
Co-design Approaches

for Dependable Networked Control Systems

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dependable Networked

Control Systems

Edited by

Christophe Aubrun

Daniel Simon

Ye-Qiong Song

Co-design Approaches f or

www.it-ebooks.info

http://www.it-ebooks.info/

First published 2010 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as

permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,

stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,

or in the case of reprographic reproduction in accordance with the terms and licenses issued by the

CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the

undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.

27-37 St George’s Road 111 River Street

London SW19 4EU Hoboken, NJ 07030

UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2010

The rights of Christophe Aubrun, Daniel Simon and Ye-Qiong Song to be identified as the authors of this

work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Simon, Ye-Qiong Song.

 p. cm.

 Includes bibliographical references and index.

 ISBN 978-1-84821-176-6

1. Feedback control systems--Reliability. 2. Feedback control systems--Design and construction.

3. Sensor networks--Reliability. 4. Sensor networks--Design and construction. I. Aubrun, Christophe.

II. Simon, Daniel, 1954- III. Song, Ye-Qiong.

 TJ216.C62 2010

 629.8'3--dc22

2009041851

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-84821-176-6

Edited and formatted by Aptara Corporation, New Delhi, India

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne

Co-design approaches for dependable networked control systems / edited by Christophe Aubrun, Daniel

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Foreword . xiii
Dominique SAUTER

Introduction and Problem Statement . 1
Christophe AUBRUN, Daniel SIMON and Ye-Qiong SONG

2
4
6
8

. 10
. 11

12
15

Chapter 1. Preliminary Notions and State of the Art 19
Christophe AUBRUN, Daniel SIMON and Ye-Qiong SONG

1.1. Overview . 19
1.2. Preliminary notions on real-time scheduling 20

1.2.1. Some basic results on classic task model scheduling 21
1.2.1.1. Fixed priority scheduling . 22
1.2.1.2. EDF scheduling . 23
1.2.1.3. Discussion . 23

1.2.2. (m,k)-firm model . 24
1.3. Control aware computing . 26

1.3.1. Off-line approaches . 27
1.3.2. Quality of Service and flexible scheduling 28

1.4. Feedback-scheduling basics . 30
1.4.1. Control of the computing resource 32

v

I.5. Diagnosis and fault tolerance in NCS

I.7. Outline of the book .

I.4. Control and task/message scheduling .

I.2. Control design: from continuous time to networked implementation . .

I.6. Co-design approaches

I.8. Bibliography .

I.3 . Timing parameter assignment .

I.1. Networked control systems and control design challenges

www.it-ebooks.info

http://www.it-ebooks.info/

vi Networked Control Systems Co-design

1.4.1.1. Control structure . 32
1.4.1.2. Sensors and actuators . 32
1.4.1.3. Control design and implementation 33

1.4.2. Examples . 35
1.4.2.1. Feedback scheduling a web server 35
1.4.2.2. Optimal control-based feedback scheduling 36
1.4.2.3. Feasibility: feedback-scheduler implementation for robot

control . 39
1.5. Fault diagnosis of NCS with network-induced effects 43

1.5.1. Fault diagnosis of NCS with network-induced time delays 44
1.5.1.1. Low-pass post-filtering . 44
1.5.1.2. Structure matrix of network-induced time delay 46
1.5.1.3. Robust deadbeat fault filter 47
1.5.1.4. Other work . 49

1.5.2. Fault diagnosis of NCS with packet losses 50
1.5.2.1. Deterministic packet losses 50
1.5.2.2. Stochastic packet losses . 50

1.5.3. Fault diagnosis of NCS with limited communication 51
1.5.4. Fault-tolerant control of NCS . 52

1.6. Summary . 53
1.7. Bibliography . 53

Chapter 2. Computing-aware Control . 63
Mongi BEN GAID, David ROBERT, Olivier SENAME, Alexandre SEURET and
Daniel SIMON

2.1. Overview . 63
2.2. Robust control w.r.t. computing and networking-induced latencies . . . 65

2.2.1. Introduction . 65
2.2.2. What happens when delays appear? 67

2.2.2.1. Initial conditions . 67
2.2.2.2. Infinite dimensional systems 68

2.2.3. Delay models . 70
2.2.4. Stability analysis of TDS using Lyapunov theory 71

2.2.4.1. The second method . 71
2.2.4.2. The Lyapunov–Razumikhin approach 72
2.2.4.3. The Lyapunov–Krasovskii approach 73

2.2.5. Summary: time-delay systems and networking 75
2.3. Weakly hard constraints . 76

2.3.1. Problem definition . 77
2.3.2. Notion of accelerable control . 79
2.3.3. Design of accelerable controllers 79
2.3.4. Accelerable LQR design for LTI systems 80
2.3.5. Kalman filtering and accelerability 82

www.it-ebooks.info

http://www.it-ebooks.info/

Contents vii

2.3.6. Robustifying feedback scheduling using weakly hard scheduling
concepts . 83

2.3.7. Application to the attitude control of a quadrotor 85
2.4. LPV adaptive variable sampling . 89

2.4.1. A polytopic discrete-plant model 90
2.4.2. Performance specification . 92
2.4.3. LPV/H∞ control design . 93
2.4.4. Experimental assessment . 94

2.5. Summary . 98
2.6. Bibliography . 99

Chapter 3. QoC-aware Dynamic Network QoS Adaptation 105
Christophe AUBRUN, Belynda BRAHIMI, Jean-Philippe GEORGES, Guy JUANOLE,
Gérard MOUNEY, Xuan Hung NGUYEN and Eric RONDEAU

3.1. Overview . 105
3.2. Dynamic CAN message priority allocation according to the control

application needs . 107
3.2.1. Context of the study . 107

3.2.1.1. The considered process control application 107
3.2.1.2. Control performance evaluation 108
3.2.1.3. The implementation through a network 108
3.2.1.4. Evaluation of the influence of the network on the behavior

of the process control application 110
3.2.1.5. Idea of hybrid priority schemes: general considerations . . . 111

3.2.2. Three hybrid priority schemes . 114
3.2.2.1. hp scheme . 114
3.2.2.2. (hp+sts) scheme . 115
3.2.2.3. (hp+dts) scheme . 116

3.2.3. Study of the three schemes based on hybrid priorities 119
3.2.3.1. Study conditions . 119
3.2.3.2. hp scheme . 120
3.2.3.3. (hp+sts) scheme . 125
3.2.3.4. (hp+dts) scheme . 128

3.2.4. QoC visualization . 128
3.2.5. Comment . 129

3.3. Bandwidth allocation control for switched Ethernet networks 132
3.3.1. NCS performance analysis . 134
3.3.2. NCS modeling . 134

3.3.2.1. Introduction . 134
3.3.2.2. Network modeling . 135
3.3.2.3. System modeling . 138
3.3.2.4. Controller modeling . 139

3.3.3. Network adaptation mechanism . 141

www.it-ebooks.info

http://www.it-ebooks.info/

viii Networked Control Systems Co-design

3.3.4. Example . 141
3.3.4.1. Maximum delay computation 141
3.3.4.2. Results . 142

3.4. Conclusion . 144
3.5. Bibliography . 145

Chapter 4. Plant-state-based Feedback Scheduling 149
Mongi BEN GAID, David ROBERT, Olivier SENAME and Daniel SIMON

4.1. Overview . 149
4.2. Adaptive scheduling and varying sampling robust control 151

4.2.1. Extended elastic tasks controller 152
4.2.2. Case study . 153

4.3. MPC-based integrated control and scheduling 156
4.3.1. Resource constrained systems . 157
4.3.2. Optimal integrated control and scheduling of resource constrained

systems . 160
4.4. A convex optimization approach to feedback scheduling 162

4.4.1. Problem formulation . 162
4.4.2. Cost function definition and approximation 164

4.4.2.1. Cost function definition . 164
4.4.2.2. Introductory example: quadrotor attitude control 165

4.4.3. Optimal sampling period selection 166
4.4.3.1. Problem formulation . 166
4.4.3.2. Problem solving . 167
4.4.3.3. Feedback-scheduling algorithm deployment 167

4.4.4. Application to the attitude control of a quadrotor 168
4.5. Control and real-time scheduling co-design via a LPV approach 170

4.5.1. A LPV feedback scheduler sensible to the plant’s closed-loop
performances . 171

4.5.2. Application to a robot-arm control 174
4.5.2.1. Performance evaluation of the control tasks in view of

optimal resource distribution 174
4.5.2.2. Simulation with TrueTime 175
4.5.2.3. Feasibility and possible extensions 177

4.6. Summary . 177
4.7. Bibliography . 181

Chapter 5. Overload Management Through Selective Data Dropping . . . 185
Flavia FELICIONI, Ning JIA, Françoise SIMONOT-LION and Ye-Qiong SONG

5.1. Introduction . 185
5.1.1. System architecture . 186
5.1.2. Problem statement . 188

5.2. Scheduling under (m, k)-firm constraint 188

www.it-ebooks.info

http://www.it-ebooks.info/

Contents ix

5.2.1. Dynamic scheduling policy under (m,k)-firm constraints 189
5.2.2. Static scheduling policy under (m,k)-firm constraints and

schedulability issue . 189
5.2.3. Static scheduling under (m, k)-constraints and mechanical

words . 190
5.2.4. Sufficient condition for schedulability assessment under

(m,k)-pattern defined by a mechanical word 191
5.2.5. Systematic dropping policy in control applications 192

5.3. Stability analysis of a multidimensional system 193
5.3.1. Generic model . 193
5.3.2. Example of multidimensional system 194

5.3.2.1. Sampling period definition 195
5.3.2.2. Controller parameters . 195

5.3.3. Stability condition . 195
5.4. Optimized control and scheduling co-design 197

5.4.1. Optimal control and individual cost function 198
5.4.2. Global optimization . 200
5.4.3. Case study . 201

5.4.3.1. Plants and controllers . 203
5.4.3.2. Scheduling parameters . 203
5.4.3.3. Optimal controller . 203
5.4.3.4. Simulation scenario . 204
5.4.3.5. Simulation results for hard real-time constraints 204
5.4.3.6. Simulation results for (m, k)-firm constraints 205

5.5. Plant-state-triggered control and scheduling adaptation and
optimization . 209

5.5.1. Closed-loop stability of switching systems 210
5.5.2. On-line plant state detection . 210
5.5.3. Global optimization of control tasks taking into account the plant

state . 211
5.5.4. Case study . 213

5.5.4.1. Simulation scenario . 214
5.5.4.2. Observed performance . 217
5.5.4.3. Summary . 218

5.6. Conclusions . 218
5.7. Bibliography . 220

Chapter 6. Fault Detection and Isolation, Fault Tolerant Control 223
Christophe AUBRUN, Cédric BERBRA, Sylviane GENTIL, Suzanne LESECQ

and Dominique SAUTER

6.1. Introduction . 223
6.2. FDI and FTC . 224

6.2.1. Introduction to diagnosis . 224

www.it-ebooks.info

http://www.it-ebooks.info/

x Networked Control Systems Co-design

6.2.2. Quantitative model-based residuals 226
6.2.2.1. Parity relations . 228
6.2.2.2. Observers bank . 229

6.2.3. Example . 231
6.2.3.1. The system-residual generation 231
6.2.3.2. Observer-based residuals . 233

6.2.4. Diagnostic summary . 235
6.2.5. Introduction to FTC . 236

6.3. Networked-induced effects . 238
6.3.1. Example of network-induced drawbacks 239
6.3.2. Modeling data dropouts . 240
6.3.3. Modeling network delays . 242

6.4. Pragmatic solutions . 243
6.4.1. Data synchronization . 244

6.4.1.1. Clock synchronization . 244
6.4.1.2. Data reconstruction . 245
6.4.1.3. Example . 246

6.4.2. Data loss and diagnostic blocking 247
6.5. Advanced techniques . 248

6.5.1. Residual generation with transmission delay 248
6.5.2. Adaptive thresholding . 249

6.5.2.1. Optimization-based approach for threshold selection 250
6.5.2.2. Network calculus-based thresholding 251

6.5.3. Fault isolation filter design in the presence of packet dropouts . . 256
6.5.4. Estimation and diagnosis with data loss 259

6.5.4.1. Problem formulation . 259
6.5.4.2. Kalman filter with partial data loss 260

6.6. Conclusion and perspectives . 262
6.7. Bibliography . 262

Chapter 7. Implementation: Control and Diagnosis for an Unmanned
Aerial Vehicle . 267
Cédric BERBRA, Sylviane GENTIL, Suzanne LESECQ and Daniel SIMON

7.1. Introduction . 267
7.2. The quadrotor model, control and diagnosis 269

7.2.1. The system . 269
7.2.2. The physical system model . 270

7.2.2.1. Introduction to quaternions 270
7.2.2.2. The quadrotor model . 271
7.2.2.3. The inertial measurement unit (IMU) model 273

7.2.3. The attitude control . 274
7.2.3.1. Nonlinear control . 274
7.2.3.2. Linear quadratic control . 274

www.it-ebooks.info

http://www.it-ebooks.info/

Contents xi

7.2.4. The attitude observer . 276
7.2.4.1. Nonlinear observer . 276
7.2.4.2. Extended Kalman filter . 277
7.2.4.3. Simulation results . 279

7.2.5. The quadrotor diagnosis . 279
7.2.5.1. Sensor diagnosis . 279
7.2.5.2. Actuator diagnosis . 282

7.3. Simulation of the network . 282
7.3.1. Architecture of the networked control system 282
7.3.2. Network design . 284
7.3.3. Tool implemented in the network simulation 285

7.4. Hardware in the loop architecture . 285
7.4.1. The ORCCAD approach . 286
7.4.2. Quadrotor simulation setup . 288

7.5. Experiments and results . 290
7.5.1. Basic attitude control . 290
7.5.2. Packet loss . 291

7.5.2.1. Pragmatic solution . 291
7.5.2.2. (m, k)-firm solutions . 292
7.5.2.3. Dynamic priorities . 295
7.5.2.4. Extended Kalman filter . 297

7.5.3. Hardware-in-the loop experiment 298
7.5.3.1. Basic scenario . 298
7.5.3.2. Packet loss . 299
7.5.3.3. Sensor failure . 299

7.6. Summary . 302
7.7. Bibliography . 303

Glossary and Acronyms . 305

List of Authors . 309

Index . 313

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

Modeling, analysis and control of networked control systems (NCS) have recently
emerged as topics of significant interest to the control community. The defining fea-
ture of any NCS is that information (reference input, plant output, control input) is
exchanged using a digital band-limited serial communication channel among control
system components (sensors, controller, actuators) and usually shared by other feed-
back control loops. The insertion of a communication network in the feedback control
loop makes the analysis and design of an NCS more challenging. Conventional control
theory with many ideal assumptions, such as synchronized control and non-delayed
sensing and actuation, must be revisited so that the limitations on communication ca-
pabilities within the control design framework can be integrated.

Furthermore, the new trend is to implement the realization of fault diagnosis (FD)
and fault tolerant control (FTC) systems that employ supervision functionalities (per-
formance evaluation, fault diagnosis) and reconfiguration mechanisms by using co-
operative functions that are also distributed on a networked architecture. A critical
issue, therefore, which must always be considered in the design of any networked
process control system, is its robustness with respect to failure situations, including
system component failures as well as network failures. By network failure, we mean
a total breakdown in the communication between the control system components as a
result of, for example, some physical malfunction in the networking devices or severe
overloading of the network resources that cause a network shut down.

In this framework, dependability of NCS represents the emergence of an important
research field. Dependability groups together with three properties that the NCS must
satisfy in order to be designed: safety, reliability, and availability. Therefore, the
design of a dependable NCSs implies a multidisciplinary approach; more precisely,
dealing with a deep knowledge of both fault tolerant control and computer science
(mainly real time scheduling and communication protocols).

xiii

www.it-ebooks.info

http://www.it-ebooks.info/

xiv Networked Control Systems Co-design

The content of this book gives an overview of the main results obtained after three
years of research work within the safe-NECS project funded by the French “Agence
Nationale de la Recherche—ANR”. During these three years, five research groups
have cooperated intensively to propose a framework for the design of dependable net-
worked control systems. In this context, the research of safe-NECS took into consid-
eration process control functions, FDI/FTC and their implementation over a network
as an integrated system. In particular, the project aim was to develop, in a coordinated
way, a “co-design” approach that integrates several kinds of parameters: the charac-
teristics modeling the Quality of Control (QoC), the dependability properties required
for a system and the parameters of real-time scheduling (tasks and messages). Issues
such as network-induced delays, data losses and signal quantization as well as sensor
and actuator faults represent some of the more common problems that have motivated
the extensive research work developed within the safe-NECS project.

The research work in the safe-NECS project aimed at enhancing the integration
of control, real-time scheduling and networking. The safe-NECS project was clearly
a multi-disciplinary project in that it brought together partners from the control and
computer science communities. A major difficulty for this project came from the fact
that both communities manipulate objects and formalisms of very different natures.
We consider that one of the major contributions of this project was to promote a syn-
ergistic approach, which is a necessary condition for achieving the objectives of the
co-design which is demonstrated in this project.

Safe-NECS project focuses on the following points, which are reported in this
book:

– specification of a dependable system and performance evaluation;

– modeling the effect of a real-time distributed implementation (i.e. scheduling
parameters and networking protocols) on Quality of Control (QoC) and dependability;

– an integrated control and scheduling co-design method realized by developing
feedback scheduling algorithms, taking into account both QoC parameters and de-
pendability constraints;

– fault tolerance and the on-line re-configuration of NECS with distributed diag-
nostic and decision-making mechanisms;

– testing and validation using a UAV-type quadrotor.

Dominique SAUTER

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement

Networked control systems (NCS) are feedback control systems wherein the con-
trol loops are closed over a shared network. Control and feedback signals are trans-
mitted among the system’s components as information flows through a network, as

to close the control loops: sensors to collect information on the controlled plant’s state,
controllers to provide decisions and commands, actuators to apply the control signals
and communication networks to enable communications between the NCS compo-
nents.

Introduction written by Christophe AUBRUN, Daniel SIMON and Ye-Qiong SONG.

1

depicted in figure I.1. A fully featured NCS is made up of four kinds of components

Figure I.1. Typical NCS architecture

www.it-ebooks.info

http://www.it-ebooks.info/

2 Networked Control Systems Co-design

Compared with conventional point-to-point control systems, the advantages of
NCS are lighter wiring, lower installation costs, and greater abilities in diagnosis,
reconfigurability and maintenance. Furthermore, the technologies used in computer
and industrial networks, both wired and wireless, have progressed rapidly providing
high bandwidth, quality of service (QoS) guarantees and low communication costs.
Because of these distinctive benefits, typical application of these systems nowadays
ranges over various fields of industry and services. X-by-wire automotive systems,
coordinated control of swarms of mobile robotics and advanced aircraft on-board con-
trol and housekeeping are examples of NCS usage in the field of embedded systems.
Large-scale utility systems are deployed in order to control and monitor water, gas,
energy networks, and transportation services on roads and railways. The capabilities
of wireless sensor networks, which are widespread and cost very little to cooperatively
monitor physical or environmental conditions, can be enhanced by adding some actu-
ation capacities to make them control systems, such as in smart automated buildings.

Networked control systems and control design challenges

The design of NCS combines the domains of control systems, computer networks,
and real-time computing. Historically, tools for the design and analysis of systems
related to these disciplines have been designed and used with limited interaction. The
increasing complexity of modern computer systems and the rapidly evolving technol-
ogy of computer networks require more integrated methodologies, specifically suited
to NCS.

From a control-theoretic point of view, the main problem to be solved is the
achievement of a control objective (i.e. a mixture of stability, performance and relia-
bility requirements), despite the disturbances induced by the distribution of the control
system over a network. For instance, the sharing of common computing resources and
communication bandwidths by competing control loops along with other general pur-
pose applications introduces random delays and even data losses. Moreover, as the
computations are supported by heterogenous computers and the communication be-
tween distributed components may spread over different levels of area networks, NCS
become more and more complex and difficult to model. A key built-in feature of a
multi-layer NCS is the availability of redundant information pathways, as well as the
distributed nature of the overall task that the NCS has to perform. Hence the distri-
bution of devices on nodes provides the ability for computing load distribution and
re-routing information pathways in the event of a component or a subsystem of the
network malfunctioning. This leads to the ability to reconfigure a new system from a
nominally configured NCS.

Control is playing an increasing role in the design and run-time management of
large interconnected systems to enhance high performance in nominal modes and safe
reconfiguration processes in the occurrence of faults and failures. In fact, it appears

I.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement 3

that the achievement of system-level requirements by far exceed the achievable relia-
bility of individual components [MUR 03]. The deep intrication of components and
sub-systems, which come from different technologies, and which are subject to vari-
ous constraints, calls for a joint design to solve potentially conflicting constraints early
on. The fact that control has the ability to cope with uncertainty and disturbances, due
to closed loops based on sensing the current system’s state, makes it a basic method-
ology to be used in such complex systems design.

Besides reaching the specified performance in normal situations, reliability and
safety-related problems are of a constant concern for system designers. A general
and integrated concept is dependability, which is the system property that includes
various attributes such as availability, reliability, safety, confidentiality, integrity, and
maintainability [LAP 92]. Being confronted with faults, errors and failures, a system’s
dependability can be achieved in different ways, i.e. fault prevention, fault tolerance,
fault removal and fault forecasting [AVI 00]. While these concepts have been formal-
ized for systems in a broad sense, it appears that the existing control toolbox already
provides concepts, e.g. robust and fault tolerant control, which are likely to achieve
control system dependability. A better integration of advanced control, computing
power and redundancy based on resource distribution is expected to further enhance
this capability.

Except in the case of failures due to hardware or software components, most pro-
cesses usually run with nominal behavior: however, even in the nominal modes, nei-
ther the process nor the execution resource parameters are ever perfectly known or
modeled. A very conservative viewpoint consists of allocating system resources to sat-
isfy the worst case, but this results in the execution resources being over-provisioned
and thus wasted. From the control viewpoint, specific deficiencies to be considered
include poorly predictable timing deviations, delays, and data loss.

Control usually deals with modeling uncertainty, dynamic adaptation, and distur-
bance attenuation. More precisely, as shown with recent results obtained on NCS
[BAI 07], control loops are often robust and can tolerate computing and networking
performance induced disturbances, up to a certain extent. Therefore, timing devia-
tions such as jitter or data loss, as long as they remain inside the bounds which are
compliant with the control specification, may be considered as features of the nom-
inal system, not exceptions. Relying on control robustness allows for provisioning
the execution resources according to average needs rather than for worst cases, and to
consider system reconfiguration only when the failures exceed the capabilities of the
running controller tolerance.

An NCS is made up of a heterogenous collection of physical devices, falling
within the realm of continuous time, and information sub-systems basically working
with discrete timescales. During an NCS design process, many conflicting constraints

www.it-ebooks.info

http://www.it-ebooks.info/

4 Networked Control Systems Co-design

must be simultaneously solved before reaching a satisfactory and implementable so-
lution. For example, trade-offs must be negotiated between processing and network-
ing speed, control tracking performance, robustness, redundancy and reconfigurabil-
ity, energy consumption, and overall cost effectiveness. These conventional design
process problems from the different domains in succession prevent any coherent and
effective integration of methodologies, technologies or associated constraints.

Traditionally control usually deals with a single process and a single computer,
and it is often assumed that the limitations of communication links and computing
resources do not significantly affect performance, or they are taken into account in a
limited way. Existing tools dealing with modeling and identification, robust control,
fault diagnosis and isolation, fault tolerant control and flexible real-time scheduling
need to be enhanced, adapted and extended to cope with the networked characteristics
of the control system.

Finally, the concept of a co-design system approach has emerged to allow
progress in the integration of control, control, and communications in the NCS design
[MUR 03] and to develop implementation-aware control system co-design approaches
[BAI 07].

According to the systems scientist and philosopher, C.W. Churchman, “the system
approach begins when first you view the world through the eyes of another” [CHU 79].
The basic aspect of co-design applied to NCS is that the design of controllers and the
design of the execution resources, i.e. the real-time computing and communication
sub-systems, are integrated right from the early design steps to jointly solve the con-
straints arising from all sides.

Control design: from continuous time to networked implementation

In the early age of control, analog computers were used to work out the control
signals, firstly from mechanical devices, and then from electronic amplifiers and in-
tegrators: both the plant and the controller remained in the realm of continuous time,
while frequency analysis and Laplace transform were the main tools at hand. The
main drawbacks of analog computing come from limited accuracy and bandwidth,
drift and noise, and from limited capabilities to handle nonlinearities. Pure and known
delays could, however, be handled at control synthesis time by using the well-known
Smith predictor.

Then, due to the increasing power and availability of cheap numerical processors,
digital controllers gradually took over the analogue technology. However, controlling
a continuous plant with a discrete digital system inevitably introduces timing distor-
tions. In particular, it becomes necessary to sample and convert the sensors measure-
ments to binary data, and conversely to convert them back to physically related values

I.2.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement 5

and hold the control signals to actuators. The sampling theory and the z transform
became the standard tools for digital control systems analysis and design. A smart
property of the z transform is that it keeps the linearity of the system through the
sampling process. As the underlying assumption behind the z transform is equidistant
sampling, periodic sampling became the standard for the design and implementation
of digital controllers.

Note that, at the infancy of digital control, where computing power was weak and
memory was expensive, it was important to minimize the controllers’ complexity and
needed operating power. It is not obvious that the periodic sampling assumption is
always the best choice: for example, [DOR 62] show that adaptive sampling, where
the sampling frequency is changed according to the value of the derivative of the error
signal, can be more effective than equidistant sampling in terms of the number of com-
puted samples (but possibly not in terms of disturbance rejection [SMI 71]). [HSI 72]
and [HSI 74] provide a summary of these efforts. However, due to the constantly
increasing power and decreasing costs of computing, interest in sampling adaptabil-
ity and the related computing power savings has progressively vanished, while the
linearity preservation property of equidistant sampling has helped it to remain the in-
disputable standard for years.

From the computing side, real-time scheduling modeling and analysis were intro-
duced in the illustrious seminal paper [LIU 73]. This first schedulability analysis was
based on restrictive assumptions, one of them being the periodicity of all the real-time
tasks in the system. Even if more general assumptions have been progressively in-
troduced to cope with more realistic problems and tasks sets [AUD 95; SHA 04], the
periodicity assumption remains very popular, e.g. see today’s success of rate mono-
tonic analysis (RMA) based tools in industry, e.g. [SHA 90; DOY 94; HEC 94]. The
combination of these popular modeling and analysis methods and tools has likely rein-
forced the understanding that control systems are basically periodic and hard real-time
systems.

More recently, again due to the progress in electronic devices technology, it has
become possible to distribute control loops over networks. Networking allows for
the dissemination of sensors, actuators, and controllers on different physical nodes.
Moreover, the topology of the network can be time varying, thus allowing the control
devices to be mobile: hence, the whole control system can be highly adaptive in a
dynamic environment. In particular, wireless communications allow for a cheap de-
ployment of sensor networks and remotely controlled devices. However, networking
also induces disturbances in control loops, such as variable and potentially long de-
lays, data corruption, message desequencing and occasional data loss. These timing
uncertainties and disturbances are in addition to those coming from the digital imple-
mentation of the controllers in the network nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

6 Networked Control Systems Co-design

Timing parameter assignment

Digital control systems can be implemented as a set of tasks running on top of a
commercial off-the-shelf real-time operating system (RTOS) using fixed-priority and
pre-emption. The performance of a control loop, e.g. measured by the tracking error,
and even more importantly its stability, strongly relies on the values of the sampling
rates and sensor-to-actuator latencies (the latency considered for control purposes is
the delay between the instant when a measure qn is taken at a sensor and the instant
when the control signal U(qn) is received by the actuators [ÅST 97]. Therefore, it
is essential that the implementation of the controller respects an adequate timing be-
havior to meet the expected performance. However, implementation constraints such
as multi-rate sampling, pre-emption, synchronization, and various sources of delays
make the run-time behavior of the controller very difficult to accurately predict. Deal-
ing with closed-loop controllers may take advantage of the robustness and adaptivity
of such systems to design and implement flexible and adaptive real-time control archi-
tectures.

Closed-loop digital control systems use a computer to sample sensors, calculate
a control law and send control signals to the actuators of a physical process. The
control algorithm can be either designed in continuous time and then discretized or
directly synthesized in discrete time, taking into account a model of the plant sampled
by a zero-order holder. A control theory for linear systems sampled at fixed rates was
established a long time ago [ÅST 97].

Assigning an adequate value for the sampling rate is a decisive duty, as this value
has a direct impact on the control performance and stability. While an absolute lower
limit for the sampling rate is given by Shannon’s theorem, in practice, rules of thumb
are used to give a useful range of control frequencies according to the process dy-
namics and the desired closed loop bandwidth. Among others, such a rule of thumb is
given in [ÅST 97] as ωch ≈ 0.15 . . . 0.5, where ωc is the desired closed-loop pulsation
and h is the sampling period. Note that such rules only give preliminary information
about the sampling rate to be actually implemented, and sampling rate selection needs
to be further refined by simulations and experiments. In particular, it appears that
the actual sampling rate to be used with some nonlinear systems, as those described
in sections 1.4.2.3, 2.4.4, and in Chapter 7, must be far faster to achieve closed-loop
stability. However, most often, it can be stated that the lower the control period and
latencies are, the better the control performance is, e.g. measured by the tracking error
or disturbance rejection. This assumption can be reinforced by providing a suitable
control structure and parameter tuning, as shown in section 2.3 with the discussion on
weakly hard real-time constraints and accelerable control tasks.

While timing uncertainties have an impact on the control performance, the actual
scheduling parameters are difficult to model accurately or constrain within precisely
known bounds. Thus, it is worth examining the sensitivity of control systems w.r.t.

I.3.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement 7

Sampling rate

Performance degradation

Best performance

Continuous

control

Acceptable

performance

zone

Unacceptable

performance

zone

Instability

Digital

control

Networked

control

A B C

PA PB PC

control vs. sampling rate

timing fluctuations. The accepted wisdom is that the lower the control period is, the
better the control performance is. However, the underlying implementation system is
a limited resource and cannot accommodate arbitrarily high sampling rates; thus, there
must be a trade-off between the control performance and the execution resource uti-
lization. This is particularly true for distributed embedded system design with limited
resources due to weight, cost and energy consumption constraints. In [MOY 07] and

ing a good sampling period which gives a trade-off between control performance and
the related network load.

sampling rate range from PB to PC . Increasing the sampling rate beyond PC will
increase the network load and lead to longer network-induced delays. This results
in a control performance degradation. Note that for a given control application, the
affordable network bandwidth can also vary accordingly. This can provide a network
QoS designer with a larger solution space for designing the QoS mechanisms with
more flexibility.

The hard real-time assumption must be softened to better cope with the reality of
closed-loop control, for instance, changing the hard timing constraints for “weakly-
hard” constraints [BER 01]. For example, hard deadlines may be replaced by statisti-
cal models, e.g. to specify the jitter characteristics compliant with the requested con-
trol performance. They may also be changed for deadline miss or data-loss patterns,
e.g. to specify the number of deadline misses allowed over a specified time window

Figure I.2. Performance comparison of continuous control, digital control, and networked

[LIA 02], the illustrative chart in Figure I.2 is given to show the importance of choos-

From Figure I.2, it can be seen that the control performance is acceptable for a

www.it-ebooks.info

http://www.it-ebooks.info/

8 Networked Control Systems Co-design

according to the so-called (m, k)-firm model [HAM 95]. More precisely, a task meets
the (m, k)-firm constraint if at least m among any k consecutive task instances meet
their deadline. Note that to be fully exploited, weakly hard constraints should be as-
sociated with a decisional process: tasks missing their deadline can, for example, be
delayed, aborted or skipped according to their impact on the control law behavior, e.g.
as analyzed in [CER 05].

Finding the values of such weakly hard constraints for a given control law is cur-
rently out of the scope of current control theory, in general. However, the intrinsic
robustness of closed-loop controllers allows for relying on softened timing constraint
specification and flexible scheduling design, leading to an adaptive system with grace-
ful performance degradation during system overloads. Chapter 5 gives an example of
finding the values of m and k when the (m, k)-firm constraint is applied to the control-
loop task execution requirement.

Control and task/message scheduling

From the implementation point of view, real-time systems are often modeled as
a set of periodic tasks assigned to one or several processors. In distributed real-time
systems, messages are exchanged among related tasks through a network. To ensure
the execution of tasks on a processor, the worst-case response time analysis technique
is often used to analyze fixed-priority real-time systems. Well-known scheduling poli-
cies, such as rate monotonic for fixed priorities and EDF for dynamic priorities, assign
priorities according to timing parameters, respectively, sampling periods and dead-
lines. They are said to be “optimal” as they maximize the number of task sets which
can be scheduled with respect to deadlines, under some restrictive assumptions. Un-
fortunately, they are not optimized for control purposes. They hardly take into account
precedence and synchronization constraints, which naturally appear in a control algo-
rithm. The relative urgency or criticality of the control tasks can be unrelated with
the timing parameters. Thus, the timing requirements of control systems w.r.t. the
performance specification do not fit well into scheduling policies based purely on
schedulability achievement.

It has been shown through experiments, e.g. [CER 03], that a blind use of such
traditional scheduling policy can lead to an inefficient controller implementation; on
the other hand, a scheduling policy based on an application’s requirements, associ-
ated with a smart partition of the control algorithm into real-time modules may give
better results. It may be that improving some computing related feature is in con-
tradiction with another one targeted to improve the control behavior. For example,
the case studies examined in [BUT 07] show that an effective method to minimize
the output control jitter consists of systematically delaying the output delivery at the

I.4.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement 9

end of the control period: however, this method also introduces a systematic one pe-
riod input/output latency, and therefore most often provides the worst possible control
performance among the set of considered strategies.

Another example of unsuitability between computing and control requirements
arises when using priority inheritance or priority ceiling protocols to bypass priority
inversion due to mutual exclusion, e.g. to ensure the integrity of shared data. While
they are designed to avoid deadlocks and minimize priority inversion lengths, such
protocols jeopardize the initial schedule at run time, although it was carefully designed
with latencies and control requirements in mind. As a consequence, latencies along
some control paths can be largely increased, leading to a poor control performance or
even instability.

In a distributed system design, not only should the task set schedulability be en-
sured, but also message transmission through the network, since sensor to actuator
latencies heavily depend on transmission delay. Also, the schedulability tests must
consider tasks and messages as a whole, since a message is produced by a task exe-
cution and it may be needed to trigger another task execution. In [TIN 94], a holistic
approach is proposed. It consists of applying the worst-case response time analysis
technique to evaluating the end-to-end response time of a set of tasks distributed over
a controller area network (CAN). Periodic messages over CAN are scheduled under
a non pre-emptive, fixed priority policy. Their release jitters are caused by local task
scheduling. The worst case is considered where all messages are assumed to be re-
leased at the same time. This approach can effectively be used to validate distributed
control applications, but suffers from the resource over-provisioning problem because
of the obligation to consider the worst-case. The inherent robustness of the closed-
loop control application is not exploited.

Finally, off-line schedulability analysis relies on correctly estimating the tasks’
worst-case execution time (WCET). Even in embedded systems the processors use
caches and pipelines to improve the average computing speed, but this decreases the
timing predictability. When a network is included, additional timing uncertainty is
emphasized. Depending on the network protocols, the network-induced delay and
data loss can be very different. For instance, let us just take as an example the two
widely used industrial networks CAN and switched Ethernet.

A CAN uses a global priority-based medium access control protocol. High priority
messages have lower transmission latencies while low priority ones can suffer from
longer transmission delays [LIA 01]. An Ethernet switch can also deal with messages
using quite different scheduling policies (e.g. FIFO, WRR, fixed priority), resulting in
very different transmission delays. For real-time computing and networking design-
ers, the new challenge is how to design the quality of service (QoS) mechanisms in
scheduling both tasks in multitasking computing and messages managed by network
protocols, e.g. message scheduling at the MAC level, routing, etc. to meet specified

www.it-ebooks.info

http://www.it-ebooks.info/

10 Networked Control Systems Co-design

control-loop requirements. In fact, traditional QoS approaches assume that there is
a deadline for each application, and a static resource allocation principle based on
the worst-case situation is often used to provide delay/deadline guarantees. This ap-
proach also leads to a resource over-provisioning problem since a worst-case scenario
is considered.

Another source of uncertainty may come from some parts of the estimation and
control algorithms themselves. For example, the duration of a vision process highly
depends on incoming data from a dynamic scene. Also, some algorithms are iterative,
with a poorly predictable convergence rate, so the time before reaching a predefined
threshold is unknown (and must be bounded by a timeout associated with a recovery
process). In a dynamic environment, some of the less important control activities
can be suspended or resumed in the case of transient overload, or alternative control
algorithms with different costs can be scheduled according to various control modes,
leading to large variations in the computing load.

Thus, real-time control design based on worst-case execution time, maximum ex-
pected delay, and strict deadlines inevitably lead to a low average usage of the com-
puting resources and to a poor adaptability w.r.t. a complex execution environment.
All these drawbacks call for a better integration of control objectives with comput-
ing and communication capabilities through a co-design approach taking into account
both actual application requirements and the implementation system characteristics.

Diagnosis and fault tolerance in NCS

Due to an increasing complexity of dynamic systems, as well as the need for
reliability, safety and efficient operation, model-based fault diagnosis has became
an important subject in modern control theory and practice, e.g. [WIL 76; FRA 90;
GER 98]. Different techniques of model-based methods include observer based-,
parity relation- and parameter estimation approaches [CHE 99; MAN 00; ZHA 03].
When sampling and control data are transmitted over the network, many network-
induced effects such as time delays and packet losses will naturally arise. Owing to
the network-induced effects, the theories for traditional point-to-point systems should
be revisited when dealing with NCSs. Different studies have shown the importance
of taking into account characteristics of networks in the design of a fault diagnosis
system [DIN 06; LLA 06]. The main idea of these approaches is to minimize the false
alarms caused by transmission delays. In this case, a network-induced delay is consid-
ered when designing the FDI filter. On the other hand, FDI algorithms require specific
information on the process, thus the implementation of such algorithms increases the
network load and consequently, affects its QoS. The number of signals to be transmit-
ted may be reduced by allowing only a part of sensors and actuators to have access to
the network. In this case, less information is available for FDI at each sampling time.

I.5.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement 11

In [ZHA 05], observability conditions are established for the reduced communication
pattern.

Based on the fault diagnosis algorithm for NCSs, fault-tolerant control of NCSs
can be obtained. The existing methods of fault-tolerant control techniques against
actuator faults can be categorized into two groups: passive [SEO 96; CHE 04] and
active approaches [ZHA 02; ZHA 06]. [ZHE 03] proposed a passive controller for
NCSs considering random time delays. Although the passive controllers are easy to
implement, their performances are relatively conservative. The reason is that this class
of controllers, based on the alleged set of component failures and with a fixed struc-
ture and parameters, is used to deal with all the different failure scenarios possible. If
a failure occurs out of those considered in the design, the stability and performance
of the closed-loop system is unanticipated. Such potential limitations of passive ap-
proaches are behind the motivation for the research on active FTC (AFTC). AFTC
procedures require an on-line and real-time fault diagnosis process and a controller
reconfiguration mechanism. Because AFTC approaches propose a kind of flexibility
to select different controllers according to different component failures, better perfor-
mance of the closed loop system is expected. However, the above case holds only if
the fault diagnosis process provides a correct, or synchronous, decision.

Some preliminary results have been obtained on AFTC which tend to make the
reconfiguration mechanism immune from imperfect fault diagnosis decisions, as in
[MAH 03] and [WU 97]. [MAK 04] further discussed the above issue by using the
guaranteed cost control approach and on-line controller switching in such a way that
the closed-loop system was stable at all times. However, [MAK 04] did not consider
the plant controlled over the network.

Co-design approaches

NCS encompasses the control-loop application and the implementation system
(CPU and the networks managed by operating systems and protocols). Research work
on NCS mainly focuses on the robust control-loop design which takes into account
the implementation-induced delays and data loss. Network delays are assumed to
be either constant (can be realized by input data buffering) or randomly distributed,
following a well-known probability distribution. Data losses are assumed to follow
a Bernoulli process [ANT 07a; ZAM 08]. From these works, it appears that the as-
sumptions on network delay or data loss patterns seldom consider the actual network
characteristics nor the possible QoS mechanisms which are specific for each type of
network. In fact, using a prioritized bus like CAN, a switched Ethernet or a wireless
sensor network will result in fundamentally different QoS characteristics. This point is
of primary importance especially when the network is shared by several control loops
and other applications whose exact characteristics are often unknown at the control
loop design step. In this case, the traffic scheduling has a great impact on both delay

I.6.

www.it-ebooks.info

http://www.it-ebooks.info/

12 Networked Control Systems Co-design

variations and packet loss, which in turn impacts the control quality (stability and per-
formance) of the control loops. One solution to this problem relies on a tight coupling
between the control specification and the implementation system at design time.

Generally speaking, two ways to achieve an efficient NCS design can be distin-
guished. One way that is currently being explored by the control theorists can be
called “implementation-aware control law design.” The idea is to make on-line adap-
tations to the control loops parameters by adjusting, for example, the control loop
sampling period using a LQ approach in [EKE 00; CER 03], sample-time and/or de-
lay dependent gain scheduling in [MAR 04] and [SAL 05], a robust H∞ design in
[SIM 05], a hybrid rate adaptation in [ANT 07b], or both the actuation intervals and
control gains using model predictive control and hybrid modeling as in [Ben 06], or
LQ control associated with a (m, k)-firm policy as in [JIA 07] and [FEL 08].

Another is the so-called “control-aware QoS adaptation,” which is being explored
by the network QoS designers. The idea is to re-allocate the implementation system
resources on-line to maintain or increase the QoS level required by the control appli-
cation. In [JUA 07], a hybrid CAN message priority allocation scheme is proposed.
When there is an urgent transmission need, a dynamic priority field can be used to give
it even higher priority. This work exhibits a link between the hybrid priority scheme
and the control loop performance. In [DIO 07], the dynamic allocation of bandwidth
sharing in Ethernet switches with weighted round-robin (WRR) scheduler based on
both observed delay and the variation in the control quality (i.e. the difference be-
tween the reference and the process state) is presented. For this purpose, bandwidth
sharing (i.e. the weight assigned to each data flow or Ethernet switch port) is defined
as a function of the sensor to actuator delay and the current quality of control (QoC)
level.

Of course, a combination of both approaches will contribute to a more efficient
NCS design. Another very important aspect is the diagnosis and fault tolerance in
NCS. This aspect is to be integrated in the co-design approach for achieving efficient
and dependable NCS design.

Outline of the book

This book intends to provide an introduction to the problems that arise in NCS
design and to present the different co-design approaches.

The first chapter provides preliminary concepts, together with state of the art tech-
niques and existing solutions to implement distributed process control and diagno-
sis. In particular, control-aware static computing and network resource allocation
schemes are first reviewed. Then, the real-time adaptive resource allocation approach

I.7.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement 13

through feedback scheduling is described, and its feasibility is assessed through a
robot control application. Techniques for diagnosis and fault tolerance for networked
control systems are also reviewed.

A first step toward dependable control systems consists of using robust controllers,
e.g. controllers which are weakly sensitive to both process model and execution re-
source incertitude. Chapter 2 deals with implementation-aware or more precisely
computing-aware robust control. Computation durations, pre-emption between tasks
and communication over networks provide various sources of delays in the control
loops. Although the control systems with constant delays have been studied earlier,
taking into account more realistic variables or badly known delays recently brought
new and powerful results which are surveyed in section 2.2. Traditionally, real-time
control systems have been considered as “hard real-time”, i.e. systems where tim-
ing deviations such as deadline misses are forbidden. In fact, closed-loop systems
have some intrinsic robustness against timing uncertainties, which can be enhanced,
as shown in section 2.3, by being devoted to weakly hard control tasks. Robustness
can be considered as a passive approach w.r.t. timing uncertainties which are not mea-
sured and which are only assumed to have known bounds. In the case where the con-
trol intervals can be controlled, an adaptation of the controller gains w.r.t. the varying
control interval can be used in combination with robust control design, as developed
in section 2.4.

In addition to the controllers design, different approaches to enhance the QoC
consist of techniques enabling to adjust the QoS offered by a network. Chapter 3 deals
with control-aware dynamic network QoS adaptation. The key point here relies on the
determination of the relation between QoC and QoS. QoC might be formulated in
terms of overshoot or damping for instance, whereas QoS is often expressed in terms
of delays. As the QoS adaptation mechanisms differ with the kinds of networks being
considered, two approaches are illustrated in this chapter. One approach is based on
CAN bus, the second is based on switched Ethernet architectures. These two protocols
are widely used in industrial networks. In the case of the CAN protocol, a dynamic
hybrid message-priority allocation, taking into account the control application needs,
is proposed. In the case of switched Ethernet networks, bandwidth allocation control
strategies are defined. For both approaches, the network feedback control is based on
both the current QoS and the dynamic application-related parameters such as process
state output deviation or certain control loop cost functions. Finally, since networks
might have to support several applications, the QoS offered to each one is adjusted
according to its specific needs.

Feedback scheduling, as presented in the previous chapters, provides an effec-
tive but limited adaptability of execution resource allocation w.r.t. varying opera-
tion conditions because the control performance is not directly taken into account
in the scheduling parameter tuning. Chapter 4 describes other elaborate control and

www.it-ebooks.info

http://www.it-ebooks.info/

14 Networked Control Systems Co-design

scheduling co-design schemes, coupling control performance, and scheduling param-
eters more tightly, through the means of a few case studies. In section 4.2 the varying
sampling control laws are used as building blocks for such co-design schemes, with
no guarantees for the stability of the global loops. Section 4.3, summarizes a sub-
optimal solution for the case of control/scheduling co-design using a slotted timescale
based on the model predictive control approach. A convex optimization approach in
the framework of linear systems and linear quadratic control is provided in section
4.4. Finally, section 4.5 describes a LPV-based joint control and scheduling approach
applied to the control of a robot arm.

During system and network overload, excessive delays, or even data loss, may
occur. To maintain the QoC of an NCS, the implementation system overload must
be dealt with. As shown in Chapters 1 and 4, a common approach to deal with this
overload problem is to dynamically change the sampling period of the control loops.
In Chapter 5, an alternative to the explicit sampling period adjustment is proposed as
an indirect sampling period adjustment. It is based on selective sampling data drops
according to the (m, k)-firm model [HAM 95]. The interest of this alternative is its
ease of implementation, despite reduced adjustment quality since only the multiples
of the basic sampling period are used.

Chapter 6 deals with the processing of faults that may occur during the NCS op-
eration. These faults may affect the system’s physical components, or its sensors and
actuators, or even the network itself. From a safety point of view, it is important to
detect the occurrence of such faults, to determine the faulty physical components by
fault detection and isolation (FDI). FDI allows some automatic reaction to the super-
vision system (for instance automatic shut down in case of danger) or reaction to the
human operators in charge of the installation (for instance, manual control in open
loop). Sometimes, when these faults exceed the capabilities of robust control loops,
they can be accommodated by advanced control algorithms, compensating for the sys-
tem’s deficiencies by means of FTC. Section 6.2 recalls the basic results in FDI/FTC
for the centralized case. Then the drawbacks of networking for fault detection and
isolation are highlighted and some pragmatic solutions are given in section 6.4. More
advanced techniques for FDI/FTC over networks subject to delays and data loss, some
of which are still in the research field, are finally given in section 6.5.

Finally, Chapter 7 is devoted to the experimental validation of the approaches ex-
posed along the previous chapters, to assess their feasibility and effectiveness. A
quad-rotor miniature drone has been used throughout the SafeNecs project1 as a com-
mon setup to integrate contributions from the team’s partners, including variable sam-
pling control, control under (m, k)-firm scheduling constraints, diagnosis and FDI

1. SafeNecs is a research project funded by the French “Agence Nationale de la Recherche”
under grant ANR-05-SSIA-0015-03

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement 15

over a network, dynamic priorities on a CAN bus and fault-tolerant control of the set
of actuators. The development process starts with simulation under Matlab/Simulink;
real-time constraints are then added and evaluated using the TrueTime toolbox. The
next step consists of setting up a “hardware_in_the_loop” real-time simulation before
performing tests on the real process.

Bibliography

[ANT 07a] ANTSAKLIS P., AND BAILLIEUL J., Guest editorial, special issue on Technology
of networked control systems, Proceedings of the IEEE, vol. 95, p. 5–8, 2007.

[ANT 07b] ANTUNES A., PEDREIRAS P., ALMEIDA L., AND MOTA A., Dynamic rate and
control adaptation in networked control systems, 5th International Conference on Industrial
Informatics, Vienna, Austria, p. 841–846, June 2007.

[ÅST 97] ÅSTRÖM K. J., AND WITTENMARK B., Computer-Controlled Systems, Informa-
tion and System Sciences Series, Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1997.

[AUD 95] AUDSLEY N., BURNS A., DAVIS R., TINDELL K., AND WELLINGS A., Fixed
priority preemptive scheduling: an historical perspective, Real-Time Systems, vol. 8, p. 173–
198, 1995.

[AVI 00] AVIŽIENIS A., LAPRIE J.-C., AND RANDELL B., Fundamental concepts of depend-
ability, Report 01145, LAAS, Toulouse, France, 2000.

[BAI 07] BAILLIEUL J., AND ANTSAKLIS P.-J., Control and communication challenges in
networked real-time systems, Proceedings of the IEEE, vol. 95, p. 9–28, 2007.

[Ben 06] BEN GAID M., Optimal scheduling and control for distributed real-time systems,
PhD thesis, University of Evry Val d’Essonne, France, 2006.

[BER 01] BERNAT G., BURNS A., AND LLAMOSÍ A., Weakly hard real-time systems, IEEE
Transactions on Computers, vol. 50, p. 308–321, 2001.

[BUT 07] BUTTAZZO G., AND CERVIN A., Comparative assessment and evaluation of jitter
control methods, 15th International Conference on Real-Time and Network Systems, Nancy,
France, March 2007.

[CER 03] CERVIN A., Integrated control and real-time scheduling, PhD thesis, Department of
Automatic Control, Lund Institute of Technology, Sweden, April 2003.

[CER 05] CERVIN A., Analysis of overrun strategies in periodic control tasks, 16th IFAC
World Congress, Prague, Czech Republic, July 2005.

[CHE 99] CHEN J., AND PATTON R., Robust Model Based Fault Diagnosis for Dynamic Sys-
tems, Kluwer Academic Publishers, Dordrecht, 1999.

[CHE 04] CHENG C., AND ZHAO Q., Reliable control of uncertain delayed systems with inte-
gral quadratic constraints, IEE Proceedings Control Theory Applications, vol. 151, p. 790–
796, 2004.

[CHU 79] CHURCHMAN C., The Systems Approach and its Enemies, Basic Books, New York,
1979.

I.8.

www.it-ebooks.info

http://www.it-ebooks.info/

16 Networked Control Systems Co-design

[DIN 06] DING S., AND ZHANG P., Observer based monitoring for distributed networked
control systems, 6th IFAC Symposium SAFEPROCESS’06, Beijing, China, August 2006.

[DIO 07] DIOURI I., GEORGES J., AND RONDEAU E., Accommodation of delays for NCS
using classification of service, International conference on networking, sensing and control,
London, UK, April 2007.

[DOR 62] DORF R., FARREN M., AND PHILLIPS C., Adaptive sampling frequency for
sampled-data control systems, IEEE Transactions on Automatic Control, vol. 7, p. 38–47,
1962.

[DOY 94] DOYLE L., AND ELZEY J., Successful use of rate monotonic theory on a formidable
real time system, Proceedings of the 11th IEEE Workshop on Real-Time Operating Systems
and Software, Seattle, USA, p. 74–78, 1994.

[EKE 00] EKER J., HAGANDER P., AND ARZEN K.-E., A feedback scheduler for real-time
controller tasks, Control Engineering Practice, vol. 8, p. 1369–1378, 2000.

[FEL 08] FELICIONI F., JIA N., SIMONOT-LION F., AND SONG Y.-Q., Optimal on-line
(m,k)-firm constraint assignment for real-time control tasks based on plant state informa-
tion, 13th IEEE ETFA, Hamburg, Germany, September 2008.

[FRA 90] FRANK P. M., Fault diagnosis in dynamic systems using analytical and knowledge-
based redundancy: a survey and some new results, Automatica, vol. 26, p. 459–474, 1990.

[GER 98] GERTLER J., Fault Detection and Diagnosis in Engineering Systems, Marcel
Dekker Inc., New York, 1998.

[HAM 95] HAMDAOUI M., AND RAMANATHAN P., A dynamic priority assignment technique
for streams with (m, k)-firm deadlines, IEEE Transactions on Computers, vol. 44, p. 1443–
1451, December 1995.

[HEC 94] HECHT M., HAMMER J., LOCKE C., DEHN J., AND BOHLMANN R., Rate mono-
tonic analysis of a large, distributed system, IEEE Workshop on Real-Time Applications,
Washington, DC, USA, p. 4–7, July 1994.

[HSI 72] HSIA T. C., Comparisons of adaptive sampling control laws, IEEE Transactions on
Automatic Control, vol. 17, p. 830–831, 1972.

[HSI 74] HSIA T. C., Analytic design of adaptive sampling control law in sampled data sys-
tems, IEEE Transactions on Automatic Control, vol. 19, p. 39–42, 1974.

[JIA 07] JIA N., SONG Y.-Q., AND SIMONOT-LION F., Graceful degradation of the quality
of control through data drop policy, Proceedings of the European Control Conference, Kos,
Greece, July 2007.

[JUA 07] JUANOLE G., AND MOUNEY G., Networked control systems: definition and anal-
ysis of a hybrid priority scheme for the message scheduling, IEEE RTCSA, Daegu, Korea,
August 2007.

[LAP 92] Basic Concepts and Terminology, Springer-
Verlag, New York, 1992.

[LIA 01] LIAN F.-L., MOYNE J., AND TILBURY D., Performance evaluation of control net-
works: Ethernet, ControlNet, and DeviceNet, IEEE Control Systems Magazine, vol. 21,
p. 66–83, February 2001.

LAPRIE J.-C. (ed.), Dependability:

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Problem Statement 17

[LIA 02] LIAN F.-L., MOYNE J., AND TILBURY D., Network design consideration for dis-
tributed control systems, IEEE Transactions on Control Systems Technology, vol. 10,
p. 297–307, 2002.

[LIU 73] LIU C., AND LAYLAND J., Scheduling algorithms for multiprogramming in hard
real-time environment, Journal of the ACM, vol. 20, p. 40–61, February 1973.

[LLA 06] LLANOS D., STAROSWIECKI M., COLOMER J., AND MELENDEZ J., H∞ detection
filter design for state delayed linear systems, 6th IFAC Symposium SAFEPROCESS’06,
Beijing, China, August 2006.

[MAH 03] MAHMOUD M., JIANG J., AND ZHANG Y., Active fault tolerant control systems:
stochastic analysis and synthesis, vol. 287 of Lecture Notes in Control and Information
Sciences, Springer, Berlin, 2003.

[MAK 04] MAKI M., JIANG J., AND HAGINO K., A stability guaranteed active fault-tolerant
control against actuator failures, International Journal of Robust and Nonlinear Control,
vol. 14, p. 1061–1077, 2004.

[MAN 00] MANGOUBI R., AND EDELMAYER A., Model based fault detection: the optimal
past, the robust present and a few thoughts on the future, Proceedings of the fourth IFAC
symposium on fault detection supervision and safety for technical processes, SAFEPRO-
CESS’00, Budapest, Hungary, p. 64–75, June 2000.

[MAR 04] MARTI P., YEPEZ J., VELASCO M., VILLA R., AND FUERTES J., Managing
quality-of-control in network-based control systems by controller and message scheduling
co-design, IEEE Transactions on Industrial Electronics, vol. 51, p. 1159–1167, December
2004.

[MOY 07] MOYNE J., AND TILBURY D., The emergence of industrial control networks for
manufacturing control, diagnostics, and safety data, Proceedings of the IEEE, vol. 95,
p. 29–47, 2007.

[MUR 03] MURRAY R. M., ÅSTRÖM K. J., BOYD S. P., BROCKETT R. W., AND STEIN G.,
Future directions in control in an information-rich world, IEEE Control Systems Magazine,
vol. 23, April 2003.

[SAL 05] SALA A., Computer control under time-varying sampling period: an LMI gridding
approach, Automatica, vol. 41, p. 2077–2082, 2005.

[SEO 96] SEO C., AND KIM B., Robust and reliable H∞ control for linear systems with
parameter uncertainty and actuator failure, Automatica, vol. 32, 1996.

[SHA 90] SHA L., AND GOODENOUGH J. B., Real-time scheduling theory and Ada, IEEE
Computer, vol. 23, p. 53–62, 1990.

[SHA 04] SHA L., ABDELZAHER T., ÅRZÉN K.-E., CERVIN A., BAKER T., BURNS A.,
BUTTAZZO G., CACCAMO M., LEHOCZKY J., AND MOK A. K., Real time scheduling
theory: a historical perspective, Real Time Systems, vol. 28, p. 101–156, 2004.

[SIM 05] SIMON D., ROBERT D., AND SENAME O., Robust control / scheduling co-design:
application to robot control, Proceedings of the 11th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, San Francisco, USA, March 2005.

www.it-ebooks.info

http://www.it-ebooks.info/

18 Networked Control Systems Co-design

[SMI 71] SMITH M., An evaluation of adaptive sampling, IEEE Transactions on Automatic
Control, vol. 16, p. 282–284, 1971.

[TIN 94] TINDELL K., AND CLARK J., Holistic schedulability analysis for distributed hard
real-time systems, Microprocessors and Microprogramming, vol. 40, p. 117–134, 1994.

[WIL 76] WILLSKY A., A survey of design methods for failure detection in dynamic systems,
Automatica, vol. 12, p. 601–611, 1976.

[WU 97] WU N., Robust feedback design with optimized diagnostic performance, IEEE
Transactions on Automatic Control, vol. 42, p. 1264–1268, 1997.

[ZAM 08] ZAMPIERI S., Trends in networked control systems, 17th IFAC World congress,
Seoul, Korea, p. 2886–2894, July 2008.

[ZHA 02] ZHANG Y.-M., AND JIANG J., An active fault-tolerant control system against par-
tial actuator failures, IEE Proceedings, Control Theory and Applications, vol. 149, p. 95–
104, 2002.

[ZHA 03] ZHANG Y., AND JIANG J., Bibliographical review on reconfigurable fault-tolerant
control systems, 5th IFAC Symposium SAFEPROCESS’03, Washington, DC, USA, June
2003.

[ZHA 05] ZHANG L., AND HRISTU-VARSAKELIS D., Stabilization of networked control sys-
tems: designing effective communication sequence, 16th IFAC world congress, Prague,
Czech Republic, July 2005.

[ZHA 06] ZHANG J., AND J.JIANG, Modeling of vertical gyroscopes with consideration of
faults, Proceedings of Safeprocess’2006, Beijing, China, 2006.

[ZHE 03] ZHENG Y., Fault diagnosis and fault tolerant control of networked control systems,
PhD thesis, Huazhong University of Science and Technology, 2003.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Preliminary Notions and State of the Art

1.1. Overview

Basically, co-design needs to share, compare, and gather the knowledge and per-
spectives brought by the stakeholders involved in the design process. Indeed, the de-
sign of safe networked control systems involves many basic methodologies and tech-
nologies. The essential methodologies involved here are feedback control, real-time
scheduling, fault detection and isolation (FDI), filtering and identification, network-
ing protocols, and QoS metrics: each of them relies on theoretic concepts and specific
domains of applied mathematics such as optimization and information theory. On
the other hand, these concepts are implemented via various technologies and devices,
for example, involving mechanical or chemical engineering, continuous and digital
electronics and software engineering.

These basic domains are explained in existing literature; hence, this chapter is not
meant to give an exhaustive overview of all the methodologies and technologies used
further in the book. This book is also not meant to provide an exhaustive state of the
art nor to be a definitive treatise on the open topic of safe NCS; it is aimed at recording
and disseminating the experience gathered by the authors during the joint SAFENECS

academic research project. The team brought together people from different horizons,
with basic backgrounds in control or computer science, and expertise in various do-
mains and technologies such as digital control design, modeling of dynamic systems,
real-time scheduling, identification, and diagnosis. Fault-tolerant control (FTC), net-
working protocols, quality of service (QoS) analysis in networks, and model-based
software development, among others.

Chapter written by Christophe AUBRUN, Daniel SIMON and Ye-Qiong SONG.

19

www.it-ebooks.info

http://www.it-ebooks.info/

20 Networked Control Systems Co-design

Besides the knowledge provided by basic education in control and computer sci-
ence, it appears that some topics that are useful in the joint design of control systems
over networks are too specific, or too new and not disseminated enough, to be cur-
rently a part of basic education in control or industrial computing. So the next sections
provide additional knowledge about such topics and will be useful in what follows.

Section 1.2 gives preliminary notions about real-time scheduling as well as some
popular real-time scheduling policies. A particular focus is given on the so-called
(m, k)-firm scheduling policy, which is, in particular, the groundwork for the con-
trol/networking co-design methodology that is developed in Chapter 5. Then, section
1.3 provides basic considerations and describes the current solutions for control-aware
computing, i.e. providing computing architecture designs able to improve the quality
of control of the system. One very appealing solution for the control of computing
and networking resources subject to variable and/or badly known operating condi-
tions uses a feedback-scheduling loop, whose basic design and implementation are
described in section 1.4. Finally, section 1.5 provides a brief state of the art about
fault diagnosis in control systems subject to network-induced effects.

1.2. Preliminary notions on real-time scheduling

When taking into account the implementation aspect of the control applications,
one of the fundamental problems is to ensure timely execution of the tasks and trans-
mission of messages related to control loops, e.g. transmission of a sampling data
from a sensor to a controller, execution of the control task on a multitasking operating
system (OS), sending the command from the controller to the actuator.

Control applications are typical real-time applications. The execution of a task or
transmission of data is under time constraint (often under deadline constraint) in order
to ensure the reactivity of the system and thus guarantee the stability and desired con-
trol performance. Real-time scheduling theory has been developed for studying how
to effectively schedule the access to a shared resource of the concurrent tasks (through
scheduling algorithm development) and to guarantee that the designed system can
meet time constraints (through schedulability analysis).

This section is not intended to give a comprehensive review of the real-time schedul-
ing theory, but rather provides the necessary basic background to facilitate the under-
standing of the remaining chapters of this book. Readers interested in more detail may
refer to [LIU 00], and also to [LEU 04] for a broader view on scheduling.

The notion of priority is commonly used to order access to the shared resources
such as a processor in multitask systems and a communication channel in networks.
In the following, except in case of necessity, we will always use the term task which

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 21

may represent either a task execution on a processor or a packet/message transmitted
on a network channel.

A classic periodic task model is proposed by Liu and Layland [LIU 73]. Each
periodic task of priority i, denoted by τi , is characterized by its worst-case execution
time (WCET) Ci , its period Ti with which its execution is requested, and its relative
deadline Di . The problem is how to schedule a set of n independent periodic tasks
Γ = {τ1 , τ2 , ..., τn} on one processor to ensure that the deadline of each instance is
met (i.e. executed before the deadline). This is called hard real-time guarantee. In
priority-based scheduling, it is usual to use the value i = 1 for the highest priority
and larger integer of i for lower priority. During the execution of a task instance of
priority i, if a higher priority one arrives, two scheduling policies exist: pre-emptive
and non-pre-emptive. In the pre-emptive case, on-going lower priority task execution
is interrupted by the higher priority one and its execution is resumed after the end of
the execution of the higher priority one if there is no other released higher priority
ones. Pre-emption is often not allowed when dealing with packet transmission in a
communication channel, or when the pre-emption overhead is too high.

This classic task model can be used for representing the control task execution
on a processor where the deadline is deduced from the sampling period of the control
loop. When several control tasks (or one control task and several other tasks) share the
same processor, scheduling policies must be studied for ensuring the deadlines are met
and consequently the Quality of Control (QoC). However, as mentioned earlier in the
Introduction and Problem Statement, guaranteeing deadlines are met for all the task
instances (i.e. hard real-time guarantee) generally requires huge resource reservation
leading to the over-provisioning problem. While we know that feedback control loops
have certain robustness with respect to timing uncertainty. Occasional deadline miss
or instance non-execution can often be tolerated if they do not occur in a long-term
consecutive way. In this case, the (m, k)-firm model introduced by [HAM 95] seems
more suitable. In fact, a task meets the (m, k)-firm constraint if there are at least m
among any k consecutive task instances meet their deadline. This can thus be used to
specify how the deadline miss or instance discarding is tolerated.

In what follows, we will give some basic results on priority-based classic task
model scheduling and (m, k)-firm one.

1.2.1. Some basic results on classic task model scheduling

In this part two scheduling algorithms are presented: rate monotonic (RM) and
earliest deadline first (EDF). RM is a fixed-priority scheduling algorithm where the
priorities are assigned to the tasks according to their periods (or appearing rates). The
task with the smallest period has the highest priority. Note that the same principle can
be used to get some variants such as deadline monotonic (DM) or generally speaking

www.it-ebooks.info

http://www.it-ebooks.info/

22 Networked Control Systems Co-design

fixed priority according to whatever importance criteria. EDF is a typical example of
dynamic priority scheduling algorithms. Priorities assigned to the tasks are inversely
proportional to the absolute deadlines of the active tasks. That is, the earlier the dead-
line, the higher the priority. The priority assigned to a task is of course dynamic and
recalculated every time there is a new active task or an execution completion.

Let us consider a set of n independent periodic tasks Γ = {τ1 , τ2 , ..., τn} on one
processor. For this system, the total normalized workload or processor utilization is
U =

∑n
i=1

Ci

Ti
, and the system is feasible when U ≤ 1.

1.2.1.1. Fixed priority scheduling

Let the priority of the tasks τi be classified in decreasing orders: i < j ⇒ the
priority of τi is higher than that of τj ; in the case of RM or DM, the priority of τi is

1
min(Di ,Ti)

.

In [LIU 73], under pre-emptive RM, the following sufficient condition is estab-
lished on the feasibility of the task set for ∀i, Di = Ti :

n∑
i=1

Ci

min (Di, Ti)
≤ n ·

(
2

1
n − 1

)
. (1.1)

With n tending to infinity, n(21/n − 1) approaches ln2 ≈ 69.31%.

In [LIU 73], it has also been shown that the worst-case response time is obtained
when the first instances of all the tasks are synchronized.

A sufficient and necessary condition for the non-concrete task set has been given
in [JOS 86] based on the technique called worst response time analysis (RTA).

Formally, for ∀i, Ri ≤ Di , Ri is iteratively calculated by taking into account
the interference caused by the higher priorities. For U ≤ 1 and ∀i, Di ≤ Ti , Ri is
obtained with the following fixed point calculation:

R0
i = Ci

∀k ≥ 1, Rk
i = Ci +

∑
j<i

Cj ·
⌈

Rk−1
i

Tj

⌉
.

The computing stops when the iteration can no longer progress (Rk
i = Rk−1

i = Ri)
or when Ri > Di .

In a general case with unrelated Di and Ti , and especially for the case of Di > Ti ,
this RTA technique has been extended [TIN 94].

Note that this technique is also applicable to the non pre-emptive case by including
the blocking factor due to the on-execution low-priority task [TIN 94].

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 23

1.2.1.2. EDF scheduling

For a set of independent periodic tasks Γ = {τ1 , τ2 , ..., τn} with ∀i, Di = Ti and
under pre-emptive EDF, the necessary and sufficient condition of the schedulability is
[LIU 73]:

U =
n∑

i=1

Ci

Ti
≤ 1. (1.2)

It is proved [BAR 90] that this condition is still true for the case ∀i, Di ≥ Ti . For a
task set with ∀i, Di ≤ Ti , the previous condition is no longer sufficient. In [BAR 90]
and [SPU 96], two necessary and sufficient conditions are given for task set with arbi-
trary Di and Ti .

Under non pre-emptive EDF, in the case of non-concrete tasks, a sufficient and
necessary schedulability test with pseudo-polynomial complexity is given in [JEF 91].
The test is based on the processor demand calculation. When the tasks are syn-
chronous, the same condition becomes only sufficient. It has been shown in [JEF 91]
and [GEO 95] that determining the schedulability is an NP-hard problem.

1.2.1.3. Discussion

Fixed priority scheduling is now supported by most of commercial off-the-shelf
(COTS) OS. It can also be found in some networks. For instance, CAN network uses
a priority-based MAC protocol so that CAN messages schedulability can be analyzed
using the RTA technique [TIN 94]. This scheduling algorithm is also present in some
Ethernet switches. Chapter 3 will study the control and network QoS co-design of the
NCS distributed around a CAN and switched Ethernet network, respectively.

EDF is known as an optimal scheduling algorithm. However its implementation
can induce unacceptable high overhead due to the frequent context changes related to
the dynamic priority assignment. Today, few COTS OS support EDF.

Ensuring hard real-time constraint by the schedulability analysis may lead to re-
source over-provisioning problem since in practice it is difficult to get a tight upper
bound on the WCET, especially when dealing with packet transmission in a network.
The worst-case workload scenario may never happen. To cope with these uncertain-
ties, a system designer may try to either prevent overloads by making safe assumptions
about workload or tolerate overloads (but still providing reduced-but-acceptable level
of service). The latter is particularly interesting for feedback control applications
thanks to the robustness of the control loops. For the overload management, fixed-
priority scheduling has an advantage over EDF. In fact, during an overload situation,
only low-priority tasks are affected in fixed-priority scheduling. EDF has very bad
behavior during overload since it tries to always give the highest priority to the task
that will miss its deadline, resulting in a general deadline miss of all tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

24 Networked Control Systems Co-design

Many other approaches such as imprecise computation model, skippable model,
(m, k)-firm model have been developed to deal with overloads. We introduce in the
following some basic notions on (m, k)-firm. This model is then used in Chapters 2
and 5. Chapter 5 also gives further details before applying it to the overload manage-
ment when several control loops share the same processor.

1.2.2. (m,k)-firm model

A system meeting (m, k)-firm constraint requires a minimum QoS of m out of any
k consecutive deadlines to meet in the worst case, where m and k are two positive in-
tegers (the case where m = k is equivalent to the ideal case, which is noted by (k, k)-
firm and corresponds to the hard real-time constraint). In general cases, more than
m deadlines are met as the system does not always run at the worst-case condition.
This is to say that if the (m, k)-firm constraint is respected, during whatever window
of k consecutive instance occurrences, there exist at least m instances that meet their
deadline. Note that in general the k consecutive instance occurrences are not neces-
sarily periodic, so the window of k consecutive instances does not necessarily have a
constant time duration [LI 09]. However, in the networked control applications, most
of the cases are periodic ones due to the sampling principle. Therefore in this book, a
task τi is characterized by {Ci , Ti , Di , mi , ki}, with i = 1, 2, ..., n representing the
index of tasks (but not necessarily their priority). A task could be a stream of messages
to transmit or a periodic task to execute.

A task under (m, k)-firm constraint can be found in one of the two following states:
normal and dynamic failure [HAM 95]. Figure 1.1 shows an example of the state-
transition diagram for (2, 3)-firm: 1 denotes that a deadline is met and 0 denotes a
deadline missed, respectively. These states are evaluated according to the past situa-
tion of the system; every state that is either normal or dynamic failure depends on the
last three deadlines services. The next deadline’s meet or miss will cause the system

Figure 1.1. State-transition diagram with (2, 3)-firm

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 25

to transit to another state. If there is more than 1 missed deadline, the system is in a
dynamic failure state. Otherwise, the system is in a normal state.

For the efficient overload management, we adopt dropping strategy: any instance
that cannot be executed before its deadline is dropped. So whenever talking about
(m, k)-firm in this book, a missed deadline is equivalent to an instance drop.

If a control system can accept control performance degradation until k − m dead-
lines misses (or equivalent packet losses) among any k consecutive ones, the system
can then be designed according to the (m, k)-firm approach to offer the variable levels
of control performance between (k, k)-firm (ideal case) and (m, k)-firm (worst case)
with as many intermediate levels as the possible values there are between k and m.
This results in a control system with graceful degradation of the control performance.

The problem of scheduling tasks under (m, k)-firm constraint has drawn particular
attention in real-time community. Some important results have been obtained.

The first category concerns the development of the specific scheduling algorithms.
The well-known one is distance-based priority (DBP) proposed in [HAM 95]. Con-
sidering n tasks sharing a common server (may be a processor or a communication
channel) and each has its own (mi, ki)-firm constraint, the principle is to dynamically
assign priorities to the different tasks according to the distance to the dynamic failure
state. The closer the task to a failure state, the higher its priority. A failure state occurs
when the task’s (mi, ki)-firm requirement is violated, i.e. there are more than ki −mi

deadlines missed within the last k-length window. So to know the current state of a
task we should examine the execution history of the last k instances. If we associate
1 with an instance with deadline met and 0 with an instance with deadline missed,
this history is then entirely described by a word of k bits called the k-sequence. The
k-sequence is a word of k ordered bits in which each bit keeps memory of whether
the deadline is missed (bit= 0) or met (bit=1). In the k-sequence, the bit is ordered the
most recent to the oldest task instance where the leftmost bit represents the oldest one.
Each newly arrived instance causes a shift of all the bits toward the left, the leftmost
exits the word and is no longer considered, while the rightmost will be a 1 if the in-
stance has met its deadline (i.e. it has been served within) or a 0 otherwise. Figure 1.2
gives an example with (3,5)-firm constraint.

Thus for each task τi under (mi, ki)-firm constraint, the priority is assigned based
on the number of consecutive deadline misses that leads the task to violate its (mi, ki)-
firm requirement. This number of missed deadlines is referred to as the distance to
failure state from the current state. DBP assigns priority to a given instance by the
distance from the current k-sequence to a failure state. Considering the above exam-
ple with (3, 5)-firm constraint, the current instance is assigned the priority of 2 if the
current 5-sequence is (11011), and is set the priority of 3 if the current 5-sequence
is (10111). Note that in case of equal priority, EDF is used to break the tie. For

www.it-ebooks.info

http://www.it-ebooks.info/

26 Networked Control Systems Co-design

11011

1

1

Deadline
met

Deadline
missed 10110

10111

Figure 1.2. Evolution of the k-sequence

non-pre-emptive DBP, a first necessary schedulability condition has been given in
[POG 03]. A sufficient schedulability condition is presented in [LI 04a]. Dynamic
window constrained-scheduling (DWCS) is another similar algorithm proposed in
[WES 99] with its schedulability analysis in [WES 04]. Other scheduling algorithms
have also been developed specifically for control applications such as Markov chain-
driven algorithm (MDA), dropout-rate-driven algorithm (DDA), and feedback-driven
algorithm (FDA) [LIU 06].

The second category concerns the adaptation of the existing scheduling algorithms
to the (m, k)-firm constraint. In [RAM 99], the RM algorithm is adapted to the (m, k)-
firm model by defining the notion of (m, k)-pattern which is in fact a fixed k-sequence.
This allows the instances to be classified in two priorities: mandatory and optional.
The guarantee of the execution of the mandatory instances ensures meeting of the
(m, k)-firm constraint. The sufficient schedulability condition is also presented.
Enhanced fixed-priority (EFP) algorithm [QUA 00] proposes an improvement by in-
troducing a heuristic rotation algorithm to reduce the effect of the worst-case interfer-
ence point due to the superposition of the mandatory instances of tasks. This part will
be further detailed in Chapter 5.

1.3. Control aware computing

Control and real-time computing have been associated for a long time, with the
control of industrial plants and in embedded or mobile systems, e.g. automotive and
robotics. However, both parts, control and computing, are often designed with poor in-
teraction and mutual understanding. From the control design point of view, a constant
and unique period is usually assumed. Delays are supposed negligible or constants,
and jitter is ignored. The implementation design then follows, trying to meet these
assumptions.

Real-time scheduling has mainly focused on how to dimension resources to meet
deadlines, or equivalently, on the schedulability analysis for a given resource. Indeed,
the real-time community has usually considered that control tasks have fixed peri-
ods, hard deadlines, and worst-case execution times. This assumption has served the

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 27

separation of control and scheduling designs, but has led to under-utilization of CPU
resources and inflexible design.

The hard and costly way consists in building a highly deterministic system, from
the hardware, operating system and communication protocols sides, so that the actual
implementation parameters meet the ideal ones. This extreme solution is used if, for
instance, determinism is requested for formal verification and/or certification purpose,
e.g. as in the synchronous programming approach [BEN 91] or in the time-triggered
paradigm [KOP 03]. However, trying to nullify (even virtually) latencies and jitter
generally leads to worst-case-based resources provisioning and tends to needlessly
overconstraint the system’s design and implementation.

