Tutorial basico de programacién en Prolog
Elementos del lenguaje

En esta seccion explicaremos como reconocer los diferentes elementos que componen un
programa fuente en Prolog. Como observara en breve, Prolog carece de declaraciones en el
sentido imperativo: secciones, declaraciones de tipo, declaraciones de variable, declaraciones de
procedimientos, etc.

Después de leer esta seccion deber ser capaz de distinguir variables y términos légicos entre la
"marafa" de caracteres que hay en un programa fuente.

Comentarios

Los comentarios en Prolog se escriben comenzando la linea con un simbolo de porcentaje.
Ejemplo:

% Hola, esto es un comentario.

% Y esto también.

Variables légicas

Las variables en Prolog no son variables en el sentido habitual, por eso las llamamos variables
I6gicas. Se escriben como una secuencia de caracteres alfabéticos comenzando siempre por
mayuscula o subrayado. Ejemplos de variables:

Variable

_Hola

Pero no son variables:
variable

$Hola
p__

El hecho de que los nombres de variables comiencen por mayuscula (o subrayado) evita la
necesidad de declarar previamente y de manera explicita las variables, tal y como ocurre en otros
lenguajes.

La variable anénima

Si, si, existen variables sin nombre, y todas ellas se representan mediante el simbolo de
subrayado _. Pero cuidado, aunque todas las variables anénimas se escriben igual, son todas

distintas. Es decir, mientras que dos apariciones de la secuencia de caracteres Hola se refieren a

la misma variable, dos apariciones de la secuencia _ se refieren a variables distintas.

Términos

Los términos son el unico elemento del lenguaje, es decir, los datos son términos, el cédigo son
términos, incluso el propio programa es un término. No obstante, es habitual, llamar término
solamente a los datos que maneja un programa.

Un término se compone de un functor seguido de cero a N argumentos entre paréntesis y
separados por comas. Los numeros enteros o decimales sin restricciones de tamafio también son

términos.
Un functor (también denominado atomo) puede ser:

e Una sucesion de caracteres alfanuméricos comenzando por una letra minuscula.

¢« Un simbolo de puntuacion o secuencia de estos. Las secuencias permitidas varian de un
entorno de desarrollo a otro.

e Una sucesion cualquiera de caracteres encerrada entre comillas simples.

Veamos algunos ejemplos de functores:
functor

f384p12
'‘esto es un unico functor, eh!!'

' functor'

No son functores validos:
_functor

Functor

Los argumentos de un término pueden ser:

e otro término.
e una variable ldgica.

La mejor forma de aprender a escribir términos es mirando algunos ejemplos:
termino_cero_ario

1237878837385345.187823787872344434

t(1)

'mi functor'(17,hola,'otro termino’)

f(Variable)
muchos_argumentos(_,_,_,Variable,232,f,g,a)
terminos_anidados(f(g), h(i,j(7)), p(a(b)), j(1,3,2,_))
+(3.4)

$(ab)

@(12)

Operadores

Algunos functores pueden estar declarados como operadores, bien de manera predefinida, o bien
por el programador. Los operadores simplemente sirven para escribir términos unarios o binarios
de una manera mas cémoda. Por ejemplo, un functor definido como operador infijo es la suma

(+). Asi, la expresion a+b es perfectamente valida, aunque en realidad no es mas que el término

+(a,b).
Los operadores binarios infijos nos permiten escribir el functor entre los dos argumentos y eliminar
los paréntesis.

Los operadores tienen asociada una prioridad. Por ejemplo, la expresion a+b*c es en realidad el
término +(a,*(b,c)). Esto es asi porque el operador producto (*) tiene mas prioridad que el

operador suma (+). Si no fuese asi, se trataria del término *(+(a,b),c).
Los operadores también pueden ser unarios y prefijos, lo que nos evita escribir los paréntesis del
argumento. Por ejemplo, la expresién -5 es en realidad el término -(5).

Dando valor a las variables
El mecanismo de unificacion

La unificacién es el mecanismo mediante el cudl las variables l6gicas toman valor en Prolog. El
valor que puede tomar una variable consiste en cualquier término, por ejemplo, j(3), 23.2, 'hola

que tal', etc. Por eso decimos que los datos que maneja Prolog son términos.

Cuando una variable no tiene valor se dice que esta libre. Pero una vez que se le asigna valor,
éste ya no cambia, por eso se dice que la variable esta ligada.

Se dice que dos términos unifican cuando existe una posible ligadura (asignacion de valor) de las
variables tal que ambos términos son idénticos sustituyendo las variables por dichos valores. Por

ejemplo: a(X,3) y a(4,Z) unifican dando valores a las variables: X vale 4, Z vale 3. Obsérvese que
las variables de ambos términos entran en juego.
Por otra parte, no todas las variables estan obligadas a quedar ligadas. Por ejemplo: h(X) y h(Y)

unifican aunque las variables X e Y no quedan ligadas. No obstante , ambas variables
permanecen unificadas entre si. Si posteriormente ligamos X al valor j(3) (por ejemplo), entonces
automaticamente la variable Y tomara ese mismo valor. Lo que esta ocurriendo es que, al unificar
los términos dados, se impone la restriccion de que X e Y deben tomar el mismo valor aunque en
ese preciso instante no se conozca dicho valor.

La unificacion no debe confundirse con la asignacion de los lenguajes imperativos puesto que
representa la igualdad l6gica. Muchas veces unificamos variables con términos directamente y de

manera explicita (ya veremos como se hace esto), por ejemplo, X y 355. Esto provoca la

sensacion de que estamos asignando valores a las variables al estilo imperativo.
Para saber si dos términos unifican podemos aplicar las siguientes normas:

e Una variable siempre unifica con un término, quedando ésta ligada a dicho término.

o Dos variables siempre unifican entre si, ademas, cuando una de ellas se liga a un término,
todas las que unifican se ligan a dicho término.

e Para que dos términos unifiquen, deben tener el mismo functor y la misma aridad. Después
se comprueba que los argumentos unifican uno a uno manteniendo las ligaduras que se
produzcan en cada uno.

e Sidos términos no unifican, ninguna variable queda ligada.

Ejemplos paradigmaticos

¢ Una misma variable puede aparecer varias veces en los términos a unificar. Ejemplo:
k(Z,Z2) y k(4,H). Por culpa del primer argumento, Z se liga al valor 4. Por culpa del segundo

argumento, Z y H unifican, pero como Z se liga a un valor, entonces H se liga a ese mismo
valor, que es 4.

e Recuerde que una variable no puede ligarse a dos valores distintos. Por ejemplo: k(Z,Z2) y
k(4,3) no unifican, sin embargo k(Z,Z) y k(5,5) si unifican.

e 4 Seria capaz de decir a que valores se ligan las variables de este ejemplo ? a(b(j,K),c(X))
y a(b(W,c(X)),c(W)). Puede estar seguro de que unifican.

e Cuidado con las variables anénimas, recuerde que son todas distintas. Por ejemplo: k(_,_)

y k(3,4) unifican perfectamente.

Ejecutando cosas
Predicados y Objetivos

Los predicados son los elementos ejecutables en Prolog. En muchos sentidos se asemejan a los
procedimientos o funciones tipicos de los lenguajes imperativos.

Una llamada concreta a un predicado, con unos argumentos concretos, se denomina objetivo (en
inglés, goal). Todos los objetivos tiene un resultado de éxito o fallo tras su ejecucién indicando si
el predicado es cierto para los argumentos dados, o por el contrario, es falso.

Cuando un objetivo tiene éxito las variables libres que aparecen en los argumentos pueden
quedar ligadas. Estos son los valores que hacen cierto el predicado. Si el predicado falla, no
ocurren ligaduras en las variables libres.

