
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Apache	Solr	Essentials

www.it-ebooks.info

http://www.it-ebooks.info/

Table	of	Contents

Apache	Solr	Essentials

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Get	Me	Up	and	Running

Installing	a	standalone	Solr	instance

Prerequisites

Downloading	the	right	version

Setting	up	and	running	the	server

Setting	up	a	Solr	development	environment

Prerequisites

Importing	the	sample	project	of	this	chapter

Understanding	the	project	structure

www.it-ebooks.info

http://www.it-ebooks.info/

Different	ways	to	run	Solr

Background	server

Integration	test	server

What	do	we	have	installed?

Solr	home

solr.xml

schema.xml

solrconfig.xml

Other	resources

Troubleshooting

UnsupportedClassVersionError

The	“Failed	to	read	artifact	descriptor”	message

Summary

2.	Indexing	Your	Data

Understanding	the	Solr	data	model

The	document

The	inverted	index

The	Solr	core

The	Solr	schema

Field	types

The	text	analysis	process

Char	filters

Tokenizers

Token	filters

Putting	it	all	together

Some	example	field	types

String

Numbers

Boolean

Date

Text

www.it-ebooks.info

http://www.it-ebooks.info/

Other	types

Fields

Static	fields

Dynamic	fields

Copy	fields

Other	schema	sections

Unique	key

Default	similarity

Solr	indexing	configuration

General	settings

Index	configuration

Update	handler	and	autocommit	feature

RequestHandler

UpdateRequestProcessor

Index	operations

Add

Sending	add	commands

Delete

Commit,	optimize,	and	rollback

Extending	and	customizing	the	index	process

Changing	the	stored	value	of	fields

Indexing	custom	data

Troubleshooting

Multivalued	fields	and	the	copyField	directive

The	copyField	input	value

Required	fields	and	the	copyField	directive

Stored	text	is	immutable!

Data	not	indexed

Summary

3.	Searching	Your	Data

The	sample	project

www.it-ebooks.info

http://www.it-ebooks.info/

Querying

Search-related	configuration

Query	analyzers

Common	query	parameters

Field	lists

Filter	queries

Query	parsers

The	Solr	query	parser

Terms,	fields,	and	operators

Boosts

Wildcards

Fuzzy

Proximity

Ranges

The	Disjunction	Maximum	query	parser

Query	Fields

Alternative	query

Minimum	should	match

Phrase	fields

Query	phrase	slop

Phrase	slop

Boost	queries

Additive	boost	functions

Tie	breaker

The	Extended	Disjunction	Maximum	query	parser

Fielded	search

Phrase	bigram	and	trigram	fields

Phrase	bigram	and	trigram	slop

Multiplicative	boost	function

User	fields

Lowercase	operators

www.it-ebooks.info

http://www.it-ebooks.info/

Other	available	parsers

Search	components

Query

Facet

Facet	queries

Facet	fields

Facet	ranges

Pivot	facets

Interval	facets

Highlighting

Standard	highlighter

Fast	vector	highlighter

Postings	highlighter

More	like	this

Other	components

Search	handler

Standard	request	handler

Search	components

Query	parameters

RealTimeGetHandler

Response	output	writers

Extending	Solr

Mixing	real-time	and	indexed	data

Using	a	custom	response	writer

Troubleshooting

Queries	don’t	match	expected	documents

Mismatch	between	index	and	query	analyzer

No	score	is	returned	in	response

Summary

4.	Client	API

Solrj

www.it-ebooks.info

http://www.it-ebooks.info/

SolrServer	–	the	Solr	façade

Input	and	output	data	transfer	objects

Adds	and	deletes

Search

Other	bindings

Summary

5.	Administering	and	Tuning	Solr

Dashboard

Physical	and	JVM	memory

Disk	usage

File	descriptors

Logging

Core	Admin

Java	properties	and	thread	dump

Core	overview

Caches

Cache	life	cycles

Cache	sizing

Cached	object	life	cycle

Cache	stats

Types	of	cache

Filter	cache

Query	Result	cache

Document	cache

Field	value	cache

Custom	cache

Query	handlers

Update	handlers

JMX

Summary

6.	Deployment	Scenarios

www.it-ebooks.info

http://www.it-ebooks.info/

Standalone	instance

Shards

Master/slaves	scenario

Shards	with	replication

SolrCloud

Cluster	management

Replication	factor,	leaders,	and	replicas

Durability	and	recovery

The	new	terminology

Administration	console

Collections	API

Distributed	search

Cluster-aware	index

Summary

7.	Solr	Extensions

DataImportHandler

Data	sources

Documents,	entities,	and	fields

Transformers

Entity	processors

Event	listeners

Content	Extraction	Library

Language	Identifier

Rapid	prototyping	with	Solaritas

Other	extensions

Clustering

UIMA	Metadata	Extraction	Library

MapReduce

Summary

8.	Contributing	to	Solr

Identifying	your	needs

www.it-ebooks.info

http://www.it-ebooks.info/

An	example	–	SOLR-3191

Subscribing	to	mailing	lists

Signing	up	on	JIRA

Setting	up	the	development	environment

Version	control

Code	style

Checking	out	the	code

Creating	the	project	in	your	IDE

Making	your	changes

Creating	and	submitting	a	patch

Other	ways	to	contribute

Documentation

Mailing	list	moderator

Summary

Index

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Apache	Solr	Essentials

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Apache	Solr	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1210215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-964-1

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Credits
Author

Andrea	Gazzarini

Reviewers

Ahmad	Maher	Abdelwhab

Markus	Klose

Julian	Lam

Puneet	Singh	Ludu

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Larissa	Pinto

Content	Development	Editor

Kirti	Patil

Technical	Editor

Ankur	Ghiye

Copy	Editor

Vikrant	Phadke

Project	Coordinator

Nidhi	J.	Joshi

Proofreaders

Stephen	Copestake

Maria	Gould

Bernadette	Watkins

Indexer

Priya	Sane

Graphics

Abhinash	Sahu

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

www.it-ebooks.info

http://www.it-ebooks.info/

Shantanu	N.	Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Author
Andrea	Gazzarini	is	a	software	engineer.	He	has	mainly	focused	on	the	Java	technology.
Although	often	involved	in	analysis	and	design,	he	strongly	loves	coding	and	definitely
likes	to	be	considered	a	developer.

Andrea	has	more	than	15	years	of	experience	in	various	software	branches,	from	telecom
to	banking	software.	He	has	worked	for	several	medium-	and	large-scale	companies,	such
as	IBM	and	Orga	Systems.

Andrea	has	several	certifications	in	the	Java	programming	language	(programmer,
developer,	web	component	developer,	business	component	developer,	and	JEE	architect),
BEA	products	(build	and	portal	solutions),	and	Apache	Solr	(Lucid	Apache	Solr/Lucene
Certified	Developer).

In	2009,	Andrea	stepped	into	the	wonderful	world	of	open	source	projects,	and	in	the	same
year,	he	became	a	committer	for	the	Apache	Qpid	project.	His	adventure	with	Solr	began
in	2010,	when	he	joined	@Cult,	an	Italian	company	that	mainly	focuses	its	projects	on
library	management	systems,	online	access	public	catalogs,	and	linked	data.

He’s	currently	involved	in	several	(too	many!)	projects,	always	thinking	about	a	“big”	idea
that	will	change	his	(developer)	life.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments
I’d	like	to	begin	by	thanking	the	people	who	made	this	book	what	it	is.	Writing	a	book	is
not	a	single	person’s	work,	and	help	from	experienced	people	that	guide	you	along	the
path	is	crucial.	Many	thanks	to	Larissa,	Kirti,	Ankur,	and	Vikrant	for	supporting	me	in	this
process.

I	am	also	grateful	to	the	technical	reviewers	of	the	book,	Ahmad	Maher	Abdelwhab,
Markus	Klose,	Puneet	Singh	Ludu,	and	Julian	Lam,	for	carefully	reading	my	drafts	and
spotting	(hopefully)	most	of	my	mistakes.	This	book	would	not	have	been	so	good	without
their	help	and	input.

In	general,	I	want	to	thank	everyone	who	directly	or	indirectly	helped	me	in	creating	this
book,	except	for	a	long-sighted	teacher	who	once	told	me	when	I	was	in	university,	“Hey,
guy	with	all	those	earrings!	You	won’t	go	anywhere!”

Finally,	a	special	thought	to	my	family;	to	my	girls,	the	actual	supporters	of	the	book;	my
wonderful	wife,	Nicoletta	(to	whom	I	promise	not	to	write	another	book),	my	pride	and
joy,	Sofia	and	Caterina,	and	my	first	actual	teacher—my	mom,	Lina.	They	are	the	people
who	really	made	sacrifices	while	I	was	writing	and	who	definitely	deserve	the	credits	for
the	book.

Once	again,	thank	you!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Reviewers
Ahmad	Maher	Abdelwhab	is	currently	working	at	Knowledgeware	Technologies	as	an
open	source	developer.	He	has	over	10	years	of	experience,	with	special	development
skills	in	PHP,	Drupal	,	Perl,	Ruby	On	Rails	,	Java,	XML,	XSL,	MySQL,	PostgreSQL,
MongoDB,	SQL,	and	Linux.	He	graduated	in	computer	science	from	Mansoura	University
in	2005.

I	would	like	to	thank	my	father,	mother,	and	sincere	wife	for	their	continuous	support
while	reviewing	this	book.

Markus	Klose	is	a	search	and	big	data	consultant	at	SHI	GmbH	&	Co.KG	in	Germany.
He	is	in	charge	of	project	management	and	supervision,	project	analysis,	and	delivering
consulting	and	training	services.

Most	of	Markus’	daily	business	is	related	to	Apache	Solr,	Elasticsearch,	and	Fast	ESP.	He
travels	across	Germany,	Switzerland,	and	Austria	to	provide	his	services	and	knowledge.

On	a	regular	basis,	you	can	find	him	at	meets,	user	groups,	or	conferences	such	as	Berlin
Buzzword	oder	Solr	Revolution,	where	he	speaks	about	Apache	Solr.

Besides	search-related	training	and	consulting,	he	is	currently	establishing	additional	areas
of	work.	He	uses	tools	such	as	Logstash	and	Kibana	to	fulfill	customer	requirements	in
monitoring	and	analytics.

Thanks	to	the	experience	gained	from	his	daily	work,	Markus	wrote	the	first	German	book
on	Apache	Solr	(Einführung	in	Apache	Solr)	with	his	colleague,	Daniel	Wrigley.	It	was
published	by	O’Reilly	in	February	2014.

Besides	writing,	Markus	spends	a	lot	of	his	free	time	using	his	knowledge	and
programming	skills	to	work	on	and	contribute	to	open	source	projects	such	as	Latin
stemmer	and	number	converter	for	Solr	(https://issues.apache.org/jira/browse/LUCENE-
4229)	and	SolrAppender	for	log4j	2	(https://issues.apache.org/jira/browse/LOG4J2-618)	.

Julian	Lam	is	a	cofounder	and	core	maintainer	of	NodeBB,	a	type	of	free	and	open
source	forum	software	built	upon	modern	web	tools,	such	as	Node.js	and	Redis.	He	has
spoken	several	times	on	topics	related	to	Javascript	in	the	workplace	and	best	practices	for
hiring.	Julian	is	an	advocate	of	client-side	rendering,	which	can	be	used	to	build	highly
performant	web	applications.

www.it-ebooks.info

https://issues.apache.org/jira/browse/LUCENE-4229
https://issues.apache.org/jira/browse/LOG4J2-618
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

Hi	Dad,	when	you	bought	me	my	first	computer,	you	had	no	idea	what	was	coming
next…

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
As	you	may	have	guessed	from	the	title,	this	is	a	book	about	Apache	Solr—specifically
about	Solr	essentials.	What	do	I	mean	by	essentials?	Nice	question!	Such	a	term	can	be
seen	from	so	many	perspectives.	Solr,	mainly	from	2010	onwards,	witnessed	exponential
growth	in	terms	of	popularity,	stakeholders,	community,	and	the	capabilities	it	offers.	This
rapid	growth	reflects	the	rich	portfolio	of	the	things	that	have	been	developed	in	these
years	and	are	nowadays	available.	So,	strictly	speaking,	it’s	not	so	easy	to	define	the
“essentials”	of	Solr.

The	perspective	that	I	will	use	to	explain	the	term	“essentials”	is	quite	simple	and
pragmatic.	I	will	describe	the	building	blocks	of	Apache	Solr,	and	at	the	same	time,	I	will
try	to	put	my	personal	experience	on	those	topics.	In	recent	years,	I’ve	worked	with	Solr
in	several	projects.	As	a	user,	I	had	to	learn	how	to	install,	configure,	tune,	troubleshoot,
and	monitor	Solr.	As	a	developer,	things	were	different	for	me.	If	you’re	working	in	the	IT
domain	and	you’re	reading	this	book	(I	guess	you	are),	you	probably	know	that	each	time
you	try	to	implement	a	solution,	there’s	something	in	the	project	that	a	specific	tool
doesn’t	cover.	So,	after	spending	a	lot	of	time	analyzing,	reading	documentation,	searching
on	the	Internet,	reading	Wikis,	and	so	on,	you	realize	that	you	need	to	add	a	custom	piece
of	code	somewhere.	That’s	because	“the	product	covers	the	99.9999	percent	of	the
possible	scenarios	but…”	For	this	specific	case,	if	this	happens	or	that	happens,	you
always	fall	under	that	0.0001	percent.	I	don’t	know	about	you,	but	for	me,	this	has	always
been	so.	No	matter	what	the	project,	the	company,	or	the	team	is,	this	has	been	an	implicit
constant	of	every	project,	always.

That’s	the	reason	I	will	try	as	much	as	possible	to	explain	things	throughout	the	book
using	real-world	examples	directly	coming	from	my	personal	experience.	I	hope	this
additional	perspective	will	be	useful	for	better	understanding	of	what	is	considered	the
most	popular	open	source	search	platform.

www.it-ebooks.info

http://www.it-ebooks.info/

What	this	book	covers
Chapter	1,	Get	Me	Up	and	Running,	introduces	the	basic	concepts	of	Solr	and	it	provides
you	with	all	the	necessary	steps	to	quickly	get	it	up	and	running.

Chapter	2,	Indexing	Your	Data,	begins	our	first	detailed	discussion	on	Solr.	In	this	chapter,
we	look	at	the	data	indexing	process	and	see	how	it	can	be	configured,	tuned,	and
customized.	This	is	also	where	we	encounter	the	first	line	of	code.

Chapter	3,	Searching	Your	Data,	explores	the	other	specular	side	of	Solr.	First,	we	stored
our	data;	now	we	explore	all	that	Solr	offers	in	terms	of	search	services.

Chapter	4,	Client	API,	covers	client-side	usage	of	Solr	libraries,	providing	a	description	of
the	main	use	cases	from	a	client’s	perspective.

Chapter	5,	Administering	and	Tuning	Solr,	takes	you	through	the	available	tools	for
configuring,	managing,	and	tuning	Solr.

Chapter	6,	Deployment	Scenarios,	illustrates	the	various	ways	in	which	you	can	deploy
Solr,	from	a	standalone	instance	to	a	distributed	cluster.

Chapter	7,	Solr	Extensions,	describes	several	available	Solr	extensions	and	how	they	can
be	useful	in	solving	common	concrete	use	cases.

Chapter	8,	Contributing	to	Solr,	explains	the	wonderful	world	of	open	source	software	by
illustrating	the	compounding	pieces	of	the	process	of	participation	and	contribution.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

What	you	need	for	this	book
In	order	to	be	able	to	run	the	code	examples	in	the	book,	you	will	need	the	Java
Development	Kit	(JDK)	1.7	and	Apache	Maven.

Alternatively,	you	will	need	an	Integrated	Development	Environment	(IDE).	Eclipse	is
strongly	recommended	as	it	is	the	same	environment	I	used	to	capture	the	screenshots.
However,	even	if	you	want	to	use	another	IDE,	the	steps	should	be	quite	similar.

The	difference	between	the	two	alternatives	mainly	resides	in	the	role	that	you	want	to
assume	during	the	reading.	While	you	may	want	to	only	start	and	execute	the	examples	as
a	user,	you	would	surely	want	to	see	the	working	code	in	a	usable	environment	as	a
developer.	That’s	the	reason	an	IDE	is	strongly	recommended	in	the	second	case.

The	first	chapter	will	provide	the	instructions	necessary	for	installing	all	that	you’ll	need
through	the	book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Who	this	book	is	for
This	book	is	targeted	at	people—users	and	developers—who	are	new	to	Apache	Solr	or
are	experienced	with	a	similar	product.	The	book	will	gradually	help	you	to	understand	the
focal	concepts	of	Solr	with	the	help	of	practical	tips	and	real-world	use	cases.	Although	all
the	examples	associated	with	the	book	can	be	executed	with	a	few	simple	commands,	a
familiarity	with	the	Java	programming	language	is	required	for	a	good	understanding.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	explanations	of	their
meanings.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Each
folder	has	a	subfolder	called	conf	where	the	configuration	for	that	specific	core	resides.”

A	block	of	code	is	set	as	follows:

{

		{	"id":	1,	"title":"The	Birthday	Concert"	},

		{	"id":	2,	"title":"Live	in	Italy"	},

		{	"id":	3,	"title":"Live	in	Paderborn"	},

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

<filter	class="solr.LowerCaseFilterFactory"/>

<filter	class="solr.StopFilterFactory"	words="stopwords.txt"	

ignoreCase="true"/>

Any	command-line	input	or	output	is	written	as	follows:

#	mvn	cargo:run	–P	fieldAnalysis

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Choose	a	field	type	or
a	field.	Then	press	the	Analyse	Values	button.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

Alternatively,	you	can	also	download	the	examples	from	GitHub,	on
https://github.com/agazzarini/apache-solr-essentials.	There,	you	can	download	the	whole
content	as	a	zip	file	from	https://github.com/agazzarini/apache-solr-
essentials/archive/master.zip	or,	if	you	have	git	installed	on	your	machine,	you	can	clone
the	repository	by	issuing	the	following	command:

#	git	clone	

https://github.com/agazzarini/apache-solr-essentials.git

	<path-to-your-work-dir>

Where,	<path-to-your-work-dir>	is	the	destination	folder	where	the	project	will	be
cloned.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/agazzarini/apache-solr-essentials
https://github.com/agazzarini/apache-solr-essentials/archive/master.zip
http://www.it-ebooks.info/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	1.	Get	Me	Up	and	Running
This	chapter	describes	how	to	install	Solr	and	focuses	on	all	the	required	steps	to	get	a
complete	study	and	development	environment	that	will	guide	us	through	the	book.

Specifically,	according	to	the	double	perspective	previously	described,	I	will	illustrate	two
kinds	of	installations.	The	first	is	the	installation	of	a	standalone	Solr	instance	(this	is	very
quick).	This	is	a	simple	task	because	the	download	bundle	is	preconfigured	with	all	that
you	need	to	get	your	first	taste	of	the	product.	As	a	developer,	the	second	perspective	is
what	I	really	need	every	day	in	my	ordinary	job—a	working	integrated	development
environment	where	I	can	run	and	debug	Solr	with	my	configurations	and	customizations,
without	having	to	manage	an	external	server.	In	general,	such	an	environment	will	have	all
that	I	need	in	one	place	for	developing,	debugging,	and	running	unit	and	integration	tests.

By	the	end	of	the	chapter,	you	will	have	a	running	Solr	instance	on	your	machine,	a	ready-
to-use	Integrated	Development	Environment	(IDE),	and	a	good	understanding	of	some
basic	concepts.

This	chapter	will	cover	the	following	topics:

Installation	of	a	simple,	standalone	Solr	instance	from	scratch
Setting	up	of	an	Integrated	Development	Environment
A	quick	overview	about	what	we	installed
Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	a	standalone	Solr	instance
Solr	is	available	for	download	as	an	archive	that,	once	uncompressed,	contains	a	fully
working	instance	within	a	Jetty	servlet	engine.	So	the	steps	here	should	be	pretty	easy.

www.it-ebooks.info

http://www.it-ebooks.info/

Prerequisites
In	this	section,	we	will	describe	a	couple	of	prerequisites	for	the	machine	where	Solr
needs	to	be	installed.

First	of	all,	Java	6	or	7	is	required:	the	exact	choice	depends	on	which	version	of	Solr	you
want	to	install.	In	general,	regardless	of	the	version,	make	sure	you	have	the	latest	update
of	your	Java	Virtual	Machine	(JVM).	The	following	table	describes	the	association
between	the	latest	Solr	and	Java	versions:

Solr	version Java	version

4.7.x Java	6	or	greater

4.8.x Java	7	(update	55)	or	greater;	Java	8	is	verified	to	be	compatible

4.9.x Java	7	(update	55)	or	greater;	Java	8	is	verified	to	be	compatible

4.10.x Java	7	(update	55)	or	greater

Java	can	be	downloaded	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Other	factors	such	as	CPU,	RAM,	and	disk	space	strongly	depend	on	what	you	are	going
to	do	with	this	Solr	installation.	Nowadays,	it	shouldn’t	be	hard	to	have	a	couple	of	GB
available	on	your	workstation.	However,	bear	in	mind	that	at	this	moment	I’m	playing	on
Solr	4.9.0	installed	on	a	Raspberry	PI	(its	RAM	is	512	MB).	I	gave	Solr	a	maximum	heap
(-Xmx)	of	256	MB,	indexed	about	500	documents,	and	executed	some	queries	without	any
problem.	But	again,	those	factors	really	depend	on	what	you	want	to	do:	we	could	say	that,
assuming	you’re	using	a	modern	PC	for	a	study	instance,	hardware	resources	shouldn’t	be
a	problem.

Instead,	if	you	are	planning	a	Solr	installation	in	a	test	or	in	a	production	environment,	you
can	find	a	useful	spreadsheet	at	https://svn.apache.org/repos/asf/lucene/dev/trunk/dev-
tools/size-estimator-lucene-solr.xls.

Although	it	cannot	encompass	all	the	peculiarities	of	your	environment,	it	is	definitely	a
good	starting	point	for	RAM	and	disk	space	estimation.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://svn.apache.org/repos/asf/lucene/dev/trunk/dev-tools/size-estimator-lucene-solr.xls
http://www.it-ebooks.info/

Downloading	the	right	version
The	latest	version	of	Solr	at	the	time	of	writing	is	4.10.3,	but	a	lot	of	things	we	will
discuss	in	the	book	are	valid	for	previous	versions	as	well.

You	might	already	have	Solr	somewhere	and	might	not	want	to	redownload	another
instance,	your	customer	might	already	have	a	previous	version,	or,	in	general,	you	might
not	want	the	latest	version.	Therefore,	I	will	try	to	refer	to	several	versions	in	the	book—
from	4.7.x	to	4.10.x—as	often	as	possible.	Each	time	a	feature	is	described,	I	will	indicate
the	version	where	it	appeared	first.

The	download	bundle	is	usually	available	as	a	tgz	or	zip	archive.	You	can	find	that	at
https://lucene.apache.org/solr/downloads.html.

www.it-ebooks.info

https://lucene.apache.org/solr/downloads.html
http://www.it-ebooks.info/

Setting	up	and	running	the	server
Once	the	Solr	bundle	has	been	downloaded,	extract	it	in	a	folder.	We	will	refer	to	that
folder	as	$INSTALL_DIR.	Type	the	following	command	to	extract	the	Solr	bundle:

#	tar	-xvf	$DOWNLOAD_DIR/solr-x.y.z.tar.gz	-C	$INSTALL_DIR

or

#	unzip	$DOWNLOAD_DIR/solr-x.y.z.zip	-d	$INSTALL_DIR

depending	on	the	format	of	the	bundle.

At	the	end,	you	will	find	a	new	solr-x.y.z	folder	in	your	$INSTALL_DIR	folder.	This
folder	will	act	as	a	container	for	all	Solr	instances	you	may	want	to	play	with.	Here	is	a
screenshot	of	the	solr-x.y.z	folder	on	my	machine,	where	you	can	see	I	have	three	Solr
versions:

The	solr-x.y.z	directory	contains	Jetty,	a	fast	and	small	servlet	engine,	with	Solr	already
deployed	inside.	So,	in	order	to	start	Solr,	we	need	to	start	Jetty.	Open	a	new	shell	and	type

www.it-ebooks.info

http://www.it-ebooks.info/

the	following	commands:

#	cd	$INSTALL_DIR/solr-x.y.z/example

#	java	-jar	start.jar

You	should	see	a	lot	of	log	messages	ending	with	something	like	this:

...

[INFO]		org.eclipse.jetty.server.AbstractConnector		–	Started	

SocketConnector@0.0.0.0:8983

...

[INFO]	org.apache.solr.core.SolrCore		–	[collection1]	Registered	new	

searcher	Searcher@66b664d7[collection1]	

main{StandardDirectoryReader(segments_2:3:nrt	_0(4.9):C32)}

These	messages	tell	you	Solr	is	up-and-running!	Open	a	web	browser	and	type
http://127.0.0.1:8983/solr.

You	should	see	the	following	page:

This	is	the	Solr	administration	console.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	a	Solr	development
environment
This	section	will	guide	you	through	the	necessary	steps	to	have	a	working	development
environment	that	allows	you	to	have	a	place	to	write	and	execute	your	code	or
configurations	against	a	running	and	debuggable	Solr	instance.

If	you	aren’t	interested	in	such	a	perspective	because,	for	instance,	your	usage	scenario
falls	within	the	previous	section,	you	can	safely	skip	this	and	proceed	with	the	next
section.

The	source	code	included	with	this	book	contains	a	ready-to-use	project	for	this	section.	I
will	later	explain	how	to	get	it	into	your	workspace	in	one	shot.

www.it-ebooks.info

http://www.it-ebooks.info/

Prerequisites
The	development	workstation	needs	to	have	some	software.	As	you	can	see,	I	kept	the	list
small	and	minimal.

Firstly,	you	need	the	Java	Development	Kit	7	(JDK),	of	which	I	recommend	the	latest
update,	although	the	older	version	of	Solr	covered	by	this	book	(4.7.x)	is	able	to	run	with
Java	6.	Java	7	is	supported	from	4.7.x	to	4.10.x,	so	it	is	definitely	a	recommended	choice.

Lastly,	we	need	an	IDE.	Specifically,	I	will	use	Eclipse	to	illustrate	and	describe	the
developer	perspective,	so	you	should	download	a	recent	JSE	version	(that	is,	Eclipse	IDE
for	Java	Developers)	from	https://www.eclipse.org/downloads.

Note
Do	not	download	the	EE	version	of	Eclipse	because	it	contains	a	lot	of	things	we	don’t
need	in	this	book.

Starting	from	Eclipse	Juno,	all	the	required	plugins	are	already	included.	However,	if	you
love	an	older	version	of	Eclipse	(such	as	Indigo)	like	I	do,	then	Maven	integration	for
Eclipse—also	known	as	M2Eclipse	(M2E)—needs	to	be	installed.	You	can	find	this	in	the
Eclipse	marketplace	(go	to	Help	|	Eclipse	Marketplace,	then	search	for	m2e,	and	click	on
the	Install	button).

www.it-ebooks.info

https://www.eclipse.org/downloads
http://www.it-ebooks.info/

Importing	the	sample	project	of	this	chapter
It’s	time	to	see	some	code,	in	order	to	touch	things	with	your	hands.	We	will	guide	you
through	the	necessary	steps	to	have	your	Eclipse	configured	with	a	sample	project,	where
you	will	be	able	to	start,	stop,	and	debug	Solr	with	your	code.

First,	you	have	to	import	to	Eclipse	the	sample	project	in	your	local	ch1	folder.	I	assume
you	already	got	the	source	code	from	the	publisher’s	website	or	from	Github,	as	described
in	the	Preface.	Open	Eclipse,	create	a	new	workspace,	and	go	to	File	|	Import	|	Maven	|
Existing	Maven	Projects.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

Alternatively,	you	can	also	download	the	examples	from	GitHub,	on
https://github.com/agazzarini/apache-solr-essentials.	There,	you	can	download	the	whole
content	as	a	zip	file	from	https://github.com/agazzarini/apache-solr-
essentials/archive/master.zip	or,	if	you	have	git	installed	on	your	machine,	you	can	clone
the	repository	by	issuing	the	following	command:

#	git	clone	https://github.com/agazzarini/apache-solr-essentials.git	<path-

to-your-work-dir>

Where	<path-to-your-work-dir>	is	the	destination	folder	where	the	project	will	be
cloned.

In	the	dialog	box	that	appears,	select	the	ch1	folder	and	click	on	the	Finish	button.	Eclipse
will	detect	the	Maven	layout	of	that	folder	and	will	create	a	new	project	on	your
workspace,	as	illustrated	in	the	following	screenshot	(Project	Explorer	view):

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/agazzarini/apache-solr-essentials
https://github.com/agazzarini/apache-solr-essentials/archive/master.zip
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding	the	project	structure
The	project	you’ve	imported	is	very	simple	and	contains	just	few	lines	of	code,	but	it	is
useful	for	introducing	some	common	concepts	that	will	guide	us	through	the	book	(the
other	chapters	use	examples	with	a	similar	structure).

The	following	table	shows	the	structure	of	the	project:

Folder	or	File Description

src/main/java

The	main	source	folder.	It	is	empty	at	the	moment,	but	it	will	contain	the	Solr	extensions	(and
dependent	classes)	you	want	to	implement.	You	won’t	find	this	directory	in	this	first	project
because	we	don’t	have	the	source	files	yet.

src/main/resources
This	contains	project	resources	such	as	properties	and	configuration	files.	You	won’t	find	this
directory	in	this	first	project	because	we	don’t	have	any	resources	yet.

src/test/java
This	source	folder	contains	Unit	and	Integration	tests.	For	this	first	project,	you	will	find	a	single
integration	test	here.

src/test/resources
This	contains	test	resources	such	as	properties	and	configuration	files.	It	includes	a	sample
logging	configuration	(log4j.xml).

src/dev/eclipse Preconfigured	Eclipse	launchers	used	to	run	Solr	and	the	examples	in	the	project.

src/solr-home This	contains	the	Solr	configuration	files.	We	will	describe	the	content	of	this	directory	later.

pom.xml
This	is	the	Maven	Project	definition.	Here,	you	can	configure	any	feature	of	your	project,
including	dependencies,	properties,	and	so	on.

Within	the	Maven	project	definition	(that	is,	pom.xml),	you	can	do	a	lot	of	things.	For	our
purposes	right	now,	it	is	important	to	underline	the	plugin	section,	where	you	can	see	the
Maven	Cargo	Plugin	(http://cargo.codehaus.org/Maven2+plugin)	configured	to	run	an
embedded	Jetty	7	container	and	deploy	Solr.	Here’s	a	screenshot	that	shows	the	Cargo
Plugin	configuration	section:

www.it-ebooks.info

http://cargo.codehaus.org/Maven2+plugin
http://www.it-ebooks.info/

If	you	have	the	Build	automatically	flag	set	(the	default	behavior	in	Eclipse),	most
probably	Eclipse	has	already	downloaded	all	the	required	dependencies.	This	is	one	of	the
great	things	about	Apache	Maven.

So,	assuming	that	you	have	no	errors,	it’s	now	time	to	start	Solr.	But	where	is	Solr?

The	first	question	that	probably	comes	to	mind	is:	“I	didn’t	download	Solr!	Where	is	it?”
The	answer	is	still	Apache	Maven,	which	is	definitely	a	great	open	source	tool	for
software	management	and	something	that	simplifies	your	life.

Maven	is	already	included	in	your	Eclipse	(by	means	of	the	m2e	plugin),	and	the	project
you	previously	imported	is	a	fully	compliant	Maven	project.

So	don’t	worry!	When	we	start	a	Maven	build,	Solr	will	be	downloaded	automatically.	But
where?	In	your	local	Maven	repository,	and	you	don’t	need	to	concern	yourself	with	that.

Note
Within	the	pom.xml	file,	you	will	find	a	property,	<solr.version>,	with	a	specific	value.
If	you	want	to	use	a	different	version,	just	change	the	value	of	this	property.

www.it-ebooks.info

http://www.it-ebooks.info/

Different	ways	to	run	Solr
It’s	time	to	start	Solr	in	your	IDE	for	the	first	time	but,	prior	to	that,	it’s	important	to
distinguish	the	two	ways	to	run	Solr:

Background	server:	As	a	background	server,	so	that	you	can	start	and	stop	Solr	for
debugging	purposes
Integration	test	server:	As	an	integration	test	server	so	that	you	can	have	a
dedicated	Solr	instance	to	run	your	integration	tests	suite

Background	server
The	first	thing	you	will	need	in	your	IDE	is	a	server	instance	that	you	can	start,	stop,	and
(in	general)	manage	with	a	few	simple	commands.

In	this	way,	you	will	be	able	to	have	Solr	running	with	your	configurations.	You	can	index
your	data	and	execute	queries	in	order	to	(manually)	ensure	that	things	are	working	as
expected.

To	get	this	type	of	server,	follow	these	instructions:

1.	 Right-click	on	the	project	and	create	a	new	Maven	(Debug)	launch	configuration
(Debug	As	|	Maven	build…).

2.	 In	the	dialog,	type	cargo:run	in	the	Goals	text	field.
3.	 Next,	click	on	the	Debug	button	as	shown	in	the	following	screenshot:

The	very	first	time	you	run	this	command,	Maven	will	download	all	the	required
dependencies	and	plugins,	including	Solr.	At	the	end,	it	will	start	an	embedded	Jetty
instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Note
Why	a	Debug	instead	of	a	Run	configuration?

You	must	use	a	Debug	configuration	so	that	you	will	be	able	to	stop	the	server	by	simply
pressing	the	red	button	on	the	Eclipse	console.	Run	configurations	have	an	annoying
habit:	Eclipse	will	say	the	process	is	stopped,	but	Jetty	will	be	still	running,	often	leaving
an	orphan	process.

You	should	see	the	following	output	in	the	Eclipse	console:

[INFO]	--

[INFO]	Building	Chapter	1	Project	1.0

[INFO]	--

Downloading:	http://repo1.maven.org/maven2/org/apache/solr/solr/4.9.0/solr-

4.9.0.war

Downloaded:	http://repo1.maven.org/maven2/org/apache/solr/solr/4.8.0/solr-

4.9.0.war	(28585	KB	at	432.5	KB/sec)

...

[INFO]	Jetty	7.6.15.v20140411	Embedded	started	on	port	[8983]

This	means	that	Solr	is	up	and	running	and	it	is	listening	on	port	8983.	Now	open	your
web	browser	and	type	http://127.0.0.1:8983/solr.	You	should	see	the	Solr
administration	console.

Tip
In	the	project,	and	specifically	in	the	src/dev/eclipse	folder,	there	are	some	useful,
ready-to-use	Eclipse	launchers.	Instead	of	following	the	manual	steps	illustrated
previously,	just	right-click	on	the	start-embedded-solr.launch	file	and	go	to	Debug	As	|
run-ch1-example-server.launch.

Integration	test	server
Another	important	thing	you	could	(or	should,	in	my	opinion)	do	in	your	project	is	to	have
an	integration	test	suite.	Integration	tests	are	classes	that,	as	the	name	suggests,	run
verifications	against	a	running	server.

When	you’re	working	on	a	project	with	Solr	and	you	want	to	implement	an	extension,	a
search	component,	or	a	plugin,	you	will	obviously	want	to	ensure	that	it	is	working
properly.	If	you’re	running	an	external	Solr	server,	you	need	to	pack	your	classes	in	a	jar,
copy	that	bundle	somewhere	(later,	we	will	see	where),	start	the	server,	and	execute	your
checks.

There	are	a	lot	of	drawbacks	with	this	approach.	Each	time	you	get	something	wrong,	you
need	to	repeat	the	whole	process:	fix,	pack,	copy,	restart	the	server,	prepare	your	data,	and
run	the	check	again.	Also,	you	cannot	easily	debug	your	classes	(or	Solr	classes)	during
that	iterative	check.	All	of	this	will	most	probably	end	with	a	lot	of	statements	in	your
code	as	follows:

System.out.println("BLABLABLA");

I	suppose	you	know	what	I’m	talking	about.

www.it-ebooks.info

http://www.it-ebooks.info/

This	is	where	integration	tests	become	very	helpful.	You	can	code	your	checks	and	your
assertions	as	normal	Java	classes,	and	have	an	automated	test	suite	that	does	the	following
each	time	it	is	executed:

Starts	an	embedded	Solr	instance
Executes	your	tests	against	that	instance
Stops	the	Solr	instance
Produces	useful	reports

The	project	we	set	up	previously	has	that	capability	already,	and	there’s	a	very	basic
integration	test	in	the	src/test/java	folder	to	simply	add	and	query	some	data.

In	order	to	run	the	integration	test	suite,	create	a	new	Maven	run	configuration	(right-click
on	the	project	and	go	to	Run	As	|	Maven	build…),	and,	in	the	dialog	box,	type	clean
install	in	the	Goals	text	field:

After	clicking	on	the	Run	button,	you	should	see	something	like	this:

...

[INFO]		Jetty	7.6.15.v20140411	Embedded	starting…

...

[INFO]		Reading	Solr	Schema	from	schema.xml

...

[INFO]	Jetty	7.6.15.v20140411	Embedded	started	on	port	[8983]

...

	T	E	S	T	S

www.it-ebooks.info

http://www.it-ebooks.info/

Running	org.gazzax.labs.solr.ase.ch1.it.FirstQueryITCase

...

Results	:

Tests	run:	1,	Failures:	0,	Errors:	0,	Skipped:	0

Tip
As	before,	under	the	src/dev/eclipse	folder,	there	is	already	a	preconfigured	Eclipse
launcher	for	this	scenario.	Right-click	on	the	start-embedded-solr.launch	file	and	go	to
Debug	As	|	run-the-example-as-integration-test.

From	the	Eclipse	log,	you	can	see	that	a	test	(specifically,	an	integration	test)	has	been
successfully	executed.	You	can	find	the	source	code	of	that	test	in	the	project	we	checked
out	before.	The	name	of	the	class	that	is	reported	in	the	log	is	FirstQueryITCase	(IT
stands	for	Integration	Test),	and	it	is	in	the	org.gazzax.labs.solr.ase.ch1.it	package.

The	FirstQueryITCase.java	class	demonstrates	a	basic	interaction	flow	we	can	have
with	Solr:

//	This	is	the	(input)	Data	Transfer	Object	between	your	client	and	SOLR.

final	SolrInputDocument	input	=	new	SolrInputDocument();

//	1.	Populates	with	(at	least	required)	fields

input.setField("id",	1);

input.setField("title",	"Apache	SOLR	Essentials");

input.setField("author",	"Andrea	Gazzarini");

input.setField("isbn",	"972-2-5A619-12A-X");

//	2.	Adds	the	document

client.add(input);

//	3.	Commit	changes

client.commit();

//	4.	Builds	a	new	query	object	with	a	"select	all"	query.	

final	SolrQuery	query	=	new	SolrQuery("*:*");

//	5.	Executes	the	query

final	QueryResponse	response	=	client.query(query);

//	6.	Gets	the	(output)	Data	Transfer	Object.

final	SolrDocument	output	=	response.getResults().iterator().next();

final	String	id	=	(String)	output.getFieldValue("id");

final	String	title	=	(String)	output.getFieldValue("title");

final	String	author	=	(String)	output.getFieldValue("author");

final	String	isbn	=	(String)	output.getFieldValue("isbn");

//	7.1	In	case	we	are	running	as	a	Java	application	print	out	the	query	

results.

System.out.println("It	works!	I	found	the	following	book:	");

System.out.println("--------------------------------------");

System.out.println("ID:	"	+	id);

System.out.println("Title:	"	+	title);

www.it-ebooks.info

http://www.it-ebooks.info/

System.out.println("Author:	"	+	author);

System.out.println("ISBN:	"	+	isbn);

//	7.	Otherwise	asserts	the	query	results	using	standard	JUnit	procedures.

assertEquals("1",	id);

assertEquals("Apache	SOLR	Essentials",	title);

assertEquals("Andrea	Gazzarini",	author);

assertEquals("972-2-5A619-12A-X",	isbn);

Tip
FirstQueryITCase	is	an	integration	test	and	a	main	class	at	the	same	time.	This	means
that	you	can	run	it	in	three	ways:	as	described	earlier,	as	a	main	class,	and	as	a	JUnit	test.
If	you	prefer	the	second	or	the	third	option,	remember	to	start	Solr	before	(using	the	run-
ch1-example-server.launch).	You	can	find	the	launchers	under	the	src/dev/eclipse
folder.	Just	right-click	on	one	of	them	and	run	the	example	in	one	way	or	an	other.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

What	do	we	have	installed?
Regardless	of	the	kind	of	installation,	you	should	now	have	a	Solr	instance	up	and
running,	so	it’s	time	to	have	a	quick	overview	of	its	structure.

Solr	is	a	standard	JEE	web	application,	packaged	as	a	.war	archive.	If	you	downloaded	the
bundle	from	the	website,	you	can	find	it	under	the	webapps	folder	of	Jetty,	usually	under:

$INSTALL_DIR/solr-x.y.z/example/webapps

Instead,	if	you	followed	the	developer	way,	Maven	downloaded	that	war	file	for	you,	and
it	is	now	in	your	local	repository	(usually	a	folder	called	.m2	under	your	home	directory).

www.it-ebooks.info

http://www.it-ebooks.info/

Solr	home
In	any	case,	Solr	has	been	installed	and	you	don’t	need	to	concern	yourself	with	where	it	is
physically	located,	mainly	because	all	that	you	have	to	provide	to	Solr	must	reside	in	an
external	folder,	usually	referred	to	as	the	Solr	home.

In	the	download	bundle,	there’s	a	preconfigured	Solr	home	folder	that	corresponds	to	the
$INSTALL_DIR/solr-x.y.z/example/solr	folder.	Within	your	Eclipse	project,	you	can
find	that	under	the	src	folder;	it	is	called	(not	surprisingly)	solr-home.

In	a	Solr	home	folder,	you	will	typically	find	a	file	called	solr.xml,	and	one	or	more
folders	that	correspond	to	your	Solr	cores	(we	will	see	what	a	core	is,	in	Chapter	2,
Indexing	Your	Data).	Each	folder	has	a	subfolder	called	conf	where	the	configuration	for
that	specific	core	resides.

www.it-ebooks.info

http://www.it-ebooks.info/

solr.xml
The	first	file	you	will	find	within	the	Solr	home	directory	is	solr.xml.	It	declares	some
configuration	parameters	about	the	instance.

Previously	(in	Solr	4.4),	you	had	to	declare	all	the	cores	of	your	instance	in	this	file.	Now
there’s	a	more	intelligent	autodiscovery	mechanism	that	helps	you	avoid	explicit
declarations	about	the	cores	that	are	part	of	your	configuration.

In	the	download	bundle,	you	will	find	an	example	of	a	Solr	home	with	only	one	core:

$INSTALL_DIR/solr-x.y.z/example/solr

There	is	also	an	example	with	two	cores:

$INSTALL_DIR/solr-x.y.z/example/multicore

This	directory	is	built	using	the	old	style	we	mentioned	previously,	with	all	the	cores
explicitly	declared.	In	the	Eclipse	project,	you	can	find	the	single	core	example	in	a
directory	called	solr-home.	The	multicore	example	is	in	the	example-solr-home-with-
multicore	folder.

www.it-ebooks.info

http://www.it-ebooks.info/

schema.xml
Although	the	schema.xml	file	will	be	described	in	detail	later,	it	is	important	to	briefly
mention	it	because	this	is	the	place	where	you	can	declare	how	your	index	(of	a	specific
core)	is	composed,	in	terms	of	fields,	types,	and	analysis,	both	at	index	time	and	query
time.	In	other	words,	this	is	the	schema	of	your	index	and	(most	probably)	the	first	thing
you	have	to	design	as	part	of	your	Solr	project.