In fact, the hard real-time constraints can be often relaxed in a controlled way,
e.g. considering the intrinsic robustness provided by the closed-loop paradigm. In a
real control implementation, latencies and sampling jitter inevitably exist, in particular
when actuators, sensors, and controllers are distributed over a network. A smart or-
ganization and use of network and processor resources, with control features in mind,
may lead to serious improvements in the control performance, resources usage and
overall cost.

1.3.1. Off-line approaches

A first set of methods consists of computing off-line the set of scheduling
parameters which (ideally) maximize the control performance under schedulability
constraints. The first step consists in getting a model of the control performance func-
tion of the execution parameters. The problem of optimal sampling period selection,
subject to schedulability constraints, was first introduced in [SET 96]. Considering
a bubble control system benchmark, the relationship between the control cost (corre-
sponding to a step response) and the sampling periods was approximated using convex
exponential functions. Using the Karush–Kuhn–Tucker (KKT) first-order optimality
conditions, the analytic expressions of the optimal off-line sampling periods were es-
tablished. The problem of the joint optimization of control and off-line scheduling has
been studied in [REH 04; LIN 02a; BEN 06].

In a multitasking system, several control tasks share a common computing re-
source: the resulting pre-emption induces latencies due to the computations them-
selves, but also due to the interleaving between their executions. Models of the control
behavior based on linear systems theory are used in [RYU 97] and [SAK 98] to derive
cost functions which depict the control performance, e.g. the rise time, as a function
of two execution parameters, the control period and loop delay. Then an optimization
iterative algorithm (simplex) is used to tune the execution parameters in order to max-
imize the overall control performance with respect to the implementation feasibility.
However, due to the complexity of the optimization process this method can be used
only off-line.

www.it-ebooks.info

http://www.it-ebooks.info/

28 Networked Control Systems Co-design

Often the lazy way to implement a controller consists of programming a single
real-time task when all the components of the controller are executed in sequence in
a single loop. However, it appears that all the components of a control algorithm
do not require the same timing parameters, and do not have the same weight in the
final performance and stability. Some parts of the controller are more critical w.r.t.
latencies, or require more frequent updating than others. Therefore, the controller can
be split into modules according to these timing requirements, so that latencies can be
minimized along some critical data paths, or to enforce the execution of safety critical
functions even in the case of transient overload.

For example, it is possible to split the controller of a linear system in several parts
according to their relative urgency, as shown in the following piece of pseudocode
[ÅST 97]:

loop{
Wait_Clock(); //waiting periodic request
Get_Sensors(); //read y(k)

Calculate_Output(); //u(k) = f(y(k), x̂(k − 1), ...)
Send_Control(); //send u(k)

Update_State(); //x̂(k) = g(y(k), x̂(k − 1), ...) }

Here the input/output latency is minimized, as the control signals are computed
and sent to the actuators immediately after updating the measures, while updating the
model and internal state of the controller can be delayed until the end of the control
period.

This method is, for example, used in [EKE 99] where this control task split is
applied to the control of a set of concurrent inverted pendulums: compared with the
naive implementation where all computations are made before sending the control sig-
nals, it provides an impressive increase in the control performance with no additional
computing cost. A more complex and nonlinear system can also benefit from such sep-
aration of the control algorithm between fast and critical control paths (e.g. low-level
stabilization loop) and slower components, e.g. vision-based navigation. Obviously
the operating system and associated run-time framework must allow for such multi-
task/multi-rate implementation [SIM 05a]. This modular timing analysis seems to be
an essential starting point for flexible and efficient real-time control implementation,
as in the example depicted in section 1.4.2.3.

1.3.2. Quality of Service and flexible scheduling

Other approaches define a QoS criterion to depict, e.g. the relations between the
performance and the controller’s period. This performance model can be used to con-
figure an admission controller managing the overall system load [ABD 97], or to per-
form an on-line negotiation involving periods and priorities as in [SAN 00].

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 29

Besides control considerations, flexible and control aware solutions have also been
provided by the computer science side. For example, let us cite the “Elastic Tasks”
paradigm [BUT 00], where the sensitivity of the QoS relative to the execution period
for every task is modeled by a “stiffness” and takes into account bounds in the allowed
execution period. To make the task set schedulable, the task stack is “compressed”
until the accumulated execution load fit with the allocated CPU capacity. Although
this implementation is in open loop w.r.t. the actual QoS, it allows for an improved
adaptation against transient overloads.

As sharing the computing resource between controllers is a central issue, some
variants of the Control Bandwidth Server (CBS) approach [ABE 98] have been used
to enforce protection between competing control activities. For example in [CAC 00]
the nominal control periods of the competing controllers are computed thanks to the
optimization process of [SET 96] aiming at maximizing the control performance un-
der scheduling constraints. The on-line execution time variations of the controllers are
locally processed inside the computing budget allocated by the CBS server.

Let us cite also the control server ([CER 03b]) where a fraction of the total CPU
power is statically reserved to each control thread. Then the system behaves as if each
controller was isolated using its own computation resource, in particular an overloaded
controller does not disturb its neighbors. Inside each computing segment the individ-
ual controllers are organized to minimize their I/O latency and jitter. In the case of
transient overload, the missing computing budget for one controller is postponed to its
next reserved slice, with no impact on the others.

This mainly concerns the integration of control performance knowledge in the
scheduling parameters assignment. Indeed, once a control algorithm has been de-
signed, a first job consists of assigning timing parameters, i.e. period of tasks and
deadlines, so that the controller’s implementation meets the control objective. This
may be done off-line or on-line.

In off-line control/scheduling co-design, the task of setting adequate values for
the timing parameters rapidly fall into case studies based on simulation and experi-
ments. For instance in [RYU 97] off-line iterative optimization is used to compute an
adequate setting of periods, latencies, and gains resulting in a requested control perfor-
mance according to the available computing resource and implementation constraints.
Also in [SAN 02] the temporal requirements of the control system are described using
complex temporal attributes (e.g. nominal period and allowed variations, precedence
constraints, etc.): this model is then used by an off-line iterative heuristic procedure to
assign the scheduling parameters (e.g. priorities and offsets) to meet the constraints.

Concerning co-design for on-line implementation, recent results deal with vary-
ing sampling rates in control loops in the framework of linear systems: for example

www.it-ebooks.info

http://www.it-ebooks.info/

30 Networked Control Systems Co-design

[SCH 02] show that, while switching between two stable controllers, too frequent con-
trol period switches may lead to instability. Unfortunately, most real-life systems are
nonlinear and the extrapolation of timing assignment through linearization often gives
rough estimations of allowable periods and latencies or they can even be meaningless.
In fact, as shown later in the examples, knowledge of the plant’s behavior is necessary
to get an efficient control/scheduling co-design.

1.4. Feedback-scheduling basics

Besides traditional assignment of fixed scheduling parameters, more flexible sche-
duling policies have been investigated. The main idea is that fast sampling and com-
puting are costly, so running the controllers only when useful or necessary is expected
to save computing power, network bandwidth and energy. Networked control systems
can be made of autonomous and/or mobile devices connected by wireless communi-
cations. As these devices may have a limited on-board energy storage, optimizing the
cost of computations and communications induced by the control activities is again
gaining interest.

As already mentioned in section 0.2, the on-line adaptation of the sampling interval
as a function of the system’s behavior and state has been studied from the beginning of
computer-controlled systems [DOR 62; HSI 74]. Besides the time-triggered approach
and variations around the sampling period adaptation, an even more radical approach
is the so-called “Event-based control” concept. Indeed, this approach is natural in
some application domains, as in engine control where the basic events scale is linked
to the crank-shaft position turning at a variable speed rather than to clocks. However,
it has been proposed as an alternative to time-triggered sampling when the execution
resources used by the controller are constrained.

Within the event-triggered control approach the decision to compute and apply a
new control action is based on the level crossing of some signal of interest, e.g. the
error signal between the desired set-point and actual measurement as in [ÅRZ 99]
and [DUR 09]. Note that even if the controller is sleeping most of the time waiting for
awaking events, the controlled plant must be continuously observed for event detection
at a rate fast enough to allow for fast reactions and effective disturbance rejection.

Anyway, effective real-time management of the computing and networking re-
sources needs to close the loop between the execution resource utilization and the
actual scheduling parameters. The feedback-scheduling approach has been initiated
both from the real-time computing side [LU 00; LU 02] and from the control side
[CER 00; EKE 00; CER 02]. The idea consists of adding to the process controller
an outer sampled feedback loop (“scheduling regulator”) to control the scheduling
parameters as a function of a QoC (Quality of Control) measure. It is expected that
an on-line adaptation of the scheduling parameters of the controller may increase its

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 31

−
Uk

+

+
−

manager
Scheduling

controller

Scheduling

scheduler

Global objective

feedforward
admission controller
exceptions handling

QoS

Scheduling
Parameters

Process state estimates

Process objectives

CPU/network state load/latency estimates

Y

Instrumentation

RTOS

(QoC)

Plant modeling and actual QoCs

SAMP

controller
Process ProcessZOH

Figure 1.3. Hierarchical control structure

overall efficiency w.r.t. timing uncertainties coming from the unknown controlled en-
vironment. Also we know from control theory that closing the loop may increase
performance and robustness against disturbances when properly designed and tuned
(otherwise it may lead to instability).

Figure 1.3 gives an overview of a feedback scheduler architecture where an outer
loop (the scheduling controller) adapts in real time the scheduling parameters from
measurements taken on the computer’s activity, e.g. the computing load. Ideally it
would be also fed by measures related to the quality of control, thus really provid-
ing integrated control and scheduling, which is the topic of Chapter 4. Besides this
controller working periodically (at a rate larger than the sampling periods of the plant
control tasks), the system’s structure may evolve along a discrete time scale upon
occurrence of events, e.g. for new task admission or exception handling. These deci-
sional processes may be handled by another real-time task, the scheduling manager,
which is not further detailed in this paper. Notice that such a manager may give a
reference to the controller resource utilization.

The design problem can be stated as control performance optimization under con-
straint of available computing resources. Early results come from [EKE 00] where a
problem of optimal control under computation load constraints is theoretically solved
by a feedback scheduler, but leads to a solution too complex to be implemented in real
time. Then [CER 03a] shows that this optimal control problem can often be simply
implemented by computing the new task periods by the re-scaling:

hk+1
i = hk

i

U

Usp
,

www.it-ebooks.info

http://www.it-ebooks.info/

32 Networked Control Systems Co-design

where Usp is the utilization set-point and U the estimated CPU load. The feedback
scheduler then controls the processor utilization by assigning task periods that op-
timize the overall control performance. This approach is well suited for a “quasi-
continuous” variation of the sampling periods of real-time tasks under control of a
pre-emptive real-time operating system (RTOS).

Another approach has been used in the framework of the so-called (m, k)-firm
schedulability policy, where the scheduling strategy ensures the successful execution
of at least m instances of a given task (or message sending) for each time window
of length k slots. Hence a selective data drop policy (as in [JIA 07]) or a computing
power allocation to selected tasks (as in [BEN 06]) can be used to perform optimal
control of a plant under constraint of computing or communication limitations. This
latter approach is well suited for non pre-emptive scheduling of control tasks and
for networked control systems subject to message loss: the tasks or messages are
scheduled to jointly perform congestion avoidance and optimal control.

Indeed, in all cases the adaptive behavior of a feedback scheduler, associated with
the relative tolerance of the control system w.r.t. the implementation induced timing
uncertainties, allows for the design and implementation of real-time control systems
based on their average execution behavior rather than on pessimistic worst-case esti-
mates.

1.4.1. Control of the computing resource

Feedback scheduling is a dynamic approach allowing a better use of the computing
resources, in particular when the workload changes e.g. due to the activation of an ad-
mitted new task. Indeed, the CPU activity will be controlled according to the resource
availability by adjusting scheduling parameters (i.e. period) of the plant control tasks.

In the approach proposed here, a way to take into account the resource sharing
over a multitasking process is developed. In what follows, the control design issue
is described including the control structure, the specification of control inputs and
measured outputs, as well as the modeling step.

1.4.1.1. Control structure

In Figure 1.4 scheduling is viewed as a dynamic system between control task fre-
quencies and processor utilization. As far as the adaptation of the control tasks is
concerned, the load of the other tasks is seen as an output disturbance.

1.4.1.2. Sensors and actuators

As stated in section 1.3, priorities must be assigned to control tasks according to
their relative urgency; this ordering remains the same in the case of a dynamic sched-
uler. Dynamic priorities, e.g. as used in EDF, only alter the interleaving of running
tasks and will fail in adjusting the computing load w.r.t. the control requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 33

Ur

+

−
+

Uothers

+
Plant

control tasks
fiScheduling

controller

Figure 1.4. Feedback-scheduling block diagram

Consequently, we have elected the task periods to be the primary actuators of the
system running on top of a fixed-priority scheduler. Note that if the control timing set-
ting, based only on the scheduling adaptation, becomes out of reach (e.g. because the
requested intervals would be out of bounds), possible secondary actuators are variants
of the control algorithms, with different computing costs and QoS contributions to the
whole system. Such variants must be handled by the scheduling manager working on
a discrete events time scale.

As the aim is to adjust on-line the sampling periods of the controllers in order to
meet the computing resource requirements, the control inputs are thus the periods of
the control tasks. The measured output is the CPU utilization. Let us first recall that
the scheduling is here limited to periodic tasks. In this case the processor load induced
by a task is defined by U = c

h where c and h are the execution time and period of the
task. Hence, processor load induced by a task is estimated, in a similar way [CER 02],
for each period hs of the scheduling controller, as:

Ûkhs
= λ Û(k−1)hs

+ (1 − λ)
ckhs

h(k−1)hs

(1.3)

where h is the sampling frequency currently assigned to the plant control task (i.e. at
each sampling instant khs) and c is the mean of its measured job execution-time. λ is
a forgetting factor used to smooth the measure.

1.4.1.3. Control design and implementation

The proposed control design method for feedback scheduling is here developed.
First one should note that, as shown in [SIM 03], if the execution times are constant,
then the relation, U =

∑n
i=1 Cifi (where fi = 1/hi is the frequency of the task) is

a linear function (while it would not be the case if expressed as a function of the task
periods). Therefore, using (1.3), the estimated CPU load is given as:

Û(khS) =
(1 − λ)
z − λ

n∑
i=1

ci(khS)fi(khS) (1.4)

An illustration, for the case of a single control task system, is given in Figure 1.5 where
the estimated execution-times are used on-line to adapt the gain of the controller for

www.it-ebooks.info

http://www.it-ebooks.info/

34 Networked Control Systems Co-design

K(z)
−

+
Task

H(z)Uothers

Ur
+

+
f1

c

Figure 1.5. Control scheme for CPU resources

the original CPU system (1.4) (this allows us to compensate the variations of the job
execution time).

As c depends on the run-time environment (e.g. processor speed) a “normalized”
linear model of the task i (i.e. independent of the execution time), Gi , is used for the
scheduling controller synthesis where c is omitted and will be compensated by on-line
gain scheduling (1/c) as shown below:

Gi(z) =
Û(z)
fi(z)

=
1 − λ

z − λ
, i = 1, . . . , n. (1.5)

According to this control scheme, the design of the controller K can be made using
any control methodology at hand. In fact all the control toolbox resources may be
adapted for feedback-scheduling purpose, e.g. as reviewed in [XIA 08].

One of the most frequently used is the well known P.I.D. control: it has been
for example used for the on-line regulation of purely computing systems as web and
mail servers, as shown in section 1.4.2.1. Another popular approach is the linear
quadratic (LQ) control method, whose application to scheduling control has also been
investigated as shown in section 1.4.2.2.

Model predictive control is known to cope well with control of complex systems
under control and/or state constraints. As scheduling control deals with control un-
der computing and/or communication limitations, this control design has also been
investigated, as shown by the example in section 4.3.

Finally, as a digital control system combines uncertainties and modeling errors
from both the plant and the control implementation, robustness seems to be a crucial
issue: the well known H∞ control theory, which can lead to a robust controller w.r.t
modeling errors (see [ZHO 96] for details on H∞ control), is also a good candidate
to perform. Moreover, it provides good properties in presence of external disturbance,
as emphasized in the robot control example below (1.4.2.3).

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 35

1.4.2. Examples

1.4.2.1. Feedback scheduling a web server

One of the most popular and widely used controller for SISO systems is the so-
called proportional integral derivative (PID). The basic formulation for a continuous
time PID controller is [ÅST 97]

U = Kp .e + Kv .
de

dt
+ Ki .

∫ t

0
e(τ).dτ ,

where U is the control signal to be applied to the process input and e is the error
signal between the desired set-point yd and the measured output y. It is largely used
in industry as it can be applied to many SISO systems with an easy tuning and a
minimal modeling effort.

This simple design has been used to control and tune the behavior of computation
devices submitted to QoS constraints, for example web (Figure 1.6) or mail servers
([LU 01], [PAR 02]). Design basics, control oriented models for computing devices,
and case studies for feedback control of computing systems can be found in [LU 00;
LU 02], and [HEL 04] among other references.

RM/DM/EDF

Scheduler

QoS
controller

Admission
controller

CPU

Md

Scheduling

QoS levels

Admission.Rejection

Accepted tasks

Submitted tasks

dU(k)

PID
Control

Ud U(k)

Control
PID

M(k)
Md mode

switch

Figure 1.6. Web server closed-loop regulation

www.it-ebooks.info

http://www.it-ebooks.info/

36 Networked Control Systems Co-design

For each period of the scheduling controller, the measures are the total CPU load
U(k) and the miss ratio M(k). The corresponding gains GA and GM are images of
the modeling uncertainties.

The execution of requests Ti is modeled by at least two levels of quality, i.e. cou-
ples (QoS contribution, execution cost). The actuation provided is the choice of the
execution mode corresponding to a given cost, at every sampling period. The accu-
mulated regulated cost is finally the global CPU load.

If the sampling period h is large enough, the transfer function of the CPU load
submitted to computing requests Δu can be modeled by an integrator, where GA and
GM are the weakly known gains of the open loop process:{

U(k) = U(k − 1) + GA.Δu(k − 1)if CPU under-loaded,

M(k) = M(k − 1) + GM .Δu(k − 1) if CPU over-loaded.

Thus, a simple proportional regulator is able to control the server load{
Δu(k) = Kpu .EU (k) où EU (k) = Us − U(k) if U ≤ 1,

Δu(k) = Kpm .EM (k) où EM (k) = Ms − M(k) if M > 0.

Figure 1.7 (borrowed from [LU 02] with permission of the author) shows the
steady state behavior (CPU load U(k) and deadlines missed M(k)) as a function of the
desired load Ud . The role of the underlying scheduling policy can be observed: using
EDF (on the right picture) allows for nullifying the deadlines missed up to Ud = 1, but
exhibits degradation in the case of permanent overload faster than a static DM priority
policy. However, in all cases, the server shows some ability for automatic adaptation
to the arrival of sporadic requests and for recovery against sporadic overloads, thus
leading to a kind of self-administration at a very low-computing cost.

1.4.2.2. Optimal control-based feedback scheduling

The aforementioned PID regulation approach is very simple to design and tune.
The downside of the very limited number of tuning parameters is the limited capabil-
ities of, e.g. shaping robustness templates or decoupling several transfer modes.

Let us come back to the initial problem, which may consist formally in the opti-
mization of a control performance under constraints of limited computing resources.
This problem has been analytically solved by [EKE 00] and [CER 03a] for the fol-
lowing case study. A given computing resource is shared by n real-time control tasks,
each one is used to control a linear stochastic process; each controller has an hi period
and a Ci execution time. A sampling frequency dependent quality criterion Ji(hi) is

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 37

Utilization CPU U

100

80

60

40

20

0
0 20

Average total requested utilization (%)

(a) DM/PA (b) EDF/P

A
ve

ra
ge

 m
is

s
ra

tio
, A

ve
ra

ge
 u

til
iz

at
io

n
(%

)

40 60 80100120140160180200

Miss ratio M

100

80

60

40

20

0
0 20

Average total requested utilization (%)

A
ve

ra
ge

 m
is

s
ra

tio
, A

ve
ra

ge
 u

til
iz

at
io

n
(%

)

40 60 80100120140160180200

100

50

0
0 50 100

Time (S)

(a) DM/PA

U
(k

);
B

(k
);

M
(k

)
(%

)

150 200 250 300 350 400

50 100
Time (S)

(b) EDF/P

150 200 250 300 350 400

Us
U(k)
B(k)
M(k)

100

50

0
0U

(k
);

B
(k

);
M

(k
)

(%
)

Us
U(k)
B(k)
M(k)

Figure 1.7. Load response of the server (steady state and dynamic response)

attached to each controller. The control goal is the maximization of a global cost
function over the set of controller, with respect of a desired computing load Ud :

min
n

J =
n∑

i=1

Ji(hi) under constraint
n∑

i=1

Ci/hi ≤ Ud.

The control variables are the control periods hi . The problem is solved using the cost
function

J(h) =
1
h

∫ h

0

[
xT (t) uT (t)

]
Q

[
x(t)
u(t)

]
dt.

www.it-ebooks.info

http://www.it-ebooks.info/

38 Networked Control Systems Co-design

This particular cost function allows for a theoretical state feedback controller per-
forming the optimization. However, the execution of such a controller would require
to solve Lyapunov and Ricatti equations at each sample which is clearly two expensive
to be executed in real time with reasonable computing resources.

Fortunately, approximations can often be found. The cost functions can be often
approached by linear Ji(h) = αi + γih or quadratic Ji(h) = αi + βih

2 functions.
Computing the optimal values for the hi periods becomes particularly easy if all the
cost functions are either linear or quadratic [CER 02].

In this case, the periods are given by the following algorithm:

– the initial control frequencies fi = 1/hi are chosen proportionally to (βi/Ci)1/3

(quadratic costs) or to (γi/Ci)1/2 (linear costs);

– these values provide a nominal computing load Û0 =
∑n

i=1
Ĉ i

h0 i
;

– estimation of the execution times and filtering with the λ forgetting factor
Ĉi(k) = λĈi(k − 1) + (1 − λ)ci ;

– for a different CPU desired load the new periods are given by a simple re-scaling
hi = h0i

Us p

Û0
;

– the new control gains can be either computed on-line, or extracted from a pre-
calculated table;

– the values desired for CPU loads Usp are elaborated by a supervision process
called feed-forward, whose role is similar to the admission controller of the previous
section.

Figure 1.8 shows some simulation results using TrueTime, a toolbox for Mat-
lab/Simulink dedicated to models of real-time systems and networks ([OHL 07]).

In this experiment, four control tasks share a common computing resource. Each
task Ti, i = 1, . . . , 4 controls an inverted pendulum, under a fixed-priority ordering
T1 ≺ T2 ≺ T3 ≺ T4 . The performance criterion is the classic quadratic cost Ji =∫ T sim

0 (y2
i (t) + u2

i (t))dt. T1 and T2 are executed when the system starts, then T3 is
admitted at t = 2 s and T4 at t = 4 s.

Without adaptation (Figure 1.8(a)) all controllers remain executed at their nominal
frequency, the computer becomes overloaded, and finally the lowest priority tasks
T1 and T2 are so disturbed by pre-emption that they can no longer stabilize their
pendulum (and their criterion becomes ∞).

The controlled scheduler (Figure 1.8(b)) adapts on-line the control periods; thus,
it avoids the processor overload and keeps stability for all the process. (Note that the

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 39

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Time

A
c
c
u

m
u

la
te

d
 C

o
s
t

0 1 2 3 4 5 6
0.5

1

1.5

2

U
ti
liz

a
ti
o

n

Time

(1)

(2)
(3)

(4)

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Time

0 1 2 3 4 5 6
0.5

1

1.5

2

U
ti
liz

a
ti
o

n

Time

(1) (2)

(3)

(4)

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Time

0 1 2 3 4 5 6
0.5

1

1.5

2

Time

U
ti
liz

a
ti
o

n

(1)
(2)

(3)

(4)

P
er

fo
rm

an
ce feedback + feedforward

P
er

fo
rm

an
ce

P
er

fo
rm

an
ce

feedbackopen loop

U
ti

liz
at

io
n

U
ti

liz
at

io
n

U
ti

liz
at

io
n

Figure 1.8. Simulations under TrueTime, from [CER 03a]

control quality decreases for lower priority process). Adding a feed-forward admission
controller (Figure 1.8(c)) allows for future tasks cost anticipation and for enhanced
transient behavior.

Note that here the optimality of the process control performance relies on open-
loops pre-computed cost functions and that robustness issues are not taken into ac-
count. Also nothing is done here to analyze the effect of on-the-fly switching periods
on the system’s stability, as studied in section 2.4.

1.4.2.3. Feasibility: feedback-scheduler implementation for robot control

We consider here a seven degrees of freedom Mitsubishi PA10 robot arm that has
been previously modeled and calibrated [SIM 05b].

1.4.2.3.1. Plant modeling and control structure

The problem under consideration is to track a desired trajectory for the posi-
tion of the end-effector. Using the Lagrange formalism, the following model can be
obtained:

Γ = M(q)q̈ + Gra(q) + C(q, q̇), (1.6)

www.it-ebooks.info

http://www.it-ebooks.info/

40 Networked Control Systems Co-design

where q stands for the positions of the joints, M is the inertia matrix, Gra is the gravity
forces vector, and C gathers Coriolis, centrifugal, and friction forces.

The structure of the (ideal) linearizing controller includes a compensation of the
gravity, Coriolis/centrifugal effect and inertia variations as well as a proportional-
derivative (PD) controller for the tracking and stabilization problem, of the form

Γ = Gra(q) + C(q, q̇) + Kp(qd − q) + Kd(q̇d − q̇), (1.7)

leading to the linear closed-loop system M(q)q̈ = Kp(qd − q) + Kd(q̇d − q̇).

This controller is divided into four tasks, i.e. a specific task is considered for the
PD control, for the gravity, inertia and Coriolis compensations, in order to use a multi-
rate controller. In this first cautious feedback-scheduling scheme, only the periods of
the compensation tasks will be adapted, as they are time-consuming compared with
the PD task while being less critical for the stability.

1.4.2.3.2. Scheduling controller design

The block diagram of Figure 1.9 is considered for the H∞ design where G′(z) is
the model of the scheduler, the output of which is the vector of all task loads. To get the
sum of all task loads, we use C ′ = [1 1 1]. The H(z) transfer function represents the
sensor dynamic behavior which measures the load of the other tasks. It may be a first-
order filter. The template We specifies the performances on the load-tracking error as
follows:

We(s) =
s/Ms + ωb

s + ωsε
, (1.8)

with Ms = 2, ωs = 10 rad s−1 , ε = 0.01 to obtain a closed-loop settling time of
300 ms, a static error less than 1 % and a good robustness margin. Matrix M is
defined as M = [1 − 1 − 1].

The contribution of each of the compensation tasks to the controller performance
w.r.t to its execution period has been evaluated via numerous simulations. However,

K(z)Ur

+

−

We(z) e1

Ûi

+
G (z) C

H(z)

Uothers

+

M Wx(z) e2

Ûtot

G(z)

Figure 1.9. H∞ design block diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 41

due to the nonlinear nature of the robot arm, only a very rough cost function could be
identified, leading to static relative costs.

The template Wx allows the load allocation between the control tasks to be speci-
fied. With a large gain in Wx , it leads to

Ugravity ≈ UCoriolis + Uinertia,

i.e. we allocate more resources for the gravity compensation.

All templates are discretized with a sampling period of 30 ms. Finally, a discrete-
time H∞ synthesis produces a discrete-time-scheduling controller of order 4.

1.4.2.3.3. Implementation of the feedback scheduler

After preliminary simulations using TrueTime [CER 03a], we have developed a
feedback-scheduler prototype running in real time inside a “hardware-in-the-loop”
simulator: a well-calibrated model of the robot arm is numerically integrated in par-
allel with the execution of the controller, on top of a real-time, pre-emptive, and fixed
priorities operating system.

The process controller uses the so-called computing torque controller which is split
into several computing modules to implement a multi-rate controller as in [SIM 98]
(Figure 1.10). The system is implemented using only the basic features of an

Scheduling controller

Error
signal

clockgen

Deadlines

run−time
library

G

Misses

Reference load

Start/Init/Stop
Robust
control

D
ri

ve
r

D
ri

ve
r

Scheduling manager

Q

response time

Estimated

Overload handling

Tasks admission
Supervision

GeneTraj Qd

Operating system (Linux/RTAI)

Inertia

Gravity

Coriolis

Q(k)

Co

G

M

30ms

100us

CompTorque U(k) h1

h2

h3

h4

h5

Processus
(numerical integration)

Figure 1.10. Feedback-scheduling experiment

www.it-ebooks.info

http://www.it-ebooks.info/

42 Networked Control Systems Co-design

Control torques

Figure 1.11. Hardware in the loop simulation: periods and load

off-the-shelf RTOS, which anyway must be instrumented with a task-execution-time
operator1. In this application, the period of the feedback scheduler has been fixed to
30 ms to be larger than the robot control tasks (whose limits have been set here from
1 ms to 30 ms).

In this experiment, due to the poor quality of the cost functions which were iden-
tified, the feedback scheduler directly controls the CPU usage rather than taking into
account the state of the physical system as in an ideal case. In the experiment de-
picted in Figure 1.11, the desired CPU usage is initially set to 60% of the maximum
usage and then lowered to 40% after 1.5 s. The upper plots show the tasks periods and
CPU usage. Note that the processor also executes the robot arm numerical integration
which induces a high and varying load, inducing some unpredictable overloads.

These first experimental results are encouraging: they show that such a feedback-
scheduling architecture can be quite easily designed and implemented on top of an
off-the-shelf RTOS with fixed priority and pre-emption.

1. As in the several real-time variants of Linux we have used, i.e. RTAI (www.rtai.org) and
Xenomai (www.xenomai.org)

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 43

In this particular case, the scheduling controller is a low-order state feedback,
which, moreover, is executed at a slow rate: hence, its computing cost is very low
(about 75 μs every 30 ms on a 400 Mhz Pentium 2), i.e. less than 1% of the total
control cost.

Indeed, compared with a fixed rate controller, the gain in control performance mea-
sured by the integrated tracking error is not impressive: this is due to the very rough
modeling of the performance/control rate relationships of this nonlinear system. The
real improvement lies in the robustness of the system against transient overloads, and
in the automatic setting of the tasks periods: the designer only needs to set reason-
able initial values based on easily measured average execution times. As stated in
[CER 05], it must be noticed that the recovery strategies used in the case of CPU
overload can be selected in a set of predefined behaviors to improve the overall con-
trol performance. Here we used the Skip overrun processing, where the overrunning
task finishes its current job but prevents its next expected schedule to be executed.
Note that, thanks to the robustness of the closed-loop system w.r.t. jitter and occa-
sional data loss, overruns must not be considered as fatal events as they would be in a
system specified as “hard real time”.

From the sampled control point of view, it may be observed that abrupt and/or fre-
quent period switches may lead to control instability, even if each periodic controller
is stable for each constant sampling period [SCH 02]. Adding a low-pass filtering
template in the H∞ scheduling controller here provides period variations smoother
than the one provided by a simple period re-scaling; however, this does not guarantee
stability and a wiser solution is looked for in section 2.4.

1.5. Fault diagnosis of NCS with network-induced effects

The introduction of communication networks in the control loops makes the anal-
ysis of NCS complex. There are several network-induced effects that arise when deal-
ing with the NCS, such as time-delays, packet losses and limited communication.
Because of the inherent complexity of such systems, the control issues of NCS have
attracted most attention of many researchers, taking into account network-induced
effects. For instance, the stability and stabilization problems of NCS were investi-
gated in [HAL 88; NIL 98; BRA 00; ZHA 01b; LI 05] for network-induced delays,
[LIN 02b; SEI 05] for packet losses, [HU 03; YUE 05; LI 06] for network-induced
delays and packet losses, [NAI 97; HRI 99; ISH 02] for limited communication. We
refer the readers to the survey in [TIP 03; HOK 04] and an up-to-date supplement
[YAN 06] for more information of NCS on modeling, design and analysis from the
viewpoint of estimation and control.

On the other hand, due to an increasing complexity of dynamic systems, as well
as the need for reliability, safety and efficient operation, the model-based fault diag-
nosis and fault-tolerant control has been becoming an important subject in modern

www.it-ebooks.info

http://www.it-ebooks.info/

44 Networked Control Systems Co-design

control theory and practice, see [MAN 00; ZHA 03]. Disturbances decoupling FDI
methods include the works done by [FRA 94; PAT 00]. Extended reviews on FDI
have been given in [GER 98; QIN 01]. Owing to the network-induced effects, the
theories for traditional point-to-point systems should be reevaluated.

1.5.1. Fault diagnosis of NCS with network-induced time delays

Time-delays in the NCS system consist of: a) communication delay between sen-
sors and controllers τsc , b) communication delay between controllers and actuators
τ ca , c) computational time in controllers τ c . Generally speaking, computational time
of controllers can be included in communication delay between controllers and actua-
tors. Under the assumption that there is no packet dropout during signal transmission,
the sensor-to-controller delay and controller-to-actuator delay can be lumped together
as [ZHA 01b],τ = tausc + tauca where τ is supposed to be smaller than the sampling
period h. An extended survey on FDI of NCS can be found in [FAN 07].

1.5.1.1. Low-pass post-filtering

Consider the random and unknown network-induced delay shorter than one sam-
pling period, then the NCS with unknown inputs d and faults f can be modeled as
[ZHA 01a]:

x(k + 1) = Āx(k) + Γ̄0u(k) + Γ̄1u(k − 1) + B̄dd(k) + B̄f f(k)

y(k) = C̄x(k)
(1.9)

which can be further written as [LI 07b; YE 06b; YE 06a]

x(k + 1) = Āx(k) + B̄u(k) + g(k) + B̄dd(k) + B̄f f(k) (1.10)

where
g(k) = −Γ̄1Δuk , Δuk = u(k) − u(k − 1). (1.11)

Different from the sampled-data system without taking into account the network-
induced delay, there exists a time-varying term g(k) in the state evolution equation
of system (1.10) and (1.11). When τk is random, g(k) can be regarded as a ran-
dom disturbance in (1.10). Therefore, it’s natural to adopt a low-pass filter to reduce
the impact of g(k) on the residual signal. However, the idea could not be done by
only designing a traditional optimal residual generator first and then adding a low-
pass filter to its output. The reason is that the optimization of the traditional resid-
ual generator does not mean that NCS consisting of it and a post-filter is still opti-
mal. So it is necessary to consider both of the two parts of the new system (i.e. the
residual generator and the low-pass filter) when designing the fault detection system
[YE 04a].

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 45

As an extension of the results in [YE 04b], a fault detection approach based on
parity space and Stationary Wavelet Transform (SWT) for NCS with random network-
induced delay has been introduced in [YE 04a], which is briefly introduced as
follows.

Let
	s,k =

[
	T (k − s) 	T (k − s + 1) · · · 	T (k)

]T
(1.12)

where 	 may represent u, y, d, f , respectively.

Let

Hu,s =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0

C̄B̄ 0
. . .

...
...

. . .
. . . 0

C̄Ās−1B̄ · · · C̄B̄ 0

⎤⎥⎥⎥⎥⎦ (1.13)

and define Hs,k , Hf,s , Hg,s as the matrices obtained by replacing B̄ in (1.13) with
B̄d , B̄f and identity matrix I , respectively.

Let
Ho,s =

[
C̄T ĀT C̄T · · · (Ās)T C̄T

]T
Then a parity space and SWT based residual generator is defined by

rs,k = vs(ys,k − Hu,sus,k) (1.14)

rW T
s,k = WTa

rs
(jm , k) (1.15)

whose dynamics is governed by

rs,k = vs(Hd,sds,k + Hf,sfs,k + Hq,sgs,k) (1.16)

rW T
s,k = WTa

rs
(jm , k) (1.17)

where vs is the parity vector to be designed which should be selected from the parity
spaces Ps defined by Ps = {vs |vsHo,s = 0}, and WTa

rs
(jm , k) denotes the approxi-

mation coefficients of the SWT of rs,k , under scale jm , which can be considered as a
low-pass filtering of rs,k . The dynamics can be written in the following explicit form
[YE 04a]

rW T
s,k = vs(Hd,sN

d
l,jm

ds+is e t ,k + Hf,sN
f
l,jm

fs+is e t ,k + Hq,sN
q
l,jm

qs+is e t ,k)

where Nd
l,jm

, Nf
l,jm

, Nq
l,jm

are known matrices, whose definitions can be found in
[YE 04a].

www.it-ebooks.info

http://www.it-ebooks.info/

46 Networked Control Systems Co-design

1.5.1.2. Structure matrix of network-induced time delay

According to (1.10) and (1.11), [WAN 06a; YE 06a; YE 04a; LIU 05] have pro-
posed a so-called structure matrix of τk to address the fault diagnosis for NCS. The
main procedures are a) transforming g(k) into a form of (known part)×(unknown
part), where the known part can extract the known information (such as A, B, Δuk)
from g(k) as much as possible, and the unknown part includes the unknown infor-
mation related to τk , b) using traditional robust fault detection methods to make
the robustness to τk . These results are further summarized as Taylor approxima-
tion [YE 04a], eigenvalue-decomposition and Padé approximation [YE 06b], accurate
structure matrix of τk and PCA [YE 06a].

Consider a simpler NCS model such as:

x(k + 1) = Āx(k) + B̄u(k) + g(k) + f(k)

y(k) = C̄x(k)
(1.18)

When the sampling period h is small enough, using the Taylor approximation of eAh ,
g(k) will approximate to

g(k) ≈ Ēτ ,k τk

Ēτ ,k = −BΔuk

(1.19)

A time-varying parity space based residual generator is defined as

rs,k = vs,k (ys,k − Hu,sus,k) (1.20)

with
rs,k = vs,k (Hτ,s,k τs,k + Hf,sfs,k) (1.21)

when vs,k ∈ Ps , where

Hτ,s,k =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
C̄Ēτ ,k−s 0 0 0 0

C̄ĀĒτ ,k−s C̄Ēτ ,k−s+1
. . . 0 0

...
...

. . .
...

...
C̄Ās−1Ēτ ,k−s C̄Ās−2Ēτ ,k−s+1 · · · C̄Ēτ ,k−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ (1.22)

To meet vs,k ∈ Ps and to decouple the residual signal from the network-induced
delays, the parity vector is determined by solving

vs,kHo,s = 0 and vs,kHτ ,s,k = 0 (1.23)

This approach has good robustness to network-induced delay only if both h and τk are
small enough.

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 47

1.5.1.3. Robust deadbeat fault filter

In [LI 07b], the authors assume that the statistical behavior of network-induced
delay τk is random and governed by the Markov chain

θk ∈ S = {1, 2, . . . , s}, ∀k ∈ Z+ (1.24)

with the transition probabilities λij denoting as λij = pr[θk+1 = j|θk = i], λij ≥ 0
and

∑s
j=1 λij = 1 for any i ∈ S. For sake of simplifying notations, B1,τk

is denoted
as B1,θk

and Δuk as wk . Then, the model of NCS is by replaced the state space
system (1.10) with the following particular Markov jump linear system:{

xk+1 = Axk + Buk + Ffk + B1,θk
wk ,

yk = Cxk ,
(1.25)

The following filter is presented as the residual generator of NCS (1.25):{
x̂k+1 = Ax̂k + Buk + K(yk − Cx̂k),
αk = L(yk − Cx̂k), (1.26)

where x̂k is the state of the filter, αk the residual generator or the fault indicator. Filter
gain K ∈ rrn×m and projector L ∈ R

q×m are unknown matrices to be found for the
solution of the fault detection and isolation problem.

From (1.25) and (1.26), the state estimation error ek = xk − x̂k and the output of
the filter αk propagate as{

ek+1 = (A −KC)ek + Ffk + B1,θk
wk

αk = LCek
, k ∈ Z+ , θk ∈ S (1.27)

Let Gnα (z) be the transfer function from fk to the output residual αk . Then the
following theorem is presented to design K and L such that

Gnα (z) = LC(zI − (A −KC))−1F

= diag{z−ρ1 , . . . , z−ρq },
(1.28)

which ensures the isolation of multiple faults.

THEOREM.– Under the condition rank(Ψ) = q, the solutions of (1.28) can be
parametrized as K = ωΠ+ K̄θk

Σ, L = Π, with Σ = β(I −ΨΠ),Π = Ψ+ , ω = AD
and Ψ = CD,where K̄θk

∈ rrn×m−q is the free parameter to be designed, Ψ+ is the
pseudo-inverse of Ψ and β is an arbitrary matrix chosen so that rank(Σ) = m − q.

From the theorem above, the FIF (1.26) is rewritten from the free parameter K̄θk

as: {
x̂k+1 = Ax̂k + Buk + ωαk + K̄θk

Σ(yk − Cx̂),
αk = Π(yk − Cx̂k), (1.29)

www.it-ebooks.info

http://www.it-ebooks.info/

48 Networked Control Systems Co-design

where αk is a deadbeat filter of fault nk and given by:

αk = ᾰk +
[

n1
k−ρ1

· · · ni
k−ρi

· · · nq
k−ρq

]T

(1.30)

where ᾰk is the fault indicator signal without faults and propagates from the fault-free
state estimation error ēk = x̃k − x̂k as:{

ēk+1 = (Ā − K̄θk
C̄)ēk + B1,θk

wk ,
ᾰk = ΠCēk ,

(1.31)

where Ā = A − ωΠC, C̄ = ΣC and x̃k is the fault-free state. The transfer function
from wk to ᾰk is then given by:

Gwᾰ (z) = ΠC(zI − (Ā − K̄θk
C̄))−1B1,θk

. (1.32)

Let α̂k be the faults indicator signal without disturbances. From Equation (1.28), the
transfer function Gf α̂ (z) from fault f to fault indicator α̂k is a pure delay and

normGf α̂ (z)∞ := sup
θ0 ∈S

sup
0 �=f∈�2

norm α̂2

norm f2
= 1, (1.33)

where norm s�2 = (
∑∞

k=0 norm sk)1/2 is the �2 norm of the signal sk .

Then the free parameters K̄θk
are designed in order to

C1: ensure that the energy ratio between useful and disturbance signal wk defined on
the fault indicators is maximized,

C2: locate the closed-loop poles within a prescribed region in the complex plane in
order that the residual dynamics has the given transient properties,

which can be formulated in the following theorem:

THEOREM.– For given discs Di(ξi, δi), if there exist matrices Pi = PT
i > 0, Gi and

Yi for prescribed scalars γ > 0, −1 < −ξi + δi < 1, ∀i = θk ∈ S such that⎡⎢⎢⎣
−Pi 0 ĀT GT

i − C̄T Y T
i CT ΠT

0 −γ2I BT
1,iG

T
i 0

GiĀ − YiC̄ GiB1,i P̄i − Gi − GT
i 0

ΠC 0 0 −I

⎤⎥⎥⎦ < 0, (1.34)

[−δ2
i Pi ĀT GT

i − C̄T Y T
i − ξiG

T
i

GiĀ − YiC̄ − ξiGi Pi − Gi − GT
i

]
< 0, (1.35)

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 49

where Ā = A − ωΠC, C̄ = ΣC, then the free parameters are designed as K̄i =
G−1

i Yi ensuring the SMS of the error system (1.31) and the constraints C1 and C2. At
the minimal possible value of γ leading to a solution Pi = PT

i > 0, Gi and Yi , the
energy ratio between useful and disturbance signal defined on the fault indicators will
be maximized.

Given discs Di(ξi , δi), i = θk ∈ S, the search problem of the lowest possible
value of γ can be formulated as the following convex optimization problem:

OP : min
Pi =P T

i >0,Gi ,Yi

γ (1.36)

1.5.1.4. Other work

In practice, the delay may be more than one sampling period. In some cases, this
long time delay may distort the timing order of the message arriving at the receiver
[HU 03; LIN 00; LI 04b; HAL 88].

In this way, the integrity of the information transmission is guaranteed. The dis-
crete state model of the system with network-induced delay can be described as

x(k + 1) = Āx(k) + B̄0u(k − 1) + B̄1u(k − l + 1) + B̄dd(k) + B̄f fa(k)

y(k) = C̄x(k) + fs(k)
(1.37)

which is a familiar discrete time system with input time delays utilizing a reduced-
order memory-less state observer with a γ-stability margin, an observer-based fault
detection method was presented for system (1.37) by comparing the output of the ob-
server with the actual output of the practical system [ZHE 03]. The residual function
for this approach is

r(z) = QC̄P−1B̄dd(z) + QC̄P−1B̄f fa(z)

+[Q − QC̄P−1(zI − Ā)V (zIn − Λr)−1L]fs(z)
(1.38)

where P = (zIn − Ā)[In + V (zIr − Λr)−1LC̄].

To remove the effect of the disturbance, it is required that

QC̄P−1B̄d = H(zIn − PT)−1B̄d = 0.

The simulation results demonstrating the feasibility of this approach can be found in
[ZHE 03].

A method for fault detection in NCS with unknown network-induced delay, which
may be greater than h, is proposed in [WAN 06b]. In this method, an NCS model for

www.it-ebooks.info

http://www.it-ebooks.info/

50 Networked Control Systems Co-design

unknown network-induced delay which may be greater than h [HAL 88; HU 03] has
been developed.

1.5.2. Fault diagnosis of NCS with packet losses

Packet losses happen when packets are dropped due to link failure or packets are
dropped on purpose in order to avoid congestion or guarantee the most recent data
to receiver. Although a single packet loss neither deteriorates system performance
nor destabilizes the system, the consecutive packet losses have an impact on overall
performance.

1.5.2.1. Deterministic packet losses

The deterministic packet losses have also been discussed, either in terms of switch-
ing systems [SEI 05; TIP 03; ZHA 01b; WAN 06b] or in terms of delayed differential
equations [YUE 05; YU 05]. [YAN 98] firstly addressed the fault diagnosis for a class
of state-delayed dynamic systems, in which the actuator and sensor faults as well as
other effects such as disturbances and non-linearities were considered as unknown
inputs. More recently, [KOE 05] dealt with the problem of full-order observer de-
sign for linear continuous delayed state and input systems with unknown input and
time-varying delays. A method to design an unknown input observer (UIO) for such
systems was proposed based on delay-dependent stability conditions of the state esti-
mation error system.

[DIN 00] developed a weighting transfer function matrix to describe the desired
behavior of residual respect to fault. The observer-based fault detection filter for
a class of linear systems with time-varying delays was designed such that the er-
ror between the generated residual and fault is as small as possible in the sense of
H∞-norm.

1.5.2.2. Stochastic packet losses

In [ZHA 04], the fault detection problem of systems with stochastic packet losses
is developed. The structure of standard model based residual generator is modified
and dynamic network resource allocation is represented as

e(k + 1) =
{

(A − LC)e(k) + (Ef − LFf)f(k) + Lθ(k), γ(k) = 0
(A − LC)e(k) + (Ef − LFf)f(k), γ(k) = 1. (1.39)

r(k) =
{

WCe(k) + WFf f(k) − Wθ(k), γ(k) = 0
WCe(k) + WFf f(k), γ(k) = 1. (1.40)

where θ(k) is the difference between real value of the measurement y(k) and the used
value ya(k), namely θ(k) := y(k) − ya(k). γ(k) is a stochastic variable representing

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 51

data communication status. γ(k) = 1 means that the measurement at time point k
arrives correctly, while γ(k) = 0 means that this measurement is lost.

To reduce the false alarm rate caused by missing measurements, a residual evalu-
ation scheme is then developed as:

reval > Jth , a fault is detected

reval ≤ Jth , no fault is detected

where reval =
(∑∞

j=0 rT (j)r(j)
)1/2

. To compute the threshold Jth , a convex opti-

mization problem is then developed to find the minimum of E [‖r‖2]
‖θ‖2

, which is
formulated as a disturbance attenuation problem of Markovian jump linear
systems.

[MAO 07] designed a robust fault detection filter for networked control systems
with large transfer delays. The multi-rate sampling method is combined with the
augmented state matrix method to model the long random delay networked control
systems as Markovian jump systems. The H∞ fault detection filter is designed based
on the obtained model.

Some works take into account simultaneous time-delays and packet losses, see e.g.
[YUE 05; ZHA 05; YU 05].

1.5.3. Fault diagnosis of NCS with limited communication

The capacity of the communication network and its ability to carry a reasonable
amount of information per unit of time plays an important role in the stability of NCS.
When introducing the network into the control loop, issues like the channel/network
capacity, encoding/decoding schemes and quantization naturally arise.

There is increasing attention to define the minimum bit rate which is needed to sta-
bilize NCS through feedback, see e.g. [SAH 00; TAT 00; SAV 03] and the references
therein. In order to describe the quantization effects on the performance NCS, some
research effort has been devoted to develop new quantization scheme to achieve lower
bit-rates, see e.g. [BRO 00; DEL 89; ELI 00; ISH 02; WON 97; HOK 04].

In [ZHA 06], the fault detection problem for networked control systems with lim-
ited data transmission rate is considered. In order to avoid the uncertainty caused

www.it-ebooks.info

http://www.it-ebooks.info/

52 Networked Control Systems Co-design

by transmission delays and packet loss, a periodic communication sequence
is proposed as:

y(k) = Nkyp(k) (1.41)

up(k) = Mku(k) (1.42)

where y ∈ Rωm represents the sensor signals transmitted from the sensors to the
central station through the network, Nk ∈ Rωm ×m is a θ-periodic matrix formed by
selecting ωm rows of the identity matrix. u ∈ Rp represents the signal generated
by the controller, Mk ∈ Rp×p is a θ-periodic diagonal matrix with a number of ωp

non-zero element 1 on the diagonal.

1.5.4. Fault-tolerant control of NCS

Based on the fault diagnosis algorithm for NCS at section 1.5.2, the fault-tolerant
control of NCS can be obtained. The existing methods of fault tolerant control (FTC)
techniques against actuator faults can be categorized into two groups: passive [SEO 96;
CHE 04] and active approaches [ZHA 02; ZHA 03]. [ZHE 03] proposed a passive
controller for NCS by considering random time-delays. If a failure outside those con-
sidered in the design occurs, the stability and performance of the closed-loop system
cannot be guaranteed. Such potential limitations of passive approaches motivate the
research of the active FTC (AFTC).

With regard to AFTC, it is meant an on-line and real-time fault diagnosis process
and a controller reconfiguration mechanism. Since the AFTC approaches propose
a flexibility to select different controllers according to different component failures,
better performance of the closed-loop system is expected. However, the above case
holds true only if the fault diagnosis process does not make an incorrect or delayed
decision. Some results have been obtained on AFTC which is immune to imperfect
fault diagnosis process, see [MAH 03; WU 97]. [MAK 04] further developed the
above issue by using the cost control approach and on-line controller switching in
order to guarantee the stability of a closed-loop system. However, the NCS case is not
considered in this work.

[LI 07a] addressed the stability guaranteed active fault tolerant control of NCS.
The design of the procedures are summarized down below:

i) design a passive fault-tolerant controller so that the closed-loop system stability is
guaranteed for all actuator failure modes;

ii) under the assumption that a particular actuator is fault free, the controller is re-
peatedly redesigned using only this actuator so that the robust performance is
improved without jeopardizing the stability property of the design in i).

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 53

1.6. Summary

When control systems are implemented on top of a RTOS, scheduling policies are
used to allocate scheduling parameters, i.e. usually priorities, to the control tasks.
Traditional policies, such as RM and EDF, are designed only with computational con-
straints in mind, thus they are not necessarily suited when a control performance is
the main objective to achieve. To better cope with control problem, flexible schedul-
ing policies must be used, where the scheduling parameters are chosen according to
control constraints. This is for example the case of the (m, k)-firm selective dropping
policy described in section 1.2.2. This capability is further exploited to set up accel-
erable tasks in section 2.3 and to co-design control loops and real-time scheduling in
section 4.3 and in Chapter 5.

Another way to implement control aware scheduling policies consists in contin-
uously adapting the scheduling parameters in a closed loop controller. In this way
feedback schedulers, whose basic design and examples are provided in section 1.4,
actively control the execution resources usage, such as CPU load, network bandwidth
or processor speed and voltage. They can be further used as stand-alone components
to control computing related devices, as sketched in section 1.4.2.1 and surveyed in
[LU 02] and [HEL 04]. Beyond pure execution resource control, feedback schedulers
can be used as building blocks to implement integrated control of the plant and com-
puting/networking resources as designed in Chapter 4.

Finally, when the capabilities of control loops are exceeded, e.g. due to uncertain-
ties overshooting or to the appearance of faults, diagnosis and FTC techniques must
supplement pure control robustness and adaptivity. Some basic concepts of model-
based fault diagnosis, including observer-based parity space methods and FTC for
NCS, are discussed in section 1.5. Other basic concepts in FDI/FTC, together with
specific issues related to the processing of faults in networked control systems, are
discussed in detail in Chapter 6 and assessed with the test-bed in Chapter 7.

1.7. Bibliography

[ABD 97] ABDELZAHER T., ATKINS E., SHIN K., QoS Negotiation in Real-Time Systems
and Its Application to Automated Flight Control, IEEE Real-Time Technology and Appli-
cations Symposium, Montreal, Canada, June 1997.

[ABE 98] ABENI L., BUTTAZZO G., Integrating Multimedia Applications in Hard Real-Time
Systems, Proceedings of the 19th Real-Time Systems Symposium, Madrid, Spain, 1998.

[ÅRZ 99] ÅRZÉN K.-E., A Simple Event-Based PID Controller, 14th IFAC World Congress,
Beijing, China, July 1999.

[ÅST 97] ÅSTRÖM K. J., WITTENMARK B., Computer-Controlled Systems, Information and
System Sciences Series, Prentice Hall, third edition, 1997.

www.it-ebooks.info

http://www.it-ebooks.info/

54 Networked Control Systems Co-design

[BAR 90] BARUAH S., MOK A., ROSIER L., Preemptively scheduling hard-realtime sporadic
tasks on one processor, Real-Time Systems Symposium, Lake Buena Vista, USA, p. 182–
190, December 1990.

[BEN 91] BENVENISTE A., BERRY G., The synchronous approach to reactive and real-time
systems, Proceedings of the IEEE, vol. 79, num. 9, p. 1270–1282, 1991.

[BEN 06] BEN GAID M., ÇELA A., HAMAM Y., IONETE C., Optimal Scheduling of Control
Tasks with State Feedback Resource Allocation, American Control Conference ACC’06,
Minneapolis, USA, June 2006.

[BRA 00] BRANICKY M. S., PHILLIPS S. M., ZHANG W., Stability of Networked Con-
trol Systems: Explicit Analysis of Delay, American Control Conference ACC’00, vol. 4,
Chicago, USA, June 2000.

[BRO 00] BROCKETT R. W., LIBERZON D., Quantized Feedback Stabilization of Linear Sys-
tems, IEEE Transactions on Automatic Control, vol. 45, num. 7, p. 1279–1289, 2000.

[BUT 00] BUTTAZZO G., ABENI L., Adaptive Rate Control through Elastic Scheduling, 39th
Conference on Decision and Control, Sydney, Australia, December 2000.

[CAC 00] CACCAMO M., BUTTAZZO G., SHA L., Elastic Feedback Control, 12th Euromicro
Conference on Real-Time Systems, Stockholm, Sweden, June 2000.

[CER 00] CERVIN A., EKER J., Feedback Scheduling of Control Tasks, 39th IEEE Confer-
ence on Decision and Control, Sydney, Australia, December 2000.

[CER 02] CERVIN A., EKER J., BERNHARDSSON B., ARZEN K.-E., Feedback-Feedforward
Scheduling of Control Tasks, Real-Time Systems, vol. 23, num. 1-2, p. 25–53,
July 2002.

[CER 03a] CERVIN A., Integrated Control and Real-Time Scheduling, PhD thesis, Depart-
ment of Automatic Control, Lund Institute of Technology, Sweden, April 2003.

[CER 03b] CERVIN A., EKER J., The Control Server: A Computational Model for Real-Time
Control Tasks, 15th Euromicro Conference on Real-Time Systems, Porto, Portugal, p. 113-
120, July 2003.

[CER 05] CERVIN A., Analysis of Overrun Strategies in Periodic Control Tasks, 16th IFAC
World Congress, Prague, Czech Republic, July 2005.

[CHE 04] CHENG C., ZHAO Q., Reliable control of uncertain delayed systems with integral
quadratic constraints, IEE Proceedings Control Theory Applications, vol. 151, num. 6,
p. 790–796, 2004.

[DEL 89] DELCHAMPS D. F., Extracting state information from a quantized output record,
System and Control Letters, vol. 13, num. 5, p. 365–372, 1989.

[DIN 00] DING S. X., DING E. L., JEINSCH T., A new optimization approach to the design
of fault detection filters, SafeProcess’00, Budapest, Hungary, p. 250–255, June 2000.

[DOR 62] DORF R., FARREN M., PHILLIPS C., Adaptive sampling frequency for sampled-
data control systems, IEEE Transactions on Automatic Control, vol. 7, num. 1, p. 38–47,
1962.

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 55

[DUR 09] DURAND S., MARCHAND N., Further Results on Event-Based PID Controller, Eu-
ropean Control Conference ECC’09, Budapest, Hungary, August 2009.

[EKE 99] EKER J., CERVIN A., A Matlab Toolbox for Real-Time and Control Systems Co-
Design, 6th International Conference on Real-Time Computing Systems and Applications,
Hong-Kong, China, December 1999.

[EKE 00] EKER J., HAGANDER P., ARZEN K.-E., A feedback scheduler for real-time con-
troller tasks, Control Engineering Practice, vol. 8, num. 12, p. 1369–1378, 2000.

[ELI 00] ELIA N., MITTER S. K., Quantized linear systems In System Theory: Modeling,
Analysis, and Control, Kluwer, 2000.

[FAN 07] FANG H., YE H., ZHONG M., Fault diagnosis of networked control systems, Annual
Reviews in Control, vol. 31, num. 1, p. 55–68, 2007.

[FRA 94] FRANK P., Enhancement of robustness in observer-based fault detection, Interna-
tional Journal of Control, vol. 59, num. 4, p. 955–981, 1994.

[GEO 95] GEORGE L., MUHLETAHLER P., RIVIERRE N., Optimality and nonpreemptive re-
altime scheduling revisited, Report num. RR2516, INRIA, 1995.

[GER 98] GERTLER J., Fault Dectection and Diagnosis in Engineering Systems, Marcel
Dekker, USA, 1998.

[HAL 88] HALEVI Y., RAY A., Integrated Communication and Control Systems: Part I- Anal-
ysis, ASME Journal of Dynamic Systems, Measurement and Control, vol. 110, num. 4,
p. 367–373, 1988.

[HAM 95] HAMDAOUI M., RAMANATHAN P., A dynamic priority assignment technique for
streams with (m, k)-firm deadlines, IEEE Transactions on Computers, vol. 44, num. 4,
p. 1443–1451, December 1995.

[HEL 04] HELLERSTEIN J., DIAO Y., PAREKH S., TILBURY D., Feedback Control of Com-
puting Systems, Wiley-IEEE Press, New York, 2004.

[HOK 04] HOKAYEM P. F., ABDALLAH C. T., Inherent issues in networked control systems:
a survey, American Control Conference ACC’04, Boston, USA, p. 4897–4902, June 2004.

[HRI 99] HRISTU D., Optimal control with limited communication, PhD thesis, Harvard Uni-
versity, 1999.

[HSI 74] HSIA T. C., Analytic design of adaptive sampling control law in sampled data sys-
tems, IEEE Transactions on Automatic Control, vol. 19, num. 1, p. 39–42, 1974.

[HU 03] HU S.-S., ZHU Q.-X., Stochastic optimal control and analysis of stability of net-
worked control systems with long delay, Automatica, vol. 39, num. 11, p. 1877–1884,
2003.

[ISH 02] ISHII H., FRANCIS B., Stabilization with control networks, Automatica, vol. 38,
num. 10, p. 1745–1751, 2002.

[JEF 91] JEFFAY K., STANAT D. F., MARTEL C. U., On non-preemptive scheduling of peri-
odic and sporadic tasks, Real-Time Systems Symposium, San Antonio, USA, p. 129–139,
December 1991.

www.it-ebooks.info

http://www.it-ebooks.info/

56 Networked Control Systems Co-design

[JIA 07] JIA N., SONG Y.-Q., SIMONOT-LION F., Graceful Degradation of the Quality of
Control through Data Drop Policy, European Control Conference ECC’07, Kos, Greece,
July 2007.

[JOS 86] JOSEPH M., PANDYA P., Finding Response Time in a Real-Time System, BCS Com-
puter journal, vol. 29, num. 5, p. 390–395, October 1986.

[KOE 05] KOENIG D., BEDJAOUI N., LITRICO X., Unknown input observers design for time-
delay systems application to an open-channel, 44th IEEE Conference on Decision and
Control and the European Control Conference, Sevilla, Spain, p. 5794–5799, December
2005.

[KOP 03] KOPETZ H., BAUER G., The time-triggered architecture, Proceedings of the IEEE,
vol. 91, num. 1, p. 112–126, 2003.

[LEU 04] LEUNG J., Handbook of scheduling: algorithms, models, and performance analysis,
Chapman Hall/CRC, 2004.

[LI 04a] LI J., SONG Y.-Q., SIMONOT-LION F., Schedulability analysis for systems under
(m,k)-firm constraints, IEEE WFCS2004, Vienna, Austria, September 2004.

[LI 04b] LI S., WANG Z., SUN Y., Observer-based compensator design for networked control
systems with long time delays, 30th Annual Conference of IEEE Industrial Electronics
Society, Busan, Korea, p. 678–683, November 2004.

[LI 05] LI S., YU L., WANG Z., SUN Y., Approach to Guaranteed Cost Control for Networked
Control Systems, Developments in Chemical Engineering and Mineral Processing, vol. 13,
num. 3, p. 351–361, 2005.

[LI 06] LI S., SAUTER D., AUBRUN C., Robust Fault Isolation Filter Design for Networked
Control systems, 11th IEEE International Conference on Emerging Technologies and Fac-
tory Automation, Prague, Czech Republic, p. 681–688, September 2006.

[LI 07a] LI S., SAUTER D., AUBRUN C., YAMÉ J.-J., Stability guaranteed active fault tolerant
control of networked control systems, European Control Conference, ECC’07, Kos, Greece,
p. 180–186, July 2007.

[LI 07b] LI S., WANG Y., XIA F., SUN Y., Guaranteed cost control of networked control sys-
tems with time-delays and packet losses, International Journal of wavelets, multiresolution
and information processing, vol. 4, num. 4, p. 691–706, 2007.

[LI 09] LI J., SONG Y.-Q., DLB: a novel real-time QoS control mechanism for multimedia
transmission, International Journal High Performance Computing and Networking, vol. 6,
num. 1/2, p. 4–14, 2009.

[LIN 00] LINCOLN B., BERNHARDSSON B., Optimal Control over Networks with Long Ran-
dom Delays, International Symposium on Mathematical Theory of Networks and Systems,
Perpignan, France, p. 84-90, July 2000.

[LIN 02a] LINCOLN B., BERNHARDSSON B., LQR Optimization of Linear System Switch-
ing, IEEE Transactions on Automatic Control, vol. 47, num. 10, p. 1701–1705, October
2002.

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 57

[LIN 02b] LING Q., LEMMON M. D., Robust performance of soft real-time networked control
systems with data dropouts, 41st IEEE Conference on Decision and Control, Las Vegas,
USA, p. 1225–1230, December 2002.

[LIU 73] LIU C., LAYLAND J., Scheduling Algorithms for Multiprogramming in Hard Real-
Time Environment, Journal of the ACM, vol. 20, num. 1, p. 40–61, February 1973.

[LIU 00] LIU J., Real-time systems, Prentice-Hall, Inc., 2000.

[LIU 05] LIU H., CHENG Y., YE H., A combinative method for fault detection of networked
control systems, 20th IAR/ACD Annual Meeting, Mulhouse , France, p. 59–63, November
2005.

[LIU 06] LIU D., HU X., LEMMON M., LING Q., Firm real-time system scheduling based
on a novel QoS constraint, IEEE Transactions on Computers, vol. 55, num. 3, p. 320–333,
March 2006.

[LU 00] LU C., STANKOVIC J., ABDELZAHER T., TAO G., SON S., MARLEY M., Perfor-
mance Specifications and Metrics for Adaptive Real-Time Systems, Real-Time Systems
Symposium, Orlando, USA, December 2000.

[LU 01] LU C., ABDELZAHER T. F., STANKOVIC J. A., SON S. H., A Feedback Control
Approach for Guaranteeing Relative Delays in Web Servers, IEEE Real-Time Technology
and Applications Symposium, Taipei, Taiwan, June 2001.

[LU 02] LU C., STANKOVIC J.-A., TAO G., SON S.-H., Feedback Control Real-Time
Scheduling: Framework, Modeling, and Algorithms, Real Time Systems, vol. 23, num. 1,
p. 85-126, 2002.

[MAH 03] MAHMOUD M., JIANG J., ZHANG Y., Stabilization of active fault tolerant control
systems with imperfect fault detection and diagnosis, Stochastic Analysis and Applications,
vol. 21, num. 3, p. 673–701, 2003.

[MAK 04] MAKI M., JIANG J., HAGINO K., A stability guaranteed active fault-tolerant con-
trol against actuator failures, International Journal of Robust and Nonlinear Control,
vol. 14, num. 12, p. 1061–1077, 2004.

[MAN 00] MANGOUBI R. S., EDELMAYER A. M., Model-based fault detection: the opti-
mal past, the robust present and a few thoughts on the future, SafeProcess’00, Budapest,
Hungary, p. 64–75, June 2000.

[MAO 07] MAO Z., JIANG B., SHI P., H∞ fault detection filter design for networked control
systems modelled by discrete Markovian jump systems, Control Theory & Applications,
IET, vol. 1, num. 5, p. 1336–1343, 2007.

[NAI 97] NAIR G. N., EVANS R. J., State estimation via a capacity-limited communication
channel, 36th Conference on Decision and Control, San Diego, USA, p. 866–871, Decem-
ber 1997.

[NIL 98] NILSSON J., Real-time control systems with delays, PhD thesis, Lund University,
Sweden, 1998.

[OHL 07] OHLIN M., HENRIKSSON D., CERVIN A., TrueTime 1.5–Reference Manual, Jan-
uary 2007.

www.it-ebooks.info

http://www.it-ebooks.info/

58 Networked Control Systems Co-design

[PAR 02] PAREKH S., GANDHI N., HELLERSTEIN J., TILBURY D., JAYRAM T., BIGUS J.,
Using Control Theory to Achieve Service Level Objectives in Performance Management,
Real-Time Systems Journal, vol. 23, num. 1-2, p. 127–141, 2002.

[PAT 00] PATTON R., CHEN J., On eigenstructure assignment for robust fault diagnosis, In-
ternational Journal of Robust and Non Linear Control, vol. 10, num. 14, p. 1193–1208,
2000.

[POG 03] POGGI E.-M., SONG Y.-Q., KOUBAA A., WANG Z., Matrix-DBP for (m,k)-firm
real-time guarantee, Conference of Real Time Systems, Paris, France, p. 457–482, April
2003.

[QIN 01] QIN S., LI W., Detection, identification and reconstruction of faulty sensors with
maximized sensitivity, A.I. Ch. E. Journal, vol. 34, num. 39, p. 1963–1976, 2001.

[QUA 00] QUAN G., HU X., Enhanced Fixed-priority Scheduling with (m, k)-firm Guarantee,
Real-Time Systems Symposium, Orlando, USA, p. 79–88, Nov. 2000.

[RAM 99] RAMANATHAN P., Overload Management in Real-Time Control Applications Us-
ing (m, k)-Firm Guarantee, IEEE Transactions on Parallel and Distributed Systems,
vol. 10, num. 6, p. 549–559, June 1999.

[REH 04] REHBINDER H., SANFRIDSON M., Scheduling of a limited communication channel
for optimal control, Automatica, vol. 40, num. 3, p. 491–500, March 2004.

[RYU 97] RYU M., HONG S., SAKSENA M., Streamlining real-time controller design: from
performance specifications to end-to-end timing constraints, IEEE Real Time Systems Sym-
posium, San Francisco, USA, December 1997.

[SAH 00] SAHAI A., Evaluating channels for control capacity reconsidered, American Control
Conference, Chicago, USA, p. 2358–2362, June 2000.

[SAK 98] SAKSENA M., PTAK A., FREEDMAN P., RODZIEWICZ P., Schedulability Analysis
for Automated Implementations of Real-Time Object-Oriented Models, IEEE Real-Time
Systems Symposium, Madrid, Spain, December 1998.

[SAN 00] SANFRIDSON M., Problem Formulations for QoS Management in Automatic Con-
trol, Report num. TRITA-MMK 2000:3, ISSN 1400-1179, ISRN KTH/MMK-00/3-SE,
KTH, Stockholm, Sweden, 2000.

[SAN 02] SANDSTRÖM K., NORSTRÖM C., Managing Complex Temporal Requirements in
Real-Time Control Systems, 9th IEEE International Conference and Workshop on the En-
gineering of Computer-Based Systems (ECBS’02), Lund, Sweden, April 2002.

[SAV 03] SAVKIN A. V., PETERSEN I. R., Set-valued state estimation via a limited capacity
communication channel, IEEE Transactions on Automatomatic Control, vol. 48, num. 4,
p. 676–680, April 2003.

[SCH 02] SCHINKEL M., CHEN W.-H., RANTZER A., Optimal control for systems with
varying sampling rate, American Control Conference ACC’02, Anchorage, USA, May
2002.

[SEI 05] SEILER P., SENGUPTA R., An H∞ approach to networked control, IEEE Transac-
tions on Automatic Control, vol. 50, num. 3, p. 356–364, 2005.

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 59

[SEO 96] SEO C., KIM B., Robust and reliable H∞ control for linear systems with parameter
uncertainty and actuator failure, Automatica, vol. 32, num. 3, p. 465–467, 1996.

[SET 96] SETO D., LEHOCZKY J. P., SHA L., SHIN K. G., On Task Schedulability in Real-
Time Control Systems, 17th IEEE Real-Time Systems Symposium, New York, USA, De-
cember 1996.

[SIM 98] SIMON D., CASTILLO E., FREEDMAN P., Design and Analysis of Synchronization
for Real-time Closed-loop Control in Robotics, IEEE Transactions on Control Systems
Technology, vol. 6, num. 4, p. 445–461, July 1998.

[SIM 03] SIMON D., SENAME O., ROBERT D., TESTA O., Real-time and delay-dependent
control co-design through feedback scheduling, CERTS’03 Workshop on Co-design in Em-
bedded Real-time Systems, Porto, Portugal, July 2003.

[SIM 05a] SIMON D., BENATTAR F., Design of real-time periodic control systems through
synchronisation and fixed priorities, International Journal of Systems Science, vol. 36,
num. 2, p. 57–6, 2005.

[SIM 05b] SIMON D., ROBERT D., SENAME O., Robust control / scheduling co-design: appli-
cation to robot control, 11th IEEE Real-Time and Embedded Technology and Applications
Symposium, San Francisco, USA, March 2005.

[SPU 96] SPURI M., Analysis of deadline scheduled real-time systems, Report num. RR2772,
INRIA, January 1996.

[TAT 00] TATIKONDA S., Control under communication constraints, PhD thesis, Mas-
sachusetts Institute of Technology, 2000.

[TIN 94] TINDELL K., Fixed Priority Scheduling of Hard Real-Time Systems, PhD thesis,
Department of Computer Science, University of York, UK, 1994.

[TIP 03] TIPSUWAN Y., CHOW M.-Y., Control Methodologies in Networked Control Sys-
tems, Control Engineering Practice, vol. 11, num. 10, p. 1099–1111, 2003.

[WAN 06a] WANG Y. Q., YE H., CHENG Y., WANG G. Z., Fault detection of ncs based on
eigendecomposition and Pade approximation, SafeProcess’06, Beijing, China, p. 937–941,
June 2006.

[WAN 06b] WANG Y. Q., YE H., WANG G. Z., A new method for fault detection of net-
worked control systems, 1st IEEE Conference on Industrial Electronics and Applications,
Singapore, China, p. 1–4, May 2006.

[WES 99] WEST R., SCHAWN K., Dynamic window-constrained scheduling for multimedia
applications, 6th IEEE International Conference On Multimedia Computing and Systems,
ICMCS’99, Florence, Italy, June 1999.

[WES 04] WEST R., ZHANG Y., SCHWAN K., POELLABAUER C., Dynamic Window-
Constrained Scheduling of Real-Time Streams in Media Servers, IEEE Transactions on
Computers, vol. 53, num. 6, p. 744–759, June 2004.

[WON 97] WONG W. S., BROCKETT R. W., Systems with finite communication bandwidth
constraints-Part I: state estimation problems, IEEE Transactions Automatic Control, vol. 42,
num. 9, p. 1294–1299, 1997.

www.it-ebooks.info

http://www.it-ebooks.info/

60 Networked Control Systems Co-design

[WU 97] WU N. E., Robust feedback design with optimized diagnostic performance, IEEE
Transactions on Automatic Control, vol. 42, num. 9, p. 1264–1268, 1997.

[XIA 08] XIA F., SUN Y., Control and scheduling Codesign: Flexible resource management
in real-time control systems, Springer, 2008.

[YAN 98] YANG H. L., SAIF M., Observer design and fault diagnosis for state-retarded dy-
namical systems, Automatica, vol. 34, num. 2, p. 217–227, 1998.

[YAN 06] YANG T. C., Networked control system: a brief survey, IEE Proc.-Control Theory
Applications, vol. 153, num. 4, p. 403–412, 2006.

[YE 04a] YE H., DING S. X., Fault detection of networked control systems with network-
induced delay, 8th International Conference on Control, Automation, Robotics and Vision,
Kunming, China, p. 294–297, December 2004.

[YE 04b] YE H., WANG G. Z., DING S. X., A new parity space approach for fault detection
based on stationary wavelet transform, IEEE Transactions Automatic Control, vol. 49,
num. 2, p. 281–287, 2004.

[YE 06a] YE H., LIU R. H. H., WANG G. Z., A new approach for fault detection of networked
control systems, 14th Symposium on System Identification SYSID’06, Newcastle, Australia,
p. 654–659, March 2006.

[YE 06b] YE H., WANG Y. Q., Application of parity relation and statinary wavelet transform
to fault detection of networked control systems, Proceedings of 1th IEEE Conference on
Industrial Electronics and Applications, Singapore, China, May 2006.

[YU 05] YU M., WANG L., CHU T., HAO F., Stabilization of networked control systems
with packet dropout and transimission delays:continuoust-time case, European Journal of
Control, vol. 11, num. 1, p. 40–49, 2005.

[YUE 05] YUE D., HAN Q.-L., LAM J., Network-based robust H∞ control of systems with
uncertainty, Automatica, vol. 41, num. 6, p. 999–1007, 2005.

[ZHA 01a] ZHANG W., Stability analysis of networked control systems, PhD thesis, Case
Western Reserve University, Cleveland, Ohio, USA 2001.

[ZHA 01b] ZHANG W., BRANICKY M. S., PHILLIPS S. M., Stability of networked control
systems, IEEE control systems Magazine, vol. 21, num. 1, p. 84–99, 2001.

[ZHA 02] ZHANG Y. M., JIANG J., An active fault-tolerant control system against partial
actuator failures, IEE Proceedings Control Theory and Applications, vol. 149, num. 1,
p. 95–104, 2002.

[ZHA 03] ZHANG Y. M., JIANG J., Bibliographical review on reconfigurable fault-tolerant
control systems, 5th SafeProcess’03, Washington, USA, p. 265–276, June 2003.

[ZHA 04] ZHANG P., DING S. X., FRANK P. M., DADER M., Fault detection of networked
control systems with missing measurements, 5th Asian Control Conference, Melbourne,
Australia, p. 1258–1263, July 2004.

[ZHA 05] ZHANG L., CHEN Y. S. T., HUANG B., A new method for stabilization of net-
worked control systems with random delays, IEEE Transactions on Automatic Control,
vol. 50, num. 8, p. 1177–1181, 2005.

www.it-ebooks.info

http://www.it-ebooks.info/

Preliminary Notions 61

[ZHA 06] ZHANG P., DING S. X., Fault detection of networked control systems with limited
communication, SafeProcess’06, Beijing, China, p. 1135–1140, June 2006.

[ZHE 03] ZHENG Y., Fault diagnosis and fault tolerant control of networked control systems,
PhD thesis, Huazhong University of Science and Technology, China, 2003.

[ZHO 96] ZHOU K., DOYLE J. C., GLOVER K., Robust and optimal control, Prentice-Hall
Inc., 1996.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Computing-aware Control

2.1. Overview

To implement a controller, the basic idea consists of running the whole set of con-
trol equations in a unique periodic real-time task whose clock gives the controller
sampling rate. In fact, all parts of the control algorithm do not have an equal weight
and urgency w.r.t. the control performance. To minimize the latency, a control law can
be basically implemented as two real-time blocks; the urgent one sends the control sig-
nal directly computed from the sampled measures, while updating the state estimation
or parameters can be delayed or even more computed less frequently [ÅST 97].