Ejemplos

El caso basico es aquél que no contiene variables: son_hermanos('Juan’,'Maria'). Este objetivo
solamente puede tener una solucion (verdadero o falso).
Si utilizamos una variable libre: son_hermanos('Juan',X), es posible que existan varios valores

para dicha variable que hacen cierto el objetivo. Por ejemplo para X = 'Maria', y para X = 'Luis'".

También es posible tener varias variables libres: son_hermanos(Y,Z). En este caso obtenemos
todas las combinaciones de ligaduras para las variables que hacen cierto el objetivo. Por ejemplo,
X ="Juan'y Z ='Maria' es una solucién. X ='Juan'y Z ="'Luis' es otra solucion.

Secuencias de objetivos

Hasta ahora hemos visto como ejecutar objetivos simples, pero esto no resulta demasiado util.
En Prolog los objetivos se pueden combinar mediante conectivas propias de la lI6gica de primer
orden: la conjuncién, la disyuncion y la negacion.

La disyuncion se utiliza bien poco y la negacidn requiere todo un capitulo para ser explicada. En
cambio la conjuncion es la manera habitual de ejecutar secuencias de objetivos.

El operador de conjuncién es la coma, por ejemplo: edad(luis,Y),edad(juan,Z),X>Z. Parece
sencillo, pero hay que tener en cuenta qué ocurre con las ligaduras de las variables:

e« En primer lugar, hay que ser consciente de que los objetivos se ejecutan secuencialmente
por orden de escritura (es decir, de izquierda a derecha).

e Siun objetivo falla, los siguientes objetivos ya no se ejecutan. Ademas la conjuncién, en
total, falla.

e Si un objetivo tiene éxito, algunas o todas sus variables quedan ligadas, y por tanto, dejan
de ser variables libres para el resto de objetivos en la secuencia.

o Sitodos los objetivos tienen éxito, la conjuncion tiene éxito y mantiene las ligaduras de los
objetivos que la componen.

Supongamos que la edad de Luis es 32 afios, y la edad de Juan es 25:

e La ejecucion del primer objetivo tiene éxito y liga la variable "Y", que antes estaba libre, al
valor 32.

o Llega el momento de ejecutar el segundo objetivo. Su variable "Z" también estaba libre,
pero el objetivo tiene éxito y liga dicha variable al valor 25.

o Se ejecuta el tercer objetivo, pero sus variables ya no estan libres porque fueron ligadas en
los objetivos anteriores. Como el valor de "Y" es mayor que el de "Z" la comparacion tiene
éxito.

o Como todos los objetivos han tenido éxito, la conjuncion tiene éxito, y deja las variables "Y"
y "Z" ligadas a los valores 32 y 25 respectivamente.

Varias soluciones

Hasta ahora todo parece sencillo, pero ¢, qué ocurre si uno o varios objetivos tienen varias
soluciones ?. Para entender como se ligan las variables en este caso hemos de explicar en qué
consiste el backtracking en Prolog.

Backtracking

Supongamos que disponemos de dos predicados p/1 y g/1 que tienen varias soluciones (el orden
es significativo):

e p(1) tiene éxito.
e p(2) tiene éxito.

e ((2) tiene éxito.
¢ No hay mas soluciones que éstas.

Y a continuacién consideramos la siguiente secuencia: p(X),q(X).
Ahora ejecutamos la secuencia tal y como explicamos en la leccién anterior:

e Ejecutamos p(X) con éxito y la variable queda ligada al valor 1 (primera solucién).

o Ejecutamos q(X), pero la variable ya no esta libre, luego estamos ejecutando realmente
q(1). El predicado falla porque no es una de sus soluciones.

e La conjuncién falla.

El resultado ha sido fallo, pero nosotros sabemos que para X = 2 existe una solucion para la
conjuncion.

Aqui es donde entra en juego el backtracking. Esto consiste en recordar los momentos de la
ejecucion donde un objetivo tenia varias soluciones para posteriormente dar marcha atras y
seguir la ejecucién utilizando otra solucién como alternativa.

El backtracking funciona de la siguiente manera:

e Cuando se va ejecutar un objetivo, Prolog sabe de antemano cuantas soluciones
alternativas puede tener. En un futuro capitulo veremos como puede llegar a saber esto.
Cada una de las alternativas se denomina punto de eleccién. Dichos puntos de eleccion
se anotan internamente y de forma ordenada. Para ser exactos, se introducen en una pila.

e Se escoge el primer punto de eleccion y se ejecuta el objetivo eliminando el punto de
eleccidn en el proceso.

e Si el objetivo tiene éxito se continua con el siguiente objetivo aplicandole estas mismas
normas.

o Si el objetivo falla, Prolog da marcha atras recorriendo los objetivos que anteriormente si
tuvieron éxito (en orden inverso) y deshaciendo las ligaduras de sus variables. Es decir,
comienza el backtracking.

e Cuando uno de esos objetivos tiene un punto de eleccién anotado, se detiene el
backtracking y se ejecuta de nuevo dicho objetivo usando la solucion alternativa. Las

variables se ligan a la nueva solucion y la ejecucién continia de nuevo hacia adelante.
El punto de eleccién se elimina en el proceso.

e El proceso se repite mientras haya objetivos y puntos de eleccion anotados. De hecho, se
puede decir que un programa Prolog ha terminado su ejecucién cuando no le quedan
puntos de eleccidén anotados ni objetivos por ejecutar en la secuencia.

Ademas, los puntos de eleccion se mantienen aunque al final la conjuncion tenga éxito. Esto
permite posteriormente conocer todas las soluciones posibles.

Ejemplo

La manera en que se ejecuta realmente nuestro ejemplo es la siguiente:

o Prolog tiene que ejecutar p(X) y sabe (en el futuro veremos por qué) que existen dos
soluciones. En consecuencia, anota dos puntos de eleccion.

o Ejecutamos p(X) usando el primer punto de eleccién, que se elimina en el proceso. Dicho
objetivo tiene éxito y la variable queda ligada al valor 1 (primera solucién).

e Hay que ejecutar q(X) que solamente tiene un punto de eleccién y queda anotado.

e Ejecutamos q(X) eliminando su (Unico) punto de eleccién, pero la variable ya no esta libre,

luego estamos ejecutando realmente q(1). El predicado falla porque no es una de sus

soluciones.
o Comienza el backtracking, recorriendo los objetivos en orden inverso hasta encontrar un
punto de eleccion anotado.

¢ Nos topamos con el objetivo p(X). Se deshace la ligadura de la variable X, es decir, X

vuelve a estar libre.
e Se encuentra un punto de eleccion. La ejecucion sigue de nuevo hacia adelante.

e Ejecutamos de nuevo p(X), pero esta vez se usa el punto de eleccién que hemos

encontrado. Se liga la variable X al valor 2 que corresponde a la segunda solucion. El
punto de eleccién se elimina en el proceso.

e Hay que ejecutar q(X) que solamente tiene un punto de eleccién y queda anotado.
e Ejecutamos q(X) eliminando su (Unico) punto de eleccién, pero la variable ya no esta libre,

luego estamos ejecutando realmente q(2). El objetivo tiene éxito esta vez.
e La conjuncion tiene éxito manteniendo la ligadura de la variable X al valor 2.

Predicados predefinidos (built-in)

Existen algunos predicados predefinidos en el sistema y que estan disponibles en todo momento.
El mas importante es la igualdad: =/2. Este predicado tiene éxito si sus dos argumentos unifican

entre si, falla en caso contrario. Por ejemplo, el objetivo X = 3 provoca la ligadura de X al valor 3
puesto que unifican. Otro ejemplo es f(3) = f(X), que también liga X al valor 3.

Es muy importante no confundir la igualdad légica con la igualdad aritmética. Por ejemplo, X = 3
+ 2 tiene éxito pero no resulta en X ligado a 5. De hecho, la variable X queda ligada al término

+(3,2). La aritmética sera discutida en un posterior capitulo.

