
Tutorial básico de programación en Prolog

Elementos del lenguaje

En esta sección explicaremos como reconocer los diferentes elementos que componen un
programa fuente en Prolog. Como observará en breve, Prolog carece de declaraciones en el
sentido imperativo: secciones, declaraciones de tipo, declaraciones de variable, declaraciones de
procedimientos, etc.
Después de leer está sección deber ser capaz de distinguir variables y términos lógicos entre la
"maraña" de caracteres que hay en un programa fuente.

Comentarios

Los comentarios en Prolog se escriben comenzando la línea con un símbolo de porcentaje.
Ejemplo:
 % Hola, esto es un comentario.

 % Y esto también.

Variables lógicas

Las variables en Prolog no son variables en el sentido habitual, por eso las llamamos variables
lógicas. Se escriben como una secuencia de caracteres alfabéticos comenzando siempre por
mayúscula o subrayado. Ejemplos de variables:
 Variable

 _Hola

 _

Pero no son variables:
 variable

 $Hola

 p__

El hecho de que los nombres de variables comiencen por mayúscula (o subrayado) evita la
necesidad de declarar previamente y de manera explícita las variables, tal y como ocurre en otros
lenguajes.

La variable anónima

Sí, sí, existen variables sin nombre, y todas ellas se representan mediante el símbolo de
subrayado _. Pero cuidado, aunque todas las variables anónimas se escriben igual, son todas

distintas. Es decir, mientras que dos apariciones de la secuencia de caracteres Hola se refieren a

la misma variable, dos apariciones de la secuencia _ se refieren a variables distintas.

Términos

Los términos son el único elemento del lenguaje, es decir, los datos son términos, el código son
términos, incluso el propio programa es un término. No obstante, es habitual, llamar término
solamente a los datos que maneja un programa.

Un término se compone de un functor seguido de cero a N argumentos entre paréntesis y
separados por comas. Los números enteros o decimales sin restricciones de tamaño también son
términos.
Un functor (también denominado átomo) puede ser:

• Una sucesión de caracteres alfanuméricos comenzando por una letra minúscula.
• Un símbolo de puntuación o secuencia de estos. Las secuencias permitidas varían de un

entorno de desarrollo a otro.
• Una sucesión cualquiera de caracteres encerrada entre comillas simples.

Veamos algunos ejemplos de functores:
 functor

 f384p12

 'esto es un único functor, eh!!'

 '_functor'

 $

 +

No son functores válidos:
 _functor

 Functor

Los argumentos de un término pueden ser:

• otro término.
• una variable lógica.

La mejor forma de aprender a escribir términos es mirando algunos ejemplos:
 termino_cero_ario

 1237878837385345.187823787872344434

 t(1)

 'mi functor'(17,hola,'otro termino')

 f(Variable)

 muchos_argumentos(_,_,_,Variable,232,f,g,a)

 terminos_anidados(f(g), h(i,j(7)), p(a(b)), j(1,3,2,_))

 +(3,4)

 $(a,b)

 @(12)

Operadores

Algunos functores pueden estar declarados como operadores, bien de manera predefinida, o bien
por el programador. Los operadores simplemente sirven para escribir términos unarios o binarios
de una manera más cómoda. Por ejemplo, un functor definido como operador infijo es la suma

(+). Así, la expresión a+b es perfectamente válida, aunque en realidad no es más que el término

+(a,b).
Los operadores binarios infijos nos permiten escribir el functor entre los dos argumentos y eliminar
los paréntesis.
Los operadores tienen asociada una prioridad. Por ejemplo, la expresión a+b*c es en realidad el

término +(a,*(b,c)). Esto es así porque el operador producto (*) tiene más prioridad que el

operador suma (+). Si no fuese así, se trataría del término *(+(a,b),c).
Los operadores también pueden ser unarios y prefijos, lo que nos evita escribir los paréntesis del
argumento. Por ejemplo, la expresión -5 es en realidad el término -(5).

Dando valor a las variables

El mecanismo de unificación

La unificación es el mecanismo mediante el cuál las variables lógicas toman valor en Prolog. El
valor que puede tomar una variable consiste en cualquier término, por ejemplo, j(3), 23.2, 'hola

que tal', etc. Por eso decimos que los datos que maneja Prolog son términos.

Cuando una variable no tiene valor se dice que está libre. Pero una vez que se le asigna valor,
éste ya no cambia, por eso se dice que la variable está ligada.
Se dice que dos términos unifican cuando existe una posible ligadura (asignación de valor) de las
variables tal que ambos términos son idénticos sustituyendo las variables por dichos valores. Por
ejemplo: a(X,3) y a(4,Z) unifican dando valores a las variables: X vale 4, Z vale 3. Obsérvese que
las variables de ambos términos entran en juego.
Por otra parte, no todas las variables están obligadas a quedar ligadas. Por ejemplo: h(X) y h(Y)
unifican aunque las variables X e Y no quedan ligadas. No obstante , ambas variables
permanecen unificadas entre sí. Si posteriormente ligamos X al valor j(3) (por ejemplo), entonces
automáticamente la variable Y tomará ese mismo valor. Lo que esta ocurriendo es que, al unificar
los términos dados, se impone la restricción de que X e Y deben tomar el mismo valor aunque en
ese preciso instante no se conozca dicho valor.
La unificación no debe confundirse con la asignación de los lenguajes imperativos puesto que
representa la igualdad lógica. Muchas veces unificamos variables con términos directamente y de
manera explícita (ya veremos como se hace esto), por ejemplo, X y 355. Esto provoca la
sensación de que estamos asignando valores a las variables al estilo imperativo.
Para saber si dos términos unifican podemos aplicar las siguientes normas:

• Una variable siempre unifica con un término, quedando ésta ligada a dicho término.
• Dos variables siempre unifican entre sí, además, cuando una de ellas se liga a un término,

todas las que unifican se ligan a dicho término.
• Para que dos términos unifiquen, deben tener el mismo functor y la misma aridad. Después

se comprueba que los argumentos unifican uno a uno manteniendo las ligaduras que se
produzcan en cada uno.

• Si dos términos no unifican, ninguna variable queda ligada.

Ejemplos paradigmáticos

• Una misma variable puede aparecer varias veces en los términos a unificar. Ejemplo:
k(Z,Z) y k(4,H). Por culpa del primer argumento, Z se liga al valor 4. Por culpa del segundo
argumento, Z y H unifican, pero como Z se liga a un valor, entonces H se liga a ese mismo
valor, que es 4.

• Recuerde que una variable no puede ligarse a dos valores distintos. Por ejemplo: k(Z,Z) y

k(4,3) no unifican, sin embargo k(Z,Z) y k(5,5) sí unifican.

• ¿ Sería capaz de decir a que valores se ligan las variables de este ejemplo ? a(b(j,K),c(X))

y a(b(W,c(X)),c(W)). Puede estar seguro de que unifican.

• Cuidado con las variables anónimas, recuerde que son todas distintas. Por ejemplo: k(_,_)

y k(3,4) unifican perfectamente.

Ejecutando cosas

Predicados y Objetivos

Los predicados son los elementos ejecutables en Prolog. En muchos sentidos se asemejan a los
procedimientos o funciones típicos de los lenguajes imperativos.
Una llamada concreta a un predicado, con unos argumentos concretos, se denomina objetivo (en
inglés, goal). Todos los objetivos tiene un resultado de éxito o fallo tras su ejecución indicando si
el predicado es cierto para los argumentos dados, o por el contrario, es falso.
Cuando un objetivo tiene éxito las variables libres que aparecen en los argumentos pueden
quedar ligadas. Estos son los valores que hacen cierto el predicado. Si el predicado falla, no
ocurren ligaduras en las variables libres.