In fact, a complex system involves sub-systems with different dynamics which
must be further coordinated [TÖR 98]. Assigning different periods and priorities to
different blocks according to their relative weight allows for a better control of critical
latencies and for a more efficient use of the computing resource [SIM 98]. However,
in such cases finding adequate periods for each block is out of the scope of current
control theory and must be done through case studies, simulation and experiments.

Latencies have several sources: the first one comes from the computation duration
itself, and worst-case-execution times (WCET) are difficult to get. In multi-tasking
systems, they come from pre-emption due to concurrent tasks with higher priority,
from precedence constraints and from synchronization. Another source of delays is
the communication medium and protocols when the control system is distributed on a
network of connected devices. In particular, it has been observed that in synchronous

Chapter written by Mongi BEN GAID, David ROBERT, Olivier SENAME, Alexandre SEURET

and Daniel SIMON.

63

www.it-ebooks.info

http://www.it-ebooks.info/

64 Networked Control Systems Co-design

0 50 100 150 200
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Relative sampling jitter [%]

V
ar

(θ
)

Pole−placement design, ω=10 rad/s, h=36 ms

0 5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10 Pole−placement design, ω=10 rad/s, h=36 ms

Delay [ms]

V
ar

(θ
)

0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

h [ms]

V
ar

(θ)

Pole−placement design,ω=10 rad s

Figure 2.1. Performance loss w.r.t. timing deviations

multi-rate systems the value of sampling-induced delays shows complex patterns and
can be surprisingly long [CHE 88; WIT 01].

Control systems are often cited as examples of "hard real-time systems" where jit-
ter and deadline violations are strictly forbidden. In fact, experiments show that this
assumption may be false for closed-loop control. Any practical feedback system is
designed to obtain some stability margin and robustness w.r.t. the plant parameters
uncertainty. This also provides robustness w.r.t. timing uncertainties: closed-loop
systems are able to tolerate some amount of sampling period and computing delays
deviations, jitter and occasional data loss without loss of stability or integrity. For ex-
ample in [CER 03], the loss of control performance has been checked experimentally
using an inverted pendulum, for which a linear quadratic (LQ) controller has been
designed according to a nominal sampling period and null delay and jitter. Figure
2.1 (borrowed from [CER 03] with permission of the author) shows the output per-
formance (position error variance) when, respectively, the period, the I/O latency and
the output jitter are increased: the controller behavior can still be considered correct
as long as the sample-induced disturbances stay inside the performance specification
bounds.

The following sections deal with computing-aware robust control, where several
control methods dealing with robustness and/or adaptation w.r.t. implementation in-
duces timing uncertainties are successively exposed.

A general consequence of the execution of control algorithms on digital distributed
platforms is inducing delays from different sources in the control loops, which should
be taken into account in the control algorithms tuning. A first idea in the design
of dependable control systems consists of using robust controllers, i.e. controllers
which are slightly sensitive to both process model and execution resource uncertain-
ties. Therefore, section 2.2 provides a survey of the main existing results concerning
the control of systems with delays. Then the “weakly hard” constrained nature of
control loops w.r.t. timing deviations is revisited and formalized in section 2.3, using
the accelerability property for control tasks when the control periods are allowed to
vary along a slotted timescale. Finally, as the variations of the control intervals can be

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 65

both a consequence of network induced delays and a control variable to manage the
CPU and /or network load, a LPV/H∞-based robust variable sampling control design
is described in section 2.4.

2.2. Robust control w.r.t. computing and networking-induced latencies

2.2.1. Introduction

Delays appear naturally in the modeling of several physical processes. In general,
the delays come from transportation of materials or the transmission of information.
Stability analysis of time-delay systems is thus an important topic in many disciplines
of science and engineering [GU 03; NIC 01; RIC 03]. Motivating applications are
found in diverse areas, such as biology, chemistry, telecommunication control en-
gineering, economics, and population dynamics [KOL 99a]. There has been an in-
creased interest in the area of time-delay systems over the last two decades due to the
emerging area of networked embedded systems, which are systems where sensor and
actuator devices communicate with control nodes over a communication network. In
such systems, processing time and pre-emption in the network nodes, together with
propagation delays in the inter-node communication, necessarily leads to time de-
lays affecting the overall closed-loop control system. Various phenomena related to
delays in networked controlled systems have recently been considered, e.g. packet
losses [HES 07; NAG 08] and robust sampling [FRI 04b]. The locations where delays
appear in a control loop are summarized in Figure 2.2.

1) The actuators and the sensors are generally subsystems which have their own
dynamics. A first source of delay is the time taken to achieve the computation of the
control algorithm itself. This duration is directly related to the algorithm complexity
and to the hardware capabilities. It is known that evaluating the WCET of a given pro-
gram is a very long (and anyway imprecise) duty, especially with modern processors

(3) (2) (2) (1)

Actuators Process Sensors

Controller

Delays

(1)

Figure 2.2. Location of delays in a networked control loop

www.it-ebooks.info

http://www.it-ebooks.info/

66 Networked Control Systems Co-design

using caches and pipelines [DEV 05]. Even for quite simple algorithms using a con-
stant number of statements this duration is usually not constant, due to jitter coming
from the hardware architecture and from the operating system’s overheads. More-
over many algorithms used in engineering applications and involved in control loops
have a variable complexity, depending on input data and operating conditions. This
is, for instance, the case in video processing where the computational complexity may
strongly vary according to the observed scene, e.g. the number of basic visual features
to be extracted and processed. Other algorithms, such as in optimization, have a vari-
able and badly known rate of convergence, so that the number of iterations needed to
reach a predefined accuracy may vary considerably. A second source of delays comes
from the operating system and scheduling policies. In a complex control system sev-
eral computing activities share the computing resources under control of a real-time
scheduler. Tasks are scheduled according to their importance and/or urgency, stated
by their priority. Static schedulers are quite predictable but lead to inflexible imple-
mentations. A more flexible and adaptive sharing of computing resources is provided
by dynamic and pre-emptive schedulers, where high-priority tasks can pre-empt lower
priority ones. However, the complexity of real-life control systems, e.g. where com-
puting activities are triggered by data dependences or asynchronous events, lead to
very complex scheduling patterns and increase even more the complexity and unreli-
ability of precise timing analysis of the real-time control system, e.g. [WIT 01].

To avoid increasing the complexity in the model, it is possible to gather com-
putation and pre-emption induced latencies in a single delay in the forward control
path. Note that in a well-designed control implementation this “local” delay is usu-
ally smaller or equal to the control interval. However, it is not measurable or known
when the computation begins, thus it can be handled by the control algorithm only by
estimations of its lower and upper bounds.

2) In a basic control loop, data is exchanged from one entity to another (for in-
stance, from the controller to actuator or from the sensors to the controller). De-
pending on the system this communication might not be instantaneous. The latency
between the time a data is sent and the time it is received increase considerably when
the controller and the process are remotely installed. This is particularly the case in
the so-called networked control systems (NCS) where the communication is achieved
through a communication network. Such systems are attracting a lot of attention nowa-
days. The main problem and interest, at least for the field of time-delay systems, is
that the delays become time varying with a high amplitude. Depending on the com-
munication link (wire or wireless communication) and on the communication protocol
(TCP, UDP, ZIGBEE, etc.), the quality of the communication can be very low so that
exchange data can be lost during their transfer and leads to additional delays. This
constitutes a large scale of problems which are exposed in [HES 07; ZAM 08]

In order to cope with the problems connected to delays, one has to understand the
difficulties and the complexity that arrive together with delays. In the sequel, a first
section briefly points out basic problems which appear when it comes to time-delay

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 67

systems. This presentation is based on a very simple example. A second section
presents the model of delay functions that are usually used in the literature. More
especially it will present the usual assumptions that are required to design stability
conditions. Finally, the last section exposes the two extensions of the Lyapunov the-
ory to deal with the stability analysis of time-delay systems based on time-domain
methods.

2.2.2. What happens when delays appear?

This section introduces the problem of time-delay systems in terms of mathemat-
ical considerations. More particularly, this section exposes some reasons for which
researchers are still investigating some the topic. To have a better understanding and
reading of this section, simple examples are now studied. Consider the following
simple example. Through this example, several aspects of time-delay systems are pre-
sented. This helps the reader to have a practical approach to understand the relevant
point. Let x ∈ R be a variable whose evolution is governed by

∀t > t0 , ẋ(t) = −x(t − τ), (2.1)

where τ > 0 represents the constant delay. If one considers the non-delay case, i.e.
τ = 0, it is well known that the solutions of the system are stable and are of the form
x(t) = x(t0)et0 −t . In the following, particular aspects of this equation with delay will
allow us to point out the major difficulties of time delay systems and the difference
between the non-delay case.

2.2.2.1. Initial conditions

Consider the case where τ = −π/2. The two functions x1(t) = sin(t) and
x2(t) = cos(t) are trivial solutions of 2.1. The solutions are shown in Figure 2.3.

Figure 2.3. Possible solution for τ = π/2

www.it-ebooks.info

http://www.it-ebooks.info/

68 Networked Control Systems Co-design

In this figure we can find a contradiction with the Cauchy theorem. In the non-
delay case, if two solutions of the same linear differential equation cross, then the two
solutions are the same. In this simple example, it is clear that the two solutions x1
and x2 cross an infinite number of times but are, by definition not equal. This problem
comes from the fact that the state of a time-delay system is not only a vector considered
at an instant t as non-delay case is not, but is a function taken over an interval (or a
window) of the form [t − τ, t]. Consequently, it is not sufficient to initialize the state
of the system by only including the initial position of the state at time t0 . It is required
to define a vector function φ : [t0 −τ, t0] → R such that x(θ) = φ(θ) for all θ lying
in the delay interval [t0 − τ, t0].

Note that the Cauchy theorem still holds. It is rewritten as follows: if two solutions
are equal over an interval of length τ , then the solutions are equal over the whole
simulation time.

2.2.2.2. Infinite dimensional systems

Consider τ = 1 and the initial conditions φ(θ) = 1, for all θ in [t0 − τ, t0]. The
solutions are shown in Figure 2.4.

As expected, in the non-delay case, the solution is an exponential decreasing func-
tion. In the delay case, the solution is not of this form anymore. First the solution has
an oscillatory behavior around 0. These oscillations are the usual and expected effect
of the introduction of delay in a system. For small values of the delay, these oscilla-
tions can be of of very low amplitude and thus negligible. However, for greater values
of τ (for instance τ = 2), the oscillations have a larger amplitude and the solution is
unstable.

Figure 2.4. Solution for τ = 0, 1 and constant initial conditions

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 69

-5 -4 -3 -2 -1 0

-100

100

Re(s)

Im(s)

Figure 2.5. Solution for τ = 0, 1 and constant and zero initial conditions

Considering τ = 1 and the same initial conditions, it is possible to construct the
solution of the system by integrating interval by interval:

t ∈ [−1, 0], x(t) = 1,
t ∈ [0, 1], x(t) = 1 − t,
t ∈ [1, 2], x(t) = 1/2 − t + t2 ,
. . .

Thus, the solution of the system is a polynomial function whose degree increases with
time. One can then see the time-delay system as an infinite dimensional system since
its solution is a polynomial of infinite dimension.

Another property of time-delay systems to understand this type of systems is of
infinite dimension, is to consider the Laplace transform of equation 2.1. The charac-
teristic equation is

s + e−τ s = 0

This characteristic equation has an infinite number of complex solutions as shown
in Figure 2.5. It is clear that this also implies that a time-delay system is of infinite
dimension.

Remark. The stability conditions from roots still holds, i.e. the stability is ensured
if the roots of the characteristic equation have a negative real part (see [GU 03] or
[NIC 01] for more detailed explanations).

www.it-ebooks.info

http://www.it-ebooks.info/

70 Networked Control Systems Co-design

2.2.3. Delay models

In this section, a brief overview of the delay functions is provided in the current
literature has been given.

a) Constant delays: The first studies about the stability of time-delay systems mainly
concerned this type of delays together with linear time-invariant systems. A lot
of stability criteria were developed by on frequency approach [DAM 94], LMI
[GU 03], [NIC 01]. They variously deal with known or unknown, bounded and
unbounded delays. Since the middle of the 1990’s, several conditions were also
expressed in terms of linear matrix inequalities and were able to deal with more
complex problems such as linear systems with norm-bounded uncertainties (see
[KOL 99b], [LI 97] and [NIC 01]).

b) Bounded time-varying delays: The choice of constant time-delay restriction be-
comes less relevant when it comes to practical problems as NCS where the
delays are induced by networked type of communications [LOP 06; HES 07;
ZAM 08] or as in a more practical fluid transportation pipe [ANT 07], to give
just two examples. The case of (known or unknown) variable delays have also
been the topic of numerous researchers ([RIC 03; KAO 07] and the reference
there in). In such a case, the delays appear as a positive scalar functions of the
time or of the state of the process. A first type of conditions on the functions
is to consider that the delay is bounded, i.e. there exists a positive and known
scalar τ2 > 0 such that [HAL 97]

0 ≤ τ(t) ≤ τ2 .

c) Interval time-varying delays or non-small delays: A large majority of the exist-
ing results on time-varying delays only deal with delays functions which vary
between 0 and an upper bound. However, in transportation problem or in net-
worked control systems, the delay functions only vary in an interval excluding
zero. The case of considering a delay which is sporadically equal to 0 indeed
means that, for instance, the transport of a fluid or of information is done instan-
taneously, which is not relevant in practice. Thus, consider that delay functions
which can only vary in a non-zero interval are relevant. One can define the con-
ditions on this type of time-varying delays as follows. There exist two scalars
0 ≤ τ1 < τ2 so that

0 < τ1 ≤ τ(t) ≤ τ2 .

Only recent articles deal with this problem [FRI 04a; JIA 05].

d) Delays with constraints on their first derivative: Numerous stability conditions
require that the delay functions can vary arbitrarily. The following constraints
is often included. Consider a positive scalar d so that

τ̇(t) ≤ d. (2.2)

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 71

More specifically, the conditions require the constraint that d is strictly less than
1. To understand this condition, consider the function f(t) = t − τ(t) which
corresponds to the delayed value considered at time t. The condition d < 1,
means that this function is strictly increasing. This can be interpreted as the
fact that the transport of the fluid or the delayed information is considered in
chronological order.

e) Piece-wise time-varying delays: In practice and more especially in networked con-
trol systems, the delay function is not a continuous function. Consider, for in-
stance, the case of sampling over communication networks. Sampling a signal
as an increasing sequence of time {tk}k can be seen as a delayed signal with
the delay τ(t) = t − tk (see [FRI 04b],[NAG 08] and the reference therein).
These cases are very interesting and relevant because of the scientific and prac-
tical aspects. The main difficulty comes from the fact that the delay function is
discontinuous at the sampling instant and from the fact that the delay derivative
is equal to 1 almost all the time, which is critical regarding condition (2.2).

In general, the stability conditions that we can find in the literature included a
combination of the previous constraints. More importantly and more interestingly, the
stability of the system strongly depends on the type of delay function which is con-
sidered. For instance, the stability a system characterized by given constant delay τ2 ,
an unknown time-varying delay bounded by τ2 or a sampling delay (with a constant
sampling period) are different (see for instance article [NAG 08; RIC 03] and the ref-
erences therein). Thus investigating in more accurate tools to cope with each of the
previous type of delays is still an active topic and even if time-delay systems have
already been paid a lot of attention, there are still a large number of open problems
which need to be solved.

2.2.4. Stability analysis of TDS using Lyapunov theory

This section gives a reminder of the theoretical background on the stability analysis
of time-delay systems, based only on a time-domain approach and the second method
of Lyapunov.

2.2.4.1. The second method

Consider the following time-delay system:

ẋ(t) = f(t, x(t), xt), xt0 (θ) = φ(θ), for θ ∈ [−τ, 0]. (2.3)

It is assumed that this system has a unique solution and a steady state xt = 0 (is the
steady state is non-zero, a change of coordinate can allow it).

The second method of Lyapunov is based on the existence of a function V of the
state xt which is positive definite so that its derivative along the trajectories of (2.3),

www.it-ebooks.info

http://www.it-ebooks.info/

72 Networked Control Systems Co-design

dV
dt is definite negative, if xt �= 0. This “direct” method is only valid for a reduced

class of time-delay systems since the derivative function dV
dt depends on past values

of x (included in xt). It is thus restrictive and sometimes complex to cope with time-
delay systems. However, two extensions of the second method of Lyapunov have
been provided especially for the case of functional differential equations. In the case
of ordinary differential equations (i.e. without delays), a candidate for a Lyapunov
function is of the form V = V (t, x(t)). It only depends on the current “position”,
the current state of the system. In the retarded case, this function is not sufficient to
analyze the stability since it does not contain the full state of the system, i.e. the current
“position” and also past values of it. The stability analysis requires more assumption
on the Lyapunov functions.

Two approaches have been provided to cope with functional differential equations:
The first one, called the Lyapunov–Razumikhin approach, is based on the same type
of Lyapunov function V = V (t, x(t)) but leads to difficulties since the derivative
also depends on past values of x. The second one, named the Lyapunov–Krasovskii
approach, is based on a functional, and not a function, of the form V = V (t, xt) also
leads to several difficulties since it depends on the state xt of the time-delay system.
These two approaches are briefly introduced in the sequel.

2.2.4.2. The Lyapunov–Razumikhin approach

Consider a Lyapunov function of the form V (t, x(t)) which only requires to con-
sider vector in R

n as in the ordinary case. However, the following theorem shows
that it only requires that the derivative of V (t, x(t)) ≤ 0 along the trajectories of the
system to decrease over the delay interval, i.e. for all s ∈ [t − τ, τ]. This test can be
restricted to the solutions which tend to leave a close set of the form V (t, x(t)) ≤ c
around the equilibrium.

THEOREM.–[[KOL 99a]] Consider increasing functions u, v and w : R+ → R+ so
that u(θ) and v(θ) are strictly positive for all θ > 0. Assume that the vector field f of
(2.3) is bounded for bounded values of its arguments. Then if there exists a continuous
function V : R × R

n → R+ such that

– u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖),
– V̇ (t, φ) ≤ −w(‖φ(0)‖) for all trajectories of (2.3) satisfying:

V (t + θ, φ(t + θ)) ≤ V (t, φ(t)), ∀θ ∈ [−τ, 0], (2.4)

then the solution xt = 0 of (2.3) is uniformly stable.

Moreover, if w(θ) > 0 for all θ > 0 and if there exists a strictly increasing function
p : R+ → R+ satisfying p(θ) > θ for all θ > 0 so that

– u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖),

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 73

– V̇ (t, φ) ≤ −w(‖φ(0)‖), for all trajectories of (2.3) satisfying:

V (t + θ, x(t + θ)) ≤ p(V (t, x(t))), ∀θ ∈ [−τ, 0], (2.5)

then V is called the Lyapunov–Razumikhin function and the solution xt = 0 of (2.3)
is uniformly asymptotically stable.

Remark. In practice, the more common functions p are of the form p = qθ
where q is a constant strictly greater than 1 and the Lyapunov–Razumikhin func-
tions to design are generally chosen as simple quadratic functions of the form V (t) =
xT (t)Px(t) where P is a positive definite matrix. Condition (2.5) thus becomes

xT (t + θ)Px(t + θ) ≤ qxT (t)Px(t), ∀θ ∈ [−τ, 0], and q > 1.

Note that it was proved, in [DRI 77], that the two approaches are equivalent in the
case of constant delays. In the time-varying delay case, the Lyapunov–Razumikhin
approach has the particularity to easily take into account variable delay without con-
sidering additional constraints on the derivative of the delay function of the type (2.2).
However, in such a situation, it leads to more conservative stability conditions than
the Lyapunov–Krasovskii approach described in what follows.

2.2.4.3. The Lyapunov–Krasovskii approach

This method is an extension of the Lyapunov theorem to the case of functional
differential equations. It consists of the research of a functional of the form V(t, xt)
which decreases along the trajectories of (2.3). Similarly, V is called a functional
because it depends on the state of the time-delay system xt which a vector function
considers the delay interval [t − τ, τ].

THEOREM.–[[KOL 99a]] Consider continuous and increasing functions u, v, w:
R+ → R+ so that u(θ) and v(θ) are strictly positive for all θ > 0 and u(0) =
v(0) = 0. Assume that the vector field f of (2.3) is bounded for bounded values of its
arguments. Then if there exists a functional V : R × C → R+ so that

– u(‖φ(0)‖) ≤ V(t, φ) ≤ v(‖φ‖),
– V̇(t, φ) ≤ −w(‖φ(0)‖) for all t ≥ t0 along the trajectories of (2.3),

then the solution xt = 0 of (2.3) is uniformly stable. Moreover if w(θ) > 0 for all
θ > 0, then the solution xt is uniformly asymptotically stable.

If V satisfies the following conditions:

– u(‖φ(0)‖) ≤ V(t, φ) ≤ v(‖φ‖),
– V̇(t, φ) ≤ −w(‖φ(0)‖), for t ≥ t0 and w(θ) > 0 for all θ > 0,

– V is Lipschitz with respect to its second argument,

www.it-ebooks.info

http://www.it-ebooks.info/

74 Networked Control Systems Co-design

Then the solution xt of (2.3) is exponentially stable and the functional V is called
Lyapunov–Krasovskii functional.

Remark. In the previous theorem, the notation V̇(t, φ) refers to the derivative in
the sense of Dini, i.e. V̇(t, φ) = limε→0+ sup V(t+ε,xt + ε)−V(t,xt)

ε .

The main idea of the theorem is to determine a positive definite functional V whose
derivative along the trajectories of (2.3) is negative definite. Of course the main dif-
ficulties come from the design of such a functional if it exists. The classical type of
functionals are of the following form ([KOL 96], section 2.2.2):

V(t, φ) = φT (0)P (t)φ(0) + 2φT (0)
(∫ 0

−τ
Q(t, σ)φ(σ)dσ

)
+
∫ 0
−τ

∫ 0
−τ

φT (σR(t, σ, ρ)φ(ρ)dσdρ +
∫ 0
−τ

φT (ζ)S(ζ)φ(ζ)dζ,

where P , Q, R, and S are square matrix functions of dimension n×n. P (t) and S(ζ)
are symmetric positive definite and R satisfies R(t, σ, ρ) = RT (t, ρ, σ). It is assumed
that each element of these matrices are bounded and their derivatives are piece-wise
continuous functions.

In practice, the research of such functionals leads to complex problems to solve.
Often, researchers limit themselves to the cases where the matrix functions P, Q, R,
and S are constant. In such a situation, the previous Lyapunov–Krasovskii functional
becomes:

V(t, φ) = φT (0)Pφ(0) +
∫ 0
−τ

φT (σ)Sφ(σ)dσ + φT (0)
∫ 0
−τ

Qφ(σ)dσ

+
∫ 0
−τ

∫ 0
−τ

φT (σ)Rφ(ρ)dσdρ,

This type of Lyapunov–Krasovskii function leads to the positive property that it proves
the stability only for the delay τ and not lower values of the delay. This is positive
for some systems where the delay has a stabilizing effect (see for instance [SEU 09c;
MIC 04; GU 97]). However, it is possible to design another type Lyapunov–Krasovskii
functionals which allows stability to be assured for constant or time-varying bounded
delays. This is done by considering another integral functional expressed with the
derivative of the state ẋ of the form

V ′(t, φ̇) =
∫ 0

−τ

∫ t

t−θ

ẋT (s)Uẋ(s)dsdθ

However, we have to be careful with the use of this functional since it might introduce
some additional dynamics or constraints, since the functional now depends on the
derivative φ̇ and not φ itself (see [GU 03] and [NIC 01] for more details).

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 75

Note that recent stability conditions have been established using matrix functions
for the parameters Q, R, and S. The discretization method introduced in [GU 97;
GU 03], allows us to construct piece-wise linear functions as the matrix parameters
by dividing the delay interval into several smaller intervals on which the parameters
of the functionals are linearly varying. The stability analysis leads to less conservative
conditions than in the case of constant parameters but extensions to the time-varying
delay case are not straightforward. In [PAP 07], a method to build functionals with
varying parameters based on the sum of squares tools is introduced. Another recent
approach method is based on Integral Quadratic Constraints [KAO 07]. It provides
a new interpretation of the Lyapunov–Krasovskii functionals and the potential con-
servatism (see [ARI 07]). Another method has been provided based on the solutions
of an arbitrary differential equations to build exponential [SEU 09b] and polynomial
[SEU 09a] parameters.

Remark. One has to understand that those two theorems only lead to sufficient con-
ditions of stability. In [KHA 01], a complete Lyapunov–Krasovskii functional (i.e.
which corresponds to necessary and sufficient conditions of stability) is constructed
by solving a functional differential equation. This approach is useful to derive robust-
ness conditions with respect to delay variations [FRI 08a] or parameter uncertainties
[KOL 03], [MON 05].

In general, the two previous theorems applied to the case of linear systems with
delay is expressed in terms of linear matrix inequalities. Based on semi-definite pro-
gramming (see [BOY 94; GHA 00]), it becomes easy to find solutions of this type
of problems using for instance the LMI Toolbox from Matlab (http://www.
mathworks.com) or Scilab (http://www.scilab.org). These two approaches are not
only reduced to cope with the stability of time-delay systems. These methods have
been extended to numerous problems such as stability and stabilization of linear
parameter-varying (LPV) systems (see [BRI 08], section 2.4 and the references
therein), H∞ control (for instance [FRI 02; LI 97]), stabilization finite time [MOU 06],
input-to-output or input-to-state stability ([FRI 08b],[GU 03]).

2.2.5. Summary: time-delay systems and networking

This section proposed a brief overview on the problems which appear in the con-
text of time-delay systems. Even if delay requires careful attention, there already
exist a large number of stability conditions including robustness issues with respect
to the parameter uncertainties and delay variations. Networked control systems are
characterized by a complex interaction between heterogenous components and timing
incertitudes. It is unlikely that the values of computing, scheduling and networking la-
tencies can be accurately modeled and predicted, therefore robust control approaches
are particularly attractive and convincing to cope with the various sources of induced

www.it-ebooks.info

http://www.it-ebooks.info/

76 Networked Control Systems Co-design

latencies in networked control systems, as it is easier (and real-time cheaper) to evalu-
ate an upper bound of aggregated delays rather than an actual measurement or accurate
prediction. Note that, even if being of old concern, research on time-delay systems is
still a very active field where many recent results are of prime interest in NCS.

2.3. Weakly hard constraints

In this section, a particular model of uncertainty is addressed. This uncertainty is
rather related to the ability or the inability of the control task to update the control, at
given instances, which are known at (control and real-time scheduling) design time.
This uncertainty model may originate from the application of the weekly-hard real-
time framework [BER 01]. There are two main motivations behind the application of
this framework as follows:

– The need to minimize computational resource economic costs, which is a strong
requirement in the development process of embedded systems, especially in the con-
text of their mass production. In real applications, and due to task execution time varia-
tions, there is an important gap between average-case and worst-case processor utiliza-
tion. Due to this gap, the application of state-of-the-art worst-case design methodol-
ogy leads to an over-dimensioning of the required resources and consequently to their
under-utilization. The reduction of computational resources cost may be achieved if
methods allowing the needed resources to be dimensioned according to average uti-
lization needs, and not to worst-case utilization scenarios, are employed. In both cases,
achieving the stability and ensuring a minimum performance level are required.

– The need to define application-level-degraded modes in distributed control sys-
tems. These degraded modes may be activated, for example, in the case of a processor
failure. In order to ensure a graceful degradation of the application performance, and
to avoid a sudden breakdown of the whole system, the application has to continue
running in a degraded mode, where all the tasks of faulty processors are dispatched
into the other running processors. This may cause an overload situation.

The framework of weakly hard real-time scheduling was introduced in [BER 01].
This framework encapsulates many previously introduced task models and schedu-
lability constraints such as (m, k)-firm [RAM 95] and skipover [KOR 95]. It allows
handling tasks that can tolerate a clearly specified number of missed deadlines during
a window of time. For those reasons, this framework appears to be a suitable approach
allowing the design and implementation of control tasks based on their average exe-
cution times. In order to exploit this framework in a rigorous way, appropriate control
design approaches have to be proposed. The design of such strategies was addressed
in [BEN 08], and will be summarized throughout this section.

Although the weakly hard real-time scheduling paradigm received significant in-
terest, few works were dedicated to the problem of the control design under weakly

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 77

hard scheduling constraints. [RAM 99] proposed the use of the (m, k)-firm schedul-
ing concept to achieve a graceful degradation in a situation of processor overload. In
this approach, the different jobs of a control task are classified into mandatory and
optional. Mandatory jobs are guaranteed to be completed before their deadlines. Op-
tional jobs may either meet or miss their deadlines. The proposed associated control
design methodology, which relies on the optimal linear quadratic periodic control the-
ory, modifies the gains of the mandatory jobs in order to minimize the degradation
which may result from executing the original control law in an overloaded processor.
However, no control design methodology was proposed to compute the control law
of the optional jobs (which simply maintain the previous controls constant). For this
reason, this design method does not allow the successful executions of the optional
instances to be exploited.

This section describes a control design method allowing the advantages of the
weakly hard real-time scheduling concept to be exploited. It first provides a summary
and then extends the contributions of [BEN 08].

2.3.1. Problem definition

Consider the control system described by the following difference equation:

x(k + 1) = f(k, x(k), u(k)). (2.6)

For any discrete instants ka and kb such that ka ≤ kb , notation u(ka , kb) represents
the control input sequence (u(ka), . . . , u(kb)).

A cost functional J is associated with system (2.6), and is defined by

J(x(0), u(0,∞)) �
∞∑

k=0

q(k, x(k), u(k)). (2.7)

It is assumed that q is chosen to ensure that when J(x(0), u(0,∞)) is finite, then
the controlled system (2.6) is uniformly asymptotically stable. J(x(ka), u(ka , kb))
denotes the cost function corresponding to an evolution starting from state x(ka) at
instant ka to instant kb , and where the control sequence u(ka , kb) is applied.

System (2.6) is controlled by a periodic control task τ , whose execution period is
assigned according to average utilization considerations. To simplify the discussions,
it is assumed that this period is identical to the time period separating two consecutive
discrete instants. However, due to the variations of its own execution time (up to
its Worst Case Execution Time, or WCET), and also to the variations of the processor
load, the jobs of task τ are not ensured to be completed by their deadlines; the deadline
of a job is defined as the release time of its subsequent job. Therefore, in order to

www.it-ebooks.info

http://www.it-ebooks.info/

78 Networked Control Systems Co-design

characterize the jobs that complete by their deadlines, and the others that will miss
their deadlines, and will be consequently aborted, the notion of execution sequence is
introduced.

DEFINITION.– An execution sequence σ is an infinite sequence of elements of {0, 1}.

According to this definition, execution sequences are elements of {0, 1}N. An
execution sequence σ is associated with each completion of task τ , and defined by⎧⎪⎨⎪⎩

σ(k) = 1 if the job activated at instant k completes

its execution by its deadline,

σ(k) = 0 otherwise.

Let E be the set valued function that associates to each execution sequence the invo-
cation count (i.e. the discrete instant of activation) of the jobs that are finished before
their deadlines. Formally, E is defined by

E(σ) � {k ∈ N such that σ(k) = 1} .

Fortunately, using a priority-based scheduling, and knowing the WCET of all the tasks
that have priority over τ , it is possible to guarantee that selected jobs of τ will always
meet their deadlines. This may be ensured using weakly hard schedulability analysis
techniques developed in [RAM 99] and [BER 01]. In the following, it is assumed that
task τ guarantees a (μ, κ)-constraint where μ and κ are two integers so that μ ≤ κ (i.e.
the deadlines of μ out of any κ consecutive jobs of τ are met). It is also assumed that
this constraint is met by guaranteeing that the jobs whose invocation count k verifies

k =
⌊⌈

kμ

κ

⌉
κ

μ

⌋
(2.8)

will always meet their deadlines. These jobs are called mandatory jobs. The other
jobs, which are not guaranteed to be completed by their deadlines, are called optional
jobs. It has been proved in [RAM 99] that when the jobs of a given task are classified
according to (2.8), then the pattern of mandatory jobs will be κ-periodic. This means
that if the job activated at instant k is mandatory, than any job activated at instant
k + iκ, (i ∈ N) is also mandatory. Consequently, when only these mandatory jobs are
guaranteed to be completed before their deadlines, the worst-case execution sequence
γ that may be associated with τ is defined by{

γ(k) = 1 if k =
⌊⌈

kμ
κ

⌉
κ
μ

⌋
,

γ(k) = 0 otherwise.
(2.9)

When relation (2.8) is applied to impose the worst-case execution pattern of task
τ , the corresponding worst-case execution sequence γ is guaranteed to be a κ-periodic
execution sequence, verifying γ(k) = γ(k + κ).

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 79

2.3.2. Notion of accelerable control

For any given control law ξ(k) defined over N, ξσ (k) denotes the control input to
the plant, taking into account execution constraints. Therefore, ξσ (k) is defined by{

ξσ (k) = ξ(k) if σ(k) = 1,
ξσ (k) = ξσ (k − 1) otherwise.

Now the notion of accelerable control can be introduced.

DEFINITION.–
all x0 ∈ R

n , the cost function J(x0 , ξγ (0,∞)) corresponding to the worst-case ex-
ecution sequence γ is finite. The control law ξ(k) is called accelerable according to
performance index (2.7) and worst-case execution sequence γ, if for all execution se-
quences σ1 and σ2 so that E(γ) ⊆ E(σ2) ⊆ E(σ1), for all x0 ∈ R

n , the associated
cost functions satisfy J(x0 , ξσ1 (0,∞)) ≤ J(x0 , ξσ2 (0,∞)).

A control task executing an accelerable control law will be called accelerable con-
trol task. An accelerable control task has the property that the more executions are
performed, the better the control performance. When used in conjunction with weakly
hard real-time scheduling design, an accelerable control task allows us to take advan-
tage of the extra computational resources that may be allocated to it (the successful
execution of optional task instances), and to improve the control performance with re-
spect to worst-case design methods. In practice, however, control laws designed using
standard sampled-data control design methods are not necessarily accelerable. This
fact was demonstrated in [BEN 08].

2.3.3. Design of accelerable controllers

Let σ be an execution sequence and � a time instant. σ • � denotes the execution
sequence defined by {

(σ • �)(k) = σ(k) if k ∈ N and k �= �,

(σ • �)(�) = 1 otherwise.

In the following, a general method for constructing accelerable control laws is pre-
sented. Let γ be a worst-case execution sequence determined according to (2.8). Let
ka and kb two discrete instants such that ka ≤ kb . Let Uρ(ka , kb) be the set of ad-
missible control inputs, defined between instants ka and kb , taking into account the
resource constraints that are modeled by the execution sequence ρ. The set Uρ(ka , kb)
is formally defined as {u(ka , kb), so that u(k) = u(k − 1) if ρ(k) = 0}.

In the rest, the following assumption are made.

[BEN 08] Assume that a control law ξ(k) was defined, so that for

www.it-ebooks.info

http://www.it-ebooks.info/

80 Networked Control Systems Co-design

ASSUMPTION.– For all k ∈ N and x ∈ R
n ,

arg min
u(k,∞)∈U(γ •k) (k,∞)

J(x, u(k,∞)) exist.

For any given k ∈ N and x(k) ∈ R
n , an optimal control sequence corresponding to

an evolution over an infinite horizon, starting at instant k from state x(k), and taking
into account the computation constraints defined by the execution sequence γ •k, will
be denoted as

u∗
(γ•k)(k,∞) � arg min

u(k,∞)∈U(γ •k) (k,∞)
J(x(k), u(k,∞)). (2.10)

An optimal solution of problem (2.10) is a control sequence u∗
(γ•k)(k,∞) =

(u∗
(γ•k)(k), u∗

(γ•k)(k + 1), u∗
(γ•k)(k + 2), . . .) that minimizes the cost function J , cor-

responding to an evolution over an infinite horizon, starting from state x(k) at instant
k, and assuming that

– the job (mandatory or optional) activated at instant k will meet its deadline and
update the plant,

– the subsequent computation constraints (from instant k + 1 to ∞) are described
following the worst-case execution sequence.

Based on the solutions of optimization problems (2.10), it is possible to construct,
in a simple way, an accelerable control law. Let u•(k) be the first element of the
optimal control sequence u∗

(γ•k)(k,∞):

u•(k) = u∗
(γ•k)(k). (2.11)

Strategy u•(k) may be seen as a “robust control” approach against execution uncer-
tainties satisfying the introduced weakly hard model. It allows us to be minimized the
cost function J for the “worst-case uncertainty” from the implementation. Under the
Assumption in section 2.3.3, strategy (2.11) provides a general method for construct-
ing accelerable control laws. The following theorem, borrowed form [BEN 08], states
the accelerability properties of strategy (2.11).

THEOREM.– Let γ be a worst-case execution sequence. Under Assumption 2.3.3,
control law u•(k), as defined in (2.11), is accelerable in accordance to (2.7) and γ.

2.3.4. Accelerable LQR design for LTI systems

In this subsection, only Linear Time Invariant (LTI) plants are considered. Un-
der the Assumption in section 2.3.3, which will be met if reachability properties (as
defined for linear time-varying systems) are fulfilled and when the cost functions are
appropriately chosen, it becomes possible to compute off-line a closed form of u•,

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 81

which will be a time-varying state feedback. In the rest of this section, the following
assumption is made.

ASSUMPTION.–
f(k, x(k), u(k)) = Ax(k) + Bu(k),

q(k, x(k), u(k)) =
[

x(k)
u(k)

]T

Q

[
x(k)
u(k)

]
,

where Q =
[

Q1 Q12
QT

12 Q2

]
≥ 0 and Q2 > 0.

In the following, the methodology underlying the design of the accelerable control
law u• is developed. The following definitions are first introduced. Let γ be a worst-
case execution sequence defined according to (2.9). The application of the theorem in
section 2.3.3 to LTI systems is described by the following corollary.

COROLLARY.– [[BEN 08]] Let γ be a worst-case execution sequence defined ac-
cording to (2.9). Under the assumptions in sections 2.3.3 and 2.3.4, the state feedback
control law defined by

u•(k) = −Lγ (k)x(k) (2.12)

is accelerable in accordance to (2.7) and γ, where

Lγ (k) =
(
Q̃2γ

(k) + B̃T
γ (k)S̃γ (dγ (k))B̃γ (k)

)−1

×
(
B̃T

γ (k)S̃γ (dγ (k))Ãγ (k) + Q̃T
12γ

(k)
)

.

(2.13)

Matrices S̃γ (k) are defined for as the steady state solutions of the following Riccati
equation

S̃γ (k) =ÃT
γ (k)S̃γ (dγ (k))Ãγ (k) + Q̃1γ

(k)

−
(
ÃT

γ (k)S̃γ (dγ (k))B̃γ (k) + Q̃12γ
(k)

)
×
(
B̃T

γ (k)S̃γ (dγ (k))B̃γ (k) + Q̃2γ
(k)

)−1

×
(
B̃T

γ (k)S̃γ (dγ (k))Ãγ (k) + Q̃T
12γ

(k)
)

,

(2.14)

where
dγ (k) � min

km

{km , km > k and γ(km) = 1} , (2.15)

Φ(i, k) �

⎡⎣ Ai−k
i−k−1∑

j=0
AjB

0m,n Im

⎤⎦ ,

www.it-ebooks.info

http://www.it-ebooks.info/

82 Networked Control Systems Co-design

Ãγ (k) � Adγ (k)−k , (2.16)

B̃γ (k) �
dγ (k)−k−1∑

i=0

AiB, (2.17)

Q̃γ (k) �

⎧⎪⎨⎪⎩
Q if dγ (k) − k = 1,

Q +
dγ (k)−1∑
i=k+1

Φ(i, k)T QΦ(i, k) if dγ (k) − k > 1,
(2.18)

and Q̃γ (k) is partitioned as

Q̃γ (k) =
[

Q̃1γ
(k) Q̃12γ

(k)
Q̃T

12γ
(k) Q̃2γ

(k)

]
.

2.3.5. Kalman filtering and accelerability

Consider the following linear discrete-time system

x(k + 1) = Ax(k) + w(k) (2.19)

y(k) = Cx(k) + v(k) (2.20)

where y(k) ∈ R
p is the output, w(k) ∈ R

n and v(k) ∈ R
p are Gaussian random

vectors with zero mean and respective co-variance matrices W ≥ 0 and V > 0. The
pair (A,W) is supposed stabilizable and that the pair (A,C) is detectable. w(k) is
independent of w(l) for l < k. The initial state is assumed to be a Gaussian random
vector with zero mean and co-variance X0 . To simplify the further developments, v
and w are assumed mutually independent.

The control task τ has to determine an estimate of the state of system (2.3.5),
which minimizes the co-variance of the a posteriori estimation error, and under the
computation constraints defined by a given execution sequence σ (which is unknown
at design time). The a priori and the a posteriori estimates of state x(k) are respec-
tively denoted by x̂(k|k−1) and x̂(k|k). Matrices P (k|k−1) and P (k|k) will denote
respectively the co-variance matrices of the a priori (i.e x(k) − x̂(k|k − 1)) and the
a posteriori (i.e x(k) − x̂(k|k)) estimation errors. Let yk = [y(0), . . . , y(k)]T and
σk = [σ(0), . . . , σ(k)]T . x̂(k|k − 1), x̂(k|k), P (k|k − 1) and P (k|k) are defined by
the following equations

x̂(k|k − 1) = E [x(k)|yk−1 , σk−1] (2.21)

P (k|k − 1) = E
[
(x(k) − x̂(k))(x(k) − x̂(k))T |yk−1 , σk−1

]
(2.22)

x̂(k|k) = E [x(k)|yk , σk] (2.23)

P (k|k) = E
[
(x(k) − x̂(k))(x(k) − x̂(k))T |yk , σk

]
(2.24)

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 83

The computational constraints, which prevent task τ from computing an estimate
of the state at instants k where σ(k) = 0 may be modeled using the approach of
[SIN 04]. In this approach, the output noise model is modified so that

p(v(k)|σ(k)) =

{
N (0, V) if σ(k) = 1
N (0, β2I) if σ(k) = 0, with β −→ ∞ (2.25)

In [SIN 04], it has been shown that the equations of the Kalman filter with intermittent
observations are defined as follows.

x̂(k|k − 1) = Ax̂(k − 1|k − 1) (2.26)

P (k|k − 1) = AP (k − 1|k − 1)AT + W (2.27)

L(k) = P (k|k − 1)CT
(
CP (k|k − 1)CT + V

)−1
(2.28)

x̂(k|k) = x̂(k|k − 1) + σ(k)L(k) (y(k) − Cx̂(k|k − 1)) (2.29)

P (k|k) = P (k|k − 1) − σ(k)L(k)CP (k|k − 1) (2.30)

In particular, the iterations of the co-variance matrices P−
k = P (k|k − 1) and P+

k =
P (k|k) are defined by

P−
k+1 = AP−

k AT + W − σ(k)
[
AP−

k CT
(
CP−

k CT + V
)−1

CP−
k AT

]
(2.31)

and

P+
k = AP+

k−1A
T + W − σ(k)

[
P−

k CT
(
CP−

k CT + V
)−1

CP−
k

]
(2.32)

These last equations show that the Kalman filter is accelerable. In fact, the terms

AP−
k CT

(
CP−

k CT + V
)−1

CP−
k AT

and
P−

k CT
(
CP−

k CT + V
)−1

CP−
k

are definite positive (because V > 0 and P−
k ≥ 0). Consequently, when σ(k) =

1, the co-variance matrices values P−
k+1 and P+

k (which represent the quality of the
state estimation) will be better than respectively (AP−

k AT + W) and (AP−
k−1A

T +
W) (which represent their respective values if σ(k) = 0). This shows the intrinsic
accelerability properties of the Kalman filter (2.3.5).

2.3.6. Robustifying feedback scheduling using weakly hard scheduling concepts

Feedback scheduling is a control theoretical approach to real-time scheduling of
systems with variable workload. The feedback scheduler may be seen as a “scheduling

www.it-ebooks.info

http://www.it-ebooks.info/

84 Networked Control Systems Co-design

controller” that receives filtered measures of tasks execution times and acts on tasks
periods in order to optimize a quality of control criterion. In practice, the feedback
scheduler is implemented as a particular real-time task, which is triggered periodi-
cally (at a period which is sufficiently greater than other task periods), in order to
adjust control tasks periods according to their average execution time estimates, while
optimizing a control performance criterion. However, when achieving high processor
utilization rates is desired, these basic implementations of feedback scheduling algo-
rithms do not provide any guarantees on the number of deadline misses, input output
latencies and effective sampling periods that control tasks may experience during the
sampling period of the feedback scheduler. In fact, between two consecutive execu-
tions of the feedback scheduler, the execution time of each task may vary in a random
fashion up to a maximal value. There may exist some situations when the execution
times of some tasks exceed their estimated average value. Consequently, the effective
CPU utilization may also exceed the estimated average CPU utilization, according to
which task periods were adjusted. In this overload situation, lower priority tasks may
experience several deadline misses, long input output latency and effective sampling
period, leading to a severe degradation of the control performance. This problem is
illustrated by the following example.

EXAMPLE.– Consider two control tasks τ1 and τ2 . The execution times of these tasks
vary respectively between [1, 3] and [0.5, 1.5]. Their measured average execution
times are, respectively, equal to 2 and 1. The utilization set points for each task are
respectively equal to 66% and 25%. Consequently, the assigned periods are, respec-
tively, equal to 3 and 4. Figure 2.6(a) depicts a situation when three consecutive
executions of control task τ1 exceed their average estimated execution time. In this
situation, the second task experiences an input output latency of about three consecu-
tive sampling periods, which may significantly degrade its performance.

Fortunately, using a weakly hard scheduling approach allows dealing with these
situations of transient overload. Instead of causing the “starvation” of lower priority
tasks, these approaches allow performance to be gradually degraded, when overload

Job release time

M

M
A

Mandatory job

M

A
(a) Standard implementation

(b) Weakly hard implementation

M Job abortion

Job completion time

Figure 2.6. Illustration of overload handling using weakly hard scheduling concepts

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 85

occurs, as illustrated in Figure 2.6(b). In this situation, the marking of the jobs of tasks
τ1 and τ2 was performed according to the (m, k)-pattern (1,2). This ensures that in
the most severe overload condition, no more than two consecutive deadlines of tasks
τ1 and τ2 are missed.

2.3.7. Application to the attitude control of a quadrotor

Consider the problem of the attitude control of a quadrotor. A quadrotor is a rotor-
craft that is lifted and propelled by four rotors. Chapter 7 provides a detailed descrip-
tion of the used quadrotor model as well as a review of the mathematical concepts
used to describe it. The attitude (i.e. orientation) of the quadrotor is completely de-
scribed using a unitary quaternion q = [q0

−→q T]T , with ‖q‖2 = 1, where q0 and
�q = [q1 q2 q3]T are, respectively, the scalar and vector parts of the quaternion. The
unit quaternion represents the rotation from an inertial frame to the body frame at-
tached to the quadrotor. The dynamic evolution of the attitude quaternion is given
by (

q̇0

�̇q

)
=

1
2

(−�qT

I3q0 + [�q×]

)
ω, (2.33)

where ω ∈ R
3 is the angular velocity of the quadrotor in the body frame and [�q×] is

the skew symmetric tensor associated with �q

[�q×] =

⎛⎝ 0 −q3 q2
q3 0 −q1
−q2 q1 0

⎞⎠ .

The rotational motion of the quadrotor, neglecting the gyroscopic torques, is given by

If ω̇ = −[ω×]If ω + τa + τdist , (2.34)

where If ∈ R
3×3 is the inertia matrix of the quadrotor with respect to the body frame.

If is constant. τa ∈ R
3 represents the torques resulting from the differences of the

relative speeds of the four rotors, and may be written as

τa =

⎡⎣ τroll
τpitch
τyaw

⎤⎦ ,

and τdist ∈ R
3 describe the aerodynamic disturbances acting on the quadrotor.

The objective of the attitude controller is to drive the quadrotor attitude to a desired
value, which is specified by a unitary quaternion. In practice, this attitude may also be
specified by Euler angles (φ, θ, ψ), which are more intuitive than quaternions.

www.it-ebooks.info

http://www.it-ebooks.info/

86 Networked Control Systems Co-design

To design the attitude controller, consider the linearized model of equations (2.33)
and (2.34), and where Euler angles are used instead of quaternions for the description
of the attitude. This linearized model is described by

ẋc(t) = Acxc(t) + Bcuc(t) + Bcτdist(t), (2.35)

with Ac =
[

03 I3
03 03

]
, Bc =

[
03

I−1
f

]
, xc =

[
e
w

]
, e =

⎡⎣ φ
θ
ψ

⎤⎦ and uc = τa .

The attitude controller acts on τa , based on e and ω. It is assumed that e and ω
are measured by an Inertial Measurement Unit (IMU). The attitude controller is imple-
mented as periodic task τ , with period Ts = 50 ms. Let x(k) = xc(kTs). Assume that
the estimated WCET of task τ is three times its average execution time. According
to the weakly hard scheduling philosophy, a (1,3)-firm constraint is associated with
task τ . The corresponding worst-case execution sequence is described by the periodic
execution sequence γ = (1, 0, 0, 1, 0, 0, . . .). An accelerable control design, based on
the worst-case execution sequence γ was performed (according to corollary 1). In the
following simulations, the assigned set point for the attitude controller is xcs p

= 0.
The accelerable control law u• is defined by

u•(k) = −Lγ (k)x(k),

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lγ (k) =

⎡⎢⎣ 0.1783 0 0 0.0824 0 0
0 0.1370 0 0 0.0555 0
0 0 0.0911 0 0 0.0555

⎤⎥⎦ if k mod 3 = 0

Lγ (k) =

⎡⎢⎣ 0.2169 0 0 0.0935 0 0
0 0.1797 0 0 0.0667 0
0 0 0.1197 0 0 0.0689

⎤⎥⎦ if k mod 3 = 1

Lγ (k) =

⎡⎢⎣ 0.2681 0 0 0.1075 0 0
0 0.2474 0 0 0.0838 0
0 0 0.1686 0 0 0.0915

⎤⎥⎦ if k mod 3 = 2

In this particular example, the influence of sampling period reduction manifests
itself on different control performance attributes, in particular on the disturbance re-
jection abilities. Figure 2.7 illustrates this point, and compares the controlled attitude
of quadrotor, described by Euler angles (φ, θ, ψ), in three different situations as fol-
lows.

– The situation where all the optional jobs are not executed (0% hit); this corre-
sponds to the state of the practice hard real-time scheduling design, where resources
are dimensioned according to worst-case utilization situations.

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 87

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

40

Time (s)

R
ol

l a
ng

le
 (

φ)

0% hit
50 % hit
100 % hit

0 5 10 15 20 25 30
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time (s)

P
itc

h
an

gl
e

(θ
)

0% hit
50% hit
100% hit

0 5 10 15 20 25 30
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time (s)

P
itc

h
an

gl
e

(θ
)

0% hit
50% hit
100% hit

Figure 2.7. Quadrotor roll φ, pitch θ, and yaw ψ for different optional jobs hit ratios

www.it-ebooks.info

http://www.it-ebooks.info/

88 Networked Control Systems Co-design

– The situation where all optional jobs are triggered for execution (according to
the weakly hard real-time scheduling philosophy) and when 50% of them meet their
deadlines and update the control, according to a random Bernoulli probability distri-
bution, with success probability 1/2 (50% hit).

– The best-case situation where all the optional jobs are triggered and meet their
deadlines (100% hit).

The aerodynamic disturbances τdist(t) are modeled by band-limited white noises, with
noise power 10−3 and period 10−1 , and which are produced using different seeds.
Figure 2.7 shows that significant improvements in control performance result from
the weakly hard real-time design, with respect to the worst-case real-time design.
The band-limited white noise disturbances are better rejected. These improvements
are due to the fact that in the accelerable weakly hard design, optional instances
are executed when possible, with conveniently computed and compensated control
gains.

Finally, Figure 2.8 depicts the cumulative cost functions that are associated with
the previous simulations. They illustrate the intuitive notion behind accelerability:
the more optional instances are executed, the better the control performance. It is
worth noticing that although the design was performed on the linearized model, these
significant improvements are observed on the nonlinear model. This suggests the
robustness of the used control design methodology.

0 5 10 15 20 25 30
0

50

100

150

200

250

Time (s)

C
um

ul
at

iv
e

co
st

0% hit
50% hit
100% hit

Increasing hit ratio

Figure 2.8. Cumulative costs for different optional jobs hit ratios

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 89

2.4. LPV adaptive variable sampling

As seen in section 1.4, the key actuator to be used for CPU utilization or network
bandwidth control is the control interval. A first idea is to design a bank of controllers,
each of them being designed and tuned for a specific sampling frequency, and to switch
between them according to the decisions of the feedback scheduler. However, it has
been observed that switching without caution between such controllers may lead to
instability although each controller in isolation is stable [SCH 02].

To ensure the system’s stability for a measured variable input delay, [SAL 05]
proposes for example a gain scheduled approach based on time-varying observers
and state feedback controllers, synthesized using linear matrix inequalities (LMI) and
quadratic Lyapunov functions. Indeed, gain scheduling is a popular approach to con-
trol nonlinear plants, allowing to some extent to re-use the well-known linear control
theory and tools [LEI 00]. The model of the plant is linearized around a set of oper-
ating points, and the control responsibility is switched to the controller whose speci-
fication is the closest to the actual operating conditions. LPV approaches were then
developed to enforce the overall control system stability during switching.

Based on these tools, this section presents a varying sampling rate control algo-
rithm based on LPV gain scheduling design: the gain scheduled controller is able to
guarantee the system’s stability whatever the instants and speed of variation of the con-
trol task intervals. A specified performance level must also be preserved in the allowed
interval range. However, this approach is up to now only designed for linear systems.
The first point is the problem formulation so that it can be solved following the LPV
design of [APK 95]. Remember that this design ensures the stability and performance
robustness of the closed-loop parameter-varying system whatever the variations of the
parameters inside their predefined allowed range.

Here a parameterized discretization of the continuous time plant and of the weight-
ing functions leads to a discrete-time, sampling period-dependent, augmented plant.
In particular, the plant discretization approximates the matrix exponentials appearing
in the discretized model by a Taylor series of order N . The original LPV design builds
a discrete-time sampling period dependent controller through the convex combination
of 2N controllers, which may be conservative and complex to implement. In the par-
ticular case where the control interval is in only varying parameter, the dependency
between the variable parameters, which are the successive powers of the sampling pe-
riod h, h2 , ..., hN , is used to reduce the number of controllers to be combined down
to N + 1. This reduction of the polytopic set drastically decreases the conservatism
of the original design and makes the solution easier to implement. A summary of this
approach, which is described in details in [ROB 07a], [ROB 09], and [ROB 07b], is
given in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

90 Networked Control Systems Co-design

X(k+2)

X(k) X(k+1)

t

k

U[x(k)]

U[x(k+1)]

state

control

k+1 k+2

h(k+1)h(k)

X(k+1) = A(h(k)) X(k) + B(h(k)) U(k)

Figure 2.9. Scheduled varying sampling scheme

2.4.1. A polytopic discrete-plant model

A state space representation of a continuous time plant is

G :
{

ẋ = Ax + Bu
y = Cx + Du.

(2.36)

The exact discretization of this system with a zero-order hold at the sampling period
h can be computed, e.g. see [ÅST 97], leading to the discrete-time LPV system 2.37

Gd :
{

xk+1 = Ad(h) xk + Bd(h) uk

yk = Cd(h) xk + Dd(h) uk ,
(2.37)

with h ranging in [hmin ;hmax]. The corresponding sampling and hold scheme are
depicted in Figure 2.9: the control signal U [t(k)] computed at the kth instant from
measure X[t(k)] is hold until instant t(k + 1), which is known and given by a con-
trolled scheduler, e.g. by a feedback scheduler as described in section 1.4.2.3 or a
(m, k)-firm policy as used in section 5.2.5.

However, computing Ad and Bd involve matrix exponentials of the original A and
B matrices and thus are not affine on h. To get a polytopic model and then apply an
LPV design, the exponential is approximated by a Taylor series of order N . Since h is
assumed to belong to the interval [hmin , hmax] with hmin > 0, the sampling period
is approximated around the nominal value h0 of the sampling period, as

h = h0 + δ with hmin − h0 ≤ δ ≤ hmax − h0 . (2.38)

It can be written that(
Ad(h) Bd(h)

0 I

)
=

(
Ah0 Bh0

0 I

)(
Aδ Bδ

0 I

)
, (2.39)

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 91

where (
Ah0 Bh0

0 I

)
:= exp

((
A B
0 0

)
h0

)
(2.40)

and (
Aδ Bδ

0 I

)
:= exp

((
A B
0 0

)
δ

)
. (2.41)

In order to get a polytopic model, a Taylor series of order N is used to approximate
the matrix exponential in 2.41, and allows us to get

Aδ ≈ I +
N∑

i=1

Ai

i!
δi and Bδ ≈

N∑
i=1

Ai−1B

i!
δi. (2.42)

This leads to
Ad(h) = Ah0 Aδ and Bd(h) = Bh0 + Ah0 Bδ (2.43)

Let us define H = [δ, δ2 , . . . , δN] the vector of parameters that belong to a convex
polytope (hyper-polygon) H with 2N vertices.

H =

⎧⎨⎩
2N∑
i=1

αi(δ)ωi : αi(δ) ≥ 0,

2N∑
i=1

αi(δ) = 1

⎫⎬⎭
{δ, δ2 , . . . , δN }, δi ∈ {δi

min , δi
max}.

Each vertex is defined by a vector ωi = [νi1 , νi2 , . . . , νiN
], where νij

can take the
extrema values {δj

min , δj
max} with δmin = hmin − h0 and δmax = hmax − h0 .

The matrices Ad(δ) and Bd(δ) are therefore affine in H and given by the polytopic
forms

Ad(H) =
2N∑
i=1

αi(δ)Adi
, Bd(H) =

2N∑
i=1

αi(δ)Bdi
,

where the matrices at the vertices, i.e. Adi
and Bdi

, are obtained by the calculation
of Ad(δ) and Bd(δ) at each vertex of the polytope H. The polytopic coordinates αi

which represent the position of a particular parameter vector H(δ) in the polytope H
are given solving

H(δ) =
2N∑
i=1

αi(δ)ωi , αi(δ) ≥ 0 ,
2N∑
i=1

αi(δ) = 1. (2.44)

As the gain-scheduled controller will be a convex combination of 2N “vertex” con-
trollers, the choice of the series order N gives a trade-off between the approximation
accuracy and the controller complexity.

www.it-ebooks.info

http://www.it-ebooks.info/

92 Networked Control Systems Co-design

Figure 2.10. Polytope reduction for N = 2 and 3

To decrease the volume and number of vertices of the matrice polytope, the depen-
dency between the successive powers of the parameter h is exploited. Remember that
the vertices ωi of H are defined by h, h2 , . . . , hN , with hi ∈ {hi

min , hi
max}. Indeed,

the representative point of the parameters set is constrained to be on a one-dimensional
curve, so that the polytope of interest can be reduced to the “lower” N + 1 vertices,
as illustrated in Figure 2.10 for the cases N = 2 and 3.

2.4.2. Performance specification

In the H∞ framework, the general control configuration of Figure 2.11 is consid-
ered, where Wi and Wo are weighting functions specifying closed-loop performances
(see [SKO 96]). The objective here is to find a controller K so that internal stability is
achieved and ‖z̃‖2 < γ‖w̃‖2 , where γ represents the H∞ attenuation level.

Classic control design assumes constant performance objectives and produces a
controller with a unique sampling period. This sampling period is chosen according to
the controller bandwidth, the noise sensitivity and the availability of computation re-
sources. When the sampling period varies, the usable controller bandwidth also varies

WoWi

K

z

y

w

u

z̃w̃

P

P̃

Figure 2.11. Focused interconnection

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 93

and the closed-loop objectives should logically be adapted; therefore, the bandwidth
of the weighting functions is adapted. In this aim, Wi and Wo are split into two parts:

– a constant part with constant poles and zeros. This allows, for instance, to com-
pensate for oscillations or flexible modes which are, by definition, independent of the
sampling period. This part is merged with the plant before its discretization.

– the variable part contains poles and zeros whose pulsations are expressed as an
affine function of the frequency f = 1/h, which allow the bandwidth of the weighting
functions to be adapted. These poles and zeros are here constrained to be real by the
discretization step. Finally, opportune cancelations make the discretized templates
independent of h, facilitating further interconnections.

Indeed, preliminary experiences with varying sampling control [ROB 05] pointed out
the advantages of performance adaptation w.r.t. to the sampling rate to preserve sta-
bility margins and to keep the control size inside wise bounds.

2.4.3. LPV/H∞ control design

The interconnection between the discrete-time polytopic model of the plant P̃
(now including the constant part of the weighting functions) and the variable weight-
ing functions Wi and Wo leads to the discrete-time LPV-augmented plant P (H) is
depicted in Figure 2.11.

The H∞ control design for linear parameter-varying systems detailed in [APK 95]
is used here. The method states that under some mild conditions, there exists a gain-
scheduled controller:{

xKk + 1 = AK (H)xKk
+ BK (H)yk

uk = CK (H)xKk
+ DK (H)yk ,

(2.45)

where xK ∈ R
n , ensuring overall parameter trajectories, for the closed-loop system:

– closed-loop quadratic stability

– L2-induced norm of the operator mapping w into z bounded by γ, i.e. ‖z‖2 <
γ‖w‖2 .

N + 1 controllers are reconstructed at each vertex of the parameter polytope (cor-
responding with the extreme values of the parameters). The gain-scheduled controller
K(H) is then the convex combination of these controllers

K(H) :
(

AK (H) BK (H)
CK (H) DK (H)

)
=

r∑
i=1

αi(h)
(

AK i
BK i

CK i
DK i

)
with αi(h) so that H =

∑r
i=1 αi(h)ωi . Note that on-line scheduling of the controller

needs the computation of αi(h) knowing h. Considering a Taylor’s expansion around

www.it-ebooks.info

http://www.it-ebooks.info/

94 Networked Control Systems Co-design

h0 with
δmin = hmin − h0 and δmax = hmax − h0 ,

and the case of the reduced polytope, explicit solutions are easily recursively com-
puted using

⎧⎪⎨⎪⎩
α1 = δm a x −δ

δm a x −δm in

αn = δn
m a x −δn

δn
m a x −δn

m in
−∑n−1

1 αi , n = [2, ..., N]

αN +1 = 1 −∑N
1 αi.

(2.46)

2.4.4. Experimental assessment

The latter approach has been experimentally assessed using a “T”-inverted pendu-
lum, as extensively described in [ROB 07b].

As such a T-pendulum system is difficult to be controlled, our main objective
here is to get a closed-loop stable system, to emphasis the practical feasibility of the
proposed methodology for real-time control.

The sampling interval is assumed to be in the interval [1,3] ms. Note that the sam-
pling rate seems to be very fast compared with the closed-loop-desired performance: it
appears from previous studies and experiments that such fast sampling is necessary to
achieve closed-loop stability for this nonlinear device, whatever the control algorithm
[NAT 04].

After some trials and comparisons [ROB 09], the control synthesis has been im-
plemented using the reduced polytope model and a Taylor’s expansion truncated at the
order 2. Hence, three vertex controllers must be combined for every new value of the
control interval.

The plant is controlled through Matlab/Simulink using the Real-time Workshop
and xPC Target. Two cases are displayed. First, in Figure, 2.12 the sampling period
variation is continuous and follows a sinusoidal signal of frequency 0.15 rad s−1 . The
left plot represents simulation results and the right one a real experiment. As the con-
trol interval varies continuously, the controller is adapted at each sample. Therefore,
the polytopic coordinates computation 2.46 and convex combination 2.4.3 must be
computed previously to the control signal calculation using the state feedback con-
troller 2.45. Anyway, the overall on-line computation remains bounded and simple
enough to be easily implemented in real time.

The position reference for the pendulum is a square pattern. Note that the settling
time varies with the sampling frequency, accordingly to the definition of the vari-
able weighting functions used for the performance specification. On the right part,

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 95

Figure 2.12. Motions of the T pendulum under a sinusoidal sampling period

the experimental data exhibit additional spikes and noise which are a consequence of
dry friction and elasticity (or stick-slip) in the pendulum actuation. However, the ex-
perimental plant is still stable and the control signals remain bounded, despite these
unmodeled mechanical defects whose effect is known to be difficult to compensate for
[OLS 98].

Then, in Figure 2.13, step changes of the sampling rate are experimented. Note
that now the controller’s gains computation only needs to be performed at the control
interval switches, i.e. in this case, the on-line overhead of the method compared with
a classical H∞ controller becomes negligible.

As expected from the sampling-dependent performance objectives, the settling
time is minimal when the sampling period is maximal, and conversely. There are no
abrupt changes in the control signal, even when the sampling period suddenly varies

Figure 2.13. Motions of the T pendulum under a square sampling period

www.it-ebooks.info

http://www.it-ebooks.info/

96 Networked Control Systems Co-design

from 1 to 3 ms. Finally, similar results are obtained in simulation and experimental
tests, which illustrates the inherent robustness property of the H∞ design.

Indeed, few assumptions about sampling have been made for this control design.
The main point is that the control interval is known and lies between the predefined
bounds [hmin ;hmax], whatever the origin of the control interval variations, its speed
and its frequency. Two cases may be considered:

– the control interval is a control variable which can be used by a feedback sched-
uler to manage the CPU load share, e.g. as in section 1.4: in that case the desired con-
trol interval is computed by a scheduling controller and sent to the real-time scheduler
which manages the control tasks execution;

– the control interval variations may be due to sensor scheduling, e.g. induced by
a communication channel between the sensor and controller nodes: in that case the
interval between the successive expected appearance of data at the controller input are
delivered by the scheduling policy controller, e.g. a (m, k)-firm scheduler as defined
in section 1.2.2.

Some further simulations, still using the same case study with the “T”-inverted
pendulum and associated LPV/H∞-based controller, have been made to illustrate
the capabilities and robustness of the method. In the simulation, depicted in Figure
2.14, the control interval has been randomly varied at every sample, with values in
the set {1, 2, 3} ms. Indeed, this case mimics data dropping between the sensor and
control sites, where the network interface is fed by the sensor at a 1 ms rate, and
randomly drops up to two packets out of three with a maximum interval of 3 ms
between successful transmission. This transmission pattern may be the result of a
feedback scheduler using a (1,3)-firm data-dropping policy to manage the network
bandwidth.

Figure 2.14. LPV with (1-3)-firm input scheduling

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 97

Despite the fast and random changes of the control interval, the system remains
stable. The settling time conforms with the performance specification, its actual value
lies between the performance templates defined with the variable weighting functions
for hmin and hmax . The control size remains bounded and reasonably small even with
the appearance of chattering. Similar simulation results have been obtained when
the control interval varies at every sample with random float values in the specified
interval.

This LPV/H∞-based variable sampling control synthesis assumes that the vari-
able parameter, i.e. the control interval in this particular case, is known before the
synthesis is performed. Indeed, this is true for the desired interval sent to the oper-
ating system by a feedback scheduler, or for the scheduled packets incoming interval
on the control node, if jitter is small enough and negligible. However, during control
processing and communications between nodes, delays appear due to both the control
computation on a real CPU and to pre-emption due to higher priority tasks sharing
the control node, and to networking between the sensor, control and actuator’s node if
any. These added delays are not known in real time when the controller’s gains com-
putation starts, as they cannot be accounted in the polytopic parameters computation
and in the elementary vertex controllers convex combination.

A possible way to cope with these unmodeled and unmeasured delays is to com-
pute at each controller execution a discrete set of control signals (corresponding with
the range of expected latencies), send all the set to the actuator’s node, and apply the
control signal which best fit the actual measured interval at the actuator node. This is
for example the approach of [SAL 09]. A drawback of such an approach is overload-
ing the CPU and network with unused control signals computation and transmission.

In a safely designed and schedulable real-time control system running in nominal
conditions, the computing and pre-emption induced latencies are typically smaller
than a control period. It is expected that the effect of these quite small latencies can be
absorbed by the robustness of the on-board controller. Indeed, the fact that the control
experiments depicted in Figures 2.12 and 2.13 are successful, despite nothing was
done to model, identify and compensate for the computation and scheduling latencies,
indicates that the proposed control design provides such capabilities.

The simulation plot in Figure 2.15 further explores the already used case study
robustness w.r.t. unmodeled control delays. The control interval is constant and set to
2 ms, and latencies of increasing values up to 12 ms are added in the control path to
simulate unmodeled compound computation and scheduling latencies. It can be ob-
served that the control stability is kept despite quite large added latencies (unstability
appears beyond 15 ms delays), while the control quality decreases with the appearance
of a classical oscillatory behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

98 Networked Control Systems Co-design

0 5 10 15
−0.4

−0.2

0

0.2

0.4

θ
[r

ad
]

Pendulum angle

0 5 10 15
−2

−1

0

1

2
Control input

u
[]

u (delay 3 ms)
u (delay 6 ms)
u (delay 9 ms)
u (delay 12 ms)

r
θ (delay 3 ms)
θ (delay 6 ms)
θ (delay 9 ms)
θ (delay 12 ms)

Figure 2.15. LPV with unmodeled output delay

Beyond this case study, the robustness of this LPV/H∞ variable sampling control
method deserves to be further formally explored, for example using the results exposed
in section 2.2. Anyway, this design method already appears to be effective to preserve
the plant’s stability and performance objectives during arbitrarily fast control interval
variations. Therefore, the method can further be used to cope with varying comput-
ing and networking resources availability, for example, as sketched in the state-based
feedback scheduler described in section 4.2.

2.5. Summary

Networked control systems are characterized by a complex interaction between
heterogenous components and uncertain behaviors. Compared with classical central-
ized systems, this complex interaction induces disturbances such as latencies due to
communication links and protocols, computing durations and pre-emption between
concurrent activities. The complexity and combined incertitudes of the components
involved in an NCS make untractable an accurate modeling and precise prediction of
the timing patterns in control loops. Robust control techniques, which rely on mod-
eling incertitudes bounds rather than on perfect knowledge, are an effective answer
to the control of uncertain systems. To this end, section 2.2 provides a summary of
results on the control of time-delay systems. Beyond the basic models and theorems
of the domain, recent results dealing with time-varying delays are of prime interest for
handling network induced delays in control systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 99

Section 2.3 deals with a particular model of uncertainty and timing weakly hard
constraints. The method works on a slotted timescale and assumes that the control
tasks are accelerable, i.e. more executions are performed, better is the control per-
formance. A method to design accelerable controllers for LTI systems is provided,
estimation and robustness problems are also addressed. Combining such accelera-
ble controllers with (m, k)-firm policies allows for a smart degradation of the control
performance in case of transient overloads of the execution platform.

With the robustness approach control tasks are designed to be tolerant to the tim-
ing disturbances. A more active approach is used in section 2.4 to make controllers
adaptive to varying known control intervals. An LPV gain scheduling methodology is
used, where the variable parameter is the control interval. It is associated with a H∞
design to guarantee both stability and requested performance over all the predefined
range of intervals, and provides real-time compliant controllers.

These control designs, which are either robust or adaptive w.r.t. timing deviations,
can be further used as building blocks in integrated controllers combining plant control
and execution resources constraints, as described later in Chapters 4 and 5.

Note that, while these designs are mainly suited for linear time invariant plants, ap-
proaches based on model predictive control, and able to deal with plants nonlinearity,
are briefly described in section 4.3.

2.6. Bibliography

[ANT 07] ANTHONIS J., SEURET A., RICHARD J.-P., AND RAMON H., Design of a pressure
control system with dead band and time delay, IEEE Transactions on Control Systems
Technology, vol. 15, p. 1103–1111, 2007.

[APK 95] APKARIAN P., GAHINET P., AND BECKER G., Self-scheduled H∞ control of linear
parameter-varying systems: a design example, Automatica, vol. 31, p. 1251–1262, 1995.

[ARI 07] ARIBA Y., AND GOUAISBAUT F., Robust stability of time-delay systems with inter-
val delays, 46th IEEE Conference on Decision and Control, New Orleans, USA, December
2007.

[ÅST 97] ÅSTRÖM K. J., AND WITTENMARK B., Computer-Controlled Systems, Informa-
tion and System Sciences Series, Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1997.

[BEN 08] BEN GAID M.-M., SIMON D., AND SENAME O., A sesign methodology for
weakly-hard real-time control, IFAC World Congress, Seoul, Korea, July 2008.

[BER 01] BERNAT G., BURNS A., AND LLAMOSÍ A., Weakly hard real-time systems, IEEE
Transactions on Computers, vol. 50, p. 308–321, 2001.

[BOY 94] BOYD S., ELGHAOUI L., AND FERON E., Linear Matrix Inequalities in System
and Control Theory, SIAM, Philadelphia, 1994.

www.it-ebooks.info

http://www.it-ebooks.info/

100 Networked Control Systems Co-design

[BRI 08] BRIAT C., Robust control and observation of LPV time-delay systems, PhD thesis,
Grenoble-INP, France, 2008.

[CER 03] CERVIN A., Integrated control and real-time scheduling, PhD thesis, Department of
Automatic Control, Lund Institute of Technology, Sweden, April 2003.

[CHE 88] CHEN J., ARMSTRONG B., FEARING R., AND BURDICK J., Satyr and the Nymph:
software archetype for real time robotics, IEEE-ACM Joint Computer Conference, Dallas,
USA, November 1988.

[DAM 94] DAMBRINE M., Contribution à l’étude de la stabilité des systèmes à retards, PhD
thesis, Lille University of Science and Technology, France, 1994.

[DEV 05] DEVERGE J., AND PUAUT I., Safe measurement-based WCET estimation, 5th
International Workshop on worst-case execution time analysis, Palma de Mallorca, Spain,
July 2005.

[DRI 77] DRIVER D., Ordinary and Delay Differential Equations, Springer-Verlag, New
York, 1977.

[FRI 02] FRIDMAN E., AND SHAKED U., A descriptor system approach to H∞ control of
linear time-delay systems, IEEE Transactions on Automatic Control, vol. 47, p. 253–270,
2002.

[FRI 04a] FRIDMAN E., Stability of linear functional differential equations: a new Lyapunov
technique, Proceedings of Mathematical Theory of Networks and Systems, September 2004.

[FRI 04b] FRIDMAN E., SEURET A., AND RICHARD J.-P., Robust sampled-data stabilization
of linear systems: an input delay approach, Automatica, vol. 40, p. 1141–1446, 2004.

[FRI 08a] FRIDMAN E., AND NICULESCU S.-I., On complete Lyapunov–Krasovskii func-
tional techniques for uncertain systems with fast-varying delays, International Journal of
Robust and Nonlinear Control, vol. 8, p. 364–374, 2008.

[FRI 08b] FRIDMAN E., YEGANEFAR N., AND DAMBRINE M., On input-to-state stability of
systems with time-delay: a matrix inequalities approach, Automatica, vol. 44, p. 2364–
2369, 2008.

[GHA 00] GHAOUI L. E., AND NICULESCU S.-I., Advances in Linear Matrix Inequality
Methods in Control, Advances in Design and Control Series, SIAM, Philadelphia, 2000.

[GU 97] GU K., Discretized LMI set in the stability problem of linear uncertain time-delay
systems, International Journal of Control, vol. 68, p. 923–934, 1997.

[GU 03] GU K., KHARITONOV V.-L., AND CHEN J., Stability of Time-delay Systems,
Birkhauser, Basle, 2003.

[HAL 97] HALE J., Theory of Functional Differential Equations, Springer-Verlag, New York,
1997.

[HES 07] HESPANHA J., NAGHSHTABRIZI P., AND XU Y., A survey of recent results in net-
worked control systems, Proceedings of the IEEE, vol. 95, p. 138–162, 2007.

[JIA 05] JIANG X., AND HAN Q.-L., On H∞ control for linear systems with interval time-
varying delay, Automatica, vol. 41, p. 2099–2106, 2005.

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 101

[KAO 07] KAO C. Y., AND RANTZER A., Stability analysis of systems with uncertain time-
varying delays, Automatica, vol. 43, p. 959–970, 2007.

[KHA 01] KHARITONOV V., AND ZHABKO A., Lyapunov--Krasovskii approach to robust sta-
bility of time delay systems, 1st IFAC/IEEE symposium on system structure and control,
Prague, Czech Republic, August 2001.

[KOL 96] KOLMANOVSKII V., AND SHAĬKHET L., Control of Systems with Aftereffect, Amer-
ican Mathematical Society, Providence, RI, 1996.

[KOL 99a] KOLMANOVSKII V., AND MYSHKIS A., Applied Theory of Functional Differential
Equations, Kluwer, Dordrecht, 1999.

[KOL 99b] KOLMANOVSKII V., NICULESCU S.-I., AND RICHARD J.-P., On the Lyapunov–
Krasovskii functionals for stability analysis of linear delay systems, International Journal
of Control, vol. 72, p. 374–384, 1999.

