
ptg8126969

ptg8126969

PhoneGap Essentials

ptg8126969

This page intentionally left blank

ptg8126969

PhoneGap Essentials
Building Cross-Platform Mobile Apps

John M. Wargo

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg8126969

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Wargo, John M.
 PhoneGap essentials : building cross-platform mobile apps / John M. Wargo.
 p. cm.
 Includes index.
 ISBN 978-0-321-81429-6 (pbk. : alk. paper)—ISBN 0-321-81429-0 (pbk.
: alk. paper)
 1. PhoneGap (Application development environment) 2. Mobile
computing. 3. Application software. I. Title.
 QA76.59.W37 2012
 004—dc23

2012010042

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-81429-6
ISBN-10: 0-321-81429-0
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, June 2012

ptg8126969

To my wife, Anna.
This work exists because of your outstanding support.

ptg8126969

This page intentionally left blank

ptg8126969

vii

Contents

	 xiii
	 xv
	 xvii
	 xxiii
	 xxiv

Part I PhoneGap . 1
Chapter 1 Introduction to PhoneGap . 3

A Little PhoneGap History 4
Why Use PhoneGap? 5
How PhoneGap Works 6
Designing for the Container 11

The Traditional Web Server (Web 1.0) Approach 11
The Web 2.0 Approach 11
The HTML 5 Approach 12

Writing PhoneGap Applications 13
Building PhoneGap Applications 13
PhoneGap Limitations 17
PhoneGap Plug-Ins 18
Getting Support for PhoneGap 19
PhoneGap Resources 19
Hybrid Application Frameworks 19

Appcelerator Titanium 20
AT&T WorkBench and Antenna Volt 21
BlackBerry WebWorks 21
Strobe 22
Tiggr 22
Worklight 22

Chapter 2 PhoneGap Development, Testing, and Debugging 23
Hello, World! 23
PhoneGap Initialization 25

ptg8126969

viii Contents

	 28
Enhancing the User Interface of a PhoneGap Application 30
Testing and Debugging PhoneGap Applications 35

Running a PhoneGap Application on a Device
Simulator or Emulator 35
Running a PhoneGap Application on a Physical Device 36
Leveraging PhoneGap Debugging Capabilities 37
Third-Party PhoneGap Debugging Tools 43

Dealing with Cross-Platform Development Issues 49
API Consistency 50
Multiple PhoneGap JavaScript Files 51
Web Content Folder Structure 51
Application Requirements 52
Application Navigation and UI 52
Application Icons 53

Part II PhoneGap Developer Tools 55
Chapter 3 Configuring an Android Development Environment

for PhoneGap . 57
Installing the Android SDK 58
Eclipse Development Environment Configuration 64
Creating an Android PhoneGap Project 66

New Eclipse Project 67
Using Command-Line Tools 74

Testing Android PhoneGap Applications 77
Using the Emulator 78
Installing on a Device 78

Chapter 4 Configuring a bada Development Environment for
PhoneGap . 79
Downloading and Installing the Correct PhoneGap bada Files 80
Creating a bada PhoneGap Project 82
Creating a bada Application Profile 86
Testing bada PhoneGap Applications 95

Chapter 5 Configuring a BlackBerry Development Environment
for PhoneGap . 97
Installing the BlackBerry WebWorks SDK 98
Creating a BlackBerry PhoneGap Project 99
Building BlackBerry PhoneGap Applications 103

Configuring the Build Process 104
Executing a Build 107

ptg8126969

ixContents

	 109
	 109
	 111

Chapter 6 Configuring an iOS Development Environment
for PhoneGap . 113
Registering as an Apple Developer 113
Installing Xcode 114
Creating an iOS PhoneGap Project 116
Testing iOS PhoneGap Applications 122

Chapter 7 Configuring a Symbian Development
Environment for PhoneGap . 125
Installing the Nokia Web Tools 125
Installing the Make Utility 126
Creating a Symbian PhoneGap Project 128
Configuring Application Settings 129
Modifying HelloWorld3 for Symbian 130
Packaging Symbian PhoneGap Projects 131
Testing Symbian PhoneGap Applications 132

Chapter 8 Configuring a Windows Phone Development
Environment for PhoneGap . 135
Installing the Windows Phone Development Tools 135
Creating a Windows Phone PhoneGap Project 136
Testing Windows Phone PhoneGap Applications 139

Chapter 9 Using PhoneGap Build . 141
The Fit 142
Getting Started 142
Configuration 143
Creating an Application for PhoneGap Build 145
Creating a PhoneGap Build Project 146

Upload Options 146
New Project 147
The Build Process 148
Project Configuration 148

Dealing with Build Issues 150
Testing Applications 152

OTA Download 152
Via Camera 152

Debug Mode 153

ptg8126969

x Contents

Part III PhoneGap APIs . 155
Chapter 10 Accelerometer . 157

Querying Device Orientation 158
Watching a Device’s Orientation 162

Chapter 11 Camera . 165
Accessing a Picture 165
Configuring Camera Options 176

quality 177
destinationType 178
sourceType 179
allowEdit 180
encodingType 181
targetHeight and targetWidth 181
mediaType 181

Dealing with Camera Problems 182

Chapter 12 Capture . 185
Using the Capture API 186
Configuring Capture Options 189

duration 190
limit 190
mode 190

Capture at Work 191

Chapter 13 Compass . 205
Getting Device Heading 205
Watching Device Heading 209

watchHeading 210
watchHeadingFilter 213

Chapter 14 Connection . 217

Chapter 15 Contacts . 223
Creating a Contact 224
Searching for Contacts 236
Cloning Contacts 242
Removing Contacts 242

Chapter 16 Device . 243

Chapter 17 Events . 249
Creating an Event Listener 249
deviceready Event 250

ptg8126969

xiContents

	 251
	 254
	 256

Chapter 18 File . 263
Available Storage Types 263
Accessing the Device’s File System 264
Reading Directory Entries 267
Accessing FileEntry and DirectoryEntry Properties 269
Writing Files 272
Reading Files 274
Deleting Files or Directories 275
Copying Files or Directories 276
Moving Files or Directories 276
Uploading Files to a Server 277

Chapter 19 Geolocation . 279
Getting a Device’s Current Location 280
Watching a Device’s Location 284

Setting a Watch 285
Canceling a Watch 289

Chapter 20 Media . 293
The Media Object 293

Creating a Media Object 294
Current Position 297
Duration 297
Releasing the Media Object 298

Playing Audio Files 298
Play 298
Pause 299
Stop 299
Seek 299

Recording Audio Files 299
Start Recording 300
Stop Recording 300

Seeing Media in Action 300

Chapter 21 Notification . 307
Visual Alerts (Alert and Confirm) 307
Beep 310
Vibrate 310
Notification in Action 310

ptg8126969

xii Contents

Chapter 22 Storage . 315
Local Storage 316
SQL Database 317

Appendix A Installing the PhoneGap Files . 327
Preparing for Samsung bada Development 329
Preparing for iOS Development 329
Preparing for Windows Phone Development 330

Appendix B Installing the Oracle Java Developer Kit 333
Downloading the JDK 333
Installing the JDK 335
Configuring the Windows Path 335
Confirming Installation Success 336

Appendix C Installing Apache Ant . 337
Macintosh Installation 337
Windows Installation 338

Index 341

ptg8126969

xiii

by Bryce A. Curtis

Everywhere you go, people are using mobile devices to keep in touch with fam-
ily and friends, to find a nearby restaurant, or to check the latest news headlines.
Their phones have become an indispensable part of their lives with applications
that bind them closer to each other and the world around them. It’s these applica-
tions that make their phones truly useful. Most users aren’t aware of the underly-
ing technology used to develop their favorite app or how much time it took to
write. Instead, they view an application in terms of the benefit it provides them.
Therefore, as developers, we are free to select technologies that deliver this benefit
in the most efficient manner.

One technology decision that must be made early on when developing an applica-
tion is whether it is to be written using native or web APIs. Depending upon the
application, native APIs may be required to meet the user’s expectations. However,
for most applications, web technologies consisting of HTML 5, JavaScript, and
CSS provide equal user experiences. The advantage of using web APIs is that they
are written using web technologies familiar to many developers, thus providing an
easier and quicker development process. In addition, since web technologies are
standardized, they exhibit fairly consistent behavior across the many different
mobile platforms available today, such as Android and iOS phones and tablets.

One significant difference between native and web applications is that the native
applications provide extensive access to device features such as the camera and
accelerometer, while the web applications are limited to what the device’s web
browser supports. To bridge this gap between native and web, a new type of appli-
cation called the hybrid application was created. A hybrid application is written
using the same web technologies—HTML 5, JavaScript, and CSS—but includes
additional code that enables native APIs to be called from JavaScript. It works by
wrapping your web code with a web browser and packaging both together to cre-
ate a native application.

Foreword

ptg8126969

xiv Foreword by bryCe A. Curtis

This book focuses on how to develop mobile applications using PhoneGap, which
is a popular open source toolkit for building hybrid applications. You investigate
the extensive PhoneGap API and learn how to include many of the device features
in your applications. It will become apparent that PhoneGap delivers on the prom-
ise of a simplified, cross-platform mobile development by enabling you to write
your application using web technologies and then packaging it up so that it can be
distributed throughout the various app stores and markets. With any luck, your
application may even become someone’s favorite app.

Bryce A. Curtis, Ph.D.
Mobile & Emerging Technologies

IBM Master Inventor
IBM Software Group

ptg8126969

xv

Foreword
by Jim Huempfner

There is no doubt that everything is going mobile—not just because everything
can but because it is having a transformational impact on how we live, work, and
communicate. Mobile applications have become critical solutions for both busi-
nesses and consumers.

As a result, many companies are gravitating toward mobile web as their primary
mobile app development technology. If not done correctly, defining, designing,
building, and maintaining mobile applications for both evolving multiple OS plat-
forms and the ever-changing device landscape can be difficult, time-consuming,
and expensive. Numerous commercial and open source products and frameworks
that can potentially simplify mobile application creation and development are
coming to the marketplace.

PhoneGap is proving to be one of the most popular solutions in this space, allow-
ing users to quickly and easily build applications that will run on multiple plat-
forms, leveraging your existing web development skill sets (tweaked for mobile
development, of course). Because of the emergence of this solution as a front-
runner and the challenges customers face in implementing the technology, John
Wargo has written this book to aid developers in the process.

After a decades-long career in various computing technologies, John started to
focus on mobile development platforms in 2006 when he began working for RIM,
the makers of the BlackBerry handheld devices. When I first met him, he was
teaching a group of colleagues and me the ins and outs of BlackBerry develop-
ment. John has a passion for teaching that is surpassed only by his passion for
mobile development, which was demonstrated both loud and clear during the
class. You’ll see that passion and depth of understanding clearly demonstrated in
this book as well.

ptg8126969

xvi Foreword by Jim HuempFner

We were fortunate to hire John to work in AT&T’s Mobility Group in 2009. He
quickly became my team’s go-to expert on mobile development, constantly evalu-
ating technologies and learning new options in this rapidly changing mobile envi-
ronment. John is a particularly valuable resource in helping our customers define
their mobile application strategy and understand their options for mobile develop-
ment, whether they are using the mobile web, native, hybrid frameworks (such as
PhoneGap), or mobile application platforms such as MEAP or MCAP.

Mobile technology professionals will benefit from this book because it provides
experienced mobile web developers with everything they need to know to transi-
tion their mobile web applications into native mobile applications using
PhoneGap. This book walks you through configuring and using the development
environments you need to work with PhoneGap plus shows you how to use each of
the APIs provided by the framework; it’s everything you need to get started devel-
oping with PhoneGap.

Success in the rapidly evolving and ever-changing mobility space should not cause
fear and frustration of inaction. Rather, we should embrace technology enablers
like PhoneGap and resources like this book to bring truly winning solutions to
reality.

Jim Huempfner
Vice President

Industry Solutions Practice
AT&T

ptg8126969

xvii

This book is about PhoneGap—a really cool technology that allows you to build
native mobile applications for multiple mobile device platforms using standard
web technologies such as HTML, CSS, and JavaScript. I’d been looking at
PhoneGap for several years, and when I finally got a chance to start working with
it, I quickly found it to be a really simple and compelling way to build a single
application that can run across multiple device platforms.

I knew Java from my work at RIM and from building Android applications. I’d
poked around at Objective-C for iOS development and even did some work for
Windows Mobile using Visual Basic. The world, however, is no longer focusing
on applications for single mobile platforms but instead expects that mobile appli-
cations are available simultaneously for all popular mobile device platforms.
PhoneGap helps solve that particular problem.

This book is for web developers who want to learn how to leverage the capabilities
of the PhoneGap framework. It assumes you already know how to build web appli-
cations and are looking to understand the additional capabilities PhoneGap pro-
vides. The book highlights the PhoneGap API capabilities and how to use the tools
provided with PhoneGap.

To understand the topics covered in this book, you will need to have some experi-
ence with one or more of the most popular smartphones. Some experience with
smartphone SDKs is a benefit, but I’ll show you how to install and use the native
SDKs as I discuss each supported platform.

The book is organized into three parts:

•	 Part I, PhoneGap: Includes a very thorough introduction to PhoneGap:
what it is, how it works, and more

Preface

ptg8126969

xviii preFACe

•	 Part II, PhoneGap Developer Tools: Includes instructions on how to
install and use the SDKs and PhoneGap tools for each of the supported
smartphone platforms

•	 Part III, PhoneGap APIs: Includes a detailed description of each PhoneGap
API plus sample code that illustrates how to exercise the API

Additional information, downloadable code projects, and errata can be found on
the book’s web site at www.phonegapessentials.com.

When I first proposed this book to my publisher, it had a completely different struc-
ture than the book you’re reading now. As I started writing, I realized that the structure
I’d picked didn’t work for people learning PhoneGap. So, I quickly reordered it and
broke it into the parts listed earlier. I’ve tried to take you step-by-step through the
things that matter for PhoneGap development. I also tried to make it as complete as
possible—and not skip anything related to the topic at hand. This means, for example,
that when you get to the chapters on configuring development environments for
PhoneGap, you’ll see that I cover each supported platform in detail (with the excep-
tion of webOS since at the time HP indicated it was going to kill the platform). If you
need to write PhoneGap applications for any of those platforms, you’ll find the infor-
mation you need here. If you are focusing on a subset of the supported platforms,
you’ll find that you will need to skip some chapters, but they’ll be there later if you
expand the scope of your development efforts. The other PhoneGap books that pre-
ceded this one focused primarily on Android and iOS, and that didn’t seem right to me.

If you’re looking for a no-nonsense, complete guide to PhoneGap, this is it.

Inside the Book
As I worked through the manuscript, I deliberately assessed each topic against the
book’s title and my goals for the publication. I kept my focus on PhoneGap and
eliminated any topic that didn’t directly relate.

What you’ll find in the book:

•	 Lots of detailed information about PhoneGap and how PhoneGap works

•	 Lots of code examples

What you won’t find in this book:

•	 Mobile web development topics (this is a book about PhoneGap, not
mobile web development)

•	 Complete listing of the phonegap.js source file

www.phonegapessentials.com

ptg8126969

xixtHe CHAllenges in writing A pHonegAp book

•	 Expressions or phrases in languages other than English

•	 Obscure references to pop-culture topics (although there is an obscure
reference to Douglas Adams’ Hitchhiker’s Guide to the Galaxy and one
blatant reference to Monty Python)

•	 Pictures of my cats (I have no cats, but a picture of one of my dogs did make
it into the book)

As you look through the example code provided herein, it’s important to keep in
mind that the code was deliberately written to clearly illustrate a particular
PhoneGap-related topic or concept. While there are many things a developer can do
to write compact and/or efficient code, it’s distracting to readers when they have to
analyze every line in order to be able to tell what’s really going on therein. In this
book, the code is expanded to make it as readable as possible. There are, for exam-
ple, very few instances where JavaScript anonymous functions are used in the sam-
ple applications. Although using them would have made the code samples smaller,
I deliberately eliminated them (in all but one chapter) for readability purposes.

No effort whatsoever has been made to optimize these examples for speed or com-
pactness. They’ve been created to teach you the nuances of the PhoneGap APIs,
not best practices for web development.

The Challenges in Writing a PhoneGap Book
Writing a book about PhoneGap (and many other mobile technologies) is hard.
The writing isn’t hard, but keeping up with the changes that occur as you write is
hard. For this book, a lot of important and interesting things happened during the
writing process, and I found myself regularly rewriting chapters to accommodate
recent changes. The good news is that most of the PhoneGap-specific content in
here will remain valid for a very long time. It was industry changes and developer
tool changes that gave me the most trouble.

Let me give you some examples:

•	 Six (or more) versions of PhoneGap: When I started the book, version
1.0 of PhoneGap had just been released. It seemed that I’d picked the
perfect time to start work on a PhoneGap book. It took me just about
four-and-a-half months to write the manuscript, and during that time three
additional versions of PhoneGap (1.1, 1.2, and 1.3) were released. During
editing and all of the post-production work that needed to be done on the
manuscript, versions 1.4 and 1.5 were released. I expect that by the time
this book makes it onto paper, yet another version of PhoneGap, version
1.6, will have been released.

ptg8126969

xx preFACe

•	 HP killing and then resurrecting webOS: As I started the manuscript,
HP announced it was discontinuing its webOS devices and would be
seeking someone to acquire the technology. For that reason, I decided to
omit any webOS-related topics from the book. Of course, HP then changed
its mind and announced it would be releasing webOS as an open source
project. Unfortunately, the announcement was made after I’d finished the
manuscript, so you will not find much information about webOS develop-
ment for PhoneGap in this book. After the book is published, I will try to
publish an update that includes information on webOS support.

•	 Nokia changed the way it supported web development: Immediately
after I completed the chapter on Symbian development, Nokia released a
new version of its Symbian SDK that removed support for testing web
applications on the simulator. Readers of this book will need to make sure
they deploy an older version of the SDK in order to build and test
PhoneGap applications for Symbian.

•	 Adding Windows Phone support to PhoneGap: With the release of
PhoneGap 1.2, the development team added partial support for Windows
Phone development. This was fortunate since it allowed me to replace the
webOS chapter with one on Windows Phone. With PhoneGap release 1.3,
the team added full API support for Windows Phone development.

•	 Adding BlackBerry PlayBook support to PhoneGap: In PhoneGap 1.3,
the development team added support for the BlackBerry PlayBook. This,
of course, completely changed the way the Ant scripts used to build
BlackBerry applications worked, and the chapter had to be completely
rewritten. The BlackBerry stuff stayed basically the same, but the
command-line options changed, and a whole new suite of tools was added
to support the PlayBook.

•	 Deprecating support for the Symbian OS: Beginning with version 1.5,
the PhoneGap project has removed support for Symbian from the
PhoneGap download. You will have to download the code from a separate
location if you want to continue to work with Symbian applications.

•	 PhoneGap donated to the Apache project: One of the biggest changes
that occurred during this process was Nitobi’s announcement that the
project was being donated to the Apache Foundation. While not a huge
change for the development community, what was difficult was that the
project was supposed to get a name change. It was first donated to Apache
as DeviceReady, but then because of a conflict with a company with the
same name, it was quickly changed to Callback, which was for some
bizarre reason later changed to Apache Cordova (named after the street

ptg8126969

xxiCode Conventions

where Nitobi’s offices were located). We’ve been told that the commercial
product will keep the PhoneGap name while the open source project will
have a different name, but I’m really not sure how that’s going to work out.

•	 Nitobi Acquired by Adobe: Immediately following the previous announce-
ment (actually the next day), Adobe Systems Incorporated (www.adobe.com)
announced it was acquiring Nitobi, the company responsible for the
PhoneGap project. That meant big changes for PhoneGap since the folks at
Nitobi could now focus entirely on the PhoneGap project instead of working
on it in their spare time. A while later, Adobe announced it was ceasing de-
velopment of its Flash product for mobile devices. This was huge news and
clearly indicated that PhoneGap now had a very important place in Adobe’s
mobile strategy.

One of the biggest problems I faced was getting the help I needed when things
didn’t work or didn’t make sense. As an open source project run by volunteers,
many of my forum questions went unanswered (and to this day are still unan-
swered). You can try to get help there, but usually you’re on your own (all the more
reason to pick up this book).

Code Conventions
I put a few notes and sidebars in the manuscript, but for the most part I kept the
manuscript as clean and simple as I could. I did, however, illustrate sample code in
two ways.

A code snippet, a section of a complete application, will be represented in the
manuscript in the following manner:

var d = new Date(heading.timestamp);
hc.innerHTML = "Timestamp: " + d.toLocaleString();

The code could stand alone, like a complete function that you could use in your
application, but in many cases this type of listing illustrates a piece of code that
simply affects one small part of an application.

On the other hand, complete code listings will look like this:

HelloWorld Example

<!DOCTYPE HTML>
<html>
<head>
 <title>HelloWorld</title>
</head>
<body>

www.adobe.com

ptg8126969

xxii preFACe

 <h1>Hello World!</h1>
 <p>This is a very simple web page.</p>
</body>
</html>

In this example, the code shown is a complete, functional application that you can
copy into your IDE and use.

Web Resources
I’ve created a web site for the book: www.phonegapessentials.com (see Figure P-1).
The site contains information about the book’s chapters but will also contain any
errata (ideally none!), reader comments, and more. I will also make the book’s
source code available so you can test the applications yourself and use the code
from this book in your own projects.

I also regularly publish mobile development–related articles to my personal web
site at www.johnwargo.com. Check out the site when you get a chance.

Figure P-1 PhoneGap Essentials web site

www.phonegapessentials.com
www.johnwargo.com

ptg8126969

xxiii

I want to thank Bryce Curtis for his excellent technical review of the manuscript
and his help clarifying some of the issues that cropped up as I worked through the
manuscript. There were quite a few places where Bryce added important clarifica-
tions that ultimately made this a better book.

Thanks also to the folks at Nitobi (now Adobe) for their help with this book.

Thanks to my managers at AT&T: Abhi Ingle, Jim Huempfner, Shiraz Hasan, and
Vishy Gopalakrishnan for supporting me in this endeavor.

Finally, thanks to Greg Doench and the rest of the editorial staff at Pearson Edu-
cation for their continued support and for letting me do another mobile develop-
ment book.

Acknowledgments

ptg8126969

xxiv

John M. Wargo has been a professional software developer for most of his
career. He spent many years as a consultant and has created award-winning enter-
prise and commercial software products.

His involvement with mobile development began with a stint at Research In
Motion (RIM) as a developer supporting a large U.S.-based carrier and its custom-
ers. After leaving RIM, he wrote one of the first books dedicated to BlackBerry
development called BlackBerry® Development Fundamentals (Addison-Wesley,
2010; www.bbdevfundamentals.com).

He is a technical advisor for The View, a magazine for IBM Lotus Domino devel-
opers and administrators, and has penned a series of articles on mobile develop-
ment for that publication.

Until recently, he worked for AT&T as a practice manager in AT&T’s Advanced
Mobile Applications Practice, specializing in cross-platform development tools
and working with customers designing and building both enterprise and consumer
mobile applications. He is now part of SAP’s Mobile Solution Management team,
focusing on the developer experience for SAP’s mobile development tools.

About the Author

www.bbdevfundamentals.com

ptg8126969

Part I
PhoneGap

This part of the book provides an introduction to PhoneGap and a complete
study of what makes a PhoneGap application a PhoneGap application. If you’re
new to PhoneGap, then this is the place to start. If you’ve been working with
PhoneGap for a little while, the material in this part of the book might be a repeat
of what you already know, but you might learn something as well.

ptg8126969

This page intentionally left blank

ptg8126969

3

Introduction to
PhoneGap

PhoneGap is an open source framework for building cross-platform native
applications using standard web technologies such as HyperText Markup Lan-
guage (HTML), Cascading Style Sheets (CSS), and JavaScript. This type of
mobile application is called a hybrid application. A group of developers created
PhoneGap as a way to simplify mobile development, and adoption of the frame-
work has grown significantly over time.

As described on the PhoneGap web site (www.phonegap.com), “PhoneGap is an
open source implementation of open standards.” The project’s development teams
work to implement relevant web development standards (from the World Wide
Web Consortium [W3C] and others) into the PhoneGap framework. There are a
robust suite of application programming interfaces (APIs) included in the frame-
work today, and there’s a solid road map for implementing additional capabilities
over time. There’s much more detail about what PhoneGap is and what makes a
PhoneGap application in this and the following chapter.

PhoneGap currently supports the following mobile device operating system
platforms:

•	 Apple iOS (both iPhone and iPad): http://developer.apple.com

•	 Google Android: http://developer.android.com

•	 HP/Palm webOS: http://developer.palm.com

•	 Microsoft Windows Phone 7: http://create.msdn.com/en-us/home/
getting_started

1

www.phonegap.com
http://developer.apple.com
http://developer.android.com
http://developer.palm.com
http://create.msdn.com/en-us/home/getting_started
http://create.msdn.com/en-us/home/getting_started

ptg8126969

4 CHApter 1 introduCtion to pHonegAp

•	 Nokia Symbian: www.developer.nokia.com/Devices/Symbian

•	 RIM BlackBerry (devices running BlackBerry Device Software 4.6
and newer): www.blackberry.com/developers

•	 Samsung bada: http://developer.bada.com

The PhoneGap project has plans for adding other platforms as they become popu-
lar in the market (and popular with mobile developers). With Hewlett-Packard’s
announcement of its discontinued support for webOS, development for that plat-
form, although supported by PhoneGap, will not be covered in this book. With
Nokia’s announcement that it is adopting Windows Phone over its own Symbian
OS, it’s possible that PhoneGap will drop support for Symbian in the future, but
the Symbian OS is still covered in this book.

The framework is available under an open source license; as a user of PhoneGap,
you can choose to use either the modified BSD license or the MIT license. The
software is free to use, and the PhoneGap team will not accept any external contri-
butions that are incompatible with either license (either through inclusion of pro-
prietary code or license under a more restrictive license). As the project finishes
the process of migrating to the Apache Software Foundation community, the
license will change to an Apache license. To contribute code to the project, you
will need to sign a contributor agreement.

A Little PhoneGap History
PhoneGap was started at the 2008 iPhoneDevCamp by Nitobi (www.nitobi.com),
which started the project as a way to simplify cross-platform mobile development.
The project began with a team of developers working through a weekend to create
the skeleton of the framework; the core functionality plus the native application
container needed to render web application content on the iPhone. After the initial
build of the framework, the PhoneGap project team quickly added support for
Android, with BlackBerry following a short time thereafter.

In 2009, PhoneGap won the People’s Choice award at the Web 2.0 Expo Launch-
Pad competition. Of course, being a project for geeks, the conference attendees
voted for the winner by Short Message Service (SMS) from their mobile phones.

Over time, PhoneGap has added support for additional hardware platforms and
worked to ensure parity of API features across platforms. The project team contin-
ues to add support for new devices and APIs over time and has a very robust road
map for future versions of the framework.

IBM has recently become more involved in the project. You can now find IBM’s
copyright alongside Nitobi’s in the source code for new PhoneGap projects. When

www.developer.nokia.com/Devices/Symbian
www.blackberry.com/developers
http://developer.bada.com
www.nitobi.com

ptg8126969

5wHy use pHonegAp?

IBM got involved in the Eclipse project (an open source integrated development
environment [IDE]; www.eclipse.org), Eclipse quickly became integral to IBM’s
product strategy and became the core of several IBM projects. It’s likely that
IBM’s involvement in the PhoneGap project indicates where IBM could be taking
its mobile development or mobile product strategy.

After this section of the chapter had been written, PhoneGap applied to become
part of the open source Apache project (www.apache.org), first as Apache Call-
back and later (beginning with version 1.4) as Apache Cordova (the name of the
street where the Nitobi offices are located). At the same time, Nitobi announced
that it had been acquired by Adobe (www.adobe.com).

Right before the book went to press, the PhoneGap project team changed the name
of the PhoneGap JavaScript file (phonegap.js) to cordova.js. Throughout all of
this, the commercial name for PhoneGap should remain PhoneGap, so all refer-
ences in the book will refer to its commercial name, not the Apache project name.
Sample project source code included herein will be updated with the correct file
name and posted to the book’s web site at www.phonegapessentials.com.

The move to the Apache Software Foundation helps to reassure companies wish-
ing to use PhoneGap that the framework will remain a stable, available tool to use.
The acquisition of Nitobi by Adobe (and Adobe’s subsequent announcement that
they’re discontinuing support for Adobe Flash on mobile devices) clearly indi-
cates that Adobe sees PhoneGap as an important part of their product portfolio.
The folks at Nitobi who were working on PhoneGap in their spare time as a labor
of love should now find themselves in a position where they can work full-time on
the project. Expect regular and frequent updates to the framework.

Why Use PhoneGap?
You would use PhoneGap to build mobile application for several reasons:

•	 Your mobile application was already built using web technologies, and
you want to be able to deploy the application through one or more mobile
application stores (such as the Android Market, the Apple App Store, or
BlackBerry App World).

•	 You want to build a mobile application leveraging your web development
skills but need to leverage device-side features (such as the camera or the
calendar), which are not supported by the mobile browser.

•	 You want to build a quick prototype of a mobile application and don’t have
time to learn Java or Objective-C.

•	 You think PhoneGap is cool.

www.eclipse.org
www.apache.org
www.adobe.com
www.phonegapessentials.com

ptg8126969

6 CHApter 1 introduCtion to pHonegAp

A lot of commercial applications are available today that were built using PhoneGap;
you can find a list of many of the applications on the PhoneGap web site at www
.phonegap.com/apps. The framework is used primarily for consumer applications
(games, social media applications, utilities, productivity applications, and more)
today, but more and more enterprises are looking at PhoneGap for their employee-
facing applications as well.

How PhoneGap Works
As mentioned previously, PhoneGap allows a developer to build native applica-
tions for mobile devices (both smartphones and tablets) using web technologies
such as HTML, CSS, and JavaScript. A developer builds a web application for the
mobile device, and special tools provided by PhoneGap package the web applica-
tion into a native application for each supported mobile platform. Figure 1-1 illus-
trates the packaging process, which will be described in greater detail later in the
chapter.

Packaging
Process

Native Mobile Application

Web Application

Web View

PhoneGap JavaScript
Interface

HTML
File(s)

JavaScript
File(s)

Other
Content

CSS
File(s)

Figure 1-1 PhoneGap application architecture

Within the native application, the application’s user interface consists of essen-
tially a single screen that contains nothing but a single web view that consumes all
of the available space on the device’s screen. When the application launches, it
loads the web application’s startup page (typically index.html but easily changed
by the developer to something else) into the web view and then passes control to
the web view to allow the user to interact with the web application. As the user

www.phonegap.com/apps
www.phonegap.com/apps

ptg8126969

7How pHonegAp works

interacts with the application’s content (the web application), links or JavaScript
code within the application can load other content from within the resource files
packaged with this application or can reach out to the network and pull content
down from a web or application server.

For some mobile device platforms such as bada, Symbian, and webOS, a native
application is a web application; there’s no concept of a compiled native applica-
tion that is deployed to devices. Instead, a specially packaged web application is
what is executed as an application on the device. You’ll learn more about this in
subsequent chapters.

Web Views

A web view is a native application component that is used to render web content
(typically HTML pages) within a native application window or screen. It’s essentially
a programmatically accessible wrapper around the built-in web browser included
with the mobile device.

For some examples, on the BlackBerry platform, it’s implemented as a Browser
Field object (using net.rim.device.api.browser.field2). On Android, it’s
implemented using a WebView view (android.webkit.WebView), and on iOS, it’s a
UIWebView (System/Library/Frameworks/UIKit.framework).

The web application running within the container is just like any other web appli-
cation that would run within a mobile web browser. It can open other HTML pages
(either locally or from a web server sitting somewhere on the network); JavaScript
embedded within the application’s source files implements needed application
logic, hiding or unhiding content as needed within a page, playing media files,
opening new pages, performing calculations, and retrieving content from or send-
ing content to a server. The application’s look and feel is determined by any font
settings, lines, spacing, coloring, or shading attributes added directly to HTML
elements or implemented through CSS. Graphical elements applied to pages can
also help provide a theme for the application. Anything a developer can do in a
web application hosted on a server can be done within a PhoneGap application.

A typical mobile web browser does not have access to device-side components
such as any of the other applications running on the device (such as the Contacts
application) plus device-specific hardware (accelerometer, camera, compass,
microphone, and more). The typical native mobile application, on the other hand,
may make frequent use of those components. To be able to build an interesting
mobile application (interesting to prospective application users anyway), a mobile
application may need access to those native device components outside of the

ptg8126969

8 CHApter 1 introduCtion to pHonegAp

typical web container. PhoneGap accommodates this need by providing a suite of
JavaScript APIs that a developer can use to allow a web application running within
the PhoneGap application container to access device components that are outside
of the web context. Figure 1-2 illustrates how this works at a high level.

Native Mobile Application
Web View

PhoneGap JavaScript
Interface

Mobile Device

Device OS

Native Device APIs

Figure 1-2 PhoneGap application: device interaction

When a developer implements a feature in an application that uses one of the
PhoneGap APIs, the application calls the API using JavaScript, and then a special
layer within the application translates the PhoneGap API call into the appropriate
native API for the particular feature. As an example, the way the camera is accessed
on a BlackBerry is different from how it’s done on Android, so this API common
layer allows a developer to implement a single interface that is translated behind
the scenes (within the container application) into the appropriate native API for
each supported mobile platform. To take a picture in a mobile application using
PhoneGap, the JavaScript code would look like this:

navigator.camera.getPicture(onSuccess, onFail);

ptg8126969

9How pHonegAp works

As parameters, the application passes in the names of two callback functions:
onSuccess and onFail (callback functions will be described in detail in subse-
quent chapters).

On BlackBerry, the code being executed behind the scenes might look like this:

Player player = Manager.createPlayer("capture://video");
player.realize();
player.start();
VideoControl vc = (VideoControl) player.getControl(
 "VideoControl");
viewFinder = (Field)vc.initDisplayMode(
 VideoControl.USE_GUI_PRIMITIVE,
 "net.rim.device.api.ui.Field");
scrnMain.add(viewFinder);
vc.setDisplayFullScreen(true);
String imageType =
 "encoding=jpeg&width=1024&height=768&quality=fine";
byte[] theImageBytes = vc.getSnapshot(imageType);
Bitmap image = Bitmap.createBitmapFromBytes(
 imageBytes, 0, imageBytes.length, 5);
BitmapField bitmapField = new BitmapField();
bitmapField.setBitmap(image);
scrnMain.add(bitmapField);

On Android, the code being executed by the function might look like this:

camera.takePicture(shutterCallback, rawCallback,
 jpegCallback);

And on iOS, the code might look like this:

UIImagePickerController *imgPckr =
 [[UIImagePickerController alloc] init];
imgPckr.sourceType = UIImagePickerControllerSourceTypeCamera;
imgPckr.delegate = self;
imgPckr.allowsImageEditing = NO;
[self presentModalViewController:imgPckr animated:YES];

The code samples listed here don’t cover all aspects of the process of taking a picture
(such as dealing with errors or processing the resulting image), but the examples

ptg8126969

10 CHApter 1 introduCtion to pHonegAp

illustrate how PhoneGap simplifies cross-platform mobile development. A devel-
oper makes a single call to a common API available across all supported mobile
platforms, and PhoneGap translates the call into something appropriate for each tar-
get platform. This eliminates the need for the developer to have intimate knowledge
of the underlying technologies, instead allowing them to focus on their application
rather than how to accomplish something on multiple devices.

PhoneGap currently supports the following APIs:

•	 Accelerometer

•	 Camera

•	 Capture

•	 Compass

•	 Connection

•	 Contacts

•	 Device

•	 Events

•	 File

•	 Geolocation

•	 Media

•	 Notification

•	 Storage

Additional APIs are added as the PhoneGap project team gets to them and as new
standards evolve. The PhoneGap project’s efforts around API implementation are
partially guided by the W3C’s Device APIs and Policy (DAP) Working Group
(www.w3.org/2009/dap/). This group is working to “create client-side APIs that
enable the development of Web Applications and Web Widgets that interact with
device services such as Calendar, Contacts, Camera, etc.” You’ll find that the
PhoneGap project will implement the DAP APIs as they become standardized.

Over time, as mobile device browsers implement the DAP APIs in a consistent
manner, PhoneGap will find itself obsolete. When mobile browsers all support
these APIs, there won’t be a need for the capabilities PhoneGap provides, and
essentially the project will just disappear.

www.w3.org/2009/dap/

ptg8126969

11designing For tHe ContAiner

Apple and PhoneGap

As restrictive as Apple is about what you can and cannot do within an iOS applica-
tion, in October 2009, Apple began approving PhoneGap applications built with
version 0.80 of the PhoneGap framework. Currently, many applications in the
Apple App Store were built using PhoneGap.

Designing for the Container
PhoneGap applications are web applications running inside a client-side native
application container. Because of this, web applications running within a
PhoneGap application leverage an HTML 5 application structure rather than that
of a traditional server-based web application. Let’s talk about the different options.

The Traditional Web Server (Web 1 .0) Approach
With old-school, traditional web applications, a web server serves up either static
HTML pages or dynamic pages to the requesting user agent (the browser).
With dynamic pages, a server-side language or scripting language is used to
retrieve dynamic content (from a database, for example) and format it all into
HTML before sending it to the browser. When the browser makes a request, the
server retrieves the containing page and content, massages it all into HTML (or
some variant such as XHTML), and sends it to the browser to be displayed.

In this example, the browser doesn’t need any intelligence with regard to the con-
tent; it merely requests a page, and the server does most of the work to deliver the
requested content. On the browser, the application can leverage client-side Java-
Script code to allow the user to interact with the content on the page, but in gen-
eral, most of the work is done by the server.

The Web 2 .0 Approach
With the advent of Web 2.0, a reduced load is placed on the web server; instead,
JavaScript code running within the browser is responsible for requesting and pre-
senting data. The web server delivers an HTML-based wrapper for the web appli-
cation, and JavaScript code delivered with the page dynamically manages the
content areas of the page, moving data in and out of sections of the page as
needed.

ptg8126969

12 CHApter 1 introduCtion to pHonegAp

What allowed Web 2.0 applications to be successful was the addition of the
XMLHTTPRequest (XHR) API in JavaScript. This API allowed a web application to
submit asynchronous requests to a server and process the data whenever it returns
from the server, without interrupting the user’s activity within the application.
You’ll find that many PhoneGap applications make heavy use of XHR to interact
with a remote server.

This approach allows for much more interesting web applications—applications
that can easily look and feel like native desktop applications. The web server is
still involved, serving up the pages and the content to the browser, but it does less
direct manipulation of the data. Google Maps (http://maps.google.com) or Google
Gmail (http://mail.google.com) are good examples of Web 2.0 applications avail-
able today.

The HTML 5 Approach
Mobile devices need a slightly different approach. Web 1.0 and 2.0 technologies
work great on smartphones, but Web 1.0 apps caused a lot of data to be transmitted
between server and device, and Web 2.0 apps were cooler but still required con-
stant network connectivity to operate. Google even created a technology called
Google Gears (http://gears.google.com), which included a client-side SQL data-
base and other capabilities that web applications could use to allow an application
to run, even if the web server was not available. They later stopped work on the
project and instead shifted their efforts to helping craft the HTML 5 standard.

With HTML 5, web applications can make use of new capabilities that allow an
application to operate more efficiently on a mobile device (or devices with limited
connectivity). With HTML 5, web applications can make use of a client-side data-
base to store application data. This makes it easier for mobile devices to operate as
they go in and out of wireless coverage. Additionally, HTML 5 supports the addi-
tion of a manifest file that lists all of the files that comprise the web application.
When the web application’s index file loads, the browser will read the manifest file
and retrieve all of the files listed in the manifest and download them to the client
device. If a mobile device were to lose network connectivity, if the files listed in
the manifest were available on-device, then the application can continue working,
using any data that may be stored locally.

To leverage these HTML 5 capabilities, though, a web application must be written so
it is able to run completely within the browser container (or in the case of PhoneGap
applications, within the PhoneGap application container). The index.html file is
typically the only HTML file in the application, and the application’s different

http://maps.google.com
http://mail.google.com
http://gears.google.com

ptg8126969

13building pHonegAp AppliCAtions

“screens” are actually just different <div> containers that are switched in and out
as needed. HTML 5 applications will still reach out to a server for data as needed,
using XHR to request data asynchronously and store it locally as needed.

Web developers must rethink their approach to web development to leverage these
capabilities. Instead of having access to everything on the web server, the HTML 5
application running on a mobile device should try to be self-sufficient, making
sure it has the files and data it needs to run whenever possible.

The web applications running within a PhoneGap application are HTML 5
applications.

Writing PhoneGap Applications
As mentioned previously, PhoneGap applications are built using normal, every-
day web technologies such as HTML, CSS, and JavaScript. Whatever you want
your application to do, if you can make it work using standard web technologies,
you can make it work in a PhoneGap application. PhoneGap applications can do
more than standard web applications, through the specialized JavaScript libraries
provided with the framework.

To build PhoneGap applications, you’ll need to dig out your editor of choice and
get coding. To keep things simple, you could use Notepad on Windows or TextEdit
on a Macintosh. You could even use something more sophisticated such as Adobe
Dreamweaver or Eclipse. Aptana Studio (www.aptana.com) is a good option for
web developers; it’s an open source Eclipse-based IDE tailored for web develop-
ment. The PhoneGap project doesn’t currently offer or support any special editor
for coding your PhoneGap applications.

Building PhoneGap Applications
Once you have a completed web application, whether it uses any of the PhoneGap
APIs or not, it has to be packaged into a native application that will run on-device.
Each of the mobile device platforms supported by the PhoneGap project has its
own proprietary tools for packaging or building native applications for its plat-
form. To build a PhoneGap application for each supported mobile platform, the
application’s web content (the HTML, CSS, JavaScript, and other files that com-
prise the application) must be added to an application project appropriate for each
mobile platform and then be built using the platforms proprietary tools.

www.aptana.com

ptg8126969

14 CHApter 1 introduCtion to pHonegAp

What’s challenging about this process is that each mobile platform uses com-
pletely different tools and the application projects for each use different configura-
tion files and a different folder structure. To make it even worse, the PhoneGap
JavaScript libraries are different for each mobile platform; the API calls are con-
sistent across all platforms, but the internal JavaScript code used to interact with
the native container differs depending on the platform (Android, BlackBerry, or
iOS, for example).

As you can see, there is no direct way for developers to configure development
system so they can create one project and use it to create PhoneGap applications
for multiple platforms.

What happens is that a developer will create a project for one platform (Android,
for example), write the appropriate web content, and then package and test the
application using the tools Google provides for Android developers. Once the
application is working correctly on Android, the web content is copied into a new
Xcode project (for iOS applications) or a new BlackBerry WebWorks project, and
the process repeats. Figure 1-3 illustrates the process; the figure doesn’t show all
of the PhoneGap-supported platforms, but you should get the point.

If that weren’t bad enough, tools for creating new PhoneGap projects for each of
the target platforms place the PhoneGap JavaScript libraries in a different location
depending on the project type. For example, in a BlackBerry project, the PhoneGap
JavaScript library is placed in the /JavaScript folder, where for iOS it’s placed at
the root folder of the project. As an application’s web content is copied from one
mobile platform’s project to another, the code may have to be adjusted since the
JavaScript resource files may be in a different location on each.

Some platforms, such as webOS, require that their framework library (called
mojo) be the first JavaScript library loaded in your web project. So, in this case,
there’s special code that will be in only one flavor of your application: the version
for webOS.

What this means is that for developers to be able to build mobile applications for
multiple mobile platforms, they must install a complete development environment
for each and manually copy and adjust the web source files between each project.

Part 2 of this book contains information on how to configure each of the supported
development environments for PhoneGap.

You probably read the last few paragraphs and said to yourself that there must be a
better way. Fortunately, there is. The PhoneGap project team has been hard at
work building a cloud-based packaging service for PhoneGap applications called
PhoneGap Build, shown in Figure 1-4. This service should dramatically decrease
the complexity of maintaining a development environment for PhoneGap.

ptg8126969

15building pHonegAp AppliCAtions

Android
Application

Android
SDK

Android
Project

BlackBerry
Application

WebWorks
SDK

BlackBerry
Project

Symbian
Web AppMakeSymbian

Project

webOS
ApplicationMakewebOS

Project

Windows
Phone

Application

Visual
Studio

Windows
Phone
Project

Android
Application

Android
SDK

Android
Project

iOS
ApplicationXcodeXcode

Project

Symbian
Web AppMakeSymbian

Project

webOS
ApplicationMakewebOS

Project

Android
Application

Android
SDK

Android
Project

Symbian
Web AppMakeSymbian

Project

webOS
ApplicationMakeWebOS

Project

Windows PC

Macintosh

Linux PC

Web Application

HTML JavaScript
File(s)

Other
Content

CSS

Web Application

HTML JavaScript
File(s)

Other
Content

CSS

Web Application

HTML JavaScript
File(s)

Other
Content

CSS

Figure 1-3 PhoneGap application build process

ptg8126969

16 CHApter 1 introduCtion to pHonegAp

Git or Subversion
Repository

Developer
Workstation

Upload
Archive

Use Repository

Config.xml

Web Application

PhoneGap Project

HTMLXML JavaScript
File(s)

Other
Content

CSS

Figure 1-4 PhoneGap Build build process

With PhoneGap Build, a developer creates a configuration file called config.xml
that describes settings for the mobile application. The format of the file is defined
in the W3C widget specification (www.w3.org/TR/widgets). The configuration
file and the application’s web content (the application’s HTML, CSS, and Java-
Script files) are uploaded to the PhoneGap Build server and packaged into native
mobile applications for each supported mobile device platform. A developer will
interact with PhoneGap Build using a standard desktop web browser.

PhoneGap projects can be loaded into PhoneGap Build as a .zip file or pulled from
a Git (http://git-scm.com) or svn (http://subversion.apache.org) repository. Devel-
opers can even store their PhoneGap projects in a Git repository hosted by the
PhoneGap project. The PhoneGap build process is described in detail in Chapter 9.

www.w3.org/TR/widgets
http://git-scm.com
http://subversion.apache.org

ptg8126969

17pHonegAp limitAtions

PhoneGap Limitations
There are some limitations with using PhoneGap for your mobile application proj-
ects. As an open source project, its ability to deliver new features and bug fixes in a
timely manner is controlled mostly by volunteers.

Even though the project has a robust road map, it can deliver on that road map only
if it has enough resources, with relevant skills for each supported mobile platform,
to do the work. What happens then is that features and bug fixes for more popular
platforms (such as Android and iPhone) get more attention while less popular plat-
forms languish. As an example, take a look at Figure 1-5, which shows the API
documentation for the PhoneGap Device API. This API, described in more detail
in Chapter 16, allows a PhoneGap application to access information about the
device the application is running on. A developer would use this feature, for exam-
ple, to enable or disable features or capabilities within an application based on the
capabilities of the device.

Figure 1-5 PhoneGap API documentation example

ptg8126969

18 CHApter 1 introduCtion to pHonegAp

As you can see from the figure, even though PhoneGap supports a wide range of
mobile devices, this simple API to obtain the name of the device, device.name, is
supported by only three platforms. As a developer working with PhoneGap, you’re
going to have to constantly assess availability of a particular API against the target
audience for your application and possibly adjust the features of your application
accordingly.

That being said, I know that one of IBM’s goals is to help enforce a more consistent
implementation of the supported APIs across all of the supported platforms. In this
particular example, it’s a documentation omission; the device.name property is
available on all PhoneGap-supported mobile platforms. Someone just needs to
update the documentation to reflect the current supported devices for the API. The
differences in implementation of a method or property of a particular API are listed
in the PhoneGap documentation under a “Quirks” section of the document.

As with most open source software projects, a limited amount of documentation is
available for many topics. Even though the API documentation is excellent and
there are source code examples of most API functions (something that isn’t very
common even for commercial software packages), a lot of things related to
PhoneGap are just not documented or not documented in detail. When you go to
the PhoneGap web site, you can very quickly get to the API documentation, but
except for some quick-start guides for most of the supported mobile platforms,
there’s very little information available about how to actually “use” PhoneGap or
do cross-platform development using PhoneGap.

Fortunately for you, this book should fill in many of the gaps.

PhoneGap Plug-Ins
As with any developer tool, often there are times when the base functionality pro-
vided by the solution just isn’t enough for your particular needs. For those, cases,
PhoneGap supports the ability to extend PhoneGap applications with additional
functionality. You can find more information about plug-ins at http://wikiphonegap
.com/w/page/36752779/PhoneGap%20Plugins.

The PhoneGap project has a very active developer community. When a developer
sees a gap in a product, especially an open source project like PhoneGap, it doesn’t
take long before someone builds an enhancement (whether it is a plug-in or some
other mechanism) to “fix” the problem. Here are just a few examples of what’s
available from the PhoneGap community:

•	 PhoneGap Facebook Platform Plug-in (www.phonegap.com/2011/08/30/
get-the-new-phonegap-facebook-platform-plugin)

http://wikiphonegap.com/w/page/36752779/PhoneGap%20Plugins
http://wikiphonegap.com/w/page/36752779/PhoneGap%20Plugins
www.phonegap.com/2011/08/30/get-the-new-phonegap-facebook-platform-plugin
www.phonegap.com/2011/08/30/get-the-new-phonegap-facebook-platform-plugin

ptg8126969

19Hybrid AppliCAtion FrAmeworks

•	 PhoneGap Android development plug-in for Eclipse (www
.mobiledevelopersolutions.com)

•	 PhoneGap iOS Plugin for Drupal (www.jefflinwood.com/2011/07/
announcing-phonegap-ios-plugin-for-drupal-v0-1/)

Getting Support for PhoneGap
One of the things corporations worry about is getting support for the software prod-
ucts they use for their business applications. Open source products such as Open-
Office.org (http://openoffice.org) and Linux wouldn’t be as popular with companies
if there weren’t support options available to them. Since commercial support for
OpenOffice.org is available from Oracle and Linux is supported by a wide range of
companies including Red Hat, Canonical, SUSE, and others, organizations are
much more willing to run their businesses on these open source software products.

The PhoneGap project is no different. As more and more companies look at
PhoneGap for their mobilization needs, their willingness to select the platform is
influenced partially by the availability of commercial support for the framework.
In early 2011, Nitobi announced availability of commercial support options for
PhoneGap. Support is offered at different levels (from Basic, currently at $249US
per year, up to Corporate and Enterprise at $20,000US or more per year), and a
wide range of support options are available at each level. You can find information
on support options for PhoneGap at www.phonegap.com/support.

PhoneGap Resources
You can find detailed information about how to work with the PhoneGap frame-
work in several places:

•	 PhoneGap web site: www.phonegap.com

•	 PhoneGap wiki: http://wiki.phonegap.com

•	 Google Groups: http://groups.google.com/group/phonegap

•	 Blogs: www.phonegap.com/blog

Hybrid Application Frameworks
The hybrid application approach PhoneGap uses is not unique to the market. The
PhoneGap project may have started the trend, but now several other products on

www.mobiledevelopersolutions.com
www.mobiledevelopersolutions.com
www.jefflinwood.com/2011/07/announcing-phonegap-ios-plugin-for-drupal-v0-1/
www.jefflinwood.com/2011/07/announcing-phonegap-ios-plugin-for-drupal-v0-1/
http://openoffice.org
www.phonegap.com/support
www.phonegap.com
http://wiki.phonegap.com
http://groups.google.com/group/phonegap
www.phonegap.com/blog

ptg8126969

20 CHApter 1 introduCtion to pHonegAp

the market use a similar approach, as shown in the following sections. The follow-
ing products are only a subset of the available options in the hybrid mobile appli-
cation space.

Appcelerator Titanium
Titanium is another open source hybrid application framework. Appcelerator
(www.appcelerator.com) launched Titanium right about the time that PhoneGap
started to gain popularity with mobile developers. Titanium works very similarly
to PhoneGap in that developers build mobile applications using web technologies,
but with Titanium, applications are built entirely in JavaScript. The native applica-
tion running on a mobile device is just a container executing JavaScript code, as
shown in Figure 1-6. The application’s user interface and application logic are all
coded entirely in JavaScript.

Titanium Application

Canvas

JavaScript Code

JavaScript Interface to
Native Device Capabilities

Device OS

Other
Content

Video
File(s)

Image
File(s)

Figure 1-6 Appcelerator Titanium application structure

www.appcelerator.com

ptg8126969

21Hybrid AppliCAtion FrAmeworks

AT&T WorkBench and Antenna Volt
These two products provide managed containers for running multiple HTML 5
applications. The solution is implemented as a native application container that is
provisioned remotely by a management server. When a user first launches the appli-
cation, they must authenticate against the back-end infrastructure, and the web
applications provisioned for the user are downloaded over the air into the container.
What users see is a single application icon on their mobile device screen, but when
they launch the application, the list of the provisioned applications appears on the
screen, and the user can easily switch between the applications.

This solution is designed primarily for enterprise customers, but there are many
use cases for consumer use as well.

Like Worklight, described shortly, WorkBench and Volt are part of an enterprise
mobile application platform that includes additional server components (with
management and reporting capabilities as well as the ability to provide connectors
to back-end data sources).

You can find additional information on these solutions at www.wireless.att.com/
businesscenter/built-for-business/AMEAP.jsp and www.antennasoftware.com/
resource-center/volt.

BlackBerry WebWorks
The Research In Motion (RIM) developer community complained that it was too
hard to build native mobile applications for the BlackBerry platform (in Java), so
RIM responded with the BlackBerry WebWorks platform. WebWorks (originally
called BlackBerry Widgets, which I think is a much better name) is a hybrid appli-
cation framework for BlackBerry applications. Developers build mobile applica-
tions using HTML, CSS, and JavaScript and use tools from RIM to package the
web application into a native Java application container just like PhoneGap does.

When you build a PhoneGap application for BlackBerry, you’re actually using the
BlackBerry, a WebWorks SDK to package the web application into a BlackBerry
native application. In essence, and there are certainly more technical details behind
this, a BlackBerry PhoneGap application is simply a BlackBerry WebWorks appli-
cation with the custom PhoneGap JavaScript libraries added in.

Note: If you want to learn more about BlackBerry development, there’s a great
book on the subject called BlackBerry® Development Fundamentals (see
www.bbdevfundamentals.com) written by yours truly (me!). Unfortunately, the
book was released while the BlackBerry WebWorks tools were still in beta, so that
topic is not covered.

www.wireless.att.com/businesscenter/built-for-business/AMEAP.jsp
www.wireless.att.com/businesscenter/built-for-business/AMEAP.jsp
www.antennasoftware.com/resource-center/volt
www.antennasoftware.com/resource-center/volt
www.bbdevfundamentals.com

ptg8126969

22 CHApter 1 introduCtion to pHonegAp

Strobe
Strobe (www.strobecorp.com) is a mobile application delivery network that uti-
lizes PhoneGap Build (described in Chapter 9) to package native applications built
using their frameworks. There’s a free test version of Strobe and additional paid
options depending on the size of your development needs. The solution is cur-
rently in private beta.

Tiggr
Tiggr (www.gotiggr.com) is a web-based IDE for building mobile applications. It
includes a visual editor and jQuery Mobile interface components that can just be
dragged onto a web application. Tiggr integrates with PhoneGap to provide native
mobile applications built with its IDE. Currently, the Tiggr Mobile Apps Builder
is free for a 15-day trial but then costs $45US per month thereafter.