Otros predicados predefinidos muy utiles son los de comparacion aritmética. Naturalmente, estos
no funcionan con cualquier término como argumento. Solamente sirven para nimeros (enteros y
decimales).

|Predicado||Significado

< ||[menor que
> ||[mayor que
|>= ||mayor o igual que

== |ligualdad aritmética

|
|
|
|=< ||menor o igual que |
|
|
|

=\= ||desigua|dad aritmeética

El cédigo
Clausulas

Hasta ahora sabemos cémo ejecutar objetivos, pero no sabemos como escribir el codigo de los
predicados. Los predicados se definen mediante un conjunto de clausulas:

clausula1

clausula2

clausulaN

Donde el orden es significativo. Para facilitar la lectura, se suele dejar una linea en blanco entre
clausula y clausula.
Las clausulas son términos (como todo en Prolog) con el siguiente formato:

cabeza :-
ojetivo1,
ojetivo2,

ojetivoN.

Todo gira en torno al operador ":-". Lo que aparece a la izquierda se denomina cabeza y la
secuencia de objetivos que aparece a la derecha se denomina cuerpo.

La cabeza es un término simple, por ejemplo, p(X,12) podria ser la cabeza de una clausula del

predicado p/2. Es decir, todas las clausulas de un mismo predicado tienen en la cabeza un
término con el mismo functor y aridad, aunque los argumentos pueden ser distintos.

El cuerpo no es mas que el conjunto de condiciones que deben cumplirse (tener éxito) para que el
predicado tenga éxito si lo invocamos con un objetivo que unifique con la cabeza.

Cuando invocamos un objetivo, Prolog unifica dicho objetivo con las cabezas de las clausulas.
Cada clausula que unifique constituye un punto de eleccion.

A continuacién se ejecuta el cuerpo de la primera clausula. Para ello se mantienen las ligaduras
que ocurrieron en el paso anterior. Si el cuerpo tiene éxito, pueden ocurrir nuevas ligaduras.
Dichas ligaduras pueden afectar de nuevo a la cabeza de la clausula. En consecuencia, el ambito
de visibilidad de las variables es una unica clausula.

Si el cuerpo de la clausula falla, el mecanismo de backtracking nos lleva al siguiente punto de
eleccion, es decir, la siguiente clausula. El proceso se repite mientras queden cabezas que

unifiquen (es decir, puntos de eleccion). Cuando no quedan cabezas que unifiquen, el objetivo
falla.

Ejemplo simple

Veamos un predicado compuesto por una simple clausula:
es_viejo(Individuo) :-
edad(Individuo,Valor),
Valor > 60.

Ahora invocamos el objetivo es_viejo(luis). Para ello supongamos que la edad de Luis es 32 anos,
es decir, el objetivo edad(luis,32) tiene éxito.
Primero se unifica la cabeza de la clausula con el objetivo. Es decir, unificamos es_viejo(luis) y

es_viejo(Individuo), produciéndose la ligadura de la variable Individuo al valor luis. Como el ambito

de visibilidad de la variable es su clausula, la ligadura también afecta al cuerpo, luego estamos
ejecutando realmente:

es_viejo(luis) :-
edad(luis,Valor),
Valor > 60.

Ahora ejecutamos el cuerpo, que liga la variable Valor a 32. Pero el cuerpo falla porque el
segundo objetivo falla (32>60 es falso). Entonces la clausula falla y se produce backtracking.
Como no hay mas puntos de eleccién el objetivo falla. Es decir, Luis no es un viejo.

Ejemplo menos simple

Ahora veamos como las ligaduras que se producen en el cuerpo de la clausula afectan también a
la cabeza. Consideramos el siguiente predicado compuesto de una Unica clausula:

mayor_que(Fulano,Mengano) :-
edad(Mengano,EdadMengano),
edad(Fulano,EdadFulanano),

EdadFulano > EdadMengano.

Supongamos que la edad de Juan es 20 afos y la de Luis es 32 afios. Ejecutamos el objetivo
mayor_que(luis,Quien):

+ Unificamos el objetivo con la cabeza: la variable Fulano se liga a luis, la variable Mengano
permanece unificada con la variable Quien. Esto ultimo es importante.

e Ejecutamos el cuerpo, que tiene éxito y liga las variables Mengano a juan, EdadMengano a
20, EdadFulano a 32.

e Como la variable Mengano ha quedado ligada, y ademas unificaba con Quien, la variable
Quien queda ligada a ese mismo valor.

o El objetivo tiene éxito ligando la variable Quien al valor juan. Es decir, Luis es mayor que
Juan.

Clausulas sin cuerpo

Si no existen condiciones para que una clausula sea cierta podemos omitir el cuerpo. En tal caso
solamente escribimos la cabeza terminada en punto. Por ejemplo:

edad(juan,32).
edad(luis,20).

Son dos clausulas del predicado edad/2. Las clausulas sin cuerpo se suelen denominar hechos,
e.g. es un hecho que la edad de Luis es 20 afios.

El shell de Prolog

El shell de Prolog es una aplicacion que permite ejecutar objetivos y ver las ligaduras de las
variables de manera interactiva. Pueden existir diferencias entre unos entornos de desarrollo y
otros respecto a su uso.

Ejecutando el shell

El shell es una aplicacion mas que podemos ejecutar en nuestro sistema operativo. En nuestro
caso, la aplicacién se denomina SWI-PROLOG. Al ejecutarla aparece un tipico mensaje de
bienvenida:

machine% pl

Welcome to SWI-Prolog (Version 5.6.0)

Copyright (c) 1990-2005 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

2-

El simbolo ?- nos indica la zona donde podemos escribir los objetivos a ejecutar.

Para mejorar la legibilidad en los ejemplos, destacamos el texto que el usuario teclea para
distinguirlo de la salida por pantalla del shell.

Mi primer objetivo

Cuando arrancamos el shell, los Unicos objetivos que podemos ejecutar corresponden a
predicados predefinidos en el sistema. Nuestro predicado predefinido favorito es la igualdad =/2.
Asi que vamos a probarlo:

2- 1(X,3) = t(4,2).

X = 4,
z=3}

Observe que los objetivos acaban en un punto (.), si pulsamos intro antes de escribir el punto
ocurre un salto de linea, pero nada mas. Cuando escribimos el punto y pulsamos INTRO es
cuando se ejecuta el objetivo.

A continuacion, el shell nos dice si el objetivo tiene éxito o no, y cuales son las ligaduras de las
variables. Después, el curso queda alli, en este momento es cuando le podemos pedir que nos
muestre otra solucién tecleando un punto y coma (;) y pulsando INTRO:

2- 1(X,3) = t(4,2).

X=4,
Z=3 ;
No
?2-

Como no hay mas soluciones en nuestro ejemplo, el shell dice "no" y nos permite escribir otro
objetivo. Si no hubiésemos deseado mas soluciones simplemente habriamos pulsado INTRO.

Compilando y cargando cédigo

Puesto que en el shell solamente podemos ejecutar objetivos, la forma de compilar y cargar
cbdigo es ejecutando un objetivo. Esto puede variar de un shell a otro, pero habitualmente se hace
asi:

?- consult('prog1.pl').

yes

2-

Obsérvese que el nombre del fichero fuente (y su ruta, si es necesario) se escribe en un término
cero-ario entre comillas simples. Esta es |la forma habitual de escribir nombres de fichero.

?- consult(‘'c:/temp/prog1.pl').
yes
2.

Quiero irme de aqui

Cuando nos cansamos de jugar con el shell, podemos terminar la aplicacion ejecutando el
predicado halt/0, o bien pulsando CTRL-D:

?- halt.

Mi primer programa en Prolog

Los programas se escriben en ficheros de texto, generalmente con extensién .pl y pueden
contener comentarios y codigo. Para ello puede utilizar cualquier editor de texto. Le
recomendamos que intente escribir el siguiente programa desde el principio para familiarizarse
con la sintaxis.