In	the	download	bundle	you	can	find	the	schema.xml	sample	under	the
$INSTALL_DIR/solr-x.y.z/example/solr/collection1/conf	folder,	which	is	huge	and
full	of	comments.	It	basically	illustrates	all	the	predefined	fields	and	types	you	can	use	in
Solr	(you	can	create	your	own	type,	but	that’s	definitely	an	advanced	topic).

If	you	want	to	see	something	simpler	for	now,	the	Eclipse	project	under	the	solr-
home/conf	directory	has	a	very	simple	schema,	with	a	few	fields	and	only	one	field	type.

www.it-ebooks.info

http://www.it-ebooks.info/

solrconfig.xml
The	solrconfig.xml	file	is	where	the	configuration	of	a	Solr	core	is	defined.	It	can
contain	a	lot	of	directives	and	sections	but,	fortunately	for	most	of	them,	Solr’s	creators
have	set	default	values	to	be	automatically	applied	if	you	don’t	declare	them.

Note
Default	values	are	good	for	a	lot	of	scenarios.	When	I	was	in	Barcelona	at	the	Apache
Lucene	Eurocon	in	2011,	the	speaker	asked	during	a	presentation,	“How	many	of	you
have	ever	changed	default	values	in	solrconfig.xml?”	In	a	large	room	(200	people),	only
five	or	six	guys	raised	their	hands.

This	is	most	probably	the	second	file	you	will	have	to	configure.	Once	the	schema	has
been	defined,	you	can	fine-tune	the	index	chain	and	search	behavior	of	your	Solr	instance
here.

www.it-ebooks.info

http://www.it-ebooks.info/

Other	resources
Schema	and	Solr	configurations	can	make	use	of	other	files	for	several	purposes.	Think
about	stop	words,	synonyms,	or	other	configuration	files	specific	to	some	component.
Those	files	are	usually	put	in	the	conf	directory	of	the	Solr	core.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting
If	you	have	problems	related	to	what	we	described	previously,	the	following	tips	should
help	you	get	things	working.

www.it-ebooks.info

http://www.it-ebooks.info/

UnsupportedClassVersionError
You	can	install	more	than	one	version	of	Java	on	your	machine	but,	when	running	a
command	(for	example,	java	or	javac),	the	system	will	pick	up	the	java
interpreter/compiler	that	is	declared	in	your	path.	So	if	you	get	the
UnsupportedClassVersionError	error,	it	means	that	you’re	using	a	wrong	JVM	(most
probably	Java	6	or	older).	In	the	Prerequisites	section	earlier	in	this	chapter,	there’s	a	table
that	will	help	you.	However,	this	is	the	short	version:	Solr	4.7.x	allows	Java	6	or	7,	but
Solr	4.8	or	greater	runs	only	with	(at	least)	Java	7.

If	you’re	starting	Solr	from	the	command	line,	just	type	this:

#	java	-version

The	output	of	this	command	will	show	the	version	of	Java	your	system	is	actually	using.
So	make	sure	you’re	running	the	right	JVM,	and	also	check	your	JAVA_HOME	environment
variable;	it	must	point	to	the	right	JVM.

If	you’re	running	Solr	in	Eclipse,	after	checking	what	is	described	previously	(that	is,	the
JVM	that	starts	Eclipse),	make	sure	you’re	using	a	correct	JVM	by	navigating	to	Window
|	Preferences	|	Java	|	Installed	JREs.

www.it-ebooks.info

http://www.it-ebooks.info/

The	“Failed	to	read	artifact	descriptor”	message
When	running	a	command	for	the	first	time	(for	example,	clean,	install,	or	test),	Apache
Maven	will	have	to	download	all	the	required	libraries.	In	order	to	do	that,	your	system
must	have	a	valid	Internet	connection.

So	if	you	get	this	kind	of	message,	it	means	that	Maven	wasn’t	able	to	download	a
required	dependency.	The	name	of	the	dependency	should	be	in	the	message.	The	reason
for	failure	could	be	a	network	issue,	either	permanent	or	transient.

In	the	first	case,	you	should	simply	check	your	connection.	In	the	second	scenario	(that	is,
a	transient	network	failure	during	the	download),	there	are	some	manual	steps	that	need	to
be	done.	Assume	that	the	dependency	is	org.apache.solr:solr-solrj:jar:4.8.0.	You
should	go	to	your	local	Maven	repository	and	remove	the	content	of	the	folder	that	hosts
that	dependency,	like	this:

#	rm	-rf	$HOME/.m2/repository/org/apache/solr/solr-solrj/4.8.0

On	the	next	build,	Maven	will	download	that	dependency	again.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	began	our	Solr	tour	with	a	quick	overview,	including	the	steps	that
must	be	performed	when	installing	Solr.	We	illustrated	the	installation	process	from	both	a
user’s	and	a	developer’s	perspective.	Regardless	of	the	path	you	followed,	you	should
have	a	working	Solr	installed	on	your	machine.

In	the	next	chapter,	we	will	continue	our	conversation	by	digging	further	into	the	Solr
indexing	process.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2.	Indexing	Your	Data
Although	the	final	motive	behind	getting	a	Solr	instance	is	to	enable	fast	and	efficient
searches,	we	need	to	populate	that	instance	with	some	data	in	the	first	(and	mandatory)
step.	This	operation	is	usually	referred	to	as	the	indexing	phase.	The	term	index	plays	an
important	role	in	the	Solr	domain	because	its	underlying	structure	is	an	index	itself.	This
chapter	focuses	on	the	indexing	process.

By	the	end	of	this	chapter,	you	will	be	reasonably	conversant	with	how	the	indexing
process	works	in	Solr,	how	to	index	data,	and	how	to	configure	and	customize	the	process.

This	chapter	will	cover	the	following	topics:

The	Solr	data	model:	inverted	index,	document,	fields,	types,	analyzers,	and
tokenizers
Index	and	indexing	configuration
The	Solr	write	path
How	to	extend	and	customize	the	indexing	process
Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding	the	Solr	data	model
Whenever	I	start	to	learn	something	that	is	not	simple,	I	strongly	believe	the	key	to
controlling	its	complexity	is	a	good	understanding	of	its	domain	model.	This	section
describes	the	underlying	building	blocks	of	Solr.	It	starts	with	the	simplest	piece	of
information,	the	document,	and	then	walks	though	the	other	fundamental	concepts,
describing	how	they	form	the	Solr	data	model.

www.it-ebooks.info

http://www.it-ebooks.info/

The	document
A	document	represents	the	basic	and	atomic	unit	of	information	in	Solr.	It	is	a	container
of	fields	and	values	that	belong	to	a	given	entity	of	your	domain	model	(for	example,	a
book,	car,	or	person).

If	you’re	familiar	with	relational	databases,	you	can	think	of	a	document	as	a	record.	The
two	concepts	have	some	similarities:

A	document	could	have	a	primary	key,	which	is	the	logical	identity	of	data	it
represents.
A	document	has	a	structure	consisting	of	one	or	more	attributes.	Each	attribute	has	a
name,	type,	and	value.

However,	a	Solr	document	differs	in	the	following	ways	from	a	database	record:

Attributes	can	have	more	than	one	value,	whereas	a	row	in	a	database	table	can	have
only	one	value	(including	NULL).
Attributes	either	have	a	value	or	don’t	exist	at	all.	There’s	no	notion	of	NULL	value
in	Solr.
Attribute	names	can	be	static	or	dynamic,	but	table	columns	in	a	database	must	be
explicitly	declared	in	advance.
Attribute	types	are,	in	general,	more	articulated	and	flexible	because	they	must	define
how	Solr	interprets	data	both	at	index	and	query	time.
Attribute	types	can	be	defined	and	configured.	This	can	be	done	by	using,	mixing,
and	configuring	a	rich	set	of	built-in	classes	or	creating	new	types	(this	is	actually	an
advanced	scenario).

A	simple	way	to	represent	a	Solr	document	is	a	map—a	general	data	structure	that	maps
unique	keys	(attribute	names)	to	values,	where	each	key	(that	is,	attribute)	can	have	one	or
more	values.	The	following	JSON	data	represents	two	documents:

{

		{

				"id":27302038,

				"title":"A	book	about	something",

				"author":	["Ashler,	Frank","York,	Lye"],

				"subject":	["Generalities",	"Social	Sciences"],

				"language":	"English"

		},

		{

				"id":2830002,

				"title":	"Another	book	about	something",

				"author":	"Ypsy,	Lea",

				"subject:	"Geography	&	History",

				"publisher":	"Vignanello:	Edikin,	2010"

		}

}

Although	the	earlier	documents	represent	books	and	have	some	common	attributes	as	you
can	see,	the	first	has	two	subjects	and	a	language,	while	the	second	doesn’t	have	a

www.it-ebooks.info

http://www.it-ebooks.info/

publication	language.	It	has	only	one	subject	and	an	additional	publisher	attribute.

From	a	document’s	perspective,	there’s	no	constraint	about	which	and	how	many
attributes	a	document	can	have.	Those	constraints	are	instead	declared	within	the	Solr
schema,	which	we	will	see	later.

Tip
The	src/solr/example-data	folder	of	the	project	associated	with	this	chapter	contains
some	example	data	where	the	same	documents	are	represented	in	several	formats.

www.it-ebooks.info

http://www.it-ebooks.info/

The	inverted	index
Solr	uses	an	underlying,	persistent	structure	called	inverted	index.	It	is	designed	and
optimized	to	allow	fast	searches	at	retrieval	time.	To	gain	the	speed	benefits	of	such	a
structure,	it	has	to	be	built	in	advance.

An	inverted	index	consists	of	an	ordered	list	of	all	the	terms	that	appear	in	a	set	of
documents.	Beside	each	term,	the	index	includes	a	list	of	the	documents	where	that	term
appears.

For	example,	let’s	consider	three	documents:

{

		{	"id":	1,	"title":"The	Birthday	Concert"	},

		{	"id":	2,	"title":"Live	in	Italy"	},

		{	"id":	3,	"title":"Live	in	Paderborn"	},

}

The	corresponding	inverted	index	would	be	something	like	this:

Terms Document	Ids

	 1 2 3

Birthday X 	 	

Concert X 	 	

Italy 	 X 	

Live 	 X X

Paderborn 	 	 X

The X 	 	

In 	 X X

Like	the	index	of	a	book	(here,	I	mean	the	index	that	you	usually	find	at	the	end	of	a
book),	if	you	want	to	search	documents	that	contain	a	given	term,	an	inverted	index	help
you	with	that	efficiently	and	quickly.

In	Solr,	index	files	are	hosted	in	a	so-called	Solr	data	directory.	This	directory	can	be
configured	in	solrconfig.xml,	the	main	configuration	file.

Tip
After	running	any	example	in	the	project	associated	with	this	book,	you	will	find	the	Solr
index	under	the	subfolders	located	in	target/solr.	The	name	of	the	subfolder	actually
depends	on	the	name	of	the	core	used	in	the	example.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Solr	core
The	index	configuration	of	a	given	Solr	instance	resides	in	a	Solr	core,	which	is	a
container	for	a	specific	inverted	index.	On	the	disk,	Solr	cores	are	directories,	each	of
them	with	some	configuration	files	that	define	features	and	characteristics	of	the	core.

In	a	core	directory,	you	will	typically	find	the	following	content:

A	core.properties	file	that	describes	the	core.
A	conf	directory	that	contains	configuration	files:	a	schema.xml	file,	a
solrconfig.xml	file,	and	a	set	of	additional	files,	depending	on	components	in	use
for	a	specific	instance	(for	example,	stopwords.txt	and	synonyms.txt).
A	lib	directory.	Every	JAR	file	placed	in	this	directory	is	automatically	loaded	and
can	be	used	by	that	specific	core.

In	a	Solr	installation	you	can	have	one	or	more	cores,	each	of	them	with	a	different
configuration,	that	will	therefore	result	in	different	inverted	indexes.

Note
The	concept	of	the	Solr	core	has	been	expanded	in	Solr	4,	specifically	in	SolrCloud.	We
will	discuss	this	in	Chapter	6,	Deployment	Scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Solr	schema
Returning	to	the	comparison	with	databases,	another	important	difference	is	that,	in
relational	databases,	data	is	organized	in	tables.	You	can	create	one	or	more	tables
depending	on	how	you	want	to	organize	the	persistence	of	the	entities	belonging	to	your
domain	model.

In	Solr,	things	behave	differently.	There’s	no	notion	of	tables;	in	a	Solr	schema,	you	must
declare	attributes,	a	primary	key,	and	a	set	of	constraints	and	features	of	the	entity
represented	by	the	incoming	documents.	Although	this	doesn’t	strictly	mean	you	must
have	only	one	entity	in	your	schema,	let’s	think	in	this	way	at	the	moment	(for	simplicity):
a	Solr	schema	is	like	the	definition	of	a	single	table	that	describes	the	structure	and	the
constraints	of	the	incoming	data	(that	is,	documents).

The	Solr	schema	is	defined	in	a	file	called	(not	surprisingly)	schema.xml.	It	contains
several	concepts,	but	the	most	important	are	certainly	those	related	to	types	and	fields.
Before	Solr	4.8,	types	and	fields	were	declared	within	a	<types>	and	a	<fields>	tag,
respectively.	Now	their	declarations	can	be	mixed,	which	allows	better	grouping	of	fields
with	their	corresponding	types.

Tip
You	can	find	a	sample	schema	within	the	download	bundle	we	set	up	in	the	previous
chapter,	specifically	under	$INSTALL_DIR/solr-
x.y.z/example/solr/collection1/conf/schema.xml.	It	is	huge	and	contains	a	lot	of
examples	about	predefined	and	built-in	types	and	fields,	with	many	useful	comments.

Field	types
Field	types	are	one	of	the	top-level	entities	declared	in	Solr	schemas.	A	field	type	is
declared	using	the	<fieldType>	element.	As	you	can	see	in	the	example	schema,	you	can
have	a	simple	type,	such	as	this:

<fieldType	name="string"	class="solr.StrField"	sortMissingLast="true"/>

You	can	also	have	types	with	a	lot	of	information,	as	shown	here:

<fieldType	name="text-general"	class="solr.TextField"	

positionIncrementGap="100">

		<analyzer	type="index">

				<tokenizer	class="solr.StandardTokenizerFactory"/>

				<filter	class="solr.StopFilterFactory"	words="stopwords.txt"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

		</analyzer>

		<analyzer	type="query">

				<tokenizer	class="solr.StandardTokenizerFactory"/>

				<filter	class="solr.StopFilterFactory"	words="stopwords.txt"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

				<filter	class="solr.SynonymFilterFactory"	synonyms="synonyms.txt"/>

		</analyzer>

</fieldType>

www.it-ebooks.info

http://www.it-ebooks.info/

All	types	share	a	set	of	common	attributes	that	are	described	in	the	following	table:

Attribute Description

name The	name	of	the	field	type.	This	is	required.

type
The	fully	qualified	name	of	the	class	that	implements	the	field	type	behavior.	This
is	required.

sortMissingFirst

sortMissingLast

Optional	attributes	that	are	valid	only	for	sortable	fields.	They	define	the	sort
position	of	the	documents	that	have	no	values	for	a	given	field.

indexed
If	this	is	true,	fields	associated	with	this	type	will	be	searchable,	sortables	and
facetable.

stored
If	this	is	true,	fields	associated	with	this	type	are	retrievable.	Briefly,	stored	fields
are	what	Solr	returns	in	search	responses.

multiValued If	this	is	true,	fields	associated	with	this	type	can	have	multiple	values.

omitNorms

Norms	are	values	consisting	of	one	byte	per	field	where	Solr	records	index	time
boost	and	length	normalization	data.	Index	time	boost	allows	one	field	to	be
boosted	higher	than	other.	Length	normalization	allows	shorter	fields	to	be
boosted	more	than	longer	fields.	If	you	don’t	use	index	time	boost	and	don’t	want
to	use	length	normalization,	then	this	attribute	can	be	set	to	true.

omitTermsAndFrequencyPositions

Tokens	produced	by	text	analysis	during	the	index	process	are	not	simply	text.
They	also	have	metadata	such	as	offsets,	term	frequency,	and	optional	payloads.	If
this	attribute	is	set	to	true,	then	Solr	won’t	record	term	frequencies	and	positions.

omitPositions Omits	the	positions	in	indexed	tokens.

positionsIncrementGap
When	a	field	has	multiple	values,	this	attribute	specifies	the	distance	between
each	value.	This	is	used	to	prevent	unwanted	phrase	matches.

autogeneratePhraseQueries
Only	valid	for	text	fields.	If	this	is	set	to	true,	then	Solr	will	automatically
generate	phrase	queries	for	adjacent	terms.

compressed In	order	to	decrease	the	index	size,	stored	values	of	fields	can	be	compressed.

compressThreshold Whenever	the	field	is	compressed,	this	is	the	associated	compression	threshold.

Besides	all	of	this,	each	specific	type	can	declare	its	own	attributes,	depending	on	the
characteristic	of	the	type	itself.

The	text	analysis	process

Before	talking	about	fields,	which	are	the	top-level	building	blocks	of	the	Solr	schema,
let’s	introduce	a	fundamental	concept—text	analysis.

The	text	analysis	process	converts	an	incoming	value	in	tokens	by	means	of	a	dedicated
transformation	chain	that	is	in	charge	of	manipulating	the	original	input	value.	Each
resulting	token	is	then	posted	to	the	index	with	the	following	metadata:

Position	increment:	The	position	of	the	token	relative	to	the	previous	token	in	the

www.it-ebooks.info

http://www.it-ebooks.info/

input	stream
Start	and	end	offset:	The	starting	and	ending	indexes	of	the	token	within	the	input
stream
Payload:	An	optional	byte	array	used	for	several	purposes,	such	as	boosting

A	token	with	its	metadata	is	usually	referred	to	as	a	term.

In	Solr,	text	analysis	happens	at	two	different	moments:	index	and	search	time.	In	the	first
case,	the	value	is	the	content	of	a	given	field	of	a	given	document	that	a	client	sent	for
indexing.	In	the	second	case,	the	incoming	value	typically	contains	search	terms	within	a
query.

In	both	cases,	you	must	tell	Solr	how	to	handle	those	values.	You	can	do	that	in	the
schema,	in	the	field	types	section.

For	field	types,	the	following	general	rules	always	apply:

If	the	field	type	implementation	class	is	solr.TextField	or	it	extends
solr.TextField,	then	Solr	allows	you	to	configure	one	or	two	analyzer	sections	in
order	to	customize	the	index	and/or	the	query	text	analysis	process
In	other	cases,	no	analyzers	can	be	defined,	and	the	configuration	of	the	type	is	done
using	the	available	attributes	of	the	type	itself

This	is	an	example	of	a	field	type	definition:

<fieldType	name="text-general"	class="solr.TextField"	

positionIncrementGap="100">

		<analyzer	type="index">

				…

		</analyzer>

		<analyzer	type="query">

				…

		</analyzer>

</fieldType>

Here,	you	can	see	two	different	analyzer	sections.	In	the	first	section,	you	will	declare
what	happens	at	index	time	for	a	given	field	associated	with	that	field	type.	The	second
section	has	the	same	purpose,	but	it	is	valid	for	query	time.

Note
If	you	have	the	same	analysis	at	index	and	query	times,	you	can	define	just	one
<analyzer>	section	with	no	name	attribute.	That	will	be	supposed	to	be	valid	for	both
phases.

Within	each	analyzer	definition,	you	define	the	text	analysis	process	by	means	of	character
filters,	tokenizers,	and	token	filters.

Char	filters

Char	filters	are	optional	components	that	can	be	set	at	the	beginning	of	the	analysis	chain
in	order	to	preprocess	field	values.	They	can	manipulate	a	character	stream	by	adding,
removing,	or	replacing	characters	while	preserving	the	original	character	position.

www.it-ebooks.info

http://www.it-ebooks.info/

In	the	following	example,	two	char	filters	are	used	to	replace	diacritics	(that	is,	letters	with
glyphs	such	as	à,	ü)	and	remove	some	text:

		<analyzer	type="index">

				<charFilter	class="solr.MappingCharFilterFactory"	mapping="mapping-

FoldToASCII.txt"/>

				<charFilter	class="solr.PatternReplaceCharFilterFactory"	pattern="\\

(Author\\)"	replacement=""/>	

		</analizer>

Note
You	must	never	declare	the	implementation	class.	Instead,	declare	its	factory.

Using	the	preceding	chain,	the	Millöcker,	Carl	text	(name	of	author)	will	become
Millocker,	Carl.

A	complete	list	of	available	char	filters	can	be	found	at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#CharFilterFactories.

Tokenizers

A	tokenizer	breaks	an	incoming	character	stream	into	one	or	more	tokens	depending	on
specific	criteria.	The	resulting	set	of	tokens	is	usually	referred	to	as	a	token	stream.	An
analyzer	chain	allows	only	one	tokenizer.

Suppose	we	have	“I’m	writing	a	simple	text”	as	the	input	text.	The	following	table	shows
how	two	sample	tokenizers	work:

Tokenizer Description Tokens

WhitespaceTokenizer Splits	by	white	spaces “I’m”,	“writing”,	“a”,	“simple”,	“text”

KeywordTokenizer Doesn’t	split	at	all “I’m	writing	a	simple	text”

A	complete	list	of	available	tokenizers	can	be	found	at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenizerFactories.

Token	filters

Token	filters	work	on	an	input	token	stream,	contributing	some	kind	of	transformation	to
it.	Analyzing	token	after	token,	a	filter	can	apply	its	logic	in	order	to	add,	remove,	or
replace	tokens,	and	can	thus	produce	a	new	output	token	stream.

Token	filters	can	be	chained	together	in	order	to	produce	complex	analysis	chains.	The
order	in	which	those	filters	are	declared	is	important	because	the	chain	itself	is	not
commutative.	Two	chains	with	the	same	filters	in	a	different	order	could	produce	a
different	output	stream.

This	is	an	extract	of	a	sample	filter	chain:

<filter	class="solr.LowerCaseFilterFactory"/>

<filter	class="solr.StopFilterFactory"	words="stopwords.txt"	

ignoreCase="true"/>

www.it-ebooks.info

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#CharFilterFactories
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenizerFactories
http://www.it-ebooks.info/

A	filter	declaration	includes	the	name	of	the	implementation	factory	class	and	a	set	of
attributes	that	are	specific	to	each	filter.	In	the	preceding	chain,	this	is	what	happens	for
each	token	in	the	input	stream:

The	token	is	made	into	lowercase,	so	“Happy”	will	become	“happy”
If	the	token	is	a	stopword,	that	is,	one	of	the	words	declared	in	a	file	called
stopwords.txt,	it	gets	filtered	from	the	outgoing	stream

A	complete	list	of	available	token	filters	is	available	at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenFilterFactories.

Putting	it	all	together

The	following	code	illustrates	a	complete	field	type	definition:

<fieldType	name="my-text-type"	class="solr.TextField"	

positionIncrementGap="100">

		<analyzer	type="index">

				<charFilter	class="solr.MappingCharFilterFactory"	mapping="mapping-

FoldToASCII.txt"/>

				<tokenizer	class="solr.WhitespaceTokenizerFactory"/>

				<filter	class="solr.StopFilterFactory"	words="stopwords.txt"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

		</analyzer>

</fieldType>

In	order	to	get	a	concrete	view	of	what	happens	during	the	index	phase	of	a	given	field,
open	a	shell	in	the	top-level	directory	of	the	project	associated	with	this	chapter.	Next,
type	the	following	command:

#	mvn	cargo:run	–P	fieldAnalysis

Tip
You	can	do	the	same	with	Eclipse	by	creating	a	new	Maven	Debug	launch	configuration.
On	the	launch	dialog,	you	must	fill	the	Goals	input	field	with	cargo:run	and	the	Profile
input	field	with	fieldAnalysis.

That	will	start	a	Solr	instance	with	an	example	schema	that	contains	several	types.	Once
Solr	has	been	started,	open	your	browser	and	type
http://127.0.0.1:8983/solr/#/analysis/analysis.	The	page	that	appears	lets	you
simulate	the	index	phase	of	a	given	value	(the	content	of	the	left	text	area)	for	a	given	field
or	field	type	(the	content	of	the	drop-down	menu	at	the	bottom	of	the	page).

Type	some	text	in	the	Field	Value	(Index)	text	area,	choose	a	field	type	or	a	field,	and
press	the	Analyse	Values	button.	The	page	will	show	the	input	and	the	output	values	of
each	member	of	the	index	chain.	The	following	screenshot	illustrates	the	resulting	page
after	analyzing	the	“Apache	Solr”	text	with	a	right_truncated_phrase	field	type:

www.it-ebooks.info

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenFilterFactories
http://www.it-ebooks.info/

Some	example	field	types

This	section	lists	and	describes	some	important	field	types	and	their	main	features	in	a
non-exhaustive	way.	The	schema.xml	file	in	the	download	bundle	contains	a	lot	of
examples	with	all	the	available	types.

In	addition,	a	list	of	all	field	types	is	available	at
https://cwiki.apache.org/confluence/display/solr/Field+Types+Included+with+Solr.
String

The	string	type	retains	the	incoming	value	as	a	single	token.

Note
That	doesn’t	mean	the	field	cannot	be	indexed.	It	only	means	that	the	field	cannot	have	a
user-defined	analysis	chain.

This	type	is	usually	associated	with	the	following:

Indexed	fields:	Fields	that	represent	codes,	classifications,	and	identifiers,	such	as
A340,	853.92,	SKU#22383,	3919928832,	292381,	and	en-US
Sort	fields:	Fields	that	can	be	used	as	sort	criteria,	such	as	authors,	titles,	and
publication	dates

Numbers

There	are	several	numeric	types	defined	in	Solr.	They	can	be	classified	into	three	groups:

Basic	types	such	as	IntField,	FloatField,	and	LongField.	These	are	the	legacy
types	that	encode	numeric	values	as	strings.
Sortable	fields	types	such	as	SortableDoubleField,	SortableIntField,	and
SortableLongField.	These	are	the	legacy	types	that	encode	numeric	values	as
strings	in	order	to	match	their	natural	numeric	order	(this	is	different	from	the	string’s
lexicographic	order).
Trie	fields	types	such	as	TrieIntField,	TrieFloatField,	and	TrieLongField.	These

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Field+Types+Included+with+Solr
http://www.it-ebooks.info/

are	the	types	that	index	numeric	values	using	various	and	tunable	levels	of	precision
in	order	to	enable	efficient	range	queries	and	sorting.	Those	levels	are	configured
using	a	precisionStep	attribute	in	the	field	type	definition.

The	first	two	groups,	basic	and	sortable	types,	are	deprecated	and	will	soon	be	removed
(most	probably	in	Solr	5.0).	This	is	because	their	features	and	characteristics	are	already
included	in	Trie	types,	which	are	more	efficient	and	provide	a	unified	way	of	dealing	with
numbers.
Boolean

Boolean	fields	can	have	a	value	of	true	or	false.	Values	of	1,	t,	or	T	are	interpreted	as
true.
Date

The	format	that	Solr	uses	for	dates	is	a	restricted	version	of	the	ISO	8601	Date	and	Time
format	and	is	of	the	YYYY-MM-DDThh:mm:ss.SSSZ	form.	Here	are	some	examples	of	this
field	type:

2005-09-27T14:43:11Z

2011-08-23T02:43:00.992Z

The	Z	character	is	a	literal,	trailing	constant	that	indicates	the	UTC	method	of	the	date
representation.	Only	the	milliseconds	are	optional.	If	they	are	missing,	the	dot	(.)	after	the
seconds	must	be	removed.

As	with	numbers,	there	are	two	available	types	to	represent	dates	in	Solr:

A	basic	DateField	type,	which	is	a	deprecated	legacy	type
TrieDateField,	which	is	the	recommended	date	type

A	useful	feature	of	date	types	is	a	simple	expression	language	that	can	be	used	to	form
dynamic	date	expressions,	like	this:

NOW	+	2YEARS

NOW	+	3YEARS	–	3DAYS

2005-09-27T14:43:00	+	1YEAR

The	expression	language	allows	the	following	keywords:

Keyword Description

YEAR/YEARS
One	or	more	years.	These	are	basically	synonyms;	the	difference	is	just	to	make	the	expressions	more
readable	(for	example,	2YEARS	is	better	than	2YEAR).

MONTH/MONTHS One	or	more	months	(for	example,	NOW	+	4MONTHS,	NOW	–	1MONTH).

DAY/DAYS/DATE A	day	or	a	certain	number	of	days	(for	example,	NOW	+	1DAY).

HOUR/HOURS An	hour	or	a	certain	number	of	hours.

MINUTE/MINUTES One	or	more	minutes.

MILLI/MILLIS

www.it-ebooks.info

http://www.it-ebooks.info/

MILLISECOND

MILLISECONDS

One	or	more	milliseconds.

Text

Text	is	the	basic	type	for	fields	that	can	have	a	configurable	text	analysis.	This	is	the	only
type	that	accepts	analyzer	chains	in	configurations.
Other	types

The	following	list	briefly	describes	some	other	interesting	types:

Currency:	This	type	provides	support	for	monetary	values	with	a	dedicated	type.	It
also	includes	the	capability	to	plug	in	several	providers	for	determining	exchange
rates	between	currencies.
Binary:	This	type	is	used	to	handle	binary	data.	Data	is	sent	and	retrieved	in	Base64-
encoded	strings.
Geospatial	types:	Two	types	are	available	for	support	to	geospatial	searches.	The
first	is	LatLonType,	from	Solr	3.x	onwards.	The	second	type,
SpatialRecursivePrefixTreeFieldType,	is	a	new	type	introduced	in	Solr	4,	and	it
supports	polygon	shapes.
Random:	This	is	used	to	generate	random	sequences.	It	is	useful	if	you	want
pseudorandom	sort	ordering	of	indexed	documents.

Fields
Fields	are	containers	of	values	associated	with	a	specific	type.	They	represent	the	structure
and	the	composition	of	the	entity	of	your	domain	model.

In	simple	words,	fields	are	the	attributes	of	the	documents	you’re	going	to	manage	with
Solr.	So,	for	example,	if	Solr	serves	a	library	Online	Public	Application	Catalogue
(OPAC),	the	entities	in	the	schema	will	most	probably	represent	books,	and	they	could
have	fields	such	as	title,	author,	ISBN,	cover,	and	so	on.

Fields	are	declared	in	the	schema.	Each	field	declaration	includes	a	name,	type,	and	set	of
attributes.	This	is	an	example	of	field	declaration:

<field	name="title"	type="string"	indexed="false"	stored="true"	

required="true"	multiValued="false"/>

The	following	table	lists	the	attributes	that	can	be	specified	for	each	field:

Keyword Description

name

The	name	of	the	field	must	be	unique	in	the	schema	and	must	consist	only	of
alphanumeric	and	underscore	characters.	It	must	not	start	with	an	underscore,	and	it	must
not	have	both	a	leading	and	a	trailing	underscore	because	those	kinds	of	names	are
reserved.

type This	is	the	type	associated	with	the	field.

indexed
If	this	is	true,	fields	associated	with	this	type	will	be	searchable,	sortable,	and	facetable.
It	overrides	the	same	setting	on	the	associated	type.

www.it-ebooks.info

http://www.it-ebooks.info/

stored
If	this	is	true,	it	makes	the	fields	associated	with	this	type	retrievable.	It	overrides	the
same	setting	on	the	associated	type.

required This	marks	the	field	as	mandatory	in	input	documents.

default
A	default	value	that	will	be	used	at	index	time,	if	the	field	in	the	input	document	doesn’t
have	a	valid	value.

sortMissingFirst

sortMissingLast

These	are	optional	attributes	defining	the	sort	position	of	the	documents	that	have	no
values	for	that	field.	They	override	the	same	settings	on	the	associated	type.

omitNorms Omits	the	norms	associated	with	this	field.	Overrides	the	same	attribute	on	the	field	type.

omitPositions
Omits	the	term	positions	associated	with	this	field.	Overrides	the	same	attribute	on	the
field	type.

omitTermFreqAndPositions
Omits	the	term	frequency	and	positions	associated	with	this	field.	Overrides	the	same
attribute	on	the	field	type.

termVectors
Stores	the	term	vectors.	A	term	vector	is	a	list	of	the	document’s	terms	and	their	number
of	occurrences	in	that	document.

docValues
Only	available	for	the	String,	Trie,	and	UUID	fields.	This	attribute	enhances	the	index	by
adding	column-oriented	fields	to	a	document-to-value	mapping.

Static	fields

The	first	category	of	fields	contains	those	statically	declared	in	the	schema.	In	this	context,
static	simply	means	that	the	name	of	the	field	is	explicitly	known	in	advance.	This	is	an
example	of	a	static	field:

<field	name="isbn"	(other	attributes	follow)	/>

Dynamic	fields

There	are	certain	situations	where	you	don’t	know	in	advance	the	name	of	some	fields	in
the	incoming	documents.	Although	this	may	sound	strange,	it	is	rather	a	frequent	scenario.

Think	about	a	document	that	represents	a	book	and	is	the	result	of	some	kind	of
cataloguing.	In	general,	a	bibliographic	record	has	a	lot	of	fields.	Some	of	them	represent
text	that	can	be	expressed	by	cataloguers	in	several	languages.	For	example,	you	can	have
a	book	with	these	abstracts:

{

"id":92902893,

		"abstract_en":	"This	is	the	English	summary",

		"abstract_es":	"Éste	es	el	resumen	en	español",

		(other	fields	follow)	

}

You	can	have	another	book	with	the	following	definition:

{

"id":92902893,

		"abstract_it":	"L'automazione	della	biblioteca	digitale"

www.it-ebooks.info

http://www.it-ebooks.info/

		(other	fields	follow)

}

So	the	question	here	is,	how	can	we	define	the	abstract	field	(or	fields)	in	our	schema?
The	first	approach	could	be	to	declare	several	static	fields—one	for	each	language—but
this	will	be	valid	only	if	we	know	all	the	input	languages	in	advance.	Moreover,	this	is	not
very	extensible	because	adding	a	new	language	(for	example,	abstract_ru)	will	require	a
change	in	the	schema.	Dynamic	fields	are	the	alternative.

A	field	is	dynamic	when	its	name	includes	a	leading	or	a	trailing	wildcard,	therefore
allowing	a	dynamic	match	with	incoming	input	fields.	A	dynamic	field	is	declared	using
the	<dynamicField>	element,	as	follows:

<dynamicField	name="abstract_*"	(other	attributes	follow)	/>

The	field	will	catch	all	fields	that	have	a	prefix	equal	to	abstract.	Hence,	it	avoids	the
need	to	statically	define	fields	one	by	one,	but	most	importantly,	it	will	catch	any
abstract	field	regardless	of	its	language	suffix.

Copy	fields

In	the	Solr	schema,	you	can	use	a	special	copyField	directive	to	copy	one	field	to	another.
This	is	useful	when	a	document	has	a	given	field,	and	starting	from	its	value,	you	want	to
have	other	fields	in	your	schema	populated	with	the	same	value	but	with	a	different	text
analysis.

Let’s	suppose	your	documents	represent	books	that	can	contain	two	different	kinds	of
authors:

persons	(for	example,	Dante	Alighieri	and	Leonardo	Da	Vinci)
corporates	(for	example,	Association	for	Childhood	Education	International)

You	must	show	those	authors	separately	in	the	user	interface,	as	part	of	customer
requirements.	You	can	give	them	dedicated	labels,	for	example.	At	the	same	time,	the
customer	wants	to	have	an	author	search	feature	on	the	user	interface	that	triggers	a	search
for	all	kinds	of	authors.	The	following	screenshot	shows	a	GUI	widget	that	is	often	used	in
these	scenarios—a	search	toolbar	with	a	drop-down	menu	that	allows	the	user	to	constrain
the	scope	of	the	search	within	a	given	context	(for	example,	authors,	subjects,	and	titles):

A	first	approach	could	be	to	have	two	stored	and	indexed	fields.	When	the	user	searches
for	an	author	by	typing	a	name	or	a	surname,	such	terms	will	be	searched	within	those	two
fields.	The	schema	in	this	case	should	be	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

<field	name="author_person"	type="text"	indexed="true"	stored="true"	…/>

<field	name="author_corporate"	type="text"	indexed="true"	stored="true"	…/>

A	second	choice	could	be	to	have	a	more	cohesive	design	by	separating	search	and	view
responsibilities.	In	this	case,	we	will	have	two	stored	(but	not	indexed)	fields	representing
the	two	kinds	of	authors,	and	a	generic	indexed	(but	not	stored)	author_search	field
containing	all	the	authors	of	a	document,	regardless	of	its	type.	In	this	way,	the	user
interface	will	use	the	stored	fields	for	visualization,	while	Solr	will	use	the	catch-all
author_search	field	for	searches.	This	design	introduces	the	copyField	directive;	here	is
the	corresponding	schema:

<field	name="author_person"	type="string"	indexed="false"	stored="true"	

required="false"	multiValued="true"/>

<field	name="author_corporate"	type="string"	indexed="false"	stored="true"	

required="false"	multiValued="true"/>

<field	name="author_search"	type="text"	indexed="true"	stored="false"	

required="false"	multiValued="true"/>

<copyField	source="author_person"	dest="author_search"/>

<copyField	source="author_corporate"	dest="author_search"/>

The	copyField	directive	copies	the	incoming	value	of	the	source	field	in	the	dest	field;
thus,	at	the	end,	the	author_search	field	will	contain	all	kinds	of	authors.

Note
In	both	the	source	and	dest	attributes,	it’s	possible	to	use	a	trailing	or	a	leading	wildcard,
therefore	avoiding	repetitive	code.	In	the	preceding	example,	we	could	have	just	one
copyField	declaration:

<copyField	source="author_*"	dest="author_search"/>

Other	schema	sections
Other	than	fields	and	field	types,	the	Solr	schema	contains	some	other	things	as	well.	This
section	briefly	illustrates	them.

Unique	key

This	field	uniquely	identifies	your	document.	This	is	not	strictly	required	but	strongly
recommended	if	you	want	to	update	your	documents,	avoid	duplicates,	and	(last	but	not
least)	use	Solr	distributed	features.

Default	similarity

This	element	allows	you	to	declare	the	factory	of	the	class	used	by	Solr	to	determine	the
score	of	documents	while	searching.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Solr	indexing	configuration
Once	the	schema	has	been	defined,	it’s	time	to	configure	and	tune	the	indexing	process	by
means	of	another	file	that	resides	in	the	same	directory	of	the	schema—solrconfig.xml.

The	file	contains	a	lot	of	sections,	but	fortunately,	there	are	a	lot	of	optional	parts	with
default	values	that	usually	work	well	in	most	scenarios.	We	will	try	to	underline	the	most
important	of	them	with	respect	to	this	chapter.

As	a	general	note,	it’s	possible	to	use	system	properties	and	default	values	within	this	file.
Therefore,	we	are	able	to	create	a	dynamic	expression,	like	this:

<dataDir>${my.data.dir:/var/data/defaultDataDir}</dataDir>

The	value	of	the	dataDir	element	will	be	replaced	at	runtime	with	the	value	of	the
my.data.dir	system	property,	or	with	the	default	value	of	/var/data/defaultDataDir	if
that	property	doesn’t	exist.

www.it-ebooks.info

http://www.it-ebooks.info/

General	settings
The	heading	part	of	the	solrconfig.xml	file	contains	general	settings	that	are	not	strictly
related	to	the	index	phase.

The	first	is	the	Lucene	match	version:

<luceneMatchVersion>LUCENE_47</luceneMatchVersion>

This	allows	you	to	control	which	version	of	Lucene	will	be	internally	used	by	Solr.	This	is
useful	to	manage	migration	phases	towards	the	newer	versions	of	Solr,	thus	allowing
backward	compatibility	with	indexes	built	with	previous	versions.

A	second	piece	of	information	you	can	set	here	is	the	data	directory,	that	is,	the	directory
where	Solr	will	create	and	manage	the	index.	It	defaults	to	a	directory	called	data	under
$SOLR_HOME.

<dataDir>/var/data/defaultDataDir</dataDir>

www.it-ebooks.info

http://www.it-ebooks.info/

Index	configuration
The	section	within	the	<indexConfig>	tag	contains	a	lot	of	things	that	you	can	configure
in	order	to	fine-tune	the	Solr	index	phase.

A	curious	thing	you	can	see	in	this	section,	in	the	solrconfig.xml	file	of	the	example
core,	is	that	most	things	are	commented.	This	is	very	important,	because	it	means	that	Solr
provides	good	default	values	for	those	settings.

The	following	table	summarizes	the	settings	you	will	find	within	the	<indexConfig>
section:

Attribute Description

writeLockTimeout The	maximum	allowed	time	to	wait	for	a	write	lock	on	an	IndexWriter.

maxIndexingThreads
The	maximum	allowed	number	of	threads	that	index	documents	in	parallel.	Once	this	threshold
has	been	reached,	incoming	requests	will	wait	until	there’s	an	available	slot.

useCompoundFile
If	this	is	set	to	true,	Solr	will	use	a	single	compound	file	to	represent	the	index.	The	default
value	is	false.

ramBufferSizeMB
When	accumulated	document	updates	exceed	this	memory	threshold,	all	pending	updates	are
flushed.

ramBufferSizeDocs
This	has	the	same	behavior	as	that	of	the	previous	attribute,	but	the	threshold	is	defined	as	the
count	of	document	updates.

mergePolicy The	names	of	the	class,	along	with	settings,	that	defines	and	implements	the	merge	strategy.

mergeFactor

A	threshold	indicating	how	many	segments	an	index	is	allowed	to	have	before	they	are	merged
into	one	segment.	Each	time	an	update	is	made,	it	is	added	to	the	most	recent	index	segment.
When	that	segment	fills	up	(that	is,	when	the	maxBufferedDocs	and	ramBufferSizeMB
thresholds	are	reached),	a	new	segment	is	created	and	subsequent	updates	are	inserted	there.
Once	the	number	of	segments	reaches	this	threshold,	Solr	will	merge	all	of	them	into	one
segment.

mergeScheduler The	class	that	is	responsible	for	controlling	how	merges	are	executed.

lockType The	lock	type	used	by	Solr	to	indicate	that	a	given	index	is	already	owned	by	IndexWriter.

www.it-ebooks.info

http://www.it-ebooks.info/

Update	handler	and	autocommit	feature
The	<UpdateHandlerSection>	configures	the	component	that	is	responsible	for	handling
requests	to	update	the	index.

This	is	where	it’s	possible	to	tell	Solr	to	periodically	run	unsolicited	commits	so	that
clients	won’t	need	to	do	that	explicitly	while	indexing.	Declaring	two	different	thresholds
can	trigger	auto-commits:

maxDocs:	The	maximum	number	of	documents	to	add	since	the	last	commit
maxTime:	The	maximum	amount	of	time	(in	milliseconds)	to	pass	for	a	document
being	added	to	index

They	are	not	exclusive,	so	it’s	perfectly	legal	to	have	settings	such	as	these:

<autoCommit>

		<maxDocs>5000</maxDocs>

		<maxTime>300000</maxTime>

</autoCommit>

Starting	from	Solr	4.0,	there	are	two	kinds	of	commit.	A	hard	commit	flushes	the
uncommitted	documents	to	the	index,	therefore	creating	and	changing	segments	and	data
files	on	the	disk.	The	other	type	is	called	soft	commit,	which	doesn’t	actually	write
uncommitted	changes	but	just	reopens	the	internal	Solr	searcher	in	order	to	make
uncommitted	data	in	the	memory	available	for	searches.

Hard	commits	are	expensive,	but	after	their	execution,	data	is	permanently	part	of	the
index.	Soft	commits	are	fast	but	transient,	so	in	case	of	a	system	crash,	changes	are	lost.

