Quick answers to common problems

ElasticSearch Cookbook
Second Edition

Over 130 advanced recipes to search, analyze, deploy, manage,
and monitor data effectively with ElasticSearch

Alberto Paro [] open source

PUBLISHING

www.it-ebooks.info

http://www.it-ebooks.info/

ElasticSearch
Cookbook

Second Edition

Over 130 advanced recipes to search, analyze, deploy,
manage, and monitor data effectively with ElasticSearch

Alberto Paro

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

ElasticSearch Cookbook

Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing and its
dealers and distributors, will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013
Second edition: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-483-6

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Alberto Paro

Reviewers
Florian Hopf

Wenhan Lu
Suvda Myagmar
Dan Noble
Philip O'Toole

Acquisition Editor
Rebecca Youé

Content Development Editor
Amey Varangaonkar

Technical Editors
Prajakta Mhatre

Rohith Rajan

Copy Editors
Hiral Bhat

Dipti Kapadia

Neha Karnani
Shambhavi Pai
Laxmi Subramanian

Ashwati Thampi

Project Coordinator
Leena Purkait

Proofreaders
Ting Baker

Samuel Redman Birch
Stephen Copestake
Ameesha Green

Lauren E. Harkins

Indexer
Hemangini Bari

Graphics
Valentina D'silva

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Alberto Paro is an engineer, project manager, and software developer. He currently works
as a CTO at Big Data Technologies and as a freelance consultant on software engineering for
Big Data and NoSQL solutions. He loves to study emerging solutions and applications mainly
related to Big Data processing, NoSQL, natural language processing, and neural networks.
He began programming in BASIC on a Sinclair Spectrum when he was 8 years old, and to
date, has collected a lot of experience using different operating systems, applications,

and programming.

In 2000, he graduated in computer science engineering at Politecnico di Milano with a
thesis on designing multiuser and multidevice web applications. He assisted professors
at the university for about a year. He then came in contact with The Net Planet Company
and loved their innovative ideas; he started working on knowledge management solutions
and advanced data mining products. In summer 2014, his company was acquired by a Big
Data technologies company, where he currently works mainly using Scala and Python on
state-of-the-art big data software (Spark, Akka, Cassandra, and YARN). In 2013, he started
freelancing as a consultant for Big Data, machine learning, and ElasticSearch.

In his spare time, when he is not playing with his children, he likes to work on open source
projects. When he was in high school, he started contributing to projects related to the GNOME
environment (gtkmm). One of his preferred programming languages is Python, and he wrote
one of the first NoSQL backends on Django for MongoDB (Django-MongoDB-engine). In 2010,
he began using ElasticSearch to provide search capabilities to some Django e-commerce

sites and developed PyES (a Pythonic client for ElasticSearch), as well as the initial part of the
ElasticSearch MongoDB river. He is the author of ElasticSearch Cookbook as well as a technical
reviewer Elasticsearch Server, Second Edition, and the video course, Building a Search Server
with ElasticSearch, all of which are published by Packt Publishing,.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

It would have been difficult for me to complete this book without the support of a large
number of people.

First, | would like to thank my wife, my children, and the rest of my family for their
valuable support.

On a more personal note, I'd like to thank my friend, Mauro Gallo, for his patience.

I'd like to express my gratitude to everyone at Packt Publishing who've been involved in the
development and production of this book. I'd like to thank Amey Varangaonkar for guiding this
book to completion, and Florian Hopf, Philip O'Toole, and Suvda Myagmar for patiently going
through the first drafts and providing valuable feedback. Their professionalism, courtesy,
good judgment, and passion for this book are much appreciated.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Florian Hopf works as a freelance software developer and consultant in Karlsruhe,
Germany. He familiarized himself with Lucene-based search while working with different
content management systems on the Java platform. He is responsible for small and large
search systems, on both the Internet and intranet, for web content and application-specific
data based on Lucene, Solr, and ElasticSearch. He helps to organize the local Java User
Group as well as the Search Meetup in Karlsruhe, and he blogs at http://blog.florian-
hopf.de.

Wenhan Lu is currently pursuing his master's degree in computer science at Carnegie
Mellon University. He has worked for Amazon.com, Inc. as a software engineering intern.
Wenhan has more than 7 years of experience in Java programming. Today, his interests
include distributed systems, search engineering, and NoSQL databases.

Suvda Myagmar currently works as a technical lead at a San Francisco-based start-up
called Expect Labs, where she builds developer APIs and tunes ranking algorithms for
intelligent voice-driven, content-discovery applications. She is the co-founder of Pigora, a
company that specializes in social media analytics and content management solutions for
online retailers. Prior to working for start-ups, she worked as a software engineer at Yahoo!
Search and Microsoft Bing.

www.it-ebooks.info

http://blog.florian-hopf.de
http://blog.florian-hopf.de
http://www.it-ebooks.info/

Dan Noble is a software engineer from Washington, D.C. who has been a big fan of
ElasticSearch since 2011. He's the author of the Python ElasticSearch driver called rawes,
available at https://github.com/humangeo/rawes. Dan focuses his efforts on the
development of web application design, data visualization, and geospatial applications.

Philip O'Toole has developed software and led software development teams for more than
15 years for a variety of applications, including embedded software, networking appliances,
web services, and Saa$ infrastructure. His most recent work with ElasticSearch includes
leading infrastructure design and development of Loggly's log analytics SaaS platform, whose
core component is ElasticSearch. He is based in the San Francisco Bay Area and can be found
online at http://www.philipotoole.com.

www.it-ebooks.info

https://github.com/humangeo/rawes
http://www.philipotoole.com
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com, and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with

us at servicee@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books

PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

To Giulia and Andrea, my extraordinary children.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Getting Started 7
Introduction 7
Understanding nodes and clusters 8
Understanding node services 10
Managing your data 11
Understanding clusters, replication, and sharding 13
Communicating with ElasticSearch 16
Using the HTTP protocol 17
Using the native protocol 19
Using the Thrift protocol 21
Chapter 2: Downloading and Setting Up 23
Introduction 23
Downloading and installing ElasticSearch 24
Setting up networking 27
Setting up a node 30
Setting up for Linux systems 32
Setting up different node types 33
Installing plugins in ElasticSearch 35
Installing a plugin manually 39
Removing a plugin 40
Changing logging settings 41
Chapter 3: Managing Mapping 43
Introduction 44
Using explicit mapping creation 44
Mapping base types 47
Mapping arrays 50
Mapping an object 52

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Mapping a document 54
Using dynamic templates in document mapping 57
Managing nested objects 60
Managing a child document 62
Adding a field with multiple mappings 65
Mapping a geo point field 67
Mapping a geo shape field 69
Mapping an IP field 70
Mapping an attachment field 71
Adding metadata to a mapping 74
Specifying a different analyzer 75
Mapping a completion suggester 77
Chapter 4: Basic Operations 81
Introduction 82
Creating an index 82
Deleting an index 85
Opening/closing an index 86
Putting a mapping in an index 87
Getting a mapping 89
Deleting a mapping 90
Refreshing an index 92
Flushing an index 93
Optimizing an index 94
Checking if an index or type exists 96
Managing index settings 97
Using index aliases 100
Indexing a document 102
Getting a document 106
Deleting a document 109
Updating a document 111
Speeding up atomic operations (bulk operations) 114
Speeding up GET operations (multi GET) 117
Chapter 5: Search, Queries, and Filters 119
Introduction 120
Executing a search 120
Sorting results 128
Highlighting results 131
Executing a scan query 133
Suggesting a correct query 136
Counting matched results 139

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Deleting by query 140
Matching all the documents 142
Querying/filtering for a single term 144
Querying/filtering for multiple terms 148
Using a prefix query/filter 151
Using a Boolean query/filter 153
Using a range query/filter 156
Using span queries 158
Using a match query 162
Using an ID query/filter 164
Using a has_child query/filter 166
Using a top_children query 168
Using a has_parent query/filter 170
Using a regexp query/filter 172
Using a function score query 174
Using exists and missing filters 178
Using and/or/not filters 180
Using a geo bounding box filter 182
Using a geo polygon filter 183
Using geo distance filter 185
Using a QueryString query 187
Using a template query 190
Chapter 6: Aggregations 195
Introduction 195
Executing an aggregation 196
Executing the stats aggregation 201
Executing the terms aggregation 203
Executing the range aggregation 208
Executing the histogram aggregation 212
Executing the date histogram aggregation 216
Executing the filter aggregation 219
Executing the global aggregation 221
Executing the geo distance aggregation 223
Executing nested aggregation 227
Executing the top hit aggregation 230
Chapter 7: Scripting 235
Introduction 235
Installing additional script plugins 236
Managing scripts 238
Sorting data using script 241

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Computing return fields with scripting 245
Filtering a search via scripting 248
Updating a document using scripts 251
Chapter 8: Rivers 257
Introduction 257
Managing a river 258
Using the CouchDB river 261
Using the MongoDB river 264
Using the RabbitMQ river 267
Using the JDBC river 272
Using the Twitter river 278
Chapter 9: Cluster and Node Monitoring 283
Introduction 283
Controlling cluster health via the API 284
Controlling cluster state via the API 287
Getting cluster node information via the API 291
Getting node statistics via the API 297
Managing repositories 302
Executing a snapshot 305
Restoring a snapshot 308
Installing and using BigDesk 310
Installing and using ElasticSearch Head 316
Installing and using SemaText SPM 322
Installing and using Marvel 325
Chapter 10: Java Integration 329
Introduction 329
Creating an HTTP client 330
Creating a native client 335
Managing indices with the native client 338
Managing mappings 341
Managing documents 345
Managing bulk actions 348
Building a query 351
Executing a standard search 355
Executing a search with aggregations 359
Executing a scroll/scan search 363

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 11: Python Integration 369
Introduction 369
Creating a client 370
Managing indices 374
Managing mappings 377
Managing documents 380
Executing a standard search 385
Executing a search with aggregations 390

Chapter 12: Plugin Development 395
Introduction 395
Creating a site plugin 396
Creating a native plugin 398
Creating a REST plugin 408
Creating a cluster action 414
Creating an analyzer plugin 421
Creating a river plugin 425

Index 435

(v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

One of the main requirements of today's applications is search capability. In the market, we
can find a lot of solutions that answer this need, both in commercial as well as the open source
world. One of the most used libraries for searching is Apache Lucene. This library is the base of
a large number of search solutions such as Apache Solr, Indextank, and ElasticSearch.

ElasticSearch is written with both cloud and distributed computing in mind. Its main author,
Shay Banon, who is famous for having developed Compass (http://www.compass-
project.org), released the first version of ElasticSearch in March 2010.

Thus, the main scope of ElasticSearch is to be a search engine; it also provides a lot of features
that allow you to use it as a data store and an analytic engine using aggregations.

ElasticSearch contains a lot of innovative features: it is JSON/REST-based, natively distributed
in a Map/Reduce approach, easy to set up, and extensible with plugins. In this book, we will
go into the details of these features and many others available in ElasticSearch.

Before ElasticSearch, only Apache Solr was able to provide some of these functionalities, but
it was not designed for the cloud and does not use the JSON/REST API. In the last few years,
this situation has changed a bit with the release of the SolrCloud in 2012. For users who
want to more thoroughly compare these two products, | suggest you read posts by Rafat Ku¢,
available at http://blog.sematext.com/2012/08/23/solr-vs-elasticsearch-
part-l-overview/.

ElasticSearch is a product that is in a state of continuous evolution, and new functionalities
are released by both the ElasticSearch company (the company founded by Shay Banon to
provide commercial support for ElasticSearch) and ElasticSearch users as plugins (mainly
available on GitHub).

www.it-ebooks.info

http://www.compass-project.org
http://www.compass-project.org
http://blog.sematext.com/2012/08/23/solr-vs-elasticsearch-part-1-overview/
http://blog.sematext.com/2012/08/23/solr-vs-elasticsearch-part-1-overview/
http://www.it-ebooks.info/

Preface

Founded in 2012, the ElasticSearch company has raised a total of USD 104 million in
funding. ElasticSearch's success can best be described by the words of Steven Schuurman,
the company's cofounder and CEO:

It's incredible to receive this kind of support from our investors over such a short
period of time. This speaks to the importance of what we're doing: businesses are
generating more and more data—both user- and machine-generated—and it has
become a strategic imperative for them to get value out of these assets, whether
they are starting a new data-focused project or trying to leverage their current
Hadoop or other Big data investments.

ElasticSearch has an impressive track record for its search product, powering customers
such as Fourquare (which indexes over 50 million venues), the online music distribution
platform SoundCloud, StumbleUpon, and the enterprise social network Xing, which has 14
million members. It also powers GitHub, which searches 20 terabytes of data and 1.3 billion
files, and Loggly, which uses ElasticSearch as a key value store to index clusters of data for
rapid analytics of logfiles.

In my opinion, ElasticSearch is probably one of the most powerful and easy-to-use search
solutions on the market. Throughout this book and these recipes, the book's reviewers and
| have sought to transmit our knowledge, passion, and best practices to help readers better
manage ElasticSearch.

What this book covers

Chapter 1, Getting Started, gives you an overview of the basic concepts of ElasticSearch and
the ways to communicate with it.

Chapter 2, Downloading and Setting Up, shows the basic steps to start using ElasticSearch,
from the simple installation to running multiple nodes.

Chapter 3, Managing Mapping, covers the correct definition of data fields to improve both
the indexing and search quality.

Chapter 4, Basic Operations, shows you the common operations that are required to both
ingest and manage data in ElasticSearch.

Chapter 5, Search, Queries, and Filters, covers the core search functionalities in ElasticSearch.
The search DSL is the only way to execute queries in ElasticSearch.

Chapter 6, Aggregations, covers another capability of ElasticSearch: the possibility to execute
analytics on search results in order to improve the user experience and drill down the information.

Chapter 7, Scripting, shows you how to customize ElasticSearch with scripting in different
programming languages.

Chapter 8, Rivers, extends ElasticSearch to give you the ability to pull data from different
sources such as databases, NoSQL solutions, and data streams.

—21

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 9, Cluster and Node Monitoring, shows you how to analyze the behavior of a
cluster/node to understand common pitfalls.

Chapter 10, Java Integration, describes how to integrate ElasticSearch in a Java application
using both REST and native protocols.

Chapter 11, Python Integration, covers the usage of the official ElasticSearch Python client
and the Pythonic PyES library.

Chapter 12, Plugin Development, describes how to create the different types of plugins:
site and native plugins. Some examples show the plugin skeletons, the setup process,
and their build.

What you need for this book

For this book, you will need a computer running a Windows OS, Macintosh OS, or Linux
distribution. In terms of the additional software required, you don't have to worry, as all the
components you will need are open source and available for every major OS platform.

For all the REST examples, the cURL software (http://curl.haxx.se/) will be used to
simulate the command from the command line. It comes preinstalled on Linux and Mac OS X
operating systems. For Windows, it can be downloaded from its site and added in a PATH that
can be called from the command line.

Chapter 10, Java Integration, and Chapter 12, Plugin Development, require the Maven build
tool (http://maven.apache.org/), which is a standard tool to manage builds, packaging,
and deploying in Java. It is natively supported on most of the Java IDEs, such as Eclipse and
IntelliJ IDEA.

Chapter 11, Python Integration, requires the Python Interpreter installed on your computer.
It's available on Linux and Mac OS X by default. For Windows, it can be downloaded from the
official Python website (http://www.python.org). The examples in this chapter have been
tested using version 2.x.

Who this book is for

This book is for developers and users who want to begin using ElasticSearch or want to improve
their knowledge of ElasticSearch. This book covers all the aspects of using ElasticSearch and
provides solutions and hints for everyday usage. The recipes have reduced complexity so it is
easy for readers to focus on the discussed ElasticSearch aspect and easily and fully understand
the ElasticSearch functionalities.

The chapters toward the end of the book discuss ElasticSearch integration with Java and Python
programming languages; this shows the users how to integrate the power of ElasticSearch into
their Java- and Python-based applications.

(3 |-

www.it-ebooks.info

http://curl.haxx.se/
http://maven.apache.org/
http://www.python.org
http://www.it-ebooks.info/

Preface

Chapter 12, Plugin Development, talks about the advanced use of ElasticSearch and its core
extensions, so you will need some prior Java knowledge to understand this chapter fully.

This book contains the following sections:

Getting ready

This section tells us what to expect in the recipe, and describes how to set up any software or
any preliminary settings needed for the recipe.

How to do it...

This section characterizes the steps to be followed for "cooking" the recipe.

This section usually consists of a brief and detailed explanation of what happened in the
previous section.

There's more...

It consists of additional information about the recipe in order to make the reader more
anxious about the recipe.

This section may contain references to the recipe.

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"After the name and type parameters, usually a river requires an extra configuration
that can be passed in the _meta property."

g

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A block of code is set as follows:

cluster.name: elasticsearch

node.name: "My wonderful server"

network.host: 192.168.0.1

discovery.zen.ping.unicast.hosts: ["192.168.0.2","192.168.0.3[9300-
94001 "]

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

cluster.name: elasticsearch

node.name: "My wonderful server"

network.host: 192.168.0.1

discovery.zen.ping.unicast.hosts: ["192.168.0.2","192.168.0.3[9300-
9400] "]

Any command-line input or output is written as follows:
curl -XDELETE 'http://127.0.0.1:9200/ river/my river/'

New terms and important words are shown in bold. Words you see on the screen, in menus
or dialog boxes, for example, appear in the text like this: "If you don't see the cluster statistics,
put your node address to the left and click on the connect button."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles you
really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic you have expertise in and you are interested in either writing or contributing
to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you get
the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you. The code bundle is also available on GitHub at https://github.com/aparo/
elasticsearch-cookbook-second-edition.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http: //www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https: //www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media.

At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so we can pursue a remedy.

Please contact us at copyrighte@epacktpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub.com, and we will do our best to address the problem.

—s1

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Getting Started

In this chapter, we will cover:

» Understanding nodes and clusters

» Understanding node services

» Managing your data

» Understanding clusters, replication, and sharding
» Communicating with ElasticSearch

» Using the HTTP protocol

» Using the native protocol

» Using the Thrift protocol

Introduction

To efficiently use ElasticSearch, it is very important to understand how it works.

The goal of this chapter is to give the readers an overview of the basic concepts of
ElasticSearch and to be a quick reference for them. It's essential to understand the
basics better so that you don't fall into the common pitfall about how ElasticSearch
works and how to use it.

The key concepts that we will see in this chapter are: node, index, shard, mapping/type,
document, and field.

ElasticSearch can be used both as a search engine as well as a data store.

A brief description of the ElasticSearch logic helps the user to improve performance,
search quality, and decide when and how to optimize the infrastructure to improve
scalability and availability.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

Some details on data replications and base node communication processes are also explained.

At the end of this chapter, the protocols used to manage ElasticSearch are also discussed.

Understanding nodes and clusters

Every instance of ElasticSearch is called a node. Several nodes are grouped in a cluster.
This is the base of the cloud nature of ElasticSearch.

Getting ready

To better understand the following sections, some basic knowledge about the concepts of
the application node and cluster are required.

One or more ElasticSearch nodes can be set up on a physical or a virtual server depending
on the available resources such as RAM, CPU, and disk space.

A default node allows you to store data in it to process requests and responses.
(In Chapter 2, Downloading and Setting Up, we'll see details about how to set up
different nodes and cluster topologies).

When a node is started, several actions take place during its startup, such as:
» The configuration is read from the environment variables and the

elasticsearch.yml configuration file

» A node name is set by the configuration file or is chosen from a list of
built-in random names

» Internally, the ElasticSearch engine initializes all the modules and plugins
that are available in the current installation

Downloading the example code

purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

.\'Q You can download the example code files for all Packt books you have

After the node startup, the node searches for other cluster members and checks its index and
shard status.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

To join two or more nodes in a cluster, the following rules must be observed:

» The version of ElasticSearch must be the same (v0.20, v0.9, v1.4, and so on) or the
join is rejected.

» The cluster name must be the same.

» The network must be configured to support broadcast discovery (it is configured
to it by default) and they can communicate with each other. (See the Setting up
networking recipe in Chapter 2, Downloading and Setting Up.)

A common approach in cluster management is to have a master node, which is the main
reference for all cluster-level actions, and the other nodes, called secondary nodes, that
replicate the master data and its actions.

To be consistent in the write operations, all the update actions are first committed in the
master node and then replicated in the secondary nodes.

In a cluster with multiple nodes, if a master node dies, a master-eligible node is elected
to be the new master node. This approach allows automatic failover to be set up in an
ElasticSearch cluster.

There are two important behaviors in an ElasticSearch node: the non-data node (or arbiter)
and the data container behavior.

Non-data nodes are able to process REST responses and all other operations of search.
During every action execution, ElasticSearch generally executes actions using a map/reduce
approach: the non-data node is responsible for distributing the actions to the underlying
shards (map) and collecting/aggregating the shard results (redux) to be able to send a

final response. They may use a huge amount of RAM due to operations such as facets,
aggregations, collecting hits and caching (such as scan/scroll queries).

Data nodes are able to store data in them. They contain the indices shards that store the
indexed documents as Lucene (internal ElasticSearch engine) indices.

Using the standard configuration, a node is both an arbiter and a data container.

In big cluster architectures, having some nodes as simple arbiters with a lot of RAM, with no
data, reduces the resources required by data nodes and improves performance in searches
using the local memory cache of arbiters.

» The Setting up different node types recipe in Chapter 2, Downloading and Setting Up.

Bl

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

Understanding node services

When a node is running, a lot of services are managed by its instance. These services provide
additional functionalities to a node and they cover different behaviors such as networking,
indexing, analyzing and so on.

Getting ready

Every ElasticSearch server that is running provides services.

ElasticSearch natively provides a large set of functionalities that can be extended with
additional plugins.

During a node startup, a lot of required services are automatically started. The most
important are:

» Cluster services: These manage the cluster state, intra-node communication,
and synchronization.

» Indexing Service: This manages all indexing operations, initializing all active
indices and shards.

» Mapping Service: This manages the document types stored in the cluster
(we'll discuss mapping in Chapter 3, Managing Mapping).

» Network Services: These are services such as HTTP REST services (default on
port 9200), internal ES protocol (port 9300) and the Thrift server (port 9500),
applicable only if the Thrift plugin is installed.

» Plugin Service: This enables us to enhance the basic ElasticSearch functionality in
a customizable manner. (It's discussed in Chapter 2, Downloading and Setting Up,
for installation and Chapter 12, Plugin Development, for detailed usage.)

» River Service: It is a pluggable service running within ElasticSearch cluster, pulling
data (or being pushed with data) that is then indexed into the cluster. (We'll see it in
Chapter 8, Rivers.)

» Language Scripting Services: They allow you to add new language scripting support
to ElasticSearch.

Throughout this book, we'll see recipes that interact with ElasticSearch
services. Every base functionality or extended functionality is managed
g in ElasticSearch as a service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Managing your data

If you are going to use ElasticSearch as a search engine or a distributed data store, it's important
to understand concepts of how ElasticSearch stores and manages your data.

Getting ready

To work with ElasticSearch data, a user must have basic concepts of data management and
JSON data format, which is the lingua franca to work with ElasticSearch data and services.

Our main data container is called index (plural indices) and it can be considered as a
database in the traditional SQL world. In an index, the data is grouped into data types called
mappings in ElasticSearch. A mapping describes how the records are composed (fields).

Every record that must be stored in ElasticSearch must be a JSON object.

Natively, ElasticSearch is a schema-less data store; when you enter records in it during
the insert process it processes the records, splits it into fields, and updates the schema
to manage the inserted data.

To manage huge volumes of records, ElasticSearch uses the common approach to split an
index into multiple shards so that they can be spread on several nodes. Shard management
is transparent to the users; all common record operations are managed automatically in the
ElasticSearch application layer.

Every record is stored in only a shard; the sharding algorithm is based on a record ID,
S0 many operations that require loading and changing of records/objects, can be achieved
without hitting all the shards, but only the shard (and its replica) that contains your object.

The following schema compares ElasticSearch structure with SQL and MongoDB ones:

ElasticSearch SQL MongoDB

Index (Indices) Database Database

Shard Shard Shard

Mapping/Type Table Collection

Field Field Field

Object (JSON Object) Record (Tuples) Record (BSON Object)

s

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

There's more...

To ensure safe operations on index/mapping/objects, ElasticSearch internally has rigid rules
about how to execute operations.

In ElasticSearch, the operations are divided into:

» Cluster/index operations: All clusters/indices with active write are locked; first they
are applied to the master node and then to the secondary one. The read operations
are typically broadcasted to all the nodes.

» Document operations: All write actions are locked only for the single hit shard.
The read operations are balanced on all the shard replicas.

When a record is saved in ElasticSearch, the destination shard is chosen based on:

» The id (unique identifier) of the record; if the id is missing, it is autogenerated
by ElasticSearch

» If routing or parent (we'll see it in the parent/child mapping) parameters are
defined, the correct shard is chosen by the hash of these parameters

Splitting an index in shard allows you to store your data in different nodes, because
ElasticSearch tries to balance the shard distribution on all the available nodes.

Every shard can contain up to 2732 records (about 4.9 billion), so the real limit to a shard size
is its storage size.

Shards contain your data and during search process all the shards are used to calculate and
retrieve results. So ElasticSearch performance in big data scales horizontally with the number
of shards.

All native records operations (such as index, search, update, and delete) are managed in shards.

Shard management is completely transparent to the user. Only an advanced user tends to
change the default shard routing and management to cover their custom scenarios. A common
custom scenario is the requirement to put customer data in the same shard to speed up his
operations (search/index/analytics).

Best practices

It's best practice not to have a shard too big in size (over 10 GB) to avoid poor performance in
indexing due to continuous merging and resizing of index segments.

It is also not good to over-allocate the number of shards to avoid poor search performance
due to native distributed search (it works as map and reduce). Having a huge number of
empty shards in an index will consume memory and increase the search times due to an
overhead on network and results aggregation phases.

Sk

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

See also

» Shard on Wikipedia
http://en.wikipedia.org/wiki/Shard (database architecture)

Understanding clusters, replication,

and sharding

Related to shard management, there is the key concept of replication and cluster status.

Getting ready

You need one or more nodes running to have a cluster. To test an effective cluster, you need
at least two nodes (that can be on the same machine).

An index can have one or more replicas; the shards are called primary if they are part of the
primary replica, and secondary ones if they are part of replicas.

To maintain consistency in write operations, the following workflow is executed:

» The write operation is first executed in the primary shard

» If the primary write is successfully done, it is propagated simultaneously in all
the secondary shards

» If a primary shard becomes unavailable, a secondary one is elected as primary
(if available) and then the flow is re-executed

During search operations, if there are some replicas, a valid set of shards is chosen
randomly between primary and secondary to improve its performance. ElasticSearch has
several allocation algorithms to better distribute shards on nodes. For reliability, replicas
are allocated in a way that if a single node becomes unavailable, there is always at least
one replica of each shard that is still available on the remaining nodes.

[}

www.it-ebooks.info

http://en.wikipedia.org/wiki/Shard_(database_architecture)
http://www.it-ebooks.info/

Getting Started
The following figure shows some examples of possible shards and replica configuration:

A4
=
=]
o
]
w

\

Node2

/

o I
o

A:{Shard:3 Replica:2} B: {Shard:2 Replica:3} C {Shard:1 Replica:0}

[

80 (1
) ()
CHET
0 (1

(660 (660 (680
GGG
(660 (660 (G

The replica has a cost in increasing the indexing time due to data node synchronization, which
is the time spent to propagate the message to the slaves (mainly in an asynchronous way).

> To prevent data loss and to have high availability, it's good to have a least

one replica; so your system can survive a node failure without downtime
and without loss of data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Related to the concept of replication, there is the cluster status indicator that will show you
information on the health of your cluster. It can cover three different states:

» Green: This shows that everything is okay
» Yellow: This means that some shards are missing but you can work on your cluster

» Red: This indicates a problem as some primary shards are missing

Solving the yellow status...
Mainly, yellow status is due to some shards that are not allocated.

If your cluster is in the recovery status (meaning that it's starting up and checking the
shards before they are online), you need to wait until the shards' startup process ends.

After having finished the recovery, if your cluster is always in the yellow state, you may not
have enough nodes to contain your replicas (for example, maybe the number of replicas is
bigger than the number of your nodes). To prevent this, you can reduce the number of your
replicas or add the required number of nodes. A good practice is to observe that the total
number of nodes must not be lower than the maximum number of replicas present.

Solving the red status

This means you are experiencing lost data, the cause of which is that one or more shards
are missing.

To fix this, you need to try to restore the node(s) that are missing. If your node restarts and
the system goes back to the yellow or green status, then you are safe. Otherwise, you have
obviously lost data and your cluster is not usable; the next action would be to delete the
index/indices and restore them from backups or snapshots (if you have done them) or from
other sources. To prevent data loss, | suggest having always a least two nodes and a replica
set to 1 as good practice.

+ Having one or more replicas on different nodes on different
machines allows you to have a live backup of your data,
’ which stays updated always.

Setting up different node types in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

Communicating with ElasticSearch

You can communicate with several protocols using your ElasticSearch server. In this recipe,
we will take a look at the main protocols.

Getting ready

You will need a working instance of the ElasticSearch cluster.

ElasticSearch is designed to be used as a RESTful server, so the main protocol is the HTTP,
usually on port number 9200 and above. Thus, it allows using different protocols such as
native and thrift ones.

Many others are available as extension plugins, but they are seldom used, such as
memcached, couchbase, and websocket. (If you need to find more on the transport layer,
simply type in Elasticsearch transport on the GitHub website to search.)

Every protocol has advantages and disadvantages. It's important to choose the correct one
depending on the kind of applications you are developing. If you are in doubt, choose the
HTTP Protocol layer that is the standard protocol and is easy to use.

Choosing the right protocol depends on several factors, mainly architectural and performance
related. This schema factorizes advantages and disadvantages related to them. If you are using
any of the protocols to communicate with ElasticSearch official clients, switching from a protocol
to another is generally a simple setting in the client initialization.

Protocol Advantages Disadvantages Type
HTTP » Frequently used » HTTP overhead » Text

» APl is safe and has
general compatibility
for different versions
of ES, although JSON
is suggested

Native » Fast network layer » If the API changes, it can » Binary
break the applications

» Programmatic
» Requires the same

version of the ES server
» OnlyonJVM

Thrift » Similar to HTTP » Related to the Thrift » Binary
plugin

» Best for massive
indexing operations

6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Using the HTTP protocol

This recipe shows us the usage of the HTTP protocol with an example.

Getting ready

You need a working instance of the ElasticSearch cluster. Using default configuration,
ElasticSearch enables port number 9200 on your server to communicate in HTTP.

How to do it...

The standard RESTful protocol is easy to integrate.

We will see how easy it is to fetch the ElasticSearch greeting API on a running server on port
9200 using different programming languages:

» In BASH, the request will be:
curl -XGET http://127.0.0.1:9200

» In Python, the request will be:

import urllib
result = urllib.open("http://127.0.0.1:9200")

» InJava, the request will be:

import java.io.BufferedReader;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.URL;

. truncated..

try{ // get URL content

URL url = new URL("http://127.0.0.1:9200") ;
URLConnection conn = url.openConnection();// open the
stream and put it into BufferedReader
BufferedReader br = new BufferedReader (new
InputStreamReader (conn.getInputStream())) ;

String inputLine;
while ((inputLine = br.readLine()) != null){
System.out.println (inputLine) ;

}

br.close() ;

System.out.println ("Done") ;

}

Catch (MalformedURLException e)

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

e.printStackTrace () ;

}

catch (IOException e) {
e.printStackTrace () ;

}

In Scala, the request will be:

scala.io.Source.fromURL ("http://127.0.0.1:9200",
"utf-8") .getLines.mkString ("\n")

For every language sample, the response will be the same:

{

}

"ok" : true,
"status" : 200,
"name" : "Payge, Reeva',
"version" : {
"number" : "1.4.0",
"snapshot build" : false
b
"tagline" : "You Know, for Search"

Every client creates a connection to the server index / and fetches the answer. The answer is
a valid JSON object. You can invoke the ElasticSearch server from any language that you like.

The main advantages of this protocol are:

>

Portability: This uses Web standards so that it can be integrated in different languages
(Erlang, JavaScript, Python, Ruby, and so on) or called via a command-line application
such as cURL.

Durability: The REST APIs don't change often. They don't break for minor release
changes as native protocol does.

Simple to use: This has JSON-to-JSON interconnectivity.

Good support: This has much more support than other protocols. Every plugin
typically supports a REST endpoint on HTTP.

Easy cluster scaling: You can simply put your cluster nodes behind an HTTP load
balancer to balance the calls such as HAProxy or NGinx.

In this book, a lot of the examples are done by calling the HTTP API via the command-line
cURL program. This approach is very fast and allows you to test functionalities very quickly.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Every language provides drivers for best integration with ElasticSearch or RESTful web services.

The ElasticSearch community provides official drivers that support the most used
programming languages.

Using the native protocol

ElasticSearch provides a native protocol, used mainly for low-level communication between
nodes, but very useful for fast importing of huge data blocks. This protocol is available only
for Java Virtual Machine (JVM) languages and commonly is used in Java, Groovy, and Scala.

Getting ready

You need a working instance of the ElasticSearch cluster; the standard port number for native
protocol is 9300.

How to do it...

The following are the steps required to use the native protocol in a Java environment
(we'll discuss this in depth in Chapter 10, Java Integration):

1. Before starting, we must be sure that Maven loads the Elasticsearch. jar file
by adding the following code to the pom.xml file:

<dependencys>
<groupIds>org.elasticsearch</groupIld>
<artifactIdselasticsearch</artifactIds>
<version>1l.4.1l</versions>

</dependency>

2. Depending on the Elasticsearch. jar file, creating a Java client is quite easy:

import org.elasticsearch.common.settings.ImmutableSettings;
import org.elasticsearch.common.settings.Settings;

import org.elasticsearch.client.Client;

import org.elasticsearch.client.transport.TransportClient;

Settings settings = ImmutableSettings.settingsBuilder ()
.put ("client.transport.sniff", true) .build();

// we define a new settings

// using sniff transport allows to autodetect other nodes
Client client = new TransportClient (settings)

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

.addTransportAddress (new InetSocketTransportAddress("127.0.0.1",
9300)) ;

// a client is created with the settings

To initialize a native client, a settings object is required, which contains some configuration
parameters. The most important ones are:

» cluster.name: This is the name of the cluster

» client.transport.sniff: This allows you to sniff out the rest of the cluster
and add them into its list of machines to use

With the settings object, it's possible to initialize a new client by giving an IP address and port
a number (default 9300).

There's more...

The native protocol is the internal one used in ElasticSearch. It's the fastest protocol that is
available to communicate with ElasticSearch.

The native protocol is an optimized binary and works only for JVM languages; to use this protocol,
you need to include the elasticsearch. jar in your JVM project. Because it depends on
ElasticSearch implementation, it must be the same version of ElasticSearch cluster.

For this reason, every time you update ElasticSearch, you need to update the elasticsearch.
jar file on which it depends and if there are internal API changes, you need to update your code.

To use this protocol, you need to study the internals of ElasticSearch, so it's not as easy to use
as HTTP and Thrift protocol.

Native protocol is useful for massive data import. But as ElasticSearch is mainly thought as
a REST HTTP server to communicate with, it lacks support for everything that is not standard
in the ElasticSearch core, such as the plugin's entry points. So using this protocol, you are
unable to call entry points made by external plugins.

The native protocol seems the most easy to integrate in a Java/JVM
* project. However, due to its nature that follows the fast release cycles
of ElasticSearch, it changes very often. Also, for minor release upgrades,
s) : .
your code is more likely to be broken. Thus, ElasticSearch developers
wisely tries to fix them in the latest releases.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

» The native protocol is the most used in the Java world and it will be deeply discussed
in Chapter 10, Java Integration and Chapter 12, Plugin Development

» Further details on ElasticSearch Java APl are available on the ElasticSearch website
athttp://www.elasticsearch.org/guide/en/elasticsearch/client/
java-api/current/index.html

Using the Thrift protocol

Thrift is an interface definition language, initially developed by Facebook, used to define and
create services. This protocol is now maintained by Apache Software Foundation.

Its usage is similar to HTTP, but it bypasses the limit of HTTP protocol (latency, handshake and
so on) and it's faster.

Getting ready

You need a working instance of ElasticSearch cluster with the thrift plugin installed
(https://github.com/elasticsearch/elasticsearch-transport-thrift/);
the standard port for the Thrift protocol is 9500.

How to do it...

To use the Thrift protocol in a Java environment, perform the following steps:

1. We must be sure that Maven loads the thrift library adding to the pom.xml file;
the code lines are:

<dependencys>
<groupIds>org.apache.thrift</groupIld>
<artifactIdslibthrift</artifactIds>
<version>0.9.1</versions>
</dependency>

2. InJava, creating a client is quite easy using ElasticSearch generated classes:

import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.protocol.TProtocol;

import org.apache.thrift.transport.TSocket;

import org.apache.thrift.transport.TTransport;

import org.apache.thrift.transport.TTransportException;
import org.elasticsearch.thrift.*;

s

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/index.html
http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/index.html
https://github.com/elasticsearch/elasticsearch-transport-thrift/
http://www.it-ebooks.info/

Getting Started

TTransport transport = new TSocket ("127.0.0.1", 9500) ;
TProtocol protocol = new TBinaryProtocol (transport) ;
Rest.Client client = new Rest.Client (protocol) ;
transport.open() ;

3. Toinitialize a connection, first we need to open a socket transport. This is done
with the TSocket (host, port) setting, using the ElasticSearch thrift standard
port 9500.

4. Then the socket transport protocol must be encapsulated in a binary protocol,
this is done with the TBinaryProtocol (transport) parameter.

5. Now, a client can be initialized by passing the protocol. The Rest .Client utility
class and other utility classes are generated by elasticsearch.thrift.
It resides inthe org.elasticsearch.thrift namespace.

To have a fully working client, we must open the socket (transport .open()).
7. Atthe end of program, we should close the client connection (transport.close ()).

There's more...

Some drivers, to connect to ElasticSearch, provide an easy-to-use API to interact with Thrift
without the boulder that this protocol needs.

For advanced usage, | suggest the use of the Thrift protocol to bypass some problems related
to HTTP limits, such as:

» The number of simultaneous connections required in HTTP; Thrift transport efficiently
uses resources

» The network traffic is light weight because it is binary and is very compact

A big advantage of this protocol is that on the server side it wraps the REST entry points so
that it can also be used with calls provided by external REST plugins.

See also

» For more details on Thrift visit its Wikipedia page at:
http://en.wikipedia.org/wiki/Apache Thrift

» For more complete reference on the Thrift ElasticSearch plugin, the official
documentation is available at https://github.com/elasticsearch/
elasticsearch-transport-thrift/

www.it-ebooks.info

http://en.wikipedia.org/wiki/Apache_Thrift
https://github.com/elasticsearch/elasticsearch-transport-thrift/
https://github.com/elasticsearch/elasticsearch-transport-thrift/
http://www.it-ebooks.info/

Downloading and
Setting Up

In this chapter, we will cover the following topics:

» Downloading and installing ElasticSearch
» Setting up networking

» Setting up a node

» Setting up for Linux systems

» Setting up different node types

» Installing plugins in ElasticSearch

» Installing a plugin manually

» Removing a plugin

» Changing logging settings

Introduction

This chapter explains how to install and configure ElasticSearch, from a single developer
machine to a big cluster, giving you hints on how to improve performance and skip
misconfiguration errors.

There are different options to install ElasticSearch and set up a working environment for
development and production.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Setting Up

When testing out ElasticSearch for a development cluster, the configuration tool does not
require any configurations to be set in it. However, when moving to production, it is important
to properly configure the cluster based on your data and use cases. The setup step is very
important because a bad configuration can lead to bad results and poor performances,

and it can even Kill your server.

In this chapter, the management of ElasticSearch plugins is also discussed: installing,
configuring, updating, and removing.

Downloading and installing ElasticSearch

ElasticSearch has an active community and the release cycles are very fast.

Because ElasticSearch depends on many common Java libraries (Lucene, Guice, and
Jackson are the most famous), the ElasticSearch community tries to keep them updated
and fixes bugs that are discovered in them and the ElasticSearch core. The large user
base is also a source of new ideas and features to improve ElasticSearch use cases.

For these reasons, if it's possible, best practice is to use the latest available release
(usually, the most stable release and with the least bugs).

Getting ready

You need an ElasticSearch supported operating system (Linux / Mac OS X / Windows)
with JVM 1.7 or above installed. A web browser is required to download the ElasticSearch
binary release.

How to do it...

In order to download and install an ElasticSearch server, we will perform the following steps:

1. Download ElasticSearch from the web. The latest version is always downloadable at
http://www.elasticsearch.org/download/. Different versions are available
for different operating systems:

o elasticsearch-{version-number}.zip: Thisis used for both Linux
(or Mac OS X) and Windows operating systems

o elasticsearch-{version-number}.tar.gz: Thisis used for Linux and
Mac operating systems

0 elasticsearch-{version-number}.deb: Thisis used for a Debian-based
Linux distribution (this also covers the Ubuntu family). It can be installed with
the Debian command dpkg -i elasticsearch-*.deb.

=

www.it-ebooks.info

http://www.elasticsearch.org/download/
http://www.it-ebooks.info/

Chapter 2

elasticsearch-{version-number} .rpm: This is used for Red Hat-based
Linux distributions (this also covers the CentOS family). You can install this
version with the command rpm -i elasticsearch-{version number}.
rpm.

These packages contain everything to start using
ElasticSearch. At the time of writing this book, the latest

and most stable version of ElasticSearch is 1.4.0. To check

whether this is the latest available version, please visit
http://www.elasticsearch.org/download/.

Extract the binary content:

u]

After downloading the correct release for your platform, the installation
consists of extracting the archive to a working directory.

Choose a working directory that is safe for charset problems and does
not have a long path name (path name) in order to prevent problems
when ElasticSearch creates its directories to store index data.

For the Windows platform, a good directory can be c: \es, while on
Unix and Mac OS X, you can use /opt/es.

To run ElasticSearch, you need a Java Virtual Machine version 1.7 or
above installed. For better performance, | suggest that you use the
latest Sun/QOracle 1.7 version.

If you are a Mac OS X user and you have installed Homebrew
(http://brew.sh/), the first and second step is automatically
managed by the brew install elasticsearch command.

Now, start the ElasticSearch executable to check whether everything is working.
To start your ElasticSearch server, just navigate to the installation directory and
type either of the following command lines depending on your platform:

u]

For Linux and Mac OS X:

bin/elasticsearch

For Windows:

bin\elasticserch.bat

www.it-ebooks.info

http://www.elasticsearch.org/download/
http://brew.sh/
http://www.it-ebooks.info/

Downloading and Setting Up

4. Your server should now start, as shown in the following screenshot:

- elasticsearch-1.4.0.Betal

LICENSE.txt NOTICE.txt README . textile bin config data lib logs

- elasticsearch-1.4.0.Betal

[2014-10-12 11:11:50,180][INFO][node [ESCookBook] version[1.4.0.Betal], pid[31025], build[1f25669/2014-10-01T14:58:15Z]

[2014-10-12 11:11:50,180][INFO][node [ESCookBook] initializing ...

[2014-10-12 1. 50,183][INFO 1[plugins [ESCookBook] loaded [], sites [

[2014-10-12 1: 52,157][INFO][node [ESCookBook] initialized

[2014-10-12 1. 52,158][INFO][node [ESCookBook] starting ...

[2014-10-12 11:11:52,217][INFO][transport [ESCookBook] bound_address {inet[/0:0:0:0:0:0:0:0:9300]}, publish_address {inet[/192.168.1.19:93
0]}

[2014-10-12 11:11:52,233][INFO J[discovery [ESCookBook] elasticsearch/t1Bcw-fbS4ual4rhNOaTBw

[2014-10-12 11:11:55,26@][INFO][cluster.service [ESCookBook] new_master [ESCookBook][t1Bcw-fbS4uaI4rhNOaTBw][Albertos-MacBook-Pro-2.1local][inet[
/192.168.1.19:9300]], reason: zen-disco-join (elected_as_master)

[2014-10-12 11:11:55,277][INFO][http 1 [ESCookBook] bound_address {inet[/0:0:0:0:0:0:0:0:9200]}, publish_address {inet[/192.168.1.19:92
001}

[2014-10-12 11:11:55,277][INFO][node] [ESCookBook] started

[2014-10-12 11:11:55,288][INFO][gateway] [ESCookBook] recovered [@] indices into cluster_state

The ElasticSearch package generally contains three directories:

» bin: This contains the script to start and manage ElasticSearch. The most important
scripts are:

o elasticsearch(.bat): This is the main script file to start the
ElasticSearch server

o plugin(.bat): This is a script to manage plugins

» config: This contains the ElasticSearch configurations. The most important files are:
o elasticsearch.yml: This is the main configuration file for ElasticSearch
o logging.yml: This is the logging configuration file

» 1ib: This contains all the libraries required to run ElasticSearch

Another directory that will be present in the future is the plugins directory. It's the one that
stores the plugin code.

During the ElasticSearch startup, there are a lot of events that occur:

» A node name is chosen automatically (such as Robert Kelly) ifitis not provided
in elasticsearch.yml. The name is randomly taken from an in-code embedded
ElasticSearch text file (src/main/resources/config/names. txt).

» Anode name hash is generated for this node (such as, whqVp_4zQGCgMvJ1CXhcWQ).

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

» If there are plugins (native or site), they are loaded. In this example, there are
no plugins.

» Ifitis not configured automatically, ElasticSearch binds to all the network addresses,
using two ports:

o Port 9300 is used for internal intranode communication
o Port 9200 is used for the HTTP REST API

» After the startup, if indices are available, they are restored.

If the given port numbers are already bound, ElasticSearch automatically increments the port
number and tries to bind to them until a port is available (such as 9201, 9202, and so on). This
feature is very useful when you want to fire up several nodes on the same machine for testing.

Many events are fired during ElasticSearch startup; we'll see them in detail in the
upcoming recipes.

Setting up networking

Correctly setting up networking is very important for your nodes and cluster.

There are a lot of different installation scenarios and networking issues; we will cover two
kinds of networking setups in this recipe:

» Astandard installation with an autodiscovery working configuration
» Aforced IP configuration, used if it is not possible to use autodiscovery

Getting ready

You need a working ElasticSearch installation, and you must know your current networking
configuration (such as your IP addresses).

How to do it...

In order to configure networking, we will perform the following steps:

1. With your favorite text editor application, open the ElasticSearch configuration file. Using
the standard ElasticSearch configuration file (config/elasticsearch.yml), your
node is configured to bind to all your machine interfaces and does an autodiscovery
of the broadcasting events, which means that it sends signals to every machine in the
current LAN and waits for a response. If a node responds to this, it can join and be a
part of a cluster. If another node is available in the same LAN, it can join the cluster too.

e

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Setting Up

Only nodes that run the same ElasticSearch version and cluster

name (the cluster.name option in elasticsearch.yml)

can join each other.

2. To customize the network preferences, you need to change some parameters in the
elasticsearch.yml file, such as:

cluster.name: elasticsearch
node.name: "My wonderful server"
network.host: 192.168.0.1

discovery.zen.ping.unicast.hosts: ["192.168.0.2","192.168.0.3[9300-
9400] "]

This configuration sets the cluster name to ElasticSearch, the node name,
and the network address, it then tries to bind the node to the address given
in the discovery section.

We can check the configuration when the node is being loaded. Now, start the server and
check whether the networking is configured. The following code shows how it looks:

[...] [INFO] [node] [ESCookBook] version[1l.4.0.betal],
pid[74304], build[f1585f0/2014-10-16T14:27:12%]

[...] [INFO] [node] [ESCookBook] initializing

[...] [INFO] [plugins] [ESCookBook] loaded [transport-thrift,

river-twitter, mapper-attachments, lang-python, lang-javascript],
sites [head, HQ]

[...] [INFO] [node] [ESCookBook] initialized

[...] [INFO] [node] [ESCookBook] starting

[...][INFO] [thrift] [ESCookBook] bound on port [9500]

[...] [INFO] [transport] [ESCookBook] bound

address {inet[/0:0:0:0:0:0:0:0:9300]}, publish address
{inet[/192.168.1.19:9300]}

[...]1[INFO] [cluster.service] [ESCookBook] new master [ESCookBook]
[YDYjr0XRQeyQIWGcLzRiVQ] [MBPlocal] [inet [/192.168.1.19:9300]], reason:
zen-disco-join (elected as master)

[...] [INFO] [discovery] [ESCookBook] elasticsearch-cookbook/
YDYjrO0XRQeyQIWGcLzRiVQ
[...][INFO] [http] [ESCookBook] bound

address {inet[/0:0:0:0:0:0:0:0:9200]}, publish address
{inet[/192.168.1.19:9200]}

[...] [INFO] [gateway] [ESCookBook] recovered [0] indices into
cluster state
[...] [INFO] [node] [ESCookBook] started

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2
In this case, we see that:

» The transport layer binds to 0:0:0:0:0:0:0:0:9300 and 192.168.1.19:9300
» The REST HTTP interface binds to 0:0:0:0:0:0:0:0:9200 and 192.168.1.19:9200

The following parameters are crucial for the node to start working:

» cluster.name: This sets up the name of the cluster. Only nodes with the same
name can join together.

» node.name: If this field is not defined, it is automatically assigned by ElasticSearch.
It allows you to define a name for the node. If you have a lot of nodes on different
machines, it is useful to set this name to something meaningful in order to easily
locate them. Using a valid name is easier to remember than a system-generated
name, such as whqVp_4zQGCgMvJ1CXhcWQ. You must always set up a name for
the node . name parameter if you need to monitor your server.

» network.host: This defines the IP address of the machine used to bind the node.
If your server is on different LANs or you want to limit the bind to only a LAN, you must
set this value to your server's IP address.

» discovery.zen.ping.unicast.hosts (this is optional if multicast is possible):
This allows you to define a list of hosts (with ports or port ranges) to be used in order
to discover other nodes to join the cluster. This setting allows you to use the node
in a LAN where broadcasting is not allowed or autodiscovery is not working (such as
packet-filtering routers). The referred port is the transport port, usually 9300. The
addresses of the host list can be a mix of:

o The hostname (such as, myhost1)
o TheIP address (such as, 192.168.1.2)

o The IP address or host name with the port, such as myhost1:9300,
192.168.168.1.2:9300

o The IP address or host name with a range of ports (such as,
myhostl:[9300-9400],192.168.168.1.2:[9300-9400])

Defining unicast hosts is generally required only if discovery is not working. The default
configuration of ElasticSearch has autodiscovery on nodes in a LAN.

» The Setting up different node types recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Setting Up

Setting up a node

ElasticSearch allows you to customize several parameters in an installation. In this recipe,
we'll see the most-used ones in order to define where to store data and improve performance
in general.

Getting ready

You need a working ElasticSearch installation.

How to do it...

Perform the following steps to set up a simple node:

1. Openthe config/elasticsearch.yml file with an editor of your choice.
2. Set up the directories that store your server data:
o ForLinux or Mac OS X:

path.conf: /opt/data/es/conf

path.data: /opt/data/es/datal,/opt2/data/data2
path.work: /opt/data/work

path.logs: /opt/data/logs

path.plugins: /opt/data/plugins

o For Windows:

path.conf: c:\Elasticsearch\conf
path.data: c:\Elasticsearch\data
path.work: c:\Elasticsearch\work
path.logs: c:\Elasticsearch\logs

path.plugins: c:\Elasticsearch\plugins

3. Set up parameters to control the standard index creation. These parameters are:

index.number of shards: 5
index.number of replicas: 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The path.conf parameter defines the directory that contains your configuration: mainly
elasticsearch.yml and logging.yml. This is the default SES_HOME/config parameter
with the ES_HOME directory you installed ElasticSearch in.

4 It's useful to set up the config directory outside your application

directory, so you don't need to copy configuration files every time you
g update the version or change the ElasticSearch installation directory.

The path.data parameter is the most important, as it allows you to define one or more
directories where you can store your index data. When you define more than one directory,
they are managed in a similar way as RAID O, favoring locations with the most free space.

The path.work parameter is a location where ElasticSearch puts temporary files.
The path.log parameter is where logfiles are put. Logging is controlled in logging.yml.

The path.plugins parameter allows you to override the plugins path (the default is
$ES_HOME/plugins). It's useful to use system wide plugins.

The main parameters used to control index and shards are index.number of shards,
which controls the standard number of shards for a new created index, and index .number
of replicas, which controls the initial number of replicas.

There are a lot of other parameters that can be used to customize your ElasticSearch
installation, and new ones are added with new releases. The most important parameters
are described in this recipe and the Setting up Linux systems recipe in this chapter.

See also

» The Setting up Linux systems recipe in this chapter

» The official ElasticSearch documentation at http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/setup-configuration.
html

Es

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html
http://www.it-ebooks.info/

Downloading and Setting Up

Setting up for Linux systems

If you are using a Linux system, you need to manage extra setup steps to improve performance
or to resolve production problems with many indices.

This recipe covers two common errors that occur in production:

» Too many open files, which can corrupt your indices and data
» Slow performance when searching and indexing due to the garbage collector

Other possible troubles arise when you run out of disk space. In this
% scenario, some files can get corrupted. To prevent your indices from
A corruption and possible data loss, a best practice is to monitor the
storage space available.

Getting ready

You need a working ElasticSearch installation.

How to do it...

In order to improve performance on Linux systems, perform the following steps:

1. First, you need to change the current limit of the users that runs the ElasticSearch
server. In our examples, we will call it elasticsearch.

2. To allow ElasticSearch to manage a large number of files, you need to increment the
number of file descriptors (the number of files) that a user can manage. To do this,
you must edit your /etc/security/limits.conf file and add these lines at the
end, then a machine restart is required to ensure that changes are incorporated:

elasticsearch - nofile 299999
elasticsearch - memlock unlimited

3. In order to control memory swapping, you need to set up this parameter in
elasticsearch.yml:

bootstrap.mlockall: true

4. To fix the memory usage size of the ElasticSearch server, you need to set up the
ES_MIN MEMand ES_MAX MEM parameters to the same values as in SES_HOME/
bin/ elasticsearch.in.shfile. Otherwise, you can set up ES HEAP SIZE
which automatically initializes the min and max values to the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The standard limit of file descriptors (the maximum number of open files for a user) is typically
1,024. When you store a lot of records in several indices, you run out of file descriptors very
quickly, so your ElasticSearch server becomes unresponsive and your indices might become
corrupted, leading to a loss of data. If you change the limit to a very high number, your
ElasticSearch server doesn't hit the maximum number of open files.

The other settings for memory restriction in ElasticSearch prevent memory swapping and
give a performance boost in a production environment. This is required because during
indexing and searching ElasticSearch creates and destroys a lot of objects in the memory.
This large number of create/destroy actions fragments the memory, reducing performance:
the memory becomes full of holes, and when the system needs to allocate more memory,
it suffers an overhead to find compacted memory. If you don't set bootstrap.mlockall:
true, then ElasticSearch dumps the memory onto a disk and defragments it back in the
memory, which freezes the system. With this setting, the defragmentation step is done in
the memory itself, providing a huge performance boost.

Setting up different node types

ElasticSearch is natively designed for the Cloud, so when you need to release a production
environment with a huge number of records, and you need high availability and good
performances, you need to aggregate more nodes in a cluster.

ElasticSearch allows you to define different type of node to balance and improve
overall performance.

Getting ready

You need a working ElasticSearch installation.

How to do it...

For the advanced setup of a cluster, there are some parameters that must be configured
to define different node types.

These parameters are in config/elasticsearch.yml and can be set by performing
these steps:

1. Set up whether or not the node can be a master node:

node.master: true

2. Set up whether or not a node must contain data:

node.data: true

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Setting Up

The node .master parameter defines whether the node can become a master for the Cloud.
The default value for this parameter is true.

A master node is an arbiter for the Cloud: it takes decisions about shard management, it keeps
the cluster's status, and it's the main controller of every index action.

The optimal number of master nodes is given by the following equation:

Number of nodes
2

Number of Master Nodes =

node .data allows you to store data in the node. The default value for this parameter is true.
This node will be a worker that indexes and searches data.

By mixing these two parameters, it's possible to have different node types:

node.master node.data Node description

true true This is the default node.
It can be a master node
and can contain data.

false true This node never becomes

a master node, it only holds
data. It can be defined as the
workhorse of your cluster.

true false This node only serves as a
master node, that is, it does
not store any data and has
free resources. This will

be the coordinator of your
cluster.

false false This node acts as a search
load balancer (fetches data
from nodes, aggregates
results, and so on).

The most frequently used node type is the first one, but if you have a very big cluster or
special needs, then you can differentiate the scope of your nodes to better serve searches
and aggregations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Installing plugins in ElasticSearch

One of the main features of ElasticSearch is the possibility to extend it with plugins. Plugins
extend ElasticSearch features and functionality in several ways. There are two kinds of plugins:

» Site plugins: These are used to serve static content at their entry points. They
are mainly used to create a management application for the monitoring and
administration of a cluster. The most common site plugins are:

o ElasticSearch head (http://mobz.github.io/elasticsearch-head/)
o Elastic HQ (http://www.elastichg.org/)
o Bigdesk (http://bigdesk.orqg)
» Native plugins: These are the . jar files that contain the application code. They are
used for:
o Rivers (plugins that allow you to import data from DBMS or other sources)
o Scripting Language Engines (JavaScript, Python, Scala, and Ruby)
o Custom analyzers, tokenizers, and scoring
o REST entry points
o Supporting new protocols (Thrift, memcache, and so on)
o Supporting new storages (Hadoop)

Getting ready

You need a working ElasticSearch server installed.

How to do it...

ElasticSearch provides a script to automatically download and install plugins in the bin/
directory called plugin.

The following steps are required to install a plugin:

1. Call the plugin and install it using the ElasticSearch command with the plugin name
reference. To install an administrative interface for ElasticSearch, simply type the
following command:

o Linux / MacOSX:

plugin -install mobz/elasticsearch-head

www.it-ebooks.info

http://mobz.github.io/elasticsearch-head/
http://www.elastichq.org/
http://bigdesk.org
http://www.it-ebooks.info/

Downloading and Setting Up

a Windows:

plugin.bat -install mobz/elasticsearch-head
2. Start the node and check whether the plugin is correctly loaded.

The following screenshot shows the installation and the beginning of the ElasticSearch server
with the installed plugin:

- elasticsearch-1.4.0.Betal -install mobz/elasticsearch-head
-> Installing mobz/elasticsearch-head...

Trying https://github.com/mobz/elasticsearch-head/archive/master.zip...
Downloading .

Installed mobz/elasticsearch-head into /Users/alberto/tmp/elasticsearch-1.4.0.Betal/plugins/head

Identified as a _site plugin, moving to _site structure ...

= elasticsearch-1.4.0.Betal

[2014-10-12 14:32:33,180][INFO][node [ESCookBook] version[1.4.0.Betal], pid[3224@], build[1f25669/2014-10-01T14:58:15Z]

[2014-10-12 1 33,181][INFO][node [ESCookBook] initializing ...

[2014-10-12 1 33,186][INFO][plugins [ESCookBook] loaded [], sites [head]

[2014-10-12 1 35,861][INFO][node [ESCookBook] initialized

[2014-10-12 14:32:35,861][INFO][node [ESCookBook] starting ...

[2014-10-12 14:32:35,939][INFO][transport [ESCookBook] bound_address {inet[/0:0:0:0:0:0:0:0:9300]}, publish_address {inet[/192.168.1.19:93
001}

[2014-10-12 14:32:35,959][INFO][discovery [ESCookBook] elasticsearch/U2ESRbBXTEQUGII8WRhuEA

[2014-10-12 14:32:38,982][INFO J[cluster.service [ESCookBook] new_master [ESCookBook][U2ESRbBXTEqUgII8NRhuEA][Albertos-MacBook-Pro-2.1local][inet[
/192.168.1.19:9300]], reason: zen-disco-join (elected_as_master)

[2014-10-12 14:32:39,003][INFO][http] [ESCookBook] bound_address {inet[/0:0:0:0:0:0:0:0:9200]}, publish_address {inet[/192.168.1.19:92
0]}

[2014-10-12 14:32:39,003][INFO][node] [ESCookBook] started

[2014-10-12 14:32:39,010][INFO J[gateway] [ESCookBook] recovered [@] indices into cluster_state

% Remember that a plugin installation requires an ElasticSearch
o server restart. For a site plugin, the restart is not mandatory.

The plugin (.bat) script is a wrapper for ElasticSearch Plugin Manager. It can be used to
install or remove a plugin with the -remove option.

To install a plugin, there are two methods:

» Passing the URL of the plugin (the . zip archive) with the -url parameter:

bin/plugin -url http://mywoderfulserve.com/plugins/awesome-plugin.
zip

» Using the —install parameter with the GitHub repository of the plugin

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The install parameter, which must be provided, is formatted in this way:
<username>/<repo>[/<version>]
In the previous example the parameter settings were:

» <username> parameter as mobz

» <repo> parameter as elasticsearch-head

» <version> was not given, so the master/trunk was used
During the installation process, ElasticSearch Plugin Manager is able to do the
following activities:

» Download the plugin

» Create a plugins directory in ES_HOME if it's missing

» Unzip the plugin's content in the plugin directory

» Remove temporary files
The installation process is completely automatic, and no further actions are required.

The user must only pay attention to the fact that the process ends with an Installed
message to be sure that the install process is completed correctly.

A server restart is always required to ensure that the plugin is correctly loaded by ElasticSearch.

There's more...

If your current ElasticSearch application depends on one or more plugins, a node can

be configured to fire up only if these plugins are installed and available. To achieve this
behavior, you can provide the plugin.mandatory directive in the elasticsearch.yml
configuration file.

In the previous example (elasticsearch-head), this configuration line needs to be added:
plugin.mandatory: head

There are some points that you need to remember when installing plugins. The first and most
important point is that the plugin must be certified for your current ElasticSearch version:
some releases can break your plugins. Typically, the ElasticSearch versions supported by

the plugin will be listed on the plugin developer page.

Eis

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Setting Up

For example, if you take a look at the Python language plugin page (https://github.com/
elasticsearch/elasticsearch-lang-python), you'll see a reference table similar to
that shown in the following screenshot:

Python lang Plugin for Elasticsearch

The Python (jython) language plugin allows to have python as the language of scripts to execute.

In order to install the plugin, simply run:

bin/plugin -install elasticsearch/elasticsearch-lang-python/2.4.0

You need to install a version matching your Elasticsearch version:

elasticsearch Python Lang Plugin Docs
master Build from source See below

es-1.x Build from source 2.5.0-SNAPSHOT
es-1.4 2.4.0 2.4.0

es-1.3 2.3.0 2.3.0

es-1.2 2.2.0 2.2.0

es-1.0 2.0.0 2.0.0

es-0.90 1.0.0 1.0.0

To build a SNAPSHOT version, you need to build it with Maven:

mvn clean install
plugin --install lang-python \
--url file:target/releases/elasticsearch-lang-python-X.X.X-SNAPSHOT.zip

You must choose the version that works with your current ElasticSearch version.

Updating some plugins in a node environment can bring about malfunctions due to different
plugin versions at different nodes. If you have a big cluster, for safety, it's better to check
updates in a separate environment to prevent problems.

Pay attention to the fact that updating an ElasticSearch server can also
s break your custom binary plugins due to some internal APl changes.

NED

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-lang-python
https://github.com/elasticsearch/elasticsearch-lang-python
http://www.it-ebooks.info/

Chapter 2

See also

» On the ElasticSearch website, there is an updated list of the available plugins
(http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current /modules-plugins.html# plugins)

» The Installing a plugin manually recipe in this chapter to manually install a plugin

Installing a plugin manually

Sometimes, your plugin is not available online, or a standard installation fails, so you need to
install your plugin manually.
Getting ready

You need an ElasticSearch server installed.

How to do it...

We assume that your plugin is named awesome and it's packed in a file called awesome. zip.
Perform the following steps to execute a manual installation:

1. Copy your ZIP file to the plugins directory of your ElasticSearch home installation.
2. If the directory named plugins doesn't exist, create it.

3. Unzip the contents of the plugin to the plugins directory.
4

Remove the zip archive to clean up unused files.

Every ElasticSearch plugin is contained in a directory (usually, named as the plugin's name). If it
is of the site plugin type, the plugin should contain a directory called _site, which contains the
static files that must be served by the server. If the plugin is a binary one, the plugin directory
should be filled with one or more . jar files.

When ElasticSearch starts, it scans the plugins directory and loads the plugins.

[If a plugin is corrupted or broken, the server won't start.]

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html#_plugins
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html#_plugins
http://www.it-ebooks.info/

Downloading and Setting Up

Removing a plugin

You have installed some plugins and now you need to remove a plugin because it's not
required. Removing an ElasticSearch plugin is easy if everything goes right; otherwise you
need to manually remove it.

This recipe covers both cases.

Getting ready

You need a working ElasticSearch Server installed, with an installed plugin, and you need to
stop the ElasticSearch server in order to safely remove the plugin.

How to do it...

Perform the following steps to remove a plugin:

1. Stop your running node in order to prevent exceptions due to file removal.

2. Using the ElasticSearch Plugin Manager, which comes with its script wrapper (plugin),
call the following commands:

o For Linux/Mac OS X, call this:

plugin -remove mobz/elasticsearch-head

You can also use this command:

plugin -remove head

o On Windows, call the following:

plugin.bat -remove mobz/elasticsearch-head

You can also use the command shown here:

plugin.bat -remove head

3. Restart the server.

The Plugin Manager's —-remove command tries to detect the correct name of the plugin and
remove the directory of the installed plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If there are undeletable files in your plugin directory (or a strange astronomical event that
affects your server), the plugin script might fail; therefore, to manually remove a plugin, you
need to follow these steps:

1. Go to the plugins directory.
2. Remove the directory with your plugin name.

Changing logging settings

Standard logging settings work very well for general usage.

Changing the log level can be useful when checking for bugs, or to understand malfunctions
due to a bad configuration or strange plugin behavior. A verbose log can be used from the
ElasticSearch community to cover problems.

If you need to debug your ElasticSearch server or change how the logging works (such as
remotely sending events), you need to change the 1ogging.yml parameters.

Getting ready

You need a working ElasticSearch Server installed.

How to do it...

In the config directory of your ElasticSearch installation directory, there is a 1logging.yml
file that controls the work settings.

You need to perform the following steps to change the logging settings:
1. Omit every kind of logging that ElasticSearch has. Take for example the root level
logging here:
rootLogger: INFO, console, file
Now, change the root level logging using this:
rootLogger: DEBUG, console, file
2. Now, if you start ElasticSearch from the command line (with bin/elasticsearch

-f), you should see a lot of garbage text that looks as follows:

[..] [INFO] [node] [ESCookBook] version[l.4.0.Betall,
pid[32363], build[1£25669/2014-10-01T14:58:152]

[..] [INFO] [node] [ESCookBook] initializing ..

@l

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Setting Up

[..] [DEBUG] [node] [ESCookBook] using home [/opt/elasticsearch-
1.4.0.Betal], config [/opt/elasticsearch-1.4.0.Betal/config],
data [[/opt/elasticsearch-1.4.0.Betal/datall], logs
[/opt/elasticsearch-1.4.0.Betal/logs], work
[/opt/elasticsearch-1.4.0.Betal/work], plugins
[/opt/elasticsearch-1.4.0.Betal/plugins]

[..] [INFO] [plugins] [ESCookBook] loaded [], sites
[head]

[...] [DEBUG] [common.compress.lzf] using encoder
[VanillaChunkDecoder] and decoder[{}]

[..] [DEBUG] [env] [ESCookBook] using node location
[[/opt/elasticsearch-1.4.0.Betal/data/elasticsearch/nodes/0]11],
local node id [0]

[..] [DEBUG] [threadpool] [ESCookBook] creating thread pool
[generic], type [cached], keep alive [30s]

[..] [DEBUG] [threadpool] [ESCookBook] creating thread pool
[index], type [fixed], size [8], queue size [200]

[..] [DEBUG] [threadpool] [ESCookBook] creating thread pool
[bulk]l, type [fixed], size [8], queue size [50]

(truncated)...

The ElasticSearch logging system is based on the Log4j library (http://logging.
apache.org/log4j/). Logdjis a powerful library that manages logging, so covering
all the functionalities of this library is outside the scope of this book. If a user needs
advanced usage, there are a lot of books and articles available on the Internet.

=

www.it-ebooks.info

http://logging. apache.org/log4j/
http://logging. apache.org/log4j/
http://www.it-ebooks.info/

Managing Mapping

In this chapter, we will cover the following topics:

» Using explicit mapping creation

» Mapping base types

» Mapping arrays

» Mapping an object

» Mapping a document

» Using dynamic templates in document mapping
» Managing nested objects

» Managing a child document

» Adding a field with multiple mappings
» Mapping a geo point field

» Mapping a geo shape field

» Mapping an IP field

» Mapping an attachment field

» Adding metadata to a mapping

» Specifying a different analyzer

» Mapping a completion suggester

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

Introduction

Mapping is an important concept in ElasticSearch, as it defines how the search engine should
process a document.

Search engines perform two main operations:
» Indexing: This is the action to receive a document and store/index/process it in
an index
» Searching: This is the action to retrieve data from the index

These two operations are closely connected; an error in the indexing step can lead to unwanted
or missing search results.

ElasticSearch has explicit mapping on an index/type level. When indexing, if a mapping is
not provided, a default mapping is created by guessing the structure from the data fields
that compose the document. Then, this new mapping is automatically propagated to all the
cluster nodes.

The default type mapping has sensible default values, but when you want to change their
behavior or customize several other aspects of indexing (storing, ignoring, completion,
and so on), you need to provide a new mapping definition.

In this chapter, we'll see all the possible types that compose the mappings.

Using explicit mapping creation

If you consider an index as a database in the SQL world, a mapping is similar to the
table definition.

ElasticSearch is able to understand the structure of the document that you are indexing
(reflection) and creates the mapping definition automatically (explicit mapping creation).

Getting ready

You will need a working ElasticSearch cluster, an index named test (see the Creating an index
recipe in Chapter 4, Basic Operations), and basic knowledge of JSON.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

To create an explicit mapping, perform the following steps:

1. You can explicitly create a mapping by adding a new document in ElasticSearch:
o OnaLinuxshell:

#create an index
curl -XPUT http://127.0.0.1:9200/test
#{acknowledged":true}

#put a document

curl -XPUT http://127.0.0.1:9200/test/mytype/1l -d
'{"name":"Paul", "age":35}'

{"ok":true," index":"test"," type":"mytype"," id":"1","
version":1}

#get the mapping and pretty print it

curl -XGET http://127.0.0.1:9200/test/mytype/
mapping?pretty=true

2. This is how the resulting mapping, autocreated by ElasticSearch, should look:

{
"mytype" : {
"properties" : {
rage" : |
"type" : "long"
}
"name" : {
"type" : "string"

The first command line creates an index named test, where you can configure the type/mapping
and insert documents.

The second command line inserts a document into the index. (We'll take a look at index creation
and record indexing in Chapter 4, Basic Operations.)

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

During the document's indexing phase, ElasticSearch checks whether the mytype type exists;
if not, it creates the type dynamically.

ElasticSearch reads all the default properties for the field of the mapping and starts
processing them:

» If the field is already present in the mapping, and the value of the field is valid
(that is, if it matches the correct type), then ElasticSearch does not need to
change the current mapping.

» If the field is already present in the mapping but the value of the field is of a
different type, the type inference engine tries to upgrade the field type (such as
from an integer to a long value). If the types are not compatible, then it throws
an exception and the index process will fail.

» If the field is not present, it will try to autodetect the type of field; it will also
update the mapping to a new field mapping.

In ElasticSearch, the separation of documents in types is logical: the ElasticSearch core
engine transparently manages it. Physically, all the document types go in the same Lucene
index, so they are not fully separated. The concept of types is purely logical and is enforced by
ElasticSearch. The user is not bothered about this internal management, but in some cases,
with a huge amount of records, this has an impact on performance. This affects the reading
and writing of records because all the records are stored in the same index file.

Every document has a unique identifier, called UID, for an index; it's stored in the special
_uid field of the document. It's automatically calculated by adding the type of the document
to the _id value. (In our example, the uid value will be mytype#1.)

The _id value can be provided at the time of indexing, or it can be assigned automatically by
ElasticSearch if it's missing.

When a mapping type is created or changed, ElasticSearch automatically propagates mapping
changes to all the nodes in the cluster so that all the shards are aligned such that a particular
type can be processed.

» The Creating an index recipe in Chapter 4, Basic Operations
» The Putting a mapping in an index recipe in Chapter 4, Basic Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Mapping base types

Using explicit mapping allows you to be faster when you start inserting data using a schema-less
approach, without being concerned about the field types. Therefore, in order to achieve better
results and performance when indexing, it's necessary to manually define a mapping.