[KOL 03] KOLMANOVSKII V., AND ZHABKO A., Lyapunov–Krasovskii approach to the ro-
bust stability analysis of time-delay systems, Automatica, vol. 39, p. 15–20, 2003.

[KOR 95] KOREN G., AND SHASHA D., Skip-over: algorithms and complexity for overloaded
systems that allow skips, 16th IEEE Real-Time Systems Symposium, Pisa, Italy, December
1995.

[LEI 00] LEITH D. J., AND LEITHEAD W. E., Survey of gain-scheduling analysis and design,
International Journal of Control, vol. 73, p. 1001–1025, 2000.

[LI 97] LI X., AND DE SOUZA C.-E., Criteria for robust stability and stabilization of uncertain
linear systems with state delay, Automatica, vol. 33, p. 1657–1662, 1997.

[LOP 06] LOPEZ I., PIOVESAN J., ABDALLAH C., LEE D., PALAFOX O. M., SPONG M.,
AND SANDOVAL R., Pratical issues in networked control systems, American Control Con-
ference, Minneapolis, USA, June 2006.

[MIC 04] MICHIELS W., NICULESCU S.-I., MOREAU L., Using delays and time-varying
gains to improve the static output feedback stabilizability of linear systems: a comparison,
IMA Journal of Mathematical Control and Information, vol. 21, p. 393–418, 2004.

[MON 05] MONDIE S., KHARITONOV V., SANTOS O., Complete Lyapunov-Krasovskii func-
tional with a given cross term in the time derivative, 44th IEEE Conference on Decision
and Control, Sevilla, Spain, December 2005.

[MOU 06] MOULAY E., DAMBRINE M., PERRUQUETTI W., YEGANEFAR N., Une première
approche de la stabilité et de la stabilisation en temps fini des systèmes à retard, CIFA’06,
Bordeaux, France, May 2006.

[NAG 08] NAGHSHTABRIZI P., HESPANHA J., TEEL A., Exponential stability of impulsive
systems with application to uncertain sampled-data systems, Systems and Control Letters,
vol. 57, p. 378–385, 2008.

[NAT 04] NATALE O., SENAME O., CANUDAS DE WIT C., Inverted pendulum stabiliza-
tion through the ethernet network, performance analysis, American Control Conference
ACC’04, Boston, USA, June 2004.

[NIC 01] NICULESCU S.-I., Delay Effects on Stability. A Robust Control Approach, Springer-
Verlag, New York, 2001.

www.it-ebooks.info

http://www.it-ebooks.info/

102 Networked Control Systems Co-design

[OLS 98] OLSSON H., ASTRÖM K.-J., DE WIT C. C., GÄFVERT M., AND LISCHINSKY P.,
Friction models and friction compensation, European Journal of Control, vol. 4, p. 176–
195, 1998.

[PAP 07] PAPACHRISTODOULOU A., PEET M. M., AND NICULESCU S.-I., Stability analysis
of linear systems with time-varying delays: delay uncertainty and quenching, 46th IEEE
Conference on Decision and Control, New Orleans, USA, December 2007.

[RAM 95] RAMANATHAN P., AND HAMDAOUI M., A dynamic priority assignment technique
for streams with (m, k)-firm deadlines, IEEE Transactions on Computers, vol. 44, p. 1443–
1451, 1995.

[RAM 99] RAMANATHAN P., Overload management in real-time control applications using
(m, k)-firm guarantee, IEEE Transactions on Parallel and Distributed Systems, vol. 10,
p. 549–559, June 1999.

[RIC 03] RICHARD J.-P., Time delay systems: an overview of some recent advances and open
problems, Automatica, vol. 39, p. 1667–1694, 2003.

[ROB 05] ROBERT D., SENAME O., AND SIMON D., Sampling period dependent RST con-
troller used in control/scheduling co-design, 16th IFAC World Conference, Prague, Czech
Republic, July 2005.

[ROB 07a] ROBERT D., SENAME O., AND SIMON D., A reduced polytopic LPV synthesis
for a sampling varying controller: experimentation with a T inverted pendulum, European
Control Conference ECC’07, Kos, Greece, July 2007.

[ROB 07b] ROBERT D., Contribution à l’interaction commande/ordonnancement, PhD thesis,
INP Grenoble, January 2007.

[ROB 09] ROBERT D., SENAME O., AND SIMON D., An H∞ LPV design for sampling vary-
ing controllers: experimentation with a T inverted pendulum, IEEE Transactions on Control
Systems Technology, in DOI10.1109/TCST.2009.2026179, 2009.

[SAL 05] SALA A., Computer control under time-varying sampling period: an LMI gridding
approach, Automatica, vol. 41, p. 2077–2082, 2005.

[SAL 09] SALA A., CUENCA A., AND SALT J., A retunable PID multi-rate controller for a
networked control system, Information Sciences, vol. 179, p. 2390–2402, 2009.

[SCH 02] SCHINKEL M., CHEN W.-H., AND RANTZER A., Optimal control for systems with
varying sampling rate, American Control Conference ACC’02, Anchorage, USA, May
2002.

[SEU 09a] SEURET A., Lyapunov–Krasovskii functionals parameterized with polynomials,
6th IFAC Symposium on Robust Control Design - ROCOND’09, Haifa, Israel, June 2009.

[SEU 09b] SEURET A., Stabilization of time-delay systems through linear differential equa-
tions using a descriptor representation, European Control Conference - ECC’09, Budapest,
Hungary, August 2009.

[SEU 09c] SEURET A., EDWARDS C., SPURGEON S., AND FRIDMAN E., Static output feed-
back sliding mode control design via an artificial stabilizing delay, IEEE Transactions on
Automatic Control, vol. 54, p. 256–265, 2009.

www.it-ebooks.info

http://www.it-ebooks.info/

Computing-aware Control 103

[SIM 98] SIMON D., CASTILLO E., AND FREEDMAN P., Design and analysis of synchroniza-
tion for real-time closed-loop control in robotics, IEEE Transactions on Control Systems
Technology, vol. 6, p. 445–461, July 1998.

[SIN 04] SINOPOLI B., SCHENATO L., FRANCESCHETTI M., POOLLA K., JORDAN M. I.,
AND SASTRY S. S., Kalman filtering with intermittent observations, IEEE Transactions on
Automatic Control, vol. 49, p. 1453–1464, 2004.

[SKO 96] SKOGESTAD S., AND POSTLETHWAITE I., Multivariable Feedback Control: Anal-
ysis and Design, Wiley, New York, 1996.

[TÖR 98] TÖRNGREN M., Fundamentals of implementing real-time control applications in
distributed computer systems, Real Time Systems, vol. 14, p. 219–250, 1998.

[WIT 01] WITTENMARK B., Sample-induced delays in synchronous multirate systems, Eu-
ropean Control Conference, Porto, Portugal, p. 3276–3281, September 2001.

[ZAM 08] ZAMPIERI S., A survey of recent results in networked control systems, Proc. 17th
IFAC World Congress, Seoul, Korea, July 2008.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

QoC-aware Dynamic Network QoS
Adaptation

3.1. Overview

When engineers are designing complex networked control systems (NCS), the main
efforts are generally put towards dealing with the negative influences arising from the
network and its interactions with the global system performance. Theories and meth-
ods are hence developed to adapt the control to network-induced delays, packet losses,
jitter or even asynchronous sampling. These methods encompass the estimation or ob-
servation of the quality of service (QoS), and it is assumed that these parameters are
non-controllable. However, it might be possible, in a particular situation, to improve
the performances offered by the network rather than modifying the control parame-
ters, and even degrading the global system performance. In this situation, a set of
techniques able to adjust the QoS offered by a network are proposed in order to en-
hance the QoC. They aim at providing a certain level of performance to a network
data flow, while achieving an efficient and balanced utilization of network resources
as defined by [ZAM 08]. The field of the QoS control includes applications related to
the call admission method, scheduling policy, routing protocol, flow control strategies,
and various other resource allocation problems. In the NCS framework, the hot issue
is to adapt the network according to the evolution of the QoC parameter and not just
the network’s behavior. This means that application constraints coming from one or
even more distributed control systems should be taken into account and that a relation

Chapter written by Christophe AUBRUN, Belynda BRAHIMI, Jean-Philippe GEORGES, Guy
JUANOLE, Gérard MOUNEY, Xuan Hung NGUYEN and Eric RONDEAU.

105

www.it-ebooks.info

http://www.it-ebooks.info/

106 Networked Control Systems Co-design

Figure 3.1. General scheme for dynamic network QoS adaptation

between QoC and QoS needs to be determined. For instance, QoC might be formu-
lated in terms of overshoot or damping, whereas QoS is often expressed in terms of
delays. The principle of the control of network strategy in the field of NCS is hence
shown in Figure 3.1.

In Figure 3.1, the performances evaluation block enables the system to act on the
network resources in order to adjust the QoS according to the application needs. It is
responsible for identifying the influence arising from the network and evaluating the
QoS improvements required. It is important to note here that a single network might
be shared by different applications or different distributed control systems. Each of
these applications operates with respect to different constraints. Different methods
such as mean square error, stability analysis, etc. might be used here to express the
QoC.

The resource allocation policy block in Figure 3.1 executes QoS adaptation. It is
important to note here that the choice of QoS adaptation policy for a network depends
on the protocols and standards defined by this network. Thus, the adaptation method
dedicated to a given protocol will not necessarily give correct results with another
network. Also, this chapter presents two network control strategies, each one related
to a specific network.

In section 3.2, the CAN bus which is one of the most widely used protocols for
industrial communication is considered. The CAN network was developed by the
Bosch company for multiplexing issues in vehicles [BOS 91]. The dynamic network
QoS adaptation proposed in section 3.2 for CAN consists of a dynamic message pri-
ority allocation mechanism based on control application needs. In this study, QoC is
evaluated in terms of overshoot and phase margin, and control performance is asso-
ciated with the mean square error. The adaptation mechanism is then related to the
CAN hierarchical medium access method. Indeed, in CAN, a frame is labeled by an
identifier which is used to resolve the bus contention and which hence determines the
frame priority. Initially, the priority allocation is static which does not allow for taking
into account the dynamics of the application. Section 3.2 proposes a hybrid priority
scheme and an on-line priority allocation method.

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 107

Outputreference
Input

G(s)K

1 + sTd

+
− yr u

Figure 3.2. Model

Section 3.3 focuses on switched Ethernet architectures [IEE 02] which compared
to the CAN bus were not initially defined for constrained communication, but are
nevertheless used more and more to support real-time traffic. Here, the CSMA/CD
medium access method does not include as with CAN, a hierarchical arbitration mech-
anism, which means that another QoS adaptation method is required. In switched
Ethernet architectures, a simple FIFO scheduling policy is used to select the frames
for output forwarding. By using Classification of Service (CoS), it is possible to re-
place the FIFO policy with a more sophisticated Weighted Round Robin (WRR). The
approach proposed in section 3.3 consists of implementing an adaptive configuration
of the scheduling policy parameters. By adjusting these parameters, it is possible to
control the bandwidth offered to the different flows. The goal here is to provide a
sufficient bandwidth according to the worst QoS level acceptable for global system
control.

3.2. Dynamic CAN message priority allocation according to the control
application needs

3.2.1. Context of the study

3.2.1.1. The considered process control application

The closed loop application is presented in Figure 3.2 by using the concept of con-
tinuous time transfer function based on the Laplace transform [ÅST 97]. The process
for controlling is a DC-servo process described by the transfer function

G(s) =
1000

s(1 + s)
.

The controller is a proportional derivative (PD) controller which considers the output
derivation [ÅST 97]. The PD algorithm has the following form:

U(s) = K(R(s) − (1 + sTd)Y (s)),

where U(s), R(s), and Y (s) denote the Laplace transforms of the command signal
u, input reference r, and output signal y. K is the proportional gain and Td is the
derivative time of the controller.

www.it-ebooks.info

http://www.it-ebooks.info/

108 Networked Control Systems Co-design

The closed loop transfer function F (s) of this application is a second-order func-
tion

F (s) =
ω2

n

s2 + 2ζωns + ω2
n

characterized by the natural pulsation ωn and the damping ζ (ω2
n = 1, 000 K and

2ζωn = 1 + 1, 000 KTd). We want the following performances: overshoot = 5%
and response time= 100 ms, which requires the following dynamic characteristics:
ζ � 0.7 and ωn � 43 rad s−1 ; in these conditions, we have the rise time tr ≈
40 ms. Then we need the following values for K and Td : K = 1.8 rad s−1 and
Td = 0.032 s.

3.2.1.2. Control performance evaluation

In order to evaluate the quality of the control of the process control application we
use the following cost function:

J =
∫ T

0
t.(r(t) − y(t))2dt.

The higher the cost function is, the worse is the control performance. We take 0.5 s
for the value of T (at T = 0.5 s the transient behavior is finished and we are in the
permanent behavior). This evaluator, applied to the application when it is implemented
without the network, gives a cost J of 2.5385 × 10−4 .

3.2.1.3. The implementation through a network

3.2.1.3.1. Structure

We consider the implementation represented in Figure 3.3. The network operates
both (i) between computer 1 (C1) in association with the numerical information pro-
vided by the AD conversion (this computer includes a task that we call the sensor task
and which generates the sensor flow) and computer 2 (C2) where we have the refer-
ence and the controller (in C2 we have a task called controller task which generates

A
D

Z
O
H

D
A

h

Process
to

control

C3

External flow

y

Sensor

Controller u

y

C1

C2Input

r
Output

Network

Controller flow

Sensor flow

reference

Figure 3.3. Implementation through the network

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 109

the controller flow), (ii) and between C2 and computer 3 (C3) which provides numer-
ical information to the DA conversion in front of the zero-order hold (ZOH) which is
connected to the actuator acting on the process to control.

The sensor flow which goes from the sensor to the controller will be noted as fsc.
The controller flow which goes from the controller to the actuator will be noted as fca.
The task which generates the sensor flow is time-triggered (the sampling is based on
a clock), whereas the task which generates the controller flow is event triggered (the
controller waits for sensor sample reception before computing and generating its flow).

Generally, a network is not dedicated to only one application but shared between
different applications. In order to make a general study of the process control appli-
cation, when it is implemented through a network, we have to see, in particular, the
influence of the flows of the other applications. It is why we have in Figure 3.3 what
we call the external flow, noted as fex, which globally represents an abstraction of the
flows of all the other applications. We also consider that this flow is periodic.

3.2.1.3.2. Choice of the sampling period

This choice is a basic action. The sampling period has, from the control point of
view, an upper bound [JUR 58]. But from the network point of view a value that is
too small gives a load that is too great. So, the choice results from a compromise.
The relation tr

10 ≤ h ≤ tr
4 , which has been given in [ÅST 97], is generally used. We

consider here the bound tr
4 . As tr ≈ 40 ms; we have h = 10 ms. The controller

is discretized with this sampling period; the measured dynamic characteristics are an
overshoot less than 5%, a rise time tr � 34 ms and a response time (at 5%) res_t � 45
ms. These characteristics will be our references to analyze the performances of the
control application through the studied networks.

3.2.1.3.3. Considering the network CAN

As we want to emphasize message scheduling, we consider a CAN network limited
to the MAC layer. The MAC layer determines the schedule for sending the frames
of the controller, sensor flows, and external flows. For this study, we then have to
specify the bit rate in the physical layer (we consider a bit rate of 125 Kbits s−1) as
well as the frame transmission rate requested by the MAC layer (that we call the use
request factor (URF) and which represents the load imposed on the network by the
applications).

By calling Dsc, Dca, and Dex the duration of the sensor flow frames, the controller
flow frames, and the external flow frames, respectively, h the sampling period of the
process control application (the period for the controller and sensor flow), and Tex the
period of the external flow, we have URF = D s c

h + D c a
h + D e x

Te x
.

Concerning the numerical values, we consider that the frames of the controller
flow and of the sensor flow have a length of 10 bytes, thus a duration of 640 μs. The
frame of the external flow has a length of 16 bytes, thus a duration of 1,024 μs.

www.it-ebooks.info

http://www.it-ebooks.info/

110 Networked Control Systems Co-design

The component D s c
h + D c a

h of the URF, which concerns the process control ap-
plication and which represents the network capacity used by this application, has the
value 12.8%. The use by the external frame of the network capacity will depend on its
period Tex . It is this parameter that we will vary during our study in order to analyze
the robustness of the scheduling of the process control application frames. The frame
scheduling in the MAC layer of CAN [BOS 91; CIA 02] is based on priorities (static
priorities) which appear in the identifier field (ID field) of the frames. The schedul-
ing is done by comparing the field ID bit by bit (we start from the most significant
bit, MSB). In CAN, the bit 0 is a dominant bit, and the bit 1 is a recessive bit. The
lower the numerical value of the CAN ID, the higher the priority. We consider here
the standard length of 11 bits for the ID field.

3.2.1.4. Evaluation of the influence of the network on the behavior of the process
control application

This work has been done by using the tool TrueTime [CER 03; OHL 07], a toolbox
for simulating distributed real-time control systems.

3.2.1.4.1. Dedicated network CAN

This study shows the influence of the format of the serial frames on the process
control application. The evaluator J , applied to the regulation application when it is
implemented through the network CAN without the external flow (thus the network
CAN is dedicated to the regulation application), gives a cost J of 2.565 × 10−4 . This
value of J is called J0 . The value J0 is very close to the value obtained without
the network (see 3.2.1.2). The value J0 will be considered as the reference value
to evaluate the performance of the regulation application, taking into account the
influence of the external flow.

In the condition of J0 , the time response to a unity input step has the following
characteristics: overshoot D% = 5% and damping ζ = 0.7, response time about
45 ms. We can see that, with respect to the performance of the sampled process
control application (section 3.2.1.3.2), the network has a very weak influence here.
This is because the duration of each frame (640 μs) is very small with respect to the
sampling period (10 ms).

3.2.1.4.2. Shared network CAN: considering static priorities and showing their
inadequacy

We got the following important results from previous studies [JUA 05]:

– The priority associated with the controller flow (Pca) must be higher than the
priority associated with the sensor flow (Psc); this way, we get the best performances
for the control application (the intuition is that the controller has to send its message
as soon as it receives the messages of the sensor) .

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 111

URF(%) J Δ J
J 0

30 2.773 × 10−4 8.11%
80 3.281 × 10−4 27.9%
90 3.915 × 10−4 52.6%
99 7.370 × 10−4 187.0%
100 1, 445 × 10−3 463%

Table 3.1. J and Δ J
J 0

– If the priority of the external flow (Pex) is larger than Pca , and if the use request
factor of the external flow (URFex) becomes very high, the external flow will use (as
it has the largest priority) the network (bus) more and more often and will prevent the
flows of the process control application from using the bus. (Consequently, the process
control application will have bad performances and thus cannot be implemented.)

Table 3.1 gives the results obtained by using fixed priorities with Psc < Pca < Pex .
By considering increases of the global URF – first column – (from 30% to 100%) due
to increase of URFex (which increases from (30%–12.8%) to (100%–12.8%)), this
table gives the evolution of the cost function J and the percentage of its variation with
respect to J0 : J−J0

J0
= ΔJ

J0
.

We have a degradation which increases with URF (when URF becomes too great
we have a delay with a big jitter and making the performances so bad that we cannot
implement the regulation application). The time response to a unity input step (when
URF = 100%) is represented in Figure 3.4. We now have an overshoot of D = 29%.
The response time here is very long compared to the response time when there is
no implementation through the network (100 ms), see section 3.2.1.1. These are the
results which have prompted the work on the hybrid priorities.

3.2.1.5. Idea of hybrid priority schemes: general considerations

When we have static priorities, as we have seen in the previous example, when
the loads are high, and if the flows of the process control application do not have the
highest priority, we cannot get acceptable control performances. However, in general,
it is not always possible to give the highest priority to a process control application:
we can have more important applications and, furthermore, if we have at least two
process control applications, one will obviously not have the highest priority.

The idea of hybrid priority results from this problem, as previously stated, and also
from the following important observation: in the general case of a distributed system,
we have a lot of applications which generate different classes of flows which have
different needs in terms of transmission urgency (constant urgency or variable urgency
(from weak to strong)). A class is a characterization a priori, and thus, specified off-
line. A class is a set of flows.

www.it-ebooks.info

http://www.it-ebooks.info/

112 Networked Control Systems Co-design

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

r,
y

Figure 3.4. Time response with URF = 100% ((Pca , Psc)< Pex)

The needs are an operational characteristic which depend on the behavior of the
application concerned. The needs are specified off-line, if they are constant, and on-
line if they are variable. In the latter case, we say they are “dynamic needs”.

A process control application generates a class of two flows (controller flow and
sensor flow) which have dynamic needs: strong urgency in a transient behavior after
an input reference change (in order to follow the change) or after a disturbance (in
order to make the regulation); small urgency in the permanent behavior.

3.2.1.5.1. The identifier (ID) field and the scheduling execution

The identifier field of a frame is divided into two levels (Figure 3.5): the first level
represents the priority of a flow (it is a static priority specified off-line); the second
level represents the priority of the transmission urgency (the urgency can be either
constant or variable). The idea of structuring of the ID is present in the Mixed Traffic
Scheduler [ZUB 97], [ZUB 00] which combines EDF (dynamic field) and FP (static
field). In [WAL 01], the authors propose encoding the weighted absolute value of the

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 113

First levelSecond level
m bits

LSBMSB

n bits

Figure 3.5. Identifier field (hybrid priority)

error in the dynamic field (this idea is also presented in [MAR 04]) and to resolve the
collisions with the least significant bits (static field).

A constant transmission urgency is characterized by a static priority (one m bit
combination) specified off-line. A variable transmission urgency is characterized by
a dynamic priority (which can take, generally speaking, m bit combinations among a
subset of the m bit combinations).

The frames of the flows fsc and fca of a process control application have vari-
able needs (strong urgency in a transient behavior after an input reference change (in
order to follow the change quickly) or after a disturbance (in order to make the reg-
ulation quickly); weak urgency in a permanent behavior). That is why, in this study,
we consider that the dynamic priority of the frames of the flows fsc and fca of a
process control application can take any m bit combination of the set of m bit com-
binations. The scheduling is executed by, first, comparing the second level (needs
predominance), and, secondly, if the needs are identical, by comparing the first level
(flow predominance).

3.2.1.5.2. Cohabitation of flows with constant needs and flows of process control
applications (variable needs)

We have the objective of good performances for the process control applications
in transient behavior. This means that the urgent needs of these flows can be satisfied
very quickly. For that, we impose a maximum value to the flows with constant needs
for the priority of these needs (concept of priority threshold (Pr_th) for the constant
needs). In this way, a strong transmission urgency of a process control application flow
(dynamic priority with a very high value i.e. higher than Pr_th) will be scheduled
first.

3.2.1.5.3. Toward making dynamic priorities

The concept of the dynamic priorities requires specifying, at first, the characteristic
of a process control application which gives information on the needs, and, secondly,
how these needs can be translated into a dynamic priority (computation of a dynamic
priority, instants of re-evaluation of a dynamic priority). We propose to express the
needs with a signal which aptly characterizes the behavior of a process control appli-
cation: it is the control signal u.

www.it-ebooks.info

http://www.it-ebooks.info/

114 Networked Control Systems Co-design

Dynamic priority

0

Pmax

50%Pmax

75%Pmax

90%Pmax

f(|u|)

|u||u|max
2
3
|u|max

Figure 3.6. The considered nonlinear function

3.2.2. Three hybrid priority schemes

We have defined three schemes. The first is what we call the strict hybrid priority
(hp) scheme (computation of the dynamic priority directly from a function of the con-
trol signal u; re-evaluation after each sampling instant). The second is the hp scheme
extended with a static time strategy (STS) for the re-evaluation of the dynamic prior-
ity (re-evaluation not always after each sampling time). This scheme is noted hp+sts.
The third is a scheme which does not compute the dynamic priority directly from the
control signal u (definition of a timed dynamic priority reference profile and trip in
this profile by means of an on-line temporal supervision based on a function of the
control signal u). The dynamic priority is re-evaluated after each sampling instant.
This third scheme, which implements a dynamic time strategy for the trip in the timed
dynamic reference profile, is noted as hp+dts.

We will now detail these three schemes.

3.2.2.1. hp scheme

The needs are translated into a dynamic priority by considering an increasing func-
tion of |u| (call it f(|u|)) characterized by a saturation for a value of |u| less than the
maximum of |u| (noted |u|max). We do not want the dynamic priority to take its highest
value only when |u| is at its maximum but already for values before the maximum, in
order to react quickly as soon as the needs begin to become important. So we decide
(it is an arbitrary choice) to take 2

3 |u|max as the value of |u| where the dynamic priority
reaches its highest value.

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 115

Several functions f(|u|) have been studied [JUA 07b]. For this work, we consider
the function f(|u|) represented in Figure 3.6. This function is defined by

f(|u|) =

{
Pmax

√ |u |
2
3 |u |max

, 0 ≤ |u| ≤ 2
3 |u|max

Pmax, |u| > 2
3 |u|max.

The computation of the dynamic priority is done by the controller each time it re-
ceives a frame that the sensor sends after each sampling instant (dynamic priority
re-evaluated after each sampling instant). Then, after the reception of a frame from
the sensor, the controller sends a frame with the value of the new dynamic priority.
This frame reaches all the sites (CAN is a bus) and as the sensor site knows the first
level of the ID of fca (it is a constraint for our implementation), it will learn the dy-
namic priority that it will put in the next frame that it will send (the dynamic priority
is then used by the two flows of a process control application). The implementation
of the dynamic priority mechanism (calculation by the controller task and attribution
by the sensor task) is represented in Figure 3.7.

Taking into account the task implementation (sensor task is time-triggered, con-
troller task is event-triggered), note that it is the sensor task which transmits the first
frame at the start of the application. For this first frame, the sensor site has no infor-
mation about the dynamic priority and, thus, we consider that it uses the maximum
priority. This way, the first fsc frame reaches the controller site as quickly as possible.

3.2.2.2. (hp+sts) scheme

A criticism of the hp scheme is that we can have oscillatory behavior of the dy-
namic priority values (resulting from a damped sinusoidal transient behavior of u).

h

C2
Controller

Process
to

control

C1

u

y

C3

External flow

y
reference

input

r
Dynamic
priority

calculation

Dynamic
priority

attribution

A
D

H
O
Z

D
A

Output

Sensor flow

Controller flow

Network

Figure 3.7. Implementation of the dynamic priority mechanism

www.it-ebooks.info

http://www.it-ebooks.info/

116 Networked Control Systems Co-design

We can have, for example, this scenario for the dynamic priority values at three suc-
cessive re-evaluation instants [JUA 07a]: the highest value at the first re-evaluation
instant, then an intermediary value at the second, and again the highest value at the
third re-evaluation instant, etc. Such an oscillatory behavior shows that the control
of a situation requiring a big value of the dynamic priority is inadequate in terms of
the maintenance of this big value, since after leaving this value for an intermediary
one, at the second re-evaluation instant, we come back to this big value at the third
re-evaluation instant. The observation of this phenomenon suggests increasing the du-
ration of the dynamic priority with a big value in order to improve transient behavior.

The (hp+sts) scheme is then the following. In contrast to the scheme hp, where
the dynamic priority is re-evaluated in the controller site after each reception of an fsc
frame, the instant of the re-evaluation is no longer so closely related to the sampling
instants. Here, the duration of the time interval between two successive re-evaluations
depends on the value of the dynamic priority at the beginning of the time interval. This
duration must be relevant, in particular, from the point of view of the transfer function
of the process control application and, more precisely, of its transient behavior (de-
fined before its implementation through the network). We considered the following
algorithm:

– if the dynamic priority has a value between the highest priority (Pmax) and half
the highest priority (1

2 Pmax), we keep this value for four sampling intervals, and we re-
evaluate the dynamic priority afterwards; this duration is equal to the rise time tr (we
have chosen h = tr

4) which represents a good characteristic of a transient behavior).

– if the dynamic priority has a value inferior to half the highest priority, we re-
evaluate it after each sampling instant, as in the previous algorithm.

Note that the implementation of the dynamic priority is like the one represented in
Figure 3.7 except that now we have a comparison with the priority 1

2 Pmax and the new
re-evalution strategy in the controller site.

3.2.2.3. (hp+dts) scheme

A criticism of the (hp+sts) scheme is the static aspect of the time strategy for re-
evaluating the dynamic priority. The goal of this new scheme is to have a behavior
which is flexible enough to adapt to different transient situations.

3.2.2.3.1. Main ideas

Fist, we define [JUA 08], which we call the reference profile of the dynamic pri-
orities. This reference profile expresses the dynamic priority values, which must be
used at the successive sampling instants of a transient situation (i.e. after an input
change or a disturbance or after successive input changes and/or disturbances) from
the beginning of such a situation till the establishment of the permanent behavior.
This expression is made in function of a time domain which is a virtual view of the
sampling process during a transient behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 117

Dynamic priority

t0 = 0

P (t)

Pmin

Pmax

tmax

Figure 3.8. Reference profile

The reference profile that we are considering (Figure 3.8) consists of a decreasing
continuously function P (t) :

P (t) = Pmax − (Pmax − Pmin)(
t

tmax
)2 0 ≤ t ≤ tmax.

The values of P (t) decreases from a priority at time 0 (maximum dynamic priority
at the beginning of the hardest transient situation) to a priority Pmin (this priority is
used in three situations: at the end of a transient behavior, during a permanent be-
havior and at the configuration of the system) at time tmax. This time value must
be compatible with the dynamic of the process control application; here we consider
that tmax is the response time at 5% of the process control application (it is an arbi-
trary choice). When we are in permanent behavior (point Pmin, tmax), as soon as we
have a transient situation (input change or disturbance), we have a movement on the
left of the curve P (t) (if it is a very significant transition situation, we go to (point
Pmax, 0)).

The dynamic priority decreases slowly from the value Pmax at the beginning of a
transient behavior (in order to be as reactive as possible). Note that different functions
of P (t) can be studied.

The time domain (0 ≤ t ≤ tmax) does not express the ordered sampling instants,
but it allows for situating each virtual sampling instant tk with respect to the previous
virtual sampling instant tk−1 , and then to deduce the dynamic priority P (tk).

Initially, just after the appearance of an input change or a disturbance (movement
to the left on the curve i.e. dynamic priority increase), we could think that we then
only have movements showing a decrease in dynamic priority, but this is not a correct
interpretation. What we have results from the influence of the network (variable loads)
and also the possibility of successive fast input changes or disturbances in the applica-
tion which lengthen the transient behavior. Thus, since the evolution of the dynamic

www.it-ebooks.info

http://www.it-ebooks.info/

118 Networked Control Systems Co-design

Dynamic priority

time

Pmax

tmax

Pk−1

Pmin

Pk

tk−1 tk0

Dynamic priority

time0

tmaxtk−1

Pmax
Pk

Pk−1

tk

Pmin

Table 3.2. Increase and decrease of the priority

priorities cannot be continually decreasing i.e. being at a virtual sampling instant, we
can, by considering the reference profile curve, move back to a dynamic priority value
higher than the present value. The evolution of the dynamic priorities between two
successive virtual sampling instants can then be as is shown in Figure 3.2.

So, in order to take into account this behavior when computing the virtual sampling
instants, we have to add a component called on-line temporal supervision, in addition
to the sampling period h. This on-line temporal supervision is based on a function
of the control signal (g(u)) which will correct the positioning of the virtual sampling
instant.

We use (Figure 3.9) the function g(u) here with g(u) ∈ [0, tmax]:

g(u) =

{
tmax

√ |u |
2
3 |u |max

, 0 ≤ |u| ≤ 2
3 |u|max

tmax, |u| > 2
3 |u|max.

tmax

g(u)

|u|
0 2

3
|u|max |u|max

Figure 3.9. The considered function g(u)

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 119

3.2.2.3.2. Algorithm for computing the dynamic priority at any sampling instant tk

(tk ∈ [0, tmax]) The operations of the algorithm consist in positioning, when the
controller receives the fsc frame, at an instant in the interval of time [0, tmax] of the
definition of the reference profile and in detecting the value of the dynamic priority
to use from this instant. The value of the instant depends on the value of g(u) at the
reception of the fsc frames.

Initially (configuration of the system), the reference profile is at (point (Pmin, tmax))
i.e. tk = tmax. Then, upon the reception of an fsc frame, the controller:

1) computes g(u);
2) computes x = tk − αg(u), where x is an intermediate variable, α is a coef-

ficient, defined by α = tk

tmax
(0 ≤ α ≤ 1) which balances the influence of g(u) by

increasing this influence even more because the dynamic priority is low (when the
dynamic priority is low, a large value of g(u) must induce greater feedback; it is not
as necessary when the priority is already high)

- if x ≤ 0 then x = 0; we go to the time 0 on the reference profile (priority
Pmax),

- if 0 ≤ x ≤ tmax, we go to the time x in the reference profile and get the
priority P (x);

3) re-initializes the virtual time for the next sampling tk = x + h (if tk > tmax

then tk = tmax). This value will be used for computing the dynamic priority on the
reception of the next fsc frame.

3.2.3. Study of the three schemes based on hybrid priorities

3.2.3.1. Study conditions

We consider the process control application which was presented in section 3.2.1.1.
The input is a position step which starts at time 0, and we study the transient behavior
until it reaches permanent behavior.

The QoS parameters, which need to be taken into consideration, are the mean delay
D̄ of the control loop and its standard deviation σ. The QoC parameter is the response
time at 5% (noted res_t) which is obtained directly from the tool TrueTime.

In order to evaluate the QoS parameters, we use the message exchange temporal
diagrams which are also provided by TrueTime, and the value of res_t.

From the message exchange temporal diagrams, we can get the delay in the control
loop (delay of the message of the flow fsc + delay of the message of the flow fca +
Dsc + Dca) for each sampling period (call Di this delay for the sampling period i).

www.it-ebooks.info

http://www.it-ebooks.info/

120 Networked Control Systems Co-design

URF Multiple Tex

(%) of 1
h

(ms)
99.2 9 1.1111
89.6 8 1.25
80 7 1.4286

70.4 6 1.6667
60.8 5 2.0
51.2 4 2.5
41.6 3 3.3333
32 2 5.0

22.4 1 10.0

Table 3.3. Different URFs

Counting the number n of sampling periods in the response time res_t, we deduce the

value of D̄ and σ by the formulas: D =
∑ n

i = 1 (Di)
n and σ =

√∑ n
i = 1 (Di −D)2

n .

In order to make a quantitative analysis, we cause a variation in the network load
(URF) by varying the period Tex of the external flow: we consider an external flow,
the frequency of which (noted 1

Te x
) is a multiple of the sampling frequency (1

h). The
different URFs being considered are given in Table 3.3.

The following important points must still be emphasized:

– the flows fsc (which are generated at the sampling times) and fex are syn-
chronous (starting at the same time) and as we consider the cases where the frequency
of fex is a multiple of the sampling frequency, then their medium access attempts
coincide at every sampling time;

– up to the value 70.4% of the URF (value of 1.6667 ms for Tex), we can see that
during Tex, one frame of each flow can access the medium: 0.96 ms + 0.64 ms =
1.6 ms < 1.6667 ms (the third flow can begin to be transferred and then cannot be
interrupted). This remark is very important for the analysis which is done in section
3.2.3.3;

– a last point must be still noted: at the beginning of a transient behavior, as the
control signal is at a maximum, the dynamic priority of the flows of the process control
application is Pmax. This point also is important for the analysis in sections 3.2.3.2,
3.2.3.3, and 3.2.3.4.

3.2.3.2. hp scheme

As concerns the process control application, we give D̄ and σ in Table 3.4 and
res_t in Table 3.5. The values depend on the network load URF (which depends
on the frequency fex), and on the priority threshold Pr_th (which depends on the
importance we give to fex).

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 121

Pr_th
URF 0.9Pmax 0.5Pmax 0.25Pmax

(%) D̄ σ D̄ σ D̄ σ
99.2 5.333 1.680 3.743 2.262 1.804 1.380
89.6 3.264 1.286 2.240 1.228 1.629 0.846
80.0 2.48 0.887 1.978 0.828 1.5418 0.592
70.4 1.891 0.462 1.716 0.478 1.472 0.384
51.2 1.891 0.462 1.716 0.478 1.472 0.384
22.4 1.891 0.462 1.716 0.478 1.472 0.384

Table 3.4. hp scheme: D̄ and σ (ms)

Concerning the values of D̄, we observe the following main points:

– for each value of Pr_th:
- for URF ≤ 70.4 %, we note that we have the same values of D̄ and σ what-

ever the value of URF is. This is a consequence of the fact that (cf. remark in the
study condition) the two frames of fsc and fca , during each sampling period, can be
sent during the period of fex , which is not the case with URF > 70.4 % where D̄ and
σ increase with the value of URF (see in table 3.4 ,URF = 80 %, 89.6 %, 99.2 %).

- We explain the difference (URF ≤ 70.4 % and URF > 70.4 %) by means
of two exchange temporal diagrams provided by TrueTime (Figures 3.10 and 3.11 for
the case of Pr_th = 0.9Pmax). In Figure 3.10, we see that the frames fsc or fca can
be delayed, during a sampling period, at the very most for the duration of one frame
of fex (0.96 ms). In Figure 3.11, we see that the two frames of fsc and fca can be
delayed, and the delays for the frame of fca can be more than the duration of one frame
of fex .

- Note then, when URF > 70.4% and for increasing values of URF, D̄ in-
creases because the network load increases (then more chances to delay the frames of
fsc and fca).

– For increasing values of Pr_th, D̄ also increases because the dynamic priori-
ties of the frames of fsc and fca have fewer chances of being higher (except at the
beginning of a transient behavior) than the threshold.

URF Pr_th
(%) 0.9Pmax 0.5Pmax 0.25Pmax

99.2 359 228 105
89.6 148 110 103
80.0 111 108 101
70.4 107 105 99
51.2 107 105 99
22.4 107 105 99

Table 3.5. hp scheme: res_t (ms)

www.it-ebooks.info

http://www.it-ebooks.info/

122 Networked Control Systems Co-design

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

fex

fsc

fca

Time (ms)

Figure 3.10. hp scheme, URF = 70.4%, Pr_th = 0.9Pmax

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

fex

fsc

fca

Time (ms)

Figure 3.11. hp scheme, URF = 89.6%, Pr_th = 0.9Pmax

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 123

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Pr_th = 0.25Pmax

res−t Time (ms)

Dynamic priority

Figure 3.12. hp scheme, URF = 99.2%, Pr_th = 0.25Pmax

– Concerning the values of σ, we have the following comments: for each value
of URF, the variation of σ, when Pr_th increases, presents a maximum (which
occurs for a value of Pr_th around Pr_th = 0.5Pmax). The explanation is given
by means of Figures 3.12–3.14 (which represent the dynamic priority variation for
Pr_th = 0.25Pmax, P r_th = 0.5Pmax, and Pr_th = 0.9Pmax). These figures al-
low us to evaluate the number of times where, during the res_t, the frames of fca
have a higher or lower priority than the threshold (a higher priority means a lower
delay; a lower priority means a bigger delay). Then we can see that we have for
Pr_th = 0.5Pmax, the maximum value of σ (the number of times where the dynamic
priorities are higher than the threshold ≈ the number of times where the dynamic pri-
orities are lower than the threshold). For Pr_th = 0.25Pmax (Pr_th = 0.9Pmax),
the number of times where the dynamic priorities are higher (lower) than the thresh-
old is much greater than the number of times where the dynamic priorities are
lower (higher) than the threshold. Thus, we have values of σ smaller than with
Pr_th = 0.5Pmax (in the case of Pr_th = 0.25Pmax with a small value of D̄; in
the case of Pr_th = 0.9Pmax with a higher value of D̄).

Obviously, for each value of Pr_th, σ increases with URF (the reason is still the
increase of the network load).

Important remark: for Pr_th ≤ 0.15Pmax i.e. low threshold (we have not rep-
resented the results for reasons of limited space), we have the minimal value for D̄

www.it-ebooks.info

http://www.it-ebooks.info/

124 Networked Control Systems Co-design

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Pr_th = 0.5Pmax

res−t Time (ms)

Dynamic priority

Figure 3.13. hp scheme, URF = 99.2%, Pr_th = 0.5Pmax

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Pr_th = 0.9Pmax

res−t Time (ms)

Dynamic priority

Figure 3.14. hp scheme, URF = 99.2%, Pr_th = 0.9Pmax

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 125

Pr_th
URF 0.9Pmax 0.5Pmax 0.25Pmax

(%) D̄ σ D̄ σ D̄ σ
99.2 2.589 2.138 2.589 2.138 1.28 0.0
89.6 1.856 1.152 1.856 1.152 1.28 0.0
80.0 1.664 0.768 1.664 0.768 1.28 0.0
70.4 1.28 0.0 1.28 0.0 1.28 0.0
51.2 1.28 0.0 1.28 0.0 1.28 0.0
22.4 1.28 0.0 1.28 0.0 1.28 0.0

Table 3.6. (hp+sts) scheme: D̄ and σ (ms)

(1.28 ms i.e. a frame of fsc (0.64 ms) and then a frame of fca (0.64 ms) always use
the medium before the frames of fex because the dynamic priority is always higher
than Pr_th during the response time). Then, of course, σ = 0.

3.2.3.3. (hp+sts) scheme

For the hp scheme, we give D̄ and σ in Table 3.6 and res_t in Table 3.7. The
values are obviously a function of URF and Pr_th.

We can see important differences with the hp scheme:

– for URF ≤ 70.4 %, D̄ is now always constant, whatever the Pr_th is (this
is for two reasons: the first reason is because of the consequence of the property
(URF ≤ 70.4 %) indicated in section 3.2.3.1; the second is the fact that now, at the
beginning of the transient behavior, the dynamic priority is used by the flows fsc and
fca for a duration, at least, equal to 4h). Obviously, as D̄ is constant, σ = 0.

– For Pr_th = 0.25Pmax, we have D̄ which is constant for all URF values (this
means that, on all the network load conditions, the dynamic priority is higher than
the threshold). The explanation is given by the exchange temporal diagram on Figure
3.15.

– Analysis of a row of Table 3.6 (in the case where Pr_th > 0.25Pmax): we
have the same values of D̄ and σ whatever the value of Pr_th. The explanation is
given by the exchange temporal diagrams of Figures 3.16 and 3.18 where we consider
URF = 99.2 %. These diagrams are identical.

URF Pr_th

(%) 0.9Pmax 0.5Pmax 0.25Pmax

99.2 103 103 46
89.6 100 100 46
80.0 98 98 46
70.4 46 46 46
51.2 46 46 46
22.4 46 46 46

Table 3.7. (hp+sts) scheme: res_t (ms)

www.it-ebooks.info

http://www.it-ebooks.info/

126 Networked Control Systems Co-design

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

fex

fsc

fca

Time (ms)

Figure 3.15. (hp+sts) scheme, URF = 99.2%, Pr_th = 0.25Pmax

– Analysis of a column of Table 3.6 (in the case where URF > 70.4 %): we note
an increase of D̄ and σ with URF (the explanation is given by Figures 3.17 and 3.18);
the delay of the frame fca (sampling periods 8 and 9) in Figure 3.18 is higher than in
Figure 3.17).

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

fex

fsc

fca

Time (ms)

Figure 3.16. (hp+sts) scheme, URF = 99.2%, Pr_th = 0.5Pmax

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 127

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

fex

fsc

fca

Time (ms)

Figure 3.17. (hp+sts) scheme, URF = 80%, Pr_th = 0.9Pmax

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

fex

fsc

fca

Time (ms)

Figure 3.18. (hp+sts) scheme, URF = 99.2%, Pr_th = 0.9Pmax

www.it-ebooks.info

http://www.it-ebooks.info/

128 Networked Control Systems Co-design

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Pr_th = 0.5Pmax

res−t Time (ms)

Dynamic priority

8h

Figure 3.19. (hp+sts) scheme, URF = 99.2%, Pr_th = 0.5Pmax

With respect to the hp scheme, all the improvements (which give best response
time for the process control application) result from the fact that the dynamic priority
Pmax is used for a longer time. In Figure 3.19 (compare with Figure 3.13), we have an
example of the evolution of the dynamic priority (we have Pmax during 8h).

3.2.3.4. (hp+dts) scheme

We give, as for the previous schemes, D̄ and σ in Table 3.8 and res_t in Table 3.9.

We can see now that we always have the minimum constant value D̄ (duration
of the fsc frame (0.64 ms) + duration of the fca frame (0.64 ms)), then σ = 0, and
the best response time (46 ms). This is a consequence of the fact that the dynamic
priority is continuously controlled (by the control signal u) and that it is higher than
the threshold for a time longer than the res_t (see Figure 3.20).

3.2.4. QoC visualization

We represent, in Figures 3.21–3.23, the time response to an input step for the three
schemes in the following conditions: URF = 99.2% and Pr_th = 0.9Pmax. The

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 129

Pr_th
URF 0.9Pmax 0.5Pmax 0.25Pmax

(%) D̄ σ D̄ σ D̄ σ
99.2 1.28 0.0 1.28 0.0 1.28 0.0
89.6 1.28 0.0 1.28 0.0 1.28 0.0
80.0 1.28 0.0 1.28 0.0 1.28 0.0
70.4 1.28 0.0 1.28 0.0 1.28 0.0
51.2 1.28 0.0 1.28 0.0 1.28 0.0
22.4 1.28 0.0 1.28 0.0 1.28 0.0

Table 3.8. (hp+dts) scheme: D̄ and σ (ms)

oscillatory transient behavior clearly shows the performances of the three schemes in
terms of overshoot and damping. The conditions of a big network load and a high
threshold still show the interest of the two schemes with a time strategy (hp+sts,
hp+dts) to get good performances. The dynamic aspect of the time strategy in the
scheme hp+dts shows in the end that it is the best scheme.

3.2.5. Comment

We have considered three hybrid priority schemes and we have demonstrated the
particular interest of a scheme, call (hp+dts), with a double aspect: dynamic priority
based on a temporal supervision function of the control signal of the process control
application. We have also evaluated, on the one hand, the QoS in terms of the mean
delay and its standard deviation, and, on the other hand, the QoC in terms of the
response time at 5%, and the relation between QoS and QoC (overshoot, damping).
Concerning the results which have been obtained, we want to emphasize that, even
with a big extended load (consider Figures 3.21–3.23, with URF = 99% whereas the
load of the process control application is only 12.8%), the process control application
gets very good results (especially with the last two schemes).

URF Pr_th
(%) 0.9Pmax 0.5Pmax 0.25Pmax

99.2 46 46 46
89.6 46 46 46
80.0 46 46 46
70.4 46 46 46
51.2 46 46 46
22.4 46 46 46

Table 3.9. (hp+dts) scheme: res_t (ms)

www.it-ebooks.info

http://www.it-ebooks.info/

130 Networked Control Systems Co-design

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Pr_th = 0.9Pmax

res−t Time (ms)

M
ill

is
ec

o
n

d
s

Dynamic priority

Figure 3.20. (hp+dts) scheme, URF = 99.2%, Pr_th = 0.9Pmax

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

M
ill

is
ec

on
ds

Figure 3.21. hp scheme: response time to an input step

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 131

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

M
ill

is
ec

on
ds

Figure 3.22. hp+sts scheme: response time to an input step

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

M
ill

is
ec

on
ds

Figure 3.23. hp+dts scheme: response time to an input step

www.it-ebooks.info

http://www.it-ebooks.info/

132 Networked Control Systems Co-design

3.3. Bandwidth allocation control for switched Ethernet networks

Compared to the CAN bus protocol studied in section 3.2, the native Ethernet does
not implement any priority mechanism. Non-standardized solutions have been pro-
posed: adapting the inter-frame gap (smaller for high priority frames), modifying the
Binary Exponential Backoff algorithm (the waiting time is not randomly calculated,
but in relation with the priority), or using a variable length of the preamble (smaller
for high priorities). Another approach consists of using a time division multiple access
method over the native CSMA/CD protocol: pre-allocated time slots are defined for
the transmission of time-critical data.

Nevertheless, the evolution of Ethernet to segmented architectures and the def-
inition of the Virtual Local Area Networks (VLAN) have led to the birth of a new
standards set (802.1D/p, 802.1Q) in which new encapsulation fields are added to the
classical frame [IEE 03]. One of these fields is specified in order to support eight
priority levels associated with eight types of applications (voice, video, network man-
agement, best effort, etc.). The number of classes of service may be different to the
number of priority levels, and also different for each port. That is why the standard
also recommends a mapping between classes, priority, and ports queues.

The next point is the scheduling policy used to forward the frames at the output
port regarding their dedicated priorities. [IEE 03, section 8.6.6] defines two items:

– for a given supported value of traffic class, frames are selected from the cor-
responding queue for transmission only if all queues corresponding to numerically
higher values of traffic class supported by the port are empty at the time of selection;

– for a given queue, the order of which frames are selected shall maintain the
incoming ordering.

It means that the scheduling policy defined is the Strict Priority (SP) algorithm, and
the policy must be FIFO for a given queue. But the standard enables to implement
other algorithms. The main drawback of the SP algorithm is that it can lead to the
impossibility for the lowest priority queues to be served. It corresponds to famine
situations for the non-real-time applications. To resolve it, CoS switches implement
a supplementary policy: the Weighted Fair Queuing (WFQ). In the fair queuing al-
gorithms, the service offered to the high priority queues is moderated as follows. A
weight is associated with each queue. Then the scheduler gives to each queue (from
the highest priority to the lowest) a bandwidth determined by its associated weight.

The WFQ, initially proposed in [DEM 89], is also known as the packetized gener-
alized processor sharing (PGPS). It is based on the conceptual algorithm called gen-
eralized processor sharing (GPS) [PAR 93]. However, practical implementations of
WFQ in today’s switch products are based on its simplified version named WRR.

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 133

In a round robin policy, packets are pushed in queues according to their priority
level. Then the server pools the different queues according to a cyclic sequence (using
a pre-computed order defined by the queues priorities) in an attempt to serve one
packet for each non-empty queue. Even if this algorithm respects the fairness quality,
no flexibility is integrated. Moreover, the fairness can be damaged with variable packet
lengths. To improve the lack of flexibility of a simple round robin policy, the WRR
[DEM 89; KAT 91] associates a weight wi with each flow i. Now, the WRR server
will attempt to serve a flow i with a rate of wi∑

j wj
before looking for the following

queue. Comparing to PGPS, delays could be more important since if the system is
heavily loaded and a frame just misses its slot, it will have to wait for its next slot i.e.
a cycle.

In the following, a WFQ policy based on a per-priority queuing and a WRR
scheduling is studied. This implementation is typical of switch products, like the
Cisco Catalyst 2950. The WRR assigns a priority i to each flow. It serves all the flows
in a cyclic way, from the queue with the highest priority to the lowest. The number of
frames that will be forwarded by the server for a queue i is bounded by the number
ωi . When the queue is empty, the scheduling protocol immediately processes the next
queue.

In the context of NCS, the CoS is interesting since it enables to change the best ef-
fort service and the FIFO scheduling by a differentiated service and advanced schedul-
ing. This approach is illustrated in Figure 3.24. For instance, the WRR policy
[DEM 89] manages the network performances by adjusting the number of frames
forwarded for each flow according to the frames priority. To illustrate the interest
of CoS, a modification of the TrueTime kernel was proposed in [DIO 08] in order
to allow the simulation of the WRR over switched Ethernet networks. It was then
used to differentiate the service offered to the frames on the embedded network of the
quadrotor.

The performances are by means of hard deadline computation algorithm which is
treated in the following section.

Figure 3.24. Controller PN model

www.it-ebooks.info

http://www.it-ebooks.info/

134 Networked Control Systems Co-design

3.3.1. NCS performance analysis

In this section, we analyze network-induced delay effects on system stability for
linear, time-invariant control systems. The state space equations are modified ac-
cording to induced delay, NTs , where N varies from 1 to D. Then DTs is the hard
deadline which represents the critical value of induced delays beyond which the stabil-
ity of the overall system is not guaranteed.The pole positions of the augmented state
equation are tested to derive the necessary conditions for asymptotic system stability.
[KAN 92]define the hard deadline as follows. Let XA and UA be the allowed state
space and the admissible input space, respectively. Suppose the state, x, is evolved
from time ko in the presence of a computation-time delay N according to

x(k) = Φ {k, k0 , x(k0), u(k − N)} , (3.1)

where Φ is the state transition map and u is the control signal. Then, the hard deadline
is given by

D(x(k0)) = sup
u(k−N)∈UA

{N : Φ(k, k0 , x(k0), u(k − N)) ∈ XA. (3.2)

Due to the delay in the transmission, it is assumed that the control input is updated at
time mTs. The augmented state space equation becomes

x((m + 1)N) = AN x(mM) +
N −1∑

j=N −i

AjBu(mN)

+
N −i−1∑

j=0
AjBu(mN + N − j − 1)

(3.3)

The hard deadline is derived from equation 3.3 by iteratively testing the current pole
location of the closed-loop-augmented system. In this case, the hard deadline is ex-
pressed in the number of sampling period.

3.3.2. NCS modeling

3.3.2.1. Introduction

PN is able to formally represent the behavior of any kind of system. It has the
capability to express many mechanisms usually used in distributed environments such
as parallelism, synchronization, concurrency, and resource sharing [DAV 04; JEN 92;
JUA 04]. Moreover, there are many references in the literature where PN is employed
to model network protocols in order to validate protocol specifications, as in [BIL 82]
and [LAI 89]. The objective of this research is to show that PN can also be used to
model NCS in order to assess its behavior in a common formal language.

NCS are complex to model since they integrate different components such as con-
trollers, actuators, sensors, the plant, and the network. In order to simplify the NCS

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 135

model, it is necessary to split it into several sub-models. This means that the PN used
to model NCS has to be based on the concept of Hierarchy defined in Hierarchy PN
(HPN). In this case, a transition of the PN model can represent a sub-PN model. This
particular transition is named substitution transition. The advantage of using HPN is
also to build models in modular way. For example, the change of protocols in the
NCS model consists only in replacing the sub-model describing the current protocol
by the new one. Another difficulty during the NCS modeling is to be able to differen-
tiate the messages according to its time constraints. The solution is to use the Colored
HPN (CHPN). In this case, the color allows message tagging in regard to its time
specifications. Finally, the time properties are obviously defined in NCS modeling.
Thus, the Timed CHPN (TCHPN) is chosen to model NCS. This is the formalism de-
fined by [JEN 92] and implemented in CPNTools developed by the Aarhus University
[JEN 07].

3.3.2.2. Network modeling

Network modeling is usually achieved in two steps: traffic modeling and network
device modeling (router, switch, etc.). Traffic modeling has to define the frame format
according to the kind of protocol used. This modeling can be simplified by specify-
ing only the format size and the information that is useful in the NCS context. The
following list of colors is used to represent a frame:

Colset inp = with I1|I2; /* Source Address */
Colset outp = with O1|O2; /* Destination Address */
Colset prio = int with L...H; /* Frame Priority: Low, Medium, High

(Val H=2,Val M =1,Val L =0) */
Colset data = INT; /* Data exchanged between

controller and Sensor-Actuator */

There are many ways to model a network device (ref). Firstly, they all depend on
memory allocation management but this memory can be located at the input, at the
output or in the middle of the device. The last approach also called shared memory
architecture is the one most often implemented by network constructors, and is the
one retained in this paper. Secondly, the communication device can manage differen-
tiated services. It requires defining at each output because there are as many buffers
as specified differentiated services. This services integrate the used mechanisms to
switch to the messages in the output buffer according to both their destination and
their priority, and implement the scheduler. Thirdly, the wires have to be considered.
The full-duplex mode is used to model a link. Figure 3.25 shows the general functions
of a communication nodes, and Figure 3.26 shows its corresponding TCHPN model.

The switching modeling describes two functions in one:

– basic switching, which ensures frame transfer between the input port and the
output port of the network device;

www.it-ebooks.info

http://www.it-ebooks.info/

136 Networked Control Systems Co-design

Figure 3.25. General structure of the communication system

– and the switching between the different buffers associated with one output port,
which is done through analyzing the priority level of the frame. This function is called
the classification step.

Figure 3.27 shows a simplified TCHPN model of a network device including two
output ports able to differentiate three service levels. This means that three buffers are
defined per output port. The frames waiting inside the shared memory and extracted
in the FIFO queue model are firstly sent to the appropriate output port and then they
are sent to the buffer corresponding to the frame priority (high, medium, and low).

Finally, managing the frames stored in the output buffers depends on the selected
scheduling policy. The constructors of network devices mainly implement two kinds
of schedulers: strict priority policy and the WRR policy. The general rule applied
to manage the output buffers in the strict priority mode is that the frames stored in a
buffer are processed only if all the buffers with higher classes do not contain a frame.
The advantage of the strict priority policy is its simplicity to model (Figure 3.28) and

Ptr1

Ptr2

Ptr2'

packet

packet

FIFO_out Scheduler

Scheduler

E

E

Pbp1

Pbp2

FIFO FIFO_outPtr1'

Ptr4'1Ptr3'1

Ptr4'2Ptr3'2

Ptr4'3Ptr3'3

[]Lpacketpacket

packet packet_schedu

Lpacketpacket

[]

[]

Ptr4''1Ptr3''1

Ptr4''2Ptr3''2

Ptr4''3Ptr3''3

[]Lpacketpacket

packet packet

Lpacketpacket

[]

[]

Switching_classification

packet
Switching_classification

packet
In FIFO

Out

Out

In

In

Figure 3.26. TCHPN model of a communication node

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 137

Out

Out

Out

Classification_1

Classification_2

Ptr3'1

packetpacket

case i of
(I1,O1,H)=> 1' (I1, O1,H)|
(I1,O1,H)=> 1' (I1, O1,M)|
(I1,O1,B)=> 1' (I1, O1,B)|
(I2,O1,H)=> empty|
(I2,O2,M)=> empty|
(I2,O2,B)=> empty

case i of
(I1,O1,H)=> 1' (I1, O1,H)|
(I1,O1,B)=> empty|
(I1,O1,M)=> empty|

case i of
(I2,O2,H)=> 1' (I2, O2,H)|
(I2,O2,B)=> empty|
(I2,O2,M)=> empty

i

i

case i of
(I2,O2,M)=> 1' (I2, O2,M)|
(I2,O2,B)=> empty|
(I2,O2,H)=> empty

case i of
(I2,O2,B)=> 1' (I2, O2,B)|
(I2,O2,B)=> 1' (I1, O2,B)|
(I2,O2,M)=> empty|
(I2,O2,H)=> empty

case i of
(I1,O1,M)=> 1' (I1, O1,M)|
(I1,O1,H)=> empty|
(I1,O1,B)=> empty

case i of
(I1,O1,B)=> 1' (I1, O1,B)|
(I1,O1,M)=> empty|
(I1,O1,H)=> empty

case i of
(I1,O2,B)=> 1' (I1, O2,B)|
(I2,O2,H)=> 1' (I2, O2,H)|
(I2,O2,M)=> 1' (I2, O2,M)|
(I1,O1,H)=> empty|
(I1,O1,M)=> empty|
(I1,O1,B)=> empty

Switching

packet

packet

Ptr1'

Ptr3'2

Ptr3'3

Out

Out

Out

Ptr3''1

packet

packet

packet

Ptr3''2

Ptr3''3

PM1

In

packet

packet

PM2

Figure 3.27. CoS mechanism TCHPN model

then to code in network devices. The problem is the generation of famine situation,
because if the high class buffer continually receives frames, the frames waiting in the
lower class buffers are not processed.

On the other hand, the WRR scheduler is more complex to model (Figure 3.29),
but avoids the famine problem. The WRR scheduler cyclically the output buffers, and
the number of frames processed is relative to the weight associated with each buffer.

Pbr2

packet

Ptr4'1

Lpacket
In

Ptr4'1

Lpacket
In

Pbp1

E
In

Out

Ptr4'2

packet

TH1Lord

resto [SOME (ord,resto)=picko(Lord)]

[SOME (ord,resto)=picko(Lord)]resto

Lord

i

[]

[]

[]

e

e

e
ord

ord

In

TM1

TB1

Figure 3.28. Strict priority TCHPN model

www.it-ebooks.info

http://www.it-ebooks.info/

138 Networked Control Systems Co-design

Ptr4'2

Pbp1

E

Ptr2

packet

ord: :Lord

ord: :Lord

Lord

ord: :Lord

e

e

e

e
e

e
e

eee

e e

e

e

e

E

E

i

1’e

E

E

E

E

ee

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

Lord

Lord

Lord

Lord

Lord

In

Ptr4'1

Lpacket_ordo

Lpacket_ordo

Lpacket_ordo

In

In

Ptr4'3
In

Out
TH1

TM1

PS1

PS2

wf1

wf2

w1: :Lw1

w1: :Lw1

w1: :Lw1

Lw1

w1: :Lw1

w1: :Lw1

w1: :Lw1

w1: :Lw1

[Lord<>nil]

[Lw1<>nil]

[Lw1<>nil]

[Lw1<>nil]

Empty wf2

Empty wf1

Empty wf3

[Lord<>nil]

Wf1

Wf1

Wf1

Lw1Lw1

Lw1

Lw1

map2 D1 Lw1 e

map2 D2 Lw1

No packet in
Ptr4'1

Ptr4'2 Empty

Ptr4'3 Empty

w1

w1

Lw1

Lw1
wf2 Served

wf3 Served

Lw1

Lw1

Lw1

Lw1

wf1 served packets

Process
Next Queue

Ps1_2

PS2_3

PS3_1

TB1

map1 D3 Lw1

Com2_3

i

i

[Lord<>nil]Com3_1

PS3

wf3

Figure 3.29. WRR TCHPN model

The weight of the high class buffer should be larger than the others in order to offer
more bandwidth for the high priority frames. If a buffer is empty, the WRR scheduler
automatically works on the following buffer, and so on.

The implementation of schedulers in the network devices is crucial in the context
of NCS, since it allows for differentiating the services offered by the network accord-
ing to the temporal constraints of the application. But, the difficulty is to analyze the
relationships between the network tuning and controller specifications. The main in-
terest of proposing an integrated approach for modeling NCS is to be able to study and
to adjust the network parameters by observing their impacts on the plant’s behavior.

3.3.2.3. System modeling

The NCS structure discussed in this section is composed of the plant, sensors,
controllers and actuators which are spatially distributed and closed over the network.
It is supposed that a sensor is time-driven with an identical sampling period h. By
event-triggered controller or actuator, it is meant that the calculation of the new control
or actuator signal is started as soon as information concerning the new control arrives,

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 139

process_out

frameL

frameL

[(˝sensor˝,xk)]

[(˝actuator˝,uk_1)]

[xk]Te

plant

input (uk_1,xk_1)
[xk_1]

local_memorytimer

Out

process_in

In

Figure 3.30. Process PN model

similar to [HAL 88]. Suppose that an LTI dynamical discrete time model is described
as follows: {

xk+1 = Φxk + Γuk

yk = PXk
(3.4)

where xk ∈ �n is the state vector, yk (k) ∈ �m the output vector and uk ∈ �p

the input vector. Φ; Γ; C are all real constant matrices and matrix of appropriate
dimensions.

The controller is defined by the following equation

u (k) = −Kx (k)

where K is the controller gain matrix to be designed. Each of the components involved
in the NCS are assigned to a specific task which is structured in code segments. The
model used to define the state space equation is represented in Figure 3.30. The func-
tions process_ in and process_out corresponds to the actuator input and sensor
output respectively. The current state value is computed at each sample time and stored
in local memory when the code associated with the transition plant is executed.

In this chapter, only the controller is detailed. The other models (actuators, sensors,
etc.) are explained in [BRA 07].

3.3.2.4. Controller modeling

The model of the controller is shown at Figure 3.31. The node net_output2
receives the value xk from the sensor through the network. This value allows the

www.it-ebooks.info

http://www.it-ebooks.info/

140 Networked Control Systems Co-design

transition controller to be sent on, then the associated segment code is executed as
represented by the following commands.

i n p u t (cons , uk_1 , xk) ;
o u t p u t (uk) ;
a c t i o n
l e t
v a l c o n v e r t _ s t r i n g _ t o _ r e a l = Opt ion . va lOf oReal . f r o m S t r i n g ;
v a l cons1 = c o n v e r t _ s t r i n g _ t o _ r e a l (cons) ;
v a l uk1_1= c o n v e r t _ s t r i n g _ t o _ r e a l (uk_1) ;
v a l xk1= c o n v e r t _ s t r i n g _ t o _ r e a l (xk) ;
v a l k1_1= c o n v e r t _ s t r i n g _ t o _ r e a l (K1) ;
v a l uk1= k1_1 *(cons1−xk1) ;
v a l uk= Real . t o S t r i n g (uk1) ;
i n
uuk : = [uk] ;
uk
end ;

net_output2

trace uk

uk_computation

Computation_uk

[uk]

Timer

UNIT

reference

ref1

[uk,xk]

[uk_1,xk_1]

[(''sensor'',xk)]

[(''sensor'',xk)]

[(''actuator'',uk)]

[(''actuator'',uk)]

[uk]

frameL

stringL

Delay

local_memoty

Net_input1

controller

ref::ref1

Out

In

Out

Figure 3.31. Controller PN model

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 141

Weight
adaptation

(WWR)

Hard dead line
τmax

NCS
performances

evaluation

end

τPN > τmax

Y

N

Figure 3.32. General scheme of network adaptation mechanism

where parameter k1_1 is the control feedback gain and ref1 is the reference value. At
this stage, the control or sensor signals have to be embedded in order to be transmitted
through the network.

3.3.3. Network adaptation mechanism

Figure 3.32 describes the global procedure for NCS analysis based on PN mod-
eling. The maximum acceptable delay, τmax , is determined by means of the hard
deadline algorithm. Then, τmax is compared to delay τP N which is provided by the
PN model. If necessary, the weights are re-assigned off-line.

3.3.4. Example

3.3.4.1. Maximum delay computation

Consider the discrete-time system:

x (k + 1) = 0.98x (k) + 1.6u (k)
u(k) = −Kx(k)

Where K the state feedback matrix is determined in such a way so as to minimize the
following cost function

J(u) =
∞∑

n=1

[
x(n)T Qx(n) + u(n)RT u(n) + 2x(n)T Nx(n)

]
Where Q ∈ �nxn and R ∈ �lxl are positive semidefinite and positive definite, re-
spectively. K is obtained by solving the associated discrete Riccati equation. For this

www.it-ebooks.info

http://www.it-ebooks.info/

142 Networked Control Systems Co-design

example Q = 2 and R = 4. Then K = 0.402. The pole of the closed loop system is
given by

x((m + 1)N) = AN x(mM) −
N −1∑

j=N −i

AjBKx(mN)

−
N −i−1∑

j=0
AjBKx(mN + N − j − 1)

is computed for different values of N . The system becomes unstable for N = 3. The
sampling period is fixed at 1 ms. Then the maximum acceptable delay is τmax =
3 ms.

3.3.4.2. Results

The objective of this section is to show the interest of Petri Nets approach to sim-
ulate NCS. The system being considered is the same as the one before. Ethernet uses
10BT links. In these simulations, two kinds of traffic are considered. Real-time traffic
between the controller and the sensors/actuators is periodically sent at Te and the size
of the message correspond enough to the minimal Ethernet frame size to be able to
transport the output and input information. The second type of traffic is called back-
ground traffic and is used to load the network. It is not time-constrained. This traffic
allows for simulating the context of a shared network where the network can be used
by other applications. The real time frames are tagged with a high priority field, and
the background frames are tagged with a low priority field. The Ethernet switch im-
plements the WRR scheduler and it is tuned to offer 10% of the total bandwidth to the
real-time frames and 90% to the background traffic. This WRR configuration is called
(A).

The first scenario generates background frames using 30% of the network band-
width. Figure 3.33 a shows that this load does not disturbed the process system perfor-
mances since the real-time traffic delays observed in Figure 3.33b are low (less than
0.5 ms).

The second scenario increases the network load at 70% inducing progressively
(due to the time to fill the buffers) a degradation on the real time frame delays
(Figure 3.34b). The observed delays are up to 3 ms and generate instability on the
process control.

The NCS modeling offers a double view in the same environment (Petri Nets), al-
lowing designers to better understand the interactions between the process control and
the network. In this case, the delays induced by the network have to be mitigated to
ensure the stability of the system. Firstly, the hard-deadline method is used to estimate
the delay threshold acceptable for the process controller. The result obtained that is
the delay has to be lower than 3 ms. Secondly, the network parameters have to be

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 143

0

2.5

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

−2.5

4

3.5

3

2.5

2

1.5

1

0.5

10 20 30 40

reference
output

50 60 0 10 20 30 40 50

a) b)

Figure 3.33. WRR configuration (A) with an overload of 30%: (a) system output, (b) real-time
frame delay in ms

tuned. Moreover, the weights of the WRR scheduler have to be changed in order to
offer more bandwidth to real-time traffic. Secondly, the Petri net model is then run in
an iterative way to find a “good” configuration. The solution called the WRR config-
uration (B) is to provide 99% of the bandwidth for the real-time traffic and only 1%
for the background traffic. Finally, a simple algorithm (implementing in the Ethernet
device) allows to dynamically switch between the (A) and (B) configurations accord-
ing to the real-time frame delays. Figure 3.35 shows the results when this algorithm
is applied. When a real-time frame delay is greater than 3 ms (Figure 3.35b), the
configuration (B) is selected in order to reduce this delay and to maintain the stability
of the system (Figure 3.35a).

0

300

200

100

0

−100

−200

−300

−400

(a) (b)
10 20 30 40

reference
output

50 60 0

4

3.5

3

2.5

2

1.5

1

0.5

10 20 30 40 50

Figure 3.34. WRR configuration (A) with an overload of 70%: (a) system output, (b) real-time
frame delay in ms

www.it-ebooks.info

http://www.it-ebooks.info/

144 Networked Control Systems Co-design

2.5

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
5 10 15 20 25 30 35 40 45 50 55

0

6

5

4

3

2

1

0
10 20 30 40 50 60

a)

b)

Threshold (3 ms)

Figure 3.35. Dynamic network reconfiguration - (a): system output
(b): real-time frame delay in ms

3.4. Conclusion

Two approaches for network resource adaptation have been presented in this chap-
ter. The first part shows the interest of a hybrid priority strategy for message schedul-
ing on a network. Two applications with different needs in terms of transmission
urgency in their messages flows (one with variable transmission urgency for its mes-
sages; another with constant needs) are distributed through the network. An important

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 145

characteristic in an NCS context is the capacity to implement process control appli-
cations with good performances, whatever the network load is. We have precisely
shown that message scheduling strategies, based on hybrid priority schemes, allow
for implementing a distributed process control application, even if the network load
is heavy. NCS requires a global modeling of all its components in order to be able to
precisely evaluate its performances. The second part of the chapter shows that the PN
formal language can express the behavior of communications, controllers and plants.
It allows for easily tuning the network parameters by directly analyzing their effects
on the system to be controlled. Moreover, PN can be used to test new QoS adaptive al-
gorithms embedded inside Ethernet switches by dynamically tracking the current QoC
level. For both approaches, the network is adapted according to the performances of
the applications, which are expressed in terms of stability.

3.5. Bibliography

[ÅST 97] ÅSTRÖM K., WITTENMARK B., Computer-Controlled Systems, Information and
System Sciences Series, Prentice Hall, 3rd edition, 1997.

[BIL 82] BILLINGTON J., Specification of the Transport service using Numerical Petri
Nets, Second International workshop specification, Testing and Verification, IFIP, West
Lafayette, USA, October 1982.

[BOS 91] BOSCH, CAN specification 2.0 (A), www.semiconductors.bosch.de/pdf/can2-
spec.pdf, 1991.

[BRA 07] BRAHIMI B., Integrated approach based on high level Petri nets to simulate and
evaluate the networked control systems, PhD thesis, Henri Poincaré University Nancy I,
France, 2007.

[CER 03] CERVIN A., HENRIKSSON D., LINCOLN B., EKER J., ÅRZÉN K.-E., How Does
Control Timing Affect Performance? Analysis and Simulation of Timing Using Jitterbug
and TrueTime, IEEE Control Systems Magazine, vol. 23, num. 3, p. 16–30, June 2003.

[CIA 02] CIA, CAN, CANopen, DeviceNet, URL www.CAN-CiA.de, 2002.

[DAV 04] DAVID R., ALLA H., Discrete, Continuous, and Hybrid Petri Nets, Springer-Verlag,
Berlin, 2004.

[DEM 89] DEMERS A., KESHAV S., SHENKER S., Analysis and simulation of a fair queueing
algorithm, ACM SIGCOMM Computer Communication Review, vol. 19, num. 4, p. 1–12,
September 1989.

[DIO 08] DIOURI I., BERBRA C., GEORGES J.-P., GENTIL S., RONDEAU E., Evaluation of a
Switched Ethernet network for the control of a quadrotor, 16th Mediterranean Conference
on Control and Automation (MED’08), Ajaccio, France, p. 1112–1117, June 2008.

[HAL 88] HALEVI Y., RAY A., Integrated communication and control systems: Part I- Anal-
ysis, ASME Journal of Dynamic Systems, Measurement and Control, vol. 110, num. 4,
p. 367–373, 1988.

www.it-ebooks.info

http://www.it-ebooks.info/

146 Networked Control Systems Co-design

[IEE 02] IEEE COMPUTER SOCIETY, IEEE standard for information technology - Telecom-
munications and information exchange between systems - Local and metropolitan area net-
works - Specific requirements - Part 3: Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications, IEEE standard 802.3, Edition
2002, 2002.

[IEE 03] IEEE COMPUTER SOCIETY, IEEE Standards for local and metropolitan area
networks - Virtual bridged local area networks, IEEE standard 802.1Q, Edition 2003,
2003.

[JEN 92] 616 of Lecture Notes
in Computer Science, Springer, 1992.

[JEN 07] JENSEN K., KRISTENSEN L., WELLS L., Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems, International Journal on Software Tools
for Technology Transfer (STTT), vol. 9, num. 3, p. 213–254, June 2007.

[JUA 04] JUANOLE G., DIAZ M., VERNADAT F., Réseaux de Petri étendus et méthodolo-
gie pour l’analyse de performances,
d’Architecture des Systèmes, Toulouse, France, 2004.

[JUA 05] JUANOLE G., MOUNEY G., CALMETTES C., PECA M., Fundamental Considera-
tions for Implementing Control Systems on a CAN Network, FET2005, 6th IFAC Interna-
tional conference on Fielbus Systems and their Applications, Puebla, Mexico, November
2005.

[JUA 07a] JUANOLE G., MOUNEY G., Networked Control Systems: Definition an Analysis
of a Hybrid Priority Scheme for the Message Scheduling, Proceedings of the 13th IEEE con-
ference on Embedded and Real-Time Computing Systems and Applications (RTCSA2007),
Daegu, Korea, August 2007.

[JUA 07b] JUANOLE G., MOUNEY G., Using an hybrid traffic scheduling in networked con-
trol systems, Proceedings European Control Conference 2007, Kos, Greece, July 2007.

[JUA 08] JUANOLE G., MOUNEY G., CALMETTES C., On different priority schemes for the
message scheduling in Networked Control Systems: Definition an Analysis of a Hybrid
Priority Scheme for the Message Scheduling, Proceedings of the 16th Mediterranean Con-
ference on Control and Automation, MED’08, Ajaccio, France, June 2008.

[JUR 58] JURY E. I., Sampled-Data Control Systems, Wiley, New York, 1958.

[KAN 92] KANG S., HAGBAE K., Derivation and Application of Hard Deadlines for Real-
Time Control Systems, IEEE Transaction On Systems, Man and Cybernetics, vol. 22,
num. 6, p. 1403–1413, 1992.

[KAT 91] KATEVENIS M., SIDIROPOULOS C., COURCOUBETIS C., Weighted round-robin
cell multiplexing in a general purpose ATM switch chip, IEEE Journal on Selected Areas
in Communications, vol. 9, num. 8, p. 1265–1279, October 1991.

[LAI 89] LAI R., DILLON T.-S., PARKER K.-R., Application of numerical Petri nets to spec-
ify ISO FTAM Protocol, Singapore International Conference on Networks, Singapore, July
1989.

JENSEN K. (ed.), Application and Theory of Petri Nets, vol.

Report num. LAAS 03480, Laboratoire d’Analyse et

www.it-ebooks.info

http://www.it-ebooks.info/

QoS Adaptation 147

[MAR 04] MARTI P., YEPEZ J., VELASCO M., VILLA R., FUERTES J., Managing quality-of-
control in network-based control systems by controller and message scheduling co-design,
Industrial Electronics, IEEE Transactions on, vol. 51, num. 6, p. 1159–1167, December
2004.

[OHL 07] OHLIN M., HENRIKSSON D., CERVIN A., TrueTime 1.5 – Reference Manual,
Lund Institute of Technology, Sweden, January 2007.

[PAR 93] PAREKH A., GALLAGER R., A generalized processor sharing approach to flow con-
trol in integrated services networks: The single node case, IEEE/ACM Transactions on
Networking, vol. 1, num. 2, p. 344–357, June 1993.