% Este es mi primer programa en Prolog

%

% Se trata de un arbol genealdgico muy simple
%

%
% Primero defino los parentescos basicos
% de la familia.

% padre(A,B) significa que B es el padre de A...

padre(juan,alberto).

padre(luis,alberto).

padre(alberto,leoncio).

padre(geronimo,leoncio).
(

padre(luisa,geronimo).

% Ahora defino las condiciones para que
% dos individuos sean hermanos

% hermano(A,B) significa que A es hermano de B...

hermano(A,B) :-
padre(A,P),
padre(B,P),
A\==B.

% Ahora defino el parentesco abuelo-nieto.

% nieto(A,B) significa que A es nieto de B...

nieto(A,B) :-
padre(A,P),
padre(P,B).

Cargando el codigo

Para compilar y cargar el codigo existe el predicado consult/1. Recuerde que puede ser necesario
indicar la ruta completa del fichero fuente.

1 ?- consult(‘arbolgenealogico.pl'’).
arbolgenealogico.pl compiled, 0.00 sec, 1,108 bytes.
Yes

27?-

Predicados reversibles

Una vez que hemos compilado y cargado nuestro programa vamos a estudiar sus caracteristicas.
Una de ellas es el backtracking, o la posibilidad de obtener varias soluciones, como ya hemos
visto.

2 ?- hermano(A,B).

A =juan

B = luis ;

A = luis

B =juan;

A = alberto

B = geronimo ;

A = geronimo
B = alberto ;

No
37?-

Ahora vamos a reparar en otra curiosa propiedad que no existe en otros lenguajes: la
reversibilidad. Esto es la habilidad de los argumentos de los predicados para actuar
indistintamente como argumentos de entrada y/o salida. Por ejempilo:

3 ?- nieto(luis,X).
X = leoncio

No

4 ?-

Aqui, el primer argumento es de entrada mientras que el segundo es de salida. El predicado nos
dice de quién es nieto Luis. Pero ahora vamos a intercambiar los papeles:

4 ?- nieto(X,leoncio).
X =juan;

X = luis;

X = luisa ;

No

57-

Obsérve cémo el mismo predicado que nos dice el abuelo de un nieto sirve para conocer los
nietos de un abuelo. Estos predicados se dicen reversibles, o que sus argumentos son reversibles.

Predicados no reversibles

No todos los predicados son reversibles. Por ejemplo, los de comparacion aritmética. El predicado
>/2 sirve para saber si un nimero es mayor que otro, pero no sirve para saber todos los nimeros
mayores que uno dado (puesto que son infinitos).

Otros predicados pueden perder la reversibilidad por deseo expreso de su programador, o
solamente ser reversibles para ciertos argumentos pero no otros. Asi podemos hablar de las
posibles formas de invocar un predicado. Esto es lo que se denomina modos de uso.

Modos de uso

Los modos de uso indican que combinacién de argumentos deben o no estar instanciados para
que un objetivo tenga sentido. Se dice que un argumento esta instanciado cuando no es una
variable libre.

A efectos de documentacioén, los modos de uso se describen con un término anotado en sus
argumentos con un simbolo. Los argumentos pueden ser:

o De entrada y/o salida indistintamente. Estos argumentos se denotan con un simbolo de
interrogacion (7).

o De solamente entrada. Estos se denotan con un simbolo de suma (+).

¢ De solamente salida. Estos se denotan con un simbolo de resta (-).

El modo de uso que instancia todos los argumentos siempre es valido.
Por ejemplo, para el predicado hermano/2 su Unico modo de uso es hermano(?A,?B).
Supongamos un predicado cuyos modos de uso son:

e p(+A,+B,-C).
o p(+A,-B,+C).

Entonces son objetivos validos:

e p(1,2.X).
° p(1 ,X,3).
. p(1 ,2,3).

Pero no son validos:

° p(X,Y,3)
e p(X2,3).
e p(X)Y,2).

Evaluacion de expresiones aritméticas

Llega el momento de utilizar Prolog para nuestros complejisimos calculos aritméticos. ¢, Acaso
existe algun programa donde no se sumen dos y dos ?.

En Prolog es facil construir expresiones aritméticas. Algun avispado se habra percatado de que
las expresiones matematicas en general son términos, puesto que corresponden a teorias légicas
de primer orden.

El problema es reducir esas expresiones segun las leyes matematicas para obtener numeros. Eso
se hace en Prolog mediante el predicado is/2, cuyo modo de uso es is(-Var,+Expr). Ademas, el
argumento Expr debe ser un término cerrado (es decir, que no contenga variables libres). Por
ejemplo, vamos a sumar dos y dos:

172- Xis2+2.
X=4

yes

27-

El predicado is/2 no es reversible, por eso debemos estar seguros de que las variables del
segundo argumento siempre estan instanciadas. El modo de uso que instancia todas las variables
solo tiene éxito si el primer argumento es un numero y coincide con la evaluacién del segundo
argumento. Por ejemplo:

27-5is2+2
no
37-

Expresiones validas

Las expresiones que podemos utilizar en el segundo argumento pueden variar de un entorno de
desarrollo a otro, pero vamos a citar las mas comunes:

[Término||Significado |[Ejemplo |
+/2 ||Suma IXisA+B. |
*12 ||Producto ||X is2*7. |
-2 ||Resta IXis5-2. |
172 |[Division Xis7/5. |
|-/1 ||Cambio de signo ||X is -Z. |
/12 ||Division entera Xis7n2. |
mod/2		Resto de la division entera”X is 7 mod 2.			
”"/2		PotenC	a		X is 2/3.
abs/1		Va	or absoluto		X is abs(-3).
pi/0		La constante PI		X is 2*pi.	
sin/1		seno en radianes		X is sin(0).	
cos/1		coseno en radianes		X is cos(pi).	
tan/1		tangente en radianes		X is tan(pi/2).	
asin/1		arcoseno en radianes		X is asin(7.2).	
acos/ 1		arcocoseno en radianes		X is acos(Z).	
atan/1		arcotangente en radianes		X is atan(0	
f	oor/1		redondeo por defecto		X is floor(3.2)
cei	/1		redondeo por exceso		X is ceil(3.2).

Ejercicios sobre términos y variables

A continuacién aparecen una serie de expresiones. Trate de identificar si se trata de variables,
términos o si estan mal construidos.

P((G).h(12),j(3),a+b)
e P((G),H(12),(3).a+b)

__abc

aBc

AbC

3%2

")
_A(12)
321

pepe > 32.2

Ejercicios sobre unificaciéon

Indique si los siguientes pares de términos unifican entre si. En caso de que unifiquen, indique a
que valores se ligan las variables.

p(a)y p(A)

PGAAaaEN y pGAGGGN)

PGGAaAEN) y pGGEGX)N)

a(_A,)y q(32,37,12)

Z(A,p(X),z(A,X),k(Y)) y z(a(X),p(Y),z(a(z(H))).k(z(3)))
Z(A,p(X),z(A,X),k(Y)) y z(a(X),p(Y),z(a(z(H)),z(H)).k(z(3)))

Compruebe los resultados del ejercicio utilizando el top-level shell y el predicado igualdad =/2.
A continuacioén, ejecute las siguientes secuencias de objetivos en el top-level shell y observe las
ligaduras de las variables:

o f(X) =f(Y).

X =12, f(X) = f(Y).

o f(X)=1f(Y), X=12.

o f(X)=1(Y),Y=12.

e X=Y,Y=Z,X=H,Z2=J,X=1.
. 1.

X

_><II

1
Ejercicios sobre predicados
A continuacion indicamos las soluciones de tres predicados (el orden es significativo):

p(5,2) tiene éxito.
p(7,1) tiene éxito.
q(1,3) tiene éxito.
z(3,1) tiene éxito.
z(3,7) tiene éxito.
No hay mas soluciones que las anteriores.