Ejemplos

El caso básico es aquél que no contiene variables: son_hermanos('Juan','Maria'). Este objetivo
solamente puede tener una solución (verdadero o falso).
Si utilizamos una variable libre: son_hermanos('Juan',X), es posible que existan varios valores

para dicha variable que hacen cierto el objetivo. Por ejemplo para X = 'Maria', y para X = 'Luis'.

También es posible tener varias variables libres: son_hermanos(Y,Z). En este caso obtenemos
todas las combinaciones de ligaduras para las variables que hacen cierto el objetivo. Por ejemplo,
X = 'Juan' y Z = 'Maria' es una solución. X = 'Juan' y Z = 'Luis' es otra solución.

Secuencias de objetivos

Hasta ahora hemos visto como ejecutar objetivos simples, pero esto no resulta demasiado útil.
En Prolog los objetivos se pueden combinar mediante conectivas propias de la lógica de primer
orden: la conjunción, la disyunción y la negación.
La disyunción se utiliza bien poco y la negación requiere todo un capítulo para ser explicada. En
cambió la conjunción es la manera habitual de ejecutar secuencias de objetivos.
El operador de conjunción es la coma, por ejemplo: edad(luis,Y),edad(juan,Z),X>Z. Parece
sencillo, pero hay que tener en cuenta qué ocurre con las ligaduras de las variables:

• En primer lugar, hay que ser consciente de que los objetivos se ejecutan secuencialmente
por orden de escritura (es decir, de izquierda a derecha).

• Si un objetivo falla, los siguientes objetivos ya no se ejecutan. Además la conjunción, en
total, falla.

• Si un objetivo tiene éxito, algunas o todas sus variables quedan ligadas, y por tanto, dejan
de ser variables libres para el resto de objetivos en la secuencia.

• Si todos los objetivos tienen éxito, la conjunción tiene éxito y mantiene las ligaduras de los
objetivos que la componen.

Supongamos que la edad de Luis es 32 años, y la edad de Juan es 25:

• La ejecución del primer objetivo tiene éxito y liga la variable "Y", que antes estaba libre, al
valor 32.

• Llega el momento de ejecutar el segundo objetivo. Su variable "Z" también estaba libre,
pero el objetivo tiene éxito y liga dicha variable al valor 25.

• Se ejecuta el tercer objetivo, pero sus variables ya no están libres porque fueron ligadas en
los objetivos anteriores. Como el valor de "Y" es mayor que el de "Z" la comparación tiene
éxito.

• Como todos los objetivos han tenido éxito, la conjunción tiene éxito, y deja las variables "Y"
y "Z" ligadas a los valores 32 y 25 respectivamente.

Varias soluciones

Hasta ahora todo parece sencillo, pero ¿ qué ocurre si uno o varios objetivos tienen varias
soluciones ?. Para entender como se ligan las variables en este caso hemos de explicar en qué
consiste el backtracking en Prolog.

Backtracking

Supongamos que disponemos de dos predicados p/1 y q/1 que tienen varias soluciones (el orden
es significativo):

• p(1) tiene éxito.

• p(2) tiene éxito.

• q(2) tiene éxito.
• No hay más soluciones que éstas.

Y a continuación consideramos la siguiente secuencia: p(X),q(X).
Ahora ejecutamos la secuencia tal y como explicamos en la lección anterior:

• Ejecutamos p(X) con éxito y la variable queda ligada al valor 1 (primera solución).
• Ejecutamos q(X), pero la variable ya no esta libre, luego estamos ejecutando realmente

q(1). El predicado falla porque no es una de sus soluciones.
• La conjunción falla.

El resultado ha sido fallo, pero nosotros sabemos que para X = 2 existe una solución para la
conjunción.
Aquí es donde entra en juego el backtracking. Esto consiste en recordar los momentos de la
ejecución donde un objetivo tenía varias soluciones para posteriormente dar marcha atrás y
seguir la ejecución utilizando otra solución como alternativa.
El backtracking funciona de la siguiente manera:

• Cuando se va ejecutar un objetivo, Prolog sabe de antemano cuantas soluciones
alternativas puede tener. En un futuro capítulo veremos cómo puede llegar a saber esto.
Cada una de las alternativas se denomina punto de elección. Dichos puntos de elección
se anotan internamente y de forma ordenada. Para ser exactos, se introducen en una pila.

• Se escoge el primer punto de elección y se ejecuta el objetivo eliminando el punto de
elección en el proceso.

• Si el objetivo tiene éxito se continúa con el siguiente objetivo aplicándole estas mismas
normas.

• Si el objetivo falla, Prolog da marcha atrás recorriendo los objetivos que anteriormente sí
tuvieron éxito (en orden inverso) y deshaciendo las ligaduras de sus variables. Es decir,
comienza el backtracking.

• Cuando uno de esos objetivos tiene un punto de elección anotado, se detiene el
backtracking y se ejecuta de nuevo dicho objetivo usando la solución alternativa. Las

variables se ligan a la nueva solución y la ejecución continúa de nuevo hacia adelante.
El punto de elección se elimina en el proceso.

• El proceso se repite mientras haya objetivos y puntos de elección anotados. De hecho, se
puede decir que un programa Prolog ha terminado su ejecución cuando no le quedan
puntos de elección anotados ni objetivos por ejecutar en la secuencia.

Además, los puntos de elección se mantienen aunque al final la conjunción tenga éxito. Esto
permite posteriormente conocer todas las soluciones posibles.

Ejemplo

La manera en que se ejecuta realmente nuestro ejemplo es la siguiente:

• Prolog tiene que ejecutar p(X) y sabe (en el futuro veremos por qué) que existen dos
soluciones. En consecuencia, anota dos puntos de elección.

• Ejecutamos p(X) usando el primer punto de elección, que se elimina en el proceso. Dicho
objetivo tiene éxito y la variable queda ligada al valor 1 (primera solución).

• Hay que ejecutar q(X) que solamente tiene un punto de elección y queda anotado.

• Ejecutamos q(X) eliminando su (único) punto de elección, pero la variable ya no está libre,

luego estamos ejecutando realmente q(1). El predicado falla porque no es una de sus
soluciones.

• Comienza el backtracking, recorriendo los objetivos en orden inverso hasta encontrar un
punto de elección anotado.

• Nos topamos con el objetivo p(X). Se deshace la ligadura de la variable X, es decir, X
vuelve a estar libre.

• Se encuentra un punto de elección. La ejecución sigue de nuevo hacia adelante.
• Ejecutamos de nuevo p(X), pero esta vez se usa el punto de elección que hemos

encontrado. Se liga la variable X al valor 2 que corresponde a la segunda solución. El
punto de elección se elimina en el proceso.

• Hay que ejecutar q(X) que solamente tiene un punto de elección y queda anotado.

• Ejecutamos q(X) eliminando su (único) punto de elección, pero la variable ya no esta libre,

luego estamos ejecutando realmente q(2). El objetivo tiene éxito esta vez.
• La conjunción tiene éxito manteniendo la ligadura de la variable X al valor 2.

Predicados predefinidos (built-in)

Existen algunos predicados predefinidos en el sistema y que están disponibles en todo momento.
El más importante es la igualdad: =/2. Este predicado tiene éxito si sus dos argumentos unifican

entre sí, falla en caso contrario. Por ejemplo, el objetivo X = 3 provoca la ligadura de X al valor 3

puesto que unifican. Otro ejemplo es f(3) = f(X), que también liga X al valor 3.

Es muy importante no confundir la igualdad lógica con la igualdad aritmética. Por ejemplo, X = 3

+ 2 tiene éxito pero no resulta en X ligado a 5. De hecho, la variable X queda ligada al término

+(3,2). La aritmética será discutida en un posterior capítulo.
Otros predicados predefinidos muy útiles son los de comparación aritmética. Naturalmente, estos
no funcionan con cualquier término como argumento. Solamente sirven para números (enteros y
decimales).