Worklight
Worklight (www.worklight.com) is a commercial mobile application platform
built on top of PhoneGap. Worklight provides its own Eclipse-based IDE for
building Worklight applications and special server infrastructure for connectivity
to provide management and reporting capabilities as well as a mobile optimized
conduit to back-end or external applications and application data. Worklight appli-
cations are simply PhoneGap applications with some additional capabilities pro-
vided by the Worklight platform (implemented through some additional JavaScript
libraries). Worklight was acquired by IBM in early 2012.

www.strobecorp.com
www.gotiggr.com
www.worklight.com

ptg8126969

23

PhoneGap
Development, Testing,

and Debugging

As mentioned in the previous chapter, a PhoneGap application can do anything
that can be coded in standard, everyday HTML, CSS, and JavaScript. There are
web applications and PhoneGap applications, and the distinction between them
can be minor or can be considerable. In this chapter, we’ll analyze the anatomy of
a PhoneGap application, identifying what makes an application a PhoneGap
application and then highlighting ways to make a PhoneGap application…better.

The following sections will highlight different versions of the requisite Hello-
World application found in every developer book, article, and training class. For
the purpose of highlighting aspects of the applications’ web content, rather than
how they were created, the steps required to create the applications are omitted.
Refer to the chapters that follow for specific information on how to create and test
PhoneGap projects for each of the supported mobile platforms.

Hello, World!
As with any developer book, we’re going to start with the default HelloWorld appli-
cation and then build upon it to highlight different aspects of a PhoneGap applica-
tion. The following HTML content describes a simple web page that displays some
text on a page.

2

ptg8126969

24 CHApter 2 pHonegAp development, testing, And debugging

HelloWorld1 Application

<!DOCTYPE HTML>
<html>
<head>
 <title>HelloWorld1</title>
</head>
<body>
 <h1>Hello World</h1>
 <p>This is a sample PhoneGap application</p>
</body>
</html>

If you package that page into a PhoneGap application and run it on a smartphone
or device emulator (in this case an Android emulator), you will see something
similar to what is shown in Figure 2-1.

Figure 2-1 HelloWorld1 application running on an Android emulator

This is technically a PhoneGap application because it’s a web application running
within the PhoneGap native application container. There is, however, nothing

ptg8126969

25pHonegAp initiAlizAtion

PhoneGap-ish about this application. It’s running in the PhoneGap native container,
but it isn’t leveraging any of the APIs provided by the PhoneGap framework.

Therefore, any web application can be built into a PhoneGap application; there’s
nothing forcing you to use the PhoneGap APIs. If you have a simple web applica-
tion that simply needs a way to be deployed through a smartphone app store, then
this is one way to accomplish that goal.

PhoneGap Initialization
Now let’s take the previous example application and add some PhoneGap-specific
stuff to it. The HelloWorld2 application listed next has been updated to include
code that recognizes when the PhoneGap application has completed initialization
and displays an alert dialog letting you know PhoneGap is ready.

HelloWorld2 Application

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0,
 user-scalable=no;" />
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>

 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready",onDeviceReady,
 false);
 }

 function onDeviceReady() {
 navigator.notification.alert("PhoneGap is ready!");
 }
 </script>

 </head>
 <body onload="onBodyLoad()">
 <h1>HelloWorld2</h1>
 <p>This is a sample PhoneGap application.</p>
 </body>
</html>

ptg8126969

26 CHApter 2 pHonegAp development, testing, And debugging

On the iPhone simulator, the application will display the screen shown in
Figure 2-2.

Figure 2-2 HelloWorld2 application running on an iOS simulator

Within the <Head> section of the web page are two new entries: meta tags that
describe the content type for the application and viewport settings.

The content-type setting is a standard HTML setting and should look the same
as it would for any other HTML 5 application.

The viewport settings tell the web browser rendering the content how much of the
available screen real estate should be used for the application and how to scale the
content on the screen. In this case, the HTML page is configured to use the maxi-
mum height and width of the screen (through the width=device-width
and height=device-height attributes) and to scale the content at 100% and
not allow the user to change that in any way (through the initial-scale=1.0,
maximum-scale=1.0, and user-scalable=no attributes).

ptg8126969

27pHonegAp initiAlizAtion

Note: The viewport and associated attributes are not required; if they’re omitted, the
browser will revert to its default behavior, which may result in the application’s con-
tent not consuming the full screen area available to it or zooming beyond it. Because
there’s not much content in the HelloWorld2 application, it could, for example, con-
sume only the upper half of the screen on some devices.

You may find that on some platforms the settings have no effect. On the BlackBerry
Torch simulator, the height and width attributes are respected; on the BlackBerry Storm
simulator, the application doesn’t consume the entire height of the screen no matter how
the attributes are set.

There’s also a new script tag in the code that loads the PhoneGap JavaScript
library:

<script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>

This loads the PhoneGap API library and makes the PhoneGap APIs available to
the program. In this example, and all of the examples throughout the rest of the
book, I’ll load the PhoneGap JavaScript library using this standard snippet of
code. In reality, the PhoneGap file being loaded by your application will include
version information in the file name. As I wrote the chapter, PhoneGap 1.0 had just
been released, so the code in reality looked like this when I wrote the application:

<script type="text/javascript" charset="utf-8"
 src="phonegap-1.0.0.js"></script>

As I wrote subsequent chapters, the PhoneGap team released three additional ver-
sions of the framework. Rather than have inconsistent PhoneGap JavaScript file
names in the book, I chose to just show phonegap.js as illustrated in the first
example. In reality, many of the example applications used throughout the book
were actually built using PhoneGap Build, which requires only the simple
phonegap.js reference (or no reference at all), which is then replaced with the
appropriate JavaScript file version PhoneGap Build is currently using.

Beginning with PhoneGap 1.5, the project team changed the name for the open
source project to Cordova and changed the JavaScript file (for most but not all of
the supported platforms) from phonegap.js to cordova.js. So, even though
you’re working with PhoneGap, the JavaScript file name no longer matches the
commercial name for the project.

JavaScript code in a PhoneGap application does not have immediate access to the
PhoneGap APIs after the web application has loaded. The native PhoneGap appli-
cation container must complete its initialization process before it can respond to
calls JavaScript made using the PhoneGap APIs. To accommodate this delay in

ptg8126969

28 CHApter 2 pHonegAp development, testing, And debugging

API availability, a web developer building PhoneGap applications must instruct
the container to notify the web application when the PhoneGap APIs are available.
Any application processing that requires the use of the APIs should be executed
by the application only after it has received its notification that the APIs are
available.

In the HelloWorld2 application, this notification is accomplished through the
addition of an onload event defined in the page’s body section, as shown here:

<body onload="onBodyLoad()">

Within the onBodyLoad function, the code registers an event listener that instructs
the application to call the onDeviceReady function when the device is ready, when
the PhoneGap application container has finished its initialization routines:

document.addEventListener("deviceready", onDeviceReady, false);
In this example application, the onDeviceReady function simply displays a
PhoneGap alert dialog (which is different from a JavaScript alert dialog), letting
the user know everything is OK:

navigator.notification.alert("PhoneGap is ready!")

In production applications, this function could update the user interface (UI) with
content created through API calls or do whatever other processing is required by
the application. You’ll see an example of this in the next sample application.

The PhoneGap Navigator

Many of the APIs implemented by PhoneGap are instantiated from the Navigator object.
Unfortunately, it’s not consistent; some do and some do not. Be sure to check the API
documentation before calling an API.

Leveraging PhoneGap APIs
Now that we know how to configure an application to wait until the PhoneGap
APIs are available, let’s build an application that actually uses the PhoneGap APIs
as shown in the following HelloWorld3 application.

ptg8126969

29leverAging pHonegAp Apis

HelloWorld3 Application

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0,
 user-scalable=no;" />
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>

 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //Get the appInfo DOM element
 var element = document.getElementById('appInfo');
 //replace it with specific information about the device
 //running the application
 element.innerHTML = 'PhoneGap (version ' +
 device.phonegap + ')
' + device.platform + ' ' +
 device.name + ' (version ' + device.version + ').';
 }
 </script>

 </head>
 <body onload="onBodyLoad()">
 <h1>HelloWorld3</h1>
 <p>This is a PhoneGap application that makes calls to the
 PhoneGap APIs.</p>
 <p id="appInfo">Waiting for PhoneGap Initialization to
 complete</p>
 </body>
</html>

Figure 2-3 shows a portion of the application’s screen when running on the Black-
Berry Torch 9800 simulator.

ptg8126969

30 CHApter 2 pHonegAp development, testing, And debugging

Figure 2-3 HelloWorld3 application running on a BlackBerry simulator

In this version of the HelloWorld application, the code in the onDeviceReady func-
tion has been updated so the program updates a portion of the application’s content
with an ID of appInfo with information about the device running the application
and the version of PhoneGap used to build the application. Device-specific infor-
mation is available via the PhoneGap device API (http://docs.phonegap.com/
phonegap_device_device.md.html), and this sample application uses only a subset
of the available methods in this API.

Figure 2-3 highlights one of the problems with the PhoneGap APIs: inconsistent
implementation of an API across different mobile device platforms. The call to the
device.platform API is supposed to return the name of the mobile device plat-
form the application is running on. In this case, the call should return “Black-
Berry,” but instead it returns “3.0.0.100” for some bizarre reason. For iOS devices,
the call returns “iPhone” when in reality it should be returning “iOS.” It’s impor-
tant to keep in mind that any function call might not return what you expect
depending on the mobile platform the application is running on. Be sure to test
your application on each platform you plan on supporting and make adjustments
to your code as needed to deal with inconsistencies with the PhoneGap APIs.
Expect the values returned by this property to change over time as well.

Enhancing the User Interface of a
PhoneGap Application

As you can see from the application examples highlighted so far, the PhoneGap
framework doesn’t do anything to enhance the UI of a PhoneGap application.
The framework provides access to device-specific features and applications and

http://docs.phonegap.com/phonegap_device_device.md.html
http://docs.phonegap.com/phonegap_device_device.md.html

ptg8126969

31enHAnCing tHe user interFACe oF A pHonegAp AppliCAtion

leaves it up to developers to theme their applications however they see fit. Web
developers should use the capabilities provided by HTML, CSS, and even Java-
Script to enhance the UI of their PhoneGap applications as needed; we’re not
going to cover mobile web UI design here.

As Android and iOS-based smartphones became more popular, web developers
found themselves needing to be able to build web applications that mimic the look
and feel of native applications on these mobile platforms. To accommodate this
need, many open source and commercial JavaScript mobile frameworks were cre-
ated to simplify this task such as jQuery Mobile (www.jquerymobile.com), Dojo
Mobile (www.dojotoolkit.org/features/mobile), and Sencha Touch (www.sencha
.com/products/touch).

Although not directly related to PhoneGap development, the use of these frame-
works is very common for PhoneGap applications, so it’s useful to highlight them
here. In this section, we’ll discuss how to enhance the UI of a PhoneGap applica-
tion using jQuery Mobile (jQM), an offshoot of the popular jQuery project. The
jQuery and jQM libraries work together to provide some pretty useful UI elements
and theming for any mobile web application.

Note: jQM currently supports most of the mobile platforms supported by PhoneGap.
As of this writing, the Samsung bada OS has not been tested but is expected to work,
and support has not yet been added for the Windows Phone OS.

In the following HelloWorld4 application, we’ll take the HelloWorld3 application
and apply an enhanced UI using the jQuery Mobile framework.

HelloWorld4 Application

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0,
 user-scalable=no;" />
 <link rel="stylesheet" href="jquery.mobile-1.0b3.css" />
 <script type="text/javascript" charset="utf-8"
 src="jquery-1.6.4.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="jquery.mobile-1.0b3.js"></script>
 <script type="text/javascript" charset="utf-8"

www.jquerymobile.com
www.dojotoolkit.org/features/mobile
www.sencha.com/products/touch
www.sencha.com/products/touch

ptg8126969

32 CHApter 2 pHonegAp development, testing, And debugging

 src="phonegap.js"></script>

 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //Get the appInfo DOM element
 var element = document.getElementById('appInfo');
 //replace it with specific information about the device
 //running the application
 element.innerHTML = 'PhoneGap (version ' +
 device.phonegap + ')
' + device.platform + ' ' +
 device.name + ' (version ' + device.version + ').';
 }
 </script>

 </head>
 <body onload="onBodyLoad()">
 <div data-role="page">
 <div data-role="header" data-position="fixed">
 <h1>HelloWorld4</h1>
 </div>
 <div data-role="content">
 <p>This is a PhoneGap application that makes calls to
 the PhoneGap APIs and uses the jQuery Mobile
 framework.</p>
 <p id="appInfo">Waiting for PhoneGap Initialization to
 complete</p>
 </div>
 <div data-role="footer" data-position="fixed">
 <h1>PhoneGap Essentials</h1>
 </div>
 </div>
 </body>
</html>

Figure 2-4 shows the application running on the Android simulator.

ptg8126969

33enHAnCing tHe user interFACe oF A pHonegAp AppliCAtion

Figure 2-4 HelloWorld4 application running on an Android emulator

Notice that the device.platform call is working correctly on the Android emula-
tor; in Figure 2-4, it lists “google_sdk” as the platform for the emulator.

Notice how jQM has a problem rendering the “PhoneGap Essentials” text in the
footer. Just so you can see how this looks on a different mobile platform, Fig-
ure 2-5 shows the exact same web content running within a PhoneGap application
on the BlackBerry Torch simulator. This isn’t an issue with PhoneGap but instead
is an issue related to available screen width and how jQM renders content leaving
space on the left and right for buttons (which aren’t used in this example).

ptg8126969

34 CHApter 2 pHonegAp development, testing, And debugging

Figure 2-5 HelloWorld4 application running on a BlackBerry simulator

In this version of the application, some additional resources have been added to
the page’s header:

<link rel="stylesheet" href="jquery.mobile-1.0b3.css" />
<script type="text/javascript" charset="utf-8"
 src="jquery-1.6.4.js"></script>
<script type="text/javascript" charset="utf-8"
 src="jquery.mobile-1.0b3.js"></script>

The first line points to a CSS file provided by the jQM framework. It contains the
style information used to render the iPhone-ish UI shown in the figure. Next come
references to the jQuery and jQuery Mobile JavaScript libraries that are used to
provide the customized UI plus add additional capabilities to the application. The
files referenced in the example application are the full versions of the CSS and
JavaScript files. These files are used during testing of the application and should
be replaced with the min versions of the files, as shown in the following code snip-
pet, before rolling the application into production.

<link rel="stylesheet" href="jquery.mobile-1.0b3.min.css" />
<script type="text/javascript" charset="utf-8"
 src="jquery-1.6.4.min.js"></script>
<script type="text/javascript" charset="utf-8"
 src="jquery.mobile-1.0b3.min.js"></script>

ptg8126969

35testing And debugging pHonegAp AppliCAtions

The min versions are compressed so comments, white space, line breaks, and so on,
are removed from the files. This allows the files to take up less space within the pack-
aged application, helping reduce the overall file size for the application, and allows
these resources to load more quickly when the user launches the application.

The body of the HTML page has been updated to include several HTML <div>
tags wrapped around the content for the application. These <div>s include a
data-role attribute that is used by jQM to define specific areas of the content
page that are then styled appropriately depending on which role is assigned.

In Figure 2-5, the content in the section of the page given the header data-role is
styled with a gradient background and forced to the top of the page by the
data-position="fixed" attribute. Similarly, the content in the section of the page
given the footer data-role is styled with a gradient background and forced to the
bottom of the page by the data-position="fixed" attribute. The page content
defined within the data-role="content" <div> will be rendered between the
header and footer, with the middle section scrollable as needed to display all of the
content within the section.

These examples only lightly cover the capabilities of jQM; there’s so much more
you can do with this framework to enhance the user experience within your
PhoneGap applications. Refer to the jQM online documentation or several of the
new books on jQM for additional information about the capabilities provided by
the framework.

Testing and Debugging PhoneGap Applications
Each of the mobile platforms supported by PhoneGap has a mechanism a devel-
oper can use to test and, in the unlikely event your code has bugs, debug PhoneGap
applications. In general, you can load a PhoneGap application into a device simu-
lator or emulator, provided as part of the mobile platform’s SDK, or you can load
an application onto a physical device. There are also third-party solutions you can
use to test your PhoneGap applications within a desktop browser interface.

Running a PhoneGap Application on a Device
Simulator or Emulator
Each smartphone operating system supported by PhoneGap has a device emulator
or simulator (E/S) provided by the originator of the OS. In some cases, what’s
provided is a generic emulator that simply mimics the capabilities of the specific
OS version, while for other mobile platforms there are simulators available that
mimic specific devices. Either way, there’s a software-only solution available

ptg8126969

36 CHApter 2 pHonegAp development, testing, And debugging

that developers can use to test PhoneGap applications in an almost real-world sce-
nario (I’ll explain “almost real-world” in the following section).

An E/S is typically included with the native development tools for each mobile
platform, but in some cases there are options that can be downloaded individually.
Research In Motion, for example, includes a set of simulators with each Black-
Berry Device Software version SDK but also provides individual downloads for
specific BlackBerry Device Software versions or for older devices that have soft-
ware updates available for them. Either way, there are likely options available for
each and every device or device OS you want to test your application on. The
chapters that follow provide detailed information on how to configure a develop-
ment environment for each of the mobile devices platforms supported by
PhoneGap. That’s where you will find instructions on how to test PhoneGap appli-
cations on the appropriate E/S for the target platform.

Running a PhoneGap Application on a Physical Device
While the device E/S is a great option for developer and system testing of a
PhoneGap application, final testing should always be performed on a physical
device. As good as these options are, there is always something that doesn’t work
quite right on a simulator or emulator.

To run a PhoneGap application on a physical device, you will create the PhoneGap
application first using the native SDK or package the application for platforms that
use a widget approach. Once you have a deployable application, you will connect
the device to your development computer via a Universal Serial Bus (USB) cable
and transfer the application to the mobile device using some component of the
native SDKs. The process varies depending on the mobile platform you are work-
ing with.

For iOS applications, for example, Apple requires a special provisioning process
for every iOS device on which you want to install your application. The process
requires membership in Apple’s developer program and involves the Xcode devel-
opment environment, Apple’s developer portal, a provisioning profile, and a phys-
ical device.

For Android and BlackBerry devices, the native SDK includes command-line util-
ities you can use to copy an application to a target device. There’s no special provi-
sioning process; you simply connect the device to the developer computer, issue
the command, and test away. In some cases, you can deploy to devices directly
from the Eclipse IDE. For Android devices, there are steps you must complete to
configure the device for testing applications. On BlackBerry, you’ll need to secure
a set of signing keys (they’re free at https://bdsc.webapps.blackberry.com/java/

https://bdsc.webapps.blackberry.com/java/documentation/ww_java_getting_started/Code_signing_1977871_11.html

ptg8126969

37testing And debugging pHonegAp AppliCAtions

documentation/ww_java_getting_started/Code_signing_1977871_11.html) and
sign the application before it will run on a physical device.

Regardless of the platform you use, digging into the details of on-device testing is
beyond the scope of this book. Please refer to the documentation for the appropri-
ate native SDK for additional information about how to test applications on physi-
cal devices.

Leveraging PhoneGap Debugging Capabilities
As mentioned earlier, there are two types of PhoneGap applications: PhoneGap
applications that consist of a web application packaged inside of a native applica-
tion container (for Android, BlackBerry, iOS, and Windows Phone) and PhoneGap
applications deployed simply as packaged web applications (on bada, Symbian,
and webOS).

For the mobile platforms where PhoneGap applications are simply packaged web
applications, the freely available native SDK typically includes support for debug-
ging web content running in a device emulator or simulator. In the chapters that
follow, you will find instructions on how to leverage native debugging tools for
these platforms when testing PhoneGap applications. You will, however, need to
refer to the native SDK documentation for detailed information on how to use
these tools.

The problem with the native application options for PhoneGap is that the native
tools designed to help developers debug applications for each platform are designed
to debug native applications; they have none or limited capabilities for debugging
web content that is packaged within native applications. The BlackBerry Web-
Works development tools originally supported the ability to debug web content
packaged within a BlackBerry WebWorks application (which is essentially what a
PhoneGap application is on BlackBerry). In 2011, RIM abandoned the Eclipse and
Visual Studio IDEs and switched to an entirely command-line-driven approach.

To help debug your PhoneGap applications, you can fill your code with calls to the
alert() function. This is what I have always called a poor man’s debugger, but it
works quite well for certain types of application debugging tasks. If you see an
event that’s not firing within your application or some variable that’s not being set
or read correctly, you can simply insert an alert that displays a relevant message
and use that to see what’s going on. There’s an example of this approach
in the HelloWorld2 application shown earlier with the use of PhoneGap’s
navigator.notification.alert("") function. In this case, I used the alert to
help debug what was happening in the onDeviceReady() function. It seemed to

https://bdsc.webapps.blackberry.com/java/documentation/ww_java_getting_started/Code_signing_1977871_11.html

ptg8126969

38 CHApter 2 pHonegAp development, testing, And debugging

be working on Android, but not BlackBerry, so I used the alert to help confirm my
suspicion and to help test different approaches as I attempted to fix the problem.

The problem with this approach is that when you fill your buggy code with alerts,
you’re constantly interrupting the application flow to dismiss the alerts as they
come up. For a simple problem, this approach works pretty well, but when debug-
ging more troublesome errors, you will need an approach that allows you to let the
application run and then analyze what is happening in real time or after the appli-
cation or a process within the application has completed, without interrupting the
application. PhoneGap applications can do this through the JavaScript console
object implemented by the WebKit browser rendering engine.

Using the console object, developers can write messages to the browser’s con-
sole, which can be viewed outside of the running program through capabilities
provided by the native SDKs or device simulators or emulators. The console
object has scope at the window level, so it’s essentially a global object accessible
by any JavaScript code within the application. WebKit supports several options;
the most common ones used are as follows:

•	 console.log("message");

•	 console.warn("message");

•	 console.error("message");

Example 2-1 shows a sample application that illustrates the use of this feature.

Example 2-1

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width,
 height=device-height, initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>

 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

ptg8126969

39testing And debugging pHonegAp AppliCAtions

 function onDeviceReady() {
 //Just writing some console messages
 console.warn("This is a warning message!");
 console.log("This is a log message!");
 console.error("And this is an error message!");
 }

 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Debug Example</h1>
 <p>Look at the console to see the messages the application
 has outputted</p>
 </body>
</html>

As you can see from the code, all the application has to do is call the appropriate
method and pass in the text of the message that is supposed to be written to the
console.

In some cases, the browser component executing your application’s web content
won’t throw an error if you try to do something that’s not supported in your Java-
Script code (calling a PhoneGap API function that doesn’t exist, for example,
because you’ve misspelled it). In this scenario, simply wrap the errant call in a
try/catch block so your application will have a chance to write its error to the
console, as shown in the following example:

try {
 console.log("Validating the meaning of life");
 somefunctioncall("42");
} catch (e) {
 console.error("Hmmm, not sure why this happened here: " +
 e.message);
}

Figure 2-6 shows the messages from Example 2-1 highlighted in the Xcode con-
sole window. This window is accessible while the program is running on an iOS
simulator, so you can debug applications in real time.

Figure 2-6 Viewing console messages in Xcode

ptg8126969

40 CHApter 2 pHonegAp development, testing, And debugging

When working with the BlackBerry simulator, you can access the logs by holding
down the simulator’s Alt key and typing lglg. The simulator will display the Event
Log, as shown in Figure 2-7.

Figure 2-7 BlackBerry Event Log application

When you open an Event Log entry, you can see the details behind the entry, as
shown in Figure 2-8. Press the keyboard’s n and p keys to navigate to the next and
previous entries in the log.

Figure 2-8 Viewing console messages on BlackBerry

ptg8126969

41testing And debugging pHonegAp AppliCAtions

Note: In my testing with the BlackBerry simulator, only the console.log mes-
sages appear within the Event Log application; the BlackBerry implementation of the
WebKit engine doesn’t seem to respond to console.warn and console.error
messages.

Within the BlackBerry Event Log application, you have the ability to clear the log,
filter what’s displayed in the log, and copy the contents of the log to the clipboard
so you can use them in another application or send them to yourself via email.
Additionally, when working with a physical device, you can connect the device to
your development system and use the BlackBerry Java Loader application
(javaloader.exe) to copy the logs from the device. Many of these options are
described in detail in my other mobile development book, BlackBerry® Develop-
ment Fundamentals (www.bbdevfundamentals.com).

The Android SDK includes utilities that allow a developer to monitor log activity,
while an application runs within an Android emulator. This functionality is pro-
vided by the LogCat utility, which is an integral part of the Eclipse plug-in but also
available through the command line or a stand-alone utility.

To open the LogCat window in Eclipse, open the Window menu, select Show
View, and then select Other. In the dialog that appears, expand the Android cate-
gory and select LogCat, as shown in Figure 2-9, and then click OK. Eclipse will
open a new pane in the messages area of the IDE, as shown in Figure 2-10.

Figure 2-9 Eclipse Show window dialog

www.bbdevfundamentals.com

ptg8126969

42 CHApter 2 pHonegAp development, testing, And debugging

Figure 2-10 Eclipse messages area

This pane will display all messages generated by the Android device emulator as
well as console messages written by your PhoneGap application; you can see the
three messages written by the sample application. Use the V (verbose), D (debug),
I (info), W (warning), and E (error) buttons at the top of the pane to filter the con-
tents of the pane as needed to allow you to more quickly locate the entries you are
looking for while debugging an application.

Google also offers a stand-alone utility called the Dalvik Debug Monitor Server
(DDMS) that you can use to monitor the Android emulator console when testing
PhoneGap applications outside of the Eclipse IDE. To launch the DDMS utility,
you must first launch an Android emulator. Once the emulator is running, open a
file explorer (Finder on Macintosh or Windows Explorer on Windows), navigate
to the Android SDK tools folder, and execute the DDMS utility located therein.
The file is called ddms.bat on Microsoft Windows and ddms on Macintosh.

When the utility launches, it will display a window similar to the one shown in
Figure 2-11. At the top of the utility are windows that show the different processes
running in the emulator on the left and a list of additional options on the right. The
lower half of the application’s window displays the same LogCat pane from the
Eclipse plug-in.

To access the LogCat content from the command line on Windows, open a com-
mand prompt, navigate to the Android SDK platform-tools folder, and issue the
following command:

adb logcat

On Macintosh, open a terminal window, navigate to the Android SDK platform-
tools folder, and issue the following command:

./adb logcat

ptg8126969

43testing And debugging pHonegAp AppliCAtions

Figure 2-11 Android DDMS application window

The adb utility will connect to the emulator and retrieve and display in real time
the contents of the logcat from the Android emulator, as shown in Figure 2-12.
In the figure, the three console messages generated by the application are
highlighted.

Figure 2-12 Viewing console messages on Android

Third-Party PhoneGap Debugging Tools
There’s a very active partner community supporting PhoneGap with additional
tools for PhoneGap developers. In this section, I’ll introduce several of the avail-
able tools that help developers test and debug PhoneGap applications. This is by

ptg8126969

44 CHApter 2 pHonegAp development, testing, And debugging

no means a complete list of options; refer to the PhoneGap wiki (http://wiki
.phonegap.com) for information on additional tools that might be available.

Ripple Mobile Environment Emulator
When developing a PhoneGap application, it’s quite time-consuming to build the
application and load it into a simulator or emulator for testing. The Ripple Mobile
Environment Emulator (RMEE) is a freely available tool that helps alleviate this
problem by providing a desktop browser–based interface you can use to test your
PhoneGap applications. The RMEE emulates the execution of the PhoneGap APIs
within the browser container. You should use the emulator for quick testing of
PhoneGap application features during development and then switch to packaging/
building PhoneGap applications and testing them on actual devices or device emu-
lators or simulators for more thorough testing. The RMEE is not designed to
replace testing on real devices, device simulators, or device emulators.

RIM and the Ripple Emulator

Tiny Hippos, the company that produced of the Ripple Mobile Environment Emulator,
was recently purchased by RIM and is expected to become the default way to test
BlackBerry WebWorks applications. The emulator has supported PhoneGap for quite a
while and is expected to continue to support the project under RIM’s ownership.

The RMEE is implemented as an extension to the Google Chrome browser, so
before you can start using the emulator, you must first install the latest version of
Chrome from www.google.com/chrome. Once you have Chrome up and running,
launch the browser and navigate to http://ripple.tinyhippos.com. From the Tiny
Hippos home page, click the Get Ripple link, and follow the prompts to install the
latest version of the emulator.

Before you can start emulating PhoneGap within the RMEE, you must first con-
figure the browser to allow the emulator access to files on the local file system.
Open the Chrome browser, right-click the Ripple icon to the right of the browser’s
address bar, and select Manage extensions. The browser will display a page simi-
lar to the one shown in Figure 2-13. Enable the “Allow access to file URLs” option
for the RMEE as shown in the figure and then close the page by clicking the X to
the right of the Extensions tab.

http://wiki.phonegap.com
http://wiki.phonegap.com
www.google.com/chrome
http://ripple.tinyhippos.com

ptg8126969

45testing And debugging pHonegAp AppliCAtions

Figure 2-13 Configuring the Ripple Emulator in Google Chrome

Once the browser has been configured, open your application’s index.html file in
the browser. You can press Ctrl+O on Windows or Command+O on Macintosh to
open the File Open dialog. Once the page has loaded, you need to enable Ripple
for the selected page. To do this, complete one of the following options:

•	 Click the Ripple icon to the right of the browser’s address bar to open a
window, allowing you to enable Ripple for the loaded page.

•	 Right-click the page, open the Emulator menu, and then select Enable.

•	 Append ?enableripple=true to the file URL to enable Ripple directly
within the address bar when loading an application’s index.html file.

Once the RMEE is enabled for the loaded page, the browser will display a page,
shown in Figure 2-14, that prompts you to identify which type of emulation you
want to enable for this page. As you can see, the RMEE supports PhoneGap plus
several other platforms and frameworks. Click the PhoneGap button to continue.

Figure 2-14 Enabling PhoneGap emulation in the Ripple emulator

ptg8126969

46 CHApter 2 pHonegAp development, testing, And debugging

At this point, the RMEE will display a page with the content from the index.html
file rendered within the boundaries of a simulated smartphone screen, as shown in
Figure 2-15. Wrapped around the simulated smartphone are properties panes that
can be used to configure options and status for the simulated smartphone such as
simulated device screen resolution, accelerometer, network, geolocation, and more.

Figure 2-15 PhoneGap application running in the Ripple emulator

You can click each of the tabs to expand the options for the tab and make changes
to the simulated device’s configuration. At this point, you would simply click
around within the simulated smartphone screen and interact with the options pre-
sented within your application. When you find a problem or a change you want to
make within the PhoneGap application, simply return to your HTML editor, make
the necessary changes, write the changes to disk, and then reload the page in the
Chrome browser to continue with testing.

Weinre
Web Inspector Remote (Weinre) is a community-built remote debugger for web
pages. It has been donated to the PhoneGap project and is currently implemented
as part of the PhoneGap Build service. You can find the download files and instruc-
tions at http://phonegap.github.com/weinre. Weinre consists of a debug server,
debug client, and debug target. The debug server runs on Macintosh or Windows,
and the debug client runs in any compatible desktop browser.

http://phonegap.github.com/weinre

ptg8126969

47testing And debugging pHonegAp AppliCAtions

For PhoneGap development, it allows a developer to debug a web application on
physical device or a device emulator or simulator. To configure Weinre, perform
the following steps:

1. Install a debug server on a desktop computer.

2. Launch the debug server.

3. Windows only: Point a compatible desktop browser at the debug server.

4. Connect the remote web application to the server.

The server component of Weinre consists of a stand-alone Macintosh executable
or a Java JAR file for Windows. On Macintosh, load the debug server by double-
clicking the application’s executable in Finder. The debug server and debug client
are packaged together in the same application, so there are no additional steps
needed to launch the debug client.

On Windows, the debug server consists of a single JAR file that, assuming Java is
on the Windows Path, can be loaded using the following command:

java -jar path/to/weinre.jar

There are additional command-line options that can be passed to the JAR file
while it’s loading to allow you to configure the host address the server will respond
to, the server port number, and more. Refer to the Weinre documentation for addi-
tional information about the available command-line options. When the server
starts, it will display a message indicating the URL to use to start the debug client;
by default it should be http://localhost:8080. Point a compatible WebKit-based
browser at the server to open the debug client.

To connect the PhoneGap application to the debug server, add the following
<script> tag to the <body> section of the application’s index.html file,

<script src="http://debug_server:8080/target/
 target-script-min.js"></script>

replacing the debug_server portion of the URL with the correct host name or IP
address for the debug server. This provides the code needed for the PhoneGap
application to upload information to the debug server. The Android emulator does
not have the ability to connect to host-side resources using an IP address, so for the
Android emulator, you must use the host address http://10.0.2.2, as shown in the
following example:

<script src="http://10.0.2.2:8080/target/
 target-script-min.js"></script>

ptg8126969

48 CHApter 2 pHonegAp development, testing, And debugging

Note: Be sure to remove the Weinre <script> tag from your PhoneGap application
before releasing it into production. The application will likely hang if attempting to
connect to debug server that isn’t available.

Figure 2-16 shows the debug server running on a Macintosh. On the bottom of the
window are tabs that control the server while the toolbar on the top of the window
contain options for the remote debugger client.

Figure 2-16 Weinre server/debug client on a Macintosh

The debug client provides the means to view and optionally manipulate many of
the page elements and other aspects of your application’s web content. You can
view the browser console, as shown in Figure 2-17, to see console messages writ-
ten by the PhoneGap application, or you can change application values or proper-
ties to tweak the application while it’s running.

The available documentation for Weinre is pretty light, but since the project’s
capabilities are based upon the Google Chrome Developer Tools, you can find
additional information on the Google Code web site at http://code.google.com/
chrome/devtools/docs/overview.html.

http://code.google.com/chrome/devtools/docs/overview.html
http://code.google.com/chrome/devtools/docs/overview.html

ptg8126969

49deAling witH Cross-plAtForm development issues

Figure 2-17 Weinre debug client console

Dealing with Cross-Platform Development Issues
As interesting as all of these PhoneGap capabilities are, there are a lot of issues
that make cross-platform development tasks difficult. The PhoneGap project is
supported by developers from all over the world, including developers who may
have experience with only one or a small number of mobile platforms and devel-
opers who have a strong opinion about how something should be done. The prob-
lem with this is that when you take development projects written by different
people and try to collect them into a single framework, you can bump up against
inconsistencies. Add to this that every mobile platform supported by PhoneGap is
different and has different ways of doing things, and you have a difficult task to
make everything work cleanly and seamlessly.

Note: To the PhoneGap project’s credit, things move pretty quickly, and the issues
I’m complaining about here could very well be fixed in any subsequent release of the
framework. Be sure to check the latest documentation before working around any of
the issues listed in the sections that follow.

Let’s look at some examples.

ptg8126969

50 CHApter 2 pHonegAp development, testing, And debugging

API Consistency
Figure 2-18 shows the supported feature matrix from the PhoneGap web site; you
can find the page at www.phonegap.com/about/features. As you can see, the table
is pretty complete; there are some gaps, but it’s more full than empty. On the other
hand, since PhoneGap is supposed to be a cross-platform framework, the gaps in
this table make it very hard to truly create a cross-platform application using those
APIs. If a particular feature you want to use in your application is supported on
only some mobile platforms, then you’ll have to make special accommodation
within your application for platforms that do not support the particular API.

Figure 2-18 PhoneGap-supported feature matrix

www.phonegap.com/about/features

ptg8126969

51deAling witH Cross-plAtForm development issues

Another problem arises when you look through the API documentation found at
http://docs.phonegap.com/. For most of the PhoneGap APIs, the documentation
lists that the APIs are supported only on Android, BlackBerry, and iOS devices.
It’s likely the issue here is that the PhoneGap developers are like most developers
and don’t like to write (or update) documentation; the impact on you is huge. Do
you rely upon the API documentation? Do you instead ignore the documentation
and use feature matrix as the correct reference? Or do you cover your bases and
assume it is all wrong and test everything?

No matter what, this can be quite a challenge; ideally the PhoneGap project team
will get more organized and make sure all of the documentation is up-to-date as
each new version is released.

Multiple PhoneGap JavaScript Files
One of the first issues I bumped up against when learning to do cross-platform
PhoneGap development was that the PhoneGap JavaScript library is different
between mobile platforms. So, the JavaScript code within the PhoneGap Java Script
file for BlackBerry projects is different from what is found in the PhoneGap Java-
Script file for Android projects. My original thought when I started was that I could
just copy the web content folder between projects, build the application, and be
done, but since each platform’s JavaScript file is different, I would have to copy
over the web content and then also make sure the correct PhoneGap JavaScript file
was in the folder as well.

To make things work, with earlier versions of the PhoneGap framework, the
BlackBerry and bada PhoneGap JavaScript libraries had different file names than
on other platforms. This has supposedly been fixed, but you better check to make
sure when building applications.

Web Content Folder Structure
As you will see in the chapters that follow, in some cases, some PhoneGap project
developers have created nonstandard project folder structures for PhoneGap proj-
ects. For example, for a typical Symbian project (described in Chapter 7), the
application’s web content files would normally be placed in the root of the proj-
ect’s folder structure. The HTML, JavaScript, and CSS files should be placed right
at the top of the folder hierarchy, so they can be easily accessed when working
with the project. For some bizarre reason, the PhoneGap project places the files in
a framework/www folder, complicating the project’s folder structure and making it
more difficult to get to the application’s content files.

http://docs.phonegap.com/

ptg8126969

52 CHApter 2 pHonegAp development, testing, And debugging

Application Requirements
One of the things you might bump into as you build cross-platform PhoneGap
applications is the need to supply additional files in your application to accommo-
date the requirements for a particular OS version. For example, in the default
PhoneGap project for iOS, you will find the following note:

<!-- If your application is targeting iOS BEFORE 4.0 you MUST
put json2.js from http://www.JSON.org/json2.js into your www
directory and include it here -->

Apparently a feature was added in PhoneGap 0.9 that requires the use of the
JSON.stringify() function, so you will have to make sure you include the appro-
priate JSON library in your application. This further complicates a developer’s
ability to use an application’s web content across multiple device platforms since
an iOS application in this example might have additional lines of code needed to
support this iOS-specific feature.

Application Navigation and UI
Mobile device platforms typically share some common elements but at the same
time implement unique features or capabilities that help set them apart from com-
petitors. The Android and iOS operating systems support many of the same fea-
tures but sometimes implement them in a different way. Because of this, any
mobile application designed to run on different mobile operating systems must
take into consideration the differences between mobile platforms.

As you build PhoneGap applications for multiple mobile device platforms, you
will need to implement different UI capabilities on different operating systems.
On the Android and BlackBerry platforms, there’s a physical Escape button that
can be pressed to return to a previous screen; on iOS, there will need to be a back
button added to the bar at the top of the application screen.

Because of this, a PhoneGap application will need to either contain additional
code that checks to see what platform it’s running on and update the UI accord-
ingly or it will need to have different versions of the application’s web content
depending on which OS the application is running on. Neither approach is easy.
There are several books on mobile web development available that deal directly
with these types of issues.

ptg8126969

53deAling witH Cross-plAtForm development issues

Application Icons
Each mobile platform and often different versions of a particular device OS have
different requirements for application icons. A developer building PhoneGap appli-
cations for multiple device platforms will need to be prepared to create a suite of
icons for their application that addresses the specific requirements for each target
device platform and/or device OS. The PhoneGap project maintains a wiki page
listing the icon requirements for the different supported operating systems at http://
wiki.phonegap.com/w/page/36905973/Icons%20and%20Splash%20Screens.

Additionally, for some devices on some carriers (older BlackBerry devices, for
example), the mobile carrier applies a specific theming to the OS in order to help
distinguish themselves in the market. Any application icon designed for one of
these devices will need to accommodate, as best as possible, rendering pleasantly
within different themes.

http://wiki.phonegap.com/w/page/36905973/Icons%20and%20Splash%20Screens
http://wiki.phonegap.com/w/page/36905973/Icons%20and%20Splash%20Screens

ptg8126969

This page intentionally left blank

ptg8126969

Part II
PhoneGap

Developer Tools

This part of the book provides complete instructions on how to set up a develop-
ment environment for each of the mobile platforms supported by PhoneGap. Once
you have the tools set up, each chapter will describe how to create, build, and test a
PhoneGap application for each platform.

ptg8126969

This page intentionally left blank

ptg8126969

57

Configuring an
Android Development

Environment for
PhoneGap

There are several options for PhoneGap development on Android; the tools run
on Linux, Apple Macintosh OS, and Microsoft Windows. Additionally, develop-
ers have access to both an Eclipse plug-in as well as command-line tools for build-
ing applications. This chapter includes the steps to follow to install and use the
Android development tools on Macintosh OS and Windows.

Refer to the Android Developer web site (http://developer.android.com) for addi-
tional or more up-to-date installation instructions including instructions for instal-
lation on a system running Linux.

To complete the steps outlined in this chapter, you must first perform several
installation steps using instructions provided elsewhere in the book:

1. Install the PhoneGap framework using the instructions provided in
Appendix A.

2. Install the Oracle Java Developer Kit (JDK) using the instructions pro-
vided in Appendix B.

3. If you are intending to use the command line to build Android applica-
tions, install Apache Ant using instructions provided in Appendix C.

3

http://developer.android.com

ptg8126969

58 CHApter 3 ConFiguring An Android development environment For pHonegAp

Once those steps have been completed, you’re ready to start work on PhoneGap
applications for Android.

Installing the Android SDK
The Android SDK is deployed in two parts. First, you install the SDK starter pack-
age on the local system; second, SDK components are added to the existing instal-
lation via download from the Android developer web site. The starter package
contains utility programs used to manage the Android software development envi-
ronment on the computer and the individual Android version SDKs are installed as
needed. This allows for a single installation on a developer workstation, and then
needed software updates (including adding additional SDKs) are performed on
the fly via software download.

To download the started package, point your browser of choice to http://developer
.android.com. On the landing page, click the Download link highlighted in
Figure 3-1.

Figure 3-1 Android developer web site landing page

http://developer.android.com
http://developer.android.com

ptg8126969

59SDK

On the page that opens, shown in Figure 3-2, select the appropriate download for
the operating system running on the computer.

Figure 3-2 Android SDK download options

For Windows users, use the recommended option and download the Windows exe-
cutable. Once the file has downloaded, launch the downloaded file to begin the
installation. Using this option installs the software and places the appropriate
shortcuts for running the Android tools onto the Windows Start menu.

Windows Installation Issues

You must pay attention to several issues related to the Android SDK Starter Package
installation on Windows when installing the software.

Early versions of the Android SDK installed its files in the root of the system’s hard
drive. For some reason, Google changed its approach, and more recent SDK
versions have installed its files in the Windows Program Files folder. While this is a
good thing, conforming to Windows standards, there have been many bugs
reported when the files are installed in that location. Google is aware of the
problems and is working on fixing them, but I recommend you don’t allow the
installer to install in the Program Files folder; instead, install the files off of the root
of the system’s hard drive (c:\android-sdk\, for example).

On Windows, the installer sometimes has difficulty locating the required JDK
installed on the system (described in Appendix B). When this happens, just click
the Back button, and then click Next again in the installation wizard. The installer is
usually able to find the JDK if you give it another chance. Repeat the process as
many times as necessary depending on your experience with the installer.

ptg8126969

60 CHApter 3 ConFiguring An Android development environment For pHonegAp

For Macintosh computers, download the Macintosh version of the SDK to your
system’s downloads folder. The Macintosh OS may automatically extract the files
within the folder; if not, manually extract the files to the location of your choice.
You can either execute the tools from the downloads folder or open Finder and
drag the Android SDK folder to the Applications folder or another folder of your
choice.

When the installation is complete, launch the Android SDK Manager (the file is
called Android SDK.exe on Windows and android on Mac OS). When the pro-
gram launches, it will connect to the Android developer web site and retrieve the
list of SDK packages available for download. Each package refers to a specific
version of the Android operating system. You can select only the packages you
need based upon the OS versions you know you will be developing for, or you can
just accept the default of all packages and click the Install Selected button to begin
the installation, as shown in Figure 3-3.

Figure 3-3 Selecting Android SDK packages for installation

A lot of files are associated with each SDK package, so the process of download-
ing and installing the packages will take a very long time. Make sure you’re on a
fast network connection before starting the installation and have other work you
can do while you wait for the download and installation to complete. When the
package installation completes, you may be prompted to restart the Android SDK
Manager before continuing.

ptg8126969

61SDK

In the next step, you’ll need to create an Android Virtual Device (AVD) to use for
your testing of PhoneGap applications. The AVD is an Android device emulator
representing a standard Android device. Click the “Virtual devices” option in the
Android SDK and AVD Manager, as shown in Figure 3-4.

Figure 3-4 Android Virtual Devices view

Click the New button, and you will see a dialog similar to the one shown in Fig-
ure 3-5. In the dialog, give the AVD a name and select the options appropriate for
your Android application development needs; then click the Create AVD button.

Most modern smartphones (excluding Apple iOS) include a certain amount of
device memory plus provide the means to add memory through an extra memory
card (typically a Micro SD card). More sophisticated mobile applications will
make use of both types of memory, using device memory for transient values and a
memory card for storing ancillary files or larger data sets or databases. It’s likely
that in your PhoneGap development efforts you’ll someday need to write and read
data from a memory card, so when you’re setting up your Android AVD, be sure to
allocate some space for an SD card as shown in the figure. The file option points
the emulator to a local file on the development workstation, which allows you
share the contents of a simulated SD card between emulators.

The Skin option is used to define the size of the emulated Android device. Keep in
mind when making a selection here that the emulator can take up quite a large

ptg8126969

62 CHApter 3 ConFiguring An Android development environment For pHonegAp

amount of screen real estate, so if you are working on a developer workstation
with a smaller monitor, you may want to select a smaller skin so the emulator
doesn’t exceed the boundaries of the screen.

Figure 3-5 Create new Android Virtual Device (AVD) dialog

As shown in Figure 3-6, the AVD manager allows you to define many different
Android emulator configurations, which allow you to more easily text your
PhoneGap applications using different predefined configurations.

To launch an emulator, select the emulator definition in the AVD Manager and
click the Start button. The AVD manager will display a dialog allowing you to
change some emulator settings before launching, such as scaling the emulator on
the screen, wiping emulator memory, or launching from a particular snapshot.
Click the Launch button to start the emulator.

On many systems, the emulator will take a very long time to start, so be patient.
When the emulator launches, it will display a screen similar to the one shown in
Figure 3-7. There will be an image of an Android smartphone screen on one side
and a keyboard with additional simulator control options on the other side.

ptg8126969

63SDK

Figure 3-6 Android AVD Manager with an Android emulator defined

Figure 3-7 An Android emulator all ready to go

ptg8126969

64 CHApter 3 ConFiguring An Android development environment For pHonegAp

At this point, you would interact with the emulator just like you would a regular
device—swiping and clicking, launching applications, and more.

Eclipse Development Environment Configuration
Google provides an Eclipse plug-in that simplifies the development of Android
applications. Eclipse (www.eclipse.org) is a free, popular, open source integrated
development environment (IDE) that’s used primarily for Java and web develop-
ment but supports many other options as well. There are several editions of Eclipse,
each addressing a particular type of development or a particular suite of tools.

Google’s tools support multiple editions of Eclipse and currently (although sub-
ject to change) support Eclipse 3.5 (Galileo) or greater. Since PhoneGap projects
consist of both native and web technologies, I recommend installing the Eclipse
IDE for Java EE Developers, which includes the Java development tools needed
for Android development and the appropriate web content editors needed for
PhoneGap web application development.

Applaud Eclipse Plug-In

In case you’re interested, Mobile Developer Solutions (www.mobiledevelopersolutions
.com) offers a free Eclipse plug-in called Applaud that helps simplify PhoneGap
development for Android devices.

Point your browser of choice to www.eclipse.org/downloads/, and select the
appropriate download for your developer workstation. Figure 3-8 shows a subset
of options for Windows computers, the page should automatically detect Macin-
tosh or Linux computers and display the appropriate options for the current OS. If
not, simply select the OS from the drop-down list at the top of the download list to
change to an appropriate list of downloads.

Be sure to select the appropriate download bit-depth for the operating system you
are running. For example, select the 32-bit version of the download if your devel-
opment system is running a 32-bit OS, even if the system processor is 64-bit.

Once the Eclipse files have been downloaded, extract the downloaded files to the
appropriate folder (your choice, as appropriate for the target OS) on your system’s
hard drive and create the appropriate application shortcut needed to launch the
Eclipse executable (eclipse.exe for Windows and eclipse for Macintosh OS).

www.eclipse.org
www.mobiledevelopersolutions.com
www.mobiledevelopersolutions.com
www.eclipse.org/downloads/

ptg8126969

65eClipse development environment ConFigurAtion

Figure 3-8 Eclipse download page

Note: Later versions of Microsoft Windows (Windows Vista and Windows 7) have
implemented a security structure that by default removes a user’s ability to modify
the contents of the Windows Program Files folder. If you attempt to extract the
Eclipse files to the Program Files folder and receive an error, just extract the files
to the download folder and then copy the extracted eclipse folder to the Program
Files folder afterward.

Next you’ll need to install the Eclipse plug-in for Android development. Launch
Eclipse and open the Eclipse Workbench. Open the Help menu, and then select
Install New Software. Eclipse will display an installation wizard similar to the
one shown in Figure 3-9, although the wizard page initially displayed will not
have any of the data shown in the figure. Populate the “Work with” field with
https://dl-ssl.google.com/android/eclipse/ and press Enter. Eclipse will connect
to the Android software downloads site (represented by the URL you entered)
and download information about the available options. If you encounter a prob-
lem doing this, make sure you used an https instead of http when typing in the
server URL.

When the list of options appears in the dialog, place a check next to the Developer
Tools option (which will accept all options) and click the Next button. Follow
through the remaining options in the installation wizard including accepting the
Android license agreement to complete the installation. During installation,
Eclipse will prompt you to trust the software you are installing and will ask to
restart Eclipse at the end of the installation process.

https://dl-ssl.google.com/android/eclipse/

ptg8126969

66 CHApter 3 ConFiguring An Android development environment For pHonegAp

Figure 3-9 Adding the Android Developer Tools to Eclipse

When Eclipse restarts, open the Window menu, and then select Preferences. In the
dialog that appears, select the Android option and Eclipse will display a blank list
of Android SDK targets. In the dialog, click the Browse button, navigate to the
folder where you installed the Android SDK earlier in the chapter, and then click
the OK button. Once the Android SDK location has been set, click the Apply but-
ton, and Eclipse will refresh the list of the Android SDK versions available at the
specified location. At this point, your Android configuration in Eclipse should
look like Figure 3-10.

Creating an Android PhoneGap Project
For building PhoneGap applications for Android, two options are available to you.
You can build the application using Eclipse, or you can use the Android command-
line tools and your web content editor of choice. In this section, I’ll show how to
create a new Android PhoneGap project for each method.

ptg8126969

67CreAting An Android pHonegAp proJeCt

Figure 3-10 Configuring Android SDK settings in Eclipse

New Eclipse Project
To create a new Android PhoneGap project using Eclipse, open the Eclipse IDE,
open the File menu, and select New and then Project. Eclipse will present a wizard
similar to the one shown in Figure 3-11. Expand the Android option, select
Android Project, and click the Next button. If an option for Android projects does
not appear in this wizard, the Android plug-in for Eclipse (installed earlier in the
chapter) must not have installed correctly.

Eclipse will then prompt for the Android-specific settings for the project, as shown
in Figure 3-12. You will need to provide a name for the project, HelloWorld in the
example shown, plus select the Android SDK build target for the application.

Warning: Although the dialog is presenting what appears to be a list of checkboxes,
implying that you can select more than one option in the list, the checkboxes actually
work like radio buttons and will allow you to select only one option.

You will also need to scroll down in the dialog shown in Figure 3-12 and provide a
package name for your application (such as com.phonegapbook.helloworld). Set
other project options as needed, and then click the Finish button to create the project.

ptg8126969

68 CHApter 3 ConFiguring An Android development environment For pHonegAp

Figure 3-11 Eclipse’s New Wizard: selecting project type

Figure 3-12 Eclipse’s New Wizard: defining Android project options

ptg8126969

69CreAting An Android pHonegAp proJeCt

The first thing you have to do is create two new folders in the project folder struc-
ture: libs and assets/www. The folders must be placed in the root directory of the
project folder. To create the folders, right-click the HelloWorld project in the
Eclipse Package Explorer (on the far left side of the Eclipse window shown in Fig-
ure 3-13). From the menu that appears, select New and then Folder. When
prompted, enter libs into the New Folder dialog and click Finish.

Figure 3-13 A new PhoneGap project in Eclipse

Repeat the same process for the second folder, entering assets/www in the New
Folder dialog. For this one, Eclipse will create two nested folders; it will first create
a folder called assets and then create a folder called www within the assets folder.

Next, we have some files and folders to copy from the PhoneGap software instal-
lation’s Android folder. First close the Eclipse IDE, and then from the file sys-
tem (Finder on Macintosh or Windows Explorer for Windows) perform the
following steps:

1. Copy the phonegap.js file to the project’s assets/www folder. The file will
be named phonegap-x.y.0.js where x refers to the major version number
and y is the minor version number. Example: phonegap-1.3.0.js.

ptg8126969

70 CHApter 3 ConFiguring An Android development environment For pHonegAp

2. Copy the phonegap.jar file to the libs folder. The file will be named
phonegap-x.y.0.jar where x refers to the major version number and y is
the minor version number. Example: phonegap-1.3.0.jar.

3. Copy the entire xml folder to the res folder (created by the Android
plug-in when the project was first created).

Once all of the files have been copied to the project, it’s time to modify the proj-
ect’s source files and convert the Android Java project into a PhoneGap project. In
the Eclipse Package Explorer, expand the HelloWorld project, expand the src
folder, and then double-click the HelloWorldActivity.java file. Eclipse will
open the project’s Java source file in the editor (as shown in Figure 3-13). Make
the following changes to the Java source file:

1. Remove the android.app.Activity import. Since the project is no
longer a standard Android activity, it’s no longer needed.

2. Add an import for com.phonegap.*. This provides the application with
access to the PhoneGap library functions in the phonegap.jar file you
copied over earlier.

3. Change the HelloWorldActivity class so that it extends from DroidGap
instead of Activity. This essentially changes the project from an Android
activity to a PhoneGap project.

4. Replace the setContentView(R.layout.main) with super.loadUrl
("file:///android_asset/www/index.html"). This instructs the
program to load the application’s startup HTML file when the application
launches.

When you complete the changes, the Java source file should match the following:

package com.phonegapbook.helloworld;

import android.os.Bundle;
import com.phonegap.*;

public class HelloWorldActivity extends DroidGap {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 super.loadUrl("file:///android_asset/www/index.html");
 }
}

ptg8126969

71CreAting An Android pHonegAp proJeCt

Tip: When you save the project, Eclipse may complain that it doesn’t recognize the
code you’ve entered. This is because Eclipse can’t locate the phonegap.jar file you
copied to the project folder. If this happens, in the Eclipse Package Explorer, right-
click the libs folder and select Build Paths and then Configure Build Paths. In the
dialog that appears, select the Libraries tab, and then add the .jar file to the project.