[WAL 01] WALSH G., YE H., Scheduling of networked control systems, Control Systems
Magazine, IEEE, vol. 21, num. 1, p. 57–65, February 2001.

[ZAM 08] ZAMPIERI S., Trends in Networked Control Systems, 17th IFAC World Congress,
Seoul, Korea, p. 2886–2894, July 2008.

[ZUB 97] ZUBERI K., SHIN K., Scheduling messages on controller area network for real-
time CIM applications, IEEE Transactions On Robotics And Automation, vol. 13, num. 2,
p. 310–314, 1997.

[ZUB 00] ZUBERI K., SHIN K., Design and Implementation of Efficient Message Scheduling
for Controller Area Network, IEEE Transactions on Computers, vol. 49, num. 2, p. 182–
188, 2000.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Plant-state-based Feedback Scheduling

4.1. Overview

A constant challenge in embedded systems development is represented by compu-
tational resource limitations. In fact, economic constraints impose the desired func-
tionalities to be performed with the lowest cost. These limitations call for a more
efficient use of the available resources. In this context, integrated control and schedul-
ing methodologies have been proposed in order to allow a more flexible and efficient
utilization of the computational resources [ÅRZ 00].

The problem of optimal sampling period selection, subject to schedulability con-
straints, was first introduced in [SET 96]. Considering a bubble control system bench-
mark, the relationship between the control cost (corresponding to a step response)
and the sampling periods were approximated using convex exponential functions. Us-
ing the Karush–Kuhn–Tucker (KKT) first-order optimality conditions, the analytic
expressions of the optimal off-line sampling periods were established. The prob-
lem of the joint optimization of control and off-line scheduling has been studied
in [REH 04; LIN 02; BEN 06c].

The idea of feedback scheduling was introduced in [EKE 00; LU 02]. First ap-
proaches in feedback scheduling considered feedback from resource utilization (for
example task execution times) in order to optimize the control performance [EKE 00;
CER 02], or to minimize a deadline miss ratio in soft real-time systems [LU 02]. Nat-
urally, the on-line adjustment of sampling periods calls for optimal sampling periods
assignment. The approaches in [EKE 00; CER 02] used a similar method to [SET 96]

Chapter written by Mongi BEN GAID, David ROBERT, Olivier SENAME and Daniel SIMON.

149

www.it-ebooks.info

http://www.it-ebooks.info/

150 Networked Control Systems Co-design

in order to find analytic expressions of the optimal sampling periods, under cost ap-
proximation assumptions (linear or quadratic approximation of the cost as a function
of the sampling period). The experimental evaluation of the feedback scheduling con-
cept was undertaken in [SIM 05]. The issue of guaranteeing the stability and per-
formance of the controlled systems, when their sampling periods are varied on-line
(by a feedback scheduler, for example), was addressed in [ROB 07a], using the H∞
approach for linear parameter varying systems.

Later, it was pointed out that the optimal sampling frequencies are also dependent
on the controlled system actual state [MAR 02; MAR 04], and not only on off-line
considerations. The problem of the optimal integrated control and scheduling was
formalized (using a hybrid system approach) and solved in [BEN 06b]. Heuristics
for integrated control and non-pre-emptive scheduling were proposed, in particular
the OPP [BEN 06b] and RPP [BEN 06c] algorithms as well as the relaxed dynamic
programming-based scheduling strategy [CER 06]. A common point to these heuris-
tics is that the scheduling decisions (which task to execute or message to send) are
determined on-line through the comparison of a finite number of quadratic functions
of the extend state (actual state extended by previous controls). These quadratic cost
functions are pre-computed off-line based on the intrinsic characteristics of the con-
trolled systems. Another common point is that concurrency was modeled in a finely
grained way. Related approaches were proposed in [DAC̆ 07], and where scheduling
decisions are based on the discrepancies between current and the most recently trans-
mitted values of nodes’ signals. These latter results may be applied to the problem of
dynamic scheduling of CAN networks.

Other approaches relied on the notion of periodic tasks and used task periods as
variable scheduling decision modification. [SHI 99] considers adaptive scheduling
for a set of controllers. With each controller is associated a cost function to model the
quality of control (QoC) as a function of its period. In response to processor failures or
to variations in the computing duties assigned to processors, heuristics assign control
tasks to processors and adapt the control periods to optimize the global QoC.

In [HEN 05], the problem of the optimal sampling period selection of a set of
LQG controllers, based on plant states knowledge, was studied. It has been shown
that the optimal solution to this problem is too complicated. The optimal LQG cost,
as a function of the sampling period, was depicted for some selected numerical exam-
ples. Explicit formulas, relating the optimal sampling periods to the plant state, were
derived in the case of the minimum variance control of first-order plants. The issue
of the choice of the feedback scheduler period was also studied. The same setting
was considered in [CAS 06]. The on-line sampling period assignment was based on
a look-up table, which was constructed off-line, for predefined values of the sampling
periods. A heuristic procedure, allowing the construction of this look-up table, was
also proposed.

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 151

Other approaches of state-based resource allocation were proposed, as in [TAB 07]
and [LEM 07]. Although these approaches do not aim to optimize a global cost func-
tion, their objective is to allocate the computational resources in order to achieve other
control objectives such as the asymptotic stability [TAB 07] or a specified l2 attenua-
tion level [LEM 07].

4.2. Adaptive scheduling and varying sampling robust control

A variable sampling rate appears to be a decisive actuator in scheduling and CPU
load control. Although it is quite conservative, the LPV/H∞-based design developed
in section 2.4 guarantees plant stability and performance level, whatever the speed
of variation of the control period inside its predefined range. Hence, the control task
periods of such controllers can be adapted on-line by an external loop (the feedback
scheduler) on the basis of resource allocation and global quality of service (QoS),
with no further problems concerning the process control stability. Hence a quite sim-
ple scheduling controller can be used, e.g. like a simple re-scaling as proposed in
[CER 03], or an elastic scheduler as in [BUT 00].

Indeed, besides the flexibility and robustness provided by an adaptive scheduling,
a full benefit would come by taking into account directly the controlled process state
in the scheduling loop. It has been shown in [EKE 00] that even for simple cases the
full theoretical solution based on optimal control was too complex to be implemented
in real time.

However, it is possible to sketch effective solutions suited for specific case studies,
as depicted in Figure 4.1 taken from [ROB 07b].

A computing resource is shared between several process controllers. The comput-
ing power distribution between the process controllers is on-line adapted by a feedback
scheduler. However, conversely, with the robot controller in section 1.4.2.3, the load
allocation ratio between the control components is no longer constant and defined at

+ −Periods
TasksUd

i
ki M

Quality of Control

CPU usage indicators

scheduler

Elastic
Controller Process

Figure 4.1. Integrated control and scheduling loops

www.it-ebooks.info

http://www.it-ebooks.info/

152 Networked Control Systems Co-design

design time. It is made dependent on the measure of the QoC to give advantage to the
controller with higher control error.

4.2.1. Extended elastic tasks controller

The approach relies on a modified elastic scheduler algorithm [BUT 00], whose
original objective is a distribution of the CPU utilization between n tasks, acting on
their periods under the following constraints:

– the overall CPU load is smaller than the reference Ud :
∑n

i=1 Ui ≤ Ud ,

– the period of a control task is bounded: him in ≤ hi ≤ him a x ,

– the CPU load distribution is balanced thanks to weights ki .

The on-line scheduling adaptation reacts to changes in the overall load reference
Ud , to variations in a task’s execution time or to variations in a weight ki . The schedul-
ing is updated thanks to an iterative algorithm described in [BUT 00], where the CPU
utilization Ud is shared in proportion of the weights ki , accounting for the period
bounds: for example Figure 4.2 depicts the temporal behavior of three tasks with ini-
tial weights ki = 1, i = 1, . . . , 3. The horizontal axis represents the CPU use shared
between the three tasks, along several load and weights configurations. In a first step,
decreasing Ud induces a decreasing in the individual loads in equal proportion. In the
second step, increasing the weight k3 from 1 to 2 increases the CPU time allocated to
task 3 while slackening equally the CPU power allocation for tasks 1 and 3. Increas-
ing again k3 from 2 to 3 cannot compress again task 1 CPU allocation which already
reached its lower bound, therefore only task2’CPU allocation is reduced.

Indeed, the tasks set’s behavior mimics the one of a springs chain with overall
length Ud , where every spring has a stiffness ki and a length Ui bounded between
Uim in and Uim a x : recalling that the computing load Ui and the period hi of a control

k3 = 1k2 = 1k1 = 1

charge
processor

Ud0

Ud

k1 = 1 k2 = 1 k3 = 2
Ud

k1 = 1 k2 = 1 k3 = 3
saturation

ti
m

e

k1 = 1 k2 = 1 k3 = 1
Ud

h1 = h1max

Figure 4.2. Example of elastic tasks scheduling

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 153

task are linked with Ui = ci/hi , where ci is the execution time of an instance of task
i), allows for computing the actual task periods.

To adapt the scheduling algorithm and task periods w.r.t. the actual performance
of the process controllers, it is now necessary to enhance the elastic tasks algorithm
to make the weights ki depend on the measured QoC, as in the structure in Figure
4.1. The main problem consists of measuring an adequate image of the control per-
formance and finding a function to link it with ki .

In this first approach the QoC is measured via the mean square tracking error. It
is evaluated on a time window equal to the feedback scheduler period. To keep the
scheduling cost low this period is chosen larger than the process control periods.

The ki weights are functions of the QoS measurements and are handled by the
Mi components in Figure 4.1; in the simpler case they can be only static gains. The
choice of the Mi gains must provide identical weights ki for controllers with similar
performance. However, the QoC measures are normalized to well balance the CPU
allocation between process controllers with different dynamics.

The adaptation of the ki weights as functions of the control performance is a feed-
back, whose stability and dynamics must be investigated. The relationship between
ki weights and the corresponding QoC would be analyzed, which appear to be very
complex as it involves the behaviors of both the elastic scheduler and the process con-
trollers. The scheduler is a nonlinear system where the task period are functions of
the CPU load reference, the ki weights, the period bounds and the varying execution
time of the control tasks. The relationship between the control intervals and the corre-
sponding control performance is also difficult to quantify as it depends on the process
itself, on the controller and on exogenous signals. Note that even for a constant control
period the quadratic tracking errors vary with exogenous signals and disturbances.

In consequence, it still out of the scope of the present analysis to rigorously chose
the feedback scheduler gains. However, these gains may be empirically chosen as
in the following example, studied in simulation using again TrueTime to take into
account the coupling between continuous process control and real-time scheduling.

4.2.2. Case study

The case study consists of the control of two pendulums sharing a common com-
puting resource, one is the “T” pendulum already used in the example of section
2.4.4, the other one is a straight (stable) pendulum. Each pendulum is controlled by
a LPV/H∞ controller designed as in section 2.4, so that the stability of the position
control loops is guaranteed whatever the variations of the control intervals, provided
that they stay inside the bounds use for the synthesis. The allowed control intervals

www.it-ebooks.info

http://www.it-ebooks.info/

154 Networked Control Systems Co-design

are chosen according to the desired closed-loop bandwidth and capabilities of the pro-
cess, they are [1,3] ms for the T pendulum and [4,12] ms for the stable one. As in the
case detailed in section 2.4.4 Taylor’s expansion is truncated at the order 2, leading
to reduced polytopes with three vertex and to a simple convex combination of three
state-feedback elementary controllers at run time.

The pendulum controllers are implemented as real-time tasks running under con-
trol of a pre-emptive and fixed priority RTOS. The control performance of each pen-
dulum is measured by the mean quadratic tracking error over a feedback scheduler’s
period (5 s). The pendulums are driven by a sinusoidal reference. At t = 12 s, a
disturbing task with intermediate priority appears. Noise is injected on the stable pen-
dulum measure at time t = 20 s. Simulation results are plotted in Figure 4.3 for the
scheduling parameters and in Figure 4.4 for the plant outputs, quadratic tracking error
and computing resource share between the controllers. This latter plot is equal to 1
when all the CPU is allocated to the T pendulum and 0 when it is assigned only to the
stable pendulum.

CPU load

overload
Transient

Tasks periods

Time

ac
tiv

e/
pr

ee
m

pt
ed

/s
le

ep
in

g
Ta

sk
 s

ta
te

Scheduling

Figure 4.3. Scheduling behavior

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 155

Time (s)

Quadratic error

Pendulum 2

CPU load balance: 1=pendT, 2=pend2

T pendulum

Noise
appearance

Figure 4.4. Pendulums behavior

The appearance of the disturbing task at t = 12 s induces a CPU overload which
is rapidly canceled by the feedback scheduler, in one scheduling interval, as there is
no filtering in this elastic scheduler. At this time, the CPU share is mainly allocated
to the T pendulum so that it is weakly disturbed by the added task, while the second
pendulum is subject to a larger control interval increase. The noise added to the second
pendulum at t = 20 s increases the corresponding tracking error, therefore inducing
a re-allocation of CPU power in favor of the second pendulum. This is made at the
cost of increasing the control period of the first pendulum which in turns increases its
performance index, thus claiming for additional computing power (at t = 36).

The approach is simple to implement and, even if only tested in simulation up to
now, has shown significant performance improvements compared with more simple
(i.e. control quality unaware) resource allocation. However, the behavior and per-
formance of the overall control system depend on numerous parameters, such as the
period of the feedback scheduler, normalization factors between the plants, optional
filters, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

156 Networked Control Systems Co-design

A rational setting of these parameters needs a better understanding of the coupling
between the control performance and the scheduling parameters. As said before, ana-
lyzing the stability of this feedback scheduling loop, gathering the complex dynamics
of the plants and of the control system, remains to be done. It requires an adequate
modeling of the relationships between the control quality and the scheduling param-
eters and seems to be out of reach in a general case. However, some restrictive as-
sumptions on the plant model (e.g. linearity) and on the control algorithms (e.g. LQ
control) may lead for tractable solutions as shown in the following section.

4.3. MPC-based integrated control and scheduling

Model predictive control (MPC) has received increased industrial acceptance dur-
ing recent years, mainly because of its ability to handle constraints explicitly and the
natural way in which it can be applied to multi-variable processes [GAR 89]. MPC is
based on iterative, finite horizon optimization of a plant model. At time t the current
plant state is sampled, and a cost minimizing control strategy is computed (via a nu-
merical minimization algorithm) for a receding horizon in the future: [t, t + T]. Only
the first step of the control strategy is implemented, then the plant state is sampled
again, and the calculations are repeated starting from the new current state, yielding a
new control and new predicted state path.

The computational requirements of MPC, where typically a quadratic optimization
problem is solved on-line in every sample, have previously prohibited its application
in areas where fast sampling is required. Therefore, MPC has traditionally only been
applied to slow processes, mainly in the chemical industry. However, the advent of
faster computers and the development of more efficient optimization algorithms, e.g.
[CAN 01], has led to applications of MPC to processes governed by faster dynamics.
However, much still remains to be done to develop efficient real-time implementations
of MPC.

The execution of an MPC controller is based on two main parameters: the sam-
pling period and the receding horizon, for which optimization is computed. From a
temporal point of view, MPC controllers are characterized by large execution times,
but also by large variations of these durations from sample to sample. Hence, the
large variations in execution time for MPC tasks make a real-time design based on
worst-case bounds very conservative and give an unnecessary long sampling period.
As usual, the robustness of closed-loop control can be exploited, so that more flexible
implementation schemes are expected to provide better use of the execution resources
and make MPC applicable to a larger scope than in the current case.

Feedback scheduling has been, for example, applied to MPC in [HEN 02; HEN 06].
The method uses feedback information from the optimization algorithm to find when
to terminate the current iterative optimization. The goal is to find the best trade-off

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 157

between performance increase due to numerous iterations and the degradation due to
very long computations and induced latencies.

Joint control and scheduling may combine both control laws, e.g. based on the
MPC concept, working together with an existing scheduling policy to manage the net-
work QoS. Dynamic feedback scheduling policies combined with predictive control
have been proposed in [ZHA 08] to cope with network induced delays in the control
loops, where the scheduling policy, e.g. Rate Monotonic and dynamic feedback poli-
cies, allows us to constrain the delay upper bound. [MIL 08] presents a model predic-
tive controller with an implementation scheme based on a queuing-selecting method
and an estimator to compensate for data losses when data packets are dropped. The
associated feedback scheduler is designed to minimize the traffic over the network due
to the measurement flow needed by the controller.

Control and scheduling co-design, combining the MPC approach within the frame-
work of resource-constrained systems, has been successfully developed in [BEN 06a;
BEN 06b; BEN 09]. A summary of this work is given in the following sections.

4.3.1. Resource constrained systems

In this section, an abstract view of a distributed embedded control system operating
under communication constraints is presented. This abstract view is described by the
class of computer-controlled systems, which was introduced by Hristu in [HRI 99].
This class allows us to model, in a finely grained and abstract way, the impact of
the resource limitations on the behavior of the controlled system. In the following,
we will rather use the term of resource-constrained systems to refer to this class of
systems. In [BEN 06a], it has been shown that a resource-constrained systems may
be modeled in the mixed logical dynamical (MLD) framework, which represents a
modeling framework for hybrid systems, and which was introduced by Bemporad and
Morari in [BEM 99]. A summary of these results is given in the following. Consider
the continuous-time LTI plant described by

ẋc(t) = Acxc(t) + Bcuc(t) (4.1)

yc(t) = Ccxc(t), (4.2)

where xc(t) ∈ R
n , uc(t) ∈ R

m , and yc(t) ∈ R
p represent, respectively, the state, the

command input, and the output. The plant is controlled by a discrete-time controller,
with sampling period Ts . The plant (4.2) and the controller are connected through a
limited bandwidth communication bus. At each sampling instant t = kTs (k ∈ N),
the bus can carry at most br measures and bw control commands, with br ≤ p and
bw ≤ m. The input to the plant is preceded by a zero-order holder, which maintains
the last received control commands constant until new control values are received. Let

www.it-ebooks.info

http://www.it-ebooks.info/

158 Networked Control Systems Co-design

u(k) be the input of the zero-order holder at instant kTs , then its output is given by

uc(t) = u(k) if kTs ≤ t < (k + 1)Ts. (4.3)

Let x(k) = xc(kTs) and y(k) = yc(kTs) be respectively the sampled values of the
state and the output. A discrete-time representation of the plant (4.2) at the sampling
period Ts is given by

x(k + 1) = Ax(k) + Bu(k) (4.4)

y(k) = Cx(k), (4.5)

where A = eAc Ts , B =
Ts∫
0

eAc τ Bcdτ and C = Cc .

It is assumed, throughout this section, that the pairs (A,B) and (A,C) are, respec-
tively, reachable and observable. These assumptions are systematically satisfied if the
pair (Ac,Bc) is reachable, the pair (Ac,Cc) is observable, and the sampling period
Ts non-pathological. A sampling period is said pathological if it causes the loss, for
the sampled-data model, of the reachability and observability properties, which were
verified by the continuous model before its discretization. In [KAL 63], Kalman et al.
have proved that the set of pathological sampling period is countable, and uniquely
depends on the eigenvalues of the state matrix Ac . Consequently, in order to avoid
the loss of reachability and observability, which may be caused by the sampling, it is
sufficient to choose Ts outside this set.

Communication constraints may be formally described by introducing two vectors
of Booleans σ(k) ∈ {0, 1}br and δ(k) ∈ {0, 1}bw , defined for each sampling instant
k.

DEFINITION.– The vector σ(k) defined by{
σi(k) = 1 if yi(k) is read by the controller at instant k,
σi(k) = 0 otherwise

is called sensors-to-controller scheduling vector at instant k.

DEFINITION.– The vector δ(k) defined by{
δi(k) = 1 is ui(k) updated at instant k,
δi(k) = 0 otherwise

is called controller-to-actuators scheduling vector at instant k.

The vector σ(k) indicates the measures that the controller may read at instant k. In
a similar way, the δ(k) indicates the control inputs to the plant that the controller may

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 159

update at instant k. The introduction of the scheduling vectors allows us to model in
a simple way the communication constraints. The limitations that affect the transmis-
sion of the measures to the controller may be described by the following inequality:

p∑
i=1

σi(k) ≤ br . (4.6)

In a similar way, the limitations concerning the sending of the control commands to
the actuators may be modeled by

m∑
i=1

δi(k) ≤ bw . (4.7)

The last received control inputs (through the communication bus) are kept con-
stant. Consequently, if a control input is not updated at the kth sampling period, then
it is maintained constant. This assertion may be modeled by the logic formula

δi(k) = 0 =⇒ ui(k) = ui(k − 1). (4.8)

The plant, the analog-to-digital and digital-to-analog converters, the communica-
tion bus, and the controller are schematically depicted in Figure 4.5. In this figure,
η(k) ∈ R

br represents the vector of partial measurements that the controller receives
(through the communication bus) at the sampling period k. In a similar way, vector
v(k) ∈ R

bw represents the vector of partial control commands that the controller may
send to the actuators (through the limited bandwidth communication bus) at the sam-
pling period k. Blocks D/A and A/D, respectively, represent the digital-to-analog and
analog-to-digital converters. The controller may also assign the values of the sensors-
to-controller scheduling vector (σ(k)) as well as the controller-to-actuators scheduling
vector (δ(k)).

Knowing v(k) and relation (4.8), u(k) is given by⎧⎨⎩ ui(k) = vj (k) if δi(k) = 1 and
i∑

l=1
δl(k) = j,

ui(k) = ui(k − 1) otherwise.
(4.9)

Controller

Bus BusN/A A/N

δ(k) σ(k)

v(k) uc(t) yc(t) y(k) η(k)ẋc = Acxc + Bcuc

yc = Ccxc

u(k)

Figure 4.5. Schematic representation of a resource-constrained system

www.it-ebooks.info

http://www.it-ebooks.info/

160 Networked Control Systems Co-design

In the same way, the input η(k) to the controller is defined by⎧⎨⎩ ηi(k) = yj (k) if σj (k) = 1 and
j∑

l=1
σl(k) = i,

ηi(k) = 0 otherwise.
(4.10)

Equations (4.5), (4.6), (4.7), (4.9), and (4.10) describe a model where dynamics
and plant performance are tightly coupled with the assignment of communication re-
sources. In the particular case where br = p, bw = m, σ(k) = 1p,1 and δ(k) = 1m,1 ,
for all k ∈ N, this model coincides with the classical model of a sampled-data sys-
tem. The presence of the communication bus moves the classical frontier between
“the plant” and “the controller”. In fact, for sampled-data systems, this frontier lies
at the digital-to-analog and analog-to-digital converters. In the considered model, this
frontier moves to the communication bus interface. The resource-constrained system
is defined as the entity constituted by the sampled-data model of the plant and the
communication bus. The formal definition of a resource-constrained system is given
thereafter.

DEFINITION.– A resource-constrained system is a mixed logical dynamical system
having three inputs: the command input v(k), the scheduling vector of the sensors-to-
controller link σ(k) and the scheduling vector of the controller-to-actuators link δ(k).
It has one output denoted η(k). Its mathematical model is defined by:

– a recurrent equation (4.5) describing the sampled dynamics of the plant,

– inequality constraints (4.6) and (4.7) expressing the limitations of the communi-
cation medium,

– logic formulas (4.9) describing the mapping of the computed controller outputs
v(k) to plant inputs u(k), knowing the scheduling decisions δ(k),

– logic formulas (4.10) describing the mapping of the sampled plant outputs y(k)
to the controller’s inputs η(k), knowing the scheduling decisions σ(k).

The particularity of a resource-constrained system, compared to a sampled-data
system, is that at each sampling period, it is important to determine:

– the measures that should be acquired (it is only possible to acquire at most br

measures, defined by the scheduling function σ(k)),
– the control commands that should be applied (it is only possible to apply at most

bw control commands, defined by the scheduling function δ(k)),
– the value of the applied control commands.

4.3.2. Optimal integrated control and scheduling of resource constrained systems

This section considers a resource-constrained system S where the full state vector
x(k) is available to the controller at each sampling period. It is shown how the use of

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 161

the model predictive control approach may be seen as an algorithmic solution allowing
computing on-line, at the same time, the optimal values of the control signals and the
communication scheduling of resource-constrained systems.

Using MPC, an optimal control problem is solved on-line at each sampling period
Ts . It aims at finding the optimal control values sequence

ûN −1∗
= (û∗(0), ..., û∗(N − 1))

and the optimal communication sequence δ̂N −1∗
= (δ̂∗(0), ..., δ̂∗(N − 1)), which

are solutions of the following optimization problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ûN −1 ,δ̂N −1

N −1∑
h=0

[
x̂(h)
û(h)

]T

Q

[
x̂(h)
û(h)

]
+ x̂T (N)Q0 x̂(N)

subject to
x̂(0) = x(k)
x̂(h + 1) = Ax̂(h) + Bû(h) , h ∈ {0, . . . , N − 1}
m∑

i=1
δ̂i(h) = b , h ∈ {0, . . . , N − 1}

δ̂i(0) = 0 =⇒ ûi(0) = ui(k − 1)
δ̂i(h) = 0 =⇒ ûi(h) = ûi(h − 1) , h ∈ {1, . . . , N − 1}.

(4.11)

The solution of this problem is based on the prediction of the future evolution of
the system over a horizon of N sampling periods. This predicted evolution is cal-
culated according to the model of the plant, knowing the current state x(k) of the
system. The variables x̂(h), h ∈ {0, . . . , N} represent the predicted values of system
states x(k + h). The sequences (û(0), . . . , û(N − 1)) (virtual control sequence) and
(δ̂(0), . . . , δ̂(N − 1)) (virtual communication sequence) are called virtual sequences,
because they are based on the predicted evolution of the system. The resolution of this
problem aims at finding the optimal virtual control sequence (û∗(0), . . . , û∗(N − 1))
and the optimal virtual communication sequence (δ̂∗(0), . . . , δ̂∗(N − 1)) that mini-
mize a quadratic cost function over a finite horizon of N sampling periods. Assuming
that the optimal virtual sequences exist, the actual control commands are obtained by
setting

v(k) = Mδ̂∗(0)û∗(0) (4.12)

and
δ(k) = δ̂∗(0) (4.13)

and disregarding the remaining elements

(û∗(1), . . . , û∗(N − 1)) and (δ̂∗(1), . . . , δ̂∗(N − 1)).

At the next sampling period (step k+1), the whole optimization procedure is repeated,
based on x(k + 1).

www.it-ebooks.info

http://www.it-ebooks.info/

162 Networked Control Systems Co-design

The optimality of the model predictive controlled may be proved if an infinite
horizon cost function J(x̃, v, δ, 0,+∞) = J(x, u, 0,+∞) is used and if the prediction
horizon N is chosen infinite. At each time step k, and for any extended state x̃(k), the
model predictive controller over an infinite horizon computes the optimal solutions
v∗(k) and δ∗(k) that minimizes the cost function J(x̃, v, δ, k,+∞), subject to the
communication constraints. Its optimality directly results from the Bellman optimality
principle, which states:

DEFINITION.– An optimal policy has the property that whatever the initial state and
the initial decision are, the remaining decisions must constitute an optimal policy with
respect to the state resulting from the first decision.

In many practical situations, it is sufficient to choose the prediction horizon N big-
ger enough than the response time of the system to get a performance that is close to
the optimality. This is possible when the virtual sequences of the optimal control com-
mands, which are computed at each sampling period, converge exponentially to zero
as the horizon increases. The obtained finite horizon solution will then approximate
the optimal infinite horizon solution.

However, the on-line solving of the optimization algorithm, which is required by
the MPC approach, is very costly. For that reason, an on-line scheduling algorithm,
called OPP was proposed in [BEN 06a; BEN 06b]. While being based on a pre-
computed optimal off-line schedule, OPP makes it possible to allocate on-line the
communication resources, based on the state of the controlled dynamical systems. It
was shown that under mild conditions, OPP ensures the asymptotic stability of the
controlled systems and enables in all the situations the improvement of the control
performance compared to the basic static scheduling. Furthermore, under these con-
ditions, the determination of OPP control and scheduling amounts to comparing a
limited number of quadratic functions of the state.

4.4. A convex optimization approach to feedback scheduling

4.4.1. Problem formulation

Consider a collection of N continuous-time LTI systems {Si}1≤i≤N . Each system
Si is described by the state space representation

ẋi(t) = Aixi(t) + Biui(t), (4.14)

where xi ∈ R
ni and ui ∈ R

mi . An infinite horizon continuous-time cost functional
Ji , defined by

Ji(xi, ui) =
∫ ∞

0

(
xT

i (t)Qixi(t) + uT
i (t)Riui(t)

)
dt, (4.15)

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 163

{Si}
Feedback
scheduler

Usp

CPU

{Ci}

{xi}

{Ti}

Tasks

{xi}

Plants

{Ci} {ui}
{τi}

Figure 4.6. Integrated plant-state and execution-time feedback scheduling

is associated with Si , and represents the design specifications of its ideal controller.
It is assumed that Qi and Ri are positive definite matrices of appropriate dimensions
and that the pair (Ai,Bi) is reachable. Each system Si is controlled by a control task
τi , characterized by a period hi and an execution-time Ci . These two parameters may
be time varying. The N control tasks {τi}1≤i≤N are executed on the same processor.
A global cost functional J(x1 , . . . , xN , u1 , . . . , uN), defined by

J(x1 , . . . , xN , u1 , . . . , uN) =
N∑

i=1

ωiJi(xi, ui), (4.16)

is associated with the entire system, allowing the evaluation of its global performance.
Constants {ωi}1≤i≤N are weighting factors, representing the relative importance of
each control loop.

The main objective of this paper is to design a feedback scheduler, allowing task
periods to be assigned {hi}1≤i≤N that optimize the global control performance (de-
fined by J), subject to processor utilization constraints (defined by Usp), and based
on both task execution time {Ci}1≤i≤N and plant state measurements {xi}1≤i≤N , as
shown in Figure 4.6.

Remark. Usp represents the desired processor utilization of tasks whose periods
are controlled by the feedback scheduler. It may be chosen by the designer in order
to cope with the presence of other tasks, whose processor utilization is not controlled
by the feedback scheduler. In practice, even in the situations where all the tasks are
controlled by the feedback scheduler, choosing Usp less than schedulable utilization
bound allows a “utilization margin” to be obtained and to avoid overruns that may
result from the variations of task execution times.

www.it-ebooks.info

http://www.it-ebooks.info/

164 Networked Control Systems Co-design

4.4.2. Cost function definition and approximation

4.4.2.1. Cost function definition

For a given fixed sampling period hi of system Si , assume that there exists an
optimal sampled-data controller u∗

i,hi
, defined by the state-feedback control gain K∗

hi
,

and which minimizes the cost functional (4.15), subject to the plant model (4.14) and
to zero-order hold constraints

ui,hi
(t) = ui,hi

(khi) for khi ≤ t < (k + 1)hi. (4.17)

The expression of K∗
hi

may be found in control textbooks, for example [ÅST 97]. The
computation of K∗

hi
requires the resolution of an algebraic Riccati equation (ARE).

Let ti(k) be the kth instant where the control input ui is updated and

Ji(ti(k), xi , u
∗
i,hi

) =
∫ ∞

ti (k)

(
xT

i (t)Qixi(t) + u∗T

i,hi
(t)Riu

∗
i,hi

(t)
)

dt. (4.18)

An interesting property in optimal LQ sampled-data control is that the cost functional
Ji(ti(k), xi , u

∗
i,hi

) may be characterized by a unique positive definite matrix Si(hi)
of size ni × ni , which is the solution of the ARE. This property considerably sim-
plifies the computation of the cost function (4.18), when the optimal sampled-data
control u∗

i,hi
is used. In fact, instead of simulating the evolution of the sampled-data

system (4.14), (4.17) and using equation (4.18) for cost computation, it suffices to use
the formula

Ji(ti(k), xi , u
∗
i,hi

) = xi(ti(k))T Si(hi)xi(ti(k)).

In the following, the solution of the ARE associated with the problem of finding
the optimal continuous time controller u∗

i,c is denoted by Sc , which minimizes the
cost functional (4.15), subject to plant dynamics (4.14). The QoC measure, associ-
ated with each system, will be the difference between the optimal sampled-data cost
Ji(xi, u

∗
i,hi

) and the optimal continuous-time cost Ji(xi, u
∗
i,c):

J∗
i (xi(0), hi) = Ji

(
xi, u

∗
i,hi

)− Ji

(
xi, u

∗
i,c

)
= xi(0)T (Si(hi) − Sc

i) xi(0),

and similarly

J∗
i (xi(ti(k)), hi) = Ji

(
ti(k), xi , u

∗
i,hi

)− Ji

(
ti(k), xi , u

∗
i,c

)
= xi(ti(k))T (Si(hi) − Sc

i) xi(ti(k)).

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 165

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

h

(S
(h

)
−
S
c
) i
,j

Linearized quadrotor attitude

Exact value of (S(h) − Sc)i,j
Parabolic approximation of (S(h) − Sc)i,j

Figure 4.7. X4 quadrotor: cost coefficients vs. sampling period

4.4.2.2. Introductory example: quadrotor attitude control

Consider the linearized model of the attitude of the quadrotor, which was described
in section 2.3.7 of Chapter 2.

The blue “+” marks in Figure 4.7 represent the values of the different coefficients
of matrix (S(h) − Sc), as a function of the sampling period. It is easy to see that the
coefficients of (S(h) − Sc) may be approximated as a parabolic function of h. The
green curve in Figure 4.7 represents the mean square best-fitting parabola of (S(h) −
Sc). Using a basic linear least-squares method, S(h) − Sc was approximated as

S(h) − Sc ≈ Θh2 ,

where

Θ =

⎡⎢⎢⎢⎢⎢⎢⎣
4.5028 0 0 1.2894 0 0

0 6.6017 −0.0000 0 1.6797 −0.0000
0 −0.0000 3.4407 0 −0.0000 1.5872

1.2894 0 0 0.3815 0 0
0 1.6797 −0.0000 0 0.4336 −0.0000
0 −0.0000 1.5872 0 −0.0000 0.7338

⎤⎥⎥⎥⎥⎥⎥⎦ .

This parabolic evolution of the cost was observed in two other benchmarks: a lin-
earized model of an unstable pendulum (for 0 ≤ h ≤ 100 ms) and a 14-order car
active suspension system [BEN 06b] (for 0 ≤ h ≤ 15 ms), as illustrated in [BEN 08].

www.it-ebooks.info

http://www.it-ebooks.info/

166 Networked Control Systems Co-design

These examples illustrate that in many situations, it is possible to approximate the
relationship between the solutions of the Riccati equation and the sampling period,
using polynomial interpolations, over a defined range of sampling periods. In the
remainder of this paper, it is assumed that for 0 ≤ hi ≤ hmax

i :

Si(hi) − Sc
i ≈ Θih

2
i . (4.19)

Note that although only this approximation is considered in this paper, the obtained
results may be easily generalized to other polynomial approximations.

It is worth remarking that

– the choice of hmax
i depends on the quality and the validity of approximating the

true values of the Riccati matrix coefficient using parabolic functions;

– based on Riccati equation solution approximations, analytic expressions of the
control gains as a function of the sampling period may easily be deduced;

– the relationship between the cost function and the sampling frequencies may
become more complicated, and even non-convex, when the frequencies are decreased
to near the Nyquist rate, as illustrated in [EKE 00].

4.4.3. Optimal sampling period selection

4.4.3.1. Problem formulation

Let fi = 1
hi

be the sampling frequency (corresponding to the sampling period hi).
Assume that Ci is constant (the following subsection shows how the time variations of
Ci may be handled). The optimal sampling period frequency selection problem may
be formulated as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
f1 ,...,fN

N∑
i=1

ωi
xT

i Θ i xi

f 2
i

subject to:
N∑

i=1
Cifi ≤ Usp

fi ≥ fmin
i for i = 1, . . . , N,

(4.20)

where fmin
i = 1

hm a x
i

.

Remark. In optimization problem (4.20), the values of the sampling frequencies
are implicitly upper-bounded by the processor utilization constraint. Furthermore, it
is also straightforward to add upper-bound constraints on the sampling frequencies
(i.e. by adding constraints fi ≤ fmax

i or equivalently hmin
i ≤ hi). However, these

additional constraints may lead to a slight increasing complexity of the problem reso-
lution.

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 167

4.4.3.2. Problem solving

Problem (4.20) has a convex objective function and affine inequality constraints.
Consequently, if the feasibility region is non-empty, its optimal solution will exist,
and may be computed analytically using the Karush–Kuhn–Tucker (KKT) conditions
[BOY 04]. Analysis of the different conditions of KKT conditions leads to the follow-
ing algorithm (4.1) for the computation of the optimal sampling frequencies:

Algorithm 4.1: Optimal sampling frequencies computation

Compute βi = ωix
T
i Θixi ;

Compute Γi = 2βi

Ci f m in 3
i

;

Sort Γi in the increasing order (i.e. find the permutation ϕ so that
Γϕ(1) ≤ Γϕ(2) ≤ · · · ≤ Γϕ(N))
Determine the largest integer p so that
p∑

i=1
Cϕ(i)f

min
ϕ(i) +

N∑
i=p+1

Cϕ(i)(
βϕ (i) Cϕ (p)

βϕ (p) Cϕ (i)
)

1
3 fmin

ϕ(p) ≥ Usp ;

if 1 ≤ i ≤ p then
f∗

ϕ(i) = fmin
ϕ(i) ;

endif
if p + 1 ≤ i ≤ N then

f∗
ϕ(i) =

(
βϕ (i)

Cϕ (i)

) 1
3 Us p −

∑ p
j = 1 Cϕ (j) f

m in
ϕ (j)∑N

j = p + 1 β
1
3
ϕ (j) C

2
3

ϕ (j)

. ;

endif

Algorithm 4.1 results from application of KKT conditions (see [BEN 08] for a
complete proof).

4.4.3.3. Feedback-scheduling algorithm deployment

The feedback scheduler is executed as a periodic task, with period hfbs . The choice
of this period is a trade-off between the complexity of the feedback scheduler and the
performance improvements it brings, as illustrated in [HEN 05].

Task execution times may be estimated on-line and smoothed using a first-order
filter

Ĉi(khfbs) = λĈi((k − 1)hfbs) + (1 − λ)Ci(khfbs), (4.21)

where λ is a forgetting factor, Ĉi(khfbs) and Ci(khfbs) are, respectively, the estimated
and the measured execution times at instant khfbs .

In practice, using algorithm 4.1, the optimal sampling frequencies of a plant tend
to be reduced to zero as the plant approaches the equilibrium. This has the drawback

www.it-ebooks.info

http://www.it-ebooks.info/

168 Networked Control Systems Co-design

of reducing the disturbance rejection abilities of that plant. Another drawback is that
when all the plants approach equilibrium, coefficients βi tend to approach zero. The
optimal sampling frequencies assignment may result in an undetermined form 0/0.
Fortunately, all these issues may be solved if a constant term representing “a prediction
of the cost of future disturbances” is added to the cost functions 4.15. This amounts
to replacing

βi = ωix
T
i Θixi ,

by
βi = ωix

T
i Θixi + β̄i ,

where β̄i is a constant coefficient, which have to be chosen off-line, according to the
future disturbances that a given plant may be subjected to. These coefficients may
be chosen by trial and error, until the best behavior is obtained. A small value of β̄i

increases the sensitivity of the optimal sampling period h∗
i with respect to state values.

A larger value reduces this state sensitivity.

Remark. The expression of β̄i may be explicitly computed if a linear quadratic
Gaussian formulation and a finite optimization horizon are adopted in the optimal
sampling frequency assignment problem (instead of the deterministic infinite horizon
formulation that was adopted in this section).

4.4.4. Application to the attitude control of a quadrotor

In this section, the proposed feedback scheduling approach is applied to the atti-
tude control of the quadrotor. As illustrated in Chapter 2, the roll, pitch and yaw con-
trol loops of the attitude controller are independent. In fact, the linearized model of the
quadrotor (2.35) is made of three independent second-order sub-systems. For this rea-
son, each loop may be implemented by an independent control task. The attitude con-
troller will contain three control tasks τφ , τθ , and τψ (respectively the roll, pitch and
yaw control tasks). Task execution times are equal to Cφ = Cθ = Cψ = C = 10 ms.
Task respective periods will be, respectively, denoted by hφ , hθ , and hψ . The desired
utilization of these three task is Usp = 80%. Task periods hφ , hθ , and hψ that may be
assigned by the feedback-scheduling algorithm verify

0 ≤ hφ ≤ hmax
φ , 0 ≤ hθ ≤ hmax

θ and , 0 ≤ hψ ≤ hmax
ψ ,

where hφ
max = hmax

θ = hmax
ψ = 100 ms. Constants β̄φ , β̄θ , and β̄ψ are equal to

10−8 . The period of the feedback scheduler is hfbs = 100 ms.

In these simulations, the attitude of the quadrotor has to follow the specified set
points depicted in Figure 4.8. Roll and pitch angle set points from instant t = 0 s to
instant t = 20 s are sine signals with respective amplitudes 17° and 5° and periods
10 s and 20 s. From instant t = 20 s, roll and pitch set points are zero. Yaw angle set

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 169

0 5 10 15 20 25 30 35 40
−20

−15

−10

−5

0

5

10

15

20

Time

E
ul

er
 a

ng
le

s
se

t p
oi

nt
s

(°
)

φ
sp

θ
sp

ψ
sp

Figure 4.8. Set points of the attitude controller

point is zero. From instant t = 20 s, a yaw torque disturbance, consisting of a band
limited white noise, with period 10−3 s and noise power 2 × 10−4 , is applied to the
quadrotor. Note that in this simulation example, tasks execution times were assumed
to be constant. Although the control design was based on the quadrotor linearized
model, the simulations were applied on the nonlinear models (2.33) and (2.34).

Quadrotor Euler angles as well as their associated tasks sampling periods, assigned
by the feedback scheduler, are depicted in Figure 4.9. This figure illustrates how the
feedback-scheduling algorithm reduces the sampling period of the control task that
has the most important needs of computing resources in order to improve the global
control performance. From instants t = 0 s to t = 20 s, the sampling period of
the yaw control task is set to around the maximal allowed value (100 ms). Roll and
pitch control task period reductions are correlated with the rate of the change of their
corresponding roll and pitch angles. In fact, roll control task period is minimal when
the roll angle crosses zero. The pitch control task period is augmented when the pitch
angle reaches its minimum or maximum values. The same observation holds for the
roll angle. Since the roll set point has the greatest amplitude and rate of variation, the
feedback scheduler assigned the most important parts of the computational resources
to the roll control task.

From instant t = 20 s to instant t = 30 s, the specified set points for the three
Euler angles are zero. Since β̄φ = β̄θ = β̄ψ , and no torque disturbance is applied to
the quadrotor, the assigned sampling periods converge smoothly to 3C

Us p
= 37.5 ms.

www.it-ebooks.info

http://www.it-ebooks.info/

170 Networked Control Systems Co-design

0 5 10 15 20 25 30 35 40
−20

−10

0

10

20

Time

E
ul

er
 a

ng
le

s
(°

) φ
θ
ψ

0 5 10 15 20 25 30 35 40

0.02

0.04

0.06

0.08

0.1

Time

φ
ta

sk
 p

er
io

d
(s

)

0 5 10 15 20 25 30 35 40

0.02

0.04

0.06

0.08

0.1

Time

θ
ta

sk
 p

er
io

d
(s

)

0 5 10 15 20 25 30 35 40

0.02

0.04

0.06

0.08

0.1

Time

ψ
 ta

sk
 p

er
io

d
(s

)

Figure 4.9. Feedback scheduling of the attitude controller

At instant t = 30 s, when the yaw torque disturbance starts to be applied, the
feedback reduces smoothly the period of the yaw control task to the minimum value
(16.6 ms), and augments the periods of roll and pitch tasks to the maximum allowed
values (100 ms), in order to achieve a better reduction of the yaw torque disturbance.

4.5. Control and real-time scheduling co-design via a LPV approach

The feasibility of a feedback scheduler to manage the real-time parameters of a
robot arm controller has been shown in section 1.4.2.3. In this preliminary exam-
ple, the nonlinear nature of the process forbids to find simple loss functions to relate
the controller’s tasks sampling periods and the tracking performance. A very rough
model has been extracted from simulations, providing a static CPU relative allocation
between three compensation tasks. These loss functions are globally evaluated for
a whole trajectory. The resulting feedback scheduler efficiently controls the overall
CPU load, but only from the measured tasks CPU loads. However, even for a given
trajectory, the contribution of each task to the tracking performance of the controller
likely varies along the trajectory. For example, the disturbances due to Coriolis and
centrifugal forces increase with the velocity, and the CPU allocated to compute the
corresponding compensation action should be increased at high speed to better cancel
this disturbance.

The following sections summarize a first approach to take into account the non-
linear plant’s state to dynamically adapt the scheduling parameters of the robot arm
controller; this approach is exposed in more details in [SEN 08].

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 171

Ur

+

−
+

Uothers

+
Plant

control tasks
fiScheduling

controller

K(z,α)

f1

f2

H(z)

Task1

+

+
+

+

–
Task2

α

1

1

c1

c2

r

U

U

others

Figure 4.10. Feedback-scheduling block diagram; control scheme for CPU resources

4.5.1. A LPV feedback scheduler sensible to the plant’s closed-loop performances

Feedback scheduling is a dynamic approach allowing a better usage of the com-
puting resources, in particular when the workload changes (e.g. due to the activation
of an admitted new task). The CPU activity is controlled according to the resource
availability by adjusting scheduling parameters (e.g. the control intervals) of the plant
control tasks, as recalled in section 1.4. However, as the goal of the controllers is the
achievement of a requested performance level, the use of computing resources should
be also linked to the dynamic behavior of the plant(s) to be controlled. The main
result given in this section consists in deriving a new feedback-scheduling controller
which depends on the plant trajectory, in view of an “optimal” resource sharing. It is
designed in the LPV/H∞ framework for polytopic systems.

Following previous results in [SIM 05] and section 1.4.2.3, the feedback scheduler,
as illustrated in Figure 4.10, is a dynamic system between the control task frequencies
and the processor utilization. As far as the adaptation of the control tasks is concerned,
the load of the other tasks is seen as an output disturbance.

The CPU utilization is assumed to be measured or estimated, and the scheduling
is here limited to periodic (or more exactly recurrent) tasks. In this case, the processor
load induced by a task is defined by U = c

h , where c and h are the execution time
and period of the task. Hence, as in [CER 02], the processor load induced by a task is
estimated for each period hs of the scheduling controller as

Ûkhs
= λ Û(k−1)hs

+ (1 − λ)
ckhs

h(k−1)hs

, (4.22)

where h is the sampling frequency currently assigned to the plant control task (i.e. at
each sampling instant khs), and c is the mean of its measured job execution time. λ is
a forgetting factor used to smooth the measure (here λ = 0.3).

For an n-multi-task control system, we should note that, as in [SIM 03], if the
execution times are constant, then the relationship U =

∑n
i=1 Cifi , where fi = 1/hi

is the frequency of the task, is a linear function (which is not the case if expressed as a
function of the task periods). Therefore, using (4.22), the estimated CPU load is given

www.it-ebooks.info

http://www.it-ebooks.info/

172 Networked Control Systems Co-design

as

Û(khS) =
(1 − λ)
z − λ

n∑
i=1

ci(khS)fi(khS). (4.23)

However, in practice, the execution time of the control tasks may vary according to
the run-time environment, e.g. actual processor speed. As proposed in [SIM 05],
a “normalized” linear model of the task i (i.e. independent of the execution time),
G′

i , is used for the scheduling controller synthesis, where c is omitted and will be
compensated by on-line gain-scheduling (1/c) as shown below:

G′
i(z) =

Û(z)
fi(z)

=
1 − λ

z − λ
, i = 1, . . . , n. (4.24)

Also, as explained above, the use of computing resources is chosen to depend on the
plant trajectory. Hence, the control scheme of computing resource control is illustrated
in Figure 4.10 for a two control-tasks system for simplicity.

In Figure 4.10, the interval of frequencies is limited by the “saturation” block, α
represents a set of real parameters {α1 , α2 , . . . , αn} dedicated to the set of control
tasks {U1 , U2 , . . . , Un}. These parameters will be used to make the resource sharing
vary according to the plant trajectory. In the two control-tasks system, where U =
U1 + U2 , it is required that

U1 = αU (4.25)

U2 = (1 − α)U, (4.26)

with α being a varying parameter. This makes the control scheme flexible enough to
distribute on-line the use of computing resources to the different control tasks. The
choice of the value of the time-varying parameters {α1 , α2 , . . . , αn} can be done in
many different ways, e.g. from the on-line computation of optimal cost functions or
from a dependency on the control effort. It will be illustrated in details in section 4.5.2
for the robot-arm control example.

Here, the design of the controller K(α) is done using the H∞ control approach
for LPV systems. The H∞ control scheme to synthesize the controller K(α) is given
in Figure 4.11.

In Figure 4.11, G′ is the model of the scheduler, the output of which is the vector of
′ = [1 . . . 1] is used. The

H transfer function represents the sensor dynamic behavior which measures the load
of the other tasks; it may be a simple first-order filter. The template We specifies the
performances on the load-tracking error. It is chosen in the continuous-time domain
as

We(s) =
s/Ms + ωb

s + ωsε
, (4.27)

all task loads. To get the sum of all the task loads as in (4.24), C

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 173

Uothers

Ur

W e1

e2

G
+

++

–
G′

Û

Ûtot
K(α)

M(α)

C′

e

Wx

H

Figure 4.11. A LPV /H∞ controller for CPU resources

with Ms = 2, ωs = 10 rad s−1 , ε = 0.01 to obtain a closed-loop settling time of
300 ms, a static error less than 1 % and a good robustness margin.

The resource distribution is done through the M(α) matrix defined below. Note
that for an n-multi-tasks system

U = U1 + U2 + · · · + Un (4.28)

U = (α1 + α2 + · · · + αn)U, (4.29)

where α1 + α2 + · · · + αn = 1. Then

U1 = α1U (4.30)

U2 = α2U =
α2

α1
U1 (4.31)

U3 = α3U =
α3

α2
U2 (4.32)

...
... (4.33)

Un = αnU =
αn

αn−1
Un−1 . (4.34)

Then to ensure the on-line distribution of the computing resources M is chosen as

M =

⎡⎢⎢⎢⎣
−α2 α1 0 0

0 α3 α2 0 . . . 0
... · · · · · · · · · . . . 0

. . . · · · · · · · · · −αn αn−1

⎤⎥⎥⎥⎦ (4.35)

= α1M1 + α2M2 + · · · + αnMn. (4.36)

Using [APK 95] the LPV controller K(α) is obtained through the solution of the
H∞ control problem for polytopic systems, and consists in solving 2 LMIs. Then
the design of K(α) can be done directly either in the discrete-time domain or in the

www.it-ebooks.info

http://www.it-ebooks.info/

174 Networked Control Systems Co-design

continuous-time one and then discretized. For this example, K(α) has been synthe-
sized in the continuous-time domain using the H∞ control approach for polytopic
systems, as described in details in [SEN 08].

By solving the H∞ problem for the LPV system using the Yalmip interface and
Sedumi solver [STU 99; LOF 04], one obtains γopt = 1.8885, and a controller of
order 7.

4.5.2. Application to a robot-arm control

The seven degrees of freedom Mitsubishi PA10 robot arm already used in section
1.4.2.3 is again considered. The problem under consideration is tracking a desired
trajectory for the position of the end effector. Using the Lagrange formalism, the
following model can be obtained:

Γ = M(q)q̈ + Gra(q) + C(q, q̇), (4.37)

where q stands for the positions of the joints, M is the inertia matrix, Gra is the gravity
forces vector and C gathers Coriolis, centrifugal and friction forces.

The structure of the ideal linearizing controller includes a compensation of the
gravity, Coriolis/centrifugal effect, and inertia variations as well as a proportional-
derivative (PD) controller for the tracking and stabilization problem, of the form

Γ = Gra(q) + C(q, q̇) + Kp(qd − q) + Kd(q̇d − q̇), (4.38)

leading to the linear closed-loop system M(q)q̈ = Kp(qd − q) + Kd(q̇d − q̇), where
qd and q̇d stand for the reference trajectory positions and velocities.

As in 1.4.2.3 the controller is split into five tasks, i.e. a specific task is considered
for the PD control, the trajectory generation and for the gravity, inertia, and Coriolis
compensations, which are implemented as a multi-rate controller. In this feedback
scheduling scheme, only the periods of the compensation tasks are adapted, as they are
time consuming compared with the PD task while being less critical for the stability.

4.5.2.1. Performance evaluation of the control tasks in view of optimal resource
distribution

In order to associate the use of computing resources with the robot trajectory, the
contribution of each of the three control tasks to the closed-loop system performances
has been evaluated as a function of its execution period.

The methodology is the following. Assuming a nominal sampling period for each
task of 1 ms, the period of each compensation control task is changed, and new simu-
lations are performed during which the following cost is computed:

J =
∫ tf

ti

(Phi ,hg ,hc
(t) − Pref (t))2 −

∫ tf

ti

(Pc(t) − Pref (t))2 , (4.39)

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 175

where Pref is the desired position in the operational space of the end tip, computed
from qd using the geometric model. Pc is the position obtained when all the control
tasks act with the minimal sampling period of 1 ms. Finally, Phi ,hg ,hc

is the position
obtained when the sampling period of one of the compensation tasks is increased from
1 to 30 ms.

Simulations are performed for a particular robot trajectory, defined by the refer-
ence vector (qd , q̇d) for all the robot joints. Here qd goes from π/2 to −π/2. Figure
4.12 shows the evolution of the cost function J for the three compensation control
tasks.

4.5.2.1.1. Discussion

It is difficult to infer the relations between the compensation task execution period
and the trajectory tracking performance, anyway a natural interpretation can be pro-
posed. First, the gravity compensation effect is very sensitive to the increase of the
sampling period at the end of the trajectory, as the cost increases in the second part of
the trajectory (first part of the graph as the trajectory goes from π/2 to −π/2). It is
desired to ensure the availability of CPU resources for this task in a linear way with the
trajectory position. The situation is almost opposite for the inertia effect. Finally, even
if some variations can be observed, a constant use of CPU resources of the Coriolis
compensation task, all along the trajectory is still needed.

Then the distribution of the control task periods is chosen as

UI = αI U, UG = αGU, UC = αC U, (4.40)

where αC = 0.25, αI = 1 − αG , and αG is linked to the plan trajectory by

αG = αmin + (αMax − αmin) × qd − qend

qini − qend
, (4.41)

where [αmin ; αMax] = [0.1; 0.65], qini is the initial position, and qend is the final
trajectory position.

4.5.2.2. Simulation with TrueTime

TrueTime is a free toolbox for MATLAB/Simulink aimed to ease the simulation of
the temporal behavior of a multi-tasking real-time system executing controller tasks
[OHL 07]. In this application, the period of the feedback scheduler has been fixed to
30 ms to be larger than the robot control task periods, whose limits have been set from
1 ms to 30 ms.

In the experiment depicted in Figure 4.14, the desired CPU usage is initially set to
50% of the maximum usage. The upper plots show the tasks periods and CPU usage.
The PD loop period is fixed at 1 ms and the trajectory generator at 5 ms.

www.it-ebooks.info

http://www.it-ebooks.info/

176 Networked Control Systems Co-design

Figure 4.12. Cost variation due to varying sampling for gravity, Coriolis, and inertia
compensation task

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 177

As seen in Figure 4.14(a), the load of the compensation tasks (gravity, Coriolis,
and inertia) vary on-line as expected according to the parameter αI (see Figure 4.15a).
The corresponding evolution of the task periods is shown in Figure 4.14(b). Moreover,
in Figure 4.15b, the adaptive LPV case (α varying) is compared with the constant case
(α = 0.375). It can be seen that the LPV case leads to a smaller cost function which
emphasizes the real interest of the provided approach.

4.5.2.3. Feasibility and possible extensions

Note that, as explained in [SIM 05] and depicted in Figure 1.10, the scheduling
feedback loop can be easily implemented on top of an off-the-shelf real-time operating
system (e.g. Posix) in the form of an additional real-time periodic task, i.e. a control
module whose function is specified and encoded by the control designer. The inputs
are the measured execution times of the control tasks, and the set point is a desired
global computing load. Outputs are the sampling intervals of the gravity, Coriolis,
and inertia control tasks which are triggered by programmable timers provided by the
operating system as illustrated in section 7.4.1.

Thanks to the use of a hierarchical control structure, the given results may also
be integrated with existing methods for the design of varying sampled controllers, as
in [TAN 02] or using the LPV approach of section 2.4, which makes this integrated
approach somewhat generic.

4.6. Summary

In this chapter, a few co-design approaches to integrate both control and imple-
mentation constraints have been presented. Even when the controlled plants are lin-
ear, theoretic optimal solutions are too computing intensive to be real-time compliant.
Therefore, tractable solutions are designed under restrictive assumptions, leading to
operational solutions with limited generality. For example, section 4.2 gives a inte-
grated scheme combining varying sampled controllers for linear systems and elastic
tasks models, leading to an effective and implementable solution for which no stability
proof has been provided up to now. Conversely, the MPC-based approach in section
4.3, using hybrid modeling, is able to cope with nonlinear plants, state, and actua-
tors constraints, and limitations in CPU power and networking bandwidth working
on a slotted timescale. As optimal solutions are too complex to be used in real time,
only sub-optimal controllers can be implemented. Other examples assume, in section
4.4, the convexity of all the cost functions associating the controllers performance
with their execution periods, or are based in section 4.5 on cost functions measured
on a specific trajectory of a given nonlinear plant. Note also that next Chapter 5 de-
scribes a control/scheduling co-design approach assuming LQ controllers associated
with (m, k)-firm scheduling policies.

www.it-ebooks.info

http://www.it-ebooks.info/

178 Networked Control Systems Co-design

Figure 4.13. Positions and control torques

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 179

(a)

(b)

Figure 4.14. TrueTime real-time parameters: (a) loads and (b) periods

www.it-ebooks.info

http://www.it-ebooks.info/

180 Networked Control Systems Co-design

2 1.5 1 0.5 0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

q1
ref

α
Variation of α

I
 according to the desired position q

d
. Then α

G
=1� α

I

(a)

(b)

Figure 4.15. (a) Variation of αI and (b) total cost

Indeed, control and scheduling co-design over networks handles complex and het-
erogenous systems, so that it is unlikely that a fully general, operational and unique
theoretic framework emerge soon. Conversely, well chosen case studies are expected
to bring effective solutions for some classes of systems and for some specific prob-
lems.

www.it-ebooks.info

http://www.it-ebooks.info/

4.7. Bibliography

[APK 95] APKARIAN P. AND GAHINET P., A convex characterization of gain scheduled H∞
controllers, IEEE Transactions on Automatic Control, vol. 40, p. 853–864, May 1995.

[ÅRZ 00] ÅRZÉN K.-E., CERVIN A., EKER J., AND SHA L., An introduction to control and
scheduling co-design, 39th IEEE Conference on Decision and Control, Sydney, Australia,
December 2000.

[ÅST 97] ÅSTRÖM K. J., WITTENMARK B., Computer-Controlled Systems, Information and

[BEM 99] BEMPORAD A., MORARI M., Control of systems integrating logic, dynamics, and
constraints, Automatica, vol. 35, p. 407–427, 1999.

[BEN 06a] BEN GAID M., Optimal scheduling and control for distributed real-time systems,
PhD thesis, University of d’Evry Val d’Essonne, France, 2006.

[BEN 06b] BEN GAID M.-M., ÇELA A., AND HAMAM Y., Optimal integrated control and
scheduling of networked control systems with communication constraints: application to a
car suspension system, IEEE Transactions on Control Systems Technology, vol. 14, p. 776–
787, 2006.

[BEN 06c] BEN GAID M.-M., ÇELA A., HAMAM Y., AND IONETE C., Optimal scheduling
of control tasks with state feedback resource allocation, 2006 American Control Conference
ACC’06, Minneapolis, USA, June 2006.

[BEN 08] BEN GAID M., SIMON D., AND SENAME O., A convex optimization approach to
feedback scheduling, 16th IEEE Mediterranean Conference on Control and Automation
MED’08, Ajaccio, France, June 2008.

[BEN 09] BEN GAID M.-M., ÇELA A., AND HAMAM Y., Optimal real-time scheduling of
control tasks with state feedback resource allocation, IEEE Transaction on Control Systems
Technology, vol. 17, p. 309–326, March 2009.

[BOY 04] BOYD S. P., AND VANDENBERGHE L., Convex Optimization, Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[BUT 00] BUTTAZZO G., AND ABENI L., Adaptive rate control through elastic scheduling,
39th Conference on Decision and Control, Sydney, Australia, December 2000.

[CAN 01] CANNON M., KOUVARITAKIS B., AND ROSSITER J.-A., Efficient active set opti-
mization in triple mode MPC, IEEE Transactions on Automatic Control, vol. 46, p. 1307–
1312, August 2001.

[CAS 06] CASTAÑÉ R., MARTÍ P., VELASCO M., CERVIN A., AND HENRIKSSON D., Re-
source management for control tasks based on the transient dynamics of closed-loop sys-
tems, 18th Euromicro Conference on Real-Time Systems, Dresden, Germany, July 2006.

[CER 02] CERVIN A., EKER J., BERNHARDSSON B., AND ÅRZÉN K.-E., Feedback-
feedforward scheduling of control tasks, Real-Time Systems, vol. 23, p. 25–53, July 2002.

[CER 03] CERVIN A., Integrated control and real-time scheduling, PhD thesis, Department of
Automatic Control, Lund Institute of Technology, Sweden, April 2003.

181

Plant-state-based Feedback Scheduling 181

System Sciences Series, Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1997.

www.it-ebooks.info

http://www.it-ebooks.info/

182 Networked Control Systems Co-design

[CER 06] CERVIN A., AND ALRIKSSON P., Optimal on-line scheduling of multiple control
tasks: a case study, 18th Euromicro Conference on Real-Time Systems, Dresden, Germany,
July 2006.

[DAC̆ 07] DAČIĆ D. B., AND NEŠIĆ D., Quadratic stabilization of linear networked control
systems via simultaneous protocol and controller design, Automatica, vol. 43, p. 1145–
1155, 2007.

[EKE 00] EKER J., HAGANDER P., AND ÅRZÉN K.-E., A feedback scheduler for real-time
controller tasks, Control Engineering Practice, vol. 8, p. 1369–1378, 2000.

[GAR 89] GARCIA C.-E., PRETT D.-M., AND MORARI M., Model predictive control: theory
and practice, Automatica, vol. 25, p. 335–348, 1989.

[HEN 02] HENRIKSSON D., CERVIN A., ÅKESSON J., AND ÅRZÉN K., On dynamic real
time scheduling of model predictive controllers, 41st IEEE Conference on Decision and
Control, Las Vegas, USA, December 2002.

[HEN 05] HENRIKSSON D., AND CERVIN A., Optimal on-line sampling period assignment
for real-time control tasks based on plant state information, 44th Conference on Decision
and Control, Sevilla, Spain, December 2005.

[HEN 06] HENRIKSSON D., Resource-constrained embedded control and computing systems,
PhD thesis, Department of Automatic Control, Lund Institute of Technology, Sweden, Jan-
uary 2006.

[HRI 99] HRISTU D., Optimal control with limited communication, PhD thesis, Division of
Engineering and Applied Sciences, Harvard University, June 1999.

[KAL 63] KALMAN R. E., HO B., AND NARENDRA K., Controllability of linear dynamical
systems, Contributions to Differential Equations, vol. 1, p. 188–213, 1963.

[LEM 07] LEMMON M., CHANTEM T., HU X., AND ZYSKOWSKI M., On self-triggered full
information H∞ controllers, Proceedings of Hybrid Systems: Computation and Control,
April 2007.

[LIN 02] LINCOLN B., AND BERNHARDSSON B., LQR optimization of linear system switch-
ing, IEEE Transactions on Automatic Control, vol. 47, p. 1701–1705, October 2002.

[LOF 04] LOFBERG J., AND YALMIP: A toolbox for modeling and optimization in Matlab,
Computer Aided Control System Design Conference, Taipei, Taiwan, March 2004.

[LU 02] LU C., STANKOVIC J., TAO G., AND SON S., Feedback control real-time schedul-
ing: framework, modeling and algorithms, Special Issue of Real-Time Systems Journal on
Control-Theoretic Approaches to Real-Time Computing, vol. 23, p. 85–126, July 2002.

[MAR 02] MARTÍ P., FUERTES J., FOHLER G., AND RAMAMRITHAM K., Improving
quality-of-control using flexible timing constraint: metric and scheduling issues, 23rd IEEE
Real-Time Systems Symposium, Austin, USA, December 2002.

[MAR 04] MARTÍ P., LIN C., BRANDT S., VELASCO M., AND FUERTES J., Optimal state
feedback based resource allocation for resource-constrained control tasks, 25th IEEE Real-
Time Systems Symposium, Lisbon, Portugal, December 2004.

www.it-ebooks.info

http://www.it-ebooks.info/

Plant-state-based Feedback Scheduling 183

[MIL 08] MILLZAN P., JURADO I., VIVAS C., AND RUBIO F.-R., Algorithm for networked
control systems with large data dropouts, 47th IEEE Conference on Decision and Control
CDC’08, Cancun, Mexico, December 2008.

[OHL 07] OHLIN M., HENRIKSSON D., AND CERVIN A., TrueTime 1.5—Reference Manual,
January 2007.

[REH 04] REHBINDER H., AND SANFRIDSON M., Scheduling of a limited communication
channel for optimal control, Automatica, vol. 40, p. 491–500, March 2004.

[ROB 07a] ROBERT D., SENAME O., AND SIMON D., A reduced polytopic LPV synthesis
for a sampling varying controller: experimentation with a T inverted pendulum, European
Control Conference ECC’07, Kos, Greece, July 2007.

[ROB 07b] ROBERT D., Contribution à l’interaction commande/ordonnancement, PhD thesis,
INP Grenoble, France, January 2007.

[SEN 08] SENAME O., SIMON D., AND BEN GAID M., A LPV approach to control and real-
time scheduling codesign: application to a robot-arm control, Control and Decision Con-
ference CDC’08, Cancun, Mexico, December 2008.

[SET 96] SETO D., LEHOCZKY J. P., SHA L., AND SHIN K. G., On task schedulability in
real-time control systems, 17th IEEE Real-Time Systems Symposium, New York, USA,
December 1996.

[SHI 99] SHIN K. G., AND MEISSNER C. L., Adaptation of control system performance by
task reallocation and period modification, Proceedings of 11th Euromicro Conference on
Real-Time Systems, York, UK, p. 29-36, June 1999.

[SIM 03] SIMON D., SENAME O., ROBERT D., AND TESTA O., Real-time and delay-
dependent control co-design through feedback scheduling, CERTS’03 Workshop on Co-
design in Embedded Real-time Systems, Porto, Portugal, July 2003.

[SIM 05] SIMON D., ROBERT D., AND SENAME O., Robust control/scheduling co-design:
application to robot control, 11th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, San Francisco, USA, March 2005.

[STU 99] STURM J. F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones, Optimization Methods and Software, vol. 11/12, p. 625–653, 1999.

[TAB 07] TABUADA P., Event-triggered real-time scheduling of stabilizing control tasks,
IEEE Transactions on Automatic Control, vol. 52, p. 1680–1685, 2007.

[TAN 02] TAN K., GRIGORIADIS K.-M., AND WU F., Output-feedback control of LPV
sampled-data systems, International Journal of Control, vol. 75, p. 252–264, 2002.

[ZHA 08] ZHAO Y., LIU G., AND REES D., Integrated predictive control and scheduling co-
design for networked control systems, IET Control Theory Appl, vol. 2, p. 7–15, 2008.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Overload Management Through Selective
Data Dropping

5.1. Introduction

During system and network overload periods, excessive delay or even data loss
may occur. To maintain the quality of control of an NCS, the implementation system
(including both computer and network) overload must be correctly handled. As we
can see in the previous chapters, a common approach to dealing with this overload
problem is to dynamically change the sampling period of the control loops. In this
chapter, as an alternative to the explicit sampling period adjustment, we present an
indirect sampling period adjustment approach which is based on selective sampling
data dropping according to the (m, k)-firm model [HAM 94]. The interest of this al-
ternative is its easy implementation despite having less adjustment quality, since only
the multiples of the basic sampling period can be exploited. Upon overload detection,
the basic idea is to selectively drop some samples according to the (m, k)-firm model
to avoid long consecutive data drops. The consequence is that the shared network and
processor will be less loaded. However, the control stability and performance must
still be maintained to an acceptable level. This can be achieved by keeping either
the total control tasks on a same processor or the messages sharing a same network
bandwidth schedulable under the (m, k)-firm constraint.

In this chapter, we first give a sufficient condition for scheduling a set of control
tasks under (m, k)-firm constraint (section 5.2). Then, through several examples, we

Chapter written by Flavia FELICIONI, Ning JIA, Françoise SIMONOT-LION and Ye-Qiong
SONG.

185

www.it-ebooks.info

http://www.it-ebooks.info/

186 Networked Control Systems Co-design

present the methods for determining the value of k for a given control loop which will
still maintain control loop stability (section 5.3), and the optimal values of m and the
control gains which minimize a total cost function either in the presence of the con-
trol task configuration changes (section 5.4) or by further coping with the plant state
changes (section 5.5). The problem of control loop stability with on-line parameter
switching is also discussed in section 5.5.1.

To better illustrate this approach, let us first present the generic system architecture.
Then, we identify the problem to solve and provide several notations.

5.1.1. System architecture

We consider a global control architecture that integrates a set of plants to control,
each one being controlled by a discrete controller. We are interested in the deploy-
ment of the control application onto limited resources; for example, all the numerical
controllers share the same processors or all the plant states sampled by sensors are
transmitted to the controller through the same communication architecture. More-
over, we suppose that according to the global state of the plant, a supervisor chooses
the current working mode of the global system. In particular, it can stop the control
of a plant, start the control of a plant or modify the control strategy of a plant (con-
trol law, sampling period, etc.). The consequence of the transition between working
modes is the modification of the set of active tasks/messages that can bring about

– some of them are stopped,

– new tasks are activated or new messages are transmitted,

– the characteristics of tasks may be modified, for example, changing their Worst
Case Execution Time (WCET); the characteristics of messages can be modified, for
example, their size or the sampling period can be transformed by using a new control
strategy.

This means that the scheduling of the messages on a network or the scheduling of the
tasks on a processor have to be redefined each time the supervisor modifies the global
control mode. The schedulability analysis of a set of tasks or messages subject to hard
real-time constraints (all the instances have to meet their deadline) can lead to over
provisioning of the resources and this oversizing can be worse in the case of an archi-
tecture that implements several working modes as already mentioned before. More-
over, the relationship between the performance of the control and the scheduling of the
activities is not well known quantitatively; therefore, the identification of the schedul-
ing parameters relies generally on experiments and/or simulations [SIM 05] that are
not exhaustive and so, cannot be generalized. So, a feasible scheduling provided by
applying the relaxation of timed constraints as proposed in the classical solution does
not lead systematically to the optimal performance of the control application.

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 187

Therefore, we propose a new scheduling architecture for handling such configurations
as well as an adaptive technique that makes adjustments on-line for, on the one hand,
the (m, k)-firm constraints of activities (data transmission and/or task implementing
the control law) and, on the other hand, the parameters of the control laws. By doing
so, the global performance of the application is fixed at an optimized level and the
schedulability under (m, k)-firm constraints is guaranteed.

In the case study that will illustrate the adaptive approach, we consider plants that
correspond to harmonic oscillators (as, for example, cart systems, a pendulum or an
inverted pendulum). Furthermore, the solution is detailed for processor sharing and
therefore, we will deal with the scheduling of tasks instead of messages.

The scheduling architecture is illustrated in Figure 5.1. The system to control is
composed of a set of plants (Plant 1, Plant 2, ..., Plant n) that are assumed to be
independent. Each plant is controlled by a controller (Controller 1, Controller 2, ...,
Controller n). In this example, the controllers are deployed as a set of n tasks (τ1 ,
τ2 , .., τn) on the same processor. A task handler is dedicated to the identification of
the optimal configuration of (mi, ki)-firm constraints for each task τi running on the
processor. The system is observed by a supervisor, assumed implemented on another
processor. The role of the supervisor is to observe the state of the plants and to decide
at each instant which plants have to be controlled and which control laws have to
be applied. Each time the supervisor modifies the configuration of the system, it sends
the task handler a list of active controllers as well as their new characteristics, in

Scheduling

Task handler Supervisor

Controller
n

Plant nController
2

Plant 2
Controller 1 Plant 1

Actuators Sensors

Processor

(m,k)-firm
constraints

Reconfiguration
orders

Set of active
controllers

Figure 5.1. The global scheduling architecture

www.it-ebooks.info

http://www.it-ebooks.info/

188 Networked Control Systems Co-design

short, the activation period and the worst case execution time of the control law. Of
course, the schedulability of this task set must be guaranteed in sense of (mi, ki)-firm.

5.1.2. Problem statement

The global problem of finding, at each instant an optimized scheduling of control
tasks can be divided into several sub-problems.

– Firstly, we have to ensure, at least the stability of each controlled system. This
will be achieved by the specification of the highest value of ki in the constraint (mi, ki)
of each task τi sharing the processor that ensures the stability under a (1, ki)-firm
constraint.

– A second problem concerns the optimization issue. Two main considerations
have to be taken into account in this context: what is the cost function? what are the
criteria? For the first question, we will use the (Linear Quadratic Regulator LQR) cost
function that is classically applied in the control community. The determination of the
value of the parameter mi in the (mi, ki) constraint of each task τi will answer the
second question.

Solutions to these different problems will be presented in the remaining part of this
chapter. But, first of all, let us give more details in the following section on how to
schedule tasks under (m, k)-firm constraint.

5.2. Scheduling under (m, k)-firm constraint

The (m, k)-firm model was first proposed by Hamdaoui and Ramanathan in order
to precisely characterize the timing constraints required by certain kinds of applica-
tions [HAM 94]. It allows the specification of the guarantee level required by real-time
applications tolerating deadline miss of certain instances of tasks or messages. More
specifically, in this chapter a task or a message τi is said to have (mi, ki)-firm dead-
lines if at least mi out of any ki consecutive instances must meet their deadlines and
if the schedulability analysis of a set of tasks or messages subject to such (m, k)-firm
constraints must furnish a deterministic guarantee. Note that, mi = ki = 1 means
that each instance of τi is constrained by a firm deadline. Initially, this technique
was introduced to deal with overloading in real-time message stream handling, but it
was soon seen that it could be used in real-time control applications [RAM 99]. Two
problems must be solved for such constraint specifications:

– scheduling policy: how to schedule a set of tasks or messages subject to (m, k)-
firm;

– schedulability analysis: for a given scheduling policy, how to guarantee that the
constraints are satisfied.

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 189

The main solutions to these problems are briefly described in the following.

Two classes of scheduling policies that were developed to take into account the
(m, k)-firm constraints were studied: dynamic scheduling and static scheduling.

In the following, we consider a set of tasks or message streams τi , each of them
being defined by

– Ci , the largest time needed by the instances of τi to complete the task instance
execution or the message instance transmission;

– Di , the relative deadline of τi , supposed to be the same for each instance;

– and, when τi is periodic or sporadic, its period or the minimum inter-arrival hi ;

– mi and ki , the parameters of the (m, k)-firm constraint imposed to τi ;

– the (mi, ki)-pattern, Πi defined as the sequence Πi(0), Πi(1), .., Πi(k − 1)
where Πi(j) = 1 indicates that the (j + n.k)th (n ≥ 0)) instance of τi has to meet its
deadline, Πi(j) = 0 indicates that it is not mandatory that the (j + n.k)th instance of
τi meets its deadline, and consequently,

∑n+ki −1
j=n Πi(j) = mi for n > 0.

5.2.1. Dynamic scheduling policy under (m,k)-firm constraints

In [HAM 95], the (Distance Based Priority DBP) algorithm is proposed for non-
pre-emptive tasks. It implements a dynamic scheduling that is based, at each schedul-
ing point (e.g. arrival instant or departure instant of a task instance), on the distance
to a failure state of each task or message. The failure of τi is defined as the situation
where more than ki −mi instances among the ki last ones have missed their deadline.
The highest priority is given to the task that has the lowest distance to its failure. A
FIFO strategy is applied when the distance to the failure is the same for several tasks.
The schedulability analysis, based on Markov chain, proposed in [HAM 95] provides
a probabilistic guarantee. Further studies have been proposed for improving this ap-
proach. In particular, in [LI 06], a sufficient condition is specified for a set of periodic
or sporadic messages, scheduled using DBP and earliest deadline first (EDF).