Predicado Significado

< menor que

> mayor que

=< menor o igual que

>= mayor o igual que

=:= igualdad aritmética

=\= desigualdad aritmética

El código

Cláusulas

Hasta ahora sabemos cómo ejecutar objetivos, pero no sabemos como escribir el código de los
predicados. Los predicados se definen mediante un conjunto de cláusulas:
 clausula1

 clausula2

 ...

 clausulaN

Donde el orden es significativo. Para facilitar la lectura, se suele dejar una línea en blanco entre
cláusula y cláusula.
Las cláusulas son términos (como todo en Prolog) con el siguiente formato:
 cabeza :-

 ojetivo1,

 ojetivo2,

 ...,

 ojetivoN.

Todo gira en torno al operador ":-". Lo que aparece a la izquierda se denomina cabeza y la
secuencia de objetivos que aparece a la derecha se denomina cuerpo.
La cabeza es un término simple, por ejemplo, p(X,12) podría ser la cabeza de una cláusula del
predicado p/2. Es decir, todas las cláusulas de un mismo predicado tienen en la cabeza un
término con el mismo functor y aridad, aunque los argumentos pueden ser distintos.
El cuerpo no es más que el conjunto de condiciones que deben cumplirse (tener éxito) para que el
predicado tenga éxito si lo invocamos con un objetivo que unifique con la cabeza.
Cuando invocamos un objetivo, Prolog unifica dicho objetivo con las cabezas de las cláusulas.
Cada cláusula que unifique constituye un punto de elección.
A continuación se ejecuta el cuerpo de la primera cláusula. Para ello se mantienen las ligaduras
que ocurrieron en el paso anterior. Si el cuerpo tiene éxito, pueden ocurrir nuevas ligaduras.
Dichas ligaduras pueden afectar de nuevo a la cabeza de la cláusula. En consecuencia, el ámbito
de visibilidad de las variables es una única cláusula.
Si el cuerpo de la cláusula falla, el mecanismo de backtracking nos lleva al siguiente punto de
elección, es decir, la siguiente cláusula. El proceso se repite mientras queden cabezas que

unifiquen (es decir, puntos de elección). Cuando no quedan cabezas que unifiquen, el objetivo
falla.

Ejemplo simple

Veamos un predicado compuesto por una simple cláusula:
 es_viejo(Individuo) :-

 edad(Individuo,Valor),

 Valor > 60.

Ahora invocamos el objetivo es_viejo(luis). Para ello supongamos que la edad de Luis es 32 años,

es decir, el objetivo edad(luis,32) tiene éxito.

Primero se unifica la cabeza de la cláusula con el objetivo. Es decir, unificamos es_viejo(luis) y

es_viejo(Individuo), produciéndose la ligadura de la variable Individuo al valor luis. Como el ámbito
de visibilidad de la variable es su cláusula, la ligadura también afecta al cuerpo, luego estamos
ejecutando realmente:
 es_viejo(luis) :-

 edad(luis,Valor),

 Valor > 60.

Ahora ejecutamos el cuerpo, que liga la variable Valor a 32. Pero el cuerpo falla porque el
segundo objetivo falla (32>60 es falso). Entonces la cláusula falla y se produce backtracking.
Como no hay más puntos de elección el objetivo falla. Es decir, Luis no es un viejo.

Ejemplo menos simple

Ahora veamos como las ligaduras que se producen en el cuerpo de la cláusula afectan también a
la cabeza. Consideramos el siguiente predicado compuesto de una única cláusula:
 mayor_que(Fulano,Mengano) :-

 edad(Mengano,EdadMengano),

 edad(Fulano,EdadFulanano),

 EdadFulano > EdadMengano.

Supongamos que la edad de Juan es 20 años y la de Luis es 32 años. Ejecutamos el objetivo
mayor_que(luis,Quien):

• Unificamos el objetivo con la cabeza: la variable Fulano se liga a luis, la variable Mengano
permanece unificada con la variable Quien. Esto último es importante.

• Ejecutamos el cuerpo, que tiene éxito y liga las variables Mengano a juan, EdadMengano a
20, EdadFulano a 32.

• Como la variable Mengano ha quedado ligada, y además unificaba con Quien, la variable
Quien queda ligada a ese mismo valor.

• El objetivo tiene éxito ligando la variable Quien al valor juan. Es decir, Luis es mayor que
Juan.

Cláusulas sin cuerpo

Si no existen condiciones para que una cláusula sea cierta podemos omitir el cuerpo. En tal caso
solamente escribimos la cabeza terminada en punto. Por ejemplo:
 edad(juan,32).

 edad(luis,20).

Son dos cláusulas del predicado edad/2. Las cláusulas sin cuerpo se suelen denominar hechos,
e.g. es un hecho que la edad de Luis es 20 años.

El shell de Prolog

El shell de Prolog es una aplicación que permite ejecutar objetivos y ver las ligaduras de las
variables de manera interactiva. Pueden existir diferencias entre unos entornos de desarrollo y
otros respecto a su uso.

Ejecutando el shell

El shell es una aplicación más que podemos ejecutar en nuestro sistema operativo. En nuestro
caso, la aplicación se denomina SWI-PROLOG. Al ejecutarla aparece un típico mensaje de
bienvenida:

machine% pl

Welcome to SWI-Prolog (Version 5.6.0)

Copyright (c) 1990-2005 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

El símbolo ?- nos indica la zona donde podemos escribir los objetivos a ejecutar.
Para mejorar la legibilidad en los ejemplos, destacamos el texto que el usuario teclea para
distinguirlo de la salida por pantalla del shell.

Mi primer objetivo

Cuando arrancamos el shell, los únicos objetivos que podemos ejecutar corresponden a
predicados predefinidos en el sistema. Nuestro predicado predefinido favorito es la igualdad =/2.
Así que vamos a probarlo:

 ?- t(X,3) = t(4,Z).

 X = 4,

 Z = 3 █

Observe que los objetivos acaban en un punto (.), si pulsamos intro antes de escribir el punto
ocurre un salto de línea, pero nada más. Cuando escribimos el punto y pulsamos INTRO es
cuando se ejecuta el objetivo.
A continuación, el shell nos dice si el objetivo tiene éxito o no, y cuales son las ligaduras de las
variables. Después, el curso queda allí, en este momento es cuando le podemos pedir que nos
muestre otra solución tecleando un punto y coma (;) y pulsando INTRO:
 ?- t(X,3) = t(4,Z).

 X = 4,

 Z = 3 ;

 No

 ?-

Como no hay más soluciones en nuestro ejemplo, el shell dice "no" y nos permite escribir otro
objetivo. Si no hubiésemos deseado más soluciones simplemente habríamos pulsado INTRO.

Compilando y cargando código

Puesto que en el shell solamente podemos ejecutar objetivos, la forma de compilar y cargar
código es ejecutando un objetivo. Esto puede variar de un shell a otro, pero habitualmente se hace
así:
 ?- consult('prog1.pl').

 yes

 ?-

Obsérvese que el nombre del fichero fuente (y su ruta, si es necesario) se escribe en un término
cero-ario entre comillas simples. Esta es la forma habitual de escribir nombres de fichero.
 ?- consult('c:/temp/prog1.pl').

 yes

 ?-

Quiero irme de aquí

Cuando nos cansamos de jugar con el shell, podemos terminar la aplicación ejecutando el
predicado halt/0, o bien pulsando CTRL-D:
 ?- halt.

Mi primer programa en Prolog

Los programas se escriben en ficheros de texto, generalmente con extensión .pl y pueden
contener comentarios y código. Para ello puede utilizar cualquier editor de texto. Le
recomendamos que intente escribir el siguiente programa desde el principio para familiarizarse
con la sintaxis.
 % Este es mi primer programa en Prolog

 %

 % Se trata de un árbol genealógico muy simple

 %

 %

 % Primero defino los parentescos básicos

 % de la familia.