Once the Java source file is configured correctly, you will need to update the
project’s manifest file. In the Eclipse Package Explorer, right-click the
AndroidManifest.xml file, select Open With, and then select Text Editor.

Paste the following permissions XML into the manifest file immediately follow-
ing the <manifest /> entry:

<supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:resizeable="true"
 android:anyDensity="true"
/>
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission android:name=
 "android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name=
 "android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name=
 "android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
<uses-permission android:name=
 "android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name=
 "android.permission.RECEIVE_SMS" />
<uses-permission android:name=
 "android.permission.RECORD_AUDIO" />
<uses-permission android:name=
 "android.permission.MODIFY_AUDIO_SETTINGS" />
<uses-permission android:name=
 "android.permission.READ_CONTACTS" />
<uses-permission android:name=
 "android.permission.WRITE_CONTACTS" />
<uses-permission android:name=
 "android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name=
 "android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name=
 "android.permission.GET_ACCOUNTS" />

ptg8126969

72 CHApter 3 ConFiguring An Android development environment For pHonegAp

The <supports-screens /> entry tells the Android virtual machine which screen
properties are supported by the application. Since we’re building a web applica-
tion that will scale according to the available screen real estate, we’re telling
Android which options are supported. For tablet applications, you could also add
the following to the list of options:

android:xlargeScreens="true"

Next, add the following to the first <Activity /> tag in the manifest file:

android:configChanges="orientation|keyboardHidden"

This tells the Android device running the application that the application will
automatically handle orientation changes or when the user hides the keyboard.

Then add a second activity to the manifest using the following XML:

<activity android:name="com.phonegap.DroidGap"
 android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden">
 <intent-filter></intent-filter>
</activity>

When completed, the manifest should match the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 http://schemas.android.com/apk/res/android
 package="com.phonegapbook.helloworld"
 android:versionCode="1" android:versionName="1.0">

 <supports-screens android:largeScreens="true"
 android:normalScreens="true" android:smallScreens="true"
 android:resizeable="true" android:anyDensity="true" />
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.VIBRATE" />
 <uses-permission android:name=
 "android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name=
 "android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission android:name=
 "android.permission.READ_PHONE_STATE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name=
 "android.permission.RECEIVE_SMS" />
 <uses-permission android:name=
 "android.permission.RECORD_AUDIO" />

ptg8126969

73CreAting An Android pHonegAp proJeCt

 <uses-permission android:name=
 "android.permission.MODIFY_AUDIO_SETTINGS" />
 <uses-permission android:name=
 "android.permission.READ_CONTACTS" />
 <uses-permission android:name=
 "android.permission.WRITE_CONTACTS" />
 <uses-permission android:name=
 "android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name=
 "android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name=
 "android.permission.GET_ACCOUNTS" />
 <uses-sdk android:minSdkVersion="8" />
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".HelloWorldActivity"
 android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="com.phonegap.DroidGap"
 android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden">
 <intent-filter>
 </intent-filter>
 </activity>
 </application>
</manifest>

Depending on the nature of your development project, you will likely want to
change the android:minSDKVersion element to reflect the minimum SDK ver-
sion required for the application:

<uses-sdk android:minSdkVersion="8" />

Save the changes, exit the text editor, and return to Eclipse.

The final step is to create the index.html file that will be the main interface for the
PhoneGap application. In Eclipse, right-click the www folder in the Package
Explorer and select New and then File. In the New File dialog, enter index.html as
the file name, and then click Finish. Double-click the newly created file, and
Eclipse will load the file into the HTML editor window. Paste in the HTML from
the HelloWorld3 application from Chapter 2.

ptg8126969

74 CHApter 3 ConFiguring An Android development environment For pHonegAp

Save your changes, and select Run from the Eclipse Run menu. Eclipse will launch
the default Android emulator you have defined and start the application. When it
loads, you should see a screen similar to what is shown in Figure 3-14.

Figure 3-14 Android HelloWorld application running in the emulator

Using Command-Line Tools
For developers who want to do Android development using a different editor than
Eclipse or just prefer to use command-line tools, you can manage Android proj-
ects directly from the command line. The information provided in this section cov-
ers this topic at a high level; you can find additional details on the build process at
the Android Developer web site (http://developer.android.com).

http://developer.android.com

ptg8126969

75CreAting An Android pHonegAp proJeCt

To create a new Android application project, open a terminal window (Macintosh)
or command prompt (Windows), navigate to the Android SDK tools folder, and
then issue the following command:

android create project --target 14 --name HelloWorld --path
 c:\dev\HelloWorld --activity HelloWorldActivity
 --package com.phonegapbook.helloworld

The Android tools will create an Android project folder structure at the specified
location and create the necessary source and configuration files for the project.
Figure 3-15 shows a sample of the output from the process.

Launching Unix Applications from the Command Line

When launching applications from the command line in Unix (which applies to comput-
ers running Macintosh and Linux), when you navigate to a folder where the application
resides, you must predicate the application name with a ./ in order to launch the applica-
tion. For example, to launch the Android application on Mac OS, the command begins
with ./android and then includes any command-line options being passed to the
application on launch.

Figure 3-15 Creating an Android project using command-line tools

Table 3-1 describes the command-line options used during this process.

ptg8126969

76 CHApter 3 ConFiguring An Android development environment For pHonegAp

Table 3-1 Android Tools Create Project Command-Line Options

Parameter Description
Target Identifies the Android API level used for the project. Each API

version is incremented sequentially with each Android release.
On my development system, the target of 14 refers to the
Android 2.3.3 SDK. The available SDK targets will vary
between Android SDK installations. To see a list of available
SDK targets, open a command prompt or terminal window,
and navigate to the Android SDK tools folder; then issue the
following command:
android list targets

Name Optional; the name for the project. The value provided here will
be used as the application’s .apk file name. An .apk file is
the Android executable file.

Path The target directory path for the project’s files. The folder will
be created if it does not already exist.

Activity The name of the default Activity class defined within the
project; this is the activity that’s launched when the application
first starts.

Package The Java package name for the application.

At this point, the project is exactly the same as the project created within Eclipse
(it’s actually this process that Eclipse uses behind the scenes to create new Android
projects). To convert this new Android project into a PhoneGap project, complete
the steps outlined in the previous section to modify the project’s files with the
appropriate PhoneGap components and code.

To build your new PhoneGap project using the command-line tools, you will need
to install Apache Ant (the installation steps are provided in Appendix C) and then
open a terminal or command prompt window, navigate to your project’s root
folder, and issue the following command:

ant debug

The Ant Build script included with the Android project will call the Java compiler
and build a debug version of the Android application that can be deployed to an
Android device (or Android emulator) for testing. Figure 3-16 shows an example
of the build process output. The executable application file, the HelloWorld-
debug.apk file, will be located in the project’s bin folder.

ptg8126969

77testing Android pHonegAp AppliCAtions

Figure 3-16 Building a PhoneGap application using the command-line tools

To build a version of the application for distribution to production devices, issue
the following command:

ant release

Android applications must be signed before they can run on an Android device.
The details of this part of the process are beyond the scope of this book. Refer to
the Android developer web site at http://developer.android.com/guide/publishing/
app-signing.html for additional information about application signatures and the
signing process.

Testing Android PhoneGap Applications
When it comes to testing and debugging a PhoneGap application, developers have
the option of using the Android emulator or running the application on a physical
device. The information provided in this section covers this topic at a high level;
you can find additional details on the debugging process at the Android developer
web site (http://developer.android.com).

The ability to test and debug an application on a device or emulator is built into the
Eclipse plug-in. As shown previously, simply launch the emulator or load onto a
device directly from the IDE. The following sections provide information on how
to test PhoneGap applications using the command-line tools.

http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com

ptg8126969

78 CHApter 3 ConFiguring An Android development environment For pHonegAp

Using the Emulator
When working with the command-line tools, you can easily deploy Android appli-
cations directly from a terminal or command prompt window.

When testing using the Android emulator, the first thing you must do is launch the
Android SDK and AVD Manager highlighted in Figure 3-6; then select one of the
emulators you have defined, and click the Start button. It may take a while, but the
selected emulator will launch and wait for your input. Once the emulator is run-
ning, you must install the application being tested. From the Android SDK tools
directory (c:\android-sdk\tools\, for example), install the application’s .apk
file on the emulator using the following command:

adb install <file_path>\<application>.apk

In this example, <file_path> refers to the folder where the file is located, and
<application> refers to the executable file name for the application. By default, the
application’s executable (the application’s .apk file) will be located in the project’s
bin folder. For the HelloWorld application highlighted in this chapter, the project
was created in c:\dev\HelloWorld and the file name is HelloWorld-debug, so the
command to install the application on the simulator would be as follows:

adb install c:\dev\HelloWorld\bin\HelloWorld-debug.apk

Installing on a Device
Before you can run your application on a device, you must ensure that USB debug-
ging is enabled on the device. The setting can be located on most Android devices
by launching the Settings application and selecting Applications, then Develop-
ment, and finally USB debugging.

Warning: To be able to test on a live device, your computer system must be able to
recognize an Android device when it’s connected to the system via a USB cable. If
you connect a device and it’s not recognized by the system, you must resolve any
connectivity issues before continuing.

Once your device is set up and connected via USB, navigate to the Android SDK
platform-tools/ directory (c:\android-sdk\platform-tools\, for example),
and install the .apk on the device using the following command:

adb -d install <file_path>\<application>.apk

The -d parameter passed to adb instructs the program to install the application to a
physically connected device (rather than to an emulator). This process will return
an error if more than one device is connected to the computer.

ptg8126969

79

Configuring a bada
Development

Environment for
PhoneGap

Bada is a mobile device operating system released by Samsung in 2010. Devices
for this OS are not available in the United States today, but bada devices are cur-
rently popular in Europe and Asia. The current version of the bada files for
PhoneGap do not support the currently version of the bada SDK; instead, it
requires an older version that is not currently available for download. You will
have to already have a version of the bada SDK earlier than version 2.0 installed in
order to build PhoneGap applications for bada. As the PhoneGap project team
adds support for the current version of the bada SDK, an updated version of this
chapter will be available on the book’s web site at www.phonegapessentials.com.

The bada development tools will run only on computers running Microsoft Windows,
so you’ll need to have a Windows PC or a Macintosh running a Windows virtual
machine (VM) to install the tools. Before getting started with the bada SDK, you
will need to install the PhoneGap framework, but unfortunately as of the time of
this writing, the PhoneGap files installed using the instructions provided in Appen-
dix A don’t contain the project files you need to build PhoneGap applications for
bada. It’s possible that by the time you read this, the PhoneGap files will be
updated to include the complete set of bada files. In the meantime, additional

4

www.phonegapessentials.com

ptg8126969

80 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

instructions are provided within this chapter for downloading and installing the
correct files for PhoneGap bada development.

The free bada development tools are implemented using the Eclipse IDE, so you
will also need to install the Oracle Java Developer Kit using the instructions pro-
vided in Appendix B.

According to the most current documentation for the bada components of
PhoneGap, the current version provides support for only the Acceleration, Cam-
era, Compass, Device, Geolocation and Network APIs.

Downloading and Installing the Correct
PhoneGap bada Files

For PhoneGap versions up to and including version 1.4.1, the default PhoneGap
download available at www.phonegap.com/download-thankyou doesn’t include
the project files needed to build PhoneGap applications on the bada platform. I’ve
spoken with the developer responsible for PhoneGap’s bada support, and he has
indicated that he will try to get the files updated in a subsequent release of the
framework.

To verify whether your existing PhoneGap framework installation (installed using
the instructions provided in Appendix A) contains the necessary project files, open
Windows Explorer, and navigate to the folder where the PhoneGap files have been
extracted. Then navigate to the bada folder and look for the .badaprj and .cpro-
ject files shown in Figure 4-1. If the files are there, you have what you need and
can skip the remainder of this section.

If you don’t see these two files, you will need to download a separate package from
the Apache Cordova Git repository. Open your browser of choice and navigate to
https://git-wip-us.apache.org/repos/asf?p=incubator-cordova-bada.git; Figure 4-2
shows the contents of the page. This is the location for the project within the Apache
Incubator; the location will likely change once the project makes it out of the
Apache Incubator, or, who knows, maybe they’ll change the project name yet
again.

On the page, click the “snapshot” link at the top of the list of commits, as high-
lighted in the figure. This will start a download of the latest version of the
PhoneGap bada project files. Save the file in an appropriate location, and then
extract the files. The files are currently saved in tar.gz format, so you may have to
do some additional work to extract the files since Windows may not automatically
recognize the format; the files extract easily using WinZip (www.winzip.com).

www.phonegap.com/download-thankyou
www.winzip.com
https://git-wip-us.apache.org/repos/asf?p=incubator-cordova-bada.git

ptg8126969

81downloAding And instAlling tHe CorreCt pHonegAp bAdA Files

Figure 4-1 PhoneGap bada project files

Figure 4-2 PhoneGap bada Git repository

One last step has to be completed. The bada project download includes each of the
JavaScript files that make up the standard phonegap.js file, but the actual
phonegap.js file is missing. Using Windows Explorer, navigate to the res\
phonegap folder shown in Figure 4-3. Double-click the phonegap.bat file high-
lighted in the figure, and a batch process will run that will concatenate each of the

ptg8126969

82 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

JavaScript files into the phonegap.js file your PhoneGap applications will
utilize.

Figure 4-3 PhoneGap bada project folder

As you can see, for bada, the PhoneGap project team has broken the naming con-
vention for the phonegap.js file. For most other platforms, the file name includes
the PhoneGap version number; for bada, it does not.

Creating a bada PhoneGap Project
Once the PhoneGap and bada SDKs have been installed, your development envi-
ronment is ready to create new PhoneGap projects. As you’ll see with some other
platforms, to create a new PhoneGap project for bada, instead of creating a new
project in the IDE, you will instead copy an existing project and modify its con-
tents to suit your needs.

Start the bada IDE using shortcuts installed in the Windows Start menu. When the
program first launches, it will display a start page similar to the one shown in Fig-
ure 4-4. Click the Workbench icon highlighted in the figure.

ptg8126969

83CreAting A bAdA pHonegAp proJeCt

Figure 4-4 bada IDE start page

As is normal with Eclipse-based IDEs, the program will prompt you to select the
default location for the developer workspace used to store project files. You can
either accept the default value or specify a different location as appropriate for
your needs.

Once the workspace loads, open the File menu, and then select Import; the IDE
will open the Import wizard shown in Figure 4-5. Expand the bada section as
shown in the figure, select bada Application Project, and then click the Next
button.

The bada IDE will then display the Import Projects dialog shown in Figure 4-6.
Select the “Select root directory” option as shown in the figure, and then click the
Browse button to the right of the input field. The standard Windows folder selec-
tion dialog will appear; navigate to the folder where you extracted the bada project
files, and click the Done button to continue. When you complete this step cor-
rectly, the Import Projects dialog will list a PhoneGap project called Cordova
under the list of projects, as shown in Figure 4-6.

ptg8126969

84 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

Figure 4-5 bada IDE Import wizard’s Select dialog

Figure 4-6 bada IDE: Import Projects dialog

ptg8126969

85CreAting A bAdA pHonegAp proJeCt

Select the “Copy projects into workspace” checkbox, and then click the Finish
button to continue. The IDE will copy the project files to the workspace and dis-
play a screen similar to the one shown in Figure 4-7.

Figure 4-7 bada IDE

For PhoneGap projects, the index.html and associated files (such as CSS and
JavaScript files plus any images and other content files) are stored in or beneath the
Res folder. Expand the Res folder in the Project Explorer, and click the index.html
file to open it in the editor, as shown in Figure 4-7. At this point, you can make
whatever changes you want to the application’s source files and begin testing your
application.

The default project in the download includes settings related to the configuration
of the IDE of the developer who created the project. Before you run the applica-
tion, you will have to clean up the project files. In the bada IDE, open the Project
menu and select Clean; the IDE will display a dialog similar to the one shown in
Figure 4-8. Click the OK button, and the IDE will process the project folder and
delete any files left over from a previous build of the project.

ptg8126969

86 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

Figure 4-8 bada IDE Clean dialog

bada projects also require a manifest file; the starting project has one included
with it, but you won’t be able to use that manifest for your application. The process
for creating a profile and its associated manifest file plus updating the project with
your new manifest file is described in the following section.

Creating a bada Application Profile
bada uses an application profile to define settings for applications that are sold
through their proprietary application storefront, the Samsung Apps Store. An
application profile’s settings are defined in a manifest file (manifest.xml), which
must be included in the root folder of any bada application project and added to the
project’s properties. You can create internal use or test applications using a default
manifest file created by the IDE, or you can create a separate profile for each appli-
cation either within the IDE or from the bada developer web site.

For most mobile platforms, this part of the process is completed right before you
submit to the appropriate application store, but with bada development, it can be
part of the initial application project setup as well. For PhoneGap development,
you create a new bada project by importing an existing one, so you’ll need to have
your own profile available to add to the new project later.

To create an application profile, log into the bada developer web site using the cre-
dentials created at the beginning of the chapter. From the landing page, select the
My Applications menu (highlighted in Figure 4-9), and then select Application
Manager.

ptg8126969

87CreAting A bAdA AppliCAtion proFile

Figure 4-9 Samsung bada developer web site

On the page that opens, select the Create a new Application ID button, as shown on
the right side of Figure 4-10.

Figure 4-10 bada Application Manager

In the first step in the process, you must define a unique name for your application.
The site will open a pop-up window that prompts you for the application name (as
shown in Figure 4-11) and then validates the name’s uniqueness against all other
bada applications before allowing you to continue the process. Only after you

ptg8126969

88 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

have registered a unique name can you continue to provide a description of the
application and then move to the next step. Click the OK button to continue.

Figure 4-11 bada Application Manager: checking bada application name availability

On the next page that appears, enter a description of the application, as shown in
Figure 4-12, and then click the Create button to continue.

Figure 4-12 bada Application Manager: adding an application description

At this point, the application profile has been created, and the site will display the
confirmation page shown in Figure 4-13. Before you continue, you must define at
least one application version for the application. Click the Add a New Application
Version link highlighted in Figure 4-13.

ptg8126969

89CreAting A bAdA AppliCAtion proFile

Figure 4-13 bada Application Manager: profile confirmation

On the next page that appears, enter a version number for the application, and then
click the Save button, as shown in Figure 4-14. Notice how Samsung limits the
major and minor version numbers to 35.

Figure 4-14 bada Application Manager: setting the application version

ptg8126969

90 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

Next you will need to define the bada platform version you will be developing for.
On the confirmation page shown in Figure 4-15, click the Select the bada API Ver-
sion link highlighted in the figure.

Figure 4-15 bada Application Manager: application version profile created

On the page that appears, the Application Manager will prompt you to select the
version of the bada SDK the application will use (API version) plus the type of
application that is being created, as shown in Figure 4-16. Select the appropriate
options for the application, and then click the Save button. The form should default
to SDK version 2.0, but since you’re working with an older version of the SDK for
PhoneGap development, you will want to change the selection to match the SDK
version you’re using.

At this point in the process, the Application Manager will display a page similar to
the one shown in Figure 4-17. What you need to do next is configure application-
specific security settings for the application. Click the Select your Privileged API
Group link highlighted in Figure 4-17.

ptg8126969

91CreAting A bAdA AppliCAtion proFile

Figure 4-16 bada Application Manager: selecting API version and application type

Figure 4-17 bada Application Manager: API version profile created

ptg8126969

92 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

From the page that appears (shown in Figure 4-18), you can enable or disable as
needed specific API permissions for the application profile. In this example, I’ve
cropped the page to show only a few of the available options; when doing this for your
own application profiles, you will see a much larger list of options. In Figure 4-18, the
settings for access to the camera and image capture capabilities are expanded and
enabled for this particular application as are settings related to working with web con-
tent. If the PhoneGap application you’re building doesn’t use either of those device
features, you can disable access to those features within the application by deselect-
ing the checkboxes shown. If you don’t set these options correctly, any portion of
your application that uses an API that is not enabled here will not work.

Figure 4-18 bada Application Manager: enabling API capabilities

ptg8126969

93CreAting A bAdA AppliCAtion proFile

You can also upload an existing manifest file to capture API settings already
defined for a different application. To do this, click the Choose File button on the
top of the page, and select the manifest file you want to use.

Click the Save button to complete the API profile. The Application Manager will
display a page similar to the one shown in Figure 4-19. Next you need to select the
device feature set for the application. To do this, click the Select your Device Fea-
ture Set link highlighted in Figure 4-19.

Figure 4-19 bada Application Manager: API capabilities created

The site will display a page similar to the one shown in Figure 4-20. Since there
was only one device type supported with the bada 1.2 SDK, all you will need to do
here is click the Save button shown on the bottom of the figure to continue.

Next you will see the page shown in Figure 4-21. From this page, click the Down-
load manifest.xml button highlighted in the figure to download the application’s
manifest file to the local system. You will need this when you build your applica-
tion in the bada IDE.

At any time, you can go back and update the settings for your application or create
a profile for the next version of the application. When you return to the Applica-
tion Manager, the list of defined profiles will display. Simply click the applica-
tion’s name to modify the settings or add a new application version.

ptg8126969

94 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

Figure 4-20 bada Application Manager: selecting target devices

Once you have a manifest file, you can add it to your PhoneGap project by right-
clicking the project in the IDE’s Project Explorer and selecting Properties. In the
dialog that appears, expand the bada Build option, and then select Manifest Infor-
mation, as shown in Figure 4-22.

Click the Import button at the bottom of the dialog, and then select the manifest
file you just created. After you’ve selected the file, click the OK button to save the
updated project properties. At this point, the application is ready to run with your
application manifest instead of the one included with the PhoneGap project.

ptg8126969

95testing bAdA pHonegAp AppliCAtions

Figure 4-21 bada Application Manager: completed profile

Testing bada PhoneGap Applications
To launch an application in the bada emulator, right-click a project, open the Run
As menu, and then select bada Emulator Web Application. The IDE will launch
the bada device emulator and then load and execute the selected bada application.
Figure 4-23 shows the HelloWorld3 application from Chapter 2 loaded in the
emulator. The application source code had to be modified to accommodate the
location of the phonegap.js file within the bada project’s folder structure.

ptg8126969

96 CHApter 4 ConFiguring A bAdA development environment For pHonegAp

Figure 4-22 bada project properties manifest settings

Figure 4-23 bada device emulator

ptg8126969

97

Configuring a
BlackBerry

Development
Environment for

PhoneGap

This chapter includes the instructions to follow to install and use the BlackBerry
development tools to build PhoneGap applications for both BlackBerry smart-
phones and BlackBerry PlayBook tablet devices. To complete the steps outlined,
you must first perform several installation steps using instructions provided else-
where in the book:

1. Install the PhoneGap framework using the instructions provided in
Appendix A.

2. (Windows only) Install the Oracle Java Developer Kit (JDK) using the
instructions provided in Appendix B.

3. (Windows only) Install Apache Ant using instructions provided in
Appendix C.

Once you’ve completed those steps, you’re ready to start work on PhoneGap
applications for BlackBerry.

5

ptg8126969

98 CHApter 5 ConFiguring A blACkberry development environment For pHonegAp

Installing the BlackBerry WebWorks SDK
As mentioned in Chapter 1, BlackBerry PhoneGap applications are essentially
BlackBerry WebWorks applications (a special kind of BlackBerry application)
with some extra PhoneGap stuff baked in. To build PhoneGap applications for
BlackBerry, you must leverage the BlackBerry WebWorks SDK. The tools consist
of a series of command-line tools you use to create, build, and test WebWorks
applications.

WebWorks Eclipse Plug-In

RIM used to distribute an Eclipse plug-in that could be used to build WebWorks applica-
tions but announced in 2011 that it would be ending support for the product at the end
of the year. So, that’s why you’re stuck with command-line tools for PhoneGap develop-
ment on BlackBerry.

To download the BlackBerry WebWorks SDK, point your browser of choice to
www.blackberry.com/developers. On the WebWorks page, select the Tools &
downloads option, and then download the latest version of the WebWorks SDK for
the BlackBerry device for which you will be developing applications. The file is
pretty large, so it may take a while to download; the toolkit includes the SDK as
well as server components and device simulators needed to test applications for
BlackBerry.

Note: If you will be supporting both BlackBerry smartphones and the BlackBerry
PlayBook tablet, you will have to download and install separate SDKs for each.
Beginning with BlackBerry 10 devices, RIM is expected to use a single SDK for both
device platforms.

The Macintosh and Windows installation steps are essentially the same: Once the
download has completed, launch the downloaded file to start the installation pro-
cess, and follow the prompts until the process completes.

On Windows systems, experience has proven that many Java applications have
difficulty running from a location that contains spaces in the folder name. Other
applications also seem to have difficulty running within the restricted security
environment on Microsoft Windows Vista and Windows 7. For these reasons, it’s
recommended to install the WebWorks SDK off the root of the system’s hard drive
rather than in the Program Files folder.

www.blackberry.com/developers

ptg8126969

99CreAting A blACkberry pHonegAp proJeCt

For the WebWorks PlayBook SDK installation, you will also need to download
and install the Adobe Air SDK from www.adobe.com/go/getairsdk and the
VMware Player application (needed to run the PlayBook Simulator).

Signing Keys

You will need to register for a set of BlackBerry application-signing keys before you
can deploy an application to a real device. RIM’s security architecture for Black-
Berry applications requires that any application that runs on a BlackBerry device
must be signed by RIM. Part of this signing process involves acquiring a set of keys
and installing them on the system requesting the signatures. The keys are free and
easy to obtain, although it sometimes takes RIM three or more days to generate
and distribute keys once requested.

You can find additional information about the signing process on the BlackBerry
Developer’s web site at http://us.blackberry.com/developers/javaappdev/
codekeys.jsp. The process is also well documented in Chapter 12 of BlackBerry®

Development Fundamentals (www.bbdevfundamentals.com).

Creating a BlackBerry PhoneGap Project
When you installed the PhoneGap project files, included with them is a sample
project that demonstrates a wide range of PhoneGap project features. Figure 5-1
shows the sample project’s folder. Unfortunately, there’s currently no simple way
to create a new blank BlackBerry project using the files provided, but I hope this
will be changed in an upcoming release. You’ll have to copy the existing sample
project and then remove the code and any extra files included in the project.

Note: The PhoneGap Getting Started guide for BlackBerry development (http://
phonegap.com/start#blackberry) includes instructions that indicate that you can
execute an ant command to create a new BlackBerry smartphone or tablet project.
This was a feature of earlier versions of PhoneGap (prior to version 1.0) and is no
longer a supported option. Ideally someday someone from the PhoneGap documen-
tation team will remove that reference from the Getting Started guide.

To create a new BlackBerry PhoneGap project, simply copy the sample project
folder shown in Figure 5-1 to a new folder, and then modify the contents of the
index.html file (located in the www folder) to suit the needs of your application.
For the web application code used throughout the remainder of this chapter, we’ll
use the HelloWorld3 application used in Chapter 2.

www.adobe.com/go/getairsdk
http://us.blackberry.com/developers/javaappdev/codekeys.jsp
http://us.blackberry.com/developers/javaappdev/codekeys.jsp
www.bbdevfundamentals.com
http://phonegap.com/start#blackberry
http://phonegap.com/start#blackberry

ptg8126969

100 CHApter 5 ConFiguring A blACkberry development environment For pHonegAp

Figure 5-1 PhoneGap BlackBerry WebWorks project files

For BlackBerry WebWorks projects, RIM uses a W3C standard called the Widget
Packaging and XML Configuration to define a file (config.xml) that contains set-
tings that control part of the application build process. You can find the detailed
information about the standard at www.w3.org/TR/widgets. By default, the
config.xml file will be located in a PhoneGap project’s www folder. For each
PhoneGap application, you will need to modify the contents of this file with set-
tings for your application. A sample config.xml file is shown here.

BlackBerry WebWorks config.xml File

<?xml version="1.0" encoding="UTF-8"?>

<!--
 Widget Configuration Reference:
 http://docs.blackberry.com/en/developers/deliverables/15274/
-->

<widget xmlns="http://www.w3.org/ns/widgets"
 xmlns:rim="http://www.blackberry.com/ns/widgets"

www.w3.org/TR/widgets

ptg8126969

101CreAting A blACkberry pHonegAp proJeCt

 version="1.0.0.0">

 <name>Hello World</name>

 <description>
 A sample PhoneGap application.
 </description>

 <license href="http://opensource.org/licenses/alphabetical">
 </license>

 <!-- PhoneGap API -->
 <feature id="blackberry.system" required="true"
 version="1.0.0.0" />
 <feature id="com.phonegap" required="true"
 version="1.0.0" />
 <feature id="blackberry.find" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.identity" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.pim.Address" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.pim.Contact" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.io.file" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.utils" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.io.dir" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.app" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.app.event" required="true"
 version="1.0.0.0" />
 <feature id="blackberry.system.event" required="true"
 version="1.0.0.0"/>
 <feature id="blackberry.widgetcache" required="true"
 version="1.0.0.0"/>
 <feature id="blackberry.media.camera" />
 <feature id="blackberry.ui.dialog" />

 <!-- PhoneGap API -->
 <access subdomains="true" uri="file:///store/home" />
 <access subdomains="true" uri="file:///SDCard" />

 <!-- Expose access to all URIs, including the file and http
 protocols -->
 <access subdomains="true" uri="*" />

 <icon rim:hover="false" src="resources/icon.png" />

ptg8126969

102 CHApter 5 ConFiguring A blACkberry development environment For pHonegAp

 <icon rim:hover="true" src="resources/icon_hover.png" />

 <rim:loadingScreen backgroundColor="#000000"
 foregroundImage="resources/loading_foreground.png"
 onFirstLaunch="true">
 <rim:transitionEffect type="fadeOut" />
 </rim:loadingScreen>

 <content src="index.html" />

 <rim:permissions>
 <rim:permit>use_camera</rim:permit>
 <rim:permit>read_device_identifying_information
 </rim:permit>
 <rim:permit>access_shared</rim:permit>
 <rim:permit>read_geolocation</rim:permit>
 </rim:permissions>

</widget>

Table 5-1 briefly describes each of the elements in the file. Additionally, an excel-
lent reference for the settings in the config.xml file can be found at www.tinyurl
.com/78q8sgr.

Table 5-1 Config.xml Elements

Element Description
Name The name of the application. The text provided here will appear on the Black-

Berry home screen below the application’s icon.
Keep the application’s name short and clear; it has only limited space assigned to
it on the BlackBerry home screen and is not as valuable if the BlackBerry OS has
to truncate it to make it fit on the screen.

Description A description of the application. The text provided here will be displayed in the
BlackBerry Application Manager application. It’s used to help a user understand
the purpose of a particular application installed on a BlackBerry device.

License Represents the software license under which the application is released.

Feature Identifies a particular API feature used by the application. A developer must list
each API family the application uses. This is used by the BlackBerry Device
Software to validate which APIs are used against what permissions the user has
granted the application during installation or at a later time. This is part of RIM’s
standard application security infrastructure.
The list of values provided in the default config.xml file should represent all of the
possible options included in the PhoneGap application runtime container. It’s best to
leave the default list as shown; even though a particular PhoneGap application you
create might not make use of one of the APIs listed, Java code for calling the APIs is
still in the PhoneGap application container and therefore needs the feature enabled.

continues

www.tinyurl.com/78q8sgr
www.tinyurl.com/78q8sgr

ptg8126969

103building blACkberry pHonegAp AppliCAtions

Element Description
Access Defines the external resources the application can access (file, network). You can

list each external resource individually, or you can use the asterisk to allow access
to any resource. Examples of each are shown in the earlier sample file.
If you don’t define an entry for a particular resource, the application will not be
able to access that resource and won’t display an error message either.

Icon Specifies the file resource URL for the application icons used by the application.
Use the rim:hover="true" attribute to define that a particular icon is used when the
application is selected on the BlackBerry home screen. Use rim:hover="false"
for the alternate, unselected icon.

Loading
Screen

Used to define settings for the application’s load screen. As the PhoneGap appli cation
loads, the settings defined here will define what appears as the application
initializes.

Content Specifies the start page for the application. By default, most applications will use
index.html, but if your PhoneGap application needs for whatever reason to use a
different HTML file, then you would provide the file name here.

Permissions Specifies the specific security permissions the application requires be enabled on
the BlackBerry device. The required permissions listed here are used to prompt the
user during installation to enable the settings required for the application. If the user
disables one of the required permissions, the portion of the application that needs
the permission will not function.

Using your text editor of choice, edit the application’s config.xml file as needed
with the appropriate settings for your application, and then save your changes. At
this point, the application is ready to be built.

Building BlackBerry PhoneGap Applications
The default PhoneGap project includes an Ant script that manages the process of
building the application plus some additional tasks that help with testing and
deploying a PhoneGap application. The script is in a file called build.xml, and it
is located in the root of the PhoneGap project folder. I’ll cover the options for that
particular file in a minute.

Beginning with PhoneGap 1.3, the PhoneGap development team added support
for WebWorks tablet applications (applications built for the BlackBerry PlayBook
tablet). With older versions of PhoneGap, all of the supported build processes
were implemented in the build.xml file. Beginning with PhoneGap 1.3, the Ant
script (described later) calls out to the blackberry.xml or playbook.xml file
depending on the platform for which the application is being built.

Table 5-1 Config.xml Elements (continued)

ptg8126969

104 CHApter 5 ConFiguring A blACkberry development environment For pHonegAp

Configuring the Build Process
The build process leverages configuration settings defined in a WebWorks project
properties file called project.properties. This file is located in a WebWorks
project’s root folder and contains settings that tell the build script where to locate
BlackBerry-specific applications that are used during the build, test, and packag-
ing process. An example project.properties file is shown here.

BlackBerry project.properties File

BlackBerry WebWorks Packager Directory
#
The BlackBerry WebWorks Packager (bbwp) is required for
compiling and packaging BlackBerry WebWorks applications for
deployment to a BlackBerry device or simulator. The bbwp
utility is installed with the standalone BlackBerry WebWorks
SDK, and as part of the BlackBerry Web Plugin for Eclipse.
#
Please specify the location of the BlackBerry WebWorks
Packager in your environment.
#
Typical location of bbwp for standalone BlackBerry WebWorks
SDK installation:
C:\Program Files (x86)\Research In Motion\BlackBerry
Widget Packager
#
Typical location of bbwp for BlackBerry Web Plugin for
Eclipse installation:
C:\Eclipse-3.5.2\plugins\
net.rim.browser.tools.wcpc_1.0.0.201003191451-126\wcpc
#
The ANT script is brittle and requires you to escape the
backslashes. e.g. C:\some\path must be C:\\some\\path
#
Please remember to:
- Double escape your backslashes (i.e. \ must be \\)
- Do not add a trailing slash (e.g. C:\some\path)
#

blackberry.bbwp.dir=C:\\Program Files\\Research In Motion\\
 BlackBerry WebWorks Packager

playbook.bbwp.dir=C:\\Program Files\\Research In Motion\\
 BlackBerry WebWorks SDK for TabletOS 2.1.0.6\\bbwp

(Optional) Simulator Directory

ptg8126969

105building blACkberry pHonegAp AppliCAtions

If sim.dir is not specified, the build script will use the
simulator directory within the Blackberry WebWorks Packager.
blackberry.sim.dir=C:\\Program Files\\Research In Motion\
 BlackBerry WebWorks Packager\\simpack\\6.0.0.227

(Optional) Simulator Binary
If sim.bin is not specified, the build script will attempt
to use the default simulator in the simulator directory.
#blackberry.sim.bin=9800.bat

(Optional) MDS Directory
If mds.dir is not specified, the build script will attempt
to use the MDS that is installed with the Blackberry
WebWorks Packager.
blackberry.mds.dir=C:\\Program Files\\Research In Motion\\
 BlackBerry WebWorks Packager\\mds

BlackBerry Code Signing Password
If you leave this field blank, then the signing tool will
prompt you each time
blackberry.sigtool.password=

Playbook Code Signing Password
If you leave these fields blank, then signing will fail
playbook.sigtool.csk.password=
playbook.sigtool.p12.password=

BlackBerry Simulator Password
If you leave this field blank, then you cannot deploy to
simulator
blackberry.sim.password=

Playbook Simulator IP
If you leave this field blank, then you cannot deploy to
simulator
playbook.sim.ip=

Playbook Simulator Password
If you leave this field blank, then you cannot deploy to
simulator
playbook.sim.password=

Playbook Device IP
If you leave this field blank, then you cannot deploy to
device
playbook.device.ip=

ptg8126969

106 CHApter 5 ConFiguring A blACkberry development environment For pHonegAp

Playbook Device Password
If you leave this field blank, then you cannot deploy to
device
playbook.device.password=

Table 5-2 lists a brief description of the relevant configuration options defined in
the project.properties file. The BlackBerry and PlayBook development kits (at
least for the moment) use different SDKs to build their applications. Since the
project.properties file has to support configuration options for both SDKs,
each of the properties defined within the file are predicated with a blackberry. or
playbook. to indicate to which platform the property applies.

Table 5-2 Project.properties Configuration Options

Setting Description
bbwp.dir Specifies the location for the WebWorks SDK installed at the beginning of

the chapter. If the WebWorks SDK was installed to its default location, the
value for this setting should be correct. If installed in a different location,
the value should be changed to point to the current location.

sim.dir Specifies the folder location for the device simulator that will be used to test
this application. This value is important only if you will be launching the
simulator using the build script described later in this section. If you omit
this value, the build process will use the default simulator included with the
WebWorks SDK.

sim.bin Specifies the name of the batch file for the device simulator that will be used
to test this application. This value is important only if you will be launching
the simulator using the build script described later in this section. If you
omit this value, the build process will use the default simulator listed in the
simulator folder.

mds.dir Specifies the folder location for the MDS simulator that will be used when
testing this application. If you omit this value, the build process will use the
default MDS simulator included with the WebWorks SDK.
Since the MDS simulator is included with the WebWorks SDK and the
program is rarely updated, there is little likelihood that you will ever need to
change this setting.

sigtool.password Specifies the password you have assigned to secure the keys used by the
BlackBerry signature tool to sign applications. By providing a value here,
you bypass the need to type in the password every time the build process
needs to sign an application being built.

Folder Tips: When specifying folder paths in the project.properties file, be
sure to use double backslashes and to omit training backslashes as shown in the
sample file.

ptg8126969

107building blACkberry pHonegAp AppliCAtions

The device simulators included with the WebWorks SDK can access local
resources, but when they need to access data or applications residing on a network
server, they leverage the BlackBerry Mobile Data System (MDS) server to pro-
vide that access. Included with the WebWorks SDK is a full-featured version of
the BlackBerry MDS server component. The Ant scripts used to test PhoneGap
applications (described later in the chapter) will automatically load the MDS sim-
ulator before loading the appropriate device simulator. When the MDS simulator
launches, it will open a text-based window similar to the one shown in Figure 5-2.
During testing of your application on a BlackBerry simulator, you’ll want to leave
this window open. It will display a series of entries every time the device simulator
requests and receives data from a network resource such as a web server.

Figure 5-2 BlackBerry MDS simulator window

For additional information on the capabilities provided by MDS, refer to Chapter 4
of my other mobile development book, BlackBerry® Development Fundamentals
(www.bbdevfundamentals.com).

Using your text editor of choice, modify the project.properties file as needed
for your particular system’s configuration and save your changes, and you’re ready
to build your application.

Executing a Build
To build a BlackBerry PhoneGap application, open a command prompt or terminal
window, navigate to the project’s root folder, and issue the following command:

ant blackberry build

Ant will read its instructions from the build.xml file included with the project
and perform the steps needed to build the application.

www.bbdevfundamentals.com

ptg8126969

108 CHApter 5 ConFiguring A blACkberry development environment For pHonegAp

To build a PlayBook PhoneGap application, issue the following command:

ant playbook build

A sample listing of the output from this process is shown here:

Buildfile: C:\Dev\PhoneGap\BlackBerry\sample\build.xml

blackberry:

build:

generate-cod-name:
 [echo] Generated name: PhoneGapSample.cod

clean:
 [delete] Deleting directory C:\Dev\PhoneGap\BlackBerry\
 sample\build

package-app:
 [mkdir] Created dir:
 C:\Dev\PhoneGap\BlackBerry\sample\build\widget
 [copy] Copying 9 files to
 C:\Dev\PhoneGap\BlackBerry\sample\build\widget
 [zip] Building zip:
 C:\Dev\PhoneGap\BlackBerry\sample\build\PhoneGapSample.zip

build:
 [exec] [INFO] Parsing command line options
 [exec] [INFO] Parsing bbwp.properties
 [exec] [INFO] Validating application archive
 [exec] [INFO] Parsing config.xml
 [exec] [WARNING] Failed to find the <author> element
 [exec] [INFO] Populating application source
 [exec] [INFO] Compiling BlackBerry WebWorks application
 [exec] [INFO] Generating output files
 [exec] [INFO] BlackBerry WebWorks application packaging
 complete

BUILD SUCCESSFUL
Total time: 21 seconds

C:\Dev\PhoneGap\BlackBerry\sample>

If everything is configured correctly and the files are all in the right locations, at
this point you’ll have a compiled version of the application all ready to go.

ptg8126969

109testing blACkberry pHonegAp AppliCAtions

During the build process, the script will create a new folder called build under the
project’s root folder. Within that folder are two folders that are important when it
comes to deploying your application to BlackBerry smartphones: OTA Install and
Standard Install. The OTA Install folder contains the files you will need to deploy
the application over the air (OTA), pushed to devices by the BlackBerry Enterprise
Server (BES). The files located in the Standard Install folder can be used to manu-
ally install an application (discussed later), be pulled down to a device from a web
server, or be deployed through the BlackBerry App World. Each of these options is
described in detail in Chapter 16 of BlackBerry® Development Fundamentals
(www.bbdevfundamentals.com).

Besides the build command used in the previous example, the build.xml file
also contains code supporting command-line options for the following processes:

•	 load-device

•	 load-simulator

•	 package-app

•	 clean

•	 clean-device

•	 clean-simulator

•	 help

To view information about each of these options, issue the command ant help in
the same command prompt window used to build the application. The script will
display usage instructions for each of the available options.

Testing BlackBerry PhoneGap Applications
To test the application, you have two options: You can test in the BlackBerry simu-
lator, or you can test on a physical device. This section contains instructions for
how to execute each option.

Testing on a BlackBerry Device Simulator
To test your PhoneGap application on a BlackBerry device simulator, open a com-
mand prompt, navigate to the project’s root folder, and issue the following
command:

ant blackberry load-simulator

www.bbdevfundamentals.com

ptg8126969

110 CHApter 5 ConFiguring A blACkberry development environment For pHonegAp

The build script will load the BlackBerry MDS simulator and then load the appro-
priate device simulator (BlackBerry or PlayBook) using default options for the
WebWorks SDK or using the specific settings you added to the project’s project
.properties file.

For BlackBerry devices, the location for the application’s icon will vary depend-
ing on which version of BlackBerry Device Software the simulator is running. For
newer BlackBerry Device Software versions, the application’s icon can typically
be found in the Downloads folder, but in some cases it’s loaded directly on the
Home Screen, as shown in Figure 5-3.

Figure 5-3 BlackBerry HelloWorld PhoneGap application icon

Note: You can change the icon used for the application by copying the icon file to the
project’s resource folder and modifying the project’s config.xml file to point to
the new icon file name.

ptg8126969

111testing blACkberry pHonegAp AppliCAtions

When you click the application’s icon, the application will load and display a
screen similar to the one shown in Figure 5-4.

Figure 5-4 BlackBerry HelloWorld PhoneGap application

To test your PhoneGap application on a BlackBerry Playbook device simulator,
issue the following command to load the application onto the simulator:

ant playbook load-simulator

You will need to launch the simulator manually and configure the options in the
project.properties file to load the application on the PlayBook simulator.
Refer to the PlayBook developer resources web site at www.blackberry.com/
developers for additional information on how to configure and use the PlayBook
simulator.

For PlayBook tablets, the application will load onto the device’s home screen. The
PlayBook does not currently support the concept of folders for grouping applica-
tion icons. To launch the application, simply touch the application icon on the
device screen.

Testing on a Device
To test your PhoneGap application on a physical BlackBerry device, connect a
device to the system using a USB cable, open a command prompt, navigate to the
project’s root folder, and issue the following command:

ant blackberry load-device

The build script will load the application on the physical device.

www.blackberry.com/

ptg8126969

112 CHApter 5 ConFiguring A blACkberry development environment For pHonegAp

You can also use the BlackBerry JavaLoader program (javaloader.exe) to load
the application onto a physical BlackBerry device. Navigate to the WebWorks
SDK installation’s bin folder, and then execute the following command:

JavaLoader.exe -u load codfilename.cod

In this example, codfilename refers to the relative path to the application’s com-
piled executable (the .cod file), which for the current example is as follows:

JavaLoader.exe -u load c:\dev\phonegap\BlackBerry\HelloWorld\
Build\StandardInstall\HelloWorld.cod

JavaLoader will connect to the device over the USB cable and transfer the applica-
tion’s files to the device. Once the process has completed, you can navigate to the
application’s icon on the device’s home screen and launch the application.

To test your PhoneGap application on a physical PlayBook device, connect a
device to the system using a USB cable, open a command prompt window, navi-
gate to the project’s root folder, and issue the following command:

ant playbook load-device

ptg8126969

113

Configuring an iOS
Development

Environment for
PhoneGap

This chapter includes the instructions to follow to install and use the Apple
development tools to build PhoneGap applications for iOS. You must have a
Macintosh computer running Macintosh OS X in order to be able to build applica-
tions for iOS.

Registering as an Apple Developer
To access developer-related content on Apple’s web site, you must first register as a
developer in Apple’s developer program. Apple keeps a very tight rein on its devel-
oper community; registration is free, but you will also need to join one of the
developer programs before you can download the latest version of Xcode (Apple’s
proprietary IDE for Macintosh OS and iOS development) or deploy any iOS appli-
cations to individual devices or through Apple’s App Store. The following devel-
oper programs are available:

•	 Individual: For individual developers creating free or commercial iOS
applications for distribution through Apple’s App Store

6

ptg8126969

114 CHApter 6 ConFiguring An ios development environment For pHonegAp

•	 Company: For commercial developer organizations creating free or
commercial iOS applications for distribution through Apple’s App Store

•	 Enterprise: For organizations building iOS applications for distribution
through a private, enterprise App Store (for business applications)

•	 University: For higher educational institutions that include iOS develop-
ment in their curriculum

There’s a yearly membership fee for each of the listed programs except for the
University program. You can find more information on the different program
options at http://developer.apple.com.

Installing Xcode
Once you have registered for the appropriate Apple developer program, it’s time to
install Apple’s development tools on your Macintosh computer. iOS development
is performed using Xcode, which is available as a free download from the Apple
App Store provided you have the appropriate Apple developer program member-
ship. To install Xcode, launch the App Store application on your Macintosh and
enter Xcode in the search box in the upper-right corner of the application window.
The App Store will return a list of several options; click the Xcode option, and the
application will display a screen similar to the one shown in Figure 6-1. Click the
Free button, and then click the Install button that appears (in the same screen loca-
tion) to begin the installation process.

Xcode is a very large download, so it will take some time to download and install
the application. When you click the Install button in the App Store application,
Xcode isn’t actually installing; instead, the Xcode installer application is being
downloaded and installed on the system. Once the Xcode installer’s installation
completes, there’s still another installation that has to happen before you can start
writing iOS applications using Xcode. Confused?

You’ll be able to tell when the App Store download and installation completes,
because the button on the Xcode page in the App Store says Installed rather than
Free or Install. At this point, you can close the App Store application, and then
open the Launcher application. Then switch to the Launcher’s last page, as shown
in Figure 6-2, and look for the Install Xcode application highlighted in the figure.
Launch that application to begin the actual Xcode installation process, and navi-
gate through the prompts until the installation completes.

http://developer.apple.com

ptg8126969

115instAlling XCode

Figure 6-1 Installing Xcode from the Apple App Store

Figure 6-2 Xcode installation icon

ptg8126969

116 CHApter 6 ConFiguring An ios development environment For pHonegAp

Once you’ve completed the Xcode installation, you must now install the PhoneGap
project files and the Xcode plug-in used to create PhoneGap applications for iOS.
Refer to Appendix A for complete instructions.

Creating an iOS PhoneGap Project
With Xcode and the PhoneGap plug-in installed, you’re ready to begin building
PhoneGap applications for iOS. Note that the instructions and example screen
shots in this section are for Xcode version 4.

When you launch Xcode for the first time, you will see a screen similar to the one
shown in Figure 6-3. Select “Create a new Xcode project” to start the process. If
you’ve used Xcode previously and have the checkbox for “Show this window
when Xcode launches” disabled, then you will need to open the Xcode File menu
and select New Project.

Figure 6-3 Xcode: welcome screen

Xcode will prompt you to select the type of project you will be creating. Select the
option for iOS Applications on the left side of the window, as shown in Figure 6-4.
Select the option for PhoneGap-based Application and click the Next button.

ptg8126969

117CreAting An ios pHonegAp proJeCt

Figure 6-4 Xcode: new project window

Xcode will prompt you for a product name for your project and a company identi-
fier, as shown in Figure 6-5. The product name and company identifier are concat-
enated together to form what should be a unique identifier for the particular project
being created. When the appropriate options have been defined for your applica-
tion, click the Next button to continue.

Figure 6-5 Xcode: defining project naming options

ptg8126969

118 CHApter 6 ConFiguring An ios development environment For pHonegAp

Xcode will then prompt you to select the destination folder for the new project, as
shown in Figure 6-6. Select or create the appropriate folder location for the proj-
ect, and click the Create button to continue. Note the option for creating a local Git
repository for the project; as discussed later in the book, the IDE’s integration with
Git can make building applications using PhoneGap Build a simpler process.

Figure 6-6 Xcode: defining the project location

At this point, Xcode will create the necessary iOS project folders and source files
for the application. When completed, Xcode will display its workspace window
similar to the one shown in Figure 6-7.

The left side of the window contains the navigator area that lets you browse the
folder and file structure for the project. On the right is the editor area, which is cur-
rently displaying summary information for the application. You can switch
between the tabs (Summary, Info, Build Settings, Build Phases, and Build Rules)
to see the different possible options for the application’s configuration. The avail-
able options won’t be covered here; instead, we’ll focus only on the PhoneGap-
related topics. There are many great books on iOS development that should be
referenced for a detailed discussion of Xcode and iOS development.

In the project summary, you will want to enter a version number for the applica-
tion and then select the supported device orientations for the application. Many a
PhoneGap developer has forgotten to enable the necessary options here and has
been frustrated when the PhoneGap application will support only a single

ptg8126969

119CreAting An ios pHonegAp proJeCt

orientation (which is the default for iOS projects). There will be good reasons for
some applications to support only one or two orientations, but in general you will
probably want to enable all available options here for most applications. The
PhoneGap application runtime container will fire an event that will allow your
web application to execute code to deal with orientation changes as they happen,
but only when you enable the correct options here.

Figure 6-7 Xcode: new PhoneGap project

The Summary tab also displays the application icons and launch screens in use for
the application. These images populate with default PhoneGap project images, but
for any production application, you should provide your own custom images. To
change the image for any of these options, right-click an image, and select an
appropriate option from the menu that appears: Select File, Show in Finder, or
Delete.

The PhoneGap Xcode project in its current state doesn’t have access to the web
content it needs to provide the application with its user interface or application
logic. The last part of the process includes some counterintuitive steps that may
not make much sense but are still required in order to make this work. These steps

ptg8126969

120 CHApter 6 ConFiguring An ios development environment For pHonegAp

are not required for earlier versions of Xcode and may no longer be required for
more recent versions of PhoneGap as they are released.

Launch the new PhoneGap project by clicking the Run icon in the upper-left cor-
ner of the Xcode window. Xcode will build the application, launch the default
iPhone simulator, and then display the error message shown in Figure 6-8. Don’t
panic; this is expected behavior. For some reason, the PhoneGap new project wiz-
ard doesn’t create the web content files when the project is first created; instead, it
creates them the first time the application is launched, and even then it creates
them in what appears to be the wrong location. At this point, close the iPhone
simulator by opening the iOS Simulator menu and selecting Quit iOS Simulator.

Figure 6-8 First launch of a new PhoneGap application in the iPhone simulator

Next, open Finder and navigate to the folder where you created the Xcode project,
as shown in Figure 6-9. Notice the www folder highlighted in the figure; it contains
the default web content files for the new PhoneGap project. What you’re going to
need to do here is drag the www folder onto the project in Xcode. Do not drag the
www folder onto the project’s folder in Finder, but instead drag it onto the PhoneGap
project’s entry in the Xcode navigator area, as shown in Figure 6-10.

Figure 6-9 The PhoneGap project’s web content folder in Finder

ptg8126969

121CreAting An ios pHonegAp proJeCt

Figure 6-10 Dragging a PhoneGap project’s web content into Xcode

To make this process easier, position Xcode and Finder so they take up only a por-
tion of the screen and are positioned next to each other. Drag the folder over, and
with the www folder contents positioned over the highest-level folder in the
PhoneGap project (as shown in Figure 6-10), release the mouse button. Xcode will
prompt you to select how copied the files are referenced in the Xcode project (Fig-
ure 6-11). Select the option “Create folder references for any added folders,” and
then click the Finish button to continue.

Figure 6-11 Xcode: options for adding files to a project

ptg8126969

122 CHApter 6 ConFiguring An ios development environment For pHonegAp

At this point, the new Xcode project will now have a reference to the web content
files it needs, and you should be able to see the contents of the www folder in the
Navigator area shown on the left side of Figure 6-12. Simply click the index.html
file in the navigator to open the file in the Editor area, as shown in the figure.

Figure 6-12 A new PhoneGap project in Xcode

As shown in the figure, the default iOS project for PhoneGap contains instructions
and code designed to help a beginning PhoneGap developer build a better applica-
tion. For your applications, you will simply augment the provided code with the
appropriate HTML, CSS, and JavaScript for your application. For the example in
this chapter, we’ll use the code from the HelloWorld3 application from Chapter 2.

Testing iOS PhoneGap Applications
You’ve already seen how to launch a PhoneGap application in Xcode. Simply
select the iPhone or iPad simulator version you want to test on, and then click the
Run button in the upper-left corner of the Xcode UI. Xcode will build the

ptg8126969

123testing ios pHonegAp AppliCAtions

application, launch the selected simulator, load the application into the simulator,
and start the application. With the sample application code included in the default
PhoneGap project, the application will display the screen shown in Figure 6-13.

Figure 6-13 Sample PhoneGap application running in the iPhone Simulator

ptg8126969

This page intentionally left blank

ptg8126969

125

Configuring a Symbian
Development

Environment for
PhoneGap

On the Symbian platform, PhoneGap applications are implemented as Web
Runtime (WRT) widgets, a standard application type for Symbian devices. With
WRT, a web application’s files are simply packaged into a compressed file before
being deployed to mobile devices. There are some similarities here with the W3C
widget specification described in Chapter 5, but since WRT widgets predate the
specification, they are configured and packaged differently.

Symbian PhoneGap applications can be built on systems running Macintosh OS,
Linux, or Microsoft Windows. Before getting started with Symbian development,
you will need to install the PhoneGap framework using the instructions provided
in Appendix A. In addition to the default PhoneGap files to build PhoneGap appli-
cations for Symbian, you will need to install the Nokia Web Tools as well as have
access to the Make command-line utility.

