscent of bifurcation diagramsiffing was repeated many times,
using a different random number seed to set the inittalar& weights. In no case did a
network with this topology successfully learn the pdete genetic code table.

=

2.500

2.000

1.500

1.000

0.500 ¥

0.000

0 ane@a000 400000 S00000 200000 1000000 4200000 1400000

Figure 22: Simple topology fails to learn genetic code corigtely

The Tlearn program has a Node Activation window thais the output of a trained
network with given inputs. The 21 output nodes are shavamder from right to left at

the top of the Node Activation window, and the seven infibesbias, plus the six input bits)
are shown at the bottom. Note that the bias inpuinays on.
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Examples of node activation diagrams show that -5l x|
the simple network learns to identify many amino | BT
acids, but not all of them. In the top node activatit

window, the first codon in the training set, AAA, it -

represented by 000000. This causes thel@put to

light up; the 8 amino acid is K (Lycine), which is

indeed encoded by AAA. The next illustrated

example shows that an input of 001000 e

(representing the™codon, AGA) produces output ol

number 15 (R, for Arginine), which is also correct AP
In our third example, however, the network fails ti
produce any high-valued output (input 001001 = U
AGC should be identified as S, Serine, th& 16
letter in our amino acid alphabet. This network
produced a single, correct output for each set of

input values except codons 10 and 12 (not showr 0 0
Both of these codons should encode S. In ten pattam: 854
independent attempts at training this network, eic oo e ([

gave a similar result, in which codons 10 and 12
gave no output. One run gave no output for codo
10, or 12, or for 62, and 64. Codons 62 and 64
represent the"5amino acid, F (Phenylalanine).
One of these ten trials did produce a network tha
correctly identified codons 10 and 12 as S, but

failed to identify codons 53, 54, 55, and 56, whict paﬂem:%m H =
also represent S. Since a network'’s topology can

affect its ability to be trained with certain datasets Figure 23: Testing network output with
by backpropagation, | set about to find a better specific inputs

topology.

Adding a single layer of hidden nodes between the inputshenoiutputs (to make a 3-layer
network) did not lead to networks able to learn the gewete any better than the simple,
single layer topology. | tried various numbers of hiddedes, all connected to all inputs and
all outputs. One of the 3-layer networks contained 26 hiddees. | predicted that this
network could learn the code, because there are 26 tetims simplified truth table, each of
which can be represented by a simple Boolean equationgvBatthis never completely
learned the code in many long attempts.

In most cases, the 3-layer networks got "stuck" atel igtaere all codons were recognized
except codons 10 and 12 (for Serine). Thus, they suffdredame problem as the simple 2-
layer network. Since most topologies had trouble wittin8el decided to try to learn its
code separately.

As mentioned above, the code for Serine is comptichéeause this amino acid is
represented by 6 codons. Four of them start with TCtfilek base doesn't matter), while
two start with AG (codons 10 and 12 are AGC and AGTgakoned that the network was
getting confused trying to learn two classes of codons (RRINAG[CT]) for the same
output, so | experimented with a topologies in whicmadiidden nodes connect to the first
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four inputs (for the first two bases), and some hidden noaleisect to only the last two
inputs (for the base in the "wobble" position).

NODES: {0 x|
nodes = 15 £ Hines O Poinis

inputs = 6

outputs = 1

output nodes are 15
CONNECTIONS:
groups = 0 0.200 -
1-15 from O
1-4 from il1-i4 D100 -
5-6 from i5-i6
7-10 from 1-4 mmon aneeps =000 o000 o000 o000 100000
11-14 from 5-6
15 from 7-14
SPECIAL:

0.z00

Figure 24: A topology for learning Serine

The most reliable Serine-learning network | was abideatify has two hidden layers (4
layers total). | will describe the nodes using Tlearnis/eations; input nodes are called il
through i6; the first layer of hidden nodes are 1 throughessecond hidden layer has seven
nodes numbered 7 through 14, and node 15 is the output. THedirsidden nodes take
input from all of the first four inputs together, and goweput to all of the first four nodes in
the next layer. Nodes 5 and 6 in the first hidden lay#én take input from both inputs 5 and
6, and send output to the set of nodes 11-14 on the second laigelerAll the nodes in the
second hidden layer send results to the output node. [€aenTNetwork Architecture
diagram and configuration file are shown below.

This topology was very successful in learning the Seshges from the truth table. In 40
trials (each with a maximum of 100000 sweeps, learning ratevomentum = 0.2), it
learned the Serine output correctly each time.