Hard	and	soft	commits	can	coexist	in	a	Solr	configuration.	The	following	is	an	example
that	shows	this:

<autoCommit>

		<maxTime>900000</maxTime>

</autoCommit>

<autoSoftCommit>

		<maxTime>1000</maxTime>

</autoSoftCommit>

Here,	a	soft	commit	will	be	triggered	every	second	(1000	milliseconds),	and	a	hard
commit	will	run	every	15	minutes	(900000	milliseconds).

www.it-ebooks.info

http://www.it-ebooks.info/

RequestHandler
A	RequestHandler	instance	is	a	pluggable	component	that	handles	incoming	requests.	It	is
configured	in	solrconfig.xml	as	a	specific	endpoint	by	means	of	its	name	attribute.

Requests	sent	to	Solr	can	belong	to	several	categories:	search,	update,	administration,	and
stats.	In	this	context,	we	are	interested	in	those	handlers	that	are	in	charge	of	handling
index	update	requests.	Although	not	mandatory,	those	handlers	are	usually	associated	with
a	name	starting	with	the	/update	prefix,	for	example,	the	default	handler	you	will	find	in
the	configuration:

<requestHandler	name="/update"	class="solr.UpdateRequestHandler"/>

Prior	to	Solr	4,	each	kind	of	input	format	(for	example,	JSON,	XML,	and	so	on)	required	a
dedicated	handler	to	be	configured.	Now	the	general-purpose	update	handler,	that	is,	the
/update	handler	uses	the	content	type	of	the	incoming	request	in	order	to	detect	the
format	of	the	input	data.	The	following	table	lists	the	built-in	content	types:

Mime-type Description

application/xml

text/xml
XML	messages

application/json

text/json
JSON	messages

application/csv

text/csv
Comma-separated	values

application/javabin Java-serialized	objects	(Java	clients	only)

Each	format	has	its	own	way	of	encoding	the	kind	of	update	operation	(for	example,	add,
delete,	and	commit)	and	the	input	documents.	This	is	a	sample	add	command	in	XML:

<add>

		<doc>

				<field	name="id">12020</field>

				<field	name="title">Round	around	midnight</field>

		</doc>

		…

</add>

Later,	we	will	index	some	data	using	different	techniques	and	different	formats.

www.it-ebooks.info

http://www.it-ebooks.info/

UpdateRequestProcessor
The	write	path	of	the	index	process	has	been	conceived	by	Solr	developers	with
modularity	and	extensibility	in	mind.	Specifically,	the	index	process	has	been	structured	as
a	chain	of	responsibilities,	where	each	set	of	components	adds	its	own	contribution	to	the
whole	index	process.

The	UpdateRequestProcessor	chain	is	an	important	configurable	aspect	of	the	index
process.	If	you	want	to	declare	your	custom	chain,	you	need	to	add	a	corresponding
section	within	the	configuration.	This	is	an	example	of	a	custom	chain:

<updateRequestProcessorChain	name="my-index-chain">

		<processor	class="…"/>

		<processor	class="…">

				<str	name="aParameterName">aParameterValue</str>

		</processor>

		<processor	name="solr.RunUpdateProcessorFactory"/>

		<processor	name="solr.LogUpdateProcessorFactory"/>

</updateRequestProcessorChain>

Defining	a	new	chain	requires	a	name	and	a	set	of	UpdateRequestProcessorFactory
components	that	are	in	charge	of	creating	processor	instances	for	that	chain.

Note
Actually,	the	definition	of	the	chain	is	not	enough.	It	must	be	enabled,	(that	is,	associated
with	RequestHandler)	in	the	following	way:

<requestHandler	name="/myReqHandler"

		class="solr.UpdateRequestHandler">

		<lst	name="defaults">

				<str	name="update.chain">chain.name</str>

		</lst>

</requestHandler>

There	are	a	lot	of	already	implemented	UpdateRequestProcessor	components	that	you
can	use	in	your	chain,	but	in	general,	it’s	absolutely	easy	to	create	your	own	processor	and
customize	the	index	chain.

Tip
The	example	project	with	this	chapter	contains	several	examples	of
UpdateRequestProcessor	within	the	org.gazzax.labs.solr.ase.ch2.urp	package.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index	operations
This	section	shows	you	the	basic	commands	needed	for	updating	an	index,	by	adding	or
removing	documents.	As	a	general	note,	each	command	we	will	see	can	be	issued	in	at
least	two	ways:	using	the	command	line,	through	the	cURL	tool,	for	example	(a	built-in
tool	in	a	lot	of	Linux	distributions	and	available	for	all	platforms);	and	using	code	(that	is,
SolrJ	or	some	other	client	API).	When	you	want	to	add	documents,	it’s	also	possible	to	run
those	commands	from	the	administration	console.

Note
SolrJ	and	client	APIs	will	be	covered	later	in	a	dedicated	chapter.

Another	common	aspect	of	these	interactions	is	the	Solr	response,	which	always	contains
a	status	and	a	QTime	attribute.	The	status	is	a	returned	code	of	the	executed	command,
which	is	always	0	if	the	operation	succeeds.	The	QTime	attribute	is	the	elapsed	time	of	the
execution.	This	is	an	example	of	the	response	in	XML	format:

<response>

		<lst	name="responseHeader">

				<int	name="status">0</int>

				<int	name="QTime">97</int>

		</lst>

</response>

www.it-ebooks.info

http://www.it-ebooks.info/

Add
The	command	sends	one	or	more	documents	to	add	to	Solr.	The	documents	that	are	added
are	not	visible	until	a	commit	or	an	optimize	command	is	issued.

We	already	saw	that	documents	are	the	unit	of	information	in	Solr.	Here,	depending	on	the
format	of	the	data,	one	or	more	documents	are	sent	using	the	proper	representation.

Since	the	attributes	and	the	content	of	the	message	will	be	the	same	regardless	of	the
format,	the	formal	description	of	the	message	structure	will	be	given	once.	The	following
is	an	add	command	in	XML	format:

<add	commitWithin="10000"	overwrite="true">

		<doc	boost="1.9">

				<field	name="id">12020</field>

				<field	name="title"	boost="2.2">Round	around	midnight</field>

				<field	name="subject">Music</field>

				<field	name="subject">Jazz</field>

		</doc>

		…

</add>

Let’s	discuss	the	preceding	command	in	detail:

<add>:	This	is	the	root	tag	of	the	XML	document	and	indicates	the	operation.
commitWithin:	This	is	an	alternative	to	the	autocommit	features	we	saw	previously.
Using	this	optional	attribute,	the	requestor	asks	Solr	to	ensure	that	the	documents	will
be	committed	within	a	given	period	of	time.
overwrite:	This	tells	Solr	to	check	out	and	eventually	overwrite	documents	with	the
same	uniqueKey.	If	you	don’t	have	a	uniqueKey,	or	you’re	confident	that	you	won’t
ever	add	the	same	document	twice,	you	can	get	some	index	performance
improvements	by	explicitly	setting	this	flag	to	false.
<doc>:	This	represent	the	document	to	be	added.
boost:	This	is	an	optional	attribute	that	specifies	the	boost	for	the	whole	document
(that	is,	for	each	field).	It	defaults	to	1.0.
<field>:	This	is	a	field	of	the	document	with	just	one	value.	If	the	field	is
multivalued,	there	will	be	several	fields	with	the	same	name	and	different	values.
boost:	This	is	an	optional	attribute	that	specifies	the	boost	for	the	specific	field.	It
defaults	to	1.0.

The	same	data	can	be	expressed	in	JSON	as	follows:

{

		"add":	{

				"commitWithin":	10000,

				"overwrite":	true,

				"doc":	{

						"boost":	1.9,

						"id":	12020,

						"title":	{

								"value":	"Round	around	midnight",

								"boost":	2.2

www.it-ebooks.info

http://www.it-ebooks.info/

								},

						"subject":	["Music",	"Jazz"]

						}

				}

}

As	you	can	see,	the	information	is	the	same	as	in	the	previous	example.	The	difference	is
in	the	encoding	of	the	information	according	to	the	JSON	format.

Sending	add	commands
We	can	issue	an	add	command	in	several	ways:	using	cURL,	the	administration	console,
and	a	client	API	such	as	SolrJ.

The	cURL	tool	is	a	command-line	tool	used	to	transfer	data	with	URL	syntax.	Among
other	protocols,	it	supports	HTTP	and	HTTPS,	so	it’s	perfect	for	sending	commands	to
Solr.	These	are	some	examples	of	add	commands	sent	using	cURL:

#	curl	http://127.0.0.1:8983/solr/update	-H	"Content-type:	text/xml"	--

data-binary	@datafile.xml

#	curl	http://127.0.0.1:8983/solr/update	-H	"Content-type:	text/xml"	--

data-binary

'<add	commitWithin="10000"	overwrite="true">

		<doc	boost="1.9">

				<field	name="id">12020</field>

				…

				<field	name="subject">Jazz</field>

		</doc>

		…

</add>'

The	first	example	uses	data	contained	in	a	file.	The	second	(useful	for	short	requests)
directly	embeds	the	documents	in	the	data-binary	parameter.	The	preceding	examples	are
perfectly	valid	for	JSON	and	CSV	documents	as	well	(obviously,	the	data	format	and	the
content	type	will	change).

www.it-ebooks.info

http://www.it-ebooks.info/

Delete
A	delete	command	will	mark	one	or	more	documents	as	deleted.	This	means	the	target
documents	are	not	immediately	removed	from	the	index.	Instead,	a	kind	of	tombstone	is
placed	on	them;	when	the	next	commit	event	happens,	that	data	will	be	removed.	Commits
and	optimizes	are	commands	that	make	the	update	changes	visible	and	available.	In	other
words,	they	make	those	changes	effectively	part	of	the	Solr	index.	We	will	see	both	of
them	later.

Solr	allows	us	to	identify	the	target	documents	in	two	different	ways:	by	specifying	a	set
of	identifiers	or	by	deleting	all	documents	matched	by	a	query.	In	the	same	way	as	we	sent
add	commands,	we	can	use	cURL	to	issue	delete	commands:

#	curl	http://127.0.0.1:8983/solr/update	-H	"Content-type:	text/xml"	--

data-binary	@datafile_with_deletes.xml

#	curl	http://127.0.0.1:8983/solr/update	-H	"Content-type:	text/xml"	--

data-binary

'<delete>

		<id>92392</id>

		<query>publisher:"Ashler"</query>

</delete>'	

In	the	second	example,	we	issued	a	command	to	delete:

The	document	with	92392	as	uniqueKey
All	documents	that	have	a	publisher	attribute	with	the	Ashler	value

www.it-ebooks.info

http://www.it-ebooks.info/

Commit,	optimize,	and	rollback
Changes	resulting	from	add	and	delete	operations	are	not	immediately	visible.	They	must
be	committed	first;	that	is,	a	commit	command	has	to	be	sent.

We	already	explored	hard	and	soft	unsolicited	commits	in	the	Index	configuration	section.
The	same	command	can	be	explicitly	sent	to	Solr	by	clients.

Although	we	previously	described	the	difference	between	hard	and	soft	commits,	it’s
important	to	remember	that	a	hard	commit	is	an	expensive	operation,	causing	changes	to
be	permanently	flushed	to	disk.	Soft	commits	operate	exclusively	in	memory,	and	are
therefore	very	fast	but	transient;	so,	in	the	event	of	a	JVM	crash,	softly	committed	data	is
lost.

Tip
In	a	prototype	I’m	working	on,	we	index	data	coming	from	traffic	sensors	in	Solr.	As	you
can	imagine,	the	input	flow	is	continuous;	it	can	happen	several	times	in	a	second.	A
control	system	needs	to	execute	a	given	set	of	queries	at	short	periodic	intervals,	for
example,	every	few	seconds.	In	order	to	make	the	most	updated	data	available	to	that
system,	we	issue	a	soft	commit	every	second	and	a	hard	commit	every	20	minutes.	At	the
moment,	this	seems	to	be	a	good	compromise	between	the	availability	of	fresh	data	and
the	risk	of	data	loss	(it	could	still	happen	during	those	20	minutes).

For	those	interested,	the	Solr	extension	we	will	use	in	that	project	is	available	on	GitHub,
at	https://github.com/agazzarini/SolRDF.	It	allows	Solr	to	index	RDF	data,	and	it	is	a	good
example	of	the	capabilities	of	Solr	in	the	realm	of	customization.

A	third	kind	of	commit,	which	is	actually	a	hard	commit,	is	the	so-called	optimize.	With
optimize,	other	than	producing	the	same	results	as	those	of	a	hard	commit,	Solr	will	merge
the	current	index	segments	into	a	single	segment,	resulting	in	a	set	of	intensive	I/O
operations.	The	merge	usually	occurs	in	the	background	and	is	controlled	by	parameters
such	as	merge	scheduler,	merge	policy,	and	merge	factor.	Like	the	hard	commit,	optimize
is	a	very	expensive	operation	in	terms	of	I/O	because,	apart	from	costing	the	same	as	a
hard	commit,	it	must	have	some	temporary	space	available	on	the	disk	to	perform	the
merge.

It	is	possible	to	send	the	commit	or	the	optimize	command	together	with	the	data	to	be
indexed:

#	curl	http://127.0.0.1:8983/solr/update?commit=true	-H	"Content-type:	

text/xml"	--data-binary	@datafile.xml

#	curl	http://127.0.0.1:8983/solr/update?optimize=true	-H	"Content-type:	

text/xml"	--data-binary	@datafile.xml

The	message	payload	can	also	be	a	commit	command:

#	curl	http://127.0.0.1:8983/solr/update	-H	"Content-type:	text/xml"	--

data-binary	'<commit/>'

A	commit	has	a	few	additional	Boolean	parameters	that	can	be	specified	to	customize	the

www.it-ebooks.info

https://github.com/agazzarini/SolRDF
http://www.it-ebooks.info/

service	behavior:

Parameter Description

waitSearcher The	command	won’t	return	until	a	new	searcher	is	opened	and	registered	as	the	main	searcher

waitFlush The	command	won’t	return	until	uncommitted	changes	are	flushed	to	disk

softCommit If	this	is	true,	a	soft	commit	will	be	executed

Before	committing	any	pending	change,	it’s	possible	to	issue	a	rollback	to	remove
uncommitted	add	and	delete	operations.	The	following	are	examples	of	rollback	requests:

#	curl	http://127.0.0.1:8983/solr/update?rollback=true	

#	curl	http://127.0.0.1:8983/solr/update	-H	"Content-type:	text/xml"	--

data-binary	'<rollback/>'

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Extending	and	customizing	the	index
process
As	we	saw	before,	the	Solr	index	chain	is	highly	customizable	at	different	points.	This
section	will	give	you	some	hints	and	examples	to	create	your	own	extension	in	order	to
customize	the	indexing	phase.

www.it-ebooks.info

http://www.it-ebooks.info/

Changing	the	stored	value	of	fields
One	of	the	most	frequent	needs	that	I	encounter	while	I’m	indexing	bibliographic	data	is
to	correct	or	change	the	headings	(labels)	belonging	to	the	incoming	records	(documents).

Note
This	has	nothing	to	do	with	the	text	analysis	we	have	previously	seen.	Here,	we	are
dealing	with	unwanted	(wrong)	values,	diacritics	that	need	to	be	replaced,	or	in	general,
labels	in	the	original	record	that	we	want	to	change	and	show	to	the	end	users.	In	Solr
terms,	we	want	to	change	the	stored	value	of	a	field	before	it	gets	indexed.

Suppose	a	library	has	a	lot	of	records	and	wants	to	publish	them	in	an	OPAC.
Unfortunately,	many	of	those	records	have	titles	with	a	trailing	underscore,	which	has	a
special	meaning	for	librarians.	While	this	is	not	a	problem	for	the	cataloguing	software
(because	librarians	are	aware	of	that	convention),	it	is	not	acceptable	to	end	users,	and	it
will	surely	be	seen	as	a	typo.	So	if	we	have	records	with	titles	such	as	“A	good	old	story_”
or	“This	is	another	title_”	in	our	application,	we	want	to	show	“A	good	old	story”	and
“This	is	another	title”	without	underscores	when	the	user	searches	for	those	records.

Remember	that	analyzers	and	tokenizers	declared	in	your	schema	only	act	on	the	indexed
value	of	a	given	field.	The	stored	value	is	copied	verbatim	as	it	arrives,	so	there’s	no
chance	to	modify	it	once	it	is	indexed.

In	these	cases,	an	UpdateRequestProcessor	perfectly	fits	our	needs.	The	example	project
associated	with	this	chapter	contains	several	examples	of	custom
UpdateRequestProcessors.	Here,	we	are	interested	in
RemoveTrailingUnderscoreProcessor,	which	can	be	found	in	the	src/main/java	within
the	org.gazzax.labs.solr.ase.chr.urp	package.

As	you	can	see,	writing	an	UpdateRequestProcessor	requires	two	classes	to	be
implemented:

Factory:	A	class	that	extends
org.apache.solr.update.processor.UpdateRequestProcessorFactory

Processor:	A	class	that	extends
org.apache.solr.update.processor.UpdateRequestProcessor

The	first	is	a	factory	that	creates	concrete	instances	of	your	processor	and	can	be
configured	with	a	set	of	custom	parameters	in	solrconfig.xml:

<processor	class="org.gazzax.labs.solr.ase.chr.urp.	

RemoveTrailingUnderscoreProcessorFactory">

		<arr	name="fields">

				<str	name="fields">title</str>

				<str	name="fields">author</str>

		</arr>

</processor>

In	this	case,	instead	of	hardcoding	the	name	of	the	fields	that	we	want	to	check,	we	define
an	array	parameter	called	fields.	That	parameter	is	retrieved	in	the	factory,	specifically	in

www.it-ebooks.info

http://www.it-ebooks.info/

the	init()	method,	which	will	be	called	by	Solr	when	the	factory	is	instantiated:

private	String	[]	fields;

@Override

public	void	init	(NamedList	args)	{

		SolrParams	parameters	=	SolrParams.toSolrParams(args);

		this.fields	=	parameters.getParams("fields");

}

The	other	relevant	section	of	the	factory	is	in	the	getInstance	method,	where	a	new
instance	of	the	processor	is	created:

@Override

public	void	getInstance(SolrQueryRequest	req,	SolrQueryReponse	res,	

UpdateRequestProcessor	next)	{

	return	new	RemoveTrailingUpdateRequestProcessor(next,	fields);

}

A	new	processor	instance	is	created	with	the	next	processor	in	the	chain	and	the	list	of
target	fields	we	configured.	Now	the	processor	receives	those	parameters	and	can	add	its
contribution	to	the	index	phase.	In	this	case,	we	want	to	put	some	logic	before	the	add
phase:

@Override

public	void	processAdd(final	AddUpdateCommand	command)	{

		//	1.	Retrieve	the	Solr	(Input)	Document

		SolrInputDocument	document	=	command.getSolrInputDocument();

		//	2.	Loop	thorugh	target	fields

		for	(String	name	:	fields)	{

				//	3.	Get	the	field	value

				//	we	assume	target	fields	are	monovalued	for	simplicity

				String	value	=	document.getFieldValue(name);

				

				//	4.	Check	and	eventually	change	the	value

				if	(value	!=	null	&&	value.endsWith("_"))	{

						String	newValue	=	value.substring(0,	value.length()-1);

						document.setFieldValue(name,	newValue);

				}

		}

		//	5.	IMPORTANT:	forward	to	the	next	processor	in	the	chain

		super.processAdd(command);

}

Tip
You	can	find	the	source	code	of	the	whole	example	under	the
org.gazzax.labs.solr.ase.ch2.urp	package	of	the	source	folder	in	the	project
associated	with	this	chapter.	The	package	contains	additional	examples	of
UpdateRequestProcessor.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing	custom	data
The	default	UpdateRequestHandler	is	very	powerful	because	it	covers	the	most	popular
formats	of	data.	However,	there	are	some	cases	where	data	is	available	in	a	legacy	format.
Hence,	we	need	to	do	something	in	order	to	have	Solr	working	with	that.

In	this	example,	I	will	use	a	flat	file,	that	is,	a	simple	text	file	that	typically	describes
records	with	fields	of	data	defined	by	fixed	positions.	They	are	very	popular	in	integration
projects	between	banks	and	ERP	systems	(just	to	give	you	a	concrete	context).

Tip
In	the	example	project	associated	with	this	chapter,	you	can	find	an	example	of	such	a	file
describing	books	under	the	src/solr/solr-homes/flatIndexer/example-input-data
folder.

Here,	each	line	has	a	fixed	length	of	107	characters	and	represents	a	book,	with	the
following	format:

Parameter Position

Id 0	to	8

ISBN 8	to	22

Title 22	to	67

Author 67	to	106

There	are	two	approaches	in	this	scenario:	the	first	moves	the	responsibility	on	the	client
side,	thus	creating	a	custom	indexer	client	that	gets	the	data	in	any	format	and	carries	out
some	manipulation	to	convert	it	into	one	of	the	supported	formats.	We	won’t	cover	this
scenario	right	now,	as	we	will	discuss	client	APIs	in	a	next	chapter.

Another	approach	could	be	a	custom	extension	of	the	UpdateRequestHandler.	In	this
case,	we	want	to	have	a	new	content	type	(text/plain)	and	a	corresponding	custom
handler	to	load	that	kind	of	data.	There	are	two	things	we	need	to	implement.	The	first	is	a
subclass	of	the	existing	UpdateRequestHandler:

public	class	FlatDataUpdate	extends	UpdateRequestHandler	{

		@Override

		protected	Map<String,	ContentStreamLoader>	createDefaultLoaders(NamedList	

n)	{

				Map<String,	ContentStreamLoader>	registry	=	new	HashMap<String,	

ContentStreamLoader>();

				registry.put("text/plain",	new	FlatDataLoader());

				return	registry;

		}

}

Here,	we	are	simply	overriding	the	content	type	registry	(the	registry	in	the	superclass
cannot	be	modified)	to	add	our	content	type,	with	a	corresponding	handler	called

www.it-ebooks.info

http://www.it-ebooks.info/

FlatDataLoader.	This	class	extends	ContentStreamLoader	and	implements	the	parsing
logic	of	the	flat	data:

public	class	FlatDataLoader	extends	ContentStreamLoader

The	custom	loader	must	provide	a	load(…)	method	to	implement	the	stream	parsing	logic:

@Override

public	void	load(

SolrQueryRequest	req,	

SolrQueryResponse	rsp,

ContentStream	stream,	

UpdateRequestProcessor	processor)	throws	Exception	{

		//	1.	get	a	reader	associated	with	the	content	stream	BufferedReader	

reader	=	null;

		try	{

				reader	=	new	BufferedReader(stream.getReader());

				String	actLine	=	null;

				while	((actLine	=	reader.readLine())	!=	null)	{

				//	2.	Sanity	check:	check	line	length

				if	(actLine.length()	!=	107)	{

						continue;

				}

				//	3.	parse	and	create	the	document

				SolrInputDocument	doc	=	new	SolrInputDocument();

				doc.setField("id",	actLine.substring(0,	8));

				doc.setField("isbn",	actLine.substring(8,22));

				doc.setField("title",	actLine.substring(22,	67));

				doc.setField("author",	actLine.substring(67));

				AddUpdateCommand	command	=	getAddCommand(req);

				command.solrDoc	=	document;

				processor.processAdd(command);

		}	finally	{

		//	Close	the	reader

		…	

		}

}

If	you	want	to	view	this	example,	just	open	the	command	line	in	the	folder	of	the	project
associated	with	this	chapter,	and	run	the	following	command:

#	mvn	cargo:run	–P	flatIndexer

Tip
You	can	do	the	same	with	Eclipse	by	creating	a	new	Maven	launch	as	previously
described.	In	that	case,	you	will	also	be	able	to	put	debug	breakpoints	in	the	source	code
(your	source	code	and	the	Solr	source	code)	and	proceed	step	by	step	in	the	Solr	index
process.

Once	Solr	has	started,	open	another	shell,	change	the	directory	to	go	to	the	project	folder,
and	run	the	following	command:

www.it-ebooks.info

http://www.it-ebooks.info/

#	curl	http://127.0.0.1:8983/solr/flatIndexer/update?commit=true	-H	

"Content-type:text/plain"	--data-binary	@src/solr/solr-

homes/flatIndexer/example-input-data/books.flat

You	should	see	something	like	this	in	the	console:

[UpdateHandler]	start	

commit{,optimize=false,openSearcher=true,waitSearcher=true,expungeDeletes=f

alse,softCommit=false,prepareCommit=false}

…

[SolrCore]	SolrDeletionPolicy.onCommit:	commits:	num=2

[SolrCore]	newest	commit	generation	=	4

[SolrIndexSearcher]	Opening	Searcher@77ee04bb[flatIndexer]	main

[UpdateHandler]	end_commit_flush

Now	open	the	administration	console	at
http://127.0.0.1:8983/solr/#/flatIndexer/query,	and	click	on	the	Execute	Query
button.	You	should	see	three	documents	on	the	right	pane.

Tip
You	can	find	the	source	code	of	the	entire	example	under	the
org.gazzax.labs.solr.ase.ch2.handler	package	of	the	source	folder	in	the	project
associated	with	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting
This	section	provides	suggestions	and	tips	on	how	to	resolve	some	common	problems
encountered	when	dealing	with	indexing	operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Multivalued	fields	and	the	copyField	directive
The	cardinality	of	a	field	can	be	tricky,	especially	when	used	in	conjunction	with
copyField	directives,	where	two	or	more	single-valued	fields	are	copied	to	another	field,
like	this:

<field	name="author_person"	…	required="true"/>

<field	name="author_corporate"	…	required="true"/>

<field	name="author_search"	…	multiValued="true"/>

<copyField	source="author_person"	dest="author_search"/>

<copyField	source="author_corporate"	dest="author_search"/>

In	this	case,	the	destination	field	must	be	multivalued.	Otherwise,	there	will	be	two	values
for	two	different	source	fields,	and	Solr	will	refuse	to	index	the	whole	document,	showing
ERROR	multiple	values	encountered	for	non	multiValued	field	author_search.

www.it-ebooks.info

http://www.it-ebooks.info/

The	copyField	input	value
A	common	misunderstanding	with	the	copyField	directive	is	related	to	the	value	that	is
being	copied	from	the	source	to	the	dest	field.	Suppose	you	define	field	A,	field	B,	and	a
copyField	directive	from	A	to	B:

<field	name="A"	type="text_without_stopwords"	…	/>

<field	name="B"	type="light_stemmed_text"	…	/>

<copyField	source="A"	dest="B"/>

Irrespective	of	the	text	analysis	we	defined	for	field	A	and	field	B.	Field	B	will	get	the
stored	value	of	field	A,	without	any	text	analysis	applied.	In	other	words,	the	incoming
value	for	the	field	A	is	copied	verbatim	to	field	B	before	any	analysis	text	can	be	associated
with	that	field.

So,	if	we	have	a	value	of	“one	and	two”	for	field	A,	“and”	is	considered	as	a	stop	word.
The	“one	and	two”	value	is	injected	into	field	A,	which	will	trigger	the	text	analysis	for
the	text_without_stopwords	type,	therefore	resulting	in	an	indexed	value	(for	field	A)
composed	of	two	tokens:	“one”,	“two”	(“and”	has	been	removed).

Next,	the	value	original	value	of	field	A	(“one	and	two”)	is	copied	to	field	B,	triggering
the	text	analysis	associated	with	that	field.

www.it-ebooks.info

http://www.it-ebooks.info/

Required	fields	and	the	copyField	directive
A	required	attribute	on	a	static	field	denotes	that	an	incoming	document	must	contain	a
valid	value	for	that	field.	If	a	field	is	the	target	or	destination	of	a	copyField	directive	the
required	attribute	means	that	in	some	way,	there	should	be	a	value	for	that	field	coming
from	its	sources.	See	the	following	example:

<field	name="A"	…	required="false"/>

<field	name="B"	…	required="false"/>

<field	name="C"	…	required="true"	multiValued="true"/>

<copyField	src="A"	dest="C"/>

<copyField	src="B"	dest="C"/>

Fields	A	and	B	are	not	required	and	they	are	copied	in	field	C.	Since	the	field	C	is
mandatory,	you	have	to	make	sure	that,	for	each	input	document,	at	least	A	or	B	will	have	a
valid	value,	otherwise	Solr	will	complain	about	a	missing	value	for	field	C.

www.it-ebooks.info

http://www.it-ebooks.info/

Stored	text	is	immutable!
A	stored	field	value	is	the	text	that	comes	from	the	Solr	(Input)	document.	It	will	be
copied	verbatim	because	it	arrives	without	any	changes.	Any	text	analysis	configured	in
the	schema	for	a	given	field	type	won’t	affect	that	value.

In	other	words,	the	stored	value	won’t	be	changed	at	all	by	Solr	during	the	index	phase.

www.it-ebooks.info

http://www.it-ebooks.info/

Data	not	indexed
The	design	of	UpdateRequestProcessor	follows	the	decorator	pattern,	consisting	of	a
nested	chain	of	responsibility	where	each	ring	is	executed	one	after	the	other.	Your	custom
UpdateRequestProcessor	will	get	a	reference	to	the	next	processor	in	the	chain	during	its
life	cycle.	Once	its	work	has	been	done,	it	is	crucial	to	forward	the	execution	flow	to	the
next	processor.	Otherwise,	the	chain	will	be	interrupted	and	no	data	will	be	indexed.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	saw	the	main	concepts	of	the	indexing	phase	in	Solr.	Being	an	inverted-
index-based	search	engine,	Solr	strongly	relies	on	the	indexing	phase	by	allowing	a
customizable	and	tunable	index	chain.

The	Solr	write	path	is	a	chain	of	responsibility	consisting	of	several	actors,	each	of	them
with	a	precise	role	in	the	overall	process.	While	you	must	know,	configure,	and	control
those	components	as	a	user,	you	must	also	be	aware	of	their	high	level	of	extensibility	(as
a	developer).	This	allows	you	to	adapt	and	eventually	customize	a	Solr	instance	according
to	your	specific	needs.

We	addressed	the	concepts	that	form	the	Solr	data	model,	such	as	documents,	core,
schema,	fields,	and	types.	We	also	looked	at	the	indexing	configuration	and	the	involved
components	such	as	update	request	processors,	update	chains,	and	request	handlers.	We
finally	described	how	to	configure	these	components	and	write	extensions	on	top	of	them.

The	purpose	of	the	indexing	phase	and	the	index	itself	is	to	optimize	speed	and
performance	in	finding	relevant	documents	during	searches.	Hence,	the	whole	process	is
not	useful	without	the	search	phase,	which	is	the	subject	of	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3.	Searching	Your	Data
Once	data	has	been	properly	indexed,	it’s	definitely	time	to	search!	The	indexing	phase
makes	no	sense	if	things	end	there.	Data	is	indexed	mainly	to	speed	up	and	facilitate
searches.

This	chapter	focuses	on	search	capabilities	offered	by	Solr	and	illustrates	the	several
components	that	contribute	to	its	read	path.

The	chapter	will	cover	the	following	topics:

Querying
Search	configuration
The	Solr	read	path:	query	parsers,	search	components,	request	handlers,	and	response
writers
Extending	Solr
Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

The	sample	project
Throughout	this	chapter,	we	will	use	a	sample	Solr	instance	with	a	configuration	that
includes	all	the	topics	we	will	gradually	describe.	This	instance	will	have	a	set	of	simple
documents	representing	music	albums.	These	are	the	first	three	documents:

		<doc>

				<field	name="id">1</field>

				<field	name="title">A	Modern	Jazz	Symposium	of	Music	and	Poetry</field>

				<field	name="composer">Charles	Mingus</field>

				…

		</doc>

		<doc>

				<field	name="id">2</field>

				<field	name="title">Where	Jazz	meets	Poetry</field>

				<field	name="artist">Raphael	Austin</field>

				…

		</doc>

		<doc>

				<field	name="id">3</field>

				<field	name="title">I'm	In	The	Mood	For	Love</field>

				<field	name="composer">Charlie	Parker</field>

				<field	name="genre">Jazz</field>

				…

		</doc>

The	source	code	of	the	sample	project	associated	with	this	chapter	contains	the	entire
Maven	project,	which	can	be	either	loaded	in	Eclipse	or	used	via	the	command	line.	As	a
preliminary	step,	open	a	shell	(or	run	the	following	command	within	Eclipse)	in	the
project	folder	and	type	this:

#	mvn	clean	cargo:run	–P	querying

The	preceding	command	will	start	a	new	Solr	instance,	with	sample	data	preloaded.

Tip
The	sample	data	is	automatically	loaded	at	startup	by	means	of	a	custom
SolrEventListener.	You	can	find	the	source	code	under	the
org.gazzax.labs.solr.ase.ch3.listener	package.

You	can	use	the	page	located	at	http://127.0.0.1:8983/solr/#/example/query	to	try
and	experiment	by	yourself	the	several	things	we	will	discuss.

Tip
If	you	loaded	the	project	in	Eclipse,	under	/src/dev/eclipse	you	will	find	the	launch
configuration	used	to	start	Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Querying
Solr	can	be	seen	as	a	tell-and-ask	system;	that	is,	you	first	put	in	(index)	some	data,	then	it
can	answer	questions	you	ask	(query)	about	that	data.	Since	the	actors	involved	in	these
interactions	are	not	humans,	Solr	provides	a	formal	and	systematic	way	to	execute	both
index	and	query	operations.	Specifically,	from	a	query	perspective,	that	requires	a
specialized	language	that	can	be	interpreted	by	Solr	in	order	to	produce	the	expected
answers.	Such	a	language	is	usually	called	a	query	language.

www.it-ebooks.info

http://www.it-ebooks.info/

Search-related	configuration
The	solrconfig.xml	file	has	a	<query>	section	that	contains	several	search	settings.	Most
of	them	are	related	to	caches,	a	critical	topic	that	will	be	described	in	Chapter	5,
Administering	and	Tuning	Solr.

As	we	already	said	for	the	index	section,	all	those	parameters	have	good	defaults	that
work	well	in	a	lot	of	scenarios.	This	list	describes	the	relevant	settings	(cache	settings	are
not	included):

Searcher	lifecycle	listeners:	Whenever	a	searcher	is	opened,	it’s	possible	to
configure	one	or	more	queries	that	will	be	automatically	executed	in	order	to
prepopulate	caches.
Use	cold	searcher:	If	a	search	is	issued	and	there	isn’t	a	registered	searcher,	the
current	warming	searcher	is	immediately	used.	If	this	attribute	is	set	to	false,	the
incoming	request	will	wait	until	the	warming	completes.
Max	warming	searchers:	This	is	the	maximum	number	of	searchers	that	are
warming	in	parallel.	The	example	configuration	contains	a	value	of	2,	which	is	good
for	pure	searcher	instances.	For	indexers	(which	could	be	also	searchers),	a	higher
value	could	be	needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Query	analyzers
In	the	previous	chapter,	we	discussed	analyzers.	Their	meaning	here	is	the	same,	and	the
difference	resides	only	in	their	input	value.	When	we	index	data,	that	value	is	the	content
of	the	fields	that	make	up	the	input	documents.	At	query	time,	the	analyzer	processes	a
value,	term,	or	phrase	coming	from	a	query	parser	and	representing	a	compounding	piece
of	the	user-entered	query.

Tip
In	the	previous	chapter,	we	used	the	analysis	page	to	see	how	text	analysis	works	at	index
time.	That	very	page	has	an	additional	section	that	can	be	used	to	see	the	same	process	but
using	the	query	analyzer.

www.it-ebooks.info

http://www.it-ebooks.info/

Common	query	parameters
A	query	to	Solr,	other	than	a	search	string,	includes	several	parameters	that	are	passed
using	standard	HTTP	procedures,	that	is,	name/value	pairs	in	the	query	string,	like	this:
http://127.0.0.1:8080/solr/ch3/search?q=history&start=10&rows=10&sort=title

asc

While	some	of	them	strictly	depend	on	the	component	that	will	be	in	charge	of	handling
the	request,	there	are	sets	of	common	parameters.	The	following	table	describes	them:

Parameter Description

q The	search	string	that	indicates	what	we	are	asking	to	Solr	according	to	a	given	syntax.

start The	start	offset	within	search	results.	This	is	used	to	paginate	search	results.

rows The	maximum	size	(that	is,	number	of	documents)	of	the	returned	page.

sort
A	comma-separated	list	of	(indexed)	fields	that	will	be	used	to	sort	search	results.	Each	field	must	be
followed	by	the	keyword	asc	(for	ascending	order)	or	desc	(descending	order).

defType
Indicates	the	query	parser	that	will	interpret	the	specific	search	string.	Each	query	parser	has	different
features	and	different	rules	and	accepts	a	different	syntax	in	queries.

fl A	comma-	or	space-separated	list	of	fields	that	will	be	returned	as	part	of	the	matched	documents.

fq A	filter	query.	The	parameter	can	be	repeated.

wt The	response	output	writer	that	will	determine	the	response	output	format.

debugQuery
If	this	is	true,	an	additional	section	will	be	appended	to	the	response	with	an	explanation	of	the	current
read	path.

explainOther

The	unique	key	of	a	document	that	is	not	part	of	search	results	for	a	given	query.	Solr	will	add	a	section
to	the	response	explaining	why	the	document	associated	with	that	identifier	has	been	excluded	from
search	results.

timeAllowed
A	constraint	on	the	maximum	amount	of	time	allowed	for	query	execution.	If	the	timeout	expires,	Solr
will	return	only	partial	results.

cache Enables	or	disables	query	caching.

omitHeader

By	default,	the	response	contains	an	information	header	that	contains	some	metadata	about	the	query
execution	(for	example,	input	parameters	or	query	execution	time).	If	this	parameter	is	set	to	true,	then
the	header	is	omitted	in	the	response.

The	following	are	some	examples	queries:
http://localhost:8983/solr/example/query?

q=charles&fq=genre:jazz&rows=5&omitHeader=tue&debugQuery=true

http://localhost:8983/solr/example/query?

q=charles&rows=10&omitHeader=tue&debugQuery=true&explainOther=2

http://localhost:8983/solr/example/query?q=*:*&start=5&rows=5

www.it-ebooks.info

http://www.it-ebooks.info/

As	you	can	imagine,	the	q	parameter,	which	contains	the	query,	will	be	very	important	in
this	chapter.	Besides	this,	there	are	two	other	parameters—fl	(field	list)	and	fq	(filter
queries)—that	will	be	described	in	the	next	sections,	because	they	have	some	interesting
aspects.

Field	lists
The	fl	parameter	indicates	which	fields	(among	fields	that	have	been	marked	as	stored)
will	be	returned	in	documents	within	a	query	response.	Think	of	these	two	scenarios:

A	schema	that	contains	a	lot	of	fields,	probably	defining	multiple	entities	(that	is,
books	and	authors).	I’m	looking	for	books	so	I	don’t	want	to	see	any	author	attributes
(and	vice	versa).
A	schema	that	contains	stored	fields	with	a	lot	of	text,	used	for	the	highlighting
component,	for	example	(it	requires	that	highlight	snippets	come	from	a	stored	field).
When	I	execute	queries	I	don’t	want	those	fields	to	be	returned	as	part	of	the
matching	documents.	In	other	words:	I	want	to	exclude	those	fields	from	search
results.

The	fl	parameter	specifies	the	list	of	fields	that	will	compound	each	matched	document,
thus	filtering	out	unwanted	attributes.	The	parameter	accepts	a	space-	or	comma-separated
list	of	values,	where	each	value	can	be	any	of	the	following:

A	field	name	(for	example,	title,	artist,	released,	and	so	on).
The	literal	score,	which	is	a	virtual	field	indicating	the	computed	score	for	each
document.
A	glob,	which	is	an	expression	that	dynamically	matches	one	or	more	fields	by	means
of	the	*	and	?	wildcard	characters	(for	example,	art*,	r?leas?d,	and	re?leas*).
The	asterisk	(*)	character,	which	matches	all	available	(that	is,	stored)	fields.
A	function	that,	when	evaluated,	will	produce	a	value	for	a	virtual	field	that	will	be
added	to	documents.
A	transformer.	Like	a	function,	this	is	another	way	to	create	virtual	fields	in
documents,	with	additional	data	such	as	the	Lucene	document	ID,	shard	identifier,	or
the	query	execution	explanation.

Explicit	fields,	score,	functions,	and	transformers	can	be	aliased	by	prefixing	them	with	a
name	that	will	be	used	in	place	of	the	real	name	of	that	member.

Tip
SOLR-3191	tracks	the	activity	related	to	a	so-called	field	exclusion	feature.	Once	this
patch	has	been	applied,	it	will	be	possible	to	explicitly	indicate	which	fields	must	not	be
part	of	the	returned	documents.

The	following	table	lists	some	examples	of	the	fl	parameter:

Example Description

*,	score All	stored	fields	and	the	score	virtual	field

www.it-ebooks.info

http://www.it-ebooks.info/

t*,*d All	fields	starting	with	t	and	ending	with	d

max(old_price,	new_price) Maximum	value	between	old_price	and	new_price

max_price:max(p1,	p2) A	function	alias

title,	t_alias:title,	[docid] Title,	aliased	title,	and	a	transformer

The	difference	between	the	third	and	fourth	examples	in	the	preceding	table	is	in	the	name
of	the	field	that	will	hold	the	function	value.	In	the	first	case,	it	will	be	the	function	itself;
in	the	other,	it	will	be	a	virtual	field	called	max_price.

Tip
With	the	sample	instance	running,	you	can	try	these	examples	by	issuing	a	request	such	as
http://127.0.0.1:8983/solr/example/query?q=id:1&fl=,	replacing	the	value	of	the	fl
parameter.

A	complete	list	of	available	functions	can	be	accessed	at
http://wiki.apache.org/solr/FunctionQuery#Available_Functions.

A	complete	list	of	available	transformers	can	be	read	at
https://cwiki.apache.org/confluence/display/solr/Transforming+Result+Documents.

Filter	queries
Filter	queries	operate	a	kind	of	intersection	on	top	of	documents,	resulting	from	the
execution	of	the	main	query.	A	filter	query	is	like	having	a	required	condition	in	your	main
query	(that	is,	an	additional	clause	concatenated	with	the	AND	operator),	but	with	some
important	differences:

It	is	executed	separately	and	before	the	main	query
The	filter	and	the	intersection	are	applied	on	top	of	the	main	query	results
It	doesn’t	influence	the	score	of	the	documents,	which	is	computed	in	the	execution
of	the	main	query
The	results	of	filter	queries	are	cached	separately	so	that	they	can	be	reused	for
further	executions

There	can	be	more	than	one	fq	parameter	in	a	search	query.	In	this	case,	the	result	of	the
overall	execution	will	take	into	account	all	filter	clauses,	therefore	resulting	in	documents
that	satisfy	the	intersection	between	the	main	results	and	the	results	of	each	filter	query.

Filter	query	caching	is	one	of	the	most	crucial	features	of	Solr.	A	filter	query’s	design
should	reflect	the	access	pattern	of	requestors	as	much	as	possible.	Consider	this	filter
query:

fq=genre:Jazz	AND	released:1981

The	preceding	query	will	cache	the	results	of	those	two	clauses	together.	So,	if	your
application	provides	two	separate	filters	(for	the	end	users),	genre	and	released,	the
following	filter	queries	won’t	benefit	from	this	cache,	and	they	will	be	cached	(again)
separately:

www.it-ebooks.info

http://wiki.apache.org/solr/FunctionQuery#Available_Functions
https://cwiki.apache.org/confluence/display/solr/Transforming+Result+Documents
http://www.it-ebooks.info/

fq=genre:Jazz

fq=released:1981

In	this	situation,	the	first	query	should	be	rewritten	in	the	following	way,	allowing	reuse	of
the	cache	associated	with	each	filter	query:

fq=genre:Jazz&fq=released:1981

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Query	parsers
A	query	parser	is	a	component	responsible	for	translating	a	search	string	or	expression	into
specific	instructions	for	Solr.	Every	query	parser	understands	a	given	syntax	for
expressing	queries.

Solr	comes	with	several	query	parsers,	giving	the	requestors	a	wide	range	of	ways	of
asking	what	they	need.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Solr	query	parser
The	Solr	query	parser,	often	mistakenly	called	Lucene	query	parser,	is	implemented	in
org.apache.solr.search.LuceneQParserPlugin.	It	is	rather	a	schema-driven	superset	of
the	default	Lucene	query	parser.