Installing the Nokia Web Tools
Nokia offers a complete suite of tools for web development on the Symbian plat-
form called Nokia Web Tools. Unfortunately, the most recent editions of the Nokia

7

ptg8126969

126 CHApter 7 ConFiguring A symbiAn development environment For pHonegAp

SDK removed support for testing WRT applications with a simulator. To be able to
work with PhoneGap applications on Symbian, you will need to download version
1.2 of Nokia Web Tools located at www.tinyurl.com/7b7nyng. Do not download
the latest version of the SDK.

Download the appropriate file for the operating system your development system
is running, launch the installer, and then follow the prompts to complete the
installation.

Note: The Nokia Web Tools SDK has an automatic update facility built in. Since we
require version 1.2 of the SDK, you cannot allow the automatic update to happen.

Assuming you will want to use your favorite web content editor for PhoneGap
development, most of the tools included in the download will likely go unused.
The important tool for PhoneGap development is the web application simulator
(called Web App Simulator on Windows and WebSDKSimulator on Macintosh OS),
which will be described at the end of the chapter.

Installing the Make Utility
The default PhoneGap project for Symbian includes a makefile used by the Make
utility to package the application for distribution to Symbian devices. Macintosh
computers already include the appropriate files needed to process the makefile.
For systems running Microsoft Windows, you will need to install additional
software.

For Windows users, point your browser of choice to www.cygwin.com, and down-
load the Cygwin installation file setup.exe. Launch the Cygwin installation pro-
gram, and follow the prompts to install the software.

By default, Cygwin installs a minimal set of applications. At one point during the
installation process, the installer will prompt you to select additional packages to
install with Cygwin, as shown in Figure 7-1. For Symbian PhoneGap development,
you will need to add the Make and Zip utilities to the list of programs installed dur-
ing the installation.

You can either browse the categories listed in the dialog to locate the particular util-
ity or type the utility’s name in the search box on the dialog and press Enter. Once
you have located the utility, click the refresh indicator on the line for the particular
utility. This will change the option from Skip to the particular version of the utility
being installed, as shown in Figure 7-1. Once both required utilities have been
added to the installation, click the Next button to continue with the installation.

www.tinyurl.com/7b7nyng
www.cygwin.com

ptg8126969

127instAlling tHe mAke utility

Figure 7-1 Cygwin installation: Select Packages dialog

At the conclusion of the installation, you should have a Cygwin icon on the desk-
top. When you double-click the icon, a Windows command window will open and
display a dollar sign prompt indicating it is waiting for you to type in a command.
At this time, we won’t be using Cygwin, so type exit and press the Enter key to close
the Cygwin window. We’ll get back to that later.

By default, Cygwin configures its start-up folder to point to the Cygwin installation’s
home folder (c:\cygwin\home\ in the default installation location). It’s likely your
PhoneGap application projects will be in a different folder, so you will need to recon-
figure Cygwin to use your source code folder as its root folder. This is accomplished
by setting the HOME environment variable in Windows. To do this, open the Win-
dows Control Panel, select System or right-click My Computer, and select Proper-
ties. In the System Properties application, click the Advanced System Settings tab,
and then click the Environment Variables button on the bottom of the window.

Windows will display a dialog that lists the environment variables defined in the
system. At the bottom of the dialog is the listing of system variables, the system-
wide environment variables that affect all users. Click the New button in the Sys-
tem variables section of the dialog, and Windows will display a dialog similar to
the one shown in Figure 7-2. Enter HOME in the Variable Name field, and for
Variable Value enter the full path pointing to the folder you will be using for source
code. Click the OK button to create the system variable, and then click OK again to
close the Environment Variables dialog.

To test the changes you just made, open a Cygwin command prompt by double-
clicking the Cygwin icon on the Windows desktop. At the command prompt, type
ls, and then press the Enter key; if everything is configured correctly, you should
see a directory listing of your source code folder.

ptg8126969

128 CHApter 7 ConFiguring A symbiAn development environment For pHonegAp

Figure 7-2 Adding a new Windows system variable

Creating a Symbian PhoneGap Project
The PhoneGap download package contains the skeleton of a simple Symbian
PhoneGap application you can use to create new PhoneGap projects. Figure 7-3
shows the file structure for the project. To create a new Symbian PhoneGap appli-
cation, simply copy the Symbian folder from the PhoneGap installation location to
your project’s source code folder, and then change the copied folder’s name to the
name of the new application project.

Figure 7-3 PhoneGap sample application for Symbian

ptg8126969

129ConFiguring AppliCAtion settings

As shown in Figure 7-3, the project’s web content has been placed in the \framework\
www folder. Edit the index.html file and the other content in the folder to match
the needs of your application.

Configuring Application Settings
Options for a Symbian WRT widget are defined in an XML-based configuration
file called info.plist stored alongside the widget’s web content, as shown in Fig-
ure 7-3. A sample info.plist file is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC “-//Nokia//DTD PLIST 1.0//EN"
 “http://www.nokia.com/DTDs/plist-1.0.dtd">
<plist version="1.0">
<dict>
 <key>DisplayName</key>
 <string>HelloWorld</string>
 <key>Identifier</key>
 <string>com.phonegapbook.helloworld</string>
 <key>Version</key>
 <string>1.0</string>
 <key>AllowNetworkAccess</key>
 <true/>
 <key>MainHTML</key>
 <string>index.html</string>
 <key>MiniViewEnabled</key>
 <false/>
</dict>
</plist>

The widget’s settings are defined as a dictionary of key/string pairs, as shown in the
example. For each key defined within the file, there’s a corresponding string value
that defines the value associated with the key:

•	 DisplayName: Displays the string value displayed along with the widget’s
icon on the smartphone’s home screen

•	 Identifier: Unique identifier identifying the widget

•	 Version: The version number for the widget

•	 AllowNetworkAccess: Controls whether the widget is allowed to access
network resources (remote servers and so on)

ptg8126969

130 CHApter 7 ConFiguring A symbiAn development environment For pHonegAp

•	 MainHTML: Identifies the file name for the application’s start-up HTML page

•	 MiniViewEnabled: Controls whether the widget is designed to be a home
page widget, an application that renders a content area on the device’s home
screen

To change settings for a widget, simply open the file using your text or XML editor
of choice, make the appropriate changes for your widget, and save the file.

Modifying HelloWorld3 for Symbian
The HelloWorld3 application from Chapter 2 won’t run on Symbian without mod-
ification. For a reason unknown to me, the onLoad event attribute for the HTML
<body> tag doesn’t work correctly, so you have to embed the code that adds the
deviceready event listener directly within the HTML header, as shown in the fol-
lowing example:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"/>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 document.addEventListener(“deviceready", onDeviceReady,
 false);

 function onDeviceReady() {
 //Get the appInfo DOM element
 var element = document.getElementById('appInfo');
 //replace it with specific information about the device
 //running the application
 element.innerHTML = 'PhoneGap (version ' +
 device.phonegap + ')
' + device.platform + ' ' +
 device.name + ' (version ' + device.version + ').';
 }

ptg8126969

131pACkAging symbiAn pHonegAp proJeCts

 </script>
 </head>
 <body>
 <h1>HelloWorld3</h1>
 <p>This is a PhoneGap application that makes calls to the
 PhoneGap APIs.</p>
 <p id="appInfo">Waiting for PhoneGap Initialization to
 complete</p>
 </body>
</html>

Packaging Symbian PhoneGap Projects
When you’re ready to test the application in a simulator or deploy the application
to a device, you must first package the application. Packaging is essentially zipping
the application’s files into a zip archive and then changing the extension of the
archive from .zip to .wgz. If you want, you can zip up the files manually and then
change the file extension, but the Symbian PhoneGap project comes with a make-
file that can be used to automate the packaging process.

Note: When using a terminal window to navigate around in a file system, use the cd
command to change directories and the ls command to list a folder’s contents.

On Macintosh computers, open a terminal window; then navigate to the project’s
root folder. On Windows computers, launch Cygwin; then navigate to the proj-
ect’s root folder. Type make and press Enter to start the process; the terminal win-
dow will display a series of messages as the application is packaged, as shown in
Figure 7-4. As you can see from the figure, the makefile first consolidates many of
the PhoneGap JavaScript libraries into a single file called phonegap.js, creates a
zip file containing the widget’s web content, and then renames the file to the appro-
priate .wgz extension.

At this point, the PhoneGap application has been packaged into a file called
app.wgz and can be loaded into the Symbian Web App Simulator or deployed to
a real device. To change the file name for the packaged application, edit the
makefile and change any references to app.wgz to the appropriate file name for
your application.

ptg8126969

132 CHApter 7 ConFiguring A symbiAn development environment For pHonegAp

Figure 7-4 Packaging a Symbian PhoneGap application using Make

Testing Symbian PhoneGap Applications
To test PhoneGap widgets for Symbian, launch the Symbian Web Application Sim-
ulator (the simulator application icon is labeled Web App Simulator on Windows
and WebSDKSimulator on Macintosh OS). When the simulator launches, it will
open two windows on the screen; the first is the toolbar (shown in Figure 7-5), a
sort of simulator controller that allows you to poke and prod at the simulator while
it’s running, and the second is the device simulator window (shown in Figure 7-6).
You will use the toolbar when loading widgets into the simulator and when debug-
ging widgets.

Figure 7-5 Symbian Web App Simulator toolbar

Note: If the option for the web simulator is missing, check to make sure you didn’t
inadvertently install a version of the Nokia Web Tools SDK newer than version 1.2.

ptg8126969

133testing symbiAn pHonegAp AppliCAtions

To test a PhoneGap widget, launch the simulator, click the File button on the tool-
bar, navigate to the folder where the widget’s .wgz file is located, and open the file.
The widget will load in the simulator and then display a screen similar to the one
shown in Figure 7-6.

Figure 7-6 Symbian Web App Simulator

Notice that the HelloWorld3 application isn’t displaying as much device informa-
tion as with the same application on other platforms. It’s clear that the PhoneGap
development team has some work to do on Symbian.

The simulator represents a real device, and touch interactions with the device screen
are performed using the mouse. Use the Location and Accelerator buttons on the
toolbar to simulate a particular GPS location and control the perceived orientation

ptg8126969

134 CHApter 7 ConFiguring A symbiAn development environment For pHonegAp

of the device. Use the Events button to control events affecting the simulated device
such as adding or removing power or a memory card, receiving SMS or MMS mes-
sages, and more.

The toolbar also provides capabilities that help with debugging widgets. Click the
Web Inspector button to open the Web Inspector, as shown in Figure 7-7. The Web
Inspector is essentially the Eclipse debug window with styling to match the other
Nokia tools. You can click the different buttons across the top of the window to
inspect and interact with different aspects of the widget currently running within
the simulator including setting breakpoints, setting watches, evaluating variables,
and more.

Figure 7-7 Symbian Web Inspector

ptg8126969

135

Configuring a Windows
Phone Development

Environment for
PhoneGap

Windows Phone is the most recent addition to the list of supported device plat-
forms for PhoneGap; support for Windows Phone was added to the PhoneGap 1.1
release. Setting up a development environment for Windows Phone is similar to
the iOS development setup; all you need to install is the standard development
environment and the default PhoneGap installation files, and you’re ready to go.

The Windows Phone development tools and device simulators are supported only
on Microsoft Windows. You will need a Windows PC or a Macintosh computer
running Windows or a Windows virtual machine in order to develop PhoneGap
applications for Windows Phone.

Installing the Windows Phone Development Tools
The Microsoft Windows Phone SDK 7.1 provides the complete suite of tools you
need to build mobile applications for the Windows Phone OS. Point Microsoft
Internet Explorer to http://create.msdn.com and follow the prompts to download
the SDK.

8

http://create.msdn.com

ptg8126969

136 CHApter 8 ConFiguring A windows pHone development environment For pHonegAp

Note: The Windows Phone SDK has some hefty system requirements; be sure that the
development system you have selected for Windows Phone development meets or
exceeds the minimum requirements.

The Windows Phone Emulator will run only on current hardware with hardware
graphics acceleration, so if you have an older machine, you should probably plan on a
video card upgrade. When you try to test PhoneGap applications on a system that isn’t
supported by the emulator, the PhoneGap application won’t even display any content
on the emulator screen when it launches.

The SDK installer you downloaded won’t take very long to download and consists
of a simple application that pulls down the full SDK components as needed during
installation. The SDK consists of Microsoft Visual Studio 2010 Express for Win-
dows Phone, Windows Phone Emulator, and several other tools that aren’t related
to PhoneGap development. There’s a lot of stuff included, so be sure to allocate a lot
of time for the installation. Launch the downloaded file and follow the prompts to
install the SDK. At the conclusion of the SDK installation, you will be prompted
to launch the Visual Studio; go ahead and do that, if only to confirm that the instal-
lation completed successfully.

Once you’ve verified that Visual Studio installed correctly, close Visual Studio, and
then install PhoneGap using the instructions provided in Appendix A. With the
PhoneGap files installed into Visual Studio, your system is ready for PhoneGap
development.

Creating a Windows Phone PhoneGap Project
To create a new PhoneGap project for Windows Phone, open Visual Studio; then
open the File menu and select New Project. In the dialog that appears, select
the Visual C# category in the navigator on the left side of the dialog. Select the
GapAppStarter option, provide a name and destination for the application, and
click the OK button, as shown in Figure 8-1.

Visual Studio will create a new PhoneGap project folder with a default index.html
and style sheet and open the IDE window. In the Solution Explorer shown on the
right side of Figure 8-2, expand the www folder, then double-click the index.html
file to open the file in the editor.

ptg8126969

137CreAting A windows pHone pHonegAp proJeCt

Figure 8-1 Visual Studio New Project dialog

Figure 8-2 Visual Studio PhoneGap project window

ptg8126969

138 CHApter 8 ConFiguring A windows pHone development environment For pHonegAp

To add new content to the application, simply add additional files to the Solution
Explorer either directly from within the IDE or manually from the file system (by
adding the files to the project’s folder on the hard drive). When new content is
added to the folder, you must refresh the project’s file manifest included in the
project. To do this, in the Visual Studio Solution Explorer for the project, right-
click the GapSourceDictionary.tt item and select Run Custom Tool; then fol-
low the prompts to execute the process. This will update the contents of the
GapSourceDictionary.xml file included with the project, which instructs
the packager on which content files to include with the packaged application.

One of the things the default sample application for Windows Phone does is add
some additional code to the project to enable a console log function, as shown in
bold in the following listing. As mentioned in Chapter 2, PhoneGap leverages the
console functions enabled by the WebKit rendering engine. On Windows Phone,
Microsoft is using its own rendering engine, so the WebKit features won’t be avail-
able to the program. This code makes logging capabilities available within any
PhoneGap application.

<!DOCTYPE html>
<html>
 <head>
 <title>HelloWorld3</title>
 <meta name="viewport" content="width=320;
 user-scalable=no" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8"/>
 <link rel="stylesheet" href="master.css" type="text/css"
 media="screen" title="no title" charset="utf-8"/>
 <script type="text/javascript">

 // provide our own console if it does not exist
 if(typeof window.console == "undefined") {
 window.console =
 {log:function(str){window.external.Notify(str);}};
 }

 // output any errors to console log, created above.
 window.onerror=function(e) {
 console.log("window.onerror ::" + JSON.stringify(e));
 };
 console.log("Installed console ! ");

 </script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap-1.1.0.js"></script>
 <script type="text/javascript">

ptg8126969

139testing windows pHone pHonegAp AppliCAtions

 function bodyLoad() {
 document.addEventListener("deviceready",
 onDeviceReady,false);
 }

 function onDeviceReady() {
 //Get the appInfo DOM element
 var element = document.getElementById('appInfo');
 //replace it with specific information about the device
 //running the application
 element.innerHTML = 'PhoneGap (version ' +
 device.phonegap + ')
' + device.platform + ' ' +
 device.name + ' (version ' + device.version + ').';
 }

 </script>

 </head>
 <body onLoad="bodyLoad();">
 <h1>HelloWorld3</h1>
 <p>This is a PhoneGap application that makes calls to the
 PhoneGap APIs.</p>
 <p id="appInfo">Waiting for PhoneGap Initialization to
 complete</p>
 </body>
</html>

Testing Windows Phone PhoneGap Applications
Visual Studio supports testing applications on the Windows Phone emulator and
on physical Windows Phone devices. When testing applications from within
Visual Studio, the execution target for the application is controlled by the option
selected in the toolbar drop-down highlighted on the right side of Figure 8-3.

Figure 8-3 Visual Studio toolbar

To test the application, open the Debug menu and select Start Debugging, press
the F5 key, or click the green triangle to the left of the target device drop-down field
shown in Figure 8-3. Visual Studio will do the following:

1. Build the application.

ptg8126969

140 CHApter 8 ConFiguring A windows pHone development environment For pHonegAp

2. (Optionally) Launch the emulator if selected as the target and not already
running.

3. Deploy the application to the selected target.

4. Launch the application on the emulator.

Using the modified version of the HelloWorld3 sample application from Chap-
ter 2, the default emulator will display a screen similar to the one shown in
Figure 8-4.

Figure 8-4 Windows Phone emulator

ptg8126969

141

Using PhoneGap Build

As you can see from the previous chapters, building PhoneGap applications for
multiple mobile platforms can be a challenging endeavor. You have to install each
platform’s SDK, as well as IDEs, build tools, simulators or emulators, and more.
As you read through the chapters, you probably said to yourself, “There has got to
be an easier way!” Fortunately, there is. The PhoneGap Build service provides the
means to build PhoneGap applications in the cloud, without the need to install a
bunch of software on a developer workstation. All you have to do is write your
web applications using your web content editor of choice, upload the files to the
cloud, and then let PhoneGap Build do the rest.

PhoneGap Build currently supports the following mobile platforms:

•	 Android

•	 BlackBerry

•	 iOS

•	 Symbian

•	 webOS

This chapter will describe how to use the PhoneGap Build service. It’s important
to note that the service is still in beta and the UI for the service changes dramati-
cally on a regular basis. By the time you read this, it will look completely differ-
ent, although the process should be about the same (or similar) to what is
described here.

9

ptg8126969

142 CHApter 9 using pHonegAp build

The Fit
You may be asking yourself if PhoneGap Build is so cool, why would you ever
want to use the individual development SDKs to build your PhoneGap applica-
tions? With PhoneGap Build still in beta, there’s no clear information regarding
how widely adopted it will be by the PhoneGap community. The fact that it’s going
to be a for-fee service might also affect adoption of the service.

As you’ll see later in the chapter, PhoneGap Build currently uses a single applica-
tion icon and a single splash screen image for all versions of the application
(except for iOS). If your application needs a different branding or look and feel on
different platforms, then you will need to use the native SDK approach rather than
PhoneGap Build.

In my testing of the service, I found that the build process could be quite slow,
although this could have been caused by the service’s beta status. With Build, the
process of getting the built application onto a device, emulator, or simulator was
more cumbersome than it would be on some platforms using native SDKs or even
command-line tools. On platforms like Android or iOS, since there’s an IDE to
work with, saving your code and then building and deploying to a simulator or
emulator takes a matter of seconds.

If you’re like me, you’ll write code and then save and test regularly; the delays
caused by using Build could extend the length of time you spend working on the
application.

On the other hand, as I worked on the chapters that followed, I found that building
a single application and uploading it to the Build service in order to generate appli-
cations for multiple platforms made it very easy to put each sample application
through its paces on multiple mobile platforms simultaneously. Without access to
the Build service, it would have taken me much more time to accomplish what I
needed for this book.

Getting Started
Before you can use PhoneGap Build for your PhoneGap projects, you must first
create an account on the PhoneGap Build web site. Point your browser of choice to
http://build.phonegap.com to begin the process. PhoneGap Build is free during the
beta period but will switch to a for-fee service when it’s released into production.
Table 9-1 lists the planned pricing options for the service.

http://build.phonegap.com

ptg8126969

143ConFigurAtion

Table 9-1 PhoneGap Build Pricing Structure

Developer Starter Team Corporate

Pricing Free $12/month or
$120/year

$30/month or
$300/year

$90/month or
$900/year

Public apps Unlimited Unlimited Unlimited Unlimited

Private apps 1 3 10 25

Private collaborators 1 1 3 10

Configuration
Several of the mobile platforms that PhoneGap Build supports require that applica-
tions are digitally signed before they can be loaded on devices or deployed to the
appropriate application stores. For that reason, you must configure the PhoneGap
Build service with the appropriate signing keys for each of the supported platforms.

For Android and BlackBerry devices, the PhoneGap Build process will work with-
out any signing keys, but you will want to configure your specific keys for those
platforms before releasing an application for distribution through an application
store. Android applications require only a signature before deployment to the
Android Market. BlackBerry applications will not run on a device without being
signed. By default, PhoneGap Build signs BlackBerry applications using Nitobi’s
signing keys, with the expectation that you will provide your own signing keys
before releasing the application to distribution.

For iOS development, Apple tightly controls the signing process and severely lim-
its what a developer can do with an application. For this reason, PhoneGap Build
will not even build an iOS application without the appropriate developer creden-
tials first being configured in PhoneGap Build.

To configure signing keys in PhoneGap Build, open your browser of choice, and
then log into the PhoneGap Build web site using the credentials you supplied when
creating an account. Click the “Edit account” link currently located on the bottom of
the page. PhoneGap Build will open a page similar to the one shown in Figure 9-1.

For each of the platforms you will be supporting that require application signing,
click the “Add a key” link. PhoneGap Build will open a dialog similar to the one
shown in Figure 9-2. Depending on the mobile platform, you may need to upload
multiple files as shown in the figure (Android uses only a single file; BlackBerry
and iOS require two). Provide a title for the set of keys, select the appropriate files
as needed, and click the Create button. Repeat this process as many times as needed
for each set of keys you will be using and each platform you will be supporting.

ptg8126969

144 CHApter 9 using pHonegAp build

Figure 9-1 PhoneGap Build: account configuration

Figure 9-2 PhoneGap Build: key file upload dialog

While a particular developer might need only a single set of keys for Android and
BlackBerry applications, the title field shown in the dialog allows you to give a
unique name to each set of keys being defined within PhoneGap Build. Since

ptg8126969

145CreAting An AppliCAtion For pHonegAp build

a developer may be building applications for multiple customers and each customer
will have a specific set of keys, this allows a developer to define settings for each set
of signing keys they work with and then pick the appropriate keys to use on an
application-by-application basis. Since Apple’s provisioning profiles are associ-
ated with one or more iOS devices, a developer might define different sets of keys
depending on which devices will be working with a particular build of an applica-
tion (during testing for example), switching to a publically distributable profile
before releasing through Apple’s App Store.

Once you’ve defined a set of keys for a particular platform, you can configure
PhoneGap Build to use that key as the default key for the platform. To enable this
feature, in the list of keys shown in Figure 9-1, simply enable the Default radio
button (not shown in the current figure) next to the key you want to use as the
default for the selected platform.

Creating an Application for PhoneGap Build
When working with PhoneGap Build, a PhoneGap application can be nothing
more than a simple index.html file or as complicated as a folder containing the
index.html file plus additional JavaScript, CSS, media files, and any additional
content the application needs. The application in this case is simply the web con-
tent files, nothing else. Unlike what you saw with configuring an application for
any of the supported mobile platforms individually, with PhoneGap Build there
don’t have to be any special files or special folder structures for the application.
All you have to do is get the web content up to the PhoneGap Build server, and it
takes care of everything else for you.

Chapter 2 explained that the PhoneGap JavaScript file was named differently
depending on which mobile platform you were working with, but with PhoneGap
Build your application simply has to make a reference to a generic phonegap.js
file, as shown next. You don’t even need to include the phonegap.js file in the
package uploaded to the server; PhoneGap Build will make sure the latest version
of PhoneGap is copied over and used by the project.

<script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>

PhoneGap Build will use default settings such as application icon, splash screen,
security settings, and more unless you tell it differently. To configure application-
specific settings for your PhoneGap application, PhoneGap Build uses the
config.xml file defined as part of the W3C Widget Packaging and XML Configu-
ration specification described in Chapter 5.

ptg8126969

146 CHApter 9 using pHonegAp build

The specification includes the means to define a single set of application icons (a
home screen and optionally, for BlackBerry, a hover image) and a loading screen
(splash) image. Unfortunately, application icon resolution (and sometimes graph-
ics file format) varies across mobile device platforms and even across mobile
devices. To fix this particular problem (and others), the PhoneGap Build develop-
ers have implemented some PhoneGap and PhoneGap Build–specific settings to
the options available in the config.xml file.

As of this writing, the PhoneGap Build development team is still making enhance-
ments to the features, options, and configuration settings for the service. Because
of this, it’s best to refer to their up-to-date documentation for specifics on the
supported config.xml file options. Anything I wrote here about those settings
could be nullified at any time by the PhoneGap Build development team. Detailed
information about the PhoneGap Build–supported settings can be found at
http://build.phonegap.com/docs/config-xml.

One of the things I learned when working with the service is that when building
applications for iOS, PhoneGap Build requires that the config.xml file’s widget
element contains an id attribute that contains a unique in reverse domain format,
as shown in the following example:

<widget xmlns=http://www.w3.org/ns/widgets
 xmlns:rim=http://www.blackberry.com/ns/widgets
 version="1.0.0.0" id="com.phonegapbook.kitchensink">

If you don’t have that setting defined, the application will not build.

Creating a PhoneGap Build Project
When the PhoneGap web application is ready, it’s time to upload the files and start
the build process.

Upload Options
PhoneGap Build supports several mechanisms for delivering the application’s
files to the build server:

•	 Index.html Upload: For applications that don’t use any external Java-
Script, CSS, or media files, simply upload the index.html file to the
PhoneGap Build server. PhoneGap Build will build the application using
default settings for all options.

http://build.phonegap.com/docs/config-xml

ptg8126969

147CreAting A pHonegAp build proJeCt

•	 Zip Upload: For applications that consist of more than one content file
(optionally including the config.xml file), compress the application’s
files into a zip file and upload to the PhoneGap Build server.

•	 Pull from Repository: PhoneGap Build retrieves the application’s files
from a public Git or Subversion repository. You can even create a new Git
repository, hosted by PhoneGap Build, while creating a new PhoneGap
Build project.

New Project
When you log into PhoneGap Build and there are no applications defined,
PhoneGap Build will prompt you to create a new application project, as shown in
Figure 9-3. If adding an additional application project to your account, click the
Apps menu item at the top of the page, and then click the New App button.

Figure 9-3 PhoneGap Build: new project dialog

ptg8126969

148 CHApter 9 using pHonegAp build

In the dialog, specify a name for the application and the method you’ll use to pro-
vide Build with the application’s web content files. The “enable debugging” option
will be described later. Depending on which option is chosen for “select upload
method,” you will be prompted either to provide the files for upload or for infor-
mation related to the repository where the application’s files are or will be stored.
When everything is set correctly, click the Create button to start the build process.
PhoneGap Build will update the page to indicate build status as the process runs,
as shown in Figure 9-4.

Figure 9-4 PhoneGap Build: waiting for the build to complete

The Build Process
Unless you have a default key configured for iOS, PhoneGap Build will immedi-
ately register an error (the exclamation point icon shown in Figure 9-4) for the iOS
application because PhoneGap Build doesn’t have any provisioning profile for the
application. You’ll see how to fix that error later. In a few seconds, or a few min-
utes, depending on how busy the PhoneGap Build servers are, the screen will
update to show that the build process has completed for each platform, as shown in
Figure 9-5.

Project Configuration
Click on the application’s name to view details for the application project.
PhoneGap Build will display a page similar to the one shown in Figure 9-6.

ptg8126969

149CreAting A pHonegAp build proJeCt

Figure 9-5 PhoneGap Build: build complete

Figure 9-6 PhoneGap Build: application details

ptg8126969

150 CHApter 9 using pHonegAp build

If you included a config.xml file with your application’s content files, PhoneGap
Build will ignore the project title you supplied when you created the project and
instead use the value specified for the config file’s Name element. The application’s
description, displayed in Figure 9-6, will be populated from the config file’s
Description element.

From this page you can download or install the application executables for each
supported mobile platform; this will be described later in the chapter. For now,
let’s fix the issue with the iOS application.

The warning symbol shown for the iOS application is indicating that the appropri-
ate signing information has not been defined for the application. To fix this prob-
lem, click the Edit button at the top of the page; then on the page that opens, click
the Signing button. PhoneGap Build will display a page similar to the one shown
in Figure 9-7.

For each of the operating systems, select a key from the drop-down list shown in
Figure 9-7, and click the Update Code button to save your changes and build the
application with the selected signing keys.

Figure 9-7 Setting the signing options for the application

Dealing with Build Issues
When the build service encounters an error building an application for a particular
platform, it will display a frowny face for the particular application’s build status,

ptg8126969

151deAling witH build issues

as shown in Figure 9-8. In this case, it’s indicating that the BlackBerry build pro-
cess failed.

Figure 9-8 PhoneGap Build: build errors

If you hover your mouse over the frowny icon, the page will display information
about the error, as shown in Figure 9-9. If you click the icon, a page will open that
lists possible error conditions and recommended solutions for each.

Figure 9-9 PhoneGap Build: build error information

At this point, you will need to dig into the error condition and resolve the problem
before continuing. With the service still in beta and the Nitobi folks still working
out the kinks, sometimes simply rebuilding the application solves the problem.

As indicated in Figure 9-9, the BlackBerry build process found that there were
invalid characters in file names within the application. This particular error has
popped up inconsistently with the applications I’ve built using the service. If you
looked at the application’s content, you would see that the file names for jQuery
Mobile have dashes in them. If you remove the dashes from the file names, update
index.html to reflect the file name changes, and upload the updated content to the
Build service, you should see that the application builds correctly.

The problem, though, is that this particular issue doesn’t occur with every applica-
tion; it’s hit-or-miss whether this will occur with any particular build. Addition-
ally, the BlackBerry WebWorks Packager utility (described in Chapter 5), the
utility actually doing the build for BlackBerry, doesn’t have any issues with dashes
in a file name. This is a clearly a bug with PhoneGap Build that has been in place
for a very long time, and I hope it will be addressed before the service goes live or
soon thereafter.

ptg8126969

152 CHApter 9 using pHonegAp build

Testing Applications
You can load applications created by PhoneGap Build onto a device, simulator, or
emulator in several ways.

OTA Download
When the PhoneGap Build process completes, the application’s entry on the ser-
vice’s web site contains links to the individual application executables for each
supported platform, as shown in Figure 9-10. On platforms that support applica-
tion downloads, on a physical device, or from a device simulator or emulator, you
can open a web browser, navigate to the PhoneGap Build web site, log in, and then
download the application directly.

Figure 9-10 PhoneGap Build: application download buttons

For Android, Symbian, and webOS, the download link points directly to the ap-
plication executable, so if you want to download the file first from a desktop
browser and then transfer the file to a device for testing, that’s not a problem. For
BlackBerry, it points you to the application’s .jad file, which is essentially a text
file pointing to the installation executable. If you configure signing keys for the
BlackBerry application, a link will be provided that allows you to download the
installation files separately.

You will also find similar links on the application details page shown in Figure 9-6.

Via Camera
You can also load an application using a code-scanner application on a compatible
smartphone. Many smartphone models ship with some sort of code-scanning appli-
cation preinstalled. If one is not preinstalled, several free code scanner applications
are available in the smartphone app stores; AT&T even offers a free one for many
common mobile platforms at www.wireless.att.com/businesscenter/solutions/
mobile-marketing/mobile-barcode-download.jsp.

To view an application’s code, open the application’s details page shown in Fig-
ure 9-6. For each platform, PhoneGap Build displays a two-dimensional code, as

www.wireless.att.com/businesscenter/solutions/mobile-marketing/mobile-barcode-download.jsp
www.wireless.att.com/businesscenter/solutions/mobile-marketing/mobile-barcode-download.jsp

ptg8126969

153debug mode

shown in Figure 9-11. To load the application on a physical device, launch a code-
scanning application on the device, and point it at the appropriate code for the operat-
ing system the device is running. When the scanner application recognizes the code,
it will launch the browser and open the downloadable version of the application.

Figure 9-11 PhoneGap Build: application scan code

Debug Mode
When you enable debug mode for an application, PhoneGap Build leverages
the Weinre debug server (described in Chapter 2) to allow you to debug the built
application directly on a device. With this feature enabled, PhoneGap Build
modifies your PhoneGap application so it includes the Weinre JavaScript library
Target-script-min.js and then exposes a debug server within the PhoneGap
Build console, which allows you to interactively debug the application. Refer to
Chapter 2 for more detailed information on how this process works.

When you look at the details page for an application that has been built with debug
mode enabled, a Debug button will appear at the top of the page, as shown in Fig-
ure 9-12.

Figure 9-12 PhoneGap Build: debug-enabled application

Click the Debug button to begin a debug session on the server. The browser will
open a new window and display the Weinre debug server console. At this point, the
debug console is waiting for a debug-enabled version of the application to connect
to the debug server. On a compatible, network-connected smartphone, open the
browser, navigate to the PhoneGap Build web site, and install the application us-
ing the instructions provided in this section; then launch the application once the
download has completed. After the application has launched and completed its
initialization procedures, the application will automatically connect to the debug

ptg8126969

154 CHApter 9 using pHonegAp build

server. When the debug server receives a connection from the device, it will update
the console with information about the device, as shown in Figure 9-13.

Figure 9-13 PhoneGap Build: Weinre debug console, device connected

At this point, you perform the standard debug functions supported by Weinre. As
you interact with the application on the device, you can use the console to view con-
sole messages, inspect page elements (shown in Figure 9-14), and more. Refer to
Chapter 2 or the Weinre documentation for information on the capabilities of Weinre.

Figure 9-14 PhoneGap Build: Weinre debug console

ptg8126969

Part III
PhoneGap APIs

This part of the book describes in detail each of the PhoneGap APIs and provides
example code demonstrating how to use the functionality provided by each API.

ptg8126969

This page intentionally left blank

ptg8126969

157

Accelerometer

The Accelerometer API allows a PhoneGap application to determine a device’s
orientation in a three-dimensional space (using X, Y, and Z coordinates). The cur-
rent PhoneGap API documentation claims that the values returned by the acceler-
ometer indicate the changes in a device’s motion through space, but in testing what
the accelerometer returns are values that define the device’s actual orientation in a
three-dimensional space. If the accelerometer were actually measuring motion
through space, then the accelerometer API would return no information when the
device is stationary, which is not the case.

For example, on an Android device, with the device lying flat on a tabletop, the
accelerometer will return approximately the following values: X:0, Y:0, Z:10. As the
device is flipped so it’s standing on its left edge, the values will adjust to approxi-
mately X:10, Y:0, Z:0. If you instead move the device so it’s standing on its bottom
edge, the values will adjust to approximately X:0, Y:10, Z:0. Standing the device on
its top edge will result in approximate accelerometer values of X:0, Y:-10, Z:0. An
application uses these values to determine how a user is holding the device and is
most useful for games and interactive applications.

PhoneGap developers can query an API to determine a device’s orientation at a
particular time or can watch the accelerometer to monitor the device’s acceleration
repeatedly over a periodic time interval. Determining motion through space is
simply a matter of comparing subsequent orientation measurements and calculat-
ing the difference between them.

The API returns accelerometer values that vary depending on the device OS. For
example, devices running BlackBerry Device Software 7 return values from about
–1000 to 1000, while Android devices as shown return values from about –10 to
10. Your applications will need to provide for this variance and adjust their

10

ptg8126969

158 CHApter 10 ACCelerometer

accelerometer scaling depending on which mobile platform the application is
running on. This is yet another reason why testing on physical devices and on all
supported platforms is important for any developer.

Holding the device in position will result in some variance in values; the device is
“moving” the tiniest bit after all, so your applications will have to adjust for minor
movement of the device and respond to what are clearly true movements of the
device through space. Most likely your application will simply ignore the last few
decimal places in the measurement or convert to the nearest integer.

In most cases, you will need to test applications that use the Accelerometer API on
physical devices. The iPhone simulator and the Android emulators, for example,
don’t include an option for setting device orientation except in the iPhone’s case
where you can simulate shaking the device. Only a physical device will give you the
ability to put this API through its paces.

Unfortunately, there’s no way with PhoneGap to determine programmatically
whether a device has an accelerometer except to query the accelerometer and then
deal with any errors that are returned. If your application relies upon the ability to
determine a device’s orientation, say for a driving game or a bubble level applica-
tion, then you will likely need to abort the application when the accelerometer API
returns an error.

Note: Not all smartphones have an accelerometer. The iPhone series of devices have
always had one, but RIM didn’t add one until the BlackBerry Storm running Black-
Berry Device Software 4.7.

Querying Device Orientation
The Accelerometer API allows an application to query the current orientation of
the device using the following code:
navigator.accelerometer.getCurrentAcceleration(onAccelSuccess,
 onAccelFailure);

The function takes as parameters the names of two functions: the onAccelSuccess
function is executed when accelerometer data is available; the onAccelFailure func-
tion is executed when there is an error retrieving accelerometer data.

Accelerometer data is passed to the onAccelSuccess function through an accel-
eration object, namely, the accel object shown in the following example. The
object encapsulates four values reflecting the current orientation (X, Y, and Z

ptg8126969

159Querying deviCe orientAtion

values plus a timestamp indicating when the measurement was taken) of the
device, as shown here:
function onAccelSuccess(accel) {
 xPos = accel.x;
 yPos = accel.y;
 zPos = accel.z;
 tStamp = accel.timestamp;
}

If you think about it, there are probably not a lot of use cases for just determining
the device’s orientation a single time. In any game or application that truly uses
orientation, determining the way the application user is orienting the device over
time is much more useful than just checking it once. You could write the applica-
tion so it periodically checks the device orientation manually (through repeated
calls to getCurrentAcceleration), but defining an accelerometer watch (described
in the next section) is a more efficient way to do this. If your application needs to
perform a lot of calculation or do some work using network resources between
checking orientation, then checking orientation when you want using this API
would work, but you run the risk of the application not appearing responsive to the
end user.

The iPhone doesn’t support the concept of determining orientation through a
direct API call; instead, you must use an accelerometer watch to obtain orienta-
tion information. In this case, a call to getCurrentAcceleration simply causes
the successFunction to be called and passed the accelerometer value from the
last firing of an accelerometer watch.

Let’s take a look at a sample application that uses the getCurrentAcceleration
API (see Example 10-1). The application creates a simple page with a button the
user can click to refresh the device’s orientation data within the page.

Example 10-1

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0,
 user-scalable=no;" />
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

ptg8126969

160 CHApter 10 ACCelerometer

 //Accelerometer content
 var ac;
 //PhoneGap Ready variable
 var pgr = false;

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //Get a handle we'll use to adjust the accelerometer
 //content
 ac = document.getElementById('accelInfo');

 //Set the variable that lets other parts of the program
 //know that PhoneGap is initialized
 pgr = true;
 }

 function getAcceleration() {
 if (pgr == true) {
 //Clear the current orientation
 ac.innerHTML = "";
 //get the current orientation
 navigator.accelerometer.getCurrentAcceleration(
 onAccelSuccess, onAccelFailure);
 } else {
 alert("Please wait,\nPhoneGap is not ready.");
 }
 }

 function onAccelSuccess(accel) {
 //We received something from the API, so...
 //first get the timestamp in a date object
 //so we can work with it
 var d = new Date(accel.timestamp);
 //Then replace the page's content with the
 //current acceleration retrieved from the API
 ac.innerHTML = "Current acceleration<hr />X: " +
 accel.x + "
Y: " + accel.y + "
Z: " +
 accel.z + "
Timestamp: " + d.toLocaleString() +
 "<hr />Click the button to refresh.";
 }

 function onAccelFailure() {
 alert("Accelerometer error!");
 }

 </script>

ptg8126969

161Querying deviCe orientAtion

 </head>
 <body onload="onBodyLoad()">
 <h1>Example 10-1</h1>
 <p>This is a PhoneGap application that measures
 Device acceleration using the Accelerometer API.</p>
 <p><input type="button"
 value="Refresh Orientation" onclick="getAcceleration();">
 </p>
 <p id="accelInfo">Nothing to see here (yet),
 click the button.</p>
 </body>
</html>

The JavaScript code within the application starts by defining a couple of variables. The
application uses the ac variable to give it an easy way to update the acceleration con-
tent every time the button is clicked. Since the application user can click the button
before PhoneGap has finished initializing, the pgr variable is used as a flag to allow
the application to determine whether the onDeviceReady function has been executed
yet. When pgr is false, the application will not attempt to query the accelerometer.

When the user clicks the button, the application executes the getOrientation
function, which calls the getCurrentAcceleration API and passes in the names
of the functions that are executed on success (onAccelSuccess) and failure
(onAccelFailure). After accelerometer values are retrieved, the API calls the
onAccelSuccess function passing in the current accelerometer values. At this
point, the application updates the current page with the accelerometer data.

When you run the application on an Android device, you will see a screen similar
to the one shown in Figure 10-1.

Figure 10-1 Example 10-1 running on an Android device

ptg8126969

162 CHApter 10 ACCelerometer

Watching a Device’s Orientation
Instead of querying a device’s orientation through repeated calls to
getCurrentAcceleration, a PhoneGap application can set up an accelerometer
watch that automatically measures accelerometer data at specific intervals. To
define an accelerometer watch, use the following code:
watchID = navigator.accelerometer.watchAcceleration(
 onAccelSuccess, onAccelFailure, accelOptions);

This will enable the watch and, through the accelOptions object, define options
that control how the watch operates.

As with getCurrentAcceleration (described in the previous section), the names
of two functions are passed to the API when the watch is created. In the example
shown, the onAccelSuccess function is executed when accelerometer data is
available, and the onAccelFailure function is executed when there is an error
retrieving accelerometer data.

The third parameter to watchAcceleration is an optional value that defines how
often the watch fires. This watch frequency is passed to the function as an object, as
shown in the following example:
var accelOptions = { frequency: 1000 };

The frequency value is represented in milliseconds (1 second = 1,000 millisec-
onds). If the accelOptions value is omitted, the watch defaults to measuring
accelerometer data every 10 seconds.

In the example call to watchAcceleration shown earlier, you’ll notice that the
result of the call to watchAcceleration is assigned to the watchID variable. An
application will use the watchID value later when canceling a watch when it is no
longer needed, as shown in the following example:
navigator.accelerometer.clearWatch(watchID);

Let’s take a look at Example 10-2, an application that uses the watchAcceleration
API. This application is an extension of Example 10-1; it removes the Refresh but-
ton and instead automatically updates accelerometer data every half second (500
milliseconds).

Example 10-2

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">

ptg8126969

163wAtCHing A deviCe’s orientAtion

 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"
 />
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 // Accelerometer watcher ID
 var awID;
 //Orientation content
 var ac;

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //Get a handle we'll use to adjust the
 //acceleration content
 ac = document.getElementById('accelInfo');

 //Accelerometer Options, read the accelerometer
 //every half second (500 milliseconds)
 var accelOptions = { frequency: 500 };

 //Add the accelerometer watcher
 awID = navigator.accelerometer.watchAcceleration(
 onAccelSuccess, onAccelFailure, accelOptions);
 }

 function onAccelSuccess(accel) {
 //Then replace the page's content with the
 //current orientation retrieved from the API
 ac.innerHTML = "X: " + accel.x +
 "
Y: " + accel.y +
 "
Z: " + accel.z;
 }

 function onAccelFailure() {
 alert("Accelerometer error! Clearing Watch ID");
 //Cancel the watch
 navigator.accelerometer.clearWatch(awID);
 }

 </script>
 </head>

ptg8126969

164 CHApter 10 ACCelerometer

<body onload="onBodyLoad()">
 <h1>Example 10-2</h1>
 <p>Apache PhoneGap Accelerometer Watcher</p>
 <p>Current Orientation<hr /></p>
 <p id="accelInfo">Waiting for PhoneGap to initialize.
 </p>
 <hr />
</body>
</html>

In the application’s onDeviceReady function, the application first creates the
accelOptions variable that defines the watch frequency. Then, the application
creates the watch using a call to watchAccelerometer. Every half second, the
application calls onAccelSuccess to update the page with the latest values from
the accelerometer. When you run the application on an Android device, you will
see a screen similar to the one shown in Figure 10-2.

Figure 10-2 Example 10-2 running on an Android device

Be sure to check the PhoneGap API documentation at http://docs.phonegap.com/
en/1.1.0/phonegap_accelerometer_accelerometer.md.html for information about
platform-specific oddities with this particular API.

http://docs.phonegap.com/en/1.1.0/phonegap_accelerometer_accelerometer.md.html
http://docs.phonegap.com/en/1.1.0/phonegap_accelerometer_accelerometer.md.html

ptg8126969

165

Camera

The PhoneGap Camera API provides an application with the ability to work
with images, either captured directly from the camera or retrieved from the
device’s photo repository. When retrieving an image, the API can return either a
URI pointing to the image file on the device’s file system or the base64-encoded
string representing the content from the image.

The API provides a single method, navigator.camera.getPicture, which is
used to retrieve an image, and a cameraOptions object that’s used to define param-
eters around how the image is obtained, how it’s formatted, and more.

Applications can also use the PhoneGap Capture API to capture images using the
camera. Refer to Chapter 12 for more information about this API. The Camera and
Capture APIs are different enough that you will want to evaluate both before
selecting an option for your application.

Accessing a Picture
To obtain a picture from the device, an application should execute the following
function:
navigator.camera.getPicture(onCameraSuccess, onCameraError,
 cameraOptions);

Like other PhoneGap APIs, the call to getPicture requires that you pass in two
functions that are executed on success and failure of the call. In this case, they’re
the onCameraSuccess and onCameraError functions. The onCameraSuccess
function is executed when an image is obtained (I’ll explain more about where the
images come from and how you configure the API in the “Configuring Camera

11

ptg8126969

166 CHApter 11 a

Options” section later in this chapter). The onCameraError function is executed
when the user cancels the process of retrieving an image once started or when an
error occurs with the process.

Example 11-1 shows the Camera API being used with its default options. Accord-
ing to the PhoneGap API documentation, the cameraOptions parameter is
optional, but that turns out to be true for some platforms and false on others. Let’s
take a look at the example application and then discuss the exceptions afterward.

Example 11-1

<!DOCTYPE html>
<html>
 <head>
 <title>Example 11-1</title>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"
 />
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 navigator.notification.alert("onDeviceReady");
 }

 function takePhoto() {
 navigator.camera.getPicture(onCameraSuccess,
 onCameraError);
 }

 function onCameraSuccess(imageURL) {
 navigator.notification.alert("onCameraSuccess: " +
 imageURL);
 }

 function onCameraError(e) {
 navigator.notification.alert("onCameraError: " + e);
 }
 </script>
 </head>

ptg8126969

167ACCessing A piCture

 <body onload="onBodyLoad()">
 <h1>Example 11-1</h1>
 <p>Using the PhoneGap Camera API

 <input type="button" value="Take a Picture"
 onclick="takePhoto();">
 </p>
 </body>
</html>

In this application, there’s a simple page with a button that the user clicks to take
a picture using the camera. When the button is clicked, the takePhoto function
is executed, which simply calls the getPicture method, passing in the
onCameraSuccess and onCameraError functions.

In this example, we’re not passing in a cameraOptions object, so getPicture will
just use the default options of getting the image from the camera and returning a
file URI pointing to where the image was stored after it was taken. Once an image
has been obtained from the camera, the onCameraSuccess function is called and
passed to the URI pointing to the image file that was just created. In your applica-
tions, you’ll probably do something with the image URI, but in this case all the
application does is display an alert and show the file URI passed to the function.

Figure 11-1 shows the Example 11-1 application running on an Apple iPhone.

Figure 11-1 Example 11-1 running on an Apple iPhone

ptg8126969

168 CHApter 11 a

When you click the Take a Picture button, there’s a slight delay, and then the stan-
dard camera application will open and allow you to take a picture. The delay can be
quite long, so your application may want to display a “please wait” screen before
calling the API. Once a picture has been taken, iOS will display the preview win-
dow shown in Figure 11-2. At this point, you can either retake the picture or click
the Use button to return to the PhoneGap application.

Figure 11-2 Camera preview on iPhone

Notice from the figure that there’s no way to cancel the process at this point. If the
user initiates the taking of a picture in a PhoneGap application running on iOS,
there’s no way to cancel the process and not take a picture.

Counterintuitive Process

In my testing, the picture capture process was not very user friendly; only BlackBerry
provided an intuitive interface for this part of the process. On BlackBerry, after you
take the picture, you’re immediately returned to the PhoneGap application.

For iOS and Android, you’re presented with a preview window you can use to
validate that the picture is the one you want. While this is a good thing from the

ptg8126969

169ACCessing A piCture

user’s standpoint, the way you transition from the preview screen back to the
PhoneGap application can be a counterintuitive part of the process.

On iOS, you have to click the Use button shown in Figure 11-2, which makes some
sense but may not be completely clear to the user what “use” means. On some
flavors of the Android OS, there’s no label on the button; you have to know to click
the paper clip icon highlighted in Figure 11-6. Fortunately, some Android devices
display OK, Retake, and Cancel buttons on the preview window.

Be aware of these inconsistencies and take them it into account when creating
applications that leverage the camera.

On iOS, when control returns to the calling program, the application displays an
alert and shows the file URI for the image file just created, as shown in Figure 11-3.

Figure 11-3 Example 11-1 displaying an image file URI

One of the things to note about the iOS version of the application is that the file
URI returned to the program references a temporary location that is available only
to the application. If you take a look at Figure 11-3, you’ll see that the file URL
refers to the following:
file://localhost/var/mobile/Applications/
169DF9CB-25D0-4EC8-85B2-380A6342E08D/tmp/photo_001.jpg

ptg8126969

170 CHApter 11 a

In this file URI, the file://localhost/var/mobile/Applications/ location
refers to a file system area allocated to application data. The 169DF9CB-25D0-
4EC8-85B2-380A6342E08D part refers to a unique identifier associated with each
iOS application. The tmp folder refers to a temporary storage location allocated to
the application; when the application closes, there’s a high likelihood that the tem-
porary storage allocated to the application will be cleared, and you will lose access
to the image file. If your application needs access to the image file at a later time, it
will need to make a copy of the image file (using the File API described in Chap-
ter 18) in a less volatile location before the application closes.

Absent Camera Simulators

One of the frustrating things about the iOS simulator and older Android emulators is
that Google and Apple omitted camera simulators in their simulation products.
When testing an application that uses the PhoneGap Camera API on one of these
products, it will fail, even though the real devices support the capability. Newer
Android emulators have apparently been outfitted with a camera simulator.

Fortunately, on iOS, the PhoneGap device.name property (described in Chapter 16)
will accurately report whether the application is running on a physical device or a
simulator. An application could detect when it’s running on a simulator and retrieve
an image from the photo library instead of the camera.

For Android, there’s no direct way to determine whether the application is running
on an emulator or a physical device. When testing camera functionality, the
emulators won’t work; you’ll have to resort to on-device testing exclusively.

When you run Example 11-1 on an Android or BlackBerry device, you’ll have
problems. In my testing, on Android it takes a picture but then crashes the PhoneGap
application as it returns picture information to the application. On BlackBerry, it
won’t even take the picture; you click the button, and nothing happens. Apparently
the default value for Camera.DestinationType in cameraOptions for those two
platforms is DATA_URL, which, because of memory limitations described elsewhere
in this chapter, will cause an application to crash when a picture is taken at full
resolution. This bug has been identified and should be fixed in PhoneGap 1.4.

ptg8126969

171ACCessing A piCture

To make the application work on Android and BlackBerry, you must modify the
call to getPicture to include a simple cameraOptions object, as shown in the fol-
lowing example:
function takePhoto() {
 navigator.camera.getPicture(onCameraSuccess, onCameraError,
 {quality: 50,
 destinationType: Camera.DestinationType.FILE_URI }
);
}

With that in place, you can run the application on BlackBerry and then click the
Take a Picture button to see a screen similar to the one shown in Figure 11-4.

Figure 11-4 Example 11-1 taking a picture on a BlackBerry device

When you click the camera button at the bottom middle of the screen, the captured
image will be returned to the PhoneGap application, as shown in Figure 11-5.
Notice from the figure that the image file is stored in the default BlackBerry photo
storage location, so unlike iOS, any pictures taken by the application will be avail-
able after the application terminates.

ptg8126969

172 CHApter 11 a

Figure 11-5 Example 11-1 camera image file location on BlackBerry

If you do not want your application’s photos to be left lying around after your appli-
cation closes, you will need to manually delete the image file(s) once your applica-
tion is through processing them. The application can use the PhoneGap File API
(described in Chapter 18) to delete the file after the application is done with it.

Figure 11-6 shows Example 11-1 running on an Android device. In this case, the
picture has already been taken, and what’s shown is the picture preview window
that the Android OS provides users. The frustrating part of what’s shown in the
figure is that from the user’s standpoint, it’s hard to know what to do next here. It’s
likely clear to the user that he is previewing a picture he just took (he did just take
the picture after all), and it’s possible that he will figure out that he can take another
picture by clicking the camera image and can delete the image by clicking the trash
can icon. The purpose of the paper clip icon, highlighted in Figure 11-6, is unclear,
but when you click it, information about the selected image is returned to the
PhoneGap application.

ptg8126969

173ACCessing A piCture

Figure 11-6 Example 11-1 image preview on Android

You might be asking yourself, what do I do with this image file URI once I get it
back from the camera? Well, it’s a file pointer pointing to an image file, so once the
application knows where the file is, it can read from the file, copy it somewhere else
(using the PhoneGap File API, described in Chapter 18), or even pass the file URI
to the PhoneGap application’s UI to display the image within the application.

Example 11-2 is a slightly modified version of Example 11-1. In this version, when
the image URI is returned to the application, an HTML image tag is written to the
index.html page so the captured image will appear on the screen.

Example 11-2

<!DOCTYPE html>
<html>
 <head>
 <title>Example 11-2</title>
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <meta name="viewport" id="viewport"

ptg8126969

174 CHApter 11 a

 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"
 />
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 navigator.notification.alert("onDeviceReady");
 }

 function takePhoto() {
 navigator.camera.getPicture(onCameraSuccess,
 onCameraError,
 {quality : 50,
 destinationType : Camera.DestinationType.FILE_URI});
 }

 function onCameraSuccess(imageURL) {
 //Get a handle to the image container div
 ic = document.getElementById('imageContainer');
 //Then write an image tag out to the div using the
 //URL we received from the camera application.
 ic.innerHTML = '<img src="' + imageURL +
 '" width="50%" />';
 }

 function onCameraError(e) {
 console.log(e);
 navigator.notification.alert("onCameraError: " + e +
 " (" + e.code + ")");
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Example 11-2</h1>
 <p>
 Using the PhoneGap Camera API

 <input type="button" value="Take a Picture"
 onclick="takePhoto();">
 <div id="imageContainer"></div>
 </p>
 </body>
</html>

ptg8126969

175ACCessing A piCture

The major change is in the onCameraSuccess function shown here. It’s been
rewritten so it grabs the content of the imageContainer <div> and then replaces it
with an tag that references the file URI returned by the getPicture
function.
function onCameraSuccess(imageURL) {
 //Get a handle to the image container div
 ic = document.getElementById('imageContainer');
 //Then write an image tag out to the div using the
 //URL we received from the camera application.
 ic.innerHTML = '';
}

Figure 11-7 shows the application running on an Android device.