Indique los pasos de ejecucién para la secuencia p(A,B),q(B,C),z(C,A).

Defina el predicado sumar_dos/2 que toma un nimero en el primer argumento y retorna en el
segundo argumento el primero sumado a dos. ¢, Cuales son los modos de uso permitidos para
dicho predicado ?.

Editando el programa de ejemplo (arbolgenealogico.pl), defina el predicado tio/2 donde tio(A,B)
significa que A es el tio de B. Utilize dicho predicado desde el top-level shell para averiguar
quienes son los sobrinos de geronimo. Recuerde que cada vez que modifique el fichero fuente
debe volver a compilarlo mediante el predicado consult/1.

Tipos de datos

Todos sabemos que los datos que maneja Prolog son los términos. Sin embargo, podemos
construir otros tipos de datos a partir de estos. De hecho, algunos estan predefinidos para mayor
gloria del programador, son el caso de las listas y las cadenas de caracteres.

En cualquier caso, el lector debe asumir que Prolog no es un lenguaje tipado, puesto que no
existen declaraciones explicitas de tipo tal y como ocurre en los lenguajes imperativos. El hecho
de que no existan dichas declaraciones se debe sencillamente a que no hacen falta.

Registros

Los registros son agrupaciones ordenadas de datos que en Prolog podemos escribir como
términos que almacenan cada dato en un argumento. Por ejemplo, supongamos que queremos un
registro para representar los datos personales de la gente:

persona('Eva','Fina','Y Segura',15)
persona('Fulanito’,'De Tal',"Y Tal',32)

Mediante el término personal4 representamos a un individuo. El primer argumento es el nombre,
el segundo y tercero son los apellidos y el cuarto es la edad.
Puesto que los términos son anidables podemos crear registros complejos:

persona('Menganito',edad(32),direccion('Leganitos’,13,'Madrid'))

Arboles

Puesto que los términos pueden ser recursivos es facil crear estructuras de datos recurrentes.
Como ejemplo, veamos como definir arboles binarios. Para ello representamos el arbol vacio
mediante una constante, por ejemplo, empty/0, y un nodo cualquiera puede ser representado
mediante el término tree/3. El primer argumento representa un dato cualquiera asociado al nodo.
El segundo argumento representa la rama izquierda, y el tercer argumento la correspondiente
rama derecha. Son ejemplos de arboles:

empty

tree(dato1,empty,empty)
tree(dato1,tree(dato2,empty,empty),tree(dato3,empty,empty))
tree(dato4,empty,tree(dato5,tree(dato6,empty,empty),empty))

Listas

Las listas en Prolog podrian definirse del mismo modo que los arboles puesto que los términos se
pueden anidar todas las veces que sea necesario. Por ejemplo, la lista de niumeros del uno al
cinco se puede representar asi:

lista(1,lista(2,lista(3,lista(4,lista(5,vacio)))))

Afortunadamente, las listas estan predefinidas en el lenguaje para una mayor comodidad. De
modo que la lista anterior la podemos escribir asi:

[1,2,3,4,5]

Esta es |la forma de escribir las listas definiendo todos los elementos, pero podemos manipular las
listas distinguiendo cabeza y resto: [C|R]. Donde la variable C representa la cabeza, y R el resto.
Por ejemplo:

L=1[1,2,3,4,5],

M = [O|L].

La lista M seria equivalente a [0,1,2,3,4,5] . Es importante no confundir los términos [C|R] y [C,R].
La diferencia es muy sutil:
L=[1,2,3,4,D5],

M =[O0,L].

El resultado seria M = [0,[1,2,3,4,5]], que es una lista de dos elementos.

Naturalmente, existe la lista vacia, que se representa como []. Ademas resulta conveniente tener
en cuenta que:

e Existen bibliotecas para hacer cosas mas complicadas con las listas, como concatenar,
aplanar, etc.
¢ Los elementos de las listas son términos y pueden ser heterogéneos. Por ejemplo:

[1.p(a),[a,b],f(g(h))].
o Las listas también son términos, solamente las escribimos de una manera mas comoda.
Asi, la lista [1,a,2] es en realidad el término ".'(1,".'(a,".'(2,[]))).

Cadenas de caracteres

Las cadenas de caracteres son en Prolog listas de cédigos ASCII. Afortunadamente se pueden
escribir de una manera cémoda poniendo los caracteres entre comillas dobles. Por ejemplo, la

expresion "ABC" es en realidad la lista [65,66,67]. Asi, podemos tratar las cadenas de caracteres

como cadenas o como listas segun nos interese. Naturalmente, todo el codigo que nos sirve para
listas nos sirve para cadenas. Por ejemplo, el predicado que concatena dos listas también sirve
para concatenar dos cadenas de texto.

Constantes

Como ya es sabido, las constantes en Prolog son términos cero-arios (atomos). A pesar de su
simpleza, pueden ser muy Utiles para representar informacion ya que pueden contener cualquier
caracter. Se utilizan, por ejemplo, para representar nombres de ficheros. Recuerde que las
constantes numéricas también son términos cero-arios (pero no son atomos).

Conversioén entre nameros, atomos y cadenas de caracteres

Existe cierta correspondencia entre estos elementos. Tanto los nUmeros como los atomos se
pueden convertir a cadena de caracteres mediante los predicados number_codes/2 y
atom_codes/2 respectivamente. Utilizando las cadenas de caracteres como elemento intermedio,
es posible convertir de atomos a numeros y viceversa:

atom_codes(Atomo,Aux),number_codes(Numero,Aux). Observe que dichos predicados son
reversibles.

Tests de tipo

Si en Prolog no existen declaraciones de tipo, ¢ como estamos seguros de que un argumento es
de un tipo determinado ?. La respuesta esta en los tests de tipo. Estos son predicados que
(habitualmente) reciben un dato como argumento y fallan si el argumento no es del tipo esperado.
Como ejemplo vamos a escribir el test de tipo para comprobar si un argumento es una lista:

es_una_lista([]).
es_una_lista([_ | Resto]) :-

es_una_lista(Resto).

La lista vacia es una lista, y si no, [A|B] sera una lista si y solo si B es una lista. En cuanto a A, nos
trae al fresco lo que valga, por eso usamos una variable anénima en el cédigo.
Ahora podemos comprobar el tipo de un argumento llamando al test de tipo:

mi_predicado(Lista1,Lista2) :-
es_una_lista(Lista1),

es_una_lista(Lista2),

ey

Tests de tipo predefinidos

Existen predicados predefinidos para comprobar algunos tipos basicos. Estos son:

| Predicado”Test

|integer/1 ||Comprueba si su argumento es un numero entero

|f|oat/1 ||Comprueba si el argumento es un numero decimal

|number/ ||Comprueba si el argumento es un nimero (entero o decimal)

atom/1 Comprueba si el argumento es un término cero-ario excluyendo las constantes
numéricas
|var/1 ||Comprueba si el argumento es una variable libre |

|nonvar/1 ||Comprueba si el argumento esta instanciado

Comprueba si el argumento es un término que no contiene variables libres (esta

ground/1 cerrado)

Ejecucion de los tests

La desventaja de los tests de tipo es que resulta necesario ejecutarlos. Esto afiade un tiempo
extra de ejecucion a nuestra aplicacion que no sirve para nada util. Sin embargo, esto es
solamente una verdad a medias:

e« La mayoria de los predicados no requieren test de tipo como es el propio predicado que
implementa el test de tipo. Todo gracias a la unificacion.

¢ Los compiladores mas avanzados son capaces de suprimir los test de tipo cuando pueden
asegurar en tiempo de compilacion que el predicado no se llamara con tipos inadecuados.