Note
Note	the	Plugin	suffix	of	the	class	name.	Solr	provides	an	extensible	framework	for
creating	and	plugging	in	your	own	query	parser.

The	following	sections	will	describe	the	relevant	aspects	of	this	parser.

Terms,	fields,	and	operators
You’ve	already	met	terms.	They	are	atomic	units	of	information	resulting	from	an	analysis
applied	to	given	text.	At	index	time,	that	text	is	the	value	of	a	field	belonging	to	a	given
(input)	document.	At	query	time,	terms	come	from	the	user-entered	query	string.
Specifically,	a	query	string	is	broken	into	terms,	fields,	and	operators.

Terms	can	be	simple	or	compound	terms;	for	example,	they	can	be	single	words	such	as
CM,	Standard,	and	1959	or	phrases	such	as	“Goodbye	Pork	Pie	Hat.”	Phrases	are	two	or
more	words	surrounded	by	double	quotes.

Fields	are	what	we	declared	in	the	schema.xml	file.	Their	use	within	a	search	string	allows
a	requestor	to	express	instructions	such	as	“search	x	in	field	y”	where	x	is	a	term	or	a
phrase	and	y	is	the	field	name.	Here	are	some	examples	of	the	use	of	fields:

title:	"Where	Jazz	meets	Poetry"

composer:	Mingus

Operators	are	keywords	or	symbols	used	as	conjunctions	between	several	field-value
criteria	in	order	to	create	complex	expressions,	such	as	this:

title:Jazz	OR	composer:Charlie	AND	released:1959

genre:Jazz	AND	NOT	released:1959

The	following	table	describes	the	available	operators:

Operator Description

AND A	conjunction	between	two	criteria,	both	of	which	must	be	satisfied

OR A	conjunction	between	two	criteria	where	at	least	one	must	be	satisfied

+ Marks	a	term	as	required

-	/	NOT Marks	a	term	as	prohibited

It’s	also	possible	to	use	a	pair	of	parentheses	to	group	several	fields	or	values	criteria,	like
this:

(released:1957	AND	composer:Mingus)	OR	(released:1976	AND	NOT	genre:Jazz)	

www.it-ebooks.info

http://www.it-ebooks.info/

OR	released:	(1988	OR	1959)

Boosts
Boosting	allows	you	to	control	the	relevance	of	a	given	matching	document,	thus	offering
a	way	to	give	to	some	query	results	more	importance	than	others;	for	example,	if	you	are
mainly	interested	in	Jazz	and	less	in	Fusion	albums,	you	could	use	this:

+genre:Fusion	+genre:Jazz^2

The	boost	factor	is	inserted	after	a	field	value	criterion	and	prefixed	with	a	caret	symbol.	It
has	to	be	greater	than	0,	and	since	it	is	a	factor,	a	value	between	0	and	1	represents	a
negative	boost.	If	it	is	absent,	a	default	boost	factor	of	1	will	be	applied.

Wildcards
The	wildcard	characters,	*	and	?,	can	be	used	within	terms,	with	zero	or	more	occurrences.
They	cannot	be	applied	to	compound	terms	(that	is,	search	phrases)	or	numeric	and	date
types.	The	?	wildcard	matches	a	single	character,	while	the	*	matches	zero	or	more
sequential	characters.	Here	are	some	examples	of	wildcards:

(title:moder*	AND	artist:Min*)	OR	artist:(Yngw?e	AND	M?lm*)

Fuzzy
The	tilde	symbol	(~)	at	the	end	of	a	term	enables	a	so-called	fuzzy	query,	allowing	you	to
match	terms	that	are	similar	to	that	term.	Fuzzy	logic	is	based	on	the	Damerau-
Levenshtein	distance	algorithm.	After	the	tilde,	you	can	put	a	value	between	0	and	2,
indicating	the	required	similarity	(2	means	high	similarity	is	required).	The	default	value
that	is	used	if	the	parameter	is	not	given	is	0.5.

With	the	example	Solr	instance	running,	open	the	query	page	in	the	admin	console	and
type	the	following	query:

artist:Charles~0.7

The	query	response	will	contain	two	results.	The	first	is	an	album	of	Charles	Mingus,	that
is	a	perfect	match	with	the	search	term	entered.	The	second	artist	is	Charlie	Parker,	whose
name	is	similar	but	not	equal	to	Charles.

Proximity
The	same	symbol	that	is	used	for	a	fuzzy	query	has	a	different	meaning	when	used	in
conjunction	with	phrase	queries.	Now	run	the	following	query:

title:"Jazz	Poetry"

You	won’t	get	any	result	because	there’s	no	record	with	those	two	consecutive	terms	in	the
title.	Using	a	tilde	followed	by	a	number,	which	expresses	a	distance	between	terms,	you
can	enable	a	proximity	search,	allowing	matches	of	documents	that	have	those	two	terms
within	a	specific	distance	from	one	another.

This	query	will	match	the	document	that	has	Where	Jazz	meets	Poetry	as	its	title:

www.it-ebooks.info

http://www.it-ebooks.info/

title:"Jazz	Poetry"~2

The	following	query	will	also	match	the	document	that	has	A	Modern	Jazz	Symposium	of
Music	and	Poetry	as	the	title:

title:"Jazz	Poetry"~4

Ranges
Range	searches	allow	us	to	specify	for	a	given	field	a	set	of	matching	values	that	fall
between	a	lower	and	a	higher	bound,	inclusive	or	exclusive	of	those	bounds.	Here	are
some	examples	of	ranges:

released:[1957	TO	1988]

released:[1957	TO	*]

released:	[*	TO	1988]

released:{1957	TO	1988}

released:[1957	TO	1988}

genre:	[Jazz	TO	NewAge]

You	can	see	that	the	lower	and	higher	bounds	can	be	literal	values,	as	shown	in	the	first
example,	where	we	are	searching	for	albums	released	between	1957	and	1988.	The	bounds
can	also	be	wildcards,	as	shown	in	the	second	and	third	examples.	Square	and	curly
brackets	are	used	to	denote	an	included	or	an	excluded	bound,	respectively.	So,	in	the	first
example,	both	1957	and	1988	are	included;	in	the	fourth	example	they	are	excluded.

Keep	in	mind	that,	for	non-numeric	fields	(as	shown	in	the	fifth	example	in	the	preceding
code	snippet)	sorting	is	done	lexicographically.	Therefore,	a	sequence	such	as	1,	02,	14,
100	will	result	in	02,	1,	100,	14	using	the	lexicographic	order,	which	is	very	different	from
a	numeric	sort.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Disjunction	Maximum	query	parser
The	Solr	query	parser	is	powerful	when	it	comes	to	building	complex	expressions.
However,	those	are	quite	far	from	what	the	user	usually	types	in	a	search	field.

Think	about	the	Google	search	page.	What	do	you	type	in	the	search	text	field?	Not	an
expression,	but	just	one,	two,	or	more	terms	associated	with	what	you’re	looking	for.

The	Disjunction	Max	(DisMax)	query	parser	directly	processes	those	user-entered	terms
and	searches	for	each	of	them	across	a	set	of	configurable	target	fields,	with	a	configurable
weight	for	each	field.

Note
The	DisMax	parser	is	enabled	by	setting	the	defType	parameter	to	dismax.

The	example	Solr	instance	has	a	request	handler	listening	to	/glike1	that	uses	the	DisMax
parser.

Other	than	search	terms,	this	query	parser	supports	some	features	of	the	Solr	query	parser,
such	as	quotes,	that	can	be	used	to	indicate	phrases,	and	the	+	and	-	operands	to	mark
mandatory	and	prohibited	terms,	respectively.	All	other	term	modifiers	we	saw	for	the	Solr
query	parser	are	escaped,	so	they	will	be	interpreted	as	search	terms.

The	name	of	the	parser	comes	from	its	behavior:

Dis:	This	stands	for	disjunction,	which	means	that,	for	each	word	in	the	query	string,
the	parser	builds	a	new	subquery	across	fields	and	boosts	specified	in	the	qf
parameter.	The	resulting	queries	are	subjected	to	the	first	(required)	constraint
defined	with	the	mm	parameter,	and	a	set	of	optional	clauses	defined	with	other
parameters,	which	we	will	see	later.
Max:	This	means	maximum,	and	it	pertains	to	the	scoring	computation.	The	DisMax
parser	scores	a	given	document	by	getting	the	maximum	score	value	among	all
matching	subqueries.

The	following	sections	describe	the	several	parameters	that	the	parser	accepts.

Query	Fields
The	qf	parameter	indicates	a	set	of	target	fields	with	their	corresponding	(optional)	boosts.
Fields	are	separated	by	spaces,	and	each	of	them	can	have	an	optional	boost	associated
with	it,	hence	resulting	in	expressions	such	as	this:

qf	=	title^3.5	artists^2.0	genre^1.5	released

Here,	we	want	to	search	across	four	fields,	each	of	them	with	a	different	importance,
which	will	affect	the	score	assigned	to	each	matching	document.	The	qf	parameter	is	one
of	the	main	places	where	we	define	our	search	strategy,	depending	on	customer
requirements.

Tip

www.it-ebooks.info

http://www.it-ebooks.info/

In	OPACs,	there’s	a	never-ending	debate	about	which	is	the	more	relevant	attribute	among
titles	and	subjects.	A	title,	as	you	can	imagine,	is	important,	but	couldn’t	contain	terms	that
are	representatives	of	a	work.	A	subject	is	a	kind	of	controlled	classification	assigned	by	a
professional	user	(that	is,	a	librarian).	As	a	search	service	provider,	you	can	use	the	qf
parameter	to	configure	boosts,	depending	on	customer	needs,	and	avoid	entering	that
debate!

The	DisMax	query	parser	has	another	interesting	feature	when	searching	fields	declared	in
the	qf	parameter:	when	those	fields	are	numeric	or	dates,	inappropriate	terms	are	dropped.
Returning	to	the	qf	expression,	consider	searching	for	this:

Mingus	1962

For	the	title,	artist	and	genre	fields,	Solr	will	build	two	queries.	But	for	the	released
field,	it	will	create	just	one	query	using	the	1962	word,	thus	resulting	in	a	total	of	7
queries:

title:Mingus^3.5,	artist:Mingus^2.0,	genre:Mingus^1.5,	title:1962^3.5,	

artist:1962^2.5,	genre:1962^1.5,	released:1962

As	you	can	see,	the	released:Mingus	query	has	been	dropped	because	released	is	a
numeric	field.

Alternative	query
The	q.alt	optional	parameter	defines	a	query	that	will	be	used	in	the	absence	of	the	main
query.

The	q.alt	query	is	parsed	by	default	using	the	Solr	query	parser,	so	it	accepts	the	syntax
we	described	in	the	previous	paragraph.	Using	LocalParams,	you	can	change	the	q.alt
parser.

Minimum	should	match
Every	word	or	phrase	that	is	a	part	of	the	search	string,	unless	it	is	constrained	by	the	+	or
-	operators	(and	therefore,	marked	as	required	or	prohibited),	is	considered	as	optional.
For	those	optional	parts,	the	mm	parameter	defines	the	minimum	number	of	matches	that
satisfy	the	query	execution.	The	interesting	point	here	is	that	other	than	accepting	a
quantity	or	a	number,	this	parameter	also	allows	complex	expressions.	The	following	table
illustrates	some	examples	of	mm:

Value Description

An	integer	(for
example,	3) At	least	the	given	number	of	optional	clauses	must	match.

A	percentage	(for
example,	66%) At	least	the	given	percentage	of	optional	clauses	must	match.

A	negative	number
or	a	negative
percentage

The	number	of	optional	clauses	that	must	match	is	the	result	of	subtracting	the	given	value	from
the	total	number	of	optional	clauses	(absolute	or	100	percent	depending	on	the	parameter	value).

www.it-ebooks.info

http://www.it-ebooks.info/

One	or	more
expressions	with
the	X	<	|	>	Y
format

If	there	are	less	than	X	optional	clauses,	they	must	match.	If	clauses	are	greater	than	X,	then	Y
must	be	used	as	the	mm	value.	Y	can	be	a	positive	or	negative	integer	or	a	percentage	value.	It	is
also	possible	to	concatenate	several	expressions,	like	this:

3<	75%	6<-1

This	means	that,	with	three	optional	clauses,	all	of	them	are	required.	Between	4	and	6	optional
clauses,	we	require	a	match	of	75	percent.	Finally,	for	more	than	six	clauses,	we	require	a	match
of	all	clauses	but	one.

The	several	subqueries	resulting	from	search	terms	parsing	are	constrained	with	the	mm
parameter	(specifically,	an	additional	Boolean	query	acting	as	a	constraint	is	concatenated
with	the	AND	operator),	so	matching	documents	that	don’t	satisfy	the	mm	constraint	won’t
be	part	of	the	search	results.

Phrase	fields
Once	the	list	of	matching	documents	has	been	populated	according	to	the	search	criteria
and	constraints	(for	example,	mm	or	filter	queries),	the	pf	parameter	raises	the	score	of
documents	that	have	search	terms	in	proximity.

As	the	qf	parameter,	pf	can	declare	a	list	of	fields	with	an	optional	boost	factor.

Query	phrase	slop
The	qs	parameter	indicates	a	proximity	factor	to	be	used	in	those	phrase	queries	that	are
eventually	included	in	the	search	string.

Phrase	slop
The	ps	parameter	indicates	a	proximity	factor	to	be	used	in	phrase	queries	built	for	pf
fields.	Note	that	such	queries	will	be	executed	only	to	boost	results	(see	the	previous
section),	so	this	parameter	doesn’t	affect	matching	but	only	boosting.

Boost	queries
The	bq	parameter	defines	a	query	parsed	by	the	Solr	query	parser	that	will	additionally
boost	search	results.	It	can	be	repeated,	thus	allowing	one	or	more	queries.

If,	for	example,	you	want	to	give	more	importance	to	items	with	a	price	that	falls	within	a
given	range,	you	can	use	a	boost	query	like	this:

price:[10.00	TO	19]

Additive	boost	functions
The	bf	parameter	defines	a	function	that	will	additionally	boost	search	results	by	adding
its	value	to	the	computed	score.	As	with	the	bq	parameter,	it	can	be	repeated	in	order	to
have	multiple	functions.

Tie	breaker
The	tie	parameter	is	a	float	number.	It	has	a	value	between	0	and	1,	and	it	affects	the
strategy	used	by	the	parser	to	determine	the	final	score	of	a	given	(matching)	document.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Disjunction	Max	parser,	as	said	before,	executes	a	set	of	subqueries	on	top	of	the
fields	declared	in	the	qf	parameter.	The	subquery	that	has	the	maximum	score	determines
the	score	of	the	document.	So	schematically:

documentScore	=	score	of	matching	sub	query	with	highest	score

However,	you	could	end	up	with	two	documents	getting	the	same	score,	because	the
maximum	value	computed	by	each	winner	subquery	is	the	same.

The	tie	parameter	lets	you	take	fine-grained	control	of	the	final	score	assigned	to	each
document,	by	including	the	score	of	all	matching	subqueries	in	the	computation.	Those
additional	scores	are	multiplied	by	a	factor,	the	tie	value.	So,	the	preceding	formula
becomes	the	following:

documentScore	=	(score	of	matching	sub	query	with	highest	score)	+	((tie)	

*	(scores	of	other	matching	sub	queries))	

With	a	value	of	0.0,	we	will	have	a	pure	disjunction	max	query,	where	only	the
maximum	score	is	included.	A	value	of	1.0	will	lead	to	a	disjunction	sum	query,	where
the	final	score	is	the	sum	of	the	scores	of	all	matching	subqueries.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Extended	Disjunction	Maximum	query	parser
This	parser	(eDisMax)	is	built	on	top	of	the	DisMax	parser	and	has	some	additional
features	such	as	fielded	search,	Boolean	operators,	term	modifiers,	and	better	handling	of
mistakes	in	queries.

Note
The	eDisMax	parser	can	be	enabled	by	setting	the	defType	parameter	to	edismax.

The	example	Solr	instance	has	a	request	handler	listening	to	/glike2	that	uses	the
eDisMax	parser.

The	following	sections	describe	additional	parameters	that	this	parser	accepts.	All
parameters	described	in	the	DisMax	parser	section	are	included.

Fielded	search
The	eDisMax	parser	supports	the	full	syntax	of	the	Solr	query	parser,	therefore	allowing	a
so-called	fielded	search	(that	is,	title:Jazz)	with	Boolean	operators	and	term	modifiers
(for	example,	fuzzy	and	proximity).

In	addition,	this	parser	supports	field	aliasing	and	renaming.	This	allows	you	to	give	an
interaction	view	to	the	requestor	(for	example,	an	end	user,	a	query	client,	and	so	on)	that
is	partially	or	completely	decoupled	from	Solr’s	underlying	data	model.

Aliasing	is	done	using	the	following	syntax:

f.<alias>.qf	=	(one	or	more	real	fields	with	optional	boosts)

Here,	<alias>	is	the	virtual	name	that	will	be	associated	with	the	field	(or	fields)	declared
on	the	right	operand.	As	you	can	see,	an	alias	can	be	applied	to	single	fields	or	to	a	group
of	fields.	When	aliases	are	declared,	requestors	can	use	them	in	their	queries.

We	can	use	aliases	to	localize	field	names:

f.artista.qf	=	artist	//	Italian	users	will	see	an	"artista"	field

f.kunstler.qf	=	artist	//	for	German	users

We	can	also	use	them	to	create	metafields	that	group	a	set	of	real	fields:

f.people.qf	=	author,	illustrator,	editor,	translator

f.titles.qf	=	title,	front_cover_title,	sub_title,	uniform_title

Phrase	bigram	and	trigram	fields
Other	than	supporting	the	pf	parameter	we	have	already	seen	for	DisMax,	this	parser	adds
two	optional	features.	The	ps	parameter	boosts	the	score	of	documents	where	input	terms
appear	in	proximity.	The	pf2	and	pf3	parameters	offer	the	same	feature	but	by	splitting	the
input	terms	in	consecutive	bigrams	and	trigrams,	respectively.	Therefore,	the	All	the
things	you	are	input	string	will	become	the	following	set	of	(consecutive)	bigrams:

All	the,	the	things,	things	you,	you	are

www.it-ebooks.info

http://www.it-ebooks.info/

For	the	same	logic,	it	will	become	the	following	set	of	trigrams:

All	the	things,	the	things	you,	things	you	are

Phrase	bigram	and	trigram	slop
As	ps	sets	the	phrase	slop	for	the	pf	parameter,	ps2	and	ps3	do	the	same	for	pf2	and	pf3.
If	they	are	absent,	the	value	of	ps	is	used.

Multiplicative	boost	function
The	boost	parameter	declares	one	function	as	the	bf	parameter,	as	we	have	seen	for	the
DisMax	parser.	The	difference	here	is	that	the	function	value	is	multiplied	(not	added)	by
the	computed	score.

User	fields
The	uf	parameter	specifies	which	fields	(real	or	virtual)	the	requestors	are	allowed	to	use
in	their	queries.	Used	in	conjunction	with	aliasing,	it	allows	you	to	completely	hide	real
fields	and	have	queries	with	only	virtual	(that	is,	aliased)	fields.

Lowercase	operators
In	plain	Solr	query	parser	syntax,	operators	need	to	be	in	uppercase	(AND,	OR).	The
lowercaseOperators	flag	parameter,	which	defaults	to	true,	allows	us	to	interpret	as
operators	lowercase	tokens	(and,	or).

Note
At	the	time	of	writing	this	book,	only	the	and	and	or	Boolean	operators	are	affected	by
this	parameter.	The	NOT	operator	is	not	handled,	and	therefore,	the	lowercase	word	not	is
parsed	as	a	literal	term,	even	if	lowercaseOperators	is	set	to	true.	The	Jira	issue	at
https://issues.apache.org/jira/browse/SOLR-3580	tracks	the	activity	on	this	topic.

www.it-ebooks.info

https://issues.apache.org/jira/browse/SOLR-3580
http://www.it-ebooks.info/

Other	available	parsers
There	are	a	lot	of	other	available	parsers,	as	listed	in	the	following	table:

Parser Code Description

Lucene	query
parser

lucene
The	Lucene	query	parser	has	more	or	less	the	same	features	as	the	Solr	query	parser.
However,	this	is	the	Lucene-specific	implementation.

Function	query
parser

func Creates	a	function	query	from	the	input	string.

Join	query
parser

join Normalizes	relationships	between	documents	by	emulating	a	join.

Term	query
parser

term Creates	a	single-term	query	from	the	input	string.

Boost	query
parser

boost
Creates	a	boosted	query	from	the	input	string.	An	additional	parameter,	b,	is	required	to
indicate	the	boost	function.

Raw	query
parser

raw Creates	a	term	query	from	the	input	string	without	any	text	analysis.

Spatial	filter
query	parser

geofilt Enables	spatial	queries.

Field	query
parser

field Create	a	field	query	from	the	input	string.

Surround	query
parser

surround Creates	a	surround	query.	This	query	is	used	for	proximity	searches.

Besides	all	of	this,	the	query	parser	framework	has	been	conceived	with	extensibility	in
mind,	so	developers	are	free	to	implement,	register,	and	use	their	own	query	parsers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Search	components
A	search	component	is	a	reusable	module	that	contributes	to	search	results.	While	defining
a	search	handler,	that	is,	a	controller	for	a	given	kind	of	search,	you	can	customize	its
behavior	by	defining	and	configuring	search	components	that	will	contribute	to	its	output
results.

Search	components	must	be	declared	and	used	within	solrconfig.xml,	the	main	Solr
configuration	file.	A	component	declaration	requires	a	name,	the	implementation	class,
and	a	set	of	optional	initialization	parameters:

<searchComponent	name="prices"	class="a.b.c.MyComponent">

				<str	name="ds-jndi">jdbc/datasource</str>

				<str	name="service-uri">http://example.org#me</str>

</searchComponent>

Once	declared,	these	can	be	used	within	request	handlers,	which	are	the	runtime
controllers	of	the	executions	of	requests	(we	will	cover	request	handlers	later	in	the
chapter).

There	are	some	predefined	search	components	that	mustn’t	be	explicitly	declared	in
solrconfig.xml.

Note
That	doesn’t	mean	they	are	automatically	enabled.	They	must	be	explicitly	activated	or
disabled,	depending	on	their	default	state.

The	default	components	are	those	components	that	are	responsible	for	absolving	the
fundamental	or	common	steps	of	a	query	execution	flow.	This	is	the	reason	there’s	no
need	to	declare	them	explicitly,	unless	you	want	to	use	a	different	configuration.	In	the
following	sections,	we	will	illustrate	these	components.

www.it-ebooks.info

http://www.it-ebooks.info/

Query
The	query	component	is	responsible	for	parsing	and	executing	a	query.	This	is	the
component	that	accepts	query	and	query	parser	parameters,	gets	a	reference	to	the
appropriate	query	parser,	coordinates	the	parser	in	order	to	produce	a	query,	executes	that
query,	and	outputs	a	corresponding	response.

www.it-ebooks.info

http://www.it-ebooks.info/

Facet
This	component	enables	the	so-called	faceted	search.	It	contributes	to	search	results	by
adding	a	set	of	configurable	aggregations	called	facets.

When	you	execute	some	search,	you	will	get	back	a	single	page	of	results	consisting	of	a
certain	number	of	matching	documents.	Enabling	faceting	allows	you	to	get	an	additional
perspective	of	the	overall	data,	consisting	of	a	set	of	aggregations.	The	following
screenshot	shows	some	Solr-powered	facets	in	action	on	a	website,	on	the	right	side:

The	facet	component	can	be	activated	by	specifying	a	facet	parameter	with	one	of	the
following	values:	yes,	true,	or	on.

Solr	provides	several	types	of	facets:	queries,	fields,	ranges,	pivot,	and	interval.	Each	of
them,	whenever	enabled,	will	add	a	dedicated	section	to	the	response.

Facet	queries
The	facet.query	parameter	declares	a	query	(parsed	by	the	Solr	query	parser)	that	will	be
used	as	a	facet	with	the	corresponding	counts.	The	results	(that	is,	counts)	of	this	facet	will
be	in	a	specific	response	section	called	facets_queries.	The	parameter	can	be	repeated
multiple	times,	allowing	us	to	specify	several	queries.	Using	the	example	dataset,	with
Solr	running,	open	a	browser	and	type	http://127.0.0.1:8983/solr/example/select?
q=*:*&facet=true&facet.query=genre:jazz

In	the	XML	response,	you	will	see	matching	documents	within	the	<result>	tag,	and	an
additional	section	dedicated	to	facets:

<lst	name="facet_counts">

		<lst	name="facet_queries">

				<int	name="genre:Jazz">3</int>

		</lst>

		<lst	name="facet_fields"/>

		<lst	name="facet_dates"/>

		<lst	name="facet_ranges"/>

</lst>

Here,	you	can	see	that	three	documents	match	the	facet	query.	The	other	facet	sections	are

www.it-ebooks.info

http://www.it-ebooks.info/

empty	because	we	didn’t	ask	for	them.

Facet	fields
Facet	fields	are	surely	the	most	popular	kind	of	facets.	They	aggregate	search	results	using
a	set	of	given	and	configurable	fields.

Note
Remember	that	a	field	must	be	declared	as	indexed	in	the	schema	in	order	to	be	faceted.

Other	than	activating	the	facet	feature	for	a	given	field,	Solr	has	a	rich	set	of	parameters
that	can	be	used	to	tune	and	configure	the	field’s	faceting	behavior.	These	settings	can	be
specified	for	all	fields	or	for	a	given	field.	For	the	first	case,	the	following	table	illustrates
the	available	parameters,	their	names,	and	meanings.	For	field-specific	settings,	the	same
parameters	must	be	declared	with	the	following	convention:

f.<field>.<parameter>	=	<value>

In	this	way,	the	value	associated	with	parameter	will	be	valid	only	for	the	specific	field.

Parameter Description

facet.field Declares	a	field	that	will	be	used	as	a	facet.	This	parameter	must	be	repeated	for	each	facet	field.

facet.prefix Limits	the	terms	used	in	faceting	to	values	that	begin	with	a	given	prefix.

facet.sort
The	sort	strategy	of	counts	within	each	facet.	Only	two	values	are	allowed:	count,	which	means
order	by	count,	and	index,	which	means	lexicographic	order.

facet.limit
The	maximum	number	of	counts	that	can	be	returned	for	each	facet.	A	value	of	-1	will	return	all
available	counts.

facet.offset Specifies	a	start	offset	within	the	available	counts	of	facets.

facet.mincount The	minimum	count	needed	for	a	field	to	be	included	in	the	response.

facet.missing
Includes	in	the	response	the	count	of	documents	that	match	the	query	but	don’t	have	a	value	for	a
given	facet.

facet.method The	type	of	algorithm	that	Solr	will	use	to	compute	facets.

facet.threads The	number	of	parallel	workers	(that	is,	threads)	that	will	compute	the	facets.

Returning	to	our	previous	example,	let’s	remove	the	facet	query	and	use	some	additional
parameters	so	that	facet	fields	will	be	built	(for	simplicity,	only	the	query	string	is
reported):

q=*:*&facet=on&facet.field=genre&facet.minCount=1

In	the	facet	sections,	you	will	see	the	genre	facets	under	the	facet_fields	subsection:

<lst	name="facet_fields">

<lst	name="genre">

www.it-ebooks.info

http://www.it-ebooks.info/

		<int	name="Progressive	Rock">10</int>

		<int	name="Rock">5</int><int	name="Fusion">4</int>

		<int	name="Heavy	Metal">4</int>

		…

		<int	name="Pop	metal">1</int></lst>

</lst>

We	asked	for	the	genre	facet	and	we	set	mincount	to	1,	which	means	that	facets	with	no
counts	are	excluded	from	the	response.	It	is	important	to	underline	the	fact	that	the
displayed	value	for	a	facet	field	is	its	indexed	value,	and	not	the	stored	value	(that	is,	the
value	that	is	copied	verbatim	as	it	arrives	in	input	documents).	In	the	previous	example,
the	genre	field	is	String,	and	therefore,	it	is	not	tokenized.	This	is	the	reason	you	see	the
compound	term	(Progressive	Rock)	as	one	of	its	values.	If	that	field	had	been	declared	as
TextField	and	tokenized	with	WhiteSpaceTokenizer,	you	would	have	seen	two	different
values	for	that	facet	(assuming	no	further	filtering):	Progressive	and	Rock.

Facet	ranges
Facet	ranges	can	be	applied	to	numeric	or	date	fields.	As	the	name	suggests,	with	facet
ranges,	Solr	creates	a	facet	classification	based	on	ranges.	The	following	parameters
control	this	kind	of	faceting:

Parameter Description

facet.range
Declares	a	field	that	will	be	used	as	the	facet	range.	The	parameter	must	be	repeated	for	each
facet	field.

facet.range.start Declares	the	start	of	the	facet	interval.

facet.range.end Declares	the	end	of	the	facet	interval.

facet.range.gap The	size	of	each	step	between	the	start	and	the	end	of	the	interval.

The	following	is	a	sample	query	that	uses	facet	ranges	for	faceting	albums	by	release	date:

q=*:*&facet=on&facet.range=released&facet.range.start=1950&facet.range.end=

2000&facet.range.gap=10

That	will	add	another	section	within	the	facet_counts	element:

<lst	name="facet_ranges">

		<lst	name="released">

				<lst	name="counts">

						<int	name="1950">1</int>

						<int	name="1960">1</int>

						<int	name="1970">6</int>

						<int	name="1980">8</int>

						<int	name="1990">5</int>

				</lst>

				…

		</lst>

</lst>

Pivot	facets

www.it-ebooks.info

http://www.it-ebooks.info/

We	previously	described	facet	fields;	they	provide	the	ability	to	aggregate	search	results
by	one	or	more	categories.	Pivot	facets	go	a	step	ahead	in	that	direction.	They	allow	us	to
analyze	data	in	multiple	dimensions,	breaking	down	the	faceted	values	by	subsequent,
nested	subcategories.

This	kind	of	faceting	can	be	activated	through	a	request	like	this:

q=*:*&facet=on&facet=true&facet.pivot=genre,released

The	facet.pivot	parameter	can	be	repeated	multiple	times.	For	each	repetition,	there	will
be	a	dedicated	and	aggregated	result	within	the	facet_pivot	section	of	the	response.	Here,
for	simplicity,	we	put	just	one	parameter	with	two	categories,	genre	and	released.	The
following	example	is	an	extract	of	the	response	you	will	get	using	the	sample	instance
associated	with	this	chapter:

<lst	name="facet_pivot">

<arr	name="genre,released">

		<lst>

				<str	name="field">genre</str>

				<str	name="value">Progressive	Rock</str>

				<int	name="count">10</int>

				<arr	name="pivot">

						<lst>

								<str	name="field">released</str>

								<int	name="value">1992</int>

								<int	name="count">2</int>

						</lst>

						<lst>

								<str	name="field">released</str>

								<int	name="value">1969</int>

								<int	name="count">1</int>

						</lst>

		<lst>

		<str	name="field">genre</str>

		<str	name="value">Rock</str>

		<int	name="count">5</int>

		<arr	name="pivot">

				<lst>

						<str	name="field">released</str>

						<int	name="value">1969</int>

						<int	name="count">1</int>

				</lst>

				<lst>

						<str	name="field">released</str>

						<int	name="value">1986</int>

						<int	name="count">1</int>

				</lst>

				…

As	you	can	see,	the	genre	facet	is	broken	down	by	a	nested	released	category.	Note	that
the	preceding	nested	structure	is	returned	with	just	one	request-response	interaction.	In
order	to	get	the	same	result	with	classic	facet	fields,	you	should	query	Solr	several	times
with	incremental	filters.	That’s	the	reason	the	pivot	facets	feature,	acting	as	a	façade	and
hiding	all	of	that	interaction	complexity,	is	very	useful	for	navigating	the	hierarchy	of

www.it-ebooks.info

http://www.it-ebooks.info/

those	aggregations.	However,	it	should	be	used	carefully,	as	it	could	have	an	impact	on
performance.

Interval	facets
Interval	facets	were	introduced	in	Solr	4.10.	They	can	be	seen	as	an	alternative	to	facet
(range)	queries	because	they	allow	you	to	set	interval	criteria	for	one	or	more	fields,	and
count	the	number	of	matching	documents	that	have	values	within	those	constraints.

Although	the	same	result	can	be	achieved	with	facet	range	queries,	this	implementation
could	provide	performance	improvement	in	several	contexts.	As	suggested	in	the	Solr
reference	guide,	it	is	recommended	that	you	try	both	the	methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Highlighting
The	highlight	component	contributes	to	search	results	by	adding	a	section	that	contains
(for	each	document	in	the	current	result	page)	a	set	of	snippets	highlighting	the	search
terms	that	are	in	the	document	content	(that	is,	in	one	or	more	fields	of	the	document).	The
following	screenshot	shows	a	web	application	that	uses	the	highlighting	feature:

This	feature	is	particularly	useful	when	your	data	comes	from	rich	documents	such	as
PDFs	or	Microsoft	Office	documents	(as	shown	in	the	preceding	example).	Using	the
highlighting	feature,	it’s	possible	to	give	the	end	user	an	approximate	idea	of	the	context
where,	within	the	document,	entered	terms	have	been	found.

Tip
Within	the	example	Solr	instance	associated	with	this	chapter,	there	is	a	request	handler
called	/highlight	that	enables	this	feature	on	title	and	artist	fields.

The	highlighting	component	can	be	tuned,	or	configured,	with	several	parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Fortunately,	the	provided	default	values	work	well	in	many	scenarios.	Some	of	those
parameters	are	described	in	the	following	table:

Parameter Description

hl Turns	highlighting	off	or	on.	The	default	value	is	false.

hl.q
Terms	to	be	highlighted	are	taken	from	the	main	query	unless	this	parameter,	which
itself	requires	a	query,	is	specified.

hl.fl
A	space-	or	comma-separated	list	of	fields	that	will	be	used	for	highlighting.
Snippets	will	come	only	from	these	fields.

hl.snippets The	number	of	highlighting	snippets	that	will	be	returned.	The	default	value	is	1.

hl.maxAnalyzedChar
The	maximum	number	of	characters	that	will	be	inspected	(in	a	given	field)	to
compute	the	snippets.

hl.simple.pre/hl.simple.post
Indicates	text	that	should	appear	before	and	after	a	highlighted	term.	They	default	to
	and		HTML	tags,	respectively.

Solr	comes	with	three	different	kind	of	highlighters,	described	in	the	following	sections.

Standard	highlighter
This	is	the	first	highlighter	that	was	introduced	in	Solr.	Solr	uses	it	by	default.	It	is	able	to
work	on	top	of	a	lot	of	query	types	and	doesn’t	have	any	special	requirement	on	fields	to
be	highlighted.	However,	in	order	to	speed	up	its	work,	termVectors	should	be	turned	on
(for	those	fields).

Fast	vector	highlighter
Fast	vector	highlighter	is	the	second	type	of	highlighter	introduced	in	Solr.	It	requires	that
termVectors,	termPositions,	and	termOffsets	are	turned	on	for	each	field	that	needs	to
be	highlighted.	That	allows	fast	and	scalable	execution,	especially	with	documents
containing	large	amounts	of	text,	but	requires	a	lot	of	extra	space	for	the	index.	However,
it	supports	few	query	types.

The	fast	vector	highlighter	can	be	enabled	by	setting	the	hl.useFastVectorHighlighter
parameter	to	true.

Note	that,	if	the	preceding	flags	are	not	set	for	target	fields,	Solr	will	continue	to	use
StandardHighlighter.

Postings	highlighter
This	highlighter	doesn’t	use	term	vectors,	nor	does	it	reanalyze	the	text	to	be	highlighted.
It	only	requires	the	storeOffsetsWithPositions	flag	set	for	the	fields	to	be	highlighted.
Unlike	the	others,	this	highlighter	must	be	explicitly	declared	in	the	solrconfig.xml	file
with	the	following	declaration:

<searchComponent	class="solr.HighlightComponent"	name="highlight">

		<highlighting	class="org.apache.solr.highlight.PostingsSolrHighlighter"/>

www.it-ebooks.info

http://www.it-ebooks.info/

</searchComponent>

This	is	a	good	compromise,	compared	with	the	first	two	highlighters,	in	terms	of
performance	and	index	space.	The	information	(that	is,	the	posting	offsets)	required	by	the
storeOffsetsWithPositions	flag	is	cheaper	than	term	vectors	in	terms	of	memory	and
disk	occupation.	However,	it	is	supposed	to	be	used	to	highlight	simple	query	terms,	so	it
could	have	some	unexpected	or	unwanted	results	with	phrase	queries.

www.it-ebooks.info

http://www.it-ebooks.info/

More	like	this
The	more	like	this	search	component	allows	us	to	find	documents	that	have	some	kind	of
similarity	with	a	given	document.	There	are	several	ways	to	use	this	feature	in	Solr:

MoreLikeThisHandler:	This	is	a	front	controller	that	is	completely	dedicated	to
“more	like	this”	requests.	It	accepts	a	query	that	identifies	a	document,	and	looks	for
similar	documents	according	to	a	configured	criterion.
MoreLikeThisHandler:	This	is	similar	to	MoreLikeThisHandler,	but	instead	of
taking	a	document	as	the	input	(matched	by	a	given	query),	the	text	used	to	compute
similarity	can	be	directly	passed	or	fetched	from	a	URL.
MoreLikeThisSearchComponent:	As	a	search	component,	it	will	execute	the	similar
search	for	each	document	of	the	current	result	page,	thus	appending	a	more	like	this
section	to	the	Solr	response,	with	a	list	of	similar	documents	for	each	document.	This
is	not	really	recommended	because	it	could	slow	down	overall	query	execution.

In	general,	the	first	type	is	the	most	widely	used.	MoreLikeThis	doesn’t	have	special
requirements	for	fields	that	are	to	be	used	for	the	similarity	computation.	However,	for
best	performance,	TermVectors	should	be	enabled	for	them.

The	following	table	illustrates	the	parameters	accepted	by	this	component:

Parameter Description

mlt Turns	highlighting	off	or	on.	It	defaults	to	false.

mlt.count The	maximum	number	of	similar	documents	that	must	be	returned	(for	each	document).

mlt.fl
The	fields	used	for	similarity.	They	should	have	TermVectors	enabled	(recommended)	or	they
need	to	be	stored.

mlt.qf
A	list	of	space-	or	comma-separated	fields	(already	declared	in	mlt.fl)	with	corresponding
boosts.

mlt.minwl	/

mlt.maxwl

The	minimum	and	maximum	word	length	boundaries.	Words	whose	length	is	more	that	these
boundaries	are	ignored.

mlt.boost
A	flag	indicating	whether	the	query	will	be	boosted	by	the	relevance	of	the	interesting	terms.	It
defaults	to	false.

mlt.mintf This	is	the	minimum	term	frequency	boundary.	It	defaults	to	2.

mlt.mindf This	is	the	minimum	document	frequency	boundary.	It	defaults	to	5.

www.it-ebooks.info

http://www.it-ebooks.info/

Other	components
Other	than	the	components	we	saw	in	the	previous	sections,	there	are	other	built-in	search
components	that	are	part	of	the	Solr	framework.	Remember	that,	if	you	want	to	use	them,
they	will	have	to	be	explicitly	declared	and	configured	within	the	Solr	configuration.

The	following	is	a	short	and	non-exhaustive	list	of	additional	components:

Query	elevation:	This	is	used	to	give	more	importance	to	some	results	using	a
criterion	that	has	nothing	to	do	with	the	normal	Solr	scoring	algorithm.	The
component	lets	you	associate	a	given	query	with	a	corresponding	list	of	most
important	results.
Terms:	This	provides	access	to	the	Lucene	internal	term	dictionary.
Stats:	This	provides	numeric	fields	statistics.
Spellcheck:	This	provides	spell	checking	capabilities	by	means	of	n-gram	analysis	of
indexed	documents	or	external	dictionaries.	From	a	functional	point	of	view,	this
component	is	used	to	build	the	so-called	“Did	you	mean?”	feature,	offering
alternative	search	suggestions	in	case	of	user	mistakes.
Term	Vector:	This	adds	term	vectors	(that	is,	term,	frequency,	position,	offset,	and
IDF)	of	the	matching	documents	to	a	request.
Debug:	This	adds	debuging	and	explanatory	information	about	the	request	execution.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Search	handler
We	saw	request	handlers	in	the	previous	chapter.	There,	we	defined	a	request	handler	as	a
pluggable	component	that	handles	incoming	requests.	In	that	chapter,	we	were	referring	to
update	requests,	that	is,	requests	containing	index	update	commands.

Here,	we	will	focus	our	attention	on	SearchHandler,	a	special	front	controller	used	to
handle	incoming	search	requests.	The	SearchHandler	class,	although	it	could	be	seen	as
the	supertype	layer	of	all	search	handlers,	is	not	abstract	and	it	defines	a	standard	search
behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Standard	request	handler
StandardRequestHandler	is	an	empty	subclass	of	SearchHanlder,	so	at	the	time	of
writing	this	book,	using	one	of	them	is	basically	the	same.	Request	handlers	are	declared
in	the	solrconfig.xml	file,	and	they	define	search	endpoints.	Each	instance	is	associated
with	a	given	name	prefixed	by	a	slash	(the	name	must	be	unique),	an	implementation
class,	and	a	set	of	configuration	parameters:

<requestHandler	name="/mySeacher"	class="solr.SearchHandler">

		(configuration)

</requestHandler>

With	the	sample	Solr	instance	running,	the	preceding	handler	will	answer	to	one	of	these
URIs:
http://localhost:8983/solr/example/query

http://localhost:8983/solr/example/facets

http://localhost:8983/solr/example/jazz

Configuring	a	SearchHandler	instance	means	defining	configuration	parameters	and
(optionally)	search	components	that	will	participate	in	the	query	execution	chain.

Search	components
Most	of	the	time,	unless	you	have	a	specific	need,	the	search	components	that	drive	the
logic	of	the	search	execution	can	be	omitted	because	the	following	list	will	be
automatically	injected:

Code Component

query QueryComponent

facet FacetComponent

mlt MoreLikeThisComponent

highlight HighlightComponent

stats StatsComponent

debug DebugComponent

Only	the	“query”	component	is	enabled;	the	others	need	to	be	explicitly	activated.

If	the	default	chain	is	not	what	you	need,	it	is	possible	to	define	a	custom	chain	in	the
following	way:

<arr	name="components">

		<str>query</str>

		<str>facet</str>

		…other	components	follow

</arr>

www.it-ebooks.info

http://www.it-ebooks.info/

This	will	completely	replace	the	default	chain.	It	is	also	possible	to	leave	the	default	chain
as	it	is	and	have	additional	prepended	or	appended	components:

<arr	name="first-components">

		<str>my_custom_component</str>

		…other	components	follow	

</arr>

<arr	name="last-components">

		<str>another_custom_component</str>

		…other	components	follow	

</arr>

So,	in	general,	the	order	of	execution	for	search	components	will	be	the	following:

Components	declared	as	“first-components”	(optional).
Components	declared	as	“components”	In	their	absence,	the	default	chain	will	be
used.
Components	declared	as	“last-components”	(optional).