Figure 11-7 Example 11-2 running on an Android device

ptg8126969

176 CHApter 11 a

Configuring Camera Options
Now that you know how to take pictures using the camera, let’s talk about options
you can use to configure how the process works. As you may remember from
the previous section, when calling getPicture, a developer can pass in a
cameraOptions object that defines parameters controlling how the picture is
obtained. The cameraOptions object supports the following properties:

•	 quality

•	 destinationType

•	 sourceType

•	 allowEdit

•	 encodingType

•	 targetWidth

•	 targetHeight

•	 mediaType

Each of these options will be described in greater detail in the following sections.
Like with many other features of PhoneGap APIs, certain API options (such as
allowEdit in the Camera API) apply on only a limited number of mobile
platforms.

Here’s an example of a fully configured cameraOptions object you could use in
one of your PhoneGap applications:
var cameraOptions = { quality : 75,
 sourceType : Camera.PictureSourceType.CAMERA,
 destinationType : Camera.DestinationType.FILE_URI,
 allowEdit : true,
 encodingType: Camera.EncodingType.JPEG,
 targetWidth: 1024,
 targetHeight: 768 };

When passed to the getPicture function, this cameraOptions object tells
getPicture to get the picture from the camera (sourceType), return a file URI that
points to the image file captured (destinationType), allow the user to edit the pic-
ture before returning it to the program (allowEdit), return the picture as a .jpeg
file (encodingType), configure the encoded image file to use 75% image quality
(quality), and set the image dimensions to 1024 by 768 pixels (targetWidth and
targetHeight).

Now let’s describe each of the cameraOptions properties in greater detail.

ptg8126969

177ConFiguring CAmerA options

quality
When working with smartphone cameras, higher-resolution optics in the camera
lens plus limited memory storage and network bandwidth available to devices
drove the need to be able to compress images so they took up less storage space and
transmission bandwidth. As part of this compression process, standards such as the
JPEG specification included support for using image quality to control compression
rates when an image file is being saved. By using different image quality settings,
defined as percentages, you can dramatically affect the physical size of an image file.

An image quality of 100% shows the image at its full capacity, with no reduction in
image quality, and gives you the best possible picture. As you reduce the image
quality, you will see some degradation in clarity in the image, but for most pur-
poses it will be acceptable—only smaller in file size.

The quality parameter allows a developer to specify the percentage image quality
for a picture captured using the Camera API. In most cases, you will use values
from 50% to 100% for your images. This is not so much because you care about
image quality, but more because you need to reduce image quality in order to
reduce image file size.

As you’ll see in the following section, developers can have an image file URI
returned from a call to getPicture or the actual raw, base64-encoded image file
data. Using the image file URI is easy; it’s just a file pointer, and you’ve already seen
examples here of how to use it in your applications. When obtaining raw image data
from getPicture, you have to deal with the fact that the device and the JavaScript
interpreter on the device have limits on how much data they can process. As newer
smartphones get higher and higher resolution cameras, you must reduce image
quality so that a PhoneGap application can successfully process the returned image
data. When processing raw data from a high-resolution picture at 100% quality,
you’d be processing a huge string, and the application might just crash without tell-
ing you why (like we saw when using default options for cameraOptions in Exam-
ple 11-1). When you reduce image quality, you reduce the amount of data the
application must process and increase the likelihood it will actually work.

Unfortunately, there is no guideline I can give you for how much you have to
reduce your image quality to guarantee success. You’ll just have to guess and test
and know that the value may differ on different platforms and even on different
devices on the same platform. The folks working on PhoneGap recommend using
50% image quality (or lower) when working with raw image data.

To configure a cameraOptions object to use a picture quality of 50%, use the fol-
lowing code:
quality : 50

ptg8126969

178 CHApter 11 a

According to the PhoneGap documentation, this option is ignored on the Black-
Berry platform.

destinationType
When capturing an image using getPicture, applications will use destinationType
to control whether the image information is returned as a file URI pointing to the
image file stored in device memory:
destinationType: Camera.DestinationType.FILE_URI

To receive the picture’s image data as a base64-encoded string value, use the
following:
destinationType: Camera.DestinationType.DATA_URL

Working with file URIs is easy, as shown in Example 11-2. The application has a file
pointer than can be manipulated within the application either by populating an
HTML img tag or when using the File API to copy the file to another location.
Once you know where the file is, accessing the image file is a simple process.

Figure 11-8 shows the output from Example 11-1 when a destinationType of
Camera.DestinationType.DATA_URL is used. As you can see from the figure, what
you have to work with is just a huge string, which, as mentioned in the previous sec-
tion, may cause memory overflow and crash your program if the string is too big.

Figure 11-8 Raw image data rendered in an Android alert dialog

ptg8126969

179ConFiguring CAmerA options

Using this raw image data, you can still render the picture in the UI, but you’re
more likely going to want to either store the data in a database or upload the data to
a file server. There’s just too much risk in trying to manipulate the image on the
mobile device.

sourceType
The sourceType parameter is used to define where getPicture gets its picture
from. When sourceType is omitted, getPicture will simply use the camera
(Camera.SourceType.CAMERA) to grab the picture. Applications can specify to
use the device’s photo library using the following:
sourceType : Camera.SourceType.PHOTOLIBRARY

To retrieve photos from a saved photo album, use the following:
sourceType : Camera.SourceType.SAVEDPHOTOALBUM

On most platforms, specifying a sourceType of SAVEDPHOTOALBUM or PHOTOLIBRARY
does essentially the same thing. As shown in Figure 11-9, when the application
makes a call to getPicture, the device will open the photo library application and
allow the user to first select a photo album and then select a single picture before
returning the selected picture to the PhoneGap application.

Figure 11-9 Photo gallery application on Android

ptg8126969

180 CHApter 11 a

On iOS devices, the two operate differently. When a sourceType of PHOTOLIBRARY
is specified, the application behaves similarly to what is highlighted in Figure 11-9.
When specifying a sourceType of SAVEDPHOTOALBUM, the application will open
the standard iOS Camera Roll photo library and allow the user to select a picture
from there.

According to the PhoneGap documentation, this option is ignored on the Black-
Berry platform.

allowEdit
An iOS application can use the allowEdit option to instruct getPicture to allow
the user to edit the selected image before returning it to the PhoneGap application.
To configure a cameraOptions object for this option, use the following:
allowEdit : true

Once enabled in an application, after the camera takes a picture, the device will
display a screen similar to the one shown in Figure 11-10. At this point, the user
can pinch, prod, and slide the picture around to fit the portion of the image they
want to capture into the reticle shown in the figure. When the user clicks the
Choose button, the edited picture is returned to the calling PhoneGap
application.

Figure 11-10 Picture editing on the iPhone

ptg8126969

181ConFiguring CAmerA options

encodingType
A PhoneGap application uses the encodingType cameraOption to tell getPicture
what kind of picture to take. Supported options are JPEG and PNG, with JPEG being
the default on most, if not all, platforms. To configure getPicture to return a
JPEG file, use the following:
encodingType: Camera.EncodingType.JPEG

To use PNG files, use the following:
encodingType: Camera.EncodingType.PNG

This option is not supported on all platforms; refer to the PhoneGap documenta-
tion for specifics.

targetHeight and targetWidth
The targetHeight and targetWidth parameters control the height and width
of the image obtained using getPicture. You can set either targetHeight or
targetWidth, and the image will be scaled accordingly. If you specify both, the
image will be scaled to the one that results in the smallest aspect ratio. Either way,
the aspect ratio will be maintained.

Since there’s no way to programmatically determine the camera resolution or the
supported aspect ratio before taking a picture, there is therefore no way to accu-
rately set these values within an application without guessing or direct testing on
each supported device.

To define a cameraOptions object that specifies targetHeight and targetWidth
for the image, use the following code:
targetHeight: 100, targetWidth: 100

mediaType
Since many modern smartphones can typically store multiple media types in a
photo library or photo library, the PhoneGap Camera API supports the addition of
a mediaType value in the cameraOptions object in cases where the sourceType is
set to PHOTOLIBRARY or SAVEDPHOTOALBUM. The parameter supports the following
options:

•	 DEFAULT: Returns image information using the format specified in the
destinationType value

•	 ALLMEDIA: Allows selection from all media types

ptg8126969

182 CHApter 11 a

•	 PICTURE: Allows the selection of photographs only

•	 VIDEO: Allows selection of video files only

When the option for VIDEO is selected, only a file URI will be returned to the call-
ing program. Returning the raw video image data in a JavaScript String variable
would certainly overload the JavaScript interpreter included in the browser and
would most likely crash the application.

Dealing with Camera Problems
As with any computer or smartphone development, there are lots of places where
things can go wrong. The purpose of this section is to highlight some of the ways
you can tell what’s going on when the Camera API fails.

When the onCameraError function fires, the Camera API passes in an error object
that can be queried to determine the cause of the error. As shown in Figure 11-11,
the error is a simple text message that tells what happened. In this case, the user
clicked the Cancel button in Figure 11-10, so there’s no image information to
return to the PhoneGap application.

Figure 11-11 An example of the onCameraError function firing in a PhoneGap
application

ptg8126969

183deAling witH CAmerA problems

When the application runs on a device that doesn’t have a camera, you will see an
error similar to the one shown in Figure 11-12.

Figure 11-12 An example of the onCameraError function firing on an iOS simulator

If your application is running on a device that doesn’t have a camera, it’s likely, but
not guaranteed, that the onCameraError function will be executed by the Camera
API. If an application fails and you’re not sure why, don’t forget that the console log
may contain information that can help. Figure 11-13 shows a portion of the iOS
console with Example 11-1 running. Notice that when the I click the Take a Picture
button, the console logs an error indicating that source type 1 (the camera) is not
available.

Figure 11-13 Using the console to debug camera issues

ptg8126969

184 CHApter 11 a

This is one of those weird examples where even though the device supports a
camera, Apple hasn’t decided it’s important enough to include that functionality in
the device simulator. In this case, to be able to test on the iOS simulators, your
application will need to check to see which device it’s running on and use a photo
library rather than the camera in cases where the camera is not available.

If your application seems to be running properly but when you take a picture noth-
ing happens or the application crashes, it’s likely caused by the application return-
ing raw camera data (rather than a file URI) and the device isn’t capable of
processing a string of that size. When this happens, try cranking down image qual-
ity (using the cameraOption quality setting) to 50% or less to see whether this
fixes the problem. If it does, then you’re going to have to do some work to deter-
mine the optimal image quality setting for your application and the devices it’s
running on.

ptg8126969

185

Capture

The PhoneGap Capture API allows an application to capture audio, video, and
image files using the appropriate built-in application on a mobile device. The
device’s default camera application is used to capture pictures and videos, while
the device’s default voice recorder application is used for capturing audio clips.

PhoneGap’s implementation of the Capture API is based on the W3C Media Cap-
ture API (www.w3.org/TR/media-capture-api). For whatever reason, though, the
PhoneGap team has omitted support for many of the options supported by the W3C
API. So, as you’ll see later, while the API is based upon a standard, with PhoneGap
many of the API options just don’t work or haven’t even been implemented.

Camera vs. Capture

You may be asking yourself why PhoneGap implemented both Camera and
Capture APIs considering that there’s some overlap between the two in that they
can both capture images. Essentially, the Camera API was implemented before
PhoneGap adopted the W3C Capture API. It is likely PhoneGap just kept the
Camera API for backward compatibility with existing applications.

While both APIs capture images, the APIs operate in different ways. The Camera
API can capture only images but supports alternate sources for the image files,
while the Capture API will only allow you to interact directly with the capture
application and allow multiple captures with a single API call.

12

www.w3.org/TR/media-capture-api

ptg8126969

186 CHApter 12 CApture

Using the Capture API
As with most PhoneGap APIs, the Capture API is accessed through a call to one of
the capture methods while passing in both success and failure functions plus an
options object that controls aspects of the capture event. Each of the parameters
passed to the capture functions will be explained later in the chapter.

To capture one or more audio files, an application would make a call similar to the
following:
navigator.device.capture.captureAudio(onCaptureSuccess,
 onCaptureError, captureOptions);

To capture one or more image files, an application would use the following:
navigator.device.capture.captureImage(onCaptureSuccess,
 onCaptureError, captureOptions);

To capture one or more video files, an application would use the following:
navigator.device.capture.captureVideo(onCaptureSuccess,
 onCaptureError, captureOptions);

In these examples, the onCaptureSuccess function is called after the capture
application (either the device’s camera application or audio recorder) has finished
capturing the appropriate media type. When the function is called, the API passes
in an array containing information about the media files that were captured by the
call to the Capture API. The function should then loop through the array and pro-
cess each of the media files generated during the capture, as shown in the following
example:
function onCaptureSuccess(fileList) {
 var len, i;
 //See how many files are listed in the array
 len = fileList.length;
 //Make sure we had a result; it should always be
 //greater than 0, but you never know!
 if(len > 0) {
 //Media files were captured, so let's process them
 for(i = 0, len; i < len; i += 1) {
 //===
 //Do something with the returned file list
 //===

 }
 } else {
 //This will probably never execute
 alert("Error: No files returned.");
 }
}

ptg8126969

187PI

The file list array passed to the function supports the following properties:

•	 name: The short name for the file (a file name plus extension)

•	 fullPath: The full file path for the file (a file path, file name, and
extension)

•	 type: The file’s Multipurpose Internet Mail Extensions (MIME) type

•	 lastModifiedDate: The date and time the file was last modified

•	 size: The file’s size in bytes

An application can use these properties to locate and manipulate each file returned
from the capture event, typically rendering the file within the application’s UI or
uploading them to a server for processing or storage.

In the following example, the file list is parsed, and the application’s UI is updated
to include an ordered list of file short names that can be clicked to open the file.
function onCaptureSuccess(fileList) {
 var i, len, htmlStr;
 len = fileList.length;
 if(len > 0) {
 //Get a handle to the results area of the screen/page
 res = document.getElementById("captureResults");
 htmlStr = '<p>Results:</p>';
 for(i = 0, len; i < len; i += 1) {
 htmlStr += '<a href="file:/' +
 fileList[i].fullPath + '">' + fileList[i].name +
 '';
 }
 htmlStr += '';
 //Set the results content
 res.innerHTML = htmlStr;
 }
}

There’s a function an application can call to obtain information about a media file:
mediaFile.getFormatData(successCallback, errorCallback);

Information about the media file is obtained in the successCallback function
through the MediaFileData object passed to the function. Unfortunately, as you
look at the PhoneGap API documentation, there is very limited support for this
capability today.

Calls to the Capture API will create media files for each capture event. These files will
be left wherever the capture application places them before passing the file list back
to the PhoneGap application that called the Capture API. When your application is

ptg8126969

188 CHApter 12 CApture

done processing the captured files, you may want to delete the files to save space and
keep the user from seeing media files that are no longer useful.

The onCaptureError callback function is executed whenever there is an error
with a particular capture event. The function is passed an error object that can be
queried to determine the cause of the error. The Capture API includes several con-
stants that can be evaluated against to determine the specifics of the error:

•	 CaptureError.CAPTURE_INTERNAL_ERR: The camera or microphone
failed to capture an image or sound.

•	 CaptureError.CAPTURE_APPLICATION_BUSY: The camera or audio
capture application is busy serving another capture request.

•	 CaptureError.CAPTURE_INVALID_ARGUMENT: The application made an
invalid use of the API (an invalid or missing parameter, for example).

•	 CaptureError.CAPTURE_NO_MEDIA_FILES: The application user exited
the camera or audio capture application before completing a capture.

•	 CaptureError.CAPTURE_NOT_SUPPORTED: The specified capture operation
is not supported.

The following is an example of an onCaptureError callback function that uses
these properties:
function onCaptureError(e) {
 var msgText;
 //Build a message string based on the
 //error code returned by the API
 switch(e.code) {
 case CaptureError.CAPTURE_INTERNAL_ERR:
 msgText = "Internal error, the camera or microphone
 failed to capture image or sound.";
 break;
 case CaptureError.CAPTURE_APPLICATION_BUSY:
 msgText = "The camera application or audio capture
 application is currently serving other capture
 request.";
 break;
 case CaptureError.CAPTURE_INVALID_ARGUMENT:
 msgText = "Invalid parameter passed to the API.";
 break;
 case CaptureError.CAPTURE_NO_MEDIA_FILES:
 msgText = "User likely canceled the capture process.";
 break;
 case CaptureError.CAPTURE_NOT_SUPPORTED:
 msgText = "The requested operation is not supported
 on this device.";
 break;

ptg8126969

189ConFiguring CApture options

 default:
 //Create a generic response, just in case the
 //following switch fails
 msgText = "Unknown Error (" + e.code + ")";
 }
 //Now tell the user what happened
 console.log(msgText);
 alert(msgText);
}

In my work with the Capture API, I discovered that iOS applications returned the
correct error object when the user canceled a capture, but Android devices I tested
on did not. The Android devices regularly returned an unknown error and triggered
the default portion of the switch statement shown in the example. For that reason,
an application might not really be able to tell what happened when a capture failed.

Configuring Capture Options
Each of the supported capture methods accepts an optional captureOptions
object that controls aspects of how the capture is performed. The available proper-
ties supported by captureOptions are as follows:

•	 duration

•	 limit

•	 mode

All options are not supported across all capture types. Table 12-1 illustrates where
each option applies to the different capture types.

Table 12-1 Capture Options

Capture Option

Capture Type Duration Limit Mode

Audio X X X

Image X X

Video X X X

A valid captureOptions object would be defined using the following code:
var captureOptions = {duration: 5, limit: 3};

This example creates a captureOptions object that configures a maximum cap-
ture recording duration of five seconds and a maximum of three captures during
the capture event.

ptg8126969

190 CHApter 12 CApture

duration
The duration property applies to only audio and video capture and is designed to
control the length (in seconds) of a particular media capture. It allows an applica-
tion to specify the maximum number of seconds an audio or video clip can be.
When used in an application, the user can record media clips shorter than, but no
longer than, the number of seconds set for this property.

Looking at the current PhoneGap API documentation, the duration captureOption
is not supported on Android and BlackBerry, and it is supported only on iOS for
audio capture. Because of this limitation, it’s probably best not to use this option in
your PhoneGap applications.

limit
The inappropriately named limit captureOption defines the number of captures
performed with the call to the particular capture method. It would make more
sense if they called this quantity, but since it’s part of the W3C specification, they
had to support the options as defined.

According to the documentation, the limit value is supposed to define a maxi-
mum number of captures performed, indicating that the application user could
perform less than the maximum. In my testing, it doesn’t work that way; if a user
takes less than limit captures, the onCaptureError function is called indicating
that the capture process has been aborted.

If this option is used in an application, a value of 1 or greater must be defined.

mode
The mode property is supposed to define the recording mode for each of the sup-
ported capture types. When a device supports multiple file formats for a particular
capture type (such as JPEG and PNG for image captures, for example), the mode
property is supposed to allow you to specify which is used for a capture event.
Unfortunately, this particular feature has issues on PhoneGap.

For an application to use this feature, it would need to be able to determine pro-
grammatically what modes are supported on the device before making the call to the
Capture API. To make things easier for the developer, PhoneGap even includes
the following properties, which are supposed to return the list of supported modes:

•	 supportedAudioModes

•	 supportedImageModes

•	 supportedVideoModes

ptg8126969

191CApture At work

Unfortunately, none of the properties is populated by recent versions of the
PhoneGap framework because the information is not exposed through an API on
most mobile device platforms.

Capture at Work
Now that we’ve worked through all of the options for the Capture API, it’s time to
show a complete example of how to use the API plus illustrate how the capture
function actually works on mobile devices. To highlight the capabilities of the
Capture API, I created Example 12-1, the application shown in Figure 12-1. It
essentially provides a single interface that can be used to demonstrate most of the
options supported by the Capture API. Because of the limitations of the mode cap-
ture option described previously, the application provides an interface only for the
duration and limit options for the Capture API.

Figure 12-1 Capture API demo running on an iPhone

ptg8126969

192 CHApter 12 CApture

The application uses jQuery Mobile (www.jquerymobile.com) to provide a
simple but elegant interface for the application. It uses the default theme to create
a simple header bar, the standard iOS buttons, and a cleaner interface for the slider
controls used in the application.

An application user selects a capture type using the picker control at the top of the
form and then makes selections for limit and duration; then the user clicks
the Capture button to begin capturing media files. At this point, the button’s
onClick event calls the doCapture function to start the capture process.

The doCapture function retrieves the current settings from the capture type picker
and the number of items and duration fields, and it then makes a call to the appro-
priate capture method, passing in a captureOptions object to tell the method
what to do.

The application uses the onCaptureSuccess and onCaptureError functions
highlighted earlier in the chapter to update the UI with capture results and to let
the user know when problems occur. Example 12-1 shows the complete listing.

Example 12-1

<!DOCTYPE html>
<html>
 <head>
 <title>Example 12-1</title>
 <meta name="viewport" content="width=device-width,
 height=device-height initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <link rel="stylesheet" href="jquery.mobile1.0b3.min.css" />
 <script type="text/javascript" charset="utf-8"
 src="jquery1.6.4.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="jquery.mobile1.0b3.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">
 var results;

 function onBodyLoad() {
 //Add the PhoneGap deviceready event listener
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

www.jquerymobile.com

ptg8126969

193CApture At work

 function onDeviceReady() {
 //Get a handle to the results area of the page
 //we'll need it later
 res = document.getElementById("captureResults");
 }

 function doCapture() {
 //Clear out any previous results
 res.innerHTML = "Initiating capture...";
 //Get some values from the page
 var numItems =
 document.getElementById("numItems").value;
 var capDur =
 document.getElementById("duration").value;
 //Figure out which option is selected
 var captureType =
 document.getElementById("captureType").selectedIndex;
 switch(captureType) {
 case 0:
 //Capture Audio
 navigator.device.capture.captureAudio(
 onCaptureSuccess, onCaptureError,
 {duration: capDur, limit: numItems});
 break;
 case 1:
 //Capture Image
 navigator.device.capture.captureImage(
 onCaptureSuccess, onCaptureError,
 {limit: numItems});
 break;
 case 2:
 //Capture Video
 navigator.device.capture.captureVideo(
 onCaptureSuccess, onCaptureError,
 {duration: capDur, limit: numItems});
 break;
 }
 }

ptg8126969

194 CHApter 12 CApture

 function onCaptureSuccess(fileList) {
 var i, len, htmlStr;
 len = fileList.length;
 //Make sure we had a result; it should always be
 //greater than 0, but you never know.
 if(len > 0) {
 htmlStr = "<p>Results:</p>";
 for(i = 0, len; i < len; i += 1) {
 //alert(fileList[i].fullPath);
 htmlStr += '<a href="file:/' +
 fileList[i].fullPath + '">' + fileList[i].name +
 '';
 }
 htmlStr += "";
 //Set the results content
 res.innerHTML = htmlStr;
 }
 }

 function onCaptureError(e) {
 var msgText;
 //Clear the results text, nothing to show
 res.innerHTML = "";
 //Now build a message string based upon the
 //error returned by the API
 switch(e.code) {
 case CaptureError.CAPTURE_INTERNAL_ERR:
 msgText = "Internal error, the camera or microphone
 failed to capture image or sound.";
 break;
 case CaptureError.CAPTURE_APPLICATION_BUSY:
 msgText = "The camera application or audio capture
 application is currently serving other capture
 request.";
 break;
 case CaptureError.CAPTURE_INVALID_ARGUMENT:
 msgText = "Invalid parameter passed to the API.";
 break;
 case CaptureError.CAPTURE_NO_MEDIA_FILES:
 msgText = "User likely cancelled the capture
 process.";
 break;
 case CaptureError.CAPTURE_NOT_SUPPORTED:
 msgText = "The requested operation is not supported
 on this device.";
 break;

ptg8126969

195CApture At work

 default:
 //Create a generic response, just in case the
 //following switch fails
 msgText = "Unknown Error (" + e.code + ")";
 }
 //Now tell the user what happened
 navigator.notification.alert(msgText, null,
 "Capture Error");
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <div data-role="header">
 <h1>Capture Demo</h1>
 </div>
 <div data-role="content">
 <label for="captureType">Capture Type:</label>
 <select id="captureType" name="captureType">
 <option value="0">Audio</option>
 <option value="1">Image</option>
 <option value="2">Video</option>
 </select>
 <label for="numItems">Number of Items</label>
 <input type="range" name="numItems" id="numItems"
 value="1" min="1" max="5" />
 <label for="duration">Duration</label>
 <input type="range" name="duration" id="duration"
 value="5" min="1" max="10" />
 <input type="button" id="captureButton" value="Capture"
 onclick="doCapture();">
 <div id="captureResults"></div>
 </div>
 </body>
</html>

The first thing you’ll notice when you use the API in your applications is that on
some devices there’s a fairly long delay after calling the capture method before the
device’s default capture application launches to perform the capture. Because of
this delay, your application may need to include a Loading Capture Application
window or something to let the user know what’s going on during this delay.

You will also notice inconsistencies in the implementation of capture functionality
across different Android devices; some examples of this will be provided later in
the chapter. Additionally, even though the API documentation doesn’t indicate

ptg8126969

196 CHApter 12 CApture

this, on the BlackBerry platform, the limit option is ignored, so no matter what
setting you use, the BlackBerry will perform only one capture per call to the Cap-
ture API.

Let’s look at some examples of Example 12-1 in action.

In Figure 12-2, the application is running on an iPhone device and is configured to
capture an image in addition to grabbing three images when the user clicks the
Capture button. Since image capture is being performed, the duration option has
no effect on the capture process.

Figure 12-2 Example 12-1 configured for image capture

When the user clicks the Capture button, the iOS camera application will load
and prompt the user to take three pictures, one at a time. As each image is cap-
tured, iOS will prompt the user to use the current image or discard it and take a

ptg8126969

197CApture At work

different picture, as shown in Figure 12-3. The user must click the Use button to
accept the current picture and either take another picture or return to the calling
program.

Figure 12-3 Example 12-1 image preview on iOS

When the images are returned to the calling program, it will update the UI to show
the list of image files, as shown in Figure 12-4. In this example, it’s showing links to
the image files that can be clicked to open the images for viewing. For audio and
video captures, the links may open but won’t display properly because of some lim-
itations in the device OS.

ptg8126969

198 CHApter 12 CApture

Figure 12-4 Example 12-1 image capture results

With the application configured for audio clip capture, the sound recorder applica-
tion will load, as shown in Figure 12-5. When finishing the recording of the audio
clip, the user must click the Done button to return information about the captured
audio files to the calling program.

With the application configured for video capture, the video recorder application
will load, as shown in Figure 12-6. When finishing recording of the clip, the user
must click the Use button to return information about the captured video files to
the calling program.

As you can see from these iOS examples, the process is pretty straightforward, but
even on iOS there are inconsistencies. In some cases, the user clicks a Use button to
return to the calling program, but in other cases it’s a Done button. Additionally, if
you’re doing multiple captures, there’s no visual indication of how many captures
are being performed and how many have been completed. For this reason, I recom-
mend that you do only a single capture at a time (use the default for limit, which
is a single capture) to make it clearer to your application user what’s going on.

ptg8126969

199CApture At work

Figure 12-5 Example 12-1 audio capture

Figure 12-6 Example 12-1 video capture

ptg8126969

200 CHApter 12 CApture

Figure 12-7 shows the same application running on an Android device. As you can
see from the figure, the application looks (almost) the same as it does on iOS; this is
made possible by jQuery Mobile, which takes care of the UI so you don’t have to. In
this example, the application is configured for image capture and will grab two
images when the user clicks the Capture button.

Figure 12-7 Example 12-1 running on an Android device

When the user clicks the Capture button, the camera application for the specific
device will load and prompt the user to take two pictures, one at a time. As each
image is captured, Android will prompt the user to use the current image or dis-
card it and take a different picture, as shown in Figure 12-8. For the device I used
for testing, the user must click the highlighted paperclip button to accept the cur-
rent picture and either take another picture or return to the calling program. Other
Android devices may have a different UI for the camera application that could
include different buttons or different button labels.

ptg8126969

201CApture At work

Figure 12-8 Example 12-1 Android image preview

Where this gets interesting is when you attempt to capture an audio file on an
Android device. When the user clicks the Capture button, the default Android
Voice Recorder application will launch, as shown in Figure 12-9. When the user
clicks the Record button in the bottom middle of the voice recorder application
screen, the application will record an audio clip using the device microphone (or a
headset microphone if one is plugged into the device).

When the user clicks the Stop button (the button with the square on it in the
bottom-right corner of Figure 12-9) to end the recording, the voice recorder appli-
cation will display a screen similar to the one shown in Figure 12-10 (the screen
will vary depending on the Android OS version and possibly the device manufac-
turer). The problem here is that for the particular devices I used for testing, there is
no way to indicate to the voice recorder application that you’re done recording and
want to return to the calling program. On other devices such as the Motorola
Droid smartphone, it will show a “Use this recording” button and pass the recorded
file back to the PhoneGap application.

ptg8126969

202 CHApter 12 CApture

Figure 12-9 Example 12-1 Android audio capture

The PhoneGap application can use the Capture API to launch the voice recorder
application, but there’s no way within the voice recorder application to pass
information about the captured media files back to the PhoneGap application.
On the device I used for testing, shown in Figure 12-10, you can play the audio
clip, re-record the clip, share or delete the clip, and even access a listing of cap-
tured audio files, but there’s no way to get the captured audio clip back to the
PhoneGap application. Other manufacturers’ devices may show more appropri-
ate options to the user.

When capturing video on an Android device, the application will launch the video
recorder application to capture the video. When the recording process is complete,
the video recorder application will display the preview screen, as shown in Fig-
ure 12-11. In this case, the application is running on a LG Thrill device. When sat-
isfied with the video clip, the user must click the paperclip icon highlighted in the
figure to return information about the video clip(s) to the calling program.

ptg8126969

203CApture At work

Figure 12-10 Android voice recorder audio clip options

Figure 12-11 Video preview on an Android LG Thrill device

ptg8126969

204 CHApter 12 CApture

On Samsung Infuse 4G Android devices, the preview window is different, showing
only the save and discard options shown in Figure 12-12.

Figure 12-12 Video preview on an Android Samsung Infuse 4G device

The application will run unmodified on newer BlackBerry devices. The only issue
affecting developers is that the BlackBerry platform ignores the limit option, so
no matter what your application expects, on a BlackBerry only one capture event
will occur for every call to the Capture API.

ptg8126969

205

Compass

The Compass API allows a PhoneGap program to determine the device’s head-
ing along a two-dimensional plane roughly corresponding to the surface of the
earth. Many modern smartphones have a physical compass (on a chip), and the API
simply queries the chip and returns an angle between 0 and 360 indicating the
direction the device is pointing. A value of 0 indicates the device is pointing north,
90 indicates it is pointing east, 180 refers to south, and 270 refers to west.

Note: Not all smartphones have a compass. The iPhone series of devices have always
had one, but RIM didn’t add one until BlackBerry 7 OS devices.

The Compass API works in a very similar manner to the Accelerometer API
described in Chapter 10. Using the API, developers can manually query the
device’s orientation or can set up a watch to have the API periodically report orien-
tation to the application on a specific frequency or when the device’s orientation
changes by a minimum threshold.

Getting Device Heading
To query the device’s orientation, simply call the following method:

navigator.compass.getCurrentHeading(successFunction,
 errorFunction);

Passed to the API are the names of two functions that are called depending on
whether the API is returning a result. The successFunction is called when a read-
ing has been successfully made, and the errorFunction is called when there is an
error reading the compass.

13

ptg8126969

206 CHApter 13 CompAss

When called, the successFunction is passed the compassHeading object, which
consists of the following components:

•	 magneticHeading: The device’s current heading in degrees ranging from
0 to 359.99.

•	 trueHeading: The device’s current heading relative to the geographic
North Pole in degrees ranging from 0 to 359.99. A negative value indicates
that a value could not be determined.

•	 headingAccuracy: A value indicating the deviation, in degrees, between
the magneticHeading and trueHeading values.

•	 timestamp: The time when the heading values were measured (in millisec-
onds since the Unix Epoch, January 1, 1970).

The earth has two North Poles: the geographic North Pole (which is the exact, geo-
graphic top of the earth) and the magnetic North Pole (which regularly moves
around because of magnetic changes in the earth’s core). You’ll have to determine
which matters for your particular application. On the Android platform, the asso-
ciated APIs return values only for magneticHeading, so headingAccuracy will
always be zero.

Unlike the Accelerometer API, when the Compass API calls the errorFunction,
it passes in a CompassError object that allows a program to understand a little bit
about why the error occurred. The most useful aspect of this is that you can tell
whether the compass is supported on the device.

Let’s take a look at an application that implements this API. Example 13-1 is an
application that queries the compass and updates the screen with the current head-
ing every time a button is clicked. This is not necessarily the most robust example,
but it illustrates how the API works.

Example 13-1

<!DOCTYPE html>
<html>
 <head>
 <title>Example 13-1</title>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"
 />
 <script type="text/javascript" charset="utf-8"

ptg8126969

207getting deviCe HeAding

 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 // Heading content
 var hc;
 //PhoneGap Ready variable
 var pgr = false;
 //Has compass, assume true
 var hasCompass = true;

 function onBodyLoad() {
 //alert("onBodyLoad");
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //Get a handle we'll use to adjust the heading
 //content
 hc = document.getElementById('headingInfo');
 //Set the variable that lets other parts of the program
 //know that PhoneGap is initialized
 pgr = true;
 }

 function getHeading() {
 if (pgr == true) {
 if (hasCompass == true) {
 //Clear the current heading content,
 //just in case it takes some time to get the reading
 hc.innerHTML =
 "Getting heading information from compass.";
 //get the current heading
 navigator.compass.getCurrentHeading(
 onHeadingSuccess, onHeadingError);
 } else {
 alert("No compass, please stop clicking
 the button.");
 }
 } else {
 alert("Please wait. PhoneGap is not ready.");
 }
 }

 function onHeadingSuccess(heading) {
 //We received something from the API, so...
 //first get the timestamp in a date object
 //so we can work with it
 var d = new Date(heading.timestamp);

ptg8126969

208 CHApter 13 CompAss

 //Then replace the page's content with the
 //current acceleration retrieved from the API
 hc.innerHTML = "Magnetic Heading: " +
 heading.magneticHeading +
 "
True Heading: " + heading.trueHeading +
 "
Heading Accuracy: " +
 heading.headingAccuracy + "
Timestamp: " +
 d.toLocaleString();
 }

 function onHeadingError(compassError) {
 if (compassError.code ==
 CompassError.COMPASS_NOT_SUPPORTED) {
 hc.innerHTML = "Compass not available."
 alert("Compass not supported.");
 hasCompass == false;
 } else if (compassError.code ==
 CompassError.COMPASS_INTERNAL_ERR) {
 alert("Compass Internal Error");
 } else {
 alert("Unknown heading error!");
 }
 }

 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Example 13-1</h1>
 <p>This is an Apache PhoneGap application that measures
 device heading using the Compass API.

 <input type="button" value="Measure Heading"
 onclick="getHeading();"></p>
 <p id="headingInfo">Nothing to see here (yet), click the
 button.</p>
 </body>
</html>

The application starts by defining several variables that are used to control the
application. Since the application relies upon the user clicking a button to measure
the heading, the application will need to know whether PhoneGap has initialized
yet, so the pgr variable is used to track status. The hasCompass variable is used to
track whether the Compass API returns an error indicating that the compass is not
available. These variables prevent the application from trying to do things that are
not supported.

In getHeading, the application checks to make sure PhoneGap has initialized and
that a previous call to getCurentHeading didn’t return an error indicating that the

ptg8126969

209wAtCHing deviCe HeAding

compass wasn’t available. When all is clear, it makes a call to getCurrentHeading
to measure the device’s heading. If this is successful, the onHeadingSuccess func-
tion is called, and the application’s UI is updated with heading information. If
there’s a problem, onHeadingError is called, the user is told what happens, and
hasCompass is updated if needed.

The value for timestamp is converted to human readable format using the follow-
ing code:

var d = new Date(heading.timestamp);
hc.innerHTML = "Timestamp: " + d.toLocaleString();

Figure 13-1 shows the application running on an Android device.

Figure 13-1 Example 13-1 running on a Android device

Notice that heading accuracy is zero and the magnetic and true heading values are
the same; that’s because the Android OS supports only the magnetic heading.

Watching Device Heading
For an application that relies upon heading information, manually querying the
compass is inefficient. Fortunately, PhoneGap provides simple watch mechanisms
that allow an application to query the compass repeatedly over a specific time inter-
val or whenever the heading changes by more than a configurable number of degrees.
The following sections describe each of these options in detail.

ptg8126969

210 CHApter 13 CompAss

watchHeading
The watchHeading function allows an application to define a compass watch that
fires repeatedly on a specific time interval. An application defines the watch using
the following code:

var watchOptions = { frequency: 250 };
watchID = navigator.compass.watchHeading(onHeadingSuccess,
 onHeadingError, watchOptions);

When creating the watch, a program must pass in the names of two functions
that are called depending on whether the heading measurement is successful. The
successFunction is called when a reading has been successfully made, and
the errorFunction is called when there is an error reading the compass. When
called, the successFunction is passed the compassHeading object that contains
information obtained from the compass. The previous section describes the
compassHeading object in detail.

In this example, the code first creates a watchOptions object that defines a watch
frequency of 250 milliseconds (0.25 seconds). A frequency value of 1000 would
configure a watch that fired every second. Next, the code creates the watch and
assigns the result of that operation in the watchID variable. The watchID is impor-
tant since it allows you to later cancel the watch using the following code:

navigator.compass.clearWatch(watchID);

Let’s take a look at an application that implements this API. Example 13-2 is an
application that displays a simple compass graphic and periodically (four times a
second) queries the compass and rotates the compass image to show the device’s
current heading.

Example 13-2

<!DOCTYPE html>
<html>
 <head>
 <title>Example 13-2</title>
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"
 />
 <script type="text/javascript" charset="utf-8"
 src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="jQueryRotate.2.1.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>

ptg8126969

211wAtCHing deviCe HeAding

 <script type="text/javascript" charset="utf-8">

 var hi, watchID;

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 //Get a handle to the headingInfo element of the page
 hi = document.getElementById('headingInfo');
 }

 function onDeviceReady() {
 //Set up the watch
 //Read the compass 4 times a second
 var watchOptions = { frequency: 250 };
 watchID = navigator.compass.watchHeading(
 onHeadingSuccess, onHeadingError, watchOptions);
 }

 function onHeadingSuccess(heading) {
 var hv = Math.round(heading.magneticHeading);
 hi.innerHTML = "Heading:" + hv + " degrees";
 $("#compass").rotate(-hv);
 }

 function onHeadingError(compassError) {
 //Remove the watch since we're having a problem
 navigator.compass.clearWatch(watchID);
 //clear the Heading value from the page
 hi.innerHTML = "";
 //Then tell the user what happened.
 if (compassError.code ==
 CompassError.COMPASS_NOT_SUPPORTED) {
 alert("Compass not supported.");
 } else if (compassError.code ==
 CompassError.COMPASS_INTERNAL_ERR) {
 alert("Compass Internal Error");
 } else {
 alert("Unknown heading error!");
 }
 }

 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Example 13-2</h1>

 <p id="headingInfo"></p>
 </body>
</html>

ptg8126969

212 CHApter 13 CompAss

Instead of muddying the example by filling these pages with the code needed to
rotate the graphic, I decided to use a jQuery (www.jquery.com) plug-in called
jQueryRotate (http://code.google.com/p/jqueryrotate) to take care of that aspect
of the program for me. This approach dramatically simplifies the example and
allows me to get right to the PhoneGapness of the application.

Looking at the code, you’ll see two <script> tags at the start of the application
that load the jQuery module and the jQueryRotate plug-in.

<script type="text/javascript" charset="utf-8"
 src="jquery.js"></script>
<script type="text/javascript" charset="utf-8"
 src="jQueryRotate.2.1.js"></script>

Once those are in place, the application can rotate the graphic using the following
single line of code:

$("#compass").rotate(angle);

The $() is a jQuery function that gives an application programmatic access to a
particular page element, in this case an image with an ID of compass. Once it has a
handle on the element, it calls the rotate function to rotate the graphic by the
angle passed to the function.

With that out of the way, let’s take a look at the application.

The watch is created in the onDeviceReady function, so the application starts
updating the compass as soon as PhoneGap is done initializing. As defined, it que-
ries the compass four times a second and then updates the compass orientation
accordingly. The watchID variable is defined at a global level, so it’s available to
multiple parts of the application.

When the watch fires, it calls the onHeadingSuccess function and passes in the
heading object defined in the previous section. There the application rounds the
heading value to the nearest whole number and stores it in a variable for use later.
It does that to minimize flicker as the compass adjusts itself, forcing the value to a
whole number minimizes the number of changes made to the screen. Next the
application updates the screen to show the numeric value for the heading and then
calls the rotate function to rotate the graphic.

function onHeadingSuccess(heading) {
 var hv = Math.round(heading.magneticHeading);
 hi.innerHTML = "Heading:" + hv + " degrees";
 $("#compass").rotate(-hv);
}

When you look at the code, you may notice that the application converts the head-
ing value (through the hv variable in the code) to a negative number when calling

www.jquery.com
http://code.google.com/p/jqueryrotate

ptg8126969

213wAtCHing deviCe HeAding

rotate. This is because while the device might be pointing in a certain direction,
for the compass graphic to illustrate this accurately, it must rotate the north head-
ing away from the horizontal axis of the device. So, as the device turns 10° to the
right, the compass graphic must then rotate 10° to the left in order to still be point-
ing north.

If there’s an error querying the compass, the onHeadingError function is called
so the application can alert the user. Passed to the function is a compassError
object that includes information about the source of the error. Since we’ve had an
error, the first thing the application does is cancel the watch; there’s no reason to
continue to query the compass when you know it’s not working. After the watch
has been canceled, the application provides some feedback to the user so they
know why the application is no longer updating the compass.

Figure 13-2 shows the application running on an Android device.

Figure 13-2 Example 13-2 running on an Android device

watchHeadingFilter
As useful as it is to query the compass on a time interval, sometimes an application
might want to know only when the device orientation changes. To support this, the
PhoneGap Compass API includes a function that can be called to define a watch
that’s fired only when the heading changes by more than a configurable number of
degrees. This option works in a very similar way to the previous example; the only

ptg8126969

214 CHApter 13 CompAss

differences are the names of the functions used to set and clear the watch and the
watch options passed to the function that creates the watch.

In this case, the watch is created using the following code:

var watchOptions = { filter : 5 };
watchID = navigator.compass.watchHeadingFilter(
 onHeadingSuccess, onHeadingError, watchOptions);

The watch is created using watchHeadingFilter instead of the watchHeading
function used in the previous example. The application still needs to create a
watchOptions object, but instead of specifying a frequency variable, a filter is
used instead. The filter variable defines the number of degrees used to filter the
watch. In this case, the onHeadingSuccess function will fire whenever the head-
ing changes by at least the value specified by the filter.

To remove the watch, call the following function and pass in the watchID being
canceled:

navigator.compass.clearWatchFilter(watchID);

Unfortunately, as useful as this option is, it doesn’t work on all platforms. Today
only iOS provides support for this function.

Example 13-3 shows the relevant portions of Example 13-2 updated to leverage
the watchHeadingFilter function. The majority of the changes are to the
onDeviceReady function where you’ll see a different watchOptions variable def-
inition and the call to watchHeadingFilter instead of watchHeading. In the
onHeadingError function, the call to clearWatch has been replaced with a call to
clearWatchFilter instead. Beyond those minor changes, the application is oth-
erwise the same as Example 13-2.

Example 13-3

function onDeviceReady() {
 //Set up the watch to fire whenever the compass moves 5 degrees
 var watchOptions = { filter : 5 };
 watchID = navigator.compass.watchHeadingFilter(
 onHeadingSuccess, onHeadingError, watchOptions);
}

function onHeadingSuccess(heading) {
 var hv = Math.round(heading.magneticHeading);
 hi.innerHTML = "Heading:" + hv + " degrees";
 $("#compass").rotate(-hv);
}

function onHeadingError(compassError) {

ptg8126969

215wAtCHing deviCe HeAding

 //Remove the watch since we're having a problem
 navigator.compass.clearWatchFilter(watchID);
 //clear the Heading value from the page
 hi.innerHTML = "";

 //Then tell the user what happened.
 if(compassError.code == CompassError.COMPASS_NOT_SUPPORTED) {
 alert("Compass not supported.");
 } else if (compassError.code ==
 CompassError.COMPASS_INTERNAL_ERR) {
 alert("Compass Internal Error");
 } else {
 alert("Unknown heading error!");
 }
}

ptg8126969

This page intentionally left blank

ptg8126969

217

Connection

The PhoneGap Connection object provides an application with information
about the current network connection available to the application. The object
exposes a single property, connection.type, as well as the following constants:

•	 Connection.CELL_2G

•	 Connection.CELL_3G

•	 Connection.CELL_4G

•	 Connection.ETHERNET

•	 Connection.NONE

•	 Connection.UNKNOWN

•	 Connection.WIFI

An application will query the connection.type property and compare the results
against these constants to determine the specific type of connection available.
You’ll see an example of this shortly.

Modern smartphones include multiple radios, so the device can connect to several
types of networks throughout the day. The device typically maintains a constant
connection to the cellular network whenever possible, which it uses for both voice
and data communication. Devices typically connect to Wi-Fi networks as well, pri-
marily for data communication but sometimes for voice communication.

When it comes to data communication, the type of connection a mobile applica-
tion would use to communicate with server-based resources, the device typically

14

ptg8126969

218 CHApter 14 ConneCtion

prioritizes its connections and uses the fastest (and least expensive) connection
whenever possible. For example, a device will typically place a higher priority on
Wi-Fi connections and use cellular connections only when a Wi-Fi connection is
not available.

Because of this prioritization, PhoneGap’s connection.type property will return
the primary connection type, which is the connection type currently being used for
data communication. As the device moves in and out of cellular and Wi-Fi cover-
age throughout the day, it typically doesn’t lose its network connectivity; the
device instead seamlessly transitions between available network types doing its
best to keep the connection available.

An application would use the online and offline events (described in Chapter 17)
to determine whether connectivity is available but would use connection.type
(possibly in conjunction with those events) to determine how robust the connec-
tion is. When transferring a small to medium amount of data (ranging from bytes
to kilobytes, for example), the network speed is important but not critical. When
an application prepares to transmit or receive a large amount of data across the
network, though, knowledge of the type of network is critical, and that’s the pri-
mary reason connection.type exists.

Before starting a large download or upload, an application might want to check to
see whether the device has a high-speed (Wi-Fi or 4G) connection and defer the
transmission unless a high-speed connection is available.

var networkState = navigator.network.connection.type;
if (networkState == Connection.NONE) {
 //No network available, so tell the user
 //and defer the update

}

The PhoneGap API documentation provides a simple example of how you can use
the connection object to detect the current network type and display an alert to the
user. Unfortunately, that’s not an example that can really be used in a production
application. I thought I’d tweak it a bit to make it more useful. Take a look at the
following code:

var states = {};
states[Connection.UNKNOWN] = 'Unknown';
states[Connection.ETHERNET] = 'Ethernet';
states[Connection.WIFI] = 'Wi-Fi';
states[Connection.CELL_2G] = 'Cell 2G';
states[Connection.CELL_3G] = 'Cell 3G';
states[Connection.CELL_4G] = 'Cell 4G';

ptg8126969

219ConneCtion

states[Connection.NONE] = 'No network';

function getConnectionTypeStr() {
 //get the network state
 var networkState = navigator.network.connection.type;
 //return a string representing the current network state
 return states[networkState];
}

In this example, I pulled the population of the states object out of the function
and instead execute that code within the script directly so it executes only once.
Next I updated the function so it returns a string representing the network type, so
an application could, for example, update its UI with the current network type if
appropriate for the application.

Example 14-1 shows the function put to use in an application. It’s the same appli-
cation used to demonstrate the use of the Event API’s online and offline events
(described in Chapter 17). In this example, the application’s main page gets
updated with the network connection type every time the device goes online.

Example 14-1

<!DOCTYPE html>
<html>
 <head>
 <title>Example 14-1</title>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"
 />
 <script type="text/javascript" charset="utf-8"
 src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 //build an accessible representation of the different
 //network state values
 var states = {};
 states[Connection.UNKNOWN] = 'Unknown';
 states[Connection.ETHERNET] = 'Ethernet';
 states[Connection.WIFI] = 'Wi-Fi';
 states[Connection.CELL_2G] = 'Cell 2G';
 states[Connection.CELL_3G] = 'Cell 3G';

ptg8126969

220 CHApter 14 ConneCtion

 states[Connection.CELL_4G] = 'Cell 4G';
 states[Connection.NONE] = 'No network';

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 navigator.notification.alert("PhoneGap is ready!");
 //Add the online event listener
 document.addEventListener("online", isOnline, false);
 //Add the offline event listener
 document.addEventListener("offline", isOffline, false);
 }

 function isOnline() {
 var d = new Date();
 $('#networkInfo').prepend("Online (" +
 getConnectionTypeStr() + ")
");
 }

 function isOffline() {
 var d = new Date();
 $('#networkInfo').prepend("Offline
");
 }

 function getConnectionTypeStr() {
 //get the network state
 var networkState = navigator.network.connection.type;
 //return a string representing the current network state
 return states[networkState];
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Example 14-1</h1>
 <p id="networkInfo"></p>
 </body>
 </body>
</html>

ptg8126969

221ConneCtion

Figure 14-1 shows the application running on an Android device.

Figure 14-1 Example 14-1 running on an Android device

The application appends the current network status to the top of the list, so what
you see in the figure is activity over time with the most recent event at the top. The
application uses the jQuery $().prepend method to accomplish this. As you can
see from the example, with the cellular and Wi-Fi radios on, the connection
defaults to the Wi-Fi network. When I turned the radio off (third line from the top),
the device fired the offline event first (even though the cellular connection was
still available); then it fired the online event when it transferred to the cellular
connection (the top line).

ptg8126969

This page intentionally left blank

ptg8126969

223

Contacts

The PhoneGap Contacts API provides applications with an interface that can be
used to create, locate, edit, copy, and delete contact records from the device’s
native Contacts application. The API is not proprietary; instead, it’s an implemen-
tation of the W3C’s Contacts API (www.w3.org/TR/2011/WD-contacts-
api-20110616/). This API interfaces with the native Contacts APIs provided by the
mobile platform, and because of the way the internal API views contact informa-
tion, there are quite a few quirks that manifest themselves across mobile device
platforms.

Example Applications

Two sample applications have been created to help illustrate the features of
the Contacts API. Example 15-1 illustrates how to create a new contact within a
PhoneGap application, and Example 15-2 shows how to use the Contacts API’s
search capabilities to locate a contact in an application.

Because of the length of the applications, it was not possible to include the applica-
tion source code in this chapter. Relevant portions of the application code and
screen shots of the application in action are shown within the chapter, but to see
the completed application code, you will need to point your browser of choice
to the book’s web site at www.phonegapessentials.com and look for the example
project files in the Code section of the site.

15

www.w3.org/TR/2011/WD-contacts-api-20110616/
www.w3.org/TR/2011/WD-contacts-api-20110616/
www.phonegapessentials.com

ptg8126969

224 CHApter 15 ContACts

Creating a Contact
Creating a contact from within a PhoneGap application is pretty straightforward;
simply execute the following code:

var contact = navigator.contacts.create();

When the call to navigator.contacts.create completes, the contact object
exists that contains nothing more than a representation of the different fields that
define a contact as would be rendered within the device’s native Contacts applica-
tion. At this point, the contact object doesn’t contain any information about the
contact; all you have is an object that can be populated with contact information
and saved to the Contacts application’s database. You must manually save any
changes to the contact using the navigator.contacts.save method described
later in the chapter.

Note: One of the most common problems people encounter with the PhoneGap Con-
tacts API stems from their failure to save their changes to a contact once they’ve made
them. Many a developer has created a contact, set the appropriate properties for the
contact, and then scratched their head when the changes are found to have not been
written to the device’s contacts database. Be sure to call navigator.contacts.save
when you’ve completed making changes to a contact’s properties.

The call to navigator.contacts.create is one of the few synchronous API calls
implemented by PhoneGap. Instead of using callback functions to register success
or failure of an API call as illustrated in other chapters, the call simply creates a
contact object in memory and returns; there’s no need for callback functions
here. Once an application has a contact object to work with, the application must
populate the contact fields defined within the object and then save the contact to
complete the process.

Defined within the contact object are a group of strings and objects that specify
different aspects of the contact, as shown in the following list:

•	 id: A unique identifier for the contact; this variable is assigned a unique
value during the call to navigator.contacts.create.

•	 displayName: The name of the contact; on most devices, this is the name
that is displayed in contact lists and address picker dialogs. Unfortunately,
this field is not supported on all platforms (such as iOS).

•	 name: An object defining the different components of a contact’s name,
such as given name, family name, middle name, and so on.

•	 nickname: A casual name for the contact.

ptg8126969

225CreAting A ContACt

•	 phoneNumbers: An array containing the contact’s phone numbers.

•	 emails: An array containing the contact’s email addresses.

•	 addresses: An array containing the contact’s physical addresses (home,
business, and so on).

•	 ims: An array containing the contact’s instant messaging (IM) addresses.

•	 organizations: An array containing the organizations the contact is
associated with.

•	 birthday: The contact’s birthday.

•	 note: A variable used to contain text-based notes related to the contact.

•	 photos: An array containing photos of the contact.

•	 categories: An array containing user-defined categories associated with
the contact.

•	 urls: An array containing the web addresses associated with the contact.

The name object includes the string values shown in the following list:

•	 formatted: The contact’s complete name.

•	 familyName: The contact’s family name.

•	 givenName: The contact’s given name.

•	 middleName: The contact’s middle name.

•	 honorificPrefix: The prefix associated with the contact (examples: Dr.,
Mr., or Mrs.).

•	 honorificSuffix: The suffix associated with the contact (example: Ph.D.).

When you look at these lists, you may notice that the contact’s name components
are represented in different places in the object. The displayName and nickname
values are associated with the contact, while everything else is associated with the
contact.name object. I expected that all name components would be associated
with the name object, but for some reason they’re not.

Many of the other components of the contact object are simple arrays represent-
ing multiple values of the same type. The addresses array is a two-dimensional
array of ContactAddress objects consisting of the following values:

•	 pref: Boolean value that defines whether the entry is the default address
for the contact

ptg8126969

226 CHApter 15 ContACts

•	 type: A string value defining the type of address being defined such as
home or work

•	 formatted: The full address formatted for display

•	 streetAddress: The full street address

•	 locality: The city or locality associated with this address

•	 region: The state or region associated with this address

•	 postalCode: The ZIP or postal code associated with this address

•	 country: The country associated with this address

The organizations array is a two-dimensional array of ContactOrganization
objects consisting of the following values:

•	 pref: Boolean value that defines whether the entry is the preferred or
default organization for the contact

•	 type: A string value defining the type of organization being defined such
as home or work

•	 name: The name of the organization

•	 department: The department where the contact works

•	 title: The contact’s title within the organization

The contact’s phoneNumbers, emails, and ims values are all populated the same
way, using an array of values shown in the following list:

•	 type: A string value defining the type of value being defined such as home
or work

•	 value: The contact value such as phone number or email address

•	 pref: Boolean value that defines whether the entry is the default entry for
this type of contact method

Some smartphone platforms are picky about the values assigned to the type prop-
erty. Even though PhoneGap will accept anything for this value, your target mobile
device might not display the values unless the right values are assigned here. My
testing has shown that it’s best to use standard values like home, work, and mobile
for type.