In theory, a single hidden layer should be suffictertepresent any function (I think this is
why Tlearn diagrams the hidden nodes all on a single)leédelvever, | was never able to
devise a topology with a single hidden layer that couldhldae Serine values.
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Table 9: Four-layer topology can learn the genetic code, bdoesn't always

ol x| I ] ol x|
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BLE] -i=i4 | NODES:

nodes = 37

inputs = 6

outputs = 21

output nodes are 17-37
CONNECTIONS:

el N _ groups =0
b e 1-16 from O

0 sweaB000 400000 600000 S00000 1000000 1200000 1800000 0000 5200000 D000 8300000 G000000

- - 1-4 from il-i4
Network: training Options | Some of the stuck runs go| 5-6 from i5-i6
learning rate: 0.1 on and on... 7-12 from 1-4

. 13-16 from 5-6
momentum: 0 17-37 from 7-16
Train in random sequence. SPECIAL:

Testing this topology on other amino acids showed tlzatuld learn them also, so it is not
restricted to learning Serine. | then added more outpuéestavhether similar topologies
could learn the entire genetic code at once. This issierjar to the four layer network
described above for learning Serine, except it has a fev@ nodes added to each of the two
groups in the second hidden layer, and the second hidderctayezcts to all of the 21
outputs. Of ten trials using this topology, the netwosgkred the genetic code in two (D and
F in the table).
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Figure 25: Four-layer topology capable of learning the geneticode, sometimes.

In a last-ditch attempt at finding a topology that le&mn the genetic code reliably, |
reasoned that if a single layer can learn all amaasabut Serine, and if the four-layer

topology described above can learn Serine alone, tbleould be able to construct a hybrid

topology that treats Serine as a special case. §Blsown below, along with its Tlearn
configuration.

NODES:

| nodes = 34
inputs = 6
outputs = 21
output nodes are
14-34
CONNECTIONS:
groups =0

1-34 from O

1-4 from il-i4
5-6 from i5-i6
7-10 from 1-4
11-13 from 5-6
29 from 7-13
14-28 from i1-i6
30-34 from i1-i6
SPECIAL:

AR

I ey ied

Figure 26: The most effective topology for learning thegnetic code treats Serine as a special case.

The topology treating Serine as a special case wgs¥ective for learning the genetic

code. In 20 of 20 trials, it succeeded in learning the ectide in < 200000 sweeps (learning

rate = 1, momentum=0.5).
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A.4. Implications of Experiments on Topology

The genetic code is a toy problem, in that it can be teielp described in a look-up table,
so neural network pattern finding does not reveal anything lhésa suitable example
problem as an application of artificial neural networkbibinformatics only in that it may
help students become familiar with the concept thagémetic code is in fact a lookup table
(the term is commonly misused to mean "genome", molkessy in the popular press.)

These experiments demonstrate that choice of a ®ub&hlral network topology is
extremely important in learning certain Boolean functicugh as the genetic code. One
topology (treating serine as a special case) was fataich is quite reliable for learning the
genetic code. This topology is not very satisfying in eegalrsense, however, because it is
highly specialized for this problem. A general machine legrsplution, either for finding
appropriate topologies, or for better training of staddapologies, would be more
interesting. This function could serve as a good exasystem for experimenting with
approaches such as using genetic algorithms for neural keivpmiogy identification; this
is called "neuroevolutioR"

Because of the complexity and specialized nature of tlyg@oology | found that could
learn the genetic code reliably, | chose not to attehiptproblem in the Excel
demonstration. The spreadsheet would be rather complieatédonducting the required
number of training steps with so many nodes seemed img@iadtistead, the demonstration
uses the classic XOR function..

2 See also the Wikipedia article on "Neuroevolution", hegp:ivikipedia.org/wiki/Neuroevolution
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Glossary

3' end the end of a DNA sequence where the free 3' hydroxy grdopnsl.

5' end the end of a DNA chain where the free 5' phospgadap is normally located. DNA
sequences are normally written with the 5" end onetthe |

A: the abbreviation for adenine in a nucleic acid sequence.

adenine a purine base found in DNA and RNA. Pairs with T inmnalr\Watson-Crick
pairing.

amino acid one of the basic building blocks of proteins. Therehaenty "normal” amino
acids commonly found in proteins. This means that thaeseces of most proteins
can be described using a twenty-character alphabet.

amino terminus the beginning of a protein chain, where the free aminomi®located.
Proteins are synthesized in the amino to carboxy tesmimection by ribozymes.
The amino terminus of a protein is encoded by sequencesddie 5' end of the
gene for that protein. By convention, protein sequencewdten with the amino
terminus on the left.

antiparallel: strands running alongside one another but having oppositeatiagss.
artificial neural network a set of artificial neurons connected with a certapology.

base pairing the hybridization of complementary nucleotides. A raltynpairs with T, and
C pairs with G.