The	following	is	an	example	declaration	of	StandardRequestHandler:

<requestHandler	name="/jazz"	class="solr.	StandardRequestHandler">

		<!--	parameters	that	will	be	always	applied	to	the	incoming	requests	-->	

				<lst	name="invariants">

						<int	name="rows">10</int>

				</lst>

		<!--	parameters	that	will	be	always	added	to	the	incoming	requests	-->	

				<lst	name="appends">

						<int	name="fq">genre:jazz</int>

				</lst>

		<!--	default	settings	that	can	be	overridden	by	the	incoming	requests	-->				

				<lst	name="defaults">

						<str	name="sort">title	asc</str>

						<str	name="echoParams">explicit</str>

						<str	name="q">*:*</str>

						<bool	name="facet">false</bool>

				</lst>

		<!—This	is	a	custom	search	component	that	will	run	after	the	default	

component	chain-->

				<arr	name="last-components">

						<str>prices</str>

				</arr>

		</requestHandler>

Query	parameters
The	request	handlers	and	the	search	components	involved	in	the	chain	accept	several
parameters	to	drive	their	execution	logic.	These	parameters	(with	corresponding	values)
can	be	declared	in	three	different	sections:

defaults:	Parameter	values	will	be	used	unless	overridden	by	incoming	requests

www.it-ebooks.info

http://www.it-ebooks.info/

appends:	Parameter	values	will	appended	to	each	request
invariants:	Parameter	values	will	be	always	be	applied	and	cannot	be	overridden	by
incoming	requests	or	by	the	values	declared	in	defaults	and	append	sections

All	sections	are	optional,	so	you	can	have	no	parameters	configured	for	a	given	handler
and	allow	the	incoming	requests	to	define	them.	This	is	an	example	of	a	handler
configuration:

<lst	name="defaults">

		<str	name="defType">edismax</str>

</lst>

<lst	name="appends">

		<str	name="facet.field">artist</str>

		<str	name="facet">genre</str>

</lst>

<lst	name="invariants">

		<str	name="wt">json</str>

		<bool	name="facet">true</bool>

</lst>

www.it-ebooks.info

http://www.it-ebooks.info/

RealTimeGetHandler
RealTimeGetHandler	is	basically	a	SearchHandler	subclass	that	adds
RealTimeSearchComponent	to	the	search	request	execution.	In	this	way,	it’s	possible	to
retrieve	the	latest	version	of	softly	committed	documents	by	specifying	their	identifiers.

In	order	to	enable	such	a	component,	you	must	turn	the	update	log	feature	on,	in
solrconfig.xml:

<updateHandler	class="solr.DirectUpdateHandler2">

		<updateLog>

				<str	name="dir">${solr.ulog.dir:}</str>

		</updateLog>	

		…

</updateHandler>

Then	the	request	handler	can	be	declared	and	configured	using	the	procedure	that	we	saw
in	the	previous	section:

<requestHandler	name="/get"	class="solr.RealTimeGetHandler">

		…

</requestHandler>

This	handler	accepts	an	additional	id	or	ids	parameter	that	allows	us	to	specify	the
identifiers	of	the	documents	we	want	to	retrieve.	The	id	parameter	accepts	one	identifier
and	can	be	repeated	in	requests.	The	ids	parameter	accepts	a	comma-separated	list	of
identifiers.

Tip
Once	the	example	Solr	instance	is	up,	this	handler	responds	to	/get	requests.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Response	output	writers
As	a	last	step,	query	results	are	returned	to	requestors	in	a	given	format.	Solr
communicates	with	clients	using	the	HTTP	protocol.	Those	clients	are	free	to	start	the
interaction	by	asking	for	one	format	or	another,	depending	on	their	needs.

Although	a	default	format	can	be	set,	the	client	can	override	it	by	means	of	the	wt
parameter.	The	value	of	the	wt	parameter	is	a	mnemonic	code	associated	with	an	available
response	writer.

There	are	several	built-in	response	writers	in	Solr,	which	are	described	here:

ResponseWriter Description

xml The	eXtensible	Markup	Language	response	writer.	This	is	the	default	writer.

xslt Combines	the	XML	results	with	an	XSLT	file	in	order	to	produce	custom	XML	documents.

json JavaScript	Object	Notation	response	writer.

csv Comma-Separated	Value	response	writer.

velocity
This	uses	Apache	Velocity	to	directly	build	web	pages	with	query	results.	It	is	very	useful	for	fast
prototyping.

javabin
Java	clients	have	a	privileged	way	to	obtain	results	from	Solr	using	this	response	writer,	which
directly	outputs	Java	Objects.

python,	ruby,
php

Specialized	response	writers	for	these	languages	that	produce	a	structure	directly	tied	to	the	language
requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Extending	Solr
The	following	sections	will	describe	and	illustrate	a	couple	of	ways	of	extending,	and
customizing	searches	in	Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Mixing	real-time	and	indexed	data
Sometimes,	as	a	part	of	your	search	results,	you	may	want	to	have	data	that	is	not
managed	by	Solr	but	retrieved	from	a	real-time	source,	such	as	a	database.

Think	of	an	e-commerce	application;	when	you	search	for	something,	you	will	see	two
pieces	of	information	beside	each	item:

Price:	This	could	be	the	result	of	some	kind	of	frequently	updated	marketing	policy.
Non-real-time	information	could	cause	problem	on	the	vendor	side	(for	example,	a
wrong	price	policy	could	be	applied).
Availability:	Here,	wrong	information	could	cause	an	invalid	claim	from	customers;
for	example,	“I	bought	that	book	because	I	saw	it	as	available,	but	it	isn’t!”

This	is	a	good	scenario	for	developing	a	search	component.	We	will	create	our	search
component	and	associate	it	with	a	given	RequestHandler.

A	search	component	is	basically	a	class	that	extends	(not	surprisingly)
org.apache.solr.handler.component.SearchComponent:

public	class		RealTimePriceComponent	extends	SearchComponent

The	initialization	of	the	component	is	done	in	a	method	called	init.	Here,	most	probably
we	will	get	the	JNDI	name	of	the	target	data	source	from	the	configuration.	This	source	is
where	the	prices	must	be	retrieved	from:

public	void	init(NamedList	args)	{

		String	dsName	=	SolrParams.toSolrParams(args).get("ds-name");

		Context	ctx	=	new	InitialContext();

		this.datasource	=	(DataSource)	ctx.lookup(dName);	

}

Now	we	are	ready	to	process	the	incoming	requests.	This	is	done	in	the	process	method,
which	receives	a	ResponseBuilder	instance,	the	object	we	will	use	to	add	the	component
contribution	to	the	search	output.	Since	this	component	will	run	after	the	query
component,	it	will	find	a	list	containing	query	results	in	ResponseBuilder.	For	each	item
within	those	results,	our	component	will	query	the	database	in	order	to	find	a
corresponding	price:

public	void	process(ResponseBuilder	builder)		throws	IOException	{

		SolrIndexSearcher	searcher	=	builder.req.getSearcher();

		//	holds	the	component	contribution

		NamedList	contrib	=	new	SimpleOrderedMap();

				for	(DocIterator	it	=	builder.getResults().docList.iterator();	

iterator.hasNext();)	{

						//	This	is	the	Lucene	internal	document	id	

						int	docId	=	iterator.nextDoc();

						Document	ldoc	=	searcher.doc(docId,	fieldset);

						//	This	is	the	Solr	document	Id	

						String	id	=	ldoc.get("id");

www.it-ebooks.info

http://www.it-ebooks.info/

						//	Get	the	price	of	the	item

						BigDecimal	price	=	getPrice(id);

						//	Add	the	price	of	the	item	to	the	component	contribution

						result.add(id,	price);

		}

		//	Add	the	component	contribution	to	the	response	builder

		builder.rsp.add("prices",	result);

}

In	solrconfig.xml,	we	must	declare	the	component	in	two	places.	First,	we	must	declare
and	configure	it	in	the	following	manner:

		<searchComponent	name="prices"	class="a.b.c.	RealTimePriceComponent">

				<str	name="ds-name">jdbc/prices</str>

		</searchComponent>

Then	it	has	to	be	enabled	in	request	handlers	(as	shown	in	the	following	snippet).	Since
this	component	is	supposed	to	contribute	to	a	set	of	query	results,	it	must	be	placed	after
the	query	component:

<requestHandler	name="/xyz"	…>

		…

		<arr	name="last-components">

				<str>prices</str>

		</arr>

</requestHandler>

Done!	If	you	run	a	query	invoking	the	/xyz	request	handler	you	will	see	after	query	result
a	new	section	called	prices	(the	name	we	used	for	the	search	component).	This	reports	the
document	id	and	the	corresponding	price	for	each	document	in	the	search	results.

Tip
You	can	find	the	source	code	of	the	entire	example	in	the	src	folder	of	the	project
associated	with	this	chapter,	under	the	org.gazzax.labs.solr.ase.ch3.sp	package.

If	you	want	to	start	Solr	with	that	component,	just	run	the	following	command	from	the
command	line	or	from	Eclipse:

mvn	clean	install	cargo:run	–P	custom-search-component

www.it-ebooks.info

http://www.it-ebooks.info/

Using	a	custom	response	writer
In	a	project	I	was	working	on,	we	implemented	the	autocomplete	feature,	that	is,	a	list	of
suggestions	that	quickly	appears	under	the	search	field	each	time	a	user	types	a	key.	Thus,
the	search	string	is	gradually	composed.	The	following	screenshot	shows	this	feature:

A	new	response	writer	was	implemented	because	the	user	interface	widget	had	already
been	built	by	another	company,	and	the	exchange	format	between	that	widget	and	the
search	service	had	been	already	defined.

Doing	that	in	Solr	is	very	easy.	A	response	writer	is	a	class	that	extends
org.apache.solr.response.QueryResponseWriter.	Like	all	Solr	components,	it	can	be
optionally	initialized	using	an	init	callback	method,	and	it	provides	a	write	method
where	the	response	should	be	serialized	according	to	a	given	format:

public	void	write(

		Writer	writer,	

		SolrQueryRequest	request,	

		SolrQueryResponse	response)	throws	IOException	{

		

		//	1.	Get	a	reference	to	values	that	compound	the	current	response

		NamedList	elements	=	response.getValues();

		

		//	2.	Use	a	StringBuilder	to	build	the	output	

		StringBuilder	builder	=	new	StringBuilder("{")

				.append("query:'")

				.append(request.getParams().get(CommonParams.Q))

				.append("',");

		

		//	3.	Get	a	reference	to	the	object	which

		//	hold	the	query	result

		Object	value	=	elements.getVal(1);

		if	(value	instanceof	ResultContext)

		{

				ResultContext	context	=	(ResultContext)	value;

		

				//	The	ordered	list	(actually	the	page	subset)	

				//	of	matched	documents

www.it-ebooks.info

http://www.it-ebooks.info/

				DocList	ids	=	context.docs;

				if	(ids	!=	null)

				{

						SolrIndexSearcher	searcher	=	request.getSearcher();

						DocIterator	iterator	=	ids.iterator();

						builder.append("suggestions:[");

						

						//	4.	Iterate	over	documents

						for	(int	i	=	0;	i	<	ids.size();	i++)

						{

								//	5.	For	each	document	we	need	to	get	the	"label"	attr

								Document	document	=	searcher.doc(iterator.nextDoc(),	FIELDS);

								if	(i	>	0)		{	builder.append(",");	}

								

								//	6.	Append	the	label	value	to	writer	output

								builder

										.append("'")

										.append(((String)	document.get("label")))

										.append("'");

						}

						builder.append("]").append("}");

				}

		}

		

		//	7.	and	finally	write	out	the	result.

		writer.write(builder.toString());

}

That’s	all!	Now	try	issuing	a	query	like	this:
http://127.0.0.1:8983/solr/example/auto?q=ma

Solr	will	return	the	following	response:

{

query:'ma',

suggestions:['Marcus	Miller','Michael	Manring','Got	a	match','Nigerian	

Marketplace','The	Crying	machine']

}

Tip
You	can	find	the	source	code	of	the	entire	example	under	the
org.gazzax.labs.solr.ase.ch3.rw	package	of	the	source	folder	in	the	project	associated
with	this	chapter.

If	you	want	to	start	Solr	with	that	writer,	run	the	following	command	from	the	command
line	or	from	Eclipse:

mvn	clean	install	cargo:run	–P	custom-response-writer

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting
This	section	will	provide	help,	tips,	and	suggestions	about	difficulties	that	you	could	meet
while	you’re	experimenting	with	what	we	described	in	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Queries	don’t	match	expected	documents
There’s	no	single	answer	to	this	big	and	popular	question.	Without	any	additional
information,	the	first	two	things	I	would	do	are	as	follows:

Retry	the	query	by	appending	debug	parameters	(for	example,	debugQuery	and
explainOther)	and	analyze	the	explain	section.	There’s	a	wonderful	online	tool
(http://explain.solr.pl)	that	makes	life	easy	by	explaining	debug	information.
Use	the	field	analysis	page,	type	some	sample	values,	and	see	what	happens	at	index
and	query	time.	Probably,	your	analyzer	chains	are	not	consistent.

www.it-ebooks.info

http://explain.solr.pl
http://www.it-ebooks.info/

Mismatch	between	index	and	query	analyzer
Using	different	analyzer	chains	at	index	and	query	time	sometimes	causes	problems
because	tokens	produced	at	query	time	don’t	match,	as	one	would	expect,	with	the	output
tokens	at	index	time.	The	field	analysis	page	helps	a	lot	in	debugging	these	situations.
Type	a	value	for	a	field	and	see	what	happens	at	query	and	index	time.	In	addition,	this
page	provides	a	check	for	all	highlighting	matches	between	index	and	query	tokens.

www.it-ebooks.info

http://www.it-ebooks.info/

No	score	is	returned	in	response
The	score	field	is	a	virtual	field	that	must	be	explicitly	asked	for	in	requests.	A	value	of	*
in	the	fl	parameter	is	not	enough	because	*	means	“all	real	fields.”	A	request	for	all	real
fields	that	also	include	the	score	must	provide	an	fl	parameter	with	the	value	of	*,score.
Note	that	this	is	valid	in	general	for	all	virtual	fields	(for	example,	functions,	transformers,
and	so	on).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter	we	met	the	Solr	search	capabilities,	a	huge	set	of	features	that	power	up
information	retrieval	on	Solr.	We	saw	a	lot	of	tools	used	to	improve	the	search	experience
of	clients,	requestors,	and	last	but	not	least,	end	users.	After	examining	the	indexing	phase,
you	can	well	imagine	that	search	and	information	retrieval	constitute	the	actual	functional
goals	of	a	full-text	search	platform.

We	met	the	different	pieces	that	compound	Solr’s	search	capabilities:	analyzers,
tokenizers,	query	parsers,	search	components,	and	output	writers.	For	all	of	them,	Solr
provides	a	good	set	of	alternatives,	already	implemented	and	ready	to	use.	For	those	who
have	specific	requirements,	it	is	always	possible	to	create	customizations	and	extensions.

In	the	next	chapter,	keeping	in	mind	the	big	picture	of	crucial	phases	in	an	information
retrieval	system,	we	will	take	a	look	at	client	APIs.	The	available	libraries	are	great
examples	of	how	to	use	Solr’s	HTTP	services	to	work	programmatically	with	it	on	the
client	side.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	4.	Client	API
A	search	application	needs	to	interact	with	Solr	by	issuing	index	and	search	requests.
Although	Solr	exposes	these	services	through	HTTP,	working	at	that	(low)	level	is	not	so
easy	for	a	developer.	Client	APIs	are	façade	libraries	that	hide	the	low-level	details	of
client-server	communication.	They	allow	us	to	interact	with	Solr	using	client-native
constructs	and	structures	such	as	the	so-called	Plain	Old	Java	Object	(POJO)	in	the	Java
programming	language.

In	this	chapter	we	will	describe	Solrj,	the	official	Solr	client	Java	library.	We	will	also
describe	the	structure	and	the	main	classes	involved	in	index	and	search	operations.	The
chapter	will	cover	the	following	topics:

Solrj:	the	official	Java	client	library
Other	available	bindings

www.it-ebooks.info

http://www.it-ebooks.info/

Solrj
Solrj	is	the	name	of	the	official	Solr	Java	client.	It	completely	abstracts	the	underlying
(HTTP)	transport	layer	and	offers	a	simple	interface	to	client	applications	to	interact	with
Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

SolrServer	–	the	Solr	façade
A	client	library	necessarily	needs	a	façade	or	a	proxy,	that	is,	an	object	representing	the
remote	resource	that	hides	and	abstracts	the	low-level	details	of	client-server	interaction.
In	Solrj,	this	role	is	played	by	classes	that	implement	the
org.apache.solr.client.solrj.SolrServer	abstract	class.	At	the	time	of	writing	this
book,	these	are	the	available	SolrServer	implementers:

EmbeddedSolrServer:	This	connects	to	a	local	SolrCore	without	requiring	an	HTTP
connection.	This	is	not	recommended	in	production	but	is	definitely	useful	for	unit
tests	and	development.
HttpSolrServer:	This	is	a	proxy	that	connects	to	a	remote	Solr	using	an	HTTP
connection.
LBHttpSolrServer:	A	proxy	that	wraps	multiple	HttpSolrServer	instances	and
implements	client-side,	round-robin	load	balancing	between	them.	It	also	ensures	it
periodically	checks	the	(running)	state	of	each	server,	eventually	removing	or	adding
members	to	the	round-robin	list.
ConcurrentUpdateSolrServer:	This	is	a	proxy	that	uses	an	asynchronous	queue	to
buffer	input	data	(that	is,	documents).	Once	a	given	buffer	threshold	is	reached,	data
is	sent	to	Solr	using	a	configurable	number	of	dequeuer	threads.
CloudSolrServer:	A	proxy	used	to	communicate	with	SolrCloud.

Although	any	SolrServer	implementers	mentioned	previously	offer	the	same
functionalities,	HttpSolrServer	and	LBHttpSolrServer	are	better	suited	for	issuing
queries,	while	ConcurrentUpdateSolrServer	is	recommended	for	update	requests.

Tip
The	test	case,	org.gazzax.labs.solr.ase.ch3.index.SolrServersITCase,	contains
several	methods	that	demonstrate	how	to	index	data	using	different	types	of	servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Input	and	output	data	transfer	objects
As	described	in	the	previous	chapters,	a	Document	is	a	central	concept	in	Solr.	It
represents	an	atomic	unit	of	information	exchanged	between	the	client	and	the	server.	The
Solr	API	separates	input	documents	from	output	documents	using	the	SolrInputDocument
and	SolrDocument	classes,	respectively.

Although	they	share	basic	data	transfer	object	behavior,	each	of	them	has	its	own	specific
features	associated	with	the	direction	of	interaction	between	the	client	and	the	server
where	they	are	supposed	to	play.

SolrInputDocument	is	a	write	object.	You	can	add,	change,	and	remove	fields	in	it.	You
can	also	set	a	name,	value,	and	optional	boost	for	each	of	them:

public	void	addField(String	name,	Object	value)	

public	void	addField(String	name,	Object	value,	float	boost)

public	void	setField(String	name,	Object	value)	

public	void	setField(String	name,	Object	value,	float	boost)

SolrDocument	is	the	output	data	transfer	object,	and	it	is	primarily	intended	as	a	query
result	holder.	Here,	you	can	get	field	values,	field	names,	and	so	on:

public	Object	getFieldValue(String	name)

public	Collection<Object>	getFieldValues(String	name)

public	Object	getFirstValue(String	name)

Within	an	UpdateRequestProcessor	instance,	or	while	adding	data	to	Solr,	we	will	use
SolrInputDocument	instances.	In	QueryResponse	(that	is,	the	result	of	a	query	execution),
we	will	find	SolrDocument	instances.

Tip
All	the	examples	in	the	sample	project	associated	with	this	chapter	make	extensive	use	of
these	data	transfer	objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Adds	and	deletes
Once	a	valid	reference	of	a	SolrServer	has	been	created,	adding	data	to	Solr	is	very	easy.
The	SolrServer	interface	defines	several	methods	to	do	this:

void	add(SolrInputDocument	document)

void	add(List<SolrInputDocument>	document)

So	we	first	create	one	or	more	SolrInputDocument	instances	filled	with	the	appropriate
data:

final	SolrInputDocument	doc1	=	new	SolrInputDocument();

doc1.setField("id",	1234);

doc1.setField("title",	"Delicate	Sound	of	Thunder");

doc1.addField("genre",	"Rock");

doc1.addField("genre",	"Progressive	Rock");

Then,	using	the	proxy	instance,	we	can	add	that	data:

solrServer.add(doc1);

Finally,	we	can	commit:

solrServer.commit();

We	can	also	accumulate	all	the	documents	within	a	list	and	use	that	as	the	argument	of	the
add	method.

Following	the	same	logic	as	described	in	the	second	chapter	for	REST	services,
SolrServer	provides	the	following	methods	to	delete	documents:

UpdateResponse	deleteById(String	id)

UpdateResponse	deleteById(String	id,	int	commitWithinMs)

UpdateResponse	deleteById(List<String>	ids)

UpdateResponse	deleteById(List<String>	ids,	int	commitWithinMs)

UpdateResponse	deleteByQuery(String	query)

UpdateResponse	deleteByQuery(String	query,	int	commitWithinMs)

Tip
The	org.gazzax.labs.solr.ase.ch3.index.SolrServersITCase	test	case	contains
several	methods	that	illustrate	how	to	index	and	delete	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Search
Searching	with	Solrj	requires	knowledge	of	(mainly)	two	classes:
org.apache.solr.client.solrj.SolrQuery	and
org.apache.solr.client.solrj.response.QueryResponse.	The	first	is	an	object
representation	of	a	query	that	can	be	sent	to	Solr.	It	allows	us	to	inject	all	parameters	we
described	in	the	previous	chapter.	One	way	of	doing	this	is	by	providing	dedicated
methods,	such	as	these:

SolrQuery	setQuery(String	query)

SolrQuery	setRequestHandler(String	qt)

SolrQuery	addSort(String	field,	ORDER	order)

SolrQuery	setStart(Integer	start)

SolrQuery	setFacet(boolean	b)

SolrQuery	addFacetField(String…	fields)

SolrQuery	setHighlight(boolean	b)

SolrQuery	setHighlightSnippets(int	num)

…

Alternatively,	generic	setter	methods	can	be	provided:

SolrQuery	setParam(String	name,	String	…	values)

SolrQuery	setParam(String	name,	boolean	value)

Note	that	all	the	preceding	methods	return	the	same	SolrQuery	object,	thus	allowing	a
caller	to	chain	method	calls,	like	this:

SolrQuery	query	=	new	SolrQuery()

		.setQuery("Charles	Mingus")

		.setFacet(true)

		.addFacetField("genre")

		.addSort("title",	Order.ASC)

		.addSort("released",	Order.DESC)	

		.setHighlighting(true);

Once	a	SolrQuery	has	been	built,	we	can	use	the	appropriate	method	in	the	SolrServer
proxy	to	send	the	query	request:

QueryResponse	query(SolrParams	params)

The	method	returns	a	QueryResponse,	which	is	an	object	representation	of	the	response
that	Solr	sent	back	as	a	result	of	the	query	execution.	With	that	object,	we	can	get	the	list
of	SolrDocuments	of	the	currently	returned	page.	We	can	also	get	facets	and	their	values,
and	in	general,	we	can	inspect	and	access	any	part	of	the	response.

Tip
The	org.gazzax.labs.solr.ase.ch3.search.SearchITCase	test	case	contains	several
examples	that	demonstrate	how	to	query	with	Solrj.

The	following	is	an	example	of	the	use	of	QueryResponse:

//	Executes	a	query	and	get	the	corresponding	response

QueryResponse		res	=	solrServer.query(aQuery);

www.it-ebooks.info

http://www.it-ebooks.info/

//	Gets	the	request	execution	elapsed	time

long	elapsedTime	=	res.getElapsedTime();

//	Gets	the	results	(i.e.	a	page	of	results)

SolrDocumentList	results	=	res.getResults();

//	How	many	total	hits	for	this	response

int	totalHits	=	results.getNumFound();

//	Iterates	over	the	current	page

for	(SolrDocument	document	:	results)	{

		//	Do	something	with	the	current	document

		String	title	=	document.getFieldValue("title");

		…

}

//	Gets	the	facet	field	"genre"

FacetField	ff	=	res.getFacetField("genre");

//	Iterate	over	the	facet	values

for	(Count	count	:	genre.getValues())	{

		String	name	=	count.getName();	//	e.g.	Jazz

		String	count	=	count.getCount();	//	e.g.	19

}

//	The	Highlighting	section	is	a	bit	complicated,	as	the	

//	value	object	is	a	composite	map	where	keys	are	the	documents	identifiers	

while	values	are	maps	with	highlighted	fields	as	key	and	snippets	(a	list	

of	snippets)	as	values.

Map<String,	Map<String,	List<String>>>	hl	=	

response.getHighlighting();

//	Iterates	over	highlighting	sectio

for	(Entry<String,	Map<String,	List<String>>	docEntry	:	hl)	{

		String	docId	=	docEntry.getKey();

		//	Iterates	over	highlighted	fields

		for	(Entry	<String,	List<String>	fEntry	:	entry.getValue())	{

				String	fEntry	=	field.getKey();

				//	Iterates	over	snippets

				for	(String	snippet	:	field.getValue())	{

						//	Do	something	with	the	snippet

		}	

}

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Other	bindings
Solrj	is	a	very	powerful	client	API,	but	of	course,	it	is	only	available	for	Java	clients.
Since	Solr	services	are	exposed	using	standard	HTTP	procedures,	other	client	API
implementations	have	been	created	for	other	languages.	Hence,	it	is	possible	to	interact
with	Solr	using	Python,	Perl,	Ruby,	.NET,	or	your	favorite	programming	language.

The	following	table	lists	some	of	them,	together	with	their	location	(only	Solrj	is	a	part	of
the	Solr	distribution;	all	other	client	libraries	are	independent	projects):

Project Language Address

sunburnt Python https://pypi.python.org/pypi/sunburnt

pysolr Python https://pypi.python.org/pypi/pysolr/3.2.0

solrcloudpy Python https://pypi.python.org/pypi/solrcloudpy

solr-ruby Ruby https://github.com/erikhatcher/solr-ruby-flare/tree/master/solr-ruby

Blacklight Ruby http://projectblacklight.org

Solarium PHP http://www.solarium-project.org/

Solr-PHP-UI PHP http://www.opensemanticsearch.org/solr-php-ui/

PECL/Solr PHP http://pecl.php.net/package/solr

Flux Clojure https://github.com/mwmitchell/flux

solr-scala-client Scala https://github.com/takezoe/solr-scala-client

SolrNet .NET https://github.com/mausch/SolrNet

A	complete	and	updated	list	of	all	bindings	is	available	at
https://wiki.apache.org/solr/IntegratingSolr.

www.it-ebooks.info

https://pypi.python.org/pypi/sunburnt
https://pypi.python.org/pypi/pysolr/3.2.0
https://pypi.python.org/pypi/solrcloudpy
https://github.com/erikhatcher/solr-ruby-flare/tree/master/solr-ruby
http://projectblacklight.org
http://www.solarium-project.org/
http://www.opensemanticsearch.org/solr-php-ui/
http://pecl.php.net/package/solr
https://github.com/mwmitchell/flux
https://github.com/takezoe/solr-scala-client
https://github.com/mausch/SolrNet
https://wiki.apache.org/solr/IntegratingSolr
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
A	distributed	search	system,	such	as	Solr,	requires	remote	service	invocations	to	send	and
receive	data	across	a	network.	Clients	without	appropriate	APIs	will	be	exposed	to	the
complexity	of	dealing	with	low-level	details	of	the	communication	protocol.

Since	Solr	provides	all	core	services	through	HTTP,	a	lot	of	client	libraries	have	been
developed	to	hide	that	complexity.	Regardless	of	the	concrete	binding,	a	client	library
encapsulates	the	low-level	details	of	client-server	communication	and	provides	a	uniform
service	interface	for	clients.

In	this	chapter,	we	focused	on	the	Solr	client	APIs,	specifically	on	the	official	Java	binding
called	Solrj,	its	main	features,	and	the	main	classes	involved	in	index	and	query
operations.

We	briefly	described	and	listed	some	other	popular	bindings	that	have	been	developed	on
top	of	the	Solr	HTTP	services.

In	the	next	chapter,	we	will	return	to	the	server	side	to	describe	how	to	fine-tune	and
manage	a	Solr	instance.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5.	Administering	and	Tuning	Solr
You	can	manage	a	Solr	installation	using	any	of	the	several	system	administration	tools
provided	with	Solr.	The	system	administration	tools	include	the	Administration	Console,
the	REST	services,	and	the	JMX	API,	with	which	you	manage	and	monitor	cores,
hardware	resources,	runtime	configuration,	and	the	health	of	the	Solr	environment	to
ensure	maximum	availability	and	performance.

Although	the	topic	of	administration	is	usually	outside	the	scope	of	a	developer	sphere,
most	probably	you,	as	a	provider	of	a	solution	based	on	Solr,	will	need	to	know	something
about	it.	Specifically,	you	need	to	know	about	a	set	of	tools	that	let	you	monitor	Solr,	tune
it,	and	investigate	troubles.

Throughout	this	chapter,	we	will	use	a	Solr	instance	preloaded	with	sample	data.	In	order
to	have	that	up	and	running,	you	should	check	out	the	source	code	of	the	book,	go	to	the
ch5	folder,	and	run	this	(using	Eclipse	or	from	the	command-line):

#	mvn	clean	install	cargo:run

Tip
The	ch5	sample	project	has	a	preconfigured	Eclipse	launcher	used	to	run	Solr.	You	can
find	it	under	the	src/dev/eclipse	folder.	Just	right-click	on	start-ch5-server.launch
and	select	the	Debug	as	menu	item.

This	chapter	will	describe	the	most	relevant	sections	of	the	Solr	administration	console.
We	will	also	explore	the	JMX	API.	Each	time	a	hardware	resource	is	involved,	we	will
talk	about	it.	Specifically,	this	chapter	will	cover	the	following	topics:

The	Solr	Administration	Console
Usage	of	hardware	resources
JConsole	and	JMX

www.it-ebooks.info

http://www.it-ebooks.info/

Dashboard
The	Administration	Console	is	a	web	application	that	is	part	of	Solr.	You	can	access	the
Administration	Console	from	any	machine	on	the	local	network	that	can	communicate
with	Solr,	through	a	web	browser.

Type	http://127.0.0.1:8983/solr	on	the	web	browser’s	address	bar.	The	first	page	that
appears	is	the	dashboard,	as	shown	in	the	following	screenshot:

This	is	where	you	can	see	general	information	about	Solr	(for	example,	the	version,
startup	time,	and	so	on)	and	about	its	hosting	environment	(for	example,	JVM	version,
JVM	args,	processors,	physical	and	JVM	memory,	and	file	descriptors).

www.it-ebooks.info

http://www.it-ebooks.info/

Physical	and	JVM	memory
The	first	and	the	last	gray	bars	on	the	right	side	of	the	dashboard	represent	the	physical
and	JVM	memory,	respectively.	The	first	measure	is	the	amount	of	the	memory	that	is
available	in	the	hosting	machine.	The	second	measure	is	the	amount	assigned	to	the	JVM
at	startup	time	by	means	of	the	–Xms	and	–Xmx	options.

Tip
For	a	complete	list	of	available	JVM	options,	see
https://docs.oracle.com/cd/E22289_01/html/821-1274/configuring-the-default-jvm-and-
java-arguments.html.

Each	bar	reports	both	the	available	amount	and	used	amount	of	memory.	As	you	can
imagine,	memory	is	one	of	the	crucial	factors	concerning	Solr	performance	and	response
times.

When	we	think	about	a	web	application,	we	may	consider	it	as	a	standalone	container	that,
for	example,	reads	data	from	an	external	database	and	shows	some	dynamic	pages	to	the
end	users.	Solr	is	not	like	that;	it	is	a	service.	Despite	its	web-application-like	nature,	it
makes	extensive	use	of	local	hardware	resources	such	as	disk	and	memory.

Memory	(here,	I’m	referring	to	the	JVM	memory)	is	used	by	Solr	for	a	lot	of	things	(for
example,	caches,	sorting,	faceting,	and	indexing)	so	understanding	all	those	mechanisms	is
crucial	to	determine	the	right	amount	of	memory	one	should	assign	to	the	JVM.

Note
There’s	a	useful	spreadsheet	(although	we	already	mentioned	this	in	the	first	chapter)	that
you	can	find	in	the	Solr	source	repository	at
https://svn.apache.org/repos/asf/lucene/dev/trunk/dev-tools/size-estimator-lucene-solr.xls.
It	is	a	good	starting	point	from	which	to	estimate	RAM	and	disk	space	requirements.

However,	a	resource	that	is	often	considered	as	external	to	the	Solr	domain	is	the	system
memory,	that	is,	the	remaining	memory	available	for	the	operating	system	once	the	JVM
memory	has	been	deducted.

In	an	optimal	situation,	that	kind	of	memory	should	be	enough	to:

Let	the	operating	system	manage	its	resources.
Accommodate	the	Solr	index.	Ideally,	if	it	is	able	to	contain	the	whole	index,	there
won’t	be	any	disk	seek.

The	first	point	is	quite	obvious;	an	operating	system	needs	a	given	amount	of	memory	to
manage	its	ordinary	tasks.

The	second	point	has	to	do	with	the	so-called	(OS)	filesystem	cache.	The	JVM	works
directly	with	the	memory	that	we	made	available	in	the	startup	command-line	by	means	of
the	–Xms	and	–Xmx	options.	This	is	the	memory	we	are	using	in	our	Java	application	to	load
object	instances,	implement	application-level	caches,	and	so	on.

www.it-ebooks.info

https://docs.oracle.com/cd/E22289_01/html/821-1274/configuring-the-default-jvm-and-java-arguments.html
https://svn.apache.org/repos/asf/lucene/dev/trunk/dev-tools/size-estimator-lucene-solr.xls
http://www.it-ebooks.info/

However,	applications	such	as	Solr	that	widely	use	filesystem	resources	(to	load	and	write
index	files)	also	rely	on	another	important	part	of	the	memory	that	is	available	for	the
operating	system	and	is	used	to	cache	files.	Once	a	file	is	loaded,	its	content	is	kept	in
memory	until	the	system	requires	that	space	for	other	purposes.	Data	in	this	filesystem
cache	provides	quick	access,	without	requiring	disk	accesses	and	seeks.

Note
Remember	that	this	type	of	memory	has	nothing	to	do	with	the	memory	assigned	to	the
JVM.

As	you	can	imagine,	this	aspect	can	dramatically	improve	overall	performance	in	both
index	(writes)	and	query	(reads)	phases.	In	those	cases	where	it’s	not	possible	to	fit	all	of
the	index	in	the	filesystem	cache	(the	index	can	easily	reach	a	size	that	is	relatively	small
in	terms	of	disk	space	but	definitely	huge	in	terms	of	memory),	the	system	memory	should
be	enough	to	allow	efficient	load	and	unload	management	of	that	filesystem	cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Disk	usage
The	dashboard	page	reports	information	about	the	swap	space,	but	it	says	nothing	about
disk	usage.	This	is	because	that	kind	of	information	is	reported	in	a	dedicated	section	for
every	managed	core.	Unfortunately,	there	isn’t	a	central	point	where	it’s	possible	to	see	the
total	disk	space	used	by	the	instance.

As	described	in	the	previous	section,	the	disk	is	a	resource	widely	used	by	Solr,	and	its
role	is	fundamental	for	getting	optimal	performance.	Here,	we	can	add	additional
information	by	mentioning	Solid	State	Disks	(SSD),	which	are	usually	a	very	good	choice
for	getting	fast	reads	and	writes.	But	again,	the	most	critical	factor	is	understanding	and
tuning	the	filesystem	cache;	in	the	most	extreme	cases,	this	entirely	avoids	disk	seeks	at
all.	To	put	it	in	a	nutshell	SSDs	are	fast,	but	memory	is	better.

www.it-ebooks.info

http://www.it-ebooks.info/

File	descriptors
The	third	bar	(shown	in	the	previous	screenshot)	shows	the	maximum	number	(light	gray)
and	the	effective	opened	(dark	gray)	file	descriptors	associated	with	the	Java	process	that
runs	Solr	(that	is,	the	Java	process	of	your	servlet	container).

A	Solr	index	can	be	composed	of	a	lot	of	files	that	need	to	be	opened	at	least	once.
Especially	if	you	have	many	cores,	frequent	changes,	commits,	and	optimizes,	the
incremental	nature	of	a	Solr	index	can	lead	to	exhaustion	of	all	the	available	file
descriptors.	This	is	usually	the	case	where	you	get	an	IOException	(too	many	open	files).

The	first	place	where	you	can	manage	and	limit	the	number	of	files	used	by	Solr	is	Solr
itself.	Within	the	solrconfig.xml	file,	you’ll	find	a	<mergeFactor>	parameter	in	the
<indexConfig>	section.	This	parameter	decides	how	many	segments	will	be	merged	at	a
time.

The	Solr/Lucene	index	is	composed	of	multiple	subindexes	called	segments.	Each
segment	is	an	independent	index	composed	of	several	files.	When	documents	are	added,
updated,	or	deleted,	Solr	asynchronously	persists	those	changes	by	creating	new	segments
or	merging	existing	segments.	This	is	the	reason	the	total	number	of	files	compounding
the	index	will	necessarily	change	(it	changes	gradually,	following	a	reasonable	amount	of
changes	applied	to	your	dataset).	Hence,	it	needs	to	be	monitored.

With	a	mergeFactor	value	set	to	10	(the	default	value)	there	will	be	no	more	than	nine
segments	at	a	given	moment.	When	update	thresholds	(the	maxBufferedDocs	or
ramBufferSize	parameters)	are	reached,	a	new	segment	will	be	created.	If	the	total
number	of	segments	is	equal	to	the	configured	mergeFactor,	Solr	will	attempt	to	merge	all
existing	segments	into	a	new	segment.

Another	parameter	in	the	solrconfig.xml	file	that	has	an	impact	on	the	number	of	open
files	is	<useCompoundFile>.	If	this	is	set	to	true	(note	that	it	defaults	to	false),	Solr	will
combine	the	files	that	make	up	a	segment	into	a	single	file.	While	that	may	produce	a
benefit	in	terms	of	open	file	descriptors,	it	may	also	lead	to	some	performance	issues
because	of	the	monolithic	nature	of	the	compound	file.

On	top	of	that,	there	are	scenarios	where	a	lot	of	files	are	the	natural	consequence	of	your
infrastructure.	Think	of	a	system	with	several	cores,	for	example.	The	previous	settings
are	specific	to	a	single	core,	but	what	if	you	have	a	lot	of	them?

Tip
When	I	use	Solr	for	library	search	services,	I	usually	create	at	least	six	cores:	one	for	the
main	index,	one	that	holds	the	headings	used	for	the	autocompletion	feature,	and	one	for
each	alphabetical	index	(for	example,	authors,	titles,	subjects,	and	publishers).	There	are
some	customers	who	require	up	to	50	alphabetical	indexes	(which	means	up	to	50	cores).

In	such	cases,	after	checking	out	your	application	and	seeing	that	it	effectively	requires
more	file	descriptors	than	the	default	(usually	1024),	you	may	want	to	increase	that	limit
by	using	the	ulimit	command,	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

#	ulimit	–n	5000

Here,	5000	is	the	new	limit.	Note	that	this	command	requires	root	privileges	and	it	applies
that	limit	only	to	the	current	session.	If	you	want	it	to	be	permanent,	that	value	has	to	be
configured	in	the	/etc/security/limits.conf	configuration	file.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Logging
The	Administration	Console	allows	you	to	see	log	messages	(also	available	in	a	log	file)
and	change	the	log	settings.

While	the	first	feature	is	useful	only	if	you	don’t	have	access	to	the	log	files	(inspecting
log	files	with	Unix	command-line	tools	is	definitely	more	powerful	than	doing	the	same
with	the	AJAX-refreshed	page),	managing	log	settings	is	very	useful	because	it	doesn’t
require	manual	edits	or	server	restarts.	So,	if	you	want	to	limit	the	priority	level	of	log
messages	on-the-fly,	or	debug	the	behavior	of	a	component,	this	is	the	right	place	to	do	so.

Tip
A	verbose	log	level	can	slow	down	index	operations,	so	it’s	better	to	check	log	settings
before	calling	the	/update	request	handler.	For	the	same	reason,	remember	that	Solr	logs
all	query	requests	at	the	INFO	level.	Depending	on	how	many	users	your	application	has,
this	could	lead	to	a	huge	amount	of	log	messages.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Core	Admin
The	Core	Admin	section	is	a	central	point	where	you	can	manage	registered	cores.	You
can	create	a	new	core	on-the-fly	(assuming	that	the	core	instance	and	data	directories	exist
on	the	disk)	or	manage	the	existing	cores	one	by	one,	selecting	them	from	the	list	on	the
left.	The	following	screenshot	shows	the	Core	Admin	page	of	the	Solr	instance	set	up	for
this	chapter:

The	top	toolbar	contains	these	buttons:

Button Description

Unload Unloads	the	core.	The	core	will	be	removed	after	pending	requests	are	processed.

Rename Changes	the	core	name.	Note	that	this	change	will	affect	the	URI	endpoints	of	the	core	services.

Swap Swaps	two	active	cores.	This	is	useful	for	switching	between	two	versions	(that	is,	online	and	offline
versions)	of	the	same	core.	Note	that	both	of	them	will	still	be	alive	after	issuing	the	swap	command.

Reload
Reloads	a	core.	The	current	core	instance	will	be	available	only	for	satisfying	pending	requests.	This
command	is	useful	if	some	(backward-compatible)	changes	have	been	made	to	the	solrconfig.xml	or
schema.xml	configuration	files	or	core	libraries	and	you	want	to	load	those	changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimize Issues	an	optimize	command	to	the	selected	core.

The	central	area	shows	the	following	information	about	the	core	and	the	corresponding
index:

Attribute Description

startTime The	core	start	(or	reload)	time.

instanceDir The	top	core	folder.	It	contains	a	conf	subfolder	that	contains	Solr	configuration	files	(schema.xml,
solrconfig.xml,	and	dependent	files).

dataDir The	folder	containing	the	index	data	files.

lastModified The	last	modification	date	of	the	index.

version A	version	number	assigned	to	the	IndexReader	instance	associated	with	the	index.

numDocs The	number	of	searchable	documents	in	the	index.	In	other	words,	this	is	the	number	of	documents	you
can	get	back	from	a	*:*	query.

maxDocs
The	number	of	internal	document	identifiers	actually	in	use.	The	difference	between	maxDocs	and
numDocs	indicates	how	many	documents	have	been	deleted	or	replaced.	The	old	(deleted	and	replaced)
identifiers	are	gradually	removed	during	merges	or	after	issuing	an	index	optimize.

deletedDocs
The	number	of	deleted	documents.	It	also	includes	replaced	documents	because	Solr	doesn’t	actually
support	updates;	it	simply	deletes	a	given	document	and	subsequently	adds	its	new	version.	This	is
basically	the	difference	between	maxDocs	and	numDocs	after	a	commit	and	before	merging	or	optimizing.

optimized Indicates	whether	the	index	has	been	optimized.

current Indicates	whether	the	index	has	been	committed.

directory The	underlying	Lucene	Directory	implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Java	properties	and	thread	dump
Java	properties	form	a	read-only	section	where	you	can	see	the	system	properties
associated	with	the	current	JVM	instance.

Tip
Remember	that	you	can	use	those	variables	in	solrconfig.xml,	so	you	may	want	to	check
in	this	page	whether	a	specific	property	has	the	expected	value.

The	thread	dump	page	shows	a	snapshot	of	what	live	threads	in	the	JVM	are	doing	at	a
given	instant.	The	same	information	can	be	retrieved	using	the	jstack	command-line
utility	available	in	JVM.

Tip
Thread	dumps	are	very	useful	for	debugging	high-CPU-usage	scenarios	and	deadlocks.

Unlike	log	analysis,	the	user	interface	here	is	definitely	more	user-friendly	than	manual
inspection	of	the	jstack	output.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Core	overview
Selecting	one	of	the	available	cores	in	the	drop-down	list	on	the	left	side	of	the
Administration	Console	will	open	a	core	dedicated	area,	with	several	other	sections.	The
first	section	is	an	overview	of	the	selected	core.	It	reports	more	or	less	the	same
information	that	we	saw	in	the	dashboard	and	in	the	core	admin	page.

Here,	there	is	additional	information	about	the	health	check	(heartbeat	information
enabled	only	if	you	configured	the	ping	request	handler)	and	the	replication	status.