Now that you have a good understanding of the contact properties, let’s take a look
at an example of how all of this is implemented in code. In the Example 15-1

ptg8126969

227CreAting A ContACt

sample application (available from the www.phonegapessentials.com web site),
the application retrieves contact information from an external source (in this case
external .js files) and allows the application user to add information about a
selected user to the local contacts database. The following is an example of the
contact object for one of the contacts used in the application:

{
 "FullName": "Michael Palin",
 "LastName": "Palin",
 "FirstName": "Michael",
 "EmailAddress": "michael@montypython.com",
 "OfficePhone": "330.123.4567",
 "MobilePhone": "330.987.6543"
}

Note: I made up that email address for Michael Palin; he may have an email address,
but I definitely don’t know what it is. It’s probably best not to send any email mes-
sages to that address; there’s no telling where it would go or what would happen.

In the application, the contact information shown is assigned to the contactInfo
object and passed to the following function so the contact’s information can be
added to the local contacts database:

function addContact(contactInfo) {
 //Create a new contact object
 var contact = navigator.contacts.create();

 //Populate the contact object with values
 contact.displayName = contactInfo.FullName;
 contact.nickname = contactInfo.FullName;

 //Populate the Contact's Name entries
 var tmpName = new ContactName();
 tmpName.givenName = contactInfo.FirstName;
 tmpName.familyName = contactInfo.LastName;
 tmpName.formatted = contactInfo.FullName;
 //Then add the name object to the contact object
 contact.name = tmpName;

 //Populate Phone Number Entries by creating and populating
 //an array of phone number information
 var phoneNums = [2];
 phoneNums[0] = new ContactField('work',
 contactInfo.OfficePhone, false);
 phoneNums[1] = new ContactField('mobile',
 contactInfo.MobilePhone, true);
 contact.phoneNumbers = phoneNums;

www.phonegapessentials.com

ptg8126969

228 CHApter 15 ContACts

 //Populate Email Address the same way that you did the
 //phone numbers
 var emailAddresses = [1];
 emailAddresses[0] = new ContactField('home',
 contactInfo.EmailAddress, true);
 contact.emails = emailAddresses;

 // save the contact object to the device's contact database
 contact.save(onContactSaveSuccess, onContactSaveError);
}

You can also create a contact object and populate it at the same time by passing in
a properly formatted contact object to the create method, as shown here:

var contact = navigator.contacts.create({displayName:
 'Michael Palin', nickname: 'Mike', name: {givenName:
 'Michael', familyName: 'Palin'}});
contact.save(onContactSaveSuccess, onContactSaveError);

There are some quirks in the way each individual mobile device platform stores
the contact information passed to the contact object. You will need to refer to the
PhoneGap documentation for specifics about these quirks since they’re likely to
change over time. For some examples, though, the BlackBerry platform doesn’t
support the displayName field directly, so the value is stored in the user1 field and
the nickname field returns null. On iOS, the displayName field isn’t directly sup-
ported, but different values may be returned depending on what values are defined
for the contact.

As mentioned previously, the changes you make to a contact’s properties will not
be written to the device’s contacts database until you execute the following code:

contact.save(onContactSaveSuccess, onContactSaveError);

In this example, I’m passing in two functions: an onContactSaveSuccess func-
tion that is executed after the contact has been successfully saved to the contacts
database and an onContactSaveError function that is executed if there’s an error
writing to the database.

The onContactSaveSuccess function is quite simple; it just lets the user know
that the save completed successfully, as shown in the following example:

function onContactSaveSuccess() {
 alert(contactInfo.FullName + " was successfully saved to the
 device contacts database");
}

If there’s an error saving the contact, the onContactSaveError function is called,
and an error object is passed to the function that allows an application to understand
the nature of the error and react according to the needs of the application. In the

ptg8126969

229CreAting A ContACt

following example, the code displays a different error message for the user depend-
ing on the nature of the nature of the error encountered by the application.

function onContactSaveError(e) {
 var msgText;
 //Now build a message string based upon the error
 //returned by the API
 switch(e.code) {
 case ContactError.UNKNOWN_ERROR:
 msgText = "An Unknown Error was reported while saving
 the contact.";
 break;
 case ContactError.INVALID_ARGUMENT_ERROR:
 msgText = "An invalid argument was used with the Contact
 API.";
 break;
 case ContactError.TIMEOUT_ERROR:
 msgText = "Timeout Error.";
 break;
 case ContactError.PENDING_OPERATION_ERROR:
 msgText = "Pending Operation Error.";
 break;
 case ContactError.IO_ERROR:
 msgText = "IO Error.";
 break;
 case ContactError.NOT_SUPPORTED_ERROR:
 msgText = "Not Supported Error.";
 break;
 case ContactError.PERMISSION_DENIED_ERROR:
 msgText = "Permission Denied Error.";
 break;
 default:
 //Create a generic response, just in case the
 // switch fails
 msgText = "Unknown Error (" + e.code + ")";
 }
 //Now tell the user what happened
 navigator.notification.alert(msgText, null,
 "Contact Save Error");
}

In your applications, you will likely want to do something more substantive when
an error occurs. For some of the errors, there’s not much the application can do
except to perhaps try again later. The INVALID_ARGUMENT_ERROR is most likely
caused by a coding error and would likely not appear in a properly tested applica-
tion (unless PhoneGap changed the Contacts API options behind the scenes).

The PERMISSION_DENIED_ERROR is important and would affect users depending on
how they answer the security prompt they receive on BlackBerry and Android

ptg8126969

230 CHApter 15 ContACts

devices when they install new applications. On each platform, you must configure
the application project with a list of the APIs used by the application. If your appli-
cation doesn’t properly identify that it uses the Contacts API, the device may block
access to the API. On BlackBerry and Android, the user is prompted to allow access
to the different APIs used by the application; if the user doesn’t allow access to the
Contacts API when installing the application, the application will not function
properly and will likely return the permission denied error. To configure your proj-
ects with the appropriate permissions, refer to the documentation that accompanies
the mobile platform development tools you are using.

When working with PhoneGap Build (described in Chapter 9), the build service takes
care of configuring each development environment for you. To enable access to the
Contacts API on Android, add the following line to the project’s config.xml file, and
be sure to include it with the project files uploaded to the PhoneGap Build service:

<feature name="http://api.phonegap.com/1.0/contacts" />

This enables the READ_CONTACTS, WRITE_CONTACTS, and GET_ACCOUNTS permis-
sions on Android.

For a BlackBerry WebWorks application, you must include the following line in
the config.xml file:

<feature id="blackberry.pim.Contact" />

The following listing shows a completed PhoneGap Build config.xml for this
application:

<?xml version="1.0" encoding="UTF-8"?>
<widget xmlns = "http://www.w3.org/ns/widgets"
 xmlns:gap = "http://phonegap.com/ns/1.0"
 id = "com.phonegapessentials.ex151"
 version = "1.0.0">

 <name>Example 15-1</name>
 <description>An example application that uses the PhoneGap
 Contacts API</description>
 <author href="http://johnwargo.com"
 email="developer@somecompany.com">John M. Wargo</author>
 <gap:platforms>
 <gap:platform name="android" minVersion="2.1" />
 <gap:platform name="webos" />
 <gap:platform name="symbian.wrt" />
 <gap:platform name="blackberry" project="widgets"/>
 </gap:platforms>
 <feature name="http://api.phonegap.com/1.0/contacts" />
 <feature id="blackberry.pim.Contact" />

</widget>

ptg8126969

231CreAting A ContACt

One of the quirks of the Android platform is that an application must have a Google
account configured on the device in order to access contact information from a
PhoneGap application. I discovered this issue when I was testing on a device that
I’d done a complete security wipe on before testing the application. Without a
Google account defined in the Android Accounts and Sync area of Settings, the
application returned an Unknown Error whenever it tried to write a contact to the
contacts database. As soon as I configured the device for my Gmail account, the
error went away. If you are using the Android emulator, you will need to use an
emulator based upon the Google APIs, not the default SDK.

Let’s take a look at the application in action. Figure 15-1 shows the Example 15-1
application running on a BlackBerry Torch simulator. It starts by showing a list of
contacts from an external data source.

Figure 15-1 Example 15-1 running on a BlackBerry Torch simulator

ptg8126969

232 CHApter 15 ContACts

When the user selects a contact, the application opens a page that displays detailed
information about the contact, as shown in Figure 15-2.

Figure 15-2 Example 15-1: contact details

When the user clicks the Add Contact button, the application adds the selected
contact to the contacts database and displays the confirmation dialog shown in
Figure 15-3.

ptg8126969

233CreAting A ContACt

Figure 15-3 Example 15-1: save confirmation

Opening the BlackBerry Contacts application and searching for and then opening
the new contact will show a screen similar to the one shown in Figure 15-4.

ptg8126969

234 CHApter 15 ContACts

Figure 15-4 New contact information in the BlackBerry Contacts application

Figure 15-5 shows the results of the same activity on an Android smartphone.

Figure 15-6 shows the results of the same activity on an Apple iPhone.

With each of these examples, the native contacts application makes the phone
number, email address, and other electronic contact fields clickable so the user can
click an item and initiate contact through the selected option.

ptg8126969

235CreAting A ContACt

Figure 15-5 New contact information in the Android Contacts application

Figure 15-6 New contact information in the iOS Contacts application

ptg8126969

236 CHApter 15 ContACts

Searching for Contacts
Another useful feature of the Contacts API is the ability to search the device’s
local contacts database for contacts. To initiate a search, an application should
execute the following code:

navigator.contacts.find(contactFields, onContactSearchSuccess,
 onContactSearchError, searchOptions);

The contactFields parameter passed to the find method defines the list of con-
tact field names whose values will be included in the search results. In some cases,
you may want the search function to return all fields, in which case you would use
the following:

contactFields = ['*'];

In other cases, you might want to limit your search results to a limited number of
contact fields, as shown in the following example:

contactFields = ['displayName', 'name', 'nickname'];

The name entry refers to the name object described in the previous section and
includes familyName, givenName, middleName, and more.

As you build your applications, you may think you can just use the displayName
field and catch most contact names. The problem with this approach is that
displayName is not supported on iOS, so if you rely upon that field name for
searches targeted at iOS devices, the search will likely not return any values.

The onContactSearchSuccess and onContactSearchError functions passed as
parameters to find are standard callback functions you’ve seen in other examples
in this book. The onContactSearchSuccess function is executed when the search
succeeds, and the onContactSearchError function is executed if an error is
encountered performing the search. You’ll learn more about these functions later.

The searchOptions parameter is an object defining options used to control how
the search is performed. It consists of two values, filter and multiple, as shown
in the following example:

var searchOptions = { filter : searchStr, multiple : true };

The filter value defines the search string used when searching the device’s con-
tacts database, and the multiple value is a Boolean value that defines whether the
application should return multiple results or return a value as soon as a single item
that matches the search criteria is found.

ptg8126969

237seArCHing For ContACts

Let’s take a look at an example application that puts all of this to use. In the Exam-
ple 15-2 application (available for download from www.phonegapessentials.com),
the application displays the simple form shown in Figure 15-7. In the application, I
used the jQuery (www.jquery.com) and jQuery Mobile (www.jquerymobile.com)
frameworks to provide the application with a more professional-looking interface
without having to write a bunch of interface code myself.

Figure 15-7 Example 15-2 running on an Apple iPhone

On the form, the search field is defined using the following HTML markup:

<input type="search" id="editSearch" />

The search scope picker is defined using the following markup:

<select id="searchScope" name="searchScope">
 <option>All</option>
 <option>Name</option>
 <option>Address</option>
 <option>Notes</option>
</select>

www.phonegapessentials.com
www.jquery.com
www.jquerymobile.com

ptg8126969

238 CHApter 15 ContACts

The code behind the Search Contacts button is defined in the following function:

function searchContacts() {
 //Get the search string from the page
 var searchStr =
 document.getElementById("editSearch").value;
 //Figure out which search option is selected
 var searchScope =
 document.getElementById("searchScope").selectedIndex;
 //Then populate searchOptions with the list of fields being
 //searched
 var contactFields = [];
 switch(searchScope) {
 case 1:
 //Return just name fields
 contactFields = ['displayName', 'name', 'nickname'];
 break;
 case 2:
 //Return address fields
 contactFields = ['name', 'streetAddress', 'locality',
 'region', 'postalCode', 'country'];
 break;
 case 3:
 //Return name and contents of the Notes field
 contactFields = ['name', 'note'];
 break;
 default:
 //return all contact fields
 contactFields = ['*'];
 }
 //Populate the search options object
 var searchOptions = { filter : searchStr, multiple : true };
 //Execute the search
 navigator.contacts.find(contactFields,
 onContactSearchSuccess, onContactSearchError, searchOptions);
}

In the function, the code grabs the value from the search field and the selected
value from the search scope picker. Using those values, it defines the values for the
contactFields variable based upon which picker option was selected and passes
the search string in the filter value in the searchOptions object.

That’s it—that’s all an application has to do to search the local contacts database.
The onContactSearchError function is the same as the onContactSaveError
function described in the previous section. When the search completes, the find
method calls the onContactSearchSuccess function, which is shown next. The

ptg8126969

239seArCHing For ContACts

function essentially builds an on-screen list of the search results (displaying the
name of the contact if it can be determined).

function onContactSearchSuccess(contacts) {
 // alert("onContactSearchSuccess");
 //Populate the contact list element of the contact list page
 var i, len, theList;
 //Store the contact data in our global variable so the
 //other functions have something to work with
 contactList = contacts;
 //Did we get any results from the search?
 len = contacts.length;
 if(len > 0) {
 theList = '<ul data-role="listview">';
 for(i = 0, len; i < len; i += 1) {
 //on iOS displayName isn't supported, so we can't
 //use it
 if(contacts[i].displayName == null) {
 theList += '<a onclick="showContact(' + i +
 ');">' + contacts[i].name.familyName + ", " +
 contacts[i].name.givenName + '';
 } else {
 theList += '<a onclick="showContact(' + i +
 ');">' + contacts[i].displayName + '';
 }
 }
 theList += '';
 $('#contacts').html(theList);
 //Then switch to the Contact Details page
 $.mobile.changePage("#contactList", "slide", false, true);
 } else {
 navigator.notification.alert('Search returned 0 results',
 null, 'Contact Search');
 }
}

In onContactSearchSuccess, the function is passed an array containing contact
entries for each of the contact records containing the search string. The code first
checks to see whether the array has any values; if not, a message is displayed to the
user letting them know that there are no search results. If there are results, the
function loops through the results array and creates an unordered list containing
the name of each contact included in the search results. In the application, the
unordered list is assigned a data-role attribute of listview, which is used by
jQuery Mobile to render the interactive list shown in Figure 15-8. In this case,
there’s only one result, but if there had been more, the list would scroll down the
length of the screen as needed.

ptg8126969

240 CHApter 15 ContACts

Figure 15-8 Example 15-2: search results

Looking at the function, you may have noticed that when creating the list view, the
code first checks to see whether displayName is null and uses the contact’s
givenName and familyName to create the list entry. This is because displayName
is not supported on iOS, so I had to find another way to ensure that something
would display in the list.

if(contacts[i].displayName == null) {
 theList += '' +
 contacts[i].name.familyName + ", " +
 contacts[i].name.givenName + '';
} else {
 theList += '' +
 contacts[i].displayName + '';
}

Each entry in the list view has an onclick event defined that causes the
showContact function to be executed when the user selects a contact; passed
to showContact is the index for the selected contact. The function retrieves

ptg8126969

241seArCHing For ContACts

information about the selected contact and displays a page similar to the one
shown in Figure 15-9.

Figure 15-9 Example 15-2: contact detail

As you can see from the figure, the application displays some common field values
at the top of the page and lists all of the contact field values below the horizontal
rule. I built the application this way to help me validate what was returned by the
search function. When using the application, as you select different search scopes,
you can easily see what contact fields are (and aren’t) returned to the application
when performing a search. Here’s the code that generates the field/value list:

//Show all of the contact fields
dt = "<hr />";
for(myKey in contact) {
 dt += "Contact[" + myKey + "] = " + contact[myKey] + "
";
}
$('#detailContent').html(dt);

ptg8126969

242 CHApter 15 ContACts

Cloning Contacts
To make a clone of an existing contact, an application simply calls the clone
method, as shown in the following example:

var contact2 = contact1.clone();

The contact object points to an existing contact obtained by creating a new con-
tact via a call to navigator.contacts.create, as described in the beginning of
the chapter, or retrieved by searching the local device contacts database using the
find method, as described in the previous section.

Once the application has the cloned copy of the original contact, it can manipulate
the properties of the clone, changing whatever properties are appropriate for the
application and then calling navigator.contacts.save to write the updates to
the contacts database. When the clone is created, the cloned contact object exists
solely in memory and must be written to disk for any changes to be maintained.

Removing Contacts
To remove an existing contact, an application simply calls the remove method, as
shown in the following example:

contact.remove(onContactRemoveSuccess, onContactRemoveError);

The contact object points to an existing contact obtained by creating a new con-
tact via a call to navigator.contacts.create, as described in the beginning of
the chapter, or retrieved by searching the local device contacts database using the
find method, as described in an earlier section.

The onContactRemoveSuccess and onContactRemoveError parameters passed
to the call to remove are callback functions that are executed by the remove
method. The onContactRemoveSuccess function is executed after the contact has
been successfully removed, while the onContactRemoveError function is the
same as the onContactSaveError function described in the first section of this
chapter.

ptg8126969

243

Device

The PhoneGap Device object allows an application to access a limited amount
of information about the application and device running a PhoneGap application.
The device object represents the following properties:

•	 device.name: Returns the name assigned to the device; this could be
something assigned by the device manufacturer or assigned by the smart-
phone user depending on the mobile device platform.

•	 device.phonegap: Returns the version of the PhoneGap framework used
to build the application.

•	 device.platform: On most platforms, returns the name of the mobile
device platform the application is running on. Exceptions will be dis-
cussed later in the chapter.

•	 device.uuid: Returns the universally unique identifier (UUID) associ-
ated with the device (http://en.wikipedia.org/wiki/Universally_Unique_
Identifier).

•	 device.version: Returns the OS version running on the device.

The device object has scope at the window level, so you can access any of the
device properties using the following:

var deviceName = window.device.name;

or this:

var deviceName = device.name;

16

http://en.wikipedia.org/wiki/Universally_Unique_Identifier
http://en.wikipedia.org/wiki/Universally_Unique_Identifier

ptg8126969

244 CHApter 16 deviCe

An example application using device properties was shown in Chapter 2. Exam-
ple 16-1 highlights each of the supported device properties.

Example 16-1

<!DOCTYPE html>
<html>
 <head>
 <title>Example 16-1</title>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"
 />
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //HTML Break string
 var br = "
";

 //Get the appInfo DOM element
 var element = document.getElementById("deviceInfo");
 //replace it with specific information about the
 //device running the application
 element.innerHTML =
 "device.name: " + device.name + br +
 "device.phonegap: " + device.phonegap + br +
 "device.platform: " + device.platform + br +
 "device.uuid: " + device.uuid + br +
 "device.version: " + device.version + br;
 }

 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Example 16-1</h1>
 <p id="deviceInfo">Waiting for PhoneGap Initialization to
 complete</p>
 </body>
</html>

ptg8126969

245deviCe

In this example, once PhoneGap has initialized, the onDeviceReady function is
executed, and the application replaces the deviceInfo content on the page with
values from each of the properties of the device object.

Let’s take a look at the output of this application on different devices.

Figure 16-1 shows Example 16-1 running on a LG Thrill smartphone. As you can
see from the example, the device.name property reports the name the manufac-
turer has assigned to the device. I built this application using PhoneGap Build, so
they’re using the latest (at the time) version of PhoneGap, version 1.1.0. The
device is running Android version 2.2.2.

Figure 16-1 Example 16-1 running on an Android device

Figure 16-2 shows the same application running on the BlackBerry simulator. As
you can see, PhoneGap on BlackBerry has an issue displaying the platform name,
reporting 3.0.0.100 instead of the word BlackBerry.

Figure 16-2 Example 16-1 running on a BlackBerry simulator

ptg8126969

246 CHApter 16 deviCe

When you take a look at the source code in the phonegap.js file for the Black-
Berry platform, you see the following:

function Device() {
 this.platform = phonegap.device.platform;
 this.version = blackberry.system.softwareVersion;
 this.name = blackberry.system.model;
 this.uuid = phonegap.device.uuid;
 this.phonegap = phonegap.device.phonegap;
};

PhoneGap is simply calling JavaScript methods provided by the BlackBerry Web-
Works platform, and for some bizarre reason, the developer has chosen to imple-
ment the device.name property using a system call that returns the version
number of the BlackBerry platform running on the device rather than the word
BlackBerry. In reality, the code should really look like this:

this.name = "BlackBerry";

RIM provides a Java API that allows an application to know whether the applica-
tion is running on a physical device or a simulator, which is useful information to
have when testing an application. Unfortunately, the developer of PhoneGap for
BlackBerry has not chosen to expose that distinction, which as you’ll see next has
been implemented on iOS.

Figure 16-3 shows Example 16-1 running on an iPhone device. For this OS, the
device.name property returns the name the user has assigned to the device in iTunes.

Figure 16-3 Example 16-1 running on an iPhone device

Figure 16-4 shows Example 16-1 running on the iPad simulator, but the PhoneGap
application is configured in Xcode as an iPhone application. This particular con-
figuration puts the application in compatibility mode, running as an iPhone

ptg8126969

247deviCe

application in a little iPhone window on the iPad. Users can click the 2X button in
the bottom-right corner of the screen to expand the window so the application runs
full-screen.

Figure 16-4 Example 16-1 running on the iPad simulator as an iPhone application

ptg8126969

248 CHApter 16 deviCe

The application reports that it’s running on an iPhone, but in reality
device.platform should return iOS since that’s the OS platform the application
is running on. Expect that this will change someday, and any code you have that
looks for iPhone will have to be updated to check for iOS as well.

Notice too that on iOS PhoneGap reports correctly when the application is run-
ning on a simulator. This particular feature makes it easier to perform testing in
situations where a particular feature (like the camera) is available only on a physi-
cal device; your code can test to see whether the application is running on a simu-
lator and run substitute code in those cases.

Figure 16-5 shows Example 16-1 running on the iPad simulator. Happily, the
application is now running in full-screen mode and reports correctly that it’s run-
ning on an iPad rather than an iPhone, as shown in Figure 16-4.

Figure 16-5 Example 16-1 running on the iPad simulator

ptg8126969

249

Events

The PhoneGap Events API provides an application with the ability to register
event listeners for different events that occur on a supported smartphone device.
The following is a list of the types of events supported by PhoneGap:

•	 deviceready event

•	 Application status events

•	 Network events

•	 Button events

The subsequent sections in this chapter will describe each of these event types in
detail.

Creating an Event Listener
To create an event listener in a PhoneGap application, execute the following code:

document.addEventListener("eventName", functionName,
 useCapture);

The parameters passed to addEventListener are as follows:

•	 eventName: String value specifying the name of the event the listener will
be listening for

•	 functionName: The function that will be executed when the event fires

•	 useCapture: Boolean value that specifies the scope of the event; since with
PhoneGap we’re capturing system events rather than object events, you will
most likely just use false for this parameter

17

ptg8126969

250 CHApter 17 events

The following sections will cover the different categories of events supported by
PhoneGap.

To remove an event listener, simply call the JavaScript removeEventListener
method.

deviceready Event
The deviceready event is a fundamental part of any PhoneGap application. The
event is fired by PhoneGap to indicate that PhoneGap has completed initialization
and that PhoneGap APIs are available to be used by the application. An applica-
tion does not have to listen for this event; it can try to use a PhoneGap API any time
it wants, but a well-behaved application will perform actions using PhoneGap APIs
only after the deviceready API has fired.

Example 17-1 shows the typical implementation of an event listener that listens
for the deviceready event.

Example 17-1

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;"
 />
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready",
 onDeviceReady, false);
 }

 function onDeviceReady() {
 //PhoneGap is ready, so go ahead and call PhoneGap APIs

 }

 </script>
 </head>
 <body onload="onBodyLoad()">

ptg8126969

251AppliCAtion stAtus events

 <h1>Example 17-1</h1>
 <p>This is a sample PhoneGap application.</p>
 </body>
</html>

Application Status Events
Most modern smartphones allow a user to switch between applications. As a run-
ning application transitions from the foreground to paused or to running in the
background (depending on the smartphone platform), PhoneGap will fire the
pause event. As a suspended application becomes active or an application running
in the background transitions to the foreground, PhoneGap will fire the resume
event.

Most smartphone platforms automatically switch an application into the background
whenever another application is launched or when the user switches to another
application. This allows the application to continue to process in the background,
retrieving data from a server, for example. On iOS, Apple has decided that only cer-
tain applications have the right to run in the background, so your PhoneGap applica-
tion will automatically be suspended whenever the user switches to another
application.

The purpose of each event is to allow an application to perform whatever cleanup
tasks are needed before an application makes the transition. As an example, a run-
ning application might want to close data or database connections and turn off any
media files being played before suspending or transitioning to the background. A
suspended or background application transitioning to the foreground may want to
reestablish those network or database connections and restart any media files once
the application is restarted.

Example 17-2 shows a sample application that implements pause and resume
event listeners. It is a simple application that updates the screen every time one of
the events fire. When the resume event fires, the application indicates how long the
application was suspended or running in the background.

Example 17-2

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width,
 height=device-height initial-scale=1.0, maximum-
 scale=1.0, user-scalable=no;" />

ptg8126969

252 CHApter 17 events

 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 //Start time variable
 var startTime, endTime;
 //pauseInfo page content variable
 var pi;
 //FirstTime variable
 var firstTime;

 function onBodyLoad() {
 document.addEventListener("deviceready",onDeviceReady,
 false);
 }

 function onDeviceReady() {
 pName = device.platform;
 if ((pName == "Android") || (pName == "3.0.0.100")) {
 firstTime = true;
 } else {
 firstTime = false;
 }
 //Add our Pause event listener
 document.addEventListener("pause", processPause, false);
 //Add our Resume event listener
 document.addEventListener("resume", processResume,
 false);
 //Get a handle to the pauseInfo page element
 pi = document.getElementById("pauseInfo");
 }

 function processPause() {
 //Clear the previous counter
 pi.innerHTML = "Application paused.";
 //Set startTime to the current date/time
 startTime = new Date();
 }

 function processResume() {
 //We want to skip the first time this fires
 if(firstTime == true) {
 //Clear our firstTime variable
 firstTime = false;

ptg8126969

253AppliCAtion stAtus events

 pi.innerHTML = "Skipping first Resume.";
 } else {
 //Get the current date
 endTime = new Date();
 timeDiff = (endTime - startTime) / 1000;
 //Update the screen
 pi.innerHTML = "Paused for " + timeDiff + " seconds.";
 }
 }

 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Pause Counter</h1>
 <p id="pauseInfo">Waiting for pause.</p>
 </body>
</html>

As I worked through this example, I learned something about these events that is
not documented in the PhoneGap API documentation. An Android or BlackBerry
application will fire the resume event as soon as the application starts. On iOS, the
resume event is fired only when the application resumes from being suspended in
the background. Because of this quirk, I had to create a Boolean variable called
firstTime, which is used by the application to control whether the first firing of
the resume event is ignored by the program. Also, because of a quirk in the Device
API, for a BlackBerry device the application has to look for a number in the device
name rather than the word BlackBerry.

pName = device.platform;
if ((pName == "Android") || (pName == "3.0.0.100")) {
 firstTime = true;
} else {
 firstTime = false;
}

The application registers a listener for the pause event using the following code:

document.addEventListener("pause", processPause, false);

This indicates that the processPause function should be called before the applica-
tion transitions to the background. Within the function, the sample application
simply updates the screen and stores the current timestamp in a variable. When the
application runs on an Android device, you can see the screen update before
the application moves to the background. On iOS, the screen update is not visible
before the application suspends.

ptg8126969

254 CHApter 17 events

The sample application registers a listener for the resume event using the follow-
ing code:

document.addEventListener("resume", processResume, false);

In this case, the processResume function is called when the application activates.
The function first checks to see whether it should be skipping the first firing of the
resume event by checking, and then resetting if necessary, the value of the
firstTime variable. After that, it retrieves the stored timestamp indicating when
the application suspended and uses the value to update the screen with the amount
of time the application was suspended.

Figure 17-1 shows Example 17-2 running on an Android device.

Figure 17-1 Example 17-2 running on an Android device

Network Status Events
Any mobile application that uses network-based resources should in some way
monitor network availability and attempt to send or receive data across a network
connection only when the network connection is available. An application can
manually check the status of the device’s network connection using the PhoneGap
Connection object (described in Chapter 14) before trying to utilize a network
connection.

In other cases, an application will use the PhoneGap online and offline events
to listen for changes in a network connection and adjust accordingly. Whenever
the device loses its network connection, it will fire the offline event. When a con-
nection becomes available again, the online event will fire. A network-savvy
application will use these events to track the status of the connection and queue
data for transmission only when the connection is available.

Example 17-3 shows a simple network tracker application that leverages the
online and offline events to update the screen as the network comes and goes.

ptg8126969

255network stAtus events

Example 17-3

<!DOCTYPE html>
<html>
 <head>
 <title>Example 17-3</title>
 <meta name="viewport" content="width=device-width,
 height=device-height initial-scale=1.0, maximum-
 scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <script type="text/javascript" charset="utf-8"
 src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //Add the online event listener
 document.addEventListener("online", isOnline, false);
 //Add the offline event listener
 document.addEventListener("offline", isOffline, false);
 }

 function isOnline() {
 var d = new Date();
 $('#networkInfo').prepend("Online: " +
 d.toLocaleString() + "
");
 }

 function isOffline() {
 var d = new Date();
 $('#networkInfo').prepend("Offline: " +
 d.toLocaleString() + "
");
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Network Tracker</h1>
 <p id="networkInfo"></p>
 </body>
</html>

ptg8126969

256 CHApter 17 events

The application registers two event listeners, one for each of the network events
we’re monitoring. The isOnline function is executed when the online event
fires, and the isOffline function executes when the offline event fires.

To keep the application as simple as possible, the application uses jQuery to man-
age appending the network status updates to the top of the networkInfo para-
graph tag:

$('#networkInfo').prepend("some_value
");

In this example, jQuery will locate the networkInfo page element and prepend
the supplied text to the content that’s already there.

Figure 17-2 shows Example 17-3 running on an Android device.

Figure 17-2 Example 17-3 running on an Android device

Button Events
Smartphones typical use physical buttons to allow users to interact more directly
with the OS. iOS devices have only a single button (not counting the volume but-
tons), one that depending on how it’s used, either allows the user to return to the OS

ptg8126969

257button events

home screen or opens a list of paused applications. Android and BlackBerry
devices, on the other hand, offer the user several buttons and are therefore simpler
for more advanced users to operate.

To allow for PhoneGap applications to respond to these buttons, PhoneGap will
fire the following events whenever the corresponding buttons are pressed:

•	 backbutton: Fires when the user presses the back button on a device. This
is typically the Escape button on Android and BlackBerry devices; iOS
devices do not have a back button.

•	 menubutton: Fires when the user presses the device’s menu button. iOS
devices do not have a menu button.

•	 searchbutton: Fires when the user presses the dedicated search button on
an Android device.

•	 startcallbutton: Fires when a BlackBerry user presses the dedicated
start call button (located to the left of the BlackBerry menu button).

•	 endcallbutton: Fires when a BlackBerry user presses the dedicated end
call button (located to the right of the BlackBerry escape button).

•	 volumedownbutton: Fires when a BlackBerry user presses the device’s
volume down button.

•	 volumeupbutton: Fires when a BlackBerry user presses the device’s vol-
ume up button.

To respond to these buttons, simply implement the appropriate event listeners and
write the code that executes when the button is pressed.

As you can see from the list, many of the events are device specific; even though
volume up and down buttons are available on most smartphones, event listeners
are for some reason available only in BlackBerry PhoneGap applications. It’s rare
in this day in age, with Android and iOS devices much more popular than Black-
Berry, for BlackBerry to receive more attention than other platforms when it
comes to framework features.

It’s important to note that when a PhoneGap application overrides one of these but-
tons by registering an event listener for the button, the default behavior of the button
no longer applies while the listener is in place. For example, on most devices, press-
ing the escape button causes the application to return to a previous screen or exit
the application if on the main screen. When the escape button is overridden (by
creating a backbutton event listener) as shown in the following code, pressing the

ptg8126969

258 CHApter 17 events

escape button causes only the code specified in the onBackButton function to
execute.

document.addEventListener("backbutton", onBackButton, false);

If you want the application to exhibit default behavior when one of the overrid-
den buttons is pressed, then you’ll have to implement the code to do so in your
application. Using the previous code as an example, the onBackButton function
might first do any cleanup required by the application and then call the
navigator.app.exitApp() function, as shown here:

function onBackButton() {
 //Do whatever you need to do before closing the application
 ...

 //Then close the application
 navigator.app.exitApp();
};

This is very important for the escape button as shown but for the menu button as
well. Unless your application doesn’t need a menu and you’re replacing the func-
tionality behind the menu button with something specific to your application,
Android and BlackBerry users are used to a menu appearing within an application
when the menu button is pressed. If you want your own menu and override the
menu button, your application is responsible for creating and displaying the appro-
priate menu when the button is pressed. The OS-specific menu will not appear
when an overridden menu button is pressed.

The call buttons on BlackBerry cause additional problems for the PhoneGap
developer. If you override the phone call buttons to use for other purposes in a
game, for example, the user would have to leave the application in order to be able
to press the phone button to bring up the phone application. This isn’t a big deal,
but it’s important to pay attention to as you design your applications.

Example 17-4 shows a sample application that registers event listeners for each of
the supported buttons. It doesn’t do much, but it does illustrate how to use these
events.

Example 17-4

<!DOCTYPE html>
<html>
 <head>
 <title>Example 17-4</title>
 <meta name="viewport" content="width=device-width,
 height=device-height initial-scale=1.0, maximum-
 scale=1.0, user-scalable=no;" />

ptg8126969

259button events

 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <script type="text/javascript" charset="utf-8"
 src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 //alert("onBodyLoad");
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 alert("onDeviceReady");

 //Check to see if we've registered any events
 var eventCount = 0;

 //What platform are we running on?
 pName = device.platform;

 if((pName == "Android") || (pName == "3.0.0.100")) {
 eventCount += 2;
 //Android & BlackBerry only events
 document.addEventListener("backbutton", onBackButton,
 false);
 document.addEventListener("menubutton", onMenuButton,
 false);
 }

 if(pName == "Android") {
 eventCount += 1;
 //Android only event
 document.addEventListener("searchbutton",
 onSearchButton, false);
 }

 if(pName == "3.0.0.100") {
 eventCount += 4;
 //BlackBerry only events
 document.addEventListener("startcallbutton",
 onStartCallButton, false);
 document.addEventListener("endcallbutton",
 onEndCallButton, false);
 document.addEventListener("volumedownbutton",
 onVolumeUpButton, false);
 document.addEventListener("volumeupbutton",

ptg8126969

260 CHApter 17 events

 onVolumeDownButton, false);
 }

 //did we register any event listeners?
 if(eventCount < 1) {
 //0, must be running on an iOS device
 alert("Must be running on an iOS device, No event
 listeners registered");
 } else {
 //Android or BlackBerry
 alert("Registered " + eventCount +
 " event listeners.");
 }
 }

 function onBackButton() {
 $('#buttonInfo').prepend("Back button pressed
");
 //Do button processing here
 };

 function onMenuButton() {
 $('#buttonInfo').prepend("Menu button pressed
");
 //Do button processing here
 };

 function onSearchButton() {
 $('#buttonInfo').prepend("Search button pressed
");
 //Do button processing here
 };

 function onStartCallButton() {
 $('#buttonInfo').prepend(
 "Start Call button pressed
");
 //Do button processing here
 };

 function onEndCallButton() {
 $('#buttonInfo').prepend(
 "end Call button pressed
");
 //Do button processing here
 };

 function onVolumeUpButton() {
 $('#buttonInfo').prepend(
 "Volume Up button pressed
");
 //Do button processing here
 };

ptg8126969

261button events

 function onVolumeDownButton() {
 $('#buttonInfo').prepend(
 "Volume Down button pressed
");
 //Do button processing here
 };
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Button Tracker</h1>
 <p id="buttonInfo">Waiting for button press</p>
 </body>
</html>

In Example 17-4, the code checks to see which platform it’s running on before
registering the events. While not necessary, there’s no reason to try to register an
event that will never fire on the mobile device. Of course, since the PhoneGap
device.name property returns the BlackBerry platform version rather than the
word BlackBerry, the check for BlackBerry is a hack and would have to be updated
for production use. As written, it checks only for a particular version of the plat-
form and would not work correctly for other devices.

Figure 17-3 shows Example 17-4 running on an Android device.

Figure 17-3 Example 17-4 running on an Android device

ptg8126969

262 CHApter 17 events

To restore a button to its default behavior, simply make a call to the JavaScript
removeEventListener method, as shown here:

document.removeEventListener("backbutton", onBackButton, false);

ptg8126969

263

File

The PhoneGap File API provides an application with the methods needed to
locate, read, write, copy, move, and remove files in both temporary and persis-
tent file storage on a mobile device. PhoneGap’s implementation of the File API
is based in part on the W3C File API: Directories and System specification
(www.w3.org/TR/file-system-api). At this time, not all of the capabilities of the
W3C specification have been implemented, but the API provides the essential
capabilities a mobile developer will be interested in.

Example Application

A sample application, Example 18-1, was created to help illustrate the features of
the File API. Because of the length of the application, however, it was not possible
to include the complete application source code in this chapter.

Relevant portions of the application’s code and screen shots of the application in
action are shown within the chapter, but to see the complete code, you will need to
point your browser of choice to the book’s web site at www.phonegapessentials.com
and look for the example project files in the Code section of the site.

Available Storage Types
A typical smartphone operating system provides applications with two different
types of file storage space it can use. To store temporary files, an application
should use the temporary storage location. For content and data that is integral to
the application’s operation and must remain available after the application is
closed and restarted, the application should use persistent storage.

18

www.w3.org/TR/file-system-api
www.phonegapessentials.com

ptg8126969

264 CHApter 18 File

In general, an application might use temporary storage for transient data, data that’s
written to the file system as part of a memory management strategy or as swap space
when analyzing or manipulating a large amount of data. With temporary storage, the
application can read from and write to the storage area with impunity, creating and
deleting files as needed within the available storage limitations of the device. It’s
even possible that the device will empty temporary storage when the application
closes or the device reboots, freeing up storage space for other applications.

Persistent storage is more stable; the device OS protects it during reboots and
when the application closes. An application’s persistent storage will be emptied by
the OS when the application is uninstalled from the device.

Accessing the Device’s File System
If an application needs to browse the file system looking for files and directories,
the application must first request a handle to it using the following code:

window.requestFileSystem(fileSystemConstant, sandboxSize,
 onSuccessFunction, onErrorFunction);

In this example, a file system sandbox is created for the application to use. The
possible values for the fileSystemConstant constant are listed here; these are
used to specify which type of storage will be used by the application:

•	 LocalFileSystem.PERSISTENT

•	 LocalFileSystem.TEMPORARY

When calling requestFileSystem, the application requests the allocation of stor-
age it thinks it will need using the sandboxSize parameter shown in the example.
There’s really not a lot of information in the documentation or forums about this
parameter, but in general, you will want to make sure you allocate enough space
for the temporary files your application will be creating. The size requested is
checked against the free space on the device to verify there is enough space avail-
able. A FileError.QUOTA_EXCEEDED_ERR will be returned if there is not enough
space available on the device. When an application writes data to files, there is no
check performed to make sure you don’t use more than the requested space.

To request access to 5 MB of temporary sandbox storage, the application would
execute the following code:

window.requestFileSystem(LocalFileSystem.TEMPORARY,
 5 * 1024 * 1024, onSuccessFunction, onErrorFunction);

You could also use the following code, but for me, the previous example is easier
to understand what’s happening. This option is of course less work for the

ptg8126969

265ACCessing tHe deviCe’s File system

application since it doesn’t have to do the math every time it runs; it’s your
call—readability vs. performance.

window.requestFileSystem(LocalFileSystem.TEMPORARY,
 5242880, onSuccessFunction, onErrorFunction);

The onSucessFunction and onErrorFunction parameters define the func-
tions that are called when the request completes if there is an error encountered
during the process. The onSuccessFunction will be executed when the call to
requestFileSystem completes. The function is passed a file system object (fs in
this case) that can be used to directly interact with the file system, as will be shown
in the following section.

function onSuccessFunction(fs) {
 alert("Accessing " + fs.name + " storage (" +
 fs.root.fullPath + ")");
 //Do something with the file system (fs) here

}

The onErrorFunction is executed when there is an error with most of the meth-
ods defined in the File API. The information provided here will be relevant to most
of the other examples provided in this chapter. Passed to the onErrorFunction is
an error object that can be queried to determine the nature of the problem. The
following list of constants define the possible values that can be returned by the
File API for file and directory access problems:

•	 FileError.ABORT_ERR

•	 FileError.ENCODING_ERR

•	 FileError.INVALID_MODIFICATION_ERR

•	 FileError.INVALID_STATE_ERR

•	 FileError.NO_MODIFICATION_ALLOWED_ERR

•	 FileError.NOT_FOUND_ERR

•	 FileError.NOT_READABLE_ERR

•	 FileError.PATH_EXISTS_ERR

•	 FileError.QUOTA_EXCEEDED_ERR

•	 FileError.SECURITY_ERR

•	 FileError.SYNTAX_ERR

•	 FileError.TYPE_MISMATCH_ERR

ptg8126969

266 CHApter 18 File

The following is an example of a function that can be used within an application to
display an error message to users. In this example, the code uses e.code property
to determine the error condition (using the error constants listed earlier).

function onFileError(e) {
 var msgText;
 switch(e.code) {
 case FileError.NOT_FOUND_ERR:
 msgText = "File not found error.";
 break;
 case FileError.SECURITY_ERR:
 msgText = "Security error.";
 break;
 case FileError.ABORT_ERR:
 msgText = "Abort error.";
 break;
 case FileError.NOT_READABLE_ERR:
 msgText = "Not readable error.";
 break;
 case FileError.ENCODING_ERR:
 msgText = "Encoding error.";
 break;
 case FileError.NO_MODIFICATION_ALLOWED_ERR:
 msgText = "No modification allowed.";
 break;
 case FileError.INVALID_STATE_ERR:
 msgText = "Invalid state.";
 break;
 case FileError.SYNTAX_ERR:
 msgText = "Syntax error.";
 break;
 case FileError.INVALID_MODIFICATION_ERR:
 msgText = "Invalid modification.";
 break;
 case FileError.QUOTA_EXCEEDED_ERR:
 msgText = "Quota exceeded.";
 break;
 case FileError.TYPE_MISMATCH_ERR:
 msgText = "Type mismatch.";
 break;
 case FileError.PATH_EXISTS_ERR:
 msgText = "Path exists error.";
 break;
 default:
 msgText = "Unknown error.";
 }
 //Now tell the user what happened
 navigator.notification.alert(msgText, null, "File Error");
}

ptg8126969

267reAding direCtory entries

When working with individual files, like the image file path information you get
back from the Camera (Chapter 11) and Capture (Chapter 12) APIs, you don’t need
access to the file system directly; you can just work with the file individually.

Reading Directory Entries
Once you have access to the file system (either through the persistent or temporary
storage area), you have the ability to process directory entries using the File API’s
DirectoryReader object. To create a DirectoryReader object, an application
must make a call to createReader, as shown in the following function:

function onGetFileSystemSuccess(fs) {
 alert("Accessing " + fs.name + " storage (" +
 fs.root.fullPath + ")");
 //Create a directory reader we'll use to list the files in
 //the directory
 var dr = fs.root.createReader();
 // Get a list of all the entries in the directory
 dr.readEntries(onDirReaderSuccess, onFileError);
}

In this example, the call to createReader is made in the callback function exe-
cuted after requesting a file system object as described in the previous section.
Here the application uses the file system object to create a DirectoryReader
pointing at the root folder of the selected file system. The DirectoryReader (dr in
the example) supports only a single method, readEntries, which is used to read
all of the entries in the specified folder.

As shown in the following example function, the callback function executed when
a DirectoryReader has been successfully created is passed a dirEntries object.
This object is an array of FileEntry and DirectoryEntry objects that can be
accessed to obtain information about all of the files and directories in the folder.

function onDirReaderSuccess(dirEntries) {
 var i, fl, len;
 len = dirEntries.length;
 if(len > 0) {
 fl = '<ul data-role="listview">';
 for(i = 0; i < len; i++) {
 if(dirEntries[i].isDirectory == true) {
 fl += '<a href="#" onclick="processEntry(' + i +
 ');">Directory: ' + dirEntries[i].name + '';
 } else {
 fl += '<a href="#" onclick="processEntry(' + i +
 ');">File: ' + dirEntries[i].name + '';
 }
 }

ptg8126969

268 CHApter 18 File

 fl += "";
 } else {
 fl = "<p>No entries found</p>";
 }
 //Update the page content with our directory list
 $('#dirEntries').html(fl);
 //Display the directory entries page
 $.mobile.changePage("#dirList", "slide", false, true);
}

In this example, the function first checks to see whether any entries were found in
the directory and then loops through them building an unordered list of list items
(using the HTML , , , and tags) that are then added to the
page. The application will display different content depending on whether the
entry is a file or directory.

In this example, I’m using jQuery Mobile (www.jquerymobile.com) to create a
more professional-looking UI for the application, so that’s why you’ll see the
data-role="listview" attribute associated with the tag in the code. The
call to $('#dirEntries').html(fl) at the end of the function is a function of
jQuery (www.jquery.com) that provides a quick method for updating the content
of the dirEntries <div> on the HTML page I’m using. Finally, the application
makes a call to $.mobile.changePage(), which is a jQuery function that switches
to a different page within the application.

The capabilities highlighted in the previous paragraph illustrate several of the
important reasons why a developer would use jQuery and jQuery Mobile for their
applications; it takes away much of the complexity of creating compelling UIs and
user experiences. Using the following section of an HTML page, the code we’ve
just discussed will generate the interactive screen shown in Figure 18-1.

<section id="dirList" data-role="page" data-add-back-btn="true">
 <header data-role="header">
 <h1>File API Demo</h1>
 <a onclick="writeFile();" data-icon="plus"
 class="ui-btn-right">Write
 </header>
 <div data-role="content">
 <p>File system contents:</p>
 <div id="dirEntries"></div>
 <hr />
 <div id="writeInfo"></div>
 </div>
</section>

www.jquerymobile.com
www.jquery.com

ptg8126969

269ACCessing Fileentry And direCtoryentry properties

Figure 18-1 Example 18-1 running on a BlackBerry Torch 9800 simulator

The Write button shown in the figure will be discussed in the section entitled
“Writing Files” later in the chapter.

Accessing FileEntry and DirectoryEntry Properties
The FileEntry and DirectoryEntry objects expose several properties an appli-
cation can use to obtain additional information about a file or directory entry. The
properties that can be accessed by an application are as follows:

•	 fullPath: The complete, absolute path from the root of the file system to
the entry

ptg8126969

270 CHApter 18 File

•	 isDirectory: Returns true for DirectoryEntry objects and false for
FileEntry objects

•	 isFile: Returns true for FileEntry objects and false for DirectoryEntry
objects

•	 name: The file name, excluding path information, for the entry

Before an application can access these properties, it must first have a handle to the
entry. In the previous section, the DirectoryReader returned an array of entries,
so accessing properties is not that difficult.

To obtain an entry using a file name, use the following code:

fs.root.getFile("sample.txt", { create : false },
 processEntry, onFileError);

fs refers to a FileSystem object obtained from a call to requestFileSystem
described earlier in the chapter. Once you have access to a file or directory entry,
you can access the properties as shown in the following function. In this example,
the processEntry function was passed as a success callback parameter in the
call to getFile, so it’s executed automatically as soon as getFile has a handle to
the file. The file entry (theEntry in this example) is passed as a parameter to the
function.

function processEntry(theEntry) {
 var fi = "";
 fi += '<p>Name: ' + theEntry.name + '</p>';
 fi += '<p>Full Path: ' + theEntry.fullPath + '</p>';
 fi += '<p>URI: ' + theEntry.toURI() + '</p>';
 if(theEntry.isFile == true) {
 fi += '<p>The entry is a file</p>';
 } else {
 fi += '<p>The entry is a directory</p>';
 }
 //Update the page content with information about the file
 $('#fileInfo').html(fi);
 //Display the directory entries page
 $.mobile.changePage("#fileDetails", "slide", false, true);
}

A file can also have metadata associated with it; accessing the metadata requires
another method call and a callback function, as shown in the following example:

theEntry.getMetadata(onGetMetadataSuccess, onFileError);

ptg8126969

271ACCessing Fileentry And direCtoryentry properties

After the call to getMetadata, the onGetMetadataSuccess callback function
is executed and passed a metadata object containing additional information
about the directory or file entry. The File API currently supports only the
modificationTime property, so you can access the property using the following
example:

function onGetMetadataSuccess(metadata) {
 alert("File Modification Time:" + metadata.modificationTime);
}

To display any number of metadata properties that could be added in the future,
the sample application for this chapter uses the following code instead:

function onGetMetadataSuccess(metadata) {
 var md = '';
 for(aKey in metadata) {
 md += '' + aKey + ': ' + metadata[aKey] + br;
 }
 md += hr;
 //Update the page content with information about the file
 $('#fileMetadata').html(md);
}

When used in conjunction with the processEntry function described earlier in
this section and the HTML page segment shown next, the application will display
a screen similar to the one shown in Figure 18-2.

<section id="fileDetails" data-role="page"
 data-add-back-btn="true">
 <header data-role="header">
 <h1>File API Demo</h1>
 </header>
 <div data-role="content">
 <p>Directory Entry Information</p>
 <hr />
 <div id="fileInfo"></div>
 <hr />
 <p>File Metadata:</p>
 <div id="fileMetadata"></div>
 <input type="button" value="View File"
 onclick="viewFile();">
 <input type="button" value="Remove File"
 onclick="removeFile();">
 </div>
</section>

ptg8126969

272 CHApter 18 File

Figure 18-2 Example 18-1: directory entry details

Writing Files
To write data to files in either persistent or temporary storage, an application uses
a FileWriter object. To begin the process, the application must first get access to
a file object representing the file using the getFile method, as shown in the fol-
lowing example:

theFileSystem.root.getFile('appdata1.txt', {create : true},
 onGetFileSuccess, onFileError);

ptg8126969

273writing Files

After the call to getFile, the onGetFileSuccess function is executed and passed
the file object that will be used to create the FileWriter, as shown in the follow-
ing example:

function onGetFileSuccess(theFile) {
 theFile.createWriter(onCreateWriterSuccess, onFileError);
}

Once again, we have another callback to wait for; once the FileWriter has been
created, the callback function is executed, and the actual file writing can happen,
as illustrated in the following example:

function onCreateWriterSuccess(writer) {
 writer.onwritestart = function(e) {
 console.log("Write start");
 };

 writer.onwriteend = function(e) {
 console.log("Write end");
 };

 writer.onwrite = function(e) {
 console.log("Write completed ");
 };

 writer.onerror = function(e) {
 console.log("Write error: " + e.toString());
 };

 writer.write("File created by Example 18-1: ");
}

The function is passed a writer object, which is used to control the writing of data to
the file. The FileWriter exposes several events that are triggered during the write
process. An application can associate functions with those events and update the
screen, a log file, or the browser console with information about the stats of the pro-
cess. The following list shows the valid event types associated with the FileWriter:

•	 onabort: Executed when the write process has been aborted through a call
to writer.abort()

•	 onerror: Executed when an error occurs during the write process

•	 onwrite: Executed when the write process has completed successfully

•	 onwriteend: Executed when the writer has completed a write request

•	 onwritestart: Executed when the write process starts

ptg8126969

274 CHApter 18 File

There is additional functionality provided by the FileWriter object such as the
ability to abort a write, seek a certain location within the file, and truncate the file.
Refer to the File API documentation at http://docs.phonegap.com for additional
information about these capabilities.

In my testing on the BlackBerry platform, the application couldn’t execute sequen-
tial calls to writer.write to write data to the file; only the content from the first
write would be written to the file. If I placed calls to alert() between my writes
to interrupt the flow of the application, all of the content would be written to the
file. There’s clearly an issue when new calls are made to write when previous
writes are in process. This is happening because calls to the FileWriter are asyn-
chronous; you can’t make calls to write until the previous write has completed.
To get around these issues, one PhoneGap developer has created a useful wrap-
per that solves the problem; you can find information about the solution here:
http://tinyurl.com/bt3kyrl.

Reading Files
The process to read content from files is very similar to what was demonstrated in
the previous section. To read files, an application uses a FileReader object. To
begin the process, the application must first get access to a file object represent-
ing the file using the getFile method, as shown in the following example:

theFileSystem.root.getFile('appdata1.txt', {create : false},
 onGetFileSuccess, onFileError);

If the application already has a handle to a file entry object pointing to the file, it
can use the following code:

theEntry.file(onGetFileSuccess, onFileError);

In the onGetFileSuccess callback function, the application creates the
FileReader object and then uses it to read the file, as shown in the following
example:

function onGetFileSuccess(file) {
 var reader = new FileReader();

 reader.onloadend = function(e) {
 console.log("Read end");
 alert(e.target.result);
 };

 reader.onloadstart = function(e) {
 console.log("Read start");
 };

http://docs.phonegap.com
http://tinyurl.com/bt3kyrl

ptg8126969

275deleting Files or direCtories

 reader.onloaderror = function(e) {
 console.log("Read error: " + e.target.error.code);
 };

 reader.readAsText(file);
}

As with the FileWriter, the FileReader object exposes several events that are
triggered during the read process. An application can associate functions with
those events and update the screen, a log file, or the browser console with informa-
tion about the stats of the process. The following list shows the valid event types
associated with the FileReader:

•	 onabort: Executed when the read process has been aborted through a call
to reader.abort()

•	 onerror: Executed when an error occurs during the read process

•	 onload: Executed when the read has completed successfully

•	 onloadend: Executed when the reader has completed the read request

•	 onloadstart: Executed when the read process starts

In this example, the contents of the file are read as text using a call to
reader.readAsText(). Once the read has completed, the value stored in
e.target.result contains the contents of the file. The FileReader also supports
the readAsDataURL method, which reads the file and returns the file’s data as a
base64-encoded data URL. Don’t forget what you learned in Chapter 11—retrieving
a large file’s contents as raw data may overload the device’s JavaScript processor and
crash a PhoneGap application.

Deleting Files or Directories
To remove a file from local storage, an application must first obtain a FileEntry
or DirectoryEntry object pointing to the file or directory and then can call the
following code to delete it:

theEntry.remove(onRemoveFileSuccess, onFileError);

function onRemoveFileSuccess(entry) {
 var msgText = "Successfully removed " + entry.name;
 console.log(msgText);
 alert(msgText);
}

ptg8126969

276 CHApter 18 File

When deleting a directory, the directory must be empty or the remove operation
will fail. To remove a directory that contains files, use the removeRecursively
method, which will empty the directory before removing it.

