
The Cookbook
Version: 2.6

generated on March 11, 2015



The Cookbook (2.6)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work
only under the same, similar or a compatible license. For any reuse or distribution, you must make
clear to others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.



Contents at a Glance

How to Use Assetic for Asset Management ..........................................................................................7
How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS) ...............................................................13
How to Minify JavaScripts and Stylesheets with YUI Compressor.......................................................17
How to Use Assetic for Image Optimization with Twig Functions ......................................................20
How to Apply an Assetic Filter to a specific File Extension .................................................................22
How to Install 3rd Party Bundles .......................................................................................................24
Best Practices for Reusable Bundles ...................................................................................................27
How to Use Bundle Inheritance to Override Parts of a Bundle ............................................................34
How to Override any Part of a Bundle ...............................................................................................36
How to Remove the AcmeDemoBundle .............................................................................................39
How to Load Service Configuration inside a Bundle ...........................................................................42
How to Create Friendly Configuration for a Bundle ...........................................................................45
How to Simplify Configuration of multiple Bundles ...........................................................................51
How to Use Varnish to Speed up my Website ....................................................................................54
Caching Pages that Contain CSRF Protected Forms ...........................................................................58
Installing Composer ..........................................................................................................................59
How to Master and Create new Environments ...................................................................................61
How to Override Symfony's default Directory Structure .....................................................................66
Using Parameters within a Dependency Injection Class ......................................................................70
Understanding how the Front Controller, Kernel and Environments Work together............................73
How to Set external Parameters in the Service Container ....................................................................76
How to Use PdoSessionHandler to Store Sessions in the Database ......................................................79
How to Use the Apache Router .........................................................................................................83
Configuring a Web Server .................................................................................................................86
How to Organize Configuration Files ................................................................................................91
How to Create a Console Command .................................................................................................96
How to Use the Console.................................................................................................................. 101
How to Generate URLs and Send Emails from the Console .............................................................. 103
How to Enable Logging in Console Commands ............................................................................... 105
How to Define Commands as Services ............................................................................................. 109
How to Customize Error Pages ........................................................................................................ 111
How to Define Controllers as Services ............................................................................................. 116
How to Optimize your Development Environment for Debugging.................................................... 120
How to Deploy a Symfony Application ............................................................................................ 122
Deploying to Microsoft Azure Website Cloud.................................................................................. 126
Deploying to Heroku Cloud ............................................................................................................ 139

PDF brought to you by
generated on March 11, 2015

Contents at a Glance | iii

http://sensiolabs.com


Deploying to Platform.sh................................................................................................................. 143
How to Handle File Uploads with Doctrine ..................................................................................... 147
How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc. ................................ 156
How to Register Event Listeners and Subscribers ............................................................................. 157
How to Use Doctrine DBAL ............................................................................................................ 160
How to Generate Entities from an Existing Database........................................................................ 162
How to Work with multiple Entity Managers and Connections........................................................ 166
How to Register custom DQL Functions.......................................................................................... 169
How to Define Relationships with Abstract Classes and Interfaces.................................................... 170
How to Provide Model Classes for several Doctrine Implementations ............................................... 173
How to Implement a simple Registration Form ................................................................................ 176
Console Commands........................................................................................................................ 182
How to Send an Email..................................................................................................................... 183
How to Use Gmail to Send Emails ................................................................................................... 186
How to Use the Cloud to Send Emails ............................................................................................. 187
How to Work with Emails during Development............................................................................... 189
How to Spool Emails....................................................................................................................... 192
How to Test that an Email is Sent in a functional Test...................................................................... 194
How to Setup before and after Filters............................................................................................... 196
How to Extend a Class without Using Inheritance............................................................................ 200
How to Customize a Method Behavior without Using Inheritance .................................................... 203
How to use Expressions in Security, Routing, Services, and Validation ............................................. 205
How to Customize Form Rendering ................................................................................................ 208
How to Use Data Transformers ....................................................................................................... 221
How to Dynamically Modify Forms Using Form Events ................................................................... 228
How to Embed a Collection of Forms .............................................................................................. 240
How to Create a Custom Form Field Type....................................................................................... 253
How to Create a Form Type Extension ............................................................................................ 258
How to Reduce Code Duplication with "inherit_data" ..................................................................... 263
How to Unit Test your Forms.......................................................................................................... 266
How to Configure empty Data for a Form Class............................................................................... 271
How to Use the submit() Function to Handle Form Submissions...................................................... 273
How to Use the virtual Form Field Option....................................................................................... 276
How to Use Monolog to Write Logs ................................................................................................ 277
How to Configure Monolog to Email Errors .................................................................................... 281
How to Configure Monolog to Display Console Messages................................................................ 283
How to Configure Monolog to Exclude 404 Errors from the Log ...................................................... 285
How to Log Messages to different Files ............................................................................................ 286
How to Create a custom Data Collector........................................................................................... 288
How to Use Matchers to Enable the Profiler Conditionally ............................................................... 291
Switching the Profiler Storage .......................................................................................................... 293
How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy .............................. 294
How to Register a new Request Format and Mime Type................................................................... 296
How to Force Routes to always Use HTTPS or HTTP ...................................................................... 298
How to Allow a "/" Character in a Route Parameter ......................................................................... 299
How to Configure a Redirect without a custom Controller ............................................................... 300
How to Use HTTP Methods beyond GET and POST in Routes ........................................................ 302

iv  |  Contents at a Glance Contents at a Glance | 4



How to Use Service Container Parameters in your Routes ................................................................ 304
How to Create a custom Route Loader ............................................................................................ 306
Redirect URLs with a Trailing Slash................................................................................................. 310
How to Pass Extra Information from a Route to a Controller............................................................ 312
How to Build a Traditional Login Form ........................................................................................... 313
How to Load Security Users from the Database (the Entity Provider)................................................ 318
How to Add "Remember Me" Login Functionality ........................................................................... 331
How to Impersonate a User ............................................................................................................. 334
How to Implement your own Voter to Blacklist IP Addresses ........................................................... 336
How to Use Voters to Check User Permissions................................................................................. 339
How to Use Access Control Lists (ACLs) ......................................................................................... 343
How to Use advanced ACL Concepts .............................................................................................. 347
How to Force HTTPS or HTTP for different URLs........................................................................... 351
How to Restrict Firewalls to a Specific Request ................................................................................ 352
How to Restrict Firewalls to a Specific Host ..................................................................................... 354
How to Customize your Form Login................................................................................................ 355
How to Secure any Service or Method in your Application ............................................................... 358
How to Create a custom User Provider ............................................................................................ 362
How to Create a Custom Form Password Authenticator................................................................... 367
How to Authenticate Users with API Keys ....................................................................................... 371
How to Create a custom Authentication Provider............................................................................. 380
Using pre Authenticated Security Firewalls ...................................................................................... 389
How to Change the default Target Path Behavior ............................................................................. 391
Using CSRF Protection in the Login Form........................................................................................ 393
How to Choose the Password Encoder Algorithm Dynamically ........................................................ 395
How Does the Security access_control Work?.................................................................................. 397
How to Use multiple User Providers ................................................................................................ 401
How to Use the Serializer ................................................................................................................ 403
How to Create an Event Listener ..................................................................................................... 405
How to Work with Scopes .............................................................................................................. 408
How to Work with Compiler Passes in Bundles ............................................................................... 413
Session Proxy Examples .................................................................................................................. 414
Making the Locale "Sticky" during a User's Session .......................................................................... 416
Configuring the Directory where Session Files are Saved .................................................................. 418
Bridge a legacy Application with Symfony Sessions .......................................................................... 420
Limit Session Metadata Writes ........................................................................................................ 421
Avoid Starting Sessions for Anonymous Users.................................................................................. 422
How Symfony2 Differs from Symfony1............................................................................................ 423
How to Inject Variables into all Templates (i.e. global Variables) ...................................................... 429
How to Use and Register Namespaced Twig Paths ........................................................................... 431
How to Use PHP instead of Twig for Templates............................................................................... 433
How to Write a custom Twig Extension .......................................................................................... 439
How to Render a Template without a custom Controller.................................................................. 442
How to Simulate HTTP Authentication in a Functional Test ............................................................ 444
How to Simulate Authentication with a Token in a Functional Test.................................................. 445
How to Test the Interaction of several Clients .................................................................................. 447
How to Use the Profiler in a Functional Test.................................................................................... 449

PDF brought to you by
generated on March 11, 2015

Contents at a Glance | v

http://sensiolabs.com


How to Test Code that Interacts with the Database.......................................................................... 451
How to Test Doctrine Repositories .................................................................................................. 454
How to Customize the Bootstrap Process before Running Tests........................................................ 456
How to Upgrade Your Symfony Project ........................................................................................... 458
How to Create a custom Validation Constraint ................................................................................ 461
How to Use PHP's built-in Web Server ............................................................................................ 465
How to Create a SOAP Web Service in a Symfony Controller ........................................................... 468
How to Create and Store a Symfony Project in Git ........................................................................... 472
How to Create and Store a Symfony Project in Subversion................................................................ 475

vi  |  Contents at a Glance Contents at a Glance | 6



Listing 1-1

Listing 1-2

Chapter 1

How to Use Assetic for Asset Management

Assetic combines two major ideas: assets and filters. The assets are files such as CSS, JavaScript and image
files. The filters are things that can be applied to these files before they are served to the browser. This
allows a separation between the asset files stored in the application and the files actually presented to the
user.

Without Assetic, you just serve the files that are stored in the application directly:

1 <script src="{{ asset('js/script.js') }}"></script>

But with Assetic, you can manipulate these assets however you want (or load them from anywhere) before
serving them. This means you can:

• Minify and combine all of your CSS and JS files
• Run all (or just some) of your CSS or JS files through some sort of compiler, such as LESS,

SASS or CoffeeScript
• Run image optimizations on your images

Assets
Using Assetic provides many advantages over directly serving the files. The files do not need to be stored
where they are served from and can be drawn from various sources such as from within a bundle.

You can use Assetic to process CSS stylesheets, JavaScript files and images. The philosophy behind adding
either is basically the same, but with a slightly different syntax.

Including JavaScript Files

To include JavaScript files, use the javascripts tag in any template:

1
2
3

{% javascripts '@AppBundle/Resources/public/js/*' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

PDF brought to you by
generated on March 11, 2015

Chapter 1: How to Use Assetic for Asset Management | 7

http://sensiolabs.com


Listing 1-3

Listing 1-4

Listing 1-5

Listing 1-6

If you're using the default block names from the Symfony Standard Edition, the javascripts tag
will most commonly live in the javascripts block:

1
2
3
4
5
6
7

{# ... #}
{% block javascripts %}

{% javascripts '@AppBundle/Resources/public/js/*' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}
{% endblock %}
{# ... #}

You can also include CSS Stylesheets: see Including CSS Stylesheets.

In this example, all of the files in the Resources/public/js/ directory of the AppBundle will be loaded
and served from a different location. The actual rendered tag might simply look like:

1 <script src="/app_dev.php/js/abcd123.js"></script>

This is a key point: once you let Assetic handle your assets, the files are served from a different location.
This will cause problems with CSS files that reference images by their relative path. See Fixing CSS Paths
with the cssrewrite Filter.

Including CSS Stylesheets

To bring in CSS stylesheets, you can use the same methodologies seen above, except with the
stylesheets tag:

1
2
3

{% stylesheets 'bundles/app/css/*' filter='cssrewrite' %}
<link rel="stylesheet" href="{{ asset_url }}" />

{% endstylesheets %}

If you're using the default block names from the Symfony Standard Edition, the stylesheets tag
will most commonly live in the stylesheets block:

1
2
3
4
5
6
7

{# ... #}
{% block stylesheets %}

{% stylesheets 'bundles/app/css/*' filter='cssrewrite' %}
<link rel="stylesheet" href="{{ asset_url }}" />

{% endstylesheets %}
{% endblock %}
{# ... #}

But because Assetic changes the paths to your assets, this will break any background images (or other
paths) that uses relative paths, unless you use the cssrewrite filter.

PDF brought to you by
generated on March 11, 2015

Chapter 1: How to Use Assetic for Asset Management | 8

http://sensiolabs.com


Listing 1-7

Listing 1-8

Notice that in the original example that included JavaScript files, you referred to the files using a
path like @AppBundle/Resources/public/file.js, but that in this example, you referred to the
CSS files using their actual, publicly-accessible path: bundles/app/css. You can use either, except
that there is a known issue that causes the cssrewrite filter to fail when using the @AppBundle
syntax for CSS Stylesheets.

Including Images

To include an image you can use the image tag.

1
2
3

{% image '@AppBundle/Resources/public/images/example.jpg' %}
<img src="{{ asset_url }}" alt="Example" />

{% endimage %}

You can also use Assetic for image optimization. More information in How to Use Assetic for Image
Optimization with Twig Functions.

Fixing CSS Paths with the cssrewrite Filter

Since Assetic generates new URLs for your assets, any relative paths inside your CSS files will break. To
fix this, make sure to use the cssrewrite filter with your stylesheets tag. This parses your CSS files
and corrects the paths internally to reflect the new location.

You can see an example in the previous section.

When using the cssrewrite filter, don't refer to your CSS files using the @AppBundle syntax. See
the note in the above section for details.

Combining Assets

One feature of Assetic is that it will combine many files into one. This helps to reduce the number of
HTTP requests, which is great for front end performance. It also allows you to maintain the files more
easily by splitting them into manageable parts. This can help with re-usability as you can easily split
project-specific files from those which can be used in other applications, but still serve them as a single
file:

1
2
3
4
5
6

{% javascripts
'@AppBundle/Resources/public/js/*'
'@AcmeBarBundle/Resources/public/js/form.js'
'@AcmeBarBundle/Resources/public/js/calendar.js' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

In the dev environment, each file is still served individually, so that you can debug problems more easily.
However, in the prod environment (or more specifically, when the debug flag is false), this will be
rendered as a single script tag, which contains the contents of all of the JavaScript files.

If you're new to Assetic and try to use your application in the prod environment (by using the
app.php controller), you'll likely see that all of your CSS and JS breaks. Don't worry! This is on
purpose. For details on using Assetic in the prod environment, see Dumping Asset Files.

PDF brought to you by
generated on March 11, 2015

Chapter 1: How to Use Assetic for Asset Management | 9

http://sensiolabs.com


Listing 1-9

Listing 1-10

Listing 1-11

Listing 1-12

And combining files doesn't only apply to your files. You can also use Assetic to combine third party
assets, such as jQuery, with your own into a single file:

1
2
3
4
5

{% javascripts
'@AppBundle/Resources/public/js/thirdparty/jquery.js'
'@AppBundle/Resources/public/js/*' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

Using Named Assets

AsseticBundle configuration directives allow you to define named asset sets. You can do so by defining
the input files, filters and output files in your configuration under the assetic section. Read more in the
assetic config reference.

1
2
3
4
5
6
7

# app/config/config.yml
assetic:

assets:
jquery_and_ui:

inputs:
- '@AppBundle/Resources/public/js/thirdparty/jquery.js'
- '@AppBundle/Resources/public/js/thirdparty/jquery.ui.js'

After you have defined the named assets, you can reference them in your templates with the
@named_asset notation:

1
2
3
4
5

{% javascripts
'@jquery_and_ui'
'@AppBundle/Resources/public/js/*' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

Filters
Once they're managed by Assetic, you can apply filters to your assets before they are served. This includes
filters that compress the output of your assets for smaller file sizes (and better front-end optimization).
Other filters can compile JavaScript file from CoffeeScript files and process SASS into CSS. In fact, Assetic
has a long list of available filters.

Many of the filters do not do the work directly, but use existing third-party libraries to do the heavy-
lifting. This means that you'll often need to install a third-party library to use a filter. The great advantage
of using Assetic to invoke these libraries (as opposed to using them directly) is that instead of having to
run them manually after you work on the files, Assetic will take care of this for you and remove this step
altogether from your development and deployment processes.

To use a filter, you first need to specify it in the Assetic configuration. Adding a filter here doesn't mean
it's being used - it just means that it's available to use (you'll use the filter below).

For example to use the UglifyJS JavaScript minifier the following config should be added:

1
2
3

# app/config/config.yml
assetic:

filters:

PDF brought to you by
generated on March 11, 2015

Chapter 1: How to Use Assetic for Asset Management | 10

http://sensiolabs.com


Listing 1-13

Listing 1-14

Listing 1-15

4
5

uglifyjs2:
bin: /usr/local/bin/uglifyjs

Now, to actually use the filter on a group of JavaScript files, add it into your template:

1
2
3

{% javascripts '@AppBundle/Resources/public/js/*' filter='uglifyjs2' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

A more detailed guide about configuring and using Assetic filters as well as details of Assetic's debug
mode can be found in How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS).

Controlling the URL Used
If you wish to, you can control the URLs that Assetic produces. This is done from the template and is
relative to the public document root:

1
2
3

{% javascripts '@AppBundle/Resources/public/js/*' output='js/compiled/main.js' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

Symfony also contains a method for cache busting, where the final URL generated by Assetic
contains a query parameter that can be incremented via configuration on each deployment. For
more information, see the assets_version configuration option.

Dumping Asset Files
In the dev environment, Assetic generates paths to CSS and JavaScript files that don't physically exist on
your computer. But they render nonetheless because an internal Symfony controller opens the files and
serves back the content (after running any filters).

This kind of dynamic serving of processed assets is great because it means that you can immediately see
the new state of any asset files you change. It's also bad, because it can be quite slow. If you're using a lot
of filters, it might be downright frustrating.

Fortunately, Assetic provides a way to dump your assets to real files, instead of being generated
dynamically.

Dumping Asset Files in the prod Environment

In the prod environment, your JS and CSS files are represented by a single tag each. In other words,
instead of seeing each JavaScript file you're including in your source, you'll likely just see something like
this:

1 <script src="/js/abcd123.js"></script>

Moreover, that file does not actually exist, nor is it dynamically rendered by Symfony (as the asset files
are in the dev environment). This is on purpose - letting Symfony generate these files dynamically in a
production environment is just too slow.

PDF brought to you by
generated on March 11, 2015

Chapter 1: How to Use Assetic for Asset Management | 11

http://sensiolabs.com


Listing 1-16

Listing 1-17

Listing 1-18

Listing 1-19

Listing 1-20

Instead, each time you use your app in the prod environment (and therefore, each time you deploy), you
should run the following task:

1 $ php app/console assetic:dump --env=prod --no-debug

This will physically generate and write each file that you need (e.g. /js/abcd123.js). If you update any
of your assets, you'll need to run this again to regenerate the file.

Dumping Asset Files in the dev Environment

By default, each asset path generated in the dev environment is handled dynamically by Symfony. This
has no disadvantage (you can see your changes immediately), except that assets can load noticeably slow.
If you feel like your assets are loading too slowly, follow this guide.

First, tell Symfony to stop trying to process these files dynamically. Make the following change in your
config_dev.yml file:

1
2
3

# app/config/config_dev.yml
assetic:

use_controller: false

Next, since Symfony is no longer generating these assets for you, you'll need to dump them manually. To
do so, run the following:

1 $ php app/console assetic:dump

This physically writes all of the asset files you need for your dev environment. The big disadvantage
is that you need to run this each time you update an asset. Fortunately, by using the assetic:watch
command, assets will be regenerated automatically as they change:

1 $ php app/console assetic:watch

The assetic:watch command was introduced in AsseticBundle 2.4. In prior versions, you had to use the
--watch option of the assetic:dump command for the same behavior.

Since running this command in the dev environment may generate a bunch of files, it's usually a good
idea to point your generated asset files to some isolated directory (e.g. /js/compiled), to keep things
organized:

1
2
3

{% javascripts '@AppBundle/Resources/public/js/*' output='js/compiled/main.js' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

PDF brought to you by
generated on March 11, 2015

Chapter 1: How to Use Assetic for Asset Management | 12

http://sensiolabs.com


Listing 2-1

Chapter 2

How to Minify CSS/JS Files (Using UglifyJS and
UglifyCSS)

UglifyJS1 is a JavaScript parser/compressor/beautifier toolkit. It can be used to combine and minify
JavaScript assets so that they require less HTTP requests and make your site load faster. UglifyCSS2 is a
CSS compressor/beautifier that is very similar to UglifyJS.

In this cookbook, the installation, configuration and usage of UglifyJS is shown in detail. UglifyCSS
works pretty much the same way and is only talked about briefly.

Install UglifyJS

UglifyJS is available as an Node.js3 npm module and can be installed using npm. First, you need to install
Node.js4. Afterwards you can install UglifyJS using npm:

1 $ npm install -g uglify-js

This command will install UglifyJS globally and you may need to run it as a root user.

1. https://github.com/mishoo/UglifyJS

2. https://github.com/fmarcia/UglifyCSS

3. http://nodejs.org/

4. http://nodejs.org/

PDF brought to you by
generated on March 11, 2015

Chapter 2: How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS) | 13

http://sensiolabs.com


Listing 2-2

Listing 2-3

Listing 2-4

Listing 2-5

Listing 2-6

It's also possible to install UglifyJS inside your project only. To do this, install it without the -g
option and specify the path where to put the module:

1
2
3

$ cd /path/to/symfony
$ mkdir app/Resources/node_modules
$ npm install uglify-js --prefix app/Resources

It is recommended that you install UglifyJS in your app/Resources folder and add the
node_modules folder to version control. Alternatively, you can create an npm package.json5 file and
specify your dependencies there.

Depending on your installation method, you should either be able to execute the uglifyjs executable
globally, or execute the physical file that lives in the node_modules directory:

1
2
3

$ uglifyjs --help

$ ./app/Resources/node_modules/.bin/uglifyjs --help

Configure the uglifyjs2 Filter
Now we need to configure Symfony to use the uglifyjs2 filter when processing your JavaScripts:

1
2
3
4
5
6

# app/config/config.yml
assetic:

filters:
uglifyjs2:

# the path to the uglifyjs executable
bin: /usr/local/bin/uglifyjs

The path where UglifyJS is installed may vary depending on your system. To find out where npm
stores the bin folder, you can use the following command:

1 $ npm bin -g

It should output a folder on your system, inside which you should find the UglifyJS executable.

If you installed UglifyJS locally, you can find the bin folder inside the node_modules folder. It's
called .bin in this case.

You now have access to the uglifyjs2 filter in your application.

Configure the node Binary
Assetic tries to find the node binary automatically. If it cannot be found, you can configure its location
using the node key:

5. http://package.json.nodejitsu.com/

PDF brought to you by
generated on March 11, 2015

Chapter 2: How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS) | 14

http://sensiolabs.com


Listing 2-7

Listing 2-8

1
2
3
4
5
6
7
8

# app/config/config.yml
assetic:

# the path to the node executable
node: /usr/bin/nodejs
filters:

uglifyjs2:
# the path to the uglifyjs executable
bin: /usr/local/bin/uglifyjs

Minify your Assets
In order to use UglifyJS on your assets, you need to apply it to them. Since your assets are a part of the
view layer, this work is done in your templates:

1
2
3

{% javascripts '@AppBundle/Resources/public/js/*' filter='uglifyjs2' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

The above example assumes that you have a bundle called AppBundle and your JavaScript files are
in the Resources/public/js directory under your bundle. This isn't important however - you can
include your JavaScript files no matter where they are.

With the addition of the uglifyjs2 filter to the asset tags above, you should now see minified JavaScripts
coming over the wire much faster.

Disable Minification in Debug Mode

Minified JavaScripts are very difficult to read, let alone debug. Because of this, Assetic lets you disable a
certain filter when your application is in debug (e.g. app_dev.php) mode. You can do this by prefixing
the filter name in your template with a question mark: ?. This tells Assetic to only apply this filter when
debug mode is off (e.g. app.php):

1
2
3

{% javascripts '@AppBundle/Resources/public/js/*' filter='?uglifyjs2' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

To try this out, switch to your prod environment (app.php). But before you do, don't forget to clear your
cache and dump your assetic assets.

Instead of adding the filter to the asset tags, you can also globally enable it by adding the apply_to
attribute to the filter configuration, for example in the uglifyjs2 filter apply_to: "\.js$". To
only have the filter applied in production, add this to the config_prod file rather than the common
config file. For details on applying filters by file extension, see Filtering Based on a File Extension.

Install, Configure and Use UglifyCSS
The usage of UglifyCSS works the same way as UglifyJS. First, make sure the node package is installed:

PDF brought to you by
generated on March 11, 2015

Chapter 2: How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS) | 15

http://sensiolabs.com


Listing 2-9

Listing 2-10

Listing 2-11

1 $ npm install -g uglifycss

Next, add the configuration for this filter:

1
2
3
4
5

# app/config/config.yml
assetic:

filters:
uglifycss:

bin: /usr/local/bin/uglifycss

To use the filter for your CSS files, add the filter to the Assetic stylesheets helper:

1
2
3

{% stylesheets 'bundles/App/css/*' filter='uglifycss' filter='cssrewrite' %}
<link rel="stylesheet" href="{{ asset_url }}" />

{% endstylesheets %}

Just like with the uglifyjs2 filter, if you prefix the filter name with ? (i.e. ?uglifycss), the minification
will only happen when you're not in debug mode.

PDF brought to you by
generated on March 11, 2015

Chapter 2: How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS) | 16

http://sensiolabs.com


Listing 3-1

Chapter 3

How to Minify JavaScripts and Stylesheets with
YUI Compressor

Yahoo! provides an excellent utility for minifying JavaScripts and stylesheets so they travel over the wire
faster, the YUI Compressor1. Thanks to Assetic, you can take advantage of this tool very easily.

The YUI Compressor is no longer maintained by Yahoo2 but by an independent volunteer.
Moreover, Yahoo has decided to stop all new development on YUI3 and to move to other modern
alternatives such as Node.js.

That's why you are strongly advised to avoid using YUI utilities unless strictly necessary. Read
How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS) for a modern and up-to-date alternative.

Download the YUI Compressor JAR

The YUI Compressor is written in Java and distributed as a JAR. Download the JAR4 from the Yahoo! site
and save it to app/Resources/java/yuicompressor.jar.

Configure the YUI Filters
Now you need to configure two Assetic filters in your application, one for minifying JavaScripts with the
YUI Compressor and one for minifying stylesheets:

1
2

# app/config/config.yml
assetic:

1. http://developer.yahoo.com/yui/compressor/

2. http://www.yuiblog.com/blog/2013/01/24/yui-compressor-has-a-new-owner/

3. http://yahooeng.tumblr.com/post/96098168666/important-announcement-regarding-yui

4. https://github.com/yui/yuicompressor/releases

PDF brought to you by
generated on March 11, 2015

Chapter 3: How to Minify JavaScripts and Stylesheets with YUI Compressor | 17

http://sensiolabs.com


Listing 3-2

Listing 3-3

Listing 3-4

3
4
5
6
7
8

# java: "/usr/bin/java"
filters:

yui_css:
jar: "%kernel.root_dir%/Resources/java/yuicompressor.jar"

yui_js:
jar: "%kernel.root_dir%/Resources/java/yuicompressor.jar"

Windows users need to remember to update config to proper Java location. In Windows7 x64 bit
by default it's C:\Program Files (x86)\Java\jre6\bin\java.exe.

You now have access to two new Assetic filters in your application: yui_css and yui_js. These will use
the YUI Compressor to minify stylesheets and JavaScripts, respectively.

Minify your Assets
You have YUI Compressor configured now, but nothing is going to happen until you apply one of these
filters to an asset. Since your assets are a part of the view layer, this work is done in your templates:

1
2
3

{% javascripts '@AppBundle/Resources/public/js/*' filter='yui_js' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

The above example assumes that you have a bundle called AppBundle and your JavaScript files are
in the Resources/public/js directory under your bundle. This isn't important however - you can
include your JavaScript files no matter where they are.

With the addition of the yui_js filter to the asset tags above, you should now see minified JavaScripts
coming over the wire much faster. The same process can be repeated to minify your stylesheets.

1
2
3

{% stylesheets '@AppBundle/Resources/public/css/*' filter='yui_css' %}
<link rel="stylesheet" type="text/css" media="screen" href="{{ asset_url }}" />

{% endstylesheets %}

Disable Minification in Debug Mode
Minified JavaScripts and Stylesheets are very difficult to read, let alone debug. Because of this, Assetic lets
you disable a certain filter when your application is in debug mode. You can do this by prefixing the filter
name in your template with a question mark: ?. This tells Assetic to only apply this filter when debug
mode is off.

1
2
3

{% javascripts '@AppBundle/Resources/public/js/*' filter='?yui_js' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

PDF brought to you by
generated on March 11, 2015

Chapter 3: How to Minify JavaScripts and Stylesheets with YUI Compressor | 18

http://sensiolabs.com


Instead of adding the filter to the asset tags, you can also globally enable it by adding the apply_to
attribute to the filter configuration, for example in the yui_js filter apply_to: "\.js$". To only
have the filter applied in production, add this to the config_prod file rather than the common
config file. For details on applying filters by file extension, see Filtering Based on a File Extension.

PDF brought to you by
generated on March 11, 2015

Chapter 3: How to Minify JavaScripts and Stylesheets with YUI Compressor | 19

http://sensiolabs.com


Listing 4-1

Listing 4-2

Chapter 4

How to Use Assetic for Image Optimization
with Twig Functions

Amongst its many filters, Assetic has four filters which can be used for on-the-fly image optimization.
This allows you to get the benefits of smaller file sizes without having to use an image editor to process
each image. The results are cached and can be dumped for production so there is no performance hit for
your end users.

Using Jpegoptim

Jpegoptim1 is a utility for optimizing JPEG files. To use it with Assetic, add the following to the Assetic
config:

1
2
3
4
5

# app/config/config.yml
assetic:

filters:
jpegoptim:

bin: path/to/jpegoptim

Notice that to use jpegoptim, you must have it already installed on your system. The bin option
points to the location of the compiled binary.

It can now be used from a template:

1
2
3
4

{% image '@AppBundle/Resources/public/images/example.jpg'
filter='jpegoptim' output='/images/example.jpg' %}
<img src="{{ asset_url }}" alt="Example"/>

{% endimage %}

1. http://www.kokkonen.net/tjko/projects.html

PDF brought to you by
generated on March 11, 2015

Chapter 4: How to Use Assetic for Image Optimization with Twig Functions | 20

http://sensiolabs.com


Listing 4-3

Listing 4-4

Listing 4-5

Listing 4-6

Listing 4-7

Removing all EXIF Data

By default, running this filter only removes some of the meta information stored in the file. Any EXIF
data and comments are not removed, but you can remove these by using the strip_all option:

1
2
3
4
5
6

# app/config/config.yml
assetic:

filters:
jpegoptim:

bin: path/to/jpegoptim
strip_all: true

Lowering maximum Quality

The quality level of the JPEG is not affected by default. You can gain further file size reductions by setting
the max quality setting lower than the current level of the images. This will of course be at the expense of
image quality:

1
2
3
4
5
6

# app/config/config.yml
assetic:

filters:
jpegoptim:

bin: path/to/jpegoptim
max: 70

Shorter Syntax: Twig Function
If you're using Twig, it's possible to achieve all of this with a shorter syntax by enabling and using a
special Twig function. Start by adding the following config:

1
2
3
4
5
6
7
8

# app/config/config.yml
assetic:

filters:
jpegoptim:

bin: path/to/jpegoptim
twig:

functions:
jpegoptim: ~

The Twig template can now be changed to the following:

1 <img src="{{ jpegoptim('@AppBundle/Resources/public/images/example.jpg') }}" alt="Example"/>

You can specify the output directory in the config in the following way:

1
2
3
4
5
6
7
8

# app/config/config.yml
assetic:

filters:
jpegoptim:

bin: path/to/jpegoptim
twig:

functions:
jpegoptim: { output: images/*.jpg }

PDF brought to you by
generated on March 11, 2015

Chapter 4: How to Use Assetic for Image Optimization with Twig Functions | 21

http://sensiolabs.com


Listing 5-1

Listing 5-2

Chapter 5

How to Apply an Assetic Filter to a specific File
Extension

Assetic filters can be applied to individual files, groups of files or even, as you'll see here, files that have
a specific extension. To show you how to handle each option, suppose that you want to use Assetic's
CoffeeScript filter, which compiles CoffeeScript files into JavaScript.

The main configuration is just the paths to coffee, node and node_modules. An example configuration
might look like this:

1
2
3
4
5
6
7

# app/config/config.yml
assetic:

filters:
coffee:

bin: /usr/bin/coffee
node: /usr/bin/node
node_paths: [/usr/lib/node_modules/]

Filter a single File
You can now serve up a single CoffeeScript file as JavaScript from within your templates:

1
2
3

{% javascripts '@AppBundle/Resources/public/js/example.coffee' filter='coffee' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

This is all that's needed to compile this CoffeeScript file and serve it as the compiled JavaScript.

Filter multiple Files
You can also combine multiple CoffeeScript files into a single output file:

PDF brought to you by
generated on March 11, 2015

Chapter 5: How to Apply an Assetic Filter to a specific File Extension | 22

http://sensiolabs.com


Listing 5-3

Listing 5-4

Listing 5-5

1
2
3
4
5

{% javascripts '@AppBundle/Resources/public/js/example.coffee'
'@AppBundle/Resources/public/js/another.coffee'

filter='coffee' %}
<script src="{{ asset_url }}"></script>

{% endjavascripts %}

Both the files will now be served up as a single file compiled into regular JavaScript.

Filtering Based on a File Extension
One of the great advantages of using Assetic is reducing the number of asset files to lower HTTP requests.
In order to make full use of this, it would be good to combine all your JavaScript and CoffeeScript files
together since they will ultimately all be served as JavaScript. Unfortunately just adding the JavaScript
files to the files to be combined as above will not work as the regular JavaScript files will not survive the
CoffeeScript compilation.

This problem can be avoided by using the apply_to option in the config, which allows you to specify
which filter should always be applied to particular file extensions. In this case you can specify that the
coffee filter is applied to all .coffee files:

1
2
3
4
5
6
7
8

# app/config/config.yml
assetic:

filters:
coffee:

bin:        /usr/bin/coffee
node:       /usr/bin/node
node_paths: [/usr/lib/node_modules/]
apply_to:   "\.coffee$"

With this, you no longer need to specify the coffee filter in the template. You can also list regular
JavaScript files, all of which will be combined and rendered as a single JavaScript file (with only the
.coffee files being run through the CoffeeScript filter):

1
2
3
4
5

{% javascripts '@AppBundle/Resources/public/js/example.coffee'
'@AppBundle/Resources/public/js/another.coffee'
'@AppBundle/Resources/public/js/regular.js' %}

<script src="{{ asset_url }}"></script>
{% endjavascripts %}

PDF brought to you by
generated on March 11, 2015

Chapter 5: How to Apply an Assetic Filter to a specific File Extension | 23

http://sensiolabs.com


Listing 6-1

Chapter 6

How to Install 3rd Party Bundles

Most bundles provide their own installation instructions. However, the basic steps for installing a bundle
are the same:

• A) Add Composer Dependencies
• B) Enable the Bundle
• C) Configure the Bundle

A) Add Composer Dependencies
Dependencies are managed with Composer, so if Composer is new to you, learn some basics in their
documentation1. This has 2 steps:

1) Find out the Name of the Bundle on Packagist

The README for a bundle (e.g. FOSUserBundle2) usually tells you its name (e.g. friendsofsymfony/
user-bundle). If it doesn't, you can search for the library on the Packagist.org3 site.

Looking for bundles? Try searching at KnpBundles.com4: the unofficial archive of Symfony
Bundles.

2) Install the Bundle via Composer

Now that you know the package name, you can install it via Composer:

1 $ composer require friendsofsymfony/user-bundle

1. http://getcomposer.org/doc/00-intro.md

2. https://github.com/FriendsOfSymfony/FOSUserBundle

3. https://packagist.org

4. http://knpbundles.com/

PDF brought to you by
generated on March 11, 2015

Chapter 6: How to Install 3rd Party Bundles | 24

http://sensiolabs.com


Listing 6-2

Listing 6-3

Listing 6-4

Listing 6-5

This will choose the best version for your project, add it to composer.json and download the library into
the vendor/ directory. If you need a specific version, add a : and the version right after the library name
(see composer require5).

B) Enable the Bundle
At this point, the bundle is installed in your Symfony project (in vendor/friendsofsymfony/) and the
autoloader recognizes its classes. The only thing you need to do now is register the bundle in AppKernel:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{

// ...

public function registerBundles()
{

$bundles = array(
// ...,
new FOS\UserBundle\FOSUserBundle(),

);

// ...
}

}

C) Configure the Bundle
It's pretty common for a bundle to need some additional setup or configuration in app/config/
config.yml. The bundle's documentation will tell you about the configuration, but you can also get a
reference of the bundle's config via the config:dump-reference command.

For instance, in order to look the reference of the assetic config you can use this:

1 $ app/console config:dump-reference AsseticBundle

or this:

1 $ app/console config:dump-reference assetic

The output will look like this:

1
2
3
4
5
6
7
8

assetic:
debug:                %kernel.debug%
use_controller:

enabled:              %kernel.debug%
profiler:             false

read_from:            %kernel.root_dir%/../web
write_to:             %assetic.read_from%
java:                 /usr/bin/java

5. https://getcomposer.org/doc/03-cli.md#require

PDF brought to you by
generated on March 11, 2015

Chapter 6: How to Install 3rd Party Bundles | 25

http://sensiolabs.com


9
10
11

node:                 /usr/local/bin/node
node_paths:           []
# ...

Other Setup
At this point, check the README file of your brand new bundle to see what to do next. Have fun!

PDF brought to you by
generated on March 11, 2015

Chapter 6: How to Install 3rd Party Bundles | 26

http://sensiolabs.com


Chapter 7

Best Practices for Reusable Bundles

There are 2 types of bundles:

• Application-specific bundles: only used to build your application;
• Reusable bundles: meant to be shared across many projects.

This article is all about how to structure your reusable bundles so that they're easy to configure and
extend. Many of these recommendations do not apply to application bundles because you'll want to keep
those as simple as possible. For application bundles, just follow the practices shown throughout the book
and cookbook.

The best practices for application-specific bundles are discussed in The Symfony Framework Best Practices.

Bundle Name

A bundle is also a PHP namespace. The namespace must follow the technical interoperability standards1

for PHP namespaces and class names: it starts with a vendor segment, followed by zero or more category
segments, and it ends with the namespace short name, which must end with a Bundle suffix.

A namespace becomes a bundle as soon as you add a bundle class to it. The bundle class name must
follow these simple rules:

• Use only alphanumeric characters and underscores;
• Use a CamelCased name;
• Use a descriptive and short name (no more than 2 words);
• Prefix the name with the concatenation of the vendor (and optionally the category

namespaces);
• Suffix the name with Bundle.

Here are some valid bundle namespaces and class names:

1. http://www.php-fig.org/psr/psr-0/

PDF brought to you by
generated on March 11, 2015

Chapter 7: Best Practices for Reusable Bundles | 27

http://sensiolabs.com


Listing 7-1

Namespace Bundle Class Name

Acme\Bundle\BlogBundle AcmeBlogBundle

Acme\Bundle\Social\BlogBundle AcmeSocialBlogBundle

Acme\BlogBundle AcmeBlogBundle

By convention, the getName() method of the bundle class should return the class name.

If you share your bundle publicly, you must use the bundle class name as the name of the
repository (AcmeBlogBundle and not BlogBundle for instance).

Symfony core Bundles do not prefix the Bundle class with Symfony and always add a Bundle sub-
namespace; for example: FrameworkBundle2.

Each bundle has an alias, which is the lower-cased short version of the bundle name using underscores
(acme_hello for AcmeHelloBundle, or acme_social_blog for Acme\Social\BlogBundle for instance).
This alias is used to enforce uniqueness within a bundle (see below for some usage examples).

Directory Structure
The basic directory structure of a HelloBundle must read as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

XXX/...
HelloBundle/

HelloBundle.php
Controller/
Resources/

meta/
LICENSE

config/
doc/

index.rst
translations/
views/
public/

Tests/

The XXX directory(ies) reflects the namespace structure of the bundle.

The following files are mandatory:

• HelloBundle.php;
• Resources/meta/LICENSE: The full license for the code;
• Resources/doc/index.rst: The root file for the Bundle documentation.

These conventions ensure that automated tools can rely on this default structure to work.

2. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/FrameworkBundle.html

PDF brought to you by
generated on March 11, 2015

Chapter 7: Best Practices for Reusable Bundles | 28

http://sensiolabs.com


The depth of sub-directories should be kept to the minimal for most used classes and files (2 levels at a
maximum). More levels can be defined for non-strategic, less-used files.

The bundle directory is read-only. If you need to write temporary files, store them under the cache/ or
log/ directory of the host application. Tools can generate files in the bundle directory structure, but only
if the generated files are going to be part of the repository.

The following classes and files have specific emplacements:

Type Directory

Commands Command/

Controllers Controller/

Service Container Extensions DependencyInjection/

Event Listeners EventListener/

Configuration Resources/config/

Web Resources Resources/public/

Translation files Resources/translations/

Templates Resources/views/

Unit and Functional Tests Tests/

When building a reusable bundle, model classes should be placed in the Model namespace. See
How to Provide Model Classes for several Doctrine Implementations for how to handle the mapping
with a compiler pass.

Classes
The bundle directory structure is used as the namespace hierarchy. For instance, a HelloController
controller is stored in Bundle/HelloBundle/Controller/HelloController.php and the fully qualified
class name is Bundle\HelloBundle\Controller\HelloController.

All classes and files must follow the Symfony coding standards.

Some classes should be seen as facades and should be as short as possible, like Commands, Helpers,
Listeners, and Controllers.

Classes that connect to the event dispatcher should be suffixed with Listener.

Exceptions classes should be stored in an Exception sub-namespace.

Vendors
A bundle must not embed third-party PHP libraries. It should rely on the standard Symfony autoloading
instead.

A bundle should not embed third-party libraries written in JavaScript, CSS, or any other language.

PDF brought to you by
generated on March 11, 2015

Chapter 7: Best Practices for Reusable Bundles | 29

http://sensiolabs.com


Listing 7-2

Tests
A bundle should come with a test suite written with PHPUnit and stored under the Tests/ directory.
Tests should follow the following principles:

• The test suite must be executable with a simple phpunit command run from a sample
application;

• The functional tests should only be used to test the response output and some profiling
information if you have some;

• The tests should cover at least 95% of the code base.

A test suite must not contain AllTests.php scripts, but must rely on the existence of a
phpunit.xml.dist file.

Documentation
All classes and functions must come with full PHPDoc.

Extensive documentation should also be provided in the reStructuredText format, under the Resources/
doc/ directory; the Resources/doc/index.rst file is the only mandatory file and must be the entry point
for the documentation.

Installation Instructions

In order to ease the installation of third-party bundles, consider using the following standardized
instructions in your README.md file.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Installation
============

Step 1: Download the Bundle
---------------------------

Open a command console, enter your project directory and execute the
following command to download the latest stable version of this bundle:

```bash
$ composer require <package-name> "~1"
```

This command requires you to have Composer installed globally, as explained
in the [installation chapter](https://getcomposer.org/doc/00-intro.md)
of the Composer documentation.

Step 2: Enable the Bundle
-------------------------

Then, enable the bundle by adding the following line in the `app/AppKernel.php`
file of your project:

```php
<?php
// app/AppKernel.php

PDF brought to you by
generated on March 11, 2015

Chapter 7: Best Practices for Reusable Bundles | 30

http://sensiolabs.com


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// ...
class AppKernel extends Kernel
{

public function registerBundles()
{

$bundles = array(
// ...

new <vendor>\<bundle-name>\<bundle-long-name>(),
);

// ...
}

// ...
}
```

This template assumes that your bundle is in its 1.x version. If not, change the "~1" installation version
accordingly ("~2", "~3", etc.)

Optionally, you can add more installation steps (Step 3, Step 4, etc.) to explain other required installation
tasks, such as registering routes or dumping assets.

Routing
If the bundle provides routes, they must be prefixed with the bundle alias. For an AcmeBlogBundle for
instance, all routes must be prefixed with acme_blog_.

Templates
If a bundle provides templates, they must use Twig. A bundle must not provide a main layout, except if
it provides a full working application.

Translation Files
If a bundle provides message translations, they must be defined in the XLIFF format; the domain should
be named after the bundle name (bundle.hello).

A bundle must not override existing messages from another bundle.

Configuration
To provide more flexibility, a bundle can provide configurable settings by using the Symfony built-in
mechanisms.

For simple configuration settings, rely on the default parameters entry of the Symfony configuration.
Symfony parameters are simple key/value pairs; a value being any valid PHP value. Each parameter name
should start with the bundle alias, though this is just a best-practice suggestion. The rest of the parameter
name will use a period (.) to separate different parts (e.g. acme_hello.email.from).

The end user can provide values in any configuration file:

PDF brought to you by
generated on March 11, 2015

Chapter 7: Best Practices for Reusable Bundles | 31

http://sensiolabs.com


Listing 7-3

Listing 7-4

Listing 7-5

1
2
3

# app/config/config.yml
parameters:

acme_hello.email.from: fabien@example.com

Retrieve the configuration parameters in your code from the container:

1 $container->getParameter('acme_hello.email.from');

Even if this mechanism is simple enough, you are highly encouraged to use the semantic configuration
described in the cookbook.

If you are defining services, they should also be prefixed with the bundle alias.

Custom Validation Constraints
Starting with Symfony 2.5, a new Validation API was introduced. In fact, there are 3 modes, which the
user can configure in their project:

• 2.4: the original 2.4 and earlier validation API;
• 2.5: the new 2.5 and later validation API;
• 2.5-BC: the new 2.5 API with a backwards-compatible layer so that the 2.4 API still works.

This is only available in PHP 5.3.9+.

As a bundle author, you'll want to support both API's, since some users may still be using the 2.4 API.
Specifically, if your bundle adds a violation directly to the ExecutionContext3 (e.g. like in a custom
validation constraint), you'll need to check for which API is being used. The following code, would work
for all users:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

use Symfony\Component\Validator\ConstraintValidator;
use Symfony\Component\Validator\Constraint;
use Symfony\Component\Validator\Context\ExecutionContextInterface;
// ...

class ContainsAlphanumericValidator extends ConstraintValidator
{

public function validate($value, Constraint $constraint)
{

if ($this->context instanceof ExecutionContextInterface) {
// the 2.5 API
$this->context->buildViolation($constraint->message)

->setParameter('%string%', $value)
->addViolation()

;
} else {

// the 2.4 API
$this->context->addViolation(

$constraint->message,
array('%string%' => $value)

);

3. http://api.symfony.com/2.6/Symfony/Component/Validator/Context/ExecutionContext.html

PDF brought to you by
generated on March 11, 2015

Chapter 7: Best Practices for Reusable Bundles | 32

http://sensiolabs.com


22
23
24

}
}

}

Learn more from the Cookbook
• How to Load Service Configuration inside a Bundle

PDF brought to you by
generated on March 11, 2015

Chapter 7: Best Practices for Reusable Bundles | 33

http://sensiolabs.com


Listing 8-1

Chapter 8

How to Use Bundle Inheritance to Override
Parts of a Bundle

When working with third-party bundles, you'll probably come across a situation where you want to
override a file in that third-party bundle with a file in one of your own bundles. Symfony gives you a very
convenient way to override things like controllers, templates, and other files in a bundle's Resources/
directory.

For example, suppose that you're installing the FOSUserBundle1, but you want to override its base
layout.html.twig template, as well as one of its controllers. Suppose also that you have your own
AcmeUserBundle where you want the overridden files to live. Start by registering the FOSUserBundle as
the "parent" of your bundle:

1
2
3
4
5
6
7
8
9

10
11
12

// src/Acme/UserBundle/AcmeUserBundle.php
namespace Acme\UserBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeUserBundle extends Bundle
{

public function getParent()
{

return 'FOSUserBundle';
}

}

By making this simple change, you can now override several parts of the FOSUserBundle simply by
creating a file with the same name.

Despite the method name, there is no parent/child relationship between the bundles, it is just a
way to extend and override an existing bundle.

1. https://github.com/friendsofsymfony/fosuserbundle

PDF brought to you by
generated on March 11, 2015

Chapter 8: How to Use Bundle Inheritance to Override Parts of a Bundle | 34

http://sensiolabs.com


Listing 8-2

Overriding Controllers
Suppose you want to add some functionality to the registerAction of a RegistrationController that
lives inside FOSUserBundle. To do so, just create your own RegistrationController.php file, override
the bundle's original method, and change its functionality:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/Acme/UserBundle/Controller/RegistrationController.php
namespace Acme\UserBundle\Controller;

use FOS\UserBundle\Controller\RegistrationController as BaseController;

class RegistrationController extends BaseController
{

public function registerAction()
{

$response = parent::registerAction();

// ... do custom stuff
return $response;

}
}

Depending on how severely you need to change the behavior, you might call
parent::registerAction() or completely replace its logic with your own.

Overriding controllers in this way only works if the bundle refers to the controller using the
standard FOSUserBundle:Registration:register syntax in routes and templates. This is the
best practice.

Overriding Resources: Templates, Routing, etc
Most resources can also be overridden, simply by creating a file in the same location as your parent
bundle.

For example, it's very common to need to override the FOSUserBundle's layout.html.twig template so
that it uses your application's base layout. Since the file lives at Resources/views/layout.html.twig in
the FOSUserBundle, you can create your own file in the same location of AcmeUserBundle. Symfony will
ignore the file that lives inside the FOSUserBundle entirely, and use your file instead.

The same goes for routing files and some other resources.

The overriding of resources only works when you refer to resources with the @FOSUserBundle/
Resources/config/routing/security.xml method. If you refer to resources without using the
@BundleName shortcut, they can't be overridden in this way.

Translation and validation files do not work in the same way as described above. Read
"Translations" if you want to learn how to override translations and see "Validation Metadata" for
tricks to override the validation.

PDF brought to you by
generated on March 11, 2015

Chapter 8: How to Use Bundle Inheritance to Override Parts of a Bundle | 35

http://sensiolabs.com


Chapter 9

How to Override any Part of a Bundle

This document is a quick reference for how to override different parts of third-party bundles.

Templates
For information on overriding templates, see

• Overriding Bundle Templates.
• How to Use Bundle Inheritance to Override Parts of a Bundle

Routing
Routing is never automatically imported in Symfony. If you want to include the routes from any
bundle, then they must be manually imported from somewhere in your application (e.g. app/config/
routing.yml).