The	replication	section	shows	the	index	status	of	the	master	and	slave	(only	if	the	current
Solr	instance	acts	as	a	slave)	in	terms	of	replicability.

Tip
The	replication	section	is	useful	for	monitoring	master-repeater-slave	instances,	especially
when	you	get	some	synchronization	issues	within	the	Solr	ensemble.	Note	that	the	console
also	has	a	dedicated	Replication	section	where	that	information	is	more	detailed.

The	master-slave	replication	architecture	is	explained	in	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Caches
To	speed	up	query	execution,	Solr	stores	data	using	several	types	of	in-memory	caches.
Caches	transparently	store	filters,	documents,	and	identifiers	so	that	future	requests	for	the
same	data	can	be	served	faster.	If	you	run	the	same	search	twice,	you	will	see	in	the	Solr
logs	a	marked	difference	between	the	first	and	the	second	query	in	terms	of	response	time,
as	shown	in	the	following	example:

…	params={q=history&fq=catalog:NRA}	hits=17298	status=0	QTime=78

…

…	params={q=history&fq=catalog:NRA}	hits=17298	status=0	QTime=2

Solr	comes	with	several	kinds	of	caches.	They	can	be	configured	and	tuned	in
solrconfig.xml:

<filterCache	class="solr.FastLRUCache"	size="512"	initialSize="512"	

autowarmCount="0"/>

<queryResultCache	class="solr.LRUCache"	size="512"	initialSize="512"	

autowarmCount="0"/>

<documentCache	class="solr.LRUCache"	size="512"	initialSize="512"	

autowarmCount="0"/>

<fieldValueCache	class="solr.FastLRUCache"	size="512"	autowarmCount="128"	

showItems="32"	/>

The	following	table	briefly	describes	the	types	of	caches	available	in	Solr:

Cache Description

FilterCache Holds	the	document	identifiers	associated	with	filter	queries	that	have	been	executed.

QueryResultCache Holds	the	document	identifiers	resulting	from	queries	that	have	been	executed.

DocumentCache Holds	Lucene	document	instances	for	quick	access	to	their	stored	fields.

FieldCache
A	low-level	Lucene	field	cache	that	is	not	managed	by	Solr	(in	other	words,	it	cannot	be
configured).	It	is	used	for	sorting	and	faceting.

FieldValueCache
This	is	a	field	cache	very	similar	to	FieldCache,	but	it	can	be	configured.	It	is	mainly	used	for
faceting.

CustomCache Application-level	caches	used	to	hold	custom	user/application	data.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Cache	life	cycles
A	cache	is	always	associated	with	an	index	searcher	instance,	and	it	follows	the	same
lifecycle	of	that	instance.	This	means	that,	when	an	index	searcher	is	instantiated	(on
startup	or	after	a	commit),	cache	instances	are	created	and	associated	with	it.	As	a
consequence	of	this,	caches	and	cached	objects	don’t	have	an	expiry	time;	they	will	be
valid	as	long	as	the	owning	index	searcher	instance	is	active.

When	a	searcher	is	instantiated,	and	if	it	is	not	the	first	searcher	(that	is,	at	startup	time),
caches	can	be	optionally	auto-warmed;	that	is,	they	can	be	prepopulated	with	some	data
coming	from	their	previous	colleagues	(caches	from	the	previous	searcher).	The
autowarmcount	attribute	allows	us	to	declare	the	maximum	amount	of	data	(absolute	or	a
percentage)	that	can	be	used	to	prepopulate	the	new	cache.

Note
Data	from	the	previous	cache	is	not	taken	as	it	is.	It	has	to	be	validated	against	the	new
searcher	“view”	of	the	index.	A	given	object	previously	cached	can’t	be	valid	after	the
new	searcher	has	been	opened;	it	could	have	been	deleted.	The	autowarmcount	attribute
refers	only	to	valid	entries.

When	a	new	searcher	is	opened,	the	current	searcher	will	continue	to	serve	pending
requests.	After	that,	it	will	be	closed	and	the	orphan	caches	will	be	subjected	to	garbage
collection.

www.it-ebooks.info

http://www.it-ebooks.info/

Cache	sizing
Cache	size	can	refer	to	two	different	measures:	the	total	count	of	objects	a	cache	contains
at	a	specific	moment,	and	the	maximum	number	of	objects	a	cache	can	hold.

Within	solrconfig.xml,	you	can	configure	the	minimum	(initial)	and	maximum	size	of	a
cache	by	means	of	the	initialSize	and	size	attributes,	respectively:

<FilterCache	…	class="…"	size="512"	initialSize="512"/>

The	initialSize	attribute	is	used	when	the	cache	instance	is	created.	It	preallocates	a
given	number	of	seats	for	objects	that	will	be	cached.

The	ideal	dimension	of	a	cache	strictly	depends	on	the	application.	Erroneously,	one	could
think:	the	bigger,	the	better,	but	this	is	a	half	truth;	a	huge	cache	would	have	the	advantage
of	holding	all	the	required	structures	in	memory,	thus	allowing	fast	access	to	that
information.	However,	unless	your	index	is	completely	static	and	it	never	changes,	you
will	sooner	or	later	add,	update,	or	remove	something,	and	you	will	need	to	commit	those
changes.	A	commit	will	open	a	new	searcher,	which	in	turn	will	create	new	caches,	and
the	(old)	huge	caches	will	be	discarded.

In	this	situation,	the	garbage	collector	will	have	a	lot	of	work	to	do	reclaiming	all	objects
from	the	old	caches.	Worse,	if	you	have	configured	auto-warming,	the	prepopulation	of
the	newly	created	caches	could	take	a	lot	of	time.

In	other	words,	this	scenario	requires	a	lot	of	memory	to	manage	all	of	those	objects.	From
my	experience,	I	can	tell	you	that	this	is	one	of	the	common	ways	of	getting	“Out	Of
Memory”	error	messages.	Remember	that	garbage	collection	is	not	under	your	control,	so
most	probably	there	will	be	a	given	interval	of	time	during	which	the	JVM	must	hold	both
new	and	old	object	references.

The	suggestion	here	is	to	start	with	default	sizes,	and	then	use	the	Solr	Administration
Console	to	constantly	monitor	how	things	move.	Cache	management	is	not	a	do-once-and-
forget	task.	Caches	must	be	periodically	monitored	and	eventually	tuned	in	order	to	gain
optimal	advantage	for	your	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Cached	object	life	cycle
The	class	attribute	of	a	cache	determines	primarily	its	implementation,	but	most
importantly,	it	defines	how	objects	are	managed	within	the	cache.	In	other	words,	it
implements	the	logic	needed	to	know	what	to	do	when	the	cache	reaches	its	maximum
size	and	which	objects	must	be	evicted	when	a	new	entry	arrives.

Solr	offers	three	cache	implementations:

LRUCache:	Once	the	maximum	size	of	the	cache	has	been	reached	and	a	new	object
needs	to	be	cached,	this	implementation	will	remove	the	oldest	entry.	The	age	of	an
object	is	determined	by	the	last	time	it	was	requested	from	the	cache.
FastLRUCache:	This	implements	behavior	similar	to	LRUCache	but	uses	a	separate
thread	to	(asynchronously)	clean	up	the	oldest	entries.
LFUCache:	This	policy	implements	an	eviction	based	on	the	popularity	of	each
object	in	the	cache	(that	is,	how	many	times	a	given	object	in	the	cache	has	been
requested).

www.it-ebooks.info

http://www.it-ebooks.info/

Cache	stats
For	each	cache,	the	Administration	Console	reports	(Plugin/Stats	|	Cache)	the	following
attributes:

Attribute Description

lookups The	total	count	of	lookup	requests.

hits The	number	of	requests	that	successfully	found	the	requested	object.

hitratio
The	number	of	hits	on	top	of	the	total	number	of	requests.	A	value	of	1	represents	optimal
usage	of	the	cache	(every	requested	object	has	been	found	in	the	cache).

inserts The	total	number	of	inserted	objects.

evictions The	total	number	of	evictions	(objects	removed).

size The	current	size	of	the	cache.

warmupTime The	time	needed	to	auto-warm	the	cache.

cumulative_lookups

cumulative_hits

cumulative_hitratio

cumulative_inserts

cumulative_evictions

A	cache	instance	dies	when	the	associated	searcher	is	discarded.	The	cumulative	attributes
retain	lookups,	hits,	hit	ratio,	inserts,	and	evictions	among	all	cache	instances	(of	the	same
type),	so	the	value	of	those	attributes	measures	the	same	things	we	just	saw	but	cumulatively,
since	Solr	startup.

www.it-ebooks.info

http://www.it-ebooks.info/

Types	of	cache
As	we	have	briefly	described,	Solr	comes	with	several	kinds	of	caches.	The	following
paragraphs	describe	them	further.

Filter	cache
Each	time	a	filter	query	is	executed,	Solr	places	a	new	entry	in	a	filter	cache.	A	filter	cache
is	a	kind	of	map	where	the	key	is	represented	by	the	filter	query	string	(for	example,
catalog:NRA	or	genre:Jazz)	and	the	entry	is	a	list	of	all	matching	document	identifiers.

The	filter	cache	is	configured	in	the	solrconfig.xml	file,	in	the	following	fragment:

<filterCache	class="solr.FastLRUCache"	size="512"	initialSize="512"	

autowarmCount="0"/>

Filter	queries	play	a	crucial	role	in	performance	and	response	time	optimization.	The
cached	identifiers	can	be	used	and	reused	with	subsequent	queries;	briefly,	requests	that
contain	cached	filter	queries	will	improve	overall	performance	because	those	queries
won’t	be	actually	executed	again.

Auto-warming	a	filter	cache	means	refreshing	every	cached	filter	query	result	by
executing	(again)	all	of	those	queries	against	the	index	view	represented	by	the	new
searcher.	Let’s	see	this	with	a	concrete	example;	the	sample	Solr	instance	contains	24
albums.	At	startup	time,	the	filter	cache	is	empty.	Now	let’s	suppose	the	following	queries
are	executed:

http://127.0.0.1:8983/solr/example/query?q=*:*&	fq=genre:Jazz	(3	results)

http://127.0.0.1:8983/solr/example/query?q=*:*&	fq=genre:Fusion	(4	results)

http://127.0.0.1:8983/solr/example/query?q=*:*&	fq=released:1986	(2	results)

The	three	filter	queries	populate	the	filter	cache	as	described	in	the	following	table:

Cache	entries	(filter	queries) Query	results	(Document	identifiers)

genre:Jazz 1,	2,	3

genre:Fusion 4,	5,	6,	7

released:1986 6,	8

Now	we	decide	to	remove	document	#6.	In	order	to	do	this,	we	send	a	delete	command
and	then	a	commit	command.	Once	the	change	has	been	committed,	document	#6	no
longer	exists.	A	new	searcher	is	opened,	and	the	cache	content	needs	to	be	refreshed
because	it	still	contains	an	invalid	entry.	So,	the	auto-warming	process	simply	repeats	each
filter	query	in	the	cache	(genre:Jazz,	genre:Fusion	and	released:1986	in	this	case)	and
refreshes	the	content	with	valid	query	results.	After	the	auto-warming,	the	filter	cache	will
have	the	following	content:

Cache	entries	(filter	queries) Query	results	(Document	identifiers)

www.it-ebooks.info

http://www.it-ebooks.info/

genre:Jazz 1,	2,	3

genre:Fusion 4,	5,	7

released:1986 8

This	re-execution	is	in	general	the	cost	of	auto-warming,	which	is	directly	connected	with
the	cache	size	(a	huge	cache	in	most	cases	will	take	some	time	to	re-execute	all	cached
queries).

Query	Result	cache
With	this	kind	of	cache,	each	time	a	query	is	executed,	its	results	(in	terms	of	matching
document	identifiers)	are	cached	for	future	reuse.	This	is	configured	in	the	following
fragment	of	the	solrconfig.xml	file:

<queryResultCache	class="solr.FastLRUCache"	size="512"	initialSize="512"	

autowarmCount="0"/>

The	underlying	reason	is	that	popular	queries	(that	is,	queries	that	are	often	repeated)	will
gain	a	clear	advantage	here	because	they	won’t	be	actually	executed	again—their	results
are	already	computed.

Note
Other	than	popular	queries,	pagination	mechanisms	also	benefit	from	this	cache.	When	the
user	asks	for	the	next	or	the	previous	page	of	results	for	a	given	query	execution,	Solr	will
repeat	the	query	but	with	a	different	start	parameter.

Document	cache
Both	FilterCache	and	QueryResultCache	store	document	identifiers.	So,	on	top	of	a
given	query,	Solr	computes	the	matching	identifiers;	for	each	of	them,	it	needs	to	query
the	index	to	retrieve	its	stored	fields.	After	that,	the	response	is	populated	with	those
documents	and	their	corresponding	(stored)	fields.

DocumentCache	caches	Lucene	documents,	so	once	a	query	has	been	executed,	Solr
doesn’t	need	(with	regard	to	documents	that	are	found	in	this	cache)	to	query	the	index	to
populate	the	list	of	results.

Tip
If	you	have	huge	stored	fields	(for	example,	full-text	fields	used	for	highlighting),	be
aware	that	you	cannot	specify	which	fields	must	be	in	the	cache.	Therefore,	huge	fields
may	require	a	lot	of	memory.

Field	value	cache
The	field	value	cache	has	a	map	structure	where	keys	are	field	names	and	values	are
uninverted	fields.	This	structure	maps	document	identifiers	with	values.	If	it	is	not
explicitly	declared,	this	cache	is	automatically	generated	with	an	initial	size	of	10,	a
maximum	size	of	10000,	and	no	auto-warming.	It	is	primarily	used	for	faceting.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom	cache
Custom	caches	are	intended	for	developers	who	write	their	own	Solr	extensions.	Unlike
the	other	types,	custom	caches	accept	a	regenerator	attribute,	which	declares	a	class	that
implements	the	auto-warming	logic	for	the	cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Query	handlers
The	page	accessed	by	navigating	to	Plugin/Stats	|	QueryHandler	shows	an	expandable
list	where	each	item	is	a	query	handler	configured	in	solrconfig.xml.	This	list	includes
handlers	that	represent	search	endpoints	(that	is,	SearchHandler)	but	also	other	handlers
such	as	/admin/ping,	/admin/dump,	and	/debug.

The	configured	UpdateRequestHandler	instances	(for	example,	/update	and
/update/json),	being	subclasses	of	RequestHandler,	are	also	listed	in	this	page.

For	each	handler,	the	console	shows	some	basic	attributes	such	as	the	class	name,	version,
a	short	description,	and	a	set	of	statistical	data,	as	listed	in	the	following	table:

Attribute Description

handlerStart The	date	(in	milliseconds)	when	the	handler	received	its	first	request.

Requests The	total	number	of	requests	received.

Errors The	number	of	requests	that	raised	an	exception	during	the	execution.

timeouts
If	the	query	is	executed	with	the	timeAllowed	parameter	and	the	given	timeout	expires,
Solr	will	return	only	partial	results.	This	attribute	counts	the	requests	that	face	this	scenario.

totalTime The	total	(requests)	execution	time.

avgRequestsPerSecond The	average	number	of	requests	per	second.

5minRateReqsPerSecond

15minRateReqsPerSecond

The	average	number	of	requests	per	second	over	the	last	five	and	fifteen	minutes,
respectively.

avgTimePerRequest The	average	(request)	execution	time.

75thPcRequestTime

95thPcRequestTime

99thPcRequestTime

999thPcRequestTime

Starting	from	the	distribution	of	the	total	request	execution	times,	these	attributes	report	the
value	at	the	75th,	95th,	99th,	and	999th	percentile	in	that	distribution,	respectively.

So,	especially	for	search	endpoints,	this	page	is	very	useful	to	understand	and	monitor	the
usage	and	the	statistical	behavior	of	your	Solr	instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Update	handlers
Under	the	same	path	(Plugin	|	Stats),	the	UpdateHandler	is	a	page	containing	an	entry
corresponding	to	the	org.apache.solr.update.DirectUpdateHandler2	instance.

The	following	table	lists	and	describes	the	attributes	of	that	handler:

Attribute Description

commits The	total	number	of	commit	requests	received.

autocommit	maxTime
The	maximum	amount	of	time	that	is	allowed	to	pass	since	a	document	was	added
before	automatically	triggering	a	new	commit.

autocommits The	total	number	of	hard	auto-commits	executed.

soft	autocommits The	total	number	of	soft	auto-commits	executed.

optimizes The	total	number	of	optimize	requests	received.

rollbacks The	total	number	of	rollback	requests	received.

expungeDeletes The	total	number	of	hard	commits	with	the	expungeDeletes	flag	set	to	true.

docsPending The	total	number	of	updates	that	have	been	processed	but	not	committed.

adds The	total	number	of	adds	requests	received.

deletesById The	total	number	of	deleteById	requests	received.

deletesByQuery The	total	number	of	deleteByQuery	requests	received.

errors The	total	number	of	failed	operations	(for	example,	updates,	commits,	and	rollbacks).

cumulative_adds

cumulative_deletesById

cumulative_deletesByQuery

cumulative_errors

UpdateHandler	has	a	life	cycle	associated	with	owning	SolrCore.	In	other	words,	when
SolrCore	is	reloaded,	a	new	instance	of	UpdateHandler	is	created.	The	monitoring
attributes	prefixed	with	cumulative	are	a	cumulative	measure	of	a	specific	attribute	(for
example,	additions	and	deletions)	since	the	Solr	startup.

Most	Solr	installations	I’ve	done	in	libraries	update	the	index	on	a	daily	basis.	Each
morning,	the	UpdateHandler	stats	page	shows	a	perfect	summary	of	what	happened
during	the	previous	day	and	cumulatively	since	the	last	startup.	Clearly,	in	the	event	of
errors,	log	files	serve	as	my	friends.

On	the	other	hand,	if	I	need	to	monitor	the	overall	progress	of	an	index	update	in	real	time,
then	I	prefer	the	JMX	way,	which	is	described	in	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

JMX
Java	Management	Extensions	(JMX)	are	a	powerful	set	of	APIs	used	to	monitor	and
manage	a	running	JVM.	The	building	blocks	of	JMX	are	the	so-called	Management
Beans	(MBeans),	which	are	basically	wrappers	that	decorate	existing	objects	with	a
management	interface.	The	core	classes	of	JVM	are	decorated	with	MBeans.

Tip
More	information	about	JMX	can	be	found	at
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html.

MBeans	are	registered	with	an	MBeanServer	that	exposes	those	management	interfaces	to
external	clients.	Applications	are	free	to	create,	register,	and	expose	the	management
interface	of	their	own	specific	services.	Solr	MBeans	are	not	automatically	registered	with
the	MBeanServer,	but	if	you	want	to	do	that,	just	write	(or	uncomment)	the	following	line
in	solrconfig.xml:

<jmx/>

The	JVM	comes	with	two	built-in	JMX	clients	called	JConsole	and	JVisualVM.

Tip
JVisualVM	and	JConsole	are	very	similar	tools.	Here,	we	will	talk	only	about	the
JConsole	because	JVisualVM	doesn’t	have	the	MBeans	perspective.

Open	a	shell	in	your	PC	and	type	the	following	command:

#	$JAVA_HOME/bin/jconsole

A	dialog	pop-up	will	appear.	This	is	the	first	screen	of	JConsole,	which	is	a	Java
standalone	application.	The	dialog	contains	a	list	of	locally	running	JVMs.	One	of	them
should	be	the	one	where	Solr	is	running.	Select	that	entry,	and	you	should	see	a	screen
with	several	tabs:	Overview,	Memory,	Threads,	Classes,	VM	Summary,	and	MBeans.
At	the	moment,	we	are	interested	in	the	last	tab,	MBeans.	Here	you	can	see	(the	tree
component	on	the	left	side)	all	registered	MBeans,	as	depicted	in	the	following
screenshot:

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.it-ebooks.info/

For	each	MBean	in	the	tree,	you	can	see	its	management	interface	in	the	right	pane.	A
management	interface	is	composed	of	attributes	and	operations.

Operations	can	be	invoked	and	attributes	can	be	monitored	by	looking	at	their	value	at	a
given	moment	or	for	a	given	interval.	To	do	this,	you	have	to	double-click	on	them	and
activate	a	real-time	chart.

The	main	differences	between	the	Solr	Administration	Console	and	JConsole	are	as
follows:

The	Solr	Administration	Console,	being	a	web	application,	offers	static	snapshots	of
the	system.	With	JConsole,	it’s	possible	to	activate	real-time	monitoring	of	one	or
more	attributes.	This	is	not	limited	to	MBean	attributes.	In	the	other	tabs,	you	can
monitor	threads,	processors,	memory,	and	garbage	collection.
JConsole	has	a	finer	level	of	granularity	than	the	Administration	Console.	There,	we
can	see	all	attributes	and	operations	exposed	for	management.
JConsole,	being	more	technical,	is	less	usable	than	the	Administration	Console.

Clearly,	JConsole,	JVisualVM,	and	the	Solr	Administration	Console	are	not	alternatives.

www.it-ebooks.info

http://www.it-ebooks.info/

They	should	be	used	together	in	order	to	get	a	different	perspective	on	the	system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	described	some	concepts	about	Solr	administration	and	monitoring.	We
introduced	a	few	system	administration	tools	such	as	the	Solr	Administration	Console	and
JConsole,	and	we	covered	hardware	resources.

Remember	that,	although	the	topics	covered	in	this	chapter	should	be	relevant	for	an
administrator	nowadays,	this	role	is	spread	among	several	people	(especially	in	small	and
medium	companies)	who	are	mostly	developers	(a	developer	in	a	small	or	medium
company	is	a	like	a	“factotum”).	This	is	the	reason	it	is	important	for	non-administrators
to	have	at	a	least	basic	understanding	of	administration,	management,	and	monitoring.

In	the	next	chapter,	you	will	see	how	Solr	can	be	deployed	in	the	context	of	development,
testing,	and	production.	We	will	illustrate	and	describe	several	deployment	scenarios,
starting	from	the	simplest,	standalone	instance,	continuing	with	a	gradually	growing	level
of	complexity,	and	ending	with	SolrCloud.	SolrCloud	is	a	highly	available,	fault-tolerant
cluster	of	Solr	servers	that	provide	distributed	indexing	and	search	capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6.	Deployment	Scenarios
This	chapter	contains	information	on	the	various	ways	in	which	you	can	deploy	Solr,
including	key	features	and	pros	and	cons	for	each	scenario.

Solr	has	a	wide	range	of	deployment	alternatives,	from	monolithic	to	distributed	indexes
and	standalone	to	clustered	instances.	We	will	organize	this	chapter	by	deployment
scenarios,	with	a	growing	level	of	complexity.

This	chapter	will	cover	the	following	topics:

Sharding
Replication:	master,	slave,	and	repeaters
SolrCloud

www.it-ebooks.info

http://www.it-ebooks.info/

Standalone	instance
All	the	examples	we	found	in	the	previous	chapters	use	a	standalone	instance	of	Solr,	that
is,	one	or	more	cores	managed	by	a	Solr	deployment	hosted	in	a	standalone	servlet
container	(for	example,	Jetty,	Tomcat,	and	so	on).

This	kind	of	deployment	is	useful	for	development	because,	as	you	learned,	it	is	very	easy
to	start	and	debug.	Besides,	it	can	also	be	suitable	for	a	production	context	if	you	don’t
have	strict	non-functional	requirements	and	have	a	small	or	medium	amount	of	data.

Tip
I	have	used	a	standalone	instance	to	provide	autocomplete	services	for	small	and	medium
intranet	systems.

Anyway,	the	main	features	of	this	kind	of	deployment	are	simplicity	and	maintainability;
one	simple	node	acts	as	both	an	indexer	and	a	searcher.	The	following	diagram	depicts	a
standalone	instance	with	two	cores:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Shards
When	a	monolithic	index	becomes	too	large	for	a	single	node	or	when	additions,	deletions,
or	queries	take	too	long	to	execute,	the	index	can	be	split	into	multiple	pieces	called
shards.

Note
The	previous	sentence	highlights	a	logical	and	theoretical	evolution	path	of	a	Solr	index.
However,	this	(in	general)	is	valid	for	all	scenarios	we	will	describe.	It	is	strongly
recommended	that	you	perform	a	preliminary	analysis	of	your	data	and	the	estimated
growth	factor	in	order	to	decide	from	the	beginning	the	right	configuration	that	suits	your
requirements.	Although	it	is	possible	to	split	an	existing	index	into	shards
(https://lucene.apache.org/core/4_10_3/misc/org/apache/lucene/index/PKIndexSplitter.html
things	definitely	become	easier	if	you	start	directly	with	a	distributed	index	(if	you	need	it,
of	course).

The	index	is	split	vertically	so	that	each	shard	contains	a	disjoint	set	of	the	entire	index.
Solr	will	query	and	merge	results	across	those	shards.	The	following	diagram	illustrates	a
Solr	deployment	with	3	nodes;	this	deployment	consists	of	two	cores	(C1	and	C2)	divided
into	three	shards	(S1,	S2,	and	S3):

When	using	shards,	only	query	requests	are	distributed.	This	means	that	it’s	up	to	the
indexer	to	add	and	distribute	the	data	across	nodes,	and	to	subsequently	forward	a	change

www.it-ebooks.info

https://lucene.apache.org/core/4_10_3/misc/org/apache/lucene/index/PKIndexSplitter.html
http://www.it-ebooks.info/

request	(that	is,	delete,	replace,	and	commit)	for	a	given	document	to	the	appropriate	shard
(the	shard	that	owns	the	document).

Tip
The	Solr	Wiki	recommends	a	simple,	hash-based	algorithm	to	determine	the	shard	where	a
given	document	should	be	indexed:

documentId.hashCode()	%	numServers

Using	this	approach	is	also	useful	in	order	to	know	in	advance	where	to	send	delete	or
update	requests	for	a	given	document.

On	the	opposite	side,	a	searcher	client	will	send	a	query	request	to	any	node,	but	it	has	to
specify	an	additional	shards	parameter	that	declares	the	target	shards	that	will	be	queried.
In	the	following	example,	assuming	that	two	shards	are	hosted	in	two	servers	listening	to
ports	8080	and	8081,	the	same	request	when	sent	to	both	nodes	will	produce	the	same
result:

http://localhost:8080/solr/c1/query?

q=*:*&shards=localhost:8080/solr/c1,localhost:8081/solr/c2

http://localhost:8081/solr/c2/query?

q=*:*&shards=localhost:8080/solr/c1,localhost:8081/solr/c2

When	sending	a	query	request,	a	client	can	optionally	include	a	pseudofield	associated
with	the	[shard]	transformer.	In	this	case,	as	a	part	of	each	returned	document,	there	will
be	additional	information	indicating	the	owning	shard.	This	is	an	example	of	such	a
request:

http://localhost:8080/solr/c1/query?

q=*:*&shards=localhost:8080/solr/c1,localhost:8081/solr/c2&src_shard:

[shard]

Here	is	the	corresponding	response	(note	the	pseudofield	aliased	as	src_shard):

<result	name="response"	numFound="192"	start="0">

		<doc>

				<str	name="id">9920</str>

				<str	name="brand">Fender</str>

				<str	name="model">Jazz	Bass</str>

				<arr	name="artist">

				<str>Marcus	Miller</str>

				</arr><str	name="series">Marcus	Miller	signature</str>

				<str	name="src_shard">localhost:8080/solr/shard1</str>

		</doc>

		…

		<doc>

				<str	name="id">4392</str>

				<str	name="brand">Music	Man</str>

				<str	name="model">Sting	Ray</str>

				<arr	name="artist"><str>Tony	Levin</str></arr>

				<str	name="series">5	strings	DeLuxe</str>

				<str	name="src_shard">localhost:8081/solr/shard2</str>

		</doc>

www.it-ebooks.info

http://www.it-ebooks.info/

</result>

The	following	are	a	few	things	to	keep	in	mind	when	using	this	deployment	scenario:

The	schema	must	have	a	uniqueKey	field.	This	field	must	be	declared	as	stored	and
indexed;	in	addition,	it	is	supposed	to	be	unique	across	all	shards.
Inverse	Document	Frequency	(IDF)	calculations	cannot	be	distributed.
IDF	is	computed	per	shard.
Joins	between	documents	belonging	to	different	shards	are	not	supported.
If	a	shard	receives	both	index	and	query	requests,	the	index	may	change	during	a
query	execution,	thus	compromising	the	outgoing	results	(for	example,	a	matching
document	that	has	been	deleted).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Master/slaves	scenario
In	a	master/slaves	scenario,	there	are	two	types	of	Solr	servers:	an	indexer	(the	master)
and	one	or	more	searchers	(the	slaves).

The	master	is	the	server	that	manages	the	index.	It	receives	update	requests	and	applies
those	changes.	A	searcher,	on	the	other	hand,	is	a	Solr	server	that	exposes	search	services
to	external	clients.

The	index,	in	terms	of	data	files,	is	replicated	from	the	indexer	to	the	searcher	through
HTTP	by	means	of	a	built-in	RequestHandler	that	must	be	configured	on	both	the	indexer
side	and	searcher	side	(within	the	solrconfig.xml	configuration	file).

On	the	indexer	(master),	a	replication	configuration	looks	like	this:

		<requestHandler	

				name="/replication"	

				class="solr.ReplicationHandler">

				<lst	name="master">

						<str	name="replicateAfter">startup</str>

						<str	name="replicateAfter">optimize</str>

						<str	name="confFiles">schema.xml,stopwords.txt</str>

				</lst>

		</requestHandler>

The	replication	mechanism	can	be	configured	to	be	triggered	after	one	of	the	following
events:

Commit:	A	commit	has	been	applied
Optimize:	The	index	has	been	optimized
Startup:	The	Solr	instance	has	started

In	the	preceding	example,	we	want	the	index	to	be	replicated	after	startup	and	optimize
commands.	Using	the	confFiles	parameter,	we	can	also	indicate	a	set	of	configuration
files	(schema.xml	and	stopwords.txt,	in	the	example)	that	must	be	replicated	together
with	the	index.

Note
Remember	that	changes	on	those	files	don’t	trigger	any	replication.	Only	a	change	in	the
index,	in	conjunction	with	one	of	the	events	we	defined	in	the	replicateAfter	parameter,
will	mark	the	index	(and	the	configuration	files)	as	replicable.

On	the	searcher	side,	the	configuration	looks	like	the	following:

<requestHandler	

		name="/replication"	

		class="solr.ReplicationHandler">

		<lst	name="slave">

				<str	name="masterUrl">http://<localhost>:<port>/solrmaster</str>

				<str	name="pollInterval">00:00:10</str>

		</lst>

</requestHandler>

www.it-ebooks.info

http://www.it-ebooks.info/

You	can	see	that	a	searcher	periodically	keeps	polling	the	master	(the	pollInterval
parameter)	to	check	whether	a	newer	version	of	the	index	is	available.	If	it	is,	the	searcher
will	start	the	replication	mechanism	by	issuing	a	request	to	the	master,	which	is
completely	unaware	of	the	searchers.

The	replicability	status	of	the	index	is	actually	indicated	by	a	version	number.	If	the
searcher	has	the	same	version	as	the	master,	it	means	the	index	is	the	same.	If	the	versions
are	different,	it	means	that	a	newer	version	of	the	index	is	available	on	the	master,	and
replication	can	start.

Other	than	separating	responsibilities,	this	deployment	configuration	allows	us	to	have	a
so-called	diamond	architecture,	consisting	of	one	indexer	and	several	searchers.	When	the
replication	is	triggered,	each	searcher	in	the	ring	will	receive	a	whole	copy	of	the	index.
This	allows	the	following:

Load	balancing	of	the	incoming	(query)	requests.
An	increment	to	the	availability	of	the	whole	system.	In	the	event	of	a	server	crash,
the	other	searchers	will	continue	to	serve	the	incoming	requests.

The	following	diagram	illustrates	a	master/slave	deployment	scenario	with	one	indexer,
three	searchers,	and	two	cores:

www.it-ebooks.info

http://www.it-ebooks.info/

If	the	searchers	are	in	several	geographically	dislocated	data	centers,	an	additional	role
called	repeater	can	be	configured	in	each	data	center	in	order	to	rationalize	the	replication
data	traffic	flow	between	nodes.	A	repeater	is	simply	a	node	that	acts	as	both	a	master	and
a	slave.	It	is	a	slave	of	the	main	master,	and	at	the	same	time,	it	acts	as	master	of	the
searchers	within	the	same	data	center,	as	shown	in	this	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Shards	with	replication
This	scenario	combines	shards	and	replication	in	order	to	have	a	scalable	system	with	high
throughput	and	availability.	There	is	one	indexer	and	one	or	more	searchers	for	each
shard,	allowing	load	balancing	between	(query)	shard	requests.	The	following	diagram
illustrates	a	scenario	with	two	cores,	three	shards,	one	indexer,	and	(due	to	problems	with
available	space),	only	one	searcher	for	each	shard:

The	drawback	of	this	approach	is	undoubtedly	the	overall	growing	complexity	of	the
system	that	requires	more	effort	in	terms	of	maintainability,	manageability,	and	system
administration.	In	addition	to	this,	each	searcher	is	an	independent	node,	and	we	don’t
have	a	central	administration	console	where	a	system	administrator	can	get	a	quick
overview	of	system	health.

These	disadvantages	have	been	either	mitigated	or	overcome	in	SolrCloud,	which	is
described	in	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SolrCloud
SolrCloud	is	a	highly	available,	fault-tolerant	cluster	of	Solr	servers	that	provides
distributed	indexing	and	search	capabilities.	The	following	diagram	illustrates	a	simple
SolrCloud	scenario:

Although	SolrCloud	introduced	a	new	terminology	to	define	things	in	a	distributed
domain,	the	preceding	diagram	has	been	drawn	with	the	same	concepts	that	we	saw	in	the
previous	scenarios,	for	better	understanding.

Tip
Starting	from	Solr	4.10.0,	the	download	bundle	contains	an	interactive,	wizard-like
command-line	setup	for	a	sample	SolrCloud	installation.	A	step-by-step	guide	for	this	is
available	at
https://cwiki.apache.org/confluence/display/solr/Getting+Started+with+SolrCloud.

The	following	sections	will	describe	the	relevant	aspects	of	SolrCloud.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Getting+Started+with+SolrCloud
http://www.it-ebooks.info/

Cluster	management
Apache	Zookeeper	was	introduced	in	SolrCloud	for	cluster	coordination	and
configuration.	This	means	it	is	a	central	actor	in	this	scenario,	providing	discovery,
configuration,	and	lookup	services	for	other	components	(including	clients)	to	gather
information	about	the	Solr	cluster.

Apache	Zookeeper,	being	a	central	component,	can	be	organized	in	a	cluster	itself	(as
depicted	in	the	previous	diagram)	in	order	to	avoid	a	single	point	of	failure.	A	cluster	of
Zookeeper	nodes	is	called	ensemble.

Tip
For	more	information	about	Apache	Zookeeper,	visit	http://zookeeper.apache.org,	the
project	homepage.

www.it-ebooks.info

http://zookeeper.apache.org
http://www.it-ebooks.info/

Replication	factor,	leaders,	and	replicas
In	the	preceding	diagram,	we	have	only	one	core	(C1)	with	three	shards	(S1,	S2,	and	S3).
Now,	the	main	difference	between	the	previous	distributed	scenario	(where	we	met	shards)
and	this	scenario	is	that	here,	there’s	a	copy	of	each	shard	in	every	node.	That	copy	is
called	a	replica.	In	this	example,	we	have	three	copies	for	each	shard,	but	this	is	just	for
simplicity;	you	can	have	as	many	copies	as	you	want.

More	specifically,	SolrCloud	has	a	property	called	replication	factor,	that	determines	the
total	number	of	copies	in	the	cluster	for	each	shard.	Among	the	copies,	one	is	elected	as
the	leader	(the	letter	“L”	on	C1/S1	on	the	first	node)	while	the	remaining	are	replicas	(the
letter	“R”).

Tip
In	the	preceding	diagram,	the	replication	factor	is	3	and	it	is	equal	to	the	number	of	nodes.
Keep	in	mind	that	this	is	a	coincidence;	those	measures	could	be	different,	and	they
actually	depend	on	your	cluster	configuration	and	needs.

This	replication	feature	satisfies	three	important	nonfunctional	requirements:	load
balancing,	high	availability,	and	backup.	We	have	already	described	how	the	classic
replication	mechanism	provides	load	balancing.	Having	the	same	data	within	more	than
one	node	allows	a	searcher	to	issue	query	requests	to	those	nodes	in	a	round-robin	fashion,
thus	expanding	the	overall	capacity	of	the	system	in	terms	of	queries	per	second.	Here,	the
context	is	the	same;	each	shard,	regardless	of	whether	it	is	a	leader	or	a	replica,	can	be
found	on	n	nodes	(where	n	is	the	replication	factor);	therefore,	a	client	can	use	those	nodes
for	load	balancing	requests.

High	availability	is	a	direct	consequence	of	the	redundancy	introduced	with	shard
replication.	The	presence	of	the	same	data	(and	the	same	search	services)	on	several	nodes
means	that,	even	if	one	of	those	node	crashes,	a	client	can	continue	to	send	requests	to	the
remaining	nodes.

The	redundancy	introduced	with	the	replication	also	works	as	a	backup	mechanism.
Having	the	same	things	in	several	places	provides	a	better	guarantee	against	data	loss.
After	all,	this	is	the	underlying	principle	of	the	popular	cloud	data	services	(for	example,
Dropbox,	ICloud,	and	Copy).

www.it-ebooks.info

http://www.it-ebooks.info/

Durability	and	recovery
Each	node	maintains	a	write-ahead	transaction	log,	where	any	change	is	recorded	before
being	applied	to	the	index.	Therefore,	the	transaction	log	is	available	for	leaders	and
replicas,	and	it	will	be	used	to	determine	which	content	needs	to	be	part	of	a	chosen
replica	during	synchronization.	For	instance,	when	a	new	replica	is	created,	it	refers	to	its
leader	and	its	transaction	log	to	know	which	content	to	get.

The	transaction	log	will	also	be	used	when	restarting	a	server	that	didn’t	shut	down
gracefully.	Its	content	will	be	“replayed”	in	order	to	synchronize	local	leaders	and	replicas.

Tip
Write-ahead	logging	is	widely	used	in	distributed	systems.	For	more	information	about	it,
see
https://cwiki.apache.org/confluence/display/solr/NRT%2C+Replication%2C+and+Disaster+Recovery+with+SolrCloud

The	transaction	log	path	can	be	configured	in	an	appropriate	section	of	the	solconfig.xml
file.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/NRT%2C+Replication%2C+and+Disaster+Recovery+with+SolrCloud
http://www.it-ebooks.info/

The	new	terminology
Now	that	the	main	features	of	SolrCloud	have	been	explained,	we	can	stop	thinking	about
it	as	an	evolution	of	the	shard	scenario	and	cover	its	own	terminology:

Parameter Description

Node This	is	a	Java	Virtual	Machine	running	Solr.

Cluster A	set	of	Solr	nodes	that	form	a	single	unit	of	service.

Shard We	previously	defined	a	shard	as	a	vertical	subset	of	the	index,	that	is,	a	subset	of	all	documents	in	the
index.	A	shard	is	a	single	copy	of	that	subset.	In	SolrCloud,	it	can	be	a	leader	or	a	replica.

Partition/slice A	subset	of	the	whole	index	replicated	on	one	or	more	nodes.	A	slice	is	basically	composed	of	all
shards	(leader	and	replicas)	belonging	to	the	same	subset.

Leader Each	shard	has	one	node	identified	as	its	leader.	This	role	is	crucial	for	the	update	workflow.	All	the
updates	belonging	to	a	partition	route	through	the	leader.

Replica
The	replication	factor	determines	the	total	number	of	copies	each	shard	has.	Among	all	of	those	copies,
one	is	elected	as	the	leader,	while	the	others	are	called	replicas.	While	querying	can	be	done	across	all
shards,	updates	are	always	directed	(or	forwarded	by	replicas)	to	leaders.

Replication
factor The	number	of	copies	of	a	shard	(and	hence,	of	a	document)	maintained	by	the	cluster.

Collection A	core	that	is	logically	and	physically	distributed	across	the	cluster.	In	our	example,	we	have	only	one
collection	(C1).

www.it-ebooks.info

http://www.it-ebooks.info/

Administration	console
In	a	SolrCloud	deployment,	the	administration	console	of	each	node	will	report	an
additional	menu	item	called	Cloud,	where	it’s	possible	to	get	an	overall	view	of	the
cluster.	You	can	choose	between	several	graphic	representations	of	the	cluster	(tree,	graph,
and	radial),	but	all	of	them	have	a	common	aim—giving	an	immediate	overview	of	the
cluster	in	terms	of	nodes,	shards,	and	collections.	This	is	a	screenshot	from	the
administration	console	of	the	SolrCloud	used	in	this	section:

www.it-ebooks.info

http://www.it-ebooks.info/

Collections	API
The	Collections	API	is	used	to	manage	the	cluster,	including	collections,	shards,	and
metadata	about	the	cluster.	This	interface	is	composed	of	a	single	HTTP	service	endpoint
located	at	http://<hostname>:<port>/<context	root>/admin/collections.

The	Collections	API	accepts	an	action	parameter,	which	is	a	mnemonic	code	associated
with	the	command	that	we	want	to	execute.	Each	command	has	its	own	set	of	parameters
that	depend	on	the	goal	of	the	command.	The	following	table	lists	the	allowed	values	for
the	action	parameter	(that	is,	the	available	commands):

Action Description

CREATE Creates	a	new	collection.

RELOAD Reloads	a	collection.	This	is	used	when	a	configuration	has	been	changed	in
ZooKeeper.

DELETE Deletes	a	collection.

LIST Returns	the	names	of	the	collections	in	the	cluster.

CREATESHARD Creates	a	new	shard.

SPLITSHARD Splits	an	existing	shard	into	two	new	shards.

DELETESHARD Deletes	an	inactive	shard.

CREATEALIAS Creates	or	replaces	an	alias	for	an	existing	collection.

DELETEALIAS Deletes	an	alias.

ADDREPLICA Adds	a	new	replica	for	a	given	shard.

DELETEREPLICA Deletes	a	replica	of	a	shard.

CLUSTERPROP Adds,	edits,	or	deletes	a	cluster	property.

MIGRATE Moves	documents	between	collections.

ADDROLE
Adds	a	role	to	a	node.	At	the	time	of	writing	this	book,	the	only	supported	role	is	an
overseer.	This	is	the	cluster	leader	responsible	for	shard	assignments	and	node
management	operations.

REMOVEROLE Removes	a	role	from	a	node.

OVERSEERSTATUS Returns	the	current	status	of	the	overseer,	including	some	stats	about	services	calls	(for
example,	create	collection	and	create	shard).

CLUSTERSTATUS Returns	the	cluster	status,	including	shards,	collections,	replicas,	aliases,	and	cluster
properties.

REQUESTSTATUS Returns	the	status	of	those	requests	that	have	been	executed	asynchronously	(for

www.it-ebooks.info

http://www.it-ebooks.info/

example,	MIGRATE,	SPLITSHARD,	and	CREATE	COLLECTION).

ADDREPLICAPROP Adds	or	replaces	a	replica	property.

DELETEREPLICAPROP Deletes	a	replica	property.

BALANCESHARDUNIQUE Distributes	a	given	property	evenly	among	the	physical	nodes	that	make	up	a
collection.

The	complete	list	of	parameters	for	each	command	is	available	at
https://cwiki.apache.org/confluence/display/solr/Collections+API.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Collections+API
http://www.it-ebooks.info/

Distributed	search
Queries	can	be	sent	to	any	node	performing	a	full	distributed	search	across	the	cluster	with
load	balancing	and	failover.	SolrCloud	also	allows	partial	queries,	that	is,	queries	executed
against	a	group	of	shards,	a	list	of	servers,	or	a	list	of	collections.