¢ Analogamente, algunos compiladores son capaces de insertar automaticamente el test de
tipo cuando al programador "se le olvida" (es decir, siempre).

e Cuando la aplicacion esta terminada y probada, el propio programador puede suprimir los
test de tipo si esta seguro de que no pueden producirse errores de tipo.

o El polimorfismo que aporta la ausencia de declaraciones de tipo es deseable en muchas
ocasiones. Por eso, los test de tipo no siempre son necesarios.

En cualquier caso, el programador tiene libertad para decidir si es necesario ejecutar tests de tipo
en su programa.

Tipos paramétricos

También es posible escribir test de tipos paramétricos, es decir, aquellos que dependen de otro
tipo. Por ejemplo, para evitar tener que definir un test de tipo para listas de numeros y otro para
listas de atomos, podriamos definir el tipo "lista de X". La declaracién de estos test de tipo requiere
el uso de predicados de orden superior (0 metapredicados) que estudiaremos posteriormente.

El corte

El corte es un predicado predefinido que no recibe argumentos. Se representa mediante un signo
de admiracion (!).El corte tiene la propiedad de eliminar los puntos de eleccién del predicado

que lo contiene.

Es decir, cuando se ejecuta el corte, el resultado del objetivo (no sdlo la clausula en cuestion)
gueda comprometido al éxito o fallo de los objetivos que aparecen a continuacién. Es como si a
Prolog "se le olvidase" que dicho objetivo puede tener varias soluciones.

Otra forma de ver el efecto del corte es pensar que solamente tiene la propiedad de detener el
backtracking cuando éste se produce. Es decir, en la ejecucién normal el corte no hace nada.
Pero cuando el programa entra en backtracking y los objetivos se recorren marcha atras, al llegar
al corte el backtracking se detiene repentinamente forzando el fallo del objetivo.

Ejemplo

Para entender de manera simple el uso del corte vamos a comparar dos predicados que
solamente se diferencian en un corte:

% Sin corte.
p(X,Y) :- X>15, Y >50.
p(X)Y) - X>Y.

% Con corte.
q(X,Y) - X>15, 1, Y >50.
q(x,Y) - X>Y.

Veamos que ocurre si ejecutamos el objetivo p(25,12):

e Observe que ambas clausulas unifican con la cabeza, luego existen dos puntos de
eleccidon que se anotan.
e Prolog entra por el primer punto de eleccion (primera clausula) eliminandolo.

e Prolog ejecuta el primer objetivo del cuerpo (X>15), que tiene éxito.

e Prolog ejecuta el segundo objetivo del cuerpo (X>50), que falla.

¢ Empieza el backtracking.
e Se recorren ambos objetivos hacia atras pero no hay variables que se hayan ligado en
ellos.

¢ Encontramos el segundo punto de eleccion (segunda clausula) que detiene el backtracking
eliminandolo en el proceso. La ejecucion continua hacia delante.

¢ Prolog ejecuta el cuerpo de la segunda clausula que consiste en X>Y. Este objetivo tiene
éxito.
o El objetivo p(25,12) tiene éxito.

Ahora comprobamos lo que ocurre cuando existe el corte, ejecutamos q(25,12):

e« Ambas clausulas unifican con la cabeza, luego existen dos puntos de eleccion que se
anotan.
e Prolog entra por el primer punto de eleccion (primera clausula) eliminandolo.

e Prolog ejecuta el primer objetivo del cuerpo (X>15), que tiene éxito.

e Se ejecuta el segundo objetivo del cuerpo que es el corte. Por tanto, se eliminan todos los
puntos de eleccion anotados que son debidos al objetivo q(25,12). Solamente teniamos
uno, que se elimina.

e Prolog ejecuta el tercer objetivo del cuerpo (X>50), que falla.

o Empieza el backtracking.

e Se recorren ambos objetivos hacia atras pero no hay variables que se hayan ligado en

ellos.
¢ No encontramos ningun punto de eleccion porque fueron eliminados por el corte.

o El objetivo p(25,12) falla.

Como puede comprobar, los resultados son sustancialmente diferentes. La segunda clausula del
predicado g/2 ni siquiera ha llegado a ejecutarse porque el corte ha comprometido el resultado del

objetivo al resultado de Y>15 en la primera clausula.

Usos del corte

El corte se utiliza muy frecuentemente, cuanto mas diestro es el programador mas lo suele usar.
Los motivos por los que se usa el corte son, por orden de importancia, los siguientes:

1. Para optimizar la ejecucién. El corte sirve para evitar que por culpa del backtracking se
exploren puntos de eleccién que, con toda seguridad, no llevan a otra solucion (fallan).
Para los entendidos, esto es podar el arbol de busqueda de posibles soluciones.

2. Para facilitar la legibilidad y comprensién del algoritmo que esta siendo programado. A
veces se situan cortes en puntos donde, con toda seguridad, no van a existir puntos de
eleccion para eliminar, pero ayuda a entender que la ejecucion solo depende de la clausula
en cuestion.

3. Para implementar algoritmos diferentes segun la combinacién de argumentos de entrada.
Algo similar al comportamiento de las sentencias case en los lenguajes imperativos.

4. Para conseguir que un predicado solamente tenga una solucién. Esto nos puede interesar
en algun momento. Una vez que el programa encuentra una solucién ejecutamos un corte.
Asi evitamos que Prolog busque otras soluciones aunque sabemos que éstas existen.

Corte y fallo

Es muy habitual encontrar la secuencia de objetivos corte-fallo: !,fail. El predicado fail/0 es un

predicado predefinido que siempre falla. Se utiliza para detectar prematuramente combinaciones
de los argumentos que no llevan a solucién, evitando la ejecucién de un montén de cédigo que al
final va a fallar de todas formas.

Algoritmos y técnicas de programacion

Los algoritmos utilizados en Prolog estan intimamente ligados a los términos y su estructura
anidada/ recursiva. Por eso, la técnica de programacion por excelencia es la recursividad. Sin
embargo existen técnicas propias del lenguaje como son los bucles de fallo.

Recursividad

La recursividad es la técnica por antonomasia para programar en Prolog. El lector ya habra notado
que en Prolog no existen bucles for, while, do-while, ni sentencias case, ni otras construcciones
absurdas. En Prolog no hacen falta.

Todos los términos en Prolog pueden ser recursivos, y gracias a la unificacién, podemos recorrer
sus argumentos a voluntad. La estructura de datos mas significativa con respecto a la recursividad
son las listas, por eso centraremos nuestros ejemplos en ellas.

La estructura de las clausulas de un predicado recursivo es muy simple. Como ejemplo veamos
un predicado que calcula la longitud de una lista:

% La longitud de la lista vacia es cero
longitud([],0).
% La longitud de una lista es la longitud del resto mas uno. Como el contenido
% de la cabeza no nos interesa, utilizamos la variable anénima
longitud([_|Resto], Longitud) :-
longitud(Resto,LongitudResto),
Longitud is LongitudResto+1.

Observe como el primer objetivo de la segunda clausula es una llamada al propio predicado que
estamos definiendo. Para evitar que un predicado se llame a si mismo infinitamente debemos
estar seguros de que existe al menos un caso en el que termina. Este caso se contempla en la
primera clausula y se denomina caso base.

Otro ejemplo interesante es el predicado que concatena dos listas, que es reversible:

% Concatenar vacioconL es L...

concatena([],L,L).

% Para concatenar dos listas, sacamos la cabeza de la primera lista,

% luego concatenamos el resto con la segunda lista y al resultado le ponemos la cabeza
% de la primera lista como cabeza del resultado...
concatena([Cabeza|Resto],Lista,[Cabeza|RestoConcatenado]):-

concatena(Resto,Lista,RestoConcatenado).