The easiest way to "override" a bundle's routing is to never import it at all. Instead of importing a
third-party bundle's routing, simply copy that routing file into your application, modify it, and import it
instead.

Controllers
Assuming the third-party bundle involved uses non-service controllers (which is almost always the case),
you can easily override controllers via bundle inheritance. For more information, see How to Use Bundle
Inheritance to Override Parts of a Bundle. If the controller is a service, see the next section on how to
override it.

PDF brought to you by
generated on March 11, 2015

Chapter 9: How to Override any Part of a Bundle | 36

http://sensiolabs.com


Listing 9-1

Listing 9-2

Services & Configuration
In order to override/extend a service, there are two options. First, you can set the parameter holding the
service's class name to your own class by setting it in app/config/config.yml. This of course is only
possible if the class name is defined as a parameter in the service config of the bundle containing the
service. For example, to override the class used for Symfony's translator service, you would override the
translator.class parameter. Knowing exactly which parameter to override may take some research.
For the translator, the parameter is defined and used in the Resources/config/translation.xml file in
the core FrameworkBundle:

1
2
3

# app/config/config.yml
parameters:

translator.class: Acme\HelloBundle\Translation\Translator

Secondly, if the class is not available as a parameter, you want to make sure the class is always overridden
when your bundle is used or if you need to modify something beyond just the class name, you should use
a compiler pass:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/Acme/DemoBundle/DependencyInjection/Compiler/OverrideServiceCompilerPass.php
namespace Acme\DemoBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class OverrideServiceCompilerPass implements CompilerPassInterface
{

public function process(ContainerBuilder $container)
{

$definition = $container->getDefinition('original-service-id');
$definition->setClass('Acme\DemoBundle\YourService');

}
}

In this example you fetch the service definition of the original service, and set its class name to your own
class.

See How to Work with Compiler Passes in Bundles for information on how to use compiler passes. If you
want to do something beyond just overriding the class - like adding a method call - you can only use the
compiler pass method.

Entities & Entity Mapping
Due to the way Doctrine works, it is not possible to override entity mapping of a bundle. However,
if a bundle provides a mapped superclass (such as the User entity in the FOSUserBundle) one can
override attributes and associations. Learn more about this feature and its limitations in the Doctrine
documentation1.

Forms
In order to override a form type, it has to be registered as a service (meaning it is tagged as form.type).
You can then override it as you would override any service as explained in Services & Configuration.
This, of course, will only work if the type is referred to by its alias rather than being instantiated, e.g.:

1. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/inheritance-mapping.html#overrides

PDF brought to you by
generated on March 11, 2015

Chapter 9: How to Override any Part of a Bundle | 37

http://sensiolabs.com


Listing 9-3

Listing 9-4

Listing 9-5

1 $builder->add('name', 'custom_type');

rather than:

1 $builder->add('name', new CustomType());

Validation Metadata
Symfony loads all validation configuration files from every bundle and combines them into one validation
metadata tree. This means you are able to add new constraints to a property, but you cannot override
them.

To override this, the 3rd party bundle needs to have configuration for validation groups. For instance,
the FOSUserBundle has this configuration. To create your own validation, add the constraints to a new
validation group:

1
2
3
4
5
6
7
8
9

10

# src/Acme/UserBundle/Resources/config/validation.yml
FOS\UserBundle\Model\User:

properties:
plainPassword:

- NotBlank:
groups: [AcmeValidation]

- Length:
min: 6
minMessage: fos_user.password.short
groups: [AcmeValidation]

Now, update the FOSUserBundle configuration, so it uses your validation groups instead of the original
ones.

Translations
Translations are not related to bundles, but to domains. That means that you can override the
translations from any translation file, as long as it is in the correct domain.

The last translation file always wins. That means that you need to make sure that the bundle
containing your translations is loaded after any bundle whose translations you're overriding. This
is done in AppKernel.

The file that always wins is the one that is placed in app/Resources/translations, as those files
are always loaded last.

PDF brought to you by
generated on March 11, 2015

Chapter 9: How to Override any Part of a Bundle | 38

http://sensiolabs.com


Listing 10-1

Chapter 10

How to Remove the AcmeDemoBundle

The Symfony Standard Edition comes with a complete demo that lives inside a bundle called
AcmeDemoBundle. It is a great boilerplate to refer to while starting a project, but you'll probably want to
eventually remove it.

This article uses the AcmeDemoBundle as an example, but you can use these steps to remove any
bundle.

1. Unregister the Bundle in the AppKernel
To disconnect the bundle from the framework, you should remove the bundle from the
AppKernel::registerBundles() method. The bundle is normally found in the $bundles array but the
AcmeDemoBundle is only registered in the development environment and you can find it inside the if
statement below:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{

public function registerBundles()
{

$bundles = array(...);

if (in_array($this->getEnvironment(), array('dev', 'test'))) {
// comment or remove this line:
// $bundles[] = new Acme\DemoBundle\AcmeDemoBundle();
// ...

}
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 10: How to Remove the AcmeDemoBundle | 39

http://sensiolabs.com


Listing 10-2

2. Remove Bundle Configuration
Now that Symfony doesn't know about the bundle, you need to remove any configuration and routing
configuration inside the app/config directory that refers to the bundle.

2.1 Remove Bundle Routing

The routing for the AcmeDemoBundle can be found in app/config/routing_dev.yml. Remove the
_acme_demo entry at the bottom of this file.

2.2 Remove Bundle Configuration

Some bundles contain configuration in one of the app/config/config*.yml files. Be sure to remove
the related configuration from these files. You can quickly spot bundle configuration by looking for a
acme_demo (or whatever the name of the bundle is, e.g. fos_user for the FOSUserBundle) string in the
configuration files.

The AcmeDemoBundle doesn't have configuration. However, the bundle is used in the configuration for
the app/config/security.yml file. You can use it as a boilerplate for your own security, but you can
also remove everything: it doesn't matter to Symfony if you remove it or not.

3. Remove the Bundle from the Filesystem
Now you have removed every reference to the bundle in your application, you should remove the bundle
from the filesystem. The bundle is located in the src/Acme/DemoBundle directory. You should remove
this directory and you can remove the Acme directory as well.

If you don't know the location of a bundle, you can use the getPath()1 method to get the path of
the bundle:

1 echo $this->container->get('kernel')->getBundle('AcmeDemoBundle')->getPath();

3.1 Remove Bundle Assets

Remove the assets of the bundle in the web/ directory (e.g. web/bundles/acmedemo for the
AcmeDemoBundle).

4. Remove Integration in other Bundles

This doesn't apply to the AcmeDemoBundle - no other bundles depend on it, so you can skip this
step.

Some bundles rely on other bundles, if you remove one of the two, the other will probably not work. Be
sure that no other bundles, third party or self-made, rely on the bundle you are about to remove.

1. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Bundle/BundleInterface.html#getPath()

PDF brought to you by
generated on March 11, 2015

Chapter 10: How to Remove the AcmeDemoBundle | 40

http://sensiolabs.com


If one bundle relies on another, in most cases it means that it uses some services from the
bundle. Searching for the bundle alias string may help you spot them (e.g. acme_demo for bundles
depending on AcmeDemoBundle).

If a third party bundle relies on another bundle, you can find that bundle mentioned in the
composer.json file included in the bundle directory.

PDF brought to you by
generated on March 11, 2015

Chapter 10: How to Remove the AcmeDemoBundle | 41

http://sensiolabs.com


Listing 11-1

Chapter 11

How to Load Service Configuration inside a
Bundle

In Symfony, you'll find yourself using many services. These services can be registered in the app/config
directory of your application. But when you want to decouple the bundle for use in other projects, you
want to include the service configuration in the bundle itself. This article will teach you how to do that.

Creating an Extension Class
In order to load service configuration, you have to create a Dependency Injection Extension for your
bundle. This class has some conventions in order to be detected automatically. But you'll later see how
you can change it to your own preferences. By default, the Extension has to comply with the following
conventions:

• It has to live in the DependencyInjection namespace of the bundle;
• The name is equal to the bundle name with the Bundle suffix replaced by Extension (e.g.

the Extension class of the AppBundle would be called AppExtension and the one for
AcmeHelloBundle would be called AcmeHelloExtension).

The Extension class should implement the ExtensionInterface1, but usually you would simply extend
the Extension2 class:

1
2
3
4
5
6
7
8

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php
namespace Acme\HelloBundle\DependencyInjection;

use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AcmeHelloExtension extends Extension
{

1. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Extension/ExtensionInterface.html

2. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Extension/Extension.html

PDF brought to you by
generated on March 11, 2015

Chapter 11: How to Load Service Configuration inside a Bundle | 42

http://sensiolabs.com


Listing 11-2

Listing 11-3

9
10
11
12
13

public function load(array $configs, ContainerBuilder $container)
{

// ... you'll load the files here later
}

}

Manually Registering an Extension Class

When not following the conventions, you will have to manually register your extension. To do this,
you should override the Bundle::getContainerExtension()3 method to return the instance of the
extension:

1
2
3
4
5
6
7
8
9

10

// ...
use Acme\HelloBundle\DependencyInjection\UnconventionalExtensionClass;

class AcmeHelloBundle extends Bundle
{

public function getContainerExtension()
{

return new UnconventionalExtensionClass();
}

}

Since the new Extension class name doesn't follow the naming conventions, you should also override
Extension::getAlias()4 to return the correct DI alias. The DI alias is the name used to refer to the
bundle in the container (e.g. in the app/config/config.yml file). By default, this is done by removing
the Extension suffix and converting the class name to underscores (e.g. AcmeHelloExtension's DI alias
is acme_hello).

Using the load() Method
In the load() method, all services and parameters related to this extension will be loaded. This method
doesn't get the actual container instance, but a copy. This container only has the parameters from the
actual container. After loading the services and parameters, the copy will be merged into the actual
container, to ensure all services and parameters are also added to the actual container.

In the load() method, you can use PHP code to register service definitions, but it is more common if you
put these definitions in a configuration file (using the Yaml, XML or PHP format). Luckily, you can use
the file loaders in the extension!

For instance, assume you have a file called services.xml in the Resources/config directory of your
bundle, your load method looks like:

1
2
3
4
5
6
7
8

use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;
use Symfony\Component\Config\FileLocator;

// ...
public function load(array $configs, ContainerBuilder $container)
{

$loader = new XmlFileLoader(
$container,

3. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Bundle/Bundle.html#build()

4. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Extension/Extension.html#getAlias()

PDF brought to you by
generated on March 11, 2015

Chapter 11: How to Load Service Configuration inside a Bundle | 43

http://sensiolabs.com


9
10
11
12

new FileLocator(__DIR__.'/../Resources/config')
);
$loader->load('services.xml');

}

Other available loaders are the YamlFileLoader, PhpFileLoader and IniFileLoader.

The IniFileLoader can only be used to load parameters and it can only load them as strings.

Using Configuration to Change the Services

The Extension is also the class that handles the configuration for that particular bundle (e.g. the
configuration in app/config/config.yml). To read more about it, see the "How to Create Friendly
Configuration for a Bundle" article.

PDF brought to you by
generated on March 11, 2015

Chapter 11: How to Load Service Configuration inside a Bundle | 44

http://sensiolabs.com


Listing 12-1

Chapter 12

How to Create Friendly Configuration for a
Bundle

If you open your application configuration file (usually app/config/config.yml), you'll see a number of
different configuration "namespaces", such as framework, twig and doctrine. Each of these configures
a specific bundle, allowing you to configure things at a high level and then let the bundle make all the
low-level, complex changes based on your settings.

For example, the following tells the FrameworkBundle to enable the form integration, which involves the
definition of quite a few services as well as integration of other related components:

1
2

framework:
form: true

Using Parameters to Configure your Bundle

If you don't have plans to share your bundle between projects, it doesn't make sense to use this
more advanced way of configuration. Since you use the bundle only in one project, you can just
change the service configuration each time.

If you do want to be able to configure something from within config.yml, you can always create a
parameter there and use that parameter somewhere else.

Using the Bundle Extension
The basic idea is that instead of having the user override individual parameters, you let the user
configure just a few, specifically created, options. As the bundle developer, you then parse through that
configuration and load correct services and parameters inside an "Extension" class.

As an example, imagine you are creating a social bundle, which provides integration with Twitter and
such. To be able to reuse your bundle, you have to make the client_id and client_secret variables
configurable. Your bundle configuration would look like:

PDF brought to you by
generated on March 11, 2015

Chapter 12: How to Create Friendly Configuration for a Bundle | 45

http://sensiolabs.com


Listing 12-2

Listing 12-3

Listing 12-4

1
2
3
4
5

# app/config/config.yml
acme_social:

twitter:
client_id: 123
client_secret: $ecret

Read more about the extension in How to Load Service Configuration inside a Bundle.

If a bundle provides an Extension class, then you should not generally override any service
container parameters from that bundle. The idea is that if an Extension class is present, every
setting that should be configurable should be present in the configuration made available by that
class. In other words, the extension class defines all the public configuration settings for which
backward compatibility will be maintained.

For parameter handling within a Dependency Injection class see Using Parameters within a Dependency
Injection Class.

Processing the $configs Array

First things first, you have to create an extension class as explained in How to Load Service Configuration
inside a Bundle.

Whenever a user includes the acme_social key (which is the DI alias) in a configuration file, the
configuration under it is added to an array of configurations and passed to the load() method of your
extension (Symfony automatically converts XML and YAML to an array).

For the configuration example in the previous section, the array passed to your load() method will look
like this:

1
2
3
4
5
6
7
8

array(
array(

'twitter' => array(
'client_id' => 123,
'client_secret' => '$ecret',

),
),

)

Notice that this is an array of arrays, not just a single flat array of the configuration values. This is
intentional, as it allows Symfony to parse several configuration resources. For example, if acme_social
appears in another configuration file - say config_dev.yml - with different values beneath it, the
incoming array might look like this:

1
2
3
4
5
6
7
8
9

10

array(
// values from config.yml
array(

'twitter' => array(
'client_id' => 123,
'client_secret' => '$secret',

),
),
// values from config_dev.yml
array(

PDF brought to you by
generated on March 11, 2015

Chapter 12: How to Create Friendly Configuration for a Bundle | 46

http://sensiolabs.com


Listing 12-5

Listing 12-6

11
12
13
14
15

'twitter' => array(
'client_id' => 456,

),
),

)

The order of the two arrays depends on which one is set first.

But don't worry! Symfony's Config component will help you merge these values, provide defaults and
give the user validation errors on bad configuration. Here's how it works. Create a Configuration
class in the DependencyInjection directory and build a tree that defines the structure of your bundle's
configuration.

The Configuration class to handle the sample configuration looks like:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// src/Acme/SocialBundle/DependencyInjection/Configuration.php
namespace Acme\SocialBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

class Configuration implements ConfigurationInterface
{

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('acme_social');

$rootNode
->children()

->arrayNode('twitter')
->children()

->integerNode('client_id')->end()
->scalarNode('client_secret')->end()

->end()
->end() // twitter

->end()
;

return $treeBuilder;
}

}

The Configuration class can be much more complicated than shown here, supporting "prototype" nodes,
advanced validation, XML-specific normalization and advanced merging. You can read more about this in the
Config component documentation. You can also see it in action by checking out some of the core Configuration
classes, such as the one from the FrameworkBundle Configuration1 or the TwigBundle Configuration2.

This class can now be used in your load() method to merge configurations and force validation (e.g. if
an additional option was passed, an exception will be thrown):

1
2
3
4

public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();

1. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/DependencyInjection/Configuration.php

2. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/TwigBundle/DependencyInjection/Configuration.php

PDF brought to you by
generated on March 11, 2015

Chapter 12: How to Create Friendly Configuration for a Bundle | 47

http://sensiolabs.com


Listing 12-7

Listing 12-8

5
6
7

$config = $this->processConfiguration($configuration, $configs);
// ...

}

The processConfiguration() method uses the configuration tree you've defined in the Configuration
class to validate, normalize and merge all of the configuration arrays together.

Instead of calling processConfiguration() in your extension each time you provide some
configuration options, you might want to use the ConfigurableExtension3 to do this
automatically for you:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php
namespace Acme\HelloBundle\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\HttpKernel\DependencyInjection\ConfigurableExtension;

class AcmeHelloExtension extends ConfigurableExtension
{

// note that this method is called loadInternal and not load
protected function loadInternal(array $mergedConfig, ContainerBuilder $container)
{

// ...
}

}

This class uses the getConfiguration() method to get the Configuration instance, you should
override it if your Configuration class is not called Configuration or if it is not placed in the same
namespace as the extension.

Processing the Configuration yourself

Using the Config component is fully optional. The load() method gets an array of configuration
values. You can simply parse these arrays yourself (e.g. by overriding configurations and using
isset4 to check for the existence of a value). Be aware that it'll be very hard to support XML.

1
2
3
4
5
6
7
8
9

10

public function load(array $configs, ContainerBuilder $container)
{

$config = array();
// let resources override the previous set value
foreach ($configs as $subConfig) {

$config = array_merge($config, $subConfig);
}

// ... now use the flat $config array
}

3. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/DependencyInjection/ConfigurableExtension.html

4. http://php.net/manual/en/function.isset.php

PDF brought to you by
generated on March 11, 2015

Chapter 12: How to Create Friendly Configuration for a Bundle | 48

http://sensiolabs.com


Listing 12-9

Modifying the Configuration of Another Bundle
If you have multiple bundles that depend on each other, it may be useful to allow one Extension class to
modify the configuration passed to another bundle's Extension class, as if the end-developer has actually
placed that configuration in their app/config/config.yml file. This can be achieved using a prepend
extension. For more details, see How to Simplify Configuration of multiple Bundles.

Dump the Configuration
The config:dump-reference command dumps the default configuration of a bundle in the console
using the Yaml format.

As long as your bundle's configuration is located in the standard location
(YourBundle\DependencyInjection\Configuration) and does not require arguments to be passed to
the constructor it will work automatically. If you have something different, your Extension class must
override the Extension::getConfiguration()5 method and return an instance of your Configuration.

Supporting XML
Symfony allows people to provide the configuration in three different formats: Yaml, XML and PHP.
Both Yaml and PHP use the same syntax and are supported by default when using the Config component.
Supporting XML requires you to do some more things. But when sharing your bundle with others, it is
recommended that you follow these steps.

Make your Config Tree ready for XML

The Config component provides some methods by default to allow it to correctly process XML
configuration. See "Normalization" of the component documentation. However, you can do some
optional things as well, this will improve the experience of using XML configuration:

Choosing an XML Namespace

In XML, the XML namespace6 is used to determine which elements belong to the configuration of
a specific bundle. The namespace is returned from the Extension::getNamespace()7 method. By
convention, the namespace is a URL (it doesn't have to be a valid URL nor does it need to exists). By
default, the namespace for a bundle is http://example.org/dic/schema/DI_ALIAS, where DI_ALIAS is
the DI alias of the extension. You might want to change this to a more professional URL:

1
2
3
4
5
6
7
8
9

10

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php

// ...
class AcmeHelloExtension extends Extension
{

// ...

public function getNamespace()
{

return 'http://acme_company.com/schema/dic/hello';

5. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/DependencyInjection/Extension.html#getConfiguration()

6. http://en.wikipedia.org/wiki/XML_namespace

7. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Extension/Extension.html#getNamespace()

PDF brought to you by
generated on March 11, 2015

Chapter 12: How to Create Friendly Configuration for a Bundle | 49

http://sensiolabs.com


Listing 12-10

Listing 12-11

11
12

}
}

Providing an XML Schema

XML has a very useful feature called XML schema8. This allows you to describe all possible elements and
attributes and their values in an XML Schema Definition (an xsd file). This XSD file is used by IDEs for
auto completion and it is used by the Config component to validate the elements.

In order to use the schema, the XML configuration file must provide an xsi:schemaLocation attribute
pointing to the XSD file for a certain XML namespace. This location always starts with the XML
namespace. This XML namespace is then replaced with the XSD validation base path returned from
Extension::getXsdValidationBasePath()9 method. This namespace is then followed by the rest of the
path from the base path to the file itself.

By convention, the XSD file lives in the Resources/config/schema, but you can place it anywhere you
like. You should return this path as the base path:

1
2
3
4
5
6
7
8
9

10
11
12

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php

// ...
class AcmeHelloExtension extends Extension
{

// ...

public function getXsdValidationBasePath()
{

return __DIR__.'/../Resources/config/schema';
}

}

Assume the XSD file is called hello-1.0.xsd, the schema location will be http://acme_company.com/
schema/dic/hello/hello-1.0.xsd:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

<!-- app/config/config.xml -->
<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:acme-hello="http://acme_company.com/schema/dic/hello"
xsi:schemaLocation="http://acme_company.com/schema/dic/hello

http://acme_company.com/schema/dic/hello/hello-1.0.xsd">

<acme-hello:config>
<!-- ... -->

</acme-hello:config>

<!-- ... -->
</container>

8. http://en.wikipedia.org/wiki/XML_schema

9. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/ExtensionInterface.html#getXsdValidationBasePath()

PDF brought to you by
generated on March 11, 2015

Chapter 12: How to Create Friendly Configuration for a Bundle | 50

http://sensiolabs.com


Listing 13-1

Chapter 13

How to Simplify Configuration of multiple
Bundles

When building reusable and extensible applications, developers are often faced with a choice: either
create a single large bundle or multiple smaller bundles. Creating a single bundle has the drawback that
it's impossible for users to choose to remove functionality they are not using. Creating multiple bundles
has the drawback that configuration becomes more tedious and settings often need to be repeated for
various bundles.

Using the below approach, it is possible to remove the disadvantage of the multiple bundle approach by
enabling a single Extension to prepend the settings for any bundle. It can use the settings defined in the
app/config/config.yml to prepend settings just as if they would have been written explicitly by the user
in the application configuration.

For example, this could be used to configure the entity manager name to use in multiple bundles. Or it
can be used to enable an optional feature that depends on another bundle being loaded as well.

To give an Extension the power to do this, it needs to implement PrependExtensionInterface1:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php
namespace Acme\HelloBundle\DependencyInjection;

use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AcmeHelloExtension extends Extension implements PrependExtensionInterface
{

// ...

public function prepend(ContainerBuilder $container)
{

// ...
}

}

1. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Extension/PrependExtensionInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 13: How to Simplify Configuration of multiple Bundles | 51

http://sensiolabs.com


Listing 13-2

Listing 13-3

Inside the prepend()2 method, developers have full access to the ContainerBuilder3 instance just
before the load()4 method is called on each of the registered bundle Extensions. In order to prepend
settings to a bundle extension developers can use the prependExtensionConfig()5 method on the
ContainerBuilder6 instance. As this method only prepends settings, any other settings done explicitly
inside the app/config/config.yml would override these prepended settings.

The following example illustrates how to prepend a configuration setting in multiple bundles as well as
disable a flag in multiple bundles in case a specific other bundle is not registered:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

public function prepend(ContainerBuilder $container)
{

// get all bundles
$bundles = $container->getParameter('kernel.bundles');
// determine if AcmeGoodbyeBundle is registered
if (!isset($bundles['AcmeGoodbyeBundle'])) {

// disable AcmeGoodbyeBundle in bundles
$config = array('use_acme_goodbye' => false);
foreach ($container->getExtensions() as $name => $extension) {

switch ($name) {
case 'acme_something':
case 'acme_other':

// set use_acme_goodbye to false in the config of
// acme_something and acme_other note that if the user manually
// configured use_acme_goodbye to true in the app/config/config.yml
// then the setting would in the end be true and not false
$container->prependExtensionConfig($name, $config);
break;

}
}

}

// process the configuration of AcmeHelloExtension
$configs = $container->getExtensionConfig($this->getAlias());
// use the Configuration class to generate a config array with
// the settings "acme_hello"
$config = $this->processConfiguration(new Configuration(), $configs);

// check if entity_manager_name is set in the "acme_hello" configuration
if (isset($config['entity_manager_name'])) {

// prepend the acme_something settings with the entity_manager_name
$config = array('entity_manager_name' => $config['entity_manager_name']);
$container->prependExtensionConfig('acme_something', $config);

}
}

The above would be the equivalent of writing the following into the app/config/config.yml in case
AcmeGoodbyeBundle is not registered and the entity_manager_name setting for acme_hello is set to
non_default:

1
2
3
4

# app/config/config.yml
acme_something:

# ...
use_acme_goodbye: false

2. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Extension/PrependExtensionInterface.html#prepend()

3. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/ContainerBuilder.html

4. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Extension/ExtensionInterface.html#load()

5. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/ContainerBuilder.html#prependExtensionConfig()

6. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/ContainerBuilder.html

PDF brought to you by
generated on March 11, 2015

Chapter 13: How to Simplify Configuration of multiple Bundles | 52

http://sensiolabs.com


5
6
7
8
9

entity_manager_name: non_default

acme_other:
# ...
use_acme_goodbye: false

PDF brought to you by
generated on March 11, 2015

Chapter 13: How to Simplify Configuration of multiple Bundles | 53

http://sensiolabs.com


Listing 14-1

Chapter 14

How to Use Varnish to Speed up my Website

Because Symfony's cache uses the standard HTTP cache headers, the Symfony Reverse Proxy can easily
be replaced with any other reverse proxy. Varnish1 is a powerful, open-source, HTTP accelerator capable
of serving cached content fast and including support for Edge Side Includes.

Make Symfony Trust the Reverse Proxy
For ESI to work correctly and for the X-FORWARDED headers to be used, you need to configure Varnish
as a trusted proxy.

Routing and X-FORWARDED Headers
To ensure that the Symfony Router generates URLs correctly with Varnish, a X-Forwarded-Port header
must be present for Symfony to use the correct port number.

This port depends on your setup. Lets say that external connections come in on the default HTTP port
80. For HTTPS connections, there is another proxy (as Varnish does not do HTTPS itself) on the default
HTTPS port 443 that handles the SSL termination and forwards the requests as HTTP requests to Varnish
with a X-Forwarded-Proto header. In this case, you need to add the following configuration snippet:

1
2
3
4
5
6
7

sub vcl_recv {
if (req.http.X-Forwarded-Proto == "https" ) {

set req.http.X-Forwarded-Port = "443";
} else {

set req.http.X-Forwarded-Port = "80";
}

}

1. https://www.varnish-cache.org

PDF brought to you by
generated on March 11, 2015

Chapter 14: How to Use Varnish to Speed up my Website | 54

http://sensiolabs.com


Listing 14-2

Remember to configure framework.trusted_proxies in the Symfony configuration so that Varnish is
seen as a trusted proxy and the X-Forwarded-* headers are used.

Varnish automatically forwards the IP as X-Forwarded-For and leaves the X-Forwarded-Proto
header in the request. If you do not configure Varnish as trusted proxy, Symfony will see all
requests as coming through insecure HTTP connections from the Varnish host instead of the real
client.

If the X-Forwarded-Port header is not set correctly, Symfony will append the port where the PHP
application is running when generating absolute URLs, e.g. http://example.com:8080/my/path.

Cookies and Caching
By default, a sane caching proxy does not cache anything when a request is sent with cookies or a basic
authentication header. This is because the content of the page is supposed to depend on the cookie value
or authentication header.

If you know for sure that the backend never uses sessions or basic authentication, have varnish remove
the corresponding header from requests to prevent clients from bypassing the cache. In practice, you
will need sessions at least for some parts of the site, e.g. when using forms with CSRF Protection. In this
situation, make sure to only start a session when actually needed and clear the session when it is no longer
needed. Alternatively, you can look into Caching Pages that Contain CSRF Protected Forms.

Cookies created in Javascript and used only in the frontend, e.g. when using Google analytics are
nonetheless sent to the server. These cookies are not relevant for the backend and should not affect the
caching decision. Configure your Varnish cache to clean the cookies header2. You want to keep the session
cookie, if there is one, and get rid of all other cookies so that pages are cached if there is no active session.
Unless you changed the default configuration of PHP, your session cookie has the name PHPSESSID:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

sub vcl_recv {
// Remove all cookies except the session ID.
if (req.http.Cookie) {

set req.http.Cookie = ";" + req.http.Cookie;
set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
set req.http.Cookie = regsuball(req.http.Cookie, ";(PHPSESSID)=", "; \1=");
set req.http.Cookie = regsuball(req.http.Cookie, ";[^ ][^;]*", "");
set req.http.Cookie = regsuball(req.http.Cookie, "^[; ]+|[; ]+$", "");

if (req.http.Cookie == "") {
// If there are no more cookies, remove the header to get page cached.
remove req.http.Cookie;

}
}

}

If content is not different for every user, but depends on the roles of a user, a solution is to separate
the cache per group. This pattern is implemented and explained by the FOSHttpCacheBundle3

under the name User Context4.

2. https://www.varnish-cache.org/trac/wiki/VCLExampleRemovingSomeCookies

3. http://foshttpcachebundle.readthedocs.org/

4. http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html

PDF brought to you by
generated on March 11, 2015

Chapter 14: How to Use Varnish to Speed up my Website | 55

http://sensiolabs.com


Listing 14-3

Listing 14-4

Ensure Consistent Caching Behaviour
Varnish uses the cache headers sent by your application to determine how to cache content. However,
versions prior to Varnish 4 did not respect Cache-Control: no-cache, no-store and private. To
ensure consistent behavior, use the following configuration if you are still using Varnish 3:

1
2
3
4
5
6
7
8
9

10
11

sub vcl_fetch {
/* By default, Varnish3 ignores Cache-Control: no-cache and private

https://www.varnish-cache.org/docs/3.0/tutorial/
increasing_your_hitrate.html#cache-control

*/
if (beresp.http.Cache-Control ~ "private" ||

beresp.http.Cache-Control ~ "no-cache" ||
beresp.http.Cache-Control ~ "no-store"

) {
return (hit_for_pass);

}
}

You can see the default behavior of Varnish in the form of a VCL file: default.vcl5 for Varnish 3,
builtin.vcl6 for Varnish 4.

Enable Edge Side Includes (ESI)
As explained in the Edge Side Includes section, Symfony detects whether it talks to a reverse proxy that
understands ESI or not. When you use the Symfony reverse proxy, you don't need to do anything. But to
make Varnish instead of Symfony resolve the ESI tags, you need some configuration in Varnish. Symfony
uses the Surrogate-Capability header from the Edge Architecture7 described by Akamai.

Varnish only supports the src attribute for ESI tags (onerror and alt attributes are ignored).

First, configure Varnish so that it advertises its ESI support by adding a Surrogate-Capability header
to requests forwarded to the backend application:

1
2
3
4

sub vcl_recv {
// Add a Surrogate-Capability header to announce ESI support.
set req.http.Surrogate-Capability = "abc=ESI/1.0";

}

The abc part of the header isn't important unless you have multiple "surrogates" that need to
advertise their capabilities. See Surrogate-Capability Header8 for details.

5. https://www.varnish-cache.org/trac/browser/bin/varnishd/default.vcl?rev=3.0

6. https://www.varnish-cache.org/trac/browser/bin/varnishd/builtin.vcl?rev=4.0

7. http://www.w3.org/TR/edge-arch

8. http://www.w3.org/TR/edge-arch

PDF brought to you by
generated on March 11, 2015

Chapter 14: How to Use Varnish to Speed up my Website | 56

http://sensiolabs.com


Listing 14-5

Then, optimize Varnish so that it only parses the Response contents when there is at least one ESI tag by
checking the Surrogate-Control header that Symfony adds automatically:

1
2
3
4
5
6
7

sub vcl_backend_response {
// Check for ESI acknowledgement and remove Surrogate-Control header
if (beresp.http.Surrogate-Control ~ "ESI/1.0") {

unset beresp.http.Surrogate-Control;
set beresp.do_esi = true;

}
}

If you followed the advice about ensuring a consistent caching behavior, those vcl functions already
exist. Just append the code to the end of the function, they won't interfere with each other.

Cache Invalidation
If you want to cache content that changes frequently and still serve the most recent version to users, you
need to invalidate that content. While cache invalidation9 allows you to purge content from your proxy
before it has expired, it adds complexity to your caching setup.

The open source FOSHttpCacheBundle10 takes the pain out of cache invalidation by helping you to
organize your caching and invalidation setup.

The documentation of the FOSHttpCacheBundle11 explains how to configure Varnish and other
reverse proxies for cache invalidation.

9. http://tools.ietf.org/html/rfc2616#section-13.10

10. http://foshttpcachebundle.readthedocs.org/

11. http://foshttpcachebundle.readthedocs.org/

PDF brought to you by
generated on March 11, 2015

Chapter 14: How to Use Varnish to Speed up my Website | 57

http://sensiolabs.com


Chapter 15

Caching Pages that Contain CSRF Protected
Forms

CSRF tokens are meant to be different for every user. This is why you need to be cautious if you try to
cache pages with forms including them.

For more information about how CSRF protection works in Symfony, please check CSRF Protection.

Why Caching Pages with a CSRF token is Problematic
Typically, each user is assigned a unique CSRF token, which is stored in the session for validation. This
means that if you do cache a page with a form containing a CSRF token, you'll cache the CSRF token of
the first user only. When a user submits the form, the token won't match the token stored in the session
and all users (except for the first) will fail CSRF validation when submitting the form.

In fact, many reverse proxies (like Varnish) will refuse to cache a page with a CSRF token. This is because
a cookie is sent in order to preserve the PHP session open and Varnish's default behaviour is to not cache
HTTP requests with cookies.

How to Cache Most of the Page and still be able to Use CSRF Protection
To cache a page that contains a CSRF token, you can use more advanced caching techniques like ESI
fragments, where you cache the full page and embedding the form inside an ESI tag with no cache at all.

Another option would be to load the form via an uncached AJAX request, but cache the rest of the HTML
response.

Or you can even load just the CSRF token with an AJAX request and replace the form field value with it.

PDF brought to you by
generated on March 11, 2015

Chapter 15: Caching Pages that Contain CSRF Protected Forms | 58

http://sensiolabs.com


Listing 16-1

Listing 16-2

Chapter 16

Installing Composer

Composer1 is the package manager used by modern PHP applications and the recommended way to
install Symfony2.

Install Composer on Linux and Mac OS X
To install Composer on Linux or Mac OS X, execute the following two commands:

1
2

$ curl -sS https://getcomposer.org/installer | php
$ sudo mv composer.phar /usr/local/bin/composer

If you don't have curl installed, you can also just download the installer file manually at
http://getcomposer.org/installer2 and then run:

1
2

$ php installer
$ sudo mv composer.phar /usr/local/bin/composer

Install Composer on Windows

Download the installer from getcomposer.org/download3, execute it and follow the instructions.

Learn more

You can read more about Composer in its documentation4.

1. https://getcomposer.org/

2. http://getcomposer.org/installer

3. https://getcomposer.org/download

PDF brought to you by
generated on March 11, 2015

Chapter 16: Installing Composer | 59

http://sensiolabs.com


4. https://getcomposer.org/doc/00-intro.md

PDF brought to you by
generated on March 11, 2015

Chapter 16: Installing Composer | 60

http://sensiolabs.com


Listing 17-1

Chapter 17

How to Master and Create new Environments

Every application is the combination of code and a set of configuration that dictates how that code should
function. The configuration may define the database being used, whether or not something should be
cached, or how verbose logging should be. In Symfony, the idea of "environments" is the idea that the
same codebase can be run using multiple different configurations. For example, the dev environment
should use configuration that makes development easy and friendly, while the prod environment should
use a set of configuration optimized for speed.

Different Environments, different Configuration Files
A typical Symfony application begins with three environments: dev, prod, and test. As discussed, each
"environment" simply represents a way to execute the same codebase with different configuration. It
should be no surprise then that each environment loads its own individual configuration file. If you're
using the YAML configuration format, the following files are used:

• for the dev environment: app/config/config_dev.yml
• for the prod environment: app/config/config_prod.yml
• for the test environment: app/config/config_test.yml

This works via a simple standard that's used by default inside the AppKernel class:

1
2
3
4
5
6
7
8
9

10
11
12
13

// app/AppKernel.php

// ...

class AppKernel extends Kernel
{

// ...

public function registerContainerConfiguration(LoaderInterface $loader)
{

$loader->load(__DIR__.'/config/config_'.$this->getEnvironment().'.yml');
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 17: How to Master and Create new Environments | 61

http://sensiolabs.com


Listing 17-2

Listing 17-3

Listing 17-4

Listing 17-5

As you can see, when Symfony is loaded, it uses the given environment to determine which configuration
file to load. This accomplishes the goal of multiple environments in an elegant, powerful and transparent
way.

Of course, in reality, each environment differs only somewhat from others. Generally, all environments
will share a large base of common configuration. Opening the "dev" configuration file, you can see how
this is accomplished easily and transparently:

1
2
3
4

imports:
- { resource: config.yml }

# ...

To share common configuration, each environment's configuration file simply first imports from a central
configuration file (config.yml). The remainder of the file can then deviate from the default configuration
by overriding individual parameters. For example, by default, the web_profiler toolbar is disabled.
However, in the dev environment, the toolbar is activated by modifying the default value in the dev
configuration file:

1
2
3
4
5
6
7

# app/config/config_dev.yml
imports:

- { resource: config.yml }

web_profiler:
toolbar: true
# ...

Executing an Application in different Environments
To execute the application in each environment, load up the application using either the app.php (for the
prod environment) or the app_dev.php (for the dev environment) front controller:

1
2

http://localhost/app.php      -> *prod* environment
http://localhost/app_dev.php  -> *dev* environment

The given URLs assume that your web server is configured to use the web/ directory of the
application as its root. Read more in Installing Symfony.

If you open up one of these files, you'll quickly see that the environment used by each is explicitly set:

1
2
3
4
5
6

// web/app.php
// ...

$kernel = new AppKernel('prod', false);

// ...

As you can see, the prod key specifies that this application will run in the prod environment. A Symfony
application can be executed in any environment by using this code and changing the environment string.

PDF brought to you by
generated on March 11, 2015

Chapter 17: How to Master and Create new Environments | 62

http://sensiolabs.com


Listing 17-6

Listing 17-7

The test environment is used when writing functional tests and is not accessible in the browser
directly via a front controller. In other words, unlike the other environments, there is no
app_test.php front controller file.

Debug Mode

Important, but unrelated to the topic of environments is the false argument as the second
argument to the AppKernel constructor. This specifies whether or not the application should run
in "debug mode". Regardless of the environment, a Symfony application can be run with debug
mode set to true or false. This affects many things in the application, such as whether or not
errors should be displayed or if cache files are dynamically rebuilt on each request. Though not a
requirement, debug mode is generally set to true for the dev and test environments and false
for the prod environment.

Internally, the value of the debug mode becomes the kernel.debug parameter used inside the
service container. If you look inside the application configuration file, you'll see the parameter used,
for example, to turn logging on or off when using the Doctrine DBAL:

1
2
3
4

doctrine:
dbal:

logging: "%kernel.debug%"
# ...

As of Symfony 2.3, showing errors or not no longer depends on the debug mode. You'll need to
enable that in your front controller by calling enable()1.

Selecting the Environment for Console Commands

By default, Symfony commands are executed in the dev environment and with the debug mode enabled.
Use the --env and --no-debug options to modify this behavior:

1
2
3
4
5
6
7
8

# 'dev' environment and debug enabled
$ php app/console command_name

# 'prod' environment (debug is always disabled for 'prod')
$ php app/console command_name --env=prod

# 'test' environment and debug disabled
$ php app/console command_name --env=test --no-debug

In addition to the --env and --debug options, the behavior of Symfony commands can also be controlled
with environment variables. The Symfony console application checks the existence and value of these
environment variables before executing any command:
SYMFONY_ENVSYMFONY_ENV

Sets the execution environment of the command to the value of this variable (dev, prod, test, etc.);

SYMFONY_DEBUGSYMFONY_DEBUG
If 0, debug mode is disabled. Otherwise, debug mode is enabled.

These environment variables are very useful for production servers because they allow you to ensure that
commands always run in the prod environment without having to add any command option.

1. http://api.symfony.com/2.6/Symfony/Component/Debug/Debug.html#enable()

PDF brought to you by
generated on March 11, 2015

Chapter 17: How to Master and Create new Environments | 63

http://sensiolabs.com


Listing 17-8

Listing 17-9

Listing 17-10

Listing 17-11

Creating a new Environment
By default, a Symfony application has three environments that handle most cases. Of course, since an
environment is nothing more than a string that corresponds to a set of configuration, creating a new
environment is quite easy.

Suppose, for example, that before deployment, you need to benchmark your application. One way to
benchmark the application is to use near-production settings, but with Symfony's web_profiler enabled.
This allows Symfony to record information about your application while benchmarking.

The best way to accomplish this is via a new environment called, for example, benchmark. Start by
creating a new configuration file:

1
2
3
4
5
6

# app/config/config_benchmark.yml
imports:

- { resource: config_prod.yml }

framework:
profiler: { only_exceptions: false }

Due to the way in which parameters are resolved, you cannot use them to build paths in imports
dynamically. This means that something like the following doesn't work:

1
2
3

# app/config/config.yml
imports:

- { resource: "%kernel.root_dir%/parameters.yml" }

And with this simple addition, the application now supports a new environment called benchmark.

This new configuration file imports the configuration from the prod environment and modifies it. This
guarantees that the new environment is identical to the prod environment, except for any changes
explicitly made here.

Because you'll want this environment to be accessible via a browser, you should also create a front
controller for it. Copy the web/app.php file to web/app_benchmark.php and edit the environment to be
benchmark:

1
2
3
4
5
6
7

// web/app_benchmark.php
// ...

// change just this line
$kernel = new AppKernel('benchmark', false);

// ...

The new environment is now accessible via:

1 http://localhost/app_benchmark.php

PDF brought to you by
generated on March 11, 2015

Chapter 17: How to Master and Create new Environments | 64

http://sensiolabs.com


Listing 17-12

Listing 17-13

Some environments, like the dev environment, are never meant to be accessed on any deployed
server by the general public. This is because certain environments, for debugging purposes, may
give too much information about the application or underlying infrastructure. To be sure these
environments aren't accessible, the front controller is usually protected from external IP addresses
via the following code at the top of the controller:

1
2
3

if (!in_array(@$_SERVER['REMOTE_ADDR'], array('127.0.0.1', '::1'))) {
die('You are not allowed to access this file. Check '.basename(__FILE__).' for

more information.');
}

Environments and the Cache Directory
Symfony takes advantage of caching in many ways: the application configuration, routing configuration,
Twig templates and more are cached to PHP objects stored in files on the filesystem.

By default, these cached files are largely stored in the app/cache directory. However, each environment
caches its own set of files:

1
2
3
4
5
6

<your-project>/
├─ app/
│  ├─ cache/
│  │  ├─ dev/   # cache directory for the *dev* environment
│  │  └─ prod/  # cache directory for the *prod* environment
│  ├─ ...

Sometimes, when debugging, it may be helpful to inspect a cached file to understand how something
is working. When doing so, remember to look in the directory of the environment you're using (most
commonly dev while developing and debugging). While it can vary, the app/cache/dev directory
includes the following:

• appDevDebugProjectContainer.php - the cached "service container" that represents the
cached application configuration;

• appDevUrlGenerator.php - the PHP class generated from the routing configuration and used
when generating URLs;

• appDevUrlMatcher.php - the PHP class used for route matching - look here to see the
compiled regular expression logic used to match incoming URLs to different routes;

• twig/ - this directory contains all the cached Twig templates.

You can easily change the directory location and name. For more information read the article How
to Override Symfony's default Directory Structure.

Going further
Read the article on How to Set external Parameters in the Service Container.

PDF brought to you by
generated on March 11, 2015

Chapter 17: How to Master and Create new Environments | 65

http://sensiolabs.com


Listing 18-1

Listing 18-2

Chapter 18

How to Override Symfony's default Directory
Structure

Symfony automatically ships with a default directory structure. You can easily override this directory
structure to create your own. The default directory structure is:

1
2
3
4
5
6
7
8
9

10
11
12
13

your-project/
├─ app/
│  ├─ cache/
│  ├─ config/
│  ├─ logs/
│  └─ ...
├─ src/
│  └─ ...
├─ vendor/
│  └─ ...
└─ web/
├─ app.php
└─ ...

Override the cache Directory
You can override the cache directory by overriding the getCacheDir method in the AppKernel class of
you application:

1
2
3
4
5
6
7

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{

// ...

PDF brought to you by
generated on March 11, 2015

Chapter 18: How to Override Symfony's default Directory Structure | 66

http://sensiolabs.com


Listing 18-3

Listing 18-4

Listing 18-5

8
9

10
11
12

public function getCacheDir()
{

return $this->rootDir.'/'.$this->environment.'/cache';
}

}

$this->rootDir is the absolute path to the app directory and $this->environment is the current
environment (i.e. dev). In this case you have changed the location of the cache directory to app/
{environment}/cache.

You should keep the cache directory different for each environment, otherwise some unexpected
behavior may happen. Each environment generates its own cached config files, and so each needs
its own directory to store those cache files.

Override the logs Directory
Overriding the logs directory is the same as overriding the cache directory, the only difference is that
you need to override the getLogDir method:

1
2
3
4
5
6
7
8
9

10
11
12

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{

// ...

public function getLogDir()
{

return $this->rootDir.'/'.$this->environment.'/logs';
}

}

Here you have changed the location of the directory to app/{environment}/logs.

Override the web Directory
If you need to rename or move your web directory, the only thing you need to guarantee is that the path
to the app directory is still correct in your app.php and app_dev.php front controllers. If you simply
renamed the directory, you're fine. But if you moved it in some way, you may need to modify the paths
inside these files:

1
2

require_once __DIR__.'/../Symfony/app/bootstrap.php.cache';
require_once __DIR__.'/../Symfony/app/AppKernel.php';

You also need to change the extra.symfony-web-dir option in the composer.json file:

1
2
3
4

{
...
"extra": {

...

PDF brought to you by
generated on March 11, 2015

Chapter 18: How to Override Symfony's default Directory Structure | 67

http://sensiolabs.com


Listing 18-6

Listing 18-7

Listing 18-8

Listing 18-9

5
6
7

"symfony-web-dir": "my_new_web_dir"
}

}

Some shared hosts have a public_html web directory root. Renaming your web directory from
web to public_html is one way to make your Symfony project work on your shared host. Another
way is to deploy your application to a directory outside of your web root, delete your public_html
directory, and then replace it with a symbolic link to the web in your project.

If you use the AsseticBundle you need to configure this, so it can use the correct web directory:

1
2
3
4
5
6

# app/config/config.yml

# ...
assetic:

# ...
read_from: "%kernel.root_dir%/../../public_html"

Now you just need to clear the cache and dump the assets again and your application should work:

1
2

$ php app/console cache:clear --env=prod
$ php app/console assetic:dump --env=prod --no-debug

Override the vendor Directory
To override the vendor directory, you need to introduce changes in the following files:

• app/autoload.php
• composer.json

The change in the composer.json will look like this:

1
2
3
4
5
6
7
8

{
...
"config": {

"bin-dir": "bin",
"vendor-dir": "/some/dir/vendor"

},
...

}

In app/autoload.php, you need to modify the path leading to the vendor/autoload.php file:

1
2
3

// app/autoload.php
// ...
$loader = require '/some/dir/vendor/autoload.php';

PDF brought to you by
generated on March 11, 2015

Chapter 18: How to Override Symfony's default Directory Structure | 68

http://sensiolabs.com


This modification can be of interest if you are working in a virtual environment and cannot use
NFS - for example, if you're running a Symfony app using Vagrant/VirtualBox in a guest operating
system.

PDF brought to you by
generated on March 11, 2015

Chapter 18: How to Override Symfony's default Directory Structure | 69

http://sensiolabs.com


Listing 19-1

Listing 19-2

Chapter 19

Using Parameters within a Dependency
Injection Class

You have seen how to use configuration parameters within Symfony service containers. There are special
cases such as when you want, for instance, to use the %kernel.debug% parameter to make the services
in your bundle enter debug mode. For this case there is more work to do in order to make the system
understand the parameter value. By default your parameter %kernel.debug% will be treated as a simple
string. Consider this example with the AcmeDemoBundle:

1
2
3
4
5
6
7
8
9

10
11

// Inside Configuration class
$rootNode

->children()
->booleanNode('logging')->defaultValue('%kernel.debug%')->end()
// ...

->end()
;

// Inside the Extension class
$config = $this->processConfiguration($configuration, $configs);
var_dump($config['logging']);

Now, examine the results to see this closely:

1
2
3
4
5
6
7
8
9

10
11
12

my_bundle:
logging: true
# true, as expected

my_bundle:
logging: "%kernel.debug%"
# true/false (depends on 2nd parameter of AppKernel),
# as expected, because %kernel.debug% inside configuration
# gets evaluated before being passed to the extension

my_bundle: ~
# passes the string "%kernel.debug%".

PDF brought to you by
generated on March 11, 2015

Chapter 19: Using Parameters within a Dependency Injection Class | 70

http://sensiolabs.com


Listing 19-3

Listing 19-4

13
14
15

# Which is always considered as true.
# The Configurator does not know anything about
# "%kernel.debug%" being a parameter.

In order to support this use case, the Configuration class has to be injected with this parameter via the
extension as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

namespace Acme\DemoBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\ArrayNodeDefinition;
use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

class Configuration implements ConfigurationInterface
{

private $debug;

public function __construct($debug)
{

$this->debug = (Boolean) $debug;
}

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('acme_demo');

$rootNode
->children()

// ...
->booleanNode('logging')->defaultValue($this->debug)->end()
// ...

->end()
;

return $treeBuilder;
}

}

And set it in the constructor of Configuration via the Extension class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

namespace Acme\DemoBundle\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\Config\FileLocator;

class AcmeDemoExtension extends Extension
{

// ...

public function getConfiguration(array $config, ContainerBuilder $container)
{

return new Configuration($container->getParameter('kernel.debug'));
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 19: Using Parameters within a Dependency Injection Class | 71

http://sensiolabs.com


Listing 19-5

Setting the Default in the Extension

There are some instances of %kernel.debug% usage within a Configurator class in TwigBundle
and AsseticBundle, however this is because the default parameter value is set by the Extension
class. For example in AsseticBundle, you can find:

1 $container->setParameter('assetic.debug', $config['debug']);

The string %kernel.debug% passed here as an argument handles the interpreting job to the
container which in turn does the evaluation. Both ways accomplish similar goals. AsseticBundle
will not use %kernel.debug% but rather the new %assetic.debug% parameter.