Bayes' theoremP(A|B) = P(B|A) * P(A) / P(B)

BLOSUM: "Blocks Substitution Matrix", one of the classic tgpe scoring tables for amino
acid comparisons.

C: see cytosine.

carboxy terminusthe end of a protein chain that has a free carboxy gffegamino
terminus.

central dogmathe concept that genetic information flows fromgeterm storage in DNA,
to short term storage in mMRNA, to proteins capable of/rayout biological
function. There are known exceptions to this pattern, aadhe reverse
transcriptases of certain viruses (retroviruses) thay sdormation from RNA to
DNA. Also, some organisms, notably viruses, keep long tgnetic information in
RNA molecules rather than DNA.

chloroplast the subcellular organelle of plants wherein phattsssis occurs.

chromosomeorganized structures containing the major portion of garosm's DNA.
Eukaryotic chromosomes are located in the nucleus.

classification the process of assigning instances to categories.

codon a triplet of three consecutive nucleotide basesdinga particular amino acid.
complementaryhaving have G match with C, and A match with T.

C-terminus see carboxy terminus.
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cytosine a pyrimidine base found in DNA and RNA. Pairs withnGiormal Watson-Crick
pairing.

denaturation any process that causes the normal three dimensivnature of a protein to
be disrupted. Denaturation can have drastic effecteeprbperties of proteins.
Cooking egg whites, for example, causes the albumin protethsnature, and to lose
their solubility in water, and denatured enzymes losie tiagalytic activities.

deoxyribonucleotideany of the monomers from which DNA polymers are trmicsed.
Deoxyribnucleotides consist of a nucleotide base (A, @rG) connected to a
deoxyribose sugar molecule, which has a phosphate grougath&irm a
phosphodiester bond with the previous monomer in the chain

DNA polymeraseany enzyme that produces DNA could be called a DNA paigsee There
are many types of DNA-producing enzymes. For examplenzynge involved in
DNA replication might be called a DNA-directed DNA polerase. A reverse
transcriptase could be called an RNA directed DNA polyseer&here are also
enzymes that can produce DNA molecules without a templat

DNA: deoxyribonucleic acid. In most organisms, this is the genwterial.

edit distancea similarity metric for comparing two sequences whicsc@ed by the number
of edits (insertions, deletions, and substitutions) ireduto convert one sequence into
the other. Each editing operation may have its ownesaghich may be contained in
a scoring table.

enzyme a biological molecule capable of acting as a catédyst particular biochemical
reaction. Most enzymes are proteins, but some include RNAAsome are purely
RNA ("ribozymes").

eukaryotic a type of organism having nucleate cells. Organisms wiittell nuclei, such as
bacteria, are called prokaryotic.

extrachromosomalbeing located outside of a chromosome. Mitochondeakg are said to
be extrachromosomal, for instance.

G: see guanine.

gene a region of genetic material that carries the imiation for a specific trait. This is a
broad definition, since "trait" could mean many thingsa@eé examples of usually
encode a particular protein, including promoter regions, £x&tn. However, some
genes encode RNA molecules that are not translated ®imedsuch as tRNAS),
some act as regulatory regions, and some may have mmknological effect, as
with many of the "genes" for some markers used to disshgadividuals in forensic
investigations, for example.

genetic codea mapping of codons to amino acids. A standard geneti& isaised by most
organisms.

genome the content of all of an organism's chromosomes.

guanine a purine base found in DNA and RNA. Normally pairs v@tin double-stranded
nucleic acids.

Hierarchical Clustering grouping of instances into a tree-like structure showing ho
closely they are related to one another. Clusteriognsmonly done using
unsupervised machine learning methods.
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hybridizationt annealing of complementary strands, especially strafitidifferent origins
(such as a target and a probe).

initiation codon: the first triplet in a reading frame.
MAP hypothesissee "maximum aposteriori hypothesis"
maximum aposteriori hypothesishe hypothesis with the highest posterior probability.

mitochondria a subcellular organelle found in most nucleated ddlisachondria are
centrally important in the process of respiration.

naive Bayes classifiela classifier based on Bayes' theorem in whichithplgying
assumption is made that the probabilities of all attelvalues are independent of one
another.