Fine-tuning the mapping has some advantages, as follows:

» Reduces the size of the index on disk (disabling functionalities for custom fields)

» Indexes only interesting fields (a general boost to performance)

» Precooks data for a fast search or real-time analytics (such as aggregations)

» Correctly defines whether a field must be analyzed in multiple tokens or whether
it should be considered as a single token

ElasticSearch also allows you to use base fields with a wide range of configurations.

Getting ready

You need a working ElasticSearch cluster and an index named test (refer to the Creating an
index recipe in Chapter 4, Basic Operations) where you can put the mappings.

How to do it...

Let's use a semi-real-world example of a shop order for our ebay-like shop.

Initially, we define the following order:

Name Type Description
id Identifier Order identifier
date Date (time) Date of order

customer_id | Id reference Customer ID reference

name String Name of the item
quantity Integer Number of items

vat Double VAT for the item

sent Boolean Status, if the order was sent

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

Our order record must be converted to an ElasticSearch mapping definition:

{

"order" : {
"properties" : {

"id" : {"type" : "string", "store" : "yes" ,
"index":"not_analyzed"},
"date" : {"type" : "date", "store" : "no"
"index":"not_analyzed"},
"customer id" : {"type" : "string", "store" : "yes" ,
"index":"not analyzed"},
"sent" : {"type" : "boolean", "index":"not analyzed"},
"name" : {"type" : "string", "index":"analyzed"},
"quantity" : {"type" : "integer", "index":'"not analyzed"},
"vat" : {"type" : "double", "index":"no"}

}
}
}

Now the mapping is ready to be put in the index. We'll see how to do this in the Putting a
mapping in an index recipe in Chapter 4, Basic Operations.

The field type must be mapped to one of ElasticSearch's base types, adding options for how
the field must be indexed.

The next table is a reference of the mapping types:

Type ES type Description

String, string A text field: suchas anice text and CODE0O0O11

VarChar, Text

Integer integer An integer (32 bit): suchas 1, 2, 3, 4

Long long A long value (64 bit)

Float float A floating-point number (32 bit): such as 1, 2, 4, 5

Double double A floating-point number (64 bit)

Boolean boolean A Boolean value: such as true, false

Date/Datetime date A date or datetime value: suchas 2013-12-25,
2013-12-25T22:21:20

Bytes/Binary binary This is used for binary data such as a file or stream
of bytes.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Depending on the data type, it's possible to give explicit directives to ElasticSearch on
processing the field for better management. The most-used options are:

>

store: This marks the field to be stored in a separate index fragment for fast
retrieval. Storing a field consumes disk space, but it reduces computation if you
need to extract the field from a document (that is, in scripting and aggregations).
The possible values for this option are no and yes (the default value is no).

[Stored fields are faster than others at faceting.]

index: This configures the field to be indexed (the default value is analyzed).
The following are the possible values for this parameter:

o no: This field is not indexed at all. It is useful to hold data that must not
be searchable.

o analyzed: This field is analyzed with the configured analyzer. It is generally
lowercased and tokenized, using the default ElasticSearch configuration
(StandardAnalyzer).

o not_analyzed: This field is processed and indexed, but without being
changed by an analyzer. The default ElasticSearch configuration uses the
KeywordAnalyzer field, which processes the field as a single token.

null value: This defines a default value if the field is missing.
boost: This is used to change the importance of a field (the default value is 1. 0).

index_analyzer: This defines an analyzer to be used in order to process a field. If it
is not defined, the analyzer of the parent object is used (the default value is null).

search _analyzer: This defines an analyzer to be used during the search. If it is not
defined, the analyzer of the parent object is used (the default value is null).

analyzer: This sets both the index analyzer and search analyzer field to
the defined value (the default value is null).

include in all: This marks the current field to be indexed in the special _all
field (a field that contains the concatenated text of all the fields). The default value
is true.

index_name: This is the name of the field to be stored in the Index. This property
allows you to rename the field at the time of indexing. It can be used to manage
data migration in time without breaking the application layer due to changes.

norms: This controls the Lucene norms. This parameter is used to better score
queries, if the field is used only for filtering. Its best practice to disable it in order
to reduce the resource usage (the default value is true for analyzed fields and
false for the not analyzed ones).

@]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

There's more...

In this recipe, we saw the most-used options for the base types, but there are many other
options that are useful for advanced usage.

An important parameter, available only for string mapping, is the term_vector field (the
vector of the terms that compose a string; check out the Lucene documentation for further
details at http://lucene.apache.org/core/4 4 0/core/org/apache/lucene/
index/Terms.html) to define the details:

» no: This is the default value, which skips term_vector field

» yes: This stores the term_vector field

» with offsets: This stores term_vector with a token offset (the start or end
position in a block of characters)

» with positions: This stores the position of the token in the term_ vector field

» with positions_ offsets: This stores all the term vector data

_ Term vectors allow fast highlighting but consume a lot of disk space
% due to the storage of additional text information. It's best practice to
s activate them only in the fields that require highlighting, such as title
or document content.

» The ElasticSearch online documentation provides a full description of all the properties
for the different mapping fields at http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/mapping-core-types.html

» The Specifying a different analyzer recipe in this chapter shows alternative analyzers
to the standard one.

Mapping arrays

An array or a multivalue field is very common in data models (such as multiple phone
numbers, addresses, names, aliases, and so on), but it is not natively supported in traditional
SQL solutions.

In SQL, multivalue fields require the creation of accessory tables that must be joined in order
to gather all the values, leading to poor performance when the cardinality of records is huge.

ElasticSearch, which works natively in JSON, provides support for multivalue fields transparently.

SNED

www.it-ebooks.info

http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/index/Terms.html
http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/index/Terms.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-core-types.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-core-types.html
http://www.it-ebooks.info/

Chapter 3

Getting ready

You need a working ElasticSearch cluster.

How to do it...

Every field is automatically managed as an array. For example, in order to store tags for a
document, this is how the mapping must be:

{

"document" : {
"properties" : {
"name" : {"type" : "string", "index":"analyzed"},
"tag" : {"type" : "string", "store" : "yes" , "index":"not
analyzed"},..
}

}
}

This mapping is valid for indexing this document:
{"name": "documentl", "tag": "awesome"}
It can also be used for the following document:

{"name": "document2", "tag": ["cool", "awesome", "amazing"] }

ElasticSearch transparently manages the array; there is no difference whether you declare a
single value or multiple values, due to its Lucene core nature.

Multiple values for a field are managed in Lucene by adding them to a document with the same
field name (index name in ES). If the index name field is not defined in the mapping, it is
taken from the name of the field. This can also be set to other values for custom behaviors,
such as renaming a field at the indexing level or merging two or more JSON fields into a single
Lucene field. Redefining the index name field must be done with caution, as it impacts the
search too. For people with a SQL background, this behavior might be strange, but this is a

key point in the NoSQL world as it reduces the need for a join query and the need to create
different tables to manage multiple values. An array of embedded objects has the same
behavior as that of simple fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

Mapping an object

The object is the base structure (analogous to a record in SQL). ElasticSearch extends the
traditional use of objects, allowing the use of recursive embedded objects.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

You can rewrite the mapping of the order type form of the Mapping base types recipe using
an array of items:

{

"order" : {
"properties" : {
"id" : {"type" : "string",
"store" : "yes", "index":"not analyzed"},
"date" : {"type" : "date", "store" : "no",
"index":"not_ analyzed"},
"customer id" : {"type" : "string", "store" : "yes",
"index":"not_ analyzed"},
"sent" : {"type" : "boolean", "store" : "no",
"index":"not_ analyzed"},
"item" : {
"type" : "object",
"properties" : {
"name" : {"type“ : "string", "store" : "no",
"index":"analyzed"},
"quantity" : {"type" : "integer",
"store" : "no",
"index":"not_ analyzed"},
"vat" : {"type" : "double", "store" : "no",
"index":"not_ analyzed"}

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

ElasticSearch speaks native JSON, so every complex JSON structure can be mapped into it.

When ElasticSearch is parsing an object type, it tries to extract fields and processes them as
its defined mapping; otherwise it learns the structure of the object using reflection.

The following are the most important attributes for an object:

» properties: Thisis a collection of fields or objects (we consider them as columns
in the SQL world).

» enabled: This is enabled if the object needs to be processed. If it's set to false,
the data contained in the object is not indexed as it cannot be searched (the default
value is true).

» dynamic: This allows ElasticSearch to add new field names to the object using
reflection on the values of inserted data (the default value is true). If it's set to false,
when you try to index an object containing a new field type, it'll be rejected silently.

If it's set to strict, when a new field type is present in the object, an error is raised
and the index process is skipped. Controlling the dynamic parameter allows you to be
safe about changes in the document structure.

» include_in all: This adds the object values (the default value is true) to the
special _all field (used to aggregate the text of all the document fields).

The most-used attribute is properties, which allows you to map the fields of the object in
ElasticSearch fields.

Disabling the indexing part of the document reduces the index size; however, the data cannot
be searched. In other words, you end up with a smaller file on disk, but there is a cost incurred
in functionality.

There are other properties also which are also rarely used, such as index_name and path,
which change how Lucene indexes the object, modifying the index's inner structure.

See also

Special objects, which are described in the Mapping a document, Managing a child document,
and Mapping a nested objects recipes in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

Mapping a document

The document is also referred to as the root object. It has special parameters that control
its behavior, which are mainly used internally to do special processing, such as routing or
managing the time-to-live of documents.

In this recipe, we'll take a look at these special fields and learn how to use them.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

You can extend the preceding order example by adding some special fields, as follows:

{

"order": {
woidw: {
"path": "order id"
.
" type": {
"store": "yes"
.

" source": {
"store": "yes"
}l
ll_allll= {
"enable": false
}l
" analyzer": {
"path": "analyzer field"
}l
" boost": {
"null value": 1.0
}l
" routing": {
"path": "customer id",
"required": true
}l
" index": {
"enabled": true

I

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

" gsize": {
"enabled": true,
llstore ll: "YeS"

}l

" timestamp": {
"enabled": true,
llstorell: "YeS" ,
llpathll: lldatell

3
voeelv:
"enabled": true,
"default": "3y"
3
"properties": {
. truncated ...

}

}
}

Every special field has its own parameters and value options, as follows:

>

_1d (by default, it's not indexed or stored): This allows you to index only the ID part
of the document. It can be associated with a path field that will be used to extract
the id from the source of the document:
ll_idll . {
"path" : "order id"

b

_type (by default, it's indexed and not stored): This allows you to index the type of
the document.

_index (the default value is enabled=false): This controls whether the index
must be stored as part of the document. It can be enabled by setting the parameter
as enabled=true.

_boost (the default value is null value=1.0): This controls the boost (the value
used to increment the score) level of the document. It can be overridden in the boost
parameter for the field.

_size (the default value is enabled=false): This controls the size if it stores the
size of the source record.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

>

__timestamp (by default, enabled=false): This automatically enables the indexing
of the document's timestamp. If given a path value, it can be extracted by the source
of the document and used as a timestamp value. It can be queried as a standard
datetime.

_ttl (by default, enabled=false): The time-to-live parameter sets the expiration
time of the document. When a document expires, it will be removed from the index.
It allows you to define an optional parameter, default, to provide a default value
for a type level.

_all (the defaultis enabled=true): This controls the creation of the all field
(a special field that aggregates all the text of all the document fields). Because this
functionality requires a lot of CPU and storage, if it is not required it is better to
disable it.

_source (by default, enabled=true): This controls the storage of the document
source. Storing the source is very useful, but it's a storage overhead; so, if it is not
required, it's better to turn it off.

_parent: This defines the parent document (see the Mapping a child document
recipe in this chapter).

_routing: This controls in which shard the document is to be stored. It supports the
following additional parameters:

o path: This is used to provide a field to be used for routing (customer_id in
the earlier example).

o required (true/false): This is used to force the presence of the routing
value, raising an exception if it is not provided

_analyzer: This allows you to define a document field that contains the name
of the analyzer to be used for fields that do not explicitly define an analyzer or an
index analyzer.

The power of control to index and process a document is very important and allows you to
resolve issues related to complex data types.

Every special field has parameters to set a particular configuration, and some of their
behaviors may change in different releases of ElasticSearch.

>

>

5]

The Using dynamic templates in document mapping recipe in this chapter
The Putting a mapping in an index recipe in Chapter 4, Basic Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Using dynamic templates in document

mapping

In the Using explicit mapping creation recipe, we saw how ElasticSearch is able to guess the
field type using reflection. In this recipe, we'll see how we can help it to improve its guessing
capabilities via dynamic templates.

The dynamic template feature is very useful, for example, if you need to create several indices
with similar types, because it allows you to remove the need to define mappings from coded
initial routines to automatic index document creation. A typical use is to define types for
logstash log indices.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

You can extend the previous mapping by adding document-related settings:

{

"order" : {
"index analyzer":"standard",
"search analyzer":"standard",
"dynamic date formats":["yyyy-MM-dd", "dd-MM-yyyy"l,
"date detection":true,
"numeric detection":true,
"dynamic templates": [
{"templatel®:{
llmatchll s mikn ’
"match mapping type":"long",
"mapping":{"type":" {dynamic type}", "store":true}
3}
] I
"properties" : {..}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

The Root object (document) controls the behavior of its fields and all its child object fields.
In the document mapping, you can define the following fields:

» index_analyzer: This defines the analyzer to be used for indexing within this
document. If an index_analyzer field is not defined in a field, then the field is
taken as the default.

» search analyzer: This defines the analyzer to be used for searching. If a
field doesn't define an analyzer, the search analyzer field of the document,
if available, is taken.

1
‘\Q If you need to set the index_analyzer and search _analyzer

field with the same value, you can use the analyzer property.

» date detection (by default true): This enables the extraction of a date
from a string.

» dynamic_date formats: Thisis a list of valid date formats; it's used if
date_detection is active.

» numeric_detection (by default false): This enables you to convert strings
to numbers, if it is possible.

» dynamic_templates: Thisis a list of the templates used to change the
explicit mapping, if one of these templates is matched. The rules defined
in it are used to build the final mapping.

A dynamic template is composed of two parts: the matcher and the mapping.
In order to match a field to activate the template, several types of matchers are available:
» match: This allows you to define a match on the field name. The expression is a

standard glob pattern (http://en.wikipedia.org/wiki/Glob (programming).

» unmatch (optional): This allows you to define the expression to be used to
exclude matches.

» match mapping type (optional): This controls the types of the matched fields.
For example, string, integer, and so on.

» path match (optional): This allows you to match the dynamic template against
the full dot notation of the field. For example, obj1. *.value.

» path unmatch (optional): This does the opposite of path match, that s,
excluding the matched fields.

NED

www.it-ebooks.info

http://en.wikipedia.org/wiki/Glob_(programming
http://www.it-ebooks.info/

Chapter 3

» match pattern (optional): This allows you to switch the matchers to regex
(regular expression); otherwise, the glob pattern match is used.

The dynamic template mapping part is standard, but with the ability to use special
placeholders as follows:

» {name}:This will be replaced with the actual dynamic field name

» {dynamic_type}: This will be replaced with the type of the matched field

M The order of the dynamic templates is very important. Only the
Q first one that matches is executed. It is a good practice to order
the ones with stricter rules first, followed by the other templates.

The dynamic template is very handy when you need to set a mapping configuration for all the
fields. This action can be performed by adding a dynamic template similar to this one:

"dynamic templates" : [
{

"store generic" : {
"match" : "*v,
"mapping" : {

"store" : "yes"
}

}

}
]

In this example, all the new fields, which will be added with the explicit mapping, will be stored.

» The Using explicit mapping creation recipe in this chapter
» The Mapping a document recipe in this chapter
» The Glob pattern at http://en.wikipedia.org/wiki/Glob_pattern

s

www.it-ebooks.info

http://en.wikipedia.org/wiki/Glob_pattern
http://www.it-ebooks.info/

Managing Mapping

Managing nested objects

There is a special type of embedded object: the nested object. This resolves problems related
to Lucene indexing architecture, in which all the fields of the embedded objects are viewed as
a single object. During a search in Lucene, it is not possible to distinguish between the values
of different embedded objects in the same multivalued array.

If we consider the previous order example, it's not possible to distinguish between an item name
and its quantity with the same query, as Lucene puts them in the same Lucene document object.
We need to index them in different documents and to join them. This entire trip is managed by
nested objects and nested queries.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

A nested object is defined as a standard object with the type nested.

From the example in the Mapping an object recipe in this chapter, we can change the type
from object to nested as follows:

{

"order" : {
"properties" : {
nign . { "type" : "string" ,
"store" : "yes", "index":"not analyzed"},
" datell : { lltypell : n datell , Ilstore n : Ilno " ,
"index":"not analyzed"},
"customer id" : {"type" : "string", "store" : "yes",
"index":"not analyzed"},
"sent" : {"type" : "boolean", "store" : "no",
"index":"not analyzed"},
"item" :
"type" : "nested",
"properties" : {
"name" : {"type" : "string", "store" : "mno",
"index":"analyzed"},
"quantity" : {"type" : "integer", "store" : "no",
"index":"not analyzed"},

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

"vat" {"type" : "double", "store" : "no",
"index":"not_ analyzed"}

When a document is indexed, if an embedded object is marked as nested, it's extracted by
the original document and indexed in a new external document.

In the above example, we have reused the mapping of the previous recipe, Mapping an
Object, but we have changed the type of the item from object to nested. No other action
must be taken to convert an embedded object to a nested one.

Nested objects are special Lucene documents that are saved in the same block of data
as their parents — this approach allows faster joining with the parent document.

Nested objects are not searchable with standard queries, but only with nested ones.
They are not shown in standard query results.

The lives of nested objects are related to their parents; deleting/updating a parent
automatically deletes/updates all the nested children. Changing the parent means
ElasticSearch will do the following:

» Mark old documents that are deleted

» Mark all nested documents that are deleted

» Index the new document's version

» Index all nested documents

There's more...

Sometimes, it is necessary to propagate information about nested objects to their parents
or their root objects, mainly to build simpler queries about their parents. To achieve this goal,
the following two special properties of nested objects can be used:

» include in parent: This allows you to automatically add the nested fields
to the immediate parent
» include in_ root: This adds the nested objects' fields to the root object

These settings add to data redundancy, but they reduce the complexity of some queries,
improving performance.

[ei-

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

» The Managing a child document recipe in this chapter

Managing a child document

In the previous recipe, you saw how it's possible to manage relationships between objects
with the nested object type. The disadvantage of using nested objects is their dependency
on their parent. If you need to change the value of a nested object, you need to reindex the
parent (this brings about a potential performance overhead if the nested objects change
too quickly). To solve this problem, ElasticSearch allows you to define child documents.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

You can modify the mapping of the order example from the Mapping a document recipe
by indexing the items as separate child documents.

You need to extract the item object and create a new type of document item with the
_parent property set:

{

"order": {

"properties": {
nign. {
lltypell .o string" ,
llstorell : "yeS",
"index": "not_ analyzed"
"date": {
lltypell . "date" ,
llstorell : "IlO",
"index": "not_ analyzed"
"customer id": {
lltypell .o string" ,

www.it-ebooks.info

http://www.it-ebooks.info/

"StOre": Ilyesll ,
"index": "not analyzed"
¥
"sent": {
"type": "boolean",
"store": "no",
"index": "not analyzed"
}
}
¥
"item": |
" parent": {
n typell: llorderll
}l
"properties": {
"name": {
lltypell . "String" ,
"StOre": Ilnoll ,
"index": "analyzed"
¥
"quantity": {
"type": "integer",
"StOre": Ilnoll ,
"index": "not analyzed"
¥
"vat": |
"type": "double",
"store": "no",
"index": "not analyzed"
}
}
}

}

Chapter 3

The preceding mapping is similar to the mapping shown in the previous recipes. The item
object is extracted from the order (in the previous example, it was nested) and added

as a new mapping. The only difference is that "type" :
"object™" (it can be omitted) and there is a new special field, parent, which defines

the parent-child relation.

"nested" becomes "type":

www.it-ebooks.info

(&5}

http://www.it-ebooks.info/

Managing Mapping

The child object is a standard root object (document) with an extra property defined,
which is _parent.

The type property of parent refers to the type of parent document.

The child document must be indexed in the same shard as the parent, so that when it
is indexed, an extra parameter must be passed: parent id. (We'll see how to do this
in later chapters.)

Child documents don't require you to reindex the parent document when you want to change
their values, so they are faster for indexing, reindexing (updating), and deleting.

In ElasticSearch, there are different ways in which you can manage relationships between
objects:

» Embedding with type=object: This is implicitly managed by ElasticSearch, and
it considers the embedded as part of the main document. It's fast but you need to
reindex the main document to change a value of the embedded object.

» Nesting with type=nested: This allows a more accurate search and filtering of
the parent, using a nested query on the children. Everything works as in the case
of an embedded object, except for the query.

» External child documents: This is a document in which the children are external
documents, with a _parent property to bind them to the parent. They must be
indexed in the same shard as the parent. The join with the parent is a bit slower
than with the nested one, because the nested objects are in the same data block
as the parent in the Lucene index and they are loaded with the parent; otherwise
the child documents require more read operations.

Choosing how to model the relationship between objects depends on your application scenario.

There is another approach that can be used, but only on big data documents, which brings
poor performance as it's a decoupling join relation. You have to do the join query in two steps:
first, you collect the ID of the children/other documents and then you search them in a field of
their parent.

» The Using a has_child query/filter, Using a top_children query, and Using a has_parent
query/filter recipes in Chapter 5, Search, Queries, and Filters, for more information on
child/parent queries.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Adding a field with multiple mappings

Often, a field must be processed with several core types or in different ways. For example,
a string field must be processed as analyzed for search and as not_analyzed for sorting.
To do this, you need to define amulti_ field special property called £ields.

In the previous ElasticSearch versions (prior to 1.x), there was

themulti field type, but this has now deprecated and will

be removed in favor of the £ields property.

The fields property is a very powerful feature of mapping because it allows you to use the
same field in different ways.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

To define a multifields property, you need to:

1. Use field as a type - define the main field type, as we saw in the previous sections.

2. Define a dictionary that contains subfields called £ields. The subfield with the
same name as the parent field is the default one.

If you consider the item of your order example, you can index the name in this way:

"name": {
"type": "string",
"index": "not analyzed",
"fields": {
"name": {
"type": "string",
"index": "not analyzed"
b
SR
"type": "string",
"index": "analyzed"
b
"code": |
"type": "string",

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

"index": "analyzed",
"analyzer": "code analyzer"

}
}
b

If you already have a mapping stored in ElasticSearch and want to migrate the fields in a
fields property, it's enough to save a new mapping with a different type, and ElasticSearch
provides the merge automatically. New subfields in the £ields property can be added
without a problem at any moment, but the new subfields will be available only to new
indexed documents.

During indexing, when ElasticSearch processes a fields property, it reprocesses the same
field for every subfield defined in the mapping.

To access the subfields of a multifield, we have a new path value built on the base field plus
the subfield name. If you consider the earlier example, you have:

» name: This points to the default £ield subfield (the not analyzed subfield)

» name. tk: This points to the standard analyzed (tokenized) field

» name.code: This points to a field analyzed with a code extractor analyzer

In the earlier example, we changed the analyzer to introduce a code extractor analyzer that
allows you to extract the item code from a string.

Using the fields property, if you index a string such as Good Item to buy - ABC1234
you'll have:
» name = "Good Item to buy - ABC1234" (useful for sorting)
» name.tk=["good", "item", "to", "buy", "abcl234"] (useful for searching)
» name.code = ["ABC1234"] (useful for searching and faceting)

There's more...

The f£ields property is very useful for data processing, because it allows you to define several
ways to process a field's data.

For example, if you are working on a document content, you can define analyzers to extract
names, places, date/time, geolocation, and so on as subfields.

The subfields of a multifield are standard core type fields; you can perform every process you
want on them such as search, filter, facet, and scripting.

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

See also

» The Specifying a different analyzer recipe in this chapter

Mapping a geo point field

ElasticSearch natively supports the use of geolocation types: special types that allow you to
localize your document in geographic coordinates (latitude and longitude) around the world.

There are two main document types used in the geographic world: point and shape. In this
recipe, we'll see geo point, the base element of geolocation.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

The type of the field must be set to geo_point in order to define a geo point.

You can extend the earlier order example by adding a new field that stores the location of a
customer. The following will be the result:

{

"order": {
"properties": {

nign. {
"type": "string",
"store": "yes",
"index": "not analyzed"

}I

"date": {
lltypell: lldatell ,
"StOre": Ilnoll ,
"index": "not analyzed"

}I

"customer id": {
"type": "string" ,
"StOre": Ilyesll ,
"index": "not analyzed"

}I

"customer ip": {
"type": n ipn ,
"StOre": Ilyesll ,

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

"index": "not analyzed"

"customer location": {
"type": "geo point",
"store": "yes"

}l

"sent": {
"type": "boolean",
"StOre" : "I'lO",
"index": "not_ analyzed"

When ElasticSearch indexes a document with a geo point field (latitude, longitude), it processes
the latitude and longitude coordinates and creates special accessory field data to quickly query
these coordinates.

Depending on the properties, given a latitude and longitude it's possible to compute the
geohash value (http://en.wikipedia.org/wiki/Geohash). The index process also
optimizes these values for special computation, such as distance and ranges, and in a
shape match.

Geo point has special parameters that allow you to store additional geographic data:

» lat lon (by default, false): This allows you to store the latitude and longjtude
inthe .1lat and .1lon fields. Storing these values improves performance in many
memory algorithms used in distance and shape calculus.

It makes sense to store values only if there is a single point
i value for a field, in multiple values.

» geohash (by default, false): This allows you to store the computed geohash value.

» geohash precision (by default, 12): This defines the precision to be used in
a geohash calculus. For example, given a geo point value [45.61752, 9.08363],

it will store:
Q customer_location = "45.61752, 9.08363"
o customer location.lat = 45.61752
o customer location.lon = 9.08363
o customer location.geohash = "uOn7w8gmrfj"

&)

www.it-ebooks.info

http://en.wikipedia.org/wiki/Geohash
http://www.it-ebooks.info/

Chapter 3

Geo point is a special type and can accept several formats as input:

» Latitude and longitude as properties:

"customer location": {
"lat": 45.61752,
"lon": 9.08363

b

» Latitude and longitude as a string:
"customer_location": "45.61752,9.08363",

» Latitude and longitude as geohash string

» Latitude and longitude as a GeoJSON array (note that in this latitude and longitude
are reversed):

"customer location": [9.08363, 45.61752]

Mapping a geo shape field

An extension to the concept of point is shape. ElasticSearch provides a type that facilitates the
management of arbitrary polygons: the geo shape.

Getting ready

You need a working ElasticSearch cluster with Spatial4J (v0.3) and JTS (v1.12) in the
classpath to use this type.

How to do it...

In order to map a geo_shape type, a user must explicitly provide some parameters:
» tree (by default, gechash): This is the name of the prefix tree implementation called
geohash for GeohashPrefixTree and quadtree for QuadPrefixTree.

» precision: Thisis used instead of tree levels to provide a more human value to
be used in the tree level. The precision number can be followed by the unit, such as
10 m, 10 km, 10 miles, and so on.

» tree_ levels: This is the maximum number of layers to be used in the prefix tree.

» distance_ error pct (the defaultis 0, 025% and the maximum value is 0, 5%):
This sets the maximum number of errors allowed in PrefixTree.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

The customer_ location mapping, which we have seen in the previous recipe using geo
shape, will be:

"customer location": {
"type": "geo_ shape",
"tree": "quadtree",
"precision": "lm"

b

When a shape is indexed or searched internally, a path tree is created and used.

A path tree is a list of terms that contain geographic information, computed to improve
performance in evaluating geometric calculus.

The path tree also depends on the shape type, such as point, linestring, polygon, multipoint,
and multipolygon.

» To fully understand the logic behind geo shape, some good resources are
the ElasticSearch page about geo shape and the sites of the libraries used
for geographic calculus (https://github.com/spatialdj/spatiald]j
and http://www.vividsolutions.com/jts/jtshome.htm).

Mapping an IP field

ElasticSearch is used to collect and search logs in a lot of systems, such as Kibana
(http://www.elasticsearch.org/overview/kibana/ or http://kibana.org/)
and logstash (http://www.elasticsearch.org/overview/logstash/ orhttp://
logstash.net/). To improve searching in these scenarios, it provides the IPv4 type that
can be used to store IP addresses in an optimized way.

Getting ready

You need a working ElasticSearch cluster.

[

www.it-ebooks.info

https://github.com/spatial4j/spatial4j
http://www.vividsolutions.com/jts/jtshome.htm
http://www.elasticsearch.org/overview/kibana/
http://kibana.org/
http://www.elasticsearch.org/overview/logstash/
http://logstash.net/
http://logstash.net/
http://www.it-ebooks.info/

Chapter 3

How to do it...

You need to define the type of the field that contains an IP address as "ip".

Using the preceding order example, you can extend it by adding the customer IP:

"customer ip": {
lltypell . n ipn ,
"store": "yes"

1
The IP must be in the standard point notation form, as shown in the following code:

"customer ip":"19.18.200.201"

When ElasticSearch is processing a document, if a field is an IP one, it tries to convert its value
to a numerical form and generate tokens for fast value searching.

The IP has special properties:

» index: This defines whether the field should be indexed. Otherwise, no value must
be set

» precision_step (by default, 4): This defines the number of terms that must be
generated for its original value

The other properties (store, boot, null value, and include in_ all) work as other
base types.

The advantages of using IP fields over string fields are: faster speed in every range, improved
filtering, and lower resource usage (disk and memory).

Mapping an attachment field

ElasticSearch allows you to extend its core types to cover new requirements with native
plugins that provide new mapping types. The most-used custom field type is the attachment
mapping type.

It allows you to index and search the contents of common documental files, such as Microsoft
Office formats, open document formats, PDF, epub, and many others.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

Getting ready

You need a working ElasticSearch cluster with the attachment plugin (https://github.
com/elasticsearch/elasticsearch-mapper-attachments) installed.

It can be installed from the command line with the following command:

bin/plugin -install elasticsearch/elasticsearch-mapper-
attachments/1.9.0

The plugin version is related to the current ElasticSearch version; check the GitHub page for
further details.

How to do it...

To map a field as an attachment, it's necessary to set the type field to attachment.

Internally, the attachment field defines the £ields property as a multifield that takes some
binary data (encoded base64) and extracts useful information such as author, content, title,
date, and so on.

If you want to create a mapping for an e-mail storing attachment, it should be as follows:

{

"email": {
"properties": {
"sender": {
"type": "string",
"store": "yes",
"index": "not analyzed"
b
"date": {
"type": "date",
"store": "no",
"index": "not analyzed"
b
"document": {
"type": "attachment",
"fields": {
nfilev: {
"store": "yes",
"index": "analyzed"
.
"date": {
"store": "yes"

=

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-mapper-attachments
https://github.com/elasticsearch/elasticsearch-mapper-attachments
http://www.it-ebooks.info/

Chapter 3

}l

"author": {
"store": "yes"

}l

"keywords": {
"store": "yes"

}l

"content type": {
"store": "yes"

}l

"title": {
"store": "yes"

The attachment plugin uses Apache Tika internally, a library that specializes in text extraction
from documents. The list of supported document types is available on the Apache Tika site
(http://tika.apache.org/1.5/formats.html), but it covers all the common file types.

The attachment type field receives a base64 binary stream that is processed by Tika
metadata and text extractor. The field can be seen as a multifield that stores different
contents in its subfields:

>

>

>

>

>

>

file: This stores the content of the file

date: This stores the file creation data extracted by Tika metadata
author: This stores the file's author extracted by Tika metadata
keywords: This stores the file's keywords extracted by Tika metadata
content_type: This stores the file's content type

title: This stores the file's title extracted by Tika metadata

The default setting for an attachment plugin is to extract 100,000 characters. This value
can be changed globally by setting the index settings to index .mappings.attachment.
indexed chars or by passing a value to the _indexed chars property when indexing
the element.

(75}

www.it-ebooks.info

http://tika.apache.org/1.5/formats.html
http://www.it-ebooks.info/

Managing Mapping

The attachment type is an example of how it's possible to extend ElasticSearch with
custom types.

The attachment plugin is very useful for indexing documents, e-mails, and all types
of unstructured documents. A good example of an application that uses this plugin
is ScrutMyDocs (http://www.scrutmydocs.org/).

See also

» The official attachment plugin page at https://github.com/elasticsearch/
elasticsearch-mapper-attachments

» The Tika library page at http://tika.apache.org
» The ScrutMyDocs website at http://www.scrutmydocs.org/

Adding metadata to a mapping

Sometimes, when working with a mapping, you need to store some additional data to be
used for display purposes, ORM facilities, and permissions, or you simply need to track
them in the mapping.

ElasticSearch allows you to store any kind of JSON data you want in the mapping with the
_meta special field.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

The meta mapping field can be populated with any data you want:

{

"order": {
" meta": {
"attrl": ["valuel", "value2"],
rattr2": |
"attr3": "valuel"

}

www.it-ebooks.info

http://www.scrutmydocs.org/
https://github.com/elasticsearch/elasticsearch-mapper-attachments
https://github.com/elasticsearch/elasticsearch-mapper-attachments
http://tika.apache.org
http://www.scrutmydocs.org/
http://www.it-ebooks.info/

Chapter 3

When ElasticSearch processes a mapping and finds a _meta field, it stores the field in the
global mapping status and propagates the information to all the cluster nodes.

The _meta field is only used for storage purposes; it's not indexed or searchable. It can be
used to do the following;:

» Storing type metadata

» Storing ORM (Object Relational Mapping) related information

» Storing type permission information

» Storing extra type information (such as the icon or filename used to display the type)

» Storing template parts to render web interfaces

Specifying a different analyzer

In the previous recipes, we saw how to map different fields and objects in ElasticSearch
and described how easy it is to change the standard analyzer with the analyzer,
index_analyzer, and search analyzer properties.

In this recipe, we will see several analyzers and how to use them in order to improve the
quality of indexing and searching.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

Every core type field allows you to specify a custom analyzer for indexing and searching as
field parameters.

For example, if you want the name field to use a standard analyzer for indexing and a simple
analyzer for searching, the mapping will be as follows:

{

"name": {
"type": "string",
"index": "analyzed",
"index analyzer": "standard",
"search analyzer": "simple"

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Mapping

The concept of an analyzer comes from Lucene (the core of ElasticSearch). An analyzer is a
Lucene element that is composed of a tokenizer, which splits a text into tokens, and one or
more token filters, which perform token manipulation - such as lowercasing, normalization,
removing stopwords, stemming, and so on.

During the indexing phase, when ElasticSearch processes a field that must be indexed,
an analyzer is chosen by first checking whether it is defined in the field (index analyzer),
then in the document, and finally in the index.

Choosing the correct analyzer is essential to get good results during the query phase.

ElasticSearch provides several analyzers in its standard installation. In the following table,
the most common analyzers are described:

Name Description

standard This divides text using a standard tokenizer, normalized tokens,
and lowercase tokens, and also removes unwanted tokens

simple This divides text and converts them to lowercase

whitespace | This divides text at spaces

stop This processes the text with a standard analyzer and then applies
custom stopwords

keyword This considers all text as a token
pattern This divides text using a regular expression
snowball This works as a standard analyzer plus a stemming at the end of processing

For special language purposes, ElasticSearch supports a set of analyzers that are aimed
at analyzing specific language text, such as Arabic, Armenian, Basque, Brazilian, Bulgarian,
Catalan, Chinese, CKJ, Czech, Danish, Dutch, English, Finnish, French, Galician, German,
Greek, Hindi, Hungarian, Indonesian, Italian, Norwegian, Persian, Portuguese, Romanian,
Russian, Spanish, Swedish, Turkish, and Thai.

See also

There are several ElasticSearch plugins that extend the list of available analyzers.
Checkout the plugins at GitHub. The following are the most famous ones:

» ICU analysis plugin (https://github.com/elasticsearch/elasticsearch-
analysis-icu)

» Morphological Analysis Plugin (https://github.com/imotov/elasticsearch-
analysis-morphology)

7@

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-analysis-icu
https://github.com/elasticsearch/elasticsearch-analysis-icu
https://github.com/imotov/elasticsearch-analysis-morphology
https://github.com/imotov/elasticsearch-analysis-morphology
http://www.it-ebooks.info/

Chapter 3

» Phonetic Analysis Plugin (https://github.com/elasticsearch/
elasticsearch-analysis-phonetic)

» Smart Chinese Analysis Plugin (https://github.com/elasticsearch/
elasticsearch-analysis-smartcn)

» Japanese (kuromoji) Analysis Plugin (https://github.com/elasticsearch/
elasticsearch-analysis-kuromoji)

Mapping a completion suggester

In order to provide search functionalities for your user, one of the most common requirements
is to provide text suggestions for your query.

ElasticSearch provides a helper to archive this functionality via a special type mapping
called completion.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

The definition of a completion field is similar to that of the previous core type fields. For example,
to provide suggestions for a name with an alias, you can write a similar mapping;:

{

"name": {"type": "string", "copy to":["suggest"]},
"alias": {"type": "string", "copy to":["suggest"]},
"suggest": {

"type": "complection",

"payloads": true,

"index_analyzer": "simple",

"search analyzer": "simple"

}
}

In this example, we have defined two string fields, name and alias, and a suggest
completer for them.

There are several ways in which you can provide a suggestion in ElasticSearch. You can have
the same functionality using some queries with wildcards or prefixes, but the completion fields
are much faster due to the natively optimized structures used.

(77}

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-analysis-phonetic
https://github.com/elasticsearch/elasticsearch-analysis-phonetic
https://github.com/elasticsearch/elasticsearch-analysis-smartcn
https://github.com/elasticsearch/elasticsearch-analysis-smartcn
https://github.com/elasticsearch/elasticsearch-analysis-kuromoji
https://github.com/elasticsearch/elasticsearch-analysis-kuromoji
http://www.it-ebooks.info/

Managing Mapping

Internally, ElasticSearch builds a Finite state transducer (FST) structure to suggest terms.
(The topic is described in great detail on its Wikipedia page at http://en.wikipedia.
org/wiki/Finite state transducer.)

The following are the most important properties that can be configured to use the
completion field:

» index_analyzer (bydefault, simple): This defines the analyzer to be used for
indexing within the document. The default is simple, to keep stopwords, such as
at, the, of, and so, in suggested terms.

» search analyzer (bydefault, simple): This defines the analyzer to be used
for searching.

» preserve separators (by default, true): This controls how tokens are processed.
If it is disabled, the spaces are trimmed in the suggestion, which allows it to match
fightc as fight club.

» max_input length (by default, 50): This property reduces the characters in the
input string to reduce the suggester size. The trial in suggesting the longest text is
nonsense because it is against the usability.

» payloads (by default, false): This allows you to store payloads (additional items'
values to be returned). For example, it can be used to return a product in an SKU:
curl -X PUT 'http://localhost:9200/myindex/mytype/1' -d '{

"name" : "ElasticSearch Cookbook",
"suggest" : {
"input": ["ES", "ElasticSearch", "Elastic Search",
"Elastic Search Cookbook" 1,
"output": "ElasticSearch Cookbook",
"payload" : { "isbn" : "1782166629" },
"weight" : 34

} 1
In the previous example, you can see the following functionalities that are available during
indexing for the completion field:
» input: This manages a list of provided values that can be used for suggesting.
If you are able to enrich your data, this can improve the quality of your suggester.
» output (optional): This is the result to be shown from the desired suggester.
» payload (optional): This is some extra data to be returned.
» weight (optional): This is a weight boost to be used to score the suggester.

@

www.it-ebooks.info

http://en.wikipedia.org/wiki/Finite_state_transducer
http://en.wikipedia.org/wiki/Finite_state_transducer
http://www.it-ebooks.info/

Chapter 3

At the start of the recipe, | showed a shortcut by using the copy_to field property to populate
the completion field from several fields. The copy to property simply copies the content of
one field to one or more others fields.

See also

In this recipe, we only discussed the mapping and indexing functionality of completion;
the search part will be discussed in the Suggesting a correct query recipe in Chapter 5,
Search, Queries, and Filters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Basic

In this chapter, we will cover:

Creating an index

Deleting an index
Opening/closing an index
Putting a mapping in an index
Getting a mapping

Deleting a mapping
Refreshing an index

Flushing an index

Optimizing an index

Checking if an index or type exists
Managing index settings
Using index aliases

Indexing a document

Getting a document

Deleting a document

Updating a document

Operations

Speeding up atomic operations (bulk operations)

Speeding up GET operations (multi GET)

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

Introduction

Before starting with indexing and searching in ElasticSearch, we need to learn how

to manage indices and perform operations on documents. In this chapter, we'll discuss
different operations on indices such as Create, Delete, Update, Read, and Open/Close.
These operations are very important because they allow us to better define the container
(index) that will store your documents. The index Create/Delete actions are similar to the
SQL's Create/Delete database commands.

After the indices management part, we'll learn how to manage mappings, which will complete
the discussion that we started in the previous chapter, and to lay the foundation for the next
chapter, which is mainly centered on Search.

A large portion of this chapter is dedicated to CRUD (Create, Read, Update, Delete) operations
on records that are the core of records storage and management in ElasticSearch.

To improve indexing performance, it's also important to understand bulk operations and avoid
their common pitfalls.

This chapter doesn't cover operations involving queries; these will be the main theme of
Chapter 5, Search, Queries, and Filters. Likewise, the Cluster operations will be discussed
in Chapter 9, Cluster and Node Monitoring, because they are mainly related to control and
monitoring the Cluster.

Creating an index

The first operation before starting to Index data in ElasticSearch is to create an index—the main
container of our data.

An Index is similar to Database concept in SQL, a container for types, such as tables in SQL,
and documents, such as records in SQL.

Getting ready

You will need a working ElasticSearch cluster.

How to do it...

The HTTP method to create an index is PUT (POST also works); the REST URL contains the
index name:

http://<server>/<index names

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

To create an index, we will perform the following steps:

1. Using the command line, we can execute a PUT call:

curl -XPUT http://127.0.0.1:9200/myindex -d '{
"settings" : {
"index" : {
"number of shards" : 2,
"number of replicas" : 1
}
}
}-
2. The result returned by ElasticSearch, if everything goes well, should be:

{"acknowledged":true}

3. |If the index already exists, then a 400 error is returned:

{rerror":"IndexAlreadyExistsException|[[myindex] Already
exists] ", "status":400}

There are some limitations to the Index name, due to accepted characters:

» ASCIl letters (a-2)
» Numbers (0-9)

» Point ., minus -, ampersand &, and underscore _

Q The index name will be mapped to a directory on your storage.

During index creation, the replication can be set with two parameters in the
settings/index object:

» number of shard: This controls the number of shards that compose the
index (every shard can store up to 2732 documents).

» number of replicas: This controls the number of replicas (how many times
your data is replicated in the cluster for high availability). A good practice is to
set this value to at least to 1.

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

The API call initializes a new index, which means:

>

>

>

The index is created in a primary node first and then its status is propagated
to the cluster level

A default mapping (empty) is created
All the shards required by the index are initialized and ready to accept data

The index creation API allows us to define the mapping during creation time. The parameter
required to define a mapping is mapping and it accepts multiple mappings. So, in a single
call, it is possible to create an Index and insert the required mappings.

The index creation command also allows us to pass the mappings section, which contains the
mapping definitions. It is a shortcut to create an index with mappings, without executing an
extra PUT mapping call.

A common example of this call, using the mapping from the Putting a mapping in an index

recipe, is:

curl -XPOST localhost:9200/myindex -d '{

"settings" : {
"number of shards" : 2,
"number of replicas" : 1

"mappings" : {

"order" : {
"properties" : {

"id" : {"type" : "string", "store" : "yes" ,
"index":"not analyzed"},
"date" : {"type" : "date", "store" : "no"
"index":"not analyzed"},
"customer id" : {"type" : "string", "store" : "yes" ,
"index":"not analyzed"},
"sent" : {"type" : "boolean", "index":"not analyzed"},
"name" : {"type" : "string", "index":"analyzed"},
"quantity" : {"type" : "integer", "index":"not analyzed"},
"vat" : {"type" : "double", "index":"no"}

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

» The Understanding clusters, replication, and sharding recipe in
Chapter 1, Getting Started

» The Putting a mapping in an index recipe in this chapter

Deleting an index

The counterpart of creating an index is deleting one.

Deleting an index means deleting its shards, mappings, and data. There are many common
scenarios where we need to delete an index, such as the following:

» Removing the index to clean unwanted/obsolete data (for example,
old logstash indices)
» Resetting an index for a scratch restart

» Deleting an index that has some missing shard, mainly due to some failure,
to bring back the cluster to a valid state

Getting ready

You will need a working ElasticSearch cluster and the existing index created in the
previous recipe.

How to do it...

The HTTP method used to delete an index is DELETE.

The URL contains only the index name:
http://<server>/<index_namex>

To delete an index, we will perform the following steps:

1. From a command line, we can execute a DELETE call:
curl -XDELETE http://127.0.0.1:9200/myindex

2. The result returned by ElasticSearch, if everything goes well, should be:

{racknowledged":true}

3. Ifthe index doesn't exist, then a 404 error is returned:

{"error":"IndexMissingException[[myindex] missing]", "status":404}

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

When an index is deleted, all the data related to the index is removed from the disk and is lost.

During the deletion process, at first, the cluster is updated when the shards are deleted
from the storage. This operation is fast; in the traditional filesystem it is implemented as
a recursive delete.

It's not possible to restore a deleted index if there is no backup.

Also, calling by using the special _all, index_name can be used to remove all the indices.
In production, it is a good practice to disable the all indices deletion parameter by
adding the following line to elasticsearch.yml:

action.destructive requires name:true

See also

» The Creating an index recipe in this chapter

Opening/closing an index

If you want to keep your data but save resources (memory/CPU), a good alternative to deleting
an Index is to close it.

ElasticSearch allows you to open or close an index to put it in online/offline mode.

Getting ready

You will need a working ElasticSearch cluster and the index created in the Creating an index
recipe in this chapter.

How to do it...

For opening/closing an index, we will perform the following steps:

1. From the command line, we can execute a POST call to close an index:
curl -XPOST http://127.0.0.1:9200/myindex/ close

2. Ifthe call is successful, the result returned by ElasticSearch should be:

{,"acknowledged":true}

3. To open an index from the command line, enter:
curl -XPOST http://127.0.0.1:9200/myindex/ open

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

4. If the call is successful, the result returned by ElasticSearch should be:

{"acknowledged":true}

When an index is closed, there is no overhead on the cluster (except for the metadata state);
the index shards are turned off and don't use file descriptors, memory, or threads.

There are many use cases for closing an index, such as the following:

» Disabling date-based indices, for example, keeping an index for a week, month,
or day, and when you want to keep several indices online (such as for 2 months)
and some offline (such as from 2 to 6 months).

» When you do searches on all the active indices of a cluster but you don't want to
search in some indices (in this case, using an alias is the best solution, but you
can achieve the same alias concept with closed indices).

When an index is closed, calling on open restores its state.

» The Using index aliases recipe in this chapter

Putting a mapping in an index

In the previous chapter, we saw how to build a mapping by indexing documents. This recipe
shows how to put a type of mapping in an index. This kind of operation can be considered the
ElasticSearch version of an SQL create table.

Getting ready

You will need a working ElasticSearch cluster and the index created in the Creating an index
recipe in this chapter.

How to do it...

The HTTP method for puttting a mapping is PUT (POST also works).
The URL format for putting a mapping is:

http://<server>/<index_name>/<type name>/ mapping

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

To put a mapping in an Index, we will perform the following steps:

1. If we consider the type order of the previous chapter, the call will be:
curl -XPUT 'http://localhost:9200/myindex/order/ mapping' -4 '{

"order" : {
"properties" : {
"id" : {"type" : "string", "store" : "yes" ,
"index":"not analyzed"},
"date" : {"type" : "date", "store" : "no"
"index":"not analyzed"},
"customer id" : {"type" : "string", "store" : "yes" ,
"index":"not analyzed"},
"sent" : {"type" : "boolean",
"index":"not analyzed"},
"name" : {"type" : "string", "index":"analyzed"},
"quantity" : {"type" : "integer",
"index":"not analyzed"},
"vat" : {"type" : "double", "index":"no"}

}
}
} '

2. |If successful, the result returned by ElasticSearch should be:

{"acknowledged":true}

This call checks if the index exists and then it creates one or more types of mapping as
described in the definition. For the mapping description, see the previous chapter.

During mapping insertion, if there is an existing mapping for this type, it is merged with
the new one. If there is a field with a different type and the type cannot be updated by
expanding the £ields property, an exception is raised. To prevent exception during the
merging mapping phase, it's possible to specify the parameter ignore conflicts to
true (defaultis false).

The PUT mapping call allows us to set the type for several indices in one shot, listing the
indices separated by comma or applying to all indexes using the _all alias.

» The Getting a mapping recipe in this chapter (the following recipe.)

(e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Getting a mapping

After having set our mappings for processing types, we sometimes need to control or
analyze the mapping to prevent issues. The action to get the mapping for a type helps us to
understand the record structure, or its evolution due to merging and implicit type guessing.

Getting ready

You will need a working ElasticSearch cluster and the mapping created in the previous recipe.

How to do it...

The HTTP method to get a mapping is GET.
The URL formats for getting a mapping are:

http://<server>/ mapping
http://<server>/<index_name>/ mapping
http://<server>/<index_name>/<type name>/ mapping

To get a mapping from the type of an index, we will perform the following steps:

1. If we consider the type order of the previous chapter, the call will be:

curl -XGET 'http://localhost:9200/myindex/order/
mapping?pretty=true'

The pretty argument in the URL will pretty print the response output.

2. The result returned by ElasticSearch should be:

{

"myindex" : {
"mappings" : {
"order" : {
"properties" : {
"customer id" : {
"type" : "string",
"index" : "not analyzed",
"store" : true
b
. truncated

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

The mapping is stored at the cluster level in ElasticSearch. The call checks both index and
type existence, and then returns the stored mapping.

The returned mapping is in a reduced form, which means the
s default values for a field are not returned.
ElasticSearch stores only default field values to reduce network and memory consumption.

Querying the mapping is useful for several purposes:

» Debugging template level mapping

» Checking if implicit mapping was derivated correctly by guessing fields

» Retrieving the mapping metadata, which can be used to store type-related information
» Simply checking if the mapping is correct

If you need to fetch several mappings, it is better to do so at the index or cluster level in order
to reduce the numbers of API calls.

» The Putting a mapping recipe in this chapter

» The Using dynamic templates in document mapping recipe in Chapter 3,
Managing Mapping

Deleting a mapping

The last CRUD (Create, Read, Update, Delete) operation related to mapping is the delete one.

Deleting a mapping is a destructive operation and must be done with care to prevent losing
your data.

There are some use cases in which it's required to delete a mapping;:

» Unused type: You delete it to clean the data.

» Wrong mapping: You might need to change the mapping, but you cannot upgrade it
or remove some fields. You need to back up your data, create a new mapping, and
reimport the data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

» Fast cleanup of a type: You can delete the mapping and recreate it (or you
can execute a Delete by query, as explained in the Deleting by query recipe
in Chapter 5, Search, Queries, and Filters.

Getting ready

You will need a working ElasticSearch cluster and the mapping created in the Putting a
mapping in an index recipe in this chapter.

How to do it...

The HTTP method to delete a mapping is DELETE.
The URL formats for getting the mappings are:

http://<server>/<index_name>/<type name>
http://<server>/<index_name>/<type name>/ mapping

To delete a mapping from an index, we will perform the following steps:

1. If we consider the type order explained in the previous chapter, the call will be:
curl -XDELETE 'http://localhost:9200/myindex/order/"

2. [Ifthe call is successful, the result returned by ElasticSearch should be an HTTP 200
status code with a similar message as the following:

{"acknowledged":true}

3. If the mapping/type is missing, an exception is raised:

{rerror":"TypeMissingException|[[myindex] type [order]
missing]", "status":404}

ElasticSearch tries to find the mapping for an Index-type pair. If it's found, the mapping and all
its related data are removed. If it is not found, an exception is raised.

Deleting a mapping removes all the data associated with that mapping,
i so it's not possible to go back if there is no backup.

See also

» The Putting a mapping in an index recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

Refreshing an index

ElasticSearch allows the user to control the state of the searcher using forced refresh on
an index. If not forced, the new indexed document will only be searchable after a fixed time
interval (usually 1 second).

Getting ready

You will need a working ElasticSearch cluster and the index created in the Creating an index
recipe in this chapter.

How to do it...

The URL formats for refreshing an index, are:
http://<server>/<index name (s)>/ refresh
The URL format for refreshing all the indices in a cluster, is:

http://<server>/ refresh
The HTTP method used for both URLs is POST.
To refresh an index, we will perform the following steps:

1. If we consider the type order of the previous chapter, the call will be:
curl -XPOST 'http://localhost:9200/myindex/ refresh'

2. The result returned by ElasticSearch should be:

{" shards":{"total":4,"successful":2,"failed":0}}

Near Real-Time (NRT) capabilities are automatically managed by ElasticSearch,
which automatically refreshes the indices every second if data is changed in them.

You can call the refresh on one or more indices (most indices are comma separated)
or on all the indices.

ElasticSearch doesn't refresh the state of an index at every inserted document to prevent
poor performance, due to excessive I/0 required in closing and reopening file descriptors.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

1
‘\Q You must force the refresh to have your last index data available

for searching,

Generally, the best time to call the refresh is after having indexed a lot of data, to be sure that
your records are searchable instantly.

» The Flushing an index recipe in this chapter

» The Optimizing an index recipe in this chapter

Flushing an index

ElasticSearch, for performance reasons, stores some data in memory and on a transaction
log. If we want to free memory, empty the transaction log, and be sure that our data is safely
written on disk, we need to flush an index.

ElasticSearch automatically provides a periodic disk flush, but forcing a flush can be useful,
for example:

» When we have to shutdown a node to prevent stale data

» To have all the data in a safe state (for example, after a big indexing operation
to have all the data flushed and refreshed)

Getting ready

You will need a working ElasticSearch cluster and the index created in the Creating an index
recipe in this chapter.

How to do it...

The HTTP method used for the URL operations is POST.

The URL format for flushing an index is:
http://<servers/<index_name (s)>/ flush[?refresh=True]

The URL format for flushing all the indices in a Cluster is:

http://<server>/ flush[?refresh=True]

55}

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

To flush an index, we will perform the following steps:

1. If we consider the type order of the previous chapter, the call will be:
curl -XPOST 'http://localhost:9200/myindex/ flush?refresh=True'

2. The result returned by ElasticSearch, if everything goes well, should be:

{" shards":{"total":4,"successful":2,"failed":0}}

The result contains the shard operation status.

ElasticSearch tries not to put overhead in I/0 operations caching some data in memory
to reduce writes. In this way, it is able to improve performance.

To clean up memory and force this data on disk, the flush operation is required.

With the flush call, it is possible to make an extra request parameter, refresh, to also force
the Index refresh.

Q Flushing too often affects index performances. Use it wisely!

» The Refreshing an index recipe in this chapter

» The Optimizing an index recipe in this chapter

Optimizing an index

The core of ElasticSearch is based on Lucene, which stores the data in segments on

the disk. During the life of an Index, a lot of segments are created and changed. With the
increase of segment numbers, the speed of search decreases due to the time required to
read all of them. The optimize operation allows us to consolidate the index for faster search
performance, reducing segments.

Getting ready

You will need a working ElasticSearch cluster and the index created in the Creating an index
recipe in this chapter.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

How to do it...

The URL format to optimize one or more indices is:
http://<server>/<index_name (s)>/ optimize

The URL format to optimize all the indices in a cluster is:
http://<server>/ optimize

The HTTP method used is POST.

To optimize an index, we will perform the following steps:

1. If we consider the Index created in the Creating an index recipe, the call will be:
curl -XPOST 'http://localhost:9200/myindex/ optimize'

2. The result returned by ElasticSearch should be:

{" shards":{"total":4,"successful":2,"failed":0}}

The result contains the shard operation status.

Lucene stores your data in several segments on disk. These segments are created when
you Index a new document/record or when you delete a document. Their number can be
large (for this reason, in the setup, we have increased the file description number for the
ElasticSearch process).

Internally, ElasticSearch has a merger, which tries to reduce the number of segments,
but it's designed to improve the indexing performance rather than search performance.
The optimize operation in Lucene tries to reduce the segments in an 1/0 intensive way,
by removing unused ones, purging deleted documents, and rebuilding the Index with
the minor number of segments.

The main advantages are:

» Reducing the file descriptors
» Freeing memory used by the segment readers

» Improving the search performance due to less segment management

Optimization is a very I/0 intensive operation. The index can be

unresponsive during optimization. It is generally executed on indices
’ that are rarely modified, such as consolidated date logstash indices.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

You can pass several additional parameters to the optimize call, such as:
» max_num_segments (by default autodetect): For full optimization, set this value
to 1.

» only expunge deletes (by default f£alse): Lucene does not delete documents
from segments, but it marks them as deleted. This flag merges only segments that
have been deleted.

» flush (by default true): Using this parameter, ElasticSearch performs a flush after
optimization.

» wait for merge (by default true): This parameter is used if the request needs to
wait until the merge ends.

» force (default false): Using this parameter, ElasticSearch executes the
optimization even if the index is already optimized.

» The Refreshing an index recipe in this chapter

» The Optimizing an index recipe in this chapter

Checking if an index or type exists

A common pitfall error is to query for indices and types that don't exist. To prevent this issue,
ElasticSearch gives the user the ability to check the index and type existence.

This check is often used during an application startup to create indices and types that are
required for it to work correctly.

Getting ready

You will need a working ElasticSearch cluster and the mapping available in the index,
as described in the previous recipes.

How to do it...

The HTTP method to check the existence is HEAD.
The URL format for checking an index is:

http://<server>/<index_ name>/

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The URL format for checking a type is:
http://<server>/<index name>/<type>/
To check if an index exists, we will perform the following steps:

1. If we consider the index created in the Creating an index recipe in this chapter,
the call will be:

curl -i -XHEAD 'http://localhost:9200/myindex/"'
The -i curl options allows dumping the server headers.

2. Ifthe index exists, an HTTP status code 200 is returned. If missing, then a 404 error
is returned.

To check if a type exists, we will perform the following steps:

1. If we consider the mapping created in the putting a mapping in an index recipe
(in this chapter), the call will be:
curl -i -XHEAD 'http://localhost:9200/myindex/order/"'

2. [Ifthe index exists, an HTTP status code 200 is returned. If missing, then a 404 error
is returned.

This is a typical HEAD REST call to check existence. It doesn't return a body response, only the
status code.

M Before executing every action involved in indexing, generally upon
Q application startup, it's good practice to check if an index or type
exists to prevent future failures.

Managing index settings

Index settings are more important because they allow us to control several important
ElasticSearch functionalities such as sharding/replica, caching, term management,
routing, and analysis.

Getting ready

You will need a working ElasticSearch cluster and the index created in the Creating an index
recipe in this chapter.

o7}

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

How to do it...

To manage the index settings, we will perform the steps given as follows:

1. To retrieve the settings of your current Index, the URL format is the following:

http://<server>/<index_name>/ settings

2. We are reading information via REST API, so the method will be GET, and an
example of a call using the index created in the Creating an index recipe, is:

curl -XGET 'http://localhost:9200/myindex/ settings'

3. The response will be something similar to:

{

"myindex" : {
"settings" : {
"index" : {
"uuid" : "pT65 cn RHKmglwPX7BGjw",
"number of replicas" : "1",
"number of shards" : "2",
"version" : {
"created" : "1020099"

The response attributes depend on the index settings. In this case, the response
will be the number of replicas (1), and shard (2), and the index creation version
(1020099). The UUID represents the unique ID of the index.

4. To modify the index settings, we need to use the PUT method. A typical settings

change is to increase the replica number:

curl -XPUT 'http://localhost:9200/myindex/ settings' -d '
{"index":{ "number of replicas": "2"}}'

ElasticSearch provides a lot of options to tune the index behavior, such as:

» Replica management:
0 index.number of replica: This is the number of replicas each shard has

0 index.auto expand_ replicas: This parameter allows us to define a
dynamic number of replicas related to the number of shards

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Using set index.auto expand replicasto 0-all
Al . — T .
~ allows us to create an index that is replicated in every node
(very useful for settings or cluster propagated data such as
language options/stopwords).

» Refresh interval (by default 1s): In the previous recipe, Refreshing an index, we saw
how to manually refresh an index. The index settings (index.refresh interval)
control the rate of automatic refresh.

» Cache management: These settings (index . cache. *) control the cache size and
its life. It is not common to change them (refer to ElasticSearch documentation
for all the available options at http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/index-modules-cache.html).

» Write management: ElasticSearch provides several settings to block read/write
operations in an index and changing metadata. They live in index.blocks settings.

» Shard allocation management: These settings control how the shards must be
allocated. They live in the index.routing.allocation.* namespace.

There are other index settings that can be configured for very specific needs. In every
new version of ElasticSearch, the community extends these settings to cover new scenarios
and requirements.

There is more...

The refresh interval parameter provides several tricks to optimize the indexing speed. It
controls the rate of refresh, and refreshing reduces the Index performances due to opening and
closing of files. A good practice is to disable the refresh interval (set -1) during a big indexing
bulk and restoring the default behavior after it. This can be done with the following steps:

1. Disabling the refresh:
curl -XPOST 'http://localhost:9200/myindex/ settings' -d '
{"index":{"index refresh interval": "-1"}}'

2. Bulk indexing some millions of documents
Restoring the refresh:
curl -XPOST 'http://localhost:9200/myindex/ settings' -d '
{"index":{"index refresh interval": "1ls"}}'

4. Optionally, optimizing the index for search performances:
curl -XPOST 'http://localhost:9200/myindex/ optimize'

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules-cache.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules-cache.html
http://www.it-ebooks.info/

Basic Operations

» The Refreshing an index recipe in this chapter

» The Optimizing an index recipe in this chapter

Using index aliases

Real world applications have a lot of indices and queries that span on more indices.
This scenario requires defining all the indices names on which we need to perform
queries; aliases allow grouping them by a common name.

Some common scenarios of this usage are:

» Log indices divided by date (such as 1og_YYMMDD) for which we want to create an
alias for the last week, the last month, today, yesterday, and so on. This pattern is
commonly used in log applications such as logstash (http://logstash.net/).

» Collecting website contents in several indices (New York Times, The Guardian,
and so on) for those we want to refer to as an index aliases called sites.

Getting ready

You will need a working ElasticSearch cluster.

How to do it...

The URL format for control aliases are:

http://<server>/ aliases
http://<server>/<index>/ alias/<alias namex>

To manage the index aliases, we will perform the following steps:

1. We need to read the status of the aliases for all indices via the REST API, so the
method will be GET, and an example of a call is:

curl -XGET 'http://localhost:9200/ aliases'

2. Itshould give a response similar to this:
{
"myindex": {
"aliases": {}

b

100

www.it-ebooks.info

http://logstash.net/
http://www.it-ebooks.info/

Chapter 4

"test": {
"aliases": {}

}
}

Aliases can be changed with add and delete commands.

3. Toread an alias for a single Index, we use the _alias endpoint:
curl -XGET 'http://localhost:9200/myindex/ alias'

The result should be:

{

"myindex" : {
"aliases" : {
"myaliasl" : { }

}
}
}

4. To add an alias:
curl -XPUT 'http://localhost:9200/myindex/ alias/myaliasl’

The result should be:

{"acknowledged":true}
This action adds the myindex index to the myalias1l alias.

5. To delete an alias:
curl -XDELETE 'http://localhost:9200/myindex/ alias/myaliasl’'

The result should be:

{"acknowledged":true}

The delete action has now removed myindex from the alias myaliasi.

During search operations, ElasticSearch automatically expands the alias, so the required
indices are selected. The alias metadata is kept in the cluster state. When an alias is added/
deleted, all the changes are propagated to all the cluster nodes. Aliases are mainly functional
structures to simply manage indices when data is stored in multiple indices.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

There's more...

An alias can also be used to define a filter and routing parameters.

Filters are automatically added to the query to filter out data. Routing via aliases allows us to
control which shards to hit during searching and indexing.

An example of this call is:

curl -XPOST 'http://localhost:9200/myindex/ aliases/userlalias' -4 '

{
"filter" : {
"term" : { "user" : "user 1" }

"search routing" : "1,2",
"index routing" : "2"
} 1

In this case, we add a new alias, userlalias, to an Index, myindex, adding:

» Afilter to select only documents that match a field user with term user_1.
» Alist of routing keys to select the shards to be used during the search.

» Arouting key to be used during indexing. The routing value is used to modify the
destination shard of the document.

& search routing allows multi-value routing keys.
A index routingis single value only.

Indexing a document

In ElasticSearch, there are two vital operations namely, Indexing and Searching.

Indexing means inserting one or more document in an index; this is similar to the insert
command of a relational database.

In Lucene, the core engine of ElasticSearch, inserting or updating a document has the same
cost. In Lucene and ElasticSearch, update means replace.

Getting ready

You will need a working ElasticSearch cluster and the mapping that was created in the
Putting a mapping in an index recipe in this chapter.

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

How to do it...

To index a document, several REST entry points can be used:

Method URL

POST http://<server>/<index_name>/<type>

PUT/POST http://<server>/<index_name>/<type> /<id>
PUT/POST http://<server>/<index_name>/<type> /<id>/_create

We will perform the following steps:

1. If we consider the type order mentioned in earlier chapters, the call to index a
document will be:

curl -XPOST 'http://localhost:9200/myindex/
order/2qLrAfPVQvCRMe7Ku8r0Tw' -d '

"id" . "1234",

"date" : "2013-06-07T12:14:54",

"customer id" : "customerl",

"sent" : true,

"in_stock_items" : O,

"items": [
{"name":"iteml", "quantity":3, "vat":20.0},
{"name":"item2", "quantity":2, "vat":20.0},
{"name":"item3", "quantity":1, "vat":10.0}

1
X

2. If the index operation is successful, the result returned by ElasticSearch should be:

{
"_index":"myindex",
" _type":"order",
"_id“:"2quAfPVQvCRMe7Ku8rOTw",
"_version":1,
"created":true

}

Some additional information is returned from an indexing operation such as:

» An auto-generated ID, if not specified
» The version of the indexed document as per the Optimistic Concurrency Control

» Information if the record has been created

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

One of the most used APIs in ElasticSearch is the index. Basically, indexing a JSON document
consists of these steps:

» Routing the call to the correct shard based on the ID or routing/parent metadata.
If the ID is not supplied by the client, a new one is created. (See Chapter 1, Getting
Started, for more details).

» Validating the JSON which has been sent.

» Processing the JSON according to the mapping. If new fields are present in the
document (the mapping can be updated), new fields are added in the mapping.

» Indexing the document in the shard. If the ID already exists, it is then updated.
» If it contains nested documents, it extracts them and processes them separately.
» Returns information about the saved document (ID and versioning).

It's important to choose the correct ID for indexing your data. If you don't provide an ID in
ElasticSearch during the indexing phase, then it automatically associates a new ID to your
document. To improve performance, the ID should generally be of the same character length
to improve balancing of the data tree that holds them.

Due to the REST call nature, it's better to pay attention when not using ASCII characters
because of URL encoding and decoding (or, be sure that the client framework you use
correctly escapes them).

Depending on the mappings, other actions take place during the indexing phase, such as
the propagation on replica, nested processing, and the percolator.

The document will be available for standard search calls after a refresh (forced with an API
call or after the time slice of 1 second in near real time). Every GET API on the document
doesn't require a refresh and can be instantly made available.

The refresh can also be forced by specifying the refresh parameter during indexing.

ElasticSearch allows the passing of several query parameters in the index APl URL for
controlling how the document is indexed. The most commonly used ones are:

» routing: This controls the shard to be used for indexing, for example:
curl -XPOST 'http://localhost:9200/myindex/order?routing=1"

» parent: This defines the parent of a child document and uses this value to apply
routing. The parent object must be specified in the mappings, such as:

curl -XPOST 'http://localhost:9200/myindex/order?parent=12"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

timestamp: This is the timestamp to be used in indexing the document. It must
be activated in the mappings, such as in the following:

curl -XPOST 'http://localhost:9200/myindex/order?timestamp=
2013-01-25T19%3A22%3A22"

consistency (one/quorum/all): By default, an index operation succeeds if set
as a quorum (>replica/2+1) and if active shards are available. The write consistency
value can be changed for indexing;:

curl -XPOST 'http://localhost:9200/myindex/order?consistency=one’

replication (sync/async): ElasticSearch returns replication from an index
operation when all the shards of the current replication group have executed the
operation. Setting the replication async allows us to execute the index synchronously
only on the primary shard and asynchronously on other shards, returning from the call
faster.

curl -XPOST 'http://localhost:9200/myindex/order?replication=async’

version: This allows us to use the Optimistic Concurrency Control (http://
en.wikipedia.org/wiki/Optimistic_ concurrency control). Atfirst, in the
indexing of a document, version is set as 1 by default. At every update, this value is
incremented. Optimistic Concurrency Control is a way to manage concurrency in every
insert or update operation. The already passed version value is the last seen version
(usually returned by a GET or a search). The indexing happens only if the current
index version value is equal to the passed one:

curl -XPOST 'http://localhost:9200/myindex/order?version=2"

op_type: This can be used to force a create on a document. If a document with the
same ID exists, the Index fails.

curl -XPOST 'http://localhost:9200/myindex/order?op type=create’..

refresh: This forces a refresh after having the document indexed. It allows us to
have the documents ready for search after indexing them:

curl -XPOST 'http://localhost:9200/myindex/order?refresh=true’..

tt1l: This allows defining a time to live for a document. All documents in which the
ttl has expired are deleted and purged from the index. This feature is very useful

to define records with a fixed life. It only works if tt1 is explicitly enabled in mapping.
The value can be a date-time or a time value (a numeric value ending with s, m, h, d).
The following is the command:

curl -XPOST 'http://localhost:9200/myindex/order?ttl=14"'

www.it-ebooks.info

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://www.it-ebooks.info/

Basic Operations

» timeout: This defines a time to wait for the primary shard to be available.
Sometimes, the primary shard can be in an un-writable status (relocating or
recovering from a gateway) and a timeout for the write operation is raised
after 1 minute.

curl -XPOST 'http://localhost:9200/myindex/order?timeout=5m' ..

» The Getting a document recipe in this chapter
» The Deleting a document recipe in this chapter
» The Updating a document recipe in this chapter

» Optimistic Concurrency Control at http://en.wikipedia.org/wiki/
Optimistic_concurrency control

Getting a document

After having indexed a document during your application life, it most likely will need to
be retrieved.

The GET REST call allows us to get a document in real time without the need of a refresh.

Getting ready

You will need a working ElasticSearch cluster and the indexed document of the Indexing a
document recipe.

How to do it...

The GET method allows us to return a document given its index, type and ID.

The REST API URL is:
http://<server>/<index name>/<type names/<id>

To get a document, we will perform the following steps:

1. If we consider the document we indexed in the previous recipe, the call will be:

curl -XGET 'http://localhost:9200/myindex/order/2qLrAfPVQvCRMe7Ku8
rO0Tw?pretty=true’

106

www.it-ebooks.info

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://www.it-ebooks.info/

Chapter 4

2. The result returned by ElasticSearch should be the indexed document:

{

" _index":"myindex"," type":"order","
id":"2qLrAfPVQvCRMe7Ku8r0Tw", " _version":1,"found":true, "_source"
{ "id" . "1234",
"date" : "2013-06-07T12:14:54",
"customer id" : "customerl",
"sent" : true,
"items": [
{"name":"iteml", "quantity":3, "vat":20.0},
{"name":"item2", "quantity":2, "vat":20.0},
{"name":"item3", "quantity":1, "vat":10.0}

H

Our indexed data is contained in the _source parameter, but other information is
returned as well:

o _index: This is the index that stores the document

o _type: This denotes the type of the document

o _id: This denotes the ID of the document

o version: This denotes the version of the document

o found: This denotes if the document has been found

3. |If the record is missing, a 404 error is returned as the status code and the return

JSON will be:

{
" id": "2gLrAfPVQvCRMe7Ku8r0Tw",
"_index": "myindex",
"_type": "order",

"found": false

}

ElasticSearch GET API doesn't require a refresh on the document. All the GET calls are
in real time. This call is fast because ElasticSearch is implemented to search only on
the shard that contains the record without other overhead. The IDs are often cached
in memory for faster lookup.

The source of the document is only available if the _source field is stored (the default
settings in ElasticSearch).