PDF brought to you by
generated on March 11, 2015

Chapter 19: Using Parameters within a Dependency Injection Class | 72

http://sensiolabs.com


Chapter 20

Understanding how the Front Controller,
Kernel and Environments Work together

The section How to Master and Create new Environments explained the basics on how Symfony uses
environments to run your application with different configuration settings. This section will explain a bit
more in-depth what happens when your application is bootstrapped. To hook into this process, you need
to understand three parts that work together:

• The Front Controller
• The Kernel Class
• The Environments

Usually, you will not need to define your own front controller or AppKernel class as the Symfony
Standard Edition1 provides sensible default implementations.

This documentation section is provided to explain what is going on behind the scenes.

The Front Controller

The front controller2 is a well-known design pattern; it is a section of code that all requests served by an
application run through.

In the Symfony Standard Edition3, this role is taken by the app.php4 and app_dev.php5 files in the web/
directory. These are the very first PHP scripts executed when a request is processed.

The main purpose of the front controller is to create an instance of the AppKernel (more on that in a
second), make it handle the request and return the resulting response to the browser.

1. https://github.com/symfony/symfony-standard

2. http://en.wikipedia.org/wiki/Front_Controller_pattern

3. https://github.com/symfony/symfony-standard

4. https://github.com/symfony/symfony-standard/blob/master/web/app.php

5. https://github.com/symfony/symfony-standard/blob/master/web/app_dev.php

PDF brought to you by
generated on March 11, 2015

Chapter 20: Understanding how the Front Controller, Kernel and Environments Work together | 73

http://sensiolabs.com


Listing 20-1

Because every request is routed through it, the front controller can be used to perform global
initializations prior to setting up the kernel or to decorate6 the kernel with additional features. Examples
include:

• Configuring the autoloader or adding additional autoloading mechanisms;
• Adding HTTP level caching by wrapping the kernel with an instance of AppCache;
• Enabling (or skipping) the ClassCache;
• Enabling the Debug Component.

The front controller can be chosen by requesting URLs like:

1 http://localhost/app_dev.php/some/path/...

As you can see, this URL contains the PHP script to be used as the front controller. You can use
that to easily switch the front controller or use a custom one by placing it in the web/ directory (e.g.
app_cache.php).

When using Apache and the RewriteRule shipped with the Standard Edition7, you can omit the filename
from the URL and the RewriteRule will use app.php as the default one.

Pretty much every other web server should be able to achieve a behavior similar to that of the
RewriteRule described above. Check your server documentation for details or see Configuring a
Web Server.

Make sure you appropriately secure your front controllers against unauthorized access. For
example, you don't want to make a debugging environment available to arbitrary users in your
production environment.

Technically, the app/console8 script used when running Symfony on the command line is also a front
controller, only that is not used for web, but for command line requests.

The Kernel Class
The Kernel9 is the core of Symfony. It is responsible for setting up all the bundles that make up your
application and providing them with the application's configuration. It then creates the service container
before serving requests in its handle()10 method.

There are two methods declared in the KernelInterface11 that are left unimplemented in Kernel12 and
thus serve as template methods13:

• registerBundles()14, which must return an array of all bundles needed to run the
application;

• registerContainerConfiguration()15, which loads the application configuration.

6. http://en.wikipedia.org/wiki/Decorator_pattern

7. https://github.com/symfony/symfony-standard/blob/master/web/.htaccess

8. https://github.com/symfony/symfony-standard/blob/master/app/console

9. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Kernel.html

10. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/HttpKernelInterface.html#handle()

11. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelInterface.html

12. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Kernel.html

13. http://en.wikipedia.org/wiki/Template_method_pattern

14. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelInterface.html#registerBundles()

15. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelInterface.html#registerContainerConfiguration()

PDF brought to you by
generated on March 11, 2015

Chapter 20: Understanding how the Front Controller, Kernel and Environments Work together | 74

http://sensiolabs.com


To fill these (small) blanks, your application needs to subclass the Kernel and implement these methods.
The resulting class is conventionally called the AppKernel.

Again, the Symfony Standard Edition provides an AppKernel16 in the app/ directory. This class uses the
name of the environment - which is passed to the Kernel's constructor17 method and is available via
getEnvironment()18 - to decide which bundles to create. The logic for that is in registerBundles(), a
method meant to be extended by you when you start adding bundles to your application.

You are, of course, free to create your own, alternative or additional AppKernel variants. All you need is
to adapt your (or add a new) front controller to make use of the new kernel.

The name and location of the AppKernel is not fixed. When putting multiple Kernels into a
single application, it might therefore make sense to add additional sub-directories, for example
app/admin/AdminKernel.php and app/api/ApiKernel.php. All that matters is that your front
controller is able to create an instance of the appropriate kernel.

Having different AppKernels might be useful to enable different front controllers (on potentially different
servers) to run parts of your application independently (for example, the admin UI, the frontend UI and
database migrations).

There's a lot more the AppKernel can be used for, for example overriding the default directory
structure. But odds are high that you don't need to change things like this on the fly by having
several AppKernel implementations.

The Environments
As just mentioned, the AppKernel has to implement another method -
registerContainerConfiguration()19. This method is responsible for loading the application's
configuration from the right environment.

Environments have been covered extensively in the previous chapter, and you probably remember that
the Standard Edition comes with three of them - dev, prod and test.

More technically, these names are nothing more than strings passed from the front controller to the
AppKernel's constructor. This name can then be used in the registerContainerConfiguration()20

method to decide which configuration files to load.

The Standard Edition's AppKernel21 class implements this method by simply loading the app/config/
config_*environment*.yml file. You are, of course, free to implement this method differently if you
need a more sophisticated way of loading your configuration.

16. https://github.com/symfony/symfony-standard/blob/master/app/AppKernel.php

17. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Kernel.html#__construct()

18. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Kernel.html#getEnvironment()

19. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelInterface.html#registerContainerConfiguration()

20. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelInterface.html#registerContainerConfiguration()

21. https://github.com/symfony/symfony-standard/blob/master/app/AppKernel.php

PDF brought to you by
generated on March 11, 2015

Chapter 20: Understanding how the Front Controller, Kernel and Environments Work together | 75

http://sensiolabs.com


Listing 21-1

Chapter 21

How to Set external Parameters in the Service
Container

In the chapter How to Master and Create new Environments, you learned how to manage your application
configuration. At times, it may benefit your application to store certain credentials outside of your project
code. Database configuration is one such example. The flexibility of the Symfony service container allows
you to easily do this.

Environment Variables
Symfony will grab any environment variable prefixed with SYMFONY__ and set it as a parameter in the
service container. Some transformations are applied to the resulting parameter name:

• SYMFONY__ prefix is removed;
• Parameter name is lowercased;
• Double underscores are replaced with a period, as a period is not a valid character in an

environment variable name.

For example, if you're using Apache, environment variables can be set using the following VirtualHost
configuration:

1
2
3
4
5
6
7
8
9

10
11
12

<VirtualHost *:80>
ServerName Symfony
DocumentRoot "/path/to/symfony_2_app/web"
DirectoryIndex index.php index.html
SetEnv SYMFONY__DATABASE__USER user
SetEnv SYMFONY__DATABASE__PASSWORD secret

<Directory "/path/to/symfony_2_app/web">
AllowOverride All
Allow from All

</Directory>
</VirtualHost>

PDF brought to you by
generated on March 11, 2015

Chapter 21: How to Set external Parameters in the Service Container | 76

http://sensiolabs.com


Listing 21-2

Listing 21-3

Listing 21-4

Listing 21-5

The example above is for an Apache configuration, using the SetEnv1 directive. However, this will
work for any web server which supports the setting of environment variables.

Also, in order for your console to work (which does not use Apache), you must export these as
shell variables. On a Unix system, you can run the following:

1
2

$ export SYMFONY__DATABASE__USER=user
$ export SYMFONY__DATABASE__PASSWORD=secret

Now that you have declared an environment variable, it will be present in the PHP $_SERVER global
variable. Symfony then automatically sets all $_SERVER variables prefixed with SYMFONY__ as parameters
in the service container.

You can now reference these parameters wherever you need them.

1
2
3
4
5
6

doctrine:
dbal:

driver    pdo_mysql
dbname: symfony_project
user: "%database.user%"
password: "%database.password%"

Constants
The container also has support for setting PHP constants as parameters. See Constants as Parameters for
more details.

Miscellaneous Configuration
The imports directive can be used to pull in parameters stored elsewhere. Importing a PHP file gives
you the flexibility to add whatever is needed in the container. The following imports a file named
parameters.php.

1
2
3

# app/config/config.yml
imports:

- { resource: parameters.php }

A resource file can be one of many types. PHP, XML, YAML, INI, and closure resources are all
supported by the imports directive.

In parameters.php, tell the service container the parameters that you wish to set. This is useful when
important configuration is in a non-standard format. The example below includes a Drupal database
configuration in the Symfony service container.

1. http://httpd.apache.org/docs/current/env.html

PDF brought to you by
generated on March 11, 2015

Chapter 21: How to Set external Parameters in the Service Container | 77

http://sensiolabs.com


1
2
3

// app/config/parameters.php
include_once('/path/to/drupal/sites/default/settings.php');
$container->setParameter('drupal.database.url', $db_url);

PDF brought to you by
generated on March 11, 2015

Chapter 21: How to Set external Parameters in the Service Container | 78

http://sensiolabs.com


Listing 22-1

Chapter 22

How to Use PdoSessionHandler to Store
Sessions in the Database

There was a backwards-compatibility break in Symfony 2.6: the database schema changed slightly.
See Symfony 2.6 Changes for details.

The default Symfony session storage writes the session information to file(s). Most medium to large
websites use a database to store the session values instead of files, because databases are easier to use and
scale in a multi-webserver environment.

Symfony has a built-in solution for database session storage called PdoSessionHandler1. To use it, you
just need to change some parameters in config.yml (or the configuration format of your choice):

1
2
3
4
5
6
7
8
9

10
11
12
13

# app/config/config.yml
framework:

session:
# ...
handler_id: session.handler.pdo

services:
session.handler.pdo:

class:
Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler

public: false
arguments:

- "mysql:dbname=mydatabase"
- { db_username: myuser, db_password: mypassword }

1. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Session/Storage/Handler/PdoSessionHandler.html

PDF brought to you by
generated on March 11, 2015

Chapter 22: How to Use PdoSessionHandler to Store Sessions in the Database | 79

http://sensiolabs.com


Listing 22-2

Listing 22-3

Configuring the Table and Column Names
This will expect a sessions table with a number of different columns. The table name, and all of the
column names, can be configured by passing a second array argument to PdoSessionHandler:

1
2
3
4
5
6
7
8
9

# app/config/config.yml
services:

# ...
session.handler.pdo:

class:
Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler

public: false
arguments:

- "mysql:dbname=mydatabase"
- { db_table: sessions, db_username: myuser, db_password: mypassword }

New in version 2.6: The db_lifetime_col was introduced in Symfony 2.6. Prior to 2.6, this column did
not exist.

The following things can be configured:

• db_table: (default sessions) The name of the session table in your database;
• db_id_col: (default sess_id) The name of the id column in your session table

(VARCHAR(128));
• db_data_col: (default sess_data) The name of the value column in your session table

(BLOB);
• db_time_col: (default sess_time) The name of the time column in your session table

(INTEGER);
• db_lifetime_col: (default sess_lifetime) The name of the lifetime column in your session

table (INTEGER).

Sharing your Database Connection Information
With the given configuration, the database connection settings are defined for the session storage
connection only. This is OK when you use a separate database for the session data.

But if you'd like to store the session data in the same database as the rest of your project's data, you can
use the connection settings from the parameters.yml file by referencing the database-related parameters
defined there:

1
2
3
4
5
6
7

services:
session.handler.pdo:

class:
Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler

public:    false
arguments:

- "mysql:host=%database_host%;port=%database_port%;dbname=%database_name%"
- { db_username: %database_user%, db_password: %database_password% }

Example SQL Statements

PDF brought to you by
generated on March 11, 2015

Chapter 22: How to Use PdoSessionHandler to Store Sessions in the Database | 80

http://sensiolabs.com


Listing 22-4

Listing 22-5

Listing 22-6

Schema Changes needed when Upgrading to Symfony 2.6

If you use the PdoSessionHandler prior to Symfony 2.6 and upgrade, you'll need to make a few
changes to your session table:

• A new session lifetime (sess_lifetime by default) integer column needs to be added;
• The data column (sess_data by default) needs to be changed to a BLOB type.

Check the SQL statements below for more details.

To keep the old (2.5 and earlier) functionality, change your class name to use
LegacyPdoSessionHandler instead of PdoSessionHandler (the legacy class was added in Symfony
2.6.2).

MySQL

The SQL statement for creating the needed database table might look like the following (MySQL):

1
2
3
4
5
6

CREATE TABLE `sessions` (
`sess_id` VARBINARY(128) NOT NULL PRIMARY KEY,
`sess_data` BLOB NOT NULL,
`sess_time` INTEGER UNSIGNED NOT NULL,
`sess_lifetime` MEDIUMINT NOT NULL

) COLLATE utf8_bin, ENGINE = InnoDB;

A BLOB column type can only store up to 64 kb. If the data stored in a user's session exceeds this,
an exception may be thrown or their session will be silently reset. Consider using a MEDIUMBLOB if
you need more space.

PostgreSQL

For PostgreSQL, the statement should look like this:

1
2
3
4
5
6

CREATE TABLE sessions (
sess_id VARCHAR(128) NOT NULL PRIMARY KEY,
sess_data BYTEA NOT NULL,
sess_time INTEGER NOT NULL,
sess_lifetime INTEGER NOT NULL

);

Microsoft SQL Server

For MSSQL, the statement might look like the following:

1
2
3
4
5
6
7
8

CREATE TABLE [dbo].[sessions](
[sess_id] [nvarchar](255) NOT NULL,
[sess_data] [ntext] NOT NULL,
[sess_time] [int] NOT NULL,
[sess_lifetime] [int] NOT NULL,
PRIMARY KEY CLUSTERED(

[sess_id] ASC
) WITH (

PDF brought to you by
generated on March 11, 2015

Chapter 22: How to Use PdoSessionHandler to Store Sessions in the Database | 81

http://sensiolabs.com


9
10
11
12
13
14
15

PAD_INDEX = OFF,
STATISTICS_NORECOMPUTE = OFF,
IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON

) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

PDF brought to you by
generated on March 11, 2015

Chapter 22: How to Use PdoSessionHandler to Store Sessions in the Database | 82

http://sensiolabs.com


Listing 23-1

Chapter 23

How to Use the Apache Router

Symfony, while fast out of the box, also provides various ways to increase that speed with a little bit of
tweaking. One of these ways is by letting Apache handle routes directly, rather than using Symfony for
this task.

Apache router was deprecated in Symfony 2.5 and will be removed in Symfony 3.0. Since the PHP
implementation of the Router was improved, performance gains were no longer significant (while
it's very hard to replicate the same behavior).

Change Router Configuration Parameters
To dump Apache routes you must first tweak some configuration parameters to tell Symfony to use the
ApacheUrlMatcher instead of the default one:

1
2
3
4

# app/config/config_prod.yml
parameters:

router.options.matcher.cache_class: ~ # disable router cache
router.options.matcher_class: Symfony\Component\Routing\Matcher\ApacheUrlMatcher

Note that ApacheUrlMatcher1 extends UrlMatcher2 so even if you don't regenerate the
mod_rewrite rules, everything will work (because at the end of ApacheUrlMatcher::match() a call
to parent::match() is done).

Generating mod_rewrite Rules
To test that it's working, create a very basic route for the AppBundle:

1. http://api.symfony.com/2.6/Symfony/Component/Routing/Matcher/ApacheUrlMatcher.html

2. http://api.symfony.com/2.6/Symfony/Component/Routing/Matcher/UrlMatcher.html

PDF brought to you by
generated on March 11, 2015

Chapter 23: How to Use the Apache Router | 83

http://sensiolabs.com


Listing 23-2

Listing 23-3

Listing 23-4

Listing 23-5

Listing 23-6

1
2
3
4

# app/config/routing.yml
hello:

path: /hello/{name}
defaults: { _controller: AppBundle:Demo:hello }

Now generate the mod_rewrite rules:

1 $ php app/console router:dump-apache -e=prod --no-debug

Which should roughly output the following:

1
2
3
4
5
6
7

# skip "real" requests
RewriteCond %{REQUEST_FILENAME} -f
RewriteRule .* - [QSA,L]

# hello
RewriteCond %{REQUEST_URI} ^/hello/([^/]+?)$
RewriteRule .* app.php
[QSA,L,E=_ROUTING__route:hello,E=_ROUTING_name:%1,E=_ROUTING__controller:AppBundle\:Demo\:hello]

You can now rewrite web/.htaccess to use the new rules, so with this example it should look like this:

1
2
3
4
5
6
7
8
9

10
11

<IfModule mod_rewrite.c>
RewriteEngine On

# skip "real" requests
RewriteCond %{REQUEST_FILENAME} -f
RewriteRule .* - [QSA,L]

# hello
RewriteCond %{REQUEST_URI} ^/hello/([^/]+?)$
RewriteRule .* app.php

[QSA,L,E=_ROUTING__route:hello,E=_ROUTING_name:%1,E=_ROUTING__controller:AppBundle\:Demo\:hello]
</IfModule>

The procedure above should be done each time you add/change a route if you want to take full
advantage of this setup.

That's it! You're now all set to use Apache routes.

Additional Tweaks
To save a little bit of processing time, change occurrences of Request to ApacheRequest in web/app.php:

1
2
3
4
5
6
7

// web/app.php

require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';
// require_once __DIR__.'/../app/AppCache.php';

use Symfony\Component\HttpFoundation\ApacheRequest;

PDF brought to you by
generated on March 11, 2015

Chapter 23: How to Use the Apache Router | 84

http://sensiolabs.com


8
9

10
11
12

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
// $kernel = new AppCache($kernel);
$kernel->handle(ApacheRequest::createFromGlobals())->send();

PDF brought to you by
generated on March 11, 2015

Chapter 23: How to Use the Apache Router | 85

http://sensiolabs.com


Listing 24-1

Chapter 24

Configuring a Web Server

The preferred way to develop your Symfony application is to use PHP's internal web server. However,
when using an older PHP version or when running the application in the production environment, you'll
need to use a fully-featured web server. This article describes several ways to use Symfony with Apache2
or Nginx.

When using Apache2, you can configure PHP as an Apache module or with FastCGI using PHP FPM.
FastCGI also is the preferred way to use PHP with Nginx.

The Web Directory

The web directory is the home of all of your application's public and static files, including images,
stylesheets and JavaScript files. It is also where the front controllers live. For more details, see the
The Web Directory.

The web directory services as the document root when configuring your web server. In the
examples below, the web/ directory will be the document root. This directory is /var/www/
project/web/.

Apache2 with mod_php/PHP-CGI

For advanced Apache configuration options, see the official Apache1 documentation. The minimum
basics to get your application running under Apache2 are:

1
2
3
4
5
6
7
8

<VirtualHost *:80>
ServerName domain.tld
ServerAlias www.domain.tld

DocumentRoot /var/www/project/web
<Directory /var/www/project/web>

# enable the .htaccess rewrites
AllowOverride All

1. http://httpd.apache.org/docs/current/mod/core.html#documentroot

PDF brought to you by
generated on March 11, 2015

Chapter 24: Configuring a Web Server | 86

http://sensiolabs.com


Listing 24-2

Listing 24-3

Listing 24-4

9
10
11
12
13
14
15

Order allow,deny
Allow from All

</Directory>

ErrorLog /var/log/apache2/project_error.log
CustomLog /var/log/apache2/project_access.log combined

</VirtualHost>

If your system supports the APACHE_LOG_DIR variable, you may want to use ${APACHE_LOG_DIR}/
instead of /var/log/apache2/.

For performance reasons, you will probably want to set AllowOverride None and implement the
rewrite rules in the web/.htaccess into the VirtualHost config.

If you are using php-cgi, Apache does not pass HTTP basic username and password to PHP by default.
To work around this limitation, you should use the following configuration snippet:

1 RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

In Apache 2.4, Order allow,deny has been replaced by Require all granted, and hence you
need to modify your Directory permission settings as follows:

1
2
3
4
5

<Directory /var/www/project/web>
# enable the .htaccess rewrites
AllowOverride All
Require all granted

</Directory>

Apache2 with PHP-FPM
To make use of PHP5-FPM with Apache, you first have to ensure that you have the FastCGI process
manager php-fpm binary and Apache's FastCGI module installed (for example, on a Debian based system
you have to install the libapache2-mod-fastcgi and php5-fpm packages).

PHP-FPM uses so-called pools to handle incoming FastCGI requests. You can configure an arbitrary
number of pools in the FPM configuration. In a pool you configure either a TCP socket (IP and port) or
a unix domain socket to listen on. Each pool can also be run under a different UID and GID:

1
2
3
4
5
6
7
8

; a pool called www
[www]
user = www-data
group = www-data

; use a unix domain socket
listen = /var/run/php5-fpm.sock

PDF brought to you by
generated on March 11, 2015

Chapter 24: Configuring a Web Server | 87

http://sensiolabs.com


Listing 24-5

Listing 24-6

9
10

; or listen on a TCP socket
listen = 127.0.0.1:9000

Using mod_proxy_fcgi with Apache 2.4

If you are running Apache 2.4, you can easily use mod_proxy_fcgi to pass incoming requests to PHP-
FPM. Configure PHP-FPM to listen on a TCP socket (mod_proxy currently does not support unix sockets2),
enable mod_proxy and mod_proxy_fcgi in your Apache configuration and use the SetHandler directive
to pass requests for PHP files to PHP FPM:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

<VirtualHost *:80>
ServerName domain.tld
ServerAlias www.domain.tld

# Uncomment the following line to force Apache to pass the Authorization
# header to PHP: required for "basic_auth" under PHP-FPM and FastCGI
#
# SetEnvIfNoCase ^Authorization$ "(.+)" HTTP_AUTHORIZATION=$1

# For Apache 2.4.9 or higher
# Using SetHandler avoids issues with using ProxyPassMatch in combination
# with mod_rewrite or mod_autoindex
<FilesMatch \.php$>

SetHandler proxy:fcgi://127.0.0.1:9000
</FilesMatch>
# If you use Apache version below 2.4.9 you must consider update or use this instead
# ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/var/www/project/web/$1
# If you run your Symfony application on a subpath of your document root, the
# regular expression must be changed accordingly:
# ProxyPassMatch ^/path-to-app/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/var/www/project/

web/$1

DocumentRoot /var/www/project/web
<Directory /var/www/project/web>

# enable the .htaccess rewrites
AllowOverride All
Require all granted

</Directory>

ErrorLog /var/log/apache2/project_error.log
CustomLog /var/log/apache2/project_access.log combined

</VirtualHost>

PHP-FPM with Apache 2.2

On Apache 2.2 or lower, you cannot use mod_proxy_fcgi. You have to use the FastCgiExternalServer3

directive instead. Therefore, your Apache configuration should look something like this:

1
2
3
4

<VirtualHost *:80>
ServerName domain.tld
ServerAlias www.domain.tld

2. https://issues.apache.org/bugzilla/show_bug.cgi?id=54101

3. http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html#FastCgiExternalServer

PDF brought to you by
generated on March 11, 2015

Chapter 24: Configuring a Web Server | 88

http://sensiolabs.com


Listing 24-7

Listing 24-8

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

AddHandler php5-fcgi .php
Action php5-fcgi /php5-fcgi
Alias /php5-fcgi /usr/lib/cgi-bin/php5-fcgi
FastCgiExternalServer /usr/lib/cgi-bin/php5-fcgi -host 127.0.0.1:9000 -pass-header

Authorization

DocumentRoot /var/www/project/web
<Directory /var/www/project/web>

# enable the .htaccess rewrites
AllowOverride All
Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/project_error.log
CustomLog /var/log/apache2/project_access.log combined

</VirtualHost>

If you prefer to use a unix socket, you have to use the -socket option instead:

1 FastCgiExternalServer /usr/lib/cgi-bin/php5-fcgi -socket /var/run/php5-fpm.sock
-pass-header Authorization

Nginx

For advanced Nginx configuration options, see the official Nginx4 documentation. The minimum basics
to get your application running under Nginx are:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

server {
server_name domain.tld www.domain.tld;
root /var/www/project/web;

location / {
# try to serve file directly, fallback to app.php
try_files $uri /app.php$is_args$args;

}
# DEV
# This rule should only be placed on your development environment
# In production, don't include this and don't deploy app_dev.php or config.php
location ~ ^/(app_dev|config)\.php(/|$) {

fastcgi_pass unix:/var/run/php5-fpm.sock;
fastcgi_split_path_info ^(.+\.php)(/.*)$;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param HTTPS off;

}
# PROD
location ~ ^/app\.php(/|$) {

fastcgi_pass unix:/var/run/php5-fpm.sock;
fastcgi_split_path_info ^(.+\.php)(/.*)$;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param HTTPS off;

4. http://wiki.nginx.org/Symfony

PDF brought to you by
generated on March 11, 2015

Chapter 24: Configuring a Web Server | 89

http://sensiolabs.com


26
27
28
29
30
31
32
33
34

# Prevents URIs that include the front controller. This will 404:
# http://domain.tld/app.php/some-path
# Remove the internal directive to allow URIs like this
internal;

}

error_log /var/log/nginx/project_error.log;
access_log /var/log/nginx/project_access.log;

}

Depending on your PHP-FPM config, the fastcgi_pass can also be fastcgi_pass
127.0.0.1:9000.

This executes only app.php, app_dev.php and config.php in the web directory. All other files will
be served as text. You must also make sure that if you do deploy app_dev.php or config.php that
these files are secured and not available to any outside user (the IP checking code at the top of each
file does this by default).

If you have other PHP files in your web directory that need to be executed, be sure to include them
in the location block above.

PDF brought to you by
generated on March 11, 2015

Chapter 24: Configuring a Web Server | 90

http://sensiolabs.com


Listing 25-1

Listing 25-2

Chapter 25

How to Organize Configuration Files

The default Symfony Standard Edition defines three execution environments called dev, prod and test.
An environment simply represents a way to execute the same codebase with different configurations.

In order to select the configuration file to load for each environment, Symfony executes the
registerContainerConfiguration() method of the AppKernel class:

1
2
3
4
5
6
7
8
9

10
11
12
13

// app/AppKernel.php
use Symfony\Component\HttpKernel\Kernel;
use Symfony\Component\Config\Loader\LoaderInterface;

class AppKernel extends Kernel
{

// ...

public function registerContainerConfiguration(LoaderInterface $loader)
{

$loader->load(__DIR__.'/config/config_'.$this->getEnvironment().'.yml');
}

}

This method loads the app/config/config_dev.yml file for the dev environment and so on. In turn,
this file loads the common configuration file located at app/config/config.yml. Therefore, the
configuration files of the default Symfony Standard Edition follow this structure:

1
2
3
4
5
6
7
8
9

10
11

<your-project>/
├─ app/
│  └─ config/
│     ├─ config.yml
│     ├─ config_dev.yml
│     ├─ config_prod.yml
│     ├─ config_test.yml
│     ├─ parameters.yml
│     ├─ parameters.yml.dist
│     ├─ routing.yml
│     ├─ routing_dev.yml

PDF brought to you by
generated on March 11, 2015

Chapter 25: How to Organize Configuration Files | 91

http://sensiolabs.com


Listing 25-3

Listing 25-4

12
13
14
15

│     └─ security.yml
├─ src/
├─ vendor/
└─ web/

This default structure was chosen for its simplicity — one file per environment. But as any other Symfony
feature, you can customize it to better suit your needs. The following sections explain different ways to
organize your configuration files. In order to simplify the examples, only the dev and prod environments
are taken into account.

Different Directories per Environment
Instead of suffixing the files with _dev and _prod, this technique groups all the related configuration files
under a directory with the same name as the environment:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

<your-project>/
├─ app/
│  └─ config/
│     ├─ common/
│     │  ├─ config.yml
│     │  ├─ parameters.yml
│     │  ├─ routing.yml
│     │  └─ security.yml
│     ├─ dev/
│     │  ├─ config.yml
│     │  ├─ parameters.yml
│     │  ├─ routing.yml
│     │  └─ security.yml
│     └─ prod/
│        ├─ config.yml
│        ├─ parameters.yml
│        ├─ routing.yml
│        └─ security.yml
├─ src/
├─ vendor/
└─ web/

To make this work, change the code of the registerContainerConfiguration()1 method:

1
2
3
4
5
6
7
8
9

10
11
12
13

// app/AppKernel.php
use Symfony\Component\HttpKernel\Kernel;
use Symfony\Component\Config\Loader\LoaderInterface;

class AppKernel extends Kernel
{

// ...

public function registerContainerConfiguration(LoaderInterface $loader)
{

$loader->load(__DIR__.'/config/'.$this->getEnvironment().'/config.yml');
}

}

1. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelInterface.html#registerContainerConfiguration()

PDF brought to you by
generated on March 11, 2015

Chapter 25: How to Organize Configuration Files | 92

http://sensiolabs.com


Listing 25-5

Listing 25-6

Listing 25-7

Listing 25-8

Then, make sure that each config.yml file loads the rest of the configuration files, including the common
files. For instance, this would be the imports needed for the app/config/dev/config.yml file:

1
2
3
4
5
6
7

# app/config/dev/config.yml
imports:

- { resource: '../common/config.yml' }
- { resource: 'parameters.yml' }
- { resource: 'security.yml' }

# ...

Due to the way in which parameters are resolved, you cannot use them to build paths in imports
dynamically. This means that something like the following doesn't work:

1
2
3

# app/config/config.yml
imports:

- { resource: "%kernel.root_dir%/parameters.yml" }

Semantic Configuration Files
A different organization strategy may be needed for complex applications with large configuration files.
For instance, you could create one file per bundle and several files to define all application services:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<your-project>/
├─ app/
│  └─ config/
│     ├─ bundles/
│     │  ├─ bundle1.yml
│     │  ├─ bundle2.yml
│     │  ├─ ...
│     │  └─ bundleN.yml
│     ├─ environments/
│     │  ├─ common.yml
│     │  ├─ dev.yml
│     │  └─ prod.yml
│     ├─ routing/
│     │  ├─ common.yml
│     │  ├─ dev.yml
│     │  └─ prod.yml
│     └─ services/
│        ├─ frontend.yml
│        ├─ backend.yml
│        ├─ ...
│        └─ security.yml
├─ src/
├─ vendor/
└─ web/

Again, change the code of the registerContainerConfiguration() method to make Symfony aware of
the new file organization:

PDF brought to you by
generated on March 11, 2015

Chapter 25: How to Organize Configuration Files | 93

http://sensiolabs.com


Listing 25-9

1
2
3
4
5
6
7
8
9

10
11
12
13

// app/AppKernel.php
use Symfony\Component\HttpKernel\Kernel;
use Symfony\Component\Config\Loader\LoaderInterface;

class AppKernel extends Kernel
{

// ...

public function registerContainerConfiguration(LoaderInterface $loader)
{

$loader->load(__DIR__.'/config/environments/'.$this->getEnvironment().'.yml');
}

}

Following the same technique explained in the previous section, make sure to import the appropriate
configuration files from each main file (common.yml, dev.yml and prod.yml).

Advanced Techniques
Symfony loads configuration files using the Config component, which provides some advanced features.

Mix and Match Configuration Formats

Configuration files can import files defined with any other built-in configuration format (.yml, .xml,
.php, .ini):

1
2
3
4
5
6
7
8

# app/config/config.yml
imports:

- { resource: 'parameters.yml' }
- { resource: 'services.xml' }
- { resource: 'security.yml' }
- { resource: 'legacy.php' }

# ...

The IniFileLoader parses the file contents using the parse_ini_file2 function. Therefore, you
can only set parameters to string values. Use one of the other loaders if you want to use other data
types (e.g. boolean, integer, etc.).

If you use any other configuration format, you have to define your own loader class extending it from
FileLoader3. When the configuration values are dynamic, you can use the PHP configuration file to
execute your own logic. In addition, you can define your own services to load configurations from
databases or web services.

Global Configuration Files

Some system administrators may prefer to store sensitive parameters in files outside the project directory.
Imagine that the database credentials for your website are stored in the /etc/sites/mysite.com/
parameters.yml file. Loading this file is as simple as indicating the full file path when importing it from
any other configuration file:

2. http://php.net/manual/en/function.parse-ini-file.php

3. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Loader/FileLoader.html

PDF brought to you by
generated on March 11, 2015

Chapter 25: How to Organize Configuration Files | 94

http://sensiolabs.com


Listing 25-10

Listing 25-11

1
2
3
4
5
6

# app/config/config.yml
imports:

- { resource: 'parameters.yml' }
- { resource: '/etc/sites/mysite.com/parameters.yml' }

# ...

Most of the time, local developers won't have the same files that exist on the production servers. For that
reason, the Config component provides the ignore_errors option to silently discard errors when the
loaded file doesn't exist:

1
2
3
4
5
6

# app/config/config.yml
imports:

- { resource: 'parameters.yml' }
- { resource: '/etc/sites/mysite.com/parameters.yml', ignore_errors: true }

# ...

As you've seen, there are lots of ways to organize your configuration files. You can choose one of these or
even create your own custom way of organizing the files. Don't feel limited by the Standard Edition that
comes with Symfony. For even more customization, see "How to Override Symfony's default Directory
Structure".

PDF brought to you by
generated on March 11, 2015

Chapter 25: How to Organize Configuration Files | 95

http://sensiolabs.com


Listing 26-1

Chapter 26

How to Create a Console Command

The Console page of the Components section (The Console Component) covers how to create a console
command. This cookbook article covers the differences when creating console commands within the
Symfony framework.

Automatically Registering Commands
To make the console commands available automatically with Symfony, create a Command directory inside
your bundle and create a PHP file suffixed with Command.php for each command that you want to
provide. For example, if you want to extend the AppBundle to greet you from the command line, create
GreetCommand.php and add the following to it:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/AppBundle/Command/GreetCommand.php
namespace AppBundle\Command;

use Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCommand;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;

class GreetCommand extends ContainerAwareCommand
{

protected function configure()
{

$this
->setName('demo:greet')
->setDescription('Greet someone')
->addArgument(

'name',
InputArgument::OPTIONAL,
'Who do you want to greet?'

)
->addOption(

'yell',

PDF brought to you by
generated on March 11, 2015

Chapter 26: How to Create a Console Command | 96

http://sensiolabs.com


Listing 26-2

Listing 26-3

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

null,
InputOption::VALUE_NONE,
'If set, the task will yell in uppercase letters'

)
;

}

protected function execute(InputInterface $input, OutputInterface $output)
{

$name = $input->getArgument('name');
if ($name) {

$text = 'Hello '.$name;
} else {

$text = 'Hello';
}

if ($input->getOption('yell')) {
$text = strtoupper($text);

}

$output->writeln($text);
}

}

This command will now automatically be available to run:

1 $ php app/console demo:greet Fabien

Register Commands in the Service Container
Just like controllers, commands can be declared as services. See the dedicated cookbook entry for details.

Getting Services from the Service Container
By using ContainerAwareCommand1 as the base class for the command (instead of the more basic
Command2), you have access to the service container. In other words, you have access to any configured
service:

1
2
3
4
5
6
7
8

protected function execute(InputInterface $input, OutputInterface $output)
{

$name = $input->getArgument('name');
$logger = $this->getContainer()->get('logger');

$logger->info('Executing command for '.$name);
// ...

}

However, due to the container scopes this code doesn't work for some services. For instance, if you try to
get the request service or any other service related to it, you'll get the following error:

1. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Command/ContainerAwareCommand.html

2. http://api.symfony.com/2.6/Symfony/Component/Console/Command/Command.html

PDF brought to you by
generated on March 11, 2015

Chapter 26: How to Create a Console Command | 97

http://sensiolabs.com


Listing 26-4

Listing 26-5

Listing 26-6

Listing 26-7

1 You cannot create a service ("request") of an inactive scope ("request").

Consider the following example that uses the translator service to translate some contents using a
console command:

1
2
3
4
5
6
7
8
9

10
11
12

protected function execute(InputInterface $input, OutputInterface $output)
{

$name = $input->getArgument('name');
$translator = $this->getContainer()->get('translator');
if ($name) {

$output->writeln(
$translator->trans('Hello %name%!', array('%name%' => $name))

);
} else {

$output->writeln($translator->trans('Hello!'));
}

}

If you dig into the Translator component classes, you'll see that the request service is required to get the
locale into which the contents are translated:

1
2
3
4
5
6
7
8
9

10

// vendor/symfony/symfony/src/Symfony/Bundle/FrameworkBundle/Translation/Translator.php
public function getLocale()
{

if (null === $this->locale && $this->container->isScopeActive('request')
&& $this->container->has('request')) {
$this->locale = $this->container->get('request')->getLocale();

}

return $this->locale;
}

Therefore, when using the translator service inside a command, you'll get the previous "You cannot
create a service of an inactive scope" error message. The solution in this case is as easy as setting the locale
value explicitly before translating contents:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

protected function execute(InputInterface $input, OutputInterface $output)
{

$name = $input->getArgument('name');
$locale = $input->getArgument('locale');

$translator = $this->getContainer()->get('translator');
$translator->setLocale($locale);

if ($name) {
$output->writeln(

$translator->trans('Hello %name%!', array('%name%' => $name))
);

} else {
$output->writeln($translator->trans('Hello!'));

}
}

However for other services the solution might be more complex. For more details, see How to Work with
Scopes.

PDF brought to you by
generated on March 11, 2015

Chapter 26: How to Create a Console Command | 98

http://sensiolabs.com


Listing 26-8

Listing 26-9

Testing Commands
When testing commands used as part of the full framework
Symfony\Bundle\FrameworkBundle\Console\Application3 should be used instead of
Symfony\Component\Console\Application4:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

use Symfony\Component\Console\Tester\CommandTester;
use Symfony\Bundle\FrameworkBundle\Console\Application;
use AppBundle\Command\GreetCommand;

class ListCommandTest extends \PHPUnit_Framework_TestCase
{

public function testExecute()
{

// mock the Kernel or create one depending on your needs
$application = new Application($kernel);
$application->add(new GreetCommand());

$command = $application->find('demo:greet');
$commandTester = new CommandTester($command);
$commandTester->execute(

array(
'name' => 'Fabien',
'--yell' => true,

)
);

$this->assertRegExp('/.../', $commandTester->getDisplay());

// ...
}

}

In the specific case above, the name parameter and the --yell option are not mandatory for
the command to work, but are shown so you can see how to customize them when calling the
command.

To be able to use the fully set up service container for your console tests you can extend your test from
KernelTestCase5:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\Console\Tester\CommandTester;
use Symfony\Bundle\FrameworkBundle\Console\Application;
use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;
use AppBundle\Command\GreetCommand;

class ListCommandTest extends KernelTestCase
{

public function testExecute()
{

$kernel = $this->createKernel();
$kernel->boot();

3. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Console/Application.html

4. http://api.symfony.com/2.6/Symfony/Component/Console/Application.html

5. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Test/KernelTestCase.html

PDF brought to you by
generated on March 11, 2015

Chapter 26: How to Create a Console Command | 99

http://sensiolabs.com


13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

$application = new Application($kernel);
$application->add(new GreetCommand());

$command = $application->find('demo:greet');
$commandTester = new CommandTester($command);
$commandTester->execute(

array(
'name' => 'Fabien',
'--yell' => true,

)
);

$this->assertRegExp('/.../', $commandTester->getDisplay());

// ...
}

}

New in version 2.5: KernelTestCase6 was extracted from WebTestCase7 in Symfony 2.5. WebTestCase
inherits from KernelTestCase. The WebTestCase creates an instance of Client8 via createClient(),
while KernelTestCase creates an instance of KernelInterface9 via createKernel().

6. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Test/KernelTestCase.html

7. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Test/WebTestCase.html

8. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Client.html

9. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 26: How to Create a Console Command | 100

http://sensiolabs.com


Listing 27-1

Listing 27-2

Listing 27-3

Listing 27-4

Listing 27-5

Chapter 27

How to Use the Console

The Using Console Commands, Shortcuts and Built-in Commands page of the components documentation
looks at the global console options. When you use the console as part of the full stack framework, some
additional global options are available as well.

By default, console commands run in the dev environment and you may want to change this for
some commands. For example, you may want to run some commands in the prod environment for
performance reasons. Also, the result of some commands will be different depending on the environment.
For example, the cache:clear command will clear and warm the cache for the specified environment
only. To clear and warm the prod cache you need to run:

1 $ php app/console cache:clear --env=prod

or the equivalent:

1 $ php app/console cache:clear -e prod

In addition to changing the environment, you can also choose to disable debug mode. This can be useful
where you want to run commands in the dev environment but avoid the performance hit of collecting
debug data:

1 $ php app/console list --no-debug

There is an interactive shell which allows you to enter commands without having to specify php app/
console each time, which is useful if you need to run several commands. To enter the shell run:

1
2

$ php app/console --shell
$ php app/console -s

You can now just run commands with the command name:

1 Symfony > list

When using the shell you can choose to run each command in a separate process:

PDF brought to you by
generated on March 11, 2015

Chapter 27: How to Use the Console | 101

http://sensiolabs.com


Listing 27-6 1
2

$ php app/console --shell --process-isolation
$ php app/console -s --process-isolation

When you do this, the output will not be colorized and interactivity is not supported so you will need to
pass all command params explicitly.

Unless you are using isolated processes, clearing the cache in the shell will not have an effect on
subsequent commands you run. This is because the original cached files are still being used.

PDF brought to you by
generated on March 11, 2015

Chapter 27: How to Use the Console | 102

http://sensiolabs.com


Listing 28-1

Listing 28-2

Chapter 28

How to Generate URLs and Send Emails from
the Console

Unfortunately, the command line context does not know about your VirtualHost or domain name. This
means that if you generate absolute URLs within a Console Command you'll probably end up with
something like http://localhost/foo/bar which is not very useful.

To fix this, you need to configure the "request context", which is a fancy way of saying that you need to
configure your environment so that it knows what URL it should use when generating URLs.

There are two ways of configuring the request context: at the application level and per Command.

Configuring the Request Context Globally
To configure the Request Context - which is used by the URL Generator - you can redefine the
parameters it uses as default values to change the default host (localhost) and scheme (http). You can
also configure the base path if Symfony is not running in the root directory.

Note that this does not impact URLs generated via normal web requests, since those will override the
defaults.

1
2
3
4
5

# app/config/parameters.yml
parameters:

router.request_context.host: example.org
router.request_context.scheme: https
router.request_context.base_url: my/path

Configuring the Request Context per Command
To change it only in one command you can simply fetch the Request Context from the router service
and override its settings:

PDF brought to you by
generated on March 11, 2015

Chapter 28: How to Generate URLs and Send Emails from the Console | 103

http://sensiolabs.com


Listing 28-3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Command/DemoCommand.php

// ...
class DemoCommand extends ContainerAwareCommand
{

protected function execute(InputInterface $input, OutputInterface $output)
{

$context = $this->getContainer()->get('router')->getContext();
$context->setHost('example.com');
$context->setScheme('https');
$context->setBaseUrl('my/path');

// ... your code here
}

}

Using Memory Spooling
New in version 2.3: When using Symfony 2.3+ and SwiftmailerBundle 2.3.5+, the memory spool is now
handled automatically in the CLI and the code below is not necessary anymore.

Sending emails in a console command works the same way as described in the How to Send an Email
cookbook except if memory spooling is used.

When using memory spooling (see the How to Spool Emails cookbook for more information), you must
be aware that because of how Symfony handles console commands, emails are not sent automatically.
You must take care of flushing the queue yourself. Use the following code to send emails inside your
console command:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

$message = new \Swift_Message();

// ... prepare the message

$container = $this->getContainer();
$mailer = $container->get('mailer');

$mailer->send($message);

// now manually flush the queue
$spool = $mailer->getTransport()->getSpool();
$transport = $container->get('swiftmailer.transport.real');

$spool->flushQueue($transport);

Another option is to create an environment which is only used by console commands and uses a different
spooling method.

Taking care of the spooling is only needed when memory spooling is used. If you are using file
spooling (or no spooling at all), there is no need to flush the queue manually within the command.

PDF brought to you by
generated on March 11, 2015

Chapter 28: How to Generate URLs and Send Emails from the Console | 104

http://sensiolabs.com


Listing 29-1

Chapter 29

How to Enable Logging in Console Commands

The Console component doesn't provide any logging capabilities out of the box. Normally, you run
console commands manually and observe the output, which is why logging is not provided. However,
there are cases when you might need logging. For example, if you are running console commands
unattended, such as from cron jobs or deployment scripts, it may be easier to use Symfony's logging
capabilities instead of configuring other tools to gather console output and process it. This can be
especially handful if you already have some existing setup for aggregating and analyzing Symfony logs.
There are basically two logging cases you would need:

• Manually logging some information from your command;
• Logging uncaught Exceptions.

Manually Logging from a Console Command
This one is really simple. When you create a console command within the full framework as described
in "How to Create a Console Command", your command extends ContainerAwareCommand1. This means
that you can simply access the standard logger service through the container and use it to do the logging:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/AppBundle/Command/GreetCommand.php
namespace AppBundle\Command;

use Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCommand;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;
use Psr\Log\LoggerInterface;

class GreetCommand extends ContainerAwareCommand
{

// ...

1. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Command/ContainerAwareCommand.html

PDF brought to you by
generated on March 11, 2015

Chapter 29: How to Enable Logging in Console Commands | 105

http://sensiolabs.com


Listing 29-2

Listing 29-3

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

protected function execute(InputInterface $input, OutputInterface $output)
{

/** @var $logger LoggerInterface */
$logger = $this->getContainer()->get('logger');

$name = $input->getArgument('name');
if ($name) {

$text = 'Hello '.$name;
} else {

$text = 'Hello';
}

if ($input->getOption('yell')) {
$text = strtoupper($text);
$logger->warning('Yelled: '.$text);

} else {
$logger->info('Greeted: '.$text);

}

$output->writeln($text);
}

}

Depending on the environment in which you run your command (and your logging setup), you should
see the logged entries in app/logs/dev.log or app/logs/prod.log.

Enabling automatic Exceptions Logging
To get your console application to automatically log uncaught exceptions for all of your commands, you
can use console events.

New in version 2.3: Console events were introduced in Symfony 2.3.

First configure a listener for console exception events in the service container:

1
2
3
4
5
6
7
8

# app/config/services.yml
services:

kernel.listener.command_dispatch:
class: AppBundle\EventListener\ConsoleExceptionListener
arguments:

logger: "@logger"
tags:

- { name: kernel.event_listener, event: console.exception }

Then implement the actual listener:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/EventListener/ConsoleExceptionListener.php
namespace AppBundle\EventListener;

use Symfony\Component\Console\Event\ConsoleExceptionEvent;
use Psr\Log\LoggerInterface;

class ConsoleExceptionListener
{

private $logger;

PDF brought to you by
generated on March 11, 2015

Chapter 29: How to Enable Logging in Console Commands | 106

http://sensiolabs.com


Listing 29-4

Listing 29-5

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public function __construct(LoggerInterface $logger)
{

$this->logger = $logger;
}

public function onConsoleException(ConsoleExceptionEvent $event)
{

$command = $event->getCommand();
$exception = $event->getException();

$message = sprintf(
'%s: %s (uncaught exception) at %s line %s while running console command `%s`',
get_class($exception),
$exception->getMessage(),
$exception->getFile(),
$exception->getLine(),
$command->getName()

);

$this->logger->error($message, array('exception' => $exception));
}

}

In the code above, when any command throws an exception, the listener will receive an event. You
can simply log it by passing the logger service via the service configuration. Your method receives
a ConsoleExceptionEvent2 object, which has methods to get information about the event and the
exception.

Logging non-0 Exit Statuses
The logging capabilities of the console can be further extended by logging non-0 exit statuses. This way
you will know if a command had any errors, even if no exceptions were thrown.

First configure a listener for console terminate events in the service container:

1
2
3
4
5
6
7
8

# app/config/services.yml
services:

kernel.listener.command_dispatch:
class: AppBundle\EventListener\ErrorLoggerListener
arguments:

logger: "@logger"
tags:

- { name: kernel.event_listener, event: console.terminate }

Then implement the actual listener:

1
2
3
4
5
6
7
8

// src/AppBundle/EventListener/ErrorLoggerListener.php
namespace AppBundle\EventListener;

use Symfony\Component\Console\Event\ConsoleTerminateEvent;
use Psr\Log\LoggerInterface;

class ErrorLoggerListener
{

2. http://api.symfony.com/2.6/Symfony/Component/Console/Event/ConsoleExceptionEvent.html

PDF brought to you by
generated on March 11, 2015

Chapter 29: How to Enable Logging in Console Commands | 107

http://sensiolabs.com


9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

private $logger;

public function __construct(LoggerInterface $logger)
{

$this->logger = $logger;
}

public function onConsoleTerminate(ConsoleTerminateEvent $event)
{

$statusCode = $event->getExitCode();
$command = $event->getCommand();

if ($statusCode === 0) {
return;

}

if ($statusCode > 255) {
$statusCode = 255;
$event->setExitCode($statusCode);

}

$this->logger->warning(sprintf(
'Command `%s` exited with status code %d',
$command->getName(),
$statusCode

));
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 29: How to Enable Logging in Console Commands | 108

http://sensiolabs.com


Listing 30-1

Chapter 30

How to Define Commands as Services

By default, Symfony will take a look in the Command directory of each bundle and automatically register
your commands. If a command extends the ContainerAwareCommand1, Symfony will even inject the
container. While making life easier, this has some limitations:

• Your command must live in the Command directory;
• There's no way to conditionally register your service based on the environment or availability

of some dependencies;
• You can't access the container in the configure() method (because setContainer hasn't been

called yet);
• You can't use the same class to create many commands (i.e. each with different configuration).

To solve these problems, you can register your command as a service and tag it with console.command:

1
2
3
4
5
6

# app/config/config.yml
services:

acme_hello.command.my_command:
class: Acme\HelloBundle\Command\MyCommand
tags:

- { name: console.command }

Using Dependencies and Parameters to Set Default Values for Options
Imagine you want to provide a default value for the name option. You could pass one of the following as
the 5th argument of addOption():

• a hardcoded string;
• a container parameter (e.g. something from parameters.yml);
• a value computed by a service (e.g. a repository).

1. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Command/ContainerAwareCommand.html

PDF brought to you by
generated on March 11, 2015

Chapter 30: How to Define Commands as Services | 109

http://sensiolabs.com


Listing 30-2

By extending ContainerAwareCommand, only the first is possible, because you can't access the container
inside the configure() method. Instead, inject any parameter or service you need into the constructor.
For example, suppose you have some NameRepository service that you'll use to get your default value:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// src/Acme/DemoBundle/Command/GreetCommand.php
namespace Acme\DemoBundle\Command;

use Acme\DemoBundle\Entity\NameRepository;
use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;

class GreetCommand extends Command
{

protected $nameRepository;

public function __construct(NameRepository $nameRepository)
{

$this->nameRepository = $nameRepository;

parent::__construct();
}

protected function configure()
{

$defaultName = $this->nameRepository->findLastOne();

$this
->setName('demo:greet')
->setDescription('Greet someone')
->addOption('name', '-n', InputOption::VALUE_REQUIRED, 'Who do you want to

greet?', $defaultName)
;

}

protected function execute(InputInterface $input, OutputInterface $output)
{

$name = $input->getOption('name');

$output->writeln($name);
}

}

Now, just update the arguments of your service configuration like normal to inject the NameRepository.
Great, you now have a dynamic default value!

Be careful not to actually do any work in configure (e.g. make database queries), as your code will
be run, even if you're using the console to execute a different command.

PDF brought to you by
generated on March 11, 2015

Chapter 30: How to Define Commands as Services | 110

http://sensiolabs.com


Chapter 31

How to Customize Error Pages

When an exception is thrown, the core HttpKernel class catches it and dispatches a kernel.exception
event. This gives you the power to convert the exception into a Response in a few different ways.

The core TwigBundle sets up a listener for this event which will run a configurable (but otherwise
arbitrary) controller to generate the response. The default controller used has a sensible way of picking
one out of the available set of error templates.

Thus, error pages can be customized in different ways, depending on how much control you need:
1. Use the default ExceptionController and create a few templates that allow you to customize how

your different error pages look (easy);
2. Replace the default exception controller with your own (intermediate).
3. Use the kernel.exception event to come up with your own handling (advanced).

Using the Default ExceptionController
By default, the showAction() method of the ExceptionController1 will be called when an exception
occurs.

This controller will either display an exception or error page, depending on the setting of the
kernel.debug flag. While exception pages give you a lot of helpful information during development,
error pages are meant to be shown to the user in production.

You can also preview your error pages in kernel.debug mode.

How the Template for the Error and Exception Pages Is Selected

The TwigBundle contains some default templates for error and exception pages in its Resources/views/
Exception directory.

1. http://api.symfony.com/2.6/Symfony/Bundle/TwigBundle/Controller/ExceptionController.html

PDF brought to you by
generated on March 11, 2015

Chapter 31: How to Customize Error Pages | 111

http://sensiolabs.com


Listing 31-1

In a standard Symfony installation, the TwigBundle can be found at vendor/symfony/symfony/
src/Symfony/Bundle/TwigBundle. In addition to the standard HTML error page, it also provides
a default error page for many of the most common response formats, including JSON
(error.json.twig), XML (error.xml.twig) and even JavaScript (error.js.twig), to name a
few.

Here is how the ExceptionController will pick one of the available templates based on the HTTP status
code and request format:

• For error pages, it first looks for a template for the given format and status code (like
error404.json.twig);

• If that does not exist or apply, it looks for a general template for the given format (like
error.json.twig or exception.json.twig);

• Finally, it ignores the format and falls back to the HTML template (like error.html.twig or
exception.html.twig).

If the exception being handled implements the HttpExceptionInterface2, the getStatusCode()
method will be called to obtain the HTTP status code to use. Otherwise, the status code will be
"500".

Overriding or Adding Templates

To override these templates, simply rely on the standard method for overriding templates that live inside
a bundle. For more information, see Overriding Bundle Templates.

For example, to override the default error template, create a new template located at app/Resources/
TwigBundle/views/Exception/error.html.twig:

1
2
3
4
5
6
7
8
9

10
11

<!DOCTYPE html>
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>An Error Occurred: {{ status_text }}</title>

</head>
<body>

<h1>Oops! An Error Occurred</h1>
<h2>The server returned a "{{ status_code }} {{ status_text }}".</h2>

</body>
</html>

You must not use is_granted in your error pages (or layout used by your error pages), because
the router runs before the firewall. If the router throws an exception (for instance, when the route
does not match), then using is_granted will throw a further exception. You can use is_granted
safely by saying {% if app.user and is_granted('...') %}.

If you're not familiar with Twig, don't worry. Twig is a simple, powerful and optional templating
engine that integrates with Symfony. For more information about Twig see Creating and Using
Templates.

2. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Exception/HttpExceptionInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 31: How to Customize Error Pages | 112

http://sensiolabs.com


Listing 31-2

Listing 31-3

Listing 31-4

This works not only to replace the default templates, but also to add new ones.

For instance, create an app/Resources/TwigBundle/views/Exception/error404.html.twig template
to display a special page for 404 (page not found) errors. Refer to the previous section for the order in
which the ExceptionController tries different template names.

Often, the easiest way to customize an error page is to copy it from the TwigBundle into app/
Resources/TwigBundle/views/Exception and then modify it.

The debug-friendly exception pages shown to the developer can even be customized in the same
way by creating templates such as exception.html.twig for the standard HTML exception page
or exception.json.twig for the JSON exception page.

Testing Error Pages during Development

The default ExceptionController also allows you to preview your error pages during development.

New in version 2.6: This feature was introduced in Symfony 2.6. Before, the third-party
WebfactoryExceptionsBundle3 could be used for the same purpose.

To use this feature, you need to have a definition in your routing_dev.yml file like so:

1
2
3
4

# app/config/routing_dev.yml
_errors:

resource: "@TwigBundle/Resources/config/routing/errors.xml"
prefix: /_error

If you're coming from an older version of Symfony, you might need to add this to your routing_dev.yml
file. If you're starting from scratch, the Symfony Standard Edition4 already contains it for you.

With this route added, you can use URLs like

1
2

http://localhost/app_dev.php/_error/{statusCode}
http://localhost/app_dev.php/_error/{statusCode}.{format}

to preview the error page for a given status code as HTML or for a given status code and format.

Replacing the Default ExceptionController
If you need a little more flexibility beyond just overriding the template, then you can change the
controller that renders the error page. For example, you might need to pass some additional variables
into your template.

Make sure you don't lose the exception pages that render the helpful error messages during
development.

To do this, simply create a new controller and set the twig.exception_controller option to point to it.

3. https://github.com/webfactory/exceptions-bundle

4. https://github.com/symfony/symfony-standard/

PDF brought to you by
generated on March 11, 2015

Chapter 31: How to Customize Error Pages | 113

http://sensiolabs.com


1
2
3

# app/config/config.yml
twig:

exception_controller: AppBundle:Exception:showException

You can also set up your controller as a service.

The default value of twig.controller.exception:showAction refers to the showAction method
of the ExceptionController described previously, which is registered in the DIC as the
twig.controller.exception service.

Your controller will be passed two parameters: exception, which is a FlattenException5 instance
created from the exception being handled, and logger, an instance of DebugLoggerInterface6 (which
may be null).

The Request that will be dispatched to your controller is created in the ExceptionListener7. This
event listener is set up by the TwigBundle.

You can, of course, also extend the previously described ExceptionController8. In that case, you might
want to override one or both of the showAction and findTemplate methods. The latter one locates the
template to be used.

As of writing, the ExceptionController is not part of the Symfony API, so be aware that it might
change in following releases.

The error page preview also works for your own controllers set up this way.

Working with the kernel.exception Event
As mentioned in the beginning, the kernel.exception event is dispatched whenever the Symfony Kernel
needs to handle an exception. For more information on that, see kernel.exception Event.

Working with this event is actually much more powerful than what has been explained before but also
requires a thorough understanding of Symfony internals.

To give one example, assume your application throws specialized exceptions with a particular meaning
to your domain.

In that case, all the default ExceptionListener and ExceptionController could do for you was trying
to figure out the right HTTP status code and display your nice-looking error page.

Writing your own event listener for the kernel.exception event allows you to have a closer look at the
exception and take different actions depending on it. Those actions might include logging the exception,
redirecting the user to another page or rendering specialized error pages.

5. http://api.symfony.com/2.6//Symfony/Component/Debug/Exception/FlattenException.html

6. http://api.symfony.com/2.6//Symfony/Component/HttpKernel/Log/DebugLoggerInterface.html

7. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html

8. http://api.symfony.com/2.6/Symfony/Bundle/TwigBundle/Controller/ExceptionController.html

PDF brought to you by
generated on March 11, 2015

Chapter 31: How to Customize Error Pages | 114

http://sensiolabs.com


If your listener calls setResponse() on the GetResponseForExceptionEvent9, event propagation
will be stopped and the response will be sent to the client.

This approach allows you to create centralized and layered error handling: Instead of catching (and
handling) the same exceptions in various controllers again and again, you can have just one (or several)
listeners deal with them.

To see an example, have a look at the ExceptionListener10 in the Security Component.

It handles various security-related exceptions that are thrown in your application (like
AccessDeniedException11) and takes measures like redirecting the user to the login page, logging
them out and other things.

Good luck!

9. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html

10. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Security/Http/Firewall/ExceptionListener.php

11. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Exception/AccessDeniedException.html

PDF brought to you by
generated on March 11, 2015

Chapter 31: How to Customize Error Pages | 115

http://sensiolabs.com


Listing 32-1

Chapter 32

How to Define Controllers as Services

In the book, you've learned how easily a controller can be used when it extends the base Controller1

class. While this works fine, controllers can also be specified as services.

Specifying a controller as a service takes a little bit more work. The primary advantage is that the
entire controller or any services passed to the controller can be modified via the service container
configuration. This is especially useful when developing an open-source bundle or any bundle that
will be used in many different projects.

A second advantage is that your controllers are more "sandboxed". By looking at the constructor
arguments, it's easy to see what types of things this controller may or may not do. And because
each dependency needs to be injected manually, it's more obvious (i.e. if you have many
constructor arguments) when your controller has become too big, and may need to be split into
multiple controllers.

So, even if you don't specify your controllers as services, you'll likely see this done in some open-
source Symfony bundles. It's also important to understand the pros and cons of both approaches.

Defining the Controller as a Service
A controller can be defined as a service in the same way as any other class. For example, if you have the
following simple controller:

1
2
3
4
5
6
7
8
9

// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class HelloController
{

public function indexAction($name)
{

1. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

PDF brought to you by
generated on March 11, 2015

Chapter 32: How to Define Controllers as Services | 116

http://sensiolabs.com


Listing 32-2

Listing 32-3

Listing 32-4

10
11
12

return new Response('<html><body>Hello '.$name.'!</body></html>');
}

}

Then you can define it as a service as follows:

1
2
3
4

# app/config/services.yml
services:

app.hello_controller:
class: AppBundle\Controller\HelloController

Referring to the Service
To refer to a controller that's defined as a service, use the single colon (:) notation. For example, to
forward to the indexAction() method of the service defined above with the id app.hello_controller:

1 $this->forward('app.hello_controller:indexAction', array('name' => $name));

You cannot drop the Action part of the method name when using this syntax.

You can also route to the service by using the same notation when defining the route _controller value:

1
2
3
4

# app/config/routing.yml
hello:

path: /hello
defaults: { _controller: app.hello_controller:indexAction }

You can also use annotations to configure routing using a controller defined as a service. See the
FrameworkExtraBundle documentation2 for details.

New in version 2.6: If your controller service implements the __invoke method, you can simply refer to
the service id (acme.hello.controller).

Alternatives to base Controller Methods
When using a controller defined as a service, it will most likely not extend the base Controller class.
Instead of relying on its shortcut methods, you'll interact directly with the services that you need.
Fortunately, this is usually pretty easy and the base Controller class source code3 is a great source on how
to perform many common tasks.

For example, if you want to render a template instead of creating the Response object directly, then your
code would look like this if you were extending Symfony's base controller:

2. http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/routing.html

3. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/Controller.php

PDF brought to you by
generated on March 11, 2015

Chapter 32: How to Define Controllers as Services | 117

http://sensiolabs.com


Listing 32-5

Listing 32-6

Listing 32-7

Listing 32-8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class HelloController extends Controller
{

public function indexAction($name)
{

return $this->render(
'AppBundle:Hello:index.html.twig',
array('name' => $name)

);
}

}

If you look at the source code for the render function in Symfony's base Controller class4, you'll see that
this method actually uses the templating service:

1
2
3
4

public function render($view, array $parameters = array(), Response $response = null)
{

return $this->container->get('templating')->renderResponse($view, $parameters,
$response);
}

In a controller that's defined as a service, you can instead inject the templating service and use it directly:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Templating\EngineInterface;
use Symfony\Component\HttpFoundation\Response;

class HelloController
{

private $templating;

public function __construct(EngineInterface $templating)
{

$this->templating = $templating;
}

public function indexAction($name)
{

return $this->templating->renderResponse(
'AppBundle:Hello:index.html.twig',
array('name' => $name)

);
}

}

The service definition also needs modifying to specify the constructor argument:

1
2

# app/config/services.yml
services:

4. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/Controller.php

PDF brought to you by
generated on March 11, 2015

Chapter 32: How to Define Controllers as Services | 118

http://sensiolabs.com


3
4
5

app.hello_controller:
class: AppBundle\Controller\HelloController
arguments: ["@templating"]

Rather than fetching the templating service from the container, you can inject only the exact service(s)
that you need directly into the controller.

This does not mean that you cannot extend these controllers from your own base controller. The
move away from the standard base controller is because its helper methods rely on having the
container available which is not the case for controllers that are defined as services. It may be a
good idea to extract common code into a service that's injected rather than place that code into a
base controller that you extend. Both approaches are valid, exactly how you want to organize your
reusable code is up to you.

PDF brought to you by
generated on March 11, 2015

Chapter 32: How to Define Controllers as Services | 119

http://sensiolabs.com


Listing 33-1

Listing 33-2

Chapter 33

How to Optimize your Development
Environment for Debugging

When you work on a Symfony project on your local machine, you should use the dev environment
(app_dev.php front controller). This environment configuration is optimized for two main purposes:

• Give the developer accurate feedback whenever something goes wrong (web debug toolbar,
nice exception pages, profiler, ...);

• Be as similar as possible as the production environment to avoid problems when deploying the
project.

Disabling the Bootstrap File and Class Caching
And to make the production environment as fast as possible, Symfony creates big PHP files in your
cache containing the aggregation of PHP classes your project needs for every request. However, this
behavior can confuse your IDE or your debugger. This recipe shows you how you can tweak this caching
mechanism to make it friendlier when you need to debug code that involves Symfony classes.

The app_dev.php front controller reads as follows by default:

1
2
3
4
5
6
7
8

// ...

$loader = require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

$kernel = new AppKernel('dev', true);
$kernel->loadClassCache();
$request = Request::createFromGlobals();

To make your debugger happier, disable all PHP class caches by removing the call to loadClassCache()
and by replacing the require statements like below:

PDF brought to you by
generated on March 11, 2015

Chapter 33: How to Optimize your Development Environment for Debugging | 120

http://sensiolabs.com


Listing 33-3

1
2
3
4
5
6
7
8
9

// ...

// $loader = require_once __DIR__.'/../app/bootstrap.php.cache';
$loader = require_once __DIR__.'/../app/autoload.php';
require_once __DIR__.'/../app/AppKernel.php';

$kernel = new AppKernel('dev', true);
// $kernel->loadClassCache();
$request = Request::createFromGlobals();

If you disable the PHP caches, don't forget to revert after your debugging session.

Some IDEs do not like the fact that some classes are stored in different locations. To avoid problems, you
can either tell your IDE to ignore the PHP cache files, or you can change the extension used by Symfony
for these files:

1 $kernel->loadClassCache('classes', '.php.cache');

PDF brought to you by
generated on March 11, 2015

Chapter 33: How to Optimize your Development Environment for Debugging | 121

http://sensiolabs.com


Chapter 34

How to Deploy a Symfony Application

Deploying can be a complex and varied task depending on the setup and the requirements of
your application. This article is not a step-by-step guide, but is a general list of the most common
requirements and ideas for deployment.

Symfony Deployment Basics
The typical steps taken while deploying a Symfony application include:

1. Upload your code to the production server;
2. Install your vendor dependencies (typically done via Composer and may be done before

uploading);
3. Running database migrations or similar tasks to update any changed data structures;
4. Clearing (and optionally, warming up) your cache.

A deployment may also include other tasks, such as:

• Tagging a particular version of your code as a release in your source control repository;
• Creating a temporary staging area to build your updated setup "offline";
• Running any tests available to ensure code and/or server stability;
• Removal of any unnecessary files from the web/ directory to keep your production

environment clean;
• Clearing of external cache systems (like Memcached1 or Redis2).

How to Deploy a Symfony Application
There are several ways you can deploy a Symfony application. Start with a few basic deployment
strategies and build up from there.

1. http://memcached.org/

2. http://redis.io/

PDF brought to you by
generated on March 11, 2015

Chapter 34: How to Deploy a Symfony Application | 122

http://sensiolabs.com


Basic File Transfer

The most basic way of deploying an application is copying the files manually via ftp/scp (or similar
method). This has its disadvantages as you lack control over the system as the upgrade progresses. This
method also requires you to take some manual steps after transferring the files (see Common Post-
Deployment Tasks)

Using Source Control

If you're using source control (e.g. Git or SVN), you can simplify by having your live installation also be a
copy of your repository. When you're ready to upgrade it is as simple as fetching the latest updates from
your source control system.

This makes updating your files easier, but you still need to worry about manually taking other steps (see
Common Post-Deployment Tasks).

Using Build Scripts and other Tools

There are also tools to help ease the pain of deployment. Some of them have been specifically tailored to
the requirements of Symfony.
Capifony3

This Ruby-based tool provides a specialized set of tools on top of Capistrano4, tailored specifically
to Symfony projects.

sf2debpkg5

Helps you build a native Debian package for your Symfony project.

Magallanes6

This Capistrano-like deployment tool is built in PHP, and may be easier for PHP developers to
extend for their needs.

Fabric7

This Python-based library provides a basic suite of operations for executing local or remote shell
commands and uploading/downloading files.

Bundles
There are some bundles that add deployment features8 directly into your Symfony console.

Basic scripting
You can of course use shell, Ant9 or any other build tool to script the deploying of your project.

Platform as a Service Providers

The Symfony Cookbook includes detailed articles for some of the most well-known Platform as a
Service (PaaS) providers:

• Microsoft Azure
• Heroku
• Platform.sh

3. http://capifony.org/http://capifony.org/

4. http://capistranorb.com/

5. https://github.com/liip/sf2debpkghttps://github.com/liip/sf2debpkg

6. https://github.com/andres-montanez/Magallaneshttps://github.com/andres-montanez/Magallanes

7. http://www.fabfile.org/http://www.fabfile.org/

8. http://knpbundles.com/search?q=deploy

9. http://blog.sznapka.pl/deploying-symfony2-applications-with-ant

PDF brought to you by
generated on March 11, 2015

Chapter 34: How to Deploy a Symfony Application | 123

http://sensiolabs.com


Listing 34-1

Listing 34-2

Listing 34-3

Listing 34-4

Common Post-Deployment Tasks
After deploying your actual source code, there are a number of common things you'll need to do:

A) Check Requirements

Check if your server meets the requirements by running:

1 $ php app/check.php

B) Configure your app/config/parameters.yml File

This file should not be deployed, but managed through the automatic utilities provided by Symfony.

C) Install/Update your Vendors

Your vendors can be updated before transferring your source code (i.e. update the vendor/ directory,
then transfer that with your source code) or afterwards on the server. Either way, just update your
vendors as you normally do:

1 $ composer install --no-dev --optimize-autoloader

The --optimize-autoloader flag improves Composer's autoloader performance significantly by
building a "class map". The --no-dev flag ensures that development packages are not installed in
the production environment.

If you get a "class not found" error during this step, you may need to run export
SYMFONY_ENV=prod before running this command so that the post-install-cmd scripts run in the
prod environment.

D) Clear your Symfony Cache

Make sure you clear (and warm-up) your Symfony cache:

1 $ php app/console cache:clear --env=prod --no-debug

E) Dump your Assetic Assets

If you're using Assetic, you'll also want to dump your assets:

1 $ php app/console assetic:dump --env=prod --no-debug

F) Other Things!

There may be lots of other things that you need to do, depending on your setup:

• Running any database migrations
• Clearing your APC cache

PDF brought to you by
generated on March 11, 2015

Chapter 34: How to Deploy a Symfony Application | 124

http://sensiolabs.com


• Running assets:install (already taken care of in composer install)
• Add/edit CRON jobs
• Pushing assets to a CDN
• ...

Application Lifecycle: Continuous Integration, QA, etc
While this entry covers the technical details of deploying, the full lifecycle of taking code from
development up to production may have a lot more steps (think deploying to staging, QA (Quality
Assurance), running tests, etc).

The use of staging, testing, QA, continuous integration, database migrations and the capability to roll
back in case of failure are all strongly advised. There are simple and more complex tools and one can
make the deployment as easy (or sophisticated) as your environment requires.

Don't forget that deploying your application also involves updating any dependency (typically via
Composer), migrating your database, clearing your cache and other potential things like pushing assets
to a CDN (see Common Post-Deployment Tasks).

PDF brought to you by
generated on March 11, 2015

Chapter 34: How to Deploy a Symfony Application | 125

http://sensiolabs.com


Chapter 35

Deploying to Microsoft Azure Website Cloud

This step by step cookbook describes how to deploy a small Symfony web application to the Microsoft
Azure Website cloud platform. It will explain how to setup a new Azure website including configuring the
right PHP version and global environment variables. The document also shows how to you can leverage
Git and Composer to deploy your Symfony application to the cloud.

Setting up the Azure Website

To setup a new Microsoft Azure Website, first signup with Azure1 or sign in with your credentials. Once
you're connected to your Azure Portal2 interface, scroll down to the bottom and select the New panel.
On this panel, click Web Site and choose Custom Create:

1. https://signup.live.com/signup.aspx

2. https://manage.windowsazure.com

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 126

http://sensiolabs.com


Step 1: Create Web Site

Here, you will be prompted to fill in some basic information.

For the URL, enter the URL that you would like to use for your Symfony application, then pick Create
new web hosting plan in the region you want. By default, a free 20 MB SQL database is selected in the
database dropdown list. In this tutorial, the Symfony app will connect to a MySQL database. Pick the
Create a new MySQL database option in the dropdown list. You can keep the DefaultConnection
string name. Finally, check the box Publish from source control to enable a Git repository and go to
the next step.

Step 2: New MySQL Database

On this step, you will be prompted to setup your MySQL database storage with a database name and a
region. The MySQL database storage is provided by Microsoft in partnership with ClearDB. Choose the
same region you selected for the hosting plan configuration in the previous step.

Agree to the terms and conditions and click on the right arrow to continue.

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 127

http://sensiolabs.com


Step 3: Where Is your Source Code

Now, on the third step, select a Local Git repository item and click on the right arrow to configure your
Azure Website credentials.

Step 4: New Username and Password

Great! You're now on the final step. Create a username and a secure password: these will become
essential identifiers to connect to the FTP server and also to push your application code to the Git
repository.

Congratulations! Your Azure Website is now up and running. You can check it by browsing to the
Website url you configured in the first step. You should see the following display in your web browser:

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 128

http://sensiolabs.com


The Microsoft Azure portal also provides a complete control panel for the Azure Website.

Your Azure Website is ready! But to run a Symfony site, you need to configure just a few additional
things.

Configuring the Azure Website for Symfony
This section of the tutorial details how to configure the correct version of PHP to run Symfony. It also
shows you how to enable some mandatory PHP extensions and how to properly configure PHP for a
production environment.

Configuring the latest PHP Runtime

Even though Symfony only requires PHP 5.3.3 to run, it's always recommended to use the most recent
PHP version whenever possible. PHP 5.3 is no longer supported by the PHP core team, but you can
update it easily in Azure.

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 129

http://sensiolabs.com


Listing 35-1

To update your PHP version on Azure, go to the Configure tab of the control panel and select the version
you want.

Click the Save button in the bottom bar to save your changes and restart the web server.

Choosing a more recent PHP version can greatly improve runtime performance. PHP 5.5 ships with
a new built-in PHP accelerator called OPCache that replaces APC. On an Azure Website, OPCache
is already enabled and there is no need to install and setup APC.

The following screenshot shows the output of a phpinfo3 script run from an Azure Website to
verify that PHP 5.5 is running with OPCache enabled.

Tweaking php.ini Configuration Settings

Microsoft Azure allows you to override the php.ini global configuration settings by creating a custom
.user.ini file under the project root directory (site/wwwroot).

3. http://php.net/manual/en/function.phpinfo.php

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 130

http://sensiolabs.com


Listing 35-2

1
2
3
4

; .user.ini
expose_php = Off
memory_limit = 256M
upload_max_filesize = 10M

None of these settings needs to be overridden. The default PHP configuration is already pretty good, so
this is just an example to show how you can easily tweak PHP internal settings by uploading your custom
.ini file.

You can either manually create this file on your Azure Website FTP server under the site/wwwroot
directory or deploy it with Git. You can get your FTP server credentials from the Azure Website Control
panel under the Dashboard tab on the right sidebar. If you want to use Git, simply put your .user.ini
file at the root of your local repository and push your commits to your Azure Website repository.

This cookbook has a section dedicated to explaining how to configure your Azure Website Git
repository and how to push the commits to be deployed. See Deploying from Git. You can also
learn more about configuring PHP internal settings on the official PHP MSDN documentation4

page.

Enabling the PHP intl Extension

This is the tricky part of the guide! At the time of writing this cookbook, Microsoft Azure Website
provided the intl extension, but it's not enabled by default. To enable the intl extension, there is no
need to upload any DLL files as the php_intl.dll file already exists on Azure. In fact, this file just needs
to be moved into the custom website extension directory.

The Microsoft Azure team is currently working on enabling the intl PHP extension by default. In
the near future, the following steps will no longer be necessary.

To get the php_intl.dll file under your site/wwwroot directory, simply access the online Kudu tool by
browsing to the following url:

1 https://[your-website-name].scm.azurewebsites.net

Kudu is a set of tools to manage your application. It comes with a file explorer, a command line prompt,
a log stream and a configuration settings summary page. Of course, this section can only be accessed if
you're logged in to your main Azure Website account.

4. http://blogs.msdn.com/b/silverlining/archive/2012/07/10/configuring-php-in-windows-azure-websites-with-user-ini-files.aspx

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 131

http://sensiolabs.com


Listing 35-3

From the Kudu front page, click on the Debug Console navigation item in the main menu and choose
CMD. This should open the Debug Console page that shows a file explorer and a console prompt
below.

In the console prompt, type the following three commands to copy the original php_intl.dll extension
file into a custom website ext/ directory. This new directory must be created under the main directory
site/wwwroot.

1
2
3

$ cd site\wwwroot
$ mkdir ext
$ copy "D:\Program Files (x86)\PHP\v5.5\ext\php_intl.dll" ext

The whole process and output should look like this:

To complete the activation of the php_intl.dll extension, you must tell Azure Website to load it from
the newly created ext directory. This can be done by registering a global PHP_EXTENSIONS environment
variable from the Configure tab of the main Azure Website Control panel.

In the app settings section, register the PHP_EXTENSIONS environment variable with the value
ext\php_intl.dll as shown in the screenshot below:

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 132

http://sensiolabs.com


Listing 35-4

Hit "save" to confirm your changes and restart the web server. The PHP Intl extension should now be
available in your web server environment. The following screenshot of a phpinfo5 page verifies the intl
extension is properly enabled:

Great! The PHP environment setup is now complete. Next, you'll learn how to configure the Git
repository and push code to production. You'll also learn how to install and configure the Symfony app
after it's deployed.

Deploying from Git

First, make sure Git is correctly installed on your local machine using the following command in your
terminal:

1 $ git --version

5. http://php.net/manual/en/function.phpinfo.php

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 133

http://sensiolabs.com


Listing 35-5

Listing 35-6

Get your Git from the git-scm.com6 website and follow the instructions to install and configure it
on your local machine.

In the Azure Website Control panel, browse the Deployment tab to get the Git repository URL where
you should push your code:

Now, you'll want to connect your local Symfony application with this remote Git repository on Azure
Website. If your Symfony application is not yet stored with Git, you must first create a Git repository in
your Symfony application directory with the git init command and commit to it with the git commit
command.

Also, make sure your Symfony repository has a .gitignore file at its root directory with at least the
following contents:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/app/bootstrap.php.cache
/app/cache/*
/app/config/parameters.yml
/app/logs/*
!app/cache/.gitkeep
!app/logs/.gitkeep
/app/SymfonyRequirements.php
/build/
/vendor/
/bin/
/composer.phar
/web/app_dev.php
/web/bundles/
/web/config.php

The .gitignore file asks Git not to track any of the files and directories that match these patterns. This
means these files won't be deployed to the Azure Website.

Now, from the command line on your local machine, type the following at the root of your Symfony
project:

6. http://git-scm.com/download

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 134

http://sensiolabs.com


Listing 35-7

1
2

$ git remote add azure https://<username>@<your-website-name>.scm.azurewebsites.net:443/
<your-website-name>.git
$ git push azure master

Don't forget to replace the values enclosed by < and > with your custom settings displayed in the
Deployment tab of your Azure Website panel. The git remote command connects the Azure Website
remote Git repository and assigns an alias to it with the name azure. The second git push command
pushes all your commits to the remote master branch of your remote azure Git repository.

The deployment with Git should produce an output similar to the screenshot below:

The code of the Symfony application has now been deployed to the Azure Website which you can browse
from the file explorer of the Kudu application. You should see the app/, src/ and web/ directories under
your site/wwwroot directory on the Azure Website filesystem.

Configure the Symfony Application

PHP has been configured and your code has been pushed with Git. The last step is to configure the
application and install the third party dependencies it requires that aren't tracked by Git. Switch back to
the online Console of the Kudu application and execute the following commands in it:

1
2
3

$ cd site\wwwroot
$ curl -sS https://getcomposer.org/installer | php
$ php -d extension=php_intl.dll composer.phar install

The curl command retrieves and downloads the Composer command line tool and installs it at the root
of the site/wwwroot directory. Then, running the Composer install command downloads and installs
all necessary third-party libraries.

This may take a while depending on the number of third-party dependencies you've configured in your
composer.json file.

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 135

http://sensiolabs.com


Listing 35-8

The -d switch allows you to quickly override/add any php.ini settings. In this command, we are
forcing PHP to use the intl extension, because it is not enabled by default in Azure Website at
the moment. Soon, this -d option will no longer be needed since Microsoft will enable the intl
extension by default.

At the end of the composer install command, you will be prompted to fill in the values of some
Symfony settings like database credentials, locale, mailer credentials, CSRF token protection, etc. These
parameters come from the app/config/parameters.yml.dist file.

The most important thing in this cookbook is to correctly setup your database settings. You can get your
MySQL database settings on the right sidebar of the Azure Website Dashboard panel. Simply click on
the View Connection Strings link to make them appear in a pop-in.

The displayed MySQL database settings should be something similar to the code below. Of course, each
value depends on what you've already configured.

1 Database=mysymfonyMySQL;Data Source=eu-cdbr-azure-north-c.cloudapp.net;User
Id=bff2481a5b6074;Password=bdf50b42

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 136

http://sensiolabs.com


Listing 35-9

Listing 35-10

Listing 35-11

Switch back to the console and answer the prompted questions and provide the following answers. Don't
forget to adapt the values below with your real values from the MySQL connection string.

1
2
3
4
5
6
7

database_driver: pdo_mysql
database_host: u-cdbr-azure-north-c.cloudapp.net
database_port: null
database_name: mysymfonyMySQL
database_user: bff2481a5b6074
database_password: bdf50b42
// ...

Don't forget to answer all the questions. It's important to set a unique random string for the secret
variable. For the mailer configuration, Azure Website doesn't provide a built-in mailer service. You
should consider configuring the host-name and credentials of some other third-party mailing service if
your application needs to send emails.

Your Symfony application is now configured and should be almost operational. The final step is to build
the database schema. This can easily be done with the command line interface if you're using Doctrine.
In the online Console tool of the Kudu application, run the following command to mount the tables into
your MySQL database.

1 $ php app/console doctrine:schema:update --force

This command builds the tables and indexes for your MySQL database. If your Symfony application is
more complex than a basic Symfony Standard Edition, you may have additional commands to execute
for setup (see How to Deploy a Symfony Application).

Make sure that your application is running by browsing the app.php front controller with your web
browser and the following url:

1 http://<your-website-name>.azurewebsites.net/web/app.php

If Symfony is correctly installed, you should see the front page of your Symfony application showing.

Configure the Web Server

At this point, the Symfony application has been deployed and works perfectly on the Azure Website.
However, the web folder is still part of the url, which you definitely don't want. But don't worry! You can

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 137

http://sensiolabs.com


Listing 35-12

easily configure the web server to point to the web folder and remove the web in the URL (and guarantee
that nobody can access files outside of the web directory.)

To do this, create and deploy (see previous section about Git) the following web.config file. This file
must be located at the root of your project next to the composer.json file. This file is the Microsoft IIS
Server equivalent to the well-known .htaccess file from Apache. For a Symfony application, configure
it with the following content:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

<!-- web.config -->
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.webServer>

<rewrite>
<rules>
<clear />
<rule name="BlockAccessToPublic" patternSyntax="Wildcard" stopProcessing="true">

<match url="*" />
<conditions logicalGrouping="MatchAll" trackAllCaptures="false">
<add input="{URL}" pattern="/web/*" />

</conditions>
<action type="CustomResponse" statusCode="403" statusReason="Forbidden: Access

is denied." statusDescription="You do not have permission to view this directory or page
using the credentials that you supplied." />

</rule>
<rule name="RewriteAssetsToPublic" stopProcessing="true">

<match url="^(.*)(\.css|\.js|\.jpg|\.png|\.gif)$" />
<conditions logicalGrouping="MatchAll" trackAllCaptures="false">
</conditions>
<action type="Rewrite" url="web/{R:0}" />

</rule>
<rule name="RewriteRequestsToPublic" stopProcessing="true">

<match url="^(.*)$" />
<conditions logicalGrouping="MatchAll" trackAllCaptures="false">
</conditions>
<action type="Rewrite" url="web/app.php/{R:0}" />

</rule>
</rules>

</rewrite>
</system.webServer>

</configuration>

As you can see, the latest rule RewriteRequestsToPublic is responsible for rewriting any urls to the
web/app.php front controller which allows you to skip the web/ folder in the URL. The first rule called
BlockAccessToPublic matches all url patterns that contain the web/ folder and serves a 403 Forbidden
HTTP response instead. This example is based on Benjamin Eberlei's sample you can find on GitHub in
the SymfonyAzureEdition7 bundle.

Deploy this file under the site/wwwroot directory of the Azure Website and browse to your application
without the web/app.php segment in the URL.

Conclusion
Nice work! You've now deployed your Symfony application to the Microsoft Azure Website Cloud
platform. You also saw that Symfony can be easily configured and executed on a Microsoft IIS web server.
The process is simple and easy to implement. And as a bonus, Microsoft is continuing to reduce the
number of steps needed so that deployment becomes even easier.

7. https://github.com/beberlei/symfony-azure-edition/

PDF brought to you by
generated on March 11, 2015

Chapter 35: Deploying to Microsoft Azure Website Cloud | 138

http://sensiolabs.com


Listing 36-1

Chapter 36

Deploying to Heroku Cloud

This step by step cookbook describes how to deploy a Symfony web application to the Heroku cloud
platform. Its contents are based on the original article1 published by Heroku.

Setting up

To setup a new Heroku website, first signup with Heroku2 or sign in with your credentials. Then
download and install the Heroku Toolbelt3 on your local computer.

You can also check out the getting Started with PHP on Heroku4 guide to gain more familiarity with the
specifics of working with PHP applications on Heroku.

Preparing your Application

Deploying a Symfony application to Heroku doesn't require any change in its code, but it requires some
minor tweaks to its configuration.

By default, the Symfony app will log into your application's app/log/ directory. This is not ideal as
Heroku uses an ephemeral file system5. On Heroku, the best way to handle logging is using Logplex6. And
the best way to send log data to Logplex is by writing to STDERR or STDOUT. Luckily, Symfony uses the
excellent Monolog library for logging. So, a new log destination is just a change to a config file away.

Open the app/config/config_prod.yml file, locate the monolog/handlers/nested section (or create
it if it doesn't exist yet) and change the value of path from "%kernel.logs_dir%/
%kernel.environment%.log" to "php://stderr":

1
2

# app/config/config_prod.yml
monolog:

1. https://devcenter.heroku.com/articles/getting-started-with-symfony2

2. https://signup.heroku.com/signup/dc

3. https://devcenter.heroku.com/articles/getting-started-with-php#local-workstation-setup

4. https://devcenter.heroku.com/articles/getting-started-with-php

5. https://devcenter.heroku.com/articles/dynos#ephemeral-filesystem

6. https://devcenter.heroku.com/articles/logplex

PDF brought to you by
generated on March 11, 2015

Chapter 36: Deploying to Heroku Cloud | 139

http://sensiolabs.com


Listing 36-2

Listing 36-3

Listing 36-4

3
4
5
6
7
8

# ...
handlers:

# ...
nested:

# ...
path: "php://stderr"

Once the application is deployed, run heroku logs --tail to keep the stream of logs from Heroku open
in your terminal.

Creating a new Application on Heroku
To create a new Heroku application that you can push to, use the CLI create command:

1
2
3
4
5

$ heroku create

Creating mighty-hamlet-1981 in organization heroku... done, stack is cedar
http://mighty-hamlet-1981.herokuapp.com/ | git@heroku.com:mighty-hamlet-1981.git
Git remote heroku added

You are now ready to deploy the application as explained in the next section.

Deploying your Application on Heroku
To deploy your application to Heroku, you must first create a Procfile, which tells Heroku what
command to use to launch the web server with the correct document root. After that, you will ensure that
your Symfony application runs the prod environment, and then you'll be ready to git push to Heroku
for your first deploy!

Creating a Procfile

By default, Heroku will launch an Apache web server together with PHP to serve applications. However,
two special circumstances apply to Symfony applications:

1. The document root is in the web/ directory and not in the root directory of the application;
2. The Composer bin-dir, where vendor binaries (and thus Heroku's own boot scripts) are

placed, is bin/ , and not the default vendor/bin.

Vendor binaries are usually installed to vendor/bin by Composer, but sometimes (e.g. when
running a Symfony Standard Edition project!), the location will be different. If in doubt, you can
always run composer config bin-dir to figure out the right location.

Create a new file called Procfile (without any extension) at the root directory of the application and add
just the following content:

1 web: bin/heroku-php-apache2 web/

If you prefer working on the command console, execute the following commands to create the Procfile
file and to add it to the repository:

PDF brought to you by
generated on March 11, 2015

Chapter 36: Deploying to Heroku Cloud | 140

http://sensiolabs.com


Listing 36-5

Listing 36-6

Listing 36-7

1
2
3
4
5

$ echo "web: bin/heroku-php-apache2 web/" > Procfile
$ git add .
$ git commit -m "Procfile for Apache and PHP"
[master 35075db] Procfile for Apache and PHP
1 file changed, 1 insertion(+)

Setting the prod Environment

During a deploy, Heroku runs composer install --no-dev to install all of the dependencies your
application requires. However, typical post-install-commands7 in composer.json, e.g. to install assets or
clear (or pre-warm) caches, run using Symfony's dev environment by default.

This is clearly not what you want - the app runs in "production" (even if you use it just for an experiment,
or as a staging environment), and so any build steps should use the same prod environment as well.

Thankfully, the solution to this problem is very simple: Symfony will pick up an environment variable
named SYMFONY_ENV and use that environment if nothing else is explicitly set. As Heroku exposes
all config vars8 as environment variables, you can issue a single command to prepare your app for a
deployment:

1 $ heroku config:set SYMFONY_ENV=prod

Pushing to Heroku

Next up, it's finally time to deploy your application to Heroku. If you are doing this for the very first time,
you may see a message such as the following:

1
2
3

The authenticity of host 'heroku.com (50.19.85.132)' can't be established.
RSA key fingerprint is 8b:48:5e:67:0e:c9:16:47:32:f2:87:0c:1f:c8:60:ad.
Are you sure you want to continue connecting (yes/no)?

In this case, you need to confirm by typing yes and hitting <Enter> key - ideally after you've verified that
the RSA key fingerprint is correct9.

Then, deploy your application executing this command:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

$ git push heroku master

Initializing repository, done.
Counting objects: 130, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (107/107), done.
Writing objects: 100% (130/130), 70.88 KiB | 0 bytes/s, done.
Total 130 (delta 17), reused 0 (delta 0)

-----> PHP app detected

-----> Setting up runtime environment...
- PHP 5.5.12
- Apache 2.4.9
- Nginx 1.4.6

7. https://getcomposer.org/doc/articles/scripts.md

8. https://devcenter.heroku.com/articles/config-vars

9. https://devcenter.heroku.com/articles/git-repository-ssh-fingerprints

PDF brought to you by
generated on March 11, 2015

Chapter 36: Deploying to Heroku Cloud | 141

http://sensiolabs.com


Listing 36-8

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

-----> Installing PHP extensions:
- opcache (automatic; bundled, using 'ext-opcache.ini')

-----> Installing dependencies...
Composer version 64ac32fca9e64eb38e50abfadc6eb6f2d0470039 2014-05-24 20:57:50
Loading composer repositories with package information
Installing dependencies from lock file

- ...

Generating optimized autoload files
Creating the "app/config/parameters.yml" file
Clearing the cache for the dev environment with debug true
Installing assets using the hard copy option
Installing assets for Symfony\Bundle\FrameworkBundle into web/bundles/framework
Installing assets for Acme\DemoBundle into web/bundles/acmedemo
Installing assets for Sensio\Bundle\DistributionBundle into web/bundles/

sensiodistribution

-----> Building runtime environment...

-----> Discovering process types
Procfile declares types -> web

-----> Compressing... done, 61.5MB

-----> Launching... done, v3
http://mighty-hamlet-1981.herokuapp.com/ deployed to Heroku

To git@heroku.com:mighty-hamlet-1981.git
* [new branch] master -> master

And that's it! If you now open your browser, either by manually pointing it to the URL heroku create
gave you, or by using the Heroku Toolbelt, the application will respond:

1
2

$ heroku open
Opening mighty-hamlet-1981... done

You should be seeing your Symfony application in your browser.

PDF brought to you by
generated on March 11, 2015

Chapter 36: Deploying to Heroku Cloud | 142

http://sensiolabs.com


Listing 37-1

Chapter 37

Deploying to Platform.sh

This step-by-step cookbook describes how to deploy a Symfony web application to Platform.sh1. You can
read more about using Symfony with Platform.sh on the official Platform.sh documentation2.

Deploy an Existing Site
In this guide, it is assumed your codebase is already versioned with Git.

Get a Project on Platform.sh

You need to subscribe to a Platform.sh project3. Choose the development plan and go through the
checkout process. Once your project is ready, give it a name and choose: Import an existing site.

Prepare Your Application

To deploy your Symfony application on Platform.sh, you simply need to add a .platform.app.yaml at
the root of your Git repository which will tell Platform.sh how to deploy your application (read more
about Platform.sh configuration files4).

1
2
3
4
5
6
7
8
9

10

# .platform.app.yaml

# This file describes an application. You can have multiple applications
# in the same project.

# The name of this app. Must be unique within a project.
name: myphpproject

# The toolstack used to build the application.
toolstack: "php:symfony"

1. https://platform.sh

2. https://docs.platform.sh/toolstacks/symfony/symfony-getting-started

3. https://marketplace.commerceguys.com/platform/buy-now

4. https://docs.platform.sh/reference/configuration-files

PDF brought to you by
generated on March 11, 2015

Chapter 37: Deploying to Platform.sh | 143

http://sensiolabs.com


Listing 37-2

Listing 37-3

Listing 37-4

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

# The relationships of the application with services or other applications.
# The left-hand side is the name of the relationship as it will be exposed
# to the application in the PLATFORM_RELATIONSHIPS variable. The right-hand
# side is in the form `<service name>:<endpoint name>`.
relationships:

database: "mysql:mysql"

# The configuration of app when it is exposed to the web.
web:

# The public directory of the app, relative to its root.
document_root: "/web"
# The front-controller script to send non-static requests to.
passthru: "/app.php"

# The size of the persistent disk of the application (in MB).
disk: 2048

# The mounts that will be performed when the package is deployed.
mounts:

"/app/cache": "shared:files/cache"
"/app/logs": "shared:files/logs"

# The hooks that will be performed when the package is deployed.
hooks:

build: |
rm web/app_dev.php
app/console --env=prod assetic:dump --no-debug

deploy: |
app/console --env=prod cache:clear

For best practices, you should also add a .platform folder at the root of your Git repository which
contains the following files:

1
2
3
4

# .platform/routes.yaml
"http://{default}/":

type: upstream
upstream: "php:php"

1
2
3
4

# .platform/services.yaml
mysql:

type: mysql
disk: 2048

An example of these configurations can be found on GitHub5. The list of available services6 can be found
on the Platform.sh documentation.

Configure Database Access

Platform.sh overrides your database specific configuration via importing the following file:

5. https://github.com/platformsh/platformsh-examples

6. #cookbook-deployment-configure-services

PDF brought to you by
generated on March 11, 2015

Chapter 37: Deploying to Platform.sh | 144

http://sensiolabs.com


Listing 37-5

Listing 37-6

Listing 37-7

Listing 37-8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// app/config/parameters_platform.php
<?php
$relationships = getenv("PLATFORM_RELATIONSHIPS");

if (!$relationships) {
return;

}

$relationships = json_decode(base64_decode($relationships), true);

foreach ($relationships['database'] as $endpoint) {
if (empty($endpoint['query']['is_master'])) {
continue;

}

$container->setParameter('database_driver', 'pdo_' . $endpoint['scheme']);
$container->setParameter('database_host', $endpoint['host']);
$container->setParameter('database_port', $endpoint['port']);
$container->setParameter('database_name', $endpoint['path']);
$container->setParameter('database_user', $endpoint['username']);
$container->setParameter('database_password', $endpoint['password']);
$container->setParameter('database_path', '');

}

# Store session into /tmp.
ini_set('session.save_path', '/tmp/sessions');

Make sure this file is listed in your imports:

1
2
3

# app/config/config.yml
imports:

- { resource: parameters_platform.php }

Deploy your Application

Now you need to add a remote to Platform.sh in your Git repository (copy the command that you see on
the Platform.sh web UI):

1 $ git remote add platform [PROJECT-ID]@git.[CLUSTER].platform.sh:[PROJECT-ID].git

PROJECT-IDPROJECT-ID
Unique identifier of your project. Something like kjh43kbobssae

CLUSTERCLUSTER
Server location where your project is deployed. It can be eu or us

Commit the Platform.sh specific files created in the previous section:

1
2
3

$ git add .platform.app.yaml .platform/*
$ git add app/config/config.yml app/config/parameters_platform.php
$ git commit -m "Adding Platform.sh configuration files."

Push your code base to the newly added remote:

1 $ git push platform master

PDF brought to you by
generated on March 11, 2015

Chapter 37: Deploying to Platform.sh | 145

http://sensiolabs.com


That's it! Your application is being deployed on Platform.sh and you'll soon be able to access it in your
browser.

Every code change that you do from now on will be pushed to Git in order to redeploy your environment
on Platform.sh.

More information about migrating your database and files7 can be found on the Platform.sh
documentation.

Deploy a new Site

You can start a new Platform.sh project8. Choose the development plan and go through the checkout
process.

Once your project is ready, give it a name and choose: Create a new site. Choose the Symfony stack and
a starting point such as Standard.

That's it! Your Symfony application will be bootstrapped and deployed. You'll soon be able to see it in
your browser.

7. #cookbook-deployment-migrate-existing-site

8. https://marketplace.commerceguys.com/platform/buy-now

PDF brought to you by
generated on March 11, 2015

Chapter 37: Deploying to Platform.sh | 146

http://sensiolabs.com


Listing 38-1

Chapter 38

How to Handle File Uploads with Doctrine

Handling file uploads with Doctrine entities is no different than handling any other file upload. In other
words, you're free to move the file in your controller after handling a form submission. For examples of
how to do this, see the file type reference page.

If you choose to, you can also integrate the file upload into your entity lifecycle (i.e. creation, update and
removal). In this case, as your entity is created, updated, and removed from Doctrine, the file uploading
and removal processing will take place automatically (without needing to do anything in your controller).

To make this work, you'll need to take care of a number of details, which will be covered in this cookbook
entry.

Basic Setup
First, create a simple Doctrine entity class to work with:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

// src/AppBundle/Entity/Document.php
namespace AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Validator\Constraints as Assert;

/**
* @ORM\Entity
*/
class Document
{

/**
* @ORM\Id
* @ORM\Column(type="integer")
* @ORM\GeneratedValue(strategy="AUTO")
*/
public $id;

/**
* @ORM\Column(type="string", length=255)

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 147

http://sensiolabs.com


Listing 38-2

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

* @Assert\NotBlank
*/
public $name;

/**
* @ORM\Column(type="string", length=255, nullable=true)
*/
public $path;

public function getAbsolutePath()
{

return null === $this->path
? null
: $this->getUploadRootDir().'/'.$this->path;

}

public function getWebPath()
{

return null === $this->path
? null
: $this->getUploadDir().'/'.$this->path;

}

protected function getUploadRootDir()
{

// the absolute directory path where uploaded
// documents should be saved
return __DIR__.'/../../../../web/'.$this->getUploadDir();

}

protected function getUploadDir()
{

// get rid of the __DIR__ so it doesn't screw up
// when displaying uploaded doc/image in the view.
return 'uploads/documents';

}
}

The Document entity has a name and it is associated with a file. The path property stores the relative path
to the file and is persisted to the database. The getAbsolutePath() is a convenience method that returns
the absolute path to the file while the getWebPath() is a convenience method that returns the web path,
which can be used in a template to link to the uploaded file.

If you have not done so already, you should probably read the file type documentation first to
understand how the basic upload process works.

If you're using annotations to specify your validation rules (as shown in this example), be sure that
you've enabled validation by annotation (see validation configuration).

To handle the actual file upload in the form, use a "virtual" file field. For example, if you're building
your form directly in a controller, it might look like this:

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 148

http://sensiolabs.com


Listing 38-3

Listing 38-4

1
2
3
4
5
6
7
8
9

10
11

public function uploadAction()
{

// ...