In my testing of the sample application, I was able to successfully remove files,
but the application would call the onFileError function and return a
FileError.INVALID_MODIFICATION_ERR error code. In Bryce’s testing on an
Android device, it worked without error, so there’s likely a bug somewhere that
needs to be addressed.

Copying Files or Directories
To copy a file or directory, an application must first obtain a FileEntry or
DirectoryEntry object pointing to the file or directory and then call the follow-
ing code to copy it to a new location:

theEntry.copyTo(parentEntry, newName, onSuccessFunction,
 onErrorFunction);

The parentEntry parameter refers to the directory where the file or directory will
be copied. Directory copies are recursive, so the process will copy the directory as
well as the contents of the directory.

The newName parameter defines the name for the file or directory in the destination
directory. This parameter is optional; if you don’t include it, the file or directory’s
current name will be used. This parameter is required if copying a file to the same
directory.

The onSuccessFunction and onErrorFunction used here are the same as you’ve
seen in many other examples; the onSuccesFunction is the function that is exe-
cuted when the copy process completes, and the onErrorFunction is the function
that is executed when an error occurs during the copy process.

The standard limitations you would expect from any file action apply here. When
copying a file or directory to the same directory (essentially renaming it), you
must supply a new name for the file or directory; otherwise, the copy process will
fail. Also, you cannot copy a directory inside itself.

Moving Files or Directories
To move a file or directory, an application must first obtain a FileEntry or
DirectoryEntry object pointing to the file or directory and then call the follow-
ing code to move the file to a new location:

theEntry.moveTo(parentEntry, newName, onSuccessFunction,
 onErrorFunction);

ptg8126969

277uploAding Files to A server

The parentEntry parameter refers to the directory where the file or directory will
be moved. Directory moves are recursive, so the process will move the directory
as well as the contents of the directory.

The newName parameter defines the name for the file or directory in the destination
directory. This parameter is optional, if you don’t include it, the file or directory’s
current name will be used. This parameter is required if you are moving a file to
the same directory, which is essentially renaming the file.

The onSuccessFunction and onErrorFunction used here are the same as you’ve
seen in many other examples; the onSuccessFunction is the function that is exe-
cuted when the move process completes, and the onErrorFunction is the func-
tion that is executed when an error occurs during the move process.

The standard limitations you would expect from any file action apply here. When
moving a file or directory to the same directory (essentially renaming it), you must
supply a new name for the file or directory; otherwise, the move process will fail.
Also, you cannot move a directory to a directory inside itself.

Uploading Files to a Server
The PhoneGap File API includes a FileTransfer object that allows applica-
tions to upload files to a remote server. An application must first create a new
FileTransfer object and then call the object’s upload method to begin the data
transfer to the server. An example of this is illustrated in the following code:

var ft = new FileTransfer();
ft.upload(fileURI, serverURL, onUploadSuccess, onUploadError,
 fileUploadOptions);

The fileURI parameter references the file path pointing to the file that will be
uploaded to the server. The serverURL parameter refers to the server URL that
will be accessed to upload the file. The onUploadSucess and onUploadError are
the callback functions executed on success and failure of the upload activity.

The fileUploadOptions parameter refers to an object that defines the following
option settings that control the upload process:

•	 chunkedMode: Boolean value that controls whether streaming of the HTTP
request is performed without internal buffering. If this value is not set, it
defaults to true. Apparently ColdFusion doesn’t like this parameter enabled
(http://tinyurl.com/7nbpwb3).

•	 fileKey: Defines the name of the form element the file is uploaded to on
the server. If this value is not set, it defaults to file.

http://tinyurl.com/7nbpwb3

ptg8126969

278 CHApter 18 File

•	 fileName: The file name for the uploaded file on the remote server. If this
value is not set, it defaults to image.jpg.

•	 mimeType: The MIME type of the data you are uploading. If this value is
not set, it defaults to image/jpeg.

•	 params: An optional set of key/value pairs that are included in the HTTP
request header.

The onUploadSuccess function is passed a result object that can be used to deter-
mine the status of the upload. The result object supports the following properties:

•	 bytesSent: The number of bytes sent to the server as part of the upload

•	 responseCode: The HTTP response code returned by the server

•	 response: The HTTP response returned by the server

The following function illustrates how to access these properties in an application:

function onUploadSuccess(ur) {
 console.log("Upload Response Code: " + ur.responseCode);
 console.log("Upload Response: " + ur.response);
 console.log("Upload Bytes Sent: " + ur.bytesSent);
}

Currently iOS does not set values for the responseCode and bytesSent properties.

The FileTransfer object passes an error object to the onUploadError callback
function; the code property can be queried to determine the cause of the error as
illustrated, in the following example:

function onUploadError(e) {
 var msgText;
 switch(e.code) {
 case FileTransferError.FILE_NOT_FOUND_ERR:
 msgText = "File not found.";
 break;
 case FileTransferError.INVALID_URL_ERR:
 msgText = "Invalid URL.";
 break;
 case FileTransferError.CONNECTION_ERR:
 msgText = "Connection error.";
 break;
 default:
 msgText = "Unknown error.";
 }
 //Now tell the user what happened
 navigator.notification.alert(msgText, null,
 "File Transfer Error");
}

ptg8126969

279

Geolocation

The Geolocation API allows an application to leverage the GPS capabilities of a
mobile device and determine the device’s location on the surface of the earth.
Using this API, either an application can manually check the device’s current posi-
tion or it can create a location watch that will cause the application to be periodi-
cally notified of the device’s physical location.

To use this API, the device running the application must provide geolocation capa-
bilities (by utilizing either a GPS radio and associated software or some alternate
mechanism for determining the device’s location). While geolocation capabilities
in smartphones are regularly enhanced in newer models, an application cannot
guarantee that even though the device has geolocation capabilities, it will be able
to determine its location. There are many geographical (such as being in a canyon)
or mechanical issues (such as being inside a building) that can affect the device’s
ability to report its location to a PhoneGap application.

Since most HTML 5–compatible mobile browsers provide support for the W3C
Geolocation API Specification already (www.w3.org/TR/geolocation-API),
PhoneGap applications running on a compatible device can use this API directly
today (this is the default behavior for PhoneGap applications). For devices that
don’t provide a Geolocation API such as BlackBerry devices running Device Soft-
ware 5 or Android 1.x devices, the PhoneGap development team has included a
compatible Geolocation API in the standard PhoneGap JavaScript library. For
these devices, to enable a PhoneGap application to use PhoneGap’s implementa-
tion of the Geolocation API, simply invoke Geolocation.usePhoneGap() once
the PhoneGap deviceready event has fired.

The implementation of this API is structured very similarly to how the Accelerom-
eter (Chapter 10) and Compass (Chapter 13) APIs work. You’ll find that the

19

www.w3.org/TR/geolocation-API

ptg8126969

280 CHApter 19 geoloCAtion

examples provided in this chapter are very similar to what has already been shown
in those chapters.

Getting a Device’s Current Location
To manually determine the location of a smartphone, an application should exe-
cute the following code:

navigator.geolocation.getCurrentPosition(onGeolocationSuccess,
 ongeolocationError);

The call to getCurrentPosition includes the callback functions
onLocationSuccess and onLocationError. The onLocationSuccess is exe-
cuted when the device’s location has been successfully measured, and the
onLocationError function is executed if there is an error measuring the device’s
location.

An application can also configure options that control the way in which the API
measures location, as shown in the following example:

var geolocationOptions = {
 timeout : 3000,
 enableHighAccuracy : true
};
navigator.geolocation.getCurrentPosition(onGeolocationSuccess,
 ongeolocationError, geolocationOptions);

In this example, a geolocationOptions object is passed to the call to
getCurrentPosition. The available properties for geolocationOptions are as
follows:

•	 enableHighAccuracy: Boolean value indicating whether the application
would like to measure the device’s location with a higher degree of accu-
racy. When enabling this option, the application may obtain more accurate
results, but at the same time, it will place a higher load on the device, which
may decrease performance and battery life while the application runs.

•	 frequency: Defines in milliseconds how often the location is measured.
This option applies only when implementing a location watch (described
later in this chapter). This is a PhoneGap-specific setting, and as PhoneGap
more closely implements the W3C specification, this property will be
removed. Developers should use the maximumAge property instead.

•	 maximumAge: Defines the maximum age (in milliseconds) of a cached
location value that will be accepted by the application. A smaller value for

ptg8126969

281getting A deviCe’s Current loCAtion

this property should force the API to only deliver more recent location
updates.

•	 timeout: The maximum amount of time (in milliseconds) that is allowed to
pass between the call to either geolocation.getCurrentPosition or
geolocation.watchPosition until the onGeolocationSuccess callback
is executed.

After the API measures the device’s location, it executes the onGeolocationSuccess
callback function. Passed to the function is a location object that exposes coords
properties an application can use to understand the device’s location. The following
function illustrates the properties that are exposed through the location object:

function onGeolocationSuccess(loc) {
 //We received something from the API, so first get the
 // timestamp in a date object so we can work with it
 var d = new Date(loc.timestamp);
 //Then replace the page's content with the current
 // location retrieved from the API
 lc.innerHTML = 'Current Location<hr />' +
 'Latitude: ' + loc.coords.latitude +
 '
Longitude: ' + loc.coords.longitude +
 '
Altitude: ' + loc.coords.altitude +
 '
Accuracy: ' + loc.coords.accuracy +
 '
Altitude Accuracy: ' +
 loc.coords.altitudeAccuracy +
 '
Heading: ' + loc.coords.heading +
 '
Speed: ' + loc.coords.speed +
 '
Timestamp: ' + d.toLocaleString();
}

When an error occurs while measuring the device’s location, the onGeolocation
Error callback function is executed. Passed to the function is an error object that
exposes the code and message properties, as shown in the following example:

function onGeolocationError(e) {
 var msgText = "Geolocation error: #" + e.code + "\n" +
 e.message;
 console.log(msgText);
 alert(msgText);
}

Example 19-1 illustrates how to use the getCurrentPosition method in an appli-
cation. The application exposes a single button that, when clicked, calls
getCurrentPosition and updates the screen with the device’s current location.

ptg8126969

282 CHApter 19 geoloCAtion

Example 19-1

<!DOCTYPE html>
<html>
 <head>
 <title>Example 19-1</title>
 <meta name="viewport" content="width=device-width,
 height=device-height initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <script type="text/javascript" charset="utf-8"
 src="phonegap-1.2.0.js"></script>
 <script type="text/javascript">

 //Location content
 var lc;
 //PhoneGap Ready variable
 var pgr = false;

 function onBodyLoad() {
 //During testing, Let me know we got this far
 alert("onBodyLoad");
 //Add the PhoneGap deviceready event listener
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //During testing, Let me know PhoneGap actually
 // initialized
 alert("onDeviceReady");
 //Get a handle we'll use to adjust the accelerometer
 //content
 lc = document.getElementById("locationInfo");
 //Set the variable that lets other parts of the program
 //know that PhoneGap is initialized
 pgr = true;
 }

 function getLocation() {
 alert("getLocation");
 if(pgr == true) {
 var locOptions = {
 timeout : 5000,
 enableHighAccuracy : true
 };
 //get the current location
 navigator.geolocation.getCurrentPosition(

ptg8126969

283getting A deviCe’s Current loCAtion

 onGeolocationSuccess, onGeolocationError,
 locOptions);
 //Clear the current location while we wait for a
 //reading
 lc.innerHTML = "Reading location...";
 } else {
 alert("Please wait,\nPhoneGap is not ready.");
 }
 }

 function onGeolocationSuccess(loc) {
 alert("onLocationSuccess");
 //We received something from the API, so first get the
 // timestamp in a date object so we can work with it
 var d = new Date(loc.timestamp);
 //Then replace the page's content with the current
 // location retrieved from the API
 lc.innerHTML = 'Current Location<hr />' +
 'Latitude: ' + loc.coords.latitude +
 '
Longitude: ' + loc.coords.longitude +
 '
Altitude: ' + loc.coords.altitude +
 '
Accuracy: ' + loc.coords.accuracy +
 '
Altitude Accuracy: ' +
 loc.coords.altitudeAccuracy +
 '
Heading: ' + loc.coords.heading +
 '
Speed: ' + loc.coords.speed +
 '
Timestamp: ' + d.toLocaleString();
 }

 function onGeolocationError(e) {
 alert("Geolocation error: #" + e.code + "\n" +
 e.message);
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Geolocation API Demo #1</h1>
 <p>
 Click the button to determine the current location.
 </p>
 <input type="button" value="Refresh Location"
 onclick="getLocation();">
 <hr />
 <p id="locationInfo"></p>
 </body>
</html>

ptg8126969

284 CHApter 19 geoloCAtion

Figure 19-1 shows Example 19-1 running on a BlackBerry Torch 9800 simulator.

Figure 19-1 Example 19-1 running on a BlackBerry Torch 9800 simulator

Watching a Device’s Location
Instead of checking the device’s location manually, an application can define a
geolocation watch that causes the device’s location to be passed to the program
periodically.

ptg8126969

285wAtCHing A deviCe’s loCAtion

Setting a Watch
To create a location watch, an application should execute the following code:

watchID = navigator.geolocation.watchPosition(
 onGeolocationSuccess, onGeolocationError);

In this example, a watchID variable is assigned to the result of the operation;
an application can use the watchID at a later time to cancel the watch. As
with other PhoneGap APIs, the method is passed the names of two functions, the
onGeolocationSuccess and onGeolocationError functions, which are exe-
cuted after the device’s location has been successfully measured and when there is
an error measuring the device’s location.

As with the call to getCurrentLocation, the watchPosition method can accept
a geolocationOptions object to control configuration parameters for the watch.
In the following example, the geolocationOptions object is configured to ignore
cached values older than 10 seconds (10,000 milliseconds), to time out if a
response isn’t received within 5 seconds (5,000 milliseconds), and to try to mea-
sure with higher accuracy when determining the device’s location.

var geolocationOptions = {
 maximumAge : 10000,
 timeout : 5000,
 enableHighAccuracy : true
};
//get the current location
watchID = navigator.geolocation.watchPosition(
 onGeolocationSuccess, onGeolocationError, geolocationOptions);

The onGeolocationSuccess function is passed a geolocation object, loc in this
example, which exposes the same geolocation properties described in the previ-
ous section.

function onGeolocationSuccess(loc) {
 //We have a new location, so get the timestamp in a date
 // object so we can work with it
 var d = new Date(loc.timestamp);
 //Replace the page's content with the current
 //location retrieved from the API
 $('#locationInfo').html('Latitude: ' +
 loc.coords.latitude + '
Longitude: ' +
 loc.coords.longitude + '
Altitude: ' +
 loc.coords.altitude);
 $('#timestampInfo').prepend(d.toLocaleString() +
 '
');
}

ptg8126969

286 CHApter 19 geoloCAtion

In this example, a subset of the location information is built into some HTML
markup for cleaner rendering on the application screen and then added to
the locationInfo division of the page using the $() function from jQuery
(www.jquery.com). The application also maintains a reverse chronological (new-
est at the top) history of timestamp information in the timestampInfo division of
the page (you can see the HTML markup for the page and the complete applica-
tion code in the listing for Exercise 19-2 later in the chapter). When the application
runs, it will display a screen similar to the one shown in Figure 19-2.

Figure 19-2 Exercise 19-2 running on a BlackBerry Torch 9800 simulator

www.jquery.com

ptg8126969

287wAtCHing A deviCe’s loCAtion

As you can see from the figure, the onGeolocationSuccess function is being exe-
cuted every two seconds, even if the device hasn’t moved. When I first started
working with this API, I expected that some sort of trigger could be defined that
could be used to minimize the number of times the onGeolocationSuccess func-
tion would be fired, but that turned out to not be the case. No matter what values I
entered for maximumAge and timeout, the watch returns geolocation information
every two seconds.

If you think about it, querying for geolocation every two seconds will likely put a
big load on the device and likely affect both application and overall device perfor-
mance plus reduce battery life. To help reduce the impact on performance, I
rewrote the function so it captures the previous longitude and latitude values and
updates the location information on the screen only when there’s been a change, as
shown in the following example:

function onGeolocationSuccess(loc) {
 //We have a new location, so get the timestamp in a date
 // object so we can work with it
 var d = new Date(loc.timestamp);
 //Has anything changed since the last time?
 if(lastLat != loc.coords.latitude ||
 lastLong != loc.coords.longitude) {
 //Then replace the page's content with the current
 // location retrieved from the API
 $('#locationInfo').html('Latitude: ' +
 loc.coords.latitude + '
Longitude: ' +
 loc.coords.longitude + '
Altitude: ' +
 loc.coords.altitude);
 $('#timestampInfo').prepend(d.toLocaleString() +
 '
');
 lastLat = loc.coords.latitude;
 lastLong = loc.coords.longitude;
 } else {
 $('#timestampInfo').prepend('Skipping: ' +
 d.toLocaleTimeString() + '
');
 }
}

Depending on your application, you could easily modify this approach so it takes
into consideration how much the location has changed before updating the screen
or doing something time-consuming or processor-consuming within the applica-
tion. Figure 19-3 shows the same application with that fix implemented; in other
words, it shows the geolocation information being updated only when the values
actually change.

ptg8126969

288 CHApter 19 geoloCAtion

Figure 19-3 Updated Exercise 19-2 running on a BlackBerry Torch 9800 simulator

The onGeolocationError function is the same as the one used in the previous
section:

function onGeolocationError(e) {
 var msgText = "Geolocation error: #" + e.code + "\n" +
 e.message;
 console.log(msgText);
 alert(msgText);
}

ptg8126969

289wAtCHing A deviCe’s loCAtion

Canceling a Watch
Once a watch has been created, it can be canceled using the saved watchID vari-
able and the following code:

navigator.geolocation.clearWatch(watchID);

There’s no callback function required, but you could do a little extra work to help
out your user, as shown in the following function example:

function cancelWatch() {
 //Clear the watch
 navigator.geolocation.clearWatch(watchID);
 //Clear the watch ID (just because)
 watchID = null;
 //Let the user know we cleared the watch
 alert("Location Watch Cancelled");
}

In the example, I clear the watch and then null out the watchID variable just to
make sure it’s not available in case the program accidently tries to clear the same
watch later. We don’t have an onGeolocationError function to execute if this
fails, so it might even be better if you wrap the call into a try/catch block and
deal with any errors that might occur directly.

Example 19-2 lists the complete HTML markup and application code for the
application illustrated in Figure 19-3.

Example 19-2

<!DOCTYPE html>
<html>
 <head>
 <title>Example 19-1</title>
 <meta name="viewport" content="width=device-width,
 height=device-height initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <script type="text/javascript" charset="utf-8"
 src="jquery-1.7.1.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript">

 var watchID, lastLong, lastLat;

 function onBodyLoad() {
 //Add the PhoneGap deviceready event listener
 document.addEventListener("deviceready", onDeviceReady,

ptg8126969

290 CHApter 19 geoloCAtion

 false);
 }

 function onDeviceReady() {
 //Create the watch
 startWatch();
 }

 function startWatch() {
 //Clear out the previous content on the page
 $('#locationInfo').empty();
 $('#timestampInfo').empty();
 //Show and hide the appropriate buttons
 $('#btnStart').hide();
 $('#btnCancel').show();
 //Geolocation Options
 var locOptions = {
 maximumAge : 10000,
 timeout : 5000,
 enableHighAccuracy : true
 };
 //get the current location
 watchID = navigator.geolocation.watchPosition(
 onLocationSuccess, onLocationError, locOptions);
 }

 function onLocationSuccess(loc) {
 //We have a new location, so get the timestamp in a date
 // object so we can work with it
 var d = new Date(loc.timestamp);
 //Has anything changed since the last time?
 if(lastLat != loc.coords.latitude ||
 lastLong != loc.coords.longitude) {
 //Then replace the page's content with the current
 // location retrieved from the API
 $('#locationInfo').html('Latitude: ' +
 loc.coords.latitude + '
Longitude: ' +
 loc.coords.longitude + '
Altitude: ' +
 loc.coords.altitude);
 $('#timestampInfo').prepend(d.toLocaleString() +
 '
');
 lastLat = loc.coords.latitude;
 lastLong = loc.coords.longitude;
 } else {
 $('#timestampInfo').prepend('Skipping: ' +
 d.toLocaleTimeString() + '
');
 }
 }

ptg8126969

291wAtCHing A deviCe’s loCAtion

 function onLocationError(e) {
 alert("Geolocation error: #" + e.code + "\n" +
 e.message);
 }

 function cancelWatch() {
 //Clear the watch
 navigator.geolocation.clearWatch(watchID);
 //Clear the watch ID (just because)
 watchID = null;
 //Hide the cancel button so they can't cancel it again.
 $('#btnCancel').hide();
 $('#btnStart').show();
 //Let the user know we cleared the watch
 alert("Watch Cancelled");
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Geolocation API Demo #2</h1>
 <input type="button" value="Cancel"
 onclick="cancelWatch();" id="btnCancel">
 <input type="button" value="Start"
 onclick="startWatch();" id="btnStart">

 Location
 <hr />
 <div id="locationInfo"></div>

 Timestamp
 <hr />
 <div id="timestampInfo"></div>
 </body>
</html>

ptg8126969

This page intentionally left blank

ptg8126969

293

Media

The Media API provides applications with the ability to record and play audio
files. With this API, there is some overlap with the capabilities of the Capture API
described in Chapter 12. Essentially, this API has limited capabilities as com-
pared to the Capture API, and it’s likely that not much will be done with this API
going forward. The documentation for the Media API even kicks off with a warn-
ing to developers reminding them that the API doesn’t align with the W3C speci-
fication for media capture and that future development will revolve around the
Capture API.

That being said, the Media API is still useful. Even though the Capture API allows
you to capture audio files, duplicating the same functionality provided in the
Media API, the Capture API doesn’t provide a mechanism to play audio files, so
you’ll need the Media API to do that. The API is limited in that it offers support
only for Android, iOS, and Windows Phone devices today. Any application you
build using this API would not work on a BlackBerry device, for example.

This API works differently than any of the other PhoneGap APIs covered so far. As
you’ll see in this chapter, the way the API exposes information about the media
file creates some challenges for the PhoneGap developer.

The Media Object
The following sections describe how to work with the Media object in your
PhoneGap applications.

20

ptg8126969

294 CHApter 20 a

Creating a Media Object
Before a PhoneGap application can play an audio file, it must first create a Media
object that points to the audio file. Once the object has been created, methods are
exposed through the object that allow the application to play the file plus pause
and stop playback. These capabilities are essential for gaming applications that
need the ability to play audio clips during play.

To create a Media object that can be used to play an audio file, at a minimum, an
application would use the following code:

theMedia = new Media(mediaFileURI, onSuccess);

In this case, we’re creating a new theMedia object that application will interact
with. The Media object’s constructor is passed a file URI pointing to the audio file
being opened plus an onSuccess function that will be executed when the Media
API completes playing or recording an audio clip.

Note: The onSuccess function doesn’t execute when this call completes; it executes
every time the object completes playing or recording an audio file.

When this process completes, you have a new Media object to work with, but nothing
is known about the audio clip. The object you’ve created exposes methods your appli-
cation will use to play the audio clip or record a new audio clip, but the application has
not accessed the media file yet. As you’ll see later, there are methods you can use to
determine the duration of a clip and read or set the current position within the clip, but
none of those operations have any value unless the clip is currently being played.

File URI
The mediaFileURI passed to the constructor points to the audio clip that will be
accessed. This could be a file located on a file server, as you’ll see in the example
code shown later in the chapter. It could also point to a file on the local file system.
In this case, the application could use the File API described in Chapter 18 to
obtain access to the local file system and browse for and access files.

An application can also package the audio files it needs into the PhoneGap appli-
cation and access them directly from within the application. The beauty of this
approach is that the files will be guaranteed to be there when the application needs
them without having to connect to a remote server to play them or rely upon the
files being in a particular location in temporary or persistent storage (explained in
Chapter 18). The drawback of this approach is that depending on the mobile plat-
forms you support with your application, you will find the files in different loca-
tions on the device.

ptg8126969

295tHe mediA obJeCt

When you include media files in an application on Android, those files can be
accessed from the android_asset folder, as shown in the following example:

theMedia = new Media("/android_asset/thefile.mp3", onSuccess);

On iOS, the files are accessible directly from the / folder, as shown in the follow-
ing example:

theMedia = new Media("/thefile.mp3", onSuccess);

The previous, just in case you’re interested, resolves to the www folder within the
private folder structure created for each installed application on iOS.

Applications/08B5D45E-1128-4FA1-97D6-1CD092B16CD7/myapp.app/
 www/thefile.mp3

So, if you’re building applications for multiple mobile device platforms, you’ll
have to determine which platform the application is running on and pull the files
from the appropriate folder depending on the mobile device.

Callback Functions
This is where things start to get weird with the Media API. The onSuccess func-
tion being passed in to the constructor doesn’t identify the code that will be exe-
cuted when the creation of the new Media object completes successfully; instead,
you’re specifying the function that will be executed when the playing or record-
ing of audio clips completes successfully. Even though the documentation clearly
said this, I didn’t understand it properly until I got my application working and
saw what was really happening. You’ll see how this impacts your applications in
a little while.

The Media constructor supports additional, optional callback functions, as shown
in the following example:

theMedia = new Media(mediaFileURI, onSuccess, onError,
 onStatus);

The optional onError function is executed whenever an error occurs during play-
ing or recording audio. As with the other PhoneGap APIs, the onError function is
passed an object an application can use to understand and report the nature of the
error as shown. With many of the other PhoneGap APIs, only an error code is
returned, so it must be compared to a list of error constants to determine the source
of an error; the Media API makes this easier by also including an error message, as
shown in the following example:

function onMediaError(e) {
 var msgText = "Media error: " + e.message + "(" + e.code +
 ")";

ptg8126969

296 CHApter 20 a

 console.log(msgText);
 navigator.notification.alert(msgText, null, "Media Error");
}

The API also provides the following error constants, which can be used to identify
each error type:

•	 MediaError.MEDIA_ERR_ABORTED

•	 MediaError.MEDIA_ERR_DECODE

•	 MediaError.MEDIA_ERR_NETWORK

•	 MediaError.MEDIA_ERR_NONE_SUPPORTED

So, an application can respond directly to each type of error using an approach
similar to the following one:

function onMediaError(e) {
 switch(e.code) {
 case MediaError.MEDIA_ERR_ABORTED:
 //Do something about the error

 break;
 case MediaError.MEDIA_ERR_NETWORK:
 //Do something about the error

 break;
 case MediaError.MEDIA_ERR_DECODE:
 //Do something about the error

 break;
 case MediaError.MEDIA_ERR_NONE_SUPPORTED:
 //Do something about the error

 break;
 default:
 navigator.notification.alert("Unknown Error: " +
 e.message + " (" + e.code + ")", null, "Media Error");
 }
}

The optional onStatus function is periodically executed during and after play-
back to indicate the status of the activity. The following function illustrates the
onSuccess function in action:

function onMediaStatus(statusCode) {
 console.log("Status: " + statusCode);
}

ptg8126969

297tHe mediA obJeCt

The supported values for statusCode are as follows:

•	 0: Media.MEDIA_NONE

•	 1: Media.MEDIA_STARTING

•	 2: Media.MEDIA_RUNNING

•	 3: Media.MEDIA_PAUSED

•	 4: Media.MEDIA_STOPPED

Current Position
An application can determine the current position within a playing audio clip
using the getCurrentPosition method, which uses a callback function to deliver
the current position to the application, as shown in the following example:

function updateUI() {
 theMedia.getCurrentPosition(onGetPosition, onMediaError);
}

function onGetPosition(filePos) {
 console.log('Position: ' + Math.floor(filePos) + ' seconds');
}

This value applies only to an audio clip that is currently being played. If the clip is
paused or has not yet been played, the method will return a value of -1.

Since the method doesn’t work unless the clip is playing and, as you’ll see later,
the Media object’s play method doesn’t provide a callback function, in order to be
able to update its UI with information about playback progress, your application
will need to fire off a timer immediately after calling the play method and have
that timer query getCurrentPosition and update the application’s UI accord-
ingly. This is performed through a call to the setInterval method, as shown in
the following example:

Var theTimer = window.setInterval(updateUI, 1000);

The application will need to suspend updates before playback is paused or stopped.
Refer to the source code listing for Example 20-1 for an example of one way to
implement this approach.

Duration
An application can determine the length of a playing audio clip using the
getDuration method, as shown in the following example:

console.log('Duration: ' + theMedia.getDuration() + ' seconds');

ptg8126969

298 CHApter 20 a

getDuration will report a -1 if the audio clip is not currently playing. Unlike
getCurrentPosition, the getDuration method will return the clip length even if
playback is paused.

Releasing the Media Object
When an application is finished with an audio clip, it should release the memory
allocated to the Media object using the following code:

theMedia.release();

Performing this step is especially important on Android devices because of the
way Android allocates resources for audio playback.

Playing Audio Files
To work with audio files, an application using the Media API will first create a
Media object, as shown earlier, and use methods on that object to control audio
playback. The following sections will illustrate how to use each of the options
available when playing audio files using this API.

Play
To play the audio clip associated with a Media object, an application should sim-
ply call the object’s play method, as shown in the following example:

theMedia.play();

The method does not support any input parameters or any callback functions. It
simply starts playing the audio clip (if it can) and allows the application to con-
tinue. If your application needs to update the UI to indicate progress, it will need to
use the setInterval method as described previously to create a timer that is fired
periodically to update the UI and perform whatever additional housekeeping tasks
are required.

When the play method is invoked, the application will open the file URI provided
in the constructor for the Media object. This is the first time your application will
have actually tried to access the media file. If the file is not available or is somehow
not playable on the device, an error will be generated, and the application will
have to do whatever it can to recover. If the file resource is stored on a remote
server, there will be a delay in playback while the application first downloads the
file before attempting playback.

ptg8126969

299reCording Audio Files

This is a risky situation for any application. Since you won’t know whether the
audio clip will play until you actually try to play it, your application will have to do
extra work to ensure success or at least recover gracefully on failure.

Pause
To pause a playing audio clip, an application should call the Media object’s pause
method, as shown in the following example:

theMedia.pause();

If an application invokes pause on a Media object that is not currently playing, no
error will be reported to the application.

Stop
To stop playback of an audio clip, an application should call the Media object’s
stop method, as shown in the following example:

theMedia.stop();

If an application invokes stop on a Media object that is not currently playing, no
error will be reported to the application.

Seek
An application can programmatically seek to a specific position within an audio
clip using the seekTo method of the Media object, as shown in the following
example:

theMedia.seekTo(3600);

The method takes a single input parameter: a numeric value indicating the posi-
tion within the audio file in milliseconds. So, in the example shown, playback
will skip to a position 3,600 milliseconds (3.6 seconds) from the beginning of the
audio clip.

Recording Audio Files
To record audio files, an application must first create a media object as shown ear-
lier and use methods on that object to control the audio recording process. The
following sections will illustrate how to use options available for recording audio
using this API.

ptg8126969

300 CHApter 20 a

Note: The audio recording capabilities offered by the PhoneGap Capture API are
much better suited for audio recording; I recommend you utilize that API instead.

Start Recording
To begin recording audio, an application should call the startRecord method of a
Media object, as shown in the following example:

theMedia.startRecord();

This method doesn’t support any direct callback functions, but the onError function
that was defined when the Media object was created will fire if there’s an error creat-
ing the recording. If you want to indicate that the application is recording and update
the application’s UI with the recording status (recording length, for example), you
will have to do it manually using the setInterval method described previously.

Stop Recording
To discontinue recording audio, an application should call the stopRecord method
of a Media object, as shown in the following example:

theMedia.stopRecord();

This method doesn’t support any direct callback functions, but the onError func-
tion that was defined when the Media object was created will fire if there’s an error.

Seeing Media in Action
To illustrate how different aspects of the Media API are used within an applica-
tion, I created Example 20-1, which highlights one way to manage audio clip play-
back using this API.

Figure 20-1 shows the application at startup. Notice how the audio clip’s duration
is set to -1; this was discussed earlier in the chapter. Even though the application
has created a Media object, the getDuration method does not return a value
unless the clip is actually playing.

As with some of the other examples in this book, this application uses jQuery
(www.jquery.com) and jQuery Mobile (www.jquerymobile.com) to create the
application’s UI. The application doesn’t use many features of jQuery Mobile as
some other examples; I wanted the buttons to fit together cleanly and an unobtru-
sive mechanism for updating page content, so I took this approach. Where you
see HTML attributes data-role and data-icon, those are instructions to jQuery

www.jquery.com
www.jquerymobile.com

ptg8126969

301seeing mediA in ACtion

Mobile to help clean up the UI. The $().html functions you see peppered
throughout the code are simply a shortcut notation for updating the HTML con-
tent of page elements. Beyond that, everything is straight HTML and JavaScript.

Figure 20-1 Example 20-1 at startup

Example 20-1

<!DOCTYPE html>
<html>
 <head>
 <title>Example 20-1</title>
 <meta name="viewport" content="width=device-width,
 height=device-height initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <link rel="stylesheet" href="jquery.mobile1.0b3.min.css" />
 <script type="text/javascript" charset="utf-8"

ptg8126969

302 CHApter 20 a

 src="jquery1.6.4.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="jquery.mobile1.0b3.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="main.js"></script>
 <script type="text/javascript">

 var fileDur, theMedia, theTimer;

 function onBodyLoad() {
 //Add the PhoneGap deviceready event listener
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }

 function onDeviceReady() {
 //Get our media file and stuff
 init();
 }

 function init() {
 var fileName = "http://server/folder/file_name.mp3 ";
 console.log(fileName);
 //Create the media object we need to do everything we
 // need here
 theMedia = new Media(fileName, onMediaSuccess,
 onMediaError, onMediaStatus);
 //Update the UI with the track name
 $('#track').html("File: " + fileName);
 $('#pos').html('Duration: ' +
 Math.round(theMedia.getDuration()) + ' seconds');
 }

 function onMediaSuccess() {
 console.log("onMediaSuccess");
 window.clearInterval(theTimer);
 theTimer = null;
 }

 function onMediaError(e) {
 var msgText;
 console.log(msgText);
 navigator.notification.alert(msgText, null,
 "Media Error");
 }

ptg8126969

303seeing mediA in ACtion

 function onMediaStatus(statusCode) {
 console.log("Status: " + statusCode);
 }

 function doPlay() {
 if(theMedia) {
 //Start the media file playing
 theMedia.play();
 //fire off a timer to update the UI every second as
 //it plays
 theTimer = setInterval(updateUI, 1000);
 } else {
 alert("No media file to play");
 }
 }

 function doPause() {
 if(theMedia) {
 //Pause media play
 theMedia.pause();
 window.clearInterval(theTimer);
 }
 }

 function doStop() {
 if(theMedia) {
 //Kill the timer we have running
 theTimer = null;
 //Then stop playing the audio clip
 theMedia.stop();
 }
 }

 function updateUI() {
 theMedia.getCurrentPosition(onGetPosition,
 onMediaError);
 }

 function onGetPosition(filePos) {
 //We won't have any information about the file until
 //it's actually played. Update the counter on the page
 $('#pos').html('Time: ' + Math.floor(filePos) + ' of '
 + theMedia.getDuration() + ' seconds');
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <section id="main" data-role="page" >
 <header data-role="header">
 <h1>Example 20-1</h1>

ptg8126969

304 CHApter 20 a

 </header>
 <div data-role="content">
 <p id="track"></p>
 <p id="pos"></p>
 <div data-role="controlgroup">
 <a onclick="doPlay();" id="btnPlay"
 data-role="button" data-icon="arrow-r">Play
 <a onclick="doPause();" id="btnPause"
 data-role="button" data-icon="grid">Pause
 <a onclick="doStop();" id="btnStop"
 data-role="button" data-icon="delete">Stop
 </div>
 </div>
 </section>
 </body>
</html>

When the user clicks play, the UI will update showing playback status, as shown in
Figure 20-2, as the clip plays through the device speakers.

Figure 20-2 Example 20-1 playing an audio clip

ptg8126969

305seeing mediA in ACtion

To make the application work with a server-based audio clip on iOS, I had to con-
figure the ExternalHosts array, as shown in Figure 20-3. This property is a list of
external hosts that the application is authorized to pull content from.

Figure 20-3 Configuring ExternalHosts in Xcode

In my testing, I tried each of the following options for the field:

•	 http://server_name/

•	 http://server_name/*

•	 http://server_name/folder_name/

•	 http://server_name/folder_name/*

•	 http://server_name/folder_name/file_name.ext

None of them worked; I had to use the asterisk, which I thought was a wildcard
value authorizing any external resource. What I learned afterward from Bryce is
that it’s looking for a regular expression here, not a wildcard. He indicated that it
would be changing from regular expressions to wildcards in the future, and a
recent update to the PhoneGap wiki included “Wildcards are ok. So if you are con-
necting to ‘http://phonegap.com’, you have to add ‘phonegap.com’ to the list (or
use the wildcard ‘*.phonegap.com’ which will match subdomains as well),” so it
looks like it’s already been fixed.

I’m not sure how PhoneGap Build will deal with this restriction. As documented
today, Build doesn’t currently support configuration options for security settings
like this.

http://phonegap.com

ptg8126969

This page intentionally left blank

ptg8126969

307

Notification

The PhoneGap Notification API provides methods that allow an application to
provide feedback to a user visually (through pop-up alerts) and through tactile or
audible feedback. The methods supported by this API are as follows:

•	 notification.alert

•	 notification.confirm

•	 notification.beep

•	 notification.vibrate

Visual Alerts (Alert and Confirm)
The alert and confirm methods are each essentially extended versions of the
standard JavaScript alert function. The JavaScript alert method, which works
just fine in PhoneGap applications, takes a single parameter, which is the text of
the message displayed on the screen, as shown in the following example:

alert("You clicked the Click Me button.");

This code generates the pop-up dialog shown in Figure 21-1.

21

ptg8126969

308 CHApter 21 notiFiCAtion

Figure 21-1 A standard JavaScript alert

The PhoneGap alert and confirm functions allow a program to control not only
the message being displayed but also the title associated with the pop-up dialog, the
text displayed on the dialog’s button(s), and the function that’s executed when
the user clicks a button in the pop-up. The difference between alert and confirm
is the number of buttons displayed in the dialog; alert displays a single button,
and confirm can display one or more buttons.

The following is an example of how to call the PhoneGap alert function:

navigator.notification.alert(message_text, callback_function,
 "title", "button_text");

The parameters passed to the function are described here:

•	 message_text: The message text that appears between the title and the
button.

•	 callback_function: The function that is executed when the user clicks
the button on the dialog.

•	 title: (Optional.) The text that appears on the top of the pop-up dialog.

•	 button_text: (Optional.) The text that appears on the button. If no value is
provided, it will default to OK.

The following code shows an example of how to use the PhoneGap alert method:

navigator.notification.alert("Figure 21-2", onDoAlert,
 "Sample Alert", "Click Me!");

This will generate the pop-up dialog shown in Figure 21-2 and execute the
onDoAlert function after the user clicks the button.

ptg8126969

309visuAl Alerts (Alert And ConFirm)

Figure 21-2 PhoneGap alert on an Android device

To skip executing a function when the user clicks the button, simply pass in a null
for the function name, as shown in the following example:

navigator.notification.alert("Figure 21-2", null,
 "Sample Alert", "Click Me!");

The confirm function operates exactly the same as alert; the only difference is in
the button_text parameter passed to the function. Instead of a single text value,
confirm expects a comma-separated list of values, as shown here:

navigator.notification.confirm(message_text, callback_
 function, "title", "button_text_array");

If no button values are provided, the function will default to using OK and
Cancel.

The following code will generate the pop-up dialog shown in Figure 21-3 and
execute the onDoConfirm function after the user clicks either of the buttons:

navigator.notification.confirm("Figure 21-3", onDoConfirm,
 "Sample Confirmation", "Yes, No");

Figure 21-3 PhoneGap confirm on an Android device

ptg8126969

310 CHApter 21 notiFiCAtion

When the onDoConfirm function is called by confirm, it passes in a button vari-
able that represents the number of the button clicked by the application user. As
shown in the following example, a value of 1 is assigned to the first button, 2 to the
second, and so on:

function onDoConfirm(btnNum) {
 if(btnNum == "1") {
 alert("Thanks for saying yes!");
 } else {
 alert("Too bad, you said no.");
 }
}

Beep
To play the mobile device’s default beep tone, execute the following code:

navigator.notification.beep(beepCount);

The beepCount parameter is a numeric value that defines the number of times the
beep should play.

Vibrate
To cause the mobile device to vibrate, execute the following code:

navigator.notification.vibrate(vibeDuration);

The vibeDuration parameter is a numeric value that refers to the number of mil-
liseconds the device should vibrate. A value of 1000 equals one second, 500 is half
a second, and so on. To make an application vibrate, pause, and then vibrate again,
you will have to manually call vibrate several times and force the required wait
between calls; there is no repeat value that can be passed to the vibrate function.

Notification in Action
Example 21-1 shows an application that highlights each of the supported func-
tions in the PhoneGap Notification API.

Example 21-1

<!DOCTYPE html>
<html>
 <head>

ptg8126969

311notiFiCAtion in ACtion

 <title>Example 21-1</title>
 <meta name="viewport" content="width=device-width,
 height=device-height initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <link rel="stylesheet" href="jquery.mobile1.0b3.min.css" />
 <script type="text/javascript" charset="utf-8"
 src="jquery1.6.4.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="jquery.mobile1.0b3.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 //alert("onBodyLoad");
 document.addEventListener("deviceready",
 onDeviceReady, false);
 }

 function onDeviceReady() {
 //Nothing to do here really
 alert("onDeviceReady");
 }

 function doAlert() {
 msgText = document.getElementById('msgText').value;
 navigator.notification.alert(msgText, onDoAlert,
 "Sample Alert", "Click Me!");
 }

 function onDoAlert() {
 alert("You clicked the Click Me button.");
 }

 function doConfirm() {
 msgText = document.getElementById('msgText').value;
 navigator.notification.confirm(msgText, onDoConfirm,
 "Sample Confirmation", "Yes, No");
 }

 function onDoConfirm(btnNum) {
 if(btnNum == "1") {
 alert("Thanks for saying yes!");
 } else {
 alert("Too bad, you said no.");
 }
 }

ptg8126969

312 CHApter 21 notiFiCAtion

 function doBeep() {
 beepCount = document.getElementById('beepSlider').value;
 navigator.notification.beep(beepCount);
 }

 function doVibe() {
 vibeCount = document.getElementById('vibeSlider').value;
 navigator.notification.vibrate(vibeCount);
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <div data-role="header">
 <h1>Notification Demo</h1>
 </div>
 <div data-role="content">
 <div data-role="fieldcontain">
 <label for="msgText">Message Text:</label>
 <input type="text" name="msgText" id="msgText"
 value="This is a message" />
 <div data-role="controlgroup" data-type="horizontal">
 <input type="button" value="Alert"
 onclick="doAlert();">
 <input type="button" value="Confirm"
 onclick="doConfirm();">
 </div>
 </div>
 <div data-role="fieldcontain">
 <label for="beepSlider" >Number of Beeps</label>
 <input type="range" name="beepSlider" id="beepSlider"
 value="1" min="1" max="3" />
 <input type="button" value="Beep" onclick="doBeep();">
 </div>
 <div data-role="fieldcontain">
 <label for="vibeSlider" >Vibrate Duration</label>
 <input type="range" name="vibeSlider" id="vibeSlider"
 value="100" min="100" max="1000" step="100" />
 <input type="button" value="Vibrate"
 onclick="doVibe();">
 </div>
 </div>
 </body>

</html>

ptg8126969

313notiFiCAtion in ACtion

The application makes use of HTML sliders to allow the user to more easily select
beep counters or vibration duration. It also uses the capabilities provided by
jQuery Mobile (www.jquerymobile.com) to make the application more visually
appealing. All of those div containers you see in the code with the data-role and
data-type attributes are instructions to jQuery Mobile. Figure 21-4 shows the
application running on an Android smartphone.

Figure 21-4 Example 21-1 running on an Android device

www.jquerymobile.com

ptg8126969

This page intentionally left blank

ptg8126969

315

Storage

Most HTML 5–compatible browsers provide web applications with the ability
to read and write key/value pairs from/to a local storage facility and to read and
write data from/to a local SQL database. Neither of those capabilities is a direct
functions of HTML but instead something typical browsers made available to
JavaScript code running within the browser.

These capabilities were originally delivered through implementations of the W3C
Web SQL Database Specification (www.w3.org/TR/webdatabase) and the W3C Web
Storage API Specification (www.w3.org/TR/webstorage). The Web Storage API
is still valid, but the W3C has stopped work on the Web SQL specification, and
instead developers typically work with the SQLite (www.sqlite.com) database
engine included with most modern smartphone browsers.

A PhoneGap application can easily leverage the browser container’s storage capa-
bilities directly from within their applications; this is not anything PhoneGap-
specific. For older mobile devices that have not implemented HTML 5 or either
storage option directly, the PhoneGap team implemented the W3C Web SQL
Database Specification and the Web Storage API into the PhoneGap API.

If a mobile platform includes support for these storage options, the phonegap.js
file for the particular platform will just omit the objects, properties, and methods
for the storage option. If not supported by the device, the PhoneGap JavaScript
library will include the implementation of the storage capabilities and the appro-
priate supporting code to make it work on the mobile device.

Since the capabilities provided by this PhoneGap API are based upon standards
that have been available for a while and are used heavily by developers today, this
chapter will not cover the API in great detail.

22

www.w3.org/TR/webdatabase
www.w3.org/TR/webstorage
www.sqlite.com

ptg8126969

316 CHApter 22 storAge

Example Application

A sample application has been created to help illustrate the features of the
PhoneGap Storage API. Example 22-1 illustrates how to build a simple mileage
tracker application using both Web Storage and Web SQL capabilities.

Because of the length of the application, it was not possible to include the appli-
cation source code in this chapter. Relevant portions of the application code and
screen shots of the application in action are shown within the chapter, but to see
the completed application, code you will need to point your browser of choice to
the book’s web site at www.phonegapessentials.com and look for the example
project files in the Code section of the site.

Local Storage
The local storage capabilities of PhoneGap allow an application to persist data as
key/value pairs stored with the application. The W3C Web Storage API includes
support for both session and local storage, but the current release of PhoneGap
seems to have support for the local storage option. Session storage is for transient
values that are needed only during a particular session with the application; it is
designed to allow the application to make use of the storage area while the appli-
cation is running, but the data values stored there will be erased when the applica-
tion closes. The local storage option is designed to support data that needs to be
available between sessions—maintained when the application closes and avail-
able when the application launches again. The best use case for local storage
would be for the storage of configuration settings for an application; this is some-
thing you would want available every time the application executed.

Data stored using local storage is maintained in key/value pairs. To write a value to
local storage, an application would use the following code:

window.localStorage.setItem("key_name", value);

If the application wanted to store a value for a purge interval configuration setting
for example, it would use the following code:

thePurgeInterval =
 document.getElementById("purgeInterval").value;
window.localStorage.setItem("purgeInterval",
 thePurgeInterval);

To retrieve a value from local storage, an application would use the following code:

purgeInterval = window.localStorage.getItem("key_name");

www.phonegapessentials.com

ptg8126969

317sQl dAtAbAse

To retrieve the value for the purge interval configuration setting, an application
would use the following code:

thePurgeInterval = window.localStorage.getItem("purgeInterval");

That’s it—that’s all there is to this part of the API. When working with an applica-
tion that leverages this API, you can use the debugging capabilities of your browser
to view the settings for local storage, as shown in Figure 22-1. In this example, I
worked out the kinks of the application using the desktop browser and then
switched over to the mobile device once I knew everything was working. In the
figure, the key/value pair for purgeInterval is highlighted.

Figure 22-1 Example 22-1 running in the desktop browser debugger

SQL Database
The Storage API implements a simple database an application can read from and
write to using Structured Query Language (SQL). To use this API, an application
must first open the database using the following code:

theDB = window.openDatabase(db_name, db_version,
 db_display_name, db_size);

ptg8126969

318 CHApter 22 storAge

In this example, the call to openDatabase simply creates a database object that
exposes some methods an application can use to manipulate the database. There
are no callbacks functions that need to be implemented. The openDatabase
method takes the following parameters:

•	 db_name: The name of the database. This will be the file name for the
database when it’s written to device memory.

•	 db_version: The version number for the database. An application can
query this version number and upgrade the database schema as needed
using the changeVersion method of the database object.

•	 db_display_name: The display name for the database.

•	 db_size: The amount of space allocated for the database in bytes. When
allocating space, keep in mind that mobile devices may have limitations on
the size of databases they can support, so allocate only the amount of space
you think the application will need.

In the Example 22-1 application created for this chapter, the database is opened
using the following code:

theDB = window.openDatabase("mtDB", "1.0", "Mileage Tracker",
 3 * 1024 * 1024);

At this point, the application has access to a database object, and space has been
allocated for the database in persistent storage on the device. From this point for-
ward, everything you do with the database is performed using SQL statements.
For this example, I allocated 3 MB of storage, although there is no way this par-
ticular application will need that much space.

Using this API, an application must wrap its SQL statements within a transaction.
Transactions allow a database engine to process multiple SQL statements sequen-
tially and recover gracefully (back to the starting point if possible) if an error
occurs while they are processing the statements. Transactions are most useful
when performing actions against a database that have parts that must all be exe-
cuted for the action to be complete. The best example of this would be a banking
transaction: When transferring money from one account to another, you will want
the transaction to roll back (cancel cleanly) if the money is successfully taken
from your account but then cannot be credited to another.

To create a transaction that can be used to execute one or more SQL statements
against a database, an application will use the following code:

theDB.transaction(createTable, onTxError, onTxSuccess);

ptg8126969

319sQl dAtAbAse

In this example, a function called createTable is passed to the transaction; this is
the function that will execute the SQL statement used to create the database table
used by the application. There are also two callback functions: the onTxError and
onTxSuccess functions that are passed to the method. Please note that the callback
functions are passed in a different order than they are for any other API in this book.

Note: The transaction method of the database object is the only example in this
book where an error function is passed as a parameter to a method before the success
callback function. In every other example in the book, the success function has always
been first, followed by the error function. In this case, the success function is optional
and the error function is required, so that’s why the error function comes first.

I have to admit that this caused me quite a bit of trouble as I built the sample application.
Everything was working, but I couldn’t figure out why the transaction’s onError
function fired every time the application wrote to the database. Yes, I had the
parameters switched and listed the success function first like I had for every other
example. Let my mistake save you some time: Be sure to pay attention to the order of
callback functions when using this API.

Let’s talk about the callback functions before we dig into the createTable function.

The onTxError function is passed two objects. One is a transaction object, tx,
which as you’ll see in a minute can be used to execute SQL statements against the
database. The other is an error object that exposes an error code and error message
that can be used to help identify and possibly correct the error that occurred. The
following function shows how a simple function can be constructed that displays
an error to the user. When this function executes, the application can assume that
the transaction has rolled back and any changes that were made as part of this
transaction have been discarded.

function onTxError(tx, err) {
 var msgText;
 if(err) {
 //Tell the user what happened
 msgText = "TX: " + err.message + " (" + err.code + ")";
 } else {
 msgText = "TX: Unknown error";
 }
 console.error(msgText);
 alert(msgText);
}

The onTxSuccess function is simply a way to let the application know the transac-
tion completed. In most cases, there’s really nothing to do, so you may not even
implement the function in your applications. The function is not passed any

ptg8126969

320 CHApter 22 storAge

values, so all the function can really do is write a status update to the console or
update the application’s UI, as shown in the following example:

function onTxSuccess() {
 console.log("TX: success");
}

Passed to the transaction is a function that’s executed to perform whatever updates
are needed on the database. The first thing an application should do after opening a
database is create or open one or more tables the application needs to store its data.
Fortunately, the SQL statement that creates a table will simply open the table if it
already exists. The following code is the example createTable function that is
used to create the table required by the application. The function is passed a trans-
action object, tx, that can be used by the application to execute SQL statements, as
shown here:

function createTable(tx) {
 var sqlStr = 'CREATE TABLE IF NOT EXISTS MILEAGE
 (tripDate INT, miles INT, notes TEXT)';
 console.log(sqlStr);
 tx.executeSql(sqlStr, [], onSqlSuccess, onSqlError);
}

In this example, the SQL statement creates a MILEAGE table consisting of three
columns (tripDate, miles, and notes). The statement is executed through a call
to tx.executeSql, which takes the following parameters:

•	 SQL statement: The SQL statement that will be executed against the
database object the transaction is associated with

•	 Values: An array of values that are passed to the SQL statement (this will
be described later)

•	 Success function: The name of the function that will be executed after the
SQL statement has executed successfully

•	 Error function: The name of the function that will be executed if there is an
error executing the SQL statement

Note: Note the order of the callback functions; in this case, the success callback pre-
cedes the error callback (as it has been for most of the APIs in this book).

The success callback function is passed two parameters: a transaction object
(which can be used to execute additional SQL statements) and a results object,

ptg8126969

321sQl dAtAbAse

which contains the results of the operation. The results object exposes the follow-
ing properties:

•	 insertId: The row ID for the row of data that was added to the table if the
SQL statement executed contained an INSERT statement.

•	 rowAffected: The number of table rows that were changed by the SQL
statement. A value of zero indicated that no rows were affected.

•	 rows: An object containing the rows returned by the SQL statement. The
object will be empty if the SQL statement returns no rows.

The following code shows a sample success function. The function writes some
information about the result set to the console and then loops through the results.

function onSqlSuccess(tx, res) {
 if(res) {
 console.log("Insert ID: " + res.insertID);
 console.log("Row affected: " + res.rowAffected);
 if (res.rows) {
 var len = res.rows.length;
 if(len > 0) {
 for(var i = 0; i < len; i++) {
 //Do something with the row data

 }
 } else {
 alert("No records processed.");
 }
 }
 } else {
 alert("No results returned.");
 }
}

The onSqlError function operates the same as the onTxError function described
earlier; they both do the same thing, only at a different part of the process. The func-
tion is passed transaction and error objects, as shown in the following example:

function onSqlError(tx, err) {
 var msgText;
 if(err) {
 msgText = "SQL: " + err.message + " (" + err.code + ")";
 } else {
 msgText = "SQL: Unknown error";
 }
 console.error(msgText);
 alert(msgText);
}

ptg8126969

322 CHApter 22 storAge

After all of this processing has completed, the application displays a screen simi-
lar to the one shown in Figure 22-2. At this point, the user can start to populate the
MILEAGE table with data by filling out the form shown in the figure and clicking
the Save button.