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

There are several additional parameters that can be used to control the GET call:

» fields: This allows us to retrieve only a subset of fields. This is very useful to reduce
bandwidth or to retrieve calculated fields such as the attachment mapping ones:

curl 'http://localhost:9200/myindex/order/2qLrAfPVQvCRMe7Ku8r0Tw? f
ields=date, sent'

» routing: This allows us to specify the shard to be used for the GET operation. To
retrieve a document with the routing used in indexing, the time taken must be the
same as the search time:

curl 'http://localhost:9200/myindex/order/2qLrAfPVQVCRMe7Ku8r0Tw?r
outing=customer id'

» refresh: This allows us to refresh the current shard before doing the GET operation.
(It must be used with care because it slows down indexing and introduces some
overhead):

curl http://localhost:9200/myindex/order/2qLrAfPVQvCRMe7Ku8r0Tw?re
fresh=true

» preference: This allows controlling which shard replica to choose to execute the
GET operation. Generally, ElasticSearch chooses a random shard for the GET call.
Possible values are:

o primary: This is used for the primary shard.

o _local:Thisis used for trying first the local shard and then falling back to
a random choice. Using the local shard reduces the bandwidth usage and
should generally be used with auto—replicating shards (with the replica set
to 0).

o custom value: This is used for selecting shard-related values such as the
customer_id, username, and so on.

There's more...

The GET API is fast, so a good practice for developing applications is to try to use it as much
as possible. Choosing the correct ID during application development can lead to a big boost
in performance.

If the shard that contains the document is not bound to an ID, then fetching the document
requires a query with an ID filter (We will learn about it in the Using an ID query/filter recipe
in Chapter 5, Search, Queries, and Filters).

If you don't need to fetch the record, but only need to check the existence, you can replace
GET with HEAD and the response will be status code 200 if it exists, or 404 error, if missing.

108

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The GET call has also a special endpoint, _source that allows fetching only the source of
the document.

The GET Source REST API URL is:
http://<server>/<index name>/<type names/<id>/ source

To fetch the source of the previous order, we will call:

curl -XGET

http://localhost:9200/myindex/order/2qLrAfPVQVCRMe7Ku8r0Tw/ source

See also

» The Speeding up GET operation recipe in this chapter

Deleting a document

Deleting documents in ElasticSearch is possible in two ways: by using the DELETE call or the
DELETE BY QUERY call; we will learn about it in the next chapter.

Getting ready

You will need a working ElasticSearch cluster and the indexed document of the Indexing a
document recipe in this chapter.

How to do it...

The REST API URL is the same as the GET calls, but the HTTP method is DELETE:
http://<server>/<index name>/<type name>/<id>
To delete a document, we will perform the following steps:

1. If we consider the order index in the Indexing a document recipe, the call to delete a
document will be:

curl -XDELETE
'http://localhost:9200/myindex/order/2qLrAfPVQvCRMe7Ku8r0Tw'
2. The result returned by ElasticSearch should be:

{

" id": "2gLrAfPVQvCRMe7Ku8r0Tw",
"_index": "myindex",
"_type": "order",

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

" version": 2,
"found": true

}

3. Ifthe record is missing, a 404 error is returned as the status code and the return

JSON will be:

{
"_id" : "2gqLrAfPVQVCRMe7Ku8r0Tw",
" index": "myindex",
" type": "order",

" version": 2,
"found": false

}

Deleting a record only hits the shards that contain the document, so there is no overhead.
If the document is a child, the parent must be set to look for the correct shard.

There are several additional parameters that can be used to control the DELETE call.
The most important ones are:

» routing: This allows us to specify the shard to be used for the DELETE operation

» version: This allows to define a version of the document to be deleted to prevent
its modification

» parent: This is similar to routing, and is required if the document is a child one

1
‘\Q The DELETE operation doesn't have restore functionality.

Every document that is deleted is lost forever.

Deleting a record is a fast operation, and is easy to use if the IDs of the documents to delete
are available. Otherwise, we must use the DELETE BY QUERY call, which we will explore in the
next chapter.

See also

» The Deleting by query recipe in Chapter 5, Search, Queries, and Filters

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Updating a document

Documents stored in ElasticSearch can be updated at any time throughout their lives. There
are two available solutions to perform this operation in ElasticSearch, namely by adding the
new document, or by using the update call.

The update call works in two ways:

1. By providing a script (based on supported ElasticSearch scripting languages) which
contains the code that must be executed to update the record

2. By providing a document that must be merged with the original one

The main advantage of an update versus an index is the reduction in networking.

Getting ready

You will need a working ElasticSearch cluster and the indexed document of the Indexing
a document recipe in this chapter. To use the dynamic scripting languages, the dynamic
scripting languages must be enabled (see Chapter 7, Scripting, to learn more).

How to do it...

As we are changing the state of the data, the HTTP method is POST and the REST URL is:
http://<server>/<index_ name>/<type name>/<id>/ update
To update a document, we will perform the following steps:

1. If we consider the type order of the previous recipe, the call to update a document
will be:

curl -XPOST 'http://localhost:9200/myindex/
order/2qLrAfPVQvCRMe7Ku8r0Tw/ update' -d '{

"script" : "ctx. source.in stock items += count",
"params" : {
"count" : 4

BN
2. If the request is successful, the result returned by ElasticSearch should be:
{
" id": "2gLrAfPVQVCRMe7Ku8r0Tw",
" index": "myindex",
" type": "order",
" version": 3,

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

"found": true,
"ok": true

}

3. The record will be:

{

" id": "2gLrAfPVQVCRMe7Ku8r0Tw",

" index": "myindex",

" source": {
"customer_id": "customerl",
"date": "2013-06-07T12:14:54",
"idv: "1234",

"in stock items": 4,

"sent": true
ll_t-y-pe n : n orderll ,
" version": 3,
"exists": true

}

The visible changes are:
o The scripted field is changed
o The version is incremented

4. If you are using ElasticSearch (Version 1.2 or above) and you have disabled scripting
support (default configuration), an error will be raised:

{
"error":"ElasticsearchIllegalArgumentException[failed to execute
script]; nested: ScriptException[dynamic scripting disabled]; "
"status":400

2

}

The update operation applies changes to the document required in the script or in the update
document, and it will reindex the changed document. In Chapter 7, Scripting, we will explore
the scripting capabilities of ElasticSearch.

The standard language for scripting in ElasticSearch is Groovy (http://groovy.codehaus.
org/), and is used in the examples.

The script can operate on the ctx. source, which is the source of the document (it must
be stored to work), and can change the document in its place.

112

www.it-ebooks.info

http://groovy.codehaus.org/
http://groovy.codehaus.org/
http://www.it-ebooks.info/

Chapter 4

It's possible to pass parameters to a script by passing a JSON object. These parameters are
available in the execution context.

A script can control the ElasticSearch behavior after the script execution by setting the
ctx.op value of the context. Available values are:

» ctx.op="delete": Using this, the document will be deleted after the script
execution.

» ctx.op="none": Using this, the document will skip the indexing process.
A good practice to improve performance is to set the ctx.op="none" to
prevent reindexing overhead if the script doesn't update the document.

In the ctx, itis possible to pass a tt1 value to change the time of the life of an element by
setting the ctx. ttl parameter.

The ctx parameter also manages the timestamp of the record in ctx. timestamp.

It's also possible to pass an additional object in the upsert property to be used if the
document is not available in the index:

curl -XPOST 'http://localhost:9200/myindex/
order/2gLrAfPVQvCRMe7Ku8r0Tw/ update' -d '{

"script" : "ctx. source.in stock items += count",
"params" : {
"count" : 4
b
"upsert" : {"in stock items":4}}"

If you need to replace some field values, a good solution is to not write a complex

update script, but to use the special property doc, which allows to overwrite the values

of an object. The document provided in the doc parameter will be merged with the original
one. This approach is more easy to use, but it cannot set the ctx.op. So, if the update
doesn't change the value of the original document, the next successive phase will always
be executed:

curl -XPOST 'http://localhost:9200/myindex/
order/2qLrAfPVQvCRMe7Ku8r0Tw/ update' -d '{"doc" : {"in stock_
items":10}}"

If the original document is missing, it is possible to use the provided doc for an upsert by
providing the doc_as_upsert parameter:

curl -XPOST 'http://localhost:9200/myindex/order/2qLrAfPVQvCRMe7Ku8r0Tw/
update' -d '{"doc" : {"in stock items":10}, "doc as upsert":true}'

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations
Using MVEL, it is possible to apply advanced operations on field, such as:

» Removing a field:

"script" : {"ctx. source.remove ("myfield"}}

» Adding a new field:

"script" : {"ctx. source.myfield=myvalue"}}
The update REST call is useful because it has some advantages:

» It reduces the bandwidth usage, as the update operation doesn't need a round-trip
to the client holding the data.

» It's safer, because it automatically manages the Optimistic Concurrent Control.
If a change happens during script execution, the script gets re-executed with the
updated data.

» It can be bulk executed.

» The Speeding up atomic operations recipe in this chapter (the next recipe)

Speeding up atomic operations

(bulk operations)

When we are inserting, deleting, or updating a large number of documents, the HTTP
overhead is significant. To speed up the process, ElasticSearch allow to execute bulk
CRUD (Create, Read, Update, Delete) calls.

Getting ready

You will need a working ElastiSearch cluster.

How to do it...

As we are changing the state of the data, the HTTP method is POST and the REST URL is:

http://<server>/<index name/ bulk

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4
To execute a bulk action, we will perform the steps given as follows:

1. We need to collect the Create, Index, Delete, Update commands in a structure made
of bulk JSON lines, composed by a line of action with metadata and another line with
optional data related to the action. Every line must end with a newline, \n. The bulk
data file should be, for example:

{ "index":{ "_index":"myindex", "_type":"order", " id":"1"
I

{ "field1i" : "valuel", "field2" : "value2" }

{ "delete":{ " index":"myindex", " type":"order", " id":"2"
I

{ "create":{ " index":"myindex", " type":"order", " id":"3"
I

{ "field1l" : "valuel", "field2" : "value2" }

{ "update":{ "_index":"myindex", " type":"order", " id":"3"
I

{ "doc":{"fieldl" : "valuel", "field2" : "value2" }}

2. This file can be sent with POST:
curl -s -XPOST localhost:9200/ bulk --data-binary @bulkdata;

3. The result returned by ElasticSearch should collect all the responses of the actions.

The bulk operation allows aggregating different calls as a single call. A header part with the
action that is to be performed and a body for some operations such as Index, Create, and
Update are present.

The header is composed by the action name and the object of parameters. Looking at the
previous example for the, index, we have:

{ "index":{ " index":"myindex", " type":"order", " id":"1" } }
For indexing and creating, an extra body is required with the data:

{ "field1i" : "valuel", "field2" : "value2" }
The delete action doesn't require optional data, so only the header composes it:

{ "delete":{ " index":"myindex", " type":"order", " id":"1" } }
In the 0.90 or upper range, ElasticSearch allows to execute bulk update too:

{ "update":{ "_index":"myindex", " type":"order", " _id":"3" } }

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

The header accepts all the common parameters of the update action, such as doc, upsert,
doc_as_upsert, lang, script, and params. To control the number of retries in the case
of concurrency, the bulk update defines the parameter _retry on conflict, set to the
number of retries to be performed before raising an exception.

A possible body for the update is:

{ "doc":{"field1i" : "valuel", "field2" : "value2" }}
The bulk item can accept several parameters, such as:

» routing: To control the routing shard

» parent: To select a parent item shard, it is required if you are indexing some
child documents

» timestamp: To set the index item timestamp
» ttl: To control the time to live of a document

Global bulk parameters that can be passed through query arguments are:

» consistency (one, quorum, all) (by default, quorum): This controls the number
of active shards before executing write operations.

» refresh,(by default, false): This forces a refresh in the shards that are involved
in bulk operations. The new indexed document will be available immediately without
waiting for the standard refresh interval of 1s.

Usually, ElasticSearch client libraries that use ElasticSearch REST APl automatically
implements the serialization of bulk commands.

The correct number of commands to serialize in bulk is a user choice, but there are some
hints to consider:

» In standard configuration, ElasticSearch limits the HTTP call to 100 megabytes in
size. If the size is over the limit, the call is rejected.

» Multiple complex commands take a lot of time to be processed, so pay attention
to client timeout.

» The small size of commands in bulk doesn't improve performance.

If the documents aren't big, 500 commands in bulk can be a good number to start with,
and it can be tuned depending on data structures (number of fields, number of nested
objects, complexity of fields, and so on).

» Bulk API can also be used via UDP. See ElasticSearch documentation for more
detailsat http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/docs-bulk-udp.html.

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk-udp.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk-udp.html
http://www.it-ebooks.info/

Chapter 4

Speeding up GET operations (multi GET)

The standard GET operation is very fast, but if you need to fetch a lot of documents by the ID,
ElasticSearch provides multi GET operations.

Getting ready

You will need a working ElasticSearch Cluster and the document indexed from the Indexing a
document recipe in this chapter.

How to do it...

The multi GET REST URLs are:

http://<server</ mget
http://<server>/<index_name>/ mget
http://<server>/<index_name>/<type name>/ mget

To execute a multi GET action, we will perform the following steps:

1. The method is POST with a body that contains a list of document IDs and the Index/
type if they are missing. As an example, using the first URL, we need to provide the
Index, type, and ID:

curl -XPOST 'localhost:9200/ mget' -d '{

"docs" : [

{
" index" : "myindex",
" _type" : "order",
" id" : "2qLrAfPVQvCRMe7Ku8rO0Tw"

}I

{
" index" : "myindex",
n type n s llorderll ,
n idll s ll2 n

}

1
}l

This kind of call allows fetching documents in several different indices and types.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Operations

2. If the Index and type are fixed, a call should also be in the form of:

curl 'localhost:9200/test/type/ mget' -d '{
llidsll . [Illll' l|2l|]

}l

The multi GET result is an array of documents.

The multi GET call is a shortcut for executing many GET commands in one shot.

ElasticSearch internally spreads the GET in parallel on several shards and collects the results
to return to the user.

The GET object can contain the following parameters:

» _index: The index that contains the document, it can be omitted if passed in the URL
» _type: The type of the document, it can be omitted if passed in the URL

» id: The document ID

» fields (optional): A list of fields to retrieve

» routing (optional): The shard routing parameter
The advantages of the multi GET operation are:

» Reduced networking traffic both internally and externally in ElasticSearch

» Speeds up performace if used in an application, the time of processing a
multi GET is quite similar to a standard GET.

See also...

» The Getting a document recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries,
and Filters

In this chapter, we will cover the following recipes:

» Executing a search

» Sorting results

» Highlighting results

» Executing a scan query

» Suggesting a correct query

» Counting matched results

» Deleting by query

» Matching all the documents

» Querying/filtering for a single term
» Querying/filtering for a multiple term
» Using a prefix query/filter

» Using a Boolean query/filter

» Using a range query/filter

» Using span queries

» Using a match query

» Using an ID query/filter

» Using a has_child query/filter

» Using a top_children query

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

» Using a has_parent query/filter
» Using a regexp query/filter

» Using a function score query

» Using exists and missing filters
» Using and/or/not filters

» Using a geo bounding box filter
» Using a geo polygon filter

» Using a geo distance filter

» Using a query string query

» Using a template query

Introduction

After you have set the mappings and put the data in the indices, you can search. In this
chapter, we will cover the different types of search queries and filters, validating queries,
highlighting search results, and limiting fields. This chapter is the core of book: ultimately,
everything in ElasticSearch is about serving the query and returning good quality results.

To master the search, the user must understand the difference between a query and a filter,
how to improve the quality, and how to speedily design more efficient queries. ElasticSearch
allows you to use a rich domain specific language (DSL), a syntax language designed

for searching, that covers all common needs, from a standard term query to complex
Geoshape filtering.

This chapter is divided in two parts: the first part shows some API calls related to searches,
and the second part covers the QueryDSL in detail.

All the recipes in this chapter require you to prepare and populate the required indices.

In the code bundle available on the PacktPub website (https://www.packtpub.com/
big-data-and-business-intelligence/elasticsearch-cookbook) or on GitHub
(https://github.com/aparo/elasticsearch-cookbook-second-edition), there
are scripts to initialize all the required data.

Executing a search

ElasticSearch was born as a search engine; its main work is to process queries and give results.

In this recipe, we'll see that a search in ElasticSearch is not just limited to matching documents
but can also calculate additional information required to improve the search quality.

120

www.it-ebooks.info

https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-cookbook
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 5

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate_ query.sh, available in the code bundle for this book.

How to do it...

To execute a search and view the results, perform the following steps:

1.

From the command line, execute a search, as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-

type/ search' -d '{"query":{"match all":{}}}'

In this case, we have used a match _all query which means that all the documents
are returned. We'll discuss this kind of query in the Matching all documents recipe in

this chapter.

The command, if everything is all right, will return the following result:

{

"took" : O,

"timed out" false,

" shards" :
"total" : 5,
"successful" : 5,

"failed" : 0

b

"hits" : |
"total" : 3,
"max_score" : 1.0,
"hits" [{

" index" "test-index",

ll_type n n test _type n ,

n idn "l",

" score" 1.0, " _source" {"position":
"parsedtext": "Joe Testere nice guy", "name":
"yuid": "lllll"}

" index" "test-index",

ll_type n n test _type n ,

n idn "2"1

" score" 1.0, " _source" {"position":
"parsedtext": "Bill Testere nice guy", "name':
Baloney", "uuid": "22222"}

" index" "test-index",

ll
"Joe Tester",

2 ’
"Bill

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

" type" : "test-type",

n idll . "3"1

" score" : 1.0, " source" : {"position": 3, "parsedtext":
"Bill is not\n nice guy", "name": "Bill Clinton",
"yuid": "33333"}

1
}
}

The result contains a lot of information, as follows:

» took: This is the time, in milliseconds, required to execute the query.

» time out: This indicates whether a timeout has occurred during the search.
This is related to the timeout parameter of the search. If a timeout occurred,
you will get partial or no results.

» shards: This is the status of the shards, which can be divided into the following;:
o total: This is the total number of shards.
o successful: This is the number of shards in which the query was successful.
o failed: This is the number of shards in which the query failed, because
some error or exception occurred during the query.
» hits: This represents the results and is composed of the following;:
o total: This is the total number of documents that match the query.

o max_score: This is the match score of the first document. Usually this is 1
if no match scoring was computed, for example in sorting or filtering.

o hits: Thisis a list of the result documents.
The result document has a lot of fields that are always available and other fields that depend
on the search parameters. The following are the most important fields:
» index: This is the index that contains the document.
» _type: This is the type of the document.
» id: Thisis the ID of the document.

» source: This is the document's source (the default is returned, but it can
be disabled).

» score: This is the query score of the document.
» sort: These are the values that are used to sort, if the documents are sorted.
» highlight: These are the highlighted segments, if highlighting was requested.

» fields: This denotes some fields can be retrieved without the need to fetch all the
source objects.

122

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The HTTP method used to execute a search is GET (but POST works too), and the REST URL is:

http://<server>/ search
http://<server>/<index_name (s) >/ search
http://<server>/<index_ name (s) >/<type_name (s) >/ search

Multi-indices and types are comma separated. If an index or a type is defined, the search is
limited to them only.

One or more aliases can be used as index names.

The core query is usually contained in the body of the GET/POST call, but a lot of options can
also be expressed as URI query parameters, as follows:

» q: This is the query string used to perform simple string queries:
curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search?q=uuid:11111"'

» df: This is the default field to be used within the query:
curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?df=uuid&g=11111"

» from (by default, 0): This is the start index of the hits.

» size (by default, 10): This is the number of hits to be returned.

» analyzer: This is the default analyzer to be used.

» default operator (default, OR): This can be set to AND or OR.

» explain: This allows the user to return information on how the score is calculated:
curl -XGET 'http://127.0.0.1:9200/test-index/test-type/ search?qg=p
arsedtext:joe&explain=true'’

» fields: This allows you to define fields that must be returned:
curl -XGET 'http://127.0.0.1:9200/test-index/test-type/ search?qg=p

arsedtext:joe&fields=name'

» sort (by default, score): This allows you to change the order of the documents.
Sort is ascendant by default; if you need to change the order, add desc to the field:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?sort=name:desc'

» timeout (not active by default): This defines the timeout for the search. ElasticSearch
tries to collect results until the timeout. If a timeout is fired, all the hits accumulated
are returned.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

>

>

search_type: This defines the search strategy. A reference is available in the online
ElasticSearch documentation at http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/search-request-search-type.html.

track_scores (by default, false): If this is true, it tracks the score and allows it
to be returned with the hits. It's used in conjunction with sort, because sorting by
default prevents a match score being returned.

pretty (by default, false): If this is true, the results will be pretty printed.

Generally, the query is contained in the body of the search, a JSON object. The body of the
search is the core of ElasticSearch's search functionalities; and the list of search capabilities
extends with every release. For the current version (1.4.x) of ElasticSearch, the following
parameters are available:

>

query: This contains the query to be executed. Later in this chapter, we will see how
to create different kinds of queries in order to cover several scenarios.

from (by default, 0) and size (by default, 10): These allow you to control pagination.
from defines the start position of the hits to be returned.

Pagination is applied to the currently returned search results.
Firing the same query can lead to different results if a lot of
@@j@‘\ records have the same score or if new document are ingested.
’ If you need to process all the result documents without
repetition, you need to execute scan or scroll queries.

sort: This allows you to change the order of the matched documents. This option is
fully covered in the next recipe, Sorting a result.

post_filter (optional): This allows you to filter out the query results without affecting
the facet count. It's usually used to filter by facets values.

_source (optional): This allows you to control the returned source. It can be

disabled (false), partially returned (obj . *), or multiple exclude/include rules. This
functionality can be used instead of fields to return values (for a complete coverage,
take a look at the ElasticSearch reference at http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/search-request-source-
filtering.html).

fielddata_ fields (optional): This allows you to return the field data representation
of your field.

fields (optional): This controls the fields to be returned.

1
‘Q Returning only the required fields reduces network and

memory usage, improving performance.

124

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-search-type.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-search-type.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-source-filtering.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-source-filtering.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-source-filtering.html
http://www.it-ebooks.info/

Chapter 5

» facets (optional): This controls the aggregated data that must be computed
on the results. Using facets improves the user experience on a search. Facets
are deprecated and will be removed from the future versions of ElasticSearch.
The aggregation layer covers the functionalities previously managed by facets.

» aggregations or aggs (optional): This controls the aggregation layer for analytics.
It will be discussed in Chapter 6, Aggregations.

» index_boost (optional): This allows you to define the per-index boost value.
It is used to increase/decrease the score of the results in the boosted indices.

» highlighting (optional): This allows you to define the fields and settings that
will be used to calculate a query abstract. (Take a look at the Highlighting results
recipe in this chapter.)

» version (by default, false): This adds the version of a document to the results.

» rescore (optional): This allows you to define an extra query to be used in the score
to improve the quality of results. The rescore query is executed on the hits that
match the first query and the filter.

» min_score (optional): If this is given/set, all the resulting documents that have a
score lower than the set value are rejected.

» explain (optional): This parameter returns information on how the TD/IF score is
calculated for a particular document.

» script_ fields (optional): This defines a script to compute extra fields to be
returned with a hit. We'll see ElasticSearch scripting in Chapter 7, Scripting.

» suggest (optional): If this is set, a query and a field returns the most significant
terms related to this query. This parameter allows you to implement the Google
search-like did you mean functionality. (see the Suggesting a correct query recipe
of this chapter)

» search type (optional): This defines how ElasticSearch should process a query.
We'll see the scan query in the Executing a scan query recipe of this chapter.

» scroll (optional): This controls scrolling in the scroll/scan queries. The scroll
allows you to have an ElasticSearch equivalent of a DBMS cursor.

There's more...

If you are using sort, pay attention to the tokenized fields. The sort order depends on
the lower order token if it is ascendant and on the higher order token if it is descendent.
For the preceding example, the results are as follows:

"hits" : [{

" index" : "test-index",
"_type" : "test-type",

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

" idll . llllll

" score" : null, " source" : {"position": 1, "parsedtext":
"Joe Testere nice guy", "name": "Joe Tester", "uuid":
"11111"},

"sort" : ["tester"]

" index" : "test-index",

" type" : "test-type",

n idll . "3"1

" score" : null, " source" : {"position": 3, "parsedtext":
"Bill is not\n nice guy", "name": "Bill
Clinton", "uuid": "33333"},

"sort" : ["clinton"]

" index" : "test-index",

" type" : "test-type",

n idll . "2"1

" score" : null, " source" : {"position": 2, "parsedtext":
"Bill Testere nice guy", "name": "Bill Baloney", "uuid":
"22222"},

"sort" : ["bill"]

Two main concepts are important in a search: query and filter.
* A query means that the matched results are scored using an
internal Lucene-scoring algorithm; in a filter, the results are
tad only matched, without scoring. Because a filter doesn't need to
compute the score, it is generally faster and can be cached.

To improve the quality of the resulting score, ElasticSearch provides the rescore functionality.
This capability allows you to reorder a top number of documents with another query, so it's
generally much more expensive, for example, if the query contains a lot of matched queries
or scripting. This approach allows you to execute the rescore query only on a small subset

of results, reducing the overall computation time and resources.

Rescore, as with every query, is executed at the shard level, so it's automatically distributed.

M The best candidates to be executed in a rescore query are
Q complex queries with a lot of nested options and everything that
uses scripting (due to a massive overhead of scripting languages).

126

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The following example will show you how to execute a fast query (Boolean) in the first phase
and then rescore it with a match query in the rescore section:

curl -s -XPOST 'localhost:9200/ search' -d '{
r"query" : {
"match" : {
"parsedtext" : {
"operator" : "or",
"query" : "nice guy joe",
"type" : "boolean"

3
"rescore" : {
"window size" : 100,
"query" : {
"rescore query" : {
"match" : {
"parsedtext" : {
"query" : "joe nice guy",
"type" : "phrase",
"slop" : 2

}I
"query weight" : 0.8,
"rescore query weight" : 1.5

} 1
The following are the rescore parameters:
» window_size: This controls how many results per shard must be considered in the
rescore functionality.

» query weight (by default, 1.0) and rescore query weight (by default, 1.0):
These are used to compute the final score using the following formula:

final score=query score*query weight + rescore score*rescore
query weight

1
‘Q If a user wants to only keep the rescore score, he/she can set

the query weight parameter to 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

» The Executing an aggregation recipe in the next chapter
» The Highlighting results recipe in this chapter
» The Executing a scan query recipe in this chapter

» The Suggesting terms for a query recipe in this chapter

Sorting results

When searching for results, the most common criteria for sorting in ElasticSearch is the
relevance to a text query. Sometimes, real-world applications need to control the sorting
criteria in typical scenarios, as follows:

» Sorting a user by their last name and first name
» Sorting items by stock symbols and price (ascending and descending)

» Sorting documents by size, file type, source, and so on

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate query.sh, available in the code bundle for this book.

How to do it...

In order to sort the results, perform the following steps:

1. Add a sort section to your query, as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{"query":{"match all":{}},

"sort" : [
{"price" : {"order" : "asc", "mode" : "avg", "ignore
unmapped":true, "missing":" last"}},
" score"

1
}I

2. The returned result will be similar to this:

e
"hits" : {
"total" : 3,
"max_ score" : null,

128

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"hits" : [{
" index" : "test-index",
" type" : "test-type",
n idll . llllll
" score" : null, " source" :{ .. "price":4.0},
"sort" : [4.0]

b Ao

The sorting result is very special: the _score parameter is not computed and an extra field,
sort, is created to collect the value used for sorting.

The sort parameter can be defined as a list that can contain both simple strings and
JSON objects.

The sort string is the name of the field (such as fieldil, field2, field3, and fields4)
that is used to sort, similar to SQL's order by statement.

The JSON object allows you to use the following extra parameters:

4

order (asc/desc): This defines whether the order must be considered in the
ascending format (which is the default) or the descending format.

ignore unmapped (true/false): This allows you to ignore the fields that do
not have mappings in them. This option prevents errors during a search due to
missing mappings.

unmapped_type: This defines the type of the sort parameter, if it is missing.
missing (_last/ first): This defines how to manage a missing value: we can
put them at the end (_last) of the results or at the start (_first).

mode: This defines how to manage multiple value fields. The following are the
possible values:

o min: This is the minimum value that is chosen (in the case of multiple prices
for an item, it chooses the lower value to be used for the comparison).

o max: This is the maximum value that is chosen.

o sum: Using this, the sort value will be computed as the sum of all the values.
This mode is only available on numeric fields.

o avg: This sets the sort value, with which the sort result will be an average of
all the values. This mode is only available on numeric fields.

1
‘Q If you want to add the match score value to the sort list,

you must use the special sort field: _score.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

If we want to use sorting for a nested object, there are two extra parameters that can be used:

» nested path: This defines the nested object to be used for sorting. The field
defined for sorting will be related to the nested_path parameter. If it is not
defined, the sorting field will be related to the document root. For example,
if we have an address object nested in a person document, we can sort
for the city.name values and use:

o address.city.name: This is used if you want to sort without
defining the nested_path.

o city.name: Using this defines a nested_path address.

» nested filter: This defines a filter that can be used to remove non-matching
nested documents from the sorting value extraction. This filter allows a better
selection of values to be used for sorting.

\ The sorting process requires the sorting fields of all the matched query
~ documents to be fetched in order to be compared. To prevent high memory
Q usage, it's better to sort on numeric fields, and in the case of string sorting,
select short text fields processed with an analyzer that don't tokenize the text.

There's more...

There are two special sorting types: geo distance and scripting.

Geo distance sorting uses the distance from a geopoint (location) as a metric to compute the
ordering. Check out the following example of sorting:

"sort" : [
" geo distance" : {
"pin.location" : [-70, 40],
"order" : "asc",
llunit n : n kmll

}
}
] !
The earlier example accepts special parameters as follows:

» unit: This defines the unit system (metric in the earlier example) to be used in order
to compute the distance.

» distance type (sloppy arc/arc/plane): This defines the type of distance to
be computed.

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The geo distance name for the field is mandatory.

The point of reference for the sorting can be defined in several ways, as we already discussed
in the Mapping a geo point field recipe in Chapter 3, Managing Mapping.

How to use scripting to sort will be discussed in the Sorting data using scripts recipe in
Chapter 7, Scripting, after we introduce the scripting capabilities of ElasticSearch.

See also

» The Mapping a geo point field recipe in Chapter 3, Managing Mapping
» The Sorting data using scripts recipe in Chapter 7, Scripting

Highlighting results

ElasticSearch does a good job of finding matching results in large text documents too. Searching
text in very large blocks is very useful, but to improve user experience, it is sometimes necessary
to show the abstract to the users, which is a small portion of the text that matches the query.
The abstract is a common way to help users understand how the matched document is relevant
to them. The highlight functionality in ElasticSearch is designed to do this.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate gquery.sh, available in the code bundle for this book.

How to do it...

In order to search and highlight the results, perform the following steps:

1. From the command line, execute a search with a highlight parameter:
curl -XGET 'http://127.0.0.1:9200/test-index/ search?pretty=true&f
rom=0&size=10' -d '
{
"query": {"query string": {"query": "joe"}},
"highlight": {
"pre tags": [""],
nfields": {
"parsedtext": {"order": "score"},
"name": {"order": "score"}},

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

"post tags": [""]
}
}
3}

2. If everything works all right, the command will return the following result:

{

. truncated ..
"hits" : {
"total" : 1,
"max_score" : 0.44194174,
"hits" : [{
" index" : "test-index",
" type" : "test-type",
"oidgm . om1v,
" score" : 0.44194174, " source" : {"position": 1,
"parsedtext": "Joe Testere nice guy", "name": "Joe
Tester", "uuid": "11111"},
"highlight" : {
"name" : ["Joe Tester"],
"parsedtext" : ["Joe Testere nice guy"]

As you can see, in the results, there is a new field called highlight, which contains the

highlighted fields along with an array of fragments.

When the highlight parameter is passed to the search object, ElasticSearch tries to

execute it on the document's results.

The highlighting phase, which is after the document fetching phase, tries to extract the

highlight by following these steps:

1. It collects the terms available in the query.
2. ltinitializes the highlighter with the parameters passed during the query.

3. It extracts the fields we are interested in and tries to load them if they are stored;

otherwise they are taken from the source.

It executes the query on a single field in order to detect the more relevant parts.

5. It adds the highlighted fragments that are found in the resulting hit.

132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Using the highlighting functionality is easy, but there are some important factors that you
need to pay attention to:

» The field that must be highlighted should be available in one of the forms explained
earlier. It must be stored in the source or the term vector.

The ElasticSearch highlighter checks the presence of the data field

. first as a term vector (the fastest way to execute the highlighting).

% If the field has no term vectors, it tries to load the field value from
S the stored fields. If the field is not stored, it loads the JSON source,
interprets it, and extracts the data value if it is available. Obviously,

the last approach is the slowest and resource-intensive approach.

» If a special analyzer is used in the search, it should be passed to the highlighter as
well (this is often managed automatically).

There are several parameters that can be passed to the highlighted object to control the
highlighting process, given as follows:

» number of fragments (bydefault, 5): This parameter controls how many
fragments are returned. It can be configured globally or for a field.

» fragment size (bydefault, 100): This specifies the number of characters
that the fragments must contain. It can be configured globally or for a field.

» pre tags/post_tags: These are a list of tags that can be used to mark the
highlighted text.

» tags_schema="styled": This allows you to define the tag schema that marks
highlights with different tags in order of importance. This is a helper to reduce the
definition of a lot of pre_tags/post_tags.

» The Executing a search recipe in this chapter

Executing a scan query

Every time a query is executed, the results are calculated and returned to the user.

In ElasticSearch, there is no deterministic order for the records; pagination on a big block of
values can result in inconsistency between the results due to documents being added and
deleted, and also between documents with the same score. The scan query tries to resolve
these kinds of problems by providing a special cursor that allows you to uniquely iterate all
the documents. It's often used to back up documents or reindex them.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
(chapter 05/populate guery.sh) available in the code bundle for this book.

How to do it...

In order to execute a scan query, perform the following steps:

1. From

curl

the command line, execute a search of the type scan:
-XGET 'http://127.0.0.1:9200/test-index/test-

type/ search?pretty=true&search type=scan&scroll=10m&size=50' -d
'{"query":{"match all":{}}}"

2. Ifeve

{

rything works all right, the command will return a result, as follows:

" scroll id" : "c2Nhbjsl0zQ1lMzp4dlFtcngONINCYUpVOXh4c0Zi¥1130zQ
1Njp4d1Ftcng0ONLINCYUpVOXh4c0ZiY11302zQ1Nzp4d1lFtcngONINCYUpVOXh4c0Zi
Y1130zQ1NDp4d1lFtcngONINCYUpVOXh4c0Z1Y1130zQ1NTp4d1lFtcngON1INCYUpVO
Xh4c0ZiY1130zE7dG90YWxfaGl0czozOw==",

"took" : 1,

"timed out" : false,

" shards" :
"total" : 5,
"successful" : 5,

b

"failed" : 0

"hits" : |

}

"total" : 3,
"max_score" : 0.0,
"hits" : []

The result is composed of the following parameters:

u]

u]

u]

scroll id: This is the value to be used to scroll records.
took: This is the time required to execute the query.

timed_ out: This is used to notify whether the query, if any query has,
timed out.

_shards: This gjives information about the status of shards during the query.

hits: This gives the total hits. The hits other than the total are available
when you scroll.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Using the scroll id parameter, you can use the scroll IDs to get the results:

curl -XGET 'localhost:9200/ search/scroll?scroll=10m' -d 'c2Nhbjs
10zQ2Mzp4d1lFtcngON1INCYUpVOXh4c0ZiY1130zQ2Njp4dlFtcngONINCYUpVOXh4
c0ZiY1130z2Q2Nzp4d1FtcngONINCYUpVOXh4c0ZiY1130zQ2NDp4d1FtcngON1INCY
UpVOXh4c0ZiY1130zQ2NTp4d1lFtcngONINCYUpVOXh4c0ZiY1130zZE7dG90YWxfaG
10czozOw=="'

3. The result should be similar to this:

{

" scroll id" : "c2NhbjswOzE7dG90YWxfaGlOczozOw==",
"took" : 20,
"timed out" : false,
" shards" : {
"total" : 5,
"successful" : 0,
"failed" : 5
b
"hits" : |
"total" : 3,
"max score" : 0.0,

)

The scan query is interpreted as a standard search. This kind of search is designed to iterate
on a large set of results, so the score and the order are not computed.

During the query phase, every shard stores the state of the IDs in the memory until a timeout.
A scan query can be processed in two steps, as follows:
1. The first part of the preceding example code executes a query and returns a

scroll id value, which can be used to fetch the results.

2. The second part of the preceding example code executes the document scrolling.
You iterate the second step, getting the new scroll id value, in order to fetch
other documents.

1
‘Q If you need to iterate on a big set of records, a scan query must

be used; otherwise you might have duplicated results.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

A scan query is similar to every executed standard query, but there are two special parameters
that must be passed in the query string:

» search type=scan: This informs ElasticSearch to execute a scan query.

» scroll=(your timeout): This allows you to define how long the hits should live.
The time can be expressed in seconds using the s postfix (such as, 5s, 10s, and 15s)
or in minutes using the m postfix (that is 5m, 10m). If you are using a long timeout, you
must ensure that your nodes have a lot of RAM in order to keep the resulting ID live.
This parameter is mandatory.

Size is also special as it is treated per shard, meaning that
if you have a size equal to 10 and 5 shards, each scroll will
g return 50 documents.

See also

» The Executing a Search recipe in this chapter

Suggesting a correct query

It's very common for users to commit typing errors or to require suggestions for the words they
are writing. These issues are solved by ElasticSearch with the suggest functionality.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate query.sh, available in the code bundle for this book.

How to do it...

In order to suggest relevant terms by query, perform the following steps:

1. From the command line, execute a suggest call:
curl -XGET 'http://127.0.0.1:9200/test-index/ suggest?pretty=true’

-d'{
"suggestl" : {
"text" : "we find tester",
"term" : {
"field" : "parsedtext"
}
}
}l

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

2. This result will be returned by ElasticSearch if everything works all right:

{

" shards": {
"failed": O,
"successful": 5,
"total": 5

I

"suggestl": [

{
"length": 2,
"offset": 0,
"options": [],
"text": "we"
I
{
"length": 4,
"offset": 3,
"options": [],
"text": "find"
I
{
"length": 6,
"offset": 8,
"options": [
{
"freg": 2,
"score": 0.8333333,
"text": "testere"
}
1,
"text": "tester"
}
]
}

The preceding result is composed of the following:

» The shard's status at the time of the query.
» The list of tokens with their available candidates.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

The suggest API call works by collecting term statistics on all the index shards. Using Lucene
field statistics, it is possible to detect the correct or complete term.

The HTTP method used to execute a suggestion is GET (but POST also works). The URLs for
the REST endpoints are:

http://<server>/ suggest
http://<server>/<index_name (s) >/ suggest

Q This call can be also embedded in the standard search API call.

There are two types of suggesters: the term suggester and the phrase suggester.

The terms suggester is the simpler form of suggester. It only requires the text and the field to
work. It also allows you to set a lot of parameters, for example: the minimum size for a word,
how to sort results, the suggester strategy, and so on. A complete reference is available on
the ElasticSearch website.

The phrase suggester is able to keep relationships between terms that it needs to suggest.
The phrase suggester is less efficient than the term suggester, but it provides better results.

The suggest APl is a new feature, so parameters and options can change between releases;
New suggesters can also be added via plugins.

» The Executing a Search recipe in this chapter

» The phrase suggester's online documentation at
http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current/search-suggesters-phrase.html

» The completion suggester's online documentation at
http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current/search-suggesters-completion.html

» The context suggester's online documentation at
http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current/suggester-context.html

138

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-suggesters-phrase.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-suggesters-phrase.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-suggesters-completion.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-suggesters-completion.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/suggester-context.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/suggester-context.html
http://www.it-ebooks.info/

Chapter 5

Counting matched results

It is often required to return only the count of the matched results and not the results
themselves. The advantages of using a count request is the performance it offers and
reduced resource usage, as a standard search call also returns hits count.

A lot of scenarios involve counting, as follows:

» To return the number of, for example, posts for a blog or comments for a post.

» To validate that some items are available. Are there posts? Are there comments?

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate_ query.sh, available in the code bundle for this book.

How to do it...

In order to execute a counting query, perform the following steps:

1. From the command line, execute a count query:
curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
count?pretty=true' -d '{"query":{"match all":{}}}"

2. The following result should be returned by ElasticSearch if everything works all right:

{

"count" : 3,

" shards" :
"total" : 5,
"successful" : 5,

"failed" : O
1
1

The result is composed of the count result (a long type value) and the shard's status at the
time of the query.

The query is interpreted as it is done for searching. The count is processed and distributed in
all the shards, in which it's mapped in a low-level Lucene count call. With every hit, a shard
returns a count that is aggregated and returned to the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

In ElasticSearch, it is faster to count than search. If results are
S not required, it's good practice to use it.

The HTTP method to execute a count is GET (but POST works too). The URL examples for the
REST endpoints are:

http://<server>/ count
http://<server>/<index_name (s) >/ count
http://<server>/<index_name (s) >/<type name(s) >/ count

Multi-indices and types are comma separated. If an index or a type is defined, the search is
limited to them only. An alias can be used as the index name.

Typically, a body is used to express a query, but for a simple query, g (the query argument)
can be used. Take the following code as an example:

curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/_count?g=uuid:11111'

Counts can also be requested from a normal search call by configuring
the search type parameter to count. More details are available in

the ElasticSearch documentation at http://www.elasticsearch.
’ org/guide/en/elasticsearch/reference/current/
search-request-search-type.html.

» The Executing a search recipe in this chapter

Deleting by query

In the Deleting a document recipe from Chapter 4, Basic Operations, we saw how to delete
a document (). A document can be deleted very quickly, but it requires you to know the
document ID.

ElasticSearch provides a call to delete all the documents that match a query.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
(chapter 05/populate guery.sh) available in the code bundle for this book.

140

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-search-type.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-search-type.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-search-type.html
http://www.it-ebooks.info/

Chapter 5

How to do it...

In order to execute a DELETE by query, perform the following steps:

1. Using the command line, execute a query, as follows:
curl -XDELETE 'http://127.0.0.1:9200/test-index/test-type/
query?pretty=true' -d '{"query":{"match all":{}}}"

2. The following result should be returned by ElasticSearch, if everything works all right:

{

" indices" : {
"test-index" : {
" shards" :
"total" : 5,
"successful" : 5,

"failed" : 0

}
}
}

3. The result is composed of the shard's status at the time of the DELETE query.

The query is interpreted in the same way as it is done for searching. The DELETE query is
processed and distributed to all the shards.

_ When you want to remove all the documents without deleting the
& mapping, using a DELETE query along with a match all query
s allows you to clean your mapping of all the documents. This call is
analogous to the truncate table syntax of the SQL language.

The HTTP method to execute a DELETE query is DELETE, and the URL examples for the REST
endpoints are:

http://<server>/_query
http://<server>/<index name (s)>/_query
http://<server>/<index name (s)>/<type_name(s) >/ _query

Multiple indices and types are comma separated. If an index or a type is defined, the search is
limited only to them. An alias can be used as the index name.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

Typically, a body is used to express a query, but for a simple query, g (the query argument) can
be used, as follows:

curl -XDELETE 'http://127.0.0.1:9200/test-index/test-type/
query?g=uuid:11111"

See also

» The Executing a Search recipe in this chapter

Matching all the documents

One of the most used queries, usually in conjunction with a filter, is the match all query.
This kind of query allows you to return all the documents.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate gquery.sh, available in the code bundle for this book.

How to do it...

In order to execute a match_all query, perform the following steps:

1. From the command line, execute the query:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-
type/ search?pretty=true' -d '{"query":{"match all":{}}}'
2. The following result should be returned by ElasticSearch if everything works all right:

{

"took" : 52,
"timed out" : false,
" shards" : {
"total" : 5,
"successful" : 5,
"failed" : O
b
"hits" : {
"total" : 3,
"max_score" : 1.0,
"hits" : [{
"_index" : "test-index",
"_type" : "test-type",

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

" idn

" score"
"parsedtext":
Tester",

b Ao

"_index"
ll_t-y-pe n

n idll

" score"
"parsedtext":
Baloney",

bo Ao

" index"
ll_type n

n idn

" score"
"parsedtext":
guy",

}]
}
}

" source" : {"position": 1,
"Joe Testere nice guy", "name": "Joe
"n11111"}

"test-index",
"test-type",

" source" : {"position": 2,
"Bill Testere nice guy", "name": "Bill
"yuid": "22222"}

"test-index",
"test-type",

" gsource" : {"position": 3,

"Bill is not\n nice
"Bill Clinton", "uuid": "33333"}

The result is a standard query result, as we have seen in the Executing a Search recipe in

this chapter.

The match all query is one of the most commonly used query types. It's fast because it
doesn't require the score calculus (it's wrapped in a Lucene ConstantScoreQuery query).

The match all query is often used in conjunction with a filter in a filter query, as follows:

curl -XPOST "http://localhost:9200/test-index/test-type/ search" -4

{
"query": {
"filtered": {
"query": {

}l
"filter": {
"term": {

"match all": {}

"myfield":

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

1
‘\Q If no query is defined in the search object, the default query

will be amatch_query query.

» The Executing a search recipe in this chapter

Querying/filtering for a single term

Searching or filtering for a particular term is frequently done. A term query and filter work with
exact values and are generally very fast.

The term query/filter can be compared to the equals "=" query in the SQL world (for the fields
that are not tokenized).

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate gquery.sh, available in the code bundle for this book.

How to do it...

In order to execute a term query/filter, perform the following steps:

1. Execute a term query from the command line:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"term": {
"yuid": "33333"
}
}
3

2. The following result should be returned by ElasticSearch if everything works all right:

{

"took" : 58,

"timed out" : false,

" shards" : {
"total" : 5,
"successful" : 5,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"failed" : O

b

"hits" : {
"total" : 1,
"max_score" : 0.30685282,
"hits" : [{

" index" : "test-index",

" type" : "test-type",

"oid" . "3n,

" score" : 0.30685282, " source" : {"position": 3,
"parsedtext": "Bill is not\n nice guy", "name":
"Bill Clinton", "uuid": "33333"}

bl
}

}

The result is a standard query result, as we have seen in the Executing a Search
recipe in this chapter.

Execute a term filter from the command line:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"filtered": {
"filter": {
"term": {
"yuid": "33333"
}
}
"query": {
"match all": {}
}
}
}

} 1
This is the result:

{

"took" : 4,

"timed out" : false,

" shards" :
"total" : 5,
"successful" : 5,

"failed" : 0

b

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

"hits" : {
"total" : 1,
"max_score" : 1.0,
"hits" : [{
" index" : "test-index",
" type" : "test-type",
"oidm . "3n,
" score" : 1.0, " source" : {"position": 3, "parsedtext":
"Bill is not\n nice guy", "name": "Bill Clinton",
"yuid": "33333"}

Pl
}
}

Lucene, due to its inverted index, is one of the fastest engines to search for a term/value in
a field.

Every field that is indexed in Lucene is converted in a fast search structure for its particular type:

» The text is split into tokens if it is analyzed or saved as a single token
» Numeric fields are converted into their fastest binary representations
» Date and Date-time fields are converted into binary forms

In ElasticSearch, all these conversions are automatically managed. The search for a term,
independent of the value, is archived by ElasticSearch using the correct format for the field.

Internally, during a term query execution, all the documents matching the term are collected

and then sorted by their scores (the scoring depends on the Lucene similarity algorithm chosen).
The term filter follows the same approach, but because it doesn't require the score step, it's
much faster.

If we take a look at the results of the previous searches, for the term query, the hit has
0.30685282 as the score and the filter has 1. 0. The time required to score a sample
if it is very small is not so relevant, but if you have thousands or millions of documents,
it takes a lot more time.

Q If the score is not important, use the term filter.

146

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Afilter is preferred to query when the score is not important, for example, in the
following scenarios:

» Filtering permissions

» Filtering numerical values

» Filtering ranges

M In a filtered query, the filter is applied first, narrowing down
Q the number of documents to be matched against the query,
and then the query is applied.

There's more...

Matching a term is the basic function of Lucene and ElasticSearch. In order to correctly use a
query/filter, you need to pay attention to how the field is indexed.

As we saw in Chapter 3, Managing Mapping, the terms of an indexed field depend on the
analyzer that is used to index it. In order to better understand this concept, in the following
table, there is a representation of a phrase that depends on several analyzers. Take the
phrase: Peter's house is big, as an example:

Mapping index Analyzer Tokens

no (No index) (No tokens)

not analyzed KeywordAnalyzer [Peter's house is big]
analyzed StandardAnalyzer [peter, s, house, is, big]

The common pitfalls in searching are related to misunderstanding the analyzer/mapping
configuration.

The KeywordAnalyzer analyzer, which is used as a default for the not _analyzed field,
saves the text without any changes as a single token.

The StandardAnalyzer analyzer, the default for the analyzed field, tokenizes on
whitespaces and punctuation; and every token is converted to lowercase. You should

use the same analyzer that is used in indexing to analyze the query (the default settings).
In the preceding example, if the phrase is analyzed with the Standardanalyzer analyzer,
you cannot search for the term Peter, but you have to search for peter, because the
StandardAnalyzer analyzer executes a lowercasing on the terms.

M When the same field requires one or more search strategies,
Q you need to use the £ields property using the different
analyzers that you need.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

» The Executing a search recipe in this chapter

Querying/filtering for multiple terms

The previous type of search works very well if you need to search for a single term. If you want
to search for multiple terms, you can do that in two ways: using an AND/OR filter or using the
multiple term query.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate_ query.sh, available in the code bundle for this book.

How to do it...

In order to execute a terms query/filter, perform the following steps:

1. Execute a terms query from the command line:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"terms": {
"yuid": ["33333", "32222"]
}
}
}I

The result returned by ElasticSearch is the same as in the previous recipe.

2. If you want to use the terms query in a filter, this is how the query should look:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"filtered": {
"filter": {
"terms": {
"yuid": ["33333", "32222"]
}
3

"query": {

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"match all": {}

The terms query/filter is related to the preceding type of query. It extends the term query
to support multiple values.

This call is very useful because the concept of filtering on multiple values is very common.
In traditional SQL, this operation is achieved with the in keyword in the where clause:

Select * from *** where color in ("red", "green")
In the preceding examples, the query searches for uuid with the values 33333 or 22222.

The terms query/filter is not merely a helper for the term matching function, but it also allows
you to define extra parameters in order to control the query behavior:

» minimum match/minimum_ should match: This parameter controls the number
of matched terms that are required to validate the query. For example, the following
query matches all the documents where the color fields have at least two values from
a list of red, blue, and white

"terms": {
"color": ["red", "blue", "white"],
"minimum should match":2

}

» disable coord: With this parameter, a Boolean function indicates whether the
coord query must be enabled or disabled. The coord query is a query option that
is used for better scoring by overlapping the match in Lucene. For more details, visit
http://lucene.apache.org/core/4 0 0/core/org/apache/lucene/
search/similarities/Similarity.html.

» Dboost: This parameter is the standard query boost value used to modify the
query weight.

The term filter is very powerful, as it allows you to define the strategy that must be used
in order to filter terms. The strategies are passed in the execution parameter, and the
following parameters are currently available:

» plain (default): This parameter works as a terms query. It generates a bit set with
the terms, and is evaluated. This strategy cannot be automatically cached.

www.it-ebooks.info

http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/Similarity.html
http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/Similarity.html
http://www.it-ebooks.info/

Search, Queries, and Filters

» bool: This parameter generates a term query for every term and then creates a
Boolean filter to be used in order to filter terms. This approach allows you to reuse
the term filters required for the Boolean filtering, which increases the performance
if the subterm filters are reused.

» and: This parameter is similar to the bool parameter, but the term filter's subqueries
are wrapped in an AND filter.

» or: This parameter is also similar to the bool parameter, but the term filter's
subqueries are wrapped in an OR filter.

There's more...

Because term filtering is very powerful, in order to increase performance the terms can be
fetched by other documents during the query. This is a very common scenario. Take, for
example, a user that contains a list of the groups it is associated with, and you want to filter
the documents that can only be seen by some groups. This is how the pseudo code should be:

curl -XGET localhost:9200/my-index/document/ search?pretty=true -d
{
"query" : {
"filtered" : {
"query":{"match all":{}},
"filter" : {
"terms" : {
"can see groups" : {
"index" : "my-index",
"type" : "user",
nid" : "lbw7lLaxSzSp zV6NB_YGg",
"path" : "groups"

In the preceding example, the list of groups is fetched at runtime from a document (which is
always identified by an index, type, and ID) and the path (£ield) that contains the values to
be put in it. This pattern is similar to the one used in SQL:

select * from xxx where can_see group in (select groups from user
where user_ id='lbw71LaxSzSp_ zV6NB_YGg')

150

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Generally, NoSQL data stores do not support joins, so the data must be optimized to search
using de-normalization or other techniques. ElasticSearch does not provide the join as in SQL,
but it provides similar alternatives, as follows:

» Child/parent queries

» Nested queries

» Term filter with external document term fetching

» The Executing a search recipe in this chapter

» The Querying/filtering for term recipe in this chapter

» The Using a Boolean query/filter recipe in this chapter
» The Using and/or/not filters recipe in this chapter

Using a prefix query/filter

The prefix query/filter is used when only the starting part of a term is known. It allows you to
complete truncated or partial terms.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate gquery.sh, available in the code bundle for this book.

How to do it...

In order to execute a prefix query/filter, perform the following steps:

1. Execute a prefix query from the command line:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"prefix": {
"yuid": "333"
}
}
3

2. The result returned by ElasticSearch is the same as in the previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

3. If you want to use the prefix query in a filter, this is how the query should look:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"filtered": {
"filter": {
"prefix": {
"yuid": "333"
}
3
"query": {
"match all": {}

When a prefix query/filter is executed, Lucene has a special method to skip to terms that
start with a common prefix, so the execution of a prefix query is very fast.

The prefix query/filter is used, in general, in scenarios where term completion is required,
as follows:
» Name completion
» Code completion
» On-type completion
When designing a tree structure in ElasticSearch, if the ID of the item is designed to contain the

hierarchic relation, it can speed up application filtering a lot. The following table, for example,
shows the ID and the corresponding elements:

ID Element
001 Fruit

00102 Apple
0010201 Green apple
0010202 Red apple
00103 Melon
0010301 White melon
002 Vegetables

152

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the preceding example, we have structured IDs that contain information about the tree
structure, which allows you to create queries, as follows:
» Filter by all fruit:
"prefix": {"fruit_ id": "oo1" }

» Filter by all apple types:
"prefix": {"fruit id": "001002" }
» Filter by all vegetables:
"prefix": {"fruit_ id": "o002" }
If the preceding structure is compared to a standard SQL parent_id table in a very large

dataset, the reduction in join and the fast search performance of Lucene can filter the results
in a few milliseconds, compared to a few seconds/minutes.

1
‘\Q Structuring the data in the correct way can provide an impressive

performance boost!

» The Querying/filtering for terms recipe in this chapter

Using a Boolean queryf/filter

Every person who uses a search engine has at some point in time used the syntax with minus
(-) and plus (+) to include or exclude some query terms. The Boolean query/filter allows you
to programmatically define a query to include, exclude, or optionally include terms (should)
in the query.

This kind of query/filter is one of the most important ones, because it allows you to aggregate
a lot of simple queries/filters, which we will see in this chapter, to build a big complex query.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate query.sh, available in the code bundle for this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

How to do it...

In order to execute a Boolean query/filter, perform the following steps:

1. Execute a Boolean query using the command line:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"bool" : {
"must" : {
"term" : { "parsedtext" : "joe" }
}I
"must not" : {
"range" : {
"position" : { "from" : 10, "to" : 20 }
}
}I
"should" : [
{
"term" : { "uuid" : "11111" }
}I
{
"term" : { "uuid" : "22222" }
}
]’
"minimum number should match" : 1,
"boost" : 1.0
}
}

} 1

2. The result returned by ElasticSearch is similar to the result from the previous recipes,
but in this case, it should return just one record (ID: 1).

3. If you want to use a Boolean filter, use the following query:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"filtered": {
"filter": {
"bool" : {
"must" : {
"term" : { "parsedtext" : "joe" }
3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"must not" : {
"range" : {
"position" : { "from" : 10, "to" : 20 }

}
Y
"should" : [
{
"term" : { "uwuid" : "11111" }
Y
{
"term" : { "uuid" : "22222" }
}
1
}
Y
"query": {
"match all": {}
}

The Boolean query/filter is often one of the more frequently used ones because it allows you
to compose a big query using a lot of simple ones. It must have one of these three parts:

» must: This is a list of the queries/filters that must be satisfied. All the must queries
must be verified to return hits. It can be seen as an AND filter with all its subqueries.

» must_not: This is a list of the queries/filters that must not be matched. It can be
seen as a NOT filter of an AND query.

» should: This is a list of the queries that can be verified. The value of the minimum
number of queries that must be verified is controlled by the minimum number
should match parameter (by default, 1).

y The Boolean filter is faster than a group of AND/OR/NOT queries
because it is optimized to execute fast Boolean bitwise operations
’ on a document's bitmap results.

» The Querying/filtering for Terms recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

Using a range queryf/filter

Searching/filtering by range is a very common scenario in a real-world application. The following
are a few standard cases:
» Filtering by a numeric value range (such as price, size, age, and so on)

» Filtering by date (for example, the events of 03/07/12 can be a range query,
from 03/07/12 00:00:00 and 03/07/12 24:59:59)

» Filtering by term range (for example, terms from A to D)

Getting ready

You need a working ElasticSearch cluster, an index named test (see Chapter 4, Basic Operations,
to create an index named test), and basic knowledge of JSON.

How to do it...

In order to execute a range query/filter, perform the following steps:

» Consider the previous example's data, which contains a position integer field.
This can be used to execute a query in order to filter positions between 3 and 5,
as follows:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"filtered": {
"filter": {
"range" : {
"position" : {
"from" : 3,
"to" : 4,
"include lower" : true,
"include upper" : false
}
}
.
"query": {
"match all": {}
}
}

156

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

A range query is used because scoring results can cover several interesting scenarios,
as follows:
» Items with high availability in stocks should be presented first
» New items should be highlighted
» Most bought item should be highlighted
The range filter is very useful for numeric values, as the earlier example shows. The parameters
that a range query/filter will accept are:
» from (optional): This is the start value for the range
» to (optional): This is the end value for the range

» include_in lower (optional, by default true): This parameter includes the start
value in the range

» include_ in upper (optional, by default true): This parameter includes the end
value in the range
In a range filter, other helper parameters are available to simplify a search:
» gt (greater than): This parameter has the same functionality as the from parameter
and the include_in lower field when setto false

» gte (greater than or equal to): This parameter has the same functionality to set the
from parameter and the include in lower field to true

» 1t (lesser than): This parameter has the same functionality to set the to parameter
and the include in lower field to false

» 1lte (lesser than or equal to): This parameter has the same functionality to set the
to parameter and the include_in_ lower field to false

In ElasticSearch, a range query/filter covers several types of SQL queries, such as <, <=, >,
and >= on numeric values.

In ElasticSearch, because date-time fields are managed internally as numeric fields, it's
possible to use range queries/filters for date values. If the field is a date field, every value
in the range query is automatically converted to a numeric value. For example, if you need
to filter the documents of this year, this is how the range fragment will be:

"range" : {
"timestamp" : {
"from" : "2014-01-01",

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

"to" : "2015-01-01",
"include lower" : true,
"include upper" : false

}
}

Using span queries

The big difference between standard databases (SQL as well as many NoSQL databases,
such as MongoDB, Riak, or CouchDB) and ElasticSearch is the number of facilities to express
text queries.

The SpanQuery family is a group of queries that control a sequence of text tokens via their
positions. Standard queries and filters don't take into account the positional presence of
text tokens.

Span queries allow you to define several kinds of queries:

» The exact phrase query
» The exact fragment query (such as, Take off, give up)

» A partial exact phrase with a slop, that is, other tokens between the searched terms
(such as the man with slop 2 can also match the strong man, the old wise
man, and so on)

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate guery.sh, available in the code bundle for this book.

How to do it...

In order to execute span queries, perform the following steps:

1. The main element in span queries is the span_term term whose usage is similar
to the term of a standard query. One or more span_term can be aggregated to
formulate a span query. The span_first query defines a query in which the
span_term must match in the first token or ones near it. Take the following
code as an example:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"span_ first" : {
"match" : {

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"span_term" : { "parsedtext" : "joe" }
3
"end" : 5
}
}
3
The span_or query is used to define multiple values in a span query. This is very
handy for a simple synonym search:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"span _or" : {
"clauses" : [
{ "span_term" : { "parsedtext" : "nice" } },
{ "span_term" : { "parsedtext" : "cool" } },
{ "span_term" : { "parsedtext" : "wonderful"}

}
}
}I

The list of clauses is the core of the span_or query, because it contains the span
terms that should match.

Similar to the span_or query, there is a span_multi query, which wraps multiple
term queries such as prefixes and wildcards, as follows:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"span multi®:{
"match": {
"prefix" : { "parsedtext" : { "value" : "jo" } }
}
}
}
3
All these kinds of queries can be used to create the span_near query that allows
you to control the token sequence of the query:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"span _near" : {
"clauses" : [

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

{ "span_term" : { "parsedtext" : "nice" } },
{ "span_term" : { "parsedtext" : "joe" } },
{ "span_term" : { "parsedtext" : "guy" } }

1.

"slop" : 3,

"in order" : false,

"collect payloads" : false

Lucene provides the span queries available in ElasticSearch. The base span query is
span_term, which works exactly the same as the term query. The goal of this span query
is to match an exact term (field plus text). It's possible to compose and formulate the other
kind of span queries.

The main use of a span query is for a proximity search: to search
i terms that are close to each other.

A span_first function is used in a span_term query to match a term that must be in the
first position. If the end parameter (integer) is defined, it extends the first token that matches
the passed value.

One of the most powerful span queries is the span_or query, which allows you to define
multiple terms in the same position. It covers several scenarios, as follows:

» Multiple names

» Synonyms

» Several verbal forms

The span_or query does not have the counterpart span_and query function, as it does not
have any meaning, because span queries are merely positional.

If the number of terms that must be passed to a span_or query function is huge, it can
sometimes be reduced with a span_multi query using a prefix or wildcard. This approach
allows you to make matches. For example, for the terms play, playing, plays, player,
players and so on, a prefix query with play must be used.

160

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The other most powerful span query is span_near, which allows you to define whether a
list of span queries (clauses) needs to be matched in a sequence or not. The following
parameters can be passed to this span query:

» in order (by default, true): This parameter defines that the term that is matched
in the clauses must be executed in an order. If you define two span_near queries
with two span terms to match joe and black, you will not be able to match the text
black joeifthe in_order parameter is true.

» slop (by default, 0): This parameter defines the distance between the terms that
must match the clauses.

1
‘\Q By setting slop to 0 and the in_order parameter to true, you will

be creating an exact phrase match.

A span near (span_near) query and slop can be used to create a phrase match that can
have some terms that are not known. For example, consider matching an expression such
as the house. If you need to execute an exact match, you need to write a similar query:

{

"query": {
"span near" :

"clauses" : [
{ "span term" : { "parsedtext" : "the" } },
{ "span_term" : { "parsedtext" : "house" } }

1.,

"slop" : O,

"in_order" : true

}
}
}

Now, if you have, for example, an adjective between the article and house (such as the
wonderful house, the big house, and so on), the previous query will never match them.
To achieve this goal, slop must be set to 1.

Usually, slop is set to 1, 2, or 3. High values have no meaning.

» The Using a match query recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

Using a match query

ElasticSearch provides a helper to build complex span queries that depend on simple
preconfigured settings. This helper is called a match query.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate_ query.sh, available in the code bundle for this book.

How to do it...

In order to execute a match query, perform the following steps:

1. The standard usage of a match query simply requires the field name and the
query text:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '({

"query": {
"match" : {

"parsedtext" : {
"field": "nice guy",
"operator": "and"

}

}
}

}l

2. If you need to execute the same query as a phrase query, the type of match changes
in the match_phrase function:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '({
"query": {
"match phrase" : {
"parsedtext" : "nice guy"

}
}
} [
3. An extension of the previous query used in text completion or the search as you type
functionality is the match_phrase prefix function:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

162

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"query": {
"match phrase prefix" : {
"parsedtext" : "nice gu"
}
}

The match query aggregates several frequently used query types that cover standard query
scenarios. The standard match query creates a Boolean query that can be controlled by
these parameters:

4

operator (by default, OR): This parameter defines how to store and process terms.
If it's set to OR, all the terms are converted to a Boolean query with all the terms in
should clauses. If it's set to AND, the terms will build a list of must clauses.

analyzer (by default, it is based on mapping or it is set in the search setup):
This parameter allows you to override the default analyzer of the field.

fuzziness: This parameter allows you to define fuzzy term searches (see the
Using QueryString query recipe in this chapter). In relation to this parameter,
the prefix length and max_ expansion parameters are available.

zero_terms_gquery (can be none/all, but by default, it is none):

This parameter allows you to define a tokenizer filter that removes all the terms
from the query. The default behavior is to return nothing or all of the documents.
This is the case when you build an English query search for the the or a terms
that could match all the documents.

cutoff frequency: This parameter allows you to handle dynamic stopwords
(very common terms in text) at runtime. During query execution, terms over the
cutoff frequency value are considered to be stopwords. This approach is very
useful because it allows you to convert a general query to a domain-specific query,
because the terms to skip depend on the text statistic. The correct value must be
defined empirically.

The Boolean query created from the match query is very handy, but it suffers some of the
common problems related to Boolean queries, such as term position. If the term position
matters, you need to use another family of match queries, such as the match_phrase query.
The match phrase type in a match query builds long span queries from the query text. The
parameters that can be used to improve the quality of the phrase query are the analyzers for
text processing, and the slop parameter controls the distance between terms (see the Using
Span queries recipe in this chapter).

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

If the last term is partially complete and you want to provide your users with the query while
writing functionality, the phrase type can be set to match_phrase prefix. This type builds
a span near query in which the last clause is a span prefix term. This functionality is often
used for typeahead widgets, as shown in the following screenshot:

v typeahead.js

a flexible JavaScript library that provides a strong foundation for building robust typeaheads

scala-bootstrapper Ruby
initial setup for a scala library or server, using sbt

bootstrap JavaScript
Sleek, intuitive, and powerful front-end framework for faster and easier web development.
bootstrap-server JavaScript
The node server that powers the bootstrap customize page

bower-server Ruby
The Bower Server

bower JavaScript

A package manager for the web

The match query is a very useful query type or, as | have previously defined, it helps to build
several common queries internally.

» The Using Span queries recipe in this chapter
» The Using Boolean query/filter recipe in this chapter
» The Using Prefix query/filter recipe in this chapter

Using an ID query/filter

The ID query/filter allows you to match documents by their IDs.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate query.sh, available in the code bundle for this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

How to do it...

In order to execute ID queries/filters, perform the following steps:

1.

The ID query to fetch IDs 1, 2, 3 of the type test -type is in this form:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
mids" @ {
"type" : "test-type",
"Values" s [lllll, ll2ll' ll3ll]
}
}

}l
The same query can be converted to a filter query, similar to this one:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"filtered": {
"filter": {
nids" : {
"type" : "test-type",
"values“ s ["1", “2“' "3"]
}
1.
"query": {

"match all": {}
}
}
}
}l

Querying/filtering by ID is a fast operation because IDs are often cached in-memory for a
fast lookup.

The following parameters are used in this query/filter:

>

>

ids (required): This parameter is a list of the IDs that must be matched.

type (optional): This parameter is a string or a list of strings that defines the types in
which to search. If it is not defined, then the type is taken from the URL of the call.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

ElasticSearch internally stores the ID of a document in a special

field called the _uid field composed of the type#id parameter.
"~ A _uidfield is unique to an index.

Usually, the standard way to use an ID query/filter is to select documents. This query allows
you to fetch documents without knowing the shard that contains the documents.

Documents are stored in shards based on a hash on their IDs. If a parent ID or a routing
is defined, they are used to choose other shards. In these cases, the only way to fetch the
document by knowing its ID is to use the ID query/filter.

If you need to fetch multiple IDs and there are no routing changes (due to the parent _id
or rout ing parameter at index time), it's better not to use this kind of query, but to use the
GET/Multi-GET API calls in order to get documents, as they are much faster and also work in
real time.

See also

» The Getting a document recipe in Chapter 4, Basic Operations
» The Speeding up GET operations (multi GET) recipe in Chapter 4, Basic Operations

Using a has_child query/filter

ElasticSearch does not only support simple documents, but it also lets you define a hierarchy
based on parent and children. The has_child query allows you to query for the parent
documents of which children match some queries.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate_ query.sh, available in the code bundle for this book.

How to do it...

In order to execute the has_child queries/filters, perform the following steps:

1. Search for the parents, test -type, for which the children, test -type2, have a
term in the field value as valuel. We can create this kind of query as follows:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"has child" : {

166

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"type" : "test-type2",
"query" : {
"term" : {

"value" : "valuel"

2. |If scoring is not important for performances, it's better to reformulate the query as a
filter in this way:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"filtered": {
"filter": {
"has child" : {
"type" : "test-type2",

"query" : {
"term" : {
"value" : "valuel"
}
}
}
Y
"query": {
"match all": {}

This kind of query works by returning parent documents whose children match the query.
The query executed on children can be of any type. The prerequisite for this kind of query
is that the children must be correctly indexed in the shard of their parent.

Internally, this kind of query is a query executed on the children, and all the IDs of the children
are used to filter the parent. A system must have enough memory to store the child IDs.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

The parameters that are used to control this process are:

» type: This is the type of the children, which is part of the same index as the parent.

» query: This is the query that can be executed for selecting the children. For achieving
this any kind of query can be used.

» score_mode (by default, none; the available values are max, sum, avg, and none):
This parameter, if defined, allows you to aggregate the children's scores with the
parent scores.

» min children and max children (optional): This is the minimum/maximum
number of children required to match the parent document.

In ElasticSearch, a document must have only one parent, because the parent ID is used to
choose the shard to put the children in.

When working with child documents, it is important to remember that
they must be stored in the same shard as their parents. So, special

precautions must be taken to fetch, modify, and delete them if the
’ parent (ID) is unknown. It's a good practice to store the parent id
parameter as a field of the child.

As the parent-child relationship can be considered similar to a foreign key of standard SQL,
there are some limitations due the distributed nature of ElasticSearch, as follows:

» There must be a parent for the type.

» The join part of child/parent is done in a shard and not distributed on all the clusters,
in order to reduce networking and increase its performance.

» The Indexing a document recipe in Chapter 4, Basic Operations

Using a top_children query

In the previous recipe, the has_child query consumes a huge amount of memory because
it requires you to fetch all child IDs. To bypass this limitation in huge data contexts, the top
children query allows you to fetch only the top child results. This scenario is very common:
think of a blog with the latest 10 comments.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate query.sh, available in the code bundle for this book.

168

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

How to do it...

In order to execute the top children query, perform the following steps:

>

Search the test -type parent of which the test -type2 top child has a term in the
field value as valuel. We can create a query, as follows:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"top children" : {

"type" : "test-type2",
"query" : {

"term" : {

"value" : "valuel"

}
.
"score" : "max",
"factor" : 5,
"incremental factor"™ : 2

This kind of query works by returning parent documents whose children match the query.
The query executed on the children can be of any type.

Internally, this kind of query is a query executed on the children, and then the top IDs of
the children are used to filter the parent. If the number of child IDs is not enough, other IDs

are fetched.

The following parameters are used to control this process:

>

type: This parameter denotes the type of the children. This type is a part of the same
index as the parent.

query: This parameter is a query that can be executed in order to select the children.
Any kind of query can be used.

score (max/ sum/ avg): This parameter allows you to control the chosen score in
order to select the children.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

» factor (by default, 5): This parameter is the multiplicative factor used to fetch
the children. Because one parent can have a lot of children and the parent_id
ID required for a query is a set of the returned children, you need to fetch more
parent id IDs from the children to be sure that you have the correct number
of resulting hits. With a factor of 5 and 10 result hits required, about 50 child IDs
must be fetched.

» incremental factor: (by default, 2): This parameter is the multiplicative factor
to be used if there are not enough child documents fetched by the first query.
The equation that controls the number of fetched children is:

desired_hits * factor * incremental_ factor

» The Indexing a document recipe in Chapter 4, Basic Operations
» The Using a has_child query/filter recipe in this chapter

Using a has_parent query/filter

In the previous recipes, we have seen the has_child query. ElasticSearch provides a query
to search child documents based on the parent query: the has_parent query.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate gquery.sh, available in the code bundle for this book.

How to do it...