N-terminus see amino terminus.
Operational Taxonomic Unit(OTU) a node in an evolutionary tree.

PAM: "Percent Acceptable Mutations”, one of the clasgesyof scoring tables for amino
acid comparisons.

pathway a series of biochemical reactions leading from anmare starting materials to
metabolic products. The steps in a pathway are usuadilyzat by enzymes.

PCR see "polymerase chain reaction".

peptide a short protein chain. Peptides typically do not haaxaymatic activity, since they
are too small to form the molecular machines we calyees. Many peptides have
biological activities as neurotransmitters or immunalagiargets. The name refers
to the type of amino-ester bonds used to join amino &ogkther.

polymerase chain reactian(PCR) a process by which targeted regions of DNA nuddsc
can be reproduced under experimental conditions. ltasw@sive application or
primer extension.

polypeptide a chain of amino acids joined by peptide bonds (a proteim).
posterior probability the probability of a hypothesis, given the observed. data

primary structure the sequence of a protein chain. This can be thoughaobas-
dimensional description of the protein.

primer: a single-stranded nucleic acid molecule (usually ahgyiat oligonucleotide) that
hybridizes to a template molecule and serves to init@tglate-directed synthesis by
DNA polymerase.

prior probability: the assumed probability of a hypothesis before obsengare made.

promoter: a region of a gene directing RNA polymerase actafitg particular transcription
start site.

protein: a polymer of amino acids linked by peptide bonds. Many moteve biological
functions that depend on their three-dimensional strestuk principle determinant
of how one or more protein chains of amino acids faits a three dimensional
structure is the sequence of amino acids in the chamspiocess of protein folding
iS an important step in converting one-dimensional eecgl information (as stored in
DNA) into biological activities.
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qguaternary structure the association of multiple protein chains intorgla three-
dimensional structure.

reading frame The modulus or register in which a nucleic acid sequasngecould be
translated into protein. A strand of DNA has three fsseading frames, and its
complementary strand ahs three more.

replication: the process of reproducing molecules or simple orgar(iginuses are said to
replicate, for example).

reverse complementhe sequence of the strand that would pair exactlyavjiven strand.
Matching strands must be both complementary and antigaral

ribozome a macromolecular assembly responsible for translafiéGNA sequences to
proteins.

RNA polymerasean enzyme that catalyzes the production of polymerbafucleic acid.

RNA: ribonucleic acid. Similar in structure to DNA, RNAtigically less stable. RNA
performs many vital functions in living things. Some typeRNA molecules
(mRNA) act as messengers in the process of protein produ@thers (tRNA)
couple to activated amino acids to help match them toc¢bdons. Ribosomes
contain large amounts of structural rRNA. Other RNAe@unales are intimately
involved in other enzymatic functions, such as splicing.

secondary structurelocal three-dimensional structure within a polymerich@ommon
secondary structures in proteins include the alpha hetxyéba pleated sheet, and
"turns” or "coils". Prediction of secondary structunfra protein sequence is easier
that predicting its complete three-dimensional stractand is widely considered to
be a first step in structure prediction.

sequencethe order of monomers within a polymer, or of characiditsn a string. Genetic
information is contained in the sequence of baseNA.D

squashing function a differentiable function that maps the output oé&eificial neuron into
a finite range.

stochastic gradient descerdan approach to training a neural network wherein een@a's
back-propagated for each individual example, rather thathé entire training set at
once.

supervised learningthe process by which a program induces rules for cjasgiinstances,
based on pre-classified examples given in a training set.

synthetic oligonucleotidea short strand of DNA created using techniques of organic
chemistry.

T: see thymine.
tertiary structure the three dimensional arrangement of a single protein.

thymine a pyrimidine base found in DNA. (The thymines of DN&#gjsences are transcribed
into uracils in RNA). Normally pairs with A.

training set a group of pre-classified examples that can be usédmathine learning
approaches.

transcription factor. a protein that interacts with a gene sequence toadRNA
polymerase activity at that gene.
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transcription: the process of copying information from DNA to RNA. Tisislone by DNA-
dependant RNA polymerase.

translation: the process of creating a protein molecule basedeosettuence information
contained in a molecule of messenger RNA.

uracil : the pyrimidine base that takes the place of thynmrieNA.
virus: an acellular infectious particle that replicates wittells of a host organism.
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