Parametros de acumulacion

La técnica de parametros de acumulacion se suele utilizar en combinacion con la recursividad.
Consiste en un argumento auxiliar (o varios de ellos) que almacena la solucién parcial en cada
paso recursivo. Cuando llegamos al caso base, la solucion parcial es la solucion total.

longitud2_aux([],Parcial,Parcial).

longitud2_aux([_|Resto],Parcial,Result) :-
NParcial is Parcial+1,

longitud2_aux(Resto,NParcial,Result).

longitud2(Lista,Longitud) :-
longitud2_aux(Lista,0,Longitud).

En este ejemplo, el valor inicial del parametro de acumulacién es cero. Este valor inicial es
importante para que la solucién sea correcta. Por eso hemos creado el predicado longitud2/2, que

se asegura el correcto uso del parametro de acumulacién. El predicado longitud2_aux/3 no

deberia ser ejecutado directamente.

La ventaja del parametro de acumulacién es que genera recursividad de cola, esto es, la
llamada recursiva es siempre la ultima en ejecutarse. Esto permite a los compiladores optimizar
considerablemente el uso de recursos ocasionado por la recursividad. La desventaja es que los
predicados podrian resultar no reversibles.

Sentencias "case"

A modo meramente anecddtico indicamos como podria simularse una tipica estructura "case" (de
seleccion) propia de los lenguajes imperativos. Asi el siguiente algoritmo:

case Dato of
1 : corromper_archivos;
2 : cancelar;
3 : formatear_disco;

end;

Se expresaria en Prolog de la siguiente manera:
case(1) :- !, corromper_archivos.

case(2) :- !, cancelar.

case(3) :- !, formatear_disco.

Bucles de fallo

Los bucles de fallo constituyen una técnica de programacion que permite recorrer una serie de
elementos y aplicarles una operacién. De la misma manera que un bucle for o while.

Los bucles de fallo estan basados en la capacidad para obtener varias soluciones y el
backtracking para recorrerlas. La estructura general de un bucle de fallo es la siguiente:

bucle :-
generador(UnaSolucion),
filtro(UnaSolucion),
tratamiento(UnaSolucion),
fail.

bucle.

El predicado generador/1 es el encargado de enumerar los datos a tratar en cada paso del bucle.
Es decir, cada una de sus soluciones sera un elemento a tratar en el bucle.

El predicado filtro/1 es opcional y permite seleccionar qué elementos se van a tratar y cuales no.
El predicado tratamiento/1 es el encargado de hacer algo con el dato. Es algo asi como el cuerpo
de un bucle for.

Finalmente, el predicado fail/0, que esta predefinido, se encarga de que ocurra el bucle forzando
el backtracking. Ademas incluimos una clausula para que el bucle en si no falle después de
haberse ejecutado.

Ejemplo

El siguiente ejemplo recorre los numeros del uno al diez y los escribe por pantalla.

generador(Desde,_,Desde).
generador(Desde,Hasta,Valor) :-
Desde < Hasta,
NDesde is Desde+1,

generador(NDesde,Hasta,Valor).

tratamiento(Numero) :- display(Numero), nl.

bucle :-
generador(1,10,Numero),
tratamiento(Numero),
fail.

bucle.

En este caso no hemos utilizado filtro. El predicado generador/3 se encarga de generar los
numeros del uno al diez. El predicado display/1 esta predefinido y simplemente escribe un término
por la salida standard. El predicado nl/O también esta predefinido y se encarga de escribir un salto
de linea por la salida standard.

La negacion por fallo

La negacién en Prolog consiste en un predicado predefinido llamado "\+'/1. La negacion recibe
como argumento un objetivo. Si dicho objetivo tiene éxito la negacion falla y viceversa. Por
ejemplo: \+ (X > 5) es equivalente a X =< 5.

Parece simple, pero la negacién encierra una pequena trampa. Dicha negacion no es la negacién
I6gica sino la negacion por fallo.

Esto significa que Prolog asume que aquellos objetivos que no tienen solucién (fallan) son falsos.
Esto se denomina asuncion de mundo cerrado porque damos por supuesto que todo aquello que
no se puede deducir (porque no ha sido escrito en el programa) es falso.

La negacién por fallo solamente coincide con la negacion légica cuando el objetivo negado es un
término cerrado (no contiene variables libres). El programador es el responsable de asegurarse
esta condicion.

Piense cual es el motivo de esta condicion: cuando un objetivo falla sus variables no se ligan. No
obstante, su negacion tiene éxito, entonces ¢,a qué valor ligamos las variables de dicha
negacion?.

Ejemplo

Consideremos el siguiente programa:
estudiante(luis).

estudiante(juan).

informatico(luis).

hobby(X,musica) :- informatico(X), estudiante(X).

Y ahora ejecutamos el siguiente objetivo: \+ hobby(X,musica), es decir, queremos saber a quién

no le gusta la musica como hobby.

La negacién logica (y el sentido comun) nos diria que el hobby de Juan no es la musica. Sin
embargo, Prolog dice que no hay nadie a quien no le guste la musica.

Recuerde... en Prolog todos los predicados son falsos hasta que se demuestre lo contrario. El
problema es que a veces no se puede demostrar.

Metaprogramacién y orden superior

Este curso avanzado de Prolog esta dedicado a las capacidades de orden superior del lenguaje.
Se trata de un conjunto de funcionalidades generalmente desconocidas (no sélo en Prolog, sino
también en otros lenguajes) pero que dotan de una enorme expresividad y potencia a los
programas.

Orden Superior

Se podria definir el concepto de orden superior como la capacidad de un lenguaje para manejar su
propio cédigo como una estructura de datos mas. El orden superior existe en muchos lenguajes
pero, debido a que se implementa de formas distintas, no se suele usar esta denominacion.
Algunos ejemplos:

e En el lenguaje C: los punteros a funciones. Estos permiten pasar funciones como
argumentos.

o En Javay otros lenguajes OO: las referencias a instancias. Permiten ejecutar cédigo
distinto dependiendo de la referencia utilizada.

Un aspecto particular del orden superior es la capacidad de pasar un procedimiento o funcion
como argumento a otro procedimiento o funcion. Esta es la caracteristica mas utilizada.

Metaprogramacion

La metaprogramacion es una implementacién posible del orden superior tremendamente versatil.
Consiste en la posibilidad de que el cédigo se modifique a si mismo. Para entender la diferencia
entre metaprogramacion y orden superior pondremos un ejemplo:

« Escribimos una funcion, y la pasamos como argumento a otra funcién. Esta ultima la
ejecuta sin saber exactamente qué esta ejecutando. Esto es una caracteristica de orden
superior.

e Tomamos una cadena de texto donde almacenamos el nombre de una funcién, por

ejemplo, tabla_logaritmo. Por otra parte construimos una lista con dos elementos, los

numeros 3 y 5, por ejemplo. Ahora juntamos la lista con la cadena de texto y generamos
una llamada valida a la funcién tabla_logaritmo(3,5). La llamada se ejecuta. Esto es
metaprogramacion.

Prolog cuenta con esta caracteristica.
Metaprogramando

Vamos a analizar como se puede convertir datos en codigo y después ejecutarlo. Pero
previamente mostraremos algunos predicados standard auxiliares para este propdsito, aunque
tienen también otros usos.

Manipulacion de términos

El predicado functor/3 es uno de los mas utiles entre la biblioteca standard Prolog. Este predicado

permite extraer el functor y la aridad de un término cualquiera. Pero, al ser reversible, también
permite construir nuevos términos a partir del functor y la aridad deseada. Los modos de uso
son:

e functor(+Termino,-Functor,-Aridad).
e functor(-Termino,+Functor,+Aridad).

El siguiente ejemplo muestra como se extrae functor y aridad:
?- functor(termino(arg(1)),Functor,Aridad).

Functor = termino
Aridad = 1

yes

Ahora veremos como crear un nuevo término. Sus argumentos siempre seran nuevas variables
libres:

?- functor(NuevoTermino,prueba,4).
NuevoTermino = prueba(_G426, _G427, _G428, _G429)

yes
2.