$form = $this->createFormBuilder($document)
->add('name')
->add('file')
->getForm();

// ...
}

Next, create this property on your Document class and add some validation rules:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

use Symfony\Component\HttpFoundation\File\UploadedFile;

// ...
class Document
{

/**
* @Assert\File(maxSize="6000000")
*/
private $file;

/**
* Sets file.
*
* @param UploadedFile $file
*/
public function setFile(UploadedFile $file = null)
{

$this->file = $file;
}

/**
* Get file.
*
* @return UploadedFile
*/
public function getFile()
{

return $this->file;
}

}

1
2
3
4
5
6

# src/AppBundle/Resources/config/validation.yml
AppBundle\Entity\Document:

properties:
file:

- File:
maxSize: 6000000

As you are using the File constraint, Symfony will automatically guess that the form field is a file
upload input. That's why you did not have to set it explicitly when creating the form above (-
>add('file')).

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 149

http://sensiolabs.com


Listing 38-5

Listing 38-6

Listing 38-7

The following controller shows you how to handle the entire process:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// ...
use AppBundle\Entity\Document;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;
use Symfony\Component\HttpFoundation\Request;
// ...

/**
* @Template()
*/
public function uploadAction(Request $request)
{

$document = new Document();
$form = $this->createFormBuilder($document)

->add('name')
->add('file')
->getForm();

$form->handleRequest($request);

if ($form->isValid()) {
$em = $this->getDoctrine()->getManager();

$em->persist($document);
$em->flush();

return $this->redirect($this->generateUrl(...));
}

return array('form' => $form->createView());
}

The previous controller will automatically persist the Document entity with the submitted name, but it
will do nothing about the file and the path property will be blank.

An easy way to handle the file upload is to move it just before the entity is persisted and then set the path
property accordingly. Start by calling a new upload() method on the Document class, which you'll create
in a moment to handle the file upload:

1
2
3
4
5
6
7
8
9

10

if ($form->isValid()) {
$em = $this->getDoctrine()->getManager();

$document->upload();

$em->persist($document);
$em->flush();

return $this->redirect(...);
}

The upload() method will take advantage of the UploadedFile1 object, which is what's returned after a
file field is submitted:

1
2

public function upload()
{

1. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/File/UploadedFile.html

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 150

http://sensiolabs.com


Listing 38-8

Listing 38-9

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// the file property can be empty if the field is not required
if (null === $this->getFile()) {

return;
}

// use the original file name here but you should
// sanitize it at least to avoid any security issues

// move takes the target directory and then the
// target filename to move to
$this->getFile()->move(

$this->getUploadRootDir(),
$this->getFile()->getClientOriginalName()

);

// set the path property to the filename where you've saved the file
$this->path = $this->getFile()->getClientOriginalName();

// clean up the file property as you won't need it anymore
$this->file = null;

}

Using Lifecycle Callbacks

Using lifecycle callbacks is a limited technique that has some drawbacks. If you want to remove the
hardcoded __DIR__ reference inside the Document::getUploadRootDir() method, the best way is
to start using explicit doctrine listeners. There you will be able to inject kernel parameters such as
kernel.root_dir to be able to build absolute paths.

Even if this implementation works, it suffers from a major flaw: What if there is a problem when the
entity is persisted? The file would have already moved to its final location even though the entity's path
property didn't persist correctly.

To avoid these issues, you should change the implementation so that the database operation and the
moving of the file become atomic: if there is a problem persisting the entity or if the file cannot be moved,
then nothing should happen.

To do this, you need to move the file right as Doctrine persists the entity to the database. This can be
accomplished by hooking into an entity lifecycle callback:

1
2
3
4
5
6
7

/**
* @ORM\Entity
* @ORM\HasLifecycleCallbacks
*/
class Document
{
}

Next, refactor the Document class to take advantage of these callbacks:

1
2
3

use Symfony\Component\HttpFoundation\File\UploadedFile;

/**

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 151

http://sensiolabs.com


4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

* @ORM\Entity
* @ORM\HasLifecycleCallbacks
*/
class Document
{

private $temp;

/**
* Sets file.
*
* @param UploadedFile $file
*/
public function setFile(UploadedFile $file = null)
{

$this->file = $file;
// check if we have an old image path
if (isset($this->path)) {

// store the old name to delete after the update
$this->temp = $this->path;
$this->path = null;

} else {
$this->path = 'initial';

}
}

/**
* @ORM\PrePersist()
* @ORM\PreUpdate()
*/
public function preUpload()
{

if (null !== $this->getFile()) {
// do whatever you want to generate a unique name
$filename = sha1(uniqid(mt_rand(), true));
$this->path = $filename.'.'.$this->getFile()->guessExtension();

}
}

/**
* @ORM\PostPersist()
* @ORM\PostUpdate()
*/
public function upload()
{

if (null === $this->getFile()) {
return;

}

// if there is an error when moving the file, an exception will
// be automatically thrown by move(). This will properly prevent
// the entity from being persisted to the database on error
$this->getFile()->move($this->getUploadRootDir(), $this->path);

// check if we have an old image
if (isset($this->temp)) {

// delete the old image
unlink($this->getUploadRootDir().'/'.$this->temp);
// clear the temp image path
$this->temp = null;

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 152

http://sensiolabs.com


Listing 38-10

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

}
$this->file = null;

}

/**
* @ORM\PostRemove()
*/
public function removeUpload()
{

$file = $this->getAbsolutePath();
if ($file) {

unlink($file);
}

}
}

If changes to your entity are handled by a Doctrine event listener or event subscriber, the
preUpdate() callback must notify Doctrine about the changes being done. For full reference on
preUpdate event restrictions, see preUpdate2 in the Doctrine Events documentation.

The class now does everything you need: it generates a unique filename before persisting, moves the file
after persisting, and removes the file if the entity is ever deleted.

Now that the moving of the file is handled atomically by the entity, the call to $document->upload()
should be removed from the controller:

1
2
3
4
5
6
7
8

if ($form->isValid()) {
$em = $this->getDoctrine()->getManager();

$em->persist($document);
$em->flush();

return $this->redirect(...);
}

The @ORM\PrePersist() and @ORM\PostPersist() event callbacks are triggered before and after
the entity is persisted to the database. On the other hand, the @ORM\PreUpdate() and
@ORM\PostUpdate() event callbacks are called when the entity is updated.

The PreUpdate and PostUpdate callbacks are only triggered if there is a change in one of the
entity's fields that are persisted. This means that, by default, if you modify only the $file property,
these events will not be triggered, as the property itself is not directly persisted via Doctrine. One
solution would be to use an updated field that's persisted to Doctrine, and to modify it manually
when changing the file.

2. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#preupdate

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 153

http://sensiolabs.com


Listing 38-11

Using the id as the Filename
If you want to use the id as the name of the file, the implementation is slightly different as you need to
save the extension under the path property, instead of the actual filename:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

use Symfony\Component\HttpFoundation\File\UploadedFile;

/**
* @ORM\Entity
* @ORM\HasLifecycleCallbacks
*/
class Document
{

private $temp;

/**
* Sets file.
*
* @param UploadedFile $file
*/
public function setFile(UploadedFile $file = null)
{

$this->file = $file;
// check if we have an old image path
if (is_file($this->getAbsolutePath())) {

// store the old name to delete after the update
$this->temp = $this->getAbsolutePath();

} else {
$this->path = 'initial';

}
}

/**
* @ORM\PrePersist()
* @ORM\PreUpdate()
*/
public function preUpload()
{

if (null !== $this->getFile()) {
$this->path = $this->getFile()->guessExtension();

}
}

/**
* @ORM\PostPersist()
* @ORM\PostUpdate()
*/
public function upload()
{

if (null === $this->getFile()) {
return;

}

// check if we have an old image
if (isset($this->temp)) {

// delete the old image
unlink($this->temp);
// clear the temp image path
$this->temp = null;

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 154

http://sensiolabs.com


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

}

// you must throw an exception here if the file cannot be moved
// so that the entity is not persisted to the database
// which the UploadedFile move() method does
$this->getFile()->move(

$this->getUploadRootDir(),
$this->id.'.'.$this->getFile()->guessExtension()

);

$this->setFile(null);
}

/**
* @ORM\PreRemove()
*/
public function storeFilenameForRemove()
{

$this->temp = $this->getAbsolutePath();
}

/**
* @ORM\PostRemove()
*/
public function removeUpload()
{

if (isset($this->temp)) {
unlink($this->temp);

}
}

public function getAbsolutePath()
{

return null === $this->path
? null
: $this->getUploadRootDir().'/'.$this->id.'.'.$this->path;

}
}

You'll notice in this case that you need to do a little bit more work in order to remove the file. Before it's
removed, you must store the file path (since it depends on the id). Then, once the object has been fully
removed from the database, you can safely delete the file (in PostRemove).

PDF brought to you by
generated on March 11, 2015

Chapter 38: How to Handle File Uploads with Doctrine | 155

http://sensiolabs.com


Chapter 39

How to use Doctrine Extensions:
Timestampable, Sluggable, Translatable, etc.

Doctrine2 is very flexible, and the community has already created a series of useful Doctrine extensions
to help you with common entity-related tasks.

One library in particular - the DoctrineExtensions1 library - provides integration functionality for
Sluggable2, Translatable3, Timestampable4, Loggable5, Tree6 and Sortable7 behaviors.

The usage for each of these extensions is explained in that repository.

However, to install/activate each extension you must register and activate an Event Listener. To do this,
you have two options:

1. Use the StofDoctrineExtensionsBundle8, which integrates the above library.
2. Implement this services directly by following the documentation for integration with Symfony:

Install Gedmo Doctrine2 extensions in Symfony29

1. https://github.com/Atlantic18/DoctrineExtensions

2. https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/sluggable.md

3. https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/translatable.md

4. https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/timestampable.md

5. https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/loggable.md

6. https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/tree.md

7. https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/sortable.md

8. https://github.com/stof/StofDoctrineExtensionsBundle

9. https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/symfony2.md

PDF brought to you by
generated on March 11, 2015

Chapter 39: How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc. | 156

http://sensiolabs.com


Listing 40-1

Chapter 40

How to Register Event Listeners and
Subscribers

Doctrine packages a rich event system that fires events when almost anything happens inside the system.
For you, this means that you can create arbitrary services and tell Doctrine to notify those objects
whenever a certain action (e.g. prePersist) happens within Doctrine. This could be useful, for example,
to create an independent search index whenever an object in your database is saved.

Doctrine defines two types of objects that can listen to Doctrine events: listeners and subscribers. Both
are very similar, but listeners are a bit more straightforward. For more, see The Event System1 on
Doctrine's website.

The Doctrine website also explains all existing events that can be listened to.

Configuring the Listener/Subscriber
To register a service to act as an event listener or subscriber you just have to tag it with the appropriate
name. Depending on your use-case, you can hook a listener into every DBAL connection and ORM entity
manager or just into one specific DBAL connection and all the entity managers that use this connection.

1
2
3
4
5
6
7
8
9

10
11
12

doctrine:
dbal:

default_connection: default
connections:

default:
driver: pdo_sqlite
memory: true

services:
my.listener:

class: Acme\SearchBundle\EventListener\SearchIndexer
tags:

1. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html

PDF brought to you by
generated on March 11, 2015

Chapter 40: How to Register Event Listeners and Subscribers | 157

http://sensiolabs.com


Listing 40-2

13
14
15
16
17
18
19
20
21

- { name: doctrine.event_listener, event: postPersist }
my.listener2:

class: Acme\SearchBundle\EventListener\SearchIndexer2
tags:

- { name: doctrine.event_listener, event: postPersist, connection: default }
my.subscriber:

class: Acme\SearchBundle\EventListener\SearchIndexerSubscriber
tags:

- { name: doctrine.event_subscriber, connection: default }

Creating the Listener Class
In the previous example, a service my.listener was configured as a Doctrine listener on the event
postPersist. The class behind that service must have a postPersist method, which will be called when
the event is dispatched:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/SearchBundle/EventListener/SearchIndexer.php
namespace Acme\SearchBundle\EventListener;

use Doctrine\ORM\Event\LifecycleEventArgs;
use Acme\StoreBundle\Entity\Product;

class SearchIndexer
{

public function postPersist(LifecycleEventArgs $args)
{

$entity = $args->getEntity();
$entityManager = $args->getEntityManager();

// perhaps you only want to act on some "Product" entity
if ($entity instanceof Product) {

// ... do something with the Product
}

}
}

In each event, you have access to a LifecycleEventArgs object, which gives you access to both the entity
object of the event and the entity manager itself.

One important thing to notice is that a listener will be listening for all entities in your application. So,
if you're interested in only handling a specific type of entity (e.g. a Product entity but not a BlogPost
entity), you should check for the entity's class type in your method (as shown above).

In Doctrine 2.4, a feature called Entity Listeners was introduced. It is a lifecycle listener class used
for an entity. You can read about it in the Doctrine Documentation2.

Creating the Subscriber Class
A Doctrine event subscriber must implement the Doctrine\Common\EventSubscriber interface and
have an event method for each event it subscribes to:

2. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#entity-listeners

PDF brought to you by
generated on March 11, 2015

Chapter 40: How to Register Event Listeners and Subscribers | 158

http://sensiolabs.com


Listing 40-3 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// src/Acme/SearchBundle/EventListener/SearchIndexerSubscriber.php
namespace Acme\SearchBundle\EventListener;

use Doctrine\Common\EventSubscriber;
use Doctrine\ORM\Event\LifecycleEventArgs;
// for Doctrine 2.4: Doctrine\Common\Persistence\Event\LifecycleEventArgs;
use Acme\StoreBundle\Entity\Product;

class SearchIndexerSubscriber implements EventSubscriber
{

public function getSubscribedEvents()
{

return array(
'postPersist',
'postUpdate',

);
}

public function postUpdate(LifecycleEventArgs $args)
{

$this->index($args);
}

public function postPersist(LifecycleEventArgs $args)
{

$this->index($args);
}

public function index(LifecycleEventArgs $args)
{

$entity = $args->getEntity();
$entityManager = $args->getEntityManager();

// perhaps you only want to act on some "Product" entity
if ($entity instanceof Product) {

// ... do something with the Product
}

}
}

Doctrine event subscribers can not return a flexible array of methods to call for the events like the
Symfony event subscriber can. Doctrine event subscribers must return a simple array of the event
names they subscribe to. Doctrine will then expect methods on the subscriber with the same name
as each subscribed event, just as when using an event listener.

For a full reference, see chapter The Event System3 in the Doctrine documentation.

3. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html

PDF brought to you by
generated on March 11, 2015

Chapter 40: How to Register Event Listeners and Subscribers | 159

http://sensiolabs.com


Listing 41-1

Listing 41-2

Chapter 41

How to Use Doctrine DBAL

This article is about the Doctrine DBAL. Typically, you'll work with the higher level Doctrine ORM
layer, which simply uses the DBAL behind the scenes to actually communicate with the database.
To read more about the Doctrine ORM, see "Databases and Doctrine".

The Doctrine1 Database Abstraction Layer (DBAL) is an abstraction layer that sits on top of PDO2 and
offers an intuitive and flexible API for communicating with the most popular relational databases. In
other words, the DBAL library makes it easy to execute queries and perform other database actions.

Read the official Doctrine DBAL Documentation3 to learn all the details and capabilities of
Doctrine's DBAL library.

To get started, configure the database connection parameters:

1
2
3
4
5
6
7
8

# app/config/config.yml
doctrine:

dbal:
driver: pdo_mysql
dbname: Symfony
user: root
password: null
charset: UTF8

For full DBAL configuration options, or to learn how to configure multiple connections, see Doctrine
DBAL Configuration.

You can then access the Doctrine DBAL connection by accessing the database_connection service:

1. http://www.doctrine-project.org

2. http://www.php.net/pdo

3. http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html

PDF brought to you by
generated on March 11, 2015

Chapter 41: How to Use Doctrine DBAL | 160

http://sensiolabs.com


Listing 41-3

Listing 41-4

1
2
3
4
5
6
7
8
9

10

class UserController extends Controller
{

public function indexAction()
{

$conn = $this->get('database_connection');
$users = $conn->fetchAll('SELECT * FROM users');

// ...
}

}

Registering custom Mapping Types
You can register custom mapping types through Symfony's configuration. They will be added to all
configured connections. For more information on custom mapping types, read Doctrine's Custom
Mapping Types4 section of their documentation.

1
2
3
4
5
6

# app/config/config.yml
doctrine:

dbal:
types:

custom_first: AppBundle\Type\CustomFirst
custom_second: AppBundle\Type\CustomSecond

Registering custom Mapping Types in the SchemaTool
The SchemaTool is used to inspect the database to compare the schema. To achieve this task, it needs to
know which mapping type needs to be used for each database types. Registering new ones can be done
through the configuration.

Now, map the ENUM type (not supported by DBAL by default) to the string mapping type:

1
2
3
4
5

# app/config/config.yml
doctrine:

dbal:
mapping_types:

enum: string

4. http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/types.html#custom-mapping-types

PDF brought to you by
generated on March 11, 2015

Chapter 41: How to Use Doctrine DBAL | 161

http://sensiolabs.com


Listing 42-1

Chapter 42

How to Generate Entities from an Existing
Database

When starting work on a brand new project that uses a database, two different situations comes
naturally. In most cases, the database model is designed and built from scratch. Sometimes, however,
you'll start with an existing and probably unchangeable database model. Fortunately, Doctrine comes
with a bunch of tools to help generate model classes from your existing database.

As the Doctrine tools documentation1 says, reverse engineering is a one-time process to get started
on a project. Doctrine is able to convert approximately 70-80% of the necessary mapping
information based on fields, indexes and foreign key constraints. Doctrine can't discover inverse
associations, inheritance types, entities with foreign keys as primary keys or semantical operations
on associations such as cascade or lifecycle events. Some additional work on the generated entities
will be necessary afterwards to design each to fit your domain model specificities.

This tutorial assumes you're using a simple blog application with the following two tables: blog_post
and blog_comment. A comment record is linked to a post record thanks to a foreign key constraint.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

CREATE TABLE `blog_post` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`title` varchar(100) COLLATE utf8_unicode_ci NOT NULL,
`content` longtext COLLATE utf8_unicode_ci NOT NULL,
`created_at` datetime NOT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE TABLE `blog_comment` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`post_id` bigint(20) NOT NULL,
`author` varchar(20) COLLATE utf8_unicode_ci NOT NULL,
`content` longtext COLLATE utf8_unicode_ci NOT NULL,
`created_at` datetime NOT NULL,

1. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/tools.html#reverse-engineering

PDF brought to you by
generated on March 11, 2015

Chapter 42: How to Generate Entities from an Existing Database | 162

http://sensiolabs.com


Listing 42-2

Listing 42-3

Listing 42-4

15
16
17
18

PRIMARY KEY (`id`),
KEY `blog_comment_post_id_idx` (`post_id`),
CONSTRAINT `blog_post_id` FOREIGN KEY (`post_id`) REFERENCES `blog_post` (`id`) ON

DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

Before diving into the recipe, be sure your database connection parameters are correctly setup in the
app/config/parameters.yml file (or wherever your database configuration is kept) and that you have
initialized a bundle that will host your future entity class. In this tutorial it's assumed that an
AcmeBlogBundle exists and is located under the src/Acme/BlogBundle folder.

The first step towards building entity classes from an existing database is to ask Doctrine to introspect
the database and generate the corresponding metadata files. Metadata files describe the entity class to
generate based on table fields.

1 $ php app/console doctrine:mapping:import --force AcmeBlogBundle xml

This command line tool asks Doctrine to introspect the database and generate the XML metadata files
under the src/Acme/BlogBundle/Resources/config/doctrine folder of your bundle. This generates
two files: BlogPost.orm.xml and BlogComment.orm.xml.

It's also possible to generate the metadata files in YAML format by changing the last argument to
yml.

The generated BlogPost.orm.xml metadata file looks as follows:

1
2
3
4
5
6
7
8
9

10
11

<?xml version="1.0" encoding="utf-8"?>
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">
<entity name="Acme\BlogBundle\Entity\BlogPost" table="blog_post">

<id name="id" type="bigint" column="id">
<generator strategy="IDENTITY"/>

</id>
<field name="title" type="string" column="title" length="100" nullable="false"/>
<field name="content" type="text" column="content" nullable="false"/>
<field name="createdAt" type="datetime" column="created_at" nullable="false"/>

</entity>
</doctrine-mapping>

Once the metadata files are generated, you can ask Doctrine to build related entity classes by executing
the following two commands.

1
2

$ php app/console doctrine:mapping:convert annotation ./src
$ php app/console doctrine:generate:entities AcmeBlogBundle

The first command generates entity classes with annotation mappings. But if you want to use YAML or
XML mapping instead of annotations, you should execute the second command only.

If you want to use annotations, you can safely delete the XML (or YAML) files after running these
two commands.

PDF brought to you by
generated on March 11, 2015

Chapter 42: How to Generate Entities from an Existing Database | 163

http://sensiolabs.com


Listing 42-5

For example, the newly created BlogComment entity class looks as follow:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// src/Acme/BlogBundle/Entity/BlogComment.php
namespace Acme\BlogBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
* Acme\BlogBundle\Entity\BlogComment
*
* @ORM\Table(name="blog_comment")
* @ORM\Entity
*/
class BlogComment
{

/**
* @var integer $id
*
* @ORM\Column(name="id", type="bigint")
* @ORM\Id
* @ORM\GeneratedValue(strategy="IDENTITY")
*/
private $id;

/**
* @var string $author
*
* @ORM\Column(name="author", type="string", length=100, nullable=false)
*/
private $author;

/**
* @var text $content
*
* @ORM\Column(name="content", type="text", nullable=false)
*/
private $content;

/**
* @var datetime $createdAt
*
* @ORM\Column(name="created_at", type="datetime", nullable=false)
*/
private $createdAt;

/**
* @var BlogPost
*
* @ORM\ManyToOne(targetEntity="BlogPost")
* @ORM\JoinColumn(name="post_id", referencedColumnName="id")
*/
private $post;

}

As you can see, Doctrine converts all table fields to pure private and annotated class properties. The most
impressive thing is that it also discovered the relationship with the BlogPost entity class based on the
foreign key constraint. Consequently, you can find a private $post property mapped with a BlogPost
entity in the BlogComment entity class.

PDF brought to you by
generated on March 11, 2015

Chapter 42: How to Generate Entities from an Existing Database | 164

http://sensiolabs.com


If you want to have a one-to-many relationship, you will need to add it manually into the entity
or to the generated XML or YAML files. Add a section on the specific entities for one-to-many
defining the inversedBy and the mappedBy pieces.

The generated entities are now ready to be used. Have fun!

PDF brought to you by
generated on March 11, 2015

Chapter 42: How to Generate Entities from an Existing Database | 165

http://sensiolabs.com


Listing 43-1

Chapter 43

How to Work with multiple Entity Managers
and Connections

You can use multiple Doctrine entity managers or connections in a Symfony application. This is
necessary if you are using different databases or even vendors with entirely different sets of entities. In
other words, one entity manager that connects to one database will handle some entities while another
entity manager that connects to another database might handle the rest.

Using multiple entity managers is pretty easy, but more advanced and not usually required. Be sure
you actually need multiple entity managers before adding in this layer of complexity.

The following configuration code shows how you can configure two entity managers:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

doctrine:
dbal:

default_connection: default
connections:

default:
driver: "%database_driver%"
host: "%database_host%"
port: "%database_port%"
dbname: "%database_name%"
user: "%database_user%"
password: "%database_password%"
charset: UTF8

customer:
driver: "%database_driver2%"
host: "%database_host2%"
port: "%database_port2%"
dbname: "%database_name2%"
user: "%database_user2%"
password: "%database_password2%"
charset: UTF8

PDF brought to you by
generated on March 11, 2015

Chapter 43: How to Work with multiple Entity Managers and Connections | 166

http://sensiolabs.com


Listing 43-2

Listing 43-3

Listing 43-4

21
22
23
24
25
26
27
28
29
30
31
32
33

orm:
default_entity_manager: default
entity_managers:

default:
connection: default
mappings:

AppBundle: ~
AcmeStoreBundle: ~

customer:
connection: customer
mappings:

AcmeCustomerBundle: ~

In this case, you've defined two entity managers and called them default and customer. The default
entity manager manages entities in the AppBundle and AcmeStoreBundle, while the customer entity
manager manages entities in the AcmeCustomerBundle. You've also defined two connections, one for
each entity manager.

When working with multiple connections and entity managers, you should be explicit about which
configuration you want. If you do omit the name of the connection or entity manager, the default
(i.e. default) is used.

When working with multiple connections to create your databases:

1
2
3
4
5

# Play only with "default" connection
$ php app/console doctrine:database:create

# Play only with "customer" connection
$ php app/console doctrine:database:create --connection=customer

When working with multiple entity managers to update your schema:

1
2
3
4
5

# Play only with "default" mappings
$ php app/console doctrine:schema:update --force

# Play only with "customer" mappings
$ php app/console doctrine:schema:update --force --em=customer

If you do omit the entity manager's name when asking for it, the default entity manager (i.e. default) is
returned:

1
2
3
4
5
6
7
8
9

10
11
12

class UserController extends Controller
{

public function indexAction()
{

// All three return the "default" entity manager
$em = $this->get('doctrine')->getManager();
$em = $this->get('doctrine')->getManager('default');
$em = $this->get('doctrine.orm.default_entity_manager');

// Both of these return the "customer" entity manager
$customerEm = $this->get('doctrine')->getManager('customer');
$customerEm = $this->get('doctrine.orm.customer_entity_manager');

PDF brought to you by
generated on March 11, 2015

Chapter 43: How to Work with multiple Entity Managers and Connections | 167

http://sensiolabs.com


Listing 43-5

13
14

}
}

You can now use Doctrine just as you did before - using the default entity manager to persist and fetch
entities that it manages and the customer entity manager to persist and fetch its entities.

The same applies to repository calls:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

class UserController extends Controller
{

public function indexAction()
{

// Retrieves a repository managed by the "default" em
$products = $this->get('doctrine')

->getRepository('AcmeStoreBundle:Product')
->findAll()

;

// Explicit way to deal with the "default" em
$products = $this->get('doctrine')

->getRepository('AcmeStoreBundle:Product', 'default')
->findAll()

;

// Retrieves a repository managed by the "customer" em
$customers = $this->get('doctrine')

->getRepository('AcmeCustomerBundle:Customer', 'customer')
->findAll()

;
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 43: How to Work with multiple Entity Managers and Connections | 168

http://sensiolabs.com


Listing 44-1

Chapter 44

How to Register custom DQL Functions

Doctrine allows you to specify custom DQL functions. For more information on this topic, read
Doctrine's cookbook article "DQL User Defined Functions1".

In Symfony, you can register your custom DQL functions as follows:

1
2
3
4
5
6
7
8
9

10
11
12

# app/config/config.yml
doctrine:

orm:
# ...
dql:

string_functions:
test_string: AppBundle\DQL\StringFunction
second_string: AppBundle\DQL\SecondStringFunction

numeric_functions:
test_numeric: AppBundle\DQL\NumericFunction

datetime_functions:
test_datetime: AppBundle\DQL\DatetimeFunction

1. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/cookbook/dql-user-defined-functions.html

PDF brought to you by
generated on March 11, 2015

Chapter 44: How to Register custom DQL Functions | 169

http://sensiolabs.com


Listing 45-1

Chapter 45

How to Define Relationships with Abstract
Classes and Interfaces

One of the goals of bundles is to create discreet bundles of functionality that do not have many (if any)
dependencies, allowing you to use that functionality in other applications without including unnecessary
items.

Doctrine 2.2 includes a new utility called the ResolveTargetEntityListener, that functions by
intercepting certain calls inside Doctrine and rewriting targetEntity parameters in your metadata
mapping at runtime. It means that in your bundle you are able to use an interface or abstract class in your
mappings and expect correct mapping to a concrete entity at runtime.

This functionality allows you to define relationships between different entities without making them hard
dependencies.

Background
Suppose you have an InvoiceBundle which provides invoicing functionality and a CustomerBundle that
contains customer management tools. You want to keep these separated, because they can be used in
other systems without each other, but for your application you want to use them together.

In this case, you have an Invoice entity with a relationship to a non-existent object, an
InvoiceSubjectInterface. The goal is to get the ResolveTargetEntityListener to replace any
mention of the interface with a real object that implements that interface.

Set up
This article uses the following two basic entities (which are incomplete for brevity) to explain how to set
up and use the ResolveTargetEntityListener.

A Customer entity:

PDF brought to you by
generated on March 11, 2015

Chapter 45: How to Define Relationships with Abstract Classes and Interfaces | 170

http://sensiolabs.com


Listing 45-2

Listing 45-3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/Acme/AppBundle/Entity/Customer.php

namespace Acme\AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Acme\CustomerBundle\Entity\Customer as BaseCustomer;
use Acme\InvoiceBundle\Model\InvoiceSubjectInterface;

/**
* @ORM\Entity
* @ORM\Table(name="customer")
*/
class Customer extends BaseCustomer implements InvoiceSubjectInterface
{

// In this example, any methods defined in the InvoiceSubjectInterface
// are already implemented in the BaseCustomer

}

An Invoice entity:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// src/Acme/InvoiceBundle/Entity/Invoice.php

namespace Acme\InvoiceBundle\Entity;

use Doctrine\ORM\Mapping AS ORM;
use Acme\InvoiceBundle\Model\InvoiceSubjectInterface;

/**
* Represents an Invoice.
*
* @ORM\Entity
* @ORM\Table(name="invoice")
*/
class Invoice
{

/**
* @ORM\ManyToOne(targetEntity="Acme\InvoiceBundle\Model\InvoiceSubjectInterface")
* @var InvoiceSubjectInterface
*/
protected $subject;

}

An InvoiceSubjectInterface:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/Acme/InvoiceBundle/Model/InvoiceSubjectInterface.php

namespace Acme\InvoiceBundle\Model;

/**
* An interface that the invoice Subject object should implement.
* In most circumstances, only a single object should implement
* this interface as the ResolveTargetEntityListener can only
* change the target to a single object.
*/
interface InvoiceSubjectInterface
{

// List any additional methods that your InvoiceBundle

PDF brought to you by
generated on March 11, 2015

Chapter 45: How to Define Relationships with Abstract Classes and Interfaces | 171

http://sensiolabs.com


Listing 45-4

14
15
16
17
18
19
20
21

// will need to access on the subject so that you can
// be sure that you have access to those methods.

/**
* @return string
*/
public function getName();

}

Next, you need to configure the listener, which tells the DoctrineBundle about the replacement:

1
2
3
4
5
6
7

# app/config/config.yml
doctrine:

# ...
orm:

# ...
resolve_target_entities:

Acme\InvoiceBundle\Model\InvoiceSubjectInterface: Acme\AppBundle\Entity\Customer

Final Thoughts
With the ResolveTargetEntityListener, you are able to decouple your bundles, keeping them usable
by themselves, but still being able to define relationships between different objects. By using this method,
your bundles will end up being easier to maintain independently.

PDF brought to you by
generated on March 11, 2015

Chapter 45: How to Define Relationships with Abstract Classes and Interfaces | 172

http://sensiolabs.com


Listing 46-1

Chapter 46

How to Provide Model Classes for several
Doctrine Implementations

When building a bundle that could be used not only with Doctrine ORM but also the CouchDB ODM,
MongoDB ODM or PHPCR ODM, you should still only write one model class. The Doctrine bundles
provide a compiler pass to register the mappings for your model classes.

For non-reusable bundles, the easiest option is to put your model classes in the default locations:
Entity for the Doctrine ORM or Document for one of the ODMs. For reusable bundles, rather than
duplicate model classes just to get the auto-mapping, use the compiler pass.

New in version 2.3: The base mapping compiler pass was introduced in Symfony 2.3. The Doctrine
bundles support it from DoctrineBundle >= 1.2.1, MongoDBBundle >= 3.0.0, PHPCRBundle >= 1.0.0
and the (unversioned) CouchDBBundle supports the compiler pass since the CouchDB Mapping
Compiler Pass pull request1 was merged.

New in version 2.6: Support for defining namespace aliases was introduced in Symfony 2.6. It is safe
to define the aliases with older versions of Symfony as the aliases are the last argument to
createXmlMappingDriver and are ignored by PHP if that argument doesn't exist.

In your bundle class, write the following code to register the compiler pass. This one is written for the
CmfRoutingBundle, so parts of it will need to be adapted for your case:

1
2
3
4
5
6
7
8
9

use Doctrine\Bundle\DoctrineBundle\DependencyInjection\Compiler\DoctrineOrmMappingsPass;
use Doctrine\Bundle\MongoDBBundle\DependencyInjection\Compiler\DoctrineMongoDBMappingsPass;
use Doctrine\Bundle\CouchDBBundle\DependencyInjection\Compiler\DoctrineCouchDBMappingsPass;
use Doctrine\Bundle\PHPCRBundle\DependencyInjection\Compiler\DoctrinePhpcrMappingsPass;

class CmfRoutingBundle extends Bundle
{

public function build(ContainerBuilder $container)
{

1. https://github.com/doctrine/DoctrineCouchDBBundle/pull/27

PDF brought to you by
generated on March 11, 2015

Chapter 46: How to Provide Model Classes for several Doctrine Implementations | 173

http://sensiolabs.com


10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

parent::build($container);
// ...

$modelDir = realpath(__DIR__.'/Resources/config/doctrine/model');
$mappings = array(

$modelDir => 'Symfony\Cmf\RoutingBundle\Model',
);

$ormCompilerClass =
'Doctrine\Bundle\DoctrineBundle\DependencyInjection\Compiler\DoctrineOrmMappingsPass';

if (class_exists($ormCompilerClass)) {
$container->addCompilerPass(

DoctrineOrmMappingsPass::createXmlMappingDriver(
$mappings,
array('cmf_routing.model_manager_name'),
'cmf_routing.backend_type_orm',
array('CmfRoutingBundle' => 'Symfony\Cmf\RoutingBundle\Model')

));
}

$mongoCompilerClass =
'Doctrine\Bundle\MongoDBBundle\DependencyInjection\Compiler\DoctrineMongoDBMappingsPass';

if (class_exists($mongoCompilerClass)) {
$container->addCompilerPass(

DoctrineMongoDBMappingsPass::createXmlMappingDriver(
$mappings,
array('cmf_routing.model_manager_name'),
'cmf_routing.backend_type_mongodb',
array('CmfRoutingBundle' => 'Symfony\Cmf\RoutingBundle\Model')

));
}

$couchCompilerClass =
'Doctrine\Bundle\CouchDBBundle\DependencyInjection\Compiler\DoctrineCouchDBMappingsPass';

if (class_exists($couchCompilerClass)) {
$container->addCompilerPass(

DoctrineCouchDBMappingsPass::createXmlMappingDriver(
$mappings,
array('cmf_routing.model_manager_name'),
'cmf_routing.backend_type_couchdb',
array('CmfRoutingBundle' => 'Symfony\Cmf\RoutingBundle\Model')

));
}

$phpcrCompilerClass =
'Doctrine\Bundle\PHPCRBundle\DependencyInjection\Compiler\DoctrinePhpcrMappingsPass';

if (class_exists($phpcrCompilerClass)) {
$container->addCompilerPass(

DoctrinePhpcrMappingsPass::createXmlMappingDriver(
$mappings,
array('cmf_routing.model_manager_name'),
'cmf_routing.backend_type_phpcr',
array('CmfRoutingBundle' => 'Symfony\Cmf\RoutingBundle\Model')

));
}

}
}

PDF brought to you by
generated on March 11, 2015

Chapter 46: How to Provide Model Classes for several Doctrine Implementations | 174

http://sensiolabs.com


Listing 46-2

Note the class_exists2 check. This is crucial, as you do not want your bundle to have a hard
dependency on all Doctrine bundles but let the user decide which to use.

The compiler pass provides factory methods for all drivers provided by Doctrine: Annotations, XML,
Yaml, PHP and StaticPHP. The arguments are:

• A map/hash of absolute directory path to namespace;
• An array of container parameters that your bundle uses to specify the name of the Doctrine

manager that it is using. In the example above, the CmfRoutingBundle stores the manager
name that's being used under the cmf_routing.model_manager_name parameter. The
compiler pass will append the parameter Doctrine is using to specify the name of the default
manager. The first parameter found is used and the mappings are registered with that manager;

• An optional container parameter name that will be used by the compiler pass to determine if
this Doctrine type is used at all. This is relevant if your user has more than one type of Doctrine
bundle installed, but your bundle is only used with one type of Doctrine;

• A map/hash of aliases to namespace. This should be the same convention used by Doctrine
auto-mapping. In the example above, this allows the user to call $om-
>getRepository('CmfRoutingBundle:Route').

The factory method is using the SymfonyFileLocator of Doctrine, meaning it will only see XML
and YML mapping files if they do not contain the full namespace as the filename. This is by design:
the SymfonyFileLocator simplifies things by assuming the files are just the "short" version of the
class as their filename (e.g. BlogPost.orm.xml)

If you also need to map a base class, you can register a compiler pass with the
DefaultFileLocator like this. This code is taken from the DoctrineOrmMappingsPass and
adapted to use the DefaultFileLocator instead of the SymfonyFileLocator:

1
2
3
4
5
6
7
8
9

10
11
12
13

private function buildMappingCompilerPass()
{

$arguments = array(array(realpath(__DIR__ . '/Resources/config/doctrine-base')),
'.orm.xml');

$locator = new
Definition('Doctrine\Common\Persistence\Mapping\Driver\DefaultFileLocator',
$arguments);

$driver = new Definition('Doctrine\ORM\Mapping\Driver\XmlDriver',
array($locator));

return new DoctrineOrmMappingsPass(
$driver,
array('Full\Namespace'),
array('your_bundle.manager_name'),
'your_bundle.orm_enabled'

);
}

Note that you do not need to provide a namespace alias unless your users are expected to ask
Doctrine for the base classes.

Now place your mapping file into /Resources/config/doctrine-base with the fully qualified
class name, separated by . instead of \, for example Other.Namespace.Model.Name.orm.xml. You
may not mix the two as otherwise the SymfonyFileLocator will get confused.

Adjust accordingly for the other Doctrine implementations.

2. http://php.net/manual/en/function.class-exists.php

PDF brought to you by
generated on March 11, 2015

Chapter 46: How to Provide Model Classes for several Doctrine Implementations | 175

http://sensiolabs.com


Listing 47-1

Chapter 47

How to Implement a simple Registration Form

Some forms have extra fields whose values don't need to be stored in the database. For example, you
may want to create a registration form with some extra fields (like a "terms accepted" checkbox field) and
embed the form that actually stores the account information.

The simple User Model
You have a simple User entity mapped to the database:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// src/Acme/AccountBundle/Entity/User.php
namespace Acme\AccountBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Validator\Constraints as Assert;
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

/**
* @ORM\Entity
* @UniqueEntity(fields="email", message="Email already taken")
*/
class User
{

/**
* @ORM\Id
* @ORM\Column(type="integer")
* @ORM\GeneratedValue(strategy="AUTO")
*/
protected $id;

/**
* @ORM\Column(type="string", length=255)
* @Assert\NotBlank()
* @Assert\Email()
*/
protected $email;

PDF brought to you by
generated on March 11, 2015

Chapter 47: How to Implement a simple Registration Form | 176

http://sensiolabs.com


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

/**
* @ORM\Column(type="string", length=255)
* @Assert\NotBlank()
* @Assert\Length(max = 4096)
*/
protected $plainPassword;

public function getId()
{

return $this->id;
}

public function getEmail()
{

return $this->email;
}

public function setEmail($email)
{

$this->email = $email;
}

public function getPlainPassword()
{

return $this->plainPassword;
}

public function setPlainPassword($password)
{

$this->plainPassword = $password;
}

}

This User entity contains three fields and two of them (email and plainPassword) should display on the
form. The email property must be unique in the database, this is enforced by adding this validation at the
top of the class.

If you want to integrate this User within the security system, you need to implement the
UserInterface of the Security component.

Why the 4096 Password Limit?

Notice that the plainPassword field has a max length of 4096 characters. For security purposes
(CVE-2013-57501), Symfony limits the plain password length to 4096 characters when encoding
it. Adding this constraint makes sure that your form will give a validation error if anyone tries a
super-long password.

You'll need to add this constraint anywhere in your application where your user submits a plaintext
password (e.g. change password form). The only place where you don't need to worry about this
is your login form, since Symfony's Security component handles this for you.

1. http://symfony.com/blog/cve-2013-5750-security-issue-in-fosuserbundle-login-form

PDF brought to you by
generated on March 11, 2015

Chapter 47: How to Implement a simple Registration Form | 177

http://sensiolabs.com


Listing 47-2

Listing 47-3

Create a Form for the Model
Next, create the form for the User model:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// src/Acme/AccountBundle/Form/Type/UserType.php
namespace Acme\AccountBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class UserType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('email', 'email');
$builder->add('plainPassword', 'repeated', array(

'first_name' => 'password',
'second_name' => 'confirm',
'type' => 'password',

));
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'data_class' => 'Acme\AccountBundle\Entity\User'

));
}

public function getName()
{

return 'user';
}

}

There are just two fields: email and plainPassword (repeated to confirm the entered password). The
data_class option tells the form the name of the underlying data class (i.e. your User entity).

To explore more things about the Form component, read Forms.

Embedding the User Form into a Registration Form
The form that you'll use for the registration page is not the same as the form used to simply modify the
User (i.e. UserType). The registration form will contain further fields like "accept the terms", whose value
won't be stored in the database.

Start by creating a simple class which represents the "registration":

1
2
3
4

// src/Acme/AccountBundle/Form/Model/Registration.php
namespace Acme\AccountBundle\Form\Model;

use Symfony\Component\Validator\Constraints as Assert;

PDF brought to you by
generated on March 11, 2015

Chapter 47: How to Implement a simple Registration Form | 178

http://sensiolabs.com


Listing 47-4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

use Acme\AccountBundle\Entity\User;

class Registration
{

/**
* @Assert\Type(type="Acme\AccountBundle\Entity\User")
* @Assert\Valid()
*/
protected $user;

/**
* @Assert\NotBlank()
* @Assert\True()
*/
protected $termsAccepted;

public function setUser(User $user)
{

$this->user = $user;
}

public function getUser()
{

return $this->user;
}

public function getTermsAccepted()
{

return $this->termsAccepted;
}

public function setTermsAccepted($termsAccepted)
{

$this->termsAccepted = (Boolean) $termsAccepted;
}

}

Next, create the form for this Registration model:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// src/Acme/AccountBundle/Form/Type/RegistrationType.php
namespace Acme\AccountBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class RegistrationType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('user', new UserType());
$builder->add(

'terms',
'checkbox',
array('property_path' => 'termsAccepted')

);
$builder->add('Register', 'submit');

}

PDF brought to you by
generated on March 11, 2015

Chapter 47: How to Implement a simple Registration Form | 179

http://sensiolabs.com


Listing 47-5

Listing 47-6

Listing 47-7

19
20
21
22
23
24

public function getName()
{

return 'registration';
}

}

You don't need to use a special method for embedding the UserType form. A form is a field, too - so you
can add this like any other field, with the expectation that the Registration.user property will hold an
instance of the User class.

Handling the Form Submission
Next, you need a controller to handle the form. Start by creating a simple controller for displaying the
registration form:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/Acme/AccountBundle/Controller/AccountController.php
namespace Acme\AccountBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

use Acme\AccountBundle\Form\Type\RegistrationType;
use Acme\AccountBundle\Form\Model\Registration;

class AccountController extends Controller
{

public function registerAction()
{

$registration = new Registration();
$form = $this->createForm(new RegistrationType(), $registration, array(

'action' => $this->generateUrl('account_create'),
));

return $this->render(
'AcmeAccountBundle:Account:register.html.twig',
array('form' => $form->createView())

);
}

}

And its template:

1
2

{# src/Acme/AccountBundle/Resources/views/Account/register.html.twig #}
{{ form(form) }}

Next, create the controller which handles the form submission. This performs the validation and saves
the data into the database:

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\Request;
// ...

public function createAction(Request $request)
{

$em = $this->getDoctrine()->getManager();

PDF brought to you by
generated on March 11, 2015

Chapter 47: How to Implement a simple Registration Form | 180

http://sensiolabs.com


Listing 47-8

Listing 47-9

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

$form = $this->createForm(new RegistrationType(), new Registration());

$form->handleRequest($request);

if ($form->isValid()) {
$registration = $form->getData();

$em->persist($registration->getUser());
$em->flush();

return $this->redirect(...);
}

return $this->render(
'AcmeAccountBundle:Account:register.html.twig',
array('form' => $form->createView())

);
}

Add new Routes
Next, update your routes. If you're placing your routes inside your bundle (as shown here), don't forget
to make sure that the routing file is being imported.

1
2
3
4
5
6
7
8

# src/Acme/AccountBundle/Resources/config/routing.yml
account_register:

path: /register
defaults: { _controller: AcmeAccountBundle:Account:register }

account_create:
path: /register/create
defaults: { _controller: AcmeAccountBundle:Account:create }

Update your Database Schema
Of course, since you've added a User entity during this tutorial, make sure that your database schema has
been updated properly:

1 $ php app/console doctrine:schema:update --force

That's it! Your form now validates, and allows you to save the User object to the database. The extra
terms checkbox on the Registration model class is used during validation, but not actually used
afterwards when saving the User to the database.

PDF brought to you by
generated on March 11, 2015

Chapter 47: How to Implement a simple Registration Form | 181

http://sensiolabs.com


Listing 48-1

Listing 48-2

Listing 48-3

Chapter 48

Console Commands

The Doctrine2 ORM integration offers several console commands under the doctrine namespace. To
view the command list you can use the list command:

1 $ php app/console list doctrine

A list of available commands will print out. You can find out more information about any of these
commands (or any Symfony command) by running the help command. For example, to get details about
the doctrine:database:create task, run:

1 $ php app/console help doctrine:database:create

Some notable or interesting tasks include:

• doctrine:ensure-production-settings - checks to see if the current environment is
configured efficiently for production. This should always be run in the prod environment:

1 $ php app/console doctrine:ensure-production-settings --env=prod

• doctrine:mapping:import - allows Doctrine to introspect an existing database and create
mapping information. For more information, see How to Generate Entities from an Existing
Database.

• doctrine:mapping:info - tells you all of the entities that Doctrine is aware of and whether or
not there are any basic errors with the mapping.

• doctrine:query:dql and doctrine:query:sql - allow you to execute DQL or SQL queries
directly from the command line.

PDF brought to you by
generated on March 11, 2015

Chapter 48: Console Commands | 182

http://sensiolabs.com


Listing 49-1

Chapter 49

How to Send an Email

Sending emails is a classic task for any web application and one that has special complications and
potential pitfalls. Instead of recreating the wheel, one solution to send emails is to use the
SwiftmailerBundle, which leverages the power of the Swift Mailer1 library. This bundle comes with the
Symfony Standard Edition.

Configuration
To use Swift Mailer, you'll need to configure it for your mail server.

Instead of setting up/using your own mail server, you may want to use a hosted mail provider such
as Mandrill2, SendGrid3, Amazon SES4 or others. These give you an SMTP server, username and
password (sometimes called keys) that can be used with the Swift Mailer configuration.

In a standard Symfony installation, some swiftmailer configuration is already included:

1
2
3
4
5
6

# app/config/config.yml
swiftmailer:

transport: "%mailer_transport%"
host: "%mailer_host%"
username: "%mailer_user%"
password: "%mailer_password%"

These values (e.g. %mailer_transport%), are reading from the parameters that are set in the
parameters.yml file. You can modify the values in that file, or set the values directly here.

The following configuration attributes are available:

• transport (smtp, mail, sendmail, or gmail)

1. http://swiftmailer.org/

2. https://mandrill.com/

3. https://sendgrid.com/

4. http://aws.amazon.com/ses/

PDF brought to you by
generated on March 11, 2015

Chapter 49: How to Send an Email | 183

http://sensiolabs.com


Listing 49-2

• username
• password
• host
• port
• encryption (tls, or ssl)
• auth_mode (plain, login, or cram-md5)
• spool

• type (how to queue the messages, file or memory is supported, see How to Spool
Emails)

• path (where to store the messages)

• delivery_address (an email address where to send ALL emails)
• disable_delivery (set to true to disable delivery completely)

Sending Emails
The Swift Mailer library works by creating, configuring and then sending Swift_Message objects. The
"mailer" is responsible for the actual delivery of the message and is accessible via the mailer service.
Overall, sending an email is pretty straightforward:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

public function indexAction($name)
{

$mailer = $this->get('mailer');
$message = $mailer->createMessage()

->setSubject('You have Completed Registration!')
->setFrom('send@example.com')
->setTo('recipient@example.com')
->setBody(

$this->renderView(
// app/Resources/views/Emails/registration.html.twig
'Emails/registration.html.twig',
array('name' => $name)

),
'text/html'

)
/*
* If you also want to include a plaintext version of the message

->addPart(
$this->renderView(

'Emails/registration.txt.twig',
array('name' => $name)

),
'text/plain'

)
*/

;
$mailer->send($message);

return $this->render(...);
}

To keep things decoupled, the email body has been stored in a template and rendered with the
renderView() method.

PDF brought to you by
generated on March 11, 2015

Chapter 49: How to Send an Email | 184

http://sensiolabs.com


The $message object supports many more options, such as including attachments, adding HTML
content, and much more. Fortunately, Swift Mailer covers the topic of Creating Messages5 in great detail
in its documentation.

Several other cookbook articles are available related to sending emails in Symfony:

• How to Use Gmail to Send Emails
• How to Work with Emails during Development
• How to Spool Emails

5. http://swiftmailer.org/docs/messages.html

PDF brought to you by
generated on March 11, 2015

Chapter 49: How to Send an Email | 185

http://sensiolabs.com


Listing 50-1

Listing 50-2

Chapter 50

How to Use Gmail to Send Emails

During development, instead of using a regular SMTP server to send emails, you might find using Gmail
easier and more practical. The SwiftmailerBundle makes it really easy.

Instead of using your regular Gmail account, it's of course recommended that you create a special
account.

In the development configuration file, change the transport setting to gmail and set the username and
password to the Google credentials:

1
2
3
4
5

# app/config/config_dev.yml
swiftmailer:

transport: gmail
username: your_gmail_username
password: your_gmail_password

You're done!