In order to execute the has_parent query/filter, perform the following steps:

1. Search for the test-type2 children of which the test -type parents have a term
joe in the parsedtext field. Create the query as follows:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-
type2/ search?pretty=true' -d '{

"query": {
"has parent" : {
"type" : “"test-type",
"query" : {
"term" : {
"parsedtext" : "joe"
}

170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}
}
}
}I

If scoring is not important, then it's better to reformulate the query as a filter in this way:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-
type2/ search?pretty=true' -d {
"query": {
"filtered": {
"filter": {
"has parent" : {
"type" : "test-type",
"query" : {
"term" : {
"parsedtext" : "joe"
}
}
}
Y
"query": {
"match all": {}

This kind of query works by returning child documents whose parent matches the parent query.

Internally, this subquery is executed on the parents, and all the IDs of the matching parents
are used to filter the children. A system must have enough memory to store all the parent IDs.

The following parameters are used to control this process:

>

>

type: This parameter suggests the type of the parent.

query: This is the query that can be executed to select the parents. Any kind of query
can be used.

score_type (by default, none; the available values are none and score): Using
this parameter with the default configuration none, ElasticSearch ignores the scores
for the parent document, which reduces memory usage and increases performance.
If it's set to score, the parent's query score is aggregated with the children's score.

See also

>

The Indexing a document recipe in Chapter 4, Basic Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

Using a regexp query/filter

In the previous recipes, we saw different term queries (terms, fuzzy, and prefix). Another
powerful terms query is the regexp (regular expression) query.

Getting ready

You will need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate query.sh, available in the code bundle for this book.

How to do it...

In order to execute a regexp query/filter, perform the following steps:

1. Execute a regexp term query from the command line:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-
type/ search?pretty=true' -4 '{
"query": {
= "regexp": {
"parsedtext": {

"Value": Ilj .*Il'
"flags" : "INTERSECTION | COMPLEMENT | EMPTY"

}
}
3
2. |If scoring is not important, it's better to reformulate the query as a filter in this way:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-
type/ search?pretty=true' -4 '{
"query": {
"filtered": {
"filter": {
"regexp": {
"parsedtext": "j.*"
}
3
"query": {
"match all": {}

172

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The regexp query/filter executes the regular expression against all the terms of the documents.
Internally, Lucene compiles the regular expression in an automaton to improve performance, so,
the performance of this query/filter is generally not very fast, as the performance depends on
the regular expression used.

To speed up the regexp query/filter, a good approach is to have a regular expression that
doesn't start with a wildcard.

The following parameters are used to control this process:
» boost (by default, 1.0): These are the values used to boost the score for the
regexp query.

» flags: This is a list of one or more flags pipe (|) delimited. These flags are available:
o ALL: This flag enables all optional regexp syntax
o ANYSTRING: This flag enables any string (@)
o AUTOMATON: This flag enables the named automata (<identifiers)
o COMPLEMENT: This flag enables the complement (~)
o EMPTY: This flag enables an empty language (#)
o INTERSECTION: This flag enables intersection (&)
o INTERVAL: This flag enables numerical intervals (<n-m>)

o NONE: This flag enables no optional regexp syntax

1
~ To avoid poor performance in a search, don't execute
regex starting with . *.

» Read the official documentation for Regexp queries at
http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/query-dsl-regexp-query.html

» The Querying/filtering for terms recipe in this chapter

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/ reference/current/query-dsl-regexp-query.html
http://www.elasticsearch.org/guide/en/elasticsearch/ reference/current/query-dsl-regexp-query.html
http://www.it-ebooks.info/

Search, Queries, and Filters

Using a function score query

This kind of query is one of the most powerful queries available, because it allows extensive
customization. The function score query allows you to define a function that controls the
score of the documents that are returned by a query.

Generally, these functions are CPU-intensive and executing them on a large dataset
requires a lot of memory, but computing them in a small subset can significantly improve
the search quality.

These are the common scenarios used for this query:

» Creating a custom score function (for example with the decay function)

» Creating a custom boost factor, for example, based on another field (such as
boosting a document by its distance from a point)

» Creating a custom filter score function, for example based on scripting
ElasticSearch capabilities

» Ordering the documents randomly

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
(chapter 05/populate gquery.sh) available in the code bundle for this book.

How to do it...

In order to execute a function score query, perform the following steps:

1. Execute a function score query using the following command line:
curl -XPOST 'localhost:9200/ search?pretty' -d '{

"query": {
"function score": {
"query": {

"query string": {
"query": "bill"
}
Y
"functions": [{
"linear": {
"position": {
"origin": "O",
"scale": "20"

174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

1.

"score mode": "multiply"

}I

We execute a query to search for bil1l, and we score the result with the 1inear
function on the position field.

2. This is how the result should look:

{
..truncated..
"hits" : |
"total" : 2,
"max_score" : 0.41984466,
"hits" : [{
" index" : "test-index",
" type" : "test-type",
"oidm oo om2v,
" score" : 0.41984466,
" source":{"position": 2, ..truncated..}
b |
" index" : "test-index",
" type" : "test-type",
"oidm . n3n,
" score" : 0.12544023,
" source":{"position": 3, ..truncated.. }
j
}
}

The function score query is probably the most complex query type to master due to the natural
complexity of the mathematical algorithm involved in the scoring.

The following is the generic full form of the function score query:

"function score": {
"(query|filter)": {},
"boost": "boost for the whole query",
"functions": [

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

}

{

"filter": {},
"FUNCTION": {}

b
{

"FUNCTION": {}

}
1.

"max_boost": number,

"boost _mode": " (multiply|replace]|)",
"score mode": " (multiply|max]|)",
"script_score": {},

"random_score": {"seed ": number}

These are the parameters that exist in the preceding code:

4

>

176

query or £ilter (optional, by default the match_all query): This is the query/filter
used to match the required documents.

boost (by default, 1. 0): This is the boost that is to be applied to the whole query.

functions: This is a list of the functions used to score the queries. In a simple case,
use only one function. In the function object, a filter can be provided to apply the
function only to a subset of documents, because the filter is applied first.

max_boost (by default, java FLT MAX): This sets the maximum allowed value for
the boost score.

boost _mode (by default, multiply): This parameter defines how the function
score is combined with the query score. These are the possible values:

Q

Q

Q

multiply (default): The query score and function score is multiplied using
this parameter

replace: By using this value, only the function score is used, while the
query score is ignored

sum: Using this, the query score and function score are added

avg: This value is the average between the query score and the function score
max: This is the maximum value of the query score and the function score
min: This is the minimum value of the query score and the function score

score_mode (by default, multiply): This parameter defines how the resulting
function scores (when multiple functions are defined) are combined. These are the
possible values:

Q

Q

multiply: The scores are multiplied
sum: The scores are added together

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

o avg: The scores are averaged
o first: The filter is applied to the first function that has a match
o max: The maximum score is used

o min: The minimum score is used

script_score (optional): This parameter allows you to define a script score
function that is to be used in order to compute the score (ElasticSearch scripting will
be discussed in Chapter 7, Scripting). This parameter is very useful to implement
simple script algorithms. The original score value is in the _score function scope.
This allows you to define similar algorithms, as follows:
"script score": {
"params": {
"paraml": 2,
"param2": 3.1
I
"script": " score * doc['my numeric field'].value / pow(paraml,
param2) "

}

random_score (optional): This parameter allows you to randomly score the
documents. It is very useful to retrieve records randomly.

ElasticSearch provides native support for the most common scoring decay distribution
algorithms, as follows:

>

>

>

Linear: This algorithm is used to linearly distribute the scores based on a distance
from a value

Exponential (exp): This algorithm is used for the exponential decay function

Gaussian (gauss): This algorithm is used for the Gaussian decay function

Choosing the correct function distribution depends on the context and data distribution.

>

>

Chapter 7, Scripting, to learn more about scripting

The official ElasticSearch documentation at http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/query-dsl-function-
score-query.html

Blog posts at http://jontai.me/blog/2013/01/advanced-scoring-in-
elasticsearch/ and https://www.found.no/foundation/function-
scoring/

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html
http://jontai.me/blog/2013/01/advanced-scoring-in-elasticsearch/
http://jontai.me/blog/2013/01/advanced-scoring-in-elasticsearch/
https://www.found.no/foundation/function-scoring/
https://www.found.no/foundation/function-scoring/
http://www.it-ebooks.info/

Search, Queries, and Filters

Using exists and missing filters

One of the main characteristics of ElasticSearch is its schema-less indexing capability.
Records in ElasticSearch can have missing values. To manage them, two kinds of filters
are supported:

» Exists filter: This checks whether a field exists in a document

» Missing filter: This checks whether a field is missing

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate query.sh, available in the code bundle for this book.

How to do it...

In order to execute existing and missing filters, perform the following steps:

1. To search all the test-type documents that have a field called parsedtext, this will
be the query:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"filtered": {
"filter": {
"exists": {
"field":"parsedtext"
}
3
"query": {
"match all": {}
}
}
}
}l

2. Tosearch all the test -type documents that do not have a field called
parsedtext, this is how the query should look:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"filtered": {

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"filter": {
"missing": {
"field":"parsedtext"
}
Y
"query": {
"match all": {}

The exists and missing filters take only a £ield parameter, which contains the name of the
field to be checked.

If you use simple fields, there are no pitfalls, but if you are using a single embedded object or a
list of these objects, you need to use a subobject field, due to the way in which ElasticSearch/
Lucene works.

The following example helps you understand how ElasticSearch maps JSON objects to Lucene
documents internally. Take the example of the following JSON document:

{

"name" :"Paul",

"address" : {
n City" . Sydney" ,
"street":"Opera House Road",
"number" :"44™"

}
}

ElasticSearch will internally index the document, as shown here:

name:paul

address.city:Sydney
address.street:0Opera House Road
address.number:44

As you can see, there is no indexed field named address, so the existing filter on the
term address fails. To match documents with an address, you must search for a subfield
(such as, address.city).

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

Using and/or/not filters

When building complex queries, some typical Boolean operation filters are required, as they
allow you to construct complex filter relations as in the traditional relational database world.

Any query DSL cannot be completed if there is no and, or, or not filter.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
chapter 05/populate_ query.sh, available in the code bundle for this book.

How to do it...

In order to execute and/or/not filters, perform the following steps:

1. Search for documents with parsedtext equal to joe and uuid equalto 11111
in this way:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"filtered": {
"filter": {
"and": [
{
"term": {
"parsedtext":"joe"
}
}I
{
"term": {
"wuid":"11111"
}
}
1
}I
"query": {

"match all": {}
}
}
}
}l

180

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

2. Search for documents with uuid equal to 11111 or 22222 with a similar query:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{

"query": {
"filtered": {
"filter": {
"or": [
{
"term": {
"uuid":"11111"
}
I
{
"term": {
"uuid":"22222"
}
}
1
h
"query": {

"match all": {}
}
}
}
}u
Search for documents with uuid not equal to 11111 using this query:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/ search'
-d l{
"query": {
"filtered": {
"filter": {
"not": {
"term": {
"yuid":"11111"
}
}
3
"query": {
"match all": {}

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

The Boolean operator filters are the simplest filters available in ElasticSearch. The and and or
queries accept a list of subfilters that can be used. This kind of Boolean operator filters are very
fast, as in Lucene they are converted to very efficient bitwise operations on document IDs.

Also, the not filter is as fast as the Boolean operators, but it requires only a single filter to
be negated.

From a user's point of view, you can consider these fields as traditional numerical group
operations, as follows:
» and: In this operation, the documents that match all the subfilters are returned

» or: In this operation, the documents that match a least one of the subfields
are returned

» not: In this operation, the documents that don't match the subfield are returned

For performance reasons, a Boolean filter is faster than a bulk
S of and/or/not filters.

Using a geo bounding box filter

One of the most common operations in geolocalization is searching for a box (square).

Getting ready

You need a working ElasticSearch cluster and an index populated with the GeoScript
chapter 05/geo/populate geo.sh, available in the code bundle for this book.

How to do it...

A search to filter documents related to a bounding box (40.03, 72.0) and (40.717, 70.99) can
be done with a similar query:

curl -XGET http://127.0.0.1:9200/test-mindex/ search?pretty -d '{
"query": {
"filtered": {
"filter": {
"geo bounding box": {
"pin.location": {
"bottom right": {

182

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

"lat": 40.03,
"lon": 72.0

3

"top left": {
"lat": 40.717,
"lon": 70.99

}
}
}
Y
"query": {
"match all": {}

ElasticSearch has a lot of optimization options to search for a box shape. The latitude and
longitude are indexed for a fast range check, so this kind of filter is executed really quickly.

The parameters required to execute a geo_bounding box filter are the top left and
bottom_ right geo-points.

It's possible to use several representations of a geo-point, as described in the Mapping a
geo point field recipe in Chapter 3, Managing Mapping.

See also

» The Mapping a geo point field recipe in Chapter 3, Managing Mapping

Using a geo polygon filter

The previous recipe, Using a geo bounding box filter, shows you how to filter on a square
section, which is the most common case. ElasticSearch provides a way to filter user-defined
polygonal shapes via the geo_polygon filter. This filter is useful if the filter is based on a
country/region/district shape.

Getting ready

You need a working ElasticSearch cluster and an index populated with the GeoScript
chapter 05/geo/populate geo.sh, available in the code bundle for this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

How to do it...

Search for documents in which pin.location is part of a triangle (a shape made up of
three geopoints), as follows:

curl -XGET http://127.0.0.1:9200/test-mindex/ search?pretty -d '{
"query": {
"filtered": {
"filter": {
"geo_polygon" {
"pin.location": {
"points": [

{
"lat": 50,
"lon": -30
}I
{
"lat": 30,
"lon": -80
}I
{
"lat": 80,
"lon": -90
}
1
}
}
3
"query": {
"match all": {}
}
}

}
}l

The geo polygon filter allows you to define your own shape with a list of geo-points so that
ElasticSearch can filter the documents that are in the polygon.

It can be considered an extension of the geo bounding box for a generic polygonal form.

See also

» The Mapping a geo point field recipe in Chapter 3, Managing Mapping
» The Using a geo bounding box filter recipe in this chapter

184

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Using geo distance filter

When you are working with geolocations, one of the most common tasks is to filter results based
on their distance from a location. This scenario covers the following common site requirements:

» Finding the nearest restaurant in a 20 km distance
» Finding your nearest friends in a 10 km range

The geo_distance filter is used to achieve this goal.

Getting ready

You need a working ElasticSearch cluster and an index populated with the GeoScript
chapter 05/geo/populate geo.sh, available in the code bundle for this book.

How to do it...

Search for documents in which the pin. location is 200 km away from latitude 40, longjitude
70, as follows:

curl -XGET 'http://127.0.0.1:9200/test-mindex/ search?pretty' -d {
"query": {
"filtered": {
"filter": {
"geo distance": {
"pin.location": {
"lat": 40,
"lon": 70
3
"distance": "200km",
"optimize bbox": "memory"
}
3
"query": {
"match all": {}

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

As discussed in the Mapping a geo point Field recipe in Chapter 3, Managing Mapping, there
are several ways to define a geo point, and it is internally saved in an optimized way so that it
can be searched.

The distance filter executes a distance calculation between a given geo-point and the points
in the documents, returning hits that satisfy the distance requirement.

These parameters control the distance filter:

>

186

The field and the point of reference to be used in order to calculate the distance.
In the preceding example, we have pin.location and (40,70).

distance: This parameter defines the distance to be considered. It is usually
expressed as a string by a number plus a unit.

unit (optional): This parameter can be the unit of the distance value if the distance
is defined as a number. These are the valid values:

o inorinch

o ydoryards

O mormiles

o kmorkilometers

O mormeters

0 mmormillimeters

O cmorcentimeters
distance_type (by default, sloppy arc;the valid choices are arc/sloppy arc/
plane): This parameter defines the type of algorithm used to calculate the distance.

optimize bbox: This parameter defines that you first need to filter with a bounding
box in order to improve performance. This kind of optimization removes a lot of
document evaluations, limiting the check to values that match a square. These are
the valid values for this parameter:

o memory (default): This parameter does the memory check.

o indexed: This parameter checks using the indexing values. It only works
if the latitude and longijtude are indexed.

o none: This parameter disables bounding box optimization.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

There's a range version of this filter too that allows you to filter by range. The geo_distance
range filter works as a standard range filter (see the Using a range query/filter recipe in this
chapter), in which the range is defined in the from and to parameters. For example, the
preceding code can be converted into a range without the from part, as follows:

curl -XGET 'http://127.0.0.1:9200/test-mindex/ search?pretty' -d '{
"query": {
"filtered": {
"filter": {
"geo distance range": {
"pin.location": {
"lat": 40,
"lon": 70

}I
lltoll: llzoomlll
"optimize bbox": "memory"

}
Y
"query": {

"match all": {}
}

}
}
}I

» The Mapping a geo point field recipe in Chapter 3, Managing Mapping
» The Using a range query/filter in this chapter

Using a QueryString query

In the previous recipes, we saw several types of query that use text to match the results.
The QueryString query is a special type of query that allows you to define complex queries
by mixing field rules.

It uses the Lucene query parser in order to parse text to complex queries.

Getting ready

You need a working ElasticSearch cluster and an index populated with the GeoScript
chapter 05/populate gquery.sh, available in the code bundle for this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

How to do it...

We want to retrieve all the documents that match parsedtext, joe, orbill, with a price
between 4 and 6.

To execute this QueryString query, this is how the code will look:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d ' {
"query": {
"query string": {
"default field": "parsedtext",
"query": "(bill OR joe) AND price:[4 TO 6]"
}
}
}l

The search will return three results.

The QueryString query is one of the most powerful types of queries. The only required
field is query, which contains the query that must be parsed with the Lucene query
parser (http://lucene.apache.org/core/4 10 2/queryparser/org/apache/
lucene/queryparser/classic/package-summary.html).

The Lucene query parser is able to analyze complex query syntax and convert it to many
of the query types that we have seen in the previous recipes.

These are the optional parameters that can be passed to the QueryString query:

» default field (by default, all): This defines the default field to be used
for querying. It can also be set at the index level, defining the index.query.
default field index property.

» fields: This defines a list of fields to be used during querying and replaces the
default fieldfield. The £ields parameter also allows you to use wildcards
as values (such as, city. *).

» default operator (by default, OR; the available values are AND and OR):
This is the default operator to be used for text in a query parameter.

» analyzer: This is the analyzer that must be used for the query string.

» allow leading wildcard (by default, true): This parameter allows the use
of the * and ? wildcards as the first character. Using similar wildcards leads to
performance penalties.

188

www.it-ebooks.info

http://lucene.apache.org/core/4_10_2/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
http://lucene.apache.org/core/4_10_2/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
http://www.it-ebooks.info/

Chapter 5

lowercase expanded_ terms (by default, true): This controls whether all expansion
terms (generated by fuzzy, range, wildcard, and prefix) must be lowercased.

enable position increments (by default, true): This enables the position
increment in queries. For every query token, the positional value is incremented by 1.

fuzzy max_expansions (by default, 50): This controls the number of terms to be
used in a fuzzy term expansion.

fuzziness (by default, AUTO): This sets the fuzziness value for fuzzy queries.
fuzzy prefix length (by default, 0): This sets the prefix length for fuzzy queries.

phrase slop (by default, 0): This sets the default slop (the number of optional
terms that can be present in the middle of given terms) for phrases. If it is set to zero,
the query will be an exact phrase match.

boost (by default, 1. 0): This defines the boost value of the query.

analyze wildcard (by default, false): This enables the processing of the
wildcard terms in the query.

auto_generate phrase queries (by default, £alse): This enables the
autogeneration of phrase queries from the query string.

minimum should match: This controls how many should clauses should be
verified to match the result. The value can be an integer (such as, 3), a percentage
(such as, 40%), or a combination of both.

lenient (by default, false): If set to true, the parser will ignore all format-based
failures (such as date conversion from text to number).

locale (by default, ROOT): This is the locale used for string conversion.

There's more...

The query parser is very powerful and can support a wide range of complex queries. These are
the most common cases:

>

field:text: This parameter is used to match a field that contains some text.
It's mapped on a term query/filter.

field: (terml OR term2): This parameter is used to match some terms in OR.
It's mapped on a term query/filter.

field:"text": This parameter is used for a exact text match. It's mapped on a
match query.

exists :field: This parameter is used to match documents that have a field.
It's mapped on an exists filter.

_missing :field: This parameter is used to match documents that don't have
a field. It's mapped on a missing filter.

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

» field: [start TO end]: This parameter is used to match a range from the start
value to the end value. The start and end values can be terms, numbers, or valid
date-time values. The start and end values are included in the range. If you want
to exclude a range, you must replace the [] delimiters with {}.

» field:/regex/: This parameter is used to match regular expressions.

The query parser also supports a text modifier, which is used to manipulate the text
functionalities. These are the most commonly used text modifiers:

» Fuzziness using the text~ form: The default fuzziness value is 2, which allows
the Damerau-Levenshtein edit-distance algorithm to be used (http://
en.wikipedia.org/wiki/Damerau%$E2%80%93Levenshtein distance).

» Wildcards with ?: This replaces a single character or * to replace zero or more
characters (such as b?11 or bi* to match bill).

» Proximity search "terml term2"~3:This allows you to match phrase terms with
a defined slop (such as, "my umbrella"~3 matches "my green umbrella",
"my new umbrella", and so on).

» The Lucene official query parser syntax reference at http://lucene.apache.
org/core/4 10 2/queryparser/org/apache/lucene/queryparser/
classic/package-summary.html.

» The official ElasticSearch documentation about the query string query at
http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current/query-dsl-query-string-query.html.

Using a template query

ElasticSearch provides the capability to provide a template and some parameters to fill it.
This functionality is very useful because it allows you to manage query templates stored
in the server's filesystem or in the . scripts index, allowing you to change them without
changing your application code.

Getting ready

You need a working ElasticSearch cluster and an index populated with the GeoScript
chapter 05/populate gquery.sh, available in the code bundle for this book.

190

www.it-ebooks.info

http://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
http://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
http://lucene.apache.org/core/4_10_2/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
http://lucene.apache.org/core/4_10_2/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
http://lucene.apache.org/core/4_10_2/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
http://www.it-ebooks.info/

Chapter 5

How to do it...

The Template query is composed of two components: the query and the parameters that must
be filled in. We can execute a template query in several ways.

To execute an embedded template query, use the following code:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true' -d '{
"query": {
"template": {
"query": {
"term": {
"yuid": "{{value}}"
}
3
"params": {
"value": "22222"
}
}
}
}I

If you want to use an indexed stored template, perform the following steps:

1. Store the template in the . scripts index:
curl -XPOST 'http://127.0.0.1:9200/ search/template/myTemplate' -d

{
"template": {
"query": {
"term": {
"yuid": "{{value}}"
}
}
}
}I

2. Now, call the template with the following code:
curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/ search/
template?pretty=true' -d '{
"template": {
"id": "myTemplate"

h

www.it-ebooks.info

http://www.it-ebooks.info/

Search, Queries, and Filters

"params": {
"value": "22222"
}
3

A template query is composed of two components:

» Atemplate, that can be any query object that is supported by ElasticSearch.
The template uses the mustache (http://mustache.github.io/) syntax,
a very common syntax to express templates.

» An optional dictionary of parameters to be used in order to fill the template.

When the search query is called, the template is loaded, populated with the parameter data,
and executed as a normal query.

The template query is a shortcut to use the same query with different values.

Typically, the template is generated by executing the query in the standard way and then
adding parameters, if required, when templating it. The template query also allows you to
define the template as a string, but the user must pay attention to escaping it (see the official
documentation at http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/query-dsl-template-query.html for escaping templates).

It allows you to remove the query execution from the application code and put it in the
filesystem or indices.

There's more...

The template query can retrieve a previously stored template from the disk (it must be stored
in the config/scripts directory with the .mustache extension) or from the .scripts
special index.

The search template can be managed in ElasticSearch via the special end points, / search/
template. These are the special endpoints:

» To store a template:

curl -XPOST 'http://127.0.0.1:9200/ search/template/<template
name>' -d
<template body>

» Toretrieve a template:

curl -XGET 'http://127.0.0.1:9200/ search/template/<template
name>'

192

www.it-ebooks.info

http://mustache.github.io/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-template-query.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-template-query.html
http://www.it-ebooks.info/

Chapter 5
» To delete a template:

curl -XDELETE 'http://127.0.0.1:9200/ search/template/<template
name>'

index. This is a normal index and can be managed as a

» The indexed templates and scripts are stored in the . script
! | standard data index.

See also

» The official mustache documentation at http://mustache.github.io/

» The official ElasticSearch documentation about search templates at
http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current/search-template.html

» The official ElasticSearch documentation about query templates at
http://www.elasticsearch.org/guide/en/elasticsearch/reference/
current/query-dsl-template-query.html

www.it-ebooks.info

http://mustache.github.io/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-template.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-template.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-template-query.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-template-query.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

In this chapter, we will cover the following topics:

» Executing an aggregation

» Executing the stats aggregation

» Executing the terms aggregation

» Executing the range aggregation

» Executing the histogram aggregation

» Executing the date histogram aggregation
» Executing the filter aggregation

» Executing the global aggregation

» Executing the geo distance aggregation

» Executing the nested aggregation

» Executing the top hit aggregation

Introduction

In developing search solutions, not only are results important, but they also help us to improve
quality and search focus.

ElasticSearch provides a powerful tool to achieve these goals: aggregations.

The main usage of aggregations is to provide additional data to the search results to improve
their quality or to augment them with additional information. For example, in searching for
news articles, facets that can be interesting for calculation are the articles written by authors
and the date histogram of their publishing date.

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

Thus, aggregations are used not only to improve results, but also to provide an insight into
stored data (Analytics); for this, we have a lot of tools, and one of which is called Kibana
(http://www.elasticsearch.org/overview/kibana/).

Generally, the aggregations are displayed to the end user with graphs or a group of filtering
options (for example, a list of categories for the search results).

The actual aggregation framework is an evolution of the previous ElasticSearch functionality
called facets. Facets were helpful and powerful, but had a lot of limitations in their design.
The ElasticSearch team decided to evolve them into the aggregation framework (facets are
already deprecated in ElasticSearch 1.x, and they will be removed from the next ElasticSearch
major release also). For a complete coverage of facets, take a look at ElasticSearch Cookbook,
Packt Publishing, at http://www.packtpub.com/elasticsearch-cookbook/book.

Since the ElasticSearch aggregation framework provides scripting functionalities, it is able to
cover a wide spectrum of scenarios. In this chapter, some simple scripting functionalities are
shown related to aggregations, but we will cover in-depth scripting in the next chapter.

The aggregation framework is also the base for advanced analytics as shown in software such
as Kibana (http://www.elasticsearch.org/overview/kibana/), or similar software.
It's very important to understand how the various types of aggregations work and when to
choose them.

Executing an aggregation

ElasticSearch provides several functionalities other than search; it allows executing statistics
and real-time analytics on searches via aggregations.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script, which
is available at https://github.com/aparo/elasticsearch-cookbook-second-
edition.

How to do it...

To execute an aggregation, we will perform the steps given as follows:

1. From the command line, we can execute a query with aggregations:

curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search?pretty=true&size=0' -d '{
"query": {
"match all": {}

.

196

www.it-ebooks.info

http://www.elasticsearch.org/overview/kibana/
http://www.packtpub.com/elasticsearch-cookbook/book
http://www.elasticsearch.org/overview/kibana/
https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 6

"aggregations": {
"tag": {
"terms": {
"field": "tag",
"size": 10
}
}
}
} 1
In this case, we have used a match_all query plus a terms aggregation that is used
to count terms.

The result returned by ElasticSearch, if everything is all right, should be:

{

"took" : 3,
"timed out" : false,
" shards" : {.. truncated ..},
"hits" : {
"total" : 1000,
"max_score" : 0.0,
"hits" : []
I
"aggregations" : {
"tag" : |
"buckets" : [{
"key" : "laborum",
"doc_count" : 25
boo o
"key" : "quidem",
"doc_count" : 15
boo o
"key" : "maiores",
"doc_count" : 14
boo o
Truncated ...
boo o
"key" : '"praesentium",
"doc_count" : 9
bl
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

The results are not returned because we have fixed the result size to 0.

The aggregation result is contained in the aggregation field. Each type of
aggregation has its own result format (the explanation of this kind of result
is in the Executing terms aggregation recipe in this chapter).

returning search results to reduce bandwidth by passing the

~\IQ It's possible to execute an aggregation calculation without

search size parameter set to 0.

Every search can return an aggregation calculation, computed on the query results; the
aggregation phase is an additional step in query postprocessing—for example, highlighting
the results. To activate the aggregation phase, an aggregation must be defined using the

aggs or aggregations keyword.

There are several types of aggregation that can be used in ElasticSearch.

In this chapter, we'll cover all standard aggregations available; additional aggregation types
can be provided with a plugin and scripting.

Aggregations are the bases for real-time analytics. They allow us to execute:

» Counting

» Histograms

» The range aggregation
» Statistics

» The geo distance aggregation

The following shows the executed query results using a histogram:

= EVENTS OVER TIME

250 | ili

!“Ih!f'

0 & x HSTOGRAM

| @ (1o2z1) @ [TTE) @ (1273 @ E704) @ (2538 count per 10m | 25602 hits)

Lt

i
(it

' ||||I|I |I

ity I

|
(AR RO I I”i

16:00 2000
10416 104185

m
i
Il

QUERY HITS

®010221) B F7TE)

12000

10000

BOOD

0 O x W

{1273) @ QE794) @(2536)

198

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Aggregations are always executed on search hits; they are usually computed in a Map/Reduce
way. The map step is distributed in shards, but the reduce step is done in the called node.

As aggregation computation requires a lot of data to be kept in memory; it can be very
memory-intensive. For example, to execute a terms aggregation, it requires that all unique
terms in the field, which is used for aggregating, be kept in memory. Executing this operation
on million of documents requires storing a large number of values in memory.

The aggregation framework was introduced in ElasticSearch 1.x as an evolution of the facets
feature. Its main difference from facets is the possibility of executing the analytics with
several nesting levels of subaggregations; facets were plain and were limited to a single-level
aggregation. Aggregations keep information of documents that go into an aggregation bucket,
and an aggregation output can be the input of the next aggregation.

1
‘Q Aggregations can be composed in a complex tree of

subaggregations without depth limits.

The generic form for an aggregation is as follows:

"aggregations" : {

"<aggregation name>" :

"<aggregation type>" : {

<aggregation body>

!

[, "aggregations" : { [<sub aggregations>]+ }]1?
!
[, "<aggregation name 2>" : { ... } 1%

}

Aggregation nesting allows us to cover very advanced scenarios in executing analytics such
as aggregating data by country, by region, or by people's ages, where age groups are ordered
in the descending order. There are no more limits in mastering analytics.

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

The following schema summarizes the main difference between the deprecated facets system
and the aggregation framework:

Documents
id=1 id=2 tagi‘_’[izs,, id=4
tag="es” tag="es” o = & tag="mongodb”
val=10 val=20 mangodug] val=10
val=20
Facets Aggregations
id=1 id=2 id=3 id=4
\ terms(tagl)
Buckets
o
\ tos” smongodb”
\ count: 3 count/2
terms_stats (tag,val) docs: 1,2,3 docg/ 3.4
id=1, id=2 id=3 id=3 id=4
“ag” “mongodb” - -
count: 3 count: 2 Sub Aggregation
total_count: 3 total_count: 2
min: 10 min: 10 stats(val) i
max: 20 max: 20 \ KMB"'CS
total: 50 total: 30 (u y -
min: 10 min: 10 j
max: 20 max: 20
total: 50 total: 30

As you can see in the preceding figure, there are two kinds of aggregators:

» Bucketing aggregators: They produce buckets, where a bucket has an associated
value and a set of documents (for example, the terms aggregator produces a bucket
per term for the field it's aggregating on). A document can end up in multiple buckets
if the document has multiple values for the field being aggregated on (in our example,
the document with 1d=3). If a bucket aggregator has one or more downstream (such
as, child) aggregators, these are run on each generated bucket.

» Metric aggregators: They receive a set of documents as input and produce
statistical results computed for the specified field. The output of metric aggregators
does not include any information linked to individual documents; it contains just the
statistical data.

200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Generally, the order of buckets depends on the bucket aggregator used—for example, when
using the terms aggregator, the buckets are, by default, ordered by count. The aggregation
framework allows us to order by subaggregation metrics (for example, the preceding example
can be ordered by the stats.avg value).

See also

» Refer to the Executing the terms aggregation recipe in this chapter for a more
detailed explanation of aggregation

Executing the stats aggregation

The most commonly used metric aggregations are stats aggregations. They are generally
used as terminal aggregation steps to compute a value to be used directly or for sorting.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script (chapter 06/
executing stat aggregations.sh)available at https://github.com/aparo/
elasticsearch-cookbook-second-edition.

How to do it...

To execute a stats aggregation, we will perform the steps given as follows:

1. We want to calculate all statistical values of a matched query in the age field.
The REST call should be as follows:

curl -XPOST "http://127.0.0.1:9200/test-index/ search?size=0" -4 '

{
"query": {
"match all": {}
h
"aggs": {
"age stats": {
"extended stats": {
"field": "age"
}
}
}
3

201

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Aggregations

2. The result, if everything is fine, should be:

{

"took" : 2,
"timed out" : false,
" shards" : { ..truncated..},
"hits" : {
"total" : 1000,
"max score" : 0.0,
"hits" : []
b
"aggregations" : {
"age stats" : {
"count" : 1000,
"min" : 1.0,
"max" : 100.0,
"avg" : 53.243,
"sum" : 53243.0,
"sum of squares" : 3653701.0,
"variance" : 818.8839509999999,
"std deviation" : 28.616148430562767

}

In the answer, under the aggregations field, we have the statistical results of our
aggregation under the defined field age_stats.

After the search phase, if any aggregations are defined, they are computed.

In this case, we have requested an extended_stats aggregation labeled age stats and
that computes a lot of statistical indicators.

The available statistical aggregators are:

» min: This computes the minimum value for a group of buckets.

» max: This computes the maximum value for a group of buckets.
» avg: This computes the average value for a group of buckets.

» sum: This computes the sum of all buckets.

» value_ count: This computes the count of values in the bucket.

» stats: This computes all the base metrics such as min, max, avg, count, and sum.

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

» extended stats: This computes the stats metric plus variance, the standard
deviation (std_deviation), and the sum of squares (sum_of squares).

» percentiles: This computes percentiles (the point at which a certain
percentage of observed values occurs) of some values. (Visit Wikipedia at
http://en.wikipedia.org/wiki/Percentile for more information
about percentiles.)

» percentile ranks: This computes the rank of values that hits a percentile range.

» cardinality: This computes an approximate count of distinct values in a field.

» geo bounds: A metric aggregation that computes the bounding box containing all
geo point values for a field.

Every metric value requires different computational needs, so it is a good practice to limit the
indicators to the required one so that CPU time and memory are not wasted; this increases
performance.

In the earlier listing, | cited only the most used, natively available aggregators in ElasticSearch;
other metric types can be provided via plugins.

» Official ElasticSearch documentation about stats aggregation at http://www.
elasticsearch.org/guide/en/elasticsearch/reference/current/
search-aggregations-metrics-stats-aggregation.html

» Extended stats aggregation at http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/search-aggregations-metrics-
extendedstats-aggregation.html

Executing the terms aggregation

Terms aggregation is one of the most commonly used aggregations. It groups documents in
buckets based on a single term value. This aggregation is often used to narrow down a search.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script (chapter 06/
executing terms aggregation.sh)available at https://github.com/aparo/
elasticsearch-cookbook-second-edition.

203

www.it-ebooks.info

http://en.wikipedia.org/wiki/Percentile
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-metrics-stats-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-metrics-stats-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-metrics-stats-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-metrics-extendedstats-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-metrics-extendedstats-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-metrics-extendedstats-aggregation.html
https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Aggregations

How to do it...

To execute a terms aggregation, we will perform the steps given as follows:

1. We want to calculate the top-10 tags of all the documents; for this the REST call
should be as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/

search?pretty=true&size=0' -d '{
"query": {
"match all": {}
}I
"aggs": {
"tag": {
"terms": {

"field": "tag",
"size": 10
}
}
}
}l

In this example, we need to match all the items, so the match_all query is used.

2. The result returned by ElasticSearch, if everything is all right, should be:
{

"took" : 63,
"timed out" : false,
" shards" : { ..truncated.. },
"hits" : |
"total" : 1000,
"max_score" : 0.0,
"hits" : [1
b
"aggregations" : {
"tag" : |
"buckets" : [{
"key" : "laborum",
"doc count" : 25
b A
"key" : "quidem",
"doc count" : 15
b A
...truncated ..
b A

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

"key" : "praesentium",
"doc_count" : 9
j
}
}
}

The aggregation result is composed of several buckets with two parameters:

» key: This is the term used to populate the bucket
» doc_count: This is the number of results with the key term

During a search, there are a lot of phases that ElasticSearch will execute. After query execution,
the aggregations are calculated and returned along with the results.

In this recipe, we see that the terms aggregation require the following as parameters:

» field: Thisis the field to be used to extract the facets data. The field value
can be a single string (shown as tag in the preceding example) or a list of fields
(suchas ["fieldl", "field2", ..1).

» size (by default 10): This controls the number of facets value that is to be returned.

» min doc_count (optional): This returns the terms that have a minimum number of
documents count.

» include (optional): This defines the valid value to be aggregated via a regular
expression. This is evaluated before exclude. Regular expressions are controlled
by the £1ags parameter. Consider the following example:

"include" : {
"pattern" : ".*labor.*",
"flags" : "CANON_EQ | CASE_INSENSITIVE"

b

» exclude (optional): This parameter removes terms that are contained in
the exclude list from the results. Regular expressions are controlled by the
flags parameter.

» order (optional; by default this is doc_count): This parameter controls the
calculation of the top n bucket values that are to be returned. The order
parameter can be one of these types:

o _count (default): This parameter returns the aggregation values ordered
by count

205

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

o _term: This parameter returns the aggregation values ordered by the term
value (such as "order" : { " term" : "asc" })

o A subaggregation name; consider the following as an example:

{
"aggs" : {
"genders" : {
"terms" : {
"field" : "tag",
"order" : { "avg val" : "desc" }
b
"aggs" : {
"avg_age" : { "avg" : { "field" : "age" } }
}
}
}
}

Terms aggregation are very useful for representing an overview of values used for further
filtering. In a graph, they are often shown as a bar chart, as follows:

QUERY HITS 6 & X HTS

®(10221) ®(7778) ® (1273) ®(3794) @ (2536)
12000

10000

8000

6000

4000

2000

There's more...

Sometimes, we need to have much more control over terms aggregation; this can be achieved
by adding an ElasticSearch script in the script field.

206

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

With scripting, it is possible to modify the term used for the aggregation to generate a new
value that can be used. A simple example, in which we append the 123 value to all the terms,
is as follows:

{

"query" : {
"match all" : { }
b
"aggs" : {
"tag" : {
"terms" : {
"field" : "tag",
"script" : " value + '123'"

}
}
}
}

Scripting can also be used to control the inclusion/exclusion of some terms. In this case,
the returned value from the script must be a Boolean (true/false). If we want an aggregation
with terms that start with the a character, we can use a similar aggregation:

{

"query" : {
"match all" : { }
I
"aggs" : {
"tag" : {
"terms" : {
"field" : "tag",
"script" : " value.startsWith('a')™"

}
}
}
}

In the previous terms aggregation examples, we provided the field or fields parameter
to select the field that is to be used to compute the aggregation. It's also possible to pass a
script parameter that replaces field and fields in order to define the field to be used
to extract the data. The script can fetch from the doc variable in the given context.

In the case of doc, the earlier example can be rewritten as:

"tag": {
"terms": {
"script": "doc['tag'].value",

207

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

"size": 10

!
!

» Chapter 7, Scripting, to know more about scripting

Executing the range aggregation

The previous recipe describes an aggregation type that can be very useful if a bucket must be
computed on terms or on a limited number of items. Otherwise, it's often required to return
the buckets that are aggregated in ranges—the range aggregation answers this requirement.
The commons scenarios in which this aggregation can be used are:

» Price ranges (used in shops)

» Size ranges

» Alphabetical ranges

Getting ready

You need a working ElasticSearch cluster and an index populated with the script (chapter 06/
executing range aggregations.sh)available athttps://github.com/aparo/
elasticsearch-cookbook-second-edition.

How to do it...

To execute range aggregations, we will perform the steps given as follows:

1. We want to provide three types of aggregation ranges, as follows:
o Price aggregation: This method aggregates the price of the items in a range

o Age aggregation: This method aggregates the age contained in a document
in four ranges of 25 years

o Date aggregation: This method aggregates the ranges of 6 months of the
previous year and all months this year
2. To obtain this result, we need to execute a query, as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true&size=0' -d ' {

"query": {

208

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

3.

"match all": {}
3
"aggs": {
"prices": {
"range": {
"field": "price",
"ranges": [
{"to": 10},
{"from": 10,"to": 20},
{"from": 20,"to": 100},
{"from": 100}

}
}
"ages": {
"range": {
"field": "age",
"ranges": [
{"to": 25},
{"from": 25,"to": 50},
{"from": 50,"to": 75},
{"from": 75}

}
}
"range": {
"range": {
"field": "date",
"ranges": [

{"from": "2012-01-01","to":
{"from": "2012-07-01","to":
{"from": "2013-01-01","to":

1
}
}

}
3
The results will be something like the following:
{

"took" : 7,

"timed out" : false,

" shards" : {..truncated..},

"hits" : {..truncated..},

"2012-07-01"},
"2012-12-31"},
"2013-12-31"}

Chapter 6

209

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

"aggregations" : {
"range" : {

"buckets" : [{

"key" : "20120101-01-01T00:00:00.000Z2-20120631-01-
01T00:00:00.000Z",

"from" : 6.348668943168E17,

"from as_string" : "20120101-01-01T00:00:00.000Z",
"to" : 6.34883619456E17,

"to_as_string" : "20120631-01-01T00:00:00.0002",
"doc_count" : 0

}, .truncated..]

j

"prices" : {

"buckets" : [{

llkeyll : ”*_10-0",

"to" : 10.0,

"to as_string" : "10.0",
"doc_count" : 105

}. .truncated..]

j

"ages" : {

}
}
}

"buckets" : [{

llkeyll : "*_25-0",

"to" : 25.0,
"to_as_string" : "25.0",
"doc_count" : 210

}. .truncated..]

Every aggregation result has the following fields:

» The to, to_string, from, and from_string fields that define the original range

of the aggregation

» doc_count: This gives the number of results in this range
» key: This is a string representation of the range

This kind of aggregation is generally executed on numerical data types (integer, float, long,
and dates). It can be considered as a list of range filters executed on the result of the query.

Date/date-time values, when used in a filter/query, must be expressed in string format;

the valid string formats are yyyy-MM-dd' T'HH:mm: ss and yyyy-MM-dd.

Each range is computed independently; thus, in their definition, they can overlap.

210

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

There are two special range aggregations used to target date and IPv4 ranges.

They are similar to the range aggregation, but they provide special functionalities to control
date and IP address ranges.

The date range aggregation (date_range) defines the £rom and to fields in Date Math
expressions. For example, to execute an aggregation of hits of before and after a 6-month
period, the aggregation will be as follows:

{

"aggs": {
"range": {
"date range":

"field": "date",

"format": "MM-yyyy",

"ranges": [
{ "to": "now-eM/M" },
{ "from": "now-6M/M" }

In the preceding example, the buckets will be formatted in the form of month-year (MM-YYYY)
in two ranges. The now parameter defines the actual date-time, -6M means minus 6 months,
and /M is a shortcut for division using the month value. (A complete reference on Date Math
expressions and code is available at http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/search-aggregations-bucket-daterange-
aggregation.html.)

The IPv4 range aggregation (ip_range) defines the ranges in the following formats:

» The IP range form:

{

"aggs" : |
"ip ranges" : {
"ip range" : {
"field" : "ip",
"ranges" : [
{ "to" : m192.168.1.1" },
{ "from" : "192.168.2.255" }

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-daterange-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-daterange-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-daterange-aggregation.html
http://www.it-ebooks.info/

Aggregations

}
}
}
}

» CIDR masks:
{

"aggs" : {
"ip ranges" : {
"ip range" : {
"field" : "ip",
"ranges" : [
{ "mask" : "192.168.1.0/25" },
{ "mask" : "192.168.1.127/25" }

]
!
!
!
!

» The Using a range query/filter recipe in Chapter 5, Search, Queries, and Filters

Executing the histogram aggregation

ElasticSearch numerical values can be used to process histogram data. The histogram
representation is a very powerful way to show data to end users.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script (chapter 06/
executing histogram aggregations.sh)available athttps://github.com/aparo/
elasticsearch-cookbook-second-edition.

How to do it...

Using the items populated with the script, we want to calculate aggregations on:

» Age with an interval of 5 years
» Price with an interval of 10$

» Date with an interval of 6 months

212

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 6

To execute histogram aggregations, we will perform the steps given as follows:

1. The query will be as follows:
curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?pretty=true&size=0' -d '{

"query": {
"match all": {}

b
"aggregations": {
rage" : {

"histogram" : {
"field" : "age",
"interval" : 5

}

b
"price" : {

"histogram" : {
"field" : "price",
"interval" : 10.0

}

}
}
}l
2. The result (stripped) will be:
{
"took" : 23,
"timed out" : false,
" shards" : {..truncated..},
"hits" : {..truncated..},
"aggregations" : {
"price" : {

"buckets" : [{

"key as_string" : "O",
"key" : 0,
"doc_count" : 105

b A
"key as_string" : "10",
"key" : 10,
"doc_count" : 107

..truncated.. P}l

b
rage" : {

"buckets" : [{

"key as_string" : "O",
"key" : 0,
"doc_count" : 34

b A

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

"key as_string" : "5",
"key" : 5,
"doc _count" : 41

}, {.truncated.. ol

}
}
}

The aggregation result is composed of buckets: a list of aggregation results. These results
are composed of the following:

» key: This is the value that is always on the x axis on the histogram graph
» key as_string: Thisis a string representation of the key value
» doc_count: This denotes the document bucket size

This kind of aggregation is calculated in a distributed manner, in each shard with search
results, and then the aggregation results are aggregated in the search node server (arbiter),
which is then returned to the user.

The histogram aggregation works only on numerical fields (Boolean, Integer, long Integer,
float) and date/date-time fields (that are internally represented as long). To control histogram
generation on a defined field, the interval parameter is required, which is used to
generate an interval to aggregate the hits.

For numerical fields, this value is a number (in the preceding example, we have done
numerical calculation on age and price).

The general representation of a histogram can be a bar chart, similar to the following;:

90
80
70

60 ||

50

||| A1 ‘|.|||||I|I I||
I A |

w | I allbatlil |

IR A

30

M

|

: I |
09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
10/16 10/16 10/16 10/16 10/16 10/16 10/16 10/16 10/16

214

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Histogram aggregations can be also improved using ElasticSearch scripting functionalities.
It is possible to script using _value if a field is stored or via the doc variable.

An example of a scripted aggregation histogram using value is as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search?&pretty=true&size=0' -d '{

"query": {
"match all": {}
1.
"aggs": {
"age" : {
"histogram" : {
llfieldll s "age",
"script": " value*3",
"interval" : 5
}
}
}

} 1
An example of a scripted aggregation histogram using _doc is as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search?&pretty=true&size=0' -d '{

"query": {
"match all": {}
3
"aggs": {
"age" : {
"histogram" : {
"script": "doc['age'l].value",
"interval" : 5
}
}
}

}l

» The Executing the date histogram aggregation recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

Executing the date histogram aggregation

The previous recipe works mainly on numeric fields; ElasticSearch provides a custom date
histogram aggregation to operate on date/date-time values. This aggregation is required
because date values need more customization to solve problems such as time zone
conversion and special time intervals.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script (chapter 06/
executing date histogram aggregations.sh)available athttps://github.com/
aparo/elasticsearch-cookbook-second-edition.

How to do it...

We need two different date/time aggregations that are:

» An annual aggregation
» A quarter aggregation, but with time zone +1:00

To execute date histogram aggregations, we will perform the steps given as follows:

1. The query will be as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/_search? pretty=true' -d '

"query": {

"match all": {}
b
"aggs": {

"date year": {

"date histogram": {
"field": "date",
"interval": "year"

}

b
"date quarter": {

"date histogram": {
"field": "date",
"interval": "quarter"
"time zone": "+01:00"

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

2. The corresponding results are as follows:

{
"took" : 29,
"timed out" : false,
" shards" : {..truncated..},
"hits" : {..truncated..},
"aggregations" : {
"date year" : {
"buckets" : [{
"key as_string" : "2010-01-01TO0O:
"key" : 1262304000000,
"doc_count" : 40
b Ao
"key as_string" : "2011-01-01TO0O:
"key" : 1293840000000,
"doc_count" : 182
}, ..truncated..]
b
"date quarter" : {
"buckets" : [{
"key as_string" : "2010-10-01TO0O0:
"key" : 1285891200000,
"doc_count" : 40
b Ao
"key as_string" : "2011-01-01TO0O:
"key" : 1293840000000,
"doc_count" : 42
}, ..truncated..]
}
}
}

00:

00:

00:

00:

00.

00.

00.

00.

Chapter 6

oooz",

oooz",

oooz",

oooz",

The aggregation result is composed of buckets: a list of aggregation results. These results

are composed of the following:

» key: This is the value that is always on the x axis on the histogram graph

» key as string: Thisis a string representation of the key value

» doc_count: This denotes the document bucket size

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

The main difference in the preceding histogram recipe is that the interval is not numerical,
but generally date intervals are defined time constants. The interval parameter allows
us to use several values such as:

>

>

Year
Quarter
Month
Week
Day
Hour

Minute

When working with date values, it's important to use the correct time zones to prevent query
errors. By default, ElasticSearch uses the UTC milliseconds, from epoch, to store date-time
values. To better handle the correct timestamp, there are some parameters that can be
used such as:

time_ zone (or pre_zone, in which case it's is optional): This parameter allows
defining a time zone offset to be used in value calculation. This value is used to
preprocess the date-time value for the aggregation. The value can be expressed in
numeric form (such as - 3) if specifying hours or minutes, then it must be defined
in the time zone. A string representation can be used (such as +07:30).

post_zone (optional): This parameter takes the result and applies the time zone
offset to that result.

pre zone adjust large interval (by default, thisis false and is optional):
This parameter applies the hour interval also for day or above intervals.

>

Visit the official ElasticSearch documentation on date histogram aggregation at
www.elasticsearch.org/guide/en/elasticsearch/reference/current/
search-aggregations-bucket-datehistogram-aggregation.html for
more details on managing time zone issues

www.it-ebooks.info

www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-datehistogram-aggregation.html
www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-datehistogram-aggregation.html
http://www.it-ebooks.info/

Chapter 6

Executing the filter aggregation

Sometimes, we need to reduce the number of hits in our aggregation to satisfy a particular
filter. To obtain this result, the filter aggregation is used.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script (chapter 06/
test filter aggregation.sh) available athttps://github.com/aparo/
elasticsearch-cookbook-second-edition.

How to do it...

We need to compute two different filter aggregations that are:

» The count of documents that have ullam as tag

» The count of documents that have age equal to 37
To execute filter aggregations, we will perform the steps given as follows:

1. The query to execute these aggregations is as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search?size=0&pretty=true' -4 '

{
"query": {
"match all": {}
3
"aggregations": {
"ullam docs": {
"filter" : {
"term" : { "tag" : "ullam" }
}
3
"age37 docs": {
"filter" : {
"term" : { "age" : 37 }
}
}
}
}l

In this case, we have used simple filters, but they can be more complex if needed.

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Aggregations

2. The results of the preceding query with aggregations will be as follows:

{
"took" : 5,
"timed out" : false,
" shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
b
"hits" : {
"total" : 1000,
"max score" : 0.0,
"hits" : []
b
"aggregations" : {
"age37_docs" : {
"doc_count" : 6
b
"ullam docs" : {
"doc_count" : 17

}
}

Filter aggregation is very simple; it executes a count on a filter in a matched element. You can
consider this aggregation as a count query on the results. As we can see from the preceding
result, the aggregation contains one value doc_count, which is the count result.

It can be seen as a very simple aggregation; generally, users tend not to use it as they prefer
statistical aggregations, which also provide a count; alternatively, in the worst cases, they
execute another search that generates more server workload.

The big advantage of this kind of aggregation is that the count, whenever possible, is executed
via a filter, which is way faster than iterating all the results.

Another important advantage is that the filter can be composed of every possible valid Query
DSL element.

It's often required to have a document count that doesn't match a filter or generally doesn't
have a particular field (or is nul1l). For this kind of scenario, there is a special aggregation
type: missing.

220

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

For example, to count the number of documents missing the code field, the query will be
as follows:

curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search?size=0&pretty' -4 '

{
"query": {
"match all": {}
h
"aggs": {
"missing code": {
"missing" : {
"field" : "code"
}
}
}
3

The result will be as follows:

{

. truncated ..
"aggregations" : {
"missin code" : {
"doc_count" : 1000

}
}
}

» The Counting matched results recipe in Chapter 5, Search, Queries, and Filters

» The Executing a scan query recipe in Chapter 5, Search, Queries, and Filters

Executing the global aggregation

Aggregations are generally executed on query search results, ElasticSearch provides a special
aggregation—global—that is executed globally on all the documents without being influenced
by the query.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script
(executing global aggregations.sh)available athttps://github.com/aparo/
elasticsearch-cookbook-second-edition.

221

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Aggregations

How to do it...

To execute global aggregations, we will perform the steps given as follows:

1. If we want to compare a global average with a query one, the call will be
something like this:
curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search?size=0&pretty=true' -d '
{
"query": {
"term" { "tag" : nyllam" }
}I
"aggregations": {
"query age avg": {
"avg" : {
n fieldll s llagell
}
}I
"all persons":{
"global": {},
"aggs" :{
"age global avg": {
"avg" : {
"field" : "age"

}l
2. The result will be as follows:

{

"took" : 133,

"timed out" : false,

" shards" : {..truncated..},

"hits" : {
"total" : 17,
"max_score" : 0.0,
"hits" : []

b

"aggregations" : {
"all persons" : {

222

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

"doc_count" : 1000,
"age _global avg" : {
"value" : 53.243
}
b
"query age_avg" : {
"value" : 53.470588235294116
}
}
}

In the example, the query age avg function is computed on the query and the age
global_avg function on all the documents.

This kind of aggregation is mainly used as top aggregation—that is, as a start point for other
subaggregations. The body of the global aggregations is empty; it doesn't have any optional
parameters. The most frequently used cases are comparative aggregations executed on filters
with those without aggregation, as in the preceding example.

Executing the geo distance aggregation

Among the other standard types that we have seen in previous aggregations, ElasticSearch
allows executing aggregations against a geo point: geo distance aggregations. This is an
evolution of the previously discussed range aggregations built to work on geo locations.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script (executing
geo_distance aggregations.sh)available at https://github.com/aparo/
elasticsearch-cookbook-second-edition.

How to do it...

Using the position field available in documents, we will aggregate the other documents in
four ranges:

» Fewer than 10 kilometers
» From 10 to 20 kilometers
» From 20 to 50 kilometers

223

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Aggregations

» From 50 to 100 kilometers
» Above 100 kilometers

To execute geo distance aggregations, we will perform the steps given as follows:

1. To achieve these goals, we will create a geo distance aggregation with a code similar
to this one:

curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search?pretty=true&size=0' -d ' {
"query" : {
"match _all" : {}
3
"aggs" : {
"position" : {
"geo distance" : {
"field":"position",
"origin" : {
"lat": 83.76,
"lon": -81.20
Y
"ranges" : [
"to" : 10 },
"from" : 10, "to" : 20 },
"from" : 20, "to" : 50 },
"from" : 50, "to" : 100 },
"from" : 100 }

P e N)

2. The result will be as follows:

{

"took" : 177,
"timed out" : false,
" shards" : {..truncated..},
"hits" : {..truncated..},
"aggregations" : {
"position" : {
"buckets" : [{

"key" : "x-10.0",

"from" : 0.0,

"to" : 10.0,

224

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

"doc_count" : 0

bo A
"key" : "10.0-20.0",
"from" : 10.0,
"to" : 20.0,
"doc_count" : 0

bo A
"key" : "20.0-50.0",
"from" : 20.0,
"to" : 50.0,
"doc_count" : 0

bo A
"key" : "50.0-100.0",
"from" : 50.0,
"to" : 100.0,
"doc_count" : 0

bo A
"key" : "100.0-*",
"from" : 100.0,
"doc_count" : 1000

j

}

The geo range aggregation is an extension of the range aggregations that work on geo
localizations. It works only if a field is mapped as a geo_point. The field can contain
a single or multivalue geo point.

This aggregation requires at least three parameters:

» field: Thisis the field of the geo point to work on
» origin: This is the geo point to be used to compute the distances
» ranges: This is a list of ranges to collect documents based on their distance
from the target point
The geo point can be defined in one of these accepted formats:

» Latitude and longitude as properties, suchas {"lat": 83.76, "lon": -81.20 }
» Longitude and latitude as an array, such as [-81.20, 83.76]

» Latitude and longjtude as a string, such as "83.76, -81.20"

» Geohash, for example, £nyk80

225

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

The ranges are defined as a couple of from/to values. If one of them is missing, they
are considered as unbound. The metric system used for the range is by default set to
kilometers—but by using the property unit, it's possible to set it to:

>

>

>

>

>

>

miormiles
inorinch
yd or yard
kmorkilometers
mOr meters
cmor centimeter

mmormillimeters

It's also possible to set how the distance is computed with the distance type parameter.
Valid values for this parameter are:

>

arc: This uses the Arc Length formula. It is the most precise.
(See http://en.wikipedia.org/wiki/Arc_length for more details
on the arc length algorithm.)

sloppy_ arc (default): It's a faster implementation of the Arc Length formula,
but is less precise.

plane: This uses the plane distance formula. It is the most fastest of all and
CPU-intensive, but it too is less precise.

As for the range filter, the range values are treated independently, so overlapping ranges
are allowed.

When the results are returned, this aggregation provides a lot of information in its fields:

>

>

>

from/to: This defines the analyzed range
Key: This defines the string representation of the range

doc_count: This defines the number of documents in the bucket that match
the range

| 4
| 4

>

226

The Executing the range aggregation recipe in this chapter
The Mapping a geo point field recipe in Chapter 3, Managing Mapping

The geohash grid aggregation at http://www.elasticsearch.org/guide/
en/elasticsearch/reference/current/search-aggregations-bucket-
geochashgrid-aggregation.html

www.it-ebooks.info

http://en.wikipedia.org/wiki/Arc_length
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geohashgrid-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geohashgrid-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geohashgrid-aggregation.html
http://www.it-ebooks.info/

Chapter 6

Executing nested aggregation

Nested aggregations allow us to execute analysis on nested documents. When working with
complex structures, nested objects are very common.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script available at
https://github.com/aparo/elasticsearch-cookbook-second-edition.

How to do it...

To execute nested aggregations, we will perform the steps given as follows:

1. We must index documents with a nested type, as discussed in the Managing nested
objects recipe in Chapter 3, Managing Mapping:

{

"product" : {
"properties" : {
"resellers" : {
"type" : "nested"
"properties" : {
"username" : { "type" : "string", "index"
"not analyzed" },
"price" : { "type" : "double" }
}
}
"tags" : { "type" : "string", "index":'"not analyzed"}

2. To return the minimum price the products can be purchased at, we create a nested
aggregation with code similar to this one:

curl -XGET 'http://127.0.0.1:9200/test-
index/product/ search?pretty=true&size=0' -d ' {

"query" : {
"match" : { "name" : "my product" }
3
"aggs" : {
"resellers" : {
"nested" : {

227

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Aggregations

"path" : "resellers"

3

"aggs" : {
"min price" : { "min" : { "field" : "resellers.price" } }

}

}
}
3

3. The result will be as follows:

{

"took" : 7,
"timed out" : false,
" shards" : {..truncated..},
"hits" : {..truncated..},
"aggregations": {
"resellers": {
"min price": {
"value" : 130

}
}
}
}

In this case, the resulting aggregation is a simple min metric that we have already seen in the
second recipe of this chapter.

The nested aggregation requires only the path data of the field, which is relative to the parent
and contains the nested documents.

After having defined the nested aggregation, all the other kinds of aggregations can be used
in the subaggregations.

ElasticSearch provides a way to aggregate values from nested documents to their parent; this
aggregation is called reverse nested

In the preceding example, we can aggregate the top tags for the reseller with a similar query:

curl -XGET 'http://127.0.0.1:9200/test-
index/product/ search?pretty=true&size=0' -d ' {

"query" : {

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

"match" : { "name" : "my product" }

}
"aggs" : {
"resellers" : {
"nested" : {
"path" : "resellers"
3
"aggs" : {
"top resellers" : {
"terms" : {
"field" : "resellers.username"
}
3
"aggs" : {
"resellers to product" : {
"reverse nested" : {},
"aggs" : {
"top tags per reseller" : {
"terms" : { "field" : "tags" }
}
}
}
}
}
}
}

In this example, there are several steps:

1. We aggregate initially for nested resellers data.

2. Having activated the nested resellers documents, we are able to term-aggregate by
its username field (resellers.username).

3. From the top resellers aggregation, we go back to aggregate on the parent via
"reverse nested".

4. Now, we can aggregate tags of the parent document.

The response of the query is similar to this one:

{
"took" : 93,
"timed out" : false,
" shards" : {..truncated..},
"hits" : {..truncated..},

229

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

"aggregations": {
"resellers": {
"top_usernames": {
"buckets" : [
{
"key" : "username 1",
"doc_count" : 17,
"resellers to product" : ({
"top_tags_per reseller" : {
"buckets" : [
{
"key" : "tagl",
"doc_count" : 9
b,
1
}
bow
}
1
}
}
}

Executing the top hit aggregation

The top hit aggregation is different from the other aggregation types. All the previous
aggregations have metric (simple values) or bucket values; the top hit aggregation
returns buckets of search hits.

Generally, the top hit aggregation is used as a subaggregation so that the top matching
documents can be aggregated in buckets.

Getting ready

You need a working ElasticSearch cluster and an index populated with the script (chapter 06/
executing top hit aggregations.sh)available at https://github.com/aparo/
elasticsearch-cookbook-second-edition.

230

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 6

How to do it...

To execute a top hit aggregation, we will perform the steps given as follows:

1. We want to aggregate the documents hits by tag (tags) and return only the name
field of documents with a maximum age (top_tag_ hits). We'll execute the search
and aggregation with the following command:
curl -XGET 'http://127.0.0.1:9200/test-index/test-
type/ search' -d '{

"query": {
"match all": {}
3
"gize": O,
"aggs": {
"tags": {
"terms": {
"field": "tag",
"size": 2
3
"aggs": {
"top tag hits": {
"top hits": {
"sort": [
{
vage": {
"order": "desc"
}
}
1,
" source": {
"include": [
"name"
1
3

"size": 1

231

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregations

2. The result will be as follows:

{
"took" : 5,
"timed out" : false,
" shards" : ..truncated..,
"hits" : ..truncated..,
"aggregations" : {
"tags" : {
"buckets" : [{
"key" : "laborum",
"doc_count" : 18,
"top_tag hits" : {
"hits" : {
"total" : 18,
"max_score" : null,
"hitsh : [{
" index" : "test-index",
"_type" : "test-type",
"oid" o "730",
" score" : null,
" source":{"name":"Gladiator"},
"sort" : [90]
}l
}
}
}I"iey" : "sitn,
"doc_count" : 10,
"top_tag hits" : {
"hits" : {
"total" : 10,
"max_score" : null,
"hitsn : [{
" index" : "test-index",
"_type" : "test-type",
"oidm . "732",
" score" : null,
" source":{"name":"Masked Marvel"},
"sort" : [96]
}l
}
}
}l
}
}
}

232

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The top hit aggregation allows collecting buckets of hits from another aggregation. It provides
optional parameters to control the result's slicing. These are as follows:

» from (by default 0): This is the starting position of the hits in the bucket.
» size (by default, set to the parent bucket size): This is the hit bucket size.

» sort (by default score): This allows us to sort for different values. Its definition
is similar to the search sort in Chapter 5, Search, Queries, and Filters.

To control the returned hits, it is possible to use the same parameters as used for a search:

» _source: This allows us to control the returned source. It can be disabled (false),
partially returned (obj . *), or can have multiple exclude/include rules. In the earlier
example, we have returned only the name field:

" source": {
"include": [
n name n
1
} ’
» highlighting: This allows us to define fields and settings to be used to calculate
a query abstract.
» fielddata_fields: This allows us to return field data representation of your field.

» explain: This returns information on how the score is calculated for a
particular document.

» version (by default f£alse): This adds the version of a document in the results.

. Top hit aggregation can be used to implement a field collapsing
~ feature; this is done by using first a terms aggregation on the
Q field that we want to collapse and then collecting the documents
with a top hit aggregation.

» The Executing a search recipe in Chapter 5, Search, Queries, and Filters

» The Executing the terms aggregation recipe in this chapter

233

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

In this chapter, we will cover the following recipes:

» Installing additional script plugins

» Managing scripts

» Sorting data using scripts

» Computing return fields with scripting
» Filtering a search via scripting

» Updating a document using scripts

Introduction

ElasticSearch has a powerful way of extending its capabilities with custom scripts, which
can be written in several programming languages. The most common ones are Groovy,
MVEL, JavaScript, and Python.

We already had a taste of ElasticSearch's scripting capabilities in the previous chapter,
where we used scripting for aggregations. In this chapter, we will see how it's possible to
create custom scoring algorithms, special processed return fields, custom sorting, and
complex update operations on records.

The scripting concept of ElasticSearch can be seen as an advanced stored procedures
system in the NoSQL world; so, for an advanced usage of ElasticSearch, it is very important
to master it.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

Installing additional script plugins

ElasticSearch provides native scripting (a Java code compiled in JAR) and Groovy, but a lot of
interesting languages are also available, such as JavaScript and Python. In older ElasticSearch
releases, prior to version 1.4, the official scripting language was MVEL, but due to the fact that
it was not well-maintained by MVEL developers, in addition to the impossibility to sandbox it
and prevent security issues, MVEL was replaced with Groovy. Groovy scripting is now provided
by default in ElasticSearch. The other scripting languages can be installed as plugins.

Getting ready

You will need a working ElasticSearch cluster.

How to do it...

In order to install JavaScript language support for ElasticSearch (1.3.x), perform the
following steps:

1. From the command line, simply enter the following command:
bin/plugin --install elasticsearch/elasticsearch-lang-
javascript/2.3.0

2. This will print the following result:

-> Installing elasticsearch/elasticsearch-lang-javascript/2.3.0...

Trying http://download.elasticsearch.org/elasticsearch/
elasticsearch-lang-javascript/elasticsearch-lang-javascript-
2.3.0.zip. ..

DownloadingDONE
Installed lang-javascript

If the installation is successful, the output will end
s with Installed; otherwise, an error is returned.

3. Toinstall Python language support for ElasticSearch, just enter the following command:
bin/plugin -install elasticsearch/elasticsearch-lang-python/2.3.0

+ The version number depends on the ElasticSearch

version. Take a look at the plugin's web page to

choose the correct version.

236

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Language plugins allow you to extend the number of supported languages to be used
in scripting.

During the ElasticSearch startup, an internal ElasticSearch service called PluginService
loads all the installed language plugins.

[In order to install or upgrade a plugin, you need to restart the node.]

The ElasticSearch community provides common scripting languages (a list of the supported
scripting languages is available on the ElasticSearch site plugin page at http://www.
elasticsearch.org/guide/en/elasticsearch/reference/current/modules-
plugins.html), and others are available in GitHub repositories (a simple search on GitHub
allows you to find them).

The following are the most commonly used languages for scripting:

» Groovy (http://groovy.codehaus.org/): This language is embedded
in ElasticSearch by default. It is a simple language that provides scripting
functionalities. This is one of the fastest available language extensions.
Groovy is a dynamic, object-oriented programming language with features
similar to those of Python, Ruby, Perl, and Smalltalk. It also provides support
to write a functional code.

» JavaScript (https://github.com/elasticsearch/elasticsearch-lang-
javascript): This is available as an external plugin. The JavaScript implementation
is based on Java Rhino (https://developer.mozilla.org/en-US/docs/
Rhino) and is really fast.

» Python (https://github.com/elasticsearch/elasticsearch-lang-
python): This is available as an external plugin, based on Jython (http://jython.
org). It allows Python to be used as a script engine. Considering several benchmark
results, it's slower than other languages.

Groovy is preferred if the script is not too complex; otherwise, a native plugin provides a better
environment to implement complex logic and data management.

The performance of every language is different; the fastest one

is the native Java. In the case of dynamic scripting languages,

Groovy is faster, as compared to JavaScript and Python.

237

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html
http://groovy.codehaus.org/
https://github.com/elasticsearch/elasticsearch-lang-javascript
https://github.com/elasticsearch/elasticsearch-lang-javascript
https://developer.mozilla.org/en-US/docs/Rhino
https://developer.mozilla.org/en-US/docs/Rhino
https://github.com/elasticsearch/elasticsearch-lang-python
https://github.com/elasticsearch/elasticsearch-lang-python
http://jython.org
http://jython.org
http://www.it-ebooks.info/

Scripting

In order to access document properties in Groovy scripts, the same approach will work as in
other scripting languages:

» doc.score: This stores the document's score.

» doc['field name'] .value: This extracts the value of the £ield name field from
the document. If the value is an array or if you want to extract the value as an array,
you can use doc ['field name'] .values.

» doc['field name'] .empty: Thisreturns true if the field name field has no
value in the document.

» doc['field name'] .multivalue: This returns true if the field name field
contains multiple values.

If the field contains a geopoint value, additional methods are available, as follows:

» doc['field name'] .lat: This returns the latitude of a geopoint. If you need
the value as an array, you can use the doc ['field name'] .lats method.

» doc['field name'] .lon: This returns the longitude of a geopoint. If you need
the value as an array, you can use the doc ['field name'] .lons method.

» doc['field name'] .distance (lat, lon): This returns the plane distance,
in miles, from a latitude/longitude point. If you need to calculate the distance in
kilometers, you should use the doc ['field name'] .distanceInKm(lat,lon)
method.

» doc['field name'] .arcDistance (lat, lon): This returns the arc
distance, in miles, from a latitude/longitude point. If you need to calculate
the distance in kilometers, you should use the doc ['field name'].
arcDistanceInKm(lat, lon) method.

» doc['field name'] .geohashDistance (geohash): This returns the
distance, in miles, from a geohash value. If you need to calculate the same
distance in kilometers, you should use doc ['field name'] and the
geohashDistanceInKm(lat, lon) method.

By using these helper methods, it is possible to create advanced scripts in order to boost
a document by a distance that can be very handy in developing geolocalized centered
applications.

Managing scripts

Depending on your scripting usage, there are several ways to customize ElasticSearch to use
your script extensions.

In this recipe, we will see how to provide scripts to ElasticSearch via files, indexes, or inline.

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

You will need a working ElasticSearch cluster populated with the populate script
(chapter 06/populate aggregations.sh) used in Chapter 6, Aggregations, available
athttps://github.com/aparo/elasticsearch-cookbook-second-edition.

How to do it...

To manage scripting, perform the following steps:

1.

Dynamic scripting is disabled by default for security reasons; we need to activate
it in order to use dynamic scripting languages such as JavaScript or Python. To do
this, we need to turn off the disable flag (script.disable dynamic: false)
in the ElasticSearch configuration file (config/elasticseach.yml) and restart
the cluster.

To increase security, ElasticSearch does not allow you to specify scripts for non-sandbox
languages. Scripts can be placed in the scripts directory inside the configuration
directory. To provide a script in a file, we'll put a my script.groovy script in the
config/scripts location with the following code content:

doc ["price"] .value * factor

If the dynamic script is enabled (as done in the first step), ElasticSearch allows you
to store the scripts in a special index, .scripts. To putmy script inthe index,
execute the following command in the command terminal:

curl -XPOST localhost:9200/ scripts/groovy/my script -d '{
"script":"doc[\"price\"].value * factor"

}l
The script can be used by simply referencing it in the script_id field; use the
following command:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?&pretty=truegsize=3' -d '{

"query": {
"match all": {}
.
"sort": {
" script" : {
"script id" : "my script",
"lang" : "groovy",
"type" : "number",
"ignore unmapped" : true,
"params" : {
"factor" : 1.1

239

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Scripting
} r

"order" : "asc"

ElasticSearch allows you to load your script in different ways; each one of these methods
has their pros and cons.

The most secure way to load or import scripts is to provide them as files in the config/
scripts directory. This directory is continuously scanned for new files (by default, every
60 seconds). The scripting language is automatically detected by the file extension, and
the script name depends on the filename.

If the file is put in subdirectories, the directory path becomes part of the filename; for
example, if it is config/scripts/mysubl/mysub2/my script.groovy, the script
name will be mysubl mysub2 my script. If the script is provided via a filesystem,

it can be referenced in the code via the "script": "script name" parameter.