Tip
If	you	are	using	Java	on	client	the	side,	CloudSolrServer	in	Solrj	completely	simplifies
communication	between	the	client,	Zookeeper,	and	the	cluster.	As	a	developer,	you	will
work	with	the	usual	SolrServer	interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Cluster-aware	index
A	drawback	of	the	first	distributed	scenario	we	met	(that	is,	shards)	was	that	a	client	that
wants	to	issue	an	update	request	needs	to	explicitly	point	to	the	target	shard.	This	is	no
longer	valid	in	a	SolrCloud	context	because,	for	a	given	shard,	there	could	be	more	than
one	copy	(that	is,	a	leader	and	zero	or	more	copies).	So	the	update	path	becomes	the
following:

Updates	can	be	sent	to	any	node	in	the	cluster
If	the	target	node	is	the	leader	of	the	shard	owning	the	document,	the	update	is
executed	there,	and	then	it	is	forwarded	to	all	replicas
If	the	target	node	is	a	replica,	then	the	update	request	is	forwarded	to	its	leader,	and
the	flow	described	in	the	previous	point	applies

Tip
The	CloudSolrServer	in	Solrj	asks	Zookeeper	about	the	leader’s	location	before	sending
updates.	Thus,	requests	are	always	targeted	at	leaders,	avoiding	additional	network	round-
trips.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	described	various	ways	in	which	you	can	deploy	Solr.	Each	deployment
scenario	has	specific	features,	advantages,	and	drawbacks	that	make	a	choice	ideal	for	one
context	and	bad	for	another.	A	good	thing	is	that	the	different	scenarios	are	not	strictly
exclusive;	they	follow	an	incremental	approach.	In	an	ideal	context,	things	should	start
immediately	with	the	perfect	scenario	that	fits	your	needs.	However,	unless	your
requirements	are	clear	right	from	the	start,	you	can	begin	with	a	simple	configuration	and
then	change	it,	depending	on	how	your	application	evolves.

In	the	next	chapter,	we	will	walk	through	some	useful	add-ons	that	are	not	part	of	the	core
distribution	but	are	included	in	the	Solr	download	bundle.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	7.	Solr	Extensions
Every	popular	open	source	project	usually	includes	a	contrib	folder	containing	several
extra	modules	to	solve	common	use	case	implementation	problems.	In	Solr,	you	can	find
such	modules	within	the	download	bundle,	as	depicted	in	the	following	screenshot:

Suppose	your	data	is	in	a	relational	database,	an	XML	file	with	a	custom	format,	or	a	mail
server;	you	need	to	index	data	coming	from	a	Content	Management	System	(such	as
Drupal,	Joomla!,	or	WordPress);	or	you	have	rich	documents	(such	as	PDFs	or	Microsoft
Office	documents)	and	you	want	to	do	some	kind	of	automatic	keyword	extraction.	In
general,	these	requirements	are	not	covered	by	the	core	part	of	Solr.	You	will	have	to	plug
in	and	configure	those	contribution	modules.

The	aim	of	this	chapter	is	to	describe	such	modules.	In	order	to	do	that,	we	will	make	use
of	a	preloaded	sample	Solr	instance,	with	those	extensions.	To	start	this	instance,	you	have
to	check	out	the	source	project	associated	with	the	chapter,	change	the	directory	to	the	ch7
folder,	and	type	this	from	the	command	line:

#	mvn	clean	package	cargo:run

If	you	checked	out	the	project	using	Eclipse,	you	might	have	noticed	that,	under	the
src/dev/eclipse	folder,	there	is	preconfigured	launcher.	Right-click	on	it	and	choose	the
Debug	as…	menu	item.

Regardless	of	the	way	you	choose,	you	will	see	something	like	this	at	the	end:

[INFO]	Jetty	8.1.15.v20140411	Embedded	started	on	port	[8983]

[INFO]	Press	Ctrl-C	to	stop	the	container…

This	means	that	the	sample	instance	is	up	and	running.	This	chapter	will	cover	the

www.it-ebooks.info

http://www.it-ebooks.info/

following	points:

Importing	data	from	several	data	sources
Text	and	metadata	extraction	from	digital	documents
Language	identification
Solritas	(that	is,	Solr	and	Velocity)
Other	contrib	modules

www.it-ebooks.info

http://www.it-ebooks.info/

DataImportHandler
The	DataImportHandler	is	a	module	that	enables	Solr	to	load	data	from	several	types	of
data	sources.	The	most	frequent	type	of	storage	where	applications	put	their	data	is
undoubtedly	a	relational	database,	but	in	general,	we	could	have	a	lot	of	scenarios	here:
filesystems,	websites,	emails,	FTP	servers,	LDAP,	NoSQL	databases,	and	so	on.

The	DataImportHandler	module,	other	than	providing	a	lot	of	ready-to-use	connectors,	is
an	extensible	framework	where	developers	are	free	to	inject	their	storage-specific
connector	logic.	The	configuration	happens	in	two	different	places:	the	first	is	the
solrconfig.xml	file	(as	usual),	where	the	handler	is	declared	as	follows:

<requestHandler	name="/import"	

class="org.apache.solr.handler.dataimport.DataImportHandler">

		<lst	name="defaults">

				<str	name="config">dih-config.xml</str>

		</lst>

</requestHandler>

The	second	is	the	handler	configuration	file	(in	the	preceding	example,	we	called	it	dih-
config.xml).	Although	the	specific	content	of	that	file	could	vary,	mainly	depending	on
the	kind	of	data	source	we	are	using,	the	building	blocks	of	a	DataImportHandler	domain
are	data	sources,	documents,	entities,	fields,	transformers,	and	processors.

www.it-ebooks.info

http://www.it-ebooks.info/

Data	sources
A	data	source	is	a	collection	of	records	that	store	data.	Although	you	are	probably
thinking	of	relational	databases,	data	sources	can	also	be	associated	with	other	kinds	of
sources	and	protocols,	such	as	websites	(HTTP),	FTP	servers,	LDAP,	mail	servers,	and	so
on.

A	data	source	declaration	is	probably	the	first	thing	you	will	meet	in	a
DataImportHandler	configuration	file.	First	of	all,	you	must	declare	where	your	data	is:

<dataSource	

		type="JdbcDataSource"	

		driver="com.mysql.jdbc.Driver"		url="jdbc:mysql://host/database-		name"	

		user="database_username"	

		password="database_password"/>

<dataSource	

		type="FileDataSource"	encoding="UTF-8"/>

Note	that	it’s	possible	to	declare	more	than	one	data	source	(for	example,	a	database	and	a
filesystem	or	two	different	databases).	Each	data	source	has	its	own	specific	properties
that	depend	on	its	nature.	The	following	table	describes	the	available	data	sources:

Name Description

JdbcDataSource

This	connects	to	a	database	(a	direct	connection	or	JNDI	data	source)	using	a	JDBC
driver.	Note	that	Solr	doesn’t	come	with	any	JDBC	driver	shipped.	You	must	obtain	it
separately	and	put	that	library	under	the	server	class	path	or	under	the	core	lib
folder.

URLDataSource Reads	character	files	using	HTTP.

BinURLDataSource Reads	binary	files	using	HTTP.

FileDataSource Reads	from	local	character	files.

BinFileDataSource Reads	from	local	binary	files.

ContentStreamDataSource Reads	from	the	ContentStream	of	a	POST	request	using	java.io.Reader.

BinContentStreamDataSource Reads	from	the	ContentStream	of	a	POST	request	using	java.io.InputStream.

FieldReaderDataSource Used	in	conjunction	with	other	data	sources,	when	a	given	field	contains	text	that
needs	further	processing	(for	example,	when	it	contains	an	XML	document).

FieldStreamDataSource
Used	in	conjunction	with	other	data	sources	when	a	given	field	contains	binary
content	that	needs	further	processing	(for	example,	when	it	contains	the	value	of	a
BLOB	database	column).

www.it-ebooks.info

http://www.it-ebooks.info/

Documents,	entities,	and	fields
Mapping	between	external	data	and	Solr	is	done	using	documents,	entities,	and	fields.

A	document	represents	a	logical	type	(such	as	products,	books,	and	associations).	It
contains	one	or	more	entities.

Entities	are	called	root	or	sub	entities	depending	on	their	nesting	level.	Root-entities	are
direct	children	of	a	document.	Sub-entities	are	children	of	another	entity.	They	have	a
relationship	with	their	parents;	within	their	configuration,	it’s	possible	to	use	an	expression
language	to	refer	to	their	parents.

Fields	are	concrete	places	where	the	mapping	between	the	external	data	source	and	Solr
document	occurs.	The	following	figure	schematizes	these	relationships:

A	single	document	can	have	one	or	more	root	entities.	Each	entity	defines	the	logic	to
gather	its	data	and	populate	its	fields.

In	the	following	example,	a	Solr	schema	contains	books.	Each	book	consists	of	an
identifier	(id),	a	title	(title),	and	one	or	more	authors.	There	are	two	database	tables,
BOOKS	and	AUTHORS,	with	a	1:n	relationship	(this	means	that	a	book	can	have	more	than
one	author).

First,	let’s	see	how	the	root	entity	(the	book)	is	defined:

<document	name="books">

		<entity	name="book"	dataSource="my-ds"	

		query="SELECT	BOOK_ID,TITLE	FROM	BOOKS"	onError="skip">

		<field	column="BOOK_ID"	name="id"/>	

		<field	column="TITLE"	name="title"/>

As	you	can	see,	the	entity	is	associated	with	a	data	source	called	my-ds.	It	is	configured
with	a	query,	and	for	each	record	of	the	outcoming	ResultSet,	we	are	interested	in	two
fields:	BOOK_ID	and	TITLE.	They	are	mapped	with	the	id	and	title	fields	in	the	Solr
schema.

Tip
If	the	name	of	the	column	(or	the	alias)	in	ResultSet	coincides	with	the	name	of	the	Solr
field	(case	insensitive),	the	<field>	declaration	can	be	omitted.	Solr	will	perform	the

www.it-ebooks.info

http://www.it-ebooks.info/

mapping	automatically.	So,	in	the	preceding	example,	the	TITLE	mapping	can	be	removed.

Now,	since	the	cardinality	of	the	relationship	between	books	and	authors	is	1:n,	we	need
to	define	a	sub-entity.	For	each	book,	we	must	query	the	data	source	again	to	find	the
corresponding	authors:

<entity	name="book"	dataSource="my-ds"	query="SELECT	BOOK_ID,TITLE	FROM	

BOOKS"	onError="skip">

		<field	column="BOOK_ID"	name="id"/>	

		<field	column="TITLE"	name="title"/>

<entity	name="author"	dataSource="my-ds"	query="SELECT	NAME	FROM	AUTHORS	

WHERE	BOOK_ID=${book.BOOK_ID}">

		<field	column="NAME"	name="author"/>

The	author	sub-entity	declares	a	query	on	the	AUTHORS	table.	It	uses	a	simple	expression
language	to	refer	to	the	identifier	of	the	current	(parent)	book:

${<parent	entity	name>.<database	alias	or	column	name>}

Obviously,	this	is	a	really	simplified	example.	In	a	real	production	scenario,	you	will
probably	meet	complicated	relational	schemas,	but	the	DataImportHandler	logic	will	be
always	the	same—detect	and	configure	entities	or	fields	in	order	to	denormalize	your	data
model.

www.it-ebooks.info

http://www.it-ebooks.info/

Transformers
A	transformer	is	a	function	associated	with	an	entity	(root	or	nested)	that	can	manipulate
the	fields	fetched	by	the	entity	itself.	The	transformer	must	be	declared	as	an	attribute	of
the	target	entity:

<entity	name="author"	transformer="script:createAuthorFullName">

The	corresponding	function	will	be	called	for	each	set	of	fields	(record)	fetched	by	the
query	associated	with	the	entity.	The	function	has	complete	control	over	the	fetched
record.	It	can	remove,	add,	or	replace	fields.

In	the	previous	example,	the	Solr	schema	includes	an	author	field	that	is	supposed	to	hold
the	complete	name	of	the	author	(for	example,	Dante	Alighieri).	Now	let’s	imagine	that
the	AUTHORS	table	contains	two	separate	columns	instead—FIRST_NAME	and	LAST_NAME.
With	the	help	of	a	built-in	script	transformer,	we	can	write	a	simple	JavaScript	function	to
combine	the	two	fields:

<script><![CDATA[

		function	createAuthorFullName(record)	{

				var	first	=	record.remove('FIRST_NAME');

				var	last	=	record.remove('LAST_NAME');

				record.put('author',	first	+	'	'	+	last);

				return	record;

		}

]]></script>

Note	how	we	manipulated	the	current	record	by	adding	a	new	field	(author)	and
removing	the	LAST_NAME	and	FIRST_NAME	fields.

The	following	table	lists	the	available	built-in	transformers:

Name Description

ScriptTransformer Executes	a	function	written	in	JavaScript	or	another	scripting	language	supported	by
Java.

DateFormatTransformer Creates	java.util.Date	instances	from	string	literals.

HTMLStripTransformer Strips	off	HTML	tags	from	field	values.

LogTransformer Logs	messages	using	a	given	template.

NumberFormatTransformer Creates	number	instances	from	string	literals.

RegexTransformer Uses	regular	expressions	to	manipulate	data	in	fields.

TemplateTransformer

Puts	values	in	a	column	by	resolving	an	expression	containing	other	columns.	For
example,	the	concatenation	we	got	with	the	ScriptTransformer	can	also	be	done	using
this	transformer:

<field	name="author"	template="${author.FIRST	NAME}		${author.LAST_NAME}"

www.it-ebooks.info

http://www.it-ebooks.info/

A	transformer	is	simply	a	class	that	extends
org.apache.solr.handler.dataimport.Transformer	so,	if	the	built-in	portfolio	doesn’t
meet	your	needs,	it	is	always	possible	to	create	a	custom	implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Entity	processors
Each	entity	is	handled	by	a	so-called	EntityProcessor	that	defaults	to
SQLEntityProcessor.	This	is	because	the	relational	database	is	the	most	popular	type	of
data	source.

However,	when	using	a	different	data	source	such	as	HTTP,	files	or	streams,	the	entity
management	logic	should	have	its	own	specific	requirements	that	most	probably	fall
outside	the	area	covered	by	SQLEntityProcessor.	In	these	cases,	you	can	override	the
default	settings	by	explicitly	declaring	an	EntityProcessor	for	a	given	entity.

As	usual,	there	are	a	lot	of	built-in	EntityProcessor	instances	but	it	is	always	possible	to
create	a	custom	implementation	by	extending	the
org.apache.solr.handler.dataimport.Entityprocessor	class.

The	following	table	lists	and	describes	available	entity	processors:

Name Description

SqlEntityProcessor This	is	the	default	entity	processor	assigned	to	each	entity.	It	provides	support	to	read	and
cache	data	from	databases.	It	is	used	in	conjunction	with	JdbcDataSource.

FileListEntityProcessor Enumerates	the	list	of	files	from	a	filesystem	based	on	criteria	specified	in	the	associated
entity	(for	example,	base	path,	recursive,	and	filename	pattern).

LineEntityProcessor Reads	from	a	datasource	on	a	line-by-line	basis	and	produces	a	field	called	rawLine	for
each	line	read.

MailEntityProcessor Handles	emails	and	attachments	from	POP3	or	IMAP	sources.

PlainTextEntityProcessor Reads	from	a	datasource	and	returns	a	field	called	plainText.	This	field	contains	a	string
representing	the	source	content.

SolrEntityProcessor Reads	values	from	another	Solr	instance	using	Solrj.	Each	returned	record	is	a
SolrDocument	instance.

TikaEntityProcessor Extracts	metadata	and	text	from	rich	documents	by	means	of	Apache	Tika.	Later,	we	will
see	the	Content	Extraction	Library,	which	also	uses	Tika	as	the	extraction	engine.

XPathEntityProcessor Uses	a	streaming	XPATH	parser	to	extract	values	from	XML	documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Event	listeners
The	document	element	in	the	DataImportHandler	configuration	allows	us	to	declare	two
event	listeners	to	intercept	the	most	relevant	events	of	a	data	import	life	cycle
—onImportStart	and	onImportEnd:

<document

		onImportStart="com.foo.MyImportStartEventListener"	

		onImportEnd="com.foo.MyImportEndEventListener">

The	event	listeners	must	implement	the
org.apache.solr.handler.dataimport.EventListener	interface,	which	gives	them
access	(by	means	of	an	org.apache.solr.handler.dataimport.Context	instance)	to
most	DataImportHandler	objects	and	event	statistics	such	as	documents	skipped,	indexed,
failed,	and	so	on.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Content	Extraction	Library
The	Content	Extraction	Library	(also	known	as	SolrCell)	integrates	the	popular
Apache	Tika	framework	to	detect	and	extract	metadata	and	text	from	a	large	variety	of
file	types	such	as	PDF,	Microsoft	Office,	Libre	Office,	and	Open	Office	documents.

Apache	Tika	provides	a	façade	parser	interface	on	top	of	several	low-level	frameworks
that	are	able	to	manage	and	manipulate	specific	file	types	(for	example,	PDFBox	for	PDFs
and	Apache	POI	for	Microsoft	documents).	Its	simple	interface	also	provides	automatic
mime-type	detection,	so	the	framework	itself	is	able	to	understand	the	correct	parser	that
needs	to	be	applied	for	a	given	file.

On	the	Solr	side,	a	dedicated	ExtractingRequestHandler	will	be	in	charge	of	getting	the
input	data	(files)	sent	by	clients	and	extracting	metadata	and	text	by	means	of	Tika.

The	configuration	of	ExtractingRequestHandler	follows	the	same	procedure	that	we	saw
for	the	other	handlers.	Specifically,	it	has	to	be	declared	in	solrconfig.xml,	as	follows:

<requestHandler	name="/update/extract"	

class="solr.extraction.ExtractingRequestHandler">

		<lst	name="defaults">

				…

		</lst>

</requestHandler>

SolrCell	has	several	options	that	can	be	configured	to	fine-tune	its	behavior.	Most	of	them
are	related	to	metadata	handling,	field	name	mapping,	and	custom	Tika	configuration.

Tip
For	a	complete	list	of	all	configuration	parameters,	go	to
https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Solr+Cell+using+Apache+Tika

The	src/solr/solr-home/example-data	folder	in	the	example	project	contains	a
document	that	can	be	sent	to	SolrCell.	Open	a	shell	and	type	the	following	(replace	the
PROJECT_HOME	placeholder	with	your	ch7	project	local	path):

#	curl	"http://localhost:8983/solr/example/update/extract?commit=true"	-F	

data=@PROJECT_HOME/ch7/src/solr/solr-home/example-data/libreoffice-

writer.odt

Wait	for	a	moment,	and	then	you	should	see	a	response	like	this:

<response>

		<lst	name="responseHeader">

				<int	name="status">0</int>

				<int	name="QTime">572</int>

		</lst>

</response>

The	document	(the	LibreOffice	document	in	this	case,	but	you	can	also	try	other	files)	has
been	indexed.	You	can	see	that,	when	you	open	the	browser	and	type
http://127.0.0.1:8983/solr/example/select?q=stream_name:libreoffice-

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Solr+Cell+using+Apache+Tika
http://www.it-ebooks.info/

writer.odt&indent=true,	the	XML	response	shows	the	extracted	text	(under	the	text
attribute)	and	all	the	metadata	fields	that	have	been	detected	for	that	document.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Language	Identifier
The	language	Identifier	extension	detects	the	language	(or	languages)	of	fields	belonging
to	a	given	document.	This	is	a	very	useful	add-on	to	use	in	conjunction	with	the	previously
described	extraction	library,	to	get	additional	information	about	data	that	has	been
indexed.

The	component	is	implemented	as	an	UpdateRequestProcessor	subclass	that	intercepts
and	analyzes	the	incoming	data:

<processor	

class="org.apache.solr.update.processor.TikaLanguageIdentifierUpdateProcess

orFactory">

		<str	name="langid.fl">text</str>

		<str	name="langid.langField">language</str>

		<str	name="langid.fallback">en</str>

</processor>

As	you	can	see,	this	processor	can	be	configured	with	several	options.	We	can	declare	the
fields	of	the	incoming	documents	that	must	be	analyzed,	the	name	of	the	field	that	will
hold	the	results	of	language	detection,	or	a	default	fallback	language	in	case	no	detection
is	possible.

Tip
In	the	example	project	associated	with	this	chapter,	you	will	find	a	solrconfig.xml	file
where	the	chain	is	already	defined	but	the	UpdateRequestProcessor	is	commented	out.
Just	remove	the	comment	markers,	reload	the	core	using	the	Administration	Console,	and
reindex	the	documents	under	the	example-data	folder,	following	the	same	procedure	as
we	described	in	the	previous	section.	At	the	end,	you	will	see	an	additional	“language”
field	in	each	document;	that	is	the	result	of	the	language	detection	component.

You	should	know	that	declaring	the	processor	within	the	solrconfig.xml	file	is	not
enough.	We	need	to	insert	that	into	an	update	request	processor	chain,	and	finally	associate
that	chain	with	an	UpdateRequestHandler.	Only	those	update	requests	that	will	be
received	by	that	handler	will	pass	through	the	language	detection	analysis	chain.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid	prototyping	with	Solaritas
Solritas	is	the	name	of	a	contribution	module	that	integrates	Solr	with	Apache	Velocity.	It
is	basically	a	response	writer	that	uses	the	Apache	Velocity	template	engine	to	render	Solr
responses	with	a	graphical	user	interface.

A	set	of	ready-to-use	Velocity	templates	is	combined	with	Solr	responses	in	order	to
provide	a	search	GUI	with	a	lot	of	features	(for	example,	faceting,	highlighting,	and
autocompletion).

Tip
You	can	find	the	Velocity	templates	under	the	src/solr/solr-
home/example/conf/velocity	folder	of	the	ch7	project,	or	under	the
example/solr/collection1/conf/velocity	folder	of	the	Solr	download	bundle.

As	this	GUI	is	directly	provided	by	transforming	the	emerging	Solr	responses,	there’s	no
need	for	an	external	web	application	to	execute	searches	and	graphically	see	the
corresponding	results.

Okay,	one	could	now	say,	“This	is	already	possible	with	the	Solr	REST	services”,	but	that
is	definitely	more	technically	complex	and	the	search	results	are	displayed	in	XML	or
JSON	or	whatever	format.	Here,	a	more	user-friendly	interface	is	provided,	as	shown	in
the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

That	makes	Solritas	an	ideal	choice	to	build	rapid	prototypes.	The	sample	instance	you
started	at	the	beginning	of	this	chapter	has	Solritas	configured	in	solrconfig.xml.	It
responds	to	the	/solritas	endpoint,	so	after	indexing	some	data	from	the	previous
paragraph,	open	your	browser	and	type
http://127.0.0.1:8983/solr/example/solritas.

Tip
The	Velocity	templates	have	been	copied	from	the	Solr	download	bundle,	so	some	areas
(such	as	Google	Maps	widgets,	spatial	queries,	and	range	queries)	might	not	be	visible	or
might	not	make	sense	with	the	chapter’s	sample	data.	If	you	want	to	see	all	of	them	in
action,	just	start	the	Solr	example	in	the	download	bundle	and	navigate	to
http://127.0.0.1:8983/solr/browse	address.

You	should	see	Solritas’	results	page,	which	is	preloaded	with	a	*:*	query	by	default.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Other	extensions
The	contrib	folder	contains	other	modules	or	plugins	that	are	briefly	described	in	the
following	sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering
The	clustering	module	is	a	framework	used	to	plug	in	third-party	(clustering)
implementations.	At	the	time	of	writing	this	book,	it	provides	support	for	clustering	search
results	using	the	Carrot2	project.

The	Solr	example	that	comes	with	the	download	bundle	already	contains	a
ClusteringComponent	within	the	solrconfig.xml	configuration	file.	The	declaration
happens	in	two	phases.	First,	the	component	has	to	be	configured:

<searchComponent	

		name="clustering"

		enable="${solr.clustering.enabled:false}"

		class="solr.clustering.ClusteringComponent"	>

		<lst	name="engine">

				<str	name="name">lingo</str>

				<str	

name="carrot.algorithm">org.carrot2.clustering.lingo.LingoClusteringAlgorit

hm</str>

				<str	name="carrot.resourcesDir">clustering/carrot2</str>

		</lst>

		…

</searchComponent>

After	this,	as	with	any	other	SearchComponent,	you	should	enable	it	by	including	its	name
in	the	RequestHandler	instance	where	it	is	supposed	to	play:

<requestHandler	name="/myRequestHandler"	class="solr.SearchHandler">

		…

		<arr	name="last-components">

				<str>clustering</str>

		</arr>

</requestHandler>

In	this	way,	it	can	contribute	to	search	results	by	adding	a	“clusters”	section,	like	this:

<response>

		<result>

				…

		</result>

		<arr	name="clusters">

		<arr	name="labels">

				<str>iPod</str>	

		</arr>

		<double	name="score">1.3174612693376382</double>

		<arr	name="docs">

				<str>F8V7067-APL-KIT</str>

				<str>IW-02</str>

				…

		</arr>

		<arr	name="labels">

				<str>Hard	Drive</str>

		</arr>

		…

</response>

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	want	to	try	this	yourself,	open	a	shell	and	type	the	following	commands:

#	cd	$INSTALL_DIR/example

#	java	-Dsolr.clustering.enabled=true	-jar	start.jar

These	will	start	Solr	with	the	ClusteringComponent	enabled.	Now,	on	another	shell	type
this:

#	cd	$INSTALL_DIR/example/exampledocs

#	./post.sh	*.xml

Finally,	open	a	browser	and	execute	this	query:
http://localhost:8983/solr/clustering?q=*:*&rows=10

You	should	get	a	response	similar	to	the	preceding	example,	with	the	“clusters”	section	at
the	bottom.

www.it-ebooks.info

http://www.it-ebooks.info/

UIMA	Metadata	Extraction	Library
This	module	integrates	Apache	UIMA	in	Solr	by	providing	a	powerful	Metadata
Extraction	Library	that	can	be	used	for	tasks	such	as	automatic	keyword	extraction	and
Named	Entity	Recognition	(for	example,	places,	names,	concepts,	and	dates).

The	plugin	can	be	provided	both	as	an	UpdateRequestProcessor	subclass,	to	decorate	the
index	process	chain,	or	as	a	set	of	Tokenizers/Filters,	to	add	such	behavior	in	the	(index
or	query)	text	analysis	phase.

Using	this	module,	you	can	enrich	your	Solr	documents	with	additional	metadata
information	extracted	from	the	input	data.	UIMA	provides	an	analysis	engine	that	involves
several	components	arranged	in	a	pipeline.	The	default	pipeline	supports	the	use	of
existing	analysis	engines	such	as	Alchemy	or	OpenCalais.	Keep	in	mind	that	these
engines	are	not	free-of-charge,	but	they	provide	a	free	trial	period.	You	can	register	and
obtain	an	API	key	that	must	be	configured	in	the	solrconfig.xml	file.	Other	components
are	used	for	language	and	sentence	detection.

Note
Under	the	contrib/uima	folder,	you	will	find	a	README	file	with	detailed	information
about	the	Solr	UIMA	module	usage.

The	UIMA	UpdateRequestProcessor	intercepts	the	documents	that	are	being	indexed	and
sends	them	to	its	analysis	pipeline.	Those	documents	will	be	automatically	enriched	with
extracted	information	such	as	sentences,	languages,	or	named	entities	(for	example,	places
or	names).

www.it-ebooks.info

http://www.it-ebooks.info/

MapReduce
The	MapReduce	contrib	module	provides	integration	with	Apache	Hadoop.	MapReduce
is	the	name	of	a	paradigm	(programming	model)	that	is	implemented	in	Apache	Hadoop
to	process	large	datasets	with	a	parallel	and	distributed	algorithm.

The	contribution	contains	a	MapReduce	job	to	build	Solr	indexes	and	merge	them	into	a
Solr	cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	illustrated	a	set	of	contribution	modules	that	are	not	part	of	the	Solr
core	but	definitely	useful	in	a	lot	of	real	scenarios.	The	Solr	download	bundle	contains	all
of	them,	and	their	installation	is	very	easy.	Each	module	folder	has	a	README	file	that
guides	you	through	installation	and	setup	steps	(basically,	it’s	just	a	matter	of	copying,
pasting,	and	configuring).

In	the	next	chapter,	we	will	conclude	our	Solr	path	with	an	overview	about	the	Solr	code
base.	You	will	learn	how	to	work	with	it	and	eventually	how	to	contribute	to	the	open
source	community	process.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	8.	Contributing	to	Solr
A	friend	of	mine	used	to	say,	“Is	there	a	better	way	to	start	a	new	year	than	contributing	to
an	open	source	project?”	I	strongly	agree;	a	great	way	to	get	involved	in	the	open	source
world	is	to	contribute	to	the	projects	you’re	using.

Being	a	user	of	an	open	source	software,	you	are	already	part	of	that	world—an	important
part	that	makes	that	software	useful.	But	there’s	more;	you	can	delve	more	deeply	into
what	actually	happens	behind	the	scenes.

By	the	end	of	this	chapter,	you	will	have	a	good	understanding	of	the	following	topics:

The	constituent	pieces	of	the	open	source	world
The	Apache	contribution	process
How	to	work	with	Solr	source	code	in	your	IDE

www.it-ebooks.info

http://www.it-ebooks.info/

Identifying	your	needs
Why	are	you	interested	in	the	open	source	contribution	process?	Why	do	you	want	to	have
the	Solr	source	code	in	your	IDE?	These	are	crucial	questions	you	should	answer	before
doing	all	that	is	described	in	this	chapter.	In	my	opinion,	you	could	fall	under	one	of	these
scenarios:

Curiosity:	You	want	to	inspect	and	see	with	your	eyes	how	things	are	working
behind	the	scenes.
Bug	fixing:	You	want	to	fix	a	bug	that	you	met	in	your	Solr	installation.	In	this	way
you,	will	satisfy	your	customer	and	the	community	will	benefit	from	your	work.
Improvement:	You’ve	got	an	idea	about	an	interesting	feature	not	yet	implemented.
Probably,	a	customer	requirement	led	to	that	idea,	and	you	believe	that	it	could	be
useful	for	other	users	if	(once	implemented)	it	would	be	integrated	in	Solr.
Wanting	to	contribute:	You	simply	want	to	contribute	by	fixing	an	existing	issue
and	participating	in	the	development/contribution	process.

While	curiosity	could	be	a	good	reason	to	start	investigating	source	code,	sooner	or	later
(and	I	would	add	most	probably),	you	will	fall	into	one	of	the	other	categories.	At	that
time,	you	will	necessarily	start	communicating	with	other	people	and	the	communities
associated	with	the	project.

Tip
You	can	find	a	general	introduction	about	the	Apache	contribution	process	at
http://www.apache.org/foundation/getinvolved.html.

That	interaction	will	involve	some	general	aspects	such	as	issue	tracking,	mailing	lists,
software	development,	and	so	on.	Once	you	have	identified	your	needs	and	goals,	you	can
look	at	upcoming	sections	to	get	a	description	about	those	cross-cutting	concepts.

www.it-ebooks.info

http://www.apache.org/foundation/getinvolved.html
http://www.it-ebooks.info/

An	example	–	SOLR-3191
In	2013,	I	was	working	on	an	Online	Public	Access	Catalogue	(OPAC)	project	for	a	big
library.	The	schema	definition	became	huge	very	soon,	because	the	MARC,	the	standard
representation	for	bibliographic	records,	is	an	old	and	proven	standard	that	classifies	each
minimal	piece	of	information	about	a	catalog	item.

Obviously,	our	customer	required	all	that	richness	in	the	search	application,	so	we	started
with	a	small	schema	and	quickly	ended	up	with	a	lot	of	fields.

Another	requirement	was	the	capability	to	download	each	item	in	MARCXML	format
(MARCXML	is	the	XML	representation	of	a	MARC	record)	in	the	end	user	application.
So,	in	order	to	satisfy	that	requirement,	we	put	the	whole	MARC	representation	in	a
dedicated	stored	field	called,	not	surprisingly,	marc_xml.

What	was	the	problem?	On	the	Solr	side,	we	defined	a	lot	of	SearchHandler	instances,
one	for	each	kind	of	search	(for	example,	any	keyword,	author,	title,	or	subject).	As	you
know,	for	each	handler	we	have	to	declare	all	(stored)	fields	that	must	be	in	the	search
results	using	the	fl	parameter.

In	the	first	approach,	we	simply	put	a	wildcard	(*)	as	a	value	for	the	fl	parameter,	as	most
parts	of	those	fields	were	needed	in	the	user	interface.	But	after	it	had	been	running	for	a
while	in	production,	the	IT	department,	in	charge	of	monitoring	the	system,	raised	an	issue
about	the	network	traffic	between	the	frontend	application	and	the	Solr	server.	After	doing
some	analysis,	we	discovered	a	lot	of	records	with	a	huge	marc_xml	field	returned	to	the
client.	“Ok,”	said	one	of	the	IT	guys	to	us,	“just	exclude	the	marc_xml	field	from	the	fl
parameter”.

The	fl	parameter	accepts	a	list	of	fields	that	must	be	returned,	but	there’s	no	way	to	tell	it
what	must	not	be	in	the	search	results.	Eight	handlers	were	defined	in	the	solrconfig.xml
file,	and	for	each	of	them	(later,	we	discovered	the	XInclude	feature,	but	that’s	another
story),	we	had	to	declare	all	stored	fields,	excluding	the	marc_xml	field.	This	was	terrible
and	unmaintainable!

After	googling	a	bit,	I	found	several	guys	facing	the	same	problem,	so	I	decided	to	take	a
look	at	an	existing	JIRA	issue.	Thus,	I	met	the	(unsolved)	SOLR-3191	issue	at
https://issues.apache.org/jira/browse/SOLR-3191,	which	describes	the	problem:

SOLR-3191	field	exclusion	from	fl

I	think	it	would	be	useful	to	add	a	way	to	exclude	field	from	the	Solr	response.	If	I	have	for
example	100	stored	fields	and	I	want	to	return	all	of	them	but	one,	it	would	be	handy	to
list	just	the	field	I	want	to	exclude	instead	of	the	99	fields	for	inclusion	through	fl

So	I	thought	to	myself:	why	don’t	you	try	to	implement	that	feature?	And	I	did	what	I’m
going	to	describe	in	this	chapter.	If	you	take	a	look	at	that	issue,	you	will	see	I	submitted
two	patches	and	had	some	exchange	with	a	couple	of	Solr	guys.

www.it-ebooks.info

https://issues.apache.org/jira/browse/SOLR-3191
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Subscribing	to	mailing	lists
If	you	haven’t	subscribed	to	a	Solr	mailing	list	(or	lists)	yet,	you	should	do	that	before
going	ahead.	User	and	developer	lists	are	the	primary	place	where	things	such	as	doubts,
questions,	features,	and	bugs	are	discussed.

It’s	mainly	there	that	you	should	look	to	solve	your	problem	and	meet	people	with	similar
requirements.	Like	any	other	Apache	project,	Solr	has	the	following	mailing	lists:

A	user	list	–	solr-user@lucene.apache.org
A	dev	list	–	dev@lucene.apache.org
A	commits	list	–	commits@lucene.apache.org

Every	Solr	user	should	be	subscribed	to	the	user	list.	This	usually	avoids	the	need	to
reinvent	the	wheel	by	getting	ideas	and	solutions	from	users	and	developers.

The	dev	list	is	meant	for	listening	or	participation	in	discussions	on	Lucene	and	Solr
internals,	developments,	upcoming	features,	and	so	on.	The	focus	here	is	more	technical.

Finally,	the	commits	list	is	used	to	receive	notifications	about	every	Solr	or	Lucene
commit.

Subscribing	to	a	list	is	very	easy;	just	send	an	empty	email	to	solr-user-
subscribe@lucene.apache.org,	dev-subscribe@lucene.apache.org,	or	commits-
subscribe@lucene.apache.org,	and	then	follow	the	procedure	written	in	the	answering
mail.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Signing	up	on	JIRA
The	issue	tracker	is	another	important	building	block	of	the	open	source	contribution
process.	Whenever	an	idea,	question,	bug,	or	feature	becomes	something	that	could	affect
the	code,	a	new	JIRA	issue	is	filled,	and	all	things	related	to	that	(for	example,	tasks,
discussions,	patches,	code,	and	commit	logs)	will	be	put	there.

Issues	in	JIRA	are	public,	so	if	you	want	to	only	see	or	read	them	there’s	no	need	to	have
an	account	(you	should	have	already	read	the	SOLR-3191	issue	on	JIRA,	without	having
an	account).

However,	if	you	want	to	participate	in	a	discussion,	post	a	patch,	or	create	or	update
issues,	you	must	sign	up	at	https://issues.apache.org/jira/secure/Signup!default.jspa.

Ultimately,	you	can	sign	in	using	the	login	form	at	https://issues.apache.org/jira/login.jsp.

That’s	all!	Welcome	to	the	Apache	Issue	Tracker!	Note	that,	before	opening	a	new	issue,	it
is	always	better	to	ping	the	dev	list	and	discuss	it.	Maybe,	a	similar	issue	already	exists
and	someone	is	working	on	it.

www.it-ebooks.info

https://issues.apache.org/jira/secure/Signup!default.jspa
https://issues.apache.org/jira/login.jsp
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	the	development	environment
Following	the	same	logic	that	was	used	in	the	previous	chapters,	I	will	assume	you	have
Eclipse	installed.	If	that	is	not	the	case,	that	is,	if	you	followed	the	examples	using	some
other	IDE	(for	example,	IntelliJ),	a	few	steps	could	be	a	bit	different.

In	order	to	be	able	to	modify,	build,	and	run	Solr	from	the	source	code,	you	need	the
following:

An	IDE	such	as	Eclipse	or	IntelliJ
A	Subversion	client,	which	can	be	a	standalone	client	(such	as	the	svn	command-line
tool	or	TortoiseSVN)	or	a	plugin	in	your	IDE	(for	example,	Subclipse	or	Subversive)
Apache	ANT	(http://ant.apache.org/bindownload.cgi)

www.it-ebooks.info

http://ant.apache.org/bindownload.cgi
http://www.it-ebooks.info/

Version	control
Subversion	is	an	open	source	version	control	system	that	is	used	to	maintain	the	source
code	of	the	Apache	projects,	including	Solr.

As	a	first	step,	you	need	to	check	out	the	Solr	source	code	from	the	SVN	repository.
Depending	on	your	role,	you	should	point	to	one	of	the	following	addresses:

http://svn.apache.org/repos/asf/lucene/dev/<branch>

https://svn.apache.org/repos/asf/lucene/dev/<branch>

As	you	can	see,	the	only	difference	in	the	preceding	links	is	in	the	protocol.	The	first	link,
which	uses	http,	is	for	anonymous	checkout,	and	the	other,	which	uses	https,	is	for
committers.	Committers	are	those	people	who	have	commit	rights,	that	is,	active	members
of	the	development	community	with	write	permissions	on	the	repository.	I	assume	you
don’t	fall	within	this	last	category,	so	the	correct	link	is	the	first.

The	link	also	contains	a	<branch>	placeholder.	This	must	be	replaced	with	the	correct
target	version	you	will	work	on.	That	strictly	depends	on	the	task	you	would	like	to	do.	If
you	want	to	fix	a	bug	in	a	past	version	(for	example,	4.7.2),	you	should	point	to	the
corresponding	branch.	If	you	want	to	pick	up	an	existing	enhancement	or	bug	that	has
been	scheduled	for	the	next	major	release,	you	should	point	to	the	“trunk”	leg.	The
following	table	describes	how	the	repository	tree	is	organized
(http://svn.apache.org/repos/asf/lucene/dev/):

Folder Description

branches Development	branches.

branches/branch_5x The	development	branch	for	the	next	version,	5.x.

…

branches/Lucene_solr_3_6

…

branches/Lucene_solr_4_10

The	development	branches	for	versions	that	have	been	released.	Apart	from	some	tasks
that	have	been	scheduled	for	a	given	release,	most	of	the	development	activities	done	in
these	branches	are	bug	fixes.

tags

When	a	new	version	is	released,	the	corresponding	source	code	is	copied	here,	in	a
dedicated	folder	(for	example,	tags/lucene_solr_3_6_1	and
tags/lucene_solr_4_10_3).

trunk This	is	the	main	center	of	development.

The	target	branch	depends	on	what	you	would	like	to	do.	If	you	pick	up	an	existing	JIRA
among	its	attributes,	you	will	also	find	the	affected	version.	Besides,	you	may	want	to	fix
an	issue	in	an	older	version	(for	example,	3.6.1)	because	your	customer	is	using	that
specific	version.

Keep	in	mind	that	most	development	tasks	are	done	in	the	trunk	and	then	reported	to	the
corresponding	active	development	branch	(under	the	branches	folder).	Anyway,	before
starting,	it	is	always	recommended	to	ping	the	dev	list	explaining	what	you	want	to	do.

www.it-ebooks.info

http://svn.apache.org/repos/asf/lucene/dev/
http://www.it-ebooks.info/

Code	style
One	of	the	common	problems	in	a	distributed	development	is	the	agreement	about	source
code	formalisms:	comments,	naming	conventions,	and	so	on.

That’s	the	reason	the	Solr	development	team	provided	two	useful	configuration	files—one
for	Eclipse	and	another	for	IntelliJ.	These	files	can	be	imported	to	those	IDEs	to	automate
a	lot	of	things	such	as	indentation,	braces	positions,	line	wrapping,	comments,	and	so	on.

Pick	up	that	file	from	one	of	the	following	addresses,	depending	on	your	favorite	IDE:

Eclipse:	http://people.apache.org/~rmuir/Eclipse-Lucene-Codestyle.xml
IntelliJ:	http://people.apache.org/~erick/Intellij-Lucene-Codestyle.xml

In	Eclipse,	the	configuration	file	can	be	imported	by	going	to	Window	|	Preferences	|
Java	|	Code	Style	|	Formatter	and	then	clicking	on	the	Import	button,	as	shown	in	the
following	screenshot:

After	that,	navigate	to	Java	|	Editor	|	Save	Actions.	Select	the	Perform	the	selected
actions	on	save	checkbox	and	the	Format	edited	lines	radio	button,	as	shown	in	this
screenshot:

www.it-ebooks.info

http://people.apache.org/~rmuir/Eclipse-Lucene-Codestyle.xml
http://people.apache.org/~erick/Intellij-Lucene-Codestyle.xml
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Checking	out	the	code
Once	you	have	identified	the	target	branch	to	work	on,	check	out	the	source	code	using	the
svn	command-line	tool	or	your	favorite	tool	(for	example,	TortoiseSVN).

SOLR-3191	was	considered	a	new	feature	at	that	time,	so	I	checked	out	the	trunk.	The
current	trunk	requires	Java	8	in	order	to	build	so,	to	execute	the	steps	needed	in	this
chapter,	let’s	point	to	a	different	branch	(5_x).	Open	a	shell	and	type	the	following
command:

#	cd	/work/solrdev

#	svn	checkout	

http://svn.apache.org/repos/asf/lucene/dev/branches/branch_5x	solr_5

Bear	in	mind	the	following:

I’m	not	a	committer,	so	I	pointed	to	the	read-only	(http)	address.
The	name	of	the	local	folder	that	will	contain	the	downloaded	source	is	solr_5.	If	it
doesn’t	exist,	it	will	be	automatically	created.
The	/work/solrdev/solr_5	folder	is	a	local	working	folder	on	my	machine.	You	can
choose	whatever	name	you	like.

When	you	execute	that	command,	a	lot	of	files	will	be	downloaded.	In	the	end,	you	should
see	something	like	this:

…

A				solr_5/solr/test-framework/src/java/overview.html

A				solr_5/.hgignore

U			solr_5

Checked	out	revision	1651057.