5.2.2. Static scheduling policy under (m,k)-firm constraints and schedulability
issue

If these dynamic policies provide a good quality of service for a set of streams,
they appear quite costly in the context of control applications sharing processors or
network resources. To deal with such applications, [RAM 99] considered a system
composed of several control applications. The controllers are implemented as pre-
emptive tasks running on two processors. When a failure occurs at one processor,
all the tasks that were allocated there migrate to the other one, leading to a possible

www.it-ebooks.info

http://www.it-ebooks.info/

190 Networked Control Systems Co-design

overload situation. In this case, a static scheduling based on (m, k)-firm constraints
is proposed. The mandatory instances of each task are scheduled according to the
fixed priority of the task, while the lowest priority is given to the optional instances.
Given a couple (mi, ki) for each τi , the instance number a (a ≥ 0) is mandatory if

a =
⌊⌈

a.m i

ki

⌉
× ki

m i

⌋
. This classification has been improved in [QUA 00] by a global

approach that determines on-line the mandatory instances of all the tasks τi subject
to a (mi, ki)-firm constraint. As this problem has been proved NP-hard, a heuristic
was proposed. Furthermore, [QUA 00] provides, on the one hand, an algorithm for
evaluating of an upper bound of each τi response time for a “deeply-red” pattern (a
“deeply-red” pattern is such that Πi(a) = 1 if 0 ≤ a < mi and Πi(a) = 0 in the other
case) and, on the other hand, it demonstrated that if for each task τi , the response time
is less than the deadline for a (mi, ki) “deeply-red” pattern, each τi is schedulable for
any (mi, ki) pattern.

5.2.3. Static scheduling under (m, k)-constraints and mechanical words

In [JIA 05], a new method using the properties of the mechanical words is devel-
oped for the schedulability analysis of a set of non-pre-emptive tasks under (mi, ki)-
firm constraints. First, it proved that the static patterns defined in the literature can
be characterized in the form of the mechanical words leading to a largely simpli-
fied schedulability assessment. Then, by identifying the defaults of these patterns,
it proposed a new way, based on a cellular line, to determine the (mi, ki) pattern of
each task τi . Through intensive simulations, this technique has been demonstrated to
achieve an improvement in the schedulable region. Considering α = mi

ki
, if α is ratio-

nale, then the mechanical word whose slope is α is (ki)-periodic; the classification of
the instances as mandatory or optional is therefore based on formula (5.1):

Πi(a) = �(a + 1) .α� − �a.α� ,∀0 ≤ a < ki. (5.1)

The upper bound of the response time of a non-pre-emptive task τi subject to a (mi, ki)
constraint is obtained, assuming that the sequence is convergent, by the limit of Rq

i

when q → ∞. Rq
i is given by the classical recurrent equation (5.2):

R0
i = Ci

Rq
i = max

j>i
(Cj) +

∑
j<i

⌈
mj

kj

⌈
Rq−1

i

hj

⌉⌉
Cj , (5.2)

where i > j means that the priority of the task τi is lower than the priority of task τj .

If, for each mandatory instance of each task τi , Rq
i + Ci < Di , then the system is

proved to be schedulable.

Let us consider now a set of pre-emptive tasks scheduled using a fixed priority
strategy defined by the rate monotonic algorithm (the larger the period is, the smaller

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 191

the priority is); in [RAM 99] and [JIA 05], it is proved that it is possible to limit the
length of the interference interval of a task τi due to a task of higher priority τj to
the basic period hi (the basic period is the interval between two instances of a task
subject to a hard real-time constraint, meaning a (k, k)-firm one). In this case, we first
consider a set of intervals associated with the task τi and defined in (5.3). hj is the
basic period of a task τj . i > j means hj < hi (i.e. the priority of the task τi is lower
than the priority of task τj):

Si,j =
{⌊

l
kj

mj

⌋
hj , ∀lεN |

⌊
l
kj

mj

⌋
hj < hi

}
(5.3)

Si =
i−1⋃
j=1

Si,j .

Then, the response time of a task may be evaluated by equation (5.4):

nj (t) =
⌈

mj

kj

⌈
t

hj

⌉⌉

Wi(t) = Ci +
i−1∑
j=1

nj (t)Cj . (5.4)

If, for each task τi , min
rεSi

(Wi (r)
r) ≤ 1, then the (m, k)-firm constraint can be met by all

the tasks.

This condition is sufficient in general cases. It is necessary and sufficient if the
tasks are synchronous (i.e. the first release time of all the tasks starts at the same time,
often at t = 0).

5.2.4. Sufficient condition for schedulability assessment under (m,k)-pattern
defined by a mechanical word

The computation of the sequence Wi for each task τi , as it is presented in the
recurrence relation (5.4), is non-deterministic and it is difficult, if not impossible, to
apply it on-line. Therefore, below, we propose a sufficient condition that ensures the
schedulability of a set of tasks under (m, k)-firm constraints. We consider a task set
(τ1 , τ2 , ..., τn); these tasks are periodic and their periods, named “basic period” in the
following are, respectively, h1 , h2 , ..., hn . We assume here that the tasks are scheduled
according to a pre-emptive fixed priority policy based on the rate-monotonic algorithm

www.it-ebooks.info

http://www.it-ebooks.info/

192 Networked Control Systems Co-design

(the larger the basic period is, the lower the priority is) and that the (m, k)-pattern of
each task is defined by a mechanical word through equation (5.1):

The (mi, ki)-firm constraint of each task τi is satisfied if

Ci +
i−1∑
j=1

ni,jCj < hi,∀1 ≤ i ≤ n, (5.5)

where ni,j =
⌈

mj

kj

⌈
hi

hj

⌉⌉
.

In fact,
∑i−1

j=1 ni,jCj gives the workload generated by all the tasks whose priority
is higher than τi before instant hi (remember that we are dealing with the special case
where h1 < h2 · · · < hn). So it is clear that the deadline is met for τi if the total
workload Ci +

∑i−1
j=1 ni,jCj can be finished within [0, hi].

Note that the above schedulability condition is sufficient and necessary when the
basic period of a task is a multiple of the basic period of all the tasks with higher
priority. In the other cases, it degenerates to a sufficient condition.

5.2.5. Systematic dropping policy in control applications

This chapter introduces an approach based on the (m, k)-firm model in order
to schedule a set of tasks or messages sharing a common resource. The proposed
scheduling principles can be seen as a particular case of the period adjustment tech-
nique. More specifically we consider that the period of activities sharing a resource
(tasks implementing the control law or samples transmitted by a sensor on a network)
can be chosen among a limited number of multiples of the basic sampling period.
For example, if the basic period for sampling the plant state is hi and if the (mi, ki)-
pattern, Πi of an activity τi (task or message) is Πi = [10100110], then, the actual
period will be hi or 2.hi or 3.hi . In fact, in this chapter, we will consider that each
optional instance of τi is dropped systematically.

As introduced in [SET 96] and improved in [EKE 00], the determination of (mi ,
ki)-pattern, Πi for each activity τi is relevant to an optimization problem for which the
cost function is an indicator of the system performance. In the following, we propose
a co-design approach dealing with both points: the scheduling parameters and the
control parameters. In short, the technique that will be presented in the following
sections aims to determine an optimal configuration, or more exactly one that is sub-
optimal in practice, of mi , ki , Πi for each activity τi and of the gain γi of the controller
implemented by the task.

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 193

5.3. Stability analysis of a multidimensional system

The purpose of this section is to present how to guarantee at least the stability
condition of control systems. In fact, we are interested by systems whose structure is
presented in Figure 5.2.

5.3.1. Generic model

The plant is defined as a linear continuous-time system whose evolution is modeled
by equation (5.6):

dx = Axdt + Budt + dvc , (5.6)

where x is the state vector of the system and u is the output of the controller x ∈ R
p ,

u ∈ R
q . The parameters A and B are two matrices whose dimensions are, respec-

tively, (p, p) and (p, q). vc is a white noise whose covariance is Rcdt. The dimension
of the constant matrix Rc is (p, p).

The plant state is sampled periodically; the sampling period is noted h. The jth
sampled plant state vector transmitted at times jh is consumed by the linear discrete
controller defined in equation (5.7); it is noted xj in the following:

uj = −Lxj i = 0, 1, 2.... (5.7)

We assume that this controller is implemented as a task. As the purpose is to share
the processor among several controller tasks and therefore to decrease the processor
bandwidth consumed by this task, in case of an overload situation, several of its in-
stances are rejected according to a (m, k)-firm model and under the constraint that the
stability of the system has to be ensured.

Each time an instance is executed, it produces a command uj . This command is
maintained until a new command is produced. The use of the (Zero-Order Holder

Zero-order hold
ZOH

h

Sensors

Dropped
instances

dx=Axdt+Budt+dvc

Plant

xi

ui
Dropping policy

Mandatory
instancesui=-Lxi

Controller

Figure 5.2. Control system architecture

www.it-ebooks.info

http://www.it-ebooks.info/

194 Networked Control Systems Co-design

ZOH) and the periodicity of the systematic instances dropping defined by the (m, k)-
pattern provide a discrete time behavior of the system modeled by equation (5.8):

xj+1 = Φj xj + Γj uj + vj , j = 0, 1, 2..., (5.8)

where Φj and Γj are given by

Φj = eAfj

Γj =
∫ fj h

0
eAsdsB.

The value of fj is the distance, in terms of the number of basic sampling periods,
between two updates of the command. For example, if, for a given controller task, the
(m, k)-pattern is Π = [1001000], we get f0 = 3 and f1 = 4.

vj is a discrete white noise with a zero mean and

Evjv
T
j = R1 (fjh) =

∫ fj h

0
eAsRce

AT sds. (5.9)

As formerly written, the task instances are periodically rejected according to a given
(m, k)-pattern, fj + fj+1 + fj+m−1 = k and fj = fj+m , ∀j > 0, the period of the
system defined in (5.8) is m, meaning also Φj = Φj+m , Γj = Γj+m .

5.3.2. Example of multidimensional system

As an example, we propose to study the control of a cart that can move in one
direction guided by a rail. The purpose of the control strategy is to drive the cart to a
given position. We suppose that the friction parameters are negligible.

An initial reference position is defined and the position of the cart, d is measured
with regard to this reference. ḋ notes the speed of the cart. Therefore, the state vector
of the plant is xT = [d, ḋ]. The parameters p and q of the generic model are, respec-
tively, equal to 2 and 1. The simplified model of the plant is given by the following
equation (5.10):

d̈ = −k1 ḋ + k2u. (5.10)

An identification of the system furnished the value of the parameters k1 and k2 :

k1 = 12.6559 and k2 = 1.9243

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 195

The continuous model of the system according to the state space representation is

given by the generic equation (5.6). In this example, A =
[

0 1
0 −k1

]
, B =

[
0
k2

]
and vc = 0. The output of the cart is periodically sampled (period h). The closed-loop
model is given by equation (5.11):

xj+1 = Φ (h) xj + Γ (h) uj , (5.11)

with Φ(h) =

[
1 1−e−k 1 h

k1

0 e−k1 h

]
and Γ (h) = k2

k1

[
h − 1−e−k 1 h

k1

1 − e−k1 h

]
.

The command elaborated by the controller is

uj = L(xref − xj), (5.12)

where L is the gain L =
[

kc kd

]
and xref is the targeted reference defined as

xref =
[

dref 0
]T

(dref is the reference of the position on the rail where the cart
has to stop).

5.3.2.1. Sampling period definition

The basic sampling period hbasic is determined according to the empirical “rule of
thumb” formulated in [ÅST 97]: 0.2 < ω0 < 0.6, where ω0 is the natural frequency
of the system (ω0 = 20, for the cart considered in this example). The period hbasic
has to be chosen in [0.01, 0.03]. A study of this system shows that its performance
in terms of rise time and overshot is optimal for hbasic = 0.01s. So we will use this
value as the basic sampling period.

5.3.2.2. Controller parameters

We note kc,0.01 and kd,0.01 , the parameters of the controller obtained for a ba-
sic sampling period hbasic = 0.01s. Their values are evaluated by solving the Lin-
ear Quadratic Regulator (LQR) problem proposed in [ÅST 97]. The final results are
kc,0.01 = 121 and kd,0.01 = 6.5.

5.3.3. Stability condition

The configuration of a dropping policy based on the (m, k)-firm model needs to
identify the values of k, m, and the (m, k)-pattern. The first problem to solve concerns
the stability of the system, and the question is which parameter of the constraint is
critical for ensuring this property. This identification relies on the intuitive idea that
is: if a system is stable for a given (1, k)-firm policy, it will be stable for any dropping
policy based on a (m, k)-firm. Therefore, we propose to evaluate, for each task, kmax ,
the greatest value of k, so that the system is guaranteed to be stable for each constraint
(m, k) with k ≤ kmax and m ≤ k.

www.it-ebooks.info

http://www.it-ebooks.info/

196 Networked Control Systems Co-design

The analysis of equation (5.8), shows that on the one hand, a system subject to a
(m, k)-firm constraint can be considered as a system with sampling periods varying
according to a regular form specified by the (m, k)-pattern and, on the other hand, a
system subject to a (1, k)-firm constraint is equivalent to a system controlled under
a sampling period equal to k times the basic period. Therefore, the determination of
kmax is equivalent to the determination of the maximal value of h that ensures the
system stability.

In particular, if we study the example proposed in section 5.3.2, let us note Ψ (h) =
Φ (h) − Γ (h) L, given by

Ψ (h) =

[
1 − kc

k2
k1

(
h − 1−e−k 1 h

k1

)
1−e−k 1 h

k1
− kd

k2
k1

(
hc − 1−e−k 1 h

h

)
kc

k2
k1

(
1 − e−k1 h

)
e−k1 h − kd

k2
k1

(
1 − e−k1 h

)]
.

By applying the Jury criteria [FRE 63], the following three conditions provide a nec-
essary and sufficient condition for the system stability:

1. a2 < 1,

2. a2 > a1 − 1,

3. a2 > −a1 − 1,

where a1 = Ψ1,1Ψ2,2 −Ψ1,2Ψ2,1 , a2 = −Ψ1,1 −Ψ2,2 ; Ψi,j notes the element placed
in line i, column j of the matrix Ψ; a1 and a2 are expressed according to the controller
parameters (kc , kd) and the sampling period h. This defines a domain of admissible
t-uple (kc , kd , h).

In practice, the determination of the greatest admissible value of the sampling
period starts by fixing kd = kd,0.01 , which is the value obtained for kd when h =
hbasic = 0.01s (the basic period). Then we study kc according to h under the follow-
ing constraints deduced from Jury’s conditions.

So, we need to analyze the function that expresses the maximal value of h for each
value of kc , with kd being fixed at the value kd,0.01 . In fact, we study the function
kcM ax (h), which is evaluated by

kcM ax (h) =
{

kc1 (h) if kc1 (h) < kcLim (h)
kc2 (h) if kc1 (h) ≥ kcLim (h) ,

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 197

where

kcLim (h) =
4k1e

k1 h

hk2 (ek1 h − 1)

kc1 (h) =
2k1

(
k1 + k1e

k1 h + k2kd − k2kde
k1 h

)
k2 (2 − 2ek1 h + hk1 + hk1ek1 h)

kc2 (h) =
k1 (k1 + k2kd)

(
ek1 h − 1

)
k2 (−1 − hk1 + ek1 h)

,

and we obtain the stability region in a space (h, kc). This region, for the example
proposed in 5.3.2, is identified by the gray color in Figure 5.3. It represents, for each
point kc , all the admissible values of h. For example, for kc = kc,0.01 , the maximal
value of h, hmax , ensuring the stability is given by the abscissa of the point P and h
can be chosen in the interval [0.01, hmax].

As mentioned before, the period adjustment based on a (m, k)-firm model is equiv-
alent to a regular sequence of time intervals between to consecutive samples, specified
by the (m, k)-pattern; each time interval is a multiple of the basic period. There-

fore, for the cart system, kmax is determined by
⌊

hm a x
hb a s i c

⌋
and the maximal sampling

period, ensuring the stability and corresponding to a (1, kmax) constraint, is equal to
kmaxhbasic .

5.4. Optimized control and scheduling co-design

Once the stability of the system ensured, there is a further step needed to deal with
the optimization issue. So, to do this, we first define a cost function used for determin-
ing an optimal control (section 5.4.1) and, then, we identify the global optimization
problem for a set of closed loops where the algorithms implementing the control laws
share one processor (section 5.4.2). Finally, the proposed approach is illustrated by a
case study in section 5.4.3.

The optimization approach relies on two phases:

– The first is done off-line. For each task, τi , a value of ki ensuring the stabil-
ity of the system is fixed according to the method described in section 5.3.3. For
each value of mi,j such that 1 ≤ mi,j ≤ ki , a (mi,j , ki)-pattern Πi,j is defined
based on the mechanical words technique (see section 5.2). Then, for each pattern
Πi,j , the cost function of the system is evaluated. Such a function is proposed in
section 5.4.1.

www.it-ebooks.info

http://www.it-ebooks.info/

198 Networked Control Systems Co-design

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

h

kc1

kc2

kcLim

PkcMax =121

hmax = 0.145

kc

Figure 5.3. Stability region evaluated on the case study presented in section 5.3.2. kc1 , kc2 ,
kcLim and kcM ax are functions of the sampling period h. The stability region for the cart

system is identified by the gray color

– The second phase is done by the task handler as illustrated in Figure 5.1. It
concerns the global optimization of the system. For each working mode, the task
handler has to configure the (m, k)-firm constraints and the scheduling parameters of
each task implementing the control law of each system and sharing the same processor.

5.4.1. Optimal control and individual cost function

An indicator of the closed-loop performance can be given, among others, by the
Least Quadratic (LQ) cost function , which provides a form of “cumulative cost” for
an infinite horizon. Applied to a system described by equation (5.6), it is defined by
the following formula:

J∞ = lim
N →∞

1
N E(

∫ N

0 xT (t)Qx(t) + uT (t)Ru(t)dt),

where Q and R are two matrices that respectively weigh the state and the input of the
plant.

For a task τi that implements the ith controller, given ki such that the stability
is ensured, J∞

i is the cost function to minimize. We consider all the numbers of
mandatory instances mi (1 ≤ mi ≤ ki), assuming that the corresponding patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 199

Πi are defined using the mechanical words approach; for each possible value of mi

and Πi we determine the optimal control law, in fact the gain of the controller, which
minimizes the cost function. As the intervals between two instances are time varying,
according to the pattern, the optimal control law is described by a sequence of gain,
Li,p for p = 1, 2, ...,mi . For example, let us consider ki = 10, for mi = 3; the
(mi, ki)-pattern Πi is equal to [1001001000], and we need to determine three values of
the gain: Li,1 , Li,2 , Li,3 to apply using the control law when producing the command
to the actuator, respectively, at the first, second, and third mandatory instances.

We consider the discrete time-varying model of the plant presented in (5.8). We
denote by hi the basic period of the ith plant controller.

The following discrete form of J∞
i is evaluated for each possible value of mi (1 ≤

mi,j ≤ ki) and therefore for the corresponding sequences (fi,0 , fi,1 , ..., fi,m i , j −1):

Ji(mi,j) =
1

mi,j
Hi

ki

m i , j
H i

k i h i∑
p=0

(
xT

i,pQ
′
i,pxi,p + 2xT

i,pMi,pui,p + uT
i,pR

′
i,pui,p

)

+
1

mi,j
Hi

ki

⎛⎜⎝E

(
xT

mi
H i

k i h i

Qi0xmi , j
H i

k i h i

)
+

mi , j
H i

k i h i∑
p=0

Ji,p

⎞⎟⎠ , (5.13)

where Hi is the time horizon of the ith plant, under the condition mi , j Hi

ki hi
εN∗, xi,p

is the plant state measured at the pth sample and ui,p the corresponding command

sent to the actuator, Q
′
i,p =

∫ fi , p hi

0 ΦT
i (t)QΦi(t)dt, Mi,p =

∫ fi , p hi

0 ΦT
i (t)QΓi(t)dt,

Ri,p =
∫ fi , p hi

0 (ΓT
i (t)QΓi(t) + Ri)dt, Ji,p = tr(Q

∫ fi , p hi

0 Ric(t)dt with Ric , the co-

variance of vi , and Φi(t) = eAi t and Γi(t) =
∫ t

0 eAi tdtBi . The optimal control law
that minimizes the cost function 5.13 is given by [ÅST 97] as

ui,p = −Li,pxi,p , p = 0, 1, ..., (5.14)

where

Li,p =
(
ΓT

i,pSi,p+1Γi,p + R
′
i,p

)−1 (
ΓT

i,pSi,p+1Φi,p + MT
i,p

)
. (5.15)

Si,p is obtained from the recurrent equation

S
i,m

H i
k i

= Q
′
0

Si,l = ΦT
i,lSi,l+1Φi,l + Qi,l −

(
ΓT

i,lSi,l+1Φi,l + MT
i,l

)T

(
ΓT

i,lSi,l+1Γi,l + R
′
i,l

)−1 (
ΓT

i,lSi,l+1Φi,l + Mi,l

)
for 0 ≤ l ≤ mi,j

Hi,j

kihi
. (5.16)

www.it-ebooks.info

http://www.it-ebooks.info/

200 Networked Control Systems Co-design

Taking into account the periodicity of the pattern, Φi,p = Φi,p+mi , j
and Γi,p =

Γi,p+mi , j
. Consequently, the solution of equation (5.16) is also periodic with a pe-

riod mi,j when calculated on a sufficiently long time horizon [BIT 91] i.e. Si,l =
Si,l+mi , j

. Then, the gain of the controller Li,p is designed using the steady-state so-
lution of the Ricatti equation (5.15), and its solution is also periodic:

Li,p = li,p+mi , j
.

With this computation, it is possible, for a given (mi,j , ki)-pattern, to determine
the best sequence of Li,p that allows us to partially compensate the task instance
dropouts.

When time goes to infinity, (lim Hi → ∞), the influence from the initial condition
decreases and because Si,l = Si,l+mi , j

, equation (5.13) may be written as

J∞
i (mi,j) =

1
mi,jhi

(
mi , j −1∑

p=0

trSi,p+1Ri,j+
mi , j −1∑

p=0

Ji,p

)
. (5.17)

5.4.2. Global optimization

Let us now consider the problem introduced at the beginning of section 5.4. As
mentioned before, the problem is the global optimization of a set of controllers de-
ployed as a set of tasks sharing the same processor. In the last section (5.4.1), we
demonstrated, for a given (m, k)-firm constraint and a given (m, k)-pattern, how
to determine the sequence of controller gains that compensate for the task instance
dropout between two mandatory instances; this set of gains is identified in order to
minimize a cost function that represents a cumulative cost and is derived from the LQ
function. Using this evaluation, realized off-line, each task τi that may be activated in
one of the possible working modes, is characterized by several attributes:

– its basic period hi and its priority Pi ,

– the execution time of the task Ci ,

– the parameter ki that ensures the stability of the system under a period kihi ,

– the number ni of values mi,j such that a systematic dropping of the task in-
stances can be done following the (mi,j , ki)-firm constraint:

– for each value mi,j :
- the value of mi,j ,
- the (mi,j , ki) pattern, Πi,j ; we recall that it is defined thanks to the mechani-

cal words,

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 201

- the list of gains to apply at each instance of the task: Li,1 , Li,2 , ...,Li,mi , j

- Ji,j the value of the cost function obtained by using these gains repeatedly on
each interval [pki, (p + 1) ki] for p ≥ 0.

This information is used on-line for the resolution of the global optimization problem.
As soon as a new working mode is defined, the task handler knows which plant needs
to be controlled and by which controller; at this point, it has to choose, for each
active controller, and therefore for each corresponding task τi , what the value of the
parameter mi is that has to be applied in order to minimize a global cost function. We
denote the number of tasks activated in one working mode by n.

Let us consider a set of tasks τi , 1 ≤ i ≤ n, described by the parameters given
above; the global optimization problem consists in determining (si,1 , si,2 , .., si,ni

) for
each task τi that minimizes

n∑
i=1

ni∑
j=1

(−si,j Ji,j), (5.18)

with si,j ε {0, 1},
ni∑

j=1

si,j = 1, i = 1, .., n.

Under the schedulability constraint that has to be met by all tasks τi , i = 1, .., n,
this condition is equivalent to the one formulated in equation (5.5):

Ci +
i−1∑
j=1

⎡⎢⎢⎢⎢⎢⎢
nj∑

p=1
sj,pmj,p

kj

⌈
hi

hj

⌉⎤⎥⎥⎥⎥⎥⎥Cj < hi. (5.19)

Knapsack (MMKP) problem [MAR 90] that has been proved to be NP-hard. There-
fore, solving this problem on-line requires developing an heuristic algorithm ensur-
ing that it can provide a tight sub-optimal solution. In the following, we apply a
slightly modified version of the computationally cheaper algorithm HEU proposed in
[KHA 02]. For our optimization problem, the proposed algorithm is

5.4.3. Case study

In this section, we apply the method presented above to a case study. Let us con-
sider four cart systems, cart1 , cart2 , cart3 , and cart4 , similar to the one presented
in section 5.3.2. The control of these cart systems can be active or not depending on

-

This optimization problem can be seen as a Multiple-Choice, Multiple Dimension

-

- -

www.it-ebooks.info

http://www.it-ebooks.info/

202 Networked Control Systems Co-design

Algorithm 5.1: Modified computationally cheaper heuristic
1) to find a feasible solution first, that is to say, select mi,j for each τi while

satisfying the constraints given in (5.19);
for this purpose, the algorithm HEU is modified by always setting the value
of mi,j of each task τi to be equal to 1 (if the solution is infeasible in this
case, no other solution will be feasible);

2) and then to iteratively improve the solution by replacing, for eachτi , the
current value of mi,j by another value corresponding to a better performance

while keeping the constraints (5.19) satisfied;
if no such solution can be found, the algorithm tries an iterative improvement
of the solution which;

a) first replaces mi,j for one task τi , which is not schedulable with the
current value of mi,j ;
b) and then replace the value of mi′ ,j for all tasks τi′ (i

′ �= i) by a value
providing a worse performance;
the original algorithm HEU tries to find, after the first step, a better
solution requiring less resource consumption which, however, does not
exist in our model, therefore, this property also help us to delete
an unprofitable search procedure in HEU;

3) The iteration finishes when no other feasible solution can be found;

the working mode chosen by the supervisor (see Figure 5.1). The tasks implementing
each controller share the same processor.

A Matlab/Simulink model of the system is specified. The scheduling policy is
implemented using the toolbox TrueTime [CER 03]. The system is then analyzed by
tracing an indicator of the control performance during the simulation of this model
running on a given scenario. This indicator is given, for each controlled cart system,
by function (5.20), which is evaluated at each simulation step:

Ji(t) =
∫ t

0

(
xT

i (s) Qixi (s) + uT
i (s) Riui (s)

)
ds, (5.20)

where Qi =
[

1 0
0 0

]
and Ri = 0.00006 for each carti , i = 1, 2, 3, 4.

Furthermore, we can observe the state of each task instance during the simulation
(running, pre-empted, not activated).

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 203

5.4.3.1. Plants and controllers

The generic continuous model of the cart system, carti for 1 ≤ i ≤ 4 (see equation
5.6) is given by

dx =
[

0 1
0 −11.4662

Mi

]
xdt +

[
0

1.7434
Mi

]
udt + dvc , (5.21)

where Mi is the mass of carti :

M1 = 1.5, M2 = 1.2, M3 = 0.9, M4 = 0.6.

The controller of each carti is noted as controlleri , the task which implements the
controlleri is τi , and its basic period is hi :

h1 = 0.007, h2 = 0.0085, h3 = 0.01, h4 = 0.0115.

5.4.3.2. Scheduling parameters

The tasks τi are scheduled according to a fixed pre-emptive priority policy under
an implicit deadline constraint for their mandatory instances (Di = hi). The priorities
of the tasks are defined thanks to their basic period (the larger the period is, the lower
the priority is). So, in any working mode, there is the following relation between the
task priorities:

priority(τ1) > priority(τ2) > priority(τ3) > priority(τ4)

Let us now fix the parameters of the constraint (m, k)-firm for each task. The value of
the parameter ki is defined in order to ensure the stability of the system under a period
equal to kihi . In this case study, we identified the following value of ki :

k1 = 5, k2 = 8, k3 = 10, k4 = 1.

We consider, in the considered experiments, that the four tasks have the same execu-
tion time:

C1 = C2 = C3 = C4 = 3 ms
and that the execution time of the task handler is Cth = 2, 5 ms. Furthermore, its
priority is higher in the system.

5.4.3.3. Optimal controller

The controller of carti is defined by ui = Lixi , where the gain Li is evaluated for
each interval between two consecutive mandatory instances according to the (mi, ki)-
firm strategy used for this plant. As detailed in section 5.4.2, the value of the gain is
calculated in order to optimize the control performance during this interval. The cost
function, to minimize, in this case study is the discrete form of

Ji = lim
N →∞

∫ N

0

(
xT (t)Qix(t) + uT (t)Riu(t)

)
dt, (5.22)

where Qi =
[

1 0
0 0

]
and Ri = 0.00006 for each carti , i = 1, 2, 3, 4.

www.it-ebooks.info

http://www.it-ebooks.info/

204 Networked Control Systems Co-design

5.4.3.4. Simulation scenario

The system is observed along a scenario that introduces three working modes and
two types of working mode switchings:

– at time t = 0s, the first two cart systems (cart1 and cart2) are to be con-
trolled; therefore, only two tasks are running: τ1 and τ2 implementing, respectively,
the Controller1 and Controller2 ; the set of tasks to be scheduled is {τ1 , τ2};

– at time t = 1s, the fourth cart system (cart4) has to be controlled; so,
τ4 implementing the Controller4 is activated; the set of tasks to be scheduled is
{τ1 , τ2 , τ4};

– at time t = 2s, the third cart system (cart3) has to be controlled; so,
τ3 implementing the Controller3 is activated; the set of tasks to be scheduled is
{τ1 , τ2 , τ3 , τ4}.

Two pre-emptive-fixed priority scheduling policies were modeled:

– Hard real-time constraints. We consider that all the task instances are manda-
tory; in this case, the gain of each controller is constant and determined in or-
der to optimize the cost function (5.22) for the basic sampling period of each
system.

– Adaptive system. In this case, we implement a systematic dropout of the non-
mandatory instances according to the (m, k)-firm constraints specified for each task;
the gain of the controller is adapted to each inter-sample interval length in order to
optimize the performance of each system; the value of k is constant for a given system
in each working mode, while the value of m is evaluated for each system at the begin-
ning of each working mode in order to optimize the global cost function proposed in
(5.18) under the schedulability condition (5.19).

5.4.3.5. Simulation results for hard real-time constraints

The control performance of each system as well as the evolution of the task state
are illustrated in Figures 5.4–5.6.

– In the interval [0, 1[, two tasks are periodically activated: τ1 , with the period
h1 = 0.007 s, and τ2 , with the period h2 = 0.0085 s; all the instances of both tasks
meet their deadline.

– At time t1 = 1 s, the supervisor decides to include the control of cart4 leading
to the activation of the task τ4 ; its period is h4 = 0.0115 s; so, it will be activated
successively at 1 s, 1.0015 s, 1.013 s, 1.0245 s, etc.; we can observe in Figure 5.4 that
no instance of τ4 meets its deadline; the starting time of several instances is delayed
and the completion of all the instances are after their deadline; as the priorities of τ1
and τ2 are higher than that of τ4 , the activation of τ4 has no impact on the scheduling
of the two other tasks that meet always their deadlines;

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 205

Time (s)

τ1

τ2

τ3

τ4

Running
Preempted

Non-activated

Running
Preempted

Non-activated

Running
Preempted

Non-activated

Running
Preempted

Non-activated

Arrival time of task instances that meet their deadline

Arrival time of task instances that do not meet their deadline

0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07

Figure 5.4. Task evolution under hard real-time constraints strategy. The detailed time interval
is [0.98, 1.07] and it includes a working mode switch at time t1 = 1 s: before t1 , only two
tasks are activated (τ1 and τ2); at time t1 , the plant cart4 has to be controlled leading to the
activation of the task τ4

– At time t2 = 2 s, the supervisor includes the control of cart3 leading to
the activation of the task τ3 at time 2 s, 2.0115 s, 2.023 s, etc.; we can observe in
Figure 5.5, that no instance of this new task meets its deadline; furthermore, the
interference of the three tasks of higher priority, τ1 , τ2 , and τ3 , makes the processor
unavailable for the task τ4 , leading all the instances of this task to fail to run.

An analysis of Figure 5.6 shows how the performance of the system varies, as eval-
uated by function (5.20). We can note that for cart4 , the performance is acceptable
between t = 1 s, up to t = 2 s, which is before the activation of task τ3 . Then the
performance of cart4 diverges. This is due to the interference of tasks τ1 , τ2 , and τ3 ,
whose priorities are higher than that of τ4 . As mentioned before, this task will never
run. Finally, the performance of cart3 is always acceptable despite the instances of
the corresponding control task τ3 never meeting their deadline.

5.4.3.6. Simulation results for (m, k)-firm constraints

The control performance of each system as well as the evolution of the task state
are illustrated in the Figures 5.7–5.9.

www.it-ebooks.info

http://www.it-ebooks.info/

206 Networked Control Systems Co-design

Time (s)

τ1

τ2

τ3

τ4

Arrival time of task instances that meet their deadline

Arrival time of task instances that do not meet their deadline

1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07

Running
Preempted

Non-activated

Running
Preempted

Non-activated

Running
Preempted

Non-activated

Running
Preempted

Non-activated

Figure 5.5. Task evolution under hard real-time constraints strategy. The detailed time interval
is [1.98, 2.07] and includes a working mode switch at time t2 = 2 s: before t2 , three tasks are
activated (τ1 , τ2 and τ4); at time t2 , cart3 has to be controlled leading to the activation of the
task τ3

Time (seconds)

J1

J2 J3

J4

Figure 5.6. Control performance under hard real time constraints strategy

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 207

1

2

Time (seconds)

τ1

τ2

τ3

τ4

Arrival time of mandatory task instances that meet their deadline

Arrival time of mandatory task instances that do not meet their deadline

0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07

Task
handler

Arrival time of optional task instances

Running

Preempted

Non-activated

Running

Preempted

Non-activated

Running

Preempted

Non-activated

Running

Preempted

Non-activated

Running

Preempted

Non-activated

Figure 5.7. Task evolution under (m, k)-firm strategy. The detailed time interval is
[0.98, 1.07] and includes a working mode switch at time t1 = 1 s: before t1 , only

two tasks are activated (τ1 and τ2); at time t1 , cart4 has to be controlled,
leading to the activation of task τ4

– In the interval [0, 1[, two tasks are activated periodically: τ1 , with the period
h1 = 0.007 s, and τ2 , with the period h2 = 0.0085; these tasks are schedulable under
hard real-time constraints as seen in section 5.4.3.5; moreover, in this working mode,
the global cost function is optimized for m1 = k1 and m2 = k2 , so all the instances
of τ1 and τ2 are mandatory.

– At time t1 = 1 s, the supervisor decides to include the control of cart4 leading
to the activation of task τ4 ; in Figure 5.7, at this time, the task handler is activated; as
its priority is higher in the system, its completion is at time t = t1 + Cth = 1.0.0025
s; at time t1 , the optimization of the global cost function (5.18), realized by the task
handler, furnishes the value of m1 = 5 and m2 = 4 providing the rules for the
dropping policy: (5, 5)-firm for τ1 and (4, 8)-firm for τ2 under the (m2 , k2)-pattern
Π2 = [10101010]; as k4 = 1, all the instances of τ4 are mandatory; Figure 5.7 shows
that all the mandatory instances of τ1 and τ2 meet their deadline, while no instance of

www.it-ebooks.info

http://www.it-ebooks.info/

208 Networked Control Systems Co-design

Running

Preempted

Non-activated

Running

Preempted

Non-activated

Running

Preempted

Non-activated

Running

Preempted

Non-activated

Running

Preempted

Non-activated

Arrival time of mandatory task instances that meet their deadline

Arrival time of mandatory task instances that do not meet their deadline

Arrival time of optional task instances

τ1

τ2

τ3

τ4

Task
handler

Time (seconds)
1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07

Figure 5.8. Task evolution under (m, k)-firm strategy. The detailed time interval is
[1.98, 2.07] and includes a working mode switch at time t2 = 2 s: before t2 ,

three tasks are activated (τ1 , τ2 and τ4); at time t2 , cart3 has to be controlled,
leading to the activation of the task τ3

τ4 does; nevertheless, all its instances run to completion, under a delayed starting time
and delayed completion time.

– At time t2 = 2 s, the supervisor includes the control of cart3 , so a new working
mode that integrates the former tasks τ1 , τ2 , and τ4 and the new task τ3 is started; the
task handler has to redefine the optimal configuration of the task activation rules; in
this case, function (5.18) is minimized for the following (mi, ki)-firm constraints:

- (m1 , k1) = (2, 5) and Π1 = [10100],
- (m2 , k2) = (4, 8) and Π1 = [10101010],
- (m3 , k3) = (3, 10) and Π1 = [1001001000],
- (m4 , k4) = (1, 1) .

We can observe, in Figure 5.8, that the two first instances of τ4 and the first instance of
τ3 , activated at the beginning of this new working mode, do not meet their deadline
because of a transient overload due to the execution of the task handler; after that
point, all the mandatory instances of the four tasks meet their deadline.

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 209

J1

J2

J3J4

Time (s)

Figure 5.9. Control performance under (m, k)-firm strategy

Figure 5.9 illustrates the evolution of the cost function, provided by formula (5.20).
For each cart system, the performance becomes quickly stable and remains constant
in each working mode.

The optimization algorithm of the global cost function (5.18) under the schedula-
bility constraints (5.19) for a set of control tasks sharing the same processor allows for
applying a best dropout policy of several well-identified instances for each tasks; the
consequence is a wider availability of the processor and the possibility for each task
to run its mandatory instances to completion before the deadline (the relative deadline
is the basic period of each task). Furthermore, the controller itself is optimized and an
adaptive gain suited to the (mi, ki)-pattern is defined.

5.5. Plant-state-triggered control and scheduling adaptation and optimization

Let us consider in this section, more precisely, the different situations of the states
of the plants that may be controlled:

– the plant is not controlled; this situation occurs when the plant does not exist for
the overall system (plant controlled only during certain time interval, plant deactivated
because its output is out of a given domain);

– it is controlled and its state is a steady state;

– it is controlled, but when this control is just activated, its state is a transient state.

We have to take into account the last two cases and, in particular, we must adapt the
cost functions in order to deal with both situations. For this purpose, we propose
taking into consideration, depending on the situation of the plant, an infinite-horizon
or a finite-horizon cost function in order to find the optimal configuration of each mi

and of each controller gain Li .

www.it-ebooks.info

http://www.it-ebooks.info/

210 Networked Control Systems Co-design

5.5.1. Closed-loop stability of switching systems

A change in the value of mi , for a given ki , produces a sampling period vari-
ation, and then we consider a Discrete Time Switched System (DTSS) description.
To adapt the control law parameters to this variation, we use the design process pre-
sented in section 5.4.1. But, as was shown in [SCH 02], controllers designed with
optimal-LQ techniques may suffer from instability under certain switching sequences,
i.e. when the sampling period changes. Because of this undesirable result, [SCH 02]
adopts a linear matrix inequalities (LMI) framework to design stable optimal con-
trollers. We propose using a LMI framework to find a common quadratic Lyapunov
function (CQLF); then the asymptotic stability is guaranteed for any (mi, ki)-firm
sequence for each plant, proving the stability of the control.

Firstly, for a fixed control task τi , ki , we consider each possible value of the num-
ber of mandatory instances, mi . For each of these, we compute the corresponding mi

controller parameters Li,m i
=

{
L0

i,m i
, L1

i,m i
, ..., Lmi −1

i,m i

}
by using equation (5.15).

Secondly, we consider, for the control task τi , the set of open-loop discrete time
models (5.6), Θi = {(Φi,1) , (Φi,2) , ..., (Φi,ki

)} and evaluate the ki periods, taking
into account the possible interruptions in a planned sequence at any time.

By using the elements in both sets Li,m i
and Θi , we can establish a new set of

mi.ki closed-loop models (5.7) without noise, Al
i,p = Φi,l + Γi,lL

p
mi

, where l varies
between 1 and ki ((Φi,l ,Γi,l) εΘi) and p between 0 and mi − 1 ((Lp

i εLi,m i
)).

In order to prove the stability of the DTTS [LIB 99], for ki and each possible value
of mi , we need to find a CQLF for the set of matrices Ai

n,p , where n = 1, ..., ki and
p = 0, ...,mi−1 . Then, we can define a set of inequalities:(

Ai
n,p

)T
PAi

n,p − P < 0, ∀n = 1, ..., ki , ∀p = 0, ...,mi−1 . (5.23)

Note that the identification of a CQLF is a sufficient condition. In order to solve the
problem and find the matrix P = PT > 0, we use the LMI toolbox from the Matlab
tool.

5.5.2. On-line plant state detection

As mentioned in the previous section, three plant states are identified: non-activated
plant, steady plant state (or near), and transient plant state. Reaching or leaving
the first situation for a plant modifies the value of the number of control tasks
n. The dead-band approach presented in [OTA 02] is used to distinguish the steady and
the transient states of a plant. Each controlled plant has a state, which asymptotically
tracks the reference r, and is supervised by the supervision task. Let yi be the state of

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 211

the plant i. yi can be a subset of the plant state vector xi defined in section 5.3.1. For
instance, taking the previously studied cart system with x = [position speed]′, if we
want the position to follow the reference position r, the variable position is then the
parameter of the interest, and we can define y = [1 0] ∗ x. The following condition on
two successive samples (nT e and (n + 1)N H ones) is set up:

|yi (hi + Ndi) − yi (nhi)| < min {δ |y (nhi)| , th} ,

where th is a threshold to prevent false identifications due to noises, δ is a parameter to
adjust for each plant, hi is the detection period implemented by the supervision task
for plant i. If the condition is verified, then the plant is considered to be in steady
state; otherwise, it is in a transient state. The advantage of this plant state detection
mechanism is that it depends on the actual evolution and it detects, in the same way,
reference changes or/and non-modeled perturbations.

5.5.3. Global optimization of control tasks taking into account the plant state

As in section 5.4, we deal with several working modes where, in each mode, a
number of control tasks have to share one processor. In this section, we take into
account that the working modes are identified, on the one hand, by a number of plants
to be controlled, meaning, a number of given control tasks and, on the other hand, by
the situation in which the plant is found. This situation corresponds to the two above-
mentioned cases: the plant is in a transient state (due to a new reference or noises) or
is in steady state. Intuitively, the constraints, in terms of performances, that have to be
applied to the control are not the same for these two situations. Therefore, we have to
consider a more complex cost function than the one presented in section 5.4.

We suppose that the value ki of each τi has been carefully chosen and is constant
during the execution of application. The value of mi has to be chosen in [1..ki] on-line
by the task handler. We note n the number of tasks activated in one working mode. For
each control task τi , each possible value of mi is associated with two values Gi,mi

and
G

′
i,m i

corresponding to the control performance, respectively, in a transient situation

and in a steady one. Supposing that a lower value of Gi,mi
or G

′
i,m i

represents a
better control performance, in the event of a situation change of the plant states, the
aim of the task handler is to find, for each τi , a value so that the sum of Gi,mi

or G
′
i,m i

(according to the situation into which the plants fall) for jε [1 . . . ki] and iε [1 . . . n]
is minimized the subject to the task schedulability condition (5.19). This is formally
formulated as the following optimization problem.

Considering in a set of tasks τi , 1 ≤ i ≤ n, described by hi , their basic period
(considered as their relative deadline, i.e. Di = hi), Ci , their worst case execu-
tion time, ki the parameter of their (m, k)-constraint, ni , the number, and the list of
possible values for the parameter m in the (m, k) constraint; the global optimization

www.it-ebooks.info

http://www.it-ebooks.info/

212 Networked Control Systems Co-design

problem consists of determining (si,1 , si,2 , . . . , si,ni
) for each task τi that minimizes

n∑
i=1

ni∑
j=1

(si,,jGi,,j I + si,,jG
′
i,,jF),

with si,,j ε {0, 1},
ni∑

j=1

si,,j = 1, i = 1, . . . , n and such that condition (5.19) is verified.

F and I indicate the current situation: in transient state, F = 0 and I = 1 while
in the steady state F = 1 and I = 0.

The values of Gi,,j and G
′
i,,j have to reflect the performance offered by each solu-

tion. We identified two ways for defining the performance indicator.

– In the first case, Gi,,j is defined on a finite horizon by formula (5.13) while G
′
i,,j

is evaluated on an infinite horizon using (5.17):

Gi,,j = Ji(mi,j)

G
′
i,,j = J∞

i (mi,j). (5.24)

We have to note that the optimization problem is to minimize the overall cost of the
application. However, the sub-systems with lower costs may suffer from greater con-
trol performance degradation due to a low value of mi . That is to say, the task handler
maintains the value of each mi as high as possible for the sub-systems with greater
costs by reducing the value of mi for the sub-systems with lower costs.

– The second solution is concerned by a cost that represents performance degra-
dation:

Gi,j =
Ji(mi,j) − Ji(ki)

Ji(ki)

G
′
i,,j =

J∞
i (mi,j) − J∞

i (ki)
J∞

i (ki)
, (5.25)

where Ji(x) and J∞
i (x) are defined, respectively, by functions (5.13) and (5.17). In

this case, the control performance criteria avoid the problem given for the first solution
presented. The control performance degradation of each sub-system is treated equally.
On the other hand, the overall cost of application may not be optimal. So, the choice of
control performance representation should be identified according to the application
requirements.

In both cases, the time horizon Hi for the finite-horizon cost function is an important
design parameter, which directly affects the overall control performance, and needs to

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 213

Ai Bi Ri,c (incremental
covariance of vi,c)

Plant1

[
0 1

−18 0

] [
0

516

] [
0.0025 −0.005
−0.005 0.001

]

Plant2

[
0 1
0 −12.6558

] [
0

1.9243

] [
0.005625 −0.075
−0.075 1

]

Plant3

[
0 1

−22.206 −0.9424

] [
0

0.48036

] [
0 0
0 22.2066

]

Plant4

⎡⎢⎢⎣
0 1 0 0
0 0 −14 0
0 0 0 1
0 0 28 0

⎤⎥⎥⎦
⎡⎢⎢⎣

0
2
0
2

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0 0 0
0 0.0025 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
Table 5.1. Parameters of the plants whose controllers share the same processor and scheduled

according to their transient and steady state

be carefully chosen. We propose opting for Hi as the settling time (defined approx-
imately as three times the rise time). Moreover, the off-line computation of (5.25) is
done by considering the typical values of the reference values and by neglecting noise.

As in the solution presented in section 5.4.2, the optimization problem results from
the MMKP. To solve this problem on-line, we also propose using the heuristic algo-
rithm (HEU) presented in [KHA 02].

5.5.4. Case study

In this section, we illustrate the scheduling approach presented above by studying
the control of four plants. Plant1 (resp. Plant2 , Plant3 , Plant4) corresponds to a
harmonic oscillator system, (resp. to a cart system, a pendulum and an inverted pen-
dulum). The controller of Planti is denoted by Controlleri . Each plant is modeled
by the differential equation (5.6) whose parameters are given in the Table 5.1. The
controller of the Planti is defined by equation (5.7).

The rise time specifications of each plant are, respectively, 0.2, 0.2, 0.3, and 0.5.
Then, the basic sampling periods are related to rise time specifications, i.e. h1 = 0.02s
for Plant1 , h2 = 0.02s for Plant2 , h3 = 0.03s for Plant3 , and h4 = 0.05s for
Plant4 .

We suppose that the first state variable in vector x of each plant is the variable
supervised by the supervision component. In other words, the controller tries to keep it
tracking the plant state reference asymptotically. The step response target for the cart

www.it-ebooks.info

http://www.it-ebooks.info/

214 Networked Control Systems Co-design

Qi Ri

Controller1

⎡⎣ 5 0 0
0 0 0
0 0 25

⎤⎦ 200

Controller2

[
1.25 0
0 0.0085

]
0.0001

Controller3

[
1 0
0 0

]
0.00001

Controller4

⎡⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

⎤⎥⎥⎦ 0.001

Table 5.2. Weights used for each performance evaluation of each controller sharing the same
processor and scheduled according to the transient or steady state of the controlled plant

(Plant2) is an over-damped response, while for the others they are under-damped,
being the damping coefficient greater than 0.6 (overshoot < 10%). The gain of the
controllers is computed for each possible value of mi,j , according to the approach
proposed in 5.4.1. The design weights, which allow the satisfaction of the above-
mentioned rise time and overshoot, are presented in Table 5.2.

Using the LMI control toolbox of Matlab/Simulink tool, the set of inequalities (for
the overall set of discrete plants and controllers parameters), has a QCLF, guarantying
stability. To allow for fast changes between different (mi,j , ki)-firm constraints at an
mi,j adjustment, the controller parameters are calculated off-line and stored in a table.

As applied in section 5.4, to the control task τi which implements the controller
Controlleri is assigned the rate-monotonic priority, the task with the largest period
has the lowest priority; its execution has no influence on the other tasks. Therefore,
no task instance classification will be applied to τ4 , or in other words, it is executed
under (k, k)-firm constraint. Using the approach proposed in section 5.3.3, the value
of ki is set to, respectively, k1 = 6, k2 = 5, k3 = 5 and k4 = 1. The value of mi

for the plant τi may vary within [1..ki]. The worst case execution time of each task is
C1 = C2 = C3 = C4 = 9 ms.

The optimal costs as well as the sequence of corresponding gains, associated with
the different possible (mi, ki)-firm constraints of each task τi are evaluated off-line
and stored in order to be used on-line by the task handler. Then the Matlab/Simulink
model is simulated. The deployment characteristics of the global system, for short,
the specific scheduling policy, are done by using TrueTime toolbox [CER 03].

5.5.4.1. Simulation scenario

The evolution of the scenario is illustrated in Figure 5.10.

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 215

0 0,5 1 1,5 2 2,5 3

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.05

0.1

0.15

0.2

0

0.5

1

1.5

0

0.05

0.1

0.15

0.2

0

0.25

Ref1

x1

Ref2

x2

Ref3

x3

Ref4

x4

t0 t1 t2 t3 t4 t5 t6 t8t7

Time (s)

Plant1

Plant2

Plant3

Plant4

Figure 5.10. Activation, reference (Refi for P lanti) and output (xi for P lanti) evolution of
the four plants whose controllers share the same processor

www.it-ebooks.info

http://www.it-ebooks.info/

216 Networked Control Systems Co-design

P lant1

(k1 = 6)
P lant2

(k2 = 5)
P lant3

(k3 = 5)
P lant4

(k4 = 1)

State m1 State m2 State m3 State m4

t < t0 steady 6 - - steady 5 - -
[t0 t1 [steady 4 - - steady 5 steady 1
[t1 t2 [transient 6 - - steady 2 transient 1
[t2 t3 [transient 3 steady 1 steady 2 transient 1
[t3 t4 [steady 2 steady 1 steady 5 transient 1
[t4 t5 [steady 2 transient 2 steady 2 transient 1
[t5 t6 [steady 2 transient 1 transient 5 steady 1
[t6 t7 [steady 2 steady 1 transient 5 steady 1
[t7 t8 [steady 6 steady 5 - - transient 1
t ≥ t8 steady 2 - - - - transient 1

Table 5.3. Values of mi as they are selected by the task handler at each working mode switch;
these values are evaluated for each task activated

It shows, for each Planti , if it is controlled or not and, in the first case, the refer-
ence that is applied and the output of the plant, respectively, noted in figure Refi and
xi for Planti . Table 5.3 provides, at each significant instant, the value of mi that is
selected by the task handler for each current task. An instant is significant if it leads
to a switch between two working modes: a new plant has to be controlled, one plant
is no longer activated, one plant goes from steady state to transient state, or a plant
reaches its steady state.

These instants are identified on-line by the supervisor.

The sequence of significant instants in the proposed scenario is described below.

– Just before the observation of the system, we suppose that only Plant1 and
Plant3 are controlled, while the other plants are not activated and not controlled.
These two plants are in a steady state.
In this case, the system is schedulable under (k1 , k1) and (k3 , k3) constraints for τ1
and τ3 .

– At time t0 , Plant4 is activated and, therefore, the set of tasks to schedule is
{τ1 , τ3 , τ4}; no reference is applied to this new plant. The three plants are in a steady
state.
The task handler has to find the optimal configuration of mi for this set of tasks and to
deduce the corresponding sequence of values for Li , the gain of each controller. For
this purpose, it uses the infinite-horizon cost for each plant. The result is m1 = 4 and
m3 = 5 (we have to note that m4 has to be always equal to 1.)

– A transient state is detected by the supervisor at time t1 for Plant1 (occurrence
of a new reference) and Plant4
The task handler looks for an optimal configuration of the (mi, ki) constraints by

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 217

taking into account the finite-horizon costs for Plant1 and Plant4 and the infinite-
horizon cost for Plant3 . This results in m1 = 6 and m3 = 2.

– Plant2 is activated at time t2 and the supervisor identifies it is in a steady state
while Plant1 and Plant4 are still in a transient state.
The values of mi defined by the task handler at this time are, respectively, m1 = 3,
m2 = 1 and m3 = 2.

– The supervisor detects a steady state for the Plant1 at time t3 .
The new values evaluated for mi are m1 = 2, m2 = 1 and m3 = 5.

– At time t4 , the values of mi have to be modified as the supervisor detects a
transient state for Plant2 .
Therefore, m1 = 2, m2 = 1 and m3 = 5.

– Plant3 enters in a transient state at t5 .
The adjustment of the values of mi results in m1 = 2, m2 = 1 and m3 = 5.

– Plant2 goes from transient to steady state at t6 .
This leads the task handler to readjust the mi parameters, using the infinite-horizon
cost for τ1 and τ2 and to the finite-horizon cost for τ3 : m1 = 2, m2 = 1, m3 = 5.

– At t7 , an inadmissible perturbation enters in Plant3 whose output reaches π
2 and

consequently, this plant is deactivated, thus reducing the number of tasks to 3. At the
same time, Plant4 enters a transient state.
The task handler can therefore increase the values of mi for the tasks τ1 and τ2 :
m1 = 6 and m2 = 1.

– At the end of the scenario, at time t8 , a transient state is detected by the supervi-
sor for Plant2 .
The last values for the mi parameters that are chosen by the task handler are m1 = 2
and m2 = 5. We recall that during the simulation, parameter m4 is always equal to 1
(hard real-time constraint).

5.5.4.2. Observed performance

In order to analyze the control of the performance degradation due to the (m, k)-
firm policy, we evaluate the LQ cost, given by formula (5.20), for each system during
the simulation time. Let us note Jadaptive

i as this value. On the other hand, during
the same simulation time and under the same simulation setup, we calculated the
nominal performance of each plant provided by the same formula when each system is
controlled by a control task on a separate processor; in this case, the constraint applied
is a (k, k) one and the sampling period as well as the activation period of the control
task are equal to the basic period of each controller. We note Jnominal

i , the value
obtained for Planti . Table 5.4 presents an example of the performance degradation.

Of course, these results depend on the simulation setup, and they are only exposed
here to show that using the proposed technique, the degradation of the performance
should be kept as small as possible in each situation subject to the task schedulability.

www.it-ebooks.info

http://www.it-ebooks.info/

218 Networked Control Systems Co-design

Jadap tiv e
i Jn om in a l

i

∣∣∣J a d a p t i v e
i −J n o m i n a l

i

∣∣∣
J n o m i n a l

i

P lant1 395 359 10%
P lan2 52.5 40.04 31.1%
P lant3 199.4 154.6 29.1%
P lant4 26.347 25.31 0.05%

Table 5.4. Performance degradation of the four plants

Plant4 suffered the lower cost degradation due to the fact that this system has to
respect a hard real-time constraint m4 = k4 = 1. Plant2 suffered the maximum cost
degradation, due to the Plant2 performance indicator, which generates the reduction
of m2 as soon as the other plants require the use of the processor.

5.5.4.3. Summary

Through this case study we can see that the on-line adaptation mechanism we
proposed can effectively control the degradation of the system performance during the
plant state transient period and system overload. In fact, given the current states of the
controlled plants, the proposed approach allows us to derive a (m, k)-firm constraint
for each control task and the corresponding optimal control gain while still meeting
the (m, k)-firm schedulability condition of the total control tasks. Moreover, Table 5.4
shows that comparing to the idle case where the processor has infinite capacity, using
our approach does not induce much performance degradation. Notice that, for the
simulated scenario, if we do not allow sample data dropping (i.e. in case that all tasks
are considered under hard real-time constraint), the processor will be in an overload at
time t = 0.5 s. As the tasks τ3 and τ4 have lower priority, they are no longer executed
by the processor and this leads to the instability of Plant3 and Plant4 . Figure 5.11
shows that starting from t = 0.5 s where the higher priority task τ2 is released, the
processor can no longer execute task τ3 correctly and could never execute task τ4 . As
an example, Figure 5.12 clearly shows that Plant3 is not stable.

5.6. Conclusions

Computing and networking resource sharing is a common trend in NCS for achiev-
ing cost-effective solutions. However, an overload situation may occur, either by the
dynamic application configuration changes or by the implementation system perfor-
mance variations.

For dealing with system overload situations, this chapter proposed an approach
based on selectively dropping some samples while still guaranteeing the (m, k)-firm
schedulability of the control tasks sharing a same processor. By adjusting both the
acceptable (m, k) values and the control gains, we have shown, through case studies,
that the performance degradation is efficiently controlled. The key point is the use of

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 219

Non-activated

Preempted

Running τ1

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Non-activated

Preempted

Running

Non-activated

Preempted

Running

Non-activated

Preempted

Running

τ2

τ3

τ4

Figure 5.11. Simulation trace of task execution without selective sample dropping

0 0.5 1 1.5 2 2.5 3
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Plant

R
ad

ia
n

3

Figure 5.12. Unstability of P lant3

www.it-ebooks.info

http://www.it-ebooks.info/

220 Networked Control Systems Co-design

an algorithm that allows for finding on-line the optimal values of m and the control
gains leading to minimizing a global control performance cost function.

This approach has been further extended to also take into account the transient
plant state, where the plant needs more resources to be controlled than when it is in its
steady state. The stability of this dynamic parameter switching closed-loop has been
discussed, and we showed that the asymptotic stability is guaranteed if one can find a
CQLF. This extension makes the resource utilization still more efficient. In fact, the
idea behind this is that the shared resource is dynamically allocated to the plant that
needs it (when it is in its transient phase), rather than being allocated to the plants that
are in their steady-state and need less control.

As indicated in the introduction section of this chapter, the approach presented can
be considered as an alternative to the direct sampling period adaptation for dealing
with system overload situations. Using such an approach, the resulting system will be
more robust as it can auto-adapt to fit with certain system overload situations.

5.7. Bibliography

[ÅST 97] ÅSTRÖM K., AND WITTENMARK B., Computer-Controlled Systems, Information
and System Sciences Series, Prentice Hall, 3rd edition, 1997.

[BIT 91] BITTANTI S., COLANERI P., AND DE NICOLAO G., The periodic Riccati equation,
The Riccati Equation, p. 127–162, Springer-Verlag, Berlin, 1991.

[CER 03] CERVIN A., HENRIKSSON D., LINCOLN B., EKER J., AND BERNHARDSSON B.,
ÅRZÉN K. E., How does control timing affect performance?, IEEE Control Systems Mag-
azine, vol. 23, p. 16–30, June 2003.

[EKE 00] EKER J., HAGANDER P., AND ARZEN K.-E., A feedback scheduler for real-time
controller tasks, Control Engineering Practice, vol. 8, p. 1369–1378, 2000.

[FRE 63] FREEMAN H., Discret Time Systems, John Wiley, New York, 1963.

[HAM 94] HAMDAOUI M., AND RAMANATHAN P., A service policy for real-time customers
with (m,k)-firm deadlines, Fault-Tolerant Computing Symposium, Austin, USA, p. 196–
205, April 1994.

[HAM 95] HAMDAOUI M., AND RAMANATHAN P., A dynamic priority assignment technique
for streams with (m,k)-firm deadlines, IEEE Transactions on Computers, p. 1443–1451,
December 1995.

[JIA 05] JIA N., HYON H., AND SONG Y., Ordonnancement sous contraintes (m,k)-firm et
combinatoire des mots, 13th International Conference on Real-Time Systems, Paris, France,
April 2005.

[KHA 02] KHAN P., LI K., MANNING E., AND AKBAR M., Solving the knapsack problem
for adaptive multimedia system, Studia Informatica, vol. 2, p. 161–182, 2002.

www.it-ebooks.info

http://www.it-ebooks.info/

Selective Data Dropping 221

[LI 06] LI J., SONG Y.-Q., AND SIMONOT LION F., Providing real-time applications with
graceful degradation of QoS and fault tolerance according to (m,k)-firm Model, IEEE
Transactions on Industrial Informatics, vol. 2, p. 112–119, 2006.

[LIB 99] LIBERZON D., AND MORSE S., Basic problems in stability and design of switched
systems, Control Systems Magazine, vol. 19, p. 59–70, October 1999.

[MAR 90] MARTELLO S., AND TOTH P., Knapsack Problems: Algorithms and Computer
Implementations, John Wiley, New York, 1990.

[OTA 02] OTANEZ P., MOYNE J., AND TILBURY D., Using deadbands to reduce communica-
tion in networked control systems, American Control Conference, Anchorage, USA, May
2002.

[QUA 00] QUAN G., AND HU X., Enhanced fixed-priority scheduling with (m,k)-firm guaran-
tee, 21st IEEE Real-Time Systems Symposium, Orlando, Florida, USA, p. 79–88, November
2000.

[RAM 99] RAMANATHAN P., Overload management in real-time control applications using
(m,k)-firm guarantee, IEEE Transactions on Parallel and Distributed Systems, vol. 10,
p. 549–559, June 1999.

[SCH 02] SCHINCKLE M., CHEN W.-H., AND A. RANTZER, Optimal control for sys-
tems with varying samplin rate, American Control Conference, Anchorage, USA, May
2002.

[SET 96] SETO D., LEHOCZKY J. P., SHA L., AND SHIN K. G., On task schedulability in
real-time control system, 17th IEEE Real Time Systems Symposium, Washington, DC,
USA, p. 13–21, December 1996.

[SIM 05] SIMON D., AND BENATTAR F., Design of real-time periodic control systems through
synchronisation and fixed priorities, International Journal of Systems Science, vol. 36,
p. 57–76, 2005.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Fault Detection and Isolation,
Fault Tolerant Control

6.1. Introduction

Process automatic control has various objectives. Control performance concerns
system stability (which must be guaranteed under any and all conditions), the error be-
tween reference and output in the control loops (which has implications, for instance,
on product quality or motion precision), robustness against changes in the system’s
parameters, or the time required to obtain a desired output. It also involves cost in an
overall sense (energy or raw material consumption).

A second objective is increasingly being taken into account today by the con-
trol, which is improving the safety of the system, so as not to present any hazards to
the men working close by, to the equipment or to the environment, while guarantee-
ing control performance. A more general term is dependability [LAP 92], used both
in systems’ engineering and in computer science, and which covers the concepts of
safety (the absence of catastrophic consequences), availability (readiness for correct
service), reliability (continuity of correct service), integrity (the absence of improper
system alteration), and maintainability (ability to undergo modifications and repairs).

Integrated automation is, therefore, not only focused on maintaining certain vari-
ables at their set-point value, but is also concerned from an overall perspective about
the system and its various operating modes. These are the normal operating mode(s)

Chapter written by Christophe AUBRUN, Cédric BERBRA, Sylviane GENTIL, Suzanne LESECQ

and Dominique SAUTER.

223

www.it-ebooks.info

http://www.it-ebooks.info/

224 Networked Control Systems Co-design

and start-up or shut-down modes, which evidently are taken into account in the initial
design of the control system. However, various failure modes are also considered,
which correspond to the various states that a failure or a malfunction can produce on
the process.

Performances of closed-loop controlled systems can be altered by the occurrence
of abrupt or incipient faults, which can cause serious damage to the system. A way
to prevent system deteriorations is to develop controllers capable of accommodating
faults. Associated with rapidly increasing demands for higher system performance,
product quality, productivity, and cost efficiency, fault diagnosis (FD) and fault toler-
ant control (FTC) have become key issues in product development and system design,
and therefore have received much attention in the academic community as well as in
industry. Increasing plant dependability may have an even greater impact on improv-
ing economic efficiency than control performance.

This chapter will first deal with the different concepts used in diagnosis and fault-
tolerant control. Diagnosis aims at deciding if a system, made up of various intercon-
nected physical components, is in a normal state or not (in which case it is said to be
faulty). This is known as the fault detection (FD) step. After that, based on a certain
number of observed signals one tries to identify a list of faulty components, which is
called the fault isolation (FI) step. Consequently, the control must be adapted to the
faulty situation before the faulty component(s) can be repaired (FTC).

Fault detection and isolation (FDI) and FTC algorithms are implemented as tasks
in the real-time computer, exactly as the control tasks mentioned in the previous chap-
ters. They will be briefly evoked in the second section of this chapter. In the third
section, the problems raised by the use of a network for transmitting the information
necessary for diagnosis and FTC will be examined. After that, a number of prag-
matic solutions will be discussed, before presenting a number of more theoretical
approaches, some of which are still undergoing research.

6.2. FDI and FTC

6.2.1. Introduction to diagnosis

A fault is defined as an unpermitted deviation of at least one characteristic property
of a system from the usual condition. It may initiate a failure, defined as a permanent
interruption of a system’s ability to perform a required function under specific op-
erating conditions [ISE 06]. A fault is revealed thanks to fault indicators. A fault
indicator is a signal elaborated with variables measured on the system. When an un-
desired behavior is detected, confusion must be avoided between an unforeseen fault
on the process or its instrumentation, a non-robust regulator being at its stability limit,
or a non-measurable disturbance effect. The latter, for instance, is not desired, but is

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 225

faults

model

Fault detection

Fault isolation

u y
Actuators Process Sensors

Model

Analytical
redundancy relations

Residuals

Symptoms

Faulty components

Fault identification

Fault tolerant control

Figure 6.1. Model-based diagnostic steps

part of the normal functioning of a complex system. This discrimination is probably
the main difficulty in the diagnosis.

Diagnosis is broken down into several steps (Figure 6.1). Fault detection consists
in deciding whether a fault indicator is significant and consequently generating the
corresponding symptom, generally a Boolean quantity. Fault isolation consists of de-
ducing from a set of symptoms a set of faulty physical components. This set must be
as small as possible (minimal diagnosis). Following this, component maintenance can
be programmed. Fault identification consists in determining the size and time behav-
ior of a fault. It can help maintain the faulty process in operation provided that the
failure is not crucial or is precociously detected.

Online monitoring can be based simply on variables overshooting fixed thresholds,
which gives limited results because this method is not at all relevant for dynamic
transients. Material redundancy may also be used to guarantee system safety. In
this case, the various components (valves, pumps, etc.) are duplicated. The same
can be done with the instrumentation. An elementary means of obtaining a reliable
measurement is to use three sensors, using their measurement mean provided that they
are similar. If one of them is very different from the others, the corresponding sensor
is suspected to be failing, and its measurement is discarded.

However, these solutions are obviously very costly, which is why now advanced
solutions are based on analytical redundancy, which means using the system’s math-
ematical model for diagnosis. In what follows, this model is the normal operating
model and diagnosis consists in simultaneously testing the consistency of the mea-
surements with various sub-models, corresponding to different sets of components.

www.it-ebooks.info

http://www.it-ebooks.info/

226 Networked Control Systems Co-design

This decomposition into elementary fault indicators, also named residuals, depends
above all on the instrumentation and makes up an important phase of the diagnosis,
the design of the residual generator, which is carried out off-line. With a set of well-
designed symptoms, a fault can not only be detected but also isolated.

Analytical redundancy requires knowledge of the influence of faults on the sys-
tem’s model. It is obvious that accurately representing all the possible faults of an
industrial facility could be very time consuming. Consequently, the methods that will
be presented here are based on the normal behavior model, where faults are intro-
duced very simply. For instance, an extra signal is added in some place in the block
diagram. This is known as an additive fault. An additive fault on a sensor allows for
the modeling of an off-set (constant signal) or a drift (ramp signal). In the same way,
an additive signal on an actuator can be used to model a fault (wrong valve opening,
wrong motor positioning). An unmeasurable disturbance can also represent a fault
(leakage in a tank). Other faults are better represented through the modification of
model parameters. These are called multiplicative faults.

Several families of diagnostic methods exist, based on a single signal modeling
[BAS 93], on the knowledge of the process’ history (expert system or pattern recogni-
tion) [VEN 03b; VEN 03c], or on the dynamical models of sub-systems [VEN 03a],
which, stemming from the classical control models, will be discussed next.

6.2.2. Quantitative model-based residuals

The models representing the normal behavior of various sub-systems are assumed
to have been obtained. These models may be expressed as transfer functions or state
equations, either linear or nonlinear. The models are used to generate residuals, the
interpretations of which make up the symptoms of the system’s faulty state. To be
accurate fault indicators, the residuals have to respect the following properties:

1) no fault =⇒ r(t) = 0
2) fault =⇒ r(t) �= 0.

The contra-positive of (1) leads to

r(t) �= 0 =⇒ fault

that is the base of diagnostic reasoning. Property (2) ensures the detection capacity
of the indicator. This expression is theoretically clear but difficult to guarantee in
practice. Checking that a residual value is not zero results in converting a residual
numerical value into a symptom. In practice, the model is never perfectly accurate and
measurements are noisy, and therefore residuals are never null. The difference has to
be made between “small” residual values, representative of an unfaulty situation, and
“high” values representative of a fault. This evaluation is further complicated by the

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 227

fact that residual sensitivities to distinct faults may be very different. The simplest way
to solve this problem is by comparing the residual value to a fixed threshold (a priori
fixed by an expert). Choosing the threshold value is by no means an easy task. The
thresholds could be adaptive (they change on-line with the experimental conditions).
Statistical methods have also been proposed: a change in the residual mean or standard
deviation is sought. Fuzzy decision making is another way to process the residual:
based on the fact that the zero residual concept is vague, it can be described by a fuzzy
subset.

Let y be the output of a sub-system, u its input, f the faults, and d the unmeasurable
disturbances:

y(t) = g(u, f, d, t). (6.1)

With ym being the output measure and um being the input one, the model leads to

h(ym , um , f, d, t) = 0. (6.2)

Ideally, this equation should be decoupled with the disturbances d and then decom-
posed into two parts:

h(ym , um , f, t) = −he(ym , um , f, t) + hc(ym , um , t). (6.3)

This allows for the defining of a residual r in such a way that r = hc is its com-
putational form, depending only on measurable signals, and he is its evaluation form,
showing how it depends on the various signals, including faults. r is evaluated on-line.
Let us consider an example where Gu is the system transfer function, and fu and fy ,
respectively, represent an additive actuator fault and an additive sensor fault:

ym (s) = y(s) + fy (s) = Gu (s)(um + fu)(s) + fy (s) (6.4)

r = ym (s) − Gu (s)um (s)︸ ︷︷ ︸
hc

= Gu (s)fu (s) + fy (s)︸ ︷︷ ︸
he

. (6.5)

In order to isolate faults, various residuals are generated, sensitive to some faults and
insensitive to the other ones:

rj = hej (um , ym , f, t)/fk �= 0 ⇒ rj �= 0. (6.6)

Using rj as the indicator of fault, fk requires that a fault fk leads to a significant value
of rj and ideally that rj be decoupled with d and with other faults fi,i �=k . This is not
always possible. Therefore, an incidence table is built (Table 6.1). The columns in this
table represent faults and the rows represent the residuals. Each column represents a
fault signature, and the table is sometimes called an incidence matrix. The matrix is
filled with the theoretical values of the Boolean symptoms deduced from the evalua-
tion form of the residuals. A “1” in the element ij of the table means that residual ri

is sensitive to faults fj , while zero means the contrary. If the columns in this table are

www.it-ebooks.info

http://www.it-ebooks.info/

228 Networked Control Systems Co-design

f1 f2 f3

r1 1 1 0
r2 1 0 1
r3 0 1 1

Table 6.1. Signature table

different, then the faults can be isolated. If two columns are similar, the two corre-
sponding faults cannot be isolated with the designed residuals. In this case, the model
equations have to be rearranged in order to obtain optimal fault isolation.

On-line, residuals are generally evaluated at each sampling time. The symptom
vector is then generated. A particular fault is isolated when this vector is similar to a
fault signature. Using the signature table implies occurrences of single faults and that
all faults have been listed in advance. Otherwise, one is confronted with an unknown
situation.

To generate residuals, two methods will be described in the following subsections.
The first one is based on parity relations, while the second is based on state observers.

6.2.2.1. Parity relations

The idea is to rearrange the model equations in order to obtain optimal fault iso-
lation. The whole set of model equations are used and combined in various manners,
with each combination eliminating some signals and generating a residual. These ana-
lytical redundancy equations (ARE) must be based only on measured values. We have
to find the combinations that lead to independent columns in the incidence matrix.

In Figure 6.2, ui signals represent inputs and yi intermediary signal measurement
points, while Mi symbolizes the sub-models. Fault indicators can be based on either
elementary relations or their combinations:

r1(u1 , y1), r2(y1 , y2), r3(y3 , y4), r4(u2 , y1 , y3), r5(u2 , y1 , y4), r6(u2 , y3 , y2). (6.7)

y4

u1
M1

M3 M4

M2

M5

y1 y2

u2

y3

Figure 6.2. Complex system decomposition for ARE generation

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 229

Consider the example of a transfer matrix model with p inputs and m outputs⎡⎣ y1
...
ym

⎤⎦ =

⎡⎣ G11 ... G1p

...
Gm1 ... Gmp

⎤⎦⎡⎣ u1
...
up

⎤⎦ , (6.8)

where Gij represents the transfer between output yi and input uj . The polynomial
form of this model is

A11(s)y1(s) = B11(s)u1(s) + · · · + B1p(s)up(s). (6.9)

From (6.9), the evaluation form of one residual is deduced

r1 = A11(s)ym1(s) − B11(s)um1(s) − · · · − B1p(s)ump(s), (6.10)

where the index m stands for “measured value”. Adding to model 6.9 the fault model,
the dependence of r1 on a sensor fault on y1 or on actuator faults on all the inputs is
shown easily.

In order to structure the residual space, a projection matrix W can be used to obtain
new residuals

r′ = Wr. (6.11)

Matrix W is used to make some residuals sensitive to a subset of faults and insensitive
to the complementary subset [GER 98]. The same technique can be applied to a state
model. This method does not require many hypotheses on the model, which could be
nonlinear.

6.2.2.2. Observers bank

Observers are algorithms based on the system’s state model, the objective of which
is state reconstruction (state following). In order to simplify the following explana-
tions, the model is assumed to be linear, but a nonlinear observer may be synthesized
too:

ẋ = Ax + Bu y = Cx, (6.12)

where x ∈ �n is the state vector, and y and u are assumed to be scalar to simplify the
explanations. The corresponding observer equation is

˙̂x = Ax̂ + Bu + L(y − ŷ) (6.13)

ŷ = Cx̂. (6.14)

It can be noticed (equation (6.13)) that the observer is made of a prediction part, based
on the model simulation, and a correction part, based on the difference between the
real output y and the output computed by the observer ŷ. From equation (6.13), the
following general equation for state observation is deduced:

˙̂x = (A − LC)x̂ + Bu + Ly. (6.15)

www.it-ebooks.info

http://www.it-ebooks.info/

230 Networked Control Systems Co-design

The observation error ε can be computed combining equations (6.15) and (6.12):

˙̂x = (A − LC)x̂ + Bu + LCx (6.16)

ε = x − x̂ (6.17)

ε̇ = (A − LC)ε. (6.18)

From this last equation, the Laplace transform of the observation error is found

ε = (sIn − A + LC)−1(x0 − x̂0), (6.19)

where In denotes the n-dimensional identity matrix. After any observer initialization
x̂0 , if the observer is stable ((A-LC) eigenvalues with negative real parts), the observed
state x̂ converges toward the true system state x.

The error between the measured output and the observer output can be used as
residual

y − ŷ = C(x − x̂) = ε̂y (6.20)

ε̂y = C(sI − A + LC)−1(x0 − x̂0), (6.21)

where ε̂y has the properties necessary to define a residual, as explained in section
6.2.2, and more generally

r = T ε̂y (6.22)

can be used as residual, where T is used to obtain isolation properties.