Scripts can also be available in the special . script index. These are the REST end points:

» To retrieve a script, use the following code:

GET http://<servers/ scripts/<language>/<id>

» To store a script use the following code:
PUT http://<server>/ scripts/<language>/<id>

» To delete a script use the following code:
DELETE http://<server>/ scripts/<language>/<id>

The indexed script can be referenced in the code via the "script _id": "id of the
script" parameter. The recipes that follow will use inline scripting because it's easier to
use it during the development and testing phases.

Generally, a good practice is to develop using the inline dynamic
. scripting in a request, because it's faster to prototype. Once the
~> script is ready and no changes are needed, it can be stored in the
Q index since it is simpler to call and manage. In production, a best
practice is to disable dynamic scripting and store the script on
the disk (generally, dumping the indexed script to disk).

240

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

» The scripting page on the ElasticSearch website at http://www.elasticsearch.
org/guide/en/elasticsearch/reference/current/modules-scripting.
html

Sorting data using script

ElasticSearch provides scripting support for the sorting functionality. In real world applications,
there is often a need to modify the default sort by the match score using an algorithm that
depends on the context and some external variables. Some common scenarios are given
as follows:

» Sorting places near a point

» Sorting by most-read articles

» Sorting items by custom user logic

» Sorting items by revenue

Getting ready

You will need a working ElasticSearch cluster and an index populated with the script
used in Chapter 6, Aggregations, which is available at https://github.com/aparo/
elasticsearch-cookbook-second-edition.

How to do it...

In order to sort using scripting, perform the following steps:

1. If you want to order your documents by the price field multiplied by a factor
parameter (that is, sales tax), the search will be as shown in the following code:
curl -XGET 'http://127.0.0.1:9200/test-index/test-type/_
search?&pretty=truessize=3' -d '{
"query": {
"match all": {}

b

"sort": {
" script" : {
"script" : "doc[\"price\"].value * factor",
"lang" : "groovy",
"type" : "number",
"ignore_unmapped" : true,

241

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-scripting.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-scripting.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-scripting.html
https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Scripting

"params" : {
"factor" : 1.1

b

"order" : "asc"

} 1
In this case, we have used a match_all query and a sort script.

2. |If everything is correct, the result returned by ElasticSearch should be as shown in
the following code:

{
"took" : 7,
"timed out" : false,
" shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
I
"hits" : {
"total" : 1000,
"max_score" : null,
"hits" : [{
" index" : "test-index",
" type" : "test-type",
"oid" : "lel",
" score" : null, " source" : .. truncated ..,
"sort" : [0.0278578661440021]
boo o
" index" : "test-index",
" type" : "test-type",
"oid" : "e34",
" score" : null, " source" : .. truncated ..,
"sort" : [0.08131364254827411]
boo o
" index" : "test-index",
" type" : "test-type",
" id" : "4e5",
" score" : null, " source" : .. truncated ..,
"sort" : [0.1094966959069832]
bl
}
}

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The sort parameter, which we discussed in Chapter 5, Search, Queries, and Filters, can be
extended with the help of scripting.

The sort scripting allows you to define several parameters, as follows:
» order (default "asc") ("asc" or "desc"):This determines whether
the order must be ascending or descending.
» script: This contains the code to be executed.
» type: This defines the type to convert the value.

» params (optional, a JSON object): This defines the parameters that need to
be passed.

» lang (by default, groovy): This defines the scripting language to be used.
» ignore unmapped (optional): This ignores unmapped fields in a sort. This flag
allows you to avoid errors due to missing fields in shards.

Extending the sort with scripting allows the use of a broader approach to score your hits.

1
‘\Q ElasticSearch scripting permits the use of every code that you want.

You can create custom complex algorithms to score your documents.

Groovy provides a lot of built-in functions (mainly taken from Java's Math class) that can be
used in scripts, as shown in the following table:

Function Description

time () The current time in milliseconds

sin(a) Returns the trigonometric sine of an angle

cos (a) Returns the trigonometric cosine of an angle

tan(a) Returns the trigonometric tangent of an angle

asin(a) Returns the arc sine of a value

acos (a) Returns the arc cosine of a value

atan(a) Returns the arc tangent of a value

toRadians (angdeg) | Converts an angle measured in degrees to an approximately
equivalent angle measured in radians

toDegrees (angrad) | Converts an angle measured in radians to an approximately
equivalent angle measured in degrees

243

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

Function Description

exp (a) Returns Euler's number raised to the power of a value
log(a) Returns the natural logarithm (base €) of a value

loglo (a) Returns the base 10 logarithm of a value

sgrt (a) Returns the correctly rounded positive square root of a value
cbrt (a) Returns the cube root of a double value

IEEEremainder (f1,

Computes the remainder operation on two arguments,

£2) as prescribed by the IEEE 754 standard

ceil (a) Returns the smallest (closest to negative infinity) value that
is greater than or equal to the argument and is equal to a
mathematical integer

floor(a) Returns the largest (closest to positive infinity) value that
is less than or equal to the argument and is equal to a
mathematical integer

rint (a) Returns the value that is closest in value to the argument and

is equal to a mathematical integer

atan2 (y, x)

Returns the angle theta from the conversion of rectangular
coordinates (x, y_) to polar coordinates (r, _theta)

pow(a, b) Returns the value of the first argument raised to the power of
the second argument

round (a) Returns the closest integer to the argument

random () Returns a random double value

abs (a) Returns the absolute value of a value

max(a, b) Returns the greater of the two values

min(a, b) Returns the smaller of the two values

ulp (d) Returns the size of the unit in the last place of the argument

signum(d)

Returns the signum function of the argument

sinh (x) Returns the hyperbolic sine of a value

cosh (x) Returns the hyperbolic cosine of a value

tanh (x) Returns the hyperbolic tangent of a value

hypot (x,y) Returns sgrt (x*2+y”2) without an intermediate overflow
or underflow

acos (a) Returns the arc cosine of a value

atan(a) Returns the arc tangent of a value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

If you want to retrieve records in a random order, you can use a script with a random method,
as shown in the following code:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?&pretty=true&size=3' -d '{ B
"query": {
"match all": {}

3
"sort": {
" script" : {
"script" : "Math.random()",
"lang" : "groovy",
"type" : "number",
"params" : {}
}
}

}u

In this example, for every hit, the new sort value is computed by executing the Math.
random () scripting function.

» The official ElasticSearch documentation at http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/modules-scripting.html

Computing return fields with scripting

ElasticSearch allows you to define complex expressions that can be used to return a new
calculated field value. These special fields are called script fields, and they can be
expressed with a script in every available ElasticSearch scripting language.

Getting ready

You will need a working ElasticSearch cluster and an index populated with the script
(chapter 06/populate aggregations.sh) used in Chapter 6, Aggregations,
which is available at https://github.com/aparo/elasticsearch-cookbook-
second-edition.

245

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-scripting.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-scripting.html
https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Scripting

How to do it...

In order to compute return fields with scripting, perform the following steps:

1. Return the following script fields:

o "my calc_field":This concatenates the text of the "name" and
"description" fields

o "my calc field2":This multiplies the "price™" value by the
"discount" parameter
2. From the command line, execute the following code:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?&pretty=truegsize=3' -d '{

"query": {
"match all": {}
3
"script fields" : {
"my calc field" : {
"script" : "doc[\"name\"].value + \" -- \" +
doc [\"description\"] .value"
3
"my calc field2" : {
"script" : "doc[\"price\"].value * discount",
"params" : {
"discount" : 0.8
}
}

}
}l

3. If everything works all right, this is how the result returned by ElasticSearch should be:

{

"took" : 4,

"timed out" : false,

" shards" :
"total" : 5,
"successful" : 5,

"failed" : O

b

"hits" :
"total" : 1000,
"max_score" : 1.0,
"hits" : [{

246

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

" index" : "test-index",

" type" : "test-type",

"oidm oo marv,

" score" : 1.0,

"fields" : {
"my calc field" : "entropic -- accusantium",
"my calc field2" : 5.480038242170081

}

b Ao

" index" : "test-index",

" type" : "test-type",

"oidm . mo9n,

" score" : 1.0,

"fields" : {
"my calc field" : "frankie -- accusantium",
"my calc field2" : 34.79852410178313

}

b Ao

" index" : "test-index",

" type" : "test-type",

"oigm . m1i1nv,

" score" : 1.0,

"fields" : {
"my calc field" : "johansson -- accusamus",
"my calc field2" : 11.824173084636591

}

Pl
}

The scripting fields are similar to executing an SQL function on a field during a select operation.

In ElasticSearch, after a search phase is executed and the hits to be returned are calculated,
if some fields (standard or script) are defined, they are calculated and returned.

The script field, which can be defined with all the supported languages, is processed by passing
a value to the source of the document and, if some other parameters are defined in the script
(in the discount factor example), they are passed to the script function.

The script function is a code snippet; it can contain everything that the language allows you to
write, but it must be evaluated to a value (or a list of values).

247

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

» The Installing additional script plugins recipe in this chapter to install additional
languages for scripting

» The Sorting using script recipe to have a reference of the extra built-in functions
in Groovy scripts

Filtering a search via scripting

In Chapter 5, Search, Queries, and Filters, we have learnt about filters. ElasticSearch scripting
allows you to extend the traditional filter with custom scripts.

Using scripting to create a custom filter is a convenient way to write scripting rules that are not
provided by Lucene or ElasticSearch, and to implement business logic that is not available in
the query DSL.

Getting ready

You will need a working ElasticSearch cluster and an index populated with the (chapter 06/
populate aggregations.sh) script used in Chapter 6, Aggregations, which is available at
https://github.com/aparo/elasticsearch-cookbook-second-edition.

How to do it...

In order to filter a search using a script, perform the following steps:

1. Write a search with a filter that filters out a document with the value of age less than
the parameter value:
curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?&pretty=truegsize=3' -d '{
"query": {
"filtered": {
"filter": {
"script": {
"script": "doc[\"age\"].value > paraml",
"params" : {
"paraml" : 80
}
}
3
"query": {
"match all": {}

}

248

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 7

1
‘Q In this example, all the documents in which the value of age is

greater than paraml are qualified to be returned.

2. If everything works correctly, the result returned by ElasticSearch should be as

shown here:
{
"took" : 30,
"timed out" : false,
" shards" : {
"total" : 5,
"successful" : 5,

"failed" : O

¥
"hits" : {
"total" : 237,
"max_score" : 1.0,
"hits" : [{
" index" : "test-index",
" type" : "test-type",
n idll . "9"1
" score" : 1.0, " source" :{ .. "age": 83, ..}
bo A
" index" : "test-index",
" type" : "test-type",
n idll . ||23u’
" score" : 1.0, " source" : { .. "age": 87, .. }
bo A
" index" : "test-index",
" type" : "test-type",
n idll . ||47||’
" score" : 1.0, " source" : {... "age": 98, ..}
3l
}

249

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

The script filter is a language script that returns a Boolean value (true/false). For every hit,
the script is evaluated, and if it returns true, the hit passes the filter. This type of scripting
can only be used as Lucene filters, not as queries, because it doesn't affect the search

(the exceptions are constant score and custom _filters score).

These are the scripting fields:

» script: This contains the code to be executed
» params: These are optional parameters to be passed to the script
» lang (defaults to groovy): This defines the language of the script

The script code can be any code in your preferred and supported scripting language that
returns a Boolean value.

Other languages are used in the same way as Groovy.

For the current example, | have chosen a standard comparison that works in several languages.
To execute the same script using the JavaScript language, use the following code:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?&pretty=truegsize=3' -d '{
"query": {
"filtered": {
"filter": {
"script": {
"script": "doc[\"age\"].value > paraml",
"lang":"javascript",
"params" : {
"paraml" : 80
}
}
3
"query": {
"match all": {}

250

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

For Python, use the following code:

curl -XGET 'http://127.0.0.1:9200/test-index/test-type/
search?&pretty=true&size=3' -d '{
"query": {
"filtered": {
"filter": {
"script": {
"script": "doc[\"age\"].value > paraml",
"lang":"python",
"params" : {
"paraml" : 80
}
}
3
"query": {
"match all": {}
}
}
}
3

» The Installing additional script plugins recipe in this chapter to install additional
languages for scripting

» The Sorting data using script recipe in this chapter to get a reference of the extra
built-in functions in Groovy scripts

Updating a document using scripts

ElasticSearch allows you to update a document in its place.

Updating a document via scripting reduces the network traffic (otherwise, you would need to
fetch the document, change the field, and send it back) and improves performance when you
need to process huge amounts of documents.

Getting ready

You will need a working ElasticSearch cluster and an index populated with the script
used in Chapter 6, Aggregations, which is available at https://github.com/aparo/
elasticsearch-cookbook-second-edition.

251

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Scripting

How to do it...

In order to update a document using scripting, perform the following steps:

1. Write an update action that adds a tag value to a list of tags available in the source of
a document. This is how the code should look:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/9/
update?&pretty=true' -d '{

"script" : "ctx._ source.tag += tag",
"params" : {
n tagll s n coolll
}
} 1
2. If everything works correctly, this is how the result returned by ElasticSearch
should look:
{
"ok" : true,
" index" : "test-index",
" type" : "test-type",
n_idn . "9"1
" version" : 2

}

3. If you retrieve the document now, this is what you will have:

{

" index" : "test-index",
" type" : "test-type",

n idn . "9"1

" version" : 2,

"found" : true,

" source": {
"in stock": true,
"tag": ["alias", "sit", "cool"],
"name": "Frankie Raye", ..truncated..

}
}

From the result, you can also see that the version number increases by one.

The REST HTTP method that is used to update a document is POST.

252

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7
The URL contains only the index name, type, document ID, and action, as follows:
http://<server>/<index name>/<type>/<document id>/ update
The update action is composed of the following three steps:
1. Get operation (very fast): This operation works on real-time data (no need to refresh)
and retrieves the record

2. Script execution: The script is executed on the document, and if required, it is updated
3. Saving the document: The document, if needed, is saved

The script execution follows the workflow in the following manner:

» The script is compiled and the result is cached to improve re-execution. The compilation
depends on the scripting language; it detects errors in the script, such as typographical,
syntax, and language-related errors. The compilation step can be CPU-bound,
so ElasticSearch caches the compilation results for further execution.

» The document is executed in the script context. The document data is available in the
ctx variable in the script.

The update script can set several parameters in the ctx variable. These are the most
important parameters:

» ctx._ source: This contains the source of the document.

» ctx. timestamp: If it's defined, this value is set to the document's timestamp.

» ctx.op: This defines the main operation type to be executed. There are several
available values, as follows:

o index (the default value): The record is reindexed with the update values.
o delete: The document is deleted after the update.

o none: The document is skipped without reindexing the document.

M If you need to execute a large number of update operations,
Q it's better to perform them in bulk in order to improve your
application's performance.

There's more...

The previous example can be rewritten using JavaScript language, and looks as shown in the
following command:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/9/
update?&pretty=true' -d '{
"script" : "ctx. source.tag += tag",

253

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

lllangll . Iljsll ,
"params" : {
"tag" : "cool"
}
}I

The previous example can be written using the Python language, as follows:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/9/
update?&pretty=true' -d '{
"script" : "ctx[\" source\"] [\"tag\"] =
list(ctx[\"_source\"] [\"tag\"]l) + [tagl",
"lang":"python",
"params" : {
"tag" : "cool"
}
}I

In the Python example, the Java list must be converted into a Python list to allow the addition
of elements; the back conversion is automatically done.

To improve performance, if a field is not changed, it's a good
%@‘\ practice to set the ctx. op variable equal to none in order
’ to disable the indexing of the unchanged document.

In the following example, we will execute an update that adds new "tags" and "labels"
values to an object, but we will mark the document for indexing only if the tags or 1abels
values are changed:

curl -XPOST 'http://127.0.0.1:9200/test-index/test-type/9/
update?&pretty=true' -d '{
"script" : "ctx.op = \"none\";
if(ctx._source.containsValue(\"tags\")){
foreach(item:new tags) {
if (lctx. source.tags.contains(item)) {
ctx. source.tags += item;
ctx.op = \"index\";
}
}

lelse{
ctx. source.tags=new_ tags;
ctx.op = \"index\";
};
if(ctx._source.containsValue(\"labels\")){
foreach(item:new labels)

www.it-ebooks.info

http://www.it-ebooks.info/

}

Chapter 7

if (lctx. source.labels.contains(item)) {

ctx. source.labels += item;
ctx.op = \"index\";

lelse{
ctx. source.labels=new labels;
ctx.op = \"index\";

Yim,

"params" : {

"new tags" : ["cool", "nice"],
"new labels" : ["red", "blue", "green"]

}
}I

The preceding code is pretty printed. When saving your script, the newline should be coded
as an \n character.

The preceding script uses the following steps:

1.

It marks the operation to the none value to prevent indexing, if in the following
steps the original source is not changed.

It checks whether the tags field is available in the source object.

If the tags field is available in the source object, it iterates all the values of the
new_tags list. If the value is not available in the current tags list, it adds the
value and updates the operation to index.

If the tags field doesn't exist in the source object, it simply adds it to the source
and marks the operation to index.

The steps from 2 to 4 are repeated for the 1abels value. The repetition is present
in this example to show the ElasticSearch user how it is possible to update multiple
values in a single update operation.

This script can be quite complex, but it shows the powerful capabilities of scripting
in ElasticSearch.

255

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

In this chapter, we will cover the following recipes:

>

Managing a river

Using the CouchDB river
Using the MongoDB river
Using the RabbitMQ river
Using the JDBC river
Using the Twitter river

Introduction

There are two ways to put your data into ElasticSearch. As you have seen in previous chapters,
one way is to use the index API, which allows you to store documents in ElasticSearch via the
PUT/POST API or the bulk API. The other way is to use a service that fetches the data from an
external source (at one time or periodically) and puts it in the cluster.

ElasticSearch calls these services rivers, and the ElasticSearch community provides several
rivers to connect to different data sources, as follows:

>

>

CouchDB

MongoDB

RabbitMQ

SQL DBMS (Oracle, MySQL, PostgreSQL, and so on)
Redis

Twitter

Wikipedia

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

Rivers are available as external plugins at http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/modules-plugins.html#river, which provides
an updated list of the available ElasticSearch rivers. In this chapter, we'll discuss how to manage
a river (create, check, and delete) and how to configure the most common ones.

Ariver is a very handy tool to ingest data in ElasticSearch, but it has its advantages
and disadvantages.

These are the main advantages of rivers:
» A built-in main functionality in the ElasticSearch core (although in the future,
it might be removed)

» Autorestart is managed by ElasticSearch in the event of a cluster startup or
migration to another node in case of a node failure

» Easily deployable as an ElasticSearch plugin
These are the main disadvantages of rivers:

» Failures or a malfunction in a river can cause the node or cluster to hang

» There is no river balancer, so some nodes can have a high overhead due to the
execution of a river, reducing overall performance

» An update to a river requires a cluster restart

» It's very difficult to debug a river in a multiple node environment
The river system is a good tool to use for prototyping functionalities, but due to its issues, it can
lead to cluster instability. A best practice is to execute data ingestion in a separate application.

This approach is used, for example, in logstash, the log data ingestion system of ElasticSearch
(http://www.elasticsearch.org/overview/logstashand http://logstash.net/).

Managing a river

In ElasticSearch, there are two main action-related river setups: creating a river and deleting
ariver.

Getting ready

You will need a working ElasticSearch cluster.

How to do it...

A river is uniquely defined by a name and type. The river type is the type name defined in the
loaded river plugins. After the name and type parameters, a river usually requires an extra
configuration that can be passed in the _meta property.

258

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html#river
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html#river
http://www.elasticsearch.org/overview/logstash
http://logstash.net/
http://www.it-ebooks.info/

Chapter 8

In order to manage a river, perform the following steps:

1. To create a river (my_river), the HTTP method used is PUT (POST will work, too),
as shown here:
curl -XPUT 'http://127.0.0.1:9200/ river/my river/ meta' -d '{
n typell H n dummy n

}u

1
~> The dummy type is a fake river, which is always installed
in ElasticSearch.

2. This is how the result will look:
{"created":true," index":" river"," type":"my river"," id":
" meta"," version":1}

3. If you take a look at the ElasticSearch logs, you'll see some new lines, as shown here:

[2014-07-27 12:20:55,518] [INFO] [cluster.metadata]
[White Pilgrim] [_river] creating index, cause [auto(index
api)], shards [1]/[1], mappings []

[2014-07-27 12:20:55,557] [INFO] [cluster.metadata]
[White Pilgrim] [_river] update mapping [my river]
(dynamic)

[2014-07-27 12:20:56,569] [INFO] [river.dummy]
[White Pilgrim] [dummy] [my river] create

[2014-07-27 12:20:56,569] [INFO] [river.dummy]
[White Pilgrim] [dummy] [my river] start

[2014-07-27 12:20:56,582] [INFO] [cluster.metadata]
[White Pilgrim] [_river] update mapping [my river]
(dynamic)

4. To remove a river, use the DELETE HTTP method. If you consider the previously
created river, this should be the REST call:

curl -XDELETE 'http://127.0.0.1:9200/ river/my river/'
The following will be the result:

{"acknowledged":true}

5. If you take a look at the ElasticSearch logs, you'll see some new lines, as follows:

[2014-07-27 12:22:04,464] [INFO] [cluster.metadata]
[White Pilgrim] [[river]] remove mapping [[my river]]
[2014-07-27 12:22:04,466] [INFO] [river.dummy]
[

White Pilgrim] [dummy] [my river] close

259

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

During an ElasticSearch node startup, the river service is automatically activated.

Depending on the river implementation, there are two different usages: one shot and
periodically. In one shot usage, the river is created with some parameters. It executes its
process and then it removes itself once the process is complete. This approach is mainly used
to process files, dumps, and every source that needs to be processed only once, as the data in
it does not change. In periodical usage, the river waits for a time interval after it has processed
all the data and then restarts processing new data, if available. This case is typical of data
sources that are updated frequently such as DBMS, MongoDB, RabbitMQ, and Redis.

Rivers are stored in a special index, _river (In ElasticSearch, all special indices start
with the _ character.). The document type, name, becomes the river name, and the _meta
document is located at the place where the river configuration is stored.

The river index is automatically replicated in every cluster node.

When ElasticSearch receives a create river call, it creates the new river mapping and starts
the river. Generally, the river is composed of the following components:

» Producer threads: These collect the documents to be indexed and send them
to a consumer (thread)

» Consumer threads: These execute the bulk insertion of documents sent by
the producer

When the river is started, these threads are also started, and the data is processed and sent
to the cluster.

In our example, we can see that a river is started by taking a look at the ElasticSearch logfiles.

When you want to remove a river, the DELETE call removes it from the execution. At the
server level, ElasticSearch stops the river, flushes the stale data, and removes it from the
_river index.

ElasticSearch always guarantees that a single river instance is running in the cluster (singleton).

If the river is executed on a node and if this node should die, the river is rescheduled to work on

another cluster node. It's the application logic of the river that keeps track of the river status and
does not reprocess the same data.

When a river is executing, a special document _status is available under the river name.
This is a standard ElasticSearch document that can be fetched with the GET API.

260

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

For the preceding example, it's possible to check the status with this code:
curl -XGET 'http://127.0.0.1:9200/ river/my river/ status'
The answer will be similar to the following:

{

"_id": "_status",
"_index": "_river",
" source": {
"node": {
"id": "I _mWzO-tRHWG-DpQOFuw4w",
"name": " White Pilgrim",
"transport_address": "inet[/127.0.0.1:9300]"
}
b
"_type": "my river",

"_version": 1,
"found": true

}

In the source function, the node attribute defines in which node the river is in execution.
The status can also contain special river fields, describing the current river position in the
process (for example, the number of documents processed, the last river cycle, and so on).

» The Installing a plugin manually recipe in Chapter 2, Downloading and Setting Up

Using the CouchDB river

CouchDB is a NoSQL data store that stores data in the JSON format, similar to ElasticSearch.
It can be queried with the map/reduce task and provides the REST API, so every operation can
be done via HTTP API calls.

Using ElasticSearch to index and search CouchDB data is very handy, as it extends the
CouchDB data store with Lucene's search capabilities.

Getting ready

You will need a working ElasticSearch cluster and a working CouchDB server to connect to.

261

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

How to do it...

In order to use the CouchDB river, perform the following steps:

1.

262

First, you need to install the CouchDB river plugin, which is available on GitHub
(https://github.com/elasticsearch/elasticsearch-river-couchdb),
and is maintained by the ElasticSearch company. You can install the river plugin in
the usual way:

bin/plugin -install elasticsearch/elasticsearch-river-
couchdb/2.0.0

1
‘\Q Internally, the CouchDB river plugin uses the attachment plugin and

JavaScript plugins, and it is a good practice to install them.

After a node restart, you can create a configuration (config. json) for your
CouchDB river:

{

"type": "couchdb",

"couchdb": {
"host": "localhost",
"port": 5984,
"db": "my db",

"filter": null

b

"index": {
"index": "my db",
"type": "my db",
"bulk_size": "100",
"bulk timeout": "10ms"

}

Now, create the river with this configuration:

curl -XPUT 'http://127.0.0.1:9200/ river/couchriver/ meta’'
-d @config.json

This is how the result will look:

{" index":" river"," type":" couchriver
m,m id":" meta"," version":1, "created":true }

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-river-couchdb
http://www.it-ebooks.info/

Chapter 8

The CouchDB river is designed to be fast at detecting changes and propagating them from
CouchDB to ElasticSearch. It is designed to hook the _changes feed of CouchDB so that it does
not create any overhead in polling the server and consumes as less resources as possible.

This approach prevents the execution of a lot of map/reduce queries on CouchDB to retrieve
the new or changed documents.

To create a CouchDB river, the type must be set to couchdb. The following parameters must
be passed to the couchdb object:

>

>

protocol (by default, http; the valid values are http and https): This parameter
defines the protocol to be used.

no_verify (by default, false): If this parameter is set to true, the river will skip
the HTTPS certificate validation.

host (by default, localhost): This parameter defines the host server to be used.
port (by default, 5984) : This parameter defines the CouchDB port number.

heartbeat (by default, 10s) and read_timeout (by default, 30s): These
parameters are used to control the HTTP connection timeouts.

db (by default, the river name): This parameter defines the name of the database
that is to be monitored.

filter: This parameter defines some filters that can be applied to remove
unwanted documents.

filter params: This parameter defines a list of keys/values used to filter
out documents.

ignore attachments (by default, false): If this parameter is true,
the document that contains the attachment will be skipped. It requires the
Attachment plugin installed.

user and password: These parameters, if defined, are used to authenticate
the user to CouchDB.

script: This is an optional script to be executed on documents.

The CouchDB river also provides a good tuning on indexing by letting the user configure
several index parameters in the index object, as follows:

>

>

>

index: This parameter is the index name to be used
type: This parameter is the type to be used

bulk_size (by default, 100): This parameter is the number of bulk items to be
collected before sending them as bulk

263

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

» bulk timeout (by default, 10 milliseconds): If changes are detected within the
bulk timeout time, they are packed up to bulk_size before being sent

» max concurrent bulk (by default, 1): This parameter controls the count of
the concurrent bulk requests that are to be executed

When the river starts, it initializes two threads:

» Slurper thread: This manages the connection between ElasticSearch and the
CouchDB server. It continuously fetches the changes in CouchDB and puts them
in a queue to be read by the indexer. Generally, this thread is called a producer.

» Indexer thread: This collects items from the queue and prepares the bulk to be
indexed. It is often referred to as a consumer.

There's more...

The CouchDB river is very fast and well-designed. It has two important tools to improve the
quality of your ingested documents: filter and script.

The filter, if applicable, allows you to filter documents in CouchDB's _change stream,
reducing the bandwidth and the documents that must be indexed. The filter can also be
used to partition your CouchDB database. For example, it allows you to create rivers that
use one index per user to store documents.

The script allows document manipulation before indexing them. Typical scenarios cover
adding/cloning/editing/joining fields, but other document manipulations are available,
which are limited only by the capabilities of the chosen scripting language.

» The CouchDB river plugin's home page at
https://github.com/elasticsearch/elasticsearch-river-couchdb

Using the MongoDB river

MongoDB is a very common NoSQL data storage system used all over the world. One of the
main things that it lacks is that it was not designed for text searching.

Although the latest MongoDB version provides full-text search, its completeness and
functionality are, by far, more limited than the current ElasticSearch version. So, it's quite
common to use MongoDB as the data store and ElasticSearch to search. The MongoDB river,
initially developed by me and now maintained by Richard Louapre, helps to create a bridge
between these two applications.

264

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-river-couchdb
http://www.it-ebooks.info/

Chapter 8

Getting ready

You will need a working ElasticSearch cluster and a working MongoDB instance installed on
the same machine as ElasticSearch, with replica sets enabled (http://docs.mongodb.
org/manual/tutorial/deploy-replica-set/ and http://docs.mongodb.org/
manual/tutorial/convert-standalone-to-replica-set/). You need to restore
the sample data available in mongodb/data with the following command:

mongorestore -d escookbook escookbook

How to do it...

To use the MongoDB river, perform the following steps:

1. First, install the MongoDB river plugin, which is available on GitHub (https://
github.com/richardwilly98/elasticsearch-river-mongodb). You can
install the river plugin in the usual way:

bin/plugin -install richardwilly98/elasticsearch-river-mongodb

. As the internal MongoDB river plugin uses the ElasticSearch
~ attachment plugin (if you need to import documents from GridFS)
Q and sometimes the JavaScript scripting language (if you want to use
filtering), it is a good practice to install these scripting languages.

2. Restart your ElasticSearch node to make sure the river plugin is loaded. In the log,
this is what you should see:
[2014-08-04 15:39:29,705] [INFO] [plugins]
[Dirtnap] loaded [river-twitter, transport-thrift, river-
mongodb, mapper-attachments, lang-python, lang-javascript],
sites [bigdesk, head]

3. You need to create a config. json file to be used to configure the river. In our case,
we define a database and a collection to fetch the data:

{

"type" : "mongodb",

"mongodb" : {

"servers" : [

{ "host" : "localhost", "port" : 27017 }

1.

"db" : "escookbook",

"collection" : "items"

b
"index" : {

265

www.it-ebooks.info

http://docs.mongodb.org/manual/tutorial/deploy-replica-set/
http://docs.mongodb.org/manual/tutorial/deploy-replica-set/
http://docs.mongodb.org/manual/tutorial/convert-standalone-to-replica-set/
http://docs.mongodb.org/manual/tutorial/convert-standalone-to-replica-set/
https://github.com/richardwilly98/elasticsearch-river-mongodb
https://github.com/richardwilly98/elasticsearch-river-mongodb
http://www.it-ebooks.info/

Rivers

"name" : "items"

}
}

4. Now, create the river with the current configuration:
curl -XPUT 'http://127.0.0.1:9200/ river/mongodbriver/ meta' -
d @config.json

5. This is how the result will look:

{" index":" river"," type":"mongodbriver"," id":" meta"," v
ersion":1, "created":true}

MongoDB fetches data from a MongoDB instance and puts it in the current cluster. It's
important that the MongoDB instance be correctly configured in the replica set, as the river
works on the oplog collection. The oplog (operations log) collection is a special collection
that is used to keep track of every MongoDB change. The river interprets the log actions and
replicates them in ElasticSearch. Using this approach, it's not necessary to continue polling the
MongoDB cluster and searches that can significantly reduce the performance are not required.

M The actual implementation of the MongoDB river is also compatible
(:3> with TokuMX (https://github.com/Tokutek/mongo), a high
performance distribution of MongoDB.

The ElasticSearch configuration used in the preceding example is quite simple. There are two
main sections in the configuration:

» Mongodb: This contains the MongoDB-related parameters. These are the most
important ones:
o servers: Thisis a list of hosts and ports to connect to.

0 credentials: Thisis a list of database credentials (db, user, and
password). Take the following code as an example:

{"db":"mydatabase", "user" :"username",
"password":"myseceret"}

o db: This defines the database to be monitored.
o collection: This defines the collection to be monitored.

o gridfs: This defines a Boolean that indicates whether the collection
is GridFS.

o filter: This defines an extra filter to filter out records.

266

www.it-ebooks.info

https://github.com/Tokutek/mongo
http://www.it-ebooks.info/

Chapter 8

o index: This defines the index where the documents have to be stored
in ElasticSearch. The most important parameters that can be passed
are as follows:

name: This is the index name to be used
type: This is the type to be used

If no mappings are defined, the river will autodetect the format from the MongoDB document.

One of the main advantages of using this plugin is that because

it works on oplog, it always keeps the data updated without the
s
MongoDB overhead.

» The MongoDB river plugin's home page at
https://github.com/richardwilly98/elasticsearch-river-mongodb

Using the RabbitMQ river

RabbitMQ is a fast message broker that can handle thousands of messages per second. It
can be very handy to use in conjunction with ElasticSearch in order to bulk index the records.

The RabbitMQ river plugin is designed for waiting messages that contain a list of bulk
operations. When a new message is delivered to RabbitMQ, it's delivered to ElasticSearch
via the plugin to be executed.

Getting ready

You will need a working ElasticSearch cluster and a working RabbitMQ instance installed on
the same machine as ElasticSearch.

How to do it...

In order to use the RabbitMQ river, perform the following steps:

1. First, you need to install the RabbitMQ river plugin, which is available on GitHub
(https://github.com/elasticsearch/elasticsearch-river-rabbitmg).
You can install the river plugin in the usual way:

bin/plugin -install elasticsearch/elasticsearch-river-
rabbitmg/2.3.0

267

www.it-ebooks.info

https://github.com/richardwilly98/elasticsearch-river-mongodb
https://github.com/elasticsearch/elasticsearch-river-rabbitmq
http://www.it-ebooks.info/

Rivers

2.

268

This is how the result should look:

-> Installing elasticsearch/elasticsearch-river-

rabbitmg/2.3.0...

Trying http://download.elasticsearch.org/elasticsearch/elasticsear
ch-river-rabbitmg/elasticsearch-river-rabbitmg-2.3.0.zip...
Downloadingovueueueo.. DONE

Installed river-rabbitmg

Restart your ElasticSearch node to ensure that the river plugin is loaded. In the log,
you should see the following code:

[2013-10-14 23:08:43,639] [INFO] [plugins 1
[Fault Zone] loaded [river-rabbitmqg, river-twitter,
transport-thrift, river-mongodb, mapper-attachments, lang-
python, river-couchdb, lang-javascript], sites [bigdesk,
head]

You need to create a configuration file (. json) to be used to configure the river:

{

"type" : "rabbitmg",

"rabbitmg" : {
"host" : "localhost",
"port" : 5672,
"user" : "guest",
"pass" : "guest",
"vhost" : "/",
"queue" : "elasticsearch",
"exchange" : "elasticsearch",
"routing key" : "elasticsearch",
"exchange declare" : true,
"exchange type" : "direct",
"exchange durable" : true,
"queue_declare" : true,
"queue_bind" : true,
"queue_ durable" : true,
"queue_ auto_delete" : false,
"heartbeat" : "30m",
"nack errors" : "true"

b

"index" : {
"bulk size" : 100,
"bulk timeout" : "10ms",
"ordered" : false,
"replication" : "default"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

5. Now, create the river with the current configuration:

curl -XPUT 'http://127.0.0.1:9200/ river/rabbitriver/ meta’'
-d @config.json

6. This will be the result:

{"_index":" river"," type":" rabbitriver
"," id":" meta"," version":1, "created":true }

The RabbitMQ river instantiates a connection to the RabbitMQ server and waits for the
messages to finish processing. The only kind of messages that the plugin is able to process
are bulk operation messages.

Every bulk operation must terminate with a new line \n; otherwise,
s the last operation is of little depth.

Typically, the connection between RabbitMQ and ElasticSearch is a direct connection, which
means that as the message is sent to the RabbitMQ server, it is redirected to ElasticSearch.

The river type is rabbitmg, and all client configurations live on the rabbitmg object.
These are the most common parameters for the RabbitMQ river:

» host (by default, localhost): This defines the RabbitMQ server's address.
» port (by default, 5672): This defines the RabbitMQ server's port.

» user and pass: These define the user and password credentials required to access
the RabbitMQ server, respectively.

» vhost (by default, /): This defines the RabbitMQ virtual host to be used.

» exchange declare (false/true)and exchange (by default, elasticsearch):
These control whether the exchange must be bound and the exchange object
name, respectively.
» exchange type (by default, direct): This defines the type of exchange to be used.
» exchange durable (by default, true): This defines a durable exchange that can
survive if the RabbitMQ broker restarts; otherwise it is transient.
» queue declare (false/true)and queue (by default, elasticsearch):
These control whether a queue must be bound and the queue name, respectively.
» queue_ durable (by default, true): This defines a durable queue that can survive
if the RabbitMQ broker restarts; otherwise, it is transient.
» queue_auto_delete (by default, false): This defines a queue where
consumers finish (no messages remaining), in which all the messages need
to be automatically deleted.

269

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

» heartbeat: This controls the heartbeat delay in the connection. It's used to prevent
connection dropping if there is network inactivity.

» nack _errors (bydefault, false): If itis true, there can be failures in bulk action
which need to be skipped; otherwise, they are marked as rejected and reprocessed.

Sometimes, the RabbitMQ server is configured in cluster mode for high availability. In this
configuration, there is no single host, but a list of multiple hosts. They can be defined in a
list of addresses in this way:

{

"rabbitmg" : {
"addresses" : [

{
"host" : "hostl",
"port" : 5672

I

{
"host" : "host2",
"port" : 5672

}

The RabbitMQ river plugin, along with scripting, allows you to control two important aspects
of bulk processing: the global bulk with the bulk scripting filter function and every
single document with script filter that must be indexed or created. The definition of
these two script filters is accepted as a standard for every filter.

The following are the parameters:

» script: This is the code of the script

» script_lang: This is the language to be used to interpret the code

» script params: This is a dictionary/map/key-value containing the additional
parameter to be passed to the script

The bulk script filter function will receive a block of text (body) that is the text of a
list of actions. The script must return another block of text to be processed by ElasticSearch.
If the script returns null, the bulk is skipped.

270

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The following is an example of the bulk_script filter declaration:

{

"type" : "rabbitmg",
"rabbitmg" : {
b
"index" : {
b
"bulk script filter" : {
"script" : "myscript",
"script lang" : "native",
"script params" : {
"paraml" : "vall",
"param2" : "val2"

}

Ifa script filter function is defined, a ctx context is passed to the script for every
document, which must be indexed or created.

The following is an example of the script filter declaration:

{

"type" : "rabbitmg",
"rabbitmg" : {
I
"index" : {
I
"script filter" : {
"script" : "ctx.typel.fieldl += paraml",
"script lang" : "groovy'",
"script params" : {
"paraml" : 1

271

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

The RabbitMQ broker is a very powerful tool that supports high load and balancing, moving
the peak load on the RabbitMQ message queue. The performance of a message queue in
RabbitMQ is by far faster than that of ElasticSearch in processing insert because a message
gqueue system doesn't require you to index the data. So, it can be a good frontend to resolve
ElasticSearch index peaks and also to allow the execution of delayed bulk if an ElasticSearch
node is down.

» The RabbitMQ river documentation at
https://github.com/elasticsearch/elasticsearch-river-rabbitmg

» The Managing a river recipe in this chapter

Using the JDBC river

Generally, application data is stored in a DBMS of some kind (Oracle, MySQL, PostgreSq|,

a Microsoft SQL server, and SQLite, among others). To power up a traditional application with
the advanced search capabilities of ElasticSearch and Lucene, all this data must be imported
to ElasticSearch. The JDBC river by Jorg Prante allows you to connect to the DBMS, executing
queries and indexing the results.

This plugin can work both as a standard river or as a standalone feeder, so the ingestion part
can be executed independently of ElasticSearch.

Getting ready

You will need a working ElasticSearch cluster.

How to do it...

In order to use the JDBC river, perform the following steps:

1. First, you need to install the JDBC river plugin, which is available on GitHub
(https://github.com/jprante/elasticsearch-river-jdbc). You can
install the river plugin using the following code:
bin/plugin -url http://xbib.org/repository/org/xbib/elasticsearch/
plugin/elasticsearch-river-jdbc/1.3.4.4/elasticsearch-river-jdbc-
1.3.4.4-plugin.zip -install river-jdbc

272

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-river-rabbitmq
https://github.com/jprante/elasticsearch-river-jdbc
http://www.it-ebooks.info/

Chapter 8

This is how the result should look:

-> Installing river-jdbc...

Trying http://xbib.org/repository/org/xbib/elasticsearch/plugin/el
asticsearch-river-jdbc/1.3.4.4/elasticsearch-river-jdbc-
1.3.4.4-plugin.zip...

Downloading DONE

Installed river-jdbc into ../elasticsearch/plugins/river-

jdbc

M The JDBC river plugin does not bundle the DBMS drivers,
Q so you need to download them and put them in the plugin
directory (typically, SES_HOME/plugins/river-jdbc).

If you need to use PostgreSQL, you need to download the driver from
http://jdbc.postgresql.org/download.html. The direct link to the
current driver is available at http://jdbc.postgresql .org/download/
postgresqgl-9.2-1003.jdbc4.jar

If you need to use MySQL, you need to download the driver from
http://dev.mysqgl.com. The direct link to the current driver is available
athttp://dev.mysqgl.com/get/Downloads/Connector-J/mysql-
connector-java-5.1.26.zip/from/http://cdn.mysqgl.com/.

Restart your ElasticSearch node to ensure that the river plugin is loaded.
In the log, you should see the following lines:

[2014-10-18 14:59:10,143] [INFO] [node]
[Fight-Man] initializing

[2014-10-18 14:59:10,163] [INFO] [plugins]
[

Fight-Man] loaded [river-twitter, transport-thrift, jdbc-
1.3.4.4], sites []

You need to create a configuration file (. j son) to configure the river. In our case,
we define a PostgreSQL database, items, and an items table to fetch the data:

{

"type" : "jdbc",
"jdbe" :{
"strategy" : "oneshot",
"driver" : "org.postgresqgl.Driver",
"url" : "jdbc:postgresgl://localhost:5432/items",
"user" : "username",
"password" : "password",
"sgl" : "select * from items",
"schedule" : "1h",
"scale" : 0,

273

www.it-ebooks.info

http://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/download/postgresql-9.2-1003.jdbc4.jar
http://jdbc.postgresql.org/download/postgresql-9.2-1003.jdbc4.jar
http://dev.mysql.com
http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.26.zip/from/http://cdn.mysql.com/
http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.26.zip/from/http://cdn.mysql.com/
http://www.it-ebooks.info/

Rivers

"autocommit" : false,
"fetchsize"™ : 100,
"max_rows" : 0,
"max_retries" : 3,
"max_retries wait" : "1l0s",
"locale"™ : "it™",
"digesting" : true

b

"index" : {
"index" : "jdbc",
"type" : "jdbc",
"max_bulk actions" : 1000,
"max_ concurrrent bulk requests" : 10,
"versioning" : false,
"acknowledge" : false

}

}

7. Now, create the river with the current configuration:
curl -XPUT 'http://127.0.0.1:9200/ river/jdbcriver/ meta' -d
@config.json

8. The following result will be obtained:

{" index":" river"," type":"jdbcriver"," id":" meta"," vers
ion":1, "created":true}

The JDBC river is a very versatile river that has a lot of options and covers a large number of
common scenarios related to database issues. Since it works with every database system,
it provides JDBC drivers, as it is available without built-in drivers. They must be separately
installed, usually in the river directory.

The common flow to use the JDBC river is to provide a connection and an SQL query to fetch
SQL records that will be converted to ElasticSearch records.

The river type is jdbc and all the client configurations live on the jdbc object. These are the
most common parameters:

» strategy (by default, simple): This is the strategy that is used by the JDBC river;
currently, the following strategies can be implemented:

o simple: This fetches data with the SQL query, indexes the data in
ElasticSearch, waits for the next poll interval, and then restarts the cycle.

o column: This fetches all the records of a table without using SQL.

274

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

driver: This is the JDBC driver class. Every JDBC driver defines its own class:
o MySQL: com.mysgl.jdbc.Driver
o PostgreSQL: org.postgresqgl .Driver
o Oracle: oracle.jdbc.OracleDriver

o SQLserver: com.microsoft.sglserver.jdbc.SQLServerDriver

url: This defines the JDBC URL for the driver.
user: This defines the database user's name.
password: This defines the database user's password.

sql: This is the SQL statement (either a string or a list of statement objects).
Typically, this is a select statement. If it ends with . sqgl, the statement is looked
up in the ElasticSearch server's filesystem. A statement object is usually composed
of the following;:

o statement: This is usually the SQL select statement that queries
the records

o parameter (an optional list of strings): This binds parameters to the
SQL statement (in order)

o Callable (by default, false): If this is true, the SQL statement is
interpreted as a JDBC CallableStatement object
locale (optional; by default, it is set to the server locale value): This is the default
locale that is used to parse numeric and monetary values.

timezone: This is the timezone for the JDBC setTimestamp () calls when binding
parameters with timestamp values.

rounding: This determinates the rounding mode for numeric values such as
ceiling, down, floor, halfdown, halfeven, halfup, unnecessary, and up.

scale: This gives precision in the numeric values.

ignore null values (by default, false): If this is enabled, it ignores the NULL
values when constructing the JSON document.

autocommit (by default, false): This is true if each statement is automatically
executed. If it is false, they are committed in block.

fetchsize: This is the fetch size for large result sets; most drivers implement
fetchsize to control the amount of rows in the buffer while iterating through the
result set.

max_rows: This limits the number of row fetches by a statement; the rest of the rows
are ignored.

275

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

» max retries: This defines the number of retries to connect/reconnect to
a database. This is often used when there are problems with the DBMS to
automatically reconnect if the connection is dropped.

» max retries wait (by default, "30s"): This is the specified wait time
between retries.

» schedule: This is either a single one or a list of Cron expressions used for a
scheduled execution. Visit the JDBC river plugin home page (https://github.
com/jprante/elasticsearch-river-jdbc) for more information.

» cronpoolsize (by default, 4): This is the thread pool size of the Cron job executions
for a scheduled parameter. If this is set to 1, jobs will be executed serially.

The JDBC river also provides a good tuning on indexing, letting the user set several index
parameters in the index object, which are given as follows:
» index: This defines the ElasticSearch index used to index the data from JDBC.

» type: This defines the ElasticSearch type of the index used to index the data
from JDBC.

» max bulk actions: This defines the length of each bulk index request submitted.

» max concurrent bulk requests: This defines the maximum number of
concurrent bulk requests. This setting controls the rate of bulk operations to prevent
a DBMS or ElasticSearch overhead for very high fetches and index cycles.

» index_settings: This defines the optional settings for the ElasticSearch index.
» type mapping: This defines an optional mapping for the ElasticSearch index type.

The JDBC river plugin has a lot of options, whereby selecting the correct one depends on a
particular scenario.

It's a very handy tool to import data from traditional relational databases without too much
effort. If complex data manipulation on databases is required, it's better to implement custom
river plugins to do the job.

There's more...

The JDBC river can be used as a standalone feeder for ElasticSearch. The feeder interface
and the river interface share the same code and functionalities.

The river approach is a pull approach (it grabs the data from a location and puts it in
ElasticSearch), while the feeder is of the push approach type (it sends the data to the
ElasticSearch cluster, for example, logstash). In the bin/jdbc directory of the river,
there are samples of JDBC feeder invocations.

276

www.it-ebooks.info

https://github.com/jprante/elasticsearch-river-jdbc
https://github.com/jprante/elasticsearch-river-jdbc
http://www.it-ebooks.info/

Chapter 8

It shares the same JDBC section of the river and also includes some other parameters that
control the ElasticSearch client.

>

elasticsearch: This is the ElasticSearch server to connect to. Generally, it's defined
with the address (ip, port) and cluster name

client (by default, bulk; the available values are bulk and node): This is the type
of client that can be used

concurrency (by default, 1): This is the number of concurrent pipelines to
be executed

The following is an example of a feeder invocation script for a bash shell:

#!/bin/sh
java="/usr/bin/java"

echo '

{

"concurrency" : 1,
"elasticsearch"
"es://localhost:9300%?es.cluster.name=elasticsearch",
"client" : "bulk",
"jdbe" & |

.truncated..

}

| ${java} \

-cp $(pwd) :$ (pwd) /*:$ (pwd)/../../1ib/* \
org.xbib.elasticsearch.plugin. feeder.Runner \
org.xbib.elasticsearch.plugin. feeder.jdbc.JDBCFeeder

The jdbc section is the same between the river and the feeder; it's mandatory to define the
ElasticSearch server that must be used to index documents.

The main feeder entry point is the org.xbib.elasticsearch.plugin. feeder.Runner
runner function that requires a feeder to instantiate (org.xbib.elasticsearch.plugin.
feeder.jdbc.JDBCFeeder), and the configuration is read by the standard input.

>

>

The JDBC river plugin's home page and documentation at
https://github.com/jprante/elasticsearch-river-jdbc

The Managing a river recipe in this chapter

277

www.it-ebooks.info

https://github.com/jprante/elasticsearch-river-jdbc
http://www.it-ebooks.info/

Rivers

Using the Twitter river

In the previous recipes, you saw rivers that fetch data from data stores such as SQL and
NoSQL. In this recipe, we'll discuss how to use the Twitter river in order to collect tweets
from Twitter and store them in ElasticSearch.

Getting ready

You will need a working ElasticSearch cluster and an OAuth Twitter token. To obtain the Twitter
token, you need to log in to the Twitter developer account at https://dev.twitter.com/
apps/ and create a new app, https://dev.twitter.com/apps/new.

How to do it...

In order to use the Twitter river, perform the following steps:

1.

278

First, you need to install the Twitter river plugin, which is available on GitHub
(https://github.com/elasticsearch/elasticsearch-river-twitter).
You can install the river plugin using the following command:

bin/plugin -install elasticsearch/elasticsearch-river-
twitter/2.4.0

The following result will be obtained:

-> Installing elasticsearch/elasticsearch-river-twitter/2.4.0...
Trying http://download.elasticsearch.org/elasticsearch/
elasticsearch-river-twitter/elasticsearch-river-twitter-
2.4.0.zip. ..

DownloadingDONE

Installed river-twitter into ../elasticsearch/plugins/river-twitter

Restart your ElasticSearch node to ensure that the river plugin is loaded. In the log,
you should see the following lines:

[2014-10-18 14:59:10,143] [INFO] [node 1

[Fight-Man] initializing
[2014-10-18 14:59:10,163] [INFO] [plugins]

[Fight-Man] loaded [river-twitter, transport-thrift, jdbc-river],
sites []

You need to create a configuration file (. json) that can be used to configure the river,
as follows:

{

"type" : "twitter",

www.it-ebooks.info

https://dev.twitter.com/apps/
https://dev.twitter.com/apps/
https://dev.twitter.com/apps/new
https://github.com/elasticsearch/elasticsearch-river-twitter
http://www.it-ebooks.info/

Chapter 8

"twitter" : {
"oauth" : {
"consumer key" : "*** YOUR Consumer key HERE ***",

"consumer_ secret" : "*** YOUR Consumer secret HERE
*kk N

"access_token" : "*** YOUR Access token HERE ***",

"access_token secret" : "#*** YOUR Access token secret
HERE **x"

b
"type" : "sample",
"ignore retweet" : true
b
"index" : {
"index" : "my twitter river",
"type" : "status",
"bulk size" : 100

}

5. Now, create the river with the current configuration:
curl -XPUT 'http://127.0.0.1:9200/ river/twitterriver/ meta' -d @
config.json

6. This is how the result will look:

{" index":" river"," type":"twitterriver",
" id":" meta"," version":1, "created":true}

The Twitter river, after authenticating with the Twitter API, starts collecting tweets and sending
them in bulk to ElasticSearch.

The river type is twitter and all client configurations live on the Twitter object. These are the
most common parameters:

» oauth: This is an object that contains the four keys to access the Twitter API.
These are generated when you create a Twitter application:
a consumer key
[m] consumer_secret
O access_token

o access _token secret

279

www.it-ebooks.info

http://www.it-ebooks.info/

Rivers

» type: This will be of one of the four types allowed by the Twitter API:
o sample: This type takes samples from public tweets
o user: This type listens to tweets in the authenticated user's timeline

o filter: This type allows you to filter tweets based on a criteria (check out
https://dev.twitter.com/docs/api/1l.1/post/statuses/filter)

o firehose: This type grabs all the public tweets
» raw (by default, false): If this is true, the tweets are indexed in ElasticSearch
without any change. Otherwise, they are processed and cleaned by the ElasticSearch
river. Take a look at https://github.com/elasticsearch/elasticsearch-

river-twitter/blob/master/src/main/java/org/elasticsearch/
river/twitter/Twitterriver.java (around line number 560) for more details.

» ignore retweet (by default, false): If thisis true, retweets are skipped.

There's more...

To control the Twitter flow, it's possible to define an additional £ilter object.

Defining a filter automatically switches the type to £i1lter. The Twitter filter APl allows you to
define additional parameters to f£ilter, as follows:

» tracks: Thisis a list of the keywords to be tracked

» follow: These are the IDs of Twitter users to be followed

» locations: These are a set of bounding boxes in the GeoJSON format (longitude,
latitude) to track geographic sections

» language: This is a list of language codes to filter on

These are all the filter capabilities allowed by Twitter, in order to reduce the number of tweets
sent to you and to focus the search to a particular segment.

This is how a filter river configuration will look:

{

"type" : "twitter",
"twitter" : {
"oauth" : {
"consumer key" : "*** YOUR Consumer key HERE ***",
"consumer secret" : "*** YOUR Consumer secret HERE ***",
"access_token" : "*** YOUR Access token HERE ***",
"access_token secret" : "#*** YOUR Access token secret HERE #***"
b
"filter" : {

280

www.it-ebooks.info

https://dev.twitter.com/docs/api/1.1/post/statuses/filter
https://github.com/elasticsearch/elasticsearch-river-twitter/blob/master/src/main/java/org/elasticsearch/river/twitter/Twitterriver.java
https://github.com/elasticsearch/elasticsearch-river-twitter/blob/master/src/main/java/org/elasticsearch/river/twitter/Twitterriver.java
https://github.com/elasticsearch/elasticsearch-river-twitter/blob/master/src/main/java/org/elasticsearch/river/twitter/Twitterriver.java
http://www.it-ebooks.info/

Chapter 8

"tracks" : ["elasticsearch", "cookbook", "packtpub"],

}
}
}

See also

» The Twitter river plugin's home page and documentation at
https://github.com/elasticsearch/elasticsearch-river-twitter

» The Managing a river recipe in this chapter

281

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-river-twitter
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node
Monitoring

In this chapter we will cover:

Controlling cluster health via the API
Controlling cluster state via the API

Getting cluster node information via the API
Getting node statistics via the API
Managing repositories

Executing a snapshot

Restoring a shapshot

Installing and using BigDesk

Installing and using ElasticSearch Head
Installing and using SemaText SPM

Installing and using Marvel

Introduction

In the ElasticSearch ecosystem, it can be immensely useful to monitor nodes and clusters to
manage and improve their performance and state. There are several issues that might arise
at the cluster level, such as the following:

Node overheads: Some nodes might have too many shards allocated and become
bottlenecks for the entire cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

» Node shutdown: This can happen due to many reasons—for example, full disks,
hardware failures, and power problems

» Shard relocation: Problems or corruptions related to shard relocation, due to which
some shards are unable to get an online status

» Very large shards: If a shard is too big, the index performance decreases due to the
Lucene massive segments merging

» Empty indices and shards: They waste memory and resources but, because every
shard has a lot of active thread, if there is a huge number of unused indices and
shards, general cluster performance is degraded

Detecting malfunction or bad performances can be done via the API or via some front-end
plugins that can be activated in ElasticSearch.

Some of the plugins introduced in this chapter allow readers to have a working web
dashboard on their ElasticSearch data, monitor cluster health, back up/restore their data,
and allow testing queries before implementing them in the code.

Controlling cluster health via the API

In the Understanding clusters, replication, and sharding recipe in Chapter 1, Getting Started,
we discussed the ElasticSearch cluster and how to manage red and yellow states.

ElasticSearch provides a convenient way to manage cluster state, which is one of the first
things to check in case of problems.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

To control cluster health, we will perform the following steps:

1. To view cluster health, the HTTP method is GET and the curl command is:
curl -XGET 'http://localhost:9200/ cluster/health?pretty’

2. The result will be:

{

"cluster name" : "elasticsearch",
"status" : "green",
"timed out" : false,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

"number of nodes" : 2,
"number of data nodes" : 2,
"active primary shards" : 5,
"active shards" : 10,
"relocating shards" : 0,
"initializing shards" : 0,
"unassigned shards" : 0

}

Every ElasticSearch node keeps the cluster status. The status can be of three types:

4

>

green: This means everything is ok.

yellow: This means that some nodes or shards are missing, but they don't

compromise the cluster functionality. Mainly, some replicas are missing (a node
is down or there aren't enough nodes for replicas), but there is at least one copy
of each active shard. It also indicates that read and write functions are working.

red: This indicates that some primary shards are missing. You cannot write to the
indices whose status is red; results might either not be complete or only partial
results might be returned. Generally, you need to restart the node that is down
and possibly create some replicas.

1
‘Q The yellow/red state could be transient if some nodes are in

recovery mode. In this case, just wait until recovery completes.

However, cluster health has a lot of more information:

cluster name: This is the name of the cluster.

timeout: This is a Boolean value indicating whether the REST API hits the timeout
set in the call.

number_ of nodes: This indicates the number of nodes that are in the cluster.

number of data nodes: This shows the number of nodes that can store data.
For different types of nodes, refer to the Setting up different node types recipe in
Chapter 2, Downloading and Setting Up.

active primary shards: This shows the number of active primary shards.
The primary shards are the masters for writing operations.

active_ shards: This shows the number of active shards. These shards can be
used for searching.

relocating shards: This shows the number of shards that are relocating—that is,
migrating from one node to another. This is mainly due to cluster node balancing.

285

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

» initializing shards: This shows the number of shards that are in the initializing
state. The initializing process is done at shard startup. It's a transient state before
becoming active and it's made up of several steps. The most important ones are
as follows:

o Copy shard data, if it's a replica of another one
o Check Lucene indices
o Process transaction log as needed

» unassigned shards: This shows the number of shards that are not assigned to
a node mainly due to having set a replica number larger than the number of nodes.
During startup, shards that are not initialized already or in the process of initializing
will be counted here.

Installed plugins can play an important role in shard initialization. If you use a mapping type
provided by a native plugin and you remove the plugin (or the plugin cannot be initialized
due to API changes), the shard initialization will fail. These issues can easily be detected

by reading the ElasticSearch log file.

\ While upgrading your cluster to a new ElasticSearch release, ensure
~ that you upgrade your mapping plugins or that they can work with the
Q new ElasticSearch release; otherwise your shards will fail to initialize,
thus giving a red status to your cluster.

There's more...

This API call is very useful; it's possible to execute it against one or more indices to obtain
their health in the cluster. This approach allows the isolation of indices with problems.
The API call to execute this is as follows:

curl -XGET 'http://localhost:9200/ cluster/health/index1, index2, indexN'

The previous calls also have additional request parameters to control the health of the cluster.
These parameters are as follows:

» level: This controls the level of the health information returned. This parameter
accepts only cluster, index, and shards.
» timeout (by default, 30s): This is the waiting time of a wait for * parameter.

» wait for status: This waits for the server to provide the status (green, yellow,
or red) until timeout.

» wait for relocating shards (0 by default): This allows the server to wait to
reach the provided number of relocating shards or the timeout period.

286

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

» wait for nodes: This waits until the defined number of nodes is available in the
cluster. The value for this parameter can also be an expression such as >N, >=N, <N,
<=N, ge (N), gt (N), 1le(N), or 1t (N).

» The Understanding clusters, replication, and sharding recipe in Chapter 1,
Getting Started

» The Setting up different node types recipe in Chapter 2, Downloading and Setting Up

Controlling cluster state via the API

The previous recipe returns information only about the health of the cluster. If you need more
details about your cluster, you need to query its state.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

To check the cluster state, we will perform the steps given as follows:

1. To view the cluster state, the HTTP method is GET and the curl command is:
curl -XGET 'http://localhost:9200/ cluster/state’

2. The result will contain the following data sections:

o General cluster information:

{

"cluster_name" : "es-cookbook",
"version" : 13,
"master node" : "R3Gwu0a6QSGTHPQ6Cg95ZA",
"blocks" : { },
Node address information:
"nodes" : {
"R3Gwu0a6Q9GTHPQ6Ccg95ZA" : {
"name" : "Man-Ape",
"transport_address" : "inet[/192.168.1.13:9300]",
"attributes" : { }
b
"68PBx8g5TZKRXTM1i9 EFw" : {
"name" : "Azazel",

287

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

"transport address" : "inet[/192.168.1.13:9301]",
"attributes" : { }
}
b
o Cluster metadata information (templates, indices with mappings, and alias):
"metadata" : {
"templates" : { },
"indices" : {
"test-index" : {
"state" : "open",
"settings" : {
"index" : {
"number of shards" : "5",
"number of replicas" : "1",
"version" : {
"created" : "1030199"
b
"uuid" : "psw W6YXQNy60 KbfD10 Q"
}
b
"mappings" : {..truncated..}
b
"aliases" : ["my-cool-alias"]
}
}
b
o Routing tables to find the shards:
"routing table" : {
"indices" : {
"test-index" : {
"shards" : {
nan o[
"state" : "STARTED",
"primary" : true,
"node" : "68PBx8g5TZKRxXTMii9 EFw",
"relocating node" : null,
"shard" : 2,
"index" : "test-index"
... truncated..
}
}
}
}
b

288

www.it-ebooks.info

http://www.it-ebooks.info/

[m]

Chapter 9

Routing nodes:

"routing nodes" : {
"unassigned" : [1,
"nodes" : {
"68PBx8g5TZKRXTM1i9 EFw" : [{

"state" : "STARTED",
"primary" : true,
"node" : "68PBx8g5TZKRXTMii9 EFw",
"relocating node" : null,
"shard" : 2,
"index" : "test-index"

.truncated..]

}
b

"allocations" : [1

}

The cluster state contains information about the whole cluster; it's normal that its output is

very large.

The call output contains common fields, as follows:

» cluster name: This is the name of the cluster.

» master node: This is the identifier of the master node. The master node is the
primary node for cluster management.

The call output also contains several sections such as the following;:

» Dblocks: This section shows the active blocks in a cluster.

» nodes: This shows the list of nodes in the cluster. For every node we have
the following;:

[m]

[m]

id: This is the hash used to identify the node in ElasticSearch
(for example, pyGyXwh1lScgmnDw5etNSOw)

name: This is the name of the node

transport address: This is the IP address and the port number
used to connect to this node

attributes: These are additional node attributes

» metadata: This is the definition of the indices; they relate to the mappings.

» routing table: These are the index/shard routing tables that are used to select
the primary and secondary shards as well as their nodes.

» routing nodes: This is the routing for the nodes.

289

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

The metadata section is the most used one because it contains all the information related to
the indices and their mappings. This is a convenient way to gather all the indices mappings in
one go; otherwise you need to call the get mapping for every type.

The metadata section is composed of several sections that are as follows:
» templates: These are templates that control the dynamic mapping for
created indices
» 1indices: These are the indices that exist in the cluster

The indices subsection returns a full representation of all the metadata descriptions for every
index. It contains the following:

» state (open/closed): This returns whether an index is open (that is, it can be
searched and it can index data) or closed. See the Opening/closing an index
recipe in Chapter 4, Basic Operations).

» settings: These are the index settings. They include the following:

0 index.number of replicas: This indicates the number of replicas
of an index; it can be changed with an update index settings call

o index.number of shards: This indicates the number of shards in
an index; this value cannot be changed in an index

0 index.version.created: This denotes the index version

» mappings: These are defined in the index. This section is similar to getting a mapping
response. See the Getting a mapping recipe in Chapter 4, Basic Operations.

» alias: Thisis a list of index aliases that allow you to aggregate indices with a single
name or to define alternative names for an index.

The routing records for indices and shards have similar fields. They are as follows:

» state (UNASSIGNED, INITIALITING, STARTED, RELOCATING): This shows the
state of the shard or an index

» primary (true/false): This shows whether the shard or node is primary

» node: This shows the ID of the node

» relocating node: This field, if validated, shows the node ID in which the shard is
relocated

» shard: This shows the number of the shard
» index: This shows the name of the index in which the shard is contained

290

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

There's more...

The cluster state call returns a lot of information; it's possible to filter out the different section
parts. The parameters are as follows:

>

filter blocks (true/false): This is used to filter out the blocks section
of the response

filter nodes (true/false): This is used to filter out the node section of
the response

filter metadata (true/false): This is used to filter out the metadata
section of the response

filter routing table (true/false): This is used to filter out the
routing table section of the response

filter indices: Thisis a list of index names to be include in the metadata

filter index templates (true/false): Thisis used to filter out the templates
section of the index metadata response

>

The Understanding clusters, replication, and sharding recipe in Chapter 1,
Getting Started

The Opening/closing an index recipe in Chapter 4, Basic Operations
The Getting a mapping recipe in Chapter 4, Basic Operations

Getting cluster node information via

the API

The earlier recipes allow us to return information to a cluster level; ElasticSearch provides
calls to gather information at a node level.

Getting ready

You need a working ElasticSearch cluster.

291

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

How to do it...

To get information on nodes, we will perform the following steps:

1. To retrieve node information, the HTTP method is GET and the curl command is:

curl -XGET 'http://localhost:9200/ nodes?all=true’

curl -XGET 'http://localhost:9200/ nodes/<nodeIdl>,<nodeId2>?all=t
rue'

2. The result will be as follows:

{
"cluster name" : "es-cookbook",
"nodes" : {
"R3Gwu0a6Q9GTHPQ6Cg95ZA" : {
"name" : "Man-Ape",
"transport address" : "inet[/192.168.1.13:9300]",
"host" : "Albertos-MacBook-Pro-2.local",
"ip" : "192.168.1.13",
"version" : "1.3.1",
"build" : "2de6dc5",
"thrift address" : "/192.168.1.13:9500",
"http address" : "inet[/192.168.1.13:9200]",
"settings" : {
"name" : "Man-Ape",
"path" : {..truncated.. b,
"foreground" : "yes"
'}'(IDS" :
"refresh interval in millis" : 1000,
"available processors" : 8,
"epu" ;|
"vendor" : "Intel",
"model" : "MacBookProlO,1",
"mhz" : 2700,
"total cores" : 8,
"total sockets" : 8,
"cores per socket" : 16,
"cache size in bytes" : 256
k%em" : {
"total in bytes" : 17179869184
b
"swap" : {
"total in bytes" : 6442450944
}
b

292

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

"process" : {
"refresh interval in millis"™ : 1000,
"id" : 71849,
"max_file descriptors" : 10240,
"mlockall" : false
b
vm" x|
"pid" : 71849,
"version" : "1.8.0_05",
"vm_name" : "Java HotSpot (TM) 64-Bit Server VM",
"vm_version" : "25.5-bo2",
"vm_vendor" : "Oracle Corporation",
"start time in millis" : 1406963548972,
"mem" : {
"heap init in bytes" : 268435456,
"heap max in bytes"™ : 1037959168,
"non _heap init in bytes" : 2555904,
"non heap max in bytes" : 0,
"direct max_ in bytes"™ : 1037959168
b
"gc collectors" : ["ParNew", "ConcurrentMarkSweep"],
"memory pools" : ["Code Cache", "Metaspace", "Compressed
Class Space", "Par Eden Space", "Par Survivor Space", "CMS 0ld
Gen"]
b
"thread pool" : {
"percolate" : {
"type" : "fixed",
"min" : 8,
"max" : 8,
"queue size" : "1k"
.. truncated.
b
"network" : {
"refresh interval in millis"™ : 5000,
"primary interface" : ({
"address" : "192.168.1.13",
"name" : "enoO",
"mac_address" : "28:CF:E9:17:61:AB"
}
b
"transport" : {
"bound address" : "inet[/0:0:0:0:0:0:0:0:9300]",
"publish address" : "inet[/192.168.1.13:9300]"
b
"http" : {
"bound_address" : "inet[/0:0:0:0:0:0:0:0:9200]",

293

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

"publish address" : "inet[/192.168.1.13:9200]1",
"max_content length in bytes" : 104857600
b
"plugins" : [{
"name" : "lang-javascript",
"version" : "2.3.0",
"description" : "JavaScript plugin allowing to add
javascript scripting support",
"jvm" : true,
"site" : false
}, .. truncated..]

}
}
}

The node information call provides an overview of the node's configuration; it covers a lot of
information. The most important sections are the following:

» hostname: This is the name of the host.
» http: This section gives information about HTTP configuration, such as the following:
o bound_ address: This is the address bound by ElasticSearch.

o max _content lenght (100 mb by default): This is the maximum size of
any HTTP content that ElasticSearch receives. HTTP payloads bigger than
this size are rejected.

The default 100 MB HTTP limit can be changed in the
M elasticsearch.yml configuration file. It can lead to
Q malfunction due to big payloads (often in conjunction with the
attachment mapper plugin), so it's important to keep the limit in
mind while conducting bulk actions or working with an attachment.

o publish address: Thisis the address used to publish the
ElasticSearch node.

» http address: This is the address exposed to use HTTP REST API. When creating
HTTP clients, this section can be used to implement an auto-discovery functionality.

» jvm: This section contains information about the node JVM: version, vendor,
name, pid, and memory (heap and non heap).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

1
‘\Q It's highly recommended that you run all the nodes on the same

JVM version and type.

Network: This section contains information about the network interfaces used
by the node—such as address, MAC address, and name.

Osos: This section provides operating system information about the node that is
running ElasticSearch—for example, processor information, memory, and swap.

plugins: This section provides a list of every plugin installed in the node; this
information includes the following:

o name: This is the plugin name
o description: This is the plugin description
o version: Thisis the plugin version

1
‘\Q All the nodes must have the same plugin version. A difference

in the plugin version in a node leads to unexpected failures.

o jvm: This shows whether the plugin is a JAR type

o site: This shows whether the plugin is a site type
process: This section contains information about the currently running
ElasticSearch processes and includes the following:

o id: This is the ID of the process

o max_file descriptors: This denotes the max file descriptor number
settings: This section contains information about the current cluster and the path
of the ElasticSearch node. The most important fields are the following:

o cluster name: This is the name of the cluster

o name: This is the name of the node

o path.*: Thisis the configured path of an ElasticSearch instance
thread_pool: This section contains information about the several types of thread
pools running in a node.

thrift address: This is the address of the Thrift protocol (it is available only if the
Thrift plugin is installed).

295

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

» transport: This section contains information about the transport protocol, used
for intracluster communication or by the native client to communicate with a cluster.
The response format is similar to the HTTP type; it consists of the following:

o bound_address: If a specific IP is not set, then it is set in the
configuration file

o publish address: Thisis the address used to publish the
native transport protocol
» transport_ address: This is the address of the transport protocol.

» version: This is the current ElasticSearch version.

The API call allows for the filtering of the section that must be returned. In our example,
we have set the all=true parameters to return all the sections. Otherwise, we can select
one or more of the following sections:

» http

> jvm

» network

> os

> process

» plugins

» settings

» thread pool

» transport
For example, if you need only the os and plugins information, the call will be as follows:

curl -XGET 'http://localhost:9200/ nodes/os,plugins'

» The Using the native protocol, Using the HTTP protocol, and Using the Thrift protocol
recipes in Chapter 1, Getting Started

» The Setting up networking recipe in Chapter 2, Downloading and Setting Up

296

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Getting node statistics via the API

The node statistics call API is used to collect real-time data of your node, such as memory
usage, threads usage, the number of indexes, and searches.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

To get nodes statistics, we will perform the following steps:

1. To retrieve the node statistics, the HTTP method is GET and the curl command is:

curl -XGET 'http://localhost:9200/ nodes/stats?all=true’

curl -XGET 'http://localhost:9200/ nodes/<nodeIdl>,<nodeId2>/
stats?all=true'’

2. The result will be a long list of all the node statistics. The result is composed of
the following;:

o A header describing the cluster name and the nodes section:

{

"cluster name" : "es-cookbook",
"nodes" : {
"R3Gwu0a6Q9GTHPQ6Ccg95ZA" : {
"timestamp" : 1406986967655,
"name" : "Man-Ape",
"transport address" : "inet[/192.168.1.13:9300]",
"host" : "Albertos-MacBook-Pro-2.local",
"ip" : ["inet[/192.168.1.13:9300]", "NONE" 1],

o Statistics related to indices:

"indices" : {
"docs" : {
"count" : 1000,
"deleted" : 0
"store" : {
"size in bytes" : 1075946,
"throttle time in millis" : 0
. truncated ..

.