 % padre(A,B) significa que B es el padre de A...

 padre(juan,alberto).

 padre(luis,alberto).

 padre(alberto,leoncio).

 padre(geronimo,leoncio).

 padre(luisa,geronimo).

 % Ahora defino las condiciones para que

 % dos individuos sean hermanos

 % hermano(A,B) significa que A es hermano de B...

 hermano(A,B) :-

 padre(A,P),

 padre(B,P),

 A \== B.

 % Ahora defino el parentesco abuelo-nieto.

 % nieto(A,B) significa que A es nieto de B...

 nieto(A,B) :-

 padre(A,P),

 padre(P,B).

 Cargando el código

Para compilar y cargar el código existe el predicado consult/1. Recuerde que puede ser necesario
indicar la ruta completa del fichero fuente.

 1 ?- consult('arbolgenealogico.pl').

 arbolgenealogico.pl compiled, 0.00 sec, 1,108 bytes.

 Yes

 2 ?-

 Predicados reversibles

Una vez que hemos compilado y cargado nuestro programa vamos a estudiar sus características.
Una de ellas es el backtracking, o la posibilidad de obtener varias soluciones, como ya hemos
visto.
 2 ?- hermano(A,B).

 A = juan

 B = luis ;

 A = luis

 B = juan ;

 A = alberto

 B = geronimo ;

 A = geronimo

 B = alberto ;

 No

 3 ?-

Ahora vamos a reparar en otra curiosa propiedad que no existe en otros lenguajes: la
reversibilidad. Esto es la habilidad de los argumentos de los predicados para actuar
indistintamente como argumentos de entrada y/o salida. Por ejemplo:

 3 ?- nieto(luis,X).

X = leoncio

 No

 4 ?-

Aquí, el primer argumento es de entrada mientras que el segundo es de salida. El predicado nos
dice de quién es nieto Luis. Pero ahora vamos a intercambiar los papeles:
 4 ?- nieto(X,leoncio).

 X = juan ;

 X = luis ;

 X = luisa ;

 No

 5 ?-

Obsérve cómo el mismo predicado que nos dice el abuelo de un nieto sirve para conocer los
nietos de un abuelo. Estos predicados se dicen reversibles, o que sus argumentos son reversibles.

Predicados no reversibles

No todos los predicados son reversibles. Por ejemplo, los de comparación aritmética. El predicado
>/2 sirve para saber si un número es mayor que otro, pero no sirve para saber todos los números
mayores que uno dado (puesto que son infinitos).
Otros predicados pueden perder la reversibilidad por deseo expreso de su programador, o
solamente ser reversibles para ciertos argumentos pero no otros. Así podemos hablar de las
posibles formas de invocar un predicado. Esto es lo que se denomina modos de uso.

Modos de uso

Los modos de uso indican que combinación de argumentos deben o no estar instanciados para
que un objetivo tenga sentido. Se dice que un argumento está instanciado cuando no es una
variable libre.
A efectos de documentación, los modos de uso se describen con un término anotado en sus
argumentos con un símbolo. Los argumentos pueden ser:

• De entrada y/o salida indistintamente. Estos argumentos se denotan con un símbolo de
interrogación (?).

• De solamente entrada. Estos se denotan con un símbolo de suma (+).
• De solamente salida. Estos se denotan con un símbolo de resta (-).

El modo de uso que instancia todos los argumentos siempre es válido.
Por ejemplo, para el predicado hermano/2 su único modo de uso es hermano(?A,?B).
Supongamos un predicado cuyos modos de uso son:

• p(+A,+B,-C).
• p(+A,-B,+C).

Entonces son objetivos válidos:

• p(1,2,X).
• p(1,X,3).
• p(1,2,3).

Pero no son válidos:

• p(X,Y,3).
• p(X,2,3).
• p(X,Y,Z).

Evaluación de expresiones aritméticas

Llega el momento de utilizar Prolog para nuestros complejísimos cálculos aritméticos. ¿ Acaso
existe algún programa donde no se sumen dos y dos ?.
En Prolog es fácil construir expresiones aritméticas. Algún avispado se habrá percatado de que
las expresiones matemáticas en general son términos, puesto que corresponden a teorías lógicas
de primer orden.
El problema es reducir esas expresiones según las leyes matemáticas para obtener numeros. Eso
se hace en Prolog mediante el predicado is/2, cuyo modo de uso es is(-Var,+Expr). Además, el
argumento Expr debe ser un término cerrado (es decir, que no contenga variables libres). Por
ejemplo, vamos a sumar dos y dos:

 1 ?- X is 2 + 2.

 X = 4

 yes

 2 ?-

El predicado is/2 no es reversible, por eso debemos estar seguros de que las variables del
segundo argumento siempre están instanciadas. El modo de uso que instancia todas las variables
solo tiene éxito si el primer argumento es un número y coincide con la evaluación del segundo
argumento. Por ejemplo:
 2 ?- 5 is 2 + 2.

 no

 3 ?-

Expresiones válidas

Las expresiones que podemos utilizar en el segundo argumento pueden variar de un entorno de
desarrollo a otro, pero vamos a citar las más comunes:

Término Significado Ejemplo

+/2 Suma X is A + B.

*/2 Producto X is 2 * 7.

-/2 Resta X is 5 - 2.

'/'/2 División X is 7 / 5.

-/1 Cambio de signo X is -Z.

'//'/2 División entera X is 7 // 2.

mod/2 Resto de la división entera X is 7 mod 2.

'^'/2 Potencia X is 2^3.

abs/1 Valor absoluto X is abs(-3).

pi/0 La constante PI X is 2*pi.

sin/1 seno en radianes X is sin(0).

cos/1 coseno en radianes X is cos(pi).

tan/1 tangente en radianes X is tan(pi/2).

asin/1 arcoseno en radianes X is asin(7.2).

acos/1 arcocoseno en radianes X is acos(Z).

atan/1 arcotangente en radianes X is atan(0).

floor/1 redondeo por defecto X is floor(3.2).

ceil/1 redondeo por exceso X is ceil(3.2).

Ejercicios sobre términos y variables

A continuación aparecen una serie de expresiones. Trate de identificar si se trata de variables,
términos o si están mal construidos.

• p(j(G),h(12),j(3),a+b)
• p(j(G),H(12),j(3),a+b)

• __abc
• aBc
• AbC
• 3 $ 2
• ' '(_,_)
• _'A'(12)
• 32.1
• pepe > 32.2

Ejercicios sobre unificación

Indique si los siguientes pares de términos unifican entre sí. En caso de que unifiquen, indique a
que valores se ligan las variables.

• p(a) y p(A)
• p(j(j(j(j(j))))) y p(j(j(j(j))))
• p(j(j(j(j(j))))) y p(j(j(j(X))))
• q(_,A,_) y q(32,37,12)
• z(A,p(X),z(A,X),k(Y)) y z(q(X),p(Y),z(q(z(H))),k(z(3)))
• z(A,p(X),z(A,X),k(Y)) y z(q(X),p(Y),z(q(z(H)),z(H)),k(z(3)))

Compruebe los resultados del ejercicio utilizando el top-level shell y el predicado igualdad =/2.
A continuación, ejecute las siguientes secuencias de objetivos en el top-level shell y observe las
ligaduras de las variables:
• f(X) = f(Y).
• X = 12, f(X) = f(Y).
• f(X) = f(Y), X = 12.
• f(X) = f(Y), Y = 12.
• X = Y, Y = Z, X = H, Z = J, X = 1.
• X = 1.
 1 = X.

 Ejercicios sobre predicados

A continuación indicamos las soluciones de tres predicados (el orden es significativo):

• p(5,2) tiene éxito.
• p(7,1) tiene éxito.
• q(1,3) tiene éxito.
• z(3,1) tiene éxito.
• z(3,7) tiene éxito.
• No hay más soluciones que las anteriores.