A discrete formulation is obtained similarly for sampled-data systems with sam-
pling period h:

Φ = exp(Ah) Γ =
∫ h

0
exp(As)Bds (6.23)

xk+1 = Φxk + Γuk yk = Cxk (6.24)

x̂k+1 = Φx̂k + Γuk + L(yk − ŷk) (6.25)

ŷk = Cx̂k (6.26)

x̂k+1 = (Φ − LC)x̂k + Γuk + Lyk (6.27)

rk = T (yk − ŷk). (6.28)

An unmeasured disturbance can make x different from x̂ and thus y different from
ŷ. An interesting characteristic of observers is that they can be computed in such a
way that the observer state is decoupled from unknown disturbances [PAT 00]. Resid-
uals can be systematically structured when using observers. Two main methods have
been proposed: dedicated or generalized observer banks. When it comes to dedicated

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 231

schemes and N actuator faults, N observers are designed so that observer i uses all
the outputs but only input ui (this requires the system to be observable with this input
only). The other (N − 1) inputs are considered as unknown inputs. This observer is
obviously sensitive only to the actuator i fault, provided there are no sensor faults. In
the dedicated scheme for N sensor fault isolation, N observers are designed so that
observer i uses all the inputs but only output yi . Then, this observer is only sensitive
to the sensor i fault, provided that there are no actuator faults. In this way, the inci-
dence matrix contains only one “1” in each line. In the case of generalized schemes
and actuator faults, N observers are designed so that observer i uses all the inputs but
ui . This observer is obviously sensitive to all actuator faults but the one discarded.
For sensor faults, N observers are designed, such that observer i uses all the outputs
but yi , which makes it sensitive to all sensor faults but the one discarded. In this way,
the incidence matrix contains only one “0” in each line.

6.2.3. Example

A simple example is now described in order to illustrate the concepts defined
above. It illustrates the behavior of a direct current motor when sensor faults occur,
and various ways to design residuals.

6.2.3.1. The system-residual generation

Figure 6.3 shows the system and its controller together with the diagnostic block.
The motor is simulated with a continuous-time block defined in Simulink. The con-
troller is a PI defined by a discrete Simulink block. The sampling period is h = 30
ms. The controller is tuned to compensate the system’s dominant pole. The various
parameters are defined in Table 6.2. The diagnostic algorithm is fed by the follow-
ing measurements: voltage at the motor input umes(t), current imes(t), motor velocity
ωmes(t).

The system transfer function is given by

H(s) =
A

(1 + τ1s)(1 + τ2s)
(6.29)

with A = 124 rad s−1 V, τ1 = 555 ms, τ2 = 1.510−3 ms. The two time constants
have very different orders of magnitude. The controller transfer function is

C(z) =
5.08 10−2z − 4.78 10−2

z − 1
. (6.30)

www.it-ebooks.info

http://www.it-ebooks.info/

232 Networked Control Systems Co-design

C(z) Z
O
H

K

+
-

i(t) ω(t) ωmes(t)ub(t)

ωk

-

εk

fι

fω

ωmes(t)imes(t)umes(t)

r1(t)

r2(t)

Motor (continuous block)Controller (discrete block)

uk

Diagnosis
(continuous block)

sL R+
1

sJ f

K

+

ref

+

Figure 6.3. A closed-loop DC motor control and diagnosis

Residuals are generated using the system model

J
dωmod(t)

dt
+ fωmod(t) = Kimes(t) (6.31)

L
dimod(t)

dt
+ Rimod(t) = umes(t) −Kωmes(t) (6.32)

r1(t) = ωmes(t) − ωmod(t) (6.33)

r2(t) = imes(t) − imod(t). (6.34)

ωmes(t) Angular velocity measured by the sensor
ωmod(t) Angular velocity calculated by the diagnostic algorithm
ωk Sampled angular velocity received by the digital controller
i(t) Current of the DC motor
imes(t) Current measured by the sensor
imod(t) Current calculated by the diagnostic algorithm
uk Controller output
ub (t) Voltage at the output of the zero-order hold
umes(t) Voltage measured by the sensor
fω , fi Sensor faults
r1 (t), r2 (t) Residuals
R = 0.67 Ω Resistor
L = 1 mH Self-inductance
J = 3.35 10−5 kg m2 Inertia
f = 2.29 10−5 N ms Friction coefficient
K = 5 10−3 Velocity constant and torque constant

Table 6.2. Parameters of the system in Figure 6.3

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 233

0 2 4 6 8 10
0

10

20

measured velocity

0 2 4 6 8 10
0

1

2
measured current

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8
control

0 2 4 6 8 10
0

10

20

0 2 4 6 8 10
-2

0

2

velocity

current

seconds

seconds

seconds

seconds

A
ra

d/
s

ra
d/

s
A

Figure 6.4. Motor with faults

A reference change from 0 to 15 rad s−1 has been introduced at time t = 2 s. A fault
of amplitude 1.5 rad s−1 (a 10% of the nominal value) has been introduced on the
velocity sensor at time t = 7 s and a fault of amplitude 0.005 A (7% of the nominal
mode) has been introduced on the current sensor at time t = 5 s. The simulation
results are found in Figure 6.4. It is observed that both faults fi and fω have an effect
on the current and velocity. The control is sensitive only to the fault fω , because the
measured current is not used in the loop. Following a transient state, the measured
velocity is again equal to the set-point thanks to the regulator, but the real velocity
is smaller due to the fault. This can be detected because the measured velocity is no
longer consistent with the voltage at the motor input (Figure 6.5).

6.2.3.2. Observer-based residuals

The results presented in the previous subsection are purely theoretical. In practice,
the diagnosis is implemented to the computer, and so the algorithm for computing the
residuals must be discretized. This is not as obvious as the well-known discretization
of a controller associated with a zero-order hold (ZOH). In this particular case, the
solution of the discrete equation, obtained through the z-transfer function of the holder
associated with the system transfer function, is equal to the continuous time behavior

www.it-ebooks.info

http://www.it-ebooks.info/

234 Networked Control Systems Co-design

0 2 4
seconds

seconds

A
ra

d/
s

6 8 10
-1

0

1

0 2 4 6 8 10
0

0.01

0.02

r1

r2

Figure 6.5. Motor continuous model residuals

of the system at the sampling time. The same is true for state representation computed
with equation (6.23). Now, signals in the analytical redundancy equations are not hold
and vary all throughout the sampling period. Thus, the discrete equations are only
an approximation of the differential equations. If the sampling period is very short
compared to the residuals dynamics, this approximation can be rather precise, but if
this is not the case, many false alarms can be generated, only due to computation
errors. This has been fully detailed in [BER 07] and will not be detailed here. The
state model of the system is easier to discretize, because its input ub(t) is constant
during the sampling period, and an observer can be designed to generate the residuals.
The continuous state model is given by

x =
[

i
ω

]
, A =

[−670 −5
149.25 −0.6836

]
, B =

[
1000

0

]
. (6.35)

The discrete state model (with h = 30 ms) is

Φ =
[−0.0016 −0.0071

0.212 0.949

]
, Γ =

[
1.449
6.2

]
, (6.36)

and an observer could be

x̂ =
[

î
ω̂

]
, Φ − LC =

[
0 0

0.212 0

]
, L =

[−0.0016 −0.0071
0 0.949

]
.

(6.37)

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 235

0 2 4 6

seconds

seconds

ra
d/

s
A

8 10
-2

0

2

r1

0 2 4 6 8 10
-0.1

0

0.1

r2

Figure 6.6. Observer-based residuals for the motor

The observer here has been designed to have zero eigenvalues, which makes it very
fast. Now, the residual r1 = (ωmes − ω̂) is insensitive to fi , while the residual r2 =
(imes − î) is sensitive to both faults (Figure 6.6).

6.2.4. Diagnostic summary

Monitoring and controlling an industrial facility require advanced tools, the basic
concepts of which have been introduced in this section. All the diagnostic techniques
are based on real signals emitted from the process instrumentation, which feed an
analytical redundancy relation. When the models are discretized, the general form of
such a relation is

rk =f(y1
k , y1

k−1 , . . . y
1
k−n1 , y

2
k , . . . y2

k−n2 , . . . u
1
k , u1

k−1 , . . . u
1
k−m1 , u

2
k ,. . .u2

k−m2 . . .),
(6.38)

where k stands for the sampling time, and rk is such that when there is no fault rk <
threshold. The observers constitute a particular case of equation (6.38) where the
residual depends on values measured at time k and (k − 1) only.

Section 6.3 explains how using a network to transmit these data deteriorates the
computation results.

www.it-ebooks.info

http://www.it-ebooks.info/

236 Networked Control Systems Co-design

Accommodation

Normal operating
conditions

Faulty operating
conditions

Initial operating
conditions

Performances

u, y

(u0, y0) (uf, yf) (uc, yc)

conditions
Degraded operating

Figure 6.7. Fault tolerance principle

6.2.5. Introduction to FTC

A number of methods allowing for system diagnosis have been outlined above.
Diagnosis means first detecting that the system in not in its normal operating mode,
and then isolating the sub-system – and possibly the particular component – which is
faulty. This knowledge can be used to take online control decisions, when the fault
is detected early on. Prior to any decisions, worker safety must first be ensured, then
production loss must be limited, and these are accomplished through the use of an
appropriate control.

The task to be tackled in achieving fault tolerance is the design of a controller
having a structure enabling it to guarantee satisfactory performance, not only when
all control components are operational, but also when instruments are operating in a
faulty mode. In this context, the aim of this section is to introduce the main concepts
of FTC, and to take stock of recent methods for fault handling.

In the past few years, a number of FTC approaches have been reported, but most
of them were developed for particular applications, mainly relevant to flight control
or aerospace [MAY 91; BAN 99]. FTC has not reached its full maturity, however, and
still remains an open methodology [PAT 97; MAH 03; BLA 03]. FTC concepts have
been extensively treated in [BLA 06]. That is to say that, within the framework of
FTC, there are many ways to achieve fault tolerance in the design of a controller.

Currently, FTC concepts can be separated into passive and active approaches. The
key difference between these two approaches is that the active FTC system includes
an FDI system, and the fault handling is carried out based on the fault information
that the FDI system delivers, while in a passive FTC system, the system components
and controllers are designed in such a way that they are robust to possible faults to a
certain degree.

The passive approach makes use of robust control techniques to ensure that a
closed-loop system remains insensitive to certain faults. When redundant actuators are

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 237

available, methods dealing with this approach are also called reliable control methods
[JOS 87; VEI 92; ZHA 98]. In the active approach, a new set of control parameters
is determined in such a way that the faulty system reaches the nominal system perfor-
mance. The principle of active approaches is illustrated in Figure 6.7: after the fault
has occurred, the system deviates from its nominal operating point – defined by its
input/output variables (u0 , y0) – to a faulty one (uf , yf). The goal of FTC is to deter-
mine a new control law that takes the degraded system parameters into account and
then drives the system to a new operating point (uc, yc), while maintaining the main
performances (such as stability and accuracy) as close to the initial performances as
possible. It is therefore important to accurately define the degraded modes that are ac-
ceptable with regard to the required performances, since after the occurrence of faults
conventional feedback control design may result in unsatisfactory performances such
as tracking errors, instability, and so on.

When the exact model of the failed system is known, the control system can be
accommodated so that system performances are recovered and the new system be-
haves as initially specified. [GAO 91], [GAO 92], and [MOR 90] suggest a basic ap-
proach based on what they called the pseudoinverse method which has been revisited
by [STA 08]. In practice, however, the faults are unanticipated and the model of the
impaired system is not available.

To overcome the limitations of conventional feedback control, new controllers
have been developed with accommodation capabilities – or tolerance – to faults. These
fault tolerant controllers fall into four different categories:

– Adaptive control seems to be the most natural approach to fault tolerance: when
the effects of faults appear as parameter changes and are identified online, the con-
trol law is reconfigured automatically based on new parameters [BOD 97; OCH 91;
RAU 95]. [WU 98] consider a loss of effectiveness in actuators and suggest using
an augmented state Kalman Filter to estimate both the fault-free state and the faulty
parameters. The estimated fault-free state is then used to feed the controller. These
approaches have the advantage of not requiring that the faults be categorized a priori,
although the design of robust identification and control algorithms presents significant
challenges.

– Integrated approaches represent another trend [NET 88]. They consist of inte-
grating fault monitoring and control procedures. In this case, the possible actuator or
sensor faults are represented by signals and are estimated by the same algorithm that
computes the control law [MUR 96; TYL 94]. The faults are identified first, and then
the controller is built to be insensitive to them, but the operator may be made aware of
possible faults thanks to the alarm monitoring function.

– The FTC problem can also be formulated as a multi-objective problem based
on the assumption that, like the uncertainties, the effects of faults can be expressed
by means of linear fractional transformation (LFT). Following this methodology, a

www.it-ebooks.info

http://www.it-ebooks.info/

238 Networked Control Systems Co-design

linear matrix inequality formulation for fault tolerant controller synthesis has been in-
troduced by [CHE 98]. Another approach based on convex optimization has also been
considered: a linear quadratic controller is used and the reconfiguration is achieved by
choosing new values of the weighting matrices in the performance index in a manner
appropriate to offset the effect of faults [LOO 85; SAU 98].

– Finally, another way to achieve FTC relies on supervised control where an FDI
unit provides information about the location and time occurrence of any fault. Faults
are compensated via an appropriate control law triggered according to the diagnosis
of the system. This can be achieved using gain scheduling [JIA 98] or compensation
via additive input design [NOU 00; THE 98]. Methods combining model-based and
knowledge or heuristic techniques were also successfully used to tune the controller
[AUB 93; KWO 95; PAT 97].

The ability of a plant to function safely and efficiently depends to a large extent on
effective communication and information sharing between the interconnected units.
With the significant growth in computing and networking abilities in recent times, as
well as the rapid advances in actuator/sensor technologies, there has been an increased
reliance on distributed computing and process operations across computer networks.
A critical issue, however, that must always be considered in the design of any net-
worked control system (NCS) is its robustness with respect to failure situations. By
network failure, a total breakdown in the communication between the control system
components is meant, as a result of, for example, some sort of physical malfunction
in the networking devices or severe overload of the network resources that causes it to
shut down.

The following section will examine the consequences of using a network on FDI
and FTC.

6.3. Networked-induced effects

An NCS is a feedback control system in which information is transmitted among
the system components in the form of data flows through a network, as illustrated in
Figure 6.9. The functionality of a typical NCS is established by the use of four basic
elements in the control loop: sensors to collect information, controllers to provide
control signals, actuators to perform the control, and the communication network to
enable the exchange of information. In order to guarantee a safe operation, some
specific supervision functions are added to perform FDI and FTC. In practice, the
network links in the NCS are usually unreliable, because control signals sent by the
controller and plant measurements sent by the sensors may be lost or corrupted by
noise during transmission.

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 239

6.3.1. Example of network-induced drawbacks

Consider the example of the diagnosis of the direct current motor (section 6.2.3),
which is simulated using Simulink as above, together with the TRUETIME toolbox for
the network [OHL 07]. A CAN network (1 Mbits s−1 , frame size 64 bits) is introduced
between the controller and the actuator and between the sensors and the controller–
diagnoser. The sensor task is time triggered (run at each multiple of the sampling
period). The controller and the actuator tasks are event triggered (by the arrival of the
measured velocity and the control signal, respectively). The diagnostic task is event-
triggered (by the arrival of both measurements and of the new control signal, whose
dates are not verified). When the network is dedicated to this application, the results
are identical to those presented in section 6.2.3. Now, if the network is assumed to
be overloaded, which can be simulated introducing some data loss probability (0.5
for all transmitted data in Figure 6.8), the functioning is genuinely disturbed. High
residual amplitudes appear, for instance, when the reference is changed, even though
there is no fault. This is because, during the transient phase, measurement values
are very different from one sampling period to another. Computing with an obsolete
value (a value that has not been updated because it has not been received) makes

0 2 4 6 8 10
0

10

20

velocity

A
ra

d/
s

A
ra

d/
s

A
ra

d/
s

0 2 4 6 8 10
-2

0

2
current

0 2 4 6 8 10
0

10

20

measured velocity

0 2 4 6 8 10
0

1

2
measured current

0 2 4 6 8 10
-20

0

20

r1

0 2 4 6 8 10
-2

0

2
r2

Figure 6.8. Variables and residuals using a CAN network with a 0.5 data loss probability

www.it-ebooks.info

http://www.it-ebooks.info/

240 Networked Control Systems Co-design

an important difference, interpreted as a fault, unless the threshold is increased. But
this increase could further result in missed detection. This example illustrates the
drawbacks of using a network if the way the diagnosis is processed is not modified to
take the network into account.

6.3.2. Modeling data dropouts

The immediate result of complete network failure is the loss of all the associated
sensor and actuator signals, which results in the plant switching from a closed-loop to
an open-loop operating mode. For stable plants, this may lead only to performance
degradation, while for unstable plants it may lead to instabilities. Note that packet
losses are inevitable in any well-functioning network. However, such losses typi-
cally occur intermittently and do not cause a breakdown in communication. Here, we
consider an NCS where the controller sends control signals to the actuator through a
packet-dropping network as illustrated in Figure 6.9.

On the basis of the fact that the FDI system and the controller are remotely located
at the same place, packet dropout of sensor measurements is assumed to be known
to the FDI system, whereas packet dropout of control commands is assumed not to
be. It is further assumed that the network satisfies an (User Datagram Protocol) UDP-
type protocol, which means that the controller does not receive any acknowledgment
when a packet has been received by the actuator. In other words, the controller does
not know if the packet was dropped or not. Therefore, the following discrete time
model for the NCS is obtained from the continuous time model equations (6.12) and
(6.23) {

xk+1 = Φxk + Γuk + Ξfk

yk = Cxk ,
(6.39)

Figure 6.9. A feedback control system with packet dropouts

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 241

where xk ∈ �n is the state vector, yk ∈ �m the output observation vector, uk ∈ �p

the input vector, fk ∈ �q the fault vector, Ξ is the faults distribution matrix on the
state vector. It is further assumed that under intermittent communication, when the
packet containing the control signal is dropped, the control signal sent to the actuator
is kept equal to the previous one.

Introduce ūk = [ū1 ū2 · · · ūp]T with ūi,k = δi,kui,k and δi,k = −1 when the
packet containing ui,k is dropped; otherwise, δi,k = 0. Then the model of the system
with unreliable data transmission can be expressed as{

xk+1 = Φxk + Γuk + Γūk + Ξfk

yk = Cxk .
(6.40)

It is to be noticed that the model in (6.40) can be rewritten as{
xk+1 = Φxk + Γuk + Hnk

yk = Cxk ,
(6.41)

where H = [Γ Ξ], Γ = [b1 , . . . , bp], Ξ = [e1 , . . . , eq] and

nk = [ū1,k , ū2,k , . . . , ūp,k f1,k f2,k , . . . , fq,k]T .

For data acquisition, it is supposed that the sensor is time triggered with a constant
sampling time h.

Data dropouts will impact any standard observer-based residual generator. Con-
sider for system (6.39), the state observer{

x̂k+1 = Φx̂k + Γuk + L(yk − Cx̂k)
ŷk = Cx̂k .

(6.42)

Under faulty conditions but considering unreliable data communication, from (6.41)
and (6.42), the estimation error εk = xk − x̂k and the output residual of the state
observer propagate as {

εk+1 = (Φ − LC)εk + Hnk

rk = TCεk .
(6.43)

Suppose that the ith control signal is not transmitted to the actuator at time instant r,
and consider the following index:

ρi = min {ν = 1, 2, . . . : CGν bi �= 0} . (6.44)

Due to the additive effects of dropouts and faults, the output residual can now be
expressed as

rk = r̃k + Φu
k,p [ū

i
p · · · ūi

k−s · · · ūi
k−1] + Φf

k,p [f
i
r · · · fi

k−s · · · fi
k−1], (6.45)

www.it-ebooks.info

http://www.it-ebooks.info/

242 Networked Control Systems Co-design

with
Φ∗

k,p = LCΦ∗
k−1,ρi

b
i

Φk−1,k−j = Gk−1Gk−2 · · ·Gk−j ,
(6.46)

where r̃k is the output residual if there is no packet dropped and if there is no fault and
G = Φ − LC.

Note. Network breakdowns. Unlike data dropouts, the losses resulting from net-
work failure are more prolonged and sustained over time. In addition, unlike the
problems of sensor or controller failure in the classical (hardwired) control architec-
ture, where the failure effects may be confined to a specific control loop, the effects of
network failure are typically more severe in that they cause a breakdown in the sensor-
controller–actuator communication for multiple loops simultaneously. Depending on
the extent to which network architecture is centralized, thousands of sensors and ac-
tuators could be connected through the same network and thus suffer from the conse-
quences of plant-wide communication failure.

6.3.3. Modeling network delays

If it is assumed that the system is controlled over a network, then we have to take
into account the sensor to controller τsc delays and controller to actuator delays τca .
For data acquisition, it is supposed that the sensor is time triggered with a constant
sampling period h. By event-triggered controller or actuator, we mean that the cal-
culation of the new control or actuator signal begins as soon as the new control or
actuator information arrives, as is represented in Figure 6.10.

Taking into account the network-induced delay and the control input (zero hold is
assumed) over a sampling interval [kh, (k + 1)h,] we have

u(t) =
{

uk−1 , t ∈ [kh, kh + τk]
uk , t ∈ [kh + τk , (k + 1)h]. (6.47)

Note that the delays, in general, cannot be considered constant and known. Network
induced delays may vary, depending on the network traffic, medium access protocol,
and the hardware. Under actuator or component faults, it is supposed that the plant is
described by the following equation:

{xk+1 = Φxk + Γ0uk + Γ1uk−1 + Ξfk , yk = Cxk + Ffk , (6.48)

where matrices Γ0 and Γ1 are defined as follows:

Γ0 =

h−τk∫
0

eAsBds Γ1 =

h∫
h−τk

eAsBds, (6.49)

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 243

Sensor signal
& sampling

Signal received
by controller

Controller
signal

Figure 6.10. Delay timing diagram for a network control system NCS

and F is the faults distribution matrix on the outputs observation vector. If we in-
troduce the control increment Δuk = uk − uk−1 , the model in (6.48) can also be
rewritten as {

xk+1 = Φxk + Γuk − Γ1(τk)Δuk + Ξfk

yk = Cxk + Ffk .
(6.50)

The FDI system introduced earlier in this section was designed a priori to achieve cer-
tain characteristic performances without considering the time delays. Let us now ex-
amine the effects of network-induced delays on the residual generator given by (6.42).
From equation (6.43), the estimation error εk = xk − x̂k and the residual vector rk

propagate as {
εk+1 = (Φ − LC)εk − Γ1(τk)Δuk + (Ξ − LF)fk

rk = TCεk .
(6.51)

Therefore, it appears that the robustness of the fault diagnosis system against network
induced delays depends on the amplitude of the unknown term −Γ1(τk)Δuk .

6.4. Pragmatic solutions

Diagnostic algorithms can be run at each sampling time or on demand. In the event
that they are run on demand, the measurements are not taken permanently, but only

www.it-ebooks.info

http://www.it-ebooks.info/

244 Networked Control Systems Co-design

during certain periods, when a sequence of values (which can be of several thousands)
is captured and transmitted. This sequence makes up a burst of values transmitted
from the sensors to the diagnoser. This can be the case if a component is functioning
from time to time or if for instance the diagnosis is based on a frequency analysis
made on a given time window. Whatever the case, the timing requirements placed on
the measurements are very stringent: they must be regularly sampled.

6.4.1. Data synchronization

6.4.1.1. Clock synchronization

Timing considerations have led to means for enforcing the timing requirements in
control systems implemented with technologies such as network communication, local
computing and distributed objects. One such technique is the use of system compo-
nents that contain real-time clocks, all of which are synchronized to one another within
the system synchronization technology. The IEEE 1588 standard addresses clock syn-
chronization requirements, defining a protocol enabling precise synchronization in
measurement and control systems.1 The protocol enables heterogenous systems that
include clocks of various inherent precision, resolution and stability to synchronize.
The protocol supports systemwide synchronization accuracy in the sub-microsecond
range with minimal network and local clock computing resources. The default be-
havior of the protocol allows simple installation and operation. Since the creation
of the 1588 standard, clocks in all system components are synchronized to a speci-
fied uncertainty, data or actions of system components based on these clocks are also
synchronized according to the application’s specifications.

The “1588 clock” is typically used in an actuator component as a mechanism to
generate the actuation trigger by comparing the time of the “1588 clock” to a specified
“trigger time” provided to the component as part of the application. Sensor compo-
nents in a system supporting the IEEE 1588 standard will typically include a “1588
clock” and a small microprocessor. Such components are often termed “smart trans-
ducers” in that they perform processing on the raw data and add additional information
about the measurement, such as the time of measurement.

The time-stamp object that enables the user of CANopen systems to adjust a
unique network time should also be mentioned here. The time stamp is mapped to
one single CAN frame with a data length code of 6 bytes. These six data bytes pro-
vide the “Time of Day” information, which is given as milliseconds after midnight
and days since January 1st, 1984.

In conclusion, if the network transmits perfectly synchronized values, as described
above, there is no delay problem. If it transmits at least variable values with the

1. http://ieee1588.nist.gov

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 245

Time stamp

Fixed time difference: T (an+1) – T (an) constant

T0

a0 a1 a2 a3 a4

time

Variable time difference: T (bn+1) – T (bn) variable

b0 b1 b2 b3 b4

b0 b1 b2 b3 b4

timeT0 T1 T2 T3 T4

Figure 6.11. Data synchronization. Top: ai ideal data; bi received data; bottom:
data reconstruction

exact date at which they were sampled, then ideally, perfectly sampled data can be
reconstituted. This is described in the following section.

6.4.1.2. Data reconstruction

When the diagnostic algorithm receives a single datum or a sequence of data ar-
riving within a burst or a packet, its first task is to arrange them with increasing dates
thanks to the time stamps. Then, it must examine the dates of all the data embedded
in one residual computation (see equation 6.38) and compare them to the sampling
period multiples. If the dates are very similar (within an accepted period margin), the
residual can be calculated; otherwise, the data need to be modified.

Figure 6.11 shows an example. Values b0 , b2 , and b4 will be stored directly; they
are within the acceptable period margin around T0 , T2 , and T4 . A value of T1 will
be obtained by linear interpolation of the values b0 and b1 . A value for T3 will not be
obtained. The time difference T (b3)−T2 is greater than an acceptable value. The data
are considered lost. In the proposed procedure, it is assumed that the signal does not

tc

Measured value
Interpolated value
Lost value

Figure 6.12. Data reconstruction

www.it-ebooks.info

http://www.it-ebooks.info/

246 Networked Control Systems Co-design

vary a lot during the sampling period h, which is the case if Shannon’s sampling theo-
rem is respected. A linear approximation is, therefore, sufficient to describe the signal
variation during the time h. In this case, complicated interpolation or extrapolation
procedures such as spline methods are not necessary.

Let tc be the current time. Figure 6.12 shows a first data flow that has been per-
fectly sampled and a second flow that has not. Four data are received in the same
packet, represented by black points. Linear interpolation gives us the white points, the
values of which will be used in the residual computation instead of the second, third,
and fourth measured values. The same procedure is used if a single datum is received
in the current sampling period but the residual needs a history of this variable. The his-
tory is synchronized using linear interpolation. After tc, it is assumed in Figure 6.12
that two data are lost. An extrapolation could be done, but this may be particularly
dangerous in a diagnostic procedure, because extrapolation supposes that the signal
behavior does not change a lot, which implies that no fault is present. It seems better
in this case to block the diagnostic algorithm, which will be explained in section 6.4.2.

6.4.1.3. Example

What exactly is meant by “acceptable period margin”? A simple example will
allow us to discuss this point. Let us consider a system step response that needs to be
transmitted. Let y0 and yf be the initial and final values of the signal. The rise time tm
is defined as the time during which the response evolves from 10% to 90% of its final
value. A reasonable choice for the sampling period is h ∈ [tm

4 , tm
10]. Choose h = tm

4 .
The signal variation during one sampling period during the transient is 0.2(yf − y0).
If there is a desynchronization of Δh, the amplitude error is 0.2(yf − y0) ∗ Δh

h . This
error can be compared to the noise standard deviation σ. If it has the same order of
magnitude, then it is acceptable. The acceptable desynchronization is therefore

Δh =
σh

0.2(yf − y0)
. (6.52)

Approximating σ
(yf −y0) by the noise-to-signal ratio B/S gives us

Δh

h
=

5
S/B

. (6.53)

With a smaller sampling time (h = tm
10), the result would be

Δh

h
=

12.5
S/B

. (6.54)

In conclusion, for h = tm
4 (respectively h = tm

10) and for a very small signal-to-
noise ratio (1% for instance), Δh must be smaller than 5% of the sampling period
(respectively 12.5%), but for a signal-to-noise ratio of 10%, it could be half of this

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 247

period (respectively 125%). Given a signal-to-noise ratio of 10%, a sampling time
equal to h = tm

4 and a rise time equal to 60 s, a reasonable period margin could be
7.5 s, while for a much more rapid system with a rise time equal to 500 ms, the margin
could not be higher than 62.5 ms.

6.4.2. Data loss and diagnostic blocking

In this section, equation (6.38) is examined when one or several data in this equa-
tion are lost. For control algorithms, when the new control value computed by the
controller is not transmitted to the actuator task, the best solution is to maintain the
previous control value. If the system is in a permanent state, then this has no influence;
if the system is in a transitory state, it is equivalent to introducing a delay equal to the
sampling period, which will have a negative influence only if the system is not robust,
is at its stability limit, or is extremely under-sampled.

The situation is very different when considering diagnostic algorithms. Comput-
ing equation (6.38) with old value(s) of some input or output signal will result in a
residual value different from zero (in practice, it will be greater than the threshold)
and thus induce false alarms. This effect will last as long as these data are needed in
the equation, and, as a result, several sampling periods (ni + 1 if data yi will be lost
(see equation (6.46) for explanations relative to observers). In most cases, it is better
not to deliver a diagnosis than to generate false alarms, which could lead to a regulator
reconfiguration, or perhaps even worse, to an emergency shut down! Diagnosis is an
event-triggered task. Consequently, operators could decide to run the diagnostic algo-
rithm only once all the data have been received. A more subtle procedure is proposed
here: data loss is now considered as a fault to detect and take into account in the di-
agnostic procedure. In the case of a network functioning like CAN, data are emitted
and possibly re-emitted during a packet lifetime, which is equal to the sampling pe-
riod. Following the sampling period, a new control has been computed and must be
applied, or new data have been acquired, corresponding to the actual process state. It
is more convenient not to overload the network transmitting the obsolete data; there-
fore, when data have not been received within the sampling period, it is considered
permanently lost.

The data loss can be managed at the level of a generalized signature table. The list
of necessary data is known for each residual (equation 6.38). A fault indicator ri

network
is set to “1” if at least one datum in the residual ri history is lost. This makes up a
symptom dedicated to the network’s functioning, with the network being considered
as a component of the system, with faults fi

network to be diagnosed. The symptoms
corresponding to each residual are introduced in the signature table. As an example,
consider a system subject to three faults f1 , f2 , and f3 . Two residuals have been
designed r1 and r2 . When there is no data loss, ri

network = 0, the first three columns of
Table 6.3 allow for discriminations between the three faults. When one of the network

www.it-ebooks.info

http://www.it-ebooks.info/

248 Networked Control Systems Co-design

f1 f2 f3 f 1
network ∧ (f1 ∨ f2) f 2

network ∧ (f1 ∨ f3) f 1
network ∧ f 2

network
r1 1 0 1 Φ 1 Φ
r2 1 1 0 1 Φ Φ

r1
network 0 0 0 1 0 1

r2
network 0 0 0 0 1 1

Table 6.3. Signature table with data loss

faults is present, ri
network = 1, the corresponding residual ri is not relevant. Some

partial information may be deduced from the value of the other residuals. When both
ri

network = 1, diagnosis is not possible.

6.5. Advanced techniques

6.5.1. Residual generation with transmission delay

In [YE 04], the authors propose a time-varying parity-space-based residual gen-
erator where robustness is achieved thanks to a decoupling procedure. Consider the
system model described by (6.39). When the sampling period h is sufficiently small
compared to the dynamics of the system, with the Taylor approximation of eAs we
obtain

Γ1(τk) =

h∫
h−τk

eAsBds = A−1 [1 − eAτk
]
eAhB ≈ ΦBτk . (6.55)

Assume also that the network delay can be broken down into one deterministic part
and one stochastic part

τk = τ̄ + Δτk , (6.56)

where the stochastic part belongs to a zero-mean Gaussian white sequence with a
known variance var(Δτk) = σ2 . From (6.39), and with the introduction of system
and sensor noises, we obtain{

xk+1 = Φxk + Γuk − ΦBτ̄ Δuk−1 − ΦBΔτkΔuk−1 + Ωdk + Ξfk

yk = Cxk + Ffk + wk .
(6.57)

The NCS model can then be written as⎧⎨⎩ xk+1 = Φxk + [Γ ΦBτ̄]
[

uk

Δuk

]
+ [Ω ΦBΔuk]

[
dk

Δτk

]
+ Ξfk

yk = Cxk + Ffk + wk .
(6.58)

With Γ̃ = [Γ ΦBτ̄] , ũk =
[

uk

Δuk

]
, Gk = [Ω ΦBΔuk] , vk =

[
dk

Δτk

]
, we

obtain {
xk+1 = Φxk + Γ̃ũk + Gkvk + Ξfk

yk = Cxk + Ffk + wk .
(6.59)

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 249

with the following statistical properties:

[i.] {vk}and {wk} are two discrete Gaussian white noises such that

E [vk] = 0d+1 , E [wk] = 0 , E [dk] = 0d+1

E
[
wkwT

j

]
= Q.δkj , E

[
vkvT

j

]
= R̃.δkj i �= j

R̃ =
[

R 0
0 σ2

]
.

[ii.] The measurement noise sequence {wk} and the system noise sequence {vj} are
not correlated E

[
wkvT

j

]
= 0 ∀k, j.

[iii.] The initial state x0 is a random Gaussian variable with mean m0 and covariance
matrix P0 :

E [x0] = m0 , E
[
(x0 − m0)(x0 − m0)T

]
= P0 .

[iv.] The initial state x0 and noises vk and wk are not correlated

E
[
x0 vT

k

]
= 0, E

[
x0 wT

k

]
= 0.

With the NCS model given in (6.58), consider the adaptive Kalman filter given by the
recursive algorithm for residual generation⎧⎨⎩

x̂k+1/k = Φx̂k/k−1 + Γ̃ũk + ΦKk (yk − Cx̂k/k−1)
Kk = Pk/k−1C

T (CPk/k−1C
T + R)−1

Pk+1/k = ΦPk/k−1ΦT + Gk (Δuk)R̃GT
k (Δuk) − ΦKkCPk/k−1ΦT .

(6.60)

The innovation sequence γk = yk − Cx̂k can thus be used for FDI.

6.5.2. Adaptive thresholding

Threshold schemes attempt to analyze residuals signals by comparing their val-
ues against a threshold and deciding whether or not a fault has occurred using some
decision logic. Although threshold methods are the most common in the literature
[STO 03; CAS 05], these methods have always imposed significant trade-offs between
false alarms and missed detections. The work presented in this section proposes a
methodology for the implementation of dynamic threshold strategies. The threshold
must be adapted in order to minimize false alarms as well as missed detections in the
case residuals are affected by network communication effects such as transmission
delays of information dropout.

www.it-ebooks.info

http://www.it-ebooks.info/

250 Networked Control Systems Co-design

6.5.2.1. Optimization-based approach for threshold selection

The approach proposed for threshold adaptation is based on the optimization of
a performance index related to the maximum amplitude of the residual with respect
to the possible variation of the delays inside a bounded region. In [SAU 06], the
following multiple input system is considered:

ẋ(t) = Ax(t) +
m∑

i=1

Biui(t) + Ef(t), y(t) = Cx(t), (6.61)

where the control input is{
ui(t, τi) = ui(kh − 1), kh ≤ t ≤ kh + τi

ui(t, τi) = ui(kh), kh + τi ≤ t ≤ (k + 1)h.
(6.62)

A state observer for the system described in (6.61) is given by⎧⎨⎩ ˙̂x(t) = Ax̂(t) +
m∑

i=1
Biui(t) + L(y(t) − ŷ(t))

ŷ(t) = Cx̂(t),
(6.63)

with L being defined by Φ − LC = exp { (A − LC)h} . Since the control input
applied to the observer is ui(t, 0) = ui(kh), kh ≤ t ≤ (k + 1)h, the estimation error
ε(t) = x(t) − x̂(t) and the residual propagate as⎧⎨⎩ ε̇(t) = (A − LC)ε(t) +

m∑
i=1

Bi(ui(t, τi) − ui(t, 0))

r(t) = TCε(t).
(6.64)

The minimum threshold for fault detection can be considered as a performance
index to be maximized for the dynamic system described by (6.64). Thus, the opti-
mization problem is to find the inputs u∗

i
(t) on the time interval [kh, (k + 1)h] so that

the performance index Ψ(t = kh) = |r(kh)| is maximized. For this purpose, let us
introduce the Hamiltonian

H = λT [(A − LC)ε(t) +
m∑

i=1

Bi(ui(t, τi) − ui(t, 0))], (6.65)

where λ is the co-state vector. The solution of the optimization problem satisfies the
state and co-state equations

ε̇∗(t) =
∂H

∂λ∗ = (A − LC)ε∗(t) +
n∑

i=1

bi(u∗
i (t) − ui(t, 0)) (6.66)

λ̇∗(t) = −∂H

∂ε∗
= −(A − LC)λ∗(t), (6.67)

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 251

where ∗ stands for “optimum” and u∗
i (t) = ui(t, τ∗

i) is given by the application of the
Pontryagin minimum principle

τ∗
i = Arg(Min(H)).

0≤τi ≤τ +
i

(6.68)

In addition to the initial conditions ε(kh), the terminal boundary conditions for this
fixed terminal time problem are[

∂Ψ
∂ε

− λ(t)
]

t=(k+1)h
= 0, (6.69)

which gives

λ((k + 1)h) = TC

⎡⎢⎣ sgn(ε1(k + 1)h
...

sgn(εn (k + 1)h

⎤⎥⎦ . (6.70)

Thus, the optimization consists of solving state and co-state equations with bound-
ary conditions while simultaneously selecting the values τ∗

i that maximize H . The
optimization problem is very simple since over the time frame of the optimization
window only one commutation of the control input is applied. Therefore, the solution
to (6.65) is given by

τ∗ = Arg(Min(λT
m∑

i=1

BiΔui(t, τi))

0≤τ≤τ +

). (6.71)

Obviously, the optimum for τ∗
i (either τ+

i or 0) depends solely on the sign of the terms

in λT
m∑

i=1
Biui(t, τi), which requires to know the sign of λ(t). This can be achieved

when solving (6.67). Since the inputs are constant over the considered time interval,
the optimization can be iterated over several sampling intervals.

6.5.2.2. Network calculus-based thresholding

The interval for the admissible delays is calculated by using the network calculus
theory. In the event of unexpected changes in the network architecture (such as a
component breakdown, change in traffic load, or broken links), the network behavior
is modified and transmission delays may vary. In this case, the threshold is adjusted
according to the network characteristic variations. With this in mind, a method based
on network calculus theory is presented in order to determine upper-bound values τca
and τsc , i.e. the control and measurement delays. Those upper-bounds will be used to
adapt the FDI residual to the delays.

The upper-bound delay estimation algorithm applies ideas from the network calcu-
lus theory ([CRU 91; GEO 05]). The network architecture considered corresponds to

www.it-ebooks.info

http://www.it-ebooks.info/

252 Networked Control Systems Co-design

Dmux Dmemory Doutput Dswitch

CoutCin

C C

C

Figure 6.13. Model of a two-port switch in a full-duplex mode based on shared memory
and a cut-through management

a switched Ethernet architecture (linked to the IEEE 802.1D standard). The approach
consists in modeling switches as a combination of basic components: multiplexers,
demultiplexers and FIFO queues, as shown in Figure 6.13.

The first step in switch modeling consists of determining an upper-bound delay for
the crossing of each of the basic components. The upper-bound delay over the switch
is then the sum of the upper-bound delays over the basic components

Dswitch = Dmux + Dqueue + Doutput, (6.72)

where D̄ represents the upper-bound value of the delays.

Maximum time for crossing one Ethernet switch. In the mathematical analysis,
the traffic arriving at the switch, both periodic and aperiodic, is modeled as a leaky
bucket controller. Data will arrive at the leaky rate only if the level of the bucket is
less than the maximum bucket size. In the network calculus theory the traffic models
are represented as arrival curves, and, with the assumption that the traffic follows the
leaky bucket model and that the incoming rate is limited by the port capacity, these
curves are adjusted and have the following shape:

b(t) = min(Cint σ + ρt), (6.73)

where σ is the maximum amount of data that can arrive in a burst, ρ is an upper bound
of the average traffic flow rate, and Cin is the capacity of the input port. By the same
token, service curves are used to represent the minimal data processing activity of the
components. Typical arrival and service curves are shown in Figure 6.14.

The approach used in analyzing the upper-bound delay for crossing a two-input
multiplexer will now be summarized [GEO 05]. The approach is based on the evolu-
tion of a specific parameter, the backlog. The backlog is the number of bits waiting
in the component, and it is a measure of congestion level at the component. For the
arrival curves in Figure 6.14, the upper-bound backlog occurs at time t when the fol-
lowing curve reaches a maximum:

b1(t) + b2(t + L/C2) − Coutt, (6.74)

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 253

Data amount arrival

Cout

b1 (t)

b2 (t)

tT + L1/C1T

C1

C2

Figure 6.14. Arrival and service curves and backlog evolution inside the
two-input FIFO multiplexer

where b1 and b2 are the arrival curves of streams 1 and 2 at time t, L is the maximum
length of the frames, C2 is the capacity of the import port 2, and Cout is the capacity
of the output link. When the upper-bound backlog over the component is known, the
upper-bound delay over the component is obtained by dividing the maximum backlog
value by the capacity of the output link of the multiplexer.

In a FIFO m-inputs multiplexer, the delay for any incoming bit from the stream i
is upper-bounded by

Dmux,i =
1

Cout
min

k
Bmux,k , (6.75)

where Bmux,k is an upper bound of the backlog in the bursty periods υk , so that 1 ≤
k ≤ m.

For k = i, the bursty period is defined by υi = σi/(Ci − ρi) and the backlog is
upper-bounded by

Bmux,i =
m∑

z=1;z �=i

(
σz + ρz

(
υi +

Lz

Cz

))
+ υi (Ci − Cout), (6.76)

where σi is the burstiness of stream i, ρi is the average rate of arrival of the data of
stream i, Li is the maximum length of the frames of stream i, and Ci is the capacity of
the import port i. For k �= i so that 1 ≤ k ≤ m, we have υk = σk/(Ck −ρk)−Lk/Ck

and

Bmux,i =
m∑

z=1;z �=k

(
σz + ρz

(
υk + Lz

Cz

))
+ υk (Ck − Cout)

−ρi
Li

Ci
+ Lk .

(6.77)

For the FIFO queue, the delay of any byte is upper-bounded by

Dqueue =
1

Cout

(Cin − Cout)
Cin − ρin

σin . (6.78)

www.it-ebooks.info

http://www.it-ebooks.info/

254 Networked Control Systems Co-design

Dswitch(s0, r0) (s1, r1) (s2, r2)
Dswitch

Figure 6.15. Burstiness along a switched Ethernet network

For the demultiplexer, it is assumed that the time required to route the output port
is relatively negligible compared to the other delays, i.e. the demultiplexer does not
generate delays.

Maximum end-to-end delays for crossing a switched Ethernet network. The
computation of the upper-bound end-to-end delays requires that special attention be
paid to the input parameters of previous equations. The maximum delay value D
depends on the leaky bucket parameters: the maximum amount of traffic σ that can
arrive in a burst, and the upper bound of the average rate of the traffic flow ρ. In order
to calculate the maximum delay over the network, it is therefore necessary that the
envelope (σ, ρ) be known at every point in the network. However, as shown in Figure
6.15, only the initial arrival curve values

(
σ0 , ρ0

)
are usually known, and so the values

for other arrival curves have to be determined.

To calculate all the arrival curve values, the following equations may be used:

σout = σin + ρinD
ρout = ρin.

(6.79)

For example, with the arrival curve
(
σ1 , ρ1

)
shown in Figure 6.14, the envelope after

the first switch is (
σ1 , ρ1) =

(
σ0 + ρ0Dswitch , ρ0) . (6.80)

The last part of the method used to obtain the upper-bounded delay estimate is the
resolution of the burstiness characteristic of each flow at each point in the network.
First, the burstiness values are determined by solving the equation system⎡⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

an2 an2 · · · ann

⎤⎥⎥⎥⎦ · · ·

⎡⎢⎢⎢⎣
σ1
σ2
...

σn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b1
b2
...

bn

⎤⎥⎥⎥⎦ . (6.81)

Once the above equation has been solved, the upper-bound end-to-end delays are ob-
tained from

Di =
σN

i − σo
i

ρi
, (6.82)

where N is the number of crossed switches.

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 255

Controller
observer

Actuator Sensor

Switch A

s 2
sc

s 3
sc s 0

sc

s 1
sc

Work station

Figure 6.16. A redundant switched architecture

The network shown in Figure 6.16 interconnects the controller, actuator, and the
sensor using a redundant switched Ethernet architecture, so that if a link between two
switches breaks down, the network will be able to carry on the communications. The
architecture here is also shared with applications other than the control of the system,
so that a workstation is also linked to the network.

Traffic arrivals are modeled as follows: periodical exchanges from the sensor to
the controller/observer are constrained by the arrival curve bsc(t) = σsc + ρsct and
exchanges from the controller to the actuator by bca(t) = σca + ρcat. At the same
time, the workstation sends frames to the controller. Traffic here is constrained by the
arrival curve bw (t) = σw + ρw t.

Now consider the delay supported by the frames sent by the sensor. Delays depend
on the network topology, and consequently the communication path. In a switched
Ethernet network, the Spanning Tree Protocol is used to define an active topology
in which the loops are eliminated. Firstly, it is assumed that a hierarchical active
topology is defined, so that the measures will pass through switch A.

The determination of an upper-bound τsc consists of writing equation (6.81). To
do this for each flow, it is necessary to write the expression of the output burstiness for
each switch and for each switch basic component, as defined in Figure 6.13. Formulas
are obtained according to equations (6.75), (6.78), and (6.79). Then the upper bound
is obtained with the following expression:

τsc =
σ3

sc − σo
sc

ρsc
. (6.83)

The principle will be the same for the delay supported by the control frames. This
approach enables network faults to be taken into account. Indeed, in the event of
a link failure between two switches, the Spanning Tree Protocol will define a new
active topology and new communications paths. By applying the previous analysis
once again, a new upper-bound τsc may be determined. This will be useful to control
the adaptation of the FDI algorithms to the network evolution.

www.it-ebooks.info

http://www.it-ebooks.info/

256 Networked Control Systems Co-design

Network

ut yt

Controller

FDI
module

Residual signal

Decision
Making

Network
calculus

τi

τi

t k
ca

Trafic load
Net topology

....

FDI

faultfault fault

SensorsPlantActuators

t k
sc

Figure 6.17. A global FDI scheme with an adaptive threshold

The global FDI scheme for the NCS is presented in Figure 6.17. The block enti-
tled Network Calculus provides the upper bound value of the networked delay to the
decision making module. Thus, the residual are evaluated according to the network
behavior.

6.5.3. Fault isolation filter design in the presence of packet dropouts

In the case of packet dropouts, the subsequent problem to deal with is to design a
linear filter the inputs of which are the system measurable outputs and control inputs
which generate residual signals that are sensitive to fault and not affected by data
dropouts.

The objectives of the filter are (i) to construct a fault isolation filter (FIF) for FDI of
multiple faults, (ii) to design a free parameter ensuring that the energy ratio between
useful and disturbance signals ωk defined on the fault indicators is maximized. In
what follows, actuators – or component faults – and data dropouts are considered as
unknown inputs, which are considered as faults. The following definitions are needed
to specify the properties of the detection filter.

DEFINITION.– The NCS 6.48 is said to have fault detectability index ρ = {ρ1 , ρ2
. . . , ρq} if ρi = min{ν : CΦν−1fi �= 0, ν = 1, 2 . . .}.

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 257

DEFINITION.– If NCS has finite detectability indexes, the fault detectability matrix Ψ
is defined as Ψ = CD, with D = [Φρ1 −1f1 · · · Φρi −1fi · · · Φρq −1fq].

The following FIF is now introduced as the residual generator for the NCS system
described by (6.48): {

x̂k+1 = Φx̂k + Γuk + L(yk − Cx̂k),
rk = T (yk − Cx̂k). (6.84)

Let Gf r (z) be the transfer function from fk to the output residual rk . Then the fol-
lowing theorems are presented to design L and T so that

Gf r (z) = TC(zI − (Φ − LC))−1F
= diag { z−ρ1 , . . . , z−ρs } ,

(6.85)

where (6.85) makes possible the isolation of multiple faults and dropouts.

THEOREM 1. For the NCS system (6.48) and the residual generator (6.84), the trans-
fer function from faults to residual exhibits a diagonal structure if the following con-
ditions are met: {

(Φ − LC)Ψ = 0
TC = I.

(6.86)

THEOREM 2. Given the condition rank(D) = s, the solutions of (6.85) can be
parameterized as K = ωΠ+K̄kΣ, L = Π with Σ = β(I−ΨΠ) and Π = Ψ+ , ω =
AD, where K

k
∈ �nxm−p−q represents the free parameters to be designed, Ψ+ is

the pseudoinverse [32] of Ψ and β is an arbitrary matrix chosen so that rank(Σ) =
m − s.

From the previous theorem, the FIF is rewritten with the free parameter K̄k as{
x̂k+1 = Φx̂k + Γuk + ωαk + K̄k

∑
(yk − Cx̂)

αk = Π(yk − Cx̂k), (6.87)

where αk is a deadbeat filter of fault nk , given by

αk = α̃k + [f 1
k−ρ1

· · · fi
k−ρi

· · · fs
k−ρs

]T . (6.88)

The state estimation errors without faults propagates as

ε̃k+1 = (Φ − LC)ε̃k + wk −Kvk , (6.89)

where the fault ni
k−ρi

of detectability index k − ρi directly affects the reduced output
residual rk with a time delay equal to its detectability index. rk can also be viewed
as a stochastic deadbeat observer of the fault magnitudes. Furthermore, it is easy to
show that αk = Π(yk −Cx̂k) is decoupled from the faults, while γk = Σ(yk −Cx̂k)
is sensitive to the faults since ΠD = I , and ΠΣ = 0. The FIF design can then be used
in different ways, depending on rank(D).

www.it-ebooks.info

http://www.it-ebooks.info/

258 Networked Control Systems Co-design

Fault and data dropout isolation: when the condition rank(Ψ) = p + q is verified,
fault and dropout isolation can be achieved with a residual generator (6.59).

Fault diagnosis robust versus data dropouts: if the conditions rank(CΨf) = q
and rank(CΨū) = p are not satisfied, then multiple isolation is no longer
possible. The free parameter K̄k is independent of the multiple-fault isolation
because any K̄k ensures (6.85), if we suppose that the actuator and component
faults are the unknown inputs to be isolated, while data dropouts represent dis-
turbances. The transfer function from ūk to α̃k is given by

Gūα̃ (z) = ΠC(zI − (Φ − LC))−1Γ. (6.90)

The introduction of K̄k gives an extra degree of freedom to satisfy some other
design requirements. One remaining element would be to design the free pa-
rameters K̄k , satisfying the constraints as

‖Gūα̃ (z)‖∞ := sup
‖α̂ ‖2
‖ū ‖2

< γ. (6.91)

Control accommodation to dropout: if we consider that rank(CΨū) = p and that
there are no faults, then data dropouts can be detected and isolated. With

αk = α̃k + [ū1
k−ρ1

· · · ūi
k−ρi

· · · ūp
k−ρp

]T (6.92)

the fault free state estimate is sent to the controller, while an additive control
signal uad is used to compensate for the fault effect on the system. Therefore,
the total control law applied to the system is given by

uk = −Kx̂k + uad
k . (6.93)

The additional control law uad must be computed so that the faulty system is as
close to the nominal one as possible. In other words, uad must satisfy

Γuad
k + Γūk = 0. (6.94)

Using the estimation of the fault magnitude described in the previous section,
the solution for (6.94) can be obtained by the following relation if matrix B is
full row rank:

uad i

k = −δ̂ui
k−ρi

, (6.95)

where δ̂ is an estimate of the data dropout indicator.

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 259

6.5.4. Estimation and diagnosis with data loss

As stated above, the observer bank is an appealing technique among the FDI com-
munity. For network-controlled systems, two observer bank schemes can be imple-
mented. The first one supposes that a centralized computation unit is implemented
while the second scheme makes use of sensor nodes with enough computation capa-
bilities to locally estimate the state [SHI 08]. In the first case, raw data are transmitted
to a unique computational unit, leading to a centralized observer bank. In the second
case, the observers are distributed over the system. In this case, each observer can
only make use of local data, or else data exchanges may be necessary. When data are
transmitted, these can be delayed or even lost. The observer must therefore tackle this
problem.

This section considers the Kalman Filter implementation [VER 07] when measure-
ments are transmitted through a network. Previous works (see for instance [SIN 04]
[HES 07] [SCH 07] [HUA 07] [SUN 08] [EPS 08] and references therein) suppose
that the output vector yk ∈ �m is sent in a unique packet that may be lost. There-
fore, when a packet is dropped, all the measurements at time k are lost. However,
depending on the topology of the system, on the protocol used, etc., measurements
can be sent independently (or at least in several sets). Thus, each output (or set of
outputs) is likely to be lost. Let us now assume that each measurement yi

k is to be sent
independently, and so the Kalman Filter is modified in order to deal with data loss.

6.5.4.1. Problem formulation

Consider the linear discrete-time varying stochastic system

xk+1 = Φkxk + υk (6.96)

yk = Ckxk + νk , (6.97)

where Φk ∈ �n×n , Ck ∈ �m×n . υk and νk are two mutually independent sequences
of independent and identically distributed (i.i.d.) Gaussian white noises with covari-
ance matrices Qk and Rk , respectively. Moreover, the pair (Φk , Ck) is supposed to
be observable and the pair (Φk ,Q

1/2
k) controllable. The packet loss can be modeled

with an i.i.d. Bernoulli binary random sequence [SIN 04; SCH 07]. This model is
chosen for mathematical tractability. The stability of the Kalman Filter is proved via a
modified algebraic Riccati equation (MARE). Other authors (e.g. [XIE 08; HUA 07])
implement a discrete-time binary Markov model. In contrast to the i.i.d. model, the
Markov chain captures the temporal correlation of the channel variation. With the

www.it-ebooks.info

http://www.it-ebooks.info/

260 Networked Control Systems Co-design

Markov packet loss model, stability results can also be achieved [HUA 07]. In both
contexts, the Kalman Filter equations become

x̂k+1/k = Φk x̂k/k (6.98)

Pk+1/k = ΦkPk/kΦT
k + Qk (6.99)

x̂k+1/k+1 = x̂k+1/k + γk+1Kk+1(yk+1 − Ck+1 x̂k+1/k) (6.100)

Pk+1/k+1 = Pk+1/k − γk+1Kk+1Ck+1Pk+1/k , (6.101)

where ΦT denotes the transpose of matrix Φ. γk+1 = 1 (0 respectively) indicates that
yk+1 has (has not respectively) been received.

Kk+1 = Pk+1/kCT
k+1[Ck+1Pk+1/kCT

k+1 + Rk+1]−1 (6.102)

is the gain of the Kalman filter. Matrix P , representing the observer state covariance,
is now a random variable because of the randomness of γ. In (6.100), the whole
observation vector y is supposed to be lost or received. However, the components of y
might not be put in a unique packet, leading to the loss of a subset of the output data.
This gives rise to a new Kalman filter with partial data loss which is now presented.

6.5.4.2. Kalman filter with partial data loss

The estimation problem is reformulated as follows. In what follows, the lost mea-
surement is replaced with zero and the standard deviation of the associated noise is set
to an arbitrarily large value. Consider matrix Mk ∈ �m×m defined as follows:

Mk (i, j) = 0 if i �= j (6.103)

Mk (i, i) = 1 if the measurement is present (6.104)

Mk (i, i) = λi � 1 if the measurement is not received. (6.105)

Denote R̄k the covariance matrix of the noise of the measurement vector when some
elements of yk = [y1

k , · · · , yi
k , · · · , ym

k]T may be lost. R̄k can be expressed with

R̄k = MkRkMk . (6.106)

Therefore, if yi
k is not received, its associated noise variance becomes σ̄i

2 = λ2
i σ

2
i .

The Kalman filter formulation can now be derived. Note that there is no change in
the filter structure, in contrast to the work in [CAO 09] where the lines in matrix C
corresponding to lost data are removed.

Initialization: initial state x0 , initial covariance matrix P0 = λI , where I is the
identity matrix and λ is large.

Prediction: the prediction step is unchanged

x̂k+1/k = Φk x̂k/k (6.107)

Pk+1/k = ΦkPk/kΦT
k + Qk. (6.108)

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 261

Computation of the Kalman filter gain:

K̄k+1 = P(k+1)/kCT
k+1[Ck+1P(k+1)/kCT

k+1 + R̄k+1]−1 (6.109)

Correction:

x̂k+1/k+1 = x̂k+1/k + K̄k+1(yk+1 − Ck+1 x̂k+1/k) (6.110)

Pk+1/k+1 = Pk+1/k − K̄k+1Ck+1Pk+1/k. (6.111)

Equation (6.109) can be reformulated using C̄k+1 = Tk+1Ck+1 , where Tk+1 =
M−1

k+1 :
K̄k+1 = Kk+1Tk+1 . (6.112)

Therefore,

Pk+1/k+1 = Pk+1/k − Pk+1/k C̄T
k+1[C̄k+1Pk+1/k C̄T

k+1 + Rk+1]−1C̄k+1Pk+1/k .
(6.113)

Note that the Kalman filter is prone to serious numerical difficulties that are well
documented [HAY 01; VER 07]. For instance, the theoretical properties of matrix P
(symmetric definite positive) might be lost during the computation performed using
(6.101), (6.111) or (6.113). To numerically ensure the theoretical properties of P , a
square-root version of the algorithm must be implemented. Consider Q

1/2
k , R

1/2
k , and

P
1/2
k/k are the square root factorization of Qk , Rk , and Pk/k , respectively,

Qk = (Q1/2
k)T Q

1/2
k , Rk = (R1/2

k)T R
1/2
k , Pk/k = (P 1/2

k/k)T P
1/2
k/k . (6.114)

The factorized version of the Kalman filter given by equations (6.107)–(6.111) is now
derived.

Initialization: initial state x0 , initial covariance matrix P0 = (
√

λ)2I , where I is the
identity matrix and λ is large.

Prediction:
x̂k+1/k = Φk x̂k/k (6.115)

P
1/2
k+1/k is computed thanks to a QR factorization

H

(
Q

1/2
k

P
1/2
k/k ΦT

k

)
=

(
P

1/2
k+1/k

0

)
. (6.116)

Computation of the Kalman filter gain: the Kalman gain is obtained with a second
QR factorization

H

(
R

1/2
k+1Mk+1 0

P
1/2
k+1/kCT

k+1 P
1/2
k+1/k

)
=

(
U Z

0 P
1/2
k+1/k+1

)
UK̄T

k+1 = Z.

(6.117)

www.it-ebooks.info

http://www.it-ebooks.info/

262 Networked Control Systems Co-design

Correction:

x̂k+1/k+1 = x̂k+1/k + K̄k+1(yk+1 − Ck+1 x̂k+1/k). (6.118)

Note that the QR factorization may be partial in (6.117), the aim being to obtain a zero
matrix under matrix U . This partial factorization decreases the computational cost.

In the case a filter bank is implemented for diagnostic purpose, the Kalman filter
with partial loss as proposed in equations (6.115)–(6.118) can be applied in order to
take into account the loss of data.

6.6. Conclusion and perspectives

This chapter has reviewed various concepts that are encountered in FDI and in
FTC. The concept of an NCS was then introduced and two drawbacks induced by the
network reviewed, namely, packet dropouts, and packet delays. Several approaches to
deal with FDI and FTC in the presence of network drawbacks were exposed. These
methodologies can be split in pragmatic solutions and advanced techniques.

In the first set of solutions, the problem of data synchronization was presented
together with two solutions (clock synchronization, data reconstruction). Moreover,
it was shown that packet dropouts imply false alarms. To avoid such false alarms,
an indicator was proposed to detect that data had not been received by the diagnostic
algorithm, and then freezing the diagnosis.

For advanced techniques, the problem of residual generation in the presence of
packet delays induced by the network was first tackled. An adaptive Kalman filter that
takes account such drawbacks was presented. Adaptive threshold techniques were
then considered. The first one makes use of an optimization approach while the sec-
ond one is based on network calculus. The last part of this chapter dealt with the
problem of packet dropouts. The first solution proposed was the design of a FIF that
is insensitive to packet dropouts. The second approach implemented a Kalman filter
that is adaptive to data partial loss: the Kalman filter structure remained unchanged
and the missing data was replaced with 0, assuming that the amount of lost data was
arbitrarily low.

Several techniques presented in this chapter will be exemplified in the next chapter.

6.7. Bibliography

[AUB 93] AUBRUN C., SAUTER D., NOURA H., AND ROBERT M., Fault diagnosis and re-
configuration of systems using fuzzy logic: application to a thermal plant, International
Journal of System Sciences, vol. 24, num. 10, p. 1945–1954, 1993.

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 263

[BAN 99] BANDA S., Special issue on reconfigurable flight control, International Journal of
Robust and Nonlinear Control, vol. 9, num. 14, 1999.

[BAS 93] BASSEVILLE M., AND NIKIFOROV I., Detection of abrupt changes – Theory and
applications, Prentice Hall, Englewood Cliffs, NJ, Information and System Sciences Series,
1993.

[BER 07] BERBRA C., GENTIL S., LESECQ S., AND THIRIET J.-M., Co-design for a safe
networked control DC motor, 3rd IFAC Workshop on networked control systems tolerant to
faults Necst, Nancy, France, June 2007.

[BLA 03] BLANKE M., KINNAERT M., LUNZE J., AND STAROSWIECKI M., Diagnosis and
Fault Tolerant Control, Springer-Verlag, Berlin, 2003.

[BLA 06] BLANKE M., KINNAERT M., LUNZE J., STAROSWIECKI M., AND SHRODER J.,
Diagnosis and Fault-Tolerant Control, Springer-Verlag, New York, 2006.

[BOD 97] BODSON M., AND GROSZKIEWICZ J., Multivariable adaptive algorithms for recon-
figurable flight control, IEEE Transactions on Control System Technology, vol. 5, num. 2,
p. 217–229, 1997.

[CAO 09] CAO X., CHEN J., GAO C., AND SUN Y., An optimal control method for appli-
cations using wireless sensor/actuators networks, Computer and Electrical Engineering,
vol. 35, num. 5, p. 748–756, 2009.

[CAS 05] CASAVOLA A., FAMULARO D., AND FRANZE G., Deconvolution Scheme for Fault
Detection and Isolation of Uncertain Linear Systems – An LMI approach, Automatica,
vol. 41, num. 8, p. 1463–1472, 2005.

[CHE 98] CHEN J., PATTON R., AND CHEN Z., An LMI approach to fault tolerant control of
uncertain systems, IEEE ISIC/CIRA/ISAS Joint Conference, Gaithersburg, USA, p. 175–
180, November 1998.

[CRU 91] CRUZ R., A calculus for network delay: Part 1: network elements in isolation, IEEE
Transactions on Information Theory, vol. 37, p. 114–141, 1991.

[EPS 08] EPSTEIN M., SHI L., TIWARI A., AND MURRAY R., Probabilistic performances of
state estimation across a lossy network, Automatica, vol. 44, p. 3046–3053, 2008.

[GAO 91] GAO Z., AND ANTSAKLIS P., Stability of the pseudo-inverse method for reconfig-
urable control, International Journal of Control, vol. 53, num. 3, p. 717–729, 1991.

[GAO 92] GAO Z., AND ANTSAKLIS P., Reconfigurable control system design via perfect
model following, International Journal of Control, vol. 56, num. 4, p. 783–798, 1992.

[GEO 05] GEORGES J.-P., DIVOUX T., AND RONDEAU E., Confronting the performances
of a switched ethernet network with industrial constraints by using the Network Calculus,
International Journal of Communication Systems, vol. 18, num. 9, p. 877–903, 2005.

[GER 98] GERTLER J., Fault Detection and Diagnosis in Engineering Systems, Marcel
Dekker, New York, 1998.

[HAY 01] HAYKIN S., Kalman Filters, Kalman Filtering and Neural Networks, John Wiley &
Sons Inc., p. 1–22, 2001.

www.it-ebooks.info

http://www.it-ebooks.info/

264 Networked Control Systems Co-design

[HES 07] HESPANHA J., NAGHSHTABRIZI P., AND XU Y., A survey of recent results in net-
worked control systems, Proceedings of the IEEE, vol. 95, num. 1, p. 138–162, 2007.

[HUA 07] HUANG M., AND DEY S., Stability of Kalman filtering with Markovian packet
losses, Automatica, vol. 43, num. 4, p. 598–607, 2007.

[ISE 06] ISERMANN R., Fault diagnosis systems: An Introduction from Fault Detection to
Fault Tolerance, Springer-Verlag, Berlin, 2006.

[JIA 98] JIANG J., AND ZHAO Q., Fault tolerant control systems synthesis using imprecise
fault identification and reconfigurable control, IEEE ISIC/CIRA/ISAS Joint Conference,
Gaithersburg, USA, p. 169–174, November 1998.

[JOS 87] JOSHI S., Design of failure accommodating multi loop LQG type controllers, IEEE
Transactions on Automatic Control, vol. 32, num. 8, p. 740–741, 1987.

[KWO 95] KWONG W., PASSINO K., LAUKONEN E., AND YURKOVITCH S., Expert super-
vision of fuzzy learning systems for fault tolerant aircraft control, Proceedings of the IEEE,
vol. 83, num. 3, 1995.

[LAP 92] LAPRIE J.-C., Ed., Dependability: Basic Concepts and Terminology, Springer-
Verlag, Berlin, 1992.

[LOO 85] LOOZE D., WEISS J., ETERNO J., AND BARETT N., An automatic redesign ap-
proach for restructurable control systems, IEEE Control System Magazine, vol. 5, num. 2,
p. 16–22, 1985.

[MAH 03] MAHMOUD M., JIANG J., AND ZHANG Y., Active fault tolerant control systems:
stochastic analysis and synthesis, vol. 287 of Lecture notes in control and information
sciences, Springer, Berlin, 2003.

[MAY 91] MAYBECK P., Application of multiple model adaptive algorithms to reconfigurable
flight control, IEEE Transactions on Aerospace and Electronic Systems, vol. 27, num. 3,
p. 470–480, 1991.

[MOR 90] MORSE W., AND OSSMAN K., Model following reconfigurable flight control sys-
tem for the AFTI/F1-16, Journal of Guidance, vol. 13, num. 6, p. 969–976, 1990.

[MUR 96] MURAD G., POSTHETHWAITE I., AND GU D., A robust design approach to in-
tegrated controls and diagnostics, 13th IFAC World Congress, San Francisco, CA, USA,
p. 199–204, July 1996.

[NET 88] NETT C., JACOBSON J., AND MILLER A., An integrated approach to control and
diagnostics: the 4-parameter controller, IEEE American Control Conference, Atlanta, USA,
p. 824–835, June 1988.

[NOU 00] NOURA H., SAUTER D., HAMELIN F., AND THEILLIOL D., Fault tolerant control
of dynamic systems: application to a winding machine, IEEE Control System Magazine,
vol. 5, p. 33–49, 2000.

[OCH 91] OCHI Y., AND KANAI K., Design of restructurable flight control systems using
feedback linearization, Journal of Guidance, vol. 14, num. 5, p. 903–911, 1991.

[OHL 07] OHLIN M., HENRIKSSON D., AND CERVIN A., TrueTime 1.5 – Reference Manual,
January 2007.

www.it-ebooks.info

http://www.it-ebooks.info/

FDI and FTC 265

[PAT 97] PATTON R., Fault tolerant control: the 1997 situation, 3rd IFAC Safeprocess Confer-
ence, vol. 2, Kingston upon Hull, UK, p. 1033–1055, August 1997.

[PAT 00] PATTON R., FRANK P., AND CLARK R., Issues of Fault Diagnosis for Dynamic
Systems, Springer, London, 2000.

[RAU 95] RAUSCH H., Autonomous control reconfiguration, IEEE Control System Magazine,
vol. 15, num. 6, p. 37–49, 1995.

[SAU 98] SAUTER D., HAMELIN F., AND NOURA H., Fault tolerant control in dynamic sys-
tems using convex optimization, IEEE ISIC/CIRA/ISAS Joint Conference, Gaithersburg,
USA, p. 187–192, November 1998.

[SAU 06] SAUTER D., AND BOUKHOBZA T., Robustness against unknown networked in-
duced delays of observer based, 6th IFAC Symposium Fault Detection and Safety of Tech-
nical Processes, Beijing, China, p. 331–336, August 2006.

[SCH 07] SCHENATO L., SINOPOLI B., FRANCESCHETTI M., POOLLA K., AND SASTRI

S., Fundations of control and estimation over lossy networks, Proceeedings of the IEEE,
vol. 95, num. 1, p. 163–187, 2007.

[SHI 08] SHI L., JOHANSSON K., AND MURRAY R., Estimation over wireless sensor net-
works: tradeoff between communication, computation and estimation qualities, 17th IFAC
World Congress, Seoul, Korea, July 2008.

[SIN 04] SINOPOLI B., SCHENATO L., FRANCESCHETTI M., POOLLA K., JORDAN M., AND

SASTRY S., Kalman filtering with intermittent observations, IEEE Transactions on Auto-
matic Control, vol. 49, num. 9, p. 1453–1464, 2004.

[STA 08] STAROSWIECKI M., AND CAZAURANG F., Fault recovery by nominal trajectory
tracking, American Control Conference ACC’08, Seattle, USA, p. 1070–1075, June 2008.

[STO 03] STOUSTRUP J., NIEMANN H., AND LA COUR HARBO A., Threshold functions for
fault detection and isolation, American Control Conference ACC’03, vol. 2, Denver, USA,
p. 1782–1787, June 2003.

[SUN 08] SUN S., XIE L., XIAO W., AND SOH Y., Optimal linear estimation for systems with
multiple packet dropouts, Automatica, vol. 44, p. 1333–1342, 2008.

[THE 98] THEILLIOL D., NOURA H., AND SAUTER D., Evaluation of a fault-tolerant con-
trol design for actuator faults, IEEE Conference on Decision and Control, Tampa, USA,
December 1998.

[TYL 94] TYLER M., AND MORARI M., Optimal and robust design of integrated control and
diagnostic modules, IEEE American Control Conference, Baltimore, USA, p. 2060–2064,
June 1994.

[VEI 92] VEILLETTE R., MEDANIC J., AND PERKINS W., Design of reliable control systems,
IEEE Transactions on Automatic Control, vol. 37, num. 3, p. 290–304, 1992.

[VEN 03a] VENKATASUBRAMANIAN V., RENGASWAMY R., AND KAVURI S., A review of
process fault detection and diagnosis. Part 1: quantitative model-based methods, Computer
and Chemical Engineering, vol. 27, p. 293–311, 2003.

www.it-ebooks.info

http://www.it-ebooks.info/

266 Networked Control Systems Co-design

[VEN 03b] VENKATASUBRAMANIAN V., RENGASWAMY R., AND KAVURI S., A review of
process fault detection and diagnosis. Part 2: qualitative models and search strategies, Com-
puters and Chemical Engineering, vol. 27, p. 313–326, 2003.

[VEN 03c] VENKATASUBRAMANIAN V., RENGASWAMY R., KAVURI S., AND YIN K., A
review of process fault detection and diagnosis. Part 3: process history based methods,
Computers and Chemical Engineering, vol. 27, p. 327–346, 2003.

[VER 07] VERHAEGEN M., AND VERDULT V., Filtering and System Identification, Cam-
bridge University Press, Cambridge, UK, 2007.

[WU 98] WU E., ZHANG Y., AND ZHOU K., Control effectiveness estimation using an
adaptive Kalman estimator, IEEE ISIC/CIRA/ISAS Joint Conference, Gaithersburg, USA,
p. 181–186, November 1998.

[XIE 08] XIE L., AND XIE L., Stabilizing sampled-data linear systems with Markovian packet
losses and random sampling, 17th IFAC World Congress, Seoul, Korea, July 2008.

[YE 04] YE H., WANG G., AND DING S., A new parity space approach for fault detection
based on stationary wavelet transform, IEEE Transactions on Automatic Control, vol. 49,
num. 2, p. 281–287, 2004.

[ZHA 98] ZHAO Q., AND JIANG J., Reliable state feedback control system design against
actuator failures, Automatica, vol. 34, num. 10, p. 1267–1272, 1998.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Implementation: Control and Diagnosis for an
Unmanned Aerial Vehicle

7.1. Introduction

Embedded systems are gaining ground in high-tech industries such as the auto-
motive industry or aeronautics. Most of these systems are network controlled, which
raises new control and diagnostic research problems. Analyzing, prototyping, simulat-
ing, and guaranteeing the safety of these systems are very challenging topics. Models
are needed for the mechatronic continuous system, for the discrete controllers and di-
agnosers, and for network behavior. Real-time properties (task response times) and the
network Quality of Service (QoS) influence the controlled system properties (Quality
of Control, QoC).

Miniature unmanned aerial vehicles (UAVs) present unique challenges compared
with most robotic applications. While fixed-wing vehicles have extensive applica-
tions for military and meteorological purposes due to their range, speed and flight
duration, there is a distinct preference for rotor-craft vehicles in indoor and outdoor
civilian applications. Thanks to their hover capability, they tend to be useful for many
exploration missions such as video supervision of road traffic, surveillance of urban
districts, forest fire detection or building inspection. Compared to aircrafts, they rep-
resent lightweight, low-cost systems with sensors and actuators that are often subject
to faults (offsets, drifts). Consequently, their maintenance is essential, and, at times,
challenging. Moreover, even in the presence of faults, the system must still be able
to exhibit given properties, such as stability or precision. Hardware redundancy is not

Chapter written by Cédric BERBRA, Sylviane GENTIL, Suzanne LESECQ and Daniel SIMON.

267

www.it-ebooks.info

http://www.it-ebooks.info/

268 Networked Control Systems Co-design

Figure 7.1. The quadrotor

conceivable, not only due to cost but also due to constraints on weight, energy, and
space. Therefore, a diagnostic module together with a fault-tolerant control (FTC)
must be embedded in the UAV to guarantee their properties.

In this chapter, a quadrotor is taken as an example of an embedded system whose
safety is critical. It consists of a mini helicopter, the four blades of which are actuated
by four identical DC motors. It is equipped with an inertial measurement unit (IMU)
for system attitude positioning (Figure 7.1). The quadrotor is a partially redundant
structure, excellent for applying FDI methods, as well as designing FTC schemes.

Safety critical real-time systems must obey stringent constraints on resource usage
such as memory, processing power, and communication, which must all be verified
during the design stage. A hard real-time approach is most generally used because
it guarantees that all timing constraints are verified. However, it generally results
in oversizing the computing power, which is not always compatible with embedded
applications. Thus, the soft real-time approach is preferred, since it tolerates occa-
sionally missed deadlines. Interactions between the computing system and the control
system must be carefully observed whenever the soft real-time approach is used.

The experiment presented in this chapter aims at illustrating network controlled
systems, and is an intermediate platform that precedes the definitive one, and is de-
signed step by step. Each of these steps will be described in succession. The quadrotor
will first be classically controlled and diagnosed and the interactions between the con-
troller, the diagnoser, and the system will be studied with Matlab/Simulink, which are
standard tools for simulating a controlled physical system (section 7.2). Then, the
simulated quadrotor will be controlled and diagnosed through a network, the effects

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 269

of which will be simulated with the TrueTime toolbox (section 7.3). The next step will
be to implement the so-called hardware-in-the-loop test bench. In this case, the sys-
tem will still be numerically simulated, but the control and diagnostic algorithms will
be run on the embedded target as real-time tasks, and they will communicate with the
numerical simulator through a real network. This design will be made easy thanks to
a tool named ORCCAD, which allows for the validation of the proposed real-time ar-
chitecture (section 7.4). Finally, a number of experiments will be presented to validate
some of the new ideas proposed in this book (section 7.5).

7.2. The quadrotor model, control and diagnosis

7.2.1. The system

Figure 7.2 schematically depicts the movement of the quadrotor, regarded as a
composition of two Planar Vertical Take-Off and Landing (PVTOL), the axes of which
are orthogonal, allowing for a movement of six degrees of freedom. Two frames are
considered: the inertial frame R(xn , yn , zn) and the body frame B(xb, yb , zb), which
is attached to the quadrotor with its origin at the quadrotor’s center of mass. In the fol-
lowing paragraphs, the model is focused on the quadrotor’s orientation (also named
attitude) represented by three angles: yaw, pitch, and roll (ψ, θ, φ). Given that the
front and rear motors rotate counter-clockwise, while the other ones rotate clockwise,
gyroscopic effects and aerodynamic torques tend to be canceled. The throttle input is
the sum of the thrusts of each rotor (f1 + f2 + f3 + f4). The pitch movement (θ) is
obtained by increasing (or reducing) the velocity of the rear motor while reducing (or
increasing) the velocity of the front motor. The roll movement (φ) is obtained simi-
larly using the lateral motors. The yaw movement (ψ) is obtained by increasing (or
decreasing) the velocity of the front and rear motors while decreasing (or increasing)
the velocity of the lateral motors. This can be done while keeping the total thrust T
constant, which must satisfy T ≥ mg, with g representing the earth’s gravity.