297

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

o Statistics related to the operating system:
ros" & |
"timestamp" : 1406986967732,
"uptime_in millis" : 521977,
"load_average" : [1.86767578125, 2.47509765625,
2.654296875 1,
"epu' x|
"sys" : 3,
"user" : 6,
"idle" : 90,
"usage" : 9,
"stolen" : 0
} ..truncated ..

b

o Statistics related to the current ElasticSearch process:

"process" : {
"timestamp" : 1406986967734,
"open file descriptors" : 335,
"epu' x|
"percent" : 0,
"sys_in millis"™ : 39191,
"user in millis" : 56729,
"total in millis" : 95920
b
"mem" : {
"resident_in_bytes" : 28397568,
"share_in_bytes" : -1,
"total virtual_in_bytes" : 5241270272
}
b

o Statistics related to the current JVM:
njvmt : |

"timestamp" : 1406986967735,

"uptime_in millis" : 23418803,

"mem" : {
"heap used in bytes" : 127469232,
"heap used percent" : 12,
"heap committed in bytes" : 387448832,
"heap max in bytes" : 1037959168,
"non_heap used in bytes" : 71069104,
"non_heap committed in bytes" : 72007680,
. truncated ..

298

www.it-ebooks.info

http://www.it-ebooks.info/

}
},.. truncated ..
b
o Statistics related to the thread pools:
"thread pool" : {
"percolate" : {
"threads" : 0,
"queue" : 0,
"active" : 0,
"rejected" : O,
"largest" : O,
"completed" : O
},..truncated...
b
o Statistics related to networking;:
"network" : {
"tep" x|
"active opens" : 99763,
"passive opens" : 6171,
"curr estab" : 141,
"in segs" : 33811027,
"out_ segs" : 82198446,
"retrans_ segs" : 29297,
"estab resets" : 2588,
"attempt fails" : 12666,
"in errs" : 3083,
"out_rsts" : -1
}
b
o Node filesystem statistics:
nggn o |
"timestamp" : 1406986967741,
"total" :
"total in bytes"™ : 499418030080,
"free in bytes" : 80559509504,
"available in bytes" : 80297365504,
"disk reads" : 14903973,
"disk writes" : 6280386,
"disk io op" : 21184359,
"disk read size in bytes" : 334106572288,
"disk write size in bytes" : 287922098688,

Chapter 9

299

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

"disk io size in bytes" : 622028670976
} ..truncated..]

b

o Statistics related to communications between nodes:

"transport" : {
"server_ open" : 13,
"rx_count" : 5742,
"rx size in bytes" : 934442,
"tx count" : 5743,
"tx size in bytes" : 1093207

b

o Statistics related to HTTP connections:

"http" : {
"current open" : 1,
"total opened" : 1019

b

o Statistics related to field data caches:

"fielddata breaker" : ({
"maximum size in bytes" : 622775500,
"maximum size" : "593.9mb",
"estimated size in bytes" : 0,
"estimated size" : "0Ob",

"overhead" : 1.03,
"tripped" : 0

Every ElasticSearch node, during execution, collects statistics about several aspects of node
management. These statistics are accessible via the statistics API call.

In the following recipes, we will see some examples of monitoring applications that use this
information to provide real-time statistics of a node or a cluster.

The main statistics collected by this API are as follows:

» fs: This section contains statistics about the filesystem, such as the free space on
devices, mount points, reads, and writes.

300

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

» http: This gives the number of current open sockets and their maximum number.
» indices: This contains statistics of several indexing aspects such as:
o Usage of fields and caches
o Statistics about operations such as GET, indexing, flush, merges, refresh,
and warmer

» jvm: This section provides statistics about buffer, pools, garbage collector
(creation/destruction of objects and their memory management), memory
(used memory, heap, pools), threads, and uptime.

» network: This section provides statistics about the TCP traffic, such as open
connections, closed connections, and data |/0.

» os: This section collects statistics about the operating system such as:
o CPU usage
o Node load
o Memory and swap
o System uptime

» process: This section contains statistics of the CPU resource used by ElasticSearch,
memory, and open file descriptors.

1
‘\Q It's very important to monitor the open file descriptors because,

if you run out of them, the indices can get corrupted.

» thread pool: This section monitors all the thread pools available in ElasticSearch.
It's important in the case of low performance, for example, to control whether there
are pools that have an excessive overhead. Some of them can be configured to a new
max limit value.

» transport: This section contains statistics about the transport layer, mainly about
the bytes read and transmitted.

There's more...

The response is large, and it's possible to limit this by requesting only needed content.
To do this, you need to pass a call query parameter to the API, specifying the following
desired sections:

» fs

» http

» indices

301

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring
> jvm
» network
» o©Os
» thread pool

» transport
For example, to only request os and http statistics, the call is:

curl -XGET 'http://localhost:9200/ nodes/stats?os,http’

» The Using the native protocol, Using the HTTP protocol, and Using the Thrift protocol
recipes in Chapter 1, Getting Started

» The Setting up networking recipe in Chapter 2, Downloading and Setting Up

Managing repositories

ElasticSearch provides a built-in system to quickly snapshot and restore your data.
When working with live data, it's difficult to have a backup because of the large number
of concurrency problems.

An ElasticSearch snapshot allows us to create snapshots of individual indices (or aliases),
or an entire cluster, in a remote repository.

Before starting to execute a snapshot, a repository must be created.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

To manage a repository, we will perform the following steps:

1. To create a repository called my backup, the HTTP method is PUT and the curl
command is:

curl -XPUT 'http://localhost:9200/ snapshot/my backup' -d '{
"type": "fs",
"settings": {
"location": "/tmp/my backup",
"compress": true

302

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

}
}l
The result will be:
{racknowledged":true}

If you check on your filesystem, the directory /tmp/my backup is created.

To retrieve the repository information, the HTTP method is GET and the curl
command is:

curl -XGET 'http://localhost:9200/ snapshot/my backup’

The result will be:

{

"my backup" : {
"type" : "fs",
"settings" : {
"compress" : "true",
"location" : "/tmp/my backup"

}
}
}

To delete a repository, the HTTP method is DELETE and the curl command is:
curl -XDELETE 'http://localhost:9200/ snapshot/my backup'

The result will be:

{racknowledged":true}

Before you start snapshotting the data, you must create a repository. The parameters that can
be used to create a repository are as follows:

>

>

type (generally, £s): This is used to define the type of the shared filesystem repository
settings: These are the options required to set up the shared filesystem repository

If you use the fs type, the settings are as follows:

>

>

location: This is the location on the filesystem to store the snapshots.

compress (by default, t rue): This turns on compression on snapshot files.
Compression is applied only to metadata files (index mapping and settings);
data files are not compressed.

303

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

» chunk_size (by default, disabled): This defines the chunk size of the files during
snapshotting. The chunk size can be specified in bytes or by using the size value
notation (for example 1 g, 10 m, 5 k).

» verify (by default, true): This flag enables verification of the repository on creation.

» max restore bytes per sec (by default, 20mb): This allows us to control the
throttle per node restore rate.

» max snapshot bytes per sec (by default, 20mb): This allows us to control the
throttle per node snapshot rate.

M It is possible to return all the defined repositories by executing a
Q GET method without giving the repository name:

curl -XGET 'http://localhost:9200/ snapshot'

The most common type for a repository backend is the fs (filesystem) type, but there are
other official repository backends such as the following:

» AWS Cloud (https://github.com/elasticsearch/elasticsearch-cloud-
aws) for S3 repositories

» HDFS (https://github.com/elasticsearch/elasticsearch-hadoop/
tree/master/repository-hdfs) for Hadoop environments

» Azure Cloud (https://github.com/elasticsearch/elasticsearch-cloud-
azure) for Azure storage repositories

When a repository is created, it is immediately verified on all data nodes to be sure that
it's functional.

ElasticSearch provides a manual way to verify the node status of the repository. It is useful to
check the status of cloud repository storages. The command to manually verify a repository is
as follows:

curl -XPOST 'http://localhost:9200/ snapshot/my backup/ verify'

» The official ElasticSearch documentation at: http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/modules-snapshots.html

www.it-ebooks.info

https://github.com/elasticsearch/elasticsearch-cloud-aws
https://github.com/elasticsearch/elasticsearch-cloud-aws
https://github.com/elasticsearch/elasticsearch-hadoop/tree/master/repository-hdfs
https://github.com/elasticsearch/elasticsearch-hadoop/tree/master/repository-hdfs
https://github.com/elasticsearch/elasticsearch-cloud-azure
https://github.com/elasticsearch/elasticsearch-cloud-azure
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-snapshots.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-snapshots.html
http://www.it-ebooks.info/

Chapter 9

Executing a snapshot

In the previous recipe, we defined a repository. Now you can create snapshots of indices. For
every repository, it's possible to define multiple snapshots.

Getting ready

You need a working ElasticSearch cluster and the repository created in the previous recipe.

How to do it...

To manage a snapshot, we will perform the following:

» To create a snapshot called snap_1 for the indices test and test1, the HTTP
method is PUT and the curl command is:
curl -XPUT "localhost:9200/ snapshot/my backup/snap 1l?wait for
completion=true" -d '{
"indices": " test-index, test-2",
"ignore unavailable": "true",
"include global state": false

} 1
The result will be as follows:

{

"snapshot" : {
"snapshot" : "snap 1",
"indices" : ["test-index" 1,
"state" : "SUCCESS",
"start time" : "2014-11-13T21:40:45.4062Z",
"start time in millis" : 1415914845406,
"end time" : "2014-11-13T21:40:46.6922",
"end time in millis" : 1415914846692,
"duration in millis" : 1286,
"failures" : [],
"shards" : {
"total" : 5,
"failed" : 0,
"successful" : 5

305

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

If you check on your filesystem, the directory /tmp/my backup is populated with some
files /folders such as index (a directory that contains your data), metadata-snap_1, and
snapshot-snap 1. The following are the commands to retrieve and delete a snapshot:

1. To retrieve information about a snapshot, the HTTP method is GET and the curl
command is:
curl -XGET 'http://localhost:9200/ snapshot/my backup/
snap l?pretty’'

The result will be similar to creating a snapshot.

2. To delete a snapshot, the HTTP method is DELETE and the curl command is:
curl -XDELETE 'http://localhost:9200/ snapshot/my backup/snap 1'

The result will be as follows:

{"acknowledged":true}

The minimum configuration required to create a snapshot is the name of the repository
and the name of the snapshot (for example, snap_1). If no other parameters are given,
the snapshot command will dump all of the cluster data.

To control the snapshot process, some parameters are available:

» indices (a comma-delimited list of indices; wildcards are accepted): This controls
the indices that must be dumped.

» ignore unavailable (by default, false): This prevents the snapshot from failing
if some indices are missing.

» include global_ state (by default, true; available values are true/false/
partial): This allows us to store the global state in the snapshot. If a primary
shard is not available, the snapshot will fail.

The query argument wait for completion, also used in the example, allows us to stop
the snapshot from ending before returning the call. This is very useful if you want to automate
your snapshot script to sequentially backup indices.

Ifthe wait for completion is notset, then, in order to check the snapshot status, a user
must monitor it via the snapshot GET call.

Snapshots are incremental, so only changed files are copied between two snapshots of the
same index. This approach reduces both time and disk usage during snapshots.

ElasticSearch takes care of everything during a snapshot; this includes preventing data from
being written on the files that are in the process of snapshotting and managing the cluster
events (shard relocating, failures, and so on).

306

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

. To retrieve all the available snapshots for a repository,
*‘Q the command is as follows:

curl -XGET 'http://localhost:9200/
snapshot/my backup/ all’

The snapshot process can be monitored via the _status end point that provides a complete
overview of the snapshot status.

For the current example, the snapshot _status API call will be as follows:
curl -XGET "localhost:9200/ snapshot/my backup/snap 1/ status?pretty”
The result is very long and composed of the following sections:

» Information about the snapshot:

{

"snapshots" : [{
"snapshot" : "snap 1",
"repository" : "my backup",
"state" : "SUCCESS",

» Global shard statistics:

"shards_stats" : ({
"initializing" : O,
"started" : O,
"finalizing" : 0,
"done" : 5,
"failed" : 0,
"total" : 5

b

» Snapshot global statistics:

"stats" : {
"number of files" : 125,
"processed files" : 125,
"total size in bytes"™ : 1497330,
"processed size in bytes" : 1497330,
"start time in millis" : 1415914845427,
"time in millis" : 1254

307

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

» Adrill-down of snapshot index statistics:
"indices" : {
"test-index" : {

"shards_stats" : {
"initializing" : O,
"started" : O,
"finalizing" : O,
"done" : 5,
"failed" : O,
"total" : 5

b

"stats" : {
"number of files" : 125,
"processed files" : 125,
"total size in bytes" : 1497330,
"processed size in bytes" : 1497330,
"start_time in millis" : 1415914845427,
"time_in millis" : 1254

b

» Statistics per index per shard:

"shards" : {
non |

"stage" : "DONE",

"stats" : {
"number of files" : 25,
"processed files" : 25,
"total size in bytes" : 304773,
"processed size in bytes" : 304773,
"start_time in millis" : 1415914845427,
"time_in millis" : 813

}

},.. truncated..

Restoring a snapshot

After you have taken snapshots of your data, they can be restored. The restoration process is
often very fast; the indexed data is copied on the nodes and then activated.

Getting ready

You need a working ElasticSearch cluster and the snapshot created in the previous recipe.

308

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

How to do it...

To restore a snapshot, we will perform the following step:

» Torestore a snapshot called snap 1 for the index test and test2, the HTTP
method is PUT, and the curl command is:

curl -XPOST "localhost:9200/ snapshot/my backup/snap 1/
restore?pretty" -d '{

"indices": "test-index, test-2",

"ignore unavailable": "true",

"include global state": false,

"rename pattern": "test-(.+)",

"rename replacement": "copy $1"

} 1
The result will be as follows:

{

"accepted" : true

}

The restoration is finished when the cluster state turns from red to yellow or green.

The restoration process is very fast. It is internally composed of the following steps:
» The data is copied on the primary shard of the restored index. During this step
the cluster is in the red state.

» The primary shards are recovered. During this step the cluster status turns from
red to yellow/green.

» If areplica is set, the primary shards are copied into other nodes.
It's possible to control the restore process via parameters such as the following:

» indices (a comma-delimited list of indices; wildcards are accepted):
This controls the indices that must be restored. If not defined, all indices
in the snapshot are restored.

» ignore unavailable (by default, false): This prevents the restore from failing
if some indices are missing.

» include global state (by default, true; the available values are true/false):
This allows us to restore the global state from the snapshot.

309

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

» rename patternand rename replacement:The rename patternisa
pattern that must be matched; the rename replacement parameter uses
the regular expression, replacement, to define a new index name.

» partial (bydefault, false). If it is set to true, it allows us to restore indices
with missing shards.

Installing and using BigDesk

BigDesk is a wonderful web app developed by Lukas Vicek, installable as an ElasticSearch
plugin that allows us to monitor and analyze real-time cluster status.

With this application, it's possible to monitor both clusters and nodes in which ElasticSearch
is running.

It's a modern HTML5 application and only requires a modern browser.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

To install the BigDesk plugin, we will perform the following steps:
1. BigDesk plugin is a site plugin type, a plugin composed only of HTML, CSS, images,
and JavaScript. It can be installed using the following command:
bin/plugin -install lukas-vlcek/bigdesk

2. Checkinyour config/elasticsearch.yml configuration file whether JSONP is
active (by default it is disabled for security reasons):

http.jsonp.enable: true

3. After a node restart, if everything is alright it should appear in the site's list.
[INFO] [node] [Cassidy, Theresal] version[0.90.3], pid[37214],
build[5¢38d60/2013-08-06T13:18:317]

[INFO] [node] [Cassidy, Theresal] initializing ...

[INFO] [plugins] [Cassidy, Theresal loaded [], sites [bigdesk]
[INFO] [node] [Cassidy, Theresal initialized

[INFO] [node] [Cassidy, Theresal starting ..

4. Now look at the interface; you need to navigate to it with your browser by using the
following URL:

http://es_address:9200/_plugin/bigdesk/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

If you don't see the cluster statistics, put your node address on the left and click on connect.

When the browser points to the plugin address, the web interface for BigDesk is loaded.
It's composed of three main blocks:

» The BigDesk Endpoint settings bar: This lets a user set the server address,
the refresh time, the history size, and the connect/disconnect button

» The node or cluster view: This lets the user choose either monitoring nodes
or the cluster data view

» The main view: This contains the data and graphics related to the node status

The node view is the main and the most important one, because it allows us to monitor all
node aspects.

The following is the node view; as the page is very long, it has been split into three parts:

ES node REST endpoint http://192.168.1.14:9200 Refresh every [2sec 3| Keep [5min] history [bi
nodes cluster ES Address
Cluster: elasticsearch The Profile ||
Number of nodes: 2
Status: SRR Master Node
Selected node:
Name: Wonder Man
ID: "pyGyXwh1ScgmnDw5etNSOw"
Hostname: andrea
JVM
VM name: Java HotSpot(TM) 64-Bit Server VM Uptime: 169 hours, 2 minutes, 21 seconds and 855 milliseconds
VM vendor: Oracle Corporation Java version: 1.7.0_25
VM version: 23.25-b01 PID: 4044
Heap Mem Non-Heap Mem GC (A)
25¢ ~80 2.c
20 60 1€
15C
40 1.0
10
O Committed 50, © Commited o Peak 20 © Time (sec) 0
O Used ' O Used © Count © Count
o T T T T o T - \l N T T 0.
45 04:52 15 30 45 04:52 15 :30 45 04:52 15 30 45 04:52 15 30
Committed: 247.5mb Committed: 43.3mb Peak: 80 Total time: 389ms
Used: 52.5mb Used: 42.9mb Count: 73 Total count: 62
Thread Pools
Sea!'chr R o Index S A Bulk !{ef!'esl! R o 2
10
3 18
2 1.0
Queue 5 O Queue O Queue o Queue
o Peak O Peak 1 O Peak o Peak 0
© Count © Count © Count © Count
T T T T o T T T T T T T T T T T T o.c
45 04:52 BE] 30 45 04:52 15 :30 45 04:52 15 30 45 04:52 BE] 30
Queue: 0 Queue: 0 Queue: 0 Queue: 0
Peak: 12 Peak: 4 Peak: 0 Peak: 2
Count: 0 Count: 0 Count: 0 Count: 0

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

In this first part of the view, we can look at the following information:
» The names of nodes: The master node name is marked with a medal. Clicking on a
node name switches the interface to monitor node statistics.
» JVM information, composed of:

o The information about the JVM itself: This gives you the JVM name, vendor,
version, and uptime.

o The heap memory used: This must be monitored. If a JVM is out of heap
memory, it is usually because of a core dump; it then shuts itself down
because it is no longer able to allocate objects.

o Non-heap memory: This is other used memory, and not the actual
heap memory.

o Threads: A JVM is not able to use a high number of threads. If the number
of threads is too high, the application freezes or exists with some errors.

o Garbage collector: This allows monitoring of how often the objects are
created and destructed, and the memory released.
» The thread pool section: This is where you can monitor the following objects:
o Search threads: These are the number of threads used in a search
o Index threads: These are the number of threads used in indexing
o Bulk threads: These are the number of threads used in bulk actions

o Refresh threads: These are the number of threads used to refresh the Lucene
index; they allow us to update searches to work on new indexed data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The following screenshot shows you the fragmented information of a node:

[0

CPU vendor: Intel

(2500 MHz)
CPU total logical cores: 4
CPU cache: 3kb

CPU model: Core(TM) i3-3120M CPU @ 2.50GHz

Uptime: 789 hours, 6 minutes and 53 seconds
Refresh interval: 1000ms

Total mem: 15.3gb (16521695232 b)

Total swap: 15.7gb (16866340864 b)

Max: 999999
Open: 281

Total virtual: 3.2gb
Resident: 228.2mb
Share: 14.7mb

Series: | weighted avg *

Sys total: 1058190ms
User total: 1606970ms

CPU (%) 1oc Swap Load Average
L 8o 0z
Lso ot
L a0 ioe 0.1
O User |20 O Free o Free o1 Loc
o Sys O Used O Used o0
.C
45 oase s B0 45 45 oas2 45 04152 45 oase s @0 s
Total: 100% Free: 13gb Free: 15.7gb 2:0.11
User: 1% Used: 2.3gb Used: Ob 1:0.12
Sys: 1% 0:0.2
Process
File Descriptors ‘o Mem ac CPU time (A) CPU (%)
60C
8o Fac
- 60c 400
Fac
- 40c
O Max L 20c O resident F1.c o Sys 20¢ 0 400%
45 04:52 15 30 45 45 04:52 15 30 45 45 04:52 15 30 45 45 04:52 15

Total: 400%
Process: 0%

HTTP & Transport

www.it-ebooks.info

HTTP address: inet[/192.168.1.5:9200] Transport address: Channels 0 Transport size (A) 80
inet[/192.168.1.5:9300]
Bound address: F15 60
inet[/0:0:0:0:0:0:0:0%0:9200] Bound address: L 10 40
inet[/0:0:0:0:0:0:0:0%0:9300]
Publish address: O Transport F5 0 Rx 20
inet[/192.168.1.5:9200] Publish address: O HTTP o T
inet[/192.168.1.5:9300] 45 oasz ds @0 s 45 o4z s 30 5
Transport: 20 Series: | weighted avg *
HTTP: 0 Rx: 3.9mb, #42319
HTTP total opened: 6 Tx: 4.4mb, #42223
313

http://www.it-ebooks.info/

Cluster and Node Monitoring

In the earlier screenshot, we see the following information:

» Operating system information:

[m]

Type of CPU hardware, uptime, memory: These show you a detailed
inspection on the CPU type, the system uptime, and the memory available.

Real-time CPU usage: These show you the amount of CPU time utilized
by a node in real time.

Real-time memory usage: If your node uses all the memory, you need to
increase the memory or add a new cluster node to balance the load.

Real-time swap usage: If you are using swap memory, your server
needs more of the main memory. Using swap memory can make the
system unresponsive.

Real-time load (average): This shows you the amount of load on the server.
If all the values are near 1.0, your server is on high load. In such cases,
try to put a new node in the cluster to reduce the work load.

» The process block has information about the ElasticSearch process, such as
the following;:

[m]

[m]

[m]

File Description: These are the number of open files in the process.
When ElasticSearch is out of files, Lucene indices might be corrupted
and you might lose your data.

Memory used by the ElasticSearch process.
The CPUs resource used by the ElasticSearch process.

» The HTTP & Transport layer information block contains the following:

[m]

314

IP and Port address: This gives information about the IP and port addresses
of several protocols.

Channels monitor: This allows you to control the number of HTTP
connections. If the number of HTTP connections is too high because of a
bad client configuration, the connections could then be dropped and your
applications might have unexpected errors due to lack of connection.

Transport size: This allows you to monitor the bytes received and sent
by ElasticSearch.

www.it-ebooks.info

http://www.it-ebooks.info/

The following screenshot shows you the third fragment view:

Chapter 9

Indices

Docs count: 1000
Docs deleted: 0

Search requests per second (A)

Flush: 920, 3s
Refresh: 146, 2.7s

Search time per second (A)

Size: 1.4mb
Filters cached: n/a

Get requests per second (A)

Get time per second (A)

www.it-ebooks.info

Get Get
o Query o Query o Exists o Exists
O Fetch © Fetch © Missing © Missing
4‘5 04‘52 1‘5 :4‘5 04‘:52 11‘5 :4‘5 04‘:52 :1‘5 4‘5 04‘52 1‘5
Query: 30 Query: 84ms Get: 0 Get: n/a
Fetch: 2 Fetch: 16ms Exists: 0 Exists: Os
Missing: 0 Missing: Os
Cache size Cache evictions (A) Indexing requests per second (A) Indexing time per second (A)
80
60 10
40
50
O Filter O Fitter © Delete 20 © Delete
o Fiold o Field © Index © Index
:4‘5] 04‘:52 :1‘5 :4‘5 04‘:52 :|‘5 :4‘5 04‘:52 :1‘5 :4‘5 04‘52 1(5 °
Filter: Ob Filter: 0 Delete: 0 Delete: Os
Field: Ob Field: 0 Index: 2003 Index: 4.1s
File system
Device: /dev/sdail # of Reads & Writes (A) Read & Write size (A)
Mount: / f 1sc | ac
Path: /op i ct ch/d: ch/nodes/0 I\ I\ i
Free: 31.3gb | \ 10 | | 1,6
Available: 26.1gb I I 1.0
Total: 101.7gb © Wites ‘\‘ ‘\‘ 50 o Wite || 0
O Reads | . oRead '\ A Al |
=== > T <ol T - T - T \‘ . T o
45 04:52 15 45 04:52 15
Writes: 2014020 Write: 29.1gb
Reads: 72918 Read: 1gb
In the screenshot, there are two blocks related to the following;:
» Index/search performances with details about the following:
o Present and deleted documents
o Flush and refresh of indices
a Search time per second
a GET time per second
o Cached filters
o Cache size and hits
o Index requests and indexing time in seconds
315

http://www.it-ebooks.info/

Cluster and Node Monitoring

» Disk I/0 in which the main parameters to consider are as follows:
o Free space on the disk.

o Read and write sizes. If these values hit the maximum disk I/0 operation
for many seconds, you need to add more nodes to balance the 1/0 load.

There's more...

BigDesk makes it possible to understand how your cluster is working and to monitor measures
that might reduce the performance of your ElasticSearch cluster. BigDesk also provides a
cluster view, experimental, that can help you to graphically understand which of the available
shards is the largest and which ones use the most disk space.

ES node REST endpoint http://192.168.1.14:9200

nodes cluster
Cluster: elasticsearch C_IuSter
Number of nodes: 2 View Button
Status: SRR

Experimental cluster Pack diagram:

Index "test"
\, Shard 0
test [2] esiol \
/\

\/ \/ Y
\[testa] test [0] test [1] test [1]

Installing and using ElasticSearch Head

The previous plugin allows us to monitor all cluster/node statistics. ElasticSearch Head by
Ben Birch mainly focuses on data management of your cluster. It allows you to manage your
data and the shards of your cluster via a nice web interface; using it is way faster than using
the curl command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Getting ready

You need a working ElasticSearch cluster and a modern HTML5 browser.

How to do it...

To install the Head plugin, we will perform the following steps:

1.

The ElasticSearch Head plugin is a type of site plugin; it is composed only of HTML,
CSS, images, and JavaScript. It can be installed by using the following command:

bin/plugin -install mobz/elasticsearch-head

After a node restart, if everything goes well, it should appear in the sites list,
as follows:

[INFO] [node] [Cassidy, Theresal] version[0.90.3], pid[37214],

build[5¢38d60/2013-08-08T12:28:31%]

[INFO] [node] [Cassidy, Theresal initializing ...

[INFO] [plugins] [Cassidy, Theresal] loaded [], sites [head]

[INFO] [node] [Cassidy, Theresal initialized
10

[INFO node] [Cassidy, Theresal] starting ..

Now, to use the web interface, you need to navigate with your browser to the
following address:

http://es_address:9200/ plugin/head/

If you don't see the cluster statistics, put your node address to the left and click on
the connect button.

ElasticSearch Head has a multiple-tab interface. Every tab has a special purpose; some of
them are as follows:

>

Overview: This tab shows the topology of your cluster and allows you to perform
indexing and node-level operations

Indices: This tab allows you to analyze index statistics

Browser: This tab allows you to navigate through your data by index, type, or a
simple field match

Structured Query: This tab allows you to build queries via a customizable query builder

Any Request: This tab allows you to execute custom requests

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

The following screenshot shows an example of the tabbed ElasticSearch Head web interface:

Elasticsearch http://127.0.0.1:9200/ Connect | elasticsearch_alberto cluster health: yellow (21 of 42) :
Overview | Indices = Browser = Structured Query [+] = Any Request [+]
Cluster overview [T M e
_river
size: 9.79ki events_0 test-index ticket_comments_0 tickets_0
(9.79ki) size: 5.92ki (5.92ki) size: 1.31Mi (1.31Mi) size: 575B (575B) size: 11.3ki (11.3ki)
docs: 2 (3) docs: 1 (1) docs: 1,000 (1,000) docs: 0 (0) docs: 1 (1)
[info ~ X Actions ~] [info~ X Actions ~] [info ~ X Actions ~] [info ~ X Actions ~]
{ Actions ~]
ticket_comments-write X
ticket_comments-read X
events-write .4
events-read X
tickets-write X
tickets-read X

a o [zl [lz]2] [o)a]i2][3] [o]1]2]

Unassigned

3][4] 3][4] [4] 3][4]
*wmev [0 [off2] [PIER [OEIRE ClEE]
=

Outside the tabbed content, after connecting to a cluster, a lot of information and actions are
available, such as the following:

» Cluster name and status (the information in the screenshot highlighted in yellow)

» Information about the cluster (the drop-down button on the left-hand side of the
screenshot) allows you to view the following information:

The ElasticSearch server version
Status of indices

Node statistics

Cluster nodes

Installed plugins

Cluster status

Cluster health

Templates

0 0O 0 00 0o o0 o

The Overview tab allows you to execute a lot of cluster/node/index operations. It's a grid layout
with nodes to the left and indices in columns. In the index columns, the shards distribution
shows the location of the shards; you can know whether the shard is a primary or a secondary
shard by clicking on it.

Under the node name, there are two buttons:

» Info: This button allows you to get information about the running node.

» Actions: This button allows you to execute commands on the node such as
shutting it down.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The following details are under the index name:

>

The index size gives you information about the size it occupies on the hard drive.
The numbers in the parentheses give you its size, including replicas.

This section gives you information about the number of documents that are
in the index. In parentheses, it shows the exact number of records, including
deleted records.

Deleted documents are purged based on index merging
i policies or after an opt imize command.
The Info button collects status and metadata information.

The Actions button collects several operations that can be executed on an index,
which are listed as follows:

o New Alias: This adds an alias to the current index

o Refresh: This calls the refresh API

o Flush: This calls the flush API

o Gateway Snapshot: This allows you to dump index content on a gateway
o Test Analyzer: This allows you to view an analyzer-produced token

o Open/Close: This allows you to open or close an index

o Delete: This allows you to drop an index and delete all the mappings and
their data

Under the Indices tab, the defined aliases are shown as follows.

Elasticsearch rur//127.00.1:9200/ (Connect |

Overview | Indices | Browser | Structured Query [+] | Any Request [+]

Indices Overview E

Size Docs
test-index 1.31Mi/1.31Mi1.00k
| river 9.79ki/9.79ki 2
ticket_comments_0575B/575B8 0
tickets_0 11.3ki/11.3ki 1
pvents_0 5.92ki/5.92ki 1

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

The Indices tab is very handy for having a quick look at the space occupied by the indices.
From this view, you can detect empty indices or those that are too large.

Elasticsearch http://127.0.0.1:3200/ | Connect | elasti ch_alberto cl health: yellow (21 of 42)
Overview Indices = Browser | Structured Query [+] Any Request [+] :
e =
All Indices + | Searched 5 of 5 shards. 1000 hits. 0.015 seconds
Inorces _index _type _id _score ¥ in_stock name date agy
. test-index test-type 1 1 false Korrek 2014-07-28T16:46:01.668683 49
_river
events_0 test-index _tesi-type 6 4 true Norrin Radd 2013-08-03T16:46:01.683363 70
te.a't-ln;ex test-index test-type 13 1 true N-Garai 2013-04-25T16:46:01.693874 51
ticket_comments_0 test-index test-type 18 1 false Destroyer of Demons 2015-03-28T16:46:01.700907 60
tickets O de est.tvoe o jonhear Q1011 128T16.45.01 703281 14
Tvres
event
my_river
test-type
ticket
Fiewns
P age -_ in_stock: true,
P assigneeld . tﬁg: [.
‘enim",
P content . "suscipit”,
} datald Tty
"corrupti®,
P date ? "dignissimos"
P dateChanged 1k
: name: "Mother Earth/Mother Nature®,
} dateCreated date: "2013-08-03T16:46:01.683363",
b daysOpen ; position: {
lat:

The Browser tab is useful for the analysis of data in your cluster. On the left-hand side,
you can filter your choice by indices and types. If some data is indexed, you can also put
values in the fields and the documents can use these values.

The results are represented in a table but, if you click on a result, you can see the original
JSON record (if the source was stored at the time of indexing). These views are very useful
for analyzing the records available in your index and to check whether the record was
correctly saved.

The following screenshot shows the Any Request[+] tab:

320

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

P History
w Query

_search
{
"query": {

}
}

Validate JSON | ¥ Pretty
P Result Transformer

P Repeat Request

P Display Options

http://192.168.1.13:9200/

"match_all": {}

Elasticsearch

Overview | Indices | Browser

http://192.168.1.13:9200/ Connect | es-cookbook [ESIEHNEaNNGECRIITOIOONN ==

Structured Query [+] | Any Request [+]
{

took: 4,
timed_out: false,
¥ _shards: {
total: 5,
POST 4 successful: 5,
failed: 0

3

¥ hits: {
total: 1000,
max_score: 1,
¥ hits: [

id:
_score: 1,
¥ _source: {
in_stock: true,
v tag: [
"eligendi",
"culpa”,
"quod"
1
name: "Doctor Glitternight",
date: "2013-07-27T16:46:02.673065",
¥ position: {
Request lat: 79.20940621386028,
lon: 96.18857298023273

4

?
age: 63,
¥ metadata: [
? {
num: 32,
name: "Kimura",
value: "3"

~

num: 42,

The Any Request[+] tab allows you to execute a custom query. On the left-hand side,
the following options exist:

» The history of executed commands

» The query to be executed is composed of the following:

u]

u]

u]

URL

Rest entry point

REST method (GET, POST, PUT, DELETE)

The body to be sent

The Validate button, to check whether the body is a valid JSON code
Pretty check to pretty-print the JSON code

The Request button to execute the query

» Result Transform allows you to define the JavaScript code to postprocess the results

» Repeat Request allows you to execute the requests as per the scheduled time

321

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

» Display Options provide the following:
o Show Raw JSON (default): This is the JSON as returned by ElasticSearch
o Graph Results: These show a graph of results (the results must be in a list)

o Show Search Results Table: This shows the results similar to a table in a
browser tab

There's more...

The Head plugin allows the monitoring of shard distribution and data manipulation via a
simple web interface. Many actions can be taken via a web interface without the need to
execute curl shell commands.

There are other good ElasticSearch GUIs, similar to Head, that are available mainly on GitHub.
The most famous ones are the following:

» Elastic HQ (http://www.elastichqg.org/): Elastic HQ gives you complete control
over your ElasticSearch clusters, nodes, indexes, and mappings. This sleek, intuitive
Ul gives you all the power of the ElasticSearch Admin API, without having to tangle
with REST and large cumbersome JSON requests and responses.

» Sense (https://chrome.google.com/webstore/detail/sense-beta/
lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en): This is a Chrome plugin
that allows only JSON manipulation and query execution, but it doesn't have
monitoring capabilities.

» Marvel (http://www.elasticsearch.org/overview/marvel/): This will
be discussed at the end of the chapter.

The choice of GUI tool depends on user preferences and requirements.

Installing and using SemaText SPM

The previous plugins allow real-time monitoring and analysis of your cluster status; if you need
to monitor your cluster for a long time, you need tools that will collect your logs and perform
analysis on them.

Sematext offers a paid service that allows remote collection and processing of your
ElasticSearch activities.

322

www.it-ebooks.info

http://www.elastichq.org/
https://chrome.google.com/webstore/detail/sense-beta/ lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
https://chrome.google.com/webstore/detail/sense-beta/ lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
http://www.elasticsearch.org/overview/marvel/
http://www.it-ebooks.info/

Chapter 9

Getting ready

You need a working ElasticSearch cluster and a modern HTML5 browser.

How to do it...

To install the SemaText SPM plugin, we will perform the following steps:

1. To use the SPM monitor, you need to register an account at the Sematext website
(https://apps.sematext.com/users-web/register.do) for a trial period.
For every account, an application key is generated; this key is required to download
and install the client application.

2. The SPM monitor is composed of a client application, which must be installed on your
server, and a web frontend managed by Sematext Cloud.

SemaText provides native installers for the following:
Centos

Amazon Linux

RedHat

Suse

Debian

Ubuntu

Binaries for other Intel Linux 64

0 0O 0 0O 0D 0O O

3. For common Linux distributions, the installation process is very simple; it is enough
to add a binary repository and use the standard tool to install the application (yum
install, rpm -1, apt-get install, and soon).

After having installed and started the client on the server, this application sends your node
and cluster activities to the Sematext Cloud.

SemaText Cloud stores your activities to provide you with analysis over time depending on the
support plan. It allows you to monitor and compare behaviors for up to a year.

323

www.it-ebooks.info

https://apps.sematext.com/users-web/register.do
http://www.it-ebooks.info/

Cluster and Node Monitoring

The output is displayed in an interface similar to the following screenshot:

Scalable Perfofinance Monitor —
by sematext Appl Soarcn[=] B 4 5§ © @autoreiiesh
Overview | Cluster Health || Index Stats || Shard Stats || Search | Cache |[CPU & Mem || Disk | Network || vt || 6¢ |
auto granularty[¥] From: 2012105 16:30 To: 20121105 2130 (GMT+5:30) Asia/Kolkata
ES Nodes. “stacked 1 g2 RequestRate & Latency stacked i g5 Documents [istacked o 42
wistacked N g2 Memory Details Jstacked h g8 Lo [stacked 52
G W W W R e e i
Jvm Memory |stacked M g5 Disk Space Used § s Network Traffic Fistacked 8 52
’
sl As SPM uses the node . name properties to identify the nodes, it is

Q good practice to fix the node names in the elasticsearch.yml
file to uniquely identify nodes in the logs.

The SPM from Sematext provides a practical and commercial solution to monitor ElasticSearch's
performance during long usage, without requiring to set up any infrastructure to collect, store,
and monitor data.

An alternative to this service is to set up a Nagios server (http://www.nagios.org/)and
use the Nagios plugin for ElasticSearch (available at https://github.com/saj/nagios-
plugin-elasticsearch).

See also

» For more details on SPM goto http://sematext.com/spm/elasticsearch-
performance-monitoring/index.html

» The Nagios plugin is available at https://github.com/saj/nagios-plugin-
elasticsearch

324

www.it-ebooks.info

http://www.nagios.org/
https://github.com/saj/nagios-plugin-elasticsearch
https://github.com/saj/nagios-plugin-elasticsearch
http://sematext.com/spm/elasticsearch-performance-monitoring/index.html
http://sematext.com/spm/elasticsearch-performance-monitoring/index.html
https://github.com/saj/nagios-plugin-elasticsearch
https://github.com/saj/nagios-plugin-elasticsearch
http://www.it-ebooks.info/

Chapter 9

Installing and using Marvel

Similar to Sematext SPM, Marvel is a commercial product (freely available for development)
built by ElasticSearch to monitor and manage an ElasticSearch cluster.

Getting ready

You need a working ElasticSearch cluster.

How to do it...

To install the Marvel plugin, we will perform the following steps:

1. The plugin is composed of a native component (JAR) and a site component (HTML,
CSS, images, and JavaScript). It can be installed using the following command:

bin/plugin -i elasticsearch/marvel/latest

2. After a node restart, if everything goes well, it should appear in the sites list.

[INFO] [node] [ESCookbookNode] version[1l.3.1], pid[62763],
build[2de6dc5/2014-07-28T14:45:15%7]
[INFO] [node] [ESCookbookNode] initializing ...

[INFO] [plugins] [ESCookbookNode] loaded [marvel], sites
[marvel, bigdesk, head, HOQ]

[INFO] [node] [ESCookbookNode] initialized

[INFO] [node] [ESCookbookNode] starting ...

[INFO] [transport] [ESCookbookNode] bound address
{inet[/127.0.0.1:9300]}, publish address {inet[/127.0.0.1:9300]}

[INFO] [discovery] [ESCookbookNode]
escookbook/TUYpmiFVTU6hY 7Dt jsmC3w

3. Now, to go to the interface, you need to navigate your browser to the following URL:

http://es_address:9200/ plugin/marvel/

1
‘\Q The dark interface color can be changed to a lighter one in the

Configure dashboard section (the wheel icon).

325

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

Marvel is a commercial product developed by ElasticSearch. At the time of writing, the cost
was $500 per year to monitor your first five nodes and $3,000 per year thereafter for each
five-node cluster; however, it is free for development purposes.

Marvel is composed of two components:

» The native JAR is responsible for monitoring all cluster and node events, and for
storing them in an index called marvel -<<YEAR>>.<<MONTH>>.<<DAY>>
created for a particular day. Its purpose is to collect node and cluster data.

» The Ul front-end, accessible at http://es_address:9200/ plugin/marvel/,
is based on Kibana to show and analyze the data.

The Marvel plugin must be installed in every node of the cluster, so it can correctly collect
the data.

The collecting part of the process stores the cluster and node data in the same ElasticSearch
cluster, but it can be configured to use an external cluster for monitoring purposes.

Configurations for this part of the plugin are, as usual, in the elasticsearch.yml file.
The most important properties are as follows:

» marvel.agent.exporter.es.hosts (by default, ["1localhost:9200"]):
This denotes a list of hosts in the hostname : port format to which the statistics
and events will be sent.

» marvel.agent.enabled (by default, true): This can be set to false to disable
all data export.

» marvel.agent.indices (by default, *): This allows us to control which indices
to export data for. It is a comma-separated list of names that can also be wildcards.
For example, +test* and -test1.

» marvel.agent.interval (by detault, 10s): This controls the interval between
data samples. It is set to -1 to temporarily disable data export.

The insight part is in the frontend, based on Kibana (http://www.elasticsearch.
org/overview/kibana/), that allows a powerful customization of the interface to provide
advanced analysis.

326

www.it-ebooks.info

http://www.elasticsearch.org/overview/kibana/
http://www.elasticsearch.org/overview/kibana/
http://www.it-ebooks.info/

Chapter 9

The following screenshot shows the Marvel home page:

[IESEaEtal = hour ago to a few seconds ago refre

I CLUSTER SUMMARY o b x
Name: escookbook © Nodes: 1 Indices: 3 Shards: 7 Data: 1.96 MB CPU: 4% Memory: 107.91 MB/989.88 MB Up time: 7.6 m Version: 1.3.1

I DOCUMENT COUNT ® & 4 x || SEARCH REQUEST RATE © # < x || INDEXING REQUEST RATE o & + x
5K 5

® b %
1 of 1 nodes o seiciea / Last 10m Full/ Compact
nodes 0S CPU (%) Load (1m) JVM Mem (%) Disk Free Space 10ps
ESCookbookMode s 6.0 mneo 4.4 minr7 10.0 mina0 13.8 GB~ 24 .8 mno7
127.0.0.19300 e, M 240 , max 48 — max150 p max A T 985
I INDICES L
3 of 3 indices o ssictea/ Last 10m Full / Gompact
indices Documents Index Rate Search Rate Merge Rate Field Data
test-index 1.0 Kmnao 0.0 mnoo 0.0 mnoo 0.0 mnoo 0.0 mmnoo
—— max10K < max: 15.5 ma00 ma:00 mac00
manel-2014.08.00 332.0 mwoo 0.8 mnoz 1.3 mwos 24.6 KB mnoo 33.9 KB oo
—— mac3a0 A max: 1.8 S maxc13 A max 268 KB S~ max 2399 KB
marvel-kibana 1.0 mnio 0.0 minoo 0.0 mnoo 0.0 minoo 0.0 mnoo
max: 1.0 max: 00 max 0.0 max: 00 max: 0.0

The home page gives an overview about the most important part of the cluster. The header
provides settings for all the pages of the Marvel interface, listed as follows:

» The name of the Marvel cluster (in our example, Marvel - Overview) can be
changed in the Configure dashboard section.
» Development Trial is shown because this Marvel version is running on trial mode.

» The interval that must be shown in the interface (such as, an hour ago to few
minutes). Clicking on it results in the dashboard providing a common preset.

» The interface refresh interval (such as refreshed every 10s). When you click on it,
the dashboard provides a common preset.

» The Force refresh icon.
» The Dashboards menu provides predefined dashboards such as the following;:

o Cluster Pulse: This is very useful in the analysis of cluster events such as
index creation, node connection/disconnections, and metadata changes.

327

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster and Node Monitoring

o Shard Allocation: This tracks shard allocation events and allows you to
replay them to analyze problems or evolution in time.

o Sense: This is an interface for the execution of queries (as explained earlier
in the chapter).

o Node Statistics: This allows you to analyze all node statistics, such as
memory usage, and file descriptors. It shows the data that we discussed
in the Getting node statistics via the API recipe in this chapter.

o Index Statistics: This allows us to analyze all index statistics.

» The save icon allows you to save the changes to the current dashboard.
» The settings icon allows you to change dashboard settings.

The main dashboard page provides a global cluster overview. The interface is very simple to
understand, and common issues are marked in red to gain the user's attention.

Marvel is probably the most complete and available solution for monitoring an ElasticSearch
cluster that is easy to use and fully customizable. Explaining all the Kibana functionalities is
outside the scope of this book.

» To know more about Marvel's licensing and to get an overview,
gotohttp://www.elasticsearch.com/marvel/

» Marvel documentation available at
http://www.elasticsearch.org/guide/en/marvel/current/

» To learn more about Kibana, go to
http://www.elasticsearch.org/overview/kibana/

328

www.it-ebooks.info

http://www.elasticsearch.com/marvel/
http://www.elasticsearch.org/guide/en/marvel/current/
http://www.elasticsearch.org/overview/kibana/
http://www.it-ebooks.info/

10

Java Integration

In this chapter we will cover the following recipes:

» Creating an HTTP client

» Creating a native client

» Managing indices with the native client
» Managing mappings

» Managing documents

» Managing bulk actions

» Building a query

» Executing a standard search

» Executing a search with aggregations

» Executing a scroll/scan search

Introduction

ElasticSearch functionalities can be easily integrated in any Java application in several ways,
both via the REST API and native ones.

With the use of Java it's easy to call a REST HTTP interface with one of the many libraries
available, such as Apache HttpComponents Client (http://hc.apache.org/). In this field
there's no such thing as a most-used library; typically developers choose the library that suits
their preferences the best or that they know very well.

www.it-ebooks.info

http://hc.apache.org/
http://www.it-ebooks.info/

Java Integration

Each JVM language can also use the native protocol to integrate ElasticSearch with their
applications. The native protocol, discussed in Chapter 1, Getting Started, is one of the faster
protocols available to communicate with ElasticSearch due to many factors, such as its
binary nature, the fast native serializer/deserializer of data, the asynchronous approach for
communicating, and the hop reduction (native client nodes are able to communicate directly
with the node that contains the data without executing the double hop needed in REST calls).

The main disadvantage of using native protocol is that it evolves during the development
life cycle of ElasticSearch and there is no guarantee of compatibility between versions. For
example, if a field of a request or a response changes, their binary serialization changes,
generating incompatibilities between client and server with different versions.

The ElasticSearch community tries not to change often but, in every version, some parts of
ElasticSearch are improved, and these changes often modify the native API call signature,
thus breaking the applications. It is recommended to use the REST API when integrating
with ElasticSearch as it is much more stable between versions.

In this chapter, we will see how to initialize different clients and how to execute the commands
that we have seen in the previous chapters. We will not go into every call in depth as we have
already described the REST API ones.

ElasticSearch uses the native protocol and API internally, so these are the most tested ones
compared to REST calls, due to unit and integration tests available in the ElasticSearch
code base. The official documentation for the native Java API is available at http: //www.
elasticsearch.org/guide/en/elasticsearch/client/java-api/current/,
but it doesn't cover all the API calls.

If you want a complete set of examples, they are available in the src/test directory.

As we have already discussed in Chapter 1, Getting Started, the ElasticSearch community
recommends using the REST calls when integrating, as they are more stable between
releases and well documented.

All the code presented in these recipes is available in the book code repository and can be
built with Maven.

Creating an HTTP client

An HTTP client is one of the easiest clients to create. It's very handy because it allows calling
not only internal methods as the native protocol does, but also third-party calls implemented
in plugins that can be called only via HTTP.

330

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/
http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/
http://www.it-ebooks.info/

Chapter 10

Getting ready

You will need a working ElasticSearch cluster and Maven installed. The code of this recipe is in
the chapter 10/http client directory, present in the code bundle available on the Packt
website and on GitHub (https://github.com/aparo/elasticsearch-cookbook-
second-edition).

How to do it...

To create an HTTP client, we will perform the following steps:

1.

For these examples, we have chosen the Apache HttpComponents, one of the most
widely used libraries for executing HTTP calls. This library is available in the main
Maven repository search.maven.org. To enable compilation in your Maven
pom.xml project, just add:

<dependencys>
<groupId>org.apache.httpcomponents</grouplds>
<artifactId>httpclient</artifactIds>
<version>4.3.5</version>

</dependency>

If we want to instantiate a client and fetch a document with a get method, the code
will look like this:

import org.apache.http.*;
import
org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;
import java.io.*;
public class App {
private static String wsUrl = "http://127.0.0.1:9200";
public static void main(String[] args) {
CloseableHttpClient client = HttpClients.custom()
.setRetryHandler (new
MyRequestRetryHandler()) .build() ;
HttpGet method = new HttpGet (wsUrl+"/test-
index/test-type/1") ;
// Execute the method.
try {
CloseableHttpResponse response =
client.execute (method) ;

331

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.search.maven.org
http://www.it-ebooks.info/

Java Integration

if (response.getStatusLine () .getStatusCode() !=
HttpStatus.SC_OK) {

System.err.println("Method failed: " +
response.getStatusLine()) ;
lelse{

HttpEntity entity = response.getEntity () ;
String responseBody =
EntityUtils.toString(entity) ;
System.out.println (responseBody) ;
}
} catch (IOException e) {
System.err.println("Fatal transport error: "
+ e.getMessage()) ;
e.printStackTrace () ;
} finally {
// Release the connection.
method.releaseConnection() ;

}

The result, if the document is available, will be:

{" index":"test-index"," type":
"test-type"," id":"1"," version":1,"exists":true, " source"

{..}}

We performed the preceding steps to create and use an HTTP client.

The first step is to initialize the HTTP client object. In the previous code this is done using
the following:

CloseableHttpClient client = HttpClients.custom()

.setRetryHandler (new
MyRequestRetryHandler ()) .build() ;

Before using the client, it is a good practice to customize it. In general, the client can be
modified to provide extra functionalities such as retry support. Retry support is very important
for designing robust applications. For example, the IP network protocol is never 100 percent
reliable, so automatically retrying an action if something goes wrong (http connection closed,
server overhead, and so on), is a good practice.

In the previous code, we have defined an Ht tpRequestRetryHandler method that monitors
the execution and repeats it three times before raising an error.

332

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

After having set up the client, we can define the method call. In the previous example, if we
want to execute the GET REST call, the used method will be HttpGet and the URL will be
item index/type/id (similar to the curl example in the Getting a document recipe in
Chapter 4, Basic Operations). To initialize this method the code is as follows:

HttpGet method = new HttpGet (wsUrl+"/test-index/test-type/1");

To improve the quality of our REST call it's a good practice to add extra controls to the method
such as authentication and custom headers.

The ElasticSearch server by default doesn't require authentication, so we need to provide a
security layer at the top of our architecture. A typical scenario is using your HTTP client with
the Jetty plugin, (https://github.com/sonian/elasticsearch-jetty) that allows
extending ElasticSearch REST with authentication and SSL. After the plugin is installed
and configured on the server, the following code adds a host entry that allows providing
credentials only if context calls are targeting that host. The authentication is simply basic
auth, but it works very well for non-complex deployment.

HttpHost targetHost = new HttpHost ("localhost", 9200, "http");
CredentialsProvider credsProvider = new
BasicCredentialsProvider() ;

credsProvider.setCredentials (

new AuthScope (targetHost.getHostName (),
targetHost.getPort ()),

new UsernamePasswordCredentials ("username", "password")) ;
// Create AuthCache instance
AuthCache authCache = new BasicAuthCache () ;
// Generate BASIC scheme object and add it to the local auth cache
BasicScheme basicAuth = new BasicScheme () ;
authCache.put (targetHost, basicAuth) ;
// Add AuthCache to the execution context
HttpClientContext context = HttpClientContext.create();
context.setCredentialsProvider (credsProvider) ;

The create context must be used in executing the call as follows:
response = client.execute(method, context) ;

Custom headers allow passing extra information to the server for executing a call. Some
examples could be API key or hints about supported formats. A typical example is using gzip
data compression over HTTP to reduce bandwidth usage. To do that, we can add a custom
header to the call, informing the server that our client accepts encoding Accept-Encoding
using Gzip:

request .addHeader ("Accept-Encoding", "gzip");

333

www.it-ebooks.info

https://github.com/sonian/elasticsearch-jetty
http://www.it-ebooks.info/

Java Integration

After having configured the call with all the parameters, we can fire up the request as follows:

response = client.execute (method, context) ;

Every response object must be validated on its return status. If the call is OK, the return status
should be 200. In the preceding code the check is done in the i f statement as follows:

if (response.getStatusLine () .getStatusCode() != HttpStatus.SC_OK)
If the call was OK—and the status code of the response is 200—we can read the answer:

HttpEntity entity = response.getEntity () ;
String responseBody = EntityUtils.toString(entity) ;

The response is wrapped in Ht tpEntity, which is a stream. HTTP client library provides a
helper method EntityUtils.toString that reads all the content of HttpEntity as a
string. Otherwise we need to create some code to read from the string and build the string.

Obviously all the read part of the call is wrapped in a try/catch block to collect all the
possible errors due to networking.

Apache HttpComponents is one of the most used libraries in the Java world to write a REST API
client. It provides a lot of out-of-the-box advanced features such as cookies, authentication,
and transport layers.

There isn't any recommended client for HTTP REST calls
M in the ElasticSearch community. One of the Java libraries
Q written to resolve this problem is Jest (https://github.
com/searchbox-1io/Jest) but, at the time of writing
this book, it is not a complete feature.

» The Apache HttpComponents on http://hc.apache.org/

» The Jetty plugin to provide authenticated ElasticSearch access on
https://github.com/sonian/elasticsearch-jetty

» Jestonhttps://github.com/searchbox-io/Jest
» The Using the HTTP protocol recipe in Chapter 1, Getting started
» The Getting a document recipe in Chapter 4, Basic Operations

www.it-ebooks.info

https://github.com/searchbox-io/Jest
https://github.com/searchbox-io/Jest
http://hc.apache.org/
https://github.com/sonian/elasticsearch-jetty
https://github.com/searchbox-io/Jest
http://www.it-ebooks.info/

Chapter 10

Creating a native client

There are two ways to create a native client in order to communicate with an
ElasticSearch server:

» Creating a client node (a node that doesn't contain data, but works as an arbiter)
and getting the client from it. This node will appear in the cluster state nodes and
it's able to use the discovery capabilities of ElasticSearch to join the cluster (so no
node address is required to connect to a cluster). This client is able to reduce node
routing due to its knowledge of cluster topology.

» Creating a transport client, which is a standard client that requires the address
and port of nodes to connect.

In this recipe we will see how to create these clients.

Getting ready

You will need a working ElasticSearch cluster and a working copy of Maven.

The code of this recipe is in chapter 10/nativeclient in the code bundle available
on Packt's website and on GitHub (https://github.com/aparo/elasticsearch-
cookbook-second-edition).

How to do it...

To create a native client, we will perform the following steps:

1. Before starting, make sure that Maven loads the elasticsearch.jar and adds it
to pom.xml as follows:

<dependencys>
<groupIds>org.elasticsearch</groupIld>
<artifactIdselasticsearch</artifactIds>
<version>1.4.0</versions>

</dependency>

| always suggest using the latest available release of ElasticSearch
M or, in the case of connection to a specific cluster, the same version
Q of ElasticSearch as the cluster.

Native clients only work if the client and the server have the same
ElasticSearch version.

335

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Java Integration

2.

Now to create a client, we have two ways:
o Using a node:

import static org.elasticsearch.node.NodeBuilder.*;

// on startup

Node node =

nodeBuilder () .clusterName ("elasticsearch") .client (true) .
node () ;

Client client = node.client () ;

// on shutdown

node.close () ;

o Using the transport protocol:
final Settings settings =
ImmutableSettings.settingsBuilder ()
.put ("client.transport.sniff", true)
.put ("cluster.name", "elasticsearch") .build();
Client client = new TransportClient (settings)

.addTransportAddress (new
InetSocketTransportAddress ("127.0.0.1", 9300));

The first action to create a native client is to create a node. We set it as a client node and we
retrieve the client from it. The steps are:

1.

Import the NodeBuilder class:

import static org.elasticsearch.node.NodeBuilder.*;

Initializie an ElasticSearch node by passing cluster.name and indicating that it's
a client one (otherwise, it can be considered as a standard node; after joining the
cluster, it fetches data from shards to load-balance the cluster):

Node node =
nodeBuilder () .clusterName ("elasticsearch") .client (true) .
node () ;

We can now retrieve a client from the node using the following line of code:
Client client = node.client();
If the client is retrieved from an embedded node, before closing the application,

we need to free the resource needed by the node. This can be done by calling the
close method on the node:

node.close() ;

The second way to create a native client is to create a transport client.

336

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10
The steps to create a transport client are:

1. Create the settings required to configure the client. Typically they hold the cluster
name and some other options that we'll discuss later:

final Settings settings = ImmutableSettings.settingsBuilder ()
.put ("client.transport.sniff", true)
.put ("cluster.name", "elasticsearch") .build();

2. Now we can create the client by passing it settings, addresses, and the port of our
cluster as follows:

new TransportClient (settings)
.addTransportAddress (new
InetSocketTransportAddress ("127.0.0.1", 9300));

The addTransportAddress method can be called several times until all the required
addresses and ports are set.

Using any of these approaches, the result is the same—that is, a working client that allows you
to execute native calls on an ElasticSearch server.

In both approaches, it is important to correctly define the name of the cluster; otherwise there
will be problems in node joining or the transport client will give you warning of invalid names.

The client node is a complete ElasticSearch client node, so pay attention to defining that.
It must be considered as a client node.

There's more...

There are several settings that can be passed when creating a transport client. They are listed
as follows:

» client.transport.sniff: Thisis by default false. If activated, the client
retrieves the other node addresses after the first connection, reading them by
the cluster state and reconstructing the cluster topology.

» client.transport.ignore cluster name: Thisis by default false.
If you set it to true, cluster name validation of connected nodes is ignored.
This prevents printing a warning if the client cluster name is different from
the connected cluster name.

» client.transport.ping timeout: This is by default set to 5s. Every client
pings the node to check its state. This value defines how much time a client should
wait before a timeout.

337

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

» client.transport.nodes sampler interval: This is also by default set to
5s. This interval defines how often to sample/ping the nodes listed and connected.
These pings reduce failures if a node is down and allows balancing the requests
with the available node.

» The Setting up for Linux systems recipe in Chapter 2, Downloading and Setting Up
» The Using the native protocol recipe in Chapter 1, Getting Started

Managing indices with the native client

In the previous recipe we saw how to initialize a client to send calls to an ElasticSearch cluster.
In this recipe, we will see how to manage indices via client calls.

Getting ready

You will need a working ElasticSearch cluster and a working copy of Maven.

The code of this recipe is in chapter 10/nativeclient in the code bundle, which
can be downloaded from Packt's website, and on GitHub (https://github.com/
aparo/elasticsearch-cookbook-second-edition). The referred class is
IndicesOperations.

How to do it...

The ElasticSearch client maps all index operations under the admin. indices object of the
client. Here, all the index operations are listed, such as create, delete, exists, open, close,
optimize, and so on.

The following steps show how to retrieve a client and execute the main operations on indices:

1. The first step is importing the required classes:

import
org.elasticsearch.action.admin.indices.exists.indices.
IndicesExistsResponse;

import org.elasticsearch.client.Client;

2. Then we define an IndicesOperations class that manages the index operations:

public class IndicesOperations {
private final Client client;
public IndicesOperations(Client client) {

338

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 10

this.client = client;

}

3. We define a function used to check the index's existence:

public boolean checkIndexExists (String name) {

IndicesExistsResponse
response=client.admin () .indices () .prepareExists (name) .
execute () .actionGet () ;

return response.isExists() ;

}

4. We define a function used to create an index:

public void createIndex (String name) {

client.admin() .indices () .prepareCreate (name) .execute () .
actionGet () ;

}

5. We define a function used to delete an index:

public void deleteIndex (String name) {

client.admin() .indices () .prepareDelete (name) .execute () .
actionGet () ;

}

6. We define a function used to close an index:

public void closeIndex (String name) {

client.admin() .indices () .prepareClose (name) .execute () .
actionGet () ;

}

7. We define a function used to open an index:

public void openIndex (String name) {

client.admin () .indices () .prepareOpen (name) .execute () .
actionGet () ;

}

8. We test all the previously defined functions:

public static void main(String[] args) throws

InterruptedException {
Client client
=NativeClient.createTransportClient () ;
IndicesOperations io=new IndicesOperations (client) ;
String myIndex = "test";
if (io.checkIndexExists (myIndex))
io.deleteIndex (myIndex) ;
io.createIndex (myIndex) ;

339

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

Thread.sleep(1000) ;
io.closelIndex (myIndex) ;
io.openIndex (myIndex) ;
io.deleteIndex (myIndex) ;

}

Before executing any index operation, a client must be available (we have seen how to create
one in the previous recipe).

The client has a lot of methods grouped by functionalities as follows:

» Intheroot (client. *), we have record operations such as index, delete records,
search, and update

» Under admin.indices. *, we have index-related methods such as creating an index,
deleting an index, and so on

» Under admin.cluster.*, we have cluster-related methods such as state and health
The client methods usually follow some conventions. They are listed as follows:
» Methods starting from prepare* (that is, prepareCreate) return a request builder
that can be executed with the execute method

» Methods that start with a verb (that is, create) require a build request and an
optional action listener

After having built the request, it can be executed with an act ionGet method that can receive
an optional timeout, and a response is returned.

In the previous example we have seen several index calls:

» To check the existence of an index the method call is prepareExists and it returns
an IndicesExistsResponse object that tells you if the index exists or not:

IndicesExistsResponse

response=client.admin () .indices () .prepareExists (name) .
execute () .actionGet () ;

return response.isExists() ;

» To create an index with the prepareCreate call:

client.admin() .indices () .prepareCreate (name) .execute () .
actionGet () ;

» To close an index with the prepareClose call:

client.admin () .indices () .prepareClose (name) .execute () .actionGet () ;

340

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

» To open an index with the prepareOpen call:

client.admin() .indices () .prepareOpen (name) .execute () .actionGet () ;

» To delete an index with the prepareDelete call:

client.admin() .indices () .prepareDelete (name) .execute () .
actionGet () ;

In the code we have put a delay of 1 second (Thread.wait (1000))
\ to prevent fast actions on indices, because their shard allocations are
~ asynchronous and they require some milliseconds to be ready. The best
Q practice is not to have a similar hack, but to poll an index's state before
performing further operations and to perform those operations only
when it goes green.

» The Creating an index, Deleting an index, and Opening/closing an index recipes in
Chapter 4, Basic Operations

Managing mappings

After creating an index, the next step is to add some mapping to it. We have already seen how
to apply a mapping via the REST API in Chapter 4, Basic Operations. In this recipe, we will see
how to manage mappings via a native client.

Getting ready

You will need a working ElasticSearch cluster and a working copy of Maven.

The code of this recipe is in chapter 10/nativeclient in the code bundle of
this book, available on Packt's website, and on GitHub (https://github.com/
aparo/elasticsearch-cookbook-second-edition). The referred class is
MappingOperations.

How to do it...

The following steps show how to add a mytype mapping to a myindex index via a native client:

1. We import the required classes:

import
org.elasticsearch.action.admin.indices.mapping.put.
PutMappingResponse;

341

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Java Integration

import
import
import
import
jsonBu

org.elasticsearch.client.Client;
org.elasticsearch.common.xcontent .XContentBuilder;
java.io.IOException;

static org.elasticsearch.common.xcontent.XContentFactory.
ilder;

2. We define a class to contain our code and to initialize the client and the index:

public
pu

{

class MappingOperations {
blic static void main(String[] args)

String index="mytest";

String type="mytype";

Client client
=NativeClient.createTransportClient () ;
IndicesOperations io=new IndicesOperations (client) ;
if (io.checkIndexExists (index))

io.deleteIndex (index) ;

io.createIndex (index) ;

3. We prepare the JSON mapping to put in the index:

XContentBuilder builder = null;
try {
builder = jsonBuilder().
startObject () .
field("typel") .
startObject () .
field ("properties") .

startObject () .

field("nestedl") .

startObject () .

field("type") .

value ("nested") .
endObject () .endObject () .endObject () .
endObject () ;

4. We put the mapping in the index:

PutMappingResponse
response=client.admin () .indices () .preparePutMapping (index) .
setType (type) .setSource (builder) .execute () .actionGet () ;

if (!response.isAcknowledged()) {

342

System.out.println ("Something strange
happens") ;

}

} catch (IOException e) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

ex.printStackTrace () ;
System.out.println ("Unable to create
mapping") ;

}

5. We delete the mapping in the index and remove the index:

client.admin() .indices () .prepareDeleteMapping (index) .
setType (type) .execute () .actionGet () ;
io.deleteIndex (index) ;

}
}

Before executing a mapping operation, a client must be available and the index must be
created. In the previous example, if the index exists, it's deleted and recreated as a new one,
so we are sure to start from scratch:

Client client =NativeClient.createTransportClient () ;
IndicesOperations io=new IndicesOperations (client) ;
if (io.checkIndexExists (index)) io.deletelIndex(index) ;
io.createIndex (index) ;

Now that we have a fresh index to put the mapping in, we need to create a mapping. As every
standard object in ElasticSearch is a JSON object, ElasticSearch provides a convenient way
to create a JSON object programmatically via XContentBuilder. jsonBuilder. For using
them, you need to add the following imports to your Java file:

import org.elasticsearch.common.xcontent.XContentBuilder;
import static
org.elasticsearch.common.xcontent .XContentFactory.jsonBuilder;

The XContentBuilder. jsonBuilder object allows building JSON programmatically.

It is a Swiss-knife of JSON generation in ElasticSearch and, due to its ability to be chained,

it has a lot of methods. These methods always return a builder so they can be easily chained.
The most important ones are:

» startObject () and startObject (name): Here name is the name of the JSON
object. It defines a JSON object. The object must be closed with endObject ().

» field(name) or field(name, value):Here name must always be a string, and
value must be a valid value that can be converted to JSON. It's used to define a field
in the JSON object.

» value (value): Here value must be a valid value that can be converted to JSON.
It defines a single value in a field.

» startArray() and startArray (name): Here name is the name of the JSON
array. It defines a JSON array that must be ended with an endArray ().

343

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

Generally in ElasticSearch every method that accepts a JSON object as a parameter also
accepts a JSON builder.

Now that we have the mapping in the builder, we need to call the putmapping API. This APl is
inthe client.admin () .indices () namespace and you need to define the index, the type,
and the mapping to execute this call as follows:

PutMappingResponse response=client.admin().indices() .
preparePutMapping (index) .setType (type) . setSource (builder) .execute () .
actionGet () ;

If everything is ok, you can check the status in response. isAcknowledged (); it must be
true. Otherwise an error is raised.

If you need to update a mapping, you need to execute the same call, but in the mapping put
only the fields that you need to add.

To delete a mapping, you need to call the delete mapping API. It requires the index and the
type to be deleted. In the previous example, the previously created mapping is deleted using
the following code:

client.admin() .indices () .prepareDeleteMapping (index) . setType (type) .
execute () .actionGet () ;

There is another important call used in managing the mapping called the get mapping API.
The call is similar to a delete call, and returns a GetMappingResponse object:

GetMappingResponse response=client.admin().indices().
prepareGetMapping (index) . setType (type) .execute () .actionGet () ;

The response contains the mapping information. The data returned is structured as in an
index map that contains mapping mapped as name MappingMetaData.

The MappingMetaData is an object that contains all the mapping information and all the
sections that we discussed in Chapter 4, Basic Operations.

» The Putting a mapping in an index, Getting a mapping, and Deleting a mapping
recipes in Chapter 4, Basic Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Managing documents

The native APIs for managing documents (index, delete, and update) are the most important
after the search ones. In this recipe, we will see how to use them. In the next recipe we will
proceed to bulk actions to improve performance.

Getting ready

You will need a working ElasticSearch cluster and a working copy of Maven.

The code of this recipe is in chapter 10/nativeclient in the code bundle of
this chapter, present on Packt's website, and on GitHub (https://github.com/
aparo/elasticsearch-cookbook-second-edition). The referred class is
DocumentOperations

How to do it...

For managing documents, we will perform the following operations:

» We'll execute all the document's CRUD operations (Create, Update, Delete) via a
native client using the following code:

import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.Client;
import org.elasticsearch.common.xcontent.XContentFactory;
import java.io.IOException;
public class DocumentOperations {
public static void main(Stringl[] args)
{
String index="mytest";
String type="mytype";
Client client =NativeClient.createTransportClient () ;
IndicesOperations io=new IndicesOperations(client) ;
if (io.checkIndexExists (index))
io.deletelIndex (index) ;
try {
client.admin() .indices () .prepareCreate (index)
.addMapping (type, XContentFactory.jsonBuilder ()
.startObject ()
.startObject (type)

345

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Java Integration

.startObject (" timestamp") .field("enabled",
true) .field("store", "yes") .endObject ()
.startObject (" _ttl").field("enabled",

true) .field("store", "yes") .endObject ()

.endObject ()
.endObject ())
.execute () .actionGet () ;

} catch (IOException e) {

System.out.println ("Unable to create mapping") ;
}
// We index a document
IndexResponse ir=client.preparelndex (index, type,
"21m) . setSource ("text", "unicorn") .execute () .actionGet () ;
System.out.println("Version: "+ir.getVersion()) ;
// We get a document
GetResponse gr=client.prepareGet (index, type,
"21m) execute () .actionGet () ;
System.out.println("Version: "+gr.getVersion()) ;
// We update a document
UpdateResponse ur = client.prepareUpdate (index,
type, "2").setScript("ctx. source.text =
'v2'" , ScriptService.ScriptType.INLINE) .execute() .
actionGet () ;
System.out.println("Version: "+ur.getVersion()) ;
// We delete a document
DeleteResponse dr = client.prepareDelete (index,
type, "2").execute() .actionGet () ;
io.deleteIndex (index) ;

}
}

» The result will be:

Aug 24, 2014 13:58:21 PM org.elasticsearch.plugins
INFO: [Masked Rose] loaded [], sites []

Version: 1

Version: 1

Version: 2

The document version is always incremented by 1 after an update action is performed or if
the document is re-indexed with the new changes.

Before executing a document action, a client and the index must be available and a document
mapping should be created (the mapping is optional, because it can be inferred from the
indexed document).

346

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

To index a document via a native client, the method prepareIndex is created. It requires the
index and the type to be passed as arguments. If an ID is provided, it will be used; otherwise a
new one will be created. In the previous example, we have put the source in the form of (key,
value), but many forms are available to pass as a source. They are:

» AJSON string: "{field:value}"

» Astring and a value (from 1 to 4 couples): £ield1l, valuel, field2, value2,
field3, value3, field4, value4

» Abuilder: jsonBuilder () .startObject () .field(field,value) .
endObject ()
» A byte array

Obviously it's possible to add all the parameters that we have seen in the Indexing a
document recipe in Chapter 4, Basic Operations, such as parent, routing, and so on.
In the previous example, the call was:

IndexResponse ir=client.preparelIndex (index, type,
"2m") .gsetSource ("text", "unicorn") .execute() .actionGet () ;

The return value (IndexReponse) can be used in several ways:

» Checking if the index was successfully added or not
» Getting the ID of the indexed document, if it was not provided during the index action
» Retrieving the document version

To retrieve a document, you need to know the index, type, and ID, and the client method

is prepareGet. It requires the usual triplet (index, type, ID), but a lot of other methods are
also available to control the routing (such as souring and parent) or fields, as we have seen
in the Getting a document recipe in Chapter 4, Basic Operations. In the previous example,
the call was:

GetResponse gr=client.prepareGet (index, type,
"2") .execute () .actionGet () ;

The return type (GetResponse) contains all the request (if the document exists) and document
information (source, version, index, type, ID).

To update a document, it's required to know the index, type, and ID, and provide a script or a
document to be used for the update. The client method is prepareUpdate. In the previous
example, the code was:

UpdateResponse ur = client.prepareUpdate (index, type,
"2") .setScript ("ctx. source.text = 'v2'"
ScriptService.ScriptType.INLINE) .execute () .actionGet () ;

The script code must be a string. If the script language is not defined, the default (Groovy)
is used.

347

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

The returned response contains information about the execution and the new version value to
manage concurrency.

To delete a document (without needing to execute a query), we must know the index, type,
and ID, and we can use the client method prepareDelete to create a delete request.
In the previous code, we have used:

DeleteResponse dr = client.prepareDelete("test", "type",
"2") .execute () .actionGet () ;

The delete request allows passing all the parameters that we have seen in the Deleting a
document recipe in Chapter 4, Basic Operations to control routing and the version.