Indique los pasos de ejecución para la secuencia p(A,B),q(B,C),z(C,A).
Defina el predicado sumar_dos/2 que toma un número en el primer argumento y retorna en el
segundo argumento el primero sumado a dos. ¿ Cuáles son los modos de uso permitidos para
dicho predicado ?.
Editando el programa de ejemplo (arbolgenealogico.pl), defina el predicado tio/2 donde tio(A,B)
significa que A es el tío de B. Utilize dicho predicado desde el top-level shell para averiguar
quienes son los sobrinos de geronimo. Recuerde que cada vez que modifique el fichero fuente
debe volver a compilarlo mediante el predicado consult/1.

Tipos de datos

Todos sabemos que los datos que maneja Prolog son los términos. Sin embargo, podemos
construir otros tipos de datos a partir de estos. De hecho, algunos están predefinidos para mayor
gloria del programador, son el caso de las listas y las cadenas de caracteres.
En cualquier caso, el lector debe asumir que Prolog no es un lenguaje tipado, puesto que no
existen declaraciones explícitas de tipo tal y como ocurre en los lenguajes imperativos. El hecho
de que no existan dichas declaraciones se debe sencillamente a que no hacen falta.

Registros

Los registros son agrupaciones ordenadas de datos que en Prolog podemos escribir como
términos que almacenan cada dato en un argumento. Por ejemplo, supongamos que queremos un
registro para representar los datos personales de la gente:
 persona('Eva','Fina','Y Segura',15)

 persona('Fulanito','De Tal','Y Tal',32)

Mediante el término persona/4 representamos a un individuo. El primer argumento es el nombre,
el segundo y tercero son los apellidos y el cuarto es la edad.
Puesto que los términos son anidables podemos crear registros complejos:
 persona('Menganito',edad(32),direccion('Leganitos',13,'Madrid'))

Árboles

Puesto que los términos pueden ser recursivos es fácil crear estructuras de datos recurrentes.
Como ejemplo, veamos como definir árboles binarios. Para ello representamos el árbol vacío
mediante una constante, por ejemplo, empty/0, y un nodo cualquiera puede ser representado
mediante el término tree/3. El primer argumento representa un dato cualquiera asociado al nodo.
El segundo argumento representa la rama izquierda, y el tercer argumento la correspondiente
rama derecha. Son ejemplos de árboles:
 empty

 tree(dato1,empty,empty)

 tree(dato1,tree(dato2,empty,empty),tree(dato3,empty,empty))

 tree(dato4,empty,tree(dato5,tree(dato6,empty,empty),empty))

Listas

Las listas en Prolog podrían definirse del mismo modo que los árboles puesto que los términos se
pueden anidar todas las veces que sea necesario. Por ejemplo, la lista de números del uno al
cinco se puede representar así:
 lista(1,lista(2,lista(3,lista(4,lista(5,vacio)))))

Afortunadamente, las listas están predefinidas en el lenguaje para una mayor comodidad. De
modo que la lista anterior la podemos escribir así:
 [1, 2, 3, 4, 5]

Esta es la forma de escribir las listas definiendo todos los elementos, pero podemos manipular las
listas distinguiendo cabeza y resto: [C|R]. Donde la variable C representa la cabeza, y R el resto.
Por ejemplo:
 L = [1, 2, 3, 4, 5],

 M = [0|L].

La lista M sería equivalente a [0,1,2,3,4,5] . Es importante no confundir los términos [C|R] y [C,R].
La diferencia es muy sutil:
 L = [1, 2, 3, 4, 5],

 M = [0,L].

El resultado sería M = [0,[1,2,3,4,5]], que es una lista de dos elementos.

Naturalmente, existe la lista vacía, que se representa como []. Además resulta conveniente tener
en cuenta que:

• Existen bibliotecas para hacer cosas más complicadas con las listas, como concatenar,
aplanar, etc.

• Los elementos de las listas son términos y pueden ser heterogéneos. Por ejemplo:
[1,p(a),[a,b],f(g(h))].

• Las listas también son términos, solamente las escribimos de una manera más cómoda.
Así, la lista [1,a,2] es en realidad el término '.'(1,'.'(a,'.'(2,[]))).

Cadenas de caracteres

Las cadenas de caracteres son en Prolog listas de códigos ASCII. Afortunadamente se pueden
escribir de una manera cómoda poniendo los caracteres entre comillas dobles. Por ejemplo, la
expresión "ABC" es en realidad la lista [65,66,67]. Así, podemos tratar las cadenas de caracteres
como cadenas o como listas según nos interese. Naturalmente, todo el código que nos sirve para
listas nos sirve para cadenas. Por ejemplo, el predicado que concatena dos listas también sirve
para concatenar dos cadenas de texto.

Constantes

Como ya es sabido, las constantes en Prolog son términos cero-arios (átomos). A pesar de su
simpleza, pueden ser muy útiles para representar información ya que pueden contener cualquier
caracter. Se utilizan, por ejemplo, para representar nombres de ficheros. Recuerde que las
constantes numéricas también son términos cero-arios (pero no son átomos).

Conversión entre números, átomos y cadenas de caracteres

Existe cierta correspondencia entre estos elementos. Tanto los números como los átomos se
pueden convertir a cadena de caracteres mediante los predicados number_codes/2 y
atom_codes/2 respectivamente. Utilizando las cadenas de caracteres como elemento intermedio,
es posible convertir de átomos a números y viceversa:
atom_codes(Atomo,Aux),number_codes(Numero,Aux). Observe que dichos predicados son
reversibles.

Tests de tipo

Si en Prolog no existen declaraciones de tipo, ¿ cómo estamos seguros de que un argumento es
de un tipo determinado ?. La respuesta está en los tests de tipo. Éstos son predicados que
(habitualmente) reciben un dato como argumento y fallan si el argumento no es del tipo esperado.
Como ejemplo vamos a escribir el test de tipo para comprobar si un argumento es una lista:
 es_una_lista([]).

 es_una_lista([_ | Resto]) :-

 es_una_lista(Resto).

La lista vacía es una lista, y si no, [A|B] será una lista si y sólo si B es una lista. En cuanto a A, nos
trae al fresco lo que valga, por eso usamos una variable anónima en el código.
Ahora podemos comprobar el tipo de un argumento llamando al test de tipo:
 mi_predicado(Lista1,Lista2) :-

 es_una_lista(Lista1),

 es_una_lista(Lista2),

 ...,

Tests de tipo predefinidos

Existen predicados predefinidos para comprobar algunos tipos básicos. Estos son:

Predicado Test

integer/1 Comprueba si su argumento es un número entero

float/1 Comprueba si el argumento es un número decimal

number/ Comprueba si el argumento es un número (entero o decimal)

atom/1 Comprueba si el argumento es un término cero-ario excluyendo las constantes
numéricas

var/1 Comprueba si el argumento es una variable libre

nonvar/1 Comprueba si el argumento está instanciado

ground/1 Comprueba si el argumento es un término que no contiene variables libres (está
cerrado)

Ejecución de los tests

La desventaja de los tests de tipo es que resulta necesario ejecutarlos. Esto añade un tiempo
extra de ejecución a nuestra aplicación que no sirve para nada útil. Sin embargo, esto es
solamente una verdad a medias:

• La mayoría de los predicados no requieren test de tipo como es el propio predicado que
implementa el test de tipo. Todo gracias a la unificación.

• Los compiladores más avanzados son capaces de suprimir los test de tipo cuando pueden
asegurar en tiempo de compilación que el predicado no se llamará con tipos inadecuados.

• Análogamente, algunos compiladores son capaces de insertar automáticamente el test de
tipo cuando al programador "se le olvida" (es decir, siempre).