If you are using the Symfony Standard Edition, configure the parameters in parameters.yml:

1
2
3
4
5
6
7

# app/config/parameters.yml
parameters:

# ...
mailer_transport: gmail
mailer_host: ~
mailer_user: your_gmail_username
mailer_password: your_gmail_password

The gmail transport is simply a shortcut that uses the smtp transport and sets encryption,
auth_mode and host to work with Gmail.

PDF brought to you by
generated on March 11, 2015

Chapter 50: How to Use Gmail to Send Emails | 186

http://sensiolabs.com


Listing 51-1

Chapter 51

How to Use the Cloud to Send Emails

Requirements for sending emails from a production system differ from your development setup as you
don't want to be limited in the number of emails, the sending rate or the sender address. Thus, using
Gmail or similar services is not an option. If setting up and maintaining your own reliable mail server
causes you a headache there's a simple solution: Leverage the cloud to send your emails.

This cookbook shows how easy it is to integrate Amazon's Simple Email Service (SES)1 into Symfony.

You can use the same technique for other mail services, as most of the time there is nothing more
to it than configuring an SMTP endpoint for Swift Mailer.

In the Symfony configuration, change the Swift Mailer settings transport, host, port and encryption
according to the information provided in the SES console2. Create your individual SMTP credentials in
the SES console and complete the configuration with the provided username and password:

1
2
3
4
5
6
7
8

# app/config/config.yml
swiftmailer:

transport: smtp
host: email-smtp.us-east-1.amazonaws.com
port: 465 # different ports are available, see SES console
encryption: tls # TLS encryption is required
username: AWS_ACCESS_KEY # to be created in the SES console
password: AWS_SECRET_KEY # to be created in the SES console

The port and encryption keys are not present in the Symfony Standard Edition configuration by default,
but you can simply add them as needed.

And that's it, you're ready to start sending emails through the cloud!

1. http://aws.amazon.com/ses

2. https://console.aws.amazon.com/ses

PDF brought to you by
generated on March 11, 2015

Chapter 51: How to Use the Cloud to Send Emails | 187

http://sensiolabs.com


Listing 51-2

If you are using the Symfony Standard Edition, configure the parameters in parameters.yml and
use them in your configuration files. This allows for different Swift Mailer configurations for each
installation of your application. For instance, use Gmail during development and the cloud in
production.

1
2
3
4
5
6
7
8
9

# app/config/parameters.yml
parameters:

# ...
mailer_transport: smtp
mailer_host: email-smtp.us-east-1.amazonaws.com
mailer_port: 465 # different ports are available, see SES console
mailer_encryption: tls # TLS encryption is required
mailer_user: AWS_ACCESS_KEY # to be created in the SES console
mailer_password: AWS_SECRET_KEY # to be created in the SES console

If you intend to use Amazon SES, please note the following:

• You have to sign up to Amazon Web Services (AWS)3;
• Every sender address used in the From or Return-Path (bounce address) header needs

to be confirmed by the owner. You can also confirm an entire domain;
• Initially you are in a restricted sandbox mode. You need to request production access

before being allowed to send to arbitrary recipients;
• SES may be subject to a charge.

3. http://aws.amazon.com

PDF brought to you by
generated on March 11, 2015

Chapter 51: How to Use the Cloud to Send Emails | 188

http://sensiolabs.com


Listing 52-1

Listing 52-2

Chapter 52

How to Work with Emails during Development

When developing an application which sends email, you will often not want to actually send the email
to the specified recipient during development. If you are using the SwiftmailerBundle with Symfony,
you can easily achieve this through configuration settings without having to make any changes to
your application's code at all. There are two main choices when it comes to handling email during
development: (a) disabling the sending of email altogether or (b) sending all email to a specific address
(with optional exceptions).

Disabling Sending
You can disable sending email by setting the disable_delivery option to true. This is the default in the
test environment in the Standard distribution. If you do this in the test specific config then email will
not be sent when you run tests, but will continue to be sent in the prod and dev environments:

1
2
3

# app/config/config_test.yml
swiftmailer:

disable_delivery: true

If you'd also like to disable deliver in the dev environment, simply add this same configuration to the
config_dev.yml file.

Sending to a Specified Address
You can also choose to have all email sent to a specific address, instead of the address actually specified
when sending the message. This can be done via the delivery_address option:

1
2
3

# app/config/config_dev.yml
swiftmailer:

delivery_address: dev@example.com

Now, suppose you're sending an email to recipient@example.com.

PDF brought to you by
generated on March 11, 2015

Chapter 52: How to Work with Emails during Development | 189

http://sensiolabs.com


Listing 52-3

Listing 52-4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

public function indexAction($name)
{

$message = \Swift_Message::newInstance()
->setSubject('Hello Email')
->setFrom('send@example.com')
->setTo('recipient@example.com')
->setBody(

$this->renderView(
'HelloBundle:Hello:email.txt.twig',
array('name' => $name)

)
)

;
$this->get('mailer')->send($message);

return $this->render(...);
}

In the dev environment, the email will instead be sent to dev@example.com. Swift Mailer will add an extra
header to the email, X-Swift-To, containing the replaced address, so you can still see who it would have
been sent to.

In addition to the to addresses, this will also stop the email being sent to any CC and BCC addresses
set for it. Swift Mailer will add additional headers to the email with the overridden addresses in
them. These are X-Swift-Cc and X-Swift-Bcc for the CC and BCC addresses respectively.

Sending to a Specified Address but with Exceptions

Suppose you want to have all email redirected to a specific address, (like in the above scenario to
dev@example.com). But then you may want email sent to some specific email addresses to go through
after all, and not be redirected (even if it is in the dev environment). This can be done by adding the
delivery_whitelist option:

1
2
3
4
5
6
7
8
9

10
11

# app/config/config_dev.yml
swiftmailer:

delivery_address: dev@example.com
delivery_whitelist:

# all email addresses matching this regex will *not* be
# redirected to dev@example.com
- "/@specialdomain.com$/"

# all emails sent to admin@mydomain.com won't
# be redirected to dev@example.com too
- "/^admin@mydomain.com$/"

In the above example all email messages will be redirected to dev@example.com, except messages sent to
the admin@mydomain.com address or to any email address belonging to the domain specialdomain.com,
which will be delivered as normal.

PDF brought to you by
generated on March 11, 2015

Chapter 52: How to Work with Emails during Development | 190

http://sensiolabs.com


Listing 52-5

Viewing from the Web Debug Toolbar
You can view any email sent during a single response when you are in the dev environment using the
Web Debug Toolbar. The email icon in the toolbar will show how many emails were sent. If you click it,
a report will open showing the details of the sent emails.

If you're sending an email and then immediately redirecting to another page, the web debug toolbar will
not display an email icon or a report on the next page.

Instead, you can set the intercept_redirects option to true in the config_dev.yml file, which will
cause the redirect to stop and allow you to open the report with details of the sent emails.

1
2
3

# app/config/config_dev.yml
web_profiler:

intercept_redirects: true

Alternatively, you can open the profiler after the redirect and search by the submit URL used on
the previous request (e.g. /contact/handle). The profiler's search feature allows you to load the
profiler information for any past requests.

PDF brought to you by
generated on March 11, 2015

Chapter 52: How to Work with Emails during Development | 191

http://sensiolabs.com


Listing 53-1

Listing 53-2

Chapter 53

How to Spool Emails

When you are using the SwiftmailerBundle to send an email from a Symfony application, it will default
to sending the email immediately. You may, however, want to avoid the performance hit of the
communication between Swift Mailer and the email transport, which could cause the user to wait for
the next page to load while the email is sending. This can be avoided by choosing to "spool" the emails
instead of sending them directly. This means that Swift Mailer does not attempt to send the email but
instead saves the message to somewhere such as a file. Another process can then read from the spool and
take care of sending the emails in the spool. Currently only spooling to file or memory is supported by
Swift Mailer.

Spool Using Memory
When you use spooling to store the emails to memory, they will get sent right before the kernel
terminates. This means the email only gets sent if the whole request got executed without any unhandled
Exception or any errors. To configure swiftmailer with the memory option, use the following
configuration:

1
2
3
4

# app/config/config.yml
swiftmailer:

# ...
spool: { type: memory }

Spool Using a File
In order to use the spool with a file, use the following configuration:

1
2
3
4

# app/config/config.yml
swiftmailer:

# ...
spool:

PDF brought to you by
generated on March 11, 2015

Chapter 53: How to Spool Emails | 192

http://sensiolabs.com


Listing 53-3

Listing 53-4

Listing 53-5

Listing 53-6

5
6

type: file
path: /path/to/spool

If you want to store the spool somewhere with your project directory, remember that you can use
the %kernel.root_dir% parameter to reference the project's root:

1 path: "%kernel.root_dir%/spool"

Now, when your app sends an email, it will not actually be sent but instead added to the spool. Sending
the messages from the spool is done separately. There is a console command to send the messages in the
spool:

1 $ php app/console swiftmailer:spool:send --env=prod

It has an option to limit the number of messages to be sent:

1 $ php app/console swiftmailer:spool:send --message-limit=10 --env=prod

You can also set the time limit in seconds:

1 $ php app/console swiftmailer:spool:send --time-limit=10 --env=prod

Of course you will not want to run this manually in reality. Instead, the console command should be
triggered by a cron job or scheduled task and run at a regular interval.

PDF brought to you by
generated on March 11, 2015

Chapter 53: How to Spool Emails | 193

http://sensiolabs.com


Listing 54-1

Listing 54-2

Chapter 54

How to Test that an Email is Sent in a
functional Test

Sending e-mails with Symfony is pretty straightforward thanks to the SwiftmailerBundle, which leverages
the power of the Swift Mailer1 library.

To functionally test that an email was sent, and even assert the email subject, content or any other
headers, you can use the Symfony Profiler.

Start with an easy controller action that sends an e-mail:

1
2
3
4
5
6
7
8
9

10
11
12
13

public function sendEmailAction($name)
{

$message = \Swift_Message::newInstance()
->setSubject('Hello Email')
->setFrom('send@example.com')
->setTo('recipient@example.com')
->setBody('You should see me from the profiler!')

;

$this->get('mailer')->send($message);

return $this->render(...);
}

Don't forget to enable the profiler as explained in How to Use the Profiler in a Functional Test.

In your functional test, use the swiftmailer collector on the profiler to get information about the
messages send on the previous request:

1. http://swiftmailer.org/

PDF brought to you by
generated on March 11, 2015

Chapter 54: How to Test that an Email is Sent in a functional Test | 194

http://sensiolabs.com


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

// src/AppBundle/Tests/Controller/MailControllerTest.php
use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class MailControllerTest extends WebTestCase
{

public function testMailIsSentAndContentIsOk()
{

$client = static::createClient();

// Enable the profiler for the next request (it does nothing if the profiler is
not available)

$client->enableProfiler();

$crawler = $client->request('POST', '/path/to/above/action');

$mailCollector = $client->getProfile()->getCollector('swiftmailer');

// Check that an e-mail was sent
$this->assertEquals(1, $mailCollector->getMessageCount());

$collectedMessages = $mailCollector->getMessages();
$message = $collectedMessages[0];

// Asserting e-mail data
$this->assertInstanceOf('Swift_Message', $message);
$this->assertEquals('Hello Email', $message->getSubject());
$this->assertEquals('send@example.com', key($message->getFrom()));
$this->assertEquals('recipient@example.com', key($message->getTo()));
$this->assertEquals(

'You should see me from the profiler!',
$message->getBody()

);
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 54: How to Test that an Email is Sent in a functional Test | 195

http://sensiolabs.com


Listing 55-1

Chapter 55

How to Setup before and after Filters

It is quite common in web application development to need some logic to be executed just before or just
after your controller actions acting as filters or hooks.

In symfony1, this was achieved with the preExecute and postExecute methods. Most major frameworks
have similar methods but there is no such thing in Symfony. The good news is that there is a much better
way to interfere with the Request -> Response process using the EventDispatcher component.

Token Validation Example
Imagine that you need to develop an API where some controllers are public but some others are restricted
to one or some clients. For these private features, you might provide a token to your clients to identify
themselves.

So, before executing your controller action, you need to check if the action is restricted or not. If it is
restricted, you need to validate the provided token.

Please note that for simplicity in this recipe, tokens will be defined in config and neither database
setup nor authentication via the Security component will be used.

Before Filters with the kernel.controller Event
First, store some basic token configuration using config.yml and the parameters key:

1
2
3
4
5

# app/config/config.yml
parameters:

tokens:
client1: pass1
client2: pass2

PDF brought to you by
generated on March 11, 2015

Chapter 55: How to Setup before and after Filters | 196

http://sensiolabs.com


Listing 55-2

Listing 55-3

Listing 55-4

Tag Controllers to Be Checked

A kernel.controller listener gets notified on every request, right before the controller is executed. So,
first, you need some way to identify if the controller that matches the request needs token validation.

A clean and easy way is to create an empty interface and make the controllers implement it:

1
2
3
4
5
6

namespace AppBundle\Controller;

interface TokenAuthenticatedController
{

// ...
}

A controller that implements this interface simply looks like this:

1
2
3
4
5
6
7
8
9

10
11
12
13

namespace AppBundle\Controller;

use AppBundle\Controller\TokenAuthenticatedController;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class FooController extends Controller implements TokenAuthenticatedController
{

// An action that needs authentication
public function barAction()
{

// ...
}

}

Creating an Event Listener

Next, you'll need to create an event listener, which will hold the logic that you want executed before your
controllers. If you're not familiar with event listeners, you can learn more about them at How to Create
an Event Listener:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// src/AppBundle/EventListener/TokenListener.php
namespace AppBundle\EventListener;

use AppBundle\Controller\TokenAuthenticatedController;
use Symfony\Component\HttpKernel\Exception\AccessDeniedHttpException;
use Symfony\Component\HttpKernel\Event\FilterControllerEvent;

class TokenListener
{

private $tokens;

public function __construct($tokens)
{

$this->tokens = $tokens;
}

public function onKernelController(FilterControllerEvent $event)
{

$controller = $event->getController();

/*

PDF brought to you by
generated on March 11, 2015

Chapter 55: How to Setup before and after Filters | 197

http://sensiolabs.com


Listing 55-5

Listing 55-6

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

* $controller passed can be either a class or a Closure.
* This is not usual in Symfony but it may happen.
* If it is a class, it comes in array format
*/

if (!is_array($controller)) {
return;

}

if ($controller[0] instanceof TokenAuthenticatedController) {
$token = $event->getRequest()->query->get('token');
if (!in_array($token, $this->tokens)) {

throw new AccessDeniedHttpException('This action needs a valid token!');
}

}
}

}

Registering the Listener

Finally, register your listener as a service and tag it as an event listener. By listening on
kernel.controller, you're telling Symfony that you want your listener to be called just before any
controller is executed.

1
2
3
4
5
6
7

# app/config/services.yml
services:

app.tokens.action_listener:
class: AppBundle\EventListener\TokenListener
arguments: ["%tokens%"]
tags:

- { name: kernel.event_listener, event: kernel.controller, method:
onKernelController }

With this configuration, your TokenListener onKernelController method will be executed on each
request. If the controller that is about to be executed implements TokenAuthenticatedController,
token authentication is applied. This lets you have a "before" filter on any controller that you want.

After Filters with the kernel.response Event
In addition to having a "hook" that's executed before your controller, you can also add a hook that's
executed after your controller. For this example, imagine that you want to add a sha1 hash (with a salt
using that token) to all responses that have passed this token authentication.

Another core Symfony event - called kernel.response - is notified on every request, but after the
controller returns a Response object. Creating an "after" listener is as easy as creating a listener class and
registering it as a service on this event.

For example, take the TokenListener from the previous example and first record the authentication
token inside the request attributes. This will serve as a basic flag that this request underwent token
authentication:

1
2
3
4

public function onKernelController(FilterControllerEvent $event)
{

// ...

PDF brought to you by
generated on March 11, 2015

Chapter 55: How to Setup before and after Filters | 198

http://sensiolabs.com


Listing 55-7

Listing 55-8

5
6
7
8
9

10
11
12
13
14

if ($controller[0] instanceof TokenAuthenticatedController) {
$token = $event->getRequest()->query->get('token');
if (!in_array($token, $this->tokens)) {

throw new AccessDeniedHttpException('This action needs a valid token!');
}

// mark the request as having passed token authentication
$event->getRequest()->attributes->set('auth_token', $token);

}
}

Now, add another method to this class - onKernelResponse - that looks for this flag on the request object
and sets a custom header on the response if it's found:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// add the new use statement at the top of your file
use Symfony\Component\HttpKernel\Event\FilterResponseEvent;

public function onKernelResponse(FilterResponseEvent $event)
{

// check to see if onKernelController marked this as a token "auth'ed" request
if (!$token = $event->getRequest()->attributes->get('auth_token')) {

return;
}

$response = $event->getResponse();

// create a hash and set it as a response header
$hash = sha1($response->getContent().$token);
$response->headers->set('X-CONTENT-HASH', $hash);

}

Finally, a second "tag" is needed in the service definition to notify Symfony that the onKernelResponse
event should be notified for the kernel.response event:

1
2
3
4
5
6
7
8

# app/config/services.yml
services:

app.tokens.action_listener:
class: AppBundle\EventListener\TokenListener
arguments: ["%tokens%"]
tags:

- { name: kernel.event_listener, event: kernel.controller, method:
onKernelController }

- { name: kernel.event_listener, event: kernel.response, method:
onKernelResponse }

That's it! The TokenListener is now notified before every controller is executed (onKernelController)
and after every controller returns a response (onKernelResponse). By making specific controllers
implement the TokenAuthenticatedController interface, your listener knows which controllers it
should take action on. And by storing a value in the request's "attributes" bag, the onKernelResponse
method knows to add the extra header. Have fun!

PDF brought to you by
generated on March 11, 2015

Chapter 55: How to Setup before and after Filters | 199

http://sensiolabs.com


Listing 56-1

Listing 56-2

Chapter 56

How to Extend a Class without Using
Inheritance

To allow multiple classes to add methods to another one, you can define the magic __call() method in
the class you want to be extended like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

class Foo
{

// ...

public function __call($method, $arguments)
{

// create an event named 'foo.method_is_not_found'
$event = new HandleUndefinedMethodEvent($this, $method, $arguments);
$this->dispatcher->dispatch('foo.method_is_not_found', $event);

// no listener was able to process the event? The method does not exist
if (!$event->isProcessed()) {

throw new \Exception(sprintf('Call to undefined method %s::%s.',
get_class($this), $method));

}

// return the listener returned value
return $event->getReturnValue();

}
}

This uses a special HandleUndefinedMethodEvent that should also be created. This is a generic class that
could be reused each time you need to use this pattern of class extension:

1
2
3
4
5

use Symfony\Component\EventDispatcher\Event;

class HandleUndefinedMethodEvent extends Event
{

protected $subject;

PDF brought to you by
generated on March 11, 2015

Chapter 56: How to Extend a Class without Using Inheritance | 200

http://sensiolabs.com


Listing 56-3

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

protected $method;
protected $arguments;
protected $returnValue;
protected $isProcessed = false;

public function __construct($subject, $method, $arguments)
{

$this->subject = $subject;
$this->method = $method;
$this->arguments = $arguments;

}

public function getSubject()
{

return $this->subject;
}

public function getMethod()
{

return $this->method;
}

public function getArguments()
{

return $this->arguments;
}

/**
* Sets the value to return and stops other listeners from being notified
*/
public function setReturnValue($val)
{

$this->returnValue = $val;
$this->isProcessed = true;
$this->stopPropagation();

}

public function getReturnValue()
{

return $this->returnValue;
}

public function isProcessed()
{

return $this->isProcessed;
}

}

Next, create a class that will listen to the foo.method_is_not_found event and add the method bar():

1
2
3
4
5
6
7
8

class Bar
{

public function onFooMethodIsNotFound(HandleUndefinedMethodEvent $event)
{

// only respond to the calls to the 'bar' method
if ('bar' != $event->getMethod()) {

// allow another listener to take care of this unknown method
return;

PDF brought to you by
generated on March 11, 2015

Chapter 56: How to Extend a Class without Using Inheritance | 201

http://sensiolabs.com


Listing 56-4

9
10
11
12
13
14
15
16
17
18
19
20
21
22

}

// the subject object (the foo instance)
$foo = $event->getSubject();

// the bar method arguments
$arguments = $event->getArguments();

// ... do something

// set the return value
$event->setReturnValue($someValue);

}
}

Finally, add the new bar method to the Foo class by registering an instance of Bar with the
foo.method_is_not_found event:

1
2

$bar = new Bar();
$dispatcher->addListener('foo.method_is_not_found', array($bar, 'onFooMethodIsNotFound'));

PDF brought to you by
generated on March 11, 2015

Chapter 56: How to Extend a Class without Using Inheritance | 202

http://sensiolabs.com


Listing 57-1

Chapter 57

How to Customize a Method Behavior without
Using Inheritance

Doing something before or after a Method Call
If you want to do something just before, or just after a method is called, you can dispatch an event
respectively at the beginning or at the end of the method:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

class Foo
{

// ...

public function send($foo, $bar)
{

// do something before the method
$event = new FilterBeforeSendEvent($foo, $bar);
$this->dispatcher->dispatch('foo.pre_send', $event);

// get $foo and $bar from the event, they may have been modified
$foo = $event->getFoo();
$bar = $event->getBar();

// the real method implementation is here
$ret = ...;

// do something after the method
$event = new FilterSendReturnValue($ret);
$this->dispatcher->dispatch('foo.post_send', $event);

return $event->getReturnValue();
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 57: How to Customize a Method Behavior without Using Inheritance | 203

http://sensiolabs.com


Listing 57-2

In this example, two events are thrown: foo.pre_send, before the method is executed, and
foo.post_send after the method is executed. Each uses a custom Event class to communicate
information to the listeners of the two events. These event classes would need to be created by you and
should allow, in this example, the variables $foo, $bar and $ret to be retrieved and set by the listeners.

For example, assuming the FilterSendReturnValue has a setReturnValue method, one listener might
look like this:

1
2
3
4
5
6
7

public function onFooPostSend(FilterSendReturnValue $event)
{

$ret = $event->getReturnValue();
// modify the original ``$ret`` value

$event->setReturnValue($ret);
}

PDF brought to you by
generated on March 11, 2015

Chapter 57: How to Customize a Method Behavior without Using Inheritance | 204

http://sensiolabs.com


Listing 58-1

Chapter 58

How to use Expressions in Security, Routing,
Services, and Validation

In Symfony 2.4, a powerful ExpressionLanguage component was added to Symfony. This allows us to
add highly customized logic inside configuration.

The Symfony Framework leverages expressions out of the box in the following ways:

• Configuring services;
• Route matching conditions;
• Checking security (explained below) and access controls with allow_if;
• Validation.

For more information about how to create and work with expressions, see The Expression Syntax.

Security: Complex Access Controls with Expressions
In addition to a role like ROLE_ADMIN, the isGranted method also accepts an Expression1 object:

1
2
3
4
5
6
7
8
9

10
11
12
13

use Symfony\Component\ExpressionLanguage\Expression;
// ...

public function indexAction()
{

if (!$this->get('security.authorization_checker')->isGranted(new Expression(
'"ROLE_ADMIN" in roles or (user and user.isSuperAdmin())'

))) {
throw $this->createAccessDeniedException();

}

// ...
}

1. http://api.symfony.com/2.6/Symfony/Component/ExpressionLanguage/Expression.html

PDF brought to you by
generated on March 11, 2015

Chapter 58: How to use Expressions in Security, Routing, Services, and Validation | 205

http://sensiolabs.com


In this example, if the current user has ROLE_ADMIN or if the current user object's isSuperAdmin()
method returns true, then access will be granted (note: your User object may not have an isSuperAdmin
method, that method is invented for this example).

This uses an expression and you can learn more about the expression language syntax, see The Expression
Syntax.

Inside the expression, you have access to a number of variables:
useruser

The user object (or the string anon if you're not authenticated).

rolesroles
The array of roles the user has, including from the role hierarchy but not including the
IS_AUTHENTICATED_* attributes (see the functions below).

objectobject
The object (if any) that's passed as the second argument to isGranted.

tokentoken
The token object.

trust_resolvertrust_resolver
The AuthenticationTrustResolverInterface2, object: you'll probably use the is_* functions
below instead.

Additionally, you have access to a number of functions inside the expression:
is_authenticatedis_authenticated

Returns true if the user is authenticated via "remember-me" or authenticated "fully" - i.e. returns
true if the user is "logged in".

is_anonymousis_anonymous
Equal to using IS_AUTHENTICATED_ANONYMOUSLY with the isGranted function.

is_remember_meis_remember_me
Similar, but not equal to IS_AUTHENTICATED_REMEMBERED, see below.

is_fully_authenticatedis_fully_authenticated
Similar, but not equal to IS_AUTHENTICATED_FULLY, see below.

has_rolehas_role
Checks to see if the user has the given role - equivalent to an expression like 'ROLE_ADMIN' in
roles.

2. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/AuthenticationTrustResolverInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 58: How to use Expressions in Security, Routing, Services, and Validation | 206

http://sensiolabs.com


Listing 58-2

is_remember_me is different than checking IS_AUTHENTICATED_REMEMBERED

The is_remember_me and is_authenticated_fully functions are similar to using
IS_AUTHENTICATED_REMEMBERED and IS_AUTHENTICATED_FULLY with the isGranted function -
but they are not the same. The following shows the difference:

1
2
3
4
5
6
7
8
9

use Symfony\Component\ExpressionLanguage\Expression;
// ...

$ac = $this->get('security.authorization_checker');
$access1 = $ac->isGranted('IS_AUTHENTICATED_REMEMBERED');

$access2 = $ac->isGranted(new Expression(
'is_remember_me() or is_fully_authenticated()'

));

Here, $access1 and $access2 will be the same value. Unlike the behavior of
IS_AUTHENTICATED_REMEMBERED and IS_AUTHENTICATED_FULLY, the is_remember_me function
only returns true if the user is authenticated via a remember-me cookie and
is_fully_authenticated only returns true if the user has actually logged in during this session
(i.e. is full-fledged).

PDF brought to you by
generated on March 11, 2015

Chapter 58: How to use Expressions in Security, Routing, Services, and Validation | 207

http://sensiolabs.com


Listing 59-1

Listing 59-2

Listing 59-3

Listing 59-4

Chapter 59

How to Customize Form Rendering

Symfony gives you a wide variety of ways to customize how a form is rendered. In this guide, you'll learn
how to customize every possible part of your form with as little effort as possible whether you use Twig
or PHP as your templating engine.

Form Rendering Basics
Recall that the label, error and HTML widget of a form field can easily be rendered by using the form_row
Twig function or the row PHP helper method:

1 {{ form_row(form.age) }}

You can also render each of the three parts of the field individually:

1
2
3
4
5

<div>
{{ form_label(form.age) }}
{{ form_errors(form.age) }}
{{ form_widget(form.age) }}

</div>

In both cases, the form label, errors and HTML widget are rendered by using a set of markup that ships
standard with Symfony. For example, both of the above templates would render:

1
2
3
4
5
6
7

<div>
<label for="form_age">Age</label>
<ul>

<li>This field is required</li>
</ul>
<input type="number" id="form_age" name="form[age]" />

</div>

To quickly prototype and test a form, you can render the entire form with just one line:

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 208

http://sensiolabs.com


Listing 59-5

Listing 59-6

1
2
3
4
5

{# renders all fields #}
{{ form_widget(form) }}

{# renders all fields *and* the form start and end tags #}
{{ form(form) }}

The remainder of this recipe will explain how every part of the form's markup can be modified at
several different levels. For more information about form rendering in general, see Rendering a Form in a
Template.

What are Form Themes?
Symfony uses form fragments - a small piece of a template that renders just one part of a form - to render
each part of a form - field labels, errors, input text fields, select tags, etc.

The fragments are defined as blocks in Twig and as template files in PHP.

A theme is nothing more than a set of fragments that you want to use when rendering a form. In other
words, if you want to customize one portion of how a form is rendered, you'll import a theme which
contains a customization of the appropriate form fragments.

Symfony comes with four built-in form themes that define each and every fragment needed to render
every part of a form:

• form_div_layout.html.twig1, wraps each form field inside a <div> element.
• form_table_layout.html.twig2, wraps the entire form inside a <table> element and each form

field inside a <tr> element.
• bootstrap_3_layout.html.twig3, wraps each form field inside a <div> element with the

appropriate CSS classes to apply the default Bootstrap 3 CSS framework4 styles.
• bootstrap_3_horizontal_layout.html.twig5, it's similar to the previous theme, but the CSS

classes applied are the ones used to display the forms horizontally (i.e. the label and the widget
in the same row).

In the next section you will learn how to customize a theme by overriding some or all of its fragments.

For example, when the widget of an integer type field is rendered, an input number field is generated

1 {{ form_widget(form.age) }}

renders:

1 <input type="number" id="form_age" name="form[age]" required="required" value="33" />

Internally, Symfony uses the integer_widget fragment to render the field. This is because the field type
is integer and you're rendering its widget (as opposed to its label or errors).

In Twig that would default to the block integer_widget from the form_div_layout.html.twig6 template.

In PHP it would rather be the integer_widget.html.php file located in the FrameworkBundle/
Resources/views/Form folder.

1. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig

2. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_table_layout.html.twig

3. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/bootstrap_3_layout.html.twig

4. http://getbootstrap.com/

5. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/bootstrap_3_horizontal_layout.html.twig

6. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 209

http://sensiolabs.com


Listing 59-7

Listing 59-8

The default implementation of the integer_widget fragment looks like this:

1
2
3
4
5

{# form_div_layout.html.twig #}
{% block integer_widget %}

{% set type = type|default('number') %}
{{ block('form_widget_simple') }}

{% endblock integer_widget %}

As you can see, this fragment itself renders another fragment - form_widget_simple:

1
2
3
4
5

{# form_div_layout.html.twig #}
{% block form_widget_simple %}

{% set type = type|default('text') %}
<input type="{{ type }}" {{ block('widget_attributes') }} {% if value is not empty

%}value="{{ value }}" {% endif %}/>
{% endblock form_widget_simple %}

The point is, the fragments dictate the HTML output of each part of a form. To customize the form
output, you just need to identify and override the correct fragment. A set of these form fragment
customizations is known as a form "theme". When rendering a form, you can choose which form
theme(s) you want to apply.

In Twig a theme is a single template file and the fragments are the blocks defined in this file.

In PHP a theme is a folder and the fragments are individual template files in this folder.

Knowing which Block to Customize

In this example, the customized fragment name is integer_widget because you want to override
the HTML widget for all integer field types. If you need to customize textarea fields, you would
customize textarea_widget.

As you can see, the fragment name is a combination of the field type and which part of the field is
being rendered (e.g. widget, label, errors, row). As such, to customize how errors are rendered
for just input text fields, you should customize the text_errors fragment.

More commonly, however, you'll want to customize how errors are displayed across all fields.
You can do this by customizing the form_errors fragment. This takes advantage of field type
inheritance. Specifically, since the text type extends from the form type, the Form component
will first look for the type-specific fragment (e.g. text_errors) before falling back to its parent
fragment name if it doesn't exist (e.g. form_errors).

For more information on this topic, see Form Fragment Naming.

Form Theming
To see the power of form theming, suppose you want to wrap every input number field with a div tag.
The key to doing this is to customize the integer_widget fragment.

Form Theming in Twig
When customizing the form field block in Twig, you have two options on where the customized form
block can live:

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 210

http://sensiolabs.com


Listing 59-9

Listing 59-10

Method Pros Cons

Inside the same template as the
form

Quick and easy Can't be reused in other templates

Inside a separate template Can be reused by many
templates

Requires an extra template to be
created

Both methods have the same effect but are better in different situations.

Method 1: Inside the same Template as the Form

The easiest way to customize the integer_widget block is to customize it directly in the template that's
actually rendering the form.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

{% extends '::base.html.twig' %}

{% form_theme form _self %}

{% block integer_widget %}
<div class="integer_widget">

{% set type = type|default('number') %}
{{ block('form_widget_simple') }}

</div>
{% endblock %}

{% block content %}
{# ... render the form #}

{{ form_row(form.age) }}
{% endblock %}

By using the special {% form_theme form _self %} tag, Twig looks inside the same template for
any overridden form blocks. Assuming the form.age field is an integer type field, when its widget is
rendered, the customized integer_widget block will be used.

The disadvantage of this method is that the customized form block can't be reused when rendering other
forms in other templates. In other words, this method is most useful when making form customizations
that are specific to a single form in your application. If you want to reuse a form customization across
several (or all) forms in your application, read on to the next section.

Method 2: Inside a separate Template

You can also choose to put the customized integer_widget form block in a separate template entirely.
The code and end-result are the same, but you can now re-use the form customization across many
templates:

1
2
3
4
5
6
7

{# src/AppBundle/Resources/views/Form/fields.html.twig #}
{% block integer_widget %}

<div class="integer_widget">
{% set type = type|default('number') %}
{{ block('form_widget_simple') }}

</div>
{% endblock %}

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 211

http://sensiolabs.com


Listing 59-11

Listing 59-12

Listing 59-13

Listing 59-14

Listing 59-15

Now that you've created the customized form block, you need to tell Symfony to use it. Inside the
template where you're actually rendering your form, tell Symfony to use the template via the form_theme
tag:

1
2
3

{% form_theme form 'AppBundle:Form:fields.html.twig' %}

{{ form_widget(form.age) }}

When the form.age widget is rendered, Symfony will use the integer_widget block from the new
template and the input tag will be wrapped in the div element specified in the customized block.

Multiple Templates

A form can also be customized by applying several templates. To do this, pass the name of all the
templates as an array using the with keyword:

1
2
3
4

{% form_theme form with ['::common.html.twig', ':Form:fields.html.twig',
'AppBundle:Form:fields.html.twig'] %}

{# ... #}

The templates can be located at different bundles and they can even be stored at the global app/
Resources/views/ directory.

Child Forms

You can also apply a form theme to a specific child of your form:

1 {% form_theme form.child 'AppBundle:Form:fields.html.twig' %}

This is useful when you want to have a custom theme for a nested form that's different than the one of
your main form. Just specify both your themes:

1
2
3

{% form_theme form 'AppBundle:Form:fields.html.twig' %}

{% form_theme form.child 'AppBundle:Form:fields_child.html.twig' %}

Form Theming in PHP
When using PHP as a templating engine, the only method to customize a fragment is to create a new
template file - this is similar to the second method used by Twig.

The template file must be named after the fragment. You must create a integer_widget.html.php file
in order to customize the integer_widget fragment.

1
2
3
4

<!-- src/AppBundle/Resources/views/Form/integer_widget.html.php -->
<div class="integer_widget">

<?php echo $view['form']->block($form, 'form_widget_simple', array('type' =>
isset($type) ? $type : "number")) ?>
</div>

Now that you've created the customized form template, you need to tell Symfony to use it. Inside the
template where you're actually rendering your form, tell Symfony to use the theme via the setTheme
helper method:

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 212

http://sensiolabs.com


Listing 59-16

Listing 59-17

Listing 59-18

Listing 59-19

Listing 59-20

1
2
3

<?php $view['form']->setTheme($form, array('AppBundle:Form')); ?>

<?php $view['form']->widget($form['age']) ?>

When the form.age widget is rendered, Symfony will use the customized integer_widget.html.php
template and the input tag will be wrapped in the div element.

If you want to apply a theme to a specific child form, pass it to the setTheme method:

1 <?php $view['form']->setTheme($form['child'], 'AppBundle:Form/Child'); ?>

Referencing base Form Blocks (Twig specific)
So far, to override a particular form block, the best method is to copy the default block from
form_div_layout.html.twig7, paste it into a different template, and then customize it. In many cases, you
can avoid doing this by referencing the base block when customizing it.

This is easy to do, but varies slightly depending on if your form block customizations are in the same
template as the form or a separate template.

Referencing Blocks from inside the same Template as the Form

Import the blocks by adding a use tag in the template where you're rendering the form:

1 {% use 'form_div_layout.html.twig' with integer_widget as base_integer_widget %}

Now, when the blocks from form_div_layout.html.twig8 are imported, the integer_widget block is
called base_integer_widget. This means that when you redefine the integer_widget block, you can
reference the default markup via base_integer_widget:

1
2
3
4
5

{% block integer_widget %}
<div class="integer_widget">

{{ block('base_integer_widget') }}
</div>

{% endblock %}

Referencing base Blocks from an external Template

If your form customizations live inside an external template, you can reference the base block by using
the parent() Twig function:

1
2
3
4
5
6
7
8

{# src/AppBundle/Resources/views/Form/fields.html.twig #}
{% extends 'form_div_layout.html.twig' %}

{% block integer_widget %}
<div class="integer_widget">

{{ parent() }}
</div>

{% endblock %}

7. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig

8. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 213

http://sensiolabs.com


Listing 59-21

Listing 59-22

Listing 59-23

Listing 59-24

It is not possible to reference the base block when using PHP as the templating engine. You have
to manually copy the content from the base block to your new template file.

Making Application-wide Customizations
If you'd like a certain form customization to be global to your application, you can accomplish this by
making the form customizations in an external template and then importing it inside your application
configuration.

Twig

By using the following configuration, any customized form blocks inside the
AppBundle:Form:fields.html.twig template will be used globally when a form is rendered.

1
2
3
4
5

# app/config/config.yml
twig:

form_themes:
- 'AppBundle:Form:fields.html.twig'

# ...

By default, Twig uses a div layout when rendering forms. Some people, however, may prefer to render
forms in a table layout. Use the form_table_layout.html.twig resource to use such a layout:

1
2
3
4
5

# app/config/config.yml
twig:

form_themes:
- 'form_table_layout.html.twig'

# ...

If you only want to make the change in one template, add the following line to your template file rather
than adding the template as a resource:

1 {% form_theme form 'form_table_layout.html.twig' %}

Note that the form variable in the above code is the form view variable that you passed to your template.

PHP

By using the following configuration, any customized form fragments inside the src/AppBundle/
Resources/views/Form folder will be used globally when a form is rendered.

1
2
3
4
5
6
7

# app/config/config.yml
framework:

templating:
form:

resources:
- 'AppBundle:Form'

# ...

By default, the PHP engine uses a div layout when rendering forms. Some people, however, may prefer to
render forms in a table layout. Use the FrameworkBundle:FormTable resource to use such a layout:

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 214

http://sensiolabs.com


Listing 59-25

Listing 59-26

Listing 59-27

Listing 59-28

1
2
3
4
5
6

# app/config/config.yml
framework:

templating:
form:

resources:
- 'FrameworkBundle:FormTable'

If you only want to make the change in one template, add the following line to your template file rather
than adding the template as a resource:

1 <?php $view['form']->setTheme($form, array('FrameworkBundle:FormTable')); ?>

Note that the $form variable in the above code is the form view variable that you passed to your template.

How to Customize an individual Field
So far, you've seen the different ways you can customize the widget output of all text field types. You
can also customize individual fields. For example, suppose you have two text fields in a product form
- name and description - but you only want to customize one of the fields. This can be accomplished
by customizing a fragment whose name is a combination of the field's id attribute and which part of the
field is being customized. For example, to customize the name field only:

1
2
3
4
5
6
7
8
9

{% form_theme form _self %}

{% block _product_name_widget %}
<div class="text_widget">

{{ block('form_widget_simple') }}
</div>

{% endblock %}

{{ form_widget(form.name) }}

Here, the _product_name_widget fragment defines the template to use for the field whose id is
product_name (and name is product[name]).

The product portion of the field is the form name, which may be set manually or generated
automatically based on your form type name (e.g. ProductType equates to product). If you're not
sure what your form name is, just view the source of your generated form.

If you want to change the product or name portion of the block name _product_name_widget you
can set the block_name option in your form type:

1
2
3
4
5
6
7
8
9

10

use Symfony\Component\Form\FormBuilderInterface;

public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...

$builder->add('name', 'text', array(
'block_name' => 'custom_name',

));
}

Then the block name will be _product_custom_name_widget.

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 215

http://sensiolabs.com


Listing 59-29

Listing 59-30

Listing 59-31

Listing 59-32

You can also override the markup for an entire field row using the same method:

1
2
3
4
5
6
7
8
9

10
11

{% form_theme form _self %}

{% block _product_name_row %}
<div class="name_row">

{{ form_label(form) }}
{{ form_errors(form) }}
{{ form_widget(form) }}

</div>
{% endblock %}

{{ form_row(form.name) }}

Other common Customizations
So far, this recipe has shown you several different ways to customize a single piece of how a form is
rendered. The key is to customize a specific fragment that corresponds to the portion of the form you
want to control (see naming form blocks).

In the next sections, you'll see how you can make several common form customizations. To apply these
customizations, use one of the methods described in the Form Theming section.

Customizing Error Output

The Form component only handles how the validation errors are rendered, and not the actual
validation error messages. The error messages themselves are determined by the validation
constraints you apply to your objects. For more information, see the chapter on validation.

There are many different ways to customize how errors are rendered when a form is submitted with
errors. The error messages for a field are rendered when you use the form_errors helper:

1 {{ form_errors(form.age) }}

By default, the errors are rendered inside an unordered list:

1
2
3

<ul>
<li>This field is required</li>

</ul>

To override how errors are rendered for all fields, simply copy, paste and customize the form_errors
fragment.

1
2
3
4
5
6
7
8
9

10

{# form_errors.html.twig #}
{% block form_errors %}

{% spaceless %}
{% if errors|length > 0 %}
<ul>

{% for error in errors %}
<li>{{ error.message }}</li>

{% endfor %}
</ul>
{% endif %}

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 216

http://sensiolabs.com


Listing 59-33

Listing 59-34

Listing 59-35

11
12

{% endspaceless %}
{% endblock form_errors %}

See Form Theming for how to apply this customization.

You can also customize the error output for just one specific field type. To customize only the markup
used for these errors, follow the same directions as above but put the contents in a relative _errors block
(or file in case of PHP templates). For example: text_errors (or text_errors.html.php).

See Form Fragment Naming to find out which specific block or file you have to customize.

Certain errors that are more global to your form (i.e. not specific to just one field) are rendered separately,
usually at the top of your form:

1 {{ form_errors(form) }}

To customize only the markup used for these errors, follow the same directions as above, but now check
if the compound variable is set to true. If it is true, it means that what's being currently rendered is a
collection of fields (e.g. a whole form), and not just an individual field.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

{# form_errors.html.twig #}
{% block form_errors %}

{% spaceless %}
{% if errors|length > 0 %}

{% if compound %}
<ul>

{% for error in errors %}
<li>{{ error.message }}</li>

{% endfor %}
</ul>

{% else %}
{# ... display the errors for a single field #}

{% endif %}
{% endif %}

{% endspaceless %}
{% endblock form_errors %}

Customizing the "Form Row"

When you can manage it, the easiest way to render a form field is via the form_row function, which
renders the label, errors and HTML widget of a field. To customize the markup used for rendering all
form field rows, override the form_row fragment. For example, suppose you want to add a class to the
div element around each row:

1
2
3

{# form_row.html.twig #}
{% block form_row %}

<div class="form_row">

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 217

http://sensiolabs.com


Listing 59-36

Listing 59-37

Listing 59-38

4
5
6
7
8

{{ form_label(form) }}
{{ form_errors(form) }}
{{ form_widget(form) }}

</div>
{% endblock form_row %}

See Form Theming for how to apply this customization.

Adding a "Required" Asterisk to Field Labels

If you want to denote all of your required fields with a required asterisk (*), you can do this by
customizing the form_label fragment.

In Twig, if you're making the form customization inside the same template as your form, modify the use
tag and add the following:

1
2
3
4
5
6
7
8
9

{% use 'form_div_layout.html.twig' with form_label as base_form_label %}

{% block form_label %}
{{ block('base_form_label') }}

{% if required %}
<span class="required" title="This field is required">*</span>

{% endif %}
{% endblock %}

In Twig, if you're making the form customization inside a separate template, use the following:

1
2
3
4
5
6
7
8
9

{% extends 'form_div_layout.html.twig' %}

{% block form_label %}
{{ parent() }}

{% if required %}
<span class="required" title="This field is required">*</span>

{% endif %}
{% endblock %}

When using PHP as a templating engine you have to copy the content from the original template:

1
2
3
4
5
6
7
8
9

10
11
12

<!-- form_label.html.php -->

<!-- original content -->
<?php if ($required) { $label_attr['class'] = trim((isset($label_attr['class']) ?
$label_attr['class'] : '').' required'); } ?>
<?php if (!$compound) { $label_attr['for'] = $id; } ?>
<?php if (!$label) { $label = $view['form']->humanize($name); } ?>
<label <?php foreach ($label_attr as $k => $v) { printf('%s="%s" ', $view->escape($k),
$view->escape($v)); } ?>><?php echo $view->escape($view['translator']->trans($label,
array(), $translation_domain)) ?></label>

<!-- customization -->

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 218

http://sensiolabs.com


Listing 59-39

Listing 59-40

Listing 59-41

Listing 59-42

<?php if ($required) : ?>
<span class="required" title="This field is required">*</span>

<?php endif ?>

See Form Theming for how to apply this customization.

Using CSS only

By default, label tags of required fields are rendered with a required CSS class. Thus, you can
also add an asterisk using CSS only:

1
2
3

label.required:before {
content: "* ";

}

Adding "help" Messages

You can also customize your form widgets to have an optional "help" message.

In Twig, if you're making the form customization inside the same template as your form, modify the use
tag and add the following:

1
2
3
4
5
6
7
8
9

{% use 'form_div_layout.html.twig' with form_widget_simple as base_form_widget_simple %}

{% block form_widget_simple %}
{{ block('base_form_widget_simple') }}

{% if help is defined %}
<span class="help">{{ help }}</span>

{% endif %}
{% endblock %}

In Twig, if you're making the form customization inside a separate template, use the following:

1
2
3
4
5
6
7
8
9

{% extends 'form_div_layout.html.twig' %}

{% block form_widget_simple %}
{{ parent() }}

{% if help is defined %}
<span class="help">{{ help }}</span>

{% endif %}
{% endblock %}

When using PHP as a templating engine you have to copy the content from the original template:

1
2
3

<!-- form_widget_simple.html.php -->

<!-- Original content -->

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 219

http://sensiolabs.com


Listing 59-43

Listing 59-44

4
5
6
7
8
9

10
11
12
13

<input
type="<?php echo isset($type) ? $view->escape($type) : 'text' ?>"
<?php if (!empty($value)): ?>value="<?php echo $view->escape($value) ?>"<?php endif ?>
<?php echo $view['form']->block($form, 'widget_attributes') ?>

/>

<!-- Customization -->
<?php if (isset($help)) : ?>

<span class="help"><?php echo $view->escape($help) ?></span>
<?php endif ?>

To render a help message below a field, pass in a help variable:

1 {{ form_widget(form.title, {'help': 'foobar'}) }}

See Form Theming for how to apply this customization.

Using Form Variables
Most of the functions available for rendering different parts of a form (e.g. the form widget, form label,
form errors, etc.) also allow you to make certain customizations directly. Look at the following example:

1
2

{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, { 'attr': {'class': 'foo'} }) }}

The array passed as the second argument contains form "variables". For more details about this concept
in Twig, see More about Form Variables.

PDF brought to you by
generated on March 11, 2015

Chapter 59: How to Customize Form Rendering | 220

http://sensiolabs.com


Listing 60-1

Chapter 60

How to Use Data Transformers

You'll often find the need to transform the data the user entered in a form into something else for use
in your program. You could easily do this manually in your controller, but what if you want to use this
specific form in different places?

Say you have a one-to-one relation of Task to Issue, e.g. a Task optionally has an issue linked to it. Adding
a listbox with all possible issues can eventually lead to a really long listbox in which it is impossible to find
something. You might want to add a textbox instead, where the user can simply enter the issue number.

You could try to do this in your controller, but it's not the best solution. It would be better if this issue
were automatically converted to an Issue object. This is where Data Transformers come into play.

Creating the Transformer
First, create an IssueToNumberTransformer class - this class will be responsible for converting to and
from the issue number and the Issue object:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/TaskBundle/Form/DataTransformer/IssueToNumberTransformer.php
namespace Acme\TaskBundle\Form\DataTransformer;

use Symfony\Component\Form\DataTransformerInterface;
use Symfony\Component\Form\Exception\TransformationFailedException;
use Doctrine\Common\Persistence\ObjectManager;
use Acme\TaskBundle\Entity\Issue;

class IssueToNumberTransformer implements DataTransformerInterface
{

/**
* @var ObjectManager
*/
private $om;

/**
* @param ObjectManager $om
*/
public function __construct(ObjectManager $om)

PDF brought to you by
generated on March 11, 2015

Chapter 60: How to Use Data Transformers | 221

http://sensiolabs.com


20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

{
$this->om = $om;

}

/**
* Transforms an object (issue) to a string (number).
*
* @param  Issue|null $issue
* @return string
*/
public function transform($issue)
{

if (null === $issue) {
return "";

}

return $issue->getNumber();
}

/**
* Transforms a string (number) to an object (issue).
*
* @param  string $number
*
* @return Issue|null
*
* @throws TransformationFailedException if object (issue) is not found.
*/
public function reverseTransform($number)
{

if (!$number) {
return null;

}

$issue = $this->om
->getRepository('AcmeTaskBundle:Issue')
->findOneBy(array('number' => $number))

;

if (null === $issue) {
throw new TransformationFailedException(sprintf(

'An issue with number "%s" does not exist!',
$number

));
}

return $issue;
}

}

If you want a new issue to be created when an unknown number is entered, you can instantiate it
rather than throwing the TransformationFailedException.

PDF brought to you by
generated on March 11, 2015

Chapter 60: How to Use Data Transformers | 222

http://sensiolabs.com


Listing 60-2

Listing 60-3

When null is passed to the transform() method, your transformer should return an equivalent
value of the type it is transforming to (e.g. an empty string, 0 for integers or 0.0 for floats).

Using the Transformer
Now that you have the transformer built, you just need to add it to your issue field in some form.

You can also use transformers without creating a new custom form type by calling addModelTransformer
(or addViewTransformer - see Model and View Transformers) on any field builder:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

use Symfony\Component\Form\FormBuilderInterface;
use Acme\TaskBundle\Form\DataTransformer\IssueToNumberTransformer;

class TaskType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...