» The Indexing a document, Getting a document, Deleting a document,
and Updating a document recipes in Chapter 4, Basic Operations

Managing bulk actions

Executing atomic operation on items via single call is often a bottleneck if you need to index
or delete thousands/millions of records. The best practice in this case is to execute a bulk
action. We have discussed bulk action via the REST API in the Speeding up atomic operations
(bulk operations) recipe in Chapter 4, Basic Operations.

Getting ready

You will need a working ElasticSearch cluster and Maven installed.

The code of this recipe is in chapter 10/nativeclient in the code bundle of this chapter,
which is available on Packt's website, and on GitHub (https://github.com/aparo/
elasticsearch-cookbook-second-edition). The referred class is BulkOperations

How to do it...

To manage a bulk action, we will perform the following actions:

» We'll execute a bulk action adding 1,000 documents, updating them and deleting
them as follows:

import org.elasticsearch.action.bulk.BulkRequestBuilder;
import org.elasticsearch.client.Client;

import org.elasticsearch.common.xcontent.XContentFactory;
import java.io.IOException;

348

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 10

public class BulkOperations
public static void main(Stringl[] args)

{

String index="mytest";

String type="mytype";

Client client =NativeClient.createTransportClient () ;

IndicesOperations io=new IndicesOperations (client) ;

if (io.checkIndexExists (index))

io.deleteIndex (index) ;

try {
client.admin() .indices () .prepareCreate (index)
.addMapping (type, XContentFactory.jsonBuilder ()
.startObject ()
.startObject (type)
.startObject (" timestamp") .field("enabled",

true) .field("store", "yes") .endObject ()
.startObject (" ttl").field("enabled",
true) .field("store", "yes") .endObject ()
.endObject ()

.endObject ())

.execute () .actionGet () ;

} catch (IOException e) {
System.out.println ("Unable to create mapping") ;
}
BulkRequestBuilder bulker=client.prepareBulk() ;
for (Integer i=1; i<=1000; i++){
bulker.add(client.prepareIndex (index, type,

i.toString()) .setSource ("position", i.toString()));
}
System.out.println ("Number of action: " +
bulker.numberOfActions()) ;
bulker.execute () .actionGet () ;

System.out.println ("Number of actions for index: "

+ bulker.numberOfActions()) ;

bulker.execute () .actionGet () ;

bulker=client.prepareBulk () ;

for (Integer i=1; i<=1000; i++){
bulker.add(client.prepareUpdate (index, type,
i.toString()) .setScript ("ctx. source.position
+= 2" , ScriptService.ScriptType.INLINE)) ;

}

System.out.println ("Number of actions for update: "

+ bulker.numberOfActions()) ;

bulker.execute () .actionGet () ;

bulker=client.prepareBulk () ;

for (Integer i=1; i<=1000; i++){
bulker.add(client.prepareDelete (index, type,
i.toString()));

}

349

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

System.out.println ("Number of actions for delete:
" 4+ bulker.numberOfActions()) ;
bulker.execute () .actionGet () ;

io.deleteIndex (index) ;

}
}

» The result will be:

Number of actions for index: 1000
Number of actions for udpate: 1000
Number of actions for delete: 1000

Before executing these bulk actions, a client must be available and the index and document
mapping must be created (the mapping is optional).

We can consider bulkBuilder as a collector of different actions:

» IndexRequest or IndexRequestBuilder

» UpdateRequest or UpdateRequestBuilder
» DeleteRequest or DeleteRequestBuilder
» A bulk formatted array of bytes.

Generally when used in a code, we can consider it as a "List" in which we add actions of the
supported types.

To initialize bulkBuilder we use:
BulkRequestBuilder bulker=client.prepareBulk() ;

In the previous example we have added 1,000 index actions (the IndexBuilder is similar to
the previous recipe):

for (Integer i=1; i<=1000; i++){
bulker.add(client.prepareIndex (index, type,
i.toString()) .setSource ("position", i.toString()));

}
After having added all the actions, we can print the number of actions and then execute them:

System.out.println ("Number of action: " +
bulker.numberOfActions()) ;

bulker.execute () .actionGet () ;

350

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

After having executed bulkBuilder, the bulker is empty. We have populated the bulk with
1,000 update actions:

for (Integer i=1; i<=1000; i++)
bulker.add(client.prepareUpdate (index, type,
i.toString()) .setScript("ctx. source.position += 2"
ScriptService.ScriptType.INLINE)) ;

}
After having added all the update actions, we can execute them in a bulk as follows:

bulker.execute () .actionGet () ;

After, the same step is done with the delete action:

for (Integer i=1; i<=1000; i++) {
ulker.add(client.prepareDelete (index, type,
i.toString()));

}

To commit the delete operation, we need to execute the bulk.

In this example, to simplify a bulk operation, | have created a bulk

with the same type of actions but, as described previously, you can
e put up any supported type of action in the same bulk operation.

» The Speeding up atomic operations (bulk operations) recipe in Chapter 4,
Basic Operations

Building a query

Before a search, a query must be built and ElasticSearch provides several ways to build these
queries. In this recipe, we will see how to create a query object via QueryBuilder and via
simple strings.

Getting ready

You will need a working ElasticSearch cluster and a working copy of Maven. The code of this
recipe is in chapter 10/nativeclient inthe code bundle available on Packt's website,
and on GitHub (https://github.com/aparo/elasticsearch-cookbook-second-
edition). The referred class is QueryCreation.

351

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Java Integration

How to do it...

To create a query, we will perform the following steps:

1. There are several ways to define a query in ElasticSearch and they are
interchangeable. Generally a query can be defined as a combination of
the following components:

0 QueryBuilder: This is a helper to build a query.

0 XContentBuilder: This is a helper to create JSON code. We have
discussed it in the Managing mappings recipe in this chapter. The JSON
code to be generated is similar to the previous REST, but converted in
programmatic code.

o Array of bytes or string: In this case, it's usually the JSON to be executed
as we have seen in REST calls.

o Map: It contains the query and the value of the query.

2. We'll create a query using QueryBuilder and execute a search (searching via
a native API will be discussed in the next recipe):

..truncated ..
import org.elasticsearch.common.xcontent.XContentFactory;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilder;
import org.elasticsearch.index.query.RangeQueryBuilder;
import org.elasticsearch.index.query.TermFilterBuilder;
import java.io.IOException;
import static org.elasticsearch.index.query.QueryBuilders.*;
import static org.elasticsearch.index.query.FilterBuilders.*;
public class QueryCreation {
public static void main(Stringl[] args)
{
String index="mytest";
. truncated ..
BulkRequestBuilder bulker=client.prepareBulk() ;
for (Integer i=1; i<1000; i++){
bulker.add(client.prepareIndex (index, type,

i.toString()) .setSource("text", i.toString(),
"numberl", i+1, "number2", 1i%2));

1
bulker.execute () .actionGet () ;

client.admin () .indices () .prepareRefresh (index) .execute() .ac
tionGet () ;

TermFilterBuilder filter = termFilter ("number2", 1);

352

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

RangeQueryBuilder range =

rangeQuery ("numberl") .gt (500) ;

BoolQueryBuilder bool = boolQuery () .must (range) ;
QueryBuilder query = filteredQuery(bool, filter);

SearchResponse
response=client.prepareSearch (index) .setTypes (type) . setQuer
vy (query) .execute () .actionGet () ;

System.out.println ("Matched records of elements: "
+ response.getHits () .getTotalHits()) ;
io.deleteIndex (index) ;

}

| have removed the redundant parts that are similar to the example in the
previous recipe.

3. The result will be:

Matched records of elements:250

In the preceding example, we created a query via QueryBuilder. The first step is to import
the query builder from the namespace:

import static org.elasticsearch.index.query.QueryBuilders.*;
But we also need the field builders and, to import them, use the following line of code:
import static org.elasticsearch.index.query.FilterBuilders.*;

The query used in the example is a filtered query composed by BooleanQuery and a term
filter. The goal of the example is to show how to mix several query/filter types for creating a
complex query.

The Boolean query contains a must clause with a range query. Use the following code to
create the range query:

RangeQueryBuilder range = rangeQuery ("numberl") .gte(500) ;

This range query matches the number1 field to all the values greater than or equal to
gte (500).

After having created the range query, we can add it to a Boolean query in the must block:
BoolQueryBuilder bool = boolQuery () .must (range) ;

In real-world complex queries, you can have a lot of nested queries in a Boolean query or filter.

353

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

To build our filtered query, we need to define a filter. In this case we have used a term filter,
which is one of the most used filters:

TermFilterBuilder filter = termFilter ("number2", 1);

The termFilter method accepts a field name and a value, which must be a valid
ElasticSearch type. The preceding code is similar to the JSON or REST {term: {number2:1}.

Now, we can build the final filtered query that we can execute in the search:

QueryBuilder query = filteredQuery(bool, filter);

\ Before executing a query and to be sure not to miss any results,
~ the index must be refreshed. In the example, it's done with the
Q help of the following code: client.admin () .indices () .
prepareRefresh (index) .execute () .actionGet ();

There's more...

The possible native queries/filters are the same as the REST ones and have the same
parameters but the only difference is that they are accessible via builder methods.

The most common query builders are:

» matchAllQuery: This allows matching of all the documents.
» matchQuery and matchPhraseQuery: These are used to match against text strings.

» termQuery and termsQuery: These are used to match term value(s) against a
specific field.

» boolQuery: This is used to aggregate other queries with Boolean logic.
» idsQuery: This is used to match a list of ids.

» fieldQuery: Thisis used to match a field with a text.

» wildcardQuery: This is used to match terms with wildcards (*,?).

» regexpQuery: This is used to match terms via a regular expression.

» Span query family (spanTermsQuery, spanTermQuery, spanORQuery
spanNotQuery, spanFirstQuery, and so on): These are a few examples
of the span query family. They are used in building a span query.

» filteredQuery: In this, the query is combined with a filter where the filter
applies first.

» constantScoreQuery: This accepts a query or a filter and all the matched
documents are set with the same score.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

» moreLikeThisQuery and fuzzyLikeThisQuery: These are used to retrieve
similar documents.

» hasChildQuery, hasParentQuery, and nestedQuery: These are used in
managing related documents.

The preceding list is not complete, because it is evolving during the life of ElasticSearch.
New query types are added to cover new search cases or they are occasionally renamed
such as Text QuerytoMatch Query.

Similar to the query builders, there are a lot of query filters, explained as follows:

» matchAllFilter: This matches all the documents

» termFilter and termsFilter: These are used to filter given value(s)

» idsFilter: This is used to filter a list of ids

» typeFilter: This is used to filter all the documents of the same type

» andFilter, orFilter, and notFilter: These are used to build Boolean filters
» wildcardFilter: This is used to filter terms with wildcards (*,?)

» regexpFilter: This is used to filter terms via a regular expression

» rangeFilter: Thisis used to filter using a range

» scriptFilter: Thisis used to filter documents using the scripting engine

» geoDistanceFilter, geoBoundingBoxFilter, and other geo filters:
These provide geo filtering of documents

» boolFilter: This is used to create a Boolean filter that aggregates other filters

» The Querying/filtering for a single term recipe in Chapter 5, Search, Queries,
and Filters

Executing a standard search

In the previous recipe, we saw how to build a query. In this recipe we can execute this query to
retrieve some documents.

Getting ready

You will need a working ElasticSearch cluster and a working copy of Maven.

The code of this recipe is in chapter 10/nativeclient, in the code bundle placed
on Packt's website, and on GitHub (https://github.com/aparo/elasticsearch-
cookbook-second-edition). The referred class is QueryExample.

355

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Java Integration

How to do it...

To execute a standard query, we will perform the following steps:

1. After having created a query, it is enough to use the prepareQuery call in order to
execute it and pass it your query object. Here is a complete example:

import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.Client;
import org.elasticsearch.index.query.QueryBuilder;
import org.elasticsearch.search.SearchHit;
import static org.elasticsearch.index.query.FilterBuilders.*;
import static org.elasticsearch.index.query.QueryBuilders.*;
public class QueryExample {
public static void main(String[] args) {
String index = "mytest";
String type = "mytype";
QueryHelper gh = new QueryHelper() ;
gh.populateData (index, type);
Client client=gh.getClient () ;
QueryBuilder query =
filteredQuery (boolQuery () .must (rangeQuery ("numberl") .gte (50
0)), termFilter ("number2", 1));
SearchResponse response =
client.prepareSearch (index) . setTypes (type)
.setQuery (query) .addHighlightedField ("name")
.execute () .actionGet () ;
if (response.status () .getStatus ()==200) {
System.out.println ("Matched number of
documents: " + response.getHits().totalHits()) ;
System.out.println ("Maximum score: " +
response.getHits () .maxScore()) ;
for (SearchHit hit:
response.getHits () .getHits ()) {
System.out.println("hit:
"+hit.getIndex ()+":"+hit.getType()+":"
+hit.getId());

}
}

gh.dropIndex (index) ;
}
}

2. The result should be similar to this one:

Matched number of documents: 251
Maximum score: 1.0
hit: mytest:mytype:505

356

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

hit: mytest:mytype:517
hit: mytest:mytype:529
hit: mytest:mytype:531
hit: mytest:mytype:543
hit: mytest:mytype:555
hit: mytest:mytype:567
hit: mytest:mytype:579
hit: mytest:mytype:581
hit: mytest:mytype:593

The call to execute a search is prepareSearch and it returns SearchResponse

import org.elasticsearch.action.search.SearchResponse;

SearchResponse response = client.prepareSearch (index) .setTypes (type) .
setQuery (query) .execute () .actionGet () ;

The search call has a lot of methods to allow setting all the parameters that we have already
seen in the Executing a search recipe in Chapter 5, Search, Queries, and Filters. The most
used methods are:

» setIndices: This allows defining the indices to be used.

» setTypes: This allows defining the document types to be used.

» setQuery: This allows setting the query to be executed.

» addField (s): This allows setting fields to be returned (used to reduce the
bandwidth by returning only the needed fields).

» addAggregation: This allows adding aggregations to be computed.
» addracet (Deprecated): This allows adding facets to be computed.

» addHighlighting: This allows highlighting results to be returned. The simple
case is to highlight a field name as follows:

.addHighlightedField ("name™")

» addScriptField: This allows returning a scripted field. A scripted field is a field
computed by server-side scripting using one of the available scripting languages.
For example :
Map<String, Object> params = MapBuilder.<String,
Object>newMapBuilder () .put ("factor", 2.0) .map() ;

.addScriptField ("sNuml", "doc['numl'].value * factor",
params)

After having executed a search, a response object is returned.

357

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

It's good practice to check if the search is successful or not, by checking the returned status
and, optionally, the number of hits. If the search was executed correctly, then the return status
is 200.

if (response.status () .getStatus()==200)

The response object contains a lot of sections that we have analyzed in the Executing a

Search recipe in Chapter 5, Search, Queries, and Filters. The most important one is the

hits section that contains our results. The main methods that access this section are:
» totalHits: This allows obtaining the total number of results:

System.out.println ("Matched number of documents: " + response.
getHits () .totalHits ()) ;

» maxScore: This gives the maximum score of the documents. It is the same score
value of the first SearchHit method:
System.out.println("Maximum score: " + response.getHits().
maxScore ()) ;

» hits: Thisis SearchHit array that contains the results, if available.

The SearchHit is the result object. It has a lot of methods, of which the most important
ones are:

» index ():This is the index that contains the document.

» type (): This is the type of the document.

» 1d():Thisis the ID of the document.

» score (): This is the query score of this document, if available.

» version(): This is the version of the document, if available.

» source (), sourceAsString (), sourceAsMap (), and so on: These return the
source of the document in different forms, if available.

» explanation ():If available (required in the search), it contains the query
explanation.

» fields, field(String name): These return the fields requested if fields are
passed to search the object.

» sortValues (): Thisis the value/values used to sort the record. It's only available
if sort is specified during the search phase.

» shard(): This is the shard of the search hit. This value is very important in the case
of custom routing.

358

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

In the following example, we have printed only the index, type, and ID of each hit.

for (SearchHit hit: response.getHits().getHits()) {
System.out.println("hit:
"+hit.getIndex()+":"+hit.getType()+":"+hit.getId()) ;

}

M The number of returned hits, if not defined, is limited to 10.
Q To retrieve more hits you need to define a larger value in the
size method or paginate using the £rom method.

See also

» The Executing a search recipe in Chapter 5, Search, Queries, and Filters

Executing a search with aggregations

The previous recipe can be extended to support aggregations and to retrieve analytics on
indexed data.

Getting ready
You will need a working ElasticSearch cluster and a working copy of Maven.

The code of this recipe is in chapter 10/nativeclient folder in the code bundle
of this chapter available on Packt's website, and on GitHub (https://github.com/
aparo/elasticsearch-cookbook-second-edition). The referred class is
AggregationExample

How to do it...

To execute a search with aggregations, we will perform the following steps:

1. We'll calculate two different aggregations (terms and extended statistics) as follows:

import org.elasticsearch.action.search.SearchResponse;

import org.elasticsearch.client.Client;

import
org.elasticsearch.search.aggregations.AggregationBuilder;
import
org.elasticsearch.search.aggregations.bucket.terms.Terms;
import
org.elasticsearch.search.aggregations.metrics.stats.extended.
ExtendedStats;

359

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Java Integration

import
org.elasticsearch.search.aggregations.metrics.stats.extended.
ExtendedStatsBuilder;
import static
org.elasticsearch.index.query.QueryBuilders.matchAllQuery;
import static
org.elasticsearch.search.aggregations.AggregationBuilders. *;
public class AggregationExample {
public static void main(String[] args)

String index = "mytest";

String type = "mytype";

QueryHelper gh = new QueryHelper() ;

gh.populateData (index, type);

Client client = gh.getClient() ;

AggregationBuilder aggsBuilder =

terms ("tag") .field("tag") ;

ExtendedStatsBuilder aggsBuilder2 =

extendedStats ("numberl") .field ("numberl") ;

SearchResponse response =
client.prepareSearch (index) . setTypes (type)

.setQuery (matchAllQuery()) .addAggregation (aggsBuilder) .

addAggregation (aggsBuilder2)

.execute () .actionGet () ;

if (response.status().getStatus() == 200)
System.out.println ("Matched number of documents: " +
response.getHits () .totalHits ()) ;
Terms termsAggs =
response.getAggregations () .get ("tag") ;

System.out.println ("Aggregation name: " +

termsAggs.getName ()) ;

System.out.println ("Aggregation total: " +

termsAggs.getBuckets () .size()) ;

for (Terms.Bucket entry : termsAggs.getBuckets())
System.out.println(" - " + entry.getKey() +

" " 4+ entry.getDocCount ()) ;

}
ExtendedStats extStats =
response.getAggregations () .get ("numberl") ;

System.out.println ("Aggregation name: " +
extStats.getName()) ;

System.out.println("Count: " + extStats.getCount()) ;
System.out.println("Min: " + extStats.getMin());
System.out.println("Max: " + extStats.getMax());
System.out.println("Standard Deviation: " +

extStats.getStdDeviation()) ;

360

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

System.out.println("Sum of Squares: " +
extStats.getSumOfSquares()) ;

System.out.println("Variance: " +
extStats.getVariance()) ;

}

gh.dropIndex (index) ;

}

2. The result should be similar to this:

Aug 24, 2014 4:07:43 PM org.elasticsearch.plugins
INFO: [Legion] loaded [], sites []
Matched number of documents: 1000
Aggregation name: tag
Aggregation total: 4

- nice 264

- bad 257

- amazing 247

- cool 232
Aggregation name: numberl
Count: 1000
Min: 2.0
Max: 1001.0
Standard Deviation: 288.6749902572095
Sum of Squares: 3.348355E8
Variance: 83333.25

The search part is similar to the previous example. In this case we have used a
matchAllQuery, which matches all the documents. To execute an aggregation,
first you need to create it. There are three ways to do so:

» Using a string that maps a JSON object
» Using XContentBuilder that will be used to produce a JSON

» Using AggregationBuilder
The first two ways are trivial; the third one requires the builders to be imported:

import static org.elasticsearch.search.aggregations.
AggregationBuilders. *;

361

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

There are several types of aggregation, as we have already seen in Chapter 6, Aggregations.
The first one, which we have created with AggregationBuilder, is a Terms one that
collects and counts all terms occurrences in buckets:

AggregationBuilder aggsBuilder = terms("tag").field("tag") ;

The required value for every aggregation is the name passed in the builder constructor.
In the case of a terms aggregation, the field is required to be able to process the request.
(There are a lot of other parameters, see the Executing the terms aggregation recipe in
Chapter 6, Aggregations for full details).

The second aggregationBuilder that we have created is an extended statistical one
based on the numberl numeric field:

ExtendedStatsBuilder aggsBuilder2 = extendedStats ("numberl").
field ("numberl") ;

Now that we have created aggregationBuilders, we can add them on a search method
via the addaggregation method:

SearchResponse response = client.prepareSearch (index) .setTypes (type)
.setQuery (matchAllQuery ()) .addAggregation (aggsBuilder)
addAggregation (aggsBuilder2)

.execute () .actionGet () ;

Now the response holds information about our aggregations. To access them we need to use
the getAggregations method of the response.

The aggregations results are contained in a hash-like structure and you can retrieve them with
the names that you have previously defined in the request.

To retrieve the first aggregation results we need to execute the following code:
Terms termsAggs = response.getAggregations () .get ("tag");

Now that we have an aggregation result of type Terms (see the Executing the terms
aggregations recipe in Chapter 6, Aggregations), we can get the aggregation properties
and iterate on buckets:

System.out.println ("Aggregation name: " + termsAggs.getName()) ;
System.out.println("Aggregation total: " + termsAggs.getBuckets().
size());
for (Terms.Bucket entry : termsAggs.getBuckets()) ({
System.out.println(" - " + entry.getKey() + " " + entry.

getDocCount ()) ;
}

362

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

To retrieve the second aggregation result, because the result is of type ExtendedStats, you
need to cast to it as follows:

ExtendedStats extStats = response.getAggregations () .get ("numberl") ;

Now you can access the result properties of this kind of aggregation:

System.out.println("Aggregation name: " + extStats.getName()) ;
System.out.println("Count: " + extStats.getCount());
System.out.println("Min: " + extStats.getMin());
System.out.println("Max: " + extStats.getMax());
System.out.println("Standard Deviation: " + extStats.
getStdDeviation()) ;

System.out.println("Sum of Squares: " + extStats.getSumOfSquares()) ;
System.out.println("Variance: " + extStats.getVariance()) ;

Using aggregations with a native client is quite easy; you only need to pay attention to the
returned aggregation type to execute the correct type cast to access your results.

» The Executing the terms aggregations and Executing the stats aggregations recipes
in Chapter 6, Aggregations

Executing a scroll/scan search

Pagination with a standard query works very well if you are matching documents that do not
change too often; otherwise, doing pagination with live data returns unpredictable results.
To bypass this problem, ElasticSearch provides an extra parameter in the query called scroll.

Getting ready

You will need a working ElasticSearch cluster and a working copy of Maven.

The code of this recipe is in chapter 10/nativeclient in the code bundle, present
on Packt's website and on GitHub (https://github.com/aparo/elasticsearch-
cookbook-second-edition). The referred class is ScrollScanQueryExample.

How to do it...

The search is done in the same way as in the previous recipe. The main difference is a
setScroll timeout that allows storing the result's ids for a query for a defined timeout
in memory.

363

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Java Integration
We can change the code of the previous recipe to use scroll in the following way:

import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.search.SearchType;
import org.elasticsearch.client.Client;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.index.query.QueryBuilder;
import static org.elasticsearch.index.query.FilterBuilders.termFilter;
import static org.elasticsearch.index.query.QueryBuilders.*;
public class ScrollScanQueryExample {
public static void main(String[] args) {
String index = "mytest";
String type = "mytype";
QueryHelper gh = new QueryHelper() ;
gh.populateData (index, type);
Client client=gh.getClient () ;
QueryBuilder query =
filteredQuery (boolQuery () .must (rangeQuery ("numberl") .gte (500)),
termFilter ("number2", 1)) ;
SearchResponse response =
client.prepareSearch (index) .setTypes (type)
.setQuery (query) .setScroll (TimeValue.timeValueMinutes (2))
.execute () .actionGet () ;
// do something with searchResponse.getHits ()
while (response.getHits () .hits () .length!=0)
// do something with searchResponse.getHits ()
//your code here
//next scroll
response =
client.prepareSearchScroll (response.getScrollId()) .
setScroll (TimeV
alue.timeValueMinutes (2)) .execute() .actionGet () ;

}
SearchResponse searchResponse = client.prepareSearch()
.setSearchType (SearchType.SCAN)
.setQuery (matchAllQuery())
.setSize (100)
.setScroll (TimeValue.timeValueMinutes (2))
.execute () .actionGet () ;
while (true) {
searchResponse =
client.prepareSearchScroll (searchResponse.getScrollId()) .
setScroll
(TimeValue.timeValueMinutes (2)) .execute() .actionGet () ;

// do something with searchResponse.getHits() if any

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

if (searchResponse.getHits().hits().length == 0) {
break;

}
gh.dropIndex (index) ;
}
}

To use the result of scrolling, it's enough to add the setScroll method with a timeout to the
method call. When using scrolling some behaviors must be considered:

» The timeout defines the time slice for which an ElasticSearch server stores the
results. Asking for a scroll, after the timeout, will result in the server returning an
error. So you must be careful with short timeouts.

» The scroll consumes memory until the scroll ends or a timeout is raised. Setting a
large timeout period without consuming the data will result in unnecessary memory
occupation. Using a large number of open scrollers consumes a lot of memory
proportional to the number of ids and their related data (score, order, and so on) in
the results.

» Scrolling, it's not possible to paginate the documents, as there is no start to it. The
scrolling is designed to fetch consecutives results.

So a standard search is changed to a scroll in this way:

SearchResponse response = client.prepareSearch (index) .setTypes (type) .
setQuery (query) .setScroll (TimeValue.timeValueMinutes (2)) .execute () .
actionGet () ;

The response contains the results that consist of a standard search plus a scroll ID that is
required to fetch the next results.

To execute the scroll you need to call the prepareSearchScroll client method with a scroll
ID and a new timeout. In the following example, we process all the result documents:

while (response.getHits () .hits () .length!=0)
// do something with searchResponse.getHits ()
//your code here
//next scroll

response =
client.prepareSearchScroll (response.getScrollId()) .setScroll (TimeV
alue.timeValueMinutes (2)) .execute () .actionGet () ;

}

To make sure that we are at the end of the scroll, we can check that no results are returned.

365

www.it-ebooks.info

http://www.it-ebooks.info/

Java Integration

There are a lot of scenarios in which scroll is very important. For example, working on big
data solutions where the result number is very huge, it's very easy to hit the timeout. In these
scenarios it is important to have a good architecture in which you can fetch the results as fast
as possible and, also, you don't have to process the results iteratively in the loop; however,

it defers the result manipulation in a distributed way.

There's more...

Scroll call is used in conjunction with scan queries (see the Executing a scan query recipe
in Chapter 5, Search, Queries, and Filters). Scan queries allow you to execute a query and
provide results in a scroll for fast performance.

The scan query consumes less memory than a standard scroll query because of the
following reasons:

» It doesn't compute score and doesn't return it
» It doesn't allow sorting, so it is not necessary to store the order value(s) in memory
» It doesn't allow computing facets or aggregations

» It doesn't allow execution of a child query or nested query, which in turn reduces
memory usage

The scan method collects the results and iterates them. It stores only the ids of the scan
method and hence it is very useful when you need to return all the documents that match
a query if the result set is very huge.

To execute a scan query, the search type value must be passed to the search call as follows:

SearchResponse searchResponse = client.prepareSearch()
.setSearchType (SearchType.SCAN)
.setQuery (matchAllQuery())
.setSize (100)
.setScroll (TimeValue.timeValueMinutes (2))
.execute () .actionGet () ;

A big difference in using scan rather than the scroll is that the first call doesn't return hits but
only the scroll id; thus, to get the first result you have to execute a new scroll query.

366

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

In the preceding code, the loop iterates until no results are available:

while (true) ({
searchResponse = client.prepareSearchScroll (searchResponse.

getScrollId()) .setScroll (TimeValue.timeValueMinutes (2)) .execute() .
actionGet () ;

// do something with searchResponse.getHits() if any

if (searchResponse.getHits().hits().length == 0) {

break;

See also

—
—

» The Executing a scan query recipe in Chapter 5: Search, Queries, and Filters

367

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11

Python Integration

In this chapter, we will cover the following recipes:

» Creating a client

» Managing indices

» Managing mappings

» Managing documents

» Executing a standard search

» Executing a search with aggregations

Introduction

In the previous chapter, we saw how we can use a native client to access the ElasticSearch
server with a Java implementation. This chapter is dedicated to the Python language and
managing common tasks via its clients.

Apart from Java, the ElasticSearch team supports official clients for Perl, PHP, Python,
.Net, and Ruby (see the announcement post on the ElasticSearch blog at http://www.
elasticsearch.org/blog/unleash-the-clients-ruby-python-php-perl/.).
This is pretty new as the initial public release was in September 2013. These clients have
a lot of advantages against other implementations. A few of them are mentioned here:

» The clients are strongly tied to the ElasticSearch API, as defined here:

All of the ElasticSearch APIs provided by these clients are
direct translations of the native ElasticSearch REST interface.
There should be no guessing required.

-The ElasticSearch team

www.it-ebooks.info

http://www.elasticsearch.org/blog/unleash-the-clients-ruby-python-php-perl/
http://www.elasticsearch.org/blog/unleash-the-clients-ruby-python-php-perl/
http://www.it-ebooks.info/

Python Integration

» They handle dynamic node detection and failover: they are built with a strong
networking base to communicate with the cluster.

» They have a full coverage of the REST API. They share the same application
approach for every language in which they are available, so switching from
one language to another can be done quickly.

» They provide transport abstraction so that a user can plug in to different backends.
» They are easily extensible.

The Python client works well with other Python frameworks such as Django, web2py,
and Pyramid. It allows very fast access to documents, indices, and clusters.

In this chapter, besides the standard ElasticSearch client, we will discuss the PyES client
developed by me and other contributors since 2010. PyES extends the standard client with
a lot of functionalities and helpers, as follows:

» The automatic management of common conversion between types.

» An object-oriented approach to common ElasticSearch elements. The standard
client only considers the use of the Python dictionary as a standard element.

» It has helpers for a search, such as advanced iterators on the results and
Django-like querysets.

In this chapter, I'll try to describe the most important functionalities of ElasticSearch's official
Python client and PyES (https://github.com/aparo/pyes). For additional examples
and in-depth references, | suggest that you take a look at the online GitHub repository at
https://github.com/elasticsearch/elasticsearch-py and the documentation.

Creating a client

The official ElasticSearch clients are designed to support several transport layers. They allow
you to use HTTP, Thrift, or the Memcached protocol without changing your application code.

The Thrift and Memcached protocols are binary ones and, due to their structures, they are
generally a bit faster than the HTTP one. They are wrapped in the REST APl and share the
same behavior, so switching between these protocols is easy.

In this recipe, we'll see how to instantiate a client with the different protocols.

Getting ready

You need a working ElasticSearch cluster and plugins for extra protocols. The full code of this
recipe is in the chapter 11/client creation.py file, available in the code bundle of
this book and on GitHub (https://github.com/aparo/elasticsearch-cookbook-
second-edition).

370

www.it-ebooks.info

https://github.com/aparo/pyes
https://github.com/elasticsearch/elasticsearch-py
https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 11

How to do it...

In order to create a client, perform the following steps:

1. Before using the Python client, you need to install it (possibly in a Python virtual
environment). The client is officially hosted on PyPi (http://pypi.python.org/)
and it's easy to install the client with the pip command:

pip install elasticsearch
This standard installation only provides the HTTP protocol.

2. Toinstall the Thrift protocol, you need to install the plugin on the ElasticSearch server:
bin/plugin -install elasticsearch/elasticsearch-transport-

thrift/2.3.0

On the client side, you need to install the Thrift support for Python, available in the
Thrift package (https://pypi.python.org/pypi/thrift/), installable using
the pip command:

pip install thrift

3. Toinstall the Memcached protocol, you need to install the plugin on the
ElasticSearch server:
bin/plugin -install elasticsearch/elasticsearch-transport-
memcached/2.3.0
After having installed a plugin, remember to restart your server to load it.

On the client side, we need to install Memcached support for Python provided
by the pylibmc package, which is installable via the pip command:

pip install pylibmc

M To compile this library, the 1ibmemcache APl must be installed.
Q On Mac OS X, you can install it via a brew install libmemcached,
on Linux via the 1ibmemcache-dev package in Debian.

4. After having installed the server and the required libraries to use the protocol,
you can instantiate the client. It resides in Python's elasticsearch package
and must be imported to instantiate the client, as follows:

import elasticsearch

If you don't pass arguments to the ElasticSearch class, it instantiates a client
that connects to a localhost and port 9200 (the default ElasticSearch HTTP port):

es = elasticsearch.Elasticsearch()

371

www.it-ebooks.info

http://pypi.python.org/
https://pypi.python.org/pypi/thrift/
http://www.it-ebooks.info/

Python Integration

5. If your cluster is composed of more than one node, you can pass the list of nodes
as a round-robin connection between nodes, and distribute the HTTP load, with the
following configuration:

es = elasticsearch.Elasticsearch(["searchl:9200",
"search2:9200"])

6. Often, the complete topology of the cluster is unknown. If you know at least the IP
of a node, you can use the option sniff on_ start=True. This option activates
the client's ability to detect other nodes in the cluster:

es = elasticsearch.Elasticsearch(["searchl:9200"],
sniff_on_start=True)

7. The default transport is the Urllib3 HttpConnection but, if you want to use the HTTP
requests transport, you need to override the connection class class by passing
a RequestsHttpConnection class:
from elasticsearch.connection import RequestsHttpConnection

es = elasticsearch.Elasticsearch(sniff_ on_start=True,
connection class= RequestsHttpConnection)

8. If you want to use Thrift as a transport layer, you should import the
ThriftConnection class and pass it to the client:

from elasticsearch.connection import ThriftConnection

es = elasticsearch.Elasticsearch(["searchl1:9500"],
sniff_on_ start=True, connection_class= ThriftConnection)

9. If you want to use Memcached as a transport layer, you should import the
MemcachedConnection class and pass it to the client:

from elasticsearch import Elasticsearch, MemcachedConnection
es = elasticsearch.Elasticsearch(["searchl1:11211"], sniff_on_
start=True, connection class=MemcachedConnection)

In order to communicate with an ElasticSearch cluster, a client is required.

The client manages all the communication layers from your application to an ElasticSearch
server, using the specified protocol. The standard protocol for REST calls is the HTTP protocol.

The ElasticSearch Python client allows you to use one of the following protocols:

» HTTP: This provides two implementations based on requests
(https://pypi.python.org/pypi/requests)and one on urllib3
(https://pypi.python.org/pypi/urllib3).

372

www.it-ebooks.info

https://pypi.python.org/pypi/requests
https://pypi.python.org/pypi/urllib3
http://www.it-ebooks.info/

Chapter 11

» Thrift: This is one of the fastest protocols available. To use it, Thrift libraries
on both the server and client sides must be installed.

» Memcached: This allows you to communicate with ElasticSearch, as if it was a
MemCached server. To use it, memcache libraries must be installed on the server
and the client.

For general usage, the HTTP protocol is very good and it's the de facto standard. The other
protocols too work well because, often, they reuse the same client object so that you don't
have to reinstantiate the connections too often. (For more information, in Chapter 1, Getting
Started, there is a comparation of the different protocols available).

The ElasticSearch Python client requires a server to connect to. If it is not defined, it tries to
use one on the local machine (localhost). If you have more than one node, you can pass a
list of servers to connect to.

The client automatically tries to balance the operations on all the

cluster nodes. This is a very powerful functionality provided by the
g ElasticSearch client.

To improve the list of available nodes, it is possible to set the client to autodiscover new
nodes. | suggest that you use this feature, because it is common to have a cluster with a

lot of nodes and you might need to shut down some of them for maintenance. The following
options can be passed to the client in order to control the discovery:

» sniff on start (by default, False): This allows you to obtain the list of nodes
from the cluser at startup time

» sniffer timeout (by default, None): This is the number of seconds between
the automatic sniffing of the cluster nodes

» sniff on connection fail (by default, False): This senses whether a
connection failure will trigger a sniff on the cluster nodes

The default client configuration uses the HTTP protocol via the urllib3 library. If you want
to use other transport protocols, you need to pass the type of the transport class to the
transport_class variable. These are the currently implemented classes:

» Urllib3HttpConnection (default): This class uses HTTP (usually on port 9200)

» RequestsHttpConnection: Thisis an alternative to the
Urllib3HttpConnection class, based on the requests library

» ThriftConnection: This uses the Thrift protocol (usually on port 9500)
» MemcachedConnection: This uses the Memcached protocol (usually on port 11211)

373

www.it-ebooks.info

http://www.it-ebooks.info/

Python Integration

If you need more high-level functionalities than the official client, PyES gjives you a more Pythonic
(following the Python approach) and object-oriented approach to work with ElasticSearch. PyES
is easily installable via the pip command (the more recent version is available on GitHub):

pip install pyes
To initialize a client, you need to import the ES object and instantiate it:

from pyes import ES
es = ES()

The protocol is detected by the URL of the servers' list passed to the constructor. If no server
parameter is passed to the constructor, the localhost on port 9200 is used.

The PyES client offers the same connection functionalities as the official client, as described
in the previous paragraphs, because it internally uses the official ElasticSearch client.

» PyESon GitHub at https://github.com/aparo/pyes and on PyP
athttps://pypi.python.org/pypi/pyes

» The PyES online documentation at http://pythonhosted.org/pyes/
» The Python Thrift library at https://pypi.python.org/pypi/thrift/

» The ElasticSearch Thrift plugin at https://github.com/elasticsearch/
elasticsearch-transport-thrift

» ElasticSearch Transport Memcached at https://github.com/elasticsearch/
elasticsearch-transport-memcached

» The Python Memcached library at http://pypi.python.org/pypi/
pylibmec/1.2.3

Managing indices

In the previous recipe, we saw how to initialize a client in order to send calls to an ElasticSearch
cluster. In this recipe, we will see how to manage indices via client calls.

Getting ready

You need a working ElasticSearch cluster and the packages in the Creating a client recipe of
this chapter.

www.it-ebooks.info

https://github.com/aparo/pyes
https://pypi.python.org/pypi/pyes
http://pythonhosted.org/pyes/
https://pypi.python.org/pypi/thrift/
https://github.com/elasticsearch/elasticsearch-transport-thrift
https://github.com/elasticsearch/elasticsearch-transport-thrift
https://github.com/elasticsearch/elasticsearch-transport-memcached
https://github.com/elasticsearch/elasticsearch-transport-memcached
http://pypi.python.org/pypi/pylibmc/1.2.3
http://pypi.python.org/pypi/pylibmc/1.2.3
http://www.it-ebooks.info/

Chapter 11

The full code of this recipe is in the chapter 11/indices_ management.py file,
available in the code bundle of this book and on GitHub (https://github.com/aparo/
elasticsearch-cookbook-second-edition).

How to do it...

In Python, managing the life cycle of your indices is easy. Perform the following steps:

1. First, initialize a client, as follows:

import elasticsearch
es = elasticsearch.Elasticsearch()
index name = "my_ index"

2. All the indices' methods are available in the client . indices namespace.
You can create and wait for (delay) the creation of an index:
es.indices.create (index name)
es.cluster.health(wait_for status="yellow")

3. You can close/open an index, as follows:

es.indices.close (index name)
es.indices.open(index name)
es.cluster.health(wait_for status="yellow")

4. You can optimize an index, as shown here:

es.indices.optimize (index name)

5. You can delete an index:

es.indices.delete (index_name)

The ElasticSearch Python client has two special managers: one for indices (<client>.
indices) and one for clusters (<client>.cluster).

For every operation that needs to work with indices, the first value is generally the name of
the index. If you need to execute an action on several indices in one go, the indices must be
concatenated with a comma (for example, index1, index2, indexN). It's also possible to
use glob patterns to define multiple indexes, such as indexx*.

In PyES, the concatenation is automatically managed.

To create an index, the call requires the index name (index name); use the following the code:

es.indices.create (index_name)

375

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Python Integration

Other optional parameters are also required, such as index settings and mappings; you will
see this advanced feature in the next recipe.

Index creation can take some time (from a few milliseconds to seconds); it is an asynchronous
operation and it depends on the complexity of the cluster, the speed of the disk, the network
congestion, and so on. To be sure that this action has completed, you need to check whether
the cluster's health turns to yellow or green, as follows:

es.cluster.health(wait_for status="yellow")

M It's a good practice to wait till the cluster status is yellow (at least)
Q after operations that involve the creation and opening of indices,
because these actions are asynchronous.

To close an index, the method is <client>.indices.close, which gives the name of the
index to be closed:

es.indices.close (index name)

To open an index, the method is <client>.indices.open, which gives the name of the
index to be opened:

es.indices.open(index name)
es.cluster.health(wait_for status="yellow")

Similar to index creation, after an index is open, it is a good practice to wait until the index is
fully open before you execute an operation on the index. This action is done by checking the
cluster's health.

To improve the performance of an index, ElasticSearch allows you to optimize it by removing
deleted documents (documents are marked as deleted, but not purged from the segments'
index for performance reasons) and reducing the number of segments. To optimize an index,
the <client>.indices.optimize method must be called on the index to be optimized:

es.indices.optimize (index name)

Finally, if you want to delete the index, call the <client>.indices.delete function and
give the name of the index to remove it. Remember that deleting an index removes everything
related to it, including all the data, and this action cannot be reverted.

The PyES indices management code is the same as the official client code.

» The Creating an index recipe in Chapter 4, Basic Operations
» The Deleting an index recipe in Chapter 4, Basic Operations
» The Opening/closing an index recipe in Chapter 4, Basic Operations

376

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Managing mappings

After creating an index, the next step is to add some type mappings to it. We saw how to put
a mapping via the REST API in Chapter 4, Basic Operations. In this recipe, we will see how to
manage mappings via the official Python client and PyES.

Getting ready

You need a working ElasticSearch cluster and the required packages that are used in the
Creating a client recipe in this chapter.

The code of this recipe is present in chapter 11/mapping management .py and
chapter 11/mapping management pyes.py file, which is available in the code
bundle of this book and on GitHub (https://github.com/aparo/elasticsearch-
cookbook-second-edition).

How to do it...

After you have initialized a client and created an index, the following actions are available in
order to manage the indices:

» Creating a mapping

» Retrieving a mapping

» Deleting a mapping
These steps can be easily managed with the following code:

1. Use the following code to initialize the client:

import elasticsearch
es = elasticsearch.Elasticsearch()

2. You can create an index as follows:

index name = "my index"

type name = "my type"
es.indices.create(index name)
es.cluster.health(wait for status="yellow")

3. Inorder to put a mapping, use the following code:

es.indices.put mapping(index=index name, doc_type=type name,

body={type name:{" type": {"store": "yes"}, "properties": {{
"yuid": {"index": "not analyzed", "type": "string", "store":
llyesll } ,

377

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Python Integration

"title": {"index": "analyzed", "type": "string", "store":
"yes", "term vector": "with positions offsets"},

"parsedtext": {"index": "analyzed", "type": "string", "store":
"yes", "term vector": "with positions offsets"},

. truncated..}}})

4. You can retrieve the mapping, as shown here:

mappings = es.indices.get mapping(index name, type name)

5. The mapping can be deleted, as follows:

es.indices.delete mapping(index name, type name)

6. To delete an index, use the following code:

es.indices.delete(index name)

We saw the initialization of the client and index creation in the previous recipe. In order to
create a mapping, the call method is <client>.indices.create mapping, giving the
index name, type name, and mapping. Creating a mapping is fully covered in Chapter 3,
Managing Mapping. It is easy to convert the standard Python types to JSON and vice versa:

es.indices.put_mapping(index_name, type name, {..})

If an error is generated in the mapping process, an exception is raised. The put _mapping API
has two behaviors: create and update.

¢ In ElasticSearch, you cannot remove a property from a mapping.
The schema manipulation allows you to only enter new properties
"~ with the PUT mapping call.

To retrieve a mapping with the GET mapping API, use the <client>.indices.get mapping
method by providing the index name and type name:

mappings = es.indices.get mapping(index name, type name)
The returned object is obviously the dictionary that describes the mapping.

To remove a mapping, the method is <client>.indices.delete mapping; it requires the
index name and the type name, as shown here:

es.indices.delete mapping(index name, type name)

Deleting a mapping is a destructive operation: it removes the
i mapping and all the documents of this type.

378

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Creating a mapping using the official ElasticSearch client requires a lot of attention when
building the dictionary that defines the mapping.

PyES also provides an object-oriented approach to creating a mapping, reducing the
probability of errors in defining the mapping and adding a typed field with useful presets.
The previous mapping can be converted in PyES in this way:

from pyes.mappings import *
docmapping = DocumentObjectField (name=mapping name)
docmapping.add property (

StringField (name="parsedtext", store=True, term vector="with
positions offsets", index="analyzed"))
docmapping.add property (

StringField (name="name", store=True, term vector="with
positions offsets", index="analyzed"))
docmapping.add property (

StringField(name="title", store=True, term vector="with
positions offsets", index="analyzed"))

docmapping.add property (IntegerField(name="position", store=True))
docmapping.add property (DateField(name="date", store=True))
docmapping.add property (StringField (name="uuid", store=True,
index="not analyzed"))

nested object = NestedObject (name="nested")

nested object.add property (StringField(name="name", store=True))
nested object.add property(StringField(name="value", store=True))
nested object.add property(IntegerField(name="num", store=True))
docmapping.add property (nested object)

The following is a list of the main fields:
» DocumentObjectField: This is a document mapping that contains the
object properties

» StringField, DateField, IntegerField, LongField, BooleanField:
These are the fields that map the respective field type

» ObjectField: This field allows you to map an embedded object field
» NestedObject: This field allows you to map a nested object

» AttachmentField: This field allows you to map the attachment field
» IPField: This field maps the IP field

The object definition of the mapping enforces that, if the types are correctly defined, all the
mapping properties are valid.

379

www.it-ebooks.info

http://www.it-ebooks.info/

Python Integration

The PyES GET mapping API does not return a Python dictionary but returns a
DocumentObjectField object of the specified mapping, which automatically
manages the transformation from dictionary to objects for easy parsing and editing.

» The Putting a mapping in an index recipe in Chapter 4, Basic Operations

» The Getting a mapping recipe in Chapter 4, Basic Operations
» The Deleting a mapping recipe in Chapter 4, Basic Operations

Managing documents

The APIs for managing documents (indexing, updating, and deleting) are the most important
APIs after the search ones. In this recipe, we will see how to use them in a standard way and
in bulk actions to improve performance.

Getting ready

You need a working ElasticSearch cluster and the packages used in the Creating a client
recipe of this chapter.

The full code of this recipe is in the chapter 11/document management .py and
chapter 11/document management pyes.py files, available in the code bundle of
this book and on GitHub (https://github.com/aparo/elasticsearch-cookbook-
second-edition).

How to do it...

There are three main operations to manage documents, as follows:

» index: This stores a document in ElasticSearch. It is mapped on the Index API call.

» update: This allows you to update some values in a document. This operation is
composed internally (via Lucene) by deleting the previous documents and reindexing
the document with new values. It is mapped to the Update API call.

» delete: This deletes a document from the index. It is mapped to the Delete API call.

With the ElasticSearch Python client, the index, update, and delete operations can be
performed using the following steps:

1. First, initialize a client and create an index with the mapping:

import elasticsearch
from datetime import datetime

380

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 11

es = elasticsearch.Elasticsearch()
index name = "my index"
type_name = "my type"

from utils import create and add mapping
create and add mapping(es, index name, type name)

2. Then, index a document, as follows:

es.index (index=index name, doc_type=type name, id=1,
body={"name": "Joe Tester", "parsedtext": "Joe Testere
nice guy", "uuid": "11111", "position": 1,
"date": datetime (2013, 12, 8)})
. truncated..

3. Next, update a document as shown here:

es.update (index=index name, doc type=type name, id=1
body={"script": 'ctx. source.position += 1', "lang":
n groovy n })

4. Use the following code to delete a document:

es.delete (index=index name, doc type=type name, id=1)

5. You can insert some documents in bulk, as follows:

from elasticsearch.helpers import bulk index

bulk index(es, [{"name": "Joe Tester", "parsedtext": "Joe Testere
nice guy", "uuid": "11111", "position": 1,

"date": datetime (2013, 12, 8), " index":index name,
" _type":type name, "_id":"l"},

{"name": "Bill Baloney", "parsedtext": "Bill
Testere nice guy", "uuid": "22222", "position": 2,

"date": datetime (2013, 12, 8)}
1)

6. Lastly, remove the index:

es.indices.delete(index name)

In order to simplify the example, after having instantiated the client, a function of the utils
package, which sets up the index and puts the mapping, is called:

from utils import create and add mapping
create and add mapping(es, index name, type name)

381

www.it-ebooks.info

http://www.it-ebooks.info/

Python Integration

This function contains the code used to create the mapping explained in the previous recipe.

To index a document, the method is <clients. index; it needs the name of the index,
the type of the document, and the body of the document (if the ID is not provided, it will
be autogenerated):

es.index (index=index name, doc_type=type name, id=1,
body={"name": "Joe Tester", "parsedtext": "Joe Testere nice
guy", "uuid": "11111", "position": 1,
"date": datetime (2013, 12, 8)})

It also accepts all the parameters that we have seen in the REST Index API call in the Indexing
a document recipe in Chapter 4, Basic Operations. These are the most common parameters
passed to this function:
» id: This provides an ID to be used in order to index the document
» routing: This provides a shard routing to index the document in the specified shard
» parent: This provides a parent ID to be used in order to put the child document in
the correct shard

To update a document, the method used is <client>.update, and it requires the
following parameters:
» Theindex name
» The type name
» The ID of the document
» The script or document that is to be updated
» The language to be used (usually, groovy)
The following is the code to update a document:
es.update (index=index name, doc_type=type_name, id=2,
body={"script": 'ctx. source.position += 1', "lang":

n groovy n })

Here, the call accepts all the parameters that we have discussed in the Updating a document
recipe in Chapter 4, Basic Operations.

To delete a document, the method used is <client>.delete, and it requires the
following parameters:

» Index name
» Type name
» |ID of the document

382

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

You can use the following code to delete a document:

es.delete (index=index name, doc_ type=type name, id=3)

\ Remember that all the ElasticSearch actions that work on a document
~ are never seen instantly in a search. If you want to search without
Q having to wait for the automatic refresh (every second), you need to
manually call the Refresh API on the index.

To execute bulk indexing, the ElasticSearch client provides a helper function, which accepts
a connection, an iterable list of documents, and the bulk size. The bulk size (by default, 500)
defines the number of actions to be sent via a single bulk call. The parameters that must be
passed to correctly control the indexing of the document are put in the document with the
_ prefix. Generally, these are the special fields:

» _index: This is the name of the index that must be used to store the document

» type: This is the document type

» _id: Thisis the ID of the document
The following is the code used to index a document in bulk:

from elasticsearch.helpers import bulk index

bulk index(es, [{"name": "Joe Tester", "parsedtext": "Joe Testere nice
guy", "uuid": "11111", "position": 1,

"date": datetime (2013, 12, 8), " index":index name, " _
type":type name, "_id":"l"},

{"name": "Bill Baloney", "parsedtext": "Bill Testere
nice guy", "uuid": "22222", "position": 2,

"date": datetime (2013, 12, 8)}]1)

There's more...

The previous code can be executed in PyES using the following code:

from pyes import ES

es = ES()
index name = "my index"
type_name = "my type"

from utils pyes import create and add mapping

create and add mapping(es, index name, type name)

383

www.it-ebooks.info

http://www.it-ebooks.info/

Python Integration

es.index(doc={"name": "Joe Tester", "parsedtext": "Joe Testere nice
guy", "uuid": "11111", "position": l},

index=index name, doc_type=type name, id=1)
es.index(doc={"name": "datal", "value": "valuel"}, index=index name,
doc_type=type name + "2", id=1, parent=1)
es.index (doc={"name": "Bill Baloney", "parsedtext": "Bill Testere nice
guy", "uuid": "22222", "position": 2},

index=index name, doc_type=type name, id=2, bulk=True)
. truncated..

es.force bulk()

es.update (index=index name, doc_ type=type name, id=2, script='ctx.
source.position += 1')

es.update (index=index name, doc_ type=type name, id=2, script='ctx.
source.position += 1', bulk=True)

es.delete (index=index name, doc_ type=type name, id=1, bulk=True)
es.delete (index=index name, doc type=type name, id=3)

es.force bulk()
es.indices.refresh(index name)

es.indices.delete index(index name)

The PYES index/update/delete methods are similar to the ElasticSearch official client,
with the exception that the document must be put in the doc variable.

In PyES, to execute an action as bulk, the bulk=True parameter must be passed to the
index/update/create method. Using the bulk parameter, the body of the action is stored
in a ListBulker object that collects elements of all the bulk actions until it is full. When the
bulk basket is full (the size is defined during the ES client initialization), the actions are sent
to the server and the basket is emptied, ready to accept new documents.

To force the bulk (even if it is not full), you can call the <client>.force bulk method or
you can execute a refresh or flush an index.

See also

» The Indexing a document recipe in Chapter 4, Basic Operations
» The Getting a document recipe in Chapter 4, Basic Operations

» The Deleting a document recipe in Chapter 4, Basic Operations
» The Updating a document recipe in Chapter 4, Basic Operations

» The Speeding up atomic operations (bulk operations) recipe in Chapter 4,
Basic Operations

384

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Executing a standard search

After you have inserted documents, the most commonly executed action in ElasticSearch is
the search. The official ElasticSearch client APIs that are used to search are similar to the
REST API.

Getting ready

You need a working ElasticSearch cluster and the packages used in the Creating a client
recipe in this chapter.

The code of this recipe is present in the chapter 11/searching.py and chapter 11/
searching pyes.py files, available in the code bundle of this book and on GitHub
(https://github.com/aparo/elasticsearch-cookbook-second-edition).

How to do it...

To execute a standard query, the search client method must be called by passing the query
parameters, as shown in Chapter 5, Search, Queries, and Filters. The required parameters are
the index name, type name, and query DSL. In this example, you will see how to call a match_
all query, a term query, and a £ilter query. To do this, perform the following steps:

1. First, initialize the client and populate the index:

import elasticsearch
from pprint import pprint

es = elasticsearch.Elasticsearch()
index name = "my index"
type name = "my type"

from utils import create and add mapping, populate

create and add mapping(es, index name, type name)
populate (es, index name, type name)
2. Then, execute a search with amatch_all query and print the results:

results = es.search(index name, type name, {"query": {"match all":

{3Ib

pprint (results)

3. Next, execute a search with a term query and print the results:

results = es.search(index name, type name, {
"query": {

385

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Python Integration

"query": {
"term": {"name": {"boost": 3.0, "value": "joe"}}}

I

pprint (results)

4. You then need to execute a search with a filtered query and print the results:

results = es.search(index_name, type name, {"query": ({
"filtered":
"filter": |
"or": [

{"term": {"position": 1}},
{rterm": {"position": 2}}]
1
"query": {"match all": {}}}}})
pprint (results)

5. Lastly, remove the index, as follows:

es.indices.delete(index name)

The idea behind ElasticSearch official clients is that they should offer a common API that is
more similar to REST calls. In Python, it is easy to use the query DSL as it provides an easy
mapping from the Python dictionary to JSON objects and vice versa.

In the earlier example, before calling the search, we need to initialize the index and put some
data in it. This is done using the two helpers available in the utils package, available in the
chapter 11 directory.

The two helpers are as follows:

» create and add mapping(es, index name, type name): This initializes the
index and puts the correct mapping to perform the search. The code of this function
is taken from the Managing mappings recipe in this chapter.

» populate(es, index name, type name): This populates the index with data.
The code of this function is taken from the previous recipe.

After having initialized some data, we can execute queries against it. To execute a search,
the method that must be called is the search on the client. This method accepts all the
parameters described for REST calls in the Executing a search recipe in Chapter 5, Search,
Queries, and Filters.

386

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

This is the actual method signature for the search method:

@query params ('analyze wildcard', 'analyzer', 'default operator',
'df', 'explain', 'fields', 'ignore_indices', 'indices_boost',
'lenient', 'lowercase expanded terms', 'offset',K 'preference', 'q',
'routing', 'scroll', 'search type', 'size', 'sort',6 'source',6 'stats',
'suggest field', 'suggest mode', 'suggest size', 'suggest text',
'timeout', 'version')

def search(self, index=None, doc_type=None, body=None,
params=None) :

The following can be the index values:

» Anindex name or an alias name

» Alist of index (or alias) names as a string, separated by a comma
(for example, index1, index2, indexN)

» The all special keyword, which indicates all the indices
The type value can be the following:

» Atype name

» Alist of type names as a string, separated by a comma (for example,
typel, type2, typeN)
» None, which indicates all the types

The body is the search DSL, as we have seen in Chapter 5, Search, Queries, and Filters.
In the preceding example, we have the following queries:

» Amatch all query (see the Matching all the documents recipe of Chapter 5,
Search, Queries, and Filters) to match all the index type documents;
results = es.search(index name, type name, {"query":{"match all":
{Ih

» A term query that matches the term joe with a boost of 3. 0:

results = es.search(index name, type name, {

"query": {
"query": {
"term": {"name": {"boost": 3.0, "value": "joe"}}}

PH
» Afilter querywithamatch _all query and an OR filter with two term filters that
match position 1 and 2, as shown here:

results = es.search(index name, type name, {"query": ({
"filtered": {
"filter":

387

www.it-ebooks.info

http://www.it-ebooks.info/

Python Integration

"or": [
{"term": {"position": 1}},
{rterm": {"position": 2}}]
'

"query": {"match all": {}}}}})

The returned result is a JSON dictionary that we have discussed in Chapter 5, Search, Queries,
and Filters.

If some hits match, they are returned to the hits field. The standard number of results
returned is 10. To return more results, you need to paginate the results with the from
and start parameters.

In Chapter 5, Search, Queries, and Filters, there is a definition of all the parameters used
in the search.

There's more...

If you are using PyES, you can execute the previous code in a more object-oriented way
using queries and filter objects. These objects wrap the low-level code that is normally used
to process a query, generating the JSON and validating it during generation. The previous
example can be rewritten in PyES with the following code:

. truncated...

from.query import *
from pyes.filters import *

results = es.search(MatchAllQuery (), indices=index name, doc_
types=type name)

print "total:", results.total
for r in results:
print r
print "first element: ", results[0]
print "slice elements: ", results[1l:4]
results = es.search(TermQuery("name", "joe", 3), indices=index name,

doc_types=type name)
. truncated..

For access to query objects, you need to import the query and £ilters namespaces:

from pyes.query import *
from pyes.filters import *

388

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

To execute amatch_all query, use the search client method with the same parameters as
the ElasticSearch official client. The main difference is that the body parameter is mapped as
a query object in PyES. The following code is used to execute such a match_all query:

results = es.search(MatchAllQuery (), indices=index name, doc_
types=type name)

The PyES search method accepts several type of values as a query, as follows:

» Adictionary as the official client

» A query object or a derived class

» Asearch object that wraps a query and adds additional functionalities related
to the search, such as highlighting, suggestting, aggregating, and explaining

The main difference from the official ElasticSearch client is that the returned result is a
special ResultSet object that can be iterated. The ResultSet object is a useful helper
because of the following reasons:

» It's lazy, so the query is fired only when the results need to be evaluated/iterated.

» ltisiterable, so you can traverse all the records automatically by fetching new ones
when required. Otherwise, you need to manage the pagination manually. If the size
is not defined, you can traverse all the results. If you define the size, you can traverse
only the size of object.

» It automatically manages scrolling and scanning queries using a special
ResultSet iterator.

» Ittries to cache a result range, in order to reduce server usage.
» It can process other extra result manipulations, such as automatic conversion from

stringto datetime.

For further details on query/filter objects, | suggest that you take a look at the online
documentation at http://pythonhosted.org/pyes/.

» The Executing a search recipe in Chapter 5, Search, Queries, and Filters
» The Matching all the documents recipe in Chapter 5, Search, Queries, and Filters
» The PyES online documentation at http://pythonhosted.org/pyes/

389

www.it-ebooks.info

http://pythonhosted.org/pyes/
http://pythonhosted.org/pyes/
http://www.it-ebooks.info/

Python Integration

Executing a search with aggregations

Searching for results is obviously the main activity of a search engine; thus, aggregations are
very important because they often help to augment the results.

Aggregations are executed along with the search by doing an analysis on the searched results.

Getting ready

You need a working ElasticSearch cluster and the packages used in the Creating a client
recipe in this chapter.

The code of this recipe is in the chapter_11/aggregation.py and chapter 11/
aggregation pyes.py files, available in the code bundle of this book and on GitHub
(https://github.com/aparo/elasticsearch-cookbook-second-edition).

How to do it...

In order to extend a query with aggregations, you need to define an aggregation section similar
to what you saw in Chapter 6, Aggregations. In the case of the official ElasticSearch client, you
can add the aggregation DSL to the search dictionary in order to provide aggregations results.

To do this, perform the following steps:

1. Initialize the client and populate the index, as follows:

import elasticsearch
from pprint import pprint

es = elasticsearch.Elasticsearch()
index name = "my index"
type name = "my type"

from utils import create and add mapping, populate

create and add mapping(es, index name, type name)
populate (es, index name, type name)

2. Execute a search with a terms aggregation:

results = es.search(index name, type name,

{
"query": {"match all": {}},
"aggs": {
"pterms": {"terms": {"field": "parsedtext", "size":

10}}

390

www.it-ebooks.info

https://github.com/aparo/elasticsearch-cookbook-second-edition
http://www.it-ebooks.info/

Chapter 11

)
pprint (results)
3. Execute a search with a date_histogram aggregation, as shown here:

results = es.search(index name, type name,

{

"query": {"match all": {}},

"aggs": {
"date histo": {"date histogram": {"field": "date",
"interval": "month"}}

}
1)

pprint (results)

es.indices.delete(index name)

As described in Chapter 6, Aggregations, you can calculate aggregations during the search in
a distributed way. When you send a query to ElasticSearch with defined aggregations, it adds
an additional step in the query processing, allowing aggregation computation.

In the earlier example, there are two kinds of aggregations: the term aggregation and the date
histogram aggregation.

The first one is used to count terms, and it is often seen in sites that provide facet filtering
on the term aggregations of results, such as producers, geographic locations, and so on, as
shown here:

results = es.search(index name, type name,
{
"query": {"match all": {}},
n aggs ", {
"pterms": {"terms": {"field": "parsedtext", "size": 10}}
}

3]

The term aggregation requires a field to count on. The default number of buckets for a field
that is returned is 10; this value can be changed when defining the size parameter.

391

www.it-ebooks.info

http://www.it-ebooks.info/

Python Integration

The second kind of aggregation that is calculated is the date histogram, which provides hits
based on a datetime field. This aggregation requires at least two parameters—that is, the
datetime field to be used as the source and the interval to be used for the computation,

as shown here:

results = es.search(index name, type name,

{

"query": {"match all": {}},

"aggs": {
"date histo": {"date histogram": {"field": "date",
"interval": "month"}}

}
1)

The search results are standard search responses that we have already seen in
Chapter 6, Aggregations.

This is how the preceding code can be rewritten in PyES:

from pyes.query import *
from pyes.aggs import *

g = MatchAllQuery ()
search = g.search()
search.get _agg factory() .add(TermsAgg('pterms', field="parsedtext"))

results = es.search(search, indices=index name, doc_types=type name)

g = MatchAllQuery ()

search = g.search()

search.get_agg factory () .add(DateHistogramAgg ('date_add',
field='date',
interval="month'))

results = es.search(search, indices=index name, doc_types=type name)

In this case, the code is much more readable. Similar to queries and filters classes, PyES
provides aggregation objects that are available in the pyes.aggs namespace.

Because aggregation is a search property and not a query (remember that queries can also
be used for delete and count calls), we need to define the aggregation in a search object.

392

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11
Every query can be converted to a Search object using the . search () method:

g = MatchAllQuery ()
search = g.search()

The search object provides a lot of helpers to improve their search experience, as follows:
» AggregationFactory: This is accessible via the agg property to easily
build aggregations

» Highlighter: Thisis accessible via the highlight property to easily
build highlight fields

» Sorted: This is accessible via the sort property to add sort fields to a search
» ScriptFields: This is accessible via the script fields property to add
script fields
The AggregationFactory helper easily defines several types of aggregations, as follows:
» add_term: This defines a term aggregation. For example, in the preceding code,
we have used the add_term function:

search.agg.add term ('tag')

» add_date: This defines a date histogram aggregation
» add_geo: This defines a geo distance aggregation

» add: This allows you to add to the aggregation definition for every aggregated object:

search.add.add (DateHistogramAgg ('date_agg',
field='date',
interval="'month'))

After you have executed the query, in the ResultSet response there are calculated
aggregations contained in the aggs field (such as, results.aggs).

» The Executing the terms aggregation recipe in Chapter 6, Aggregations
» The Executing the stats aggregation recipe in Chapter 6, Aggregations

393

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

12

Plugin Development

In this chapter, we will cover the following recipes:

Creating a site plugin
Creating a native plugin
Creating a REST plugin
Creating a cluster action
Creating an analyzer plugin

Creating a river plugin

Introduction

ElasticSearch can be extended with plugins to improve its capabilities. In the previous chapters,
we have installed and used many of these plugins, such as transport, river, and scripting.

Plugins are application extensions that can add many features to ElasticSearch. They have
several usages, as follows:

>

Adding a new transport layer (the thrift and memcached plugins are examples of
this type)

Adding a new scripting language (such as Python and JavaScript plugins)
Extending Lucene-supported analyzers and tokenizers

Using native scripting to speed up the computation of scores, filters, and field
manipulation

Extending node capabilities, for example, creating a node plugin that can execute
your logic

Adding a new river to support new sources
Monitoring and administering the cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

ElasticSearch plugins are of two kinds such as site and native plugins.

A site plugin is generally a standard HTML5 web application, while a native plugin has some
Java content that defines a plugin's endpoints and implements plugin functionalities.

In this chapter, we will use the Java language to develop the native plugin, but it is possible to
use any JVM language that generates JAR files.

Creating a site plugin

Site plugins do not add internal functionalities to ElasticSearch. They are HTML-based web
applications that work on top of ElasticSearch. They generally provide frontend functionalities,
such as monitoring and administration. In Chapter 9, Cluster and Node Monitoring, we saw
the use of several site plugins such as ElasticSearch Head and BigDesk.

Getting ready

You will need a working ElasticSearch node, a web browser, and your preferred HTML editor.

How to do it...

In order to create a site plugin, perform the following steps:

1. The site plugin is one of the most easy plugins to develop. It is mainly a standard web
application composed of only HTML, JavaScript, and images.The simplest plugin is
composed of a single index.html page, as shown here:

<!DOCTYPE html>
<html>
<head>
<title>Simple site plugin</title>
<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<link href="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.0/css/bootstrap-combined.min.css"
rel="stylesheet">
</head>
<body>
<hl>Hello, from the site plugin!</hl>
<script src="http://code.jquery.com/jquery.js"></script>
<script src="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.0/js/bootstrap.min.js"></script>
</body>
</html>

396

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

2. The HTML file and the resources must be put in the _site directory under the
plugin directory.

When ElasticSearch starts, it analyzes the plugin's directory. If a _site directory is present in
the plugin directory, it loads the plugin as a site plugin; otherwise, the plugin is considered
as a native plugin.

Site plugins have static contents. When the browser is pointed to the server address of the
plugin (that is, http://localhost:9200/ plugins/<plugin names/), ElasticSearch
serves as the resource for a traditional web application. It generally searches for an index.
html file and serves it and its related resources.

While writing a plugin and loading resources (that is, images, JavaScript,

or CSS), make sure that every resource is specified relative to the
i index.html file or has an absolute URL, in order to prevent errors.

Site plugins work very well to package a small web application that executes some focused
tasks, as follows:

» Displaying information regarding status and data aggregation, and a quick view of
some important aspects of your ElasticSearch cluster or indices.

» Administration and sending commands via a web interface is easier than via curl
commands or the programming API. A user can aggregate his administrative pipeline
(index creation, data manipulation, and custom commands) and use it to manage
its custom data.

1
‘Q To easily develop your plugin, | suggest you develop it outside

ElasticSearch and to pack it in a ZIP file for distribution.

Site plugins allow the use of every HTML5 web application framework available for the client's
site development. It's quite normal that the currently available site plugins will use different
JavaScript frameworks, such as JQuery (including, Bootstrap), AngularJS, and Ember.js.

Many of the interfaces used to manage an ElasticSearch cluster are generally developed as
site plugins. These are the most popular ones:

» The BigDesk plugin

397

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

» The ElasticSearch-head plugin
» Elastic HQ

We have already seen many of plugins in Chapter 9, Cluster and Node Monitoring.

» You can get more information on ElasticSearch plugins at
http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/modules-plugins.html# plugins

Creating a native plugin

In the previous recipe, we saw the site plugin. ElasticSearch also allows you to create a
more powerful type of plugin, the: native JAR plugins.

Native plugins allow you to extend several aspects of the ElasticSearch server, but this
requires a good knowledge of Java. Because these plugins are compiled through the JVM
bytecode, they are generally very fast. In this recipe, we will see how to set up a working
environment in order to develop native plugins.

Getting ready

You will need a working ElasticSearch node, a Maven build tool, and optionally a Java IDE.
The code of this recipe is available in the chapter12/simple plugin directory, keptin
the code bundle of the chapter on the Packt Publishing website.

How to do it...

Generally, ElasticSearch plugins are developed in Java using the Maven build tool and
deployed as a ZIP file. In order to create a simple JAR plugin, perform the following steps:
1. To correctly build and serve a plugin, the following files must be defined:
o pom.xml: This file is used to define the build configuration for Maven.

o es-plugin: This states the properties that define the namespace of the
plugin class that must be loaded.

o <name>plugin: In Java, this is the main plugin class; it is loaded at start
up and initializes the plugin action.

0 plugin.xml: These assemblies define how to execute the assembly
steps of Maven. It is used to build the ZIP file to deliver the plugin.

398

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/ reference/current/modules-plugins.html#_plugins
http://www.elasticsearch.org/guide/en/elasticsearch/ reference/current/modules-plugins.html#_plugins
http://www.it-ebooks.info/

Chapter 12

2. Astandard pom.xml file used to create a plugin contains the following code:

[m]

This is how a Maven pom.xml header will look:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<name>elasticsearch-simple-plugin</name>
<modelVersion>4.0.0</modelVersion>
<groupld>com.packtpub</groupId>
<artifactIdssimple-plugin</artifactIds>
<version>0.0.1-SNAPSHOT</versions>
<packaging>jar</packaging>
<description>A simple plugin for
ElasticSearch</descriptions>
<inceptionYear>2013</inceptionYears>
<licensess.. </licenses>

This is the parent pom.xml file used to derive common properties
or settings:

<parent>
<groupld>org.sonatype.oss</grouplds>
<artifactId>oss-parent</artifactIds>
<version>7</versions>

</parent>

Some properties mainly used to simplify the dependencies are given
as follows:

<properties>

<elasticsearch.version>1.4.0</elasticsearch.version>
</propertiess>

A list of JAR dependencies:

<dependencies>
<dependency>
<groupld>org.elasticsearch</grouplds>
<artifactIdselasticsearch</artifactIds>
<version>${elasticsearch.version}</versions>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>log4j</groupld>

399

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

<artifactIds>log4j</artifactIds>
<version>1l.2.17</version>
<scopes>runtime</scope>
</dependency>
<!- test dependencies -->
</dependencies>

o Alist of Maven plugins required to build and deploy the artifact; the following
is the code for enabling the Maven plugin:

<builds>
<pluginss>
<plugins>
<!- for compiling -->
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-
plugin</artifactId>
<version>3.l</version>
<configurations>
<sources>1l.7</sources
<target>1.7</target>
</configurations>
</plugin>
<plugins>
<!- optional for executing tests -->
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>maven-surefire- plugin</artifactIds>
<version>2.12.3</version>
<configurations>
<includes>
<include>**/*Tests.java</include>
</includes>
</configurations>
</plugin>
<plugins>
<!- optional for publishing the source

<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-source- plugin</artifactIds>
<versions>2.3</version>
<executionss>
<execution>
<id>attach-sources</id>
<goals>

400

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

<goal>jar</goals>
</goals>
</executions>
</executions>
</plugin>
<plugins>>
<!- for packaging the plugin -->
<artifactId>maven-assembly-
plugin</artifactIds>
<version>2.3</version>
<configurations>
<appendAssemblyId>false</appendAssemblyIds>
<outputDirectory>${project.build.directory}/
releases/
</outputDirectorys>
<descriptorss>
<descriptor>${basedir}/src/main/
assemblies/plugin.xml

</descriptor>
</descriptors>
</configurations>
<executionss>
<execution>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>

</build>undefined</projects>

a InJAR, there must be a src/main/resources/es-plugin.properties
file that defines the entry point class that must be loaded during plugin
initialization. This file must be embedded in the final jar, as it is usually put
in the src/main/resources directory of the Maven project. It generally
contains a single line of code:

plugin=org.elasticsearch.plugin.simple.SimplePlugin

Optionally, in the src/main/resources/es-plugin.properties file, a version
of the plugin can be provided, as follows:

version=0.1

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

4. The src/main/java/org/elasticsearch/plugin/simple/SimplePlugin.
java class is an example of the minimum code that needs to be compiled in order
to execute a plugin:

package org.elasticsearch.plugin.simple;
import org.elasticsearch.plugins.AbstractPlugin;
public class SimplePlugin extends AbstractPlugin{
@Override
public String name() {
return "simple-plugin";
}
@Override
public String description() {
return "A simple plugin implementation";

}

5. To complete the compilation and deployment of the workflow, you need to define
a src/main/assemblies/plugin.xml file used in the Maven assembly step.
This file defines the resources that must be packaged into the final ZIP archive:

<?xml version="1.0"?>
<assembly>
<ids>plugin</id>
<formatss>
<format>zip</formats>
</formats>
<includeBaseDirectory>false</includeBaseDirectory>
<dependencySetss>
<dependencySet>
<outputDirectory>/</outputDirectorys>
<useProjectArtifact>true</useProjectArtifact>
<useTransitiveFiltering>true</useTransitiveFiltering>
<excludes>
<exclude>org.elasticsearch:elasticsearch</excludes>
</excludes>
</dependencySet >
</dependencySets>
</assembly>

Several parts comprise the development life cycle of a plugin—for example, designing, coding,
building, and deploying. To speed up the building and deployment steps, common to all plugins,
you need to create a Maven pom.xml file.