Manipulacién de argumentos con "arg"

Ahora que podemos construir términos, seria deseable poder asignarles argumentos. Uno de los
predicados que permiten esto es arg/3. Para ello se indica el numero de indice del argumento
deseado, empezando a numerar por el 1 de izquierda a derecha. El modo de uso es:

e arg(+Indice,+Termino,-Argumento).

El primer uso de este predicado es extraer un argumento concreto de un término:
?- arg(2,termino(a,b,c,d),ARG).

ARG =b

yes

Si el término tiene variables libres como argumento, se les puede asignar valor mediante arg/3.

Pero el resultado es el mismo que una simple unificacion mediante =/2. Esto se observa en el
siguiente ejemplo:

?- Termino = p(X,b), arg(1,Termino,zzz).

Termino = p(zzz,b),

X =2zzz

Yes

?- Termino = p(X,b), Termino = p(zzz,_).
Termino = p(zzz,b),

X=2zzz

yes

2-

El predicado arg/3 solamente es util cuando se conoce a priori el numero de argumentos del

término manipulado, pero en combinacién con functor/3 resulta muy eficaz.

Manipulaciéon de argumentos con "univ"

En ocasiones resulta mucho mas util convertir los argumentos de un término en una lista 'y
viceversa. Esta es la funcion de "univ", nombre que recibe el operador infijo =../2. Sus modos de
uso son:

e +Termino =.. -Lista
e -Termino =.. +Lista

La lista contiene siempre el functor del término en la primera posicién, y los argumentos en el
resto de la lista. El siguiente ejemplo desglosa los elementos de un término:

?- p(a,b,c(i)) =.. X.
X = [p,a,b,c(i)] ?
yes

2

Y el siguiente ejemplo construye un nuevo término a partir de la lista de sus componentes...
?- Termino =.. [functor,arg1,arg2,arg3].

Termino = functor(arg1,arg2,arg3)
yes
2-

Llamadas de orden superior

Lo interesante ahora es convertir un término en un objetivo Prolog a ejecutar. Esto se consigue
con el predicado call/1. Naturalmente, el término debe corresponder con algun predicado
existente, de otra forma, se genera una excepcion. Por ejemplo:

% Un predicado

mipred(X) :- display(X), nl.
% Llamada de orden superior

ejemplo :- X = mipred(5), call(X).

Naturalmente, este ejemplo carece de utilidad puesto que se puede ejecutar la lamada a mipred/1

directamente. Pero resulta muy util en combinacién con los predicados anteriormente descritos.
Por ejemplo:

sujeto(12).
sujeto(13).
sujeto(78).
aplicar(Predicado) :- sujeto(X), LLamada =.. [Predicado,X], call(LLamada), nl, fail.

aplicar().

ejemplo :- aplicar(display).

El resultado es el siguiente:
?- ejemplo.

12

13

78

yes

2-

Los predicados de este tipo, que reciben un argumento y lo convierten a un objetivo ejecutable
(sin saber lo que se ejecuta) se denominan metapredicados. Dicho argumento se denomina
metaargumento.Un ejemplo de metapredicado es la propia negacion por fallo, que se
implementa de esta manera:

not(Objetivo) :-
call(Objetivo),
!

fail.
not().

Predicados standard de orden superior

En este capitulo abordamos algunos predicados standard que resultan muy utiles y son

ampliamente utilizados.
NOTA: Si bien estos predicados son ISO-standard, puede ser necesario importar alguna biblioteca

antes de utilizarlos.
El predicado maplist/3

Permite aplicar un predicado de "mapeo" a una lista de datos. Dicho predicado debe admitir el
siguiente modo de uso:

e MapPred(+Dato,-DatoMapeado).

Debe tratarse, por tanto, de un predicado que transforma (mapea) un dato en otro. La funcion de
maplist/3 es la siguiente: para cada dato existente en una lista dada, se pasa como primer

argumento a MapPred. El resultado de MapPred, es decir, el segundo argumento, se almacena en
una lista resultado. El modo de uso es el siguiente:

 maplist(+Listalnicial, +MapPred, -ListaResultado).

A continuacion, un ejemplo:
%Predicado de mapeo:

%Dado un numero le suma una unidad
mapeo(Dato, DatoMapeado) :- DatoMapeado is Dato + 1.

%% Ejecucion en el top-level:

?- maplist(mapeo, [6,9,12], L).
L =[7,10,13]

yes

2-

La familia de predicados "findall"

Se trata de un conjunto de predicados cuya finalidad es almacenar en una lista todas las
soluciones de un predicado dado, entendiendo como tales, las ligaduras que se producen en una
o varias variables libres que se indican explicitamente. Los predicados que componen la familia
son:
Genera una lista con todas las soluciones del predicado dado segun el orden en que se
findall/3 van sucediendo. findall/3 nunca falla, si no hay soluciones genera una lista vacia.
Naturalmente, el propio findall/3 solamente tiene una solucion.

Similar a findall/3, genera una lista con todas las soluciones del predicado dado. La
diferencia estriba en que :

bagof/3 e bagof/3 falla cuando no hay soluciones.
e bagof/3 tiene una solucién por cada variable libre que no haya sido indicada

como parte de la solucion.

Similar a bagof/3. La uUnica diferencia es que setof/3 elimina las soluciones duplicadas

setof/3 . I
que pudieran existir.

Para explicar los argumentos vamos a tomar findall/3 como ejemplo, pero lo mismo se aplica a
toda la familia de predicados. El modo de uso es el siguiente:

o findall(+Termino_o_variable, +Objetivo, -ListaResultado).

El segundo argumento es el predicado del cual queremos obtener soluciones, para ello, debe
contener una o mas variables libres. Por otra parte, dicho objetivo debe tener un nimero finito de
soluciones. De otra forma, se entraria en un bucle infinito al ejecutar alguno de los predicados de
la familia.

El primer argumento es un término cualquiera que contiene las variables libres que nos interesan
de la solucién. Es posible que no nos interesen todas. Si solamente nos interesa una, lo indicamos
directamente. Es obvio que las variables que aparecen en este primer argumento han de ser un
subconjunto de las que aparecen en el segundo argumento.

Estos son ejemplos de uso erréneo de findall/3:

e findall(X, predicado(Y), Resultado).
o findall(X, predicado(Y,Z), Resultado).
o findall(solucion(X,Y), predicado(Y,Z), Resultado).

Por el contrario, estos son ejemplos de usos correctos de findall/3:

o findall(X, predicado(X), Resultado).
e findall(X, predicado(X,Y), Resultado).
e findall(solucion(X,Y), predicado(X,Y), Resultado).

Para ilustrar el uso de estos predicados utilizaremos el siguiente predicado:
p(1,2).
p(4,3).
p(6,3).
p(6,5).

Empezamos con findall/3. Construimos una lista con las soluciones del segundo argumento de
p/2. Observe como las soluciones del primer argumento de p/2 se ignoran, ademas, se obtienen
todas las soluciones, incluidas las repetidas.

?-findall('Y, p(X,Y), Resultado).
Resultado = [2,3,3,5]

yes
2.

Ahora obtenemos las soluciones considerando como tal ambos argumentos de p/2.
?- findall(sol(X,Y), p(X,Y), Resultado).

Resultado = [sol(1,2),s0l(4,3),s0I(6,3),50l(6,5)]

yes
2.

El funcionamiento de bagof/3 difiere de findall/3 en que el primero puede tener varias soluciones.
bagof/3 tiene una solucion por cada valor de las variables libres que no hayan sido incluidas como
parte de la solucién. En el siguiente ejemplo, el primer argumento de p/2 no se incluye en la
solucion, observe como se suceden las soluciones de bagof/3.

?- bagof(Y, p(X,Y), Resultado).
X=1

Resultado = [2] ;

X=4

Resultado = [3] ;

X=6

Resultado = [3, 5] ;

No
?2-