// this assumes that the entity manager was passed in as an option
$entityManager = $options['em'];
$transformer = new IssueToNumberTransformer($entityManager);

// add a normal text field, but add your transformer to it
$builder->add(

$builder->create('issue', 'text')
->addModelTransformer($transformer)

);
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver
->setDefaults(array(

'data_class' => 'Acme\TaskBundle\Entity\Task',
))
->setRequired(array(

'em',
))
->setAllowedTypes(array(

'em' => 'Doctrine\Common\Persistence\ObjectManager',
));

// ...
}

// ...
}

This example requires that you pass in the entity manager as an option when creating your form. Later,
you'll learn how you could create a custom issue field type to avoid needing to do this in your controller:

1
2
3

$taskForm = $this->createForm(new TaskType(), $task, array(
'em' => $this->getDoctrine()->getManager(),

));

PDF brought to you by
generated on March 11, 2015

Chapter 60: How to Use Data Transformers | 223

http://sensiolabs.com


Listing 60-4

Cool, you're done! Your user will be able to enter an issue number into the text field and it will
be transformed back into an Issue object. This means that, after a successful submission, the Form
framework will pass a real Issue object to Task::setIssue() instead of the issue number.

If the issue isn't found, a form error will be created for that field and its error message can be controlled
with the invalid_message field option.

Notice that adding a transformer requires using a slightly more complicated syntax when adding
the field. The following is wrong, as the transformer would be applied to the entire form, instead
of just this field:

1
2
3
4

// THIS IS WRONG - TRANSFORMER WILL BE APPLIED TO THE ENTIRE FORM
// see above example for correct code
$builder->add('issue', 'text')

->addModelTransformer($transformer);

Model and View Transformers

In the above example, the transformer was used as a "model" transformer. In fact, there are two different
types of transformers and three different types of underlying data.

In any form, the three different types of data are:
1. Model data - This is the data in the format used in your application (e.g. an Issue object). If

you call Form::getData or Form::setData, you're dealing with the "model" data.
2. Norm Data - This is a normalized version of your data, and is commonly the same as your

"model" data (though not in our example). It's not commonly used directly.
3. View Data - This is the format that's used to fill in the form fields themselves. It's also the

format in which the user will submit the data. When you call Form::submit($data), the $data
is in the "view" data format.

The two different types of transformers help convert to and from each of these types of data:

PDF brought to you by
generated on March 11, 2015

Chapter 60: How to Use Data Transformers | 224

http://sensiolabs.com


Listing 60-5

Model transformers:

• transform: "model data" => "norm data"
• reverseTransform: "norm data" => "model data"

View transformers:

• transform: "norm data" => "view data"
• reverseTransform: "view data" => "norm data"

Which transformer you need depends on your situation.

To use the view transformer, call addViewTransformer.

So why Use the Model Transformer?
In this example, the field is a text field, and a text field is always expected to be a simple, scalar format
in the "norm" and "view" formats. For this reason, the most appropriate transformer was the "model"
transformer (which converts to/from the norm format - string issue number - to the model format - Issue
object).

The difference between the transformers is subtle and you should always think about what the "norm"
data for a field should really be. For example, the "norm" data for a text field is a string, but is a DateTime
object for a date field.

Using Transformers in a custom Field Type
In the above example, you applied the transformer to a normal text field. This was easy, but has two
downsides:

1) You need to always remember to apply the transformer whenever you're adding a field for issue
numbers.

2) You need to worry about passing in the em option whenever you're creating a form that uses the
transformer.

Because of these, you may choose to create a custom field type. First, create the custom field type class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/TaskBundle/Form/Type/IssueSelectorType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Acme\TaskBundle\Form\DataTransformer\IssueToNumberTransformer;
use Doctrine\Common\Persistence\ObjectManager;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class IssueSelectorType extends AbstractType
{

/**
* @var ObjectManager
*/
private $om;

/**
* @param ObjectManager $om
*/

PDF brought to you by
generated on March 11, 2015

Chapter 60: How to Use Data Transformers | 225

http://sensiolabs.com


Listing 60-6

Listing 60-7

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

public function __construct(ObjectManager $om)
{

$this->om = $om;
}

public function buildForm(FormBuilderInterface $builder, array $options)
{

$transformer = new IssueToNumberTransformer($this->om);
$builder->addModelTransformer($transformer);

}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'invalid_message' => 'The selected issue does not exist',

));
}

public function getParent()
{

return 'text';
}

public function getName()
{

return 'issue_selector';
}

}

Next, register your type as a service and tag it with form.type so that it's recognized as a custom field
type:

1
2
3
4
5
6

services:
acme_demo.type.issue_selector:

class: Acme\TaskBundle\Form\Type\IssueSelectorType
arguments: ["@doctrine.orm.entity_manager"]
tags:

- { name: form.type, alias: issue_selector }

Now, whenever you need to use your special issue_selector field type, it's quite easy:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/Acme/TaskBundle/Form/Type/TaskType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class TaskType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('task')
->add('dueDate', null, array('widget' => 'single_text'))
->add('issue', 'issue_selector');

}

PDF brought to you by
generated on March 11, 2015

Chapter 60: How to Use Data Transformers | 226

http://sensiolabs.com


17
18
19
20
21

public function getName()
{

return 'task';
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 60: How to Use Data Transformers | 227

http://sensiolabs.com


Listing 61-1

Chapter 61

How to Dynamically Modify Forms Using Form
Events

Often times, a form can't be created statically. In this entry, you'll learn how to customize your form
based on three common use-cases:

1. Customizing your Form Based on the Underlying Data
Example: you have a "Product" form and need to modify/add/remove a field

based on the data on the underlying Product being edited.

2. How to dynamically Generate Forms Based on user Data

Example: you create a "Friend Message" form and need to build a drop-down that contains only
users that are friends with the current authenticated user.

3. Dynamic Generation for Submitted Forms

Example: on a registration form, you have a "country" field and a "state" field which should
populate dynamically based on the value in the "country" field.

If you wish to learn more about the basics behind form events, you can take a look at the Form Events
documentation.

Customizing your Form Based on the Underlying Data
Before jumping right into dynamic form generation, hold on and recall what a bare form class looks like:

1
2
3
4
5
6
7
8

// src/AppBundle/Form/Type/ProductType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class ProductType extends AbstractType

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 228

http://sensiolabs.com


Listing 61-2

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

{
public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('name');
$builder->add('price');

}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'data_class' => 'AppBundle\Entity\Product'

));
}

public function getName()
{

return 'product';
}

}

If this particular section of code isn't already familiar to you, you probably need to take a step back
and first review the Forms chapter before proceeding.

Assume for a moment that this form utilizes an imaginary "Product" class that has only two properties
("name" and "price"). The form generated from this class will look the exact same regardless if a new
Product is being created or if an existing product is being edited (e.g. a product fetched from the
database).

Suppose now, that you don't want the user to be able to change the name value once the object has been
created. To do this, you can rely on Symfony's EventDispatcher system to analyze the data on the object
and modify the form based on the Product object's data. In this entry, you'll learn how to add this level
of flexibility to your forms.

Adding an Event Listener to a Form Class

So, instead of directly adding that name widget, the responsibility of creating that particular field is
delegated to an event listener:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Form/Type/ProductType.php
namespace AppBundle\Form\Type;

// ...
use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;

class ProductType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('price');

$builder->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent $event) {
// ... adding the name field if needed

});

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 229

http://sensiolabs.com


Listing 61-3

Listing 61-4

17
18
19
20

}

// ...
}

The goal is to create a name field only if the underlying Product object is new (e.g. hasn't been persisted
to the database). Based on that, the event listener might look like the following:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// ...
public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...
$builder->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent $event) {

$product = $event->getData();
$form = $event->getForm();

// check if the Product object is "new"
// If no data is passed to the form, the data is "null".
// This should be considered a new "Product"
if (!$product || null === $product->getId()) {

$form->add('name', 'text');
}

});
}

The FormEvents::PRE_SET_DATA line actually resolves to the string form.pre_set_data.
FormEvents1 serves an organizational purpose. It is a centralized location in which you can find all
of the various form events available. You can view the full list of form events via the FormEvents2

class.

Adding an Event Subscriber to a Form Class

For better reusability or if there is some heavy logic in your event listener, you can also move the logic for
creating the name field to an event subscriber:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Form/Type/ProductType.php
namespace AppBundle\Form\Type;

// ...
use AppBundle\Form\EventListener\AddNameFieldSubscriber;

class ProductType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('price');

$builder->addEventSubscriber(new AddNameFieldSubscriber());
}

1. http://api.symfony.com/2.6/Symfony/Component/Form/FormEvents.html

2. http://api.symfony.com/2.6/Symfony/Component/Form/FormEvents.html

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 230

http://sensiolabs.com


Listing 61-5

Listing 61-6

16
17

// ...
}

Now the logic for creating the name field resides in it own subscriber class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// src/AppBundle/Form/EventListener/AddNameFieldSubscriber.php
namespace AppBundle\Form\EventListener;

use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class AddNameFieldSubscriber implements EventSubscriberInterface
{

public static function getSubscribedEvents()
{

// Tells the dispatcher that you want to listen on the form.pre_set_data
// event and that the preSetData method should be called.
return array(FormEvents::PRE_SET_DATA => 'preSetData');

}

public function preSetData(FormEvent $event)
{

$product = $event->getData();
$form = $event->getForm();

if (!$product || null === $product->getId()) {
$form->add('name', 'text');

}
}

}

How to dynamically Generate Forms Based on user Data
Sometimes you want a form to be generated dynamically based not only on data from the form but also
on something else - like some data from the current user. Suppose you have a social website where a
user can only message people marked as friends on the website. In this case, a "choice list" of whom to
message should only contain users that are the current user's friends.

Creating the Form Type

Using an event listener, your form might look like this:

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Form/Type/FriendMessageFormType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\FormEvents;
use Symfony\Component\Form\FormEvent;
use Symfony\Component\Security\Core\Authentication\Token\Storage\TokenStorageInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class FriendMessageFormType extends AbstractType

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 231

http://sensiolabs.com


Listing 61-7

Listing 61-8

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

{
public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('subject', 'text')
->add('body', 'textarea')

;
$builder->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent $event) {

// ... add a choice list of friends of the current application user
});

}

public function getName()
{

return 'friend_message';
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
}

}

The problem is now to get the current user and create a choice field that contains only this user's friends.

Luckily it is pretty easy to inject a service inside of the form. This can be done in the constructor:

1
2
3
4
5
6

private $tokenStorage;

public function __construct(TokenStorageInterface $tokenStorage)
{

$this->tokenStorage = $tokenStorage;
}

You might wonder, now that you have access to the User (through the token storage), why not just
use it directly in buildForm and omit the event listener? This is because doing so in the buildForm
method would result in the whole form type being modified and not just this one form instance.
This may not usually be a problem, but technically a single form type could be used on a single
request to create many forms or fields.

Customizing the Form Type

Now that you have all the basics in place you can take advantage of the TokenStorageInterface and fill
in the listener logic:

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/FormType/FriendMessageFormType.php

use Symfony\Component\Security\Core\Authentication\Token\Storage\TokenStorageInterface;
use Doctrine\ORM\EntityRepository;
// ...

class FriendMessageFormType extends AbstractType
{

private $tokenStorage;

public function __construct(TokenStorageInterface $tokenStorage)

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 232

http://sensiolabs.com


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

{
$this->tokenStorage = $tokenStorage;

}

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('subject', 'text')
->add('body', 'textarea')

;

// grab the user, do a quick sanity check that one exists
$user = $this->tokenStorage->getToken()->getUser();
if (!$user) {

throw new \LogicException(
'The FriendMessageFormType cannot be used without an authenticated user!'

);
}

$builder->addEventListener(
FormEvents::PRE_SET_DATA,
function (FormEvent $event) use ($user) {

$form = $event->getForm();

$formOptions = array(
'class' => 'AppBundle\Entity\User',
'property' => 'fullName',
'query_builder' => function (EntityRepository $er) use ($user) {

// build a custom query
// return $er->createQueryBuilder('u')->addOrderBy('fullName',

'DESC');

// or call a method on your repository that returns the query
builder

// the $er is an instance of your UserRepository
// return $er->createOrderByFullNameQueryBuilder();

},
);

// create the field, this is similar the $builder->add()
// field name, field type, data, options
$form->add('friend', 'entity', $formOptions);

}
);

}

// ...
}

New in version 2.6: The TokenStorageInterface3 was introduced in Symfony 2.6. Prior, you had to use
the getToken() method of SecurityContextInterface4.

The multiple and expanded form options will default to false because the type of the friend field
is entity.

3. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/Token/Storage/TokenStorageInterface.html

4. http://api.symfony.com/2.6/Symfony/Component/Security/Core/SecurityContextInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 233

http://sensiolabs.com


Listing 61-9

Listing 61-10

Listing 61-11

Listing 61-12

Using the Form

Our form is now ready to use and there are two possible ways to use it inside of a controller:
1. create it manually and remember to pass the token storage to it;

or
2. define it as a service.

a) Creating the Form manually

This is very simple, and is probably the better approach unless you're using your new form type in many
places or embedding it into other forms:

1
2
3
4
5
6
7
8
9

10
11
12

class FriendMessageController extends Controller
{

public function newAction(Request $request)
{

$tokenStorage = $this->container->get('security.token_storage');
$form = $this->createForm(

new FriendMessageFormType($tokenStorage)
);

// ...
}

}

b) Defining the Form as a Service

To define your form as a service, just create a normal service and then tag it with form.type.

1
2
3
4
5
6
7

# app/config/config.yml
services:

app.form.friend_message:
class: AppBundle\Form\Type\FriendMessageFormType
arguments: ["@security.token_storage"]
tags:

- { name: form.type, alias: friend_message }

If you wish to create it from within a controller or any other service that has access to the form factory,
you then use:

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\DependencyInjection\ContainerAware;

class FriendMessageController extends ContainerAware
{

public function newAction(Request $request)
{

$form = $this->get('form.factory')->create('friend_message');

// ...
}

}

If you extend the Symfony\Bundle\FrameworkBundle\Controller\Controller class, you can simply
call:

1 $form = $this->createForm('friend_message');

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 234

http://sensiolabs.com


Listing 61-13

Listing 61-14

You can also easily embed the form type into another form:

1
2
3
4
5

// inside some other "form type" class
public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('message', 'friend_message');
}

Dynamic Generation for Submitted Forms
Another case that can appear is that you want to customize the form specific to the data that was
submitted by the user. For example, imagine you have a registration form for sports gatherings. Some
events will allow you to specify your preferred position on the field. This would be a choice field for
example. However the possible choices will depend on each sport. Football will have attack, defense,
goalkeeper etc... Baseball will have a pitcher but will not have a goalkeeper. You will need the correct
options in order for validation to pass.

The meetup is passed as an entity field to the form. So we can access each sport like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// src/AppBundle/Form/Type/SportMeetupType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;
// ...

class SportMeetupType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('sport', 'entity', array(

'class' => 'AppBundle:Sport',
'placeholder' => '',

))
;

$builder->addEventListener(
FormEvents::PRE_SET_DATA,
function (FormEvent $event) {

$form = $event->getForm();

// this would be your entity, i.e. SportMeetup
$data = $event->getData();

$sport = $data->getSport();
$positions = null === $sport ? array() : $sport->getAvailablePositions();

$form->add('position', 'entity', array(
'class' => 'AppBundle:Position',
'placeholder' => '',
'choices' => $positions,

));
}

);

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 235

http://sensiolabs.com


Listing 61-15

39
40
41
42

}

// ...
}

New in version 2.6: The placeholder option was introduced in Symfony 2.6 in favor of empty_value,
which is available prior to 2.6.

When you're building this form to display to the user for the first time, then this example works perfectly.

However, things get more difficult when you handle the form submission. This is because the
PRE_SET_DATA event tells us the data that you're starting with (e.g. an empty SportMeetup object), not
the submitted data.

On a form, we can usually listen to the following events:

• PRE_SET_DATA
• POST_SET_DATA
• PRE_SUBMIT
• SUBMIT
• POST_SUBMIT

New in version 2.3: The events PRE_SUBMIT, SUBMIT and POST_SUBMIT were introduced in Symfony 2.3.
Before, they were named PRE_BIND, BIND and POST_BIND.

The key is to add a POST_SUBMIT listener to the field that your new field depends on. If you add a
POST_SUBMIT listener to a form child (e.g. sport), and add new children to the parent form, the Form
component will detect the new field automatically and map it to the submitted client data.

The type would now look like:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// src/AppBundle/Form/Type/SportMeetupType.php
namespace AppBundle\Form\Type;

// ...
use Symfony\Component\Form\FormInterface;
use AppBundle\Entity\Sport;

class SportMeetupType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('sport', 'entity', array(

'class' => 'AppBundle:Sport',
'placeholder' => '',

));
;

$formModifier = function (FormInterface $form, Sport $sport = null) {
$positions = null === $sport ? array() : $sport->getAvailablePositions();

$form->add('position', 'entity', array(
'class' => 'AppBundle:Position',
'placeholder' => '',
'choices' => $positions,

));
};

$builder->addEventListener(

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 236

http://sensiolabs.com


Listing 61-16

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

FormEvents::PRE_SET_DATA,
function (FormEvent $event) use ($formModifier) {

// this would be your entity, i.e. SportMeetup
$data = $event->getData();

$formModifier($event->getForm(), $data->getSport());
}

);

$builder->get('sport')->addEventListener(
FormEvents::POST_SUBMIT,
function (FormEvent $event) use ($formModifier) {

// It's important here to fetch $event->getForm()->getData(), as
// $event->getData() will get you the client data (that is, the ID)
$sport = $event->getForm()->getData();

// since we've added the listener to the child, we'll have to pass on
// the parent to the callback functions!
$formModifier($event->getForm()->getParent(), $sport);

}
);

}

// ...
}

You can see that you need to listen on these two events and have different callbacks only because in two
different scenarios, the data that you can use is available in different events. Other than that, the listeners
always perform exactly the same things on a given form.

One piece that is still missing is the client-side updating of your form after the sport is selected. This
should be handled by making an AJAX call back to your application. Assume that you have a sport
meetup creation controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/AppBundle/Controller/MeetupController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;
use AppBundle\Entity\SportMeetup;
use AppBundle\Form\Type\SportMeetupType;
// ...

class MeetupController extends Controller
{

public function createAction(Request $request)
{

$meetup = new SportMeetup();
$form = $this->createForm(new SportMeetupType(), $meetup);
$form->handleRequest($request);
if ($form->isValid()) {

// ... save the meetup, redirect etc.
}

return $this->render(
'AppBundle:Meetup:create.html.twig',
array('form' => $form->createView())

);

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 237

http://sensiolabs.com


Listing 61-17

Listing 61-18

25
26
27
28

}

// ...
}

The associated template uses some JavaScript to update the position form field according to the current
selection in the sport field:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

{# src/AppBundle/Resources/views/Meetup/create.html.twig #}
{{ form_start(form) }}

{{ form_row(form.sport) }} {# <select id="meetup_sport" ... #}
{{ form_row(form.position) }} {# <select id="meetup_position" ... #}
{# ... #}

{{ form_end(form) }}

<script>
var $sport = $('#meetup_sport');
// When sport gets selected ...
$sport.change(function() {
// ... retrieve the corresponding form.
var $form = $(this).closest('form');
// Simulate form data, but only include the selected sport value.
var data = {};
data[$sport.attr('name')] = $sport.val();
// Submit data via AJAX to the form's action path.
$.ajax({

url : $form.attr('action'),
type: $form.attr('method'),
data : data,
success: function(html) {
// Replace current position field ...
$('#meetup_position').replaceWith(
// ... with the returned one from the AJAX response.
$(html).find('#meetup_position')

);
// Position field now displays the appropriate positions.

}
});

});
</script>

The major benefit of submitting the whole form to just extract the updated position field is that no
additional server-side code is needed; all the code from above to generate the submitted form can be
reused.

Suppressing Form Validation
To suppress form validation you can use the POST_SUBMIT event and prevent the ValidationListener5

from being called.

The reason for needing to do this is that even if you set group_validation to false there are still some
integrity checks executed. For example an uploaded file will still be checked to see if it is too large and
the form will still check to see if non-existing fields were submitted. To disable all of this, use a listener:

5. http://api.symfony.com/2.6/Symfony/Component/Form/Extension/Validator/EventListener/ValidationListener.html

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 238

http://sensiolabs.com


1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\FormEvents;
use Symfony\Component\Form\FormEvent;

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->addEventListener(FormEvents::POST_SUBMIT, function (FormEvent $event) {
$event->stopPropagation();

}, 900); // Always set a higher priority than ValidationListener

// ...
}

By doing this, you may accidentally disable something more than just form validation, since the
POST_SUBMIT event may have other listeners.

PDF brought to you by
generated on March 11, 2015

Chapter 61: How to Dynamically Modify Forms Using Form Events | 239

http://sensiolabs.com


Listing 62-1

Chapter 62

How to Embed a Collection of Forms

In this entry, you'll learn how to create a form that embeds a collection of many other forms. This could
be useful, for example, if you had a Task class and you wanted to edit/create/remove many Tag objects
related to that Task, right inside the same form.

In this entry, it's loosely assumed that you're using Doctrine as your database store. But if you're
not using Doctrine (e.g. Propel or just a database connection), it's all very similar. There are only a
few parts of this tutorial that really care about "persistence".

If you are using Doctrine, you'll need to add the Doctrine metadata, including the ManyToMany
association mapping definition on the Task's tags property.

First, suppose that each Task belongs to multiple Tag objects. Start by creating a simple Task class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

// src/Acme/TaskBundle/Entity/Task.php
namespace Acme\TaskBundle\Entity;

use Doctrine\Common\Collections\ArrayCollection;

class Task
{

protected $description;

protected $tags;

public function __construct()
{

$this->tags = new ArrayCollection();
}

public function getDescription()
{

return $this->description;
}

public function setDescription($description)

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 240

http://sensiolabs.com


Listing 62-2

Listing 62-3

23
24
25
26
27
28
29
30
31

{
$this->description = $description;

}

public function getTags()
{

return $this->tags;
}

}

The ArrayCollection is specific to Doctrine and is basically the same as using an array (but it
must be an ArrayCollection if you're using Doctrine).

Now, create a Tag class. As you saw above, a Task can have many Tag objects:

1
2
3
4
5
6
7

// src/Acme/TaskBundle/Entity/Tag.php
namespace Acme\TaskBundle\Entity;

class Tag
{

public $name;
}

The name property is public here, but it can just as easily be protected or private (but then it would
need getName and setName methods).

Then, create a form class so that a Tag object can be modified by the user:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/Acme/TaskBundle/Form/Type/TagType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class TagType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('name');
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'data_class' => 'Acme\TaskBundle\Entity\Tag',

));
}

public function getName()
{

return 'tag';

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 241

http://sensiolabs.com


Listing 62-4

Listing 62-5

25
26

}
}

With this, you have enough to render a tag form by itself. But since the end goal is to allow the tags of a
Task to be modified right inside the task form itself, create a form for the Task class.

Notice that you embed a collection of TagType forms using the collection field type:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// src/Acme/TaskBundle/Form/Type/TaskType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class TaskType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('description');

$builder->add('tags', 'collection', array('type' => new TagType()));
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'data_class' => 'Acme\TaskBundle\Entity\Task',

));
}

public function getName()
{

return 'task';
}

}

In your controller, you'll now initialize a new instance of TaskType:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/TaskBundle/Controller/TaskController.php
namespace Acme\TaskBundle\Controller;

use Acme\TaskBundle\Entity\Task;
use Acme\TaskBundle\Entity\Tag;
use Acme\TaskBundle\Form\Type\TaskType;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class TaskController extends Controller
{

public function newAction(Request $request)
{

$task = new Task();

// dummy code - this is here just so that the Task has some tags
// otherwise, this isn't an interesting example
$tag1 = new Tag();
$tag1->name = 'tag1';

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 242

http://sensiolabs.com


Listing 62-6

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

$task->getTags()->add($tag1);
$tag2 = new Tag();
$tag2->name = 'tag2';
$task->getTags()->add($tag2);
// end dummy code

$form = $this->createForm(new TaskType(), $task);

$form->handleRequest($request);

if ($form->isValid()) {
// ... maybe do some form processing, like saving the Task and Tag objects

}

return $this->render('AcmeTaskBundle:Task:new.html.twig', array(
'form' => $form->createView(),

));
}

}

The corresponding template is now able to render both the description field for the task form as well
as all the TagType forms for any tags that are already related to this Task. In the above controller, I added
some dummy code so that you can see this in action (since a Task has zero tags when first created).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

{# src/Acme/TaskBundle/Resources/views/Task/new.html.twig #}

{# ... #}

{{ form_start(form) }}
{# render the task's only field: description #}
{{ form_row(form.description) }}

<h3>Tags</h3>
<ul class="tags">

{# iterate over each existing tag and render its only field: name #}
{% for tag in form.tags %}

<li>{{ form_row(tag.name) }}</li>
{% endfor %}

</ul>
{{ form_end(form) }}

{# ... #}

When the user submits the form, the submitted data for the tags field are used to construct an
ArrayCollection of Tag objects, which is then set on the tag field of the Task instance.

The tags collection is accessible naturally via $task->getTags() and can be persisted to the database or
used however you need.

So far, this works great, but this doesn't allow you to dynamically add new tags or delete existing tags.
So, while editing existing tags will work great, your user can't actually add any new tags yet.

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 243

http://sensiolabs.com


Listing 62-7

Listing 62-8

In this entry, you embed only one collection, but you are not limited to this. You can also embed
nested collection as many level down as you like. But if you use Xdebug in your development setup,
you may receive a Maximum function nesting level of '100' reached, aborting! error.
This is due to the xdebug.max_nesting_level PHP setting, which defaults to 100.

This directive limits recursion to 100 calls which may not be enough for rendering the form in
the template if you render the whole form at once (e.g form_widget(form)). To fix this you can
set this directive to a higher value (either via a php.ini file or via ini_set1, for example in app/
autoload.php) or render each form field by hand using form_row.

Allowing "new" Tags with the "Prototype"
Allowing the user to dynamically add new tags means that you'll need to use some JavaScript. Previously
you added two tags to your form in the controller. Now let the user add as many tag forms as they need
directly in the browser. This will be done through a bit of JavaScript.

The first thing you need to do is to let the form collection know that it will receive an unknown number
of tags. So far you've added two tags and the form type expects to receive exactly two, otherwise an
error will be thrown: This form should not contain extra fields. To make this flexible, add the
allow_add option to your collection field:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/Acme/TaskBundle/Form/Type/TaskType.php

// ...
use Symfony\Component\Form\FormBuilderInterface;

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('description');

$builder->add('tags', 'collection', array(
'type' => new TagType(),
'allow_add' => true,

));
}

In addition to telling the field to accept any number of submitted objects, the allow_add also makes a
"prototype" variable available to you. This "prototype" is a little "template" that contains all the HTML
to be able to render any new "tag" forms. To render it, make the following change to your template:

1
2
3

<ul class="tags" data-prototype="{{ form_widget(form.tags.vars.prototype)|e }}">
...

</ul>

If you render your whole "tags" sub-form at once (e.g. form_row(form.tags)), then the prototype
is automatically available on the outer div as the data-prototype attribute, similar to what you
see above.

1. http://php.net/manual/en/function.ini-set.php

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 244

http://sensiolabs.com


Listing 62-9

Listing 62-10

Listing 62-11

The form.tags.vars.prototype is a form element that looks and feels just like the individual
form_widget(tag) elements inside your for loop. This means that you can call form_widget,
form_row or form_label on it. You could even choose to render only one of its fields (e.g. the name
field):

1 {{ form_widget(form.tags.vars.prototype.name)|e }}

On the rendered page, the result will look something like this:

1 <ul class="tags" data-prototype="&lt;div&gt;&lt;label class=&quot;
required&quot;&gt;__name__&lt;/label&gt;&lt;div
id=&quot;task_tags___name__&quot;&gt;&lt;div&gt;&lt;label
for=&quot;task_tags___name___name&quot; class=&quot; required&quot;&gt;Name&lt;/
label&gt;&lt;input type=&quot;text&quot; id=&quot;task_tags___name___name&quot;
name=&quot;task[tags][__name__][name]&quot; required=&quot;required&quot;
maxlength=&quot;255&quot; /&gt;&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;">

The goal of this section will be to use JavaScript to read this attribute and dynamically add new tag forms
when the user clicks a "Add a tag" link. To make things simple, this example uses jQuery and assumes
you have it included somewhere on your page.

Add a script tag somewhere on your page so you can start writing some JavaScript.

First, add a link to the bottom of the "tags" list via JavaScript. Second, bind to the "click" event of that
link so you can add a new tag form (addTagForm will be show next):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

var $collectionHolder;

// setup an "add a tag" link
var $addTagLink = $('<a href="#" class="add_tag_link">Add a tag</a>');
var $newLinkLi = $('<li></li>').append($addTagLink);

jQuery(document).ready(function() {
// Get the ul that holds the collection of tags
$collectionHolder = $('ul.tags');

// add the "add a tag" anchor and li to the tags ul
$collectionHolder.append($newLinkLi);

// count the current form inputs we have (e.g. 2), use that as the new
// index when inserting a new item (e.g. 2)
$collectionHolder.data('index', $collectionHolder.find(':input').length);

$addTagLink.on('click', function(e) {
// prevent the link from creating a "#" on the URL
e.preventDefault();

// add a new tag form (see next code block)
addTagForm($collectionHolder, $newLinkLi);

});
});

The addTagForm function's job will be to use the data-prototype attribute to dynamically add a new
form when this link is clicked. The data-prototype HTML contains the tag text input element with a
name of task[tags][__name__][name] and id of task_tags___name___name. The __name__ is a little
"placeholder", which you'll replace with a unique, incrementing number (e.g. task[tags][3][name]).

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 245

http://sensiolabs.com


Listing 62-12

Listing 62-13

Listing 62-14

The actual code needed to make this all work can vary quite a bit, but here's one example:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

function addTagForm($collectionHolder, $newLinkLi) {
// Get the data-prototype explained earlier
var prototype = $collectionHolder.data('prototype');

// get the new index
var index = $collectionHolder.data('index');

// Replace '__name__' in the prototype's HTML to
// instead be a number based on how many items we have
var newForm = prototype.replace(/__name__/g, index);

// increase the index with one for the next item
$collectionHolder.data('index', index + 1);

// Display the form in the page in an li, before the "Add a tag" link li
var $newFormLi = $('<li></li>').append(newForm);
$newLinkLi.before($newFormLi);

}

It is better to separate your JavaScript in real JavaScript files than to write it inside the HTML as is
done here.

Now, each time a user clicks the Add a tag link, a new sub form will appear on the page. When the form
is submitted, any new tag forms will be converted into new Tag objects and added to the tags property
of the Task object.

You can find a working example in this JSFiddle2.

To make handling these new tags easier, add an "adder" and a "remover" method for the tags in the Task
class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// src/Acme/TaskBundle/Entity/Task.php
namespace Acme\TaskBundle\Entity;

// ...
class Task
{

// ...

public function addTag(Tag $tag)
{

$this->tags->add($tag);
}

public function removeTag(Tag $tag)
{

// ...
}

}

Next, add a by_reference option to the tags field and set it to false:

2. http://jsfiddle.net/847Kf/4/

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 246

http://sensiolabs.com


1
2
3
4
5
6
7
8
9

10
11
12

// src/Acme/TaskBundle/Form/Type/TaskType.php

// ...
public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...

$builder->add('tags', 'collection', array(
// ...
'by_reference' => false,

));
}

With these two changes, when the form is submitted, each new Tag object is added to the Task class by
calling the addTag method. Before this change, they were added internally by the form by calling $task-
>getTags()->add($tag). That was just fine, but forcing the use of the "adder" method makes handling
these new Tag objects easier (especially if you're using Doctrine, which we talk about next!).

You have to create both addTag and removeTag methods, otherwise the form will still use setTag
even if by_reference is false. You'll learn more about the removeTag method later in this article.

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 247

http://sensiolabs.com


Listing 62-15

Listing 62-16

Listing 62-17

Doctrine: Cascading Relations and saving the "Inverse" side

To save the new tags with Doctrine, you need to consider a couple more things. First, unless you
iterate over all of the new Tag objects and call $em->persist($tag) on each, you'll receive an error
from Doctrine:

A new entity was found through the relationship Acme\TaskBundle\Entity\Task#tags
that was not configured to cascade persist operations for entity...

To fix this, you may choose to "cascade" the persist operation automatically from the Task object
to any related tags. To do this, add the cascade option to your ManyToMany metadata:

1
2
3
4
5
6
7
8

// src/Acme/TaskBundle/Entity/Task.php

// ...

/**
* @ORM\ManyToMany(targetEntity="Tag", cascade={"persist"})
*/
protected $tags;

A second potential issue deals with the Owning Side and Inverse Side3 of Doctrine relationships. In
this example, if the "owning" side of the relationship is "Task", then persistence will work fine as
the tags are properly added to the Task. However, if the owning side is on "Tag", then you'll need
to do a little bit more work to ensure that the correct side of the relationship is modified.

The trick is to make sure that the single "Task" is set on each "Tag". One easy way to do this is to
add some extra logic to addTag(), which is called by the form type since by_reference is set to
false:

1
2
3
4
5
6
7
8
9

// src/Acme/TaskBundle/Entity/Task.php

// ...
public function addTag(Tag $tag)
{

$tag->addTask($this);

$this->tags->add($tag);
}

Inside Tag, just make sure you have an addTask method:

1
2
3
4
5
6
7
8
9

// src/Acme/TaskBundle/Entity/Tag.php

// ...
public function addTask(Task $task)
{

if (!$this->tasks->contains($task)) {
$this->tasks->add($task);

}
}

If you have a one-to-many relationship, then the workaround is similar, except that you can simply
call setTask from inside addTag.

3. http://docs.doctrine-project.org/en/latest/reference/unitofwork-associations.html

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 248

http://sensiolabs.com


Listing 62-18

Listing 62-19

Listing 62-20

Allowing Tags to be Removed
The next step is to allow the deletion of a particular item in the collection. The solution is similar to
allowing tags to be added.

Start by adding the allow_delete option in the form Type:

1
2
3
4
5
6
7
8
9

10
11
12

// src/Acme/TaskBundle/Form/Type/TaskType.php

// ...
public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...

$builder->add('tags', 'collection', array(
// ...
'allow_delete' => true,

));
}

Now, you need to put some code into the removeTag method of Task:

1
2
3
4
5
6
7
8
9

10
11
12

// src/Acme/TaskBundle/Entity/Task.php

// ...
class Task
{

// ...

public function removeTag(Tag $tag)
{

$this->tags->removeElement($tag);
}

}

Template Modifications

The allow_delete option has one consequence: if an item of a collection isn't sent on submission, the
related data is removed from the collection on the server. The solution is thus to remove the form element
from the DOM.

First, add a "delete this tag" link to each tag form:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

jQuery(document).ready(function() {
// Get the ul that holds the collection of tags
$collectionHolder = $('ul.tags');

// add a delete link to all of the existing tag form li elements
$collectionHolder.find('li').each(function() {

addTagFormDeleteLink($(this));
});

// ... the rest of the block from above
});

function addTagForm() {
// ...

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 249

http://sensiolabs.com


Listing 62-21

15
16
17
18

// add a delete link to the new form
addTagFormDeleteLink($newFormLi);

}

The addTagFormDeleteLink function will look something like this:

1
2
3
4
5
6
7
8
9

10
11
12

function addTagFormDeleteLink($tagFormLi) {
var $removeFormA = $('<a href="#">delete this tag</a>');
$tagFormLi.append($removeFormA);

$removeFormA.on('click', function(e) {
// prevent the link from creating a "#" on the URL
e.preventDefault();

// remove the li for the tag form
$tagFormLi.remove();

});
}

When a tag form is removed from the DOM and submitted, the removed Tag object will not be included
in the collection passed to setTags. Depending on your persistence layer, this may or may not be enough
to actually remove the relationship between the removed Tag and Task object.

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 250

http://sensiolabs.com


Listing 62-22

Doctrine: Ensuring the database persistence

When removing objects in this way, you may need to do a little bit more work to ensure that the
relationship between the Task and the removed Tag is properly removed.

In Doctrine, you have two sides of the relationship: the owning side and the inverse side. Normally
in this case you'll have a many-to-many relationship and the deleted tags will disappear and persist
correctly (adding new tags also works effortlessly).

But if you have a one-to-many relationship or a many-to-many relationship with a mappedBy on the
Task entity (meaning Task is the "inverse" side), you'll need to do more work for the removed tags
to persist correctly.

In this case, you can modify the controller to remove the relationship on the removed tag. This
assumes that you have some editAction which is handling the "update" of your Task:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// src/Acme/TaskBundle/Controller/TaskController.php

use Doctrine\Common\Collections\ArrayCollection;

// ...
public function editAction($id, Request $request)
{

$em = $this->getDoctrine()->getManager();
$task = $em->getRepository('AcmeTaskBundle:Task')->find($id);

if (!$task) {
throw $this->createNotFoundException('No task found for id '.$id);

}

$originalTags = new ArrayCollection();

// Create an ArrayCollection of the current Tag objects in the database
foreach ($task->getTags() as $tag) {

$originalTags->add($tag);
}

$editForm = $this->createForm(new TaskType(), $task);

$editForm->handleRequest($request);

if ($editForm->isValid()) {

// remove the relationship between the tag and the Task
foreach ($originalTags as $tag) {

if (false === $task->getTags()->contains($tag)) {
// remove the Task from the Tag
$tag->getTasks()->removeElement($task);

// if it was a many-to-one relationship, remove the relationship
like this

// $tag->setTask(null);

$em->persist($tag);

// if you wanted to delete the Tag entirely, you can also do that
// $em->remove($tag);

}
}

$em->persist($task);

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 251

http://sensiolabs.com


46
47
48
49
50
51
52

$em->flush();

// redirect back to some edit page
return $this->redirect($this->generateUrl('task_edit', array('id' => $id)));

}

// render some form template
}

As you can see, adding and removing the elements correctly can be tricky. Unless you have a many-
to-many relationship where Task is the "owning" side, you'll need to do extra work to make sure
that the relationship is properly updated (whether you're adding new tags or removing existing
tags) on each Tag object itself.

PDF brought to you by
generated on March 11, 2015

Chapter 62: How to Embed a Collection of Forms | 252

http://sensiolabs.com


Listing 63-1

Chapter 63

How to Create a Custom Form Field Type

Symfony comes with a bunch of core field types available for building forms. However there are situations
where you may want to create a custom form field type for a specific purpose. This recipe assumes
you need a field definition that holds a person's gender, based on the existing choice field. This section
explains how the field is defined, how you can customize its layout and finally, how you can register it
for use in your application.

Defining the Field Type
In order to create the custom field type, first you have to create the class representing the field. In this
situation the class holding the field type will be called GenderType and the file will be stored in the default
location for form fields, which is <BundleName>\Form\Type. Make sure the field extends AbstractType1:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

// src/AppBundle/Form/Type/GenderType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class GenderType extends AbstractType
{

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'choices' => array(

'm' => 'Male',
'f' => 'Female',

)
));

}

public function getParent()
{

1. http://api.symfony.com/2.6/Symfony/Component/Form/AbstractType.html

PDF brought to you by
generated on March 11, 2015

Chapter 63: How to Create a Custom Form Field Type | 253

http://sensiolabs.com


21
22
23
24
25
26
27
28

return 'choice';
}

public function getName()
{

return 'gender';
}

}

The location of this file is not important - the Form\Type directory is just a convention.

Here, the return value of the getParent function indicates that you're extending the choice field type.
This means that, by default, you inherit all of the logic and rendering of that field type. To see some of
the logic, check out the ChoiceType2 class. There are three methods that are particularly important:
buildForm()buildForm()

Each field type has a buildForm method, which is where you configure and build any field(s).
Notice that this is the same method you use to setup your forms, and it works the same here.

buildView()buildView()
This method is used to set any extra variables you'll need when rendering your field in a template.
For example, in ChoiceType3, a multiple variable is set and used in the template to set (or not set)
the multiple attribute on the select field. See Creating a Template for the Field for more details.

setDefaultOptions()setDefaultOptions()
This defines options for your form type that can be used in buildForm() and buildView(). There
are a lot of options common to all fields (see form Field Type), but you can create any others that
you need here.

If you're creating a field that consists of many fields, then be sure to set your "parent" type as form
or something that extends form. Also, if you need to modify the "view" of any of your child types
from your parent type, use the finishView() method.

The getName() method returns an identifier which should be unique in your application. This is used in
various places, such as when customizing how your form type will be rendered.

The goal of this field was to extend the choice type to enable selection of a gender. This is achieved by
fixing the choices to a list of possible genders.

Creating a Template for the Field
Each field type is rendered by a template fragment, which is determined in part by the value of your
getName() method. For more information, see What are Form Themes?.

In this case, since the parent field is choice, you don't need to do any work as the custom field type will
automatically be rendered like a choice type. But for the sake of this example, suppose that when your
field is "expanded" (i.e. radio buttons or checkboxes, instead of a select field), you want to always render

2. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Extension/Core/Type/ChoiceType.php

3. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Extension/Core/Type/ChoiceType.php

PDF brought to you by
generated on March 11, 2015

Chapter 63: How to Create a Custom Form Field Type | 254

http://sensiolabs.com


Listing 63-2

Listing 63-3

Listing 63-4

Listing 63-5

it in a ul element. In your form theme template (see above link for details), create a gender_widget block
to handle this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

{# src/AppBundle/Resources/views/Form/fields.html.twig #}
{% block gender_widget %}

{% spaceless %}
{% if expanded %}

<ul {{ block('widget_container_attributes') }}>
{% for child in form %}

<li>
{{ form_widget(child) }}
{{ form_label(child) }}

</li>
{% endfor %}
</ul>

{% else %}
{# just let the choice widget render the select tag #}
{{ block('choice_widget') }}

{% endif %}
{% endspaceless %}

{% endblock %}

Make sure the correct widget prefix is used. In this example the name should be gender_widget,
according to the value returned by getName. Further, the main config file should point to the
custom form template so that it's used when rendering all forms.

When using Twig this is:

1
2
3
4

# app/config/config.yml
twig:

form_themes:
- 'AppBundle:Form:fields.html.twig'

For the PHP templating engine, your configuration should look like this:

1
2
3
4
5
6

# app/config/config.yml
framework:

templating:
form:

resources:
- 'AppBundle:Form'

Using the Field Type
You can now use your custom field type immediately, simply by creating a new instance of the type in
one of your forms:

1
2
3
4
5
6
7

// src/AppBundle/Form/Type/AuthorType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class AuthorType extends AbstractType

PDF brought to you by
generated on March 11, 2015

Chapter 63: How to Create a Custom Form Field Type | 255

http://sensiolabs.com


Listing 63-6

Listing 63-7

Listing 63-8

8
9

10
11
12
13
14
15

{
public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('gender_code', new GenderType(), array(
'placeholder' => 'Choose a gender',

));
}

}

But this only works because the GenderType() is very simple. What if the gender codes were stored
in configuration or in a database? The next section explains how more complex field types solve this
problem.

New in version 2.6: The placeholder option was introduced in Symfony 2.6 in favor of empty_value,
which is available prior to 2.6.

Creating your Field Type as a Service
So far, this entry has assumed that you have a very simple custom field type. But if you need access to
configuration, a database connection, or some other service, then you'll want to register your custom type
as a service. For example, suppose that you're storing the gender parameters in configuration:

1
2
3
4
5

# app/config/config.yml
parameters:

genders:
m: Male
f: Female

To use the parameter, define your custom field type as a service, injecting the genders parameter value
as the first argument to its to-be-created __construct function:

1
2
3
4
5
6
7
8

# src/AppBundle/Resources/config/services.yml
services:

app.form.type.gender:
class: AppBundle\Form\Type\GenderType
arguments:

- "%genders%"
tags:

- { name: form.type, alias: gender }

Make sure the services file is being imported. See Importing Configuration with imports for details.

Be sure that the alias attribute of the tag corresponds with the value returned by the getName method
defined earlier. You'll see the importance of this in a moment when you use the custom field type. But
first, add a __construct method to GenderType, which receives the gender configuration:

1
2
3
4

// src/AppBundle/Form/Type/GenderType.php
namespace AppBundle\Form\Type;

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

PDF brought to you by
generated on March 11, 2015

Chapter 63: How to Create a Custom Form Field Type | 256

http://sensiolabs.com


Listing 63-9

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// ...

// ...
class GenderType extends AbstractType
{

private $genderChoices;

public function __construct(array $genderChoices)
{

$this->genderChoices = $genderChoices;
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'choices' => $this->genderChoices,

));
}

// ...
}

Great! The GenderType is now fueled by the configuration parameters and registered as a service.
Additionally, because you used the form.type alias in its configuration, using the field is now much
easier:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Form/Type/AuthorType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\FormBuilderInterface;

// ...

class AuthorType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('gender_code', 'gender', array(
'placeholder' => 'Choose a gender',

));
}

}

Notice that instead of instantiating a new instance, you can just refer to it by the alias used in your service
configuration, gender. Have fun!

PDF brought to you by
generated on March 11, 2015

Chapter 63: How to Create a Custom Form Field Type | 257

http://sensiolabs.com


Chapter 64

How to Create a Form Type Extension

Custom form field types are great when you need field types with a specific purpose, such as a gender
selector, or a VAT number input.

But sometimes, you don't really need to add new field types - you want to add features on top of existing
types. This is where form type extensions come in.

Form type extensions have 2 main use-cases:
1. You want to add a generic feature to several types (such as adding a "help" text to every field

type);
2. You want to add a specific feature to a single type (such as adding a "download" feature to

the "file" field type).

In both those cases, it might be possible to achieve your goal with custom form rendering, or custom
form field types. But using form type extensions can be cleaner (by limiting the amount of business logic
in templates) and more flexible (you can add several type extensions to a single form type).

Form type extensions can achieve most of what custom field types can do, but instead of being field types
of their own, they plug into existing types.

Imagine that you manage a Media entity, and that each media is associated to a file. Your Media form
uses a file type, but when editing the entity, you would like to see its image automatically rendered next
to the file input.

You could of course do this by customizing how this field is rendered in a template. But field type
extensions allow you to do this in a nice DRY fashion.

Defining the Form Type Extension
Your first task will be to create the form type extension class (called ImageTypeExtension in this article).
By standard, form extensions usually live in the Form\Extension directory of one of your bundles.

When creating a form type extension, you can either implement the FormTypeExtensionInterface1

interface or extend the AbstractTypeExtension2 class. In most cases, it's easier to extend the abstract
class:

1. http://api.symfony.com/2.6/Symfony/Component/Form/FormTypeExtensionInterface.html

2. http://api.symfony.com/2.6/Symfony/Component/Form/AbstractTypeExtension.html

PDF brought to you by
generated on March 11, 2015

Chapter 64: How to Create a Form Type Extension | 258

http://sensiolabs.com


Listing 64-1

Listing 64-2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/Acme/DemoBundle/Form/Extension/ImageTypeExtension.php
namespace Acme\DemoBundle\Form\Extension;

use Symfony\Component\Form\AbstractTypeExtension;

class ImageTypeExtension extends AbstractTypeExtension
{

/**
* Returns the name of the type being extended.
*
* @return string The name of the type being extended
*/
public function getExtendedType()
{

return 'file';
}

}

The only method you must implement is the getExtendedType function. It is used to indicate the name
of the form type that will be extended by your extension.

The value you return in the getExtendedType method corresponds to the value returned by the
getName method in the form type class you wish to extend.

In addition to the getExtendedType function, you will probably want to override one of the following
methods:

• buildForm()
• buildView()
• setDefaultOptions()
• finishView()

For more information on what those methods do, you can refer to the Creating Custom Field Types
cookbook article.

Registering your Form Type Extension as a Service
The next step is to make Symfony aware of your extension. All you need to do is to declare it as a service
by using the form.type_extension tag:

1
2
3
4
5

services:
acme_demo_bundle.image_type_extension:

class: Acme\DemoBundle\Form\Extension\ImageTypeExtension
tags:

- { name: form.type_extension, alias: file }

The alias key of the tag is the type of field that this extension should be applied to. In your case, as you
want to extend the file field type, you will use file as an alias.

PDF brought to you by
generated on March 11, 2015

Chapter 64: How to Create a Form Type Extension | 259

http://sensiolabs.com


Listing 64-3

Listing 64-4

Adding the extension Business Logic
The goal of your extension is to display nice images next to file inputs (when the underlying model
contains images). For that purpose, suppose that you use an approach similar to the one described in
How to handle File Uploads with Doctrine: you have a Media model with a file property (corresponding
to the file field in the form) and a path property (corresponding to the image path in the database):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

// src/Acme/DemoBundle/Entity/Media.php
namespace Acme\DemoBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Media
{

// ...

/**
* @var string The path - typically stored in the database
*/
private $path;

/**
* @var \Symfony\Component\HttpFoundation\File\UploadedFile
* @Assert\File(maxSize="2M")
*/
public $file;

// ...

/**
* Get the image URL
*
* @return null|string
*/
public function getWebPath()
{

// ... $webPath being the full image URL, to be used in templates

return $webPath;
}

}

Your form type extension class will need to do two things in order to extend the file form type:
1. Override the setDefaultOptions method in order to add an image_path option;
2. Override the buildForm and buildView methods in order to pass the image URL to the view.

The logic is the following: when adding a form field of type file, you will be able to specify a new option:
image_path. This option will tell the file field how to get the actual image URL in order to display it in
the view:

1
2
3
4
5
6
7
8

// src/Acme/DemoBundle/Form/Extension/ImageTypeExtension.php
namespace Acme\DemoBundle\Form\Extension;

use Symfony\Component\Form\AbstractTypeExtension;
use Symfony\Component\Form\FormView;
use Symfony\Component\Form\FormInterface;
use Symfony\Component\PropertyAccess\PropertyAccess;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

PDF brought to you by
generated on March 11, 2015

Chapter 64: How to Create a Form Type Extension | 260

http://sensiolabs.com


9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

class ImageTypeExtension extends AbstractTypeExtension
{

/**
* Returns the name of the type being extended.
*
* @return string The name of the type being extended
*/
public function getExtendedType()
{

return 'file';
}

/**
* Add the image_path option
*
* @param OptionsResolverInterface $resolver
*/
public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setOptional(array('image_path'));
}

/**
* Pass the image URL to the view
*
* @param FormView $view
* @param FormInterface $form
* @param array $options
*/
public function buildView(FormView $view, FormInterface $form, array $options)
{

if (array_key_exists('image_path', $options)) {
$parentData = $form->getParent()->getData();

if (null !== $parentData) {
$accessor = PropertyAccess::createPropertyAccessor();
$imageUrl = $accessor->getValue($parentData, $options['image_path']);

} else {
$imageUrl = null;

}

// set an "image_url" variable that will be available when rendering this field
$view->vars['image_url'] = $imageUrl;

}
}

}

Override the File Widget Template Fragment
Each field type is rendered by a template fragment. Those template fragments can be overridden in order
to customize form rendering. For more information, you can refer to the What are Form Themes? article.