402

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

The previously explained pom. xm1l file is a standard for developing ElasticSearch plugins.
This file is composed of the following parts:

» Several section entries used to set up the current Maven project. In detail, we have
the following sections:

[m]

The name of the plugin (that is, elasticsearch-simple-plugin):
<name>elasticsearch-simple-plugin</names>

The groupId and artifactId parameters are used to define the plugin's
artifact name:

<groupld>com.packtpub</groupId>
<artifactIdssimple-plugin</artifactIds>

The plugin version:

<version>0.0.1-SNAPSHOT</versions>

The type of packaging:

<packaging>jar</packaging>

A project description with the start year:

<description>A simple plugin for
ElasticSearch</descriptions>
<inceptionYear>2013</inceptionYear>

» An optional license section is also provided in which you can define the license for
the plugin. For the standard Apache, the license should look as follows:

<licenses>

<license>

<name>The Apache Software License, Version 2.0</name>

<urlshttp://www.apache.org/licenses/LICENSE-
2.0.txt</urls>

<distributions>repo</distributions>

</license>

</licenses>

» A parent POM is used to inherit common properties. Generally, for plugins, it is useful
to inherit from the Sonatype POM file:

<parent>

<grouplds>org.sonatype.oss</grouplds>

<artifactId>oss-parent</artifactIds>

<version>7</versions>

</parent>

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

>

404

The global variables are set. Typically, in this section, the ElasticSearch version and
other library versions are set:

<properties>
<elasticsearch.version>1.4.0</elasticsearch.version>
</propertiess>

M It's very important that the ElasticSearch JAR version matches the
Q ElasticSearch cluster version in order to prevent issues that occur
due to changes between releases.

A list of dependencies is provided. In order to compile a plugin, the ElasticSearch jar
and the 1og43j library are required during the compilation phase:

<dependency>
<groupld>org.elasticsearch</grouplds>
<artifactIdselasticsearch</artifactIds>
<version>${elasticsearch.version}</versions>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>log4j</grouplds>
<artifactIds>log4j</artifactIds>
<version>1.2.17</version>

<scope>runtime</scope>
</dependency>

The Maven plugin section contains a list of the Maven plugins that execute several
build steps, as follows:

o Compiler section: This requires a source compilation. The Java version is
fixed to 1.7:
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-compiler-plugin</artifactIds>
<version>3.1l</version>
<configurations>
<source>1l.7</source>
<target>1.7</targets>
</configuration>
</plugin>

o Source section: This enables the creation of source packages to be released
with the binary output (useful for debugging):

<plugin>
<groupld>org.apache.maven.plugins</groupId>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

<artifactId>maven-source-plugin</artifactIds>
<version>2.3</version>
<executions>
<execution>
<id>attach-sources</id>
<goals>
<goal>jar</goals>
</goals>
</executions>
</executions>
</plugin>

Assembly section: This builds a ZIP file using a configuration file (plugin.
xml) and puts the output in the releases directory, as shown here:

<plugins>
<artifactId>maven-assembly-plugin</artifactIds>
<version>2.3</version>
<configurations>
<appendAssemblyId>false</appendAssemblyIds>
<outputDirectory>${project.build.directory}/releases/
</outputDirectorys>
<descriptorss>
<descriptor>${basedir}/src/main/assemblies/plugin.xml
</descriptor>
</descriptors>
</configurations>
<executionss>
<execution>
<phase>package</phase>
<goals><goal>single</goal></goals>
</executions>
</executions>
</plugin>

Related to pom.xml, we have the plugin.xml file that describes how to assemble the
final ZIP file. This file is usually contained in the /src/main/assemblies/ directory of

the project.

The following are the most important sections of this file:

>

formats: In this section, the destination format is defined:

<formats><format>zip</format></formats>

excludes: This is set in the dependencySet. It contains the artifacts to be excluded
from the package. Generally, we exclude ElasticSearch jar, as it's already provided in
the server installation:

<dependencySet>
<outputDirectory>/</outputDirectory>

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

<useProjectArtifact>true</useProjectArtifacts>
<useTransitiveFiltering>true</useTransitiveFiltering>
<excludes>
<excludes>org.elasticsearch:elasticsearch</exclude>
</excludes>
</dependencySet>

» includes: Thisis set in dependencySet. It contains the artifacts to be included
in the package. These are mainly the jars required to run the plugin:

<dependencySet>
<outputDirectory>/</outputDirectory>
<useProjectArtifact>true</useProjectArtifacts>
<useTransitiveFiltering>true</useTransitiveFiltering>
<includess.. truncated ..</includes>

</dependencySet>

During plugin packaging, the include and exclude rules are verified and only those files
that are allowed to be distributed are put in the ZIP file. After having configured Maven,

we can start to write the main plugin class. Every plugin class must be derived from the
AbstractPlugin one and it must be public; otherwise it cannot be loaded dynamically
from the jar:

import org.elasticsearch.plugins.AbstractPlugin;
public class SimplePlugin extends AbstractPlugin

The AbstractPlugin class needs two methods to be defined: name and description.
The name method must return a string and it's usually a short name. This value is shown in
the plugin's loading log:

@Override
public String name()
return "simple-plugin";

}

The description method must also return a string. It is mainly a long description of
the plugin:

@Override
public String description()
return "A simple plugin implementation";

}

After having defined the required files to generate a ZIP release of our plugin, it is enough
to invoke the Maven package command. This command will compile the code and create a
ZIP package in the target or releases directory of your project. The final ZIP file can be
deployed as a plugin on your ElasticSearch cluster.

406

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

In this recipe, we have configured a working environment to build, deploy, and test plugins. In
the following recipes, we will reuse this environment to develop several plugin types.

Compiling and packaging the plugin is not enough to define a good life cycle of your plugin.
For this, you need to add a test phase.Testing the plugin functionalities with test cases
reduces the number of bugs that can affect the plugin when it is released.

It is possible to add a test phase in the Maven build pom.xml. In order to do this, we first
need to add the required package dependencies to test ElasticSearch and Lucene. These
dependencies must be added for testing:

<dependency>
<groupld>org.apache.lucene</grouplds>
<artifactId>lucene-test-framework</artifactIds>
<version>${lucene.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.elasticsearch</groupIlds>
<artifactIdselasticsearch</artifactIds>
<version>${elasticsearch.version}</versions>
<type>test-jar</type>
<scope>test</scope>

</dependency>

The order is very important, so make sure to put lucene-test-framework at the top
of your dependencies; otherwise, problems with loading and executing tests might occur.

For unit and integration testing, the ElasticSearch community mainly uses the Hamcrest
library (https://code.google.com/p/hamcrest/). To use the library, you need to
add its dependencies in the dependency section of the pom. xm1 file, as follows:

<dependency>
<groupld>org.hamcrest</groupIld>
<artifactId>hamcrest-core</artifactIds>
<version>1.3.RC2</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.hamcrest</groupIds>
<artifactId>hamcrest-library</artifactIds>
<version>1.3.RC2</version>

www.it-ebooks.info

https://code.google.com/p/hamcrest/
http://www.it-ebooks.info/

Plugin Development

<scope>test</scope>
</dependency>

Note that the compiling scope is test, which means that these
i dependencies are applicable only during the test phase.
To complete the test part, we need to add a Maven plugin that executes the tests:

<plugin>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-surefire-plugin</artifactIds>
<version>2.12.3</versions>
<configurations>
<includes><include>**/*Tests.java</include></includes>
</configurations

</plugin>

The includes section lists all the possible classes that contain test via the glob expression.

Creating a REST plugin

The previous recipe described how to set up a working environment and the steps required
to build a native plugin. In this recipe, we will see how to create one of the most common
ElasticSearch plugins: the REST plugin.

This kind of plugin allows you to extend the standard REST calls with custom ones to easily
improve the capabilities of ElasticSearch.

In this recipe, we will see how to define a REST entry point and create its action. In the next
recipe, we will see how to execute this action and distribute it in shards.

Getting ready

You will need a working ElasticSearch node, a Maven build tool, and an optional Java IDE.
The code of this recipe is available in the chapterl2/rest plugin directory in the code
bundle of the same chapter, which can be downloaded from the Packt Publishing website.

408

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

How to do it...

To create a REST entry point, we first need to create the action and then register it in the
plugin. Perform the following steps:

1. Create a REST simple action (RestSimpleAction.java):

public class RestSimpleAction extends BaseRestHandler

@Inject

public RestSimpleAction (Settings settings, Client
client, RestController controller) ({

}

super (settings, controller, client);

controller.registerHandler (POST, "/ simple", this);
controller.registerHandler (POST, "/{index}/ simple",
this) ;

controller.registerHandler (POST,

"/ simple/{field}", this);
controller.registerHandler (GET, "/ simple", this);
controller.registerHandler (GET, "/{index}/ simple",
this) ;

controller.registerHandler (GET, "/ simple/{field}",
this) ;

@Override

protected void handleRequest (final RestRequest request,
final RestChannel channel, final Client client) throws
Exception {

final SimpleRequest simpleRequest = new
SimpleRequest (Strings.splitStringByCommaToArray
(request.param("index"))) ;

simpleRequest.setField (request.param("field")) ;

client.execute (SimpleAction.INSTANCE, simpleRequest,
new ActionListener<SimpleResponse>() {

@Override
public void onResponse (SimpleResponse response) {
try {
XContentBuilder builder =
channel .newBuilder () ;

builder.startObject () ;

builder.field("ok", true);
buildBroadcastShardsHeader (builder, response) ;
builder.array("terms",
response.getSimple () .toArray()) ;
builder.endObject () ;

channel . sendResponse (new

BytesRestResponse (OK, builder)) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

} catch (Exception e) {
onFailure (e) ;

}

@Override
public void onFailure (Throwable e) {
try {
channel . sendResponse (new

BytesRestResponse (channel, e));
} catch (IOException el) ({

logger.error ("Failed to send failure
response", el);

3N
}

2. Also, we need to register the entry point in the plugin using the following lines of code:

public class RestPlugin extends AbstractPlugin {
@Override

public String name()
return "simple-plugin";

}

@Override
public String description() {

return "A simple plugin implementation";
}

public void onModule (RestModule module) {
module.addRestAction (RestSimpleAction.class) ;

}

Adding a REST action is very easy. We just need to create a RestXXXAction class that
handles the calls. The REST action is derived from the BaseRestHandler class and needs to
implement the handleRequest method. The constructor is very important, as shown here:

@Inject

public RestSimpleAction (Settings settings,

Client client,
RestController controller)

410

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

The consturctor's signature is usually injected via Guice, which is a lightweight dependency
injection framework and very popular in the Java ecosystem. For more details on Guice, refer
to the library's home page at https://github.com/google/guice. The REST action has
the following parameters:

» Settings: This can be used to load custom settings for your REST action

» Client: This will be used to communicate with the cluster (see Chapter 10,
Java Integration)

» RestController: This is used to register the REST action to the controller

In the constructor of the REST action (RestController), the list of actions that must be
handled registered, as follows:

controller.registerHandler (POST, "/_simple", this);
To register an action, the following parameters must be passed to the controller:

» The REST method (GET/POST/PUT/DELETE/HEAD/OPTIONS)
» The URL entry point
» The RestHandler class, usually the same class that must answer the call

After having defined the constructor, if an action is fired, the handleRequest class method
is called in the following manner:

@Override

protected void handleRequest (final RestRequest request, final
RestChannel channel, final Client client) throws Exception {

This method is the core of the REST action. It processes the request and sends the response
back. These parameters are passed to the method:

» RestRequest: This is the REST request that hits the ElasticSearch server

» RestChannel: This is the channel used to send back the response

» Client: Thisis the client used to communicate in the cluster

A handleRequest method is usually composed of the following phases:

» Processing the REST request and building an inner ElasticSearch request object
» Calling the client with the ElasticSearch request

» If this is ok, processing the ElasticSearch response and building the JSON result
» If there are errors, sending the JSON error response back

www.it-ebooks.info

https://github.com/google/guice
http://www.it-ebooks.info/

Plugin Development

In the following example, it shows how to create SimpleRequest by processing the request:

final SimpleRequest simpleRequest = new SimpleRequest (Strings.
splitStringByCommaToArray

(request .param("index"))) ;

simpleRequest.setField (request.param("field")) ;

The request accepts a list of indices (we split the classic comma-separated list of indices via
the Strings.splitStringByCommaToArray helper), and we have the £ield parameter,
if available. We will discuss SimpleRequest thoroughly in the next recipe.

Now that we have SimpleRequest, we can send it to the cluster and get back a
SimpleResponse response:

client.execute (SimpleAction.INSTANCE, simpleRequest, new
ActionListener<SimpleResponses> () {

The client .execute method accepts an action, a request, and an ActionListener class
that maps a future response. We can have two kinds of responses, as follows:

» onResponse: This is obtained if everything is all right
» onFailure: This is obtained if something goes wrong

The onFailure function is usually the propagation via a REST error:

@Override
public void onFailure (Throwable e)

try {
channel.sendResponse (new BytesRestResponse (channel, e));

} catch (IOException el) ({
logger.error ("Failed to send failure response", el);

}

The onResponse method receives a Response object that must be converted into a
JSON result:

@Override public void onResponse (SimpleResponse response)
To build the JSON response, a builder helper is used:
XContentBuilder builder = channel.newBuilder() ;

The builder is a standard JSON XContentBuilder, which we have already seen in Chapter
10, Java Integration. After having processed the cluster response and built the JSON, it can
be sent via the following channel:

channel.sendResponse (new BytesRestResponse (OK, builder)) ;

412

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12
Obviously, if something goes wrong during JSON creation, an exception must be raised:

try {/* JSON building*/
} catch (Exception e) {
onFailure (e) ;

}

To test the plugin, you can compile and assemble it with an mvn package. Then, you need to
deploy the resulting unzipped file in an ElasticSearch server, in the plugins directory. After
having restarted the server, the name of the plugin should pop up in the list of installed ones:

[..] [INFO] [node] [Amalgam] initializing ...
[..] [INFO] [plugins] [Amalgam] loaded [river-twitter, transport-
thrift, jdbc-river, rest-plugin], sites [HQ]

If everything is all right, we can test the plugin as follows:
curl -XPOST http://127.0.0.1:9200/ simple
This is how the response will look:

{"ok":true," shards":{"total":15, "successful":15,"failed":0}, "terms": [
"null 4","null 1","null 0","null 3","null 2"]}

You can also test it using the following line of code:
curl -XPOST http://127.0.0.1:9200/ simple/goofy
Here, this is how the response will look:

{"ok":true," shards":{"total":15, "successful":15,"failed":0}, "terms": [
n gOOfy_l n , n gOOfy_2 n , n gOOfy_3 n , n gOOfy_4 n , n gOOfy_O n] }

To fully understand the response, the next recipe will show you how the action is executed at
cluster level.

» You can find more information about Google Guice, used for dependency injection,
athttps://code.google.com/p/google-guice/

www.it-ebooks.info

https://code.google.com/p/google-guice/
http://www.it-ebooks.info/

Plugin Development

Creating a cluster action

In the previous recipe, we saw how to create a REST entry point but, to execute the action at
cluster level, we need to create a cluster action.

An ElasticSearch action is generally executed and distributed in the cluster; in this recipe,

we will see how to implement this kind of action. The cluster's action will be a bare minimum;
we will send a string with a value for every shard, and the shards echo a resultant string,
which is a concatenation of the string with the shard number.

Getting ready

You need a working ElasticSearch node, a Maven build tool, and an optional Java IDE.
The code of this recipe is available in the chapter12/rest plugin directory.

How to do it...

In this recipe, we will see that a REST call is converted to an internal cluster action.
To execute an internal cluster action, the following classes are required:

» The Request and Response classes to communicate with the cluster.
» ARequestBuilder class used to execute a request to the cluster.

» An Action class used to register the action and bind it to Request, Response,
and RequestBuilder.

» A Transport*Action class to bind the request and the response to
ShardRequest and ShardResponse, respectively. It manages the
reduce part of the query.

» The ShardRequest and ShardResponse classes to manage a shard query.
To convert a REST call into a cluster action, we will perform the following steps:

1. Write a SimpleRequest class, as follows:
public class SimpleRequest extends BroadcastOperationRequest<Simpl
eRequest> {
private String field;
SimpleRequest () {}
public SimpleRequest (String... indices) {
super (indices) ;
}
public void setField(String field) {
this.field = field;

414

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

public String getField() {
return field;

}

@Override

public void readFrom(StreamInput in) throws
IOException {

super.readFrom(in) ;
field = in.readString() ;
}
@Override

public void writeTo (StreamOutput out) throws
IOException {

super.writeTo (out) ;
out.writeString(field) ;

}

The SimpleResponse class is very similar to the SimpleRequest class. To bind
the request and the response, an action (SimpleAction) is required, as follows:
public class SimpleAction extends ClientAction<SimpleRequest,
SimpleResponse, SimpleRequestBuilder> {

public static final SimpleAction INSTANCE = new

SimpleAction() ;
public static final String NAME = "indices/simple";
private SimpleAction() {

super (NAME) ;

}

@Override

public SimpleResponse newResponse () {
return new SimpleResponse () ;

}

@Override

public SimpleReguestBuilder newRequestBuilder (Client client) {
return new SimpleRequestBuilder (client) ;

}

The Transport class is the core of the action. The code for this class is quite long,
so we will present only the important parts, as follows:

public class TransportSimpleAction extends TransportBroadcastOpera

tionAction<SimpleRequest,

SimpleResponse, ShardSimpleRequest, ShardSimpleResponses> {
@Override

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

protected SimpleResponse newResponse (SimpleRequest
request, AtomicReferenceArray shardsResponses,
ClusterState clusterState) {

int successfulShards = 0;
int failedShards = 0;
List<ShardOperationFailedException> shardFailures =
null;
Set<String> simple = new HashSet<Strings> () ;
for (int i = 0; i < shardsResponses.length(); i++)
{

Object shardResponse = shardsResponses.get (i) ;

if (shardResponse == null)

// a non active shard, ignore...

}

else if (shardResponse instanceof
BroadcastShardOperationFailedException) {
failedShards++;
if (shardFailures == null)
shardFailures = newArrayList () ;
}
shardFailures.add (new
DefaultShardOperationFailedException ((
BroadcastShardOperationFailedException)
shardResponse)) ;
} else {
successfulShards++;
if (shardResponse instanceof
ShardSimpleResponse) {
ShardSimpleResponse resp =
(ShardSimpleResponse) shardResponse;
simple.addAll (resp.getTermList ()) ;

}
return new SimpleResponse (shardsResponses.length(),
successfulShards, failedShards, shardFailures,
simple) ;
}
@Override
protected ShardSimpleResponse
shardOperation (ShardSimpleRequest request) {
synchronized (simpleMutex) {
InternalIndexShard indexShard =
(InternalIndexShard)
indicesService.indexServiceSafe (request.
index ()) .shardSafe (request.shardId() .id) ;

416

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

indexShard.store () .directory () ;

Set<String> set = new HashSet<String>() ;
set.add (request.getField() + " " +
request.shardId()) ;

return new

ShardSimpleResponse (request.shardId(), set);

}

As you saw, in order to execute a cluster action, the following classes are required:

A couple of Request/Response classes to interact with the cluster
A task action at the cluster level
A couple of Request/Response classes to interact with the shards

A Transport class to manage the map/reduce shard part that must be invoked
by the REST call

These classes must extend one of the supported kinds of action available, as follows:

>

BroadcastOperationRequest/Response: This is used for actions that must
be spread across all the clusters.

MasterNodeOperationRequest/Response: This is used for actions that
must be executed only by the master node (such as index and mapping
configuration). In order to get a simple acknowledgement on the master,
there are AcknowledgedRequest/Response actions available.

NodeOperationRequest: This is used for actions that must be executed by every
node (that is, for all the node statistic actions).

IndexReplicationOperationRequest: This is used for an action that must be
executed at an index level (that is, deleted by query operation).

SingleCustomOperationRequest: This is used for an action that must be
executed only by a node (that is, analyze actions).

InstanceShardOperationRequest: This is used for an action that must be
executed on every shard instance (that is, bulk shard operations).

SingleShardOperationRequest: This is used for an action that must be
executed only in a shard (that is, the get action).

In our example, we defined an action that will be broadcast to every shard:

public class SimpleRequest extends BroadcastOperationRequest<SimpleRe
quest>

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

All the Request/Response classes extend a Streamable class; thus, for serializing their
content, the following two methods must be provided:

» The readFrom method that reads from a StreamInput class, a class that
encapsulates common input stream operations. This method allows you to
deserialize the data that you transmit on the wire. In the previous example,
we read a string with the following code:

@Override

public void readFrom(StreamInput in) throws IOException
super.readFrom(in) ;
field = in.readString() ;

}

» The writeTo method writes the contents of the class to be sent via a network.
The StreamOutput class provides convenient methods to process the output.
In the preceding example, we have serialized a string, as follows:
@Override
public void writeTo (StreamOutput out) throws IOException
super.writeTo (out) ;
out.writeString(field) ;

}

In both the actions, the super must be called to allow the correct serialization of the
parent classes.

1
‘Q Every internal action in ElasticSearch is designed as

a request/response pattern.

To complete the request/response action, we must define an action that binds the request
to the correct response and a builder to construct it. To do so, we need to define an Action
class, as follows:

public class SimpleAction extends ClientAction<SimpleRequest,
SimpleResponse, SimpleRequestBuilders

This Action object is a singleton object. We can obtain it by creating a default static instance
and private constructors, as follows:

public static final SimpleAction INSTANCE = new SimpleAction() ;
public static final String NAME = "indices/simple";
private SimpleAction() {super (NAME) ;}

418

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

The static string NAME is used to uniquely identify the action at the cluster level. To complete
the Action definition, the following two methods must be defined:

» The newResponse method, which is used to create a new empty response:

@Override public SimpleResponse newResponse () {
return new SimpleResponse () ;

}

» The newRequestBuilder method, which is used to return a new request builder
for the current action type:

@Override
public SimpleReguestBuilder newReguestBuilder (Client client)
return new SimpleRequestBuilder (client) ;

}

When the action is executed, the request and the response are serialized and sent to the
cluster. To execute your custom code at the cluster level, a Transport action is required.
Transport actions are usually defined as map and reduce jobs. The map part consists of
executing the action on several shards (via the ShardRequest and ShardResponse
methods), and the reduce part consists of collecting all the results from the shards in a
response that must be sent back to the requester.

The Transport action is a long class with many methods, but the most important ones

are the shardOperation (the map part) and newResponse (the reduce part) methods.
The original request is converted into a distributed ShardrRequest method that is processed
by the shardOperation method:

@Override protected ShardSimpleResponse shardOperation(ShardSimpleReqg
uest request) {

It is a good design principle to execute the shard operation using a lock to prevent the problem
of concurrency:

synchronized (simpleMutex) {..}

To obtain the internal shard, we need to ask the IndexService method to return a shard
based on a required index. The shard request contains the index and the ID of the shard
that must be used to execute the action:

InternalIndexShard indexShard = (InternallIndexShard) indicesService.
indexServiceSafe (request.index ()) .shardSafe (request.shardId() .id()) ;

The InternalIndexShard object allows you to execute every possible shard operation
(search, get, index, and many others). In this method, you can execute every data shard
manipulation that you want.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

s . L .
‘Q Custom shard actions can execute an application's business

operation in a distributed and fast way.

In the following example, we have created a simple set of values:

Set<String> set = new HashSet<Strings () ;
set.add (request.getField() + " " + request.shardId()) ;

The final step of our shard operation is to create a response to be sent back to the reduce
step. In order to create the shard response, we need to return the result plus information
about the index and the shard that executed the action:

return new ShardSimpleResponse (request.shardId(), set);

The distributed shard operations are collected in the reduce step (the newResponse
method). This step aggregates all the shard results and sends back the result to the
original action:

@Override protected SimpleResponse newResponse (SimpleRequest request,
AtomicReferenceArray shardsResponses, ClusterState clusterState) {

Apart from the result, we also need to collect information about the shard's execution
(if there are failed shard executions). This information is usually collected in three values:
successfulShards, failedShards, and shardFailures:

int successfulShards = 0;
int failedShards = 0;
List<ShardOperationFailedException> shardFailures = null;

The request result is a set of collected strings, as shown here:
Set<String> simple = new HashSet<Strings>() ;
To collect the results, we need to iterate over the shard responses:

for (int i = 0; i < shardsResponses.length(); i++) {
Object shardResponse = shardsResponses.get (i) ;

We need to skip the null shardResponse, mainly due to inactive shards:
if (shardResponse == null) {}
If an exception is raised, we also need to collect information about them to inform the caller:

else if (shardResponse instanceof
BroadcastShardOperationFailedException)

failedShards++;

420

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

if (shardFailures == null)
shardFailures = newArrayList () ;

}

shardFailures.add (new

efaultShardOperationFailedException ((BroadcastShardOperation
FailedException) shardResponse)) ;

At last, we can aggregate the valid results:

} else {
successfulShards++;
if (shardResponse instanceof ShardSimpleResponse) {
ShardSimpleResponse resp = (ShardSimpleResponse) shardResponse;
simple.addAll (resp.getTermList ()) ;

}
}

The final step is to create the response, collected during the previous result, and check the
response status using the following code:

return new SimpleResponse (shardsResponses.length(), successfulShards,
failedShards, shardFailures, simple) ;

Creating a cluster action is required when there are low-level operations that you want to
execute very fast, such as a special facet or a complex manipulation. These operations
require too principle ElasticSearch calls to be executed, but these can be easily written
as a cluster action.

» The Creating a REST plugin recipe in this chapter

Creating an analyzer plugin

ElasticSearch provides, out-of-the-box, a large set of analyzers and tokenizers to cover general
needs. Sometimes, we need to extend the capabilities of ElasticSearch to add new analyzers.
Typically, you need to create an analyzer plugin when you need to do the following:

» Adding standard Lucene analyzers/tokenizers, which are not provided by ElasticSearch

» Integrating third party analyzers

» Adding a custom analyzer

In this recipe, we will add a new custom English analyzer similar to the one provided
by ElasticSearch.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

Getting ready

You will need a working ElasticSearch node, a Maven build tool, and optionally a Java IDE.
The code of this recipe is available in the chapter12/analysis plugin directory.

How to do it...

An analyzer plugin is generally composed of the following three classes:

» Aplugin class that registers the BinderProcessor class
» ABinderProcessor class that registers one or more AnalyzerProviders class

» AnAnalyzerProviders class that provides an analyzer plugin
To create an analyzer plugin, perform the following steps:

1. The plugin class is the same as the one used in the previous recipes, plus a binder
registration method:

@Override
public void processModule (Module module) {
if (module instanceof AnalysisModule) {
AnalysisModule analysisModule = (AnalysisModule)
module;
analysisModule.addProcessor (new
CustomEnglishBinderProcessor()) ;

}
}

2. The BinderProcess method registers the analysis module and one or more
analyzer providers:

public class CustomEnglishBinderProcessor extends AnalysisModule.
AnalysisBinderProcessor {

@Override
public void processAnalyzers (AnalyzersBindings
analyzersBindings) {

analyzersBindings.processAnalyzer (CustomEnglishAnalyzerProv
ider.NAME, CustomEnglishAnalyzerProvider.class) ;

}
}

3. The analyzer provider class initializes our analyzer by passing the parameters
provided in the settings:

import org.apache.lucene.analysis.en.EnglishAnalyzer;
import org.apache.lucene.analysis.util.CharArraySet;

422

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

import org.elasticsearch.common.inject.Inject;

import org.elasticsearch.common.inject.assistedinject.Assisted;
import org.elasticsearch.common.settings.Settings;

import org.elasticsearch.env.Environment;

import org.elasticsearch.index.Index;

import org.elasticsearch.index.settings.IndexSettings;

public class CustomEnglishAnalyzerProvider extends
AbstractIndexAnalyzerProvider<EnglishAnalyzers{
public static String NAME="custom english";
private final EnglishAnalyzer analyzer;
@Inject
public CustomEnglishAnalyzerProvider (Index index,
@IndexSettings Settings indexSettings, Environment
env, @Assisted String name, @Assisted Settings
settings) {
super (index, indexSettings, name, settings);
analyzer = new EnglishAnalyzer (version,
Analysis.parseStopWords (env, settings,
EnglishAnalyzer.getDefaultStopSet (),
version),
Analysis.parseStemExclusion (settings,
CharArraySet .EMPTY SET, version));

}

@Override
public EnglishAnalyzer get ()
return this.analyzer;

}

After having built the plugin and installed it on the ElasticSearch server, our analyzer is
accessible just like any native ElasticSearch analyzer.

Creating an analyzer plugin is quite simple. This is the general workflow:

1. Wrap the analyzer initialization in a provider.

2. Register the analyzer provider in the binder so that the analyzer is accessible via the
analysis module level.

3. Register the binder in the plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

In the previous example, we registered a CustomEnglishAnalyzerProvider class that
extends EnglishAnalyzer:

public class CustomEnglishAnalyzerProvider extends AbstractIndexAnalyz
erProvider<EnglishAnalyzers>

We need to provide a name to the analyzer:
public static String NAME="custom english";
We instantiate a private scope Lucene analyzer, provided on request with the get method:
private final EnglishAnalyzer analyzer;

The CustomEnglishAnalyzerProvider constructor can be injected via Google
Guice with settings that can be used to provide cluster defaults via index settings or
elasticsearch.yml:

@Inject

public CustomEnglishAnalyzerProvider (Index index, @IndexSettings
Settings indexSettings, Environment env, @Assisted String name, @
Assisted Settings settings) {

For our analyzer to work correctly, we need to set up the parent constructor via the super call:
super (index, indexSettings, name, settings);
Now, we can initialize the internal analyzer that must be returned by the get method:

analyzer = new

EnglishAnalyzer (version,Analysis.parseStopWords (env, settings,
EnglishAnalyzer.getDefaultStopSet (), version),
Analysis.parseStemExclusion (settings,

CharArraySet .EMPTY SET, version)) ;

This analyzer accepts the following:

» The Lucene version
» Alist of stopwords that can be loaded by setting them or set by the default ones
» Alist of words that must be excluded by the stemming step

After having created a provider for our analyzer, we need to create another class
CustomEnglishBinderProcessor that registers our provider in the analyzer module:

public class CustomEnglishBinderProcessor extends AnalysisModule.
AnalysisBinderProcessor

424

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

To register our analyzer in the binder, we need to override the processAnalyzers method.
Then, we add our analyzer by defining the name (referred in the REST calls) and the class of
our provider:

@Override public void processAnalyzers (AnalyzersBindings
analyzersBindings)

analyzersBindings.processAnalyzer (CustomEnglishAnalyzerProvider.
NAME, CustomEnglishAnalyzerProvider.class);

}
}

Finally, we need to register our binding in the plugin, hooking with processModule to check
whether the module is an AnalysisModule:

@Override
public void processModule (Module module) {
if (module instanceof AnalysisModule) {

The analysis module allows you to register one or more bind processors that will be initialized
during the analysis module service initialization via the addProcessor method:

AnalysisModule analysisModule = (AnalysisModule) module;
analysisModule.addProcessor (new CustomEnglishBinderProcessor()) ;

Creating a river plugin

In Chapter 8, Rivers, we saw how powerful the river plugins are. They allow you to populate
an ElasticSearch cluster from different sources (DBMS, NoSQL system, streams, and so on).
Creating a custom river is necessary if you need to do the following:
» Adda new NoSQL data source that is not supported by the already existing plugins
» Add a new stream type
» Add a custom business logic to import data in ElasticSearch, such as field
modification, data aggregation, and, in general, a data brewery

In this recipe, we will implement a simple river that generates documents with a field that
contains an incremental value and ingests them in ElasticSearch.

Getting ready

You will need a working ElasticSearch node, a Maven build tool, and optionally a Java IDE.
The code of this recipe is available in the chapterl12/river plugin directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

How to do it...

To create a river plugin, we need the following three classes at least:

» The plugin that registers a river module
» Ariver module that registers our river

» The river that executes our business logic
Perform the following steps to create a river plugin:

1. This part of the plugin class is similar to the previous one:

public void onModule (RiversModule module) {
module.registerRiver ("simple", SimpleRiverModule.class) ;

(The common plugin part is omitted, as it is similar to the previous one.)

2. The river module registers the river class as a singleton:

public class SimpleRiverModule extends AbstractModule(
@Override
protected void configure () {

bind (River.class) .to(SimpleRiver.class) .asEagerSingleton() ;

}
}

3. Now, we can write the river core. This code section is very long, so | have split it into
several parts, as follows:

a This is the code for the class definition:

. truncated ..
public class SimpleRiver extends AbstractRiverComponent
implements River ({

. truncated ..

o The following code is the constructor definition, in which you set up the river
and collect user settings;

@SuppressWarnings ({ "unchecked"})
@Inject

Public SimpleRiver (RiverName riverName, RiverSettings
settings, Client client, ThreadPool threadPool) ({

super (riverName, settings) ;
this.client = client;

426

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

if (settings.settings().containsKey ("simple")) ({
Map<String, Object> simpleSettings =
(Map<String, Object>)
settings.settings () .get ("simple") ;

simpleNumber =
XContentMapValues.nodeIntegerValue (
simpleSettings.get ("number"), 100) ;
fieldName =
XContentMapValues.nodeStringValue (
simpleSettings.get ("field"), "test");
poll =

XContentMapValues.nodeTimeValue (
simpleSettings.get ("poll"),
TimeValue.timeValueMinutes (60)) ;
}
logger.info("creating simple stream river for
[{} numbers] with field [{}]", simpleNumber,
fieldName) ;
if (settings.settings () .containsKey ("index"))
{
Map<String, Object> indexSettings =
(Map<String, Object>)
settings.settings () .get ("index") ;

indexName =
XContentMapValues.nodeStringValue (
indexSettings.get ("index"), riverName.name()) ;
typeName =
XContentMapValues.nodeStringValue (
indexSettings.get ("type"), "simple type");
bulkSize =
XContentMapValues.nodeIntegerValue (
indexSettings.get ("bulk size"), 100);
bulkThreshold =
XContentMapValues.nodeIntegerValue (
indexSettings.get ("bulk threshold"), 10);
} else {
indexName = riverName.name () ;
typeName = "simple type";

bulkSize = 100;
bulkThreshold = 10;
}
}

o Thisis the code for the start function that manages the start of the river
and initializes the bulk processor:

@Override
public void start () {

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

logger.info("starting simple stream") ;
bulkProcessor = BulkProcessor.builder (client,
new BulkProcessor.Listener() {..truncated..

}) .setBulkActions (bulkSize) .

setFlushInterval (TimeValue.timeValueMinutes (5))
.setConcurrentRequests (bulkThreshold) .build() ;

thread =
EsExecutors.daemonThreadFactory (
settings.globalSettings (), "Simple

processor") .newThread (new SimpleConnector()) ;
.start () ;

}

o The following code is used for the close function, which cleans up internal
states before exiting:

@Override
public void close() {
logger.info("closing simple stream river");
bulkProcessor.close () ;
this.closed = true;
thread.interrupt () ;

}

o This code shows a wait function used to reduce the throughtput:

private void delay() {

if (poll.millis() > OL) {

logger.info("next run waiting for {}", poll);

try {
Thread.sleep(poll.millis()) ;

} catch (InterruptedException e) ({
logger.error ("Error during waiting.", e,
(Object) null) ;

}

o This is the code for a producer class that yields the item to be executed
in bulk:

private class SimpleConnector implements Runnable

@Override
public void run()
while (!closed) {
try {
for (int i = 0; i < simpleNumber; i++)

428

www.it-ebooks.info

http://www.it-ebooks.info/

XContentBuilder builder

Chapter 12

XContentFactory.jsonBuilder () ;

builder.startObject () ;
builder.field (fieldName,
builder.endObject () ;

i);

bulkProcessor.add (Requests.indexRequest (indexName)
.type (typeName) .id (UUID.randomUUID () .toString())

.create (true) .source (builder)) ;

}

//in this case we force the bulking, but it should

seldom be done

bulkProcessor.flush() ;

delay () ;

} catch (Exception e)
logger.error (e.getMessage () ,

(Object) null) ;
closed = true;

}
if (closed) {
return;

}

}

e,

After having deployed the river plugin in an ElasticSearch cluster, we can activate it
with a similar call, as shown here:

curl -XPUT localhost:9200/ river/simple river/ meta -4 '

{

"type" : "simple",
"simple" : {
"field" : "myfield",
"number" : 1000
b
"index" : {
"index" : "simple data",
"type" : "simple type",
"bulk size" : 10,
"bulk threshold" : 50
}

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

The river core is quite long but it covers a lot of interesting parts that are useful not only for
the river, as follows:

» Processing the settings passed to a river
» Initializing a thread that populates the data (consumer) and its status management

» Executing a safe bulk index

A custom river class must extend the AbstractRiverComponent class and implement the
interfaces defined in the River interface:

public class SimpleRiver extends AbstractRiverComponent implements
River {

The river constructor accepts the following parameters:

» The RiverName object that contains the name defined inthe / river/<river
name>/ meta call.

» The river settings that are the settings passed as JSON.
» Aclient to send/receive data. For example, the native client of the previous chapter.
» Athread pool to control the thread allocation:

@Inject

public SimpleRiver (RiverName riverName, RiverSettings settings,
Client client, ThreadPool threadPool) {

We need to pass the river's name and settings to the parent constructor in order to initialize it:
super (riverName, settings);
Then, we need to store the client for future bulk operations:
this.client = client;
Now, we can check whether our river settings are available (the simple section in JSON):
if (settings.settings().containsKey ("simple")) {
Next, we can extract the number of items to be created and populate the fields:
Map<String, Object> simpleSettings = (Map<String, Object>) settings.

settings () .get ("simple") ;
simpleNumber = XContentMapValues.nodeIntegerValue (simpleSettings.

get ("number"), 100) ;
fieldName = XContentMapValues.nodeStringValue (simpleSettings.
get ("field"), "test");
}
430

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

The ElasticSearch content parser gives you a lot of useful functionalities to pass this kind
of data. Usually, some index settings are specified to define the index that must be used
to store the data, the type that must be used, and the parameters to control the following
bulk operation:

if (settings.settings().containsKey("index")) ({

Map<String, Object> indexSettings = (Map<String, Object>)

settings.settings () .get ("index") ;

indexName =
XContentMapValues.nodeStringValue (indexSettings
.get ("index"), riverName.name()) ;

typeName =
XContentMapValues.nodeStringValue (indexSettings
.get ("type"), "simple type");

bulkSize =
XContentMapValues.nodeIntegerValue (indexSettings
.get ("bulk_size"), 100);

bulkThreshold =
XContentMapValues.nodeIntegerValue (indexSettings
.get ("bulk_ threshold"), 10);

It is good practice to provide default index names if they are not provided, as follows:

indexName = riverName.name () ;
typeName = "simple type";
bulkSize = 100;

bulkThreshold = 10;

A river is internally seen as a service, so we need to provide the start and close
methods. The start method initializes a bulk processor and starts the producer
thread called SimpleConnector

@Override
public void start() {
logger.info("starting simple stream") ;
bulkProcessor = BulkProcessor.builder(client, new
BulkProcessor.Listener ()
{}) .setBulkActions (bulkSize) .setFlushInterval (TimeValue
.timeValueMinutes (5))
.setConcurrentRequests (bulkThreshold) .build() ;
thread =
EsExecutors.daemonThreadFactory (settings.globalSettings (),
"Simple processor") .newThread (new SimpleConnector()) ;
thread.start () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Development

The BulkProcessor APIs are convenient APIs introduced in the latest ElasticSearch versions
to manage bulk jobs. They allow you to define the following:

» The maximum number of bulk actions via setBulkActions

» A concurrent bulk limit via setConcurrentRequests

» Aflush interval via setFlushInterval
The close method usually sets the status to closed and stops the producer thread:

@Override

public void close() {
logger.info("closing simple stream river");
bulkProcessor.close(); // it must be closed to flush the
contained actions

this.closed = true;
thread.interrupt () ;

}

In the preceding code, a delay method is present; it is used to delay the producer thread in
order to prevent the overloading of the ElasticSearch cluster. The plugin is generally composed
of a producer thread, which produces data to be indexed, and a consumer thread (in this case,
we have simplified this to a single bulk function), which consumes the data in bulk actions.

The core of the river is the producer thread that generates index actions to be executed in
bulk. This object is a thread and implements the methods of the Runnable class:

private class SimpleConnector implements Runnable
Obviously, the main method of this class is run:

@Override
public void run()

When executing the run part in the thread, check whether the thread is active or
closed (stopped):

while (!closed) {

The main part of the run method generates documents with the builder (as we have
seen in the previous chapter) and then adds them to the bulk processor.

432

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Creating a river for the first time can be a bit long and complicated, but the base skeleton
is reusable (it changes very little from river to river). While developing a river, the maximum
time is spent in designing and parsing the settings and in developing the run function of
the producer thread. The others parts are often reused in a lot of rivers.

If you want to improve your knowledge of how to write rivers, some good examples are
available on GitHub, and we have already seen some of them in Chapter 8, Rivers.

See also

» To learn more about rivers, see Chapter 8, Rivers

» The official ElasticSearch page that lists the most common rivers at
http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/modules-plugins.html#riversS

www.it-ebooks.info

http://www.elasticsearch.org/guide/en/elasticsearch/ reference/current/modules-plugins.html#riverS
http://www.elasticsearch.org/guide/en/elasticsearch/ reference/current/modules-plugins.html#riverS
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols aggregators

about 200
_all parameter 56 bucketing aggregators 200
_analyzer parameter 56 metric aggregators 200
_boost parameter 55 analyzer plugin
_id parameter 55 creating 421-425
_index parameter 55 and operation 182
.Net 369 and/or/not filters
_parent parameter 56 about 180
-remove command 40 executing 180-182
_river index 260 Apache HttpComponents 334
_routing parameter 56 arrays
_size parameter 55 about 50
_source parameter 56 mapping 50, 51
_status document 260 atomic operations
_timestamp parameter 56 speeding up 114
_ttl parameter 56 attachment field
_type parameter 55 mapping 71-74

attributes, object

A about 53

dynamic 53
additional script plugins enabled 53

installing 236, 237

include_in_all 53

aggregation properties 53
about 195
executing 196-199 B
usage 195
aggregations, AggregationFactory helper base types
about 393 mapping 47-50
add 393 BigDesk
add_date 393 about 310, 316
add_geo 393 BigDesk Endpoint settings bar 311
add_term 393 cluster view 311

fragment view 315

www.it-ebooks.info

http://www.it-ebooks.info/

installing 310

main view 311

node view 311-314

using 311
bin directory, ElasticSearch

about 26

elasticsearch(.bat) script 26

plugin(.bat) script 26
Boolean operator filters 182
Boolean query/filter

about 153-155

executing 154, 155

must 155

must_not 155

should 155
BroadcastOperationRequest/Response

class 417

bucketing aggregators 200
built-in functions, Groovy

abs(a) 244

acos(a) 243, 244

asin(a) 243

atan2(y, x) 244

atan(a) 243, 244

cbrt(a) 244

ceil(@) 244

cos(a) 243

cosh(x) 244

exp(a) 244

floor(a) 244

hypot(x,y) 244

IEEEremainder(fl, f2) 244

logl10(a) 244

log(a) 244

max(a, b) 244

min(a, b) 244

pow(a, b) 244

random() 244

rint(a) 244

round(a) 244

signum(d) 244

sin(a) 243

sinh(x) 244

sqrt(a) 244

tan(a) 243

tanh(x) 244

436

time() 243
toDegrees(angrad) 243
toRadians(angdeg) 243
ulp(d) 244
bulk action
managing 348-351
bulk operations
speeding up 114-116
bulk_script_filter function 270

C

call output, cluster state
blocks section 289
cluster_name field 289
master_node field 289
metadata section 289, 290
nodes section 289
routing_nodes 289
routing_table 289

child document
managing 62-64

child object 64

client parameter 277

client, PyES
creating 370-372

cluster 8

cluster action
creating 414-421

cluster health
active_primary_shards 285
active_shards 285
cluster_name 285
controlling, via APl 284-286
initializing_shards 286
number_of_data_nodes 285
number_of_nodes 285
relocating_shards 285
timeout 285
unassigned_shards 286

cluster/index operations, ElasticSearch 12

cluster level
issues 283, 284

cluster node information
hostname section 294
http_address section 294

www.it-ebooks.info

http://www.it-ebooks.info/

http section 294
jvm 294
Network section 295
obtaining, via APl 291-296
Osos section 295
plugins section 295
process section 295
settings section 295
thread_pool section 295
thrift_address section 295
transport_address section 296
transport section 296
version section 296
Cluster services 10
cluster state
call output 289
controlling, via APl 287-290
cluster status
about 13
green 285
red 285
yellow 285
completion field
index_analyzer property 78
input functionality 78
max_input_length property 78
output functionality 78
payload functionality 78
payloads 78
preserve_separators property 78
search_analyzer property 78
weight functionality 78
completion suggester
mapping 77-79
complex queries, query parser
exists:field 189
missing:field 189
field:/regex/ 190
field:[start TO end] 190
field:(term1 OR term2) 189
field:"text" 189
field:text 189
concurrency parameter 277
config directory, ElasticSearch
about 26

elasticsearch.yml script 26
logging.yml script 26
consumer threads 260
correct query
suggesting 136-138
CouchDB 261
couchdb object
db parameter 263
filter parameter 263
filter_params parameter 263
heartbeat parameter 263
host parameter 263
ignore_attachments parameter 263
no_verify parameter 263
password parameter 263
port parameter 263
protocol parameter 263
read_timeout parameter 263
script parameter 263
user parameter 263
CouchDB river
about 264
creating 263
indexer thread 264
installing 262
slurper thread 264
using 262
working 263
counting query
executing 139
CRUD (Create, Read, Update, Delete)
operations 82
ctx parameter 113

D

data
managing 11, 12
sorting, script used 241-245
date histogram aggregation
about 216
executing 216, 217
post_zone parameter 218
pre_zone_adjust_large_interval
parameter 218

431

www.it-ebooks.info

http://www.it-ebooks.info/

time_zone parameter 218
working 218
date range aggregation (date_range) 211
delete by query
executing 140, 141
different analyzer
specifying 75, 76
different node types
setting up 33, 34
Django 370
document
about 54
deleting 109, 110
getting 106, 107
indexing 102-104
managing 345-348
mapping 54-56
mapping, dynamic templates used 57-59
matching 142, 143
time-to-live, managing 54
updating 111-114
updating, scripts used 251-255
document mapping fields
date_detection 58
dynamic_date_formats 58
dynamic_templates 58
index_analyzer 58
numeric_detection 58
search_analyzer 58
document operations, ElasticSearch 12
documents, PyES
managing 380-384
domain specific language (DSL) 120
dynamic template
about 59
using, in document mapping 57-59

E

Elastic HQ
about 322
URL 35, 322
ElasticSearch
about 7, 16
bin directory 26

438

config directory 26
cluster/Index operations 12
document operations 12
downloading 24
installing 24-26
Java integration 329
lib directory 26
plugins, installing 35-38
Python integration 369
rivers 257
structure, comparing 11, 12
URL 24
versions 24

ElasticSearch 1.4.x version
_source parameter 124
aggregations or aggs parameter 125
explain parameter 125
facets parameter 125
fielddata_fields parameter 124
fields parameter 124
from parameter 124
highlighting parameter 125
index_boost parameter 125
min_score parameter 125
post_filter parameter 124
query parameter 124
rescore parameter 125
script_fields parameter 125
scroll parameter 125
search_type parameter 125
size parameter 124
sort parameter 124
suggest parameter 125
version parameter 125

ElasticSearch cluster
URL 21

ElasticSearch Head
about 316, 322
Any Request tab 317
Any Request[+] tab 320-322
Browser tab 317, 320
Indices tab 317-320
installing 317
Overview tab 317-319
Structured Query tab 317

www.it-ebooks.info

http://www.it-ebooks.info/

using 317, 318
web interface 318
ElasticSearch Java API
URL 21
elasticsearch parameter 277
ElasticSearch Python client
HTTP protocol 372
Memcached 373
Thrift 373
exists filter 178
explicit directives
analyzer 49
boost 49
include_in_all 49
index 49
index_analyzer 49
index_name 49
norms 49
null_value 49
search_analyzer 49
store 49
explicit mapping
creating 44, 45
using 46

F

field
adding, with multiple mapping 65, 66
filter aggregation
about 219
executing 219, 220
working 220
filter object, Twitter river
follow parameter 280
language parameter 280
locations parameter 280
tracks parameter 280
Finite state transducer (FST) structure 78
flush operation 94
flush parameter 96
force parameter 96
function score query
about 174, 175
boost parameter 176

boost_mode parameter 176
executing 174-177

functions parameter 176
max_boost parameter 176
random_score parameter 177
score_mode parameter 176
script_score parameter 177

G

geo bounding box filter
about 182
executing 182, 183

geo distance aggregations
about 223
executing 223, 224

geo distance filter
about 185
distance parameter 186
distance_type parameter 186
optimize_bbox parameter 186
unit parameter 186
using 185-187

geo distance sorting
about 130
distance_type parameter 130
unit parameter 130

geo point
about 67
geohash parameter 68
geohash_precision parameter 68
lat_lon parameter 68
mapping 67-69

geo polygon filter
about 183
executing 183, 184

geo range aggregation
about 225
field parameter 225
origin parameter 225
ranges parameter 225
working 226

geo shape field
mapping 69, 70

GET API 108

439

www.it-ebooks.info

http://www.it-ebooks.info/

GET operations
speeding up 117, 118
global aggregation
about 221
executing 222, 223
working 223
Groovy
about 235, 237
URL 112
Guice 24

H

Hamcrest library
URL 407
handleRequest method 411
has_child query/filter
about 166
executing 166-168
max_children parameter 168
min_children parameter 168
query paramter 168
score_mode parameter 168
type parameter 168
has_parent Query/Filter
about 170
executing 170, 171
query parameter 171
score_type parameter 171
type parameter 171
helper parameters, range query/filter
gte (greater than or equal to) 157
gt (greater than) 157
Ite (lesser than or equal to) 157
It (lesser than) 157
Highlighter helper 393
histogram aggregations
about 212,215
executing 213, 214
working 214
HTTP client
about 330
creating 331-334
HTTP protocol
advantages 18
using 17-19

IDs query/filter
about 164
executing 165, 166
ids parameter 165
type parameter 165

index
closing 86, 87
creating 82, 83
deleting 85, 86
existence, checking 96, 97
flushing 93, 94
mapping, putting in 87, 88
opening 86, 87
optimizing 94, 95
refreshing 92, 93

index aliases
using 100-102

Index creation APl 84

Indexing Service 10

index object, CouchDB river
bulk_size parameter 263
bulk_timeout parameter 264
index parameter 263
max_concurrent_bulk parameter 264
type parameter 263

index object, JDBC river
index parameter 276
index_settings parameter 276
max_bulk_actions parameter 276
max_concurrent_bulk_requests

parameter 276

type_mapping parameter 276
type parameter 276

IndexReplicationOperationRequest class 417

index settings
cache management 99
managing 97-99
refresh interval 99
replica management 98
shard allocation management 99
write management 99
indices, Java integration
managing, with native client 338-341

—{aao}

www.it-ebooks.info

http://www.it-ebooks.info/

indices, PYES

managing 374-376
InstanceShardOperationRequest class 417
IP field

index property 71

mapping 70, 71

precision_step property 71
IPv4 range aggregation (ip_range) 211

J

Jackson 24

JAR plugin
<name>plugin 398
es-plugin 398
plugin.xml 398
pom.xml 398

JavaScript
about 235-237
URL 237

JavaScript language support
installing 236

jdbc object
autocommit parameter 275
cronpoolsize parameter 276
driver parameter 275
fetchsize parameter 275
ignore_null_values parameter 275
locale parameter 275
max_retries parameter 276
max_retries_wait parameter 276
max_rows parameter 275
password parameter 275
rounding parameter 275
scale parameter 275
schedule parameter 276
sqgl parameter 275
strategy parameter 274
timezone parameter 275
url parameter 275
user parameter 275

JDBC river
about 274
using 272-274

Jetty plugin
URL 333

JSON document
indexing 104
JTS (v1.12) 69

K

KeywordAnalyzer analyzer 147
Kibana
URL 196

L

Language Scripting Services 10
lib directory, ElasticSearch 26
Linux systems

setting up 32, 33
Logd4j library

about 42

URL 42
logging settings

changing 41, 42
Lucene 24

mapping
about 11, 44
arrays 50, 51
attachment field 71-73
base types 47, 48
completion suggester 77, 78
deleting 90, 91
document 54
fine-tuning 47
geo point field 67, 68
geo shape field 69, 70
IP field 70, 71
managing 341-344
metadata, adding 74, 75
object 52, 53
obtaining 89, 90
Mapping Service 10
mappings, PYyES
managing 377-379
Marvel
about 325

(a1}

www.it-ebooks.info

http://www.it-ebooks.info/

home page 327
installing 325
interface 327
main dashboard page 328
URL 322
using 326
master-eligible node 9
master node 9
MasterNodeOperationRequest/Response
class 417
match_all query 143
matched results
counting 139, 140
matchers
match 58
match_mapping_type 58
match_pattern 59
path_match 58
path_unmatch 58
unmatch 58
match query
about 162
analyzer parameter 163
cutoff_frequency parameter 163
executing 162-164
fuzziness parameter 163
operator parameter 163
zero_terms_query parameter 163
Maven plugin section
assembly section 405
compiler section 404
source section 404
max_num_segments parameter 96
MemcachedConnection class 373
metadata
adding, to mapping 74, 75
metric aggregators 200
missing filter 178
MongoDB 264
Mongodb, ElasticSearch configuration
about 266
collection parameter 266
credentials parameter 266
db parameter 266
filter parameter 266

—{az]

gridfs parameter 266
index parameter 267
servers parameter 266
MongoDB river
about 264
installing 265
URL 266
using 265
working 266
multi GET operation
advantages 118
executing 117
MVEL 235

Nagios server
URL 324

native client
creating 335, 336

indices, managing with 338-341

native plugin
about 396
creating 398-408
native protocol
using 19, 20
Near Real-Time (NRT) 92
nested aggregations
about 227
example 229
executing 227, 228
working 228
nested objects
about 60

include_in_parent property 61
include_in_root property 61

managing 60, 61

nested_filter parameter 130
nested_path parameter 130

networking

setting up 27-29
Network Services 10
node

about 8

different node types, setting up 33

www.it-ebooks.info

http://www.it-ebooks.info/

parameters 29

setting up 30, 31
node.data parameter 34
node.master parameter 34
NodeOperationRequest class 417
node services 10
node statistics

fs section 300

http section 301

indices section 301

jvm section 301

network section 301

obtaining, via APl 297-302

os section 301

process section 301

thread_pool section 301

transport section 301
not operation 182
number_of_replicas parameter 83
number_of_shard parameter 83

0

object

about 52

mapping 52, 53
one shot usage, river 260
only_expunge_deletes parameter 96
oplog (operations log) collection 266
optimize operation 94
or operation 182

P

parameters, for controlling DELETE call
parent 110
routing 110
version 110

parameters, for controlling GET call
fields 108
preference 108
refresh 108
routing 108

parameters, for highlighting process
fragment_size 133

number_of_fragments 133

pre_tags/post_tags 133

tags_schema="styled" 133
parameters, for nested object

nested_filter 130

nested_path 130
parameters, for sorting

ignore_unmapped 129

missing parameter 129

mode 129

order 129

unmapped_type 129
parameters, GET object

_id 118

_index 118

_type 118

fields 118

routing 118
parameters, node

cluster.name 29

discovery.zen.ping.unicast.hosts 29

network.host 29

node.name 29
parameters, URI query

analyzer 123

default_operator 123

df 123

explain 123

fields 123

from 123

pretty 124

q 123

search_type 124

size 123

sort 123

timeout 123

track_scores 124
path.conf parameter 31
path.data parameter 31
path.log parameter 31
path.plugins parameter 31
path.work parameter 31
periodical usage, river 260
Perl 369

433 |-

www.it-ebooks.info

http://www.it-ebooks.info/

PHP 369 termsQuery 354

phrase suggester 138 wildcardQuery 354

plugins query filters
about 395 andFilter 355
installing 35-38 boolFilter 355
installing, manually 39 geoBoundingBoxFilter 355
native plugins 35 geoDistanceFilter 355
removing 40, 41 idsFilter 355
site plugins 35 matchAllFilter 355
usages 395 notFilter 355

Plugin Service 10 orFilter 355

populate script rangeFilter 355
URL 239 regexpFilter 355

prefix query/filter scriptFilter 355
about 151 termFilter 355
executing 151-153 termsFilter 355

producer threads 260 typeFilter 355

PyES client 370 wildcardFilter 355

Pyramid 370 query parameters

Python consistency 105
about 235-237 op_type 105
URL 237 parent 104

Python language plugin page refresh 105
URL 38 replication 105

routing 104
Q timeout 106
timestamp 105

query ttl 105
about 126 version 105
building 351-354 QueryString query

query builders about 187, 188
boolQuery 354 allow_leading_wildcard parameter 188
constantScoreQuery 354 analyzer parameter 188
fieldQuery 354 analyze_wildcard parameter 189
filteredQuery 354 auto_generate_phrase_queries
fuzzyLikeThisQuery 355 parameter 189
hasChildQuery 355 boost parameter 189
hasParentQuery 355 default_field parameter 188
idsQuery 354 default_operator parameter 188
matchAllQuery 354 enable_position_increments parameter 189
matchQuery 354 executing 188-190
moreLikeThisQuery 355 fields parameter 188
nestedQuery 355 fuzziness parameter 189
regexpQuery 354 fuzzy_max_expansions parameter 189
span query family 354 fuzzy_prefix_length parameter 189
termQuery 354 lenient parameter 189

—am}

www.it-ebooks.info

http://www.it-ebooks.info/

locale parameter 189
lowercase_expanded_terms parameter 189
minimum_should_match parameter 189
phrase_slop parameter 189

using 187

RabbitMQ 260, 267

rabbitmq object
exchange_declare parameter 269
exchange_durable parameter 269
exchange parameter 269
exchange_type parameter 269
heartbeat parameter 270
host parameter 269
nack_errors parameter 270
pass parameter 269
port parameter 269
queue_auto_delete parameter 269
queue_declare parameter 269
queue_durable parameter 269
queue parameter 269
user parameter 269
vhost parameter 269

RabbitMQ river
about 270
installing 267
URL, for documentation 272
using 267-269

range aggregations
about 208
date range aggregation 211
executing 208-210
IPv4 range aggregation 211

range query/filter
about 156
executing 156, 157
from parameter 157
include_in_lower parameter 157
include_in_upper parameter 157
to parameter 157

readFrom method 418

Redis 260

red status, solving 15

refresh_interval parameter 99
regexp query/filter
about 172, 173
boost parameter 173
executing 172, 173
flags parameter 173
replication 13, 14
repositories
creating 302
deleting 303
managing 302
request parameters, cluster health
level 286
timeout 286
wait_for_nodes 287
wait_for_relocating_shards 286
wait_for_status 286
RequestsHttpConnection class 373
rescore functionality 126
rescore parameters
query_weight 127
rescore_query_weight 127
window_size 127
REST action
Client parameter 411
RestChannel parameter 411
RestController parameter 411
RestRequest parameter 411
Settings parameter 411
restoration process
ignore_unavailable parameter 309
include_global_state parameter 309
indices parameter 309
working 309
REST plugin
creating 408-412
testing 413
result document
_id field 122
_index field 122
_score field 122
_shards field 122
_type field 122
fields 122
highlight field 122

[a35 |-

www.it-ebooks.info

http://www.it-ebooks.info/

hits field 122
sort field 122
time_out field 122
took field 122
results
highlighting 131-133
sorting 128-131
return fields
computing, with scripting 245-247
river plugin
creating 425-433
rivers
about 257
advantages 258
consumer threads 260
CouchDB 262
creating 259
disadvantages 258
JDBC river 272
managing 258-261
MongoDB river 264
one shot usage 260
periodical usage 260
producer threads 260
RabbitMQ river 267
removing 259
Twitter river 278
URL 258
River Service 10
river system 258
Root object 58
Ruby 369

S

scan query
about 135
executing 133-136
scroll=(your timeout) parameter 136
search_type=scan parameter 136
scan search
executing 363-367
scoring decay distribution algorithms
exponential (exp) 177
Gaussian (gauss) 177

linear 177
ScriptFields helper 393
script filter 250
script_filter function
about 270
script_lang parameter 270
script parameter 270
script_params parameter 270
scripting
about 130
used, for computing return fields 245-247
used, for filtering search 248-250
used, for sorting data 241-243
scripts
managing 238-240
used, for updating document 251-253
scroll 363
scroll search
executing 363-367
search
executing 120-127
executing, with aggregations 359-363
filtering, via scripting 248-250
search engines
indexing 44
searching 44
SearchHit object
explanation() method 358
fields method 358
field(String name) method 358
id() method 358
index() method 358
score() method 358
shard() method 358
sortValues() method 358
sourceAsMap() method 358
sourceAsString() method 358
source() method 358
type() method 358
version() method 358
search object, helpers
AggregationFactory 393
Highlighter 393
ScriptFields 393
Sorted 393

—{ s}

www.it-ebooks.info

http://www.it-ebooks.info/

search, PyES
executing, with aggregations 390-392
secondary node 9
SemaText Cloud 323
SemaText SPM
about 322
installing 323
using 324
working 323
Sense
about 322
URL 322
Shard
URL 13
SingleCustomOperationRequest class 417
SingleShardOperationRequest class 417
site plugins
about 35, 396
creating 396, 397
Elastic HQ 35
ElasticSearch head 35
snapshot
executing 305-308
ignore_unavailable parameter 306
include_global_state parameter 306
indices parameter 306
restoring 308, 309
Sorted helper 393
sort parameter 129, 243
sort scripting
parameters 243
span_and query function 160
span_first function 160
span_multi query 160
span_near 161
span_or query 160
span queries
about 158
executing 158-161
in_order parameter 161
slop parameter 161
span_term query 160
Spatial4J) (v0.3) 69
StandardAnalyzer analyzer 147

standard search
addAggregation method 357
addFacet (Deprecated) method 357
addField(s) 357
addHighlighting method 357
addScriptField method 357
executing 355, 356, 357
setindices method 357
setQuery method 357
setTypes method 357
standard search, PyES
executing 385-389
statistical aggregators
avg 202
cardinality 203
extended_stats 203
geo_bounds 203
max 202
min 202
percentile_ranks 203
percentiles 203
stats 202
sum 202
value_count 202
stats aggregations
about 201
executing 201, 202
suggest APl 138

T

template query
about 190-192
embedded template query, executing 191
executing 191, 192
term filter
about 149
bool parameter 150
or parameter 150
plain (default) parameter 149
term query/filter
executing 144-147
terms aggregation
_term parameter 206

(a1}

www.it-ebooks.info

http://www.it-ebooks.info/

about 203, 206
controlling 206, 207
exclude parameter 205
executing 204, 205
field parameter 205
include parameter 205
min_doc_count () parameter 205
order parameter 205
size parameter 205
terms query/filter
boost parameter 149
disable_coord parameter 149
executing 148-151
minimum_match/minimum_should_match
parameter 149
term suggester 138
ThriftConnection class 373
Thrift ElasticSearch Plugin
URL 22
Thrift protocol
URL 22
using 21, 22
top_children query
about 168
executing 169, 170
factor parameter 170
incremental_factor parameter 170
query parameter 169
score parameter 169
type parameter 169
top hit aggregations
_source parameter 233
about 230
executing 231, 232
explain parameter 233
fielddata_fields parameter 233
highlighting parameter 233
version parameter 233
working 233
Transport action 419
transport client
client.transport.ignore_cluster_name 337
client.transport.nodes_sampler_interval 338
client.transport.ping_timeout 337

client.transport.sniff 337
creating 337
Twitter object
ignore_retweet parameter 280
oauth parameter 279
raw parameter 280
type parameter 280
Twitter river
about 278
installing 278
using 278, 279
working 279

U

UID 46
update REST call
advantages 114
update script
about 253
ctx.op parameter 253
ctx._source parameter 253
ctx._timestamp parameter 253
URI query parameters
analyzer 123
default_operator 123
df 123
explain 123
fields 123
from 123
pretty 124
q 123
search_type 124
size 123
sort 123
timeout 123
track_scores 124
Urllib3HttpConnection (default) class 373

w

wait_for_merge parameter 96
web2py 370
writeTo method 418

—{ 2}

www.it-ebooks.info

http://www.it-ebooks.info/

X

XContentBuilder.jsonBuilder object
about 343
field(name) method 343
field(name, value) method 343
startArray() method 343
startArray(name) method 343
startObject() method 343
startObject(name) method 343
value(value) method 343

Y

yellow status, solving 15

www.it-ebooks.info

(a9} —

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
ElasticSearch Cookbook

Second Edition

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Elasticsearch Server

Second Edition
ISBN: 978-1-78398-052-9 Paperback: 428 pages

A practical guide to building fast, scalable, and flexible
search solutions with clear and easy-to-understand
examples

e 1. Learn about the fascinating functionality of
Elasticsearch Server Elasticsearch such as data indexing, data
Second Edition analysis, and dynamic mapping.

2. Fine-tune Elasticsearch and understand its
metrics using its APl and available tools, and
see how it behaves in complex searches.

3. A hands-on tutorial that walks you through all the
features of Elasticsearch in an easy-to-understand
way, with examples that will help you become an
expert in no time.

Mastering ElasticSearch
ISBN: 978-1-78328-143-5 Paperback: 386 pages

Extend your knowledge on ElasticSearch, and querying
and data handling, along with its internal workings

1. Learn about Apache Lucene and ElasticSearch
design and architecture to fully understand how
this great search engine works.

Mastering ElasticSearch 2. Design, configure, and distribute your index,
coupled with a deep understanding of the
workings behind it.

querying and data

3. Learn about the advanced features in an
PACKT & easy-to-read book with detailed examples

that will help you understand and use the
sophisticated features of ElasticSearch.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Learning Neo4j
ISBN: 978-1-84951-716-4 Paperback: 222 pages

Run blazingly fast queries on complex graph datasets
with the power of the Neo4j graph database

1. Get acquainted with graph database systems and

apply them in real-world use cases.

2. Get started with Neo4j, a unique NoSQL database
system that focuses on tackling data complexity.

Learning Neo4j

3. Apractical guide filled with sample queries,
installation procedures, and useful pointers
to other information sources.

Extending Puppet
ISBN: 978-1-78398-144-1 Paperback: 328 pages

Design, manage, and deploy your Puppet architecture
with the help of real-world scenarios

1. Plan, test, and execute your Puppet deployments.

TR == 2. Write reusable and maintainable Puppet code.

Extending Puppet 3. Hangle challenges that might arise in upcoming
versions of Puppet.
' 4. Explore the Puppet ecosystem in-depth, through a
hands-on, example-driven approach.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Understanding nodes and clusters
	Understanding node services
	Managing your data
	Understanding clusters, replication,
and sharding
	Communicating with Elasticsearch
	Using the HTTP protocol
	Using the native protocol
	Using the Thrift protocol

	Chapter 2: Downloading and Setup
	Introduction
	Downloading and installing ElasticSearch
	Setting up networking
	Setting up a node
	Setting up for Linux systems
	Setting up different node types
	Installing plugins in ElasticSearch
	Installing a plugin manually
	Removing a plugin
	Changing logging settings

	Chapter 3: Managing Mapping
	Introduction
	Using explicit mapping creation
	Mapping base types
	Mapping arrays
	Mapping an object
	Mapping a document
	Using dynamic templates in document mapping
	Managing nested objects
	Managing a child document
	Adding a field with multiple mappings
	Mapping a geo point field
	Mapping a geo shape field
	Mapping an IP field
	Mapping an attachment field
	Adding metadata to a mapping
	Specifying a different analyzer
	Mapping a completion suggester

	Chapter 4: Basic Operations
	Introduction
	Creating an Index
	Deleting an index
	Opening/closing an index
	Putting a mapping in an index
	Getting a mapping
	Deleting a mapping
	Refreshing an index
	Flushing an index
	Optimizing an index
	Checking if an index or type exists
	Managing index settings
	Using index aliases
	Indexing a document
	Getting a document
	Deleting a document
	Updating a document
	Speeding up atomic operations
(bulk operations)
	Speeding up GET operations (multi GET)

	Chapter 5: Search, Queries,
and Filters
	Introduction
	Executing a search
	Sorting results
	Highlighting results
	Executing a scan query
	Suggesting a correct query
	Counting matched results
	Deleting by query
	Matching all the documents
	Querying/filtering for a single term
	Querying/filtering for multiple terms
	Using a prefix query/filter
	Using a Boolean query/filter
	Using a range query/filter
	Using span queries
	Using match query
	Using an ID query/filter
	Using a has_child query/filter
	Using top_children query
	Using a has_parent query/filter
	Using a regexp query/filter
	Using a function score query
	Using exists and missing filters
	Using and/or/not filters
	Using a geo bounding box filter
	Using a geo polygon filter
	Using geo distance filter
	Using a QueryString query
	Using a template query

	Chapter 6: Aggregations
	Introduction
	Executing an aggregation
	Executing the stats aggregations
	Executing the terms aggregation
	Executing the range aggregations
	Executing the histogram aggregations
	Executing the date histogram aggregation
	Executing the filter aggregation
	Executing the global aggregation
	Executing the geo distance aggregations
	Executing nested aggregations
	Executing the top hit aggregations

	Chapter 7: Scripting
	Introduction
	Installing additional script plugins
	Managing scripts
	Sorting data using script
	Computing return fields with scripting
	Filtering a search via scripting
	Updating a document using scripts

	Chapter 8: Rivers
	Introduction
	Managing a river
	Using the CouchDB river
	Using the MongoDB river
	Using the RabbitMQ river
	Using the JDBC river
	Using the Twitter river

	Chapter 9: Cluster and Node Monitoring
	Introduction
	Controlling cluster health via the API
	Controlling cluster state via the API
	Getting cluster node information via
the API
	Getting node statistics via the API
	Managing repositories
	Executing a snapshot
	Restoring a snapshot
	Installing and using BigDesk
	Installing and using ElasticSearch Head
	Installing and using SemaText SPM
	Installing and using Marvel

	Chapter 10: Java Integration
	Introduction
	Creating a HTTP client
	Creating a native client
	Managing indices with the native client
	Managing mappings
	Managing documents
	Managing bulk action
	Building a query
	Executing a standard search
	Executing a search with aggregations
	Executing a scroll/scan search

	Chapter 11: Python Integration
	Introduction
	Creating a client
	Managing indices
	Managing mappings
	Managing documents
	Executing a standard search
	Executing a search with aggregations

	Chapter 12: Plugin Development
	Introduction
	Creating a site plugin
	Creating a native plugin
	Creating a REST plugin
	Creating a cluster action
	Creating an analyzer plugin
	Creating a river plugin

	Index