Figure 22-2 Mileage tracker running on a BlackBerry Torch 9800

At this point, all the application needs to do is execute another SQL statement to
add the user-provided data to the table. To do this, the application fires off another
transaction, as shown in the following code:

theDB.transaction(insertRecord, onTxError, onTxSuccess);

ptg8126969

323sQl dAtAbAse

The application’s insertRecord function does the work to add the data to the
table. The following code shows a simplified version of the function that has the
table row values hard-coded into the function:

function insertRecord(tx) {
 var sqlStr = 'INSERT INTO MILEAGE (tripDate, miles, notes)
 VALUES ("2011-12-09", 42, "Travel to Acme Dynamite")';
 tx.executeSql(sqlStr, [], onSuccess, onError);
}

The application uses dynamic values as shown in the following code. The function
first pulls some values from the form and then passes the values to the SQL state-
ment. Since the application is recording date values and needs to be able to retrieve
mileage records by date and ordered by date, the date value needs to be stored in
the table in numeric format. To accomplish this, I used a free JavaScript library
called Date.fromString() from Joey Mazzarelli (http://joey.mazzarelli
.com/2008/11/25/easy-date-parsing-with-javascript) that allows the application to
take the inputted date string directly into a JavaScript Date object. Once the Date
object is available, the application uses the valueOf() method to get the date
value in numeric format as needed.

function insertRecord(tx) {
 //Create a new date object to hold the date the user entered
 var tmpDate = new
 Date.fromString(document.getElementById("editDate").value);
 var tmpMiles = document.getElementById("editNumMiles").value;
 var tmpNotes = document.getElementById("editNotes").value;
 var sqlStr = 'INSERT INTO MILEAGE (tripDate, miles, notes)
 VALUES (?, ?, ?)';
 console.log(sqlStr);
 tx.executeSql(sqlStr,
 [tmpDate.valueOf(), tmpMiles, tmpNotes],
 onSqlSuccess, onSqlError);
}

Remember how the call to executeSQL could take an array of values as a parame-
ter? In the example shown, the SQL statement includes a VALUES parameter and a
parenthetical group of question marks, as shown in the following example:

INSERT INTO MILEAGE (tripDate, miles, notes) VALUES (?,?,?)

Each question mark refers to a particular field value in the INSERT statement. The
table row values for tripDate, miles, and notes are then passed into the SQL
statement as an array of values, as shown in the following example:

tx.executeSql(sqlStr, [tmpDate.valueOf(), tmpMiles, tmpNotes],
 onSqlSuccess, onSqlError);

http://joey.mazzarelli.com/2008/11/25/easy-date-parsing-with-javascript
http://joey.mazzarelli.com/2008/11/25/easy-date-parsing-with-javascript

ptg8126969

324 CHApter 22 storAge

Getting data out of the table requires yet another SQL statement. The following
function fires off a transaction to query the MILEAGE table; the processing of the
results of the query is done in the onQueryResults function that follows:

function openView(viewType) {
 var sqlStr = "SELECT * FROM MILEAGE ORDER BY tripDate ASC";
 theDB.transaction(function(tx){tx.executeSql(sqlStr, [],
 onQuerySuccess, onQueryFailure);
 }, onTxError, onTxSuccess);
}

In this example, I broke with one of the conventions I’ve used throughout most of the
book. In general, I’ve broken out all functions in order to make the code more read-
able. In the openView function, the full function (not shown) does some work to cre-
ate the appropriate page heading and SQL statement depending on which view was
selected. The application then needed to pass the appropriate SQL statement to the
transaction function, and the cleanest way to do that was just to pass in the function’s
code as an anonymous function to the call to tx.executeSql. I’ve simplified the
JavaScript code in the example function, showing only how to generate the SQL
statement for one of the views, but when you look at the full example application,
you’ll see how the use of anonymous functions makes this code simpler although
harder to read.

In the onQuerySuccess function, the code takes the results returned from the exe-
cution of the SQL statement and generates a page similar to the one shown in Fig-
ure 22-3. The table column values are returned in the results array; the application
uses results.rows.item(i).ColumnName to retrieve values for each column and
then build the appropriate HTML content before assigning it to the page.

function onQuerySuccess(tx, results) {
 if(results.rows) {
 console.log("Rows: " + results.rows);
 var len = results.rows.length;
 if(len > 0) {
 var htmlStr = "";
 for(var i = 0; i < len; i++) {
 var theDate = new Date(results.rows.item(i).tripDate);
 htmlStr += 'Date: ' + theDate.toDateString() +
 '
';
 var numMiles = results.rows.item(i).miles;
 if(numMiles > 1) {
 htmlStr += 'Miles: ' + numMiles +
 ' miles
';
 } else {
 htmlStr += 'Miles: 1 mile
';
 }
 //Check to see if there are any notes before writing
 // anything to the page
 var theNotes = results.rows.item(i).notes;

ptg8126969

325sQl dAtAbAse

 if(theNotes.length > 0) {
 htmlStr += 'Notes: ' + theNotes + '
';
 }
 htmlStr += '<hr />';
 }
 //Use JQuery's $() to assign the content to the page
 $("#viewData").html(htmlStr);
 //Then open the View page to display the data
 $.mobile.changePage("#dataView", "slide", false, true);
 } else {
 alert("No rows.");
 }
 } else {
 alert("No records match selection criteria.");
 }
}

Figure 22-3 Example 22-1 displaying query results

ptg8126969

326 CHApter 22 storAge

Most of what’s covered here is related to SQL statements and how to work with
database tables; there’s not much that’s really PhoneGapish. As shown, once you
have the database opened, it’s all executing SQL statements and writing callback
functions.

As older devices drop out of use, I expect the PhoneGap development team to sim-
ply drop this API and let applications use the native SQLite capabilities available
in most modern smartphones.

ptg8126969

327

Installing the
PhoneGap Files

Installing PhoneGap is a pretty straightforward process. Point your browser of
choice to www.phonegap.com, and then click the Download icon in the upper-
right corner of the landing page, as highlighted in Figure A-1. You should be redi-
rected to a page, and the most recent version of PhoneGap will automatically
begin downloading in a few seconds. If the download does not start automatically,
simply click the download link provided on the page to download the files directly.

Figure A-1 The PhoneGap project landing page

A

www.phonegap.com

ptg8126969

328 AppendiX A instAlling tHe pHonegAp Files

The PhoneGap project files are distributed in a standard zip archive. To install
PhoneGap, simply extract the downloaded files to the folder of your choice on
your local hard drive or on a network server (in cases where the files will be shared
with other developers or between multiple systems).

Because many Java applications on Windows used to have issues with spaces in
folder names, I typically install the PhoneGap files off of the root of the system’s
hard drive, as shown in Figure A-2. In this case, I extracted the files and then
renamed the root PhoneGap folder to the version of PhoneGap, as shown in the
figure. This approach has saved me some grief with other tools in the past. The
files you will used to build PhoneGap applications are located in the lib folder.

As you can see, the PhoneGap project files include a separate folder for each sup-
ported mobile device platform. Those folders contain the specific project files and
associated PhoneGap JavaScript libraries for each target operating system.

It’s important to note that PhoneGap source files differ greatly between each target
OS. You can’t use the PhoneGap JavaScript libraries for one mobile platform in a
project for another mobile platform. This is one of the issues that makes PhoneGap
development complicated and creates the need for PhoneGap Build (described in
Chapter 9).

Figure A-2 PhoneGap installation directory

ptg8126969

329prepAring For ios development

Preparing for Samsung bada Development
For some reason, the PhoneGap JavaScript source code files for bada are distrib-
uted as separate JavaScript files for each API category instead of consolidated into
a single file as they are for other platforms. Before you can use the PhoneGap
JavaScript APIs in your PhoneGap applications for bada, you must first generate
the consolidated source code file phonegap.js. To do this, open a Windows com-
mand prompt, navigate to the PhoneGap installation’s bada/Res/PhoneGap
folder, and execute the phonegap.bat file located in the folder. The batch file will
copy each of the source JavaScript files into a single phonegap.js file and display
the output shown in Figure A-3.

Figure A-3 Generating the bada phonegap.js file

If you look in the folder, you will see a new file there called phonegap.js, all
ready to be used in your PhoneGap applications. Any time you modify any of the
source JavaScript files, you will need to repeat this process to generate an updated
phonegap.js file for your projects.

Preparing for iOS Development
For iOS development with PhoneGap, you must perform an additional installation
step to configure Xcode, Apple’s development environment for iOS, for PhoneGap
development. In Finder, navigate to the iOS folder within the PhoneGap installa-
tion files folder, as shown in Figure A-4. Double-click the Cordova-1.5.0.dmg
file to start the installation process.

ptg8126969

330 AppendiX A instAlling tHe pHonegAp Files

Figure A-4 PhoneGap iOS file folder

Finder will extract the files and then open a window similar to the one shown in
Figure A-5. Double-click the Cordova-1.5.0.pkg file to install the PhoneGap
files into the Xcode IDE.

Figure A-5 PhoneGap installation package

Once this step has been completed, Xcode will have an additional project template
(PhoneGap) to select from when creating new projects.

Preparing for Windows Phone Development
To simplify PhoneGap development on Windows Phone, the PhoneGap project
includes a plug-in to Microsoft Visual Studio that allows Visual Studio to create
complete PhoneGap projects with a few clicks of the mouse.

Open Windows Explorer, and navigate to the folder where you extracted the
PhoneGap files. In the WP7 folder, copy the GapAppStarter.zip file to Visual

ptg8126969

331prepAring For windows pHone development

Studio’s project templates folder. The destination folder should be located under
the Windows Documents folder for the currently logged in user. The folder should
be located here:

c:\users\user_name\Documents\Visual Studio 2011\Templates\
ProjectTemplates\

In this example, user_name refers to the user-specific profile folder for the logged-
in user. For example, for my developer workstation running Windows 7, the folder
is located here:

c:\users\John M. Wargo\Documents\Visual Studio 2011\Templates
ProjectTemplates\

After the zip file is copied, the folder contents should look similar to what is shown
in Figure A-6. Alternatively, you can place the GapAppStarter.zip file in the
Visual C# folder instead; it seems to work in that location as well.

Figure A-6 Visual Studio ProjectTemplates folder

ptg8126969

This page intentionally left blank

ptg8126969

333

Installing the Oracle
Java Developer Kit

The Android and BlackBerry development tools use Oracle’s Java Developer
Kit (JDK) to build (compile) Java applications for Android. Apple’s Mac OS will
either already include the JDK or install it automatically when you run your first
Java program, so if you’re installing on a Macintosh computer, you can skip this
appendix and move on.

Downloading the JDK
To obtain the JDK, point your browser of choice to http://java.oracle.com, and then
click the Get Java button on the landing page. On the page that appears, scroll down
and click the Download button for the appropriate JDK version to download.

At this time, Oracle is shipping version 7 of the JDK, but the Android development
tools support only versions 5 and 6. Be sure to check to see that the version of the
JDK you download is compatible with the Android tools before downloading and
installing the software.

Note: The Java download site contains different flavors of Java for you to download.
The most common options are the Java Runtime Environment (JRE) and the Java
Developer Kit (JDK). The JRE is the client-side runtime environment used to run
Java applications you may have downloaded over the Internet or installed on your
local workstation.

B

http://java.oracle.com

ptg8126969

334 AppendiX B instAlling tHe orACle JAvA developer kit

The JDK contains the tools needed to compile Java code into executable applica-
tions and applets. To use the Android developer tools, you must install the JDK,
not the JRE. So that you can execute Java applications, the JDK includes the JRE,
so you’ll be covered for both.

Figure B-1 shows the download options for the JDK. For each supported operating
system, there’s a different download depending on whether you’re running a
32-bit or 64-bit operating system. When selecting the files to download, be sure to
match the download to both the processor and the operating system running on
your development machine, as described in Table B-1.

Figure B-1 Java download options

Table B-1 Determining the JDK to Download

Processor Bit Depth Operating System Bit Depth JDK Download

32-bit 32-bit x86

64-bit 32-bit x86

64-bit 64-bit x64 or 64-bit

ptg8126969

335h

Installing the JDK
Once the JDK has been downloaded, launch the downloaded file to begin the
installation. You can simply accept the default installation options to complete
the installation. Some installation options may not be needed for your installation
(such as source code and Java DB) and can be omitted (as shown in Figure B-2);
all the other components are required and cannot be disabled.

Figure B-2 Java installation wizard

Configuring the Windows Path
Once the installation has completed, the Windows Path environment variable must
be updated to point to the JDK’s bin folder. This allows the Java tools to be exe-
cuted by any program on the computer such as the Android developer tools, with-
out specifically pointing to the folder where the JDK is installed. By default the
JDK executables will be installed in the Windows Program Files folder (C:\
Program Files\Java\jdk#\bin, where the # refers to the version of the JDK
installed). To modify the Path variable, open the Windows Control Panel and then
select System or right-click My Computer and select Properties.

In the System Properties application, click the Advanced System Settings tab, as
shown in Figure B-3, and then click the Environment Variables button on the
bottom of the window. In the “System variables” area of the Environment Vari-
ables window, select Path then click the edit button. In the window that appears
(also shown in Figure B-3), modify the variable value field by appending a semi-
colon at the end of the existing value and adding the full path to the JDK bin
folder (C:\Program Files\Java\jdk1.6.0_27, as shown in the figure) to the
end of the value that is already there. Do not replace the contents of the variable

ptg8126969

336 AppendiX B instAlling tHe orACle JAvA developer kit

value field; simply append a semicolon and the JDK path to the end of the value
that’s already there. Click OK repeatedly to close the windows that have been
opened during this process.

Figure B-3 Setting the Windows Path environment variable

Confirming Installation Success
To confirm that the Path variable has been set correctly, open a Command Prompt
window (shown in Figure B-4), type javac at the prompt, and press Enter. If the
path has been correctly configured, the Command Prompt window will fill with
instructions on how to use the Java compiler (javac, one of the programs included
with the JDK), as shown in the figure. If you receive an error message such as
“bad command or file name” or “‘javac’ is not recognized as an internal or exter-
nal command, operable program or batch file,” then the path has not been config-
ured correctly, and you will need to fix the configuration before continuing.

Figure B-4 Testing the JDK configuration on Windows

ptg8126969

337

Installing Apache Ant

The Android and BlackBerry development tools use Apache Ant to automate
command-line build tasks. Ant is an open source project within the Apache Soft-
ware Foundation’s suite of products. Ant is a Java-based build tool and therefore
requires a Java Runtime Environment (JRE). Refer to Appendix B for instructions
for installing the Java Developer Kit (JDK), which includes the JRE.

Macintosh Installation
For Macintosh users, Mac OS X includes a version of Ant preinstalled. You will
need to verify that the version installed is compatible with the mobile develop-
ment SDKs you will be working with (for example, at the time of this writing, the
Android SDK requires version 1.8 and newer). To determine the installed version,
open a terminal window, and issue the following command:

ant -version

Ant will respond with the currently installed version information, as shown in Fig-
ure C-1.

If a more recent version is needed, let the Macintosh OS software update pro-
cess install its updates, and then try again. To perform a software update, open
the System Preferences application, select Software Updates, and then click
Check Now.

Figure C-1 Verifying the Ant version on Macintosh

C

ptg8126969

338 AppendiX C instAlling ApACHe Ant

Windows Installation
To install Ant on a system running Microsoft Windows, point your browser of
choice to http://ant.apache.org, and click the home page link to download the lat-
est version of the project’s files. Once the download has completed, extract the
files to a folder off of your system’s root folder. Figure C-2 shows an example of
an Ant installation in Windows using the default zip file name (which includes the
Ant version information) as the installation folder location.

Once the files have been extracted, you must update the Windows Path environ-
ment variable to point to the Ant installation’s bin folder. This allows Ant to be
executed by any program on the computer such as the Android developer tools,
without specifically pointing to the folder where Ant is installed. To modify the
Path variable, open the Windows Control Panel and then select System or right-
click My Computer and select Properties. In the System Properties application,
click the Advanced System Settings tab, and then click the Environment Variables
button on the bottom of the window. In the “System variables” area of the Envi-
ronment Variables window, select Path, and then click the Edit button. In the win-
dow that appears, modify the variable value field by appending a semicolon at the
end of the existing value and adding the full path to the Ant bin folder (C:\
apache-ant-1.8.2\bin, as shown in Figure C-2) to the end of the value that is
already there. Do not replace the contents of the variable value field; simply
append a semicolon and the Ant bin path to the end of the value that’s already
there. Click OK repeatedly to close the windows that have been opened during this
process. An example of this process is illustrated in Figure B-3 in Appendix B.

Figure C-2 Ant installation bin folder in Windows

http://ant.apache.org

ptg8126969

339windows instAllAtion

Once the process has completed, verify the successful installation and configura-
tion by checking the Ant version using the instructions provided in the previous
section.

ptg8126969

This page intentionally left blank

ptg8126969

341

A

Accelerator API

overview of, 157–158

querying device orientation, 158–161

watching device orientation, 161–164

addresses array, specifying contact
properties, 225–226

Adobe, in history of PhoneGap, 5

Alerts

debugging PhoneGap applications and,
37–38

Notification API and, 307–310

allowEdit property, Camera API, 180

Android

accelerator determining device
orientation, 157–158, 164

Apache Ant and, 337

application status events, 253–254

building PhoneGap applications, 13–14

button events, 257–258, 261

camera simulators, 170

Capture API example on, 200–204

Compass API example on, 209

configuring PhoneGap Build for mobile
platforms, 143–145

contact information, 231

debugging PhoneGap applications, 41–43

device object running on, 245

Eclipse plug-in and, 19

errors related to contact information,
229–230

geolocation support, 279

JDK (Java Developer Kit) and, 333–334

Media API support, 293

media files, 295

network status events, 256

operating systems supported by
PhoneGap, 3

PhoneGap API support, 9

PhoneGap Build support, 141

picture capture process, 168–169,
173–175

releasing Media objects, 298

searching for contact information, 235

testing applications created with
PhoneGap Build, 152

testing applications on physical devices,
36–37

watchHeading function on, 213

Android development tools

AVD (Android Virtual Device) for testing
PhoneGap applications, 60–64

configuring Eclipse development
environment, 64–66

creating PhoneGap project, 67–69

creating PhoneGap project with Eclipse,
73–74

installing SDK on Macintosh OSs, 60

installing SDK on Windows OSs, 58–59

making changes to Java source files,
70–72

managing PhoneGap projects from
command-line, 74–77

options for creating PhoneGap projects,
66–67

Index

ptg8126969

342 x

Android development tools (cont.)

steps in installation of, 57–58

testing PhoneGap applications, 77–79

Android Virtual Device (AVD), testing
PhoneGap applications with, 60–64, 78

Antenna Volt, types of hybrid
applications, 21

Apache

Cordova Git repository. See Git
repository

history of PhoneGap and, 5

Apache Ant

BlackBerry development environment
and, 97

building PhoneGap applications, 76–77

installing on Macintosh OSs, 337

installing on Windows OSs, 338–339

APIs (application programming interfaces)

capturing settings from another
application and adding to bada
project, 93

consistency as cross-platform issue,
50–51

defining application version in bada,
88–90

PhoneGap APIs. See PhoneGap APIs

PhoneGap supported, 10

running web applications within
PhoneGap container, 8

suite in PhoneGap, 3

Appcelerator Titanium, types of hybrid
applications, 20

Apple

development environment. See iOS
development environment

iOS. See iOS

iPhone. See iPhone

PhoneGap and, 11

registering as Apple developer, 113–114

Application container, designing for, 11–13

Application development

on Android. See Android development
tools

on bada. See bada development
environment

on BlackBerry. See BlackBerry
development environment

on iOS. See iOS development
environment

with PhoneGap Build. See PhoneGap
Build

with Symbian. See Symbian development
environment

Windows OSs. See Windows
development environment

Application Manager, bada

creating application ID, 88

creating application profile, 86–88

defining application version, 88–90

defining platform version, 90–93

selecting target devices, 93–94

Application profile, creating for bada
development project, 86–88

Application status events, 251–254

Applications, PhoneGap. See also Web
applications

architecture of, 6–7

building, 13–16, 27

cross-platform issues, 49–53

debugging. See Debugging PhoneGap
applications

Hello, World! example, 23–25

hybrid. See Hybrid applications

initialization, 25–28

leveraging PhoneGap APIs, 28–30

running on physical device, 36–37

running on simulators, 29–30, 33–34,
35–36

ptg8126969

343x

testing. See Testing PhoneGap
applications

user interface enhancements, 30–35

Web 1.0 approach to building, 11

Web 2.0 approach to building, 11–12

Arrays, specifying contact properties,
225–226

AT&T WorkBench, 21

Audio

callback functions, 295–297

capture on Android devices, 202

capture with Capture API, 186,
198–199

creating Media objects, 294

determining current position while
playing, 297

determining duration of playback,
297–298

example of use of Media API, 300–305

mediaFileURI, 294–295

playing clips, 298–299

recording, 299–300

AVD (Android Virtual Device), testing
PhoneGap applications with, 60–64, 78

B

bada development environment

adding manifest file to PhoneGap project,
94–95

capturing API settings from another
application, 93

configuring application security, 90, 92

creating application ID, 88

creating application profile, 86–87

creating PhoneGap project, 82–86

defining application version, 88–89

defining platform version, 90–92

defining unique name for application,
87–88

downloading/installing PhoneGap files,
80–82

overview of, 79–80

preparing PhoneGap for, 329

selecting target devices, 93–94

testing PhoneGap applications, 95–96

bada (Samsung), PhoneGap supported
operating systems, 4

Beep, in Notification API, 310

BES (BlackBerry Enterprise Server), 109

BlackBerry

accelerator determining device
orientation, 157–158

accelerator support and, 161

adding/saving contacts, 232–233

Apache Ant and, 337

application status events and, 253

build issues, 151

building PhoneGap applications, 14–15

button events, 257–258, 261

Capture API on, 196, 204

configuring camera options, 178, 180

configuring PhoneGap Build for mobile
platforms, 143–145

debugging PhoneGap applications, 40–41

device object running on simulator,
245–246

E/S (emulator/simulator) and, 35–36

errors related to contact information,
229–230

FileWriter object and, 274

geolocation support, 279

getting current location of device, 284

HelloWorld application on, 29–30, 34

JDK (Java Developer Kit) for building
applications, 333

Media API support, 293

mileage tracker example, 322

PhoneGap API documentation, 51

ptg8126969

344 x

BlackBerry (cont.)

PhoneGap API support, 8–9

PhoneGap Build support, 141

PhoneGap supported operating systems, 4

picture capture process, 168, 170–172

reading directory entries, 269–272

running contacts example on, 231

searching for contact information, 234

signing keys, 99

storing contact information, 228

testing applications created with
PhoneGap Build, 152

testing applications on physical device,
36–37

watching location of device,
286, 288

WebWorks. See WebWorks

BlackBerry development environment

build process, 104–107

building PhoneGap applications,
107–109

config.xml file, 100–103

creating PhoneGap project, 99–100

installing WebWorks SDK, 98–99

overview of, 97

testing PhoneGap applications on device,
111–112

testing PhoneGap applications on
simulator, 109–111

BlackBerry® Development Fundamentals
(Wargo), xxiv, 21, 40, 97, 105, 107

BlackBerry Enterprise Server (BES), 109

BlackBerry Mobile Data System (MDS)

overview of, 106–107

testing PhoneGap applications on,
109–111

BlackBerry WebWorks. See WebWorks

Build process. See also PhoneGap Build

accessing contact information and, 230

in BlackBerry development environment,
104–107

building applications for BlackBerry,
107–109

PhoneGap applications, 13–16

in PhoneGap Build, 148

build.xml file, 109

Button events

event listener for, 258–262

list of button types, 257

overriding button behavior, 257–258

overview of, 256–257

running on Android, 261

C

Callback functions

Capture API, 187–188

Contacts API, 236, 242

DirectoryReader object and, 267

File API, 270–271, 273–274, 277–278

Geolocation API, 280–281

how PhoneGap works and, 9

Media API, 295–297

Notification API, 308–309

SQL database, 321–322

Storage API, 319–320, 326

Camera API

accessing pictures on devices, 165–166

allowEdit, 180

Android example, 173–175

BlackBerry example, 171–172

Capture API compared with, 185

configuring camera options, 176

dealing with issues related to,
182–184

default options, 166–167

destinationType, 178–179

encodingType, 181

ptg8126969

345x

inconsistencies between device platforms,
168–170

iOS example, 169–170

iPhone example, 167–168

mediaType, 181–182

optic quality and, 177–178

overview of, 165

sourceType, 179–180

targetHeight and
targetWidth, 181

Cameras, testing PhoneGap applications via,
152–153

Capture API

audio and video capture, 198–199

Camera API compared with, 185

configuring capture options, 189–191

image preview on iOS, 197–198

inconsistencies between device platforms,
195–196

Media API compared with, 293

overview of, 185

running on Android device, 200–204

running on BlackBerry device, 204

running on iPhone, 191–195

using, 186–189

Chrome (Google), 44–45

clone method, contacts and, 242

Cloud

building PhoneGap applications in, 141

packaging PhoneGap applications, 14

Command-line tools

development on BlackBerry and, 98

managing projects with, 74–77

testing applications, 77–79

Compass API

overview of, 205

querying device orientation,
205–206

running on iPhone, 206–208

watchHeading function, 210–213

watchHeadingFilter function,
213–215

watching device orientation, 209

Compression, JPEG format, 177

config.xml file

BlackBerry projects, 100–103

PhoneGap Build and, 16

PhoneGap Build projects,
145–146, 150

confirm method, in Notification API,
307–310

Connection object

example, 219–220

overview of, 217–219

running on Android device, 220

console object, JavaScript, 38–39

Contacts API

adding/saving contact on BlackBerry,
232–233

cloning contacts, 242

creating contacts, 224

example, 226–230

overview of, 223

removing contacts, 242

running on Android device, 235

running on BlackBerry device, 231

running on iOS device, 235

searching for contact information on
BlackBerry, 234

searching for contact information on
iPhone, 237

searching for contacts, 235–241

specifying contact properties, 224–226

Contacts API, W3C, 223

Copying files or directories, 276

Cordova Git repository. See Git repository

createTable function, SQL database,
319–320

ptg8126969

346 x

Cross-platform applications

building native applications, 3

development issues, 49–53

CSS (Cascading Style Sheets)

building cross-platform native
application, 3

running web applications within
PhoneGap container, 7

Cygwin, building Symbian applications on
Windows OS, 126–128

D

Dalvik Debug Monitor Server (DDMS),
42–43

database object, transaction method
of, 319

DDMS (Dalvik Debug Monitor Server),
42–43

Debug mode, in PhoneGap Build, 153–154

Debugging camera problems, 183–184

Debugging PhoneGap applications

leveraging debugging capabilities, 37–43

overview of, 35

in PhoneGap Build, 153–154

RMEE (Ripple Mobile Environment
Emulator) for debugging, 44–46

on Symbian, 134

third-party tools, 43–44

Weinre (Web Inspector Remote) for
debugging, 46–49

on Windows Phone, 139–140

destinationType property, Camera API
settings, 178–179

Developers

adding developer tools to Eclipse, 65–66

registering as Apple developer, 113–114

tools for, 55

Development environments

Android. See Android development tools

bada. See bada development environment

BlackBerry. See BlackBerry development
environment

iOS. See iOS development environment

PhoneGap Build. See PhoneGap Build

Symbian. See Symbian development
environment

Device APIs and Policy (DAP) Working
Group, W3C (Worldwide Web
Consortium), 10

Device location

canceling a watch, 289–291

getting current location, 280–284

setting a watch, 285–288

watching location of, 284

Device object

device properties, 244

overview of, 243

running on Android, 245

running on BlackBerry, 245–246

running on iPad, 246–248

running on iPhone, 246

Device orientation, in Accelerator API

overview of, 157–158

querying device orientation, 158–161

watching device orientation, 161–164

Device orientation, in Compass API

querying device orientation, 205–206

watchHeading function, 210–213

watchHeadingFilter function,
213–215

watching device orientation, 209

device properties, device object, 244

deviceready events, 250–251

Devices, physical. See Physical devices

Digital signing, configuring PhoneGap Build
for mobile platforms, 143–145

Directories

accessing, 264

ptg8126969

347x

copying, 276

deleting, 275–276

errors accessing, 265

moving, 276–277

properties, 269–272

reading directory entries, 267–269

DirectoryEntry object

copying directories, 276

deleting directories, 275–276

moving directories, 276–277

properties, 269–272

DirectoryReader object, 267–269

Documentation, PhoneGap API, 17–18, 51

Dojo Mobile, 31

Downloads

bada SDK, 80–82

installing PhoneGap and, 327

JDK (Java Developer Kit), 333–334

Droid (Motorola), Capture API example
on, 201

Drupal, PhoneGap plug-ins, 19

Duration, audio playback, 297–298

duration property, Capture API, 190

E

E/S (emulator/simulator)

camera simulators, 170

contacts example on BlackBerry
simulator, 231

device object running on BlackBerry
simulator, 245–246

device object running on iPad simulator,
246–248

launching PhoneGap project in iPhone
simulator, 120

onCameraError on iOS simulator, 183

running PhoneGap applications,
35–36, 78

testing BlackBerry applications, 109–111

testing PhoneGap application in bada
emulator, 95–96

testing PhoneGap application in iPhone
simulator, 123

testing PhoneGap application with AVD,
60–64

testing PhoneGap Build applications, 152

Windows Phone Emulator, 136

Eclipse

configuring development environment
for, 64–66

creating PhoneGap project with, 67–74

LogCat window, 41–42

Package Explorer, 70–71

PhoneGap plug-ins, 19

testing PhoneGap applications,
36–37, 77

Workbench, 65

Emulator Web Application, testing
application in bada emulator, 95–96

encodingType property, Camera API
settings, 181

Enterprises, iOS development and, 114

Errors

build issues, 150–151

camera problems, 182–183

Capture API, 188–189

Compass API, 206

Contacts API, 228–230

database transactions, 319–321

directory access, 265

file and directory access, 265–266

geolocation, 281

Media API, 295–296

Event listeners

for application status events, 251–253

creating, 249–250

for deviceready events, 250–251

Event Log application, BlackBerry, 40–41

ptg8126969

348 x

Events API

application status events, 251–254

button events, 256–262

creating event listeners, 249–250

deviceready events, 250–251

network status events, 254–256

types of events supported by
PhoneGap, 249

ExternalHosts, configuring in Xcode, 305

F

Facebook, PhoneGap plug-ins, 18

File API

accessing file system, 264–267

copying files or directories, 276

deleting files or directories, 275–276

FileEntry and DirectoryEntry
properties, 269–272

moving files or directories, 276–277

overview of, 263

reading content from files, 274–275

reading directory entries, 267–269

storage types, 263–264

uploading files to servers, 277–278

writing data to files, 272–274

File API:Directories and System
specification, W3C (Worldwide Web
Consortium), 263

File system, accessing, 264–267

FileEntry object

copying files, 276

deleting files, 275

moving files, 276–277

properties, 269–272

FileReader object, 274–275

FileTransfer object, 277–278

FileURI, for Media object, 294–295

FileWriter object, 272–274

Folders

installing PhoneGap and, 328

location for iOS project, 118

4G networks, connection object
and, 218

G

Geolocation API

canceling a watch, 289–291

getting current location of device,
280–284

overview of, 279–280

setting a watch, 285–288

watching device location, 284

Geolocation API specification, W3C
(Worldwide Web Consortium), 279

Git repository

delivering application files to build
server, 147

downloading/installing files for bada
development project, 80–81

Google Android. See Android

Google Chrome, 44–45

Google Groups, 19

GPS capabilities. See Geolocation API

Graphics. See Images

H

HP/Palm webOS. See webOS

HTML (Hypertext Markup Language)

building cross-platform native
applications, 3

HTML5 approach to building PhoneGap
applications, 11–13

HTML5 support for geolocation, 279

HTML5 support for storage, 315

running web applications within
PhoneGap container, 7

ptg8126969

349x

Web 1.0 (traditional) approach to building
applications, 11

Web 2.0 approach to building
applications, 11–12

Hybrid applications

defined, 3

frameworks of, 19–20

Hypertext Markup Language. See HTML
(Hypertext Markup Language)

I

IBM, in history of PhoneGap, 4–5

IBM Worklight, 22

Icons

creating iOS projects, 119

creating PhoneGap Build projects,
145–146

as cross-platform issue, 53

IDEs (integrated development environments)

bada as, 82–86

Eclipse as, 64

Image capture. See Camera API;
Capture API

Images

accessing on mobile devices, 165–166

accessing pictures on devices, 165–166

displaying image file URI, 169–170

mediaType property, 182

rotating graphics with jQuery Rotate, 212

index.html
creating PhoneGap project with Eclipse,

73–74

delivering application files to build
server, 146

Infuse 4G device (Samsung), 204

Initialization, of PhoneGap applications,
25–28

INSERT statement, SQL database, 323–324

Installing PhoneGap. See PhoneGap
installation

Integrated development environments (IDEs)

bada as, 82–86

Eclipse as, 64

iOS

accessing media files, 295

application status events, 251, 253

building PhoneGap applications, 15

button events, 256–257

camera simulators, 170

Capture API example on, 197

configuring camera options, 180

configuring PhoneGap Build for mobile
platforms, 143–145

device object running on iPad simulator,
246–248

displaying image file URI, 169–170

Hello, World! application on, 26

image preview on, 197–198

Media API support, 293

onCameraError in iOS simulator, 183

PhoneGap API documentation, 51

PhoneGap API support, 9

PhoneGap Build support, 141

PhoneGap plug-in for Drupal, 19

PhoneGap supported operating systems, 3

picture capture process, 168–169

searching for contact information, 235

testing applications on physical
device, 36

uploading files to server and, 278

iOS development environment

accessing web content for project,
119–122

creating PhoneGap project, 116–117

folder location for projects, 118

installing Xcode, 114–116

ptg8126969

350 x

iOS development environment (cont.)

naming projects and defining project
locations, 117–118

overview of, 113

preparing PhoneGap for, 329–330

registering as Apple developer, 113–114

testing PhoneGap applications, 122–123

versioning, 118–119

iPad

device object and, 246–248

PhoneGap support, 3–4

iPhone

accelerator support and, 159

Camera API example, 167–168, 191–195

configuring camera options, 180

device object, 246

inconsistent implementation of PhoneGap
APIs, 30

launching PhoneGap project in, 120

PhoneGap support, 3

running HelloWorld application on
iPhone simulator, 26

searching for contact information, 237

testing PhoneGap application in, 123

iPhoneDevCamp, 4

J

Java API, RIM (Research In Motion), 246

Java Developer Kit. See JDK (Java
Developer Kit)

Java, making changes to source file using
Eclipse, 70–71

JavaScript

alert method, 307

bada source code files, 329

build cross-platform native applications, 3

building PhoneGap applications, 13–14

console object, 38–39

cross-platform issue, 51

loading JavaScript library, 27

running web applications within
PhoneGap container, 7–8

Web 2.0 approach to building
applications, 11–12

WebWorks providing JavaScript
methods, 246

JDK (Java Developer Kit)

Android development and, 57

bada and, 80

BlackBerry development and, 97

configuring Windows Path environment,
335–336

confirming installation of, 336

downloading, 333–334

installing, 334

JRE (Java Runtime Environment)
included in, 337

JPEG format

compression, 177

images, 181

mode property of Capture API, 190

jQuery

$() function, 212

reasons for using, 268

rotating graphics with, 212

jQuery Mobile (jQM)

as application interface, 192, 200

creating interface for directory
reader, 268

creating interface for media application,
300–301

creating interface for notification
application, 313

searching for contact information, 237

use in application development, 30–35

JRE (Java Runtime Environment),
333–334, 337

ptg8126969

351x

K

Key/value pairs, local storage and, 316

L

Launch screens, creating iOS PhoneGap
project, 119

LG Thrill device

device object on, 245

video capture on, 202–203

limit property, Capture API, 190

Linux OSs

building Symbian PhoneGap applications
on, 125

configuring Eclipse development
environment, 64

launching Unix applications from
command line, 75

options for PhoneGap development on
Android, 57

Local storage, Storage API, 316–317

LogCat window, Eclipse, 41–43

M

Macintosh OSs

bada development tools and, 79

building Symbian PhoneGap applications
on, 125–127

configuring Eclipse development
environment, 64

development environment. See iOS
development environment

installing Android SDK on, 60

installing Apache Ant on, 337

Installing BlackBerry WebWorks SDK,
98–99

JDK (Java Developer Kit) and, 333

launching Unix applications from
command line, 75

options for PhoneGap development on
Android, 57

packaging Symbian PhoneGap
projects, 131

testing Symbian PhoneGap projects, 132

Windows Phone development and, 135

Magnetic poles, device orientation
and, 206

Make utility

installing, 126–127

packaging PhoneGap projects, 131–132

Makefiles, 126, 131–132

Manifest file, adding to PhoneGap project in
bada, 94–96

Media API

callback functions, 295–297

creating Media objects, 294

determining current position while
playing media files, 297

determining duration of playback,
297–298

example of use of, 300–305

FileURI, 294–295

overview of, 293

playing audio clips, 298–299

recording audio, 299–300

releasing Media objects, 298

Media Capture API, W3C (Worldwide Web
Consortium), 185

Media files, using Capture API, 186–187

Media objects

creating, 294

releasing, 298

mediaType property, Camera API settings,
181–182

Memory cards, 61

Microsoft Windows. See Windows OSs

Mobile browsers. See also Web
browsers, 279

ptg8126969

352 x

Mobile Data System (MDS)

BlackBerry and, 106–107

testing PhoneGap BlackBerry
applications on, 109–111

mode property, Capture API, 190–191

Motorola Droid, Capture API example
on, 201

Moving files or directories, 276–277

N

Names

defining unique name for application,
87–88

iOS PhoneGap project, 117

PhoneGap Build project, 145

Navigation, as cross-platform issue, 52

Navigator object, instantiating APIs
from, 28

Network status events, 254–256

Networks, connection object and, 217–218

New project dialog, PhoneGap Build,
147–148

Nitobi

history of PhoneGap and, 4–5

support offered by, 19

Nokia

Symbian. See Symbian

Web Tools, 125–126

Notification API

beep, 310

example application of, 310–313

overview of, 307

vibrate, 310

visual alerts, 307–310

O

offline events, network status events, 254

online events, network status events, 254

onStatus function, media playback and,
296–297

Open source frameworks

PhoneGap as, 3

support and, 19

Optic quality, cameras and, 177

Oracle JDK. See JDK (Java Developer Kit)

organizations array, specifying
contact properties, 226

OSs (operating systems)

application requirements as cross-
platform issue, 52

bada. See bada (Samsung)

configuring Eclipse development
environment, 64

emulator/simulators and, 35–36

installing Apache Ant on, 337–339

JDK (Java Developer Kit) and, 334

Linux OSs. See Linux OSs

Macintosh OSs. See Macintosh OSs

PhoneGap supported, 3–4

Windows OSs. See Windows OSs

OTA (over the air)

deploying applications to BlackBerry
smartphones, 108–109

testing PhoneGap applications, 152

P

Packaging PhoneGap projects

cloud-based service, 14

with Symbian, 131–132

Palm webOS (HP). See webOS

pause events, application status events,
251–254

pause method, Media objects, 298–299

Persistent storage, file storage options,
263–264

PhoneGap APIs

accelerometer. See Accelerator API

ptg8126969

353x

camera. See Camera API

capture. See Capture API

capturing API settings from another
application and adding to bada
project, 93

compass. See Compass API

connection. See Connection object

contacts. See Contacts API

defining application version in bada,
88–90

devices. See Device object

events. See Events API

files. See File API

geolocation capabilities. See
Geolocation API

leveraging, 28–30

media. See Media API

notifications. See Notification API

responding to JavaScript calls, 27–28

storage. See Storage API

supporting multiple mobile platforms,
8–9

PhoneGap Build

build process, 148

building applications with, 27

cloud-based packaging service, 14

configuring, 143–145

configuring projects, 148–150

config.xml file, 16

creating accounts, 142–143

creating application for, 145–146

creating projects, 146

dealing with build issues, 150–151

debugging applications, 153–154

delivering application files to build server,
146–147

development environments compared
with, 142

need for, 328

new project dialog, 147–148

overview of, 141

testing applications, 152–153

PhoneGap installation

overview of, 327–328

preparing for bada development, 329

preparing for iOS development, 329–330

preparing for Windows Phone
development, 330–331

PhoneGap, introduction to

building applications, 13–16

designing for application container,
11–13

history of, 4–5

how it works, 6–10

hybrid application frameworks, 19–22

limitations of, 17–18

overview of, 3–4

plug-ins, 18–19

reasons for using, 5–6

support options and resources, 19

Photos. See Images; Pictures

Physical devices

testing accelerator on, 158

testing applications created with
PhoneGap Build, 152

testing BlackBerry applications on,
111–112

testing Eclipse applications on, 78–79

testing PhoneGap applications on,
36–37

Pictures. See also Images

accessing on devices, 165–166

mediaType property, 182

play method, Media object, 298–299

Playback, of media files

determining current position, 297

determining duration of, 297–298

playing audio clips, 298–299

ptg8126969

354 x

Plug-ins

Eclipse, 64

jQuery Rotate, 212

for use with PhoneGap, 18–19

PNG format, 181, 190

Properties

connection object, 217–218

contact, 224–226

device object, 244–245

FileEntry and DirectoryEntry,
269–272

geolocation, 280–281

Q

quality property, Camera API settings,
177–178

Queries, SQL databases, 324–325

R

Raw images, 178–179

Reading

content from files, 274–275

directory entries, 267–272

Recording audio, 299–300

remove method, contacts, 242

Research In Motion. See RIM (Research In
Motion)

resume events, application status,
251–254

RIM (Research In Motion)

BlackBerry. See BlackBerry

emulator/simulators and, 35–36

Java API, 246

PhoneGap supported operating systems, 4

RMEE (Ripple Mobile Environment
Emulator), 44–46

RMEE (Ripple Mobile Environment
Emulator), 44–46

S

Samsung

bada development environment. See bada
development environment

Infuse 4G device, 204

PhoneGap supported operating systems, 4

SDKs (software development kits)

downloading/installing bada SDK, 80–82

installing Android SDK on Macintosh
OSs, 60

installing Android SDK on Windows
OSs, 58–59

installing BlackBerry WebWorks SDK,
98–99

Nokia, 125–126

PhoneGap Build compared with, 142

testing PhoneGap applications, 78–79

Windows Phone 7.1, 135–136

Searches, for contacts, 235–241

Security

configuring in bada development
environment, 90, 92

PhoneGap Build projects and, 145

seekTo method, Media objects, 298–299

Sencha Touch, use in application
development, 31

Servers

BES (BlackBerry Enterprise Server), 109

DDMS (Dalvik Debug Monitor Server),
42–43

delivering application files to build server,
146–147

uploading files to, 277–278

Session storage, local storage, 316

Signing keys

BlackBerry applications, 99

configuring PhoneGap Build for mobile
platforms, 143–145

ptg8126969

355x

Simulators. See E/S (emulator/simulator)

Smartphones

application status events, 251

button events, 256

Capture API example on, 201

connection object, 217

current location of, 280

deploying applications to, 108–109

device object example, 245

emulator/simulators and, 35–36

file storage options, 263–264

geolocation capabilities, 279

how PhoneGap works, 6

memory cards, 61

mimicking native applications, 31

Ripple emulator and, 46

running HelloWorld application on,
24–25

specifying contact properties and, 226

SQLLite and, 315, 326

testing PhoneGap applications, 152–153

Web 1.0 and Web 2.0 technologies, 12

sourceType property, Camera API
settings, 179–180

Splash screens, PhoneGap Build projects,
145–146

SQL databases

creating transactions, 317–318

example of mileage tracker
application, 322

executing SQL statements, 320–324

opening, 317

passing functions to transactions,
319–320

querying SQL statements, 324–325

SQL (Structured Query Language), 317

SQLLite database engine, 315, 326

stop method, Media object, 298–300

Storage API

creating database transactions, 317–318

executing SQL statements, 320–324

local storage, 316–317

mileage tracker example on BlackBerry
Torch 9800, 322

opening SQL database, 317

overview of, 315

passing functions to transactions,
319–320

querying SQL statements, 324–325

SQLLite and, 326

Storage types, files, 263–264

Strings, specifying contact properties,
224–225

Strobe, types of hybrid applications, 22

Structured Query Language (SQL), 317

Symbian

building PhoneGap applications, 15

cross-platform issues, 51

PhoneGap Build support, 141

supported operating systems, 4

Symbian development environment

configuring application settings,
129–130

creating PhoneGap project, 128–129

installing Make utility, 126–127

installing Nokia Web Tools, 125–126

modifying HelloWorld application for,
130–131

overview of, 125

packaging PhoneGap projects, 131–132

testing applications created with
PhoneGap Build, 152

testing PhoneGap applications, 132–134

T

Tables, SQL database, 319–320

Tablets, support for WebWorks tablet
applications, 103

ptg8126969

356 x

targetHeight/targetWidth
properties, Camera API settings, 181

Temporary storage

accessing temporary sandbox storage,
264–265

file storage options, 263–264

Testing PhoneGap applications

on Android emulator, 78

on AVD (Android Virtual Device),
60–64

in bada development environment,
95–96

in BlackBerry development environment,
109–112

in iOS development environment,
122–123

overview of, 35

in PhoneGap Build, 152–153

on physical device, 36–37, 78–79

on simulator, 35–36

in Symbian development environment,
132–134

in Windows development environment,
139–140

Tiggr, types of hybrid applications, 22

Titanium Appcelerator, 20

Torch simulators. See also BlackBerry

contacts example running on, 231

getting current location of device, 284

HelloWorld application running on,
29–30

mileage tracker example, 322

reading directory entries, 269–272

watching location of device, 286, 288

transaction method, of database
object, 319

type property, connection object,
217–218

U

UIs (user interfaces). See also jQuery
Mobile (jQM)

cross-platform issues related to, 52

enhancements, 30–35

Universities, iOS development and, 114

Uploading files

to build server, 146–147

to servers, 277–278

URI

Camera API and, 165

camera destinationType properties,
177–178

camera quality properties,
177–178

capture process and, 173–175

configuring camera options, 176

FileURI for media objects, 294–295

iOS example displaying image file URI,
169–170

USB

running PhoneGap applications on
physical device, 78

testing PhoneGap BlackBerry
applications, 111

User interfaces (UIs). See also jQuery
Mobile (jQM)

cross-platform issues related to, 52

enhancements, 30–35

V

Versions, in bada development project

defining application version, 88–89

defining platform version, 90–92

Versions, in iOS development project,
118–119

Vibrate, in Notification API, 310

ptg8126969

357x

Video capture

on Android devices, 202–204

with Capture API, 186, 198–199

Video, mediaType property, 182

Virtual machines (VMs)

developing applications for Windows
Phone, 135

running Windows OS on Macintosh, 79

Visual alerts, in Notification API, 307–310

Visual Studio 2010 Express

creating Windows Phone project,
136–139, 330

testing Windows Phone project, 139–140

VMs (virtual machines)

developing applications for Windows
Phone, 135

running Windows OS on Macintosh, 79

Voice recorders, audio capture on Android
devices, 202–203

W

W3C (Worldwide Web Consortium)

Contacts API, 223

Device APIs and Policy (DAP) Working
Group, 10

File API:Directories and System
specification, 263

Geolocation API specification, 279

Media API and, 293

Media Capture API, 185

Web SQL Database Specification, 315

Web Storage API Specification, 315

Widget Packaging and XML
Configuration specification, 145

widget specification, 125

watchHeading function, Compass API,
210–213

watchHeadingFilter function,
Compass API, 213–215

watchID variable, geolocation API

canceling a watch, 289–291

overview of, 284

setting a watch, 285–288

Web 1.0, 11

Web 2.0, 11–12

Web App Simulator

Nokia Web Tools for Windows OSs, 126

packaging Symbian PhoneGap
projects, 126

testing Symbian PhoneGap projects,
132–134

Web applications

building into PhoneGap application, 25

building PhoneGap applications,
13–16

PhoneGap application types and, 37

running within PhoneGap container,
7–8

Web browsers

geolocation support, 279

running web applications within
PhoneGap container, 7–8

storage and, 315, 317

Web content

accessing for iOS PhoneGap project,
119–122

adding to Windows Phone PhoneGap
project, 138

creating PhoneGap project using
PhoneGap Build, 145–146

folder structure as cross-platform
issue, 51

Web Inspector, debugging Symbian
PhoneGap projects, 134

Web Inspector Remote (Weinre)

debugging applications created with
PhoneGap Build, 154

debugging PhoneGap applications,
46–49

ptg8126969

358 x

Web Runtime (WRT) widgets

configuring application settings for
PhoneGap project on Symbian, 129–130

running PhoneGap applications on
Symbian as, 125–126

Web sites, PhoneGap resources, 19

Web SQL Database Specification, W3C
(Worldwide Web Consortium), 315

Web Storage API Specification, W3C
(Worldwide Web Consortium), 315–316

Web Tools, Nokia, 125–126

Web views, rendering, 7

webOS

building PhoneGap applications, 14–15

PhoneGap Build support, 141

PhoneGap supported operating
systems, 3

testing applications created with
PhoneGap Build, 152

WebSDKSimulator

Nokia Web Tools for Mac OSs, 126

testing Symbian PhoneGap projects, 132

WebWorks. See also BlackBerry

accessing contact information and, 230

build process, 104–107

creating PhoneGap project, 99–100

debugging web content, 37

installing SDK, 98–99

JavaScript methods provided by, 246

overview of, 21

Weinre (Web Inspector Remote)

debugging applications created with
PhoneGap Build, 154

debugging PhoneGap applications,
46–49

.wgz files, packaging PhoneGap
projects, 131

Wi-Fi networks, connection object and,
217–218

Widget Packaging and XML Configuration
specification, W3C (Worldwide Web
Consortium), 145

Widgets

configuring application settings for
PhoneGap project on Symbian, 129–130

running PhoneGap applications on
Symbian as, 125

Wikis, PhoneGap resources, 19

Windows development environment

creating PhoneGap project, 136–139

installing Windows Phone development
tools, 135–136

overview of, 135

testing PhoneGap applications, 139–140

Windows OSs

bada development tools and, 79

building Symbian PhoneGap applications
on, 125–126

configuring Eclipse development
environment, 64–65

installing Android SDK on, 58–59

installing Apache Ant on, 338–339

Installing BlackBerry WebWorks SDK,
98–99

options for PhoneGap development on
Android, 57

packaging Symbian PhoneGap
projects, 131

testing Symbian PhoneGap projects,
132–134

Windows Path environment

configuring for use with JDK, 335–336

installing Apache Ant on Windows OSs,
338–339

Windows Phone

building PhoneGap applications, 15

creating PhoneGap project for,
136–139

ptg8126969

359x

installing development tools, 135–136

PhoneGap supported operating
systems, 3

preparing PhoneGap for, 330–331

support for, 135

Windows Phone Emulator, 136, 140

Workbench. See AT&T WorkBench

Worklight, types of hybrid applications, 22

Worldwide Web Consortium. See W3C
(Worldwide Web Consortium)

Writing data, to files, 272–274

WRT (Web Runtime) widgets

configuring application settings for
PhoneGap project on Symbian,
129–130

running PhoneGap applications on
Symbian as, 125–126

X

X coordinates. See Device orientation, in
Accelerator API

Xcode

accessing web content for iOS project,
119–122

configuring ExternalHosts, 305

creating iOS project, 116–122

installing, 114–116

naming projects and defining project
locations, 117–118

new project window, 117

preparing PhoneGap for iOS
development, 329

welcome screen, 116

XHTML, 11

Y

Y coordinates. See Device orientation, in
Accelerator API

Z

Z coordinates. See Device orientation, in
Accelerator API

Zip archives

options for delivering application files to
build server, 146

packaging PhoneGap projects, 131

PhoneGap files distributed via, 328

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I: PhoneGap
	Chapter 1 Introduction to PhoneGap
	A Little PhoneGap History
	Why Use PhoneGap?
	How PhoneGap Works
	Designing for the Container
	Writing PhoneGap Applications
	Building PhoneGap Applications
	PhoneGap Limitations
	PhoneGap Plug-Ins
	Getting Support for PhoneGap
	PhoneGap Resources
	Hybrid Application Frameworks

	Chapter 2 PhoneGap Development, Testing, and Debugging
	Hello, World!
	PhoneGap Initialization
	Leveraging PhoneGap APIs
	Enhancing the User Interface of a PhoneGap Application
	Testing and Debugging PhoneGap Applications
	Dealing with Cross-Platform Development Issues

	Part II: PhoneGap Developer Tools
	Chapter 3 Configuring an Android Development Environment for PhoneGap
	Installing the Android SDK
	Eclipse Development Environment Configuration
	Creating an Android PhoneGap Project
	Testing Android PhoneGap Applications

	Chapter 4 Configuring a bada Development Environment for PhoneGap
	Downloading and Installing the Correct PhoneGap bada Files
	Creating a bada PhoneGap Project
	Creating a bada Application Profile
	Testing bada PhoneGap Applications

	Chapter 5 Configuring a BlackBerry Development Environment for PhoneGap
	Installing the BlackBerry WebWorks SDK
	Creating a BlackBerry PhoneGap Project
	Building BlackBerry PhoneGap Applications
	Testing BlackBerry PhoneGap Applications

	Chapter 6 Configuring an iOS Development Environment for PhoneGap
	Registering as an Apple Developer
	Installing Xcode
	Creating an iOS PhoneGap Project
	Testing iOS PhoneGap Applications

	Chapter 7 Configuring a Symbian Development Environment for PhoneGap
	Installing the Nokia Web Tools
	Installing the Make Utility
	Creating a Symbian PhoneGap Project
	Configuring Application Settings
	Modifying HelloWorld3 for Symbian
	Packaging Symbian PhoneGap Projects
	Testing Symbian PhoneGap Applications

	Chapter 8 Configuring a Windows Phone Development Environment for PhoneGap
	Installing the Windows Phone Development Tools
	Creating a Windows Phone PhoneGap Project
	Testing Windows Phone PhoneGap Applications

	Chapter 9 Using PhoneGap Build
	The Fit
	Getting Started
	Configuration
	Creating an Application for PhoneGap Build
	Creating a PhoneGap Build Project
	Dealing with Build Issues
	Testing Applications
	Debug Mode

	Part III: PhoneGap APIs
	Chapter 10 Accelerometer
	Querying Device Orientation
	Watching a Device’s Orientation

	Chapter 11 Camera
	Accessing a Picture
	Configuring Camera Options
	Dealing with Camera Problems

	Chapter 12 Capture
	Using the Capture API
	Configuring Capture Options
	Capture at Work

	Chapter 13 Compass
	Getting Device Heading
	Watching Device Heading

	Chapter 14 Connection
	Chapter 15 Contacts
	Creating a Contact
	Searching for Contacts
	Cloning Contacts
	Removing Contacts

	Chapter 16 Device
	Chapter 17 Events
	Creating an Event Listener
	Deviceready Event
	Application Status Events
	Network Status Events
	Button Events

	Chapter 18 File
	Available Storage Types
	Accessing the Device’s File System
	Reading Directory Entries
	Accessing FileEntry and DirectoryEntry Properties
	Writing Files
	Reading Files
	Deleting Files or Directories
	Copying Files or Directories
	Moving Files or Directories
	Uploading Files to a Server

	Chapter 19 Geolocation
	Getting a Device’s Current Location
	Watching a Device’s Location

	Chapter 20 Media
	The Media Object
	Playing Audio Files
	Recording Audio Files
	Seeing Media in Action

	Chapter 21 Notification
	Visual Alerts (Alert and Confirm)
	Beep
	Vibrate
	Notification in Action

	Chapter 22 Storage
	Local Storage
	SQL Database

	Appendix A: Installing the PhoneGap Files
	Preparing for Samsung bada Development
	Preparing for iOS Development
	Preparing for Windows Phone Development

	Appendix B: Installing the Oracle Java Developer Kit
	Downloading the JDK
	Installing the JDK
	Configuring the Windows Path
	Confirming Installation Success

	Appendix C: Installing Apache Ant
	Macintosh Installation
	Windows Installation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