In your extension class, you have added a new variable (image_url), but you still need to take advantage
of this new variable in your templates. Specifically, you need to override the file_widget block:

PDF brought to you by
generated on March 11, 2015

Chapter 64: How to Create a Form Type Extension | 261

http://sensiolabs.com


Listing 64-5

Listing 64-6

1
2
3
4
5
6
7
8
9

10
11
12
13

{# src/Acme/DemoBundle/Resources/views/Form/fields.html.twig #}
{% extends 'form_div_layout.html.twig' %}

{% block file_widget %}
{% spaceless %}

{{ block('form_widget') }}
{% if image_url is not null %}

<img src="{{ asset(image_url) }}"/>
{% endif %}

{% endspaceless %}
{% endblock %}

You will need to change your config file or explicitly specify how you want your form to be
themed in order for Symfony to use your overridden block. See What are Form Themes? for more
information.

Using the Form Type Extension
From now on, when adding a field of type file in your form, you can specify an image_path option that
will be used to display an image next to the file field. For example:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

// src/Acme/DemoBundle/Form/Type/MediaType.php
namespace Acme\DemoBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class MediaType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('name', 'text')
->add('file', 'file', array('image_path' => 'webPath'));

}

public function getName()
{

return 'media';
}

}

When displaying the form, if the underlying model has already been associated with an image, you will
see it displayed next to the file input.

PDF brought to you by
generated on March 11, 2015

Chapter 64: How to Create a Form Type Extension | 262

http://sensiolabs.com


Listing 65-1

Listing 65-2

Chapter 65

How to Reduce Code Duplication with
"inherit_data"

New in version 2.3: This inherit_data option was introduced in Symfony 2.3. Before, it was known as
virtual.

The inherit_data form field option can be very useful when you have some duplicated fields in different
entities. For example, imagine you have two entities, a Company and a Customer:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Entity/Company.php
namespace AppBundle\Entity;

class Company
{

private $name;
private $website;

private $address;
private $zipcode;
private $city;
private $country;

}

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Entity/Customer.php
namespace AppBundle\Entity;

class Customer
{

private $firstName;
private $lastName;

private $address;
private $zipcode;
private $city;

PDF brought to you by
generated on March 11, 2015

Chapter 65: How to Reduce Code Duplication with "inherit_data" | 263

http://sensiolabs.com


Listing 65-3

Listing 65-4

Listing 65-5

12
13

private $country;
}

As you can see, each entity shares a few of the same fields: address, zipcode, city, country.

Start with building two forms for these entities, CompanyType and CustomerType:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Form/Type/CompanyType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class CompanyType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('name', 'text')
->add('website', 'text');

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Form/Type/CustomerType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\AbstractType;

class CustomerType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('firstName', 'text')
->add('lastName', 'text');

}
}

Instead of including the duplicated fields address, zipcode, city and country in both of these forms,
create a third form called LocationType for that:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Form/Type/LocationType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class LocationType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('address', 'textarea')
->add('zipcode', 'text')
->add('city', 'text')

PDF brought to you by
generated on March 11, 2015

Chapter 65: How to Reduce Code Duplication with "inherit_data" | 264

http://sensiolabs.com


Listing 65-6

Listing 65-7

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

->add('country', 'text');
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'inherit_data' => true

));
}

public function getName()
{

return 'location';
}

}

The location form has an interesting option set, namely inherit_data. This option lets the form inherit
its data from its parent form. If embedded in the company form, the fields of the location form will
access the properties of the Company instance. If embedded in the customer form, the fields will access
the properties of the Customer instance instead. Easy, eh?

Instead of setting the inherit_data option inside LocationType, you can also (just like with any
option) pass it in the third argument of $builder->add().

Finally, make this work by adding the location form to your two original forms:

1
2
3
4
5
6
7
8
9

// src/AppBundle/Form/Type/CompanyType.php
public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...

$builder->add('foo', new LocationType(), array(
'data_class' => 'AppBundle\Entity\Company'

));
}

1
2
3
4
5
6
7
8
9

// src/AppBundle/Form/Type/CustomerType.php
public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...

$builder->add('bar', new LocationType(), array(
'data_class' => 'AppBundle\Entity\Customer'

));
}

That's it! You have extracted duplicated field definitions to a separate location form that you can reuse
wherever you need it.

Forms with the inherit_data option set cannot have *_SET_DATA event listeners.

PDF brought to you by
generated on March 11, 2015

Chapter 65: How to Reduce Code Duplication with "inherit_data" | 265

http://sensiolabs.com


Listing 66-1

Chapter 66

How to Unit Test your Forms

The Form component consists of 3 core objects: a form type (implementing FormTypeInterface1), the
Form2 and the FormView3.

The only class that is usually manipulated by programmers is the form type class which serves as a form
blueprint. It is used to generate the Form and the FormView. You could test it directly by mocking its
interactions with the factory but it would be complex. It is better to pass it to FormFactory like it is done
in a real application. It is simple to bootstrap and you can trust the Symfony components enough to use
them as a testing base.

There is already a class that you can benefit from for simple FormTypes testing: TypeTestCase4. It is used
to test the core types and you can use it to test your types too.

New in version 2.3: The TypeTestCase has moved to the Symfony\Component\Form\Test namespace in
2.3. Previously, the class was located in Symfony\Component\Form\Tests\Extension\Core\Type.

Depending on the way you installed your Symfony or Symfony Form component the tests may not
be downloaded. Use the --prefer-source option with Composer if this is the case.

The Basics
The simplest TypeTestCase implementation looks like the following:

1
2
3
4
5

// src/Acme/TestBundle/Tests/Form/Type/TestedTypeTest.php
namespace Acme\TestBundle\Tests\Form\Type;

use Acme\TestBundle\Form\Type\TestedType;
use Acme\TestBundle\Model\TestObject;

1. http://api.symfony.com/2.6/Symfony/Component/Form/FormTypeInterface.html

2. http://api.symfony.com/2.6/Symfony/Component/Form/Form.html

3. http://api.symfony.com/2.6/Symfony/Component/Form/FormView.html

4. http://api.symfony.com/2.6/Symfony/Component/Form/Test/TypeTestCase.html

PDF brought to you by
generated on March 11, 2015

Chapter 66: How to Unit Test your Forms | 266

http://sensiolabs.com


Listing 66-2

Listing 66-3

Listing 66-4

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

use Symfony\Component\Form\Test\TypeTestCase;

class TestedTypeTest extends TypeTestCase
{

public function testSubmitValidData()
{

$formData = array(
'test' => 'test',
'test2' => 'test2',

);

$type = new TestedType();
$form = $this->factory->create($type);

$object = new TestObject();
$object->fromArray($formData);

// submit the data to the form directly
$form->submit($formData);

$this->assertTrue($form->isSynchronized());
$this->assertEquals($object, $form->getData());

$view = $form->createView();
$children = $view->children;

foreach (array_keys($formData) as $key) {
$this->assertArrayHasKey($key, $children);

}
}

}

So, what does it test? Here comes a detailed explanation.

First you verify if the FormType compiles. This includes basic class inheritance, the buildForm function
and options resolution. This should be the first test you write:

1
2

$type = new TestedType();
$form = $this->factory->create($type);

This test checks that none of your data transformers used by the form failed. The isSynchronized()5

method is only set to false if a data transformer throws an exception:

1
2

$form->submit($formData);
$this->assertTrue($form->isSynchronized());

Don't test the validation: it is applied by a listener that is not active in the test case and it relies on
validation configuration. Instead, unit test your custom constraints directly.

Next, verify the submission and mapping of the form. The test below checks if all the fields are correctly
specified:

5. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#isSynchronized()

PDF brought to you by
generated on March 11, 2015

Chapter 66: How to Unit Test your Forms | 267

http://sensiolabs.com


Listing 66-5

Listing 66-6

Listing 66-7

1 $this->assertEquals($object, $form->getData());

Finally, check the creation of the FormView. You should check if all widgets you want to display are
available in the children property:

1
2
3
4
5
6

$view = $form->createView();
$children = $view->children;

foreach (array_keys($formData) as $key) {
$this->assertArrayHasKey($key, $children);

}

Adding a Type your Form Depends on
Your form may depend on other types that are defined as services. It might look like this:

1
2
3
4

// src/Acme/TestBundle/Form/Type/TestedType.php

// ... the buildForm method
$builder->add('acme_test_child_type');

To create your form correctly, you need to make the type available to the form factory in your test. The
easiest way is to register it manually before creating the parent form using the PreloadedExtension class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// src/Acme/TestBundle/Tests/Form/Type/TestedTypeTests.php
namespace Acme\TestBundle\Tests\Form\Type;

use Acme\TestBundle\Form\Type\TestedType;
use Acme\TestBundle\Model\TestObject;
use Symfony\Component\Form\Test\TypeTestCase;
use Symfony\Component\Form\PreloadedExtension;

class TestedTypeTest extends TypeTestCase
{

protected function getExtensions()
{

$childType = new TestChildType();
return array(new PreloadedExtension(array(

$childType->getName() => $childType,
), array()));

}

public function testSubmitValidData()
{

$type = new TestedType();
$form = $this->factory->create($type);

// ... your test
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 66: How to Unit Test your Forms | 268

http://sensiolabs.com


Listing 66-8

Make sure the child type you add is well tested. Otherwise you may be getting errors that are not
related to the form you are currently testing but to its children.

Adding custom Extensions
It often happens that you use some options that are added by form extensions. One of the cases may be
the ValidatorExtension with its invalid_message option. The TypeTestCase loads only the core form
extension so an "Invalid option" exception will be raised if you try to use it for testing a class that depends
on other extensions. You need add those extensions to the factory object:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// src/Acme/TestBundle/Tests/Form/Type/TestedTypeTests.php
namespace Acme\TestBundle\Tests\Form\Type;

use Acme\TestBundle\Form\Type\TestedType;
use Acme\TestBundle\Model\TestObject;
use Symfony\Component\Form\Test\TypeTestCase;
use Symfony\Component\Form\Forms;
use Symfony\Component\Form\FormBuilder;
use Symfony\Component\Form\Extension\Validator\Type\FormTypeValidatorExtension;
use Symfony\Component\Validator\ConstraintViolationList;

class TestedTypeTest extends TypeTestCase
{

protected function setUp()
{

parent::setUp();

$validator =
$this->getMock('\Symfony\Component\Validator\Validator\ValidatorInterface');

$validator->method('validate')->will($this->returnValue(new
ConstraintViolationList()));

$this->factory = Forms::createFormFactoryBuilder()
->addExtensions($this->getExtensions())
->addTypeExtension(

new FormTypeValidatorExtension(
$validator

)
)
->addTypeGuesser(

$this->getMockBuilder(
'Symfony\Component\Form\Extension\Validator\ValidatorTypeGuesser'

)
->disableOriginalConstructor()
->getMock()

)
->getFormFactory();

$this->dispatcher =
$this->getMock('Symfony\Component\EventDispatcher\EventDispatcherInterface');

$this->builder = new FormBuilder(null, null, $this->dispatcher, $this->factory);
}

// ... your tests
}

PDF brought to you by
generated on March 11, 2015

Chapter 66: How to Unit Test your Forms | 269

http://sensiolabs.com


Listing 66-9

Testing against different Sets of Data

If you are not familiar yet with PHPUnit's data providers6, this might be a good opportunity to use them:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// src/Acme/TestBundle/Tests/Form/Type/TestedTypeTests.php
namespace Acme\TestBundle\Tests\Form\Type;

use Acme\TestBundle\Form\Type\TestedType;
use Acme\TestBundle\Model\TestObject;
use Symfony\Component\Form\Test\TypeTestCase;

class TestedTypeTest extends TypeTestCase
{

/**
* @dataProvider getValidTestData
*/
public function testForm($data)
{

// ... your test
}

public function getValidTestData()
{

return array(
array(

'data' => array(
'test' => 'test',
'test2' => 'test2',

),
),
array(

'data' => array(),
),
array(

'data' => array(
'test' => null,
'test2' => null,

),
),

);
}

}

The code above will run your test three times with 3 different sets of data. This allows for decoupling the
test fixtures from the tests and easily testing against multiple sets of data.

You can also pass another argument, such as a boolean if the form has to be synchronized with the given
set of data or not etc.

6. http://www.phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.data-providers

PDF brought to you by
generated on March 11, 2015

Chapter 66: How to Unit Test your Forms | 270

http://sensiolabs.com


Listing 67-1

Listing 67-2

Chapter 67

How to Configure empty Data for a Form Class

The empty_data option allows you to specify an empty data set for your form class. This empty data set
would be used if you submit your form, but haven't called setData() on your form or passed in data
when you created your form. For example:

1
2
3
4
5
6
7
8
9

10
11
12

public function indexAction()
{

$blog = ...;

// $blog is passed in as the data, so the empty_data
// option is not needed
$form = $this->createForm(new BlogType(), $blog);

// no data is passed in, so empty_data is
// used to get the "starting data"
$form = $this->createForm(new BlogType());

}

By default, empty_data is set to null. Or, if you have specified a data_class option for your form class,
it will default to a new instance of that class. That instance will be created by calling the constructor with
no arguments.

If you want to override this default behavior, there are two ways to do this.

Option 1: Instantiate a new Class
One reason you might use this option is if you want to use a constructor that takes arguments.
Remember, the default data_class option calls that constructor with no arguments:

1
2
3
4
5

// src/AppBundle/Form/Type/BlogType.php

// ...
use Symfony\Component\Form\AbstractType;
use AppBundle\Entity\Blog;

PDF brought to you by
generated on March 11, 2015

Chapter 67: How to Configure empty Data for a Form Class | 271

http://sensiolabs.com


Listing 67-3

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class BlogType extends AbstractType
{

private $someDependency;

public function __construct($someDependency)
{

$this->someDependency = $someDependency;
}
// ...

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'empty_data' => new Blog($this->someDependency),

));
}

}

You can instantiate your class however you want. In this example, we pass some dependency into the
BlogType when we instantiate it, then use that to instantiate the Blog class. The point is, you can set
empty_data to the exact "new" object that you want to use.

Option 2: Provide a Closure
Using a closure is the preferred method, since it will only create the object if it is needed.

The closure must accept a FormInterface instance as the first argument:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\OptionsResolver\OptionsResolverInterface;
use Symfony\Component\Form\FormInterface;
// ...

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'empty_data' => function (FormInterface $form) {

return new Blog($form->get('title')->getData());
},

));
}

PDF brought to you by
generated on March 11, 2015

Chapter 67: How to Configure empty Data for a Form Class | 272

http://sensiolabs.com


Listing 68-1

Chapter 68

How to Use the submit() Function to Handle
Form Submissions

New in version 2.3: The handleRequest()1 method was introduced in Symfony 2.3.

With the handleRequest() method, it is really easy to handle form submissions:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

use Symfony\Component\HttpFoundation\Request;
// ...

public function newAction(Request $request)
{

$form = $this->createFormBuilder()
// ...
->getForm();

$form->handleRequest($request);

if ($form->isValid()) {
// perform some action...

return $this->redirect($this->generateUrl('task_success'));
}

return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
'form' => $form->createView(),

));
}

To see more about this method, read Handling Form Submissions.

1. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#handleRequest()

PDF brought to you by
generated on March 11, 2015

Chapter 68: How to Use the submit() Function to Handle Form Submissions | 273

http://sensiolabs.com


Listing 68-2

Listing 68-3

Listing 68-4

Calling Form::submit() manually
New in version 2.3: Before Symfony 2.3, the submit() method was known as bind().

In some cases, you want better control over when exactly your form is submitted and what data is passed
to it. Instead of using the handleRequest()2 method, pass the submitted data directly to submit()3:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

use Symfony\Component\HttpFoundation\Request;
// ...

public function newAction(Request $request)
{

$form = $this->createFormBuilder()
// ...
->getForm();

if ($request->isMethod('POST')) {
$form->submit($request->request->get($form->getName()));

if ($form->isValid()) {
// perform some action...

return $this->redirect($this->generateUrl('task_success'));
}

}

return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
'form' => $form->createView(),

));
}

Forms consisting of nested fields expect an array in submit()4. You can also submit individual
fields by calling submit()5 directly on the field:

1 $form->get('firstName')->submit('Fabien');

Passing a Request to Form::submit() (Deprecated)
New in version 2.3: Before Symfony 2.3, the submit method was known as bind.

Before Symfony 2.3, the submit()6 method accepted a Request7 object as a convenient shortcut to the
previous example:

1
2
3
4

use Symfony\Component\HttpFoundation\Request;
// ...

public function newAction(Request $request)

2. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#handleRequest()

3. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#submit()

4. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#submit()

5. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#submit()

6. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#submit()

7. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by
generated on March 11, 2015

Chapter 68: How to Use the submit() Function to Handle Form Submissions | 274

http://sensiolabs.com


5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

{
$form = $this->createFormBuilder()

// ...
->getForm();

if ($request->isMethod('POST')) {
$form->submit($request);

if ($form->isValid()) {
// perform some action...

return $this->redirect($this->generateUrl('task_success'));
}

}

return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
'form' => $form->createView(),

));
}

Passing the Request8 directly to submit()9 still works, but is deprecated and will be removed in Symfony
3.0. You should use the method handleRequest()10 instead.

8. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html

9. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#submit()

10. http://api.symfony.com/2.6/Symfony/Component/Form/FormInterface.html#handleRequest()

PDF brought to you by
generated on March 11, 2015

Chapter 68: How to Use the submit() Function to Handle Form Submissions | 275

http://sensiolabs.com


Chapter 69

How to Use the virtual Form Field Option

As of Symfony 2.3, the virtual option is renamed to inherit_data. You can read everything about the
new option in "How to Reduce Code Duplication with "inherit_data"".

PDF brought to you by
generated on March 11, 2015

Chapter 69: How to Use the virtual Form Field Option | 276

http://sensiolabs.com


Listing 70-1

Chapter 70

How to Use Monolog to Write Logs

Monolog1 is a logging library for PHP used by Symfony. It is inspired by the Python LogBook library.

Usage
To log a message simply get the logger service from the container in your controller:

1
2
3
4
5
6
7
8

public function indexAction()
{

$logger = $this->get('logger');
$logger->info('I just got the logger');
$logger->error('An error occurred');

// ...
}

The logger service has different methods for different logging levels. See LoggerInterface2 for details on
which methods are available.

Handlers and Channels: Writing Logs to different Locations
In Monolog each logger defines a logging channel, which organizes your log messages into different
"categories". Then, each channel has a stack of handlers to write the logs (the handlers can be shared).

When injecting the logger in a service you can use a custom channel control which "channel" the
logger will log to.

1. https://github.com/Seldaek/monolog

2. https://github.com/php-fig/log/blob/master/Psr/Log/LoggerInterface.php

PDF brought to you by
generated on March 11, 2015

Chapter 70: How to Use Monolog to Write Logs | 277

http://sensiolabs.com


Listing 70-2

Listing 70-3

The basic handler is the StreamHandler which writes logs in a stream (by default in the app/logs/
prod.log in the prod environment and app/logs/dev.log in the dev environment).

Monolog comes also with a powerful built-in handler for the logging in prod environment:
FingersCrossedHandler. It allows you to store the messages in a buffer and to log them only if a message
reaches the action level (error in the configuration provided in the Standard Edition) by forwarding the
messages to another handler.

Using several Handlers

The logger uses a stack of handlers which are called successively. This allows you to log the messages in
several ways easily.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

# app/config/config.yml
monolog:

handlers:
applog:

type: stream
path: /var/log/symfony.log
level: error

main:
type: fingers_crossed
action_level: warning
handler: file

file:
type: stream
level: debug

syslog:
type: syslog
level: error

The above configuration defines a stack of handlers which will be called in the order they are defined.

The handler named "file" will not be included in the stack itself as it is used as a nested handler of
the fingers_crossed handler.

If you want to change the config of MonologBundle in another config file you need to redefine the
whole stack. It cannot be merged because the order matters and a merge does not allow to control
the order.

Changing the Formatter

The handler uses a Formatter to format the record before logging it. All Monolog handlers use an
instance of Monolog\Formatter\LineFormatter by default but you can replace it easily. Your formatter
must implement Monolog\Formatter\FormatterInterface.

1
2
3
4
5
6
7

# app/config/config.yml
services:

my_formatter:
class: Monolog\Formatter\JsonFormatter

monolog:
handlers:

file:

PDF brought to you by
generated on March 11, 2015

Chapter 70: How to Use Monolog to Write Logs | 278

http://sensiolabs.com


Listing 70-4

Listing 70-5

8
9

10

type: stream
level: debug
formatter: my_formatter

Adding some extra Data in the Log Messages
Monolog allows you to process the record before logging it to add some extra data. A processor can be
applied for the whole handler stack or only for a specific handler.

A processor is simply a callable receiving the record as its first argument.

Processors are configured using the monolog.processor DIC tag. See the reference about it.

Adding a Session/Request Token

Sometimes it is hard to tell which entries in the log belong to which session and/or request. The following
example will add a unique token for each request using a processor.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

namespace Acme\MyBundle;

use Symfony\Component\HttpFoundation\Session\Session;

class SessionRequestProcessor
{

private $session;
private $token;

public function __construct(Session $session)
{

$this->session = $session;
}

public function processRecord(array $record)
{

if (null === $this->token) {
try {

$this->token = substr($this->session->getId(), 0, 8);
} catch (\RuntimeException $e) {

$this->token = '????????';
}
$this->token .= '-' . substr(uniqid(), -8);

}
$record['extra']['token'] = $this->token;

return $record;
}

}

1
2
3
4
5
6
7

# app/config/config.yml
services:

monolog.formatter.session_request:
class: Monolog\Formatter\LineFormatter
arguments:

- "[%%datetime%%] [%%extra.token%%] %%channel%%.%%level_name%%: %%message%%\n"

PDF brought to you by
generated on March 11, 2015

Chapter 70: How to Use Monolog to Write Logs | 279

http://sensiolabs.com


Listing 70-6

Listing 70-7

8
9

10
11
12
13
14
15
16
17
18
19
20

monolog.processor.session_request:
class: Acme\MyBundle\SessionRequestProcessor
arguments: ["@session"]
tags:

- { name: monolog.processor, method: processRecord }

monolog:
handlers:

main:
type: stream
path: "%kernel.logs_dir%/%kernel.environment%.log"
level: debug
formatter: monolog.formatter.session_request

If you use several handlers, you can also register a processor at the handler level or at the channel
level instead of registering it globally (see the following sections).

Registering Processors per Handler
You can register a processor per handler using the handler option of the monolog.processor tag:

1
2
3
4
5
6
7

# app/config/config.yml
services:

monolog.processor.session_request:
class: Acme\MyBundle\SessionRequestProcessor
arguments: ["@session"]
tags:

- { name: monolog.processor, method: processRecord, handler: main }

Registering Processors per Channel
You can register a processor per channel using the channel option of the monolog.processor tag:

1
2
3
4
5
6
7

# app/config/config.yml
services:

monolog.processor.session_request:
class: Acme\MyBundle\SessionRequestProcessor
arguments: ["@session"]
tags:

- { name: monolog.processor, method: processRecord, channel: main }

PDF brought to you by
generated on March 11, 2015

Chapter 70: How to Use Monolog to Write Logs | 280

http://sensiolabs.com


Listing 71-1

Chapter 71

How to Configure Monolog to Email Errors

Monolog1 can be configured to send an email when an error occurs with an application. The configuration
for this requires a few nested handlers in order to avoid receiving too many emails. This configuration
looks complicated at first but each handler is fairly straight forward when it is broken down.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

# app/config/config_prod.yml
monolog:

handlers:
mail:

type: fingers_crossed
# 500 errors are logged at the critical level
action_level: critical
# to also log 400 level errors (but not 404's):
# action_level: error
# excluded_404s:
#     - ^/
handler: buffered

buffered:
type: buffer
handler: swift

swift:
type: swift_mailer
from_email: error@example.com
to_email: error@example.com
# or list of recipients
# to_email:   [dev1@example.com, dev2@example.com, ...]
subject: An Error Occurred!
level: debug

The mail handler is a fingers_crossed handler which means that it is only triggered when the action
level, in this case critical is reached. It then logs everything including messages below the action level.
The critical level is only triggered for 5xx HTTP code errors. The handler setting means that the
output is then passed onto the buffered handler.

1. https://github.com/Seldaek/monolog

PDF brought to you by
generated on March 11, 2015

Chapter 71: How to Configure Monolog to Email Errors | 281

http://sensiolabs.com


Listing 71-2

If you want both 400 level and 500 level errors to trigger an email, set the action_level to error
instead of critical. See the code above for an example.

The buffered handler simply keeps all the messages for a request and then passes them onto the nested
handler in one go. If you do not use this handler then each message will be emailed separately. This is
then passed to the swift handler. This is the handler that actually deals with emailing you the error. The
settings for this are straightforward, the to and from addresses and the subject.

You can combine these handlers with other handlers so that the errors still get logged on the server as
well as the emails being sent:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

# app/config/config_prod.yml
monolog:

handlers:
main:

type: fingers_crossed
action_level: critical
handler: grouped

grouped:
type: group
members: [streamed, buffered]

streamed:
type: stream
path: "%kernel.logs_dir%/%kernel.environment%.log"
level: debug

buffered:
type: buffer
handler: swift

swift:
type: swift_mailer
from_email: error@example.com
to_email: error@example.com
subject: An Error Occurred!
level: debug

This uses the group handler to send the messages to the two group members, the buffered and the
stream handlers. The messages will now be both written to the log file and emailed.

PDF brought to you by
generated on March 11, 2015

Chapter 71: How to Configure Monolog to Email Errors | 282

http://sensiolabs.com


Listing 72-1

Listing 72-2

Chapter 72

How to Configure Monolog to Display Console
Messages

It is possible to use the console to print messages for certain verbosity levels using the OutputInterface1

instance that is passed when a command gets executed.

Alternatively, you can use the standalone PSR-3 logger provided with the console component.

When a lot of logging has to happen, it's cumbersome to print information depending on the verbosity
settings (-v, -vv, -vvv) because the calls need to be wrapped in conditions. The code quickly gets verbose
or dirty. For example:

1
2
3
4
5
6
7
8
9

10
11
12
13

use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

protected function execute(InputInterface $input, OutputInterface $output)
{

if ($output->getVerbosity() >= OutputInterface::VERBOSITY_DEBUG) {
$output->writeln('Some info');

}

if ($output->getVerbosity() >= OutputInterface::VERBOSITY_VERBOSE) {
$output->writeln('Some more info');

}
}

Instead of using these semantic methods to test for each of the verbosity levels, the MonologBridge2

provides a ConsoleHandler3 that listens to console events and writes log messages to the console output
depending on the current log level and the console verbosity.

The example above could then be rewritten as:

1. http://api.symfony.com/2.6/Symfony/Component/Console/Output/OutputInterface.html

2. https://github.com/symfony/MonologBridge

3. https://github.com/symfony/MonologBridge/blob/master/Handler/ConsoleHandler.php

PDF brought to you by
generated on March 11, 2015

Chapter 72: How to Configure Monolog to Display Console Messages | 283

http://sensiolabs.com


Listing 72-3

Listing 72-4

Listing 72-5

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

protected function execute(InputInterface $input, OutputInterface $output)
{

// assuming the Command extends ContainerAwareCommand...
$logger = $this->getContainer()->get('logger');
$logger->debug('Some info');

$logger->notice('Some more info');
}

Depending on the verbosity level that the command is run in and the user's configuration (see below),
these messages may or may not be displayed to the console. If they are displayed, they are timestamped
and colored appropriately. Additionally, error logs are written to the error output (php://stderr). There
is no need to conditionally handle the verbosity settings anymore.

The Monolog console handler is enabled in the Monolog configuration. This is the default in Symfony
Standard Edition 2.4 too.

1
2
3
4
5

# app/config/config.yml
monolog:

handlers:
console:

type: console

With the verbosity_levels option you can adapt the mapping between verbosity and log level. In
the given example it will also show notices in normal verbosity mode (instead of warnings only).
Additionally, it will only use messages logged with the custom my_channel channel and it changes the
display style via a custom formatter (see the MonologBundle reference for more information):

1
2
3
4
5
6
7
8
9

# app/config/config.yml
monolog:

handlers:
console:

type: console
verbosity_levels:

VERBOSITY_NORMAL: NOTICE
channels: my_channel
formatter: my_formatter

1
2
3
4
5
6

# app/config/services.yml
services:

my_formatter:
class: Symfony\Bridge\Monolog\Formatter\ConsoleFormatter
arguments:

- "[%%datetime%%] %%start_tag%%%%message%%%%end_tag%% (%%level_name%%)
%%context%% %%extra%%\n"

PDF brought to you by
generated on March 11, 2015

Chapter 72: How to Configure Monolog to Display Console Messages | 284

http://sensiolabs.com


Listing 73-1

Chapter 73

How to Configure Monolog to Exclude 404
Errors from the Log

Sometimes your logs become flooded with unwanted 404 HTTP errors, for example, when an attacker
scans your app for some well-known application paths (e.g. /phpmyadmin). When using a
fingers_crossed handler, you can exclude logging these 404 errors based on a regular expression in the
MonologBundle configuration:

1
2
3
4
5
6
7
8
9

# app/config/config.yml
monolog:

handlers:
main:

# ...
type: fingers_crossed
handler: ...
excluded_404s:

- ^/phpmyadmin

PDF brought to you by
generated on March 11, 2015

Chapter 73: How to Configure Monolog to Exclude 404 Errors from the Log | 285

http://sensiolabs.com


Listing 74-1

Listing 74-2

Chapter 74

How to Log Messages to different Files

The Symfony Standard Edition contains a bunch of channels for logging: doctrine, event, security
and request. Each channel corresponds to a logger service (monolog.logger.XXX) in the container and
is injected to the concerned service. The purpose of channels is to be able to organize different types of
log messages.

By default, Symfony logs every message into a single file (regardless of the channel).

Switching a Channel to a different Handler
Now, suppose you want to log the doctrine channel to a different file.

To do so, just create a new handler and configure it like this:

1
2
3
4
5
6
7
8
9

10
11

# app/config/config.yml
monolog:

handlers:
main:

type: stream
path: /var/log/symfony.log
channels: ["!doctrine"]

doctrine:
type: stream
path: /var/log/doctrine.log
channels: [doctrine]

YAML Specification
You can specify the configuration by many forms:

1
2
3

channels: ~ # Include all the channels

channels: foo # Include only channel "foo"

PDF brought to you by
generated on March 11, 2015

Chapter 74: How to Log Messages to different Files | 286

http://sensiolabs.com


Listing 74-3

4
5
6
7

channels: "!foo" # Include all channels, except "foo"

channels: [foo, bar] # Include only channels "foo" and "bar"
channels: ["!foo", "!bar"] # Include all channels, except "foo" and "bar"

Creating your own Channel
You can change the channel monolog logs to one service at a time. This is done either via the
configuration below or by tagging your service with monolog.logger and specifying which channel the
service should log to. With the tag, the logger that is injected into that service is preconfigured to use the
channel you've specified.

Configure Additional Channels without Tagged Services

With MonologBundle 2.4 you can configure additional channels without the need to tag your services:

1
2
3

# app/config/config.yml
monolog:

channels: ["foo", "bar"]

With this, you can now send log messages to the foo channel by using the automatically registered logger
service monolog.logger.foo.

Learn more from the Cookbook
• How to Use Monolog to Write Logs

PDF brought to you by
generated on March 11, 2015

Chapter 74: How to Log Messages to different Files | 287

http://sensiolabs.com


Listing 75-1

Chapter 75

How to Create a custom Data Collector

The Symfony Profiler delegates data collecting to data collectors. Symfony comes bundled with a few of
them, but you can easily create your own.

Creating a custom Data Collector
Creating a custom data collector is as simple as implementing the DataCollectorInterface1:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

interface DataCollectorInterface
{

/**
* Collects data for the given Request and Response.
*
* @param Request    $request   A Request instance
* @param Response   $response  A Response instance
* @param \Exception $exception An Exception instance
*/
function collect(Request $request, Response $response, \Exception $exception = null);

/**
* Returns the name of the collector.
*
* @return string The collector name
*/
function getName();

}

The getName() method must return a unique name. This is used to access the information later on (see
How to Use the Profiler in a Functional Test for instance).

The collect() method is responsible for storing the data it wants to give access to in local properties.

1. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/DataCollector/DataCollectorInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 75: How to Create a custom Data Collector | 288

http://sensiolabs.com


Listing 75-2

Listing 75-3

Listing 75-4

As the profiler serializes data collector instances, you should not store objects that cannot be
serialized (like PDO objects), or you need to provide your own serialize() method.

Most of the time, it is convenient to extend DataCollector2 and populate the $this->data property (it
takes care of serializing the $this->data property):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

class MemoryDataCollector extends DataCollector
{

public function collect(Request $request, Response $response, \Exception $exception =
null)

{
$this->data = array(

'memory' => memory_get_peak_usage(true),
);

}

public function getMemory()
{

return $this->data['memory'];
}

public function getName()
{

return 'memory';
}

}

Enabling custom Data Collectors
To enable a data collector, add it as a regular service in one of your configuration, and tag it with
data_collector:

1
2
3
4
5

services:
data_collector.your_collector_name:

class: Fully\Qualified\Collector\Class\Name
tags:

- { name: data_collector }

Adding Web Profiler Templates
When you want to display the data collected by your data collector in the web debug toolbar or the web
profiler, create a Twig template following this skeleton:

1
2
3
4
5

{% extends 'WebProfilerBundle:Profiler:layout.html.twig' %}

{% block toolbar %}
{# the web debug toolbar content #}

{% endblock %}

2. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/DataCollector/DataCollector.html

PDF brought to you by
generated on March 11, 2015

Chapter 75: How to Create a custom Data Collector | 289

http://sensiolabs.com


Listing 75-5

Listing 75-6

Listing 75-7

6
7
8
9

10
11
12
13
14
15
16
17

{% block head %}
{# if the web profiler panel needs some specific JS or CSS files #}

{% endblock %}

{% block menu %}
{# the menu content #}

{% endblock %}

{% block panel %}
{# the panel content #}

{% endblock %}

Each block is optional. The toolbar block is used for the web debug toolbar and menu and panel are
used to add a panel to the web profiler.

All blocks have access to the collector object.

Built-in templates use a base64 encoded image for the toolbar:

1 <img src="data:image/png;base64,..." />

You can easily calculate the base64 value for an image with this little script:

1
2
3

#!/usr/bin/env php
<?php
echo base64_encode(file_get_contents($_SERVER['argv'][1]));

To enable the template, add a template attribute to the data_collector tag in your configuration. For
example, assuming your template is in some AcmeDebugBundle:

1
2
3
4
5

services:
data_collector.your_collector_name:

class: Acme\DebugBundle\Collector\Class\Name
tags:

- { name: data_collector, template: "AcmeDebugBundle:Collector:templatename",
id: "your_collector_name" }

PDF brought to you by
generated on March 11, 2015

Chapter 75: How to Create a custom Data Collector | 290

http://sensiolabs.com


Listing 76-1

Chapter 76

How to Use Matchers to Enable the Profiler
Conditionally

By default, the profiler is only activated in the development environment. But it's imaginable that a
developer may want to see the profiler even in production. Another situation may be that you want to
show the profiler only when an admin has logged in. You can enable the profiler in these situations by
using matchers.

Using the built-in Matcher
Symfony provides a built-in matcher1 which can match paths and IPs. For example, if you want to only
show the profiler when accessing the page with the 168.0.0.1 IP, then you can use this configuration:

1
2
3
4
5
6

# app/config/config.yml
framework:

# ...
profiler:

matcher:
ip: 168.0.0.1

You can also set a path option to define the path on which the profiler should be enabled. For instance,
setting it to ^/admin/ will enable the profiler only for the /admin/ URLs.

Creating a custom Matcher
You can also create a custom matcher. This is a service that checks whether the profiler should be
enabled or not. To create that service, create a class which implements RequestMatcherInterface2. This

1. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/RequestMatcher.html

2. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/RequestMatcherInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 76: How to Use Matchers to Enable the Profiler Conditionally | 291

http://sensiolabs.com


Listing 76-2

Listing 76-3

Listing 76-4

interface requires one method: matches()3. This method returns false to disable the profiler and true to
enable the profiler.

To enable the profiler when a ROLE_SUPER_ADMIN is logged in, you can use something like:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// src/AppBundle/Profiler/SuperAdminMatcher.php
namespace AppBundle\Profiler;

use Symfony\Component\Security\Core\Authorization\AuthorizationCheckerInterface;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\RequestMatcherInterface;

class SuperAdminMatcher implements RequestMatcherInterface
{

protected $authorizationChecker;

public function __construct(AuthorizationCheckerInterface $authorizationChecker)
{

$this->authorizationChecker = $authorizationChecker;
}

public function matches(Request $request)
{

return $this->authorizationChecker->isGranted('ROLE_SUPER_ADMIN');
}

}

New in version 2.6: The AuthorizationCheckerInterface4 was introduced in Symfony 2.6. Prior, you
had to use the isGranted method of SecurityContextInterface5.

Then, you need to configure the service:

1
2
3
4
5

# app/config/services.yml
services:

app.profiler.matcher.super_admin:
class: AppBundle\Profiler\SuperAdminMatcher
arguments: ["@security.authorization_checker"]

New in version 2.6: The security.authorization_checker service was introduced in Symfony 2.6.
Prior to Symfony 2.6, you had to use the isGranted() method of the security.context service.

Now the service is registered, the only thing left to do is configure the profiler to use this service as the
matcher:

1
2
3
4
5
6

# app/config/config.yml
framework:

# ...
profiler:

matcher:
service: app.profiler.matcher.super_admin

3. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/RequestMatcherInterface.html#matches()

4. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/AuthorizationCheckerInterface.html

5. http://api.symfony.com/2.6/Symfony/Component/Security/Core/SecurityContextInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 76: How to Use Matchers to Enable the Profiler Conditionally | 292

http://sensiolabs.com


Listing 77-1

Chapter 77

Switching the Profiler Storage

By default the profile stores the collected data in files in the cache directory. You can control the storage
being used through the dsn, username, password and lifetime options. For example, the following
configuration uses MySQL as the storage for the profiler with a lifetime of one hour:

1
2
3
4
5
6
7

# app/config/config.yml
framework:

profiler:
dsn: "mysql:host=localhost;dbname=%database_name%"
username: "%database_user%"
password: "%database_password%"
lifetime: 3600

The HttpKernel component currently supports the following profiler storage implementations:

• FileProfilerStorage1

• MemcachedProfilerStorage2

• MemcacheProfilerStorage3

• MongoDbProfilerStorage4

• MysqlProfilerStorage5

• RedisProfilerStorage6

• SqliteProfilerStorage7

1. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Profiler/FileProfilerStorage.html

2. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Profiler/MemcachedProfilerStorage.html

3. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Profiler/MemcacheProfilerStorage.html

4. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Profiler/MongoDbProfilerStorage.html

5. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Profiler/MysqlProfilerStorage.html

6. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Profiler/RedisProfilerStorage.html

7. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Profiler/SqliteProfilerStorage.html

PDF brought to you by
generated on March 11, 2015

Chapter 77: Switching the Profiler Storage | 293

http://sensiolabs.com


Listing 78-1

Chapter 78

How to Configure Symfony to Work behind a
Load Balancer or a Reverse Proxy

When you deploy your application, you may be behind a load balancer (e.g. an AWS Elastic Load
Balancer) or a reverse proxy (e.g. Varnish for caching).

For the most part, this doesn't cause any problems with Symfony. But, when a request passes through a
proxy, certain request information is sent using special X-Forwarded-* headers. For example, instead of
reading the REMOTE_ADDR header (which will now be the IP address of your reverse proxy), the user's true
IP will be stored in an X-Forwarded-For header.

If you don't configure Symfony to look for these headers, you'll get incorrect information about the
client's IP address, whether or not the client is connecting via HTTPS, the client's port and the hostname
being requested.

Solution: trusted_proxies
This is no problem, but you do need to tell Symfony that this is happening and which reverse proxy IP
addresses will be doing this type of thing:

1
2
3
4

# app/config/config.yml
# ...
framework:

trusted_proxies: [192.0.0.1, 10.0.0.0/8]

In this example, you're saying that your reverse proxy (or proxies) has the IP address 192.0.0.1 or
matches the range of IP addresses that use the CIDR notation 10.0.0.0/8. For more details, see the
framework.trusted_proxies option.

That's it! Symfony will now look for the correct X-Forwarded-* headers to get information like the
client's IP address, host, port and whether or not the request is using HTTPS.

PDF brought to you by
generated on March 11, 2015

Chapter 78: How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy | 294

http://sensiolabs.com


Listing 78-2

But what if the IP of my Reverse Proxy Changes Constantly!
Some reverse proxies (like Amazon's Elastic Load Balancers) don't have a static IP address or even a range
that you can target with the CIDR notation. In this case, you'll need to - very carefully - trust all proxies.

1. Configure your web server(s) to not respond to traffic from any clients other than your load
balancers. For AWS, this can be done with security groups1.

2. Once you've guaranteed that traffic will only come from your trusted reverse proxies, configure
Symfony to always trust incoming request. This is done inside of your front controller:

1
2
3
4
5
6
7

// web/app.php

// ...
Request::setTrustedProxies(array($request->server->get('REMOTE_ADDR')));

$response = $kernel->handle($request);
// ...

That's it! It's critical that you prevent traffic from all non-trusted sources. If you allow outside traffic, they
could "spoof" their true IP address and other information.

My Reverse Proxy Uses Non-Standard (not X-Forwarded) Headers
Most reverse proxies store information on specific X-Forwarded-* headers. But if your reverse proxy uses
non-standard header names, you can configure these (see "Trusting Proxies"). The code for doing this will
need to live in your front controller (e.g. web/app.php).

1. http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/using-elb-security-groups.html

PDF brought to you by
generated on March 11, 2015

Chapter 78: How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy | 295

http://sensiolabs.com


Listing 79-1

Chapter 79

How to Register a new Request Format and
Mime Type

Every Request has a "format" (e.g. html, json), which is used to determine what type of content to
return in the Response. In fact, the request format, accessible via getRequestFormat()1, is used to
set the MIME type of the Content-Type header on the Response object. Internally, Symfony contains
a map of the most common formats (e.g. html, json) and their associated MIME types (e.g. text/
html, application/json). Of course, additional format-MIME type entries can easily be added. This
document will show how you can add the jsonp format and corresponding MIME type.

New in version 2.5: The possibility to configure request formats was introduced in Symfony 2.5.

Configure your New Format
The FrameworkBundle registers a subscriber that will add formats to incoming requests.

All you have to do is to configure the jsonp format:

1
2
3
4
5

# app/config/config.yml
framework:

request:
formats:

jsonp: 'application/javascript'

1. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html#getRequestFormat()

PDF brought to you by
generated on March 11, 2015

Chapter 79: How to Register a new Request Format and Mime Type | 296

http://sensiolabs.com


Listing 79-2

You can also associate multiple mime types to a format, but please note that the preferred one must
be the first as it will be used as the content type:

1
2
3
4
5

# app/config/config.yml
framework:

request:
formats:

csv: ['text/csv', 'text/plain']

PDF brought to you by
generated on March 11, 2015

Chapter 79: How to Register a new Request Format and Mime Type | 297

http://sensiolabs.com


Listing 80-1

Listing 80-2

Chapter 80

How to Force Routes to always Use HTTPS or
HTTP

Sometimes, you want to secure some routes and be sure that they are always accessed via the HTTPS
protocol. The Routing component allows you to enforce the URI scheme via schemes:

1
2
3
4

secure:
path: /secure
defaults: { _controller: AppBundle:Main:secure }
schemes: [https]

The above configuration forces the secure route to always use HTTPS.

When generating the secure URL, and if the current scheme is HTTP, Symfony will automatically
generate an absolute URL with HTTPS as the scheme:

1
2
3
4
5
6
7

{# If the current scheme is HTTPS #}
{{ path('secure') }}
{# generates /secure #}

{# If the current scheme is HTTP #}
{{ path('secure') }}
{# generates https://example.com/secure #}

The requirement is also enforced for incoming requests. If you try to access the /secure path with HTTP,
you will automatically be redirected to the same URL, but with the HTTPS scheme.

The above example uses https for the scheme, but you can also force a URL to always use http.

The Security component provides another way to enforce HTTP or HTTPS via the
requires_channel setting. This alternative method is better suited to secure an "area" of your
website (all URLs under /admin) or when you want to secure URLs defined in a third party bundle
(see How to Force HTTPS or HTTP for different URLs for more details).

PDF brought to you by
generated on March 11, 2015

Chapter 80: How to Force Routes to always Use HTTPS or HTTP | 298

http://sensiolabs.com


Listing 81-1

Chapter 81

How to Allow a "/" Character in a Route
Parameter

Sometimes, you need to compose URLs with parameters that can contain a slash /. For example, take
the classic /hello/{username} route. By default, /hello/Fabien will match this route but not /hello/
Fabien/Kris. This is because Symfony uses this character as separator between route parts.

This guide covers how you can modify a route so that /hello/Fabien/Kris matches the /hello/
{username} route, where {username} equals Fabien/Kris.

Configure the Route
By default, the Symfony Routing component requires that the parameters match the following regex
path: [^/]+. This means that all characters are allowed except /.

You must explicitly allow / to be part of your parameter by specifying a more permissive regex path.

1
2
3
4
5
6
7
8
9

10
11
12

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class DemoController
{

/**
* @Route("/hello/{name}", name="_hello", requirements={"name"=".+"})
*/
public function helloAction($name)
{

// ...
}

}

That's it! Now, the {username} parameter can contain the / character.

PDF brought to you by
generated on March 11, 2015

Chapter 81: How to Allow a "/" Character in a Route Parameter | 299

http://sensiolabs.com


Listing 82-1

Chapter 82

How to Configure a Redirect without a custom
Controller

Sometimes, a URL needs to redirect to another URL. You can do that by creating a new controller action
whose only task is to redirect, but using the RedirectController1 of the FrameworkBundle is even
easier.

You can redirect to a specific path (e.g. /about) or to a specific route using its name (e.g. homepage).

Redirecting Using a Path
Assume there is no default controller for the / path of your application and you want to redirect these
requests to /app. You will need to use the urlRedirect()2 action to redirect to this new url:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

# app/config/routing.yml

# load some routes - one should ultimately have the path "/app"
AppBundle:

resource: "@AppBundle/Controller/"
type: annotation
prefix: /app

# redirecting the root
root:

path: /
defaults:

_controller: FrameworkBundle:Redirect:urlRedirect
path: /app
permanent: true

1. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/RedirectController.html

2. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/RedirectController.html#urlRedirect()

PDF brought to you by
generated on March 11, 2015

Chapter 82: How to Configure a Redirect without a custom Controller | 300

http://sensiolabs.com


Listing 82-2

In this example, you configured a route for the / path and let the RedirectController redirect it to
/app. The permanent switch tells the action to issue a 301 HTTP status code instead of the default 302
HTTP status code.

Redirecting Using a Route
Assume you are migrating your website from WordPress to Symfony, you want to redirect /wp-admin
to the route sonata_admin_dashboard. You don't know the path, only the route name. This can be
achieved using the redirect()3 action:

1
2
3
4
5
6
7
8
9

10
11

# app/config/routing.yml

# ...

# redirecting the admin home
root:

path: /wp-admin
defaults:

_controller: FrameworkBundle:Redirect:redirect
route: sonata_admin_dashboard
permanent: true

Because you are redirecting to a route instead of a path, the required option is called route in the
redirect action, instead of path in the urlRedirect action.

3. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Controller/RedirectController.html#redirect()

PDF brought to you by
generated on March 11, 2015

Chapter 82: How to Configure a Redirect without a custom Controller | 301

http://sensiolabs.com


Listing 83-1

Chapter 83

How to Use HTTP Methods beyond GET and
POST in Routes

The HTTP method of a request is one of the requirements that can be checked when seeing if it matches
a route. This is introduced in the routing chapter of the book "Routing" with examples using GET and
POST. You can also use other HTTP verbs in this way. For example, if you have a blog post entry then
you could use the same URL path to show it, make changes to it and delete it by matching on GET, PUT
and DELETE.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

blog_show:
path: /blog/{slug}
defaults: { _controller: AppBundle:Blog:show }
methods: [GET]

blog_update:
path: /blog/{slug}
defaults: { _controller: AppBundle:Blog:update }
methods: [PUT]

blog_delete:
path: /blog/{slug}
defaults: { _controller: AppBundle:Blog:delete }
methods: [DELETE]

Faking the Method with _method

The _method functionality shown here is disabled by default in Symfony 2.2 and enabled by
default in Symfony 2.3. To control it in Symfony 2.2, you must call
Request::enableHttpMethodParameterOverride1 before you handle the request (e.g. in your
front controller). In Symfony 2.3, use the http_method_override option.

PDF brought to you by
generated on March 11, 2015

Chapter 83: How to Use HTTP Methods beyond GET and POST in Routes | 302

http://sensiolabs.com


Unfortunately, life isn't quite this simple, since most browsers do not support sending PUT and DELETE
requests. Fortunately, Symfony provides you with a simple way of working around this limitation. By
including a _method parameter in the query string or parameters of an HTTP request, Symfony will use
this as the method when matching routes. Forms automatically include a hidden field for this parameter
if their submission method is not GET or POST. See the related chapter in the forms documentation for
more information.

1. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html#enableHttpMethodParameterOverride()

PDF brought to you by
generated on March 11, 2015

Chapter 83: How to Use HTTP Methods beyond GET and POST in Routes | 303

http://sensiolabs.com


Listing 84-1

Listing 84-2

Listing 84-3

Chapter 84

How to Use Service Container Parameters in
your Routes

Sometimes you may find it useful to make some parts of your routes globally configurable. For instance,
if you build an internationalized site, you'll probably start with one or two locales. Surely you'll add a
requirement to your routes to prevent a user from matching a locale other than the locales you support.

You could hardcode your _locale requirement in all your routes, but a better solution is to use a
configurable service container parameter right inside your routing configuration:

1
2
3
4
5
6

# app