• Cuando la aplicación esta terminada y probada, el propio programador puede suprimir los
test de tipo si está seguro de que no pueden producirse errores de tipo.

• El polimorfismo que aporta la ausencia de declaraciones de tipo es deseable en muchas
ocasiones. Por eso, los test de tipo no siempre son necesarios.

En cualquier caso, el programador tiene libertad para decidir si es necesario ejecutar tests de tipo
en su programa.

Tipos paramétricos

También es posible escribir test de tipos paramétricos, es decir, aquellos que dependen de otro
tipo. Por ejemplo, para evitar tener que definir un test de tipo para listas de números y otro para
listas de átomos, podríamos definir el tipo "lista de X". La declaración de estos test de tipo requiere
el uso de predicados de orden superior (o metapredicados) que estudiaremos posteriormente.

El corte

El corte es un predicado predefinido que no recibe argumentos. Se representa mediante un signo
de admiración (!).El corte tiene la propiedad de eliminar los puntos de elección del predicado
que lo contiene.
Es decir, cuando se ejecuta el corte, el resultado del objetivo (no sólo la cláusula en cuestión)
queda comprometido al éxito o fallo de los objetivos que aparecen a continuación. Es como si a
Prolog "se le olvidase" que dicho objetivo puede tener varias soluciones.
Otra forma de ver el efecto del corte es pensar que solamente tiene la propiedad de detener el
backtracking cuando éste se produce. Es decir, en la ejecución normal el corte no hace nada.
Pero cuando el programa entra en backtracking y los objetivos se recorren marcha atrás, al llegar
al corte el backtracking se detiene repentinamente forzando el fallo del objetivo.

Ejemplo

Para entender de manera simple el uso del corte vamos a comparar dos predicados que
solamente se diferencian en un corte:
 % Sin corte.

 p(X,Y) :- X > 15, Y > 50.

 p(X,Y) :- X > Y.

 % Con corte.

 q(X,Y) :- X > 15, !, Y > 50.

 q(X,Y) :- X > Y.

Veamos que ocurre si ejecutamos el objetivo p(25,12):

• Observe que ambas cláusulas unifican con la cabeza, luego existen dos puntos de
elección que se anotan.

• Prolog entra por el primer punto de elección (primera cláusula) eliminándolo.
• Prolog ejecuta el primer objetivo del cuerpo (X>15), que tiene éxito.

• Prolog ejecuta el segundo objetivo del cuerpo (X>50), que falla.
• Empieza el backtracking.
• Se recorren ambos objetivos hacia atrás pero no hay variables que se hayan ligado en

ellos.

• Encontramos el segundo punto de elección (segunda cláusula) que detiene el backtracking
eliminándolo en el proceso. La ejecución continúa hacia delante.

• Prolog ejecuta el cuerpo de la segunda cláusula que consiste en X>Y. Este objetivo tiene
éxito.

• El objetivo p(25,12) tiene éxito.

Ahora comprobamos lo que ocurre cuando existe el corte, ejecutamos q(25,12):

• Ambas cláusulas unifican con la cabeza, luego existen dos puntos de elección que se
anotan.

• Prolog entra por el primer punto de elección (primera cláusula) eliminándolo.
• Prolog ejecuta el primer objetivo del cuerpo (X>15), que tiene éxito.
• Se ejecuta el segundo objetivo del cuerpo que es el corte. Por tanto, se eliminan todos los

puntos de elección anotados que son debidos al objetivo q(25,12). Solamente teníamos
uno, que se elimina.

• Prolog ejecuta el tercer objetivo del cuerpo (X>50), que falla.
• Empieza el backtracking.
• Se recorren ambos objetivos hacia atrás pero no hay variables que se hayan ligado en

ellos.
• No encontramos ningún punto de elección porque fueron eliminados por el corte.
• El objetivo p(25,12) falla.

Como puede comprobar, los resultados son sustancialmente diferentes. La segunda cláusula del
predicado q/2 ni siquiera ha llegado a ejecutarse porque el corte ha comprometido el resultado del

objetivo al resultado de Y>15 en la primera cláusula.

Usos del corte

El corte se utiliza muy frecuentemente, cuanto más diestro es el programador más lo suele usar.
Los motivos por los que se usa el corte son, por orden de importancia, los siguientes:

1. Para optimizar la ejecución. El corte sirve para evitar que por culpa del backtracking se
exploren puntos de elección que, con toda seguridad, no llevan a otra solución (fallan).
Para los entendidos, esto es podar el árbol de búsqueda de posibles soluciones.

2. Para facilitar la legibilidad y comprensión del algoritmo que está siendo programado. A
veces se sitúan cortes en puntos donde, con toda seguridad, no van a existir puntos de
elección para eliminar, pero ayuda a entender que la ejecución sólo depende de la cláusula
en cuestión.

3. Para implementar algoritmos diferentes según la combinación de argumentos de entrada.
Algo similar al comportamiento de las sentencias case en los lenguajes imperativos.

4. Para conseguir que un predicado solamente tenga una solución. Esto nos puede interesar
en algún momento. Una vez que el programa encuentra una solución ejecutamos un corte.
Así evitamos que Prolog busque otras soluciones aunque sabemos que éstas existen.

Corte y fallo

Es muy habitual encontrar la secuencia de objetivos corte-fallo: !,fail. El predicado fail/0 es un
predicado predefinido que siempre falla. Se utiliza para detectar prematuramente combinaciones
de los argumentos que no llevan a solución, evitando la ejecución de un montón de código que al
final va a fallar de todas formas.

Algoritmos y técnicas de programación

Los algoritmos utilizados en Prolog están íntimamente ligados a los términos y su estructura
anidada/ recursiva. Por eso, la técnica de programación por excelencia es la recursividad. Sin
embargo existen técnicas propias del lenguaje como son los bucles de fallo.

Recursividad

La recursividad es la técnica por antonomasia para programar en Prolog. El lector ya habrá notado
que en Prolog no existen bucles for, while, do-while, ni sentencias case, ni otras construcciones
absurdas. En Prolog no hacen falta.
Todos los términos en Prolog pueden ser recursivos, y gracias a la unificación, podemos recorrer
sus argumentos a voluntad. La estructura de datos más significativa con respecto a la recursividad
son las listas, por eso centraremos nuestros ejemplos en ellas.
La estructura de las cláusulas de un predicado recursivo es muy simple. Como ejemplo veamos
un predicado que calcula la longitud de una lista:

 % La longitud de la lista vacía es cero

 longitud([],0).

 % La longitud de una lista es la longitud del resto mas uno. Como el contenido

 % de la cabeza no nos interesa, utilizamos la variable anónima

 longitud([_|Resto], Longitud) :-

 longitud(Resto,LongitudResto),

 Longitud is LongitudResto+1.

Observe como el primer objetivo de la segunda cláusula es una llamada al propio predicado que
estamos definiendo. Para evitar que un predicado se llame a sí mismo infinitamente debemos
estar seguros de que existe al menos un caso en el que termina. Este caso se contempla en la
primera cláusula y se denomina caso base.
Otro ejemplo interesante es el predicado que concatena dos listas, que es reversible:

 % Concatenar vacio con L es L...

 concatena([],L,L).

 % Para concatenar dos listas, sacamos la cabeza de la primera lista,

 % luego concatenamos el resto con la segunda lista y al resultado le ponemos la cabeza

 % de la primera lista como cabeza del resultado...

 concatena([Cabeza|Resto],Lista,[Cabeza|RestoConcatenado]):-

 concatena(Resto,Lista,RestoConcatenado).