Figure 7.2. Schematic representation of the forces and frames

www.it-ebooks.info

http://www.it-ebooks.info/

270 Networked Control Systems Co-design

MEMS sensors used in the IMU may suffer several types of faults, such as bias,
gain modification, or even loss of information delivered by the sensor. These faults
must be detected and isolated early on to guarantee the system’s safety. The same
applies to the actuators: the malfunctioning of one of the motors must be detected as
quickly as possible. The behavior of the quadrotor, subject to different kinds of faults
(sensor or actuator faults), has been extensively studied to provide useful information
for the design of the diagnosis and FTC [TAN 07b].

7.2.2. The physical system model

7.2.2.1. Introduction to quaternions

The orientation (attitude) is represented in the computations used for control, ob-
servation and diagnosis by a unitary quaternion: q = [q0

−→q T]T , ‖q‖2 = 1 [CHO 92].
A rotation can be represented by a unit vector, �e, known as the Euler axis, and a
rotation angle β around this axis. The quaternion q is then defined as

q =
(

cos β
2

�e sin β
2

)
=

(
q0
�q

)
∈ H, (7.1)

where
H = {q | q = [q0 �q]T , q0 ∈ �, �q ∈ �3 , q2

0 + �qT �q = 1}. (7.2)

�q = [q1 q2 q3]T and q0 are, respectively, known as the vector and scalar parts of the
quaternion.

In attitude control applications, the unitary quaternion can be used to represent
the rotation from an inertial coordinate frame R(xn , yn , zn) located at some point in
the space (for instance, the earth North–East-Down frame, NED), to the body coordi-
nate frame B. A coordinate change from r ∈ �3 in the reference frame to b ∈ �3 in
the body frame is expressed with the rotation matrix C(q) by

b = C(q)r (7.3)

C(q) = (q2
0 −−→q T −→q)I3 + 2(−→q −→q T − q0 [−→q ×]) (7.4)

C(q) =

⎛⎝ 2(q2
0 + q2

1) − 1 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) 2(q2

0 + q2
2) − 1 2(q0q1 + q2q3)

2(q0q2 + q1q3) 2(q2q3 − q0q1) 2(q2
0 + q2

3) − 1

⎞⎠ (7.5)

with

[−→q ×] =

⎡⎣ 0 −q3 q2
q3 0 −q1
−q2 q1 0

⎤⎦ , (7.6)

where q is an efficient attitude representation from a computational point of view,
which is of great importance to embedded systems.The main advantage of using q for

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 271

the attitude representation is to avoid singularities that appear with classical angular
representations (Euler angles or Cardan angles). Nevertheless, the figures that will be
presented in this chapter will generally provide the angles (ψ, θ, φ) that are physically
easier to interpret. Changing q into the angles is a simple nonlinear transformation

ψ = arctan
(

2(q0q3 + q1q2)
1 − 2(q2

2 + q2
3)

)
(7.7)

θ = arcsin (2(q0q2 − q1q3)) (7.8)

φ = arctan
(

2(q0q1 + q2q3)
1 − 2(q2

1 + q2
2)

)
. (7.9)

The mismatch between two attitudes is computed as an error quaternion. If q repre-
sents the current attitude quaternion and qr is the reference quaternion, i.e. the desired
orientation, then the error quaternion is given by

qe = q ⊗ q−1
r = q ⊗ qr . (7.10)

Here ⊗ denotes the quaternion multiplication [CHO 92] and q−1 represents the com-
plementary rotation of quaternion q, because the quaternion is unitary. q = [q0 −−→q T]
is the conjugate of q.

7.2.2.2. The quadrotor model

With ω ∈ �3 as the angular velocity of the quadrotor in the body frame B, the
dynamic equation for the quaternion is(

q̇0

�̇q

)
= 1

2

(−�qT

I3q0 + [�q×]

)
ω (7.11)

= 1
2 Ξ(q)ω = 1

2 Ω(ω)q,

with I3 being he identity matrix of size 3 and Ω(ω) given by

Ω(ω) =
(

0 −ωT

ω −[ω×]

)
, (7.12)

where [ω×] is the self-cross-product defined in equation (7.6). The rotational motion
of the quadrotor is expressed by

If ω̇ = −[ω×]If ω + τa . (7.13)

If ∈ �3×3 is the symmetric positive definite constant inertia matrix of the quadrotor
with respect to frame B. It is assumed to be diagonal

If = diag(Ifx
, Ify

, Ifz
). (7.14)

www.it-ebooks.info

http://www.it-ebooks.info/

272 Networked Control Systems Co-design

ω∗
M i 4-motor velocities set points calculated by the controller

and sent to four local PI loops
ωg Quadrotor angular velocity measured in the body frame B
bacc Accelerometer measurements in the body frame B, (i = 1, . . . , 3)
bm ag Magnetometer measurements in the body frame B, (i = 1, . . . , 3)
τa Torque generated by the four rotors, used as control vector
q Quaternion representing the drone attitude

φ, θ, ψ Euler angles representing the drone attitude
ri , (i = 1, . . . , 6) Residuals generated to detect an accelerometer

or a magnetometer sensor fault.
ri , (i = 7, . . . , 9) Residuals generated to detect a rate gyro sensor fault.

Table 7.1. Notations

The gyroscopic torques have been neglected. ωM i (i = 1, . . . , 4) are the four motors’
velocities. The components of the torque τa ∈ �3 generated by the four rotors are
given by

τφ
a = d · b · (ω2

M 2 − ω2
M 4),

τ θ
a = d · b · (ω2

M 1 − ω2
M 3),

τψ
a = k · (ω2

M 1 + ω2
M 3 − ω2

M 2 − ω2
M 4),

(7.15)

where d is the distance from the rotors to the quadrotor’s center of mass, b and k are
two parameters depending on the air density, the radius, the shape, the pitch of the
blade and other factors. Finally, the control vector is expressed based on the velocity
of the motors

τa =

⎛⎝ 0 db 0 −db
db 0 −db 0
k −k k −k

⎞⎠
⎛⎜⎜⎝

ω2
M 1

ω2
M 2

ω2
M 3

ω2
M 4

⎞⎟⎟⎠ . (7.16)

Table 7.2 borrowed from [GUE 08] gives the values of the various parameters used
for the Matlab/Simulink simulations presented in this chapter.

d Distance between a rotor and the center of gravity 0.225 m
b Parameter for the torque computation 29.1 10−5

k Parameter for the torque computation 1.14 10−6

If Quadrotor inertia matrix diag{8.28, 8.28, 5.7}10−3 kg m2

m Quadrotor mass 0.520 kg−→η a Accelerometer noise 0.002 (normalized value)−→η M Magnetometer noise 0.0007 (normalized value)−→η G Gyrometer noise 0.01 rad s−1

Table 7.2. Quadrotor parameter values

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 273

7.2.2.3. The inertial measurement unit (IMU) model

The estimation of the attitude and of the rotational velocity of the quadrotor is a
prerequisite for its attitude control. An IMU is embedded in the quadrotor in order
to provide measurements that will be fused so as to estimate the attitude. The IMU
consists of three rate gyros (g1, g2, g3), a tri-axis accelerometer (a1, a2, a3), and a
tri-axis magnetometer (m1,m2,m3).

1) Rate gyro modeling. The angular velocity ω is measured in the body frame B
with the three rate gyros (g1, g2, g3) mounted at right angles. The measurements ωg

delivered by these sensors are usually affected by noise. Theoretically, the integral of
ω could give the relative orientation but the presence of noise generates errors that are
accumulated over time. The sensor measurements are modeled as

ωg = ω + ηg , (7.17)

where ωg ∈ �3 is the vector of the sensor values and ηg ∈ �3 is assumed to be
zero-mean Gaussian white noise.

2) Accelerometer modeling. The tri-axis accelerometer (a1, a2, a3) senses the in-
ertial forces and the gravity in B (a1 is aligned with axis xb , and so on). The transfor-
mation of accelerometer measurements from the inertial frame R to the body frame
B is computed as follows:

bacc = C(q)(v̇ − g) + ηacc, (7.18)

where bacc ∈ �3 corresponds to the measurements in B and ηacc ∈ �3 is zero-mean
Gaussian white noise. From here on, the motion is assumed to be quasi-static so that
linear accelerations v̇ are neglected. Note that this assumption is fully valid because
the quadrotor is controlled so as to obtain hover conditions (φ ≈ θ ≈ ψ ≈ 0).
Moreover, the Coriolis effect is not taken into account. In this way, accelerometers
are only sensitive to the gravitational field g = [0 0 9.81]T ms−2 . Note that the
measurements are normalized. Therefore, ‖bacc‖2 ≈ ‖g‖2 = 1.

3) Magnetometer modeling. The information provided by the tri-axis magnetome-
ter is added to the inertial measurements. bmag1 (respectively bmag2 , bmag3) is the
measurement along axis xb (respectively yb , zb). The earth’s magnetic field is sensed
in B. It is defined by

bmag = C(q)hm + ηmag , (7.19)

where hm = [hmx 0 hmz]T = [1
2 0

√
3

2]T and bmag ∈ �3 are the three components of
the magnetic field in R and B, respectively, and ηmag ∈ �3 is zero-mean Gaussian
white noise.

Remark. Note that the accelerometer and magnetometer measurements are mod-
eled by static nonlinear equations that depend on constant known vectors g and hm

and on matrix C(q), which is a nonlinear function of q.

www.it-ebooks.info

http://www.it-ebooks.info/

274 Networked Control Systems Co-design

7.2.3. The attitude control

The control and observation of the quadrotor have been extensively studied. A
nonlinear control law [GUE 08] has been designed, combined with a nonlinear ob-
server to perform nonlinear control of the quadrotor. A linear approximation of the
model has also been obtained: it has been used to design a linear quadratic (LQ) con-
trol and an extended Kalman filter (EKF).

7.2.3.1. Nonlinear control

The measured rotational velocity ωg and the quaternion estimation q̂ are used in a
feedback loop to compute a bounded attitude control, from which the required veloc-
ity of each motor is deduced (7.16). The attitude reference is given by a quaternion
reference qref (Figure 7.3). The controller implemented for the attitude stabilization
is detailed in [GUE 08] and supplies for each motor the velocity set point ω∗

M i . This
velocity set point feeds a local PI control loop. The nonlinear controller takes into ac-
count the saturation of the control signals, which provides a good robustness against
disturbances, as can be observed in Figure 7.5.

7.2.3.2. Linear quadratic control

In this section, a linearized model is obtained for the quadrotor. The attitude rep-
resentation makes use of angles, leading to a very simple model. This linear approxi-
mation is employed to develop a simple LQ controller [GUE 09]. The kinematic and
dynamic equations of the quadrotor are given by

(φ̇, θ̇, ψ̇)T = Mω. (7.20)

Matrix M is given by

M =

⎛⎝ 1 tan θ sin φ tan θ cos φ
0 cos φ − sin φ

0 sin φ
cos θ

cos φ
cos θ

⎞⎠⎛⎝ ωx

ωy

ωz

⎞⎠ . (7.21)

Control

law

I.M.U

{ }

*

1..4
Mi

i

ω
=

ˆ
ref

q q⊗ qe

Controller

Quadrotor

q,ω
,

M A
b b
→

→

→

q̂

G
ω

Observer

G
ω→

PI
ui

Actuators

refq a
τ { }1..4

Mi
i

ω
=

Sensors

Figure 7.3. Quadrotor control principle

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 275

In the hover condition (φ ≈ θ ≈ ψ ≈ 0), equation (7.20) is approximated to

(φ̇, θ̇, ψ̇)T = (ωx, ωy , ωz)T . (7.22)

The dynamical model in terms of roll, pitch, and yaw angles is derived from (7.13),
(7.20), and (7.22):

φ̈ = θ̇ψ̇(
Ify

− Ifz

Ifx

) +
1

Ifx

τφ
a

θ̈ = φ̇ψ̇(
Ifz

− Ifx

Ify

) +
1

Ify

τ θ
a

ψ̈ = φ̇θ̇(
Ifx

− Ify

Ifz

) +
1

Ifz

τψ
a

(7.23)

The state variables are defined by

xT = (x1 x2 x3 x4 x5 x6)T = (φ φ̇ θ θ̇ ψ ψ̇)T . (7.24)

The linearization of system (7.23) around the hover condition yields

ẋ = Ax + Bu, (7.25)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1

If x
0 0

0 0 0
0 1

If y
0

0 0 0
0 0 1

If z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7.26)

Note that the linearized model (7.26) consists of three decoupled double integrators.
The discretization of (7.25), with sampling period h, leads to

xk+1 = Φxk + Γuk , (7.27)

where (
Φ Γ
0 I

)
= exp

{(
A B
0 0

)
h

}
. (7.28)

The problem to solve here is the stabilization of the quadrotor in a desired constant
orientation. As a consequence, the angular velocity vector is brought to zero and must
remain null once the desired attitude is reached. The three angle references are set to
zero (hover condition), thus

lim
t−→∞x(t) = 0. (7.29)

www.it-ebooks.info

http://www.it-ebooks.info/

276 Networked Control Systems Co-design

The discrete LQ controller minimizes

J =
N −1∑
k=0

[xT
k Qxk + uT

k Ruk] + xT
N Q0xN . (7.30)

The solution to (7.30) is a control that is linear in the state

uk = −Lxk . (7.31)

Matrices Q, R, and Q0 are symmetric definite positive. They express the weight that
is put either on the state error or on the input energy. They are chosen in order to
obtain a suitable transient response, with feasible control signals.

For a sampling period h = 10 ms, the optimal gain matrix is given by

L =

⎛⎝ 0.0347 0.0280 0 0 0 0
0 0 0.0347 0.0280 0 0
0 0 0 0 0.0347 0.0280

⎞⎠ . (7.32)

7.2.4. The attitude observer

7.2.4.1. Nonlinear observer

The measurements provided by the IMU feed a nonlinear observer, with its output
q̂ used by the controller. The observer proposed in [GUE 08] is depicted in Figure 7.4.

+

K1

Magnetometers

Accelerometers

SVD

Matrix multiplication

ωg

Quaternion multiplication

qps

1

s
Rate gyros ˆ()q t

1 ˆ()
2

qΣ

→
eq

Figure 7.4. Nonlinear observer scheme

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 277

The observer principle is as follows. A “pseudomeasurement” quaternion qps is
computed from bmag and bacc , based on the nonlinear static measurement equations
(7.18) and (7.19)

qps = arg min
[
1
2
‖ [bT

acc bT
mag]

T − h(q) ‖2
2

]
subject to ‖qps‖2 = 1, (7.33)

where h(q) is derived from (7.18) and (7.19). A Sequential Quadratic Programming
(SQP) algorithm is used at this step (e.g. “fmincon” in the Matlab environment). The
discrepancy between q̂ and qps is computed as (7.10)

qe = q̂ ⊗ q−1
ps = [qe0

−→qe
T]T , (7.34)

where q̂ is then obtained with the kinematic equation (7.11) using ωg (7.17) and a
correction term

˙̂q =
1
2
Ξ(q̂) [�ωg + K1�qe] . (7.35)

Thus, as usual, the observer has a prediction part based on the model, and a correction
part based on a subset of measurements, which are those that are related to the state q
by a static equation.

7.2.4.2. Extended Kalman filter

The Kalman filter (KF) is a well-known observer formulation that allows for the
taking into account of noises that perturb the system’s state and its measurements. The
KF basic equations are similar to those of a traditional observer (see section 7.2.4 in
chapter 6), with a prediction part based on the model and a correction part based on the
measurements. The main difference is that the correction gain is not computed in order
to provide “good” eigenvalues to the observer (and thus good dynamic properties): this
is a function of the noise correlation matrices, in order to minimize their effect. The
EKF is an extension to nonlinear systems and it makes use of the model linearization.

Consider the discrete time version of the quaternion attitude kinematic equation
(7.11)

qk+1 = Fkqk , (7.36)

where

Fk = exp(
1
2
Ω(ωk)h). (7.37)

Fk ∈ �4×4 is obtained under the assumption that ωk remains constant over the sam-
pling period h. Actually, ωk is not directly known: it is measured (7.17), with the
measurement being disturbed by noise ηgk

. Thus, matrix Fk becomes

Fk = Fo
k + ΔFk , (7.38)

www.it-ebooks.info

http://www.it-ebooks.info/

278 Networked Control Systems Co-design

with Fo
k = exp(1

2 Ω(ωgk
)h). The error matrix ΔFk can be expressed as a matrix

power series depending on ηgk
. However, when the noise ηgk

and the sampling time
h are small enough, ΔFk can be approximated by

ΔFk � 1
2
Ω(ηgk

)h, (7.39)

where matrix Ω(ηgk
) is defined as in (7.12). Therefore, (7.36) is rewritten as

qk+1 = Fo
k qk +

h

2
Ω(ηgk

)qk = Fo
k qk +

h

2
Σ(qk)ηgk

= Fo
k qk + ηqk , (7.40)

with ηqk
= Gkηgk

and Gk = h
2 Σ(qk). The detailed computation of the covariance

matrix Qk associated with noise ηqk
can be found in [LES 09].

The measurement equation yk ∈ �6 is built from the accelerometer (7.18) and
magnetometer (7.19) measurements:

yk =
(

bacck

bmagk

)
=

(
C(qk) 0

0 C(qk)

)(
g

hm

)
+ ηk

= h(qk) + ηk , (7.41)

with ηk =
(
ηT

acck
ηT

magk

)T

. The noise covariance matrix Rk is directly computed with

the measurement noise covariance matrices Racc and Rmag :

Rk = E[ηkηT
k] =

(
Racck

0
0 Rmagk

)
. (7.42)

Thus, the state and measurement equations are defined by (7.40) and (7.41), re-
spectively. The linearization of the measurement equation (7.41) gives rise to matrix
Ck ∈ �6×4 with

Ck =
[
∂h(qk)

∂qk

]
qk = q̂k / k

. (7.43)

Its calculation is obvious and is not reported here.

The various steps of the EKF are now summarized.

– Initialization

q̂k=0 = E[qk=0] P0 = E[qk=0q
T
k=0]. (7.44)

Usually, qk=0 can take any value (with ‖qk=0‖2 = 1) and P0 is initialized to a diagonal
matrix σI4 where σ � 1, expressing the very high imprecision on q0 .

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 279

– Prediction

q̂k+1/k = Fo
k q̂k Pk+1/k = Fo

k Pk/kF oT
k + Qk. (7.45)

– Computation of the EKF gain

Kk = Pk/k−1C
T
k

[
CkPk/k−1C

T
k + Rk

]−1
, (7.46)

Rk is given by (7.42) and Ck by (7.43).

– Correction

q̂k+1/k+1 = q̂k+1/k + Kk+1
(
yk+1 − g(q̂k+1/k)

)
Pk+1/k+1 = Pk+1/k − Pk+1/kCT

k+1 (7.47)

× [
Ck+1Pk+1/kCT

k+1 + Rk+1
]−1

Ck+1Pk+1/k.

Note that the quaternion normalization q̂k+1/‖q̂k+1‖2 must be performed at each step
to ensure the estimation of a unitary quaternion.

7.2.4.3. Simulation results

Firstly, the simulation of the quadrotor with its control and its observer has been
implemented with Matlab/Simulink. The quadrotor model is continuous while the
control and observer are discretized with the sampling period h = 10 ms, which
is very small compared to the system time response (order of magnitude of sev-
eral seconds). Figure 7.5 corresponds to a scenario where the nonlinear control and
nonlinear observer are used. The attitude is first stabilized to the equilibrium value
[φ, θ, ψ] = [0, 0, 0]◦ from an initial value [30, −10, −25]◦. Then, a disturbance on
one torque is added at time t = 4 s.

7.2.5. The quadrotor diagnosis

7.2.5.1. Sensor diagnosis

A bank of generalized observers has been designed for the quadrotor sensor diag-
nosis, based on the observer presented in the previous section ([TAN 07a; BER 08]).
The background for generalized observer schemes is detailed in Chapter 6. Each ob-
server uses a subset of the nine IMU sensors. Its estimated quaternion q̂i (i = 1, . . . , 9)
is compared to the quaternion computed with the theoretical model qmodel fed by the
four motor velocity references ω∗

M i . The resulting error quaternion qe
i (7.10) is thus

insensitive to faults in the sensor that is discarded for the attitude estimation. The
signature table obtained in this way is strongly isolable. Actually, qe

i is not directly
considered as residual. Thanks to (7.1), the residual ri = βi is computed. If ri ≈ 0,

www.it-ebooks.info

http://www.it-ebooks.info/

280 Networked Control Systems Co-design

0 1 2 3 4 5 6 7 8 9 10

−80

−60

−40

−20

0

20

40

60

80

A
n

g
le

 (
°)

Time (s)

Roll
Pitch
Yaw

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

R
ad

\s
ec

 Time (s)

ω
1

ω
2

ω
3

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

N
*m

Time (s)

τ
1

τ
2

τ
3

Figure 7.5. Evolution of the angles, angular velocities and torques when the quadrotor is
subject to a reference change at time t = 0 s and to a disturbance at time t = 4 s

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 281

7,...,9

ˆi

i

q

=

Six nonlinear
optimizations

Model

Three nonlinear
observers

Five over six
measurements
bacc,bmag

Rotor speed
set point ω*

Mi

bacc,bmag

Two over 3 ωgi

I
.
M
.
U

1,..., 6

ˆ i

i

q

=

one over 3 ωi

qe angles

qe angles

ri

ri

1 , . . , 6

e
i

i

q
=

7 ,..., 9

e
i

i

q

=

qmodel

Figure 7.6. Generalized observer scheme for the diagnosis of the IMU

then q̂i ≈ qmodel . This transformation from qe
i to ri allows the detection thresholds to

be easily fixed. From a practical viewpoint, the residual thresholds are set to 2◦ this
value being deducted from the noise level.

For the design of this generalized observer bank, two different techniques have
been implemented, depending on the subset of sensors considered. The first technique
computes q̂i using two rate gyros and all the magnetometer and accelerometer mea-
surements. The second technique is only based on the static nonlinear measurement
equations. It makes use of five out of six measurements acquired with the accelerome-
ter and magnetometer tri-axes. The principle of the observer bank is depicted in Figure
7.6 and each technique is briefly presented below.

– Attitude estimation using the accelerometer and magnetometer tri-axes and two
rate gyro measurements. As can be seen at the bottom of Figure 7.6, the measurements
provided by the IMU feed three nonlinear observers based on the scheme presented
in section 7.2.4, Figure 7.4. The discarded rate gyro measurement is replaced with
the corresponding value that is computed with the mechanical model (7.13). There-
fore, the attitude estimated with each observer in this bank is sensitive to faults in
all the accelerometer and magnetometer measurements and in two rate gyros out of
three. From these observers, three residual vectors, denoted ri (i = 7, . . . , 9), are
obtained.

www.it-ebooks.info

http://www.it-ebooks.info/

282 Networked Control Systems Co-design

fa1 fa2 fa3 fm 1 fm 2 fm 3 fg 1 fg 2 fg 3

r1 0 1 1 1 1 1 0 0 0
r2 1 0 1 1 1 1 0 0 0
r3 1 1 0 1 1 1 0 0 0
r4 1 1 1 0 1 1 0 0 0
r5 1 1 1 1 0 1 0 0 0
r6 1 1 1 1 1 0 0 0 0
r7 1 1 1 1 1 1 0 1 1
r8 1 1 1 1 1 1 1 0 1
r9 1 1 1 1 1 1 1 1 0

Table 7.3. Sensor signature table

– Attitude estimation with measurements from the accelerometer and magne-
tometer tri-axes but without rate gyro measurements. To estimate the residuals ri ,
(i = 1, . . . , 6) as depicted at the top of Figure 7.6, only five out of six accelerometer
and magnetometer measurements are considered. Therefore, five out of six equa-
tions in (7.18) and (7.19) are considered. The quaternion estimation q̂i based on these
equations is obtained by solving a nonlinear optimization problem similar to the one
in (7.33), but with five equations instead of six. Six estimators are designed in this
way, and the quaternion errors qe

i , (i = 1, . . . , 6) are sensitive to faults in all of the
accelerometers and magnetometers except the discarded one.

The resulting signature table is given in Table 7.3, while Figures 7.7 and 7.8 display
some diagnostic results. For instance, fa1 stands for faults in accelerometer a1 while
r1 is computed without measurement bacc1 . Thus r1 is insensitive to faults in a1.

7.2.5.2. Actuator diagnosis

The four actuators are independent. The model of each electrical motor has been
used for its diagnosis: the measured velocity is compared to its reference. The sig-
nature table is found in Table 7.4. A fault in the rotational velocity sensor or in the
corresponding motor cannot be isolated. This limitation could be removed if extra
sensors are added to measure the current or the voltage. However, this solution is
incompatible with the weight constraint.

7.3. Simulation of the network

7.3.1. Architecture of the networked control system

The network is operated in a closed loop (Figure 7.9):

1) between the sensors and the controller: the sensors are associated with the nu-
merical information provided by AD converters to generate the sensor flow (this is
called sensor task);

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 283

0 5 10
0

100

200
r1

D
eg

re
es

0 5 10
0

100

200

r2

0 5 10
0

100

200

r3

0 5 10
0

100

200
r4

Time (s)

D
eg

re
es

0 5 10
0

100

200
r5

Time (s)
0 5 10

0

100

200

r6

Time (s)

Figure 7.7. Residuals generated by the six estimators when a breakdown fm 1 in sensor m1
(along axis xb) occurs at time t = 4 s

0 2 4 6 8 10
0

20

40

60
r
1

D
eg

re
es

0 2 4 6 8 10
0

20

40

60
r
2

0 2 4 6 8 10
0

20

40

60

r
3

0 2 4 6 8 10
0

20

40

60
r
4

D
eg

re
es

0 2 4 6 8 10
0

20

40

60
r
5

0 2 4 6 8 10
0

20

40

60

r
6

0 2 4 6 8 10
0

20

40

60
r
7

Time (s)

D
eg

re
es

0 2 4 6 8 10
0

20

40

60
r
8

Time (s)
0 2 4 6 8 10

0

20

40

60
r
9

Time (s)

Figure 7.8. Residuals generated by the nine observers when a breakdown fg 2 in the rate gyro
g2 (along axis yb) occurs at time t = 4 s

www.it-ebooks.info

http://www.it-ebooks.info/

284 Networked Control Systems Co-design

fm otor 1 fm otor 2 fm otor 3 fm otor 4

rm ot1 1 0 0 0
rm ot2 0 1 0 0
rm ot3 0 0 1 0
rm ot4 0 0 0 1

Table 7.4. Actuator signature table

2) between the controller and the actuators (the four motors) driven through DA
conversion (zero-order hold): the controller task generates the controller flow.

The model of the network has been integrated with the model of the quadrotor. This
can be considered as a hybrid problematic since the model of the quadrotor is in con-
tinuous time; the control, observer and diagnostic algorithms are in discrete time,
whereas the model of the network is event-driven.

7.3.2. Network design

A controller area network (CAN) has been chosen because it is a common choice
for control applications. A CAN uses carrier sense multiple access with arbitration on
message priority (CSMA-AMP) arbitration. If the network is busy, the sender waits
until the network is free. If a collision occurs (two transmissions are being started
within 1 ms), the message with the highest priority will continue its transmission.

The network in Figure 7.9 is characterized by the traffic of 17 periodic data flows.
The order of priority of the flows is: the four flows from the main control unit ω∗

M i (i =
1, . . . , 4, set points for each local motor control), the nine flows from the IMU ωgi ,

Quadrotor
(continuous time)

4 motors IMU and Motor
velocities sensors

Control, supervision
(discrete time)

CAN network

Sampling h

A/D

ZOH

, ,
g acc mag

b bωMi
ω

*

Mi
ω

refq

+

-

Figure 7.9. Closed loop of the networked control quadrotor

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 285

bacci , bmagi , (i = 1, . . . , 3) and the four flows from the motor velocity measurements
ωM i (i = 1, . . . , 4). The sensor task is time triggered. The sampling time is h =
10 ms. Note that the IMU data acquisition is synchronized. The data rate is 1 Mbits
s−1 . The data length is 64 bits for all the periodic flows. Each flow is transmitted in
64 μs. Thus all the periodic flows are transmitted in 1 ms (17×64 μs), corresponding
to 10% of the sampling period, which is negligible.

The observer and control algorithms have been discretized. The controller task and
the diagnostic task are event triggered: they must wait for all the sensor values before
any computation is performed [BER 07]. ω∗

M i is sent through the network to the local
motor control as soon as the controller has finished its computation.

7.3.3. Tool implemented in the network simulation

To go a step ahead in the design of this benchmark, the simulation of the network is
introduced in the Matlab simulator, using the TrueTime toolbox [OHL 07]. TrueTime
is a free, open, Matlab/Simulink compliant toolbox used to perform the simulation of
distributed real-time control systems.

With TrueTime, the network is simulated at a high level of abstraction, in contrast
to other tools such as SimEvent, a Matlab toolbox, or Opnet [Opn], which is not
Matlab compliant but allows users to simulate the network in a more detailed way.
The TrueTime library provides specific blocks for network interface modeling. This
library is developed in C++ and compiled with an external C++ compiler. TrueTime
allows users to simulate several types of networks (Ethernet, CAN, Round Robin,
TDMA, FDMA, Switched Ethernet, and WLAN or ZigBee Wireless networks) and
new models can be added.

The control performance can be severely affected by the properties of the network,
and particularly by its load. For example, a data packet dropout can result from limited
bandwidth and large amount of data packets transmitted over one line. To simulate
theses properties, it is convenient to simulate a network that is not dedicated solely to
the quadrotor but that is shared between different applications. To study the influence
of the flows from other applications on the quadrotor stabilization, another task is
introduced in the simulation. It is a periodic task with sampling period Te . This task,
called an external task, generates an external flow and represents overall the use of the
network by other applications. Changing the value of Te allows for the simulation of
different network loads: the smaller the Te , the more loaded the network is.

7.4. Hardware in the loop architecture

The utilization of Matlab/Simulink together with TrueTime remains pure simula-
tion. To provide more realistic results on the influence of the network on the system,

www.it-ebooks.info

http://www.it-ebooks.info/

286 Networked Control Systems Co-design

Motors speed

Motors speed

Voltage

Local Control

Controller/observer/diagnosis

50
 H

z
1

fo
r

ea
ch

 m
ot

or

Motors speed
Set points (10ms)

9 measures

9 measures

Intertial Measurement
Unit

16bits

PowerPC MPC5200D
32bits-400MHz

with Unix

Motor

Speed sensor

Micro-controller
PIC18F8680

8bits
25MHz

Micro-controller
dspic33FJ256GP

16bits-8MHz
4 ind. PWM

9 measures (10ms)

4 motors speed

motors speed set points

Figure 7.10. Hardware-in-the-loop setup

a hardware-in-the-loop experiment has been set up (Figure 7.10). Now, the mechan-
ical behavior of the quadrotor is still simulated. The quadrotor model is handled by
a numerical integrator running on an external PC running on Linux. This integration
must be fast enough for the simulated model to run faster than the real-time model,
and for the induced disturbances to be negligible w.r.t. computing and networking de-
lays. The control, observation, and diagnostic algorithms are implemented in the real
embedded hardware, a Phycore MPC5200B-tiny1 embedded board running on Linux
on a Freescale MPC603e CPU. Both computers communicate via a real CAN.

In the particular case of the quadrotor, hardware-in-the-loop experiments provide
a safe environment for the validation of all algorithms and software, prior to any ex-
periments with a real – and very fragile – quadrotor.

7.4.1. The ORCCAD approach

ORCCAD is a model-based software environment dedicated to the design, the ver-
ification and the implementation of real-time control systems. In addition to control

1. http://www.phytec.com/

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 287

law design, the specification and validation of complex missions involving the logical
and temporal cooperation of various controllers along the life of a control application
[BOR98; TÖR 06] can be achieved.

The ORCCAD methodology is bottom-up, starting from the design of control laws
by control engineers, to the design of more complex missions.

The first step in designing a control application is to identify all the necessary el-
ementary tasks involved. Then, for each of the tasks, various issues are considered,
both with an automatic control viewpoint (such as regulation problem definition, con-
trol law design, choice of relevant events, specification of recovery behaviors, etc.) or
with an implementation viewpoint (such as the decomposition of the control law into
real-time tasks, and selection of timing parameters). Finally, all the real-time tasks
are mapped on a target architecture. During this design, the control engineer may
take advantage of many degrees of freedom to meet the end-user requirements, and
ORCCAD aims at allowing the designer to safely exploit these degrees of freedom
through guided design.

ORCCAD proposes a controller architecture which is naturally open, since the ac-
cess to every level by different users is allowed: the application layer is accessed by
the end-user (mission specialist), the control layer is used by the control expert, and
the system layer is accessed by the system engineer. ORCCAD provides formalized
control structures, which are coordinated using the synchronous paradigm, specifi-
cally using the Esterel language: while the control laws are often periodic (or more
generally cyclic) and programmed using real-time tasks under control of a real-time
scheduler, the discrete-event controller manages the set of control laws and handles
exceptions and mode switching. Both activities run under the control of a real-time
operating system (RTOS).

The main entities used in the ORCCAD framework are as follows:

– Modules which represent functions (e.g. controllers, filters, etc.), encoded as
pieces of C code;

– module tasks (MT), the real-time tasks which implement modules (several mod-
ules can be gathered in a single MT);

– robot tasks (RT), the control tasks representing basic control actions encapsu-
lated by a discrete-event controller;

– robot procedures (RP), a hierarchical composition of already existing RTs and
RPs, to incrementally build more complex structures, from elementary executable ac-
tions to the full control application.

The RTs characterize continuous-time closed-loop control laws, along with their
temporal features and the management of associated events. From the application
perspective, the RT set of signals and associated behavior represent the external view

www.it-ebooks.info

http://www.it-ebooks.info/

288 Networked Control Systems Co-design

Figure 7.11. Control and diagnosis block diagram

The RPs, which are more complex actions, can then be composed from RTs and other
At the

e.g. a nominal controller supplemented by the recovery substitutions associated with
fault detection and diagnosis.

Once a control application has been entirely designed, and for some parts formally

ing systems, such as Linux in the present case2.

7.4.2. Quadrotor simulation setup

run-time can be easily ported on systems such as Posix.

Figure 7.11 describes the control and diagnostic setup used for testing purposes.

tions) interconnected by their input/output ports (respectively black and white dots).

level, they can be used to fulfil a single basic goal through several potential solutions,

RPs in a hierarchical fashion leading to structures of increasing complexity.
top level, RPs are used to describe and implement a full mission specification. At mid

verified, a run-time code can be automatically generated for various real-time operat-

In this block-diagram, the gray boxes represent the user-provided modules (i.e. func-

of the RTs, hiding all specification and implementation details of the control laws.

2. It is assumed that the underlying RTOS supports preemption and fixed priorities, so that the

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 289

The main parts of the functions network are described as follows:

– The attitude control path starts from the drivers of the quadrotor sensors (ac-
celerometers Acc, rate gyros Gyr and magnetometers Mag), which are the outputs
of the interface module X4-GPS-PhR. The box X4_GPS_PhR (where PhR stands for
Physical Resource) is the interface between the controller and the device to control:
sending or reading data on its ports actually calls the drivers, i.e. the functions used
to interface the real-time controller with the real hardware, or with the real-time sim-
ulator. The raw measurements are used by the Quaternion module QuaternionT1 to
estimate the drone attitude, which is forwarded to the GPS_CtrlB module to perform
the attitude control. The computed motor velocities that are desired are then sent to
the quadrotor via the V port.

– Provision is given for future enhancements of the sensor set, since a GPS-
like position sensor and ultrasonic sensors are expected to be integrated in the fu-
ture. Therefore, a trajectory generator module GEN_Traj and a position estimator
module AbsPosGPS are integrated in the control architecture to evaluate position
control.

– The Diag_CapteursB module runs the diagnostic algorithm that isolates sensor
failures. A failure is signaled by the Sensor_Fail weak exception to the X4_T1_Atr
module and it is forwarded to the Quaternion module, so that the quaternion estimation
algorithm can be adapted according to the reported failure.

– Similarly, the Diag_MoteursB module forwards motor failures to be handled by
the X4_T1_Atr module.

– The scheduler module implements a feedback scheduler: it monitors the con-
troller’s real-time activity and may react by setting on-the-fly the task-scheduling pa-
rameters, e.g. their firing intervals. For example, it can been used to implement a
(m,k)-firm dropping policy [JIA 07], and to dynamically adapt the priorities of mes-
sages on the CAN bus [JUA 08].

– A disturbance task allows users to generate an extra load either on the CPU or
on the CAN bus, or to generate corruptions on the CAN bus.

Both computers communicate via a CAN bus: the driver ports located in the
X4_GPS_PhR interface send and receive data using the Socket-CAN protocol3. From
the real-time point of view, each module is implemented by a real-time task having
its own programmable timer. Therefore, all the modules can be run asynchronously
at their own (and possibly varying) sampling frequency. The task priorities are set
according to their relative importance. Data integrity between asynchronous mod-
ules is provided by asynchronous lock-free buffers [SIM 97] which are automatically
inserted at the code generation time.

3. http://developer.berlios.de/projects/socketcan/

www.it-ebooks.info

http://www.it-ebooks.info/

290 Networked Control Systems Co-design

7.5. Experiments and results

7.5.1. Basic attitude control

In this section, the basic attitude control and IMU diagnosis are presented when
the network is dedicated only to the quadrotor application. To study the influence of
the network, this case is compared to a case in which no network is implemented.
All the scenarios presented start with an initial attitude [−25, −35, −10]◦, and the
objective is to stabilize the quadrotor in the hover conditions [φ, θ, ψ] = [0, 0, 0]◦.

It can be observed in Figures 7.12 and 7.13 that the behavior of the quadrotor is
slightly modified by the CAN, but the observer and the control converge at almost the
same time as in the case without a network. The small differences are probably due to
the small transmission delays. In [DIO 08], other networks are considered (Ethernet
and switched Ethernet) and their performances compared to those of the CAN.

Figure 7.14 shows the behavior of the diagnostic algorithm with and without the
CAN, when a breakdown fm1 in sensor m1 is considered at time t = 4 s (the same
fault as in the experiment illustrated in Figure 7.7).

0 1 2 3 4 5 6 7 8 9 10
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Time (s)

D
eg

re
es

Roll
Pitch
Yaw

Figure 7.12. Attitude with the dedicated CAN

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 291

0 2 4 6 8 10
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Time (s)

D
e

g
re

e
s

0 5 10
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Time(s)

D
e
g
re

e
s

roll

pitch

yaw

Figure 7.13. Attitude estimated by the nonlinear observer
(left: without network, right: with the CAN)

7.5.2. Packet loss

Packet loss is one well-known network drawback. Thanks to the TrueTime capa-
bilities, packet losses can be easily introduced in the simulation. Let us now take as
an example a packet loss of 10%. False alarms are observed if the diagnostic task is
triggered every time new data is received [BER 07]. A number of solutions have been
presented in this book to take into account this drawback, and some of them will now
be presented below.

7.5.2.1. Pragmatic solution

The first solution consists of running the observer, controller and diagnostic tasks
only once all the measurements have been received. A lost packet can be detected
with the indicator rnetwork , the design of which is given in Chapter 6. This indicator
is equal to 1 when the data is not received on time by the control and diagnostic
modules. When such a loss is detected, the control and observer tasks are not run
and the last values received by the actuators are maintained during the new sampling
period. Figure 7.15 shows the influence of a 10% loss in packets. The quadrotor is
still stabilized in the hover condition. However, during the transient time, the attitude
is disturbed, compared to the case where no losses have occurred. Concerning the

www.it-ebooks.info

http://www.it-ebooks.info/

292 Networked Control Systems Co-design

0 5 10
0

100

200
r1

0 5 10
0

100

200

r2

0 5 10
0

100

200

r3

0 5 10
0

100

200

r4

0 5 10
0

100

200
r5

0 5 10
0

100

200

r6

0 5 10
0

100

200
r1

D
eg

re
es

D
eg

re
es

D
eg

re
es

0 5 10
0

100

200
r2

0 5 10
0

100

200

r
3

0 5 10
0

100

200

r4

Time (s)

D
eg

re
es

0 5 10
0

100

200
r5

Time (s)
0 5 10

0

100

200
r6

Time (s)

Time (s) Time (s) Time (s)

Figure 7.14. Residuals generated by the six estimators when a breakdown fm 1 in sensor m1
occurs at time t = 4 s (top: without network, bottom: with the CAN)

diagnostic task, Figure 7.16 shows the simulation result. Every time the indicator
rnetwork is equal to “1” (data loss), the diagnosis is not computed.

7.5.2.2. (m, k)-firm solutions

Now the policy introduced in Chapter 5 will be used to stabilize the quadrotor in
the hover conditions. For the sake of simplicity, the LQ controller (7.2.3) is used and
the angles are supposed to be provided directly by measurements rather than by an

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 293

0 1 2 3 4 5 6 7 8 9 10
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Time (s)

D
eg

re
es Roll

Pitch
Yaw

Figure 7.15. Attitude in the presence of a 10% loss in packets

observer. If this kind of policy is implemented, it is important to determine whether
the system remains stable when packets are transmitted at a lower rate (i.e. with a
larger sampling period). A lower bound on the packet transmission rate that ensures
the stability of the system must be computed.

The stability of the linearized closed-loop system is analyzed thanks to the compu-
tation of its eigenvalues, based on a control delay of l sampling periods. This computa-
tion is simple because the system is composed of three independent double integrators,
and therefore characterized by three pairs of identical eigenvalues. It can be observed
that the system can tolerate the loss of the control update up to lmax = 55 [GUE 09].
This value corresponds to the maximum delay the system can tolerate without losing
stability: its eigenvalues remain inside the unit circle (Figure 7.17). The high lmax
value is easily understandable because with a sampling period of h = 10 ms the
system is oversampled.

The analysis introduced previously provides the maximum number of packet losses
the NCS can tolerate. Nevertheless, it is also interesting to observe the behavior of the
closed-loop system cost function J (7.30) as a function of the control update intervals

www.it-ebooks.info

http://www.it-ebooks.info/

294 Networked Control Systems Co-design

2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

0.5

1

1.5

D
eg

re
es

2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

0.2

0.4

0.6

0.8

1

Time (s)

B
oo

le
an

Figure 7.16. Diagnosis without sensor fault and with a 10% loss in packets
(top: residual r1 , bottom: indicator rnetwork)

(Figure 7.18). J increases slowly up to l = 45, the QoC being slightly modified. Then
J increases dramatically, and the QoC is no longer acceptable. From the evolution of
the cost function, it can be seen that for l = 19, the criterion J is ten times the optimal
value obtained for l = 1. This degradation is reasonable for the quadrotor application.
Therefore, during the overload period, m = 3 is chosen for the attitude control of the
quadrotor and (k − m) = 52 packets can be dropped systematically every k = 55
samples. The resulting (m, k)-pattern, for m = 3, k = 55 is

0 0 0 . . . 01︸ ︷︷ ︸
f1 =18

0 0 0 . . . 01︸ ︷︷ ︸
f2 =18

0 0 0 . . . 01︸ ︷︷ ︸
f3 =19

(7.48)

The optimal control law can be redesigned to take into account the change in the
sampling period and the linear time varying characteristic of the system

ui = −Lix(kh), (i = 1, . . . , 3) (7.49)

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 295

0 20 40 60
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

λ 1

l

0 20 40 60
−2

−1.5

−1

−0.5

0

0.5

1

λ 2

l

X: 56
Y: −1.01

Figure 7.17. System eigenvalues with l ∈ [0,70]

with

L1,2 =

⎛⎝ 0.0253 0.0229 0 0 0 0
0 0 0.0253 0.0229 0 0
0 0 0 0 0.0253 0.0229

⎞⎠ (7.50)

L3 =

⎛⎝ 0.0258 0.0231 0 0 0 0
0 0 0.0258 0.0231 0 0
0 0 0 0 0.0258 0.0231

⎞⎠ (7.51)

Figure 7.19 shows the behavior of the system with this control law.

7.5.2.3. Dynamic priorities

The use of dynamic priorities presented in Chapter 3 will now be applied to the
quadrotor example. To know if the control application is urgent, information about the
system’s performance is needed. The error signal (difference between the reference
and the output) is generally used to provide this information. In fact, if a system is

www.it-ebooks.info

http://www.it-ebooks.info/

296 Networked Control Systems Co-design

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

X: 1
Y: 0.0329

X: 19
Y: 0.329

l

J

Figure 7.18. Cost function J as a function of the interval control updates l

Figure 7.19. (m, k)-firm policy
(top: Control torque, bottom: attitude)

D
eg

re
es

N
*m

Time (s)

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 297

in transient behavior (reference change or disturbance effect), then the error signal
will be high, whereas if the system is stabilized, the error signal will be close to zero.
The quadrotor is a Multi-Input Multi-Output (MIMO) system that must be stabilized
in relation to roll, pitch and yaw angles [BER 09], thus the strategy must take into
account the three angles. Four priorities are implemented with the function Prio:

Prio =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pmin , if

⎧⎪⎨⎪⎩
eφ < ethreshold and

eθ < ethreshold and

eψ < ethreshold .

P2 , if

⎧⎪⎨⎪⎩
eφ and eθ < ethreshold or

eφ and eψ < ethreshold or

eθ and eψ < ethreshold .

P1 , if

⎧⎪⎨⎪⎩
eφ and eθ > ethreshold or

eφ and eψ > ethreshold or

eθ and eψ > ethreshold .

Pmax , if

⎧⎪⎨⎪⎩
eφ > ethreshold and

eθ > ethreshold and

eψ > ethreshold .

(7.52)

To evaluate ethreshold , the “QoC” is considered. As the quadrotor is a critical ap-
plication, an error higher than emax = 1.10−3 degrees for each angle is considered
unacceptable. The value ethreshold is chosen as equal to 2

3 emax .

Figure 7.20 (top panel) shows the value of the three errors (i.e. signals used to
switch the priority). Between t = 0 s and t = 1.7 s, the priority of the quadrotor
control is Pmax because all errors are over the threshold (Figure 7.20). Between t =
1.7 s and t = 2.1 s, the priority of the quadrotor control is P1 because error eψ

is inferior to the threshold. Between t = 2.2 s and t = 3.3 s, the priority of the
quadrotor control is P2 because two out of three errors are below the threshold (eφ

and eθ). Between t = 3.3 s and t = 5 s, the priority of the quadrotor control is
Pmin because all the errors are below the threshold. Between t = 5 s and t = 5.8 s,
the maximal priority is given to the quadrotor control (Pmax , because a disturbance
appeared at time t = 5 s (Figure 7.20, bottom panel) and all the errors are higher than
the threshold. After t = 7 s, the priority is again minimal because all the errors are
below the threshold. The quadrotor is well controlled during the entire experiment.

7.5.2.4. Extended Kalman filter

The experiment reported in this section illustrates the design of the EKF presented
in chapter 6 allowing users to cope with data loss. The filter used is presented in
section 7.2.4. It takes into account a data loss of 20% for all the measurements from
the accelerometers and magnetometers. The losses are assumed to be independent for

www.it-ebooks.info

http://www.it-ebooks.info/

298 Networked Control Systems Co-design

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Psensor
Pcontroller
Pexternal

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
x 10

error roll
error pitch
error yaw
threshold

0 1 2 3 4 5 6 7 8 9 10
-30

-20

-10

0

10

20

30

D
e

g
re

e
s

Time (s)

φ
θ
ψ

Pmax

Pmin

P2

P1

A

B

C

Pmax Pmax

P2

Pmin

Priority of external flow

Threshold

Error ψψψψ

Error θθθθ

Error φφφφ

Disturbance

Figure 7.20. Hybrid priority policy
(top: errors; middle: priorities, bottom: attitude)

each of the sensor axes. The initial attitude is [−25, −35, −10]◦ and the reference
is first [10, 4, 15]◦ and then changed to [0, 0, 0]◦,at time t = 3 s. The attitude
estimation filter is initialized at [−9, 5, 57]◦. The real and the estimated attitudes are
shown in Figure 7.21. Figure 7.22 gives the attitude estimation error and the data loss
indicator for the accelerometer a1 .

7.5.3. Hardware-in-the loop experiment

7.5.3.1. Basic scenario

In this scenario, the fault-free case will be considered and the quadrotor stabiliza-
tion will be shown. The quadrotor simulation starts with an initial attitude equal to
[120◦;−10◦; 50◦] and the reference attitude equal to [0◦; 0◦; 0◦].

The hardware-in-the-loop result is shown in Figure 7.23 (left). The time response
of the system can be compared to the one obtained with Matlab/Simulink and
TrueTime (Figure 7.23, right). The time response is equal to 2.5 seconds for the roll
and pitch angles, and 2.8 seconds for the yaw angle.

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 299

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-20

0

20

40

60

D
eg

re
es

Roll

Pitch

Yaw

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-20

0

20

40

60

Time (s)

D
eg

re
es

Roll

Pitch

Yaw

Figure 7.21. EKF policy with a 20% loss in packets
(top: attitude, bottom: estimated attitude)

7.5.3.2. Packet loss

In this scenario, the same initial and reference positions as in the previous subsec-
tion will be used. The objective here is to study the influence of packet losses on the
system’s behavior. A 10% loss in packets from a1 will be observed. The fault indica-
tor rnetwork [BER 07] mentioned previously (section sec:pragmatic) is used to make
the difference between a sensor fault and a packet loss (Figure 7.24, bottom). When
the data is lost at t = (kh), the quaternion q̂(kh) is not computed and the control
algorithm holds the value ωref

M i computed at time t = (k − 1)h. The results are shown
in Figure 7.24. Small differences can be noted with respect to Figure 7.23 but it can
be seen that the control law is robust to 10% in packet losses on this sensor. Several
other simulations have been made with other packet loss scenarios, and the results are
quite similar.

7.5.3.3. Sensor failure

In this scenario (Figure 7.25), a bias failure in the rate gyro ωg1 will be considered.
The fault is simulated at time t = 5 s. Before the fault appearance, all the residuals

www.it-ebooks.info

http://www.it-ebooks.info/

300 Networked Control Systems Co-design

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-80

-60

-40

-20

0

20

D
eg

re
es

Roll

Pitch

Yaw

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

R
-

ne
tw

or
k

fo
r

a1

Time (s)

Figure 7.22. EKF policy with a 20% loss in packets
(top: Euler angles error; bottom: indicator of data loss)

φ

ψ

θ

Time (s)

D
eg

re
es

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

40

60

80

100

120

Time (s)

D
eg

re
es

φ

ψ

θ

Figure 7.23. Hardware in the loop experimentation
(left: quadrotor attitude; right: Matlab/Simulink TrueTime simulation)

www.it-ebooks.info

http://www.it-ebooks.info/

φ

ψ

θ

Data lost

Data received

Time (s) Time (s)

D
eg

re
es

B
oo

le
an

Figure 7.24. Indicator rnetwork and attitude of the quadrotor with a 10% loss in packets.
(left: attitude; right: indicator of packet loss)

r7

r8

r9

D
eg

re
es

Time (s)

Figure 7.25. Residual ri (i = 7, . . . , 9), when a breakdown fg 1 occurs at time t = 5 s

301

www.it-ebooks.info

http://www.it-ebooks.info/

302 Networked Control Systems Co-design

are close to zero. After t = 5 s, residuals ri(i = 8, 9) are sensitive to the fault and
residual r7 , computed with the observer that discards this sensor value, still stands at
zero.

7.6. Summary

Some of the robust and FTC algorithms, scheduling policies and fault detection
and isolation methodologies presented in the previous chapters have been developed
and tested, at least using realistic simulations, on a small embedded networked system.
The chosen test bed is a miniature quadrotor helicopter drone. It has fast, nonlinear dy-
namics, is open-loop unstable, and the particular disposition of its actuators essentially
makes its attitude stabilization a difficult control problem. Beyond the usual modeling,
control and FDI design problems, the hardware used to implement the control and di-
agnostic algorithms is made of a small network of micro-controllers, distributed over
a CAN bus. Therefore, this test-bed gathers embedded control design that is subjected
to network-induced disturbances, with dependability concerns in mind. A successful
integration of control laws and FDI algorithms on such a real-time distributed plat-
form requires a careful and intelligent incorporation of the control methodologies into
the hardware and software engineering components. The challenge has been handled
by following a progressive approach, to gradually integrate control, computing and
networking features and constraints using the appropriate tools.

As usual, the control design process starts with the modeling of the physical de-
vices. Note that dependability and safety concerns can be considered from this very
early design stage: for example, the choice of quaternions to model the quadrotor’s
attitude allows for the bypassing of a number of singularity problems, which later will
avoid unpleasant run-time issues. The complexity and the feasibility of the control
laws and estimation algorithms on an embedded low-power platform also need to be
taken into account in the early stages.

As far as the control algorithms are concerned, discretization, scheduling, and
networking must be studied altogether, because traditional simulation tools are no
longer appropriate. To this end, the TrueTime toolbox no only handles models of real-
time scheduling policies and of some standard networks such as CAN and switched
Ethernet, but it also allows us to simulate the execution of control laws on the modeled
real-time platform. Note that this toolbox is open, so that the authors of this book could
have enhanced some of its features along the lines of the SafeNecs project.

The next step before experimentation uses a “hardware-in-the-loop” real-time sim-
ulation concept; the real-time software runs on the real target, and the network is no
longer simulated, whereas the physical controlled process still is. The development
of the run-time software was made easier using ORCCAD, a model-based develop-
ment environment dedicated to control design and code generation. Therefore, the

www.it-ebooks.info

http://www.it-ebooks.info/

Unmanned Aerial Vehicle 303

coupling interaction between the control algorithms and the real-time execution can
be examined and fine-tuned at no risk for the real plant, and even before the real plant
is completed.

This integration approach allowed the authors to progressively develop, implement
and evaluate most of the control, FDI and FTC methods studied in the previous chap-
ters: these methods are applied on a the challenging quadrotor test-bed. During all the
stages of the assessment process, feedback has been provided to enhance the method-
ologies, to evaluate their practical feasibility and to check or calibrate the models,
e.g. as in Figure 7.23 where the simulated CAN bus in TrueTime closely matches the
experimental data.

Therefore, control, diagnosis, computing and networking co-designed algorithms,
such as selective data dropping, QoC aware prioritized messages, and EKF sustaining
data loss, have been successfully evaluated and show an improved fault tolerance w.r.t.
networked and scheduling-induced disturbances. As usual, the results obtained from
a particular case study, even if within the framework of a significantly difficult case,
cannot be generalized easily. However, this book presents a set of building blocks,
methods and tools which are expected to provide effective control, computing and
networking co-design and integration for a number of relevant categories of control
and diagnostic applications.

7.7. Bibliography

[BER 07] BERBRA C., GENTIL S., LESECQ S., AND THIRIET J.-M., Co-design for a safe
networked control DC motor, 3rd IFAC Workshop on networked control systems tolerant to
faults Necst, Nancy, France, June 2007.

[BER 08] BERBRA C., LESECQ S., GENTIL S., AND THIRIET J.-M., Co-design of a safe
networked control quadrotor, IFAC World Congress, Seoul, Korea, July 2008.

[BER 09] BERBRA C., GENTIL S., AND LESECQ S., Hybrid priority scheme for networked
control quadrotor, 17th Mediterranean Conference on Control & Automation, Thessaloniki,
Greece, June 2009.

[BOR 98] BORRELLY J.-J., COSTE-MANIÈRE E., ESPIAU B., KAPELLOS K., PISSARD-
GIBOLLET R., SIMON D., AND TURRO N., The ORCCAD architecture, International
Journal of Robotics Research, vol. 17, num. 4, p. 338–359, April 1998.

[CHO 92] CHOU J., Quaternion Kinematic and Dynamic Differential Equations, IEEE Trans-
actions on Robotics and Automation, vol. 8, p. 53–64, 1992.

[DIO 08] DIOURI I., BERBRA C., GEORGES J.-P., GENTIL S., AND RONDEAU E., Evalu-
ation of a switched Ethernet network for the control of a quadrotor, 16th Mediterranean
Conference on Control and Automation, MED’08, Ajaccio, France, July 2008.

[GUE 08] GUERRERO-CASTELLANOS J.-F., Estimation de l’attitude et commande bornée en
PhD thesis,

Joseph Fourier-Grenoble I University, France, 2008.
 é èattitude d’un corps rigide: Application à un mini h licopt re à quatre rotors,

www.it-ebooks.info

http://www.it-ebooks.info/

304 Networked Control Systems Co-design

[GUE 09] GUERRERO-CASTELLANOS J.-F., BERBRA C., GENTIL S., AND LESECQ S.,
Quadrotor attitude control through a network with (m-k)-firm policy, European Control
Conference ECC09, Budapest, Hungary, August 2009.

[JIA 07] JIA N., SONG Y.-Q., AND SIMONOT-LION F., Graceful degradation of the quality
of control through data drop policy, European Control Conference, ECC’07, Kos, Greece,
July 2007.

[JUA 08] JUANOLE G., MOUNEY G., AND CALMETTES C., On different priority schemes for
the message scheduling in Networked Control Systems, 16th Mediterranean Conference on
Control and Automation, Ajaccio, France, July 2008.

[LES 09] LESECQ S., GENTIL S., AND DARAOUI N., Quadrotor attitude estimation with data
losses, European Control Conference ECC09, Budapest, Hungary, August 2009.

[OHL 07] OHLIN M., HENRIKSSON D., AND CERVIN A., TrueTime 1.5 – Reference Manual,
January 2007.

[Opn] OPNET TECHNOLOGIES INC, OPNET, http://www.opnet.com/

[SIM 97] SIMPSON H.-R., Multireader and multiwriter asynchronous communication mecha-
nisms, IEE Proceedings-Computer and Digital Techniques, vol. 144, num. 4, p. 241–244,
1997.

[TAN 07a] TANWANI A., GALDUN J., THIRIET J.-M., LESECQ S., AND GENTIL S., Exper-
imental networked embedded minidrone. Part I: consideration of faults., European Control
Conference ECC’07, Kos, Greece, July 2007.

[TAN 07b] TANWANI A., GENTIL S., LESECQ S., AND THIRIET J., Experimental networked
embedded minidrone. Part II: distributed FDI., European Control Conference ECC’07,
Kos, Greece, July 2007.

[TöR 06] TÖRNGREN M., HENRIKSSON D., REDELL O., KIRSCH C., EL-KHOURY J., SI-
MON D., SOREL Y., ZDENEK H., AND ÅRZÉN K.-E., Co-design of control systems and
their real-time implementation – A tool survey, Report no. TRITA - MMK 2006:11, Royal
Institute of Technology, KTH, Stockolm, Sweden, 2006.

www.it-ebooks.info

http://www.it-ebooks.info/

Glossary and Acronyms

CAN Controller Area Network (ISO 11898), a serial bus using prioritized messages,
grounded in automotive applications.

COTS Commercial Off-The-Shelf.

CSMA/CD Carrier Sense Multiple Access with Collision Detection, a medium ac-
cess protocol for Ethernet (IEEE 802.3).

DBP Distance Based Priority, a dynamic priority assignment scheme where the pri-
ority of a task is the function of the distance to a failure state defined by the
(m, k)-firm model.

DTTS Discrete Time Switched System.

EDF Earliest Deadline First, a scheduling policy which dynamically assign the high-
est priority to the task with the earliest deadline.

FDI Fault Detection and Isolation.

FIF Fault Isolation Filter.

FIFO First In, First Out.

FTC Fault Tolerant Control.

LFT Linear Fractional Transform.

LMI Linear Matrix Inequality.

LQ Linear Quadratic, a state feedback controller for linear systems minimizing a
quadratic criterion involving the system’s state and control vectors.

LQG Linear Quadratic Gaussian, a LQ controller associated with a Kalman estimator
when the state and measurements of the system are disturbed by additive white
Gaussian noise.

305

www.it-ebooks.info

http://www.it-ebooks.info/

306 Networked Control Systems Co-design

LPV Linear Parameter Varying, methods to control linear, systems taking into ac-
count the variations of some parameters of the plant.

LTI related to Linear Time Invariant systems.

MIMO a dynamic system with Multiple Inputs, Multiple Outputs.

(m,k)-firm a scheduling policy enforcing the completion of at least m tasks execution
(or message transmission) every k scheduling (or transmission) slots.

MPC Model Predictive Control, a feedback controller which predict and apply at
each sample, a model-based control signal to a linear or non-linear process.

NCS Networked Control System, a control system where the sensors, controllers and
actuators are distributed over a network.

NP-hard Non-deterministic Polynomial-time hard, a class of problems that are harder
than those that can be solved by a non-deterministic Turing machine in polyno-
mial time.

OS Operating System, the set of software utilities to interface a computer’s hardware
and user space applications.

PN Petri Net, a place/transition graph describing a discrete events system.

PID Proportional-Integral-Derivative, a very popular controller for SISO systems.

QoC Quality of Control, a measure of performance for a controller.

QoS Quality of Service, a measure of performance for a networked system.

RTOS Real Time Operating System, an OS with some predictability for tasks’ exe-
cution time and memory space, thanks to a real-time scheduler.

RM Rate Monotonic, a scheduling policy which statically assign the highest priority
to the the periodic task with shortest execution time.

SafeNecs Safe Networked Control Systems, is a joint academic research project fun-
ded by the “Agence Nationale de la Recherche” under grant ANR-05-SSIA-
0015-03, from 2006 to 2009; it is devoted to research on fault tolerant control
and diagnosis for networked control systems.

SISO a dynamic system with Single Input, Single Output.

TCHPN Timed Coloured Hierarchy Petri Net.

TDS Time-delay systems, systems whose state is a function taken over an interval
including past values.

WCET Worst Case Execution Time.

www.it-ebooks.info

http://www.it-ebooks.info/

Glossary and Acronyms 307

WRR Weighted Round Robin, a scheduling policy where CPU (resp. bandwidth) is
reserved for tasks (resp. data flows) according to their respective weight.

ZOH Zero-Order Hold, a mathematical model of a digital-to-analog converter hold-
ing a constant signal value for all the sample interval.

www.it-ebooks.info

http://www.it-ebooks.info/

List of Authors

Christophe AUBRUN
CRAN
Nancy University
France

Cédric BERBRA
National Polytechnic Institute and GIPSA-lab
Grenoble University
France

Belynda BRAHIMI
Altran
Paris
France

Flavia FELICIONI
National University of Rosario
Argentina

IFP
Paris
France

Sylviane GENTIL
National Polytechnic Institute and GIPSA-lab
Grenoble University
France

309

Mongi BEN GAID

www.it-ebooks.info

http://www.it-ebooks.info/

310 Networked Control Systems Co-design

Jean-Philippe GEORGES
CRAN
Nancy University
France

Ning JIA
SEBIA
Paris
France

Guy JUANOLE
LAAS (CNRS)
Paul Sabatier University
Toulouse
France

Suzanne LESECQ
CEA-LETI MINATEC
Grenoble
France

Gérard MOUNEY
LAAS (CNRS)
Paul Sabatier University
Toulouse
France

Xuan Hung NGUYEN
LAAS-CNRS
Paul Sabatier University
Toulouse
France

David ROBERT
National Polytechnic Institute and GIPSA-lab
Grenoble University
France

Eric RONDEAU
CRAN
Nancy University
France

www.it-ebooks.info

http://www.it-ebooks.info/

List of Authors 311

Dominique SAUTER
CRAN
Nancy University
France

Olivier SENAME
National Polytechnic Institute and GIPSA-lab
Grenoble University
France

Alexandre SEURET
CNRS, GIPSA-lab
Grenoble University
France

Daniel SIMON
INRIA
Grenoble Rhône-Alpes
France

Ye-Qiong SONG
LORIA
Nancy University
France

Françoise SIMONOT-LION
LORIA
Nancy University
France

www.it-ebooks.info

http://www.it-ebooks.info/

Index

C

CAN bus, 9
hybrid priority scheme, 111
message priority allocation, 107

co-design, 4
control and (m, k)-firm scheduling,

197
convex optimization, 162
elastic scheduler, 151
LPV design, 170
MPC, 156

control-aware computing

feedback scheduling, 30
off-line, 27
QoS adaptation, 12
QoS adaptation, 28

D

delays, 65
Lyapunov, 71
Lyapunov-Krasovskii, 73
Lyapunov-Razumikhin, 72
time-delay models, 70

dependability, 3
diagnosis in NCS, 43

limited communication, 51
network-induced time delays, 44
packet loss, 50
robust deadbeat fault filter, 47

F

Feedback scheduling, 30
control design, 33
control structure, 32
LQ control, 36
robot control, 39
sensors and actuators, 32
weakly-hard constraints, 83
web server, 35

G

global optimization, 200

H

hardware in the loop, 285

I

implementation-aware control, 12
delays, 65
varying sampling, 89
weakly-hard constraints, 76

J

jitter, 64

L

LPV/H∞ robust control, 89
control design, 93
performance specification, 92
polytopic plant model, 90

313

timing assignment, 29
control-aware computing, 26

www.it-ebooks.info

http://www.it-ebooks.info/

314 Networked Control Systems Co-design

LQ cost function, 198

M

Matlab, 75
mechanical words, 190
model predictive control, 156

N

networked control system, 1

O

ORCCAD, 286

Q

quadrotor, 268
actuator diagnosis, 282
attitude control, 274
extended Kalman filter, 277
inertial measurement unit,

273
linearisation, 274
LQ controller, 275
model, 270
sensor diagnosis, 279
simulation setup, 288

S

sampling, 4
LPV varying, 89
optimal selection, 27
rule of thumb, 6
Taylor expansion, 90

scheduling, 20
(m, k)-firm, 24, 188

schedulability condition, 192
(m, k)-pattern, 189
EDF, 23
fixed priority, 22
mechanical words, 190
parameter assignment, 29
Quality of Service, 28

Scilab, 75
stability analysis, 193
stability of switching systems, 210

T

TrueTime, 285

W

weakly-hard constraints, 76
accelerable control, 79
Kalman filtering, 82
LQR design, 80

www.it-ebooks.info

http://www.it-ebooks.info/

	Title Page
	Copyright

	Contents
	Foreword

	Introduction and Problem Statement
	I.1. Networked control systems and control design challenges

	I.2. Control design: from continuous time to networked implementation

	I.3.Timing parameter assignment

	I.4. Control and task/message scheduling

	I.5. Diagnosis and fault tolerance in NCS

	I.6. Co-design approaches

	I.7. Outline of the book

	I.8. Bibliography

	Chapter 1 Preliminary Notions and State of the Art

	1.1. Overview
	1.2. Preliminary notions on real-time scheduling
	1.2.1. Some basic results on classic task model scheduling
	1.2.1.1. Fixed priority scheduling
	1.2.1.2. EDF scheduling
	1.2.1.3. Discussion

	1.2.2. m,k-firm model

	1.3. Control aware computing
	1.3.1. Off-line approaches
	1.3.2. Quality of Service and flexible scheduling

	1.4. Feedback-scheduling basics
	1.4.1. Control of the computing resource
	1.4.1.1. Control structure
	1.4.1.2. Sensors and actuators
	1.4.1.3. Control design and implementation

	1.4.2. Examples
	1.4.2.1. Feedback scheduling a web server
	1.4.2.2. Optimal control-based feedback scheduling
	1.4.2.3. Feasibility: feedback-scheduler implementation for robot control

	1.5. Fault diagnosis of NCS with network-induced effects
	1.5.1. Fault diagnosis of NCS with network-induced time delays

	1.5.1.1. Low-pass post-filtering
	1.5.1.2. Structure matrix of network-induced time delay
	1.5.1.3. Robust deadbeat fault filter
	1.5.1.4. Other work

	1.5.2. Fault diagnosis of NCS with packet losses

	1.5.2.1. Deterministic packet losses
	1.5.2.2. Stochastic packet losses

	1.5.3. Fault diagnosis of NCS with limited communication

	1.5.4. Fault-tolerant control of NCS

	1.6. Summary
	1.7. Bibliography

	Chapter 2 Computing-aware Control
	2.1. Overview
	2.2. Robust control w.r.t. computing and networking-induced latencies

	2.2.1. Introduction

	2.2.2. What happens when delays appear?

	2.2.2.1. Initial conditions
	2.2.2.2. Infinite dimensional systems

	2.2.3. Delay models

	2.2.4. Stability analysis of TDS using Lyapunov theory

	2.2.4.1. The second method
	2.2.4.2. The Lyapunov?Razumikhin approach
	2.2.4.3. The Lyapunov?Krasovskii approach

	2.2.5. Summary: time-delay systems and networking

	2.3. Weakly hard constraints
	2.3.1. Problem definition

	2.3.2. Notion of accelerable control

	2.3.3. Design of accelerable controllers

	2.3.4. Accelerable LQR design for LTI systems

	2.3.5. Kalman filtering and accelerability

	2.3.6 Robustifying feedback scheduling using weakly hard scheduling concepts

	2.3.7. Application to the attitude control of a quadrotor

	2.4. LPV adaptive variable sampling
	2.4.1. A polytopic discrete-plant model

	2.4.2. Performance specification

	2.4.3. LPV/H∞ control design
	2.4.4. Experimental assessment

	2.5. Summary
	2.6. Bibliography

	Chapter 3 QoC-aware Dynamic Network QoS Adaptation

	3.1. Overview
	3.2. Dynamic CAN message priority allocation according to the control application needs

	3.2.1. Context of the study

	3.2.1.1. The considered process control application
	3.2.1.2. Control performance evaluation
	3.2.1.3. The implementation through a network
	3.2.1.4. Evaluation of the influence of the network on the behavior of the process control application

	3.2.1.5. Idea of hybrid priority schemes: general considerations

	3.2.2. Three hybrid priority schemes

	3.2.2.1. hp scheme
	3.2.2.2. hp+sts scheme
	3.2.2.3. hp+dts scheme

	3.2.3. Study of the three schemes based on hybrid priorities

	3.2.3.1. Study conditions
	3.2.3.2. hp scheme
	3.2.3.3. hp+sts scheme
	3.2.3.4. hp+dts scheme

	3.2.4. QoC visualization

	3.2.5. Comment

	3.3. Bandwidth allocation control for switched Ethernet networks
	3.3.1. NCS performance analysis

	3.3.2. NCS modeling

	3.3.2.1. Introduction
	3.3.2.2. Network modeling
	3.3.2.3. System modeling
	3.3.2.4. Controller modeling

	3.3.3. Network adaptation mechanism

	3.3.4. Example

	3.3.4.1. Maximum delay computation
	3.3.4.2. Results

	3.4. Conclusion
	3.5. Bibliography

	Chapter 4 Plant-state-based Feedback Scheduling

	4.1. Overview
	4.2. Adaptive scheduling and varying sampling robust control
	4.2.1. Extended elastic tasks controller
	4.2.2. Case study

	4.3. MPC-based integrated control and scheduling
	4.3.1. Resource constrained systems
	4.3.2. Optimal integrated control and scheduling of resource constrained systems

	4.4. A convex optimization approach to feedback scheduling

	4.4.1. Problem formulation

	4.4.2. Cost function definition and approximation
	4.4.2.1. Cost function definition
	4.4.2.2. Introductory example: quadrotor attitude control

	4.4.3. Optimal sampling period selection
	4.4.3.1. Problem formulation
	4.4.3.2. Problem solving
	4.4.3.3. Feedback-scheduling algorithm deployment

	4.4.4. Application to the attitude control of a quadrotor

	4.5. Control and real-time scheduling co-design via a LPV approach
	4.5.1. A LPV feedback scheduler sensible to the plant’s closed-loop performances
	4.5.2. Application to a robot-arm control
	4.5.2.1. Performance evaluation of the control tasks in view of optimal resource distribution
	4.5.2.2. Simulation with TrueTime
	4.5.2.3. Feasibility and possible extensions

	4.6. Summary
	4.7. Bibliography

	Chapter 5 Overload Management Through Selective Data Dropping

	5.1. Introduction
	5.1.1. System architecture
	5.1.2. Problem statement

	5.2. Scheduling under m, k -firm constraint

	5.2.1. Dynamic scheduling policy under m,k-firm constraints
	5.2.2. Static scheduling policy under m,k-firm constraints and schedulability issue
	5.2.3. Static scheduling under m, k - constraints and mechanical words

	5.2.4. Sufficient condition for schedulability assessment under m,k-pattern defined by a mechanical word
	5.2.5. Systematic dropping policy in control applications

	5.3. Stability analysis of a multidimensional system
	5.3.1. Generic model
	5.3.2. Example of multidimensional system
	5.3.2.1. Sampling period definition
	5.3.2.2. Controller parameters

	5.3.3. Stability condition

	5.4. Optimized control and scheduling co-design
	5.4.1. Optimal control and individual cost function
	5.4.2. Global optimization
	5.4.3. Case study
	5.4.3.1. Plants and controllers
	5.4.3.2. Scheduling parameters
	5.4.3.3. Optimal controller
	5.4.3.4. Simulation scenario
	5.4.3.5. Simulation results for hard real-time constraints
	5.4.3.6. Simulation results for m, k-firm constraints

	5.5. Plant-state-triggered control and scheduling adaptation and optimization
	5.5.1. Closed-loop stability of switching systems
	5.5.2. On-line plant state detection
	5.5.3. Global optimization of control tasks taking into account the plant state
	5.5.4. Case study
	5.5.4.1. Simulation scenario
	5.5.4.2. Observed performance
	5.5.4.3. Summary

	5.6. Conclusions
	5.7. Bibliography

	Chapter 6 Fault Detection and Isolation, Fault Tolerant Control

	6.1. Introduction
	6.2. FDI and FTC

	6.2.1. Introduction to diagnosis
	6.2.2. Quantitative model-based residuals
	6.2.2.1. Parity relations
	6.2.2.2. Observers bank

	6.2.3. Example
	6.2.3.1. The system-residual generation
	6.2.3.2. Observer-based residuals

	6.2.4. Diagnostic summary
	6.2.5. Introduction to FTC

	6.3. Networked-induced effects
	6.3.1. Example of network-induced drawbacks
	6.3.2. Modeling data dropouts
	6.3.3. Modeling network delays

	6.4. Pragmatic solutions
	6.4.1. Data synchronization
	6.4.1.1. Clock synchronization
	6.4.1.2. Data reconstruction
	6.4.1.3. Example

	6.4.2. Data loss and diagnostic blocking

	6.5. Advanced techniques

	6.5.1. Residual generation with transmission delay

	6.5.2. Adaptive thresholding
	6.5.2.1. Optimization-based approach for threshold selection
	6.5.2.2. Network calculus-based thresholding

	6.5.3. Fault isolation filter design in the presence of packet dropouts
	6.5.4. Estimation and diagnosis with data loss
	6.5.4.1. Problem formulation
	6.5.4.2. Kalman filter with partial data loss

	6.6. Conclusion and perspectives
	6.7. Bibliography

	Chapter 7 Implementation: Control and Diagnosis for an Unmanned Aerial Vehicle

	7.1. Introduction
	7.2. The quadrotor model, control and diagnosis

	7.2.1. The system
	7.2.2. The physical system model
	7.2.2.1. Introduction to quaternions
	7.2.2.2. The quadrotor model
	7.2.2.3. The inertial measurement unit IMU model

	7.2.3. The attitude control
	7.2.3.1. Nonlinear control
	7.2.3.2. Linear quadratic control

	7.2.4. The attitude observer
	7.2.4.1. Nonlinear observer
	7.2.4.2. Extended Kalman filter
	7.2.4.3. Simulation results

	7.2.5. The quadrotor diagnosis
	7.2.5.1. Sensor diagnosis
	7.2.5.2. Actuator diagnosis

	7.3. Simulation of the network

	7.3.1. Architecture of the networked control system

	7.3.2. Network design
	7.3.3. Tool implemented in the network simulation

	7.4. Hardware in the loop architecture
	7.4.1. The ORCCAD approach
	7.4.2. Quadrotor simulation setup

	7.5. Experiments and results

	7.5.1. Basic attitude control

	7.5.2. Packet loss
	7.5.2.1. Pragmatic solution
	7.5.2.2. m, k-firm solutions
	7.5.2.3. Dynamic priorities
	7.5.2.4. Extended Kalman filter

	7.5.3. Hardware-in-the loop experiment
	7.5.3.1. Basic scenario
	7.5.3.2. Packet loss
	7.5.3.3. Sensor failure

	7.6. Summary
	7.7. Bibliography

	Glossary and Acronyms
	List of Authors
	Index