Now	the	source	code	of	Solr	5_x	is	in	your	machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	the	project	in	your	IDE
Getting	the	source	code	is	not	enough,	unless	you	want	to	develop	your	patch	using	Vim.
You	will	have	to	create	a	project	in	your	IDE.	Assuming	you	are	in	the
/work/solrdev/solr_5	folder	you	created	in	the	previous	step,	type	the	following:

#	ant	clean	test

The	ant	command	will	immediately	fail	because	the	build	requires	Ivy	(a	dependency
management	tool),	and	you	don’t	have	that	on	your	machine.	No	problem!	There’s	a
dedicated	task	that	can	install	Ivy	for	you.	Type	this	command:

#	ant	ivy-bootstrap

You	should	see	something	like	this:

…

ivy-bootstrap2:

ivy-checksum:

ivy-bootstrap:

BUILD	SUCCESSFUL

Total	time:	3	seconds

Now	we	can	retry	the	first	command:

#	ant	clean	test

This	will	execute	the	whole	test	suite,	which	is	very	huge,	so	take	a	long	coffee	break!

Tip
Although	this	step	is	not	mandatory,	it	is	strongly	recommended	to	check	the	state	of	your
build	before	making	any	change.	In	this	way,	you	can	see	whether	there’s	something
failing,	something	that	doesn’t	have	to	do	with	your	changes.

Once	the	test	suite	has	been	executed,	type	this	command	if	you	are	using	Eclipse:

#	ant	eclipse	

If	you	are	using	IntelliJ,	type	the	following	command:

#	ant	idea

This	will	generate	the	IDE	project	files	within	the	current	directory	(solr_5).	From	here
on,	I	will	assume	you’re	using	Eclipse,	but	the	steps	are	basically	the	same	for	IntelliJ.

Open	Eclipse	and	create	a	new	workspace	(you	can	also	use	the	workspace	where	you
loaded	the	sample	projects	of	this	book).

Open	the	File	menu	and	choose	Import.	From	the	dialog	that	appears,	go	to	General	|
Existing	Projects	into	Workspace.	Using	the	Browse	button,	select	the
/work/solrdev/solr_5	folder.	Press	Ok	and	then	Confirm.	The	dialog	will	close	and	the
project	will	be	imported,	as	shown	in	this	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Once	the	project	has	been	built,	you	shouldn’t	have	any	errors.	Everything	is	ready,	and
you	can	proceed	with	your	change.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making	your	changes
We	won’t	dig	very	deep	in	this	step	because	it	basically	depends	on	the	nature	of	the	task
you	picked	up.	For	instance,	my	SOLR-3191	patch	contains	four	existing	classes	that	I
changed	to	implement	that	specific	behavior.

Since	nobody	knows	you	and	your	changes	will	be	hopefully	integrated	in	a	very	popular
framework,	the	most	important	things	to	keep	in	mind	are	as	follows:

Correctness:	The	implementation	must	do	what	it	is	supposed	to	do,	according	to	the
requirements	expressed	in	the	JIRA	issue
Documentation:	Javadoc	at	class	and	method	levels	(don’t	include	the	@author	tag)
Unit	tests:	These	describe	and	validate	your	changes

Returning	to	the	SOLR-3191	example,	I	changed	two	classes:

org.apache.solr.search.ReturnFields

org.apache.solr.search.SolrReturnFields

These	classes	contain	the	logic	required	by	the	issue.	At	the	same	time,	I	updated	two
TestCase	classes	with	several	unit	tests	demonstrating	and	validating	my	changes:

org.apache.solr.search.ReturnFieldsTest

org.apache.solr.search.TestPseudoReturnFields

During	development,	it’s	better	to	periodically	execute	the	test	suite,	in	order	to	ensure
that	your	changes	didn’t	introduce	any	side-effect.

Tip
When	working	in	a	distributed	development	environment,	it	is	strongly	recommended	you
run	an	svn	update	command	frequently.	In	this	way,	you	will	always	be	working	with	the
latest	version	of	the	branch	you	checked	out.

Okay,	take	your	time	and	make	your	changes.	Remember	to	post	a	message	in	the	issue
page	in	JIRA	for	every	relevant	doubt.	In	this	way,	all	of	the	history	of	your	work	will	be
in	one	place.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	and	submitting	a	patch
Once	the	implementation	has	been	completed,	everything	is	working,	and	the	tests	are
green,	it’s	time	to	submit	the	patch.

Before	doing	that,	open	a	shell	on	the	/work/solrdev/solr_5	working	folder	and	type
this:

#	ant	precommit

This	task	will	look	for	problems	related	to	tab	indentation,	author	tags,	and	broken	or
wrong	links	in	javadoc.	At	the	end,	type	the	following	command:

#	svn	stat	

You	will	see	a	list	of	source	files	that	have	been	changed.	If	all	of	them	are	associated	with
your	changes,	just	type	this	command	in	order	to	include	them	in	the	patch:

#	svn	stat	|	grep	"^?"	|	awk	'{print	$2}'	|	xargs	svn	add	

Alternatively,	you	can	add	those	files	one	by	one,	using	the	following	command:

#	svn	add	<file>

Finally,	type	this	command	to	generate	a	patch:

#	svn	diff	>	/work/patches/SOLR-XXXX.patch

That	will	create	a	new	file	(SOLR-XXXX.patch)	under	the	/work/patches	local	folder.	Here
are	a	couple	of	things	to	note:

/work/patches	is	a	sample	local	directory	that	I’ve	created	on	my	machine.	You	can
put	the	patch	in	a	different	folder.
XXXX	is	supposed	to	be	replaced	with	the	number	of	the	corresponding	JIRA	issue.	If
you	are	updating	an	existing	patch,	the	name	should	always	follow	this	convention
because	JIRA	will	take	care	of	highlighting	the	newest	version.

Tip
If	you’ve	installed	an	SVN	plugin	on	your	IDE	(such	as	Subclipse	or	Subversive	in
Eclipse),	you	can	do	everything	without	using	the	command-line.	In	Subclipse,	for
example,	there’s	a	Create	Patch	under	Team	that	will	guide	you	through	the	necessary
steps	with	an	easy	wizard.

Once	you’ve	got	the	patch	file,	open	a	browser,	log	in	to	JIRA,	go	to	the	issue	page,	and
upload	the	patch.	It	is	recommended	you	post	a	comment	with	information	(including	a
description)	about	your	submission.	That’s	all!	Now	you	should	follow	your	issue	because
several	things	can	happen:

The	patch	is	perfect,	so	it’s	just	a	matter	of	time	and	it	will	be	applied.
Some	questions	come	from	JIRA	users.	In	that	case,	you	may	want	to	participate	in	a
discussion	that	might	eventually	request	a	new	version	of	the	patch.

www.it-ebooks.info

http://www.it-ebooks.info/

Anyway,	the	big	part	is	done!	You’ve	actively	participated	in	the	contribution	process,	and
hopefully	your	artifact	will	be	integrated	with	Solr.	Congrats!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Other	ways	to	contribute
Besides	writing	code,	there	are	other	ways	to	participate	in	an	open	source	project.	After
all,	the	software	is	just	a	component	of	a	final	product.	We	can	find	support	and
documentation,	which	in	most	cases	make	the	real	difference	between	a	good	and	a	bad
product	from	the	user’s	perspective.

www.it-ebooks.info

http://www.it-ebooks.info/

Documentation
Software	quality	is	described	by	a	combination	of	several	factors:	functional	and	non-
functional	features,	internal	and	external	qualities,	and	last	but	not	least,	documentation.

By	“documentation”,	I	personally	mean	a	complex	and	huge	world	made	up	of	different
types	of	information	for	different	types	of	target	audience:

Technical	internal	documentation:	Strictly	needed	by	active	developers	to	inform
about	the	structure	or	the	implementation	of	the	system.
Technical	external	documentation:	Crucial	for	open	source	projects	representing
frameworks,	things	that	can	be	extended.	This	is	sometimes	called	the	developer
guide.	This	kind	of	information	documents	the	public	API	and	the	extension	points
that	let	developers	integrate	the	product	with	their	applications.
User	documentation:	This	enables	end	users	to	understand	the	usage	and	power	of	a
given	system.	It	is	sometimes	called	a	user	guide	and	is	the	primary	source	of
information	for	an	end	user.

Solr	has	two	main	places	where	documentation	can	be	found:

The	reference	guide,	available	online	at
https://cwiki.apache.org/confluence/display/solr/About+This+Guide,	or	in	PDF
format
The	Solr	community	Wiki,	at	https://wiki.apache.org/solr

The	first	is	a	guide	constituting	the	official	reference	documentation.	It	is	created	and
maintained	by	Solr	committers.	On	the	other	hand,	the	Wiki	is	a	public	and	collaborative
tool.	Anyone	can	potentially	edit	its	content	by	creating	an	account	and	then	requesting
write	grants	from	the	Solr	team.	For	detailed	instructions	refer	to
http://wiki.apache.org/solr/#How_to_edit_this_Wiki.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/About+This+Guide
https://wiki.apache.org/solr
http://wiki.apache.org/solr/#How_to_edit_this_Wiki
http://www.it-ebooks.info/

Mailing	list	moderator
A	list	moderator	is	a	kind	of	supervisor	for	a	given	mailing	list	and	a	user	with	elevated
privileges.	He	can	get	a	list	of	all	subscribers	and	manually	subscribe	or	unsubscribe	a
given	user.

He	checks	emails	sent	to	the	list	from	addresses	that	are	not	subscribed	in	order	to
improve	spam	filter	rules.	He	also	helps	users	who	face	issues	related	with	lists	(for
example,	subscription	and	un-subscription).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	final	chapter,	we	illustrated	the	overall	contribution	process.	Being	an	open	source
project,	the	Solr	team	warmly	welcomes	any	kind	of	contribution:	source	code,	bug	fixing,
documentation,	and	active	participation	in	the	mailing	lists.	There’s	no	need	to	be	a
committer,	which	would	be	surely	an	ambitious	goal	for	a	developer.	It’s	always	possible
to	download	the	source	code,	change	it,	and	eventually	(if	you	think	the	changes	could
also	be	useful	for	other	people)	create	a	patch	and	submit	it	to	the	community.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A

add	command
about	/	Add
sending	/	Sending	add	commands

add	command,	XML	format
<add>	/	Add
commitWithin	/	Add
overwrite	/	Add
<doc>	/	Add
boost	/	Add
<field>	/	Add

Alchemy
about	/	UIMA	Metadata	Extraction	Library

alternative	query	/	Alternative	query
analyzer	sections	/	The	text	analysis	process
Apache	ANT

URL	/	Setting	up	the	development	environment
version	control	/	Version	control

Apache	contribution
URL	/	Identifying	your	needs

Apache	Hadoop
about	/	MapReduce

Apache	POI	/	Content	Extraction	Library
Apache	Tika	framework	/	Content	Extraction	Library
Apache	UIMA

about	/	UIMA	Metadata	Extraction	Library
Apache	Velocity

about	/	Rapid	prototyping	with	Solaritas
Apache	Zookeeper

about	/	Cluster	management
URL	/	Cluster	management

autocommit	feature	/	Update	handler	and	autocommit	feature

www.it-ebooks.info

http://www.it-ebooks.info/

B
background	server

Solr,	running	as	/	Different	ways	to	run	Solr,	Background	server
backup

about	/	Replication	factor,	leaders,	and	replicas
Boolean	fields

about	/	Boolean
Boolean	parameters,	service	behavior

waitSearcher	/	Commit,	optimize,	and	rollback
waitFlush	/	Commit,	optimize,	and	rollback
softCommit	/	Commit,	optimize,	and	rollback

Boost	query	parser	/	Other	available	parsers
built-in	transformers

ScriptTransformer	/	Transformers
DateFormatTransformer	/	Transformers
HTMLStripTransformer	/	Transformers
LogTransformer	/	Transformers
NumberFormatTransformer	/	Transformers
RegexTransformer	/	Transformers
TemplateTransformer	/	Transformers

www.it-ebooks.info

http://www.it-ebooks.info/

C
cache

about	/	Caches
FilterCache	/	Caches
QueryResultCache	/	Caches
DocumentCache	/	Caches
FieldCache	/	Caches
FieldValueCache	/	Caches
CustomCache	/	Caches
lifecycle	/	Cache	life	cycles
sizing	/	Cache	sizing
objects	life	cycle	/	Cached	object	life	cycle
LRUCache	/	Cached	object	life	cycle
FastLRUCache	/	Cached	object	life	cycle
LFUCache	/	Cached	object	life	cycle
stats	/	Cache	stats
types	/	Types	of	cache

cache,	stats
lookups	/	Cache	stats
hits	/	Cache	stats
hitratio	/	Cache	stats
inserts	/	Cache	stats
evictions	/	Cache	stats
size	/	Cache	stats
warmupTime	/	Cache	stats
cumulative_lookups	/	Cache	stats
cumulative_hits	/	Cache	stats
cumulative_hitratio	/	Cache	stats
cumulative_inserts	/	Cache	stats
cumulative_evictions	/	Cache	stats

cache,	types
filter	cache	/	Filter	cache
query	result	cache	/	Query	Result	cache
document	cache	/	Document	cache
field	value	cache	/	Field	value	cache
custom	cache	/	Custom	cache

Carrot2	project
about	/	Clustering

changes
creating	/	Making	your	changes

char	filters	/	Char	filters
reference	link	/	Char	filters

clustering	module

www.it-ebooks.info

http://www.it-ebooks.info/

about	/	Clustering
Collections	API,	actions

CREATE	/	Collections	API
RELOAD	/	Collections	API
DELETE	/	Collections	API
LIST	/	Collections	API
CREATESHARD	/	Collections	API
SPLITSHARD	/	Collections	API
DELETESHARD	/	Collections	API
CREATEALIAS	/	Collections	API
DELETEALIAS	/	Collections	API
ADDREPLICA	/	Collections	API
DELETEREPLICA	/	Collections	API
CLUSTERPROP	/	Collections	API
MIGRATE	/	Collections	API
ADDROLE	/	Collections	API
REMOVEROLE	/	Collections	API
OVERSEERSTATUS	/	Collections	API
CLUSTERSTATUS	/	Collections	API
REQUESTSTATUS	/	Collections	API
ADDREPLICAPROP	/	Collections	API
DELETEREPLICAPROP	/	Collections	API
BALANCESHARDUNIQUE	/	Collections	API

configuration	parameters
URL	/	Content	Extraction	Library

Content	Extraction	Library	/	Content	Extraction	Library
copy	fields	/	Copy	fields
Core

overview	/	Core	overview
Core	Admin

about	/	Core	Admin
top	toolbar	/	Core	Admin
central	area	/	Core	Admin

Core	Admin,	central	area
startTime	/	Core	Admin
instanceDir	/	Core	Admin
dataDir	/	Core	Admin
lastModified	/	Core	Admin
version	/	Core	Admin
numDocs	/	Core	Admin
maxDocs	/	Core	Admin
deletedDocs	/	Core	Admin
optimized	/	Core	Admin
current	/	Core	Admin

www.it-ebooks.info

http://www.it-ebooks.info/

directory	/	Core	Admin
Core	Admin,	top	toolbar

Unload	/	Core	Admin
Rename	/	Core	Admin
Swap	/	Core	Admin
Reload	/	Core	Admin
Optimize	/	Core	Admin

custom	cache	/	Custom	cache
custom	data

indexing	/	Indexing	custom	data
custom	response	writer

using	/	Using	a	custom	response	writer

www.it-ebooks.info

http://www.it-ebooks.info/

D
Damerau-Levenshtein	distance	algorithm	/	Fuzzy
dashboard

about	/	Dashboard
physical	and	JVM	memory	/	Physical	and	JVM	memory
disk	/	Disk	usage
file	descriptors	/	File	descriptors

database	record
versus	document	/	The	document

DataImportHandler	module
about	/	DataImportHandler
data	sources	/	Data	sources
entities	/	Documents,	entities,	and	fields
documents	/	Documents,	entities,	and	fields
fields	/	Documents,	entities,	and	fields
transformer	/	Transformers
entity	processors	/	Entity	processors
event	listeners	/	Event	listeners

data	sources
about	/	Data	sources
JdbcDataSource	/	Data	sources
URLDataSource	/	Data	sources
BinURLDataSource	/	Data	sources
FileDataSource	/	Data	sources
BinFileDataSource	/	Data	sources
ContentStreamDataSource	/	Data	sources
BinContentStreamDataSource	/	Data	sources
FieldReaderDataSource	/	Data	sources
FieldStreamDataSource	/	Data	sources

date	format
about	/	Date

default	similarity	/	Default	similarity
delete	commands

issuing	/	Delete
development	environment

setting	up	/	Setting	up	the	development	environment
version	control	/	Version	control
code	style	/	Code	style
code,	checking	out	/	Checking	out	the	code
project	creating,	in	IDE	/	Creating	the	project	in	your	IDE

diamond	architecture
about	/	Master/slaves	scenario

Dis

www.it-ebooks.info

http://www.it-ebooks.info/

about	/	The	Disjunction	Maximum	query	parser
Max	/	The	Disjunction	Maximum	query	parser

disjunction	max	query	/	Tie	breaker
disjunction	sum	query	/	Tie	breaker
DisMax	query	parser

about	/	The	Disjunction	Maximum	query	parser
query	fields	/	Query	Fields
alternative	query	/	Alternative	query
minimum	number	of	matches	/	Minimum	should	match
phrase	fields	/	Phrase	fields
query	phrase	slop	/	Query	phrase	slop
phrase	slop	/	Phrase	slop
boost	queries	/	Boost	queries
additive	boost	functions	/	Additive	boost	functions
tie	parameter	/	Tie	breaker

Document	/	Input	and	output	data	transfer	objects
document

about	/	The	document
versus	database	record	/	The	document

documentation
about	/	Documentation
technical	internal	documentation	/	Documentation
technical	external	documentation	/	Documentation
user	documentation	/	Documentation

document	cache
about	/	Document	cache

documents
about	/	Documents,	entities,	and	fields

dynamic	fields	/	Dynamic	fields

www.it-ebooks.info

http://www.it-ebooks.info/

E
Eclipse

URL	/	Code	style
Eclipse	IDE	for	Java	Developers

URL	/	Prerequisites
eDisMax	query	parser

about	/	The	Extended	Disjunction	Maximum	query	parser
fielded	search	/	Fielded	search
phrase	bigram	field	/	Phrase	bigram	and	trigram	fields
phrase	trigram	field	/	Phrase	bigram	and	trigram	fields
phrase	trigram	slop	/	Phrase	bigram	and	trigram	slop
phrase	bigram	slop	/	Phrase	bigram	and	trigram	slop
multiplicative	boost	function	/	Multiplicative	boost	function
user	fields	/	User	fields
lowercase	operators	/	Lowercase	operators

ensemble
about	/	Cluster	management

entities
about	/	Documents,	entities,	and	fields
root	entities	/	Documents,	entities,	and	fields
sub	entities	/	Documents,	entities,	and	fields

EntityProcessor
about	/	Entity	processors

entity	processors
SqlEntityProcessor	/	Entity	processors
FileListEntityProcessor	/	Entity	processors
LineEntityProcessor	/	Entity	processors
MailEntityProcessor	/	Entity	processors
PlainTextEntityProcessor	/	Entity	processors
SolrEntityProcessor	/	Entity	processors
TikaEntityProcessor	/	Entity	processors
XPathEntityProcessor	/	Entity	processors

event	listeners
about	/	Event	listeners

extensions
about	/	Other	extensions
clustering	module	/	Clustering
UIMA	Metadata	Extraction	Library	/	UIMA	Metadata	Extraction	Library
MapReduce	/	MapReduce

www.it-ebooks.info

http://www.it-ebooks.info/

F
facet	component

about	/	Facet
facet	queries	/	Facet	queries
facet	fields	/	Facet	fields
facet	ranges	/	Facet	ranges
pivot	facets	/	Pivot	facets
interval	facets	/	Interval	facets

faceted	search	/	Facet
facet	fields	/	Facet	fields

facet.field	/	Facet	fields
facet.prefix	/	Facet	fields
facet.sort	/	Facet	fields
facet.limit	/	Facet	fields
facet.offset	/	Facet	fields
facet.mincount	/	Facet	fields
facet.missing	/	Facet	fields
facet.method	/	Facet	fields
facet.threads	/	Facet	fields

facet	queries	/	Facet	queries
facet	ranges

about	/	Facet	ranges
facet.range	/	Facet	ranges
facet.range.start	/	Facet	ranges
facet.range.end	/	Facet	ranges
facet.range.gap	/	Facet	ranges

facets	/	Facet
Factory	class	/	Changing	the	stored	value	of	fields
FastLRUCache	/	Cached	object	life	cycle
fast	vector	highlighter	/	Fast	vector	highlighter
fielded	search	/	Fielded	search
field	lists	/	Field	lists
Field	query	parser	/	Other	available	parsers
fields

about	/	Documents,	entities,	and	fields
fields,	Solr	schema

about	/	Fields
static	/	Static	fields
dynamic	/	Dynamic	fields
copy	/	Copy	fields

fields	attributes,	Solr	schema
name	/	Fields
type	/	Fields

www.it-ebooks.info

http://www.it-ebooks.info/

indexed	/	Fields
stored	/	Fields
required	/	Fields
default	/	Fields
sortMissingFirst	/	Fields
sortMissingLast	/	Fields
omitNorms	/	Fields
omitPositions	/	Fields
omitTermFreqAndPositions	/	Fields
termVectors	/	Fields
docValues	/	Fields

field	types,	Solr	schema
about	/	Field	types
text	analysis	process	/	The	text	analysis	process
char	filters	/	Char	filters
tokenizer	/	Tokenizers
token	filters	/	Token	filters
implementing	/	Putting	it	all	together
reference	link	/	Some	example	field	types

field	types	attributes,	Solr	schema
name	/	Field	types
type	/	Field	types
sortMissingFirst	/	Field	types
sortMissingLast	/	Field	types
indexed	/	Field	types
stored	/	Field	types
multiValued	/	Field	types
omitNorms	/	Field	types
omitTermsAndFrequencyPositions	/	Field	types
omitPositions	/	Field	types
positionsIncrementGap	/	Field	types
autogeneratePhraseQueries	/	Field	types
compressed	/	Field	types
compressThreshold	/	Field	types

field	types	examples,	Solr	schema
about	/	Some	example	field	types
string	/	String
numeric	/	Numbers
Boolean	fields	/	Boolean
date	/	Date
text	/	Text
currency	/	Other	types
binary	/	Other	types
geospatial	types	/	Other	types

www.it-ebooks.info

http://www.it-ebooks.info/

random	/	Other	types
field	value	cache	/	Field	value	cache
file	descriptors	/	File	descriptors
filter	cache

about	/	Filter	cache
filter	queries	/	Filter	queries
FirstQueryITCase	integration	test	/	Integration	test	server
fl	parameter

about	/	Field	lists
Function	query	parser	/	Other	available	parsers
fuzzy	query	/	Fuzzy

www.it-ebooks.info

http://www.it-ebooks.info/

H
hard	commit	/	Update	handler	and	autocommit	feature
high	availability

about	/	Replication	factor,	leaders,	and	replicas
highlight	component

about	/	Highlighting
parameters	/	Highlighting
standard	highlighter	/	Standard	highlighter
fast	vector	highlighter	/	Fast	vector	highlighter
postings	highlighter	/	Postings	highlighter

http	/	Version	control
https	/	Version	control

www.it-ebooks.info

http://www.it-ebooks.info/

I
<indexConfig>	section,	attributes

writeLockTimeout	/	Index	configuration
maxIndexingThreads	/	Index	configuration
useCompoundFile	/	Index	configuration
ramBufferSizeMB	/	Index	configuration
ramBufferSizeDocs	/	Index	configuration
mergePolicy	/	Index	configuration
mergeFactor	/	Index	configuration
mergeScheduler	/	Index	configuration
lockType	/	Index	configuration

IDE
project,	creating	/	Creating	the	project	in	your	IDE

indexed	fields
about	/	String

indexing	configuration
about	/	Solr	indexing	configuration,	Index	configuration
general	settings	/	General	settings
update	handler	/	Update	handler	and	autocommit	feature
autocommit	feature	/	Update	handler	and	autocommit	feature
RequestHandler	/	RequestHandler
UpdateRequestProcessor	/	UpdateRequestProcessor

index	operations
about	/	Index	operations
add	/	Add
delete	commands,	issuing	/	Delete
commit	/	Commit,	optimize,	and	rollback
optimize	/	Commit,	optimize,	and	rollback
rollback	/	Commit,	optimize,	and	rollback

index	process
extending	/	Extending	and	customizing	the	index	process

integration	test	server
Solr,	running	as	/	Different	ways	to	run	Solr,	Integration	test	server

IntelliJ
URL	/	Code	style

interval	facets	/	Interval	facets
Inverse	Document	Frequency	(IDF)	/	Shards
inverted	index

about	/	The	inverted	index

www.it-ebooks.info

http://www.it-ebooks.info/

J
Java

URL,	for	downloading	/	Prerequisites
Java	Development	Kit	7	(JDK)	/	Prerequisites
Java	properties

and	thread	dump	/	Java	properties	and	thread	dump
Java	Virtual	Machine	(JVM)	/	Prerequisites
JConsole	/	JMX
JIRA

signing	up	/	Signing	up	on	JIRA
signing	up,	URL	/	Signing	up	on	JIRA
login	form,	URL	/	Signing	up	on	JIRA

JMX
about	/	JMX
URL	/	JMX

Join	query	parser	/	Other	available	parsers
JVisualVM	/	JMX
JVM	memory

and	physical	/	Physical	and	JVM	memory
JVM	options

URL	/	Physical	and	JVM	memory

www.it-ebooks.info

http://www.it-ebooks.info/

L
language	identifier

about	/	Language	Identifier
LFUCache	/	Cached	object	life	cycle
list	moderator

about	/	Mailing	list	moderator
load	balancing

about	/	Replication	factor,	leaders,	and	replicas
logging

about	/	Logging
LRUCache	/	Cached	object	life	cycle
Lucene	index	/	File	descriptors
Lucene	query	parser	/	Other	available	parsers

www.it-ebooks.info

http://www.it-ebooks.info/

M
M2Eclipse	(M2E)	/	Prerequisites
mailing	lists

subscribing	to	/	Subscribing	to	mailing	lists
Management	Beans	(MBeans)	/	JMX
MapReduce

about	/	MapReduce
MARCXML	/	An	example	–	SOLR-3191
master/slave	scenario

about	/	Master/slaves	scenario
Maven	Cargo	Plugin

URL	/	Understanding	the	project	structure
more	like	this	search	component

about	/	More	like	this
parameters	/	More	like	this

www.it-ebooks.info

http://www.it-ebooks.info/

N
1*n	relationship	/	Documents,	entities,	and	fields
numeric	type

about	/	Numbers

www.it-ebooks.info

http://www.it-ebooks.info/

O
Online	Public	Access	Catalogue	(OPAC)	/	An	example	–	SOLR-3191
Online	Public	Application	Catalogue	(OPAC)	/	Fields
OpenCalais

about	/	UIMA	Metadata	Extraction	Library
operators

AND	/	Terms,	fields,	and	operators
OR	/	Terms,	fields,	and	operators
+	/	Terms,	fields,	and	operators
-/NOT	/	Terms,	fields,	and	operators

optimize
about	/	Commit,	optimize,	and	rollback

www.it-ebooks.info

http://www.it-ebooks.info/

P
patch

submitting	/	Creating	and	submitting	a	patch
creating	/	Creating	and	submitting	a	patch

PDFBox	/	Content	Extraction	Library
phrase	fields	/	Phrase	fields
pivot	facets	/	Pivot	facets
postings	highlighter	/	Postings	highlighter
Processor	class	/	Changing	the	stored	value	of	fields
project	structure,	Solr	development	environment

about	/	Understanding	the	project	structure
src/main/java	/	Understanding	the	project	structure
src/main/resources	/	Understanding	the	project	structure
src/test/java	/	Understanding	the	project	structure
src/test/resources	/	Understanding	the	project	structure
src/dev/eclipse	/	Understanding	the	project	structure
src/solr-home	/	Understanding	the	project	structure
pom.xml	/	Understanding	the	project	structure

www.it-ebooks.info

http://www.it-ebooks.info/

Q
query	analyzers	/	Query	analyzers
query	fields	/	Query	Fields
query	handlers

about	/	Query	handlers
handlerStart	attribute	/	Query	handlers
requests	attribute	/	Query	handlers
errors	attribute	/	Query	handlers
timeouts	attribute	/	Query	handlers
totalTime	attribute	/	Query	handlers
avgRequestsPerSecond	attribute	/	Query	handlers
avgTimePerRequest	attribute	/	Query	handlers

querying
about	/	Querying
search-related	configuration	/	Search-related	configuration
query	analyzers	/	Query	analyzers
query	parameters	/	Common	query	parameters

query	language
about	/	Querying

query	parameters
about	/	Common	query	parameters,	Query	parameters
q	/	Common	query	parameters
start	/	Common	query	parameters
rows	/	Common	query	parameters
sort	/	Common	query	parameters
defType	/	Common	query	parameters
fl	/	Common	query	parameters
fq	/	Common	query	parameters
wt	/	Common	query	parameters
debugQuery	/	Common	query	parameters
explainOther	/	Common	query	parameters
timeAllowed	/	Common	query	parameters
cache	/	Common	query	parameters
omitHeader	/	Common	query	parameters
field	lists	/	Field	lists
filter	queries	/	Filter	queries
defaults	/	Query	parameters
appends	/	Query	parameters
invariants	/	Query	parameters

query	parser
about	/	Query	parsers
Solr	query	parser	/	The	Solr	query	parser
DisMax	query	parser	/	The	Disjunction	Maximum	query	parser

www.it-ebooks.info

http://www.it-ebooks.info/

eDisMax	query	parser	/	The	Extended	Disjunction	Maximum	query	parser
query	phrase	slop	/	Query	phrase	slop
query	result	cache

about	/	Query	Result	cache

www.it-ebooks.info

http://www.it-ebooks.info/

R
range	searches	/	Ranges
rapid	prototyping,	Solaritas	/	Rapid	prototyping	with	Solaritas
Raw	query	parser	/	Other	available	parsers
RealTimeGetHandler	/	RealTimeGetHandler
repeater

about	/	Master/slaves	scenario
replica

about	/	Replication	factor,	leaders,	and	replicas
replication	factor

about	/	Replication	factor,	leaders,	and	replicas
replication	mechanism

commit	/	Master/slaves	scenario
optimize	/	Master/slaves	scenario
startup	/	Master/slaves	scenario

repository	tree
URL	/	Version	control

RequestHandler	/	RequestHandler
response	output	writers

about	/	Response	output	writers
xml	/	Response	output	writers
xslt	/	Response	output	writers
json	/	Response	output	writers
csv	/	Response	output	writers
velocity	/	Response	output	writers
javabin	/	Response	output	writers
python	/	Response	output	writers
ruby	/	Response	output	writers
php	/	Response	output	writers

rollback	/	Commit,	optimize,	and	rollback
root-entities	/	Documents,	entities,	and	fields

www.it-ebooks.info

http://www.it-ebooks.info/

S
sample	project

about	/	The	sample	project
schema.xml	file	/	schema.xml
schema	sections

about	/	Other	schema	sections
unique	key	/	Unique	key
default	similarity	/	Default	similarity

search-related	configuration
about	/	Search-related	configuration
settings	/	Search-related	configuration

search	component
about	/	Search	components
query	/	Query
facet	/	Facet
highlight	/	Highlighting
more	like	this	/	More	like	this
query	elevation	/	Other	components
terms	/	Other	components
stats	/	Other	components
spellcheck	/	Other	components
term	vector	/	Other	components
debug	/	Other	components

search	components	/	Search	components
search	handler

about	/	Search	handler
standard	request	handler	/	Standard	request	handler
RealTimeGetHandler	/	RealTimeGetHandler

shards
about	/	Shards
URL	/	Shards
using	/	Shards
with	replication	/	Shards	with	replication

size-estimator-lucene-solr.xls
URL	/	Prerequisites

soft	commit	/	Update	handler	and	autocommit	feature
Solid	State	Disks	(SSD)	/	Disk	usage
Solr

latest	version,	downloading	/	Downloading	the	right	version
URL,	for	download	bundle	/	Downloading	the	right	version
server,	setting	up	/	Setting	up	and	running	the	server
server,	running	/	Setting	up	and	running	the	server
running,	as	background	server	/	Different	ways	to	run	Solr,	Background	server

www.it-ebooks.info

http://www.it-ebooks.info/

running,	as	integration	test	server	/	Different	ways	to	run	Solr,	Integration	test
server
about	/	What	do	we	have	installed?,	Extending	Solr
other	resources	/	Other	resources
real	time	and	indexed	data,	mixing	/	Mixing	real-time	and	indexed	data
custom	response	writer,	using	/	Using	a	custom	response	writer
data,	adding	to	/	Adds	and	deletes
data,	deleting	/	Adds	and	deletes
searching	with	/	Search
bindings	/	Other	bindings
requirements,	identifying	/	Identifying	your	needs
reference	guide,	URL	/	Documentation
URL	/	Documentation

Solr,	clients
URL	/	Other	bindings

SOLR-3191
about	/	An	example	–	SOLR-3191
URL	/	An	example	–	SOLR-3191

solr-x.y.z	directory	/	Setting	up	and	running	the	server
solr.xml	/	solr.xml
SolrCloud

about	/	SolrServer	–	the	Solr	façade,	SolrCloud
URL	/	SolrCloud
cluster	management	/	Cluster	management
replication	factor	/	Replication	factor,	leaders,	and	replicas
leaders	/	Replication	factor,	leaders,	and	replicas
replicas	/	Replication	factor,	leaders,	and	replicas
durability	/	Durability	and	recovery
recovery	/	Durability	and	recovery
features	/	The	new	terminology
administration	console	/	Administration	console
Collections	API	/	Collections	API
distributed	search	/	Distributed	search
cluster-aware	index	/	Cluster-aware	index

Solr	community	Wiki
URL	/	Documentation

solrconfig.xml	file	/	solrconfig.xml
Solr	core

about	/	The	Solr	core
Solr	data	model

about	/	Understanding	the	Solr	data	model
document	/	The	document
inverted	index	/	The	inverted	index

Solr	development	environment

www.it-ebooks.info

http://www.it-ebooks.info/

setting	up	/	Setting	up	a	Solr	development	environment
prerequisites	/	Prerequisites
sample	project,	importing	/	Importing	the	sample	project	of	this	chapter
project	structure	/	Understanding	the	project	structure

Solr	extension,	GitHub
URL	/	Commit,	optimize,	and	rollback

Solr	home
about	/	Solr	home

Solr	index	/	File	descriptors
Solritas

about	/	Rapid	prototyping	with	Solaritas
rapid	prototyping	/	Rapid	prototyping	with	Solaritas

Solrj
about	/	Solrj
SolrServer	/	SolrServer	–	the	Solr	façade
input	data	transfer	object	/	Input	and	output	data	transfer	objects
output	data	transfer	object	/	Input	and	output	data	transfer	objects

Solr	query	parser
about	/	The	Solr	query	parser
terms	/	Terms,	fields,	and	operators
fields	/	Terms,	fields,	and	operators
operators	/	Terms,	fields,	and	operators
boosts	/	Boosts
wildcard	characters	/	Wildcards
fuzzy	query	/	Fuzzy
proximity	/	Proximity
range	searches	/	Ranges

Solr	schema
about	/	The	Solr	schema
field	types	/	Field	types
fields	/	Fields

SolrServer
about	/	SolrServer	–	the	Solr	façade
EmbeddedSolrServer	/	SolrServer	–	the	Solr	façade
HttpSolrServer	/	SolrServer	–	the	Solr	façade
LBHttpSolrServer	/	SolrServer	–	the	Solr	façade
ConcurrentUpdateSolrServer	/	SolrServer	–	the	Solr	façade
CloudSolrServer	/	SolrServer	–	the	Solr	façade

Solr	source	repository
URL	/	Physical	and	JVM	memory

sort	fields
about	/	String

Spatial	filter	query	parser	/	Other	available	parsers
SQLEntityProcessor

www.it-ebooks.info

http://www.it-ebooks.info/

about	/	Entity	processors
standalone	instance,	of	Solr

about	/	Standalone	instance
standalone	Solr	instance

installing	/	Installing	a	standalone	Solr	instance
prerequisites	/	Prerequisites

standard	highlighter	/	Standard	highlighter
standard	request	handler

about	/	Standard	request	handler
search	components	/	Search	components
query	parameters	/	Query	parameters

static	fields	/	Static	fields
stored	value,	of	fields

modifying	/	Changing	the	stored	value	of	fields
string	type

about	/	String
indexed	fields	/	String
sort	fields	/	String

sub-entities	/	Documents,	entities,	and	fields
subversion

about	/	Version	control
Surround	query	parser	/	Other	available	parsers

www.it-ebooks.info

http://www.it-ebooks.info/

T
technical	external	documentation	/	Documentation
technical	internal	documentation	/	Documentation
term

about	/	The	text	analysis	process
Term	query	parser	/	Other	available	parsers
text

about	/	Text
text	analysis	process

about	/	The	text	analysis	process
position	increment	/	The	text	analysis	process
start	and	end	offset	/	The	text	analysis	process
payload	/	The	text	analysis	process

thread	dump
and	Java	properties	/	Java	properties	and	thread	dump

thresholds,	for	triggering	auto-commits
maxDocs	/	Update	handler	and	autocommit	feature
maxTime	/	Update	handler	and	autocommit	feature

tie	parameter	/	Tie	breaker
token	filters

about	/	Token	filters
reference	link	/	Token	filters

tokenizer
about	/	Tokenizers
reference	link	/	Tokenizers

transformer
about	/	Transformers

transformers
URL	/	Field	lists

troubleshooting
about	/	Troubleshooting,	Troubleshooting
UnsupportedClassVersionError	error	/	UnsupportedClassVersionError
failed	to	read	artifact	descriptor	/	The	“Failed	to	read	artifact	descriptor”
message
multivalued	fields	/	Multivalued	fields	and	the	copyField	directive
copyField	directive	/	Multivalued	fields	and	the	copyField	directive,	Required
fields	and	the	copyField	directive
copyField	input	value	/	The	copyField	input	value
required	fields	/	Required	fields	and	the	copyField	directive
stored	text,	immutable	/	Stored	text	is	immutable!
data	not	indexed	/	Data	not	indexed

troubleshooting,	Solr
about	/	Troubleshooting,	No	score	is	returned	in	response

www.it-ebooks.info

http://www.it-ebooks.info/

U
UIMA	Metadata	Extraction	Library	/	UIMA	Metadata	Extraction	Library
unique	key	/	Unique	key
UnsupportedClassVersionError	error	/	UnsupportedClassVersionError
update	handler	/	Update	handler	and	autocommit	feature
update	handlers

about	/	Update	handlers
commits	attribute	/	Update	handlers
autocommit	maxTime	attribute	/	Update	handlers
autocommits	attribute	/	Update	handlers
soft	autocommits	attribute	/	Update	handlers
optimizes	attribute	/	Update	handlers
rollbacks	attribute	/	Update	handlers
expungeDeletes	attribute	/	Update	handlers
docsPending	attribute	/	Update	handlers
adds	attribute	/	Update	handlers
deletesById	attribute	/	Update	handlers
deletesByQuery	attribute	/	Update	handlers
errors	attribute	/	Update	handlers
cumulative_adds	/	Update	handlers
cumulative_deletesById	/	Update	handlers
cumulative_deletesByQuery	/	Update	handlers
cumulative_errors	/	Update	handlers

UpdateRequestProcessor	/	UpdateRequestProcessor
user	documentation	/	Documentation
user	guide	/	Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

W
wildcard	characters	/	Wildcards

www.it-ebooks.info

http://www.it-ebooks.info/

	Apache Solr Essentials
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Get Me Up and Running
	Installing a standalone Solr instance
	Prerequisites
	Downloading the right version
	Setting up and running the server
	Setting up a Solr development environment
	Prerequisites
	Importing the sample project of this chapter
	Understanding the project structure
	Different ways to run Solr
	Background server
	Integration test server
	What do we have installed?
	Solr home
	solr.xml
	schema.xml
	solrconfig.xml
	Other resources
	Troubleshooting
	UnsupportedClassVersionError
	The "Failed to read artifact descriptor" message
	Summary
	2. Indexing Your Data
	Understanding the Solr data model
	The document
	The inverted index
	The Solr core
	The Solr schema
	Field types
	The text analysis process
	Char filters
	Tokenizers
	Token filters
	Putting it all together
	Some example field types
	String
	Numbers
	Boolean
	Date
	Text
	Other types
	Fields
	Static fields
	Dynamic fields
	Copy fields
	Other schema sections
	Unique key
	Default similarity
	Solr indexing configuration
	General settings
	Index configuration
	Update handler and autocommit feature
	RequestHandler
	UpdateRequestProcessor
	Index operations
	Add
	Sending add commands
	Delete
	Commit, optimize, and rollback
	Extending and customizing the index process
	Changing the stored value of fields
	Indexing custom data
	Troubleshooting
	Multivalued fields and the copyField directive
	The copyField input value
	Required fields and the copyField directive
	Stored text is immutable!
	Data not indexed
	Summary
	3. Searching Your Data
	The sample project
	Querying
	Search-related configuration
	Query analyzers
	Common query parameters
	Field lists
	Filter queries
	Query parsers
	The Solr query parser
	Terms, fields, and operators
	Boosts
	Wildcards
	Fuzzy
	Proximity
	Ranges
	The Disjunction Maximum query parser
	Query Fields
	Alternative query
	Minimum should match
	Phrase fields
	Query phrase slop
	Phrase slop
	Boost queries
	Additive boost functions
	Tie breaker
	The Extended Disjunction Maximum query parser
	Fielded search
	Phrase bigram and trigram fields
	Phrase bigram and trigram slop
	Multiplicative boost function
	User fields
	Lowercase operators
	Other available parsers
	Search components
	Query
	Facet
	Facet queries
	Facet fields
	Facet ranges
	Pivot facets
	Interval facets
	Highlighting
	Standard highlighter
	Fast vector highlighter
	Postings highlighter
	More like this
	Other components
	Search handler
	Standard request handler
	Search components
	Query parameters
	RealTimeGetHandler
	Response output writers
	Extending Solr
	Mixing real-time and indexed data
	Using a custom response writer
	Troubleshooting
	Queries don't match expected documents
	Mismatch between index and query analyzer
	No score is returned in response
	Summary
	4. Client API
	Solrj
	SolrServer – the Solr façade
	Input and output data transfer objects
	Adds and deletes
	Search
	Other bindings
	Summary
	5. Administering and Tuning Solr
	Dashboard
	Physical and JVM memory
	Disk usage
	File descriptors
	Logging
	Core Admin
	Java properties and thread dump
	Core overview
	Caches
	Cache life cycles
	Cache sizing
	Cached object life cycle
	Cache stats
	Types of cache
	Filter cache
	Query Result cache
	Document cache
	Field value cache
	Custom cache
	Query handlers
	Update handlers
	JMX
	Summary
	6. Deployment Scenarios
	Standalone instance
	Shards
	Master/slaves scenario
	Shards with replication
	SolrCloud
	Cluster management
	Replication factor, leaders, and replicas
	Durability and recovery
	The new terminology
	Administration console
	Collections API
	Distributed search
	Cluster-aware index
	Summary
	7. Solr Extensions
	DataImportHandler
	Data sources
	Documents, entities, and fields
	Transformers
	Entity processors
	Event listeners
	Content Extraction Library
	Language Identifier
	Rapid prototyping with Solaritas
	Other extensions
	Clustering
	UIMA Metadata Extraction Library
	MapReduce
	Summary
	8. Contributing to Solr
	Identifying your needs
	An example – SOLR-3191
	Subscribing to mailing lists
	Signing up on JIRA
	Setting up the development environment
	Version control
	Code style
	Checking out the code
	Creating the project in your IDE
	Making your changes
	Creating and submitting a patch
	Other ways to contribute
	Documentation
	Mailing list moderator
	Summary
	Index