Parámetros de acumulación

La técnica de parámetros de acumulación se suele utilizar en combinación con la recursividad.
Consiste en un argumento auxiliar (o varios de ellos) que almacena la solución parcial en cada
paso recursivo. Cuando llegamos al caso base, la solución parcial es la solución total.
 longitud2_aux([],Parcial,Parcial).

 longitud2_aux([_|Resto],Parcial,Result) :-

 NParcial is Parcial+1,

 longitud2_aux(Resto,NParcial,Result).

 longitud2(Lista,Longitud) :-

 longitud2_aux(Lista,0,Longitud).

En este ejemplo, el valor inicial del parámetro de acumulación es cero. Este valor inicial es
importante para que la solución sea correcta. Por eso hemos creado el predicado longitud2/2, que

se asegura el correcto uso del parámetro de acumulación. El predicado longitud2_aux/3 no
debería ser ejecutado directamente.
La ventaja del parámetro de acumulación es que genera recursividad de cola, esto es, la
llamada recursiva es siempre la última en ejecutarse. Esto permite a los compiladores optimizar
considerablemente el uso de recursos ocasionado por la recursividad. La desventaja es que los
predicados podrían resultar no reversibles.

Sentencias "case"

A modo meramente anecdótico indicamos como podría simularse una típica estructura "case" (de
selección) propia de los lenguajes imperativos. Así el siguiente algoritmo:
 case Dato of

 1 : corromper_archivos;

 2 : cancelar;

 3 : formatear_disco;

 end;

Se expresaría en Prolog de la siguiente manera:
 case(1) :- !, corromper_archivos.

 case(2) :- !, cancelar.

 case(3) :- !, formatear_disco.

Bucles de fallo

Los bucles de fallo constituyen una técnica de programación que permite recorrer una serie de
elementos y aplicarles una operación. De la misma manera que un bucle for o while.
Los bucles de fallo están basados en la capacidad para obtener varias soluciones y el
backtracking para recorrerlas. La estructura general de un bucle de fallo es la siguiente:
 bucle :-

 generador(UnaSolucion),

 filtro(UnaSolucion),

 tratamiento(UnaSolucion),

 fail.

 bucle.

El predicado generador/1 es el encargado de enumerar los datos a tratar en cada paso del bucle.
Es decir, cada una de sus soluciones será un elemento a tratar en el bucle.
El predicado filtro/1 es opcional y permite seleccionar qué elementos se van a tratar y cuales no.
El predicado tratamiento/1 es el encargado de hacer algo con el dato. Es algo así como el cuerpo
de un bucle for.
Finalmente, el predicado fail/0, que esta predefinido, se encarga de que ocurra el bucle forzando
el backtracking. Además incluimos una cláusula para que el bucle en sí no falle después de
haberse ejecutado.

Ejemplo

El siguiente ejemplo recorre los números del uno al diez y los escribe por pantalla.

 generador(Desde,_,Desde).

 generador(Desde,Hasta,Valor) :-

 Desde < Hasta,

 NDesde is Desde+1,

 generador(NDesde,Hasta,Valor).

 tratamiento(Numero) :- display(Numero), nl.

 bucle :-

 generador(1,10,Numero),

 tratamiento(Numero),

 fail.

 bucle.

En este caso no hemos utilizado filtro. El predicado generador/3 se encarga de generar los
números del uno al diez. El predicado display/1 está predefinido y simplemente escribe un término
por la salida standard. El predicado nl/0 también está predefinido y se encarga de escribir un salto
de línea por la salida standard.

La negación por fallo

La negación en Prolog consiste en un predicado predefinido llamado '\+'/1. La negación recibe
como argumento un objetivo. Si dicho objetivo tiene éxito la negación falla y viceversa. Por
ejemplo: \+ (X > 5) es equivalente a X =< 5.
Parece simple, pero la negación encierra una pequeña trampa. Dicha negación no es la negación
lógica sino la negación por fallo.
Esto significa que Prolog asume que aquellos objetivos que no tienen solución (fallan) son falsos.
Esto se denomina asunción de mundo cerrado porque damos por supuesto que todo aquello que
no se puede deducir (porque no ha sido escrito en el programa) es falso.
La negación por fallo solamente coincide con la negación lógica cuando el objetivo negado es un
término cerrado (no contiene variables libres). El programador es el responsable de asegurarse
esta condición.
Piense cuál es el motivo de esta condición: cuando un objetivo falla sus variables no se ligan. No
obstante, su negación tiene éxito, entonces ¿a qué valor ligamos las variables de dicha
negación?.

Ejemplo

Consideremos el siguiente programa:
 estudiante(luis).

 estudiante(juan).

 informatico(luis).

 hobby(X,musica) :- informatico(X), estudiante(X).

Y ahora ejecutamos el siguiente objetivo: \+ hobby(X,musica), es decir, queremos saber a quién
no le gusta la música como hobby.
La negación lógica (y el sentido común) nos diría que el hobby de Juan no es la música. Sin
embargo, Prolog dice que no hay nadie a quien no le guste la música.
Recuerde... en Prolog todos los predicados son falsos hasta que se demuestre lo contrario. El
problema es que a veces no se puede demostrar.

Metaprogramación y orden superior

Este curso avanzado de Prolog esta dedicado a las capacidades de orden superior del lenguaje.
Se trata de un conjunto de funcionalidades generalmente desconocidas (no sólo en Prolog, sino
también en otros lenguajes) pero que dotan de una enorme expresividad y potencia a los
programas.

Orden Superior

Se podría definir el concepto de orden superior como la capacidad de un lenguaje para manejar su
propio código como una estructura de datos más. El orden superior existe en muchos lenguajes
pero, debido a que se implementa de formas distintas, no se suele usar esta denominación.
Algunos ejemplos:

• En el lenguaje C: los punteros a funciones. Estos permiten pasar funciones como
argumentos.

• En Java y otros lenguajes OO: las referencias a instancias. Permiten ejecutar código
distinto dependiendo de la referencia utilizada.

Un aspecto particular del orden superior es la capacidad de pasar un procedimiento o función
como argumento a otro procedimiento o función. Esta es la característica más utilizada.

Metaprogramación

La metaprogramación es una implementación posible del orden superior tremendamente versátil.
Consiste en la posibilidad de que el código se modifique a sí mismo. Para entender la diferencia
entre metaprogramación y orden superior pondremos un ejemplo:

• Escribimos una función, y la pasamos como argumento a otra función. Ésta última la
ejecuta sin saber exactamente qué está ejecutando. Esto es una característica de orden
superior.

• Tomamos una cadena de texto donde almacenamos el nombre de una función, por
ejemplo, tabla_logaritmo. Por otra parte construimos una lista con dos elementos, los

números 3 y 5, por ejemplo. Ahora juntamos la lista con la cadena de texto y generamos
una llamada válida a la función tabla_logaritmo(3,5). La llamada se ejecuta. Esto es
metaprogramación.

Prolog cuenta con esta característica.

Metaprogramando

Vamos a analizar cómo se puede convertir datos en código y después ejecutarlo. Pero
previamente mostraremos algunos predicados standard auxiliares para este propósito, aunque
tienen también otros usos.

Manipulación de términos

El predicado functor/3 es uno de los más útiles entre la biblioteca standard Prolog. Este predicado
permite extraer el functor y la aridad de un término cualquiera. Pero, al ser reversible, también
permite construir nuevos términos a partir del functor y la aridad deseada. Los modos de uso
son:

• functor(+Termino,-Functor,-Aridad).
• functor(-Termino,+Functor,+Aridad).

El siguiente ejemplo muestra como se extrae functor y aridad:
?- functor(termino(arg(1)),Functor,Aridad).

Functor = termino

Aridad = 1

yes

Ahora veremos como crear un nuevo término. Sus argumentos siempre serán nuevas variables
libres:
?- functor(NuevoTermino,prueba,4).

NuevoTermino = prueba(_G426, _G427, _G428, _G429)

yes

?-

Manipulación de argumentos con "arg"

Ahora que podemos construir términos, sería deseable poder asignarles argumentos. Uno de los
predicados que permiten esto es arg/3. Para ello se indica el número de índice del argumento
deseado, empezando a numerar por el 1 de izquierda a derecha. El modo de uso es:

• arg(+Indice,+Termino,-Argumento).

El primer uso de este predicado es extraer un argumento concreto de un término:
?- arg(2,termino(a,b,c,d),ARG).

ARG = b

yes

?-

Si el término tiene variables libres como argumento, se les puede asignar valor mediante arg/3.

Pero el resultado es el mismo que una simple unificación mediante =/2. Esto se observa en el
siguiente ejemplo:
?- Termino = p(X,b), arg(1,Termino,zzz).

Termino = p(zzz,b),

X = zzz

Yes

?- Termino = p(X,b), Termino = p(zzz,_).

Termino = p(zzz,b),

X = zzz

yes

?-

El predicado arg/3 solamente es útil cuando se conoce a priori el número de argumentos del

término manipulado, pero en combinación con functor/3 resulta muy eficaz.

Manipulación de argumentos con "univ"

En ocasiones resulta mucho más útil convertir los argumentos de un término en una lista y
viceversa. Esta es la función de "univ", nombre que recibe el operador infijo =../2. Sus modos de
uso son:

• +Termino =.. -Lista
• -Termino =.. +Lista

La lista contiene siempre el functor del término en la primera posición, y los argumentos en el
resto de la lista. El siguiente ejemplo desglosa los elementos de un término:
?- p(a,b,c(i)) =.. X.

X = [p,a,b,c(i)] ?

yes

?-

Y el siguiente ejemplo construye un nuevo término a partir de la lista de sus componentes...
?- Termino =.. [functor,arg1,arg2,arg3].

Termino = functor(arg1,arg2,arg3)

yes

?-

Llamadas de orden superior

Lo interesante ahora es convertir un término en un objetivo Prolog a ejecutar. Esto se consigue
con el predicado call/1. Naturalmente, el término debe corresponder con algún predicado
existente, de otra forma, se genera una excepción. Por ejemplo:
 % Un predicado

 mipred(X) :- display(X), nl.

 % Llamada de orden superior

 ejemplo :- X = mipred(5), call(X).

Naturalmente, este ejemplo carece de utilidad puesto que se puede ejecutar la llamada a mipred/1
directamente. Pero resulta muy útil en combinación con los predicados anteriormente descritos.
Por ejemplo:

 sujeto(12).

 sujeto(13).

 sujeto(78).

 aplicar(Predicado) :- sujeto(X), LLamada =.. [Predicado,X], call(LLamada), nl, fail.

 aplicar(_).

 ejemplo :- aplicar(display).

El resultado es el siguiente:
 ?- ejemplo.

 12

 13

 78

 yes

 ?-

Los predicados de este tipo, que reciben un argumento y lo convierten a un objetivo ejecutable
(sin saber lo que se ejecuta) se denominan metapredicados. Dicho argumento se denomina
metaargumento.Un ejemplo de metapredicado es la propia negación por fallo, que se
implementa de esta manera:
 not(Objetivo) :-

 call(Objetivo),

 !,

 fail.

 not(_).

Predicados standard de orden superior

En este capítulo abordamos algunos predicados standard que resultan muy útiles y son
ampliamente utilizados.
NOTA: Si bien estos predicados son ISO-standard, puede ser necesario importar alguna biblioteca
antes de utilizarlos.

El predicado maplist/3

Permite aplicar un predicado de "mapeo" a una lista de datos. Dicho predicado debe admitir el
siguiente modo de uso:

• MapPred(+Dato,-DatoMapeado).

Debe tratarse, por tanto, de un predicado que transforma (mapea) un dato en otro. La función de
maplist/3 es la siguiente: para cada dato existente en una lista dada, se pasa como primer
argumento a MapPred. El resultado de MapPred, es decir, el segundo argumento, se almacena en
una lista resultado. El modo de uso es el siguiente:

• maplist(+ListaInicial, +MapPred, -ListaResultado).

A continuación, un ejemplo:
 %Predicado de mapeo:

 %Dado un numero le suma una unidad

 mapeo(Dato, DatoMapeado) :- DatoMapeado is Dato + 1.

 %% Ejecucion en el top-level:

 ?- maplist(mapeo, [6,9,12], L).

 L = [7,10,13]

 yes

 ?-

La familia de predicados "findall"

Se trata de un conjunto de predicados cuya finalidad es almacenar en una lista todas las
soluciones de un predicado dado, entendiendo como tales, las ligaduras que se producen en una
o varias variables libres que se indican explícitamente. Los predicados que componen la familia
son:

findall/3
Genera una lista con todas las soluciones del predicado dado según el orden en que se
van sucediendo. findall/3 nunca falla, si no hay soluciones genera una lista vacía.
Naturalmente, el propio findall/3 solamente tiene una solución.

bagof/3

Similar a findall/3, genera una lista con todas las soluciones del predicado dado. La
diferencia estriba en que :

• bagof/3 falla cuando no hay soluciones.
• bagof/3 tiene una solución por cada variable libre que no haya sido indicada

como parte de la solución.

setof/3 Similar a bagof/3. La única diferencia es que setof/3 elimina las soluciones duplicadas
que pudieran existir.

Para explicar los argumentos vamos a tomar findall/3 como ejemplo, pero lo mismo se aplica a
toda la familia de predicados. El modo de uso es el siguiente:

• findall(+Termino_o_variable, +Objetivo, -ListaResultado).

El segundo argumento es el predicado del cual queremos obtener soluciones, para ello, debe
contener una o más variables libres. Por otra parte, dicho objetivo debe tener un número finito de
soluciones. De otra forma, se entraría en un bucle infinito al ejecutar alguno de los predicados de
la familia.
El primer argumento es un término cualquiera que contiene las variables libres que nos interesan
de la solución. Es posible que no nos interesen todas. Si solamente nos interesa una, lo indicamos
directamente. Es obvio que las variables que aparecen en este primer argumento han de ser un
subconjunto de las que aparecen en el segundo argumento.
Estos son ejemplos de uso erróneo de findall/3:

• findall(X, predicado(Y), Resultado).
• findall(X, predicado(Y,Z), Resultado).
• findall(solucion(X,Y), predicado(Y,Z), Resultado).

Por el contrario, estos son ejemplos de usos correctos de findall/3:

• findall(X, predicado(X), Resultado).
• findall(X, predicado(X,Y), Resultado).
• findall(solucion(X,Y), predicado(X,Y), Resultado).

Para ilustrar el uso de estos predicados utilizaremos el siguiente predicado:
 p(1,2).

 p(4,3).

 p(6,3).

 p(6,5).

Empezamos con findall/3. Construimos una lista con las soluciones del segundo argumento de
p/2. Observe como las soluciones del primer argumento de p/2 se ignoran, además, se obtienen
todas las soluciones, incluidas las repetidas.
?- findall(Y, p(X,Y), Resultado).

Resultado = [2,3,3,5]

yes

?-

Ahora obtenemos las soluciones considerando como tal ambos argumentos de p/2.
?- findall(sol(X,Y), p(X,Y), Resultado).

Resultado = [sol(1,2),sol(4,3),sol(6,3),sol(6,5)]

yes

?-

El funcionamiento de bagof/3 difiere de findall/3 en que el primero puede tener varias soluciones.
bagof/3 tiene una solucion por cada valor de las variables libres que no hayan sido incluidas como
parte de la solución. En el siguiente ejemplo, el primer argumento de p/2 no se incluye en la
solución, observe como se suceden las soluciones de bagof/3.
?- bagof(Y, p(X,Y), Resultado).

X = 1

Resultado = [2] ;

X = 4

Resultado = [3] ;

X = 6

Resultado = [3, 5] ;

No

?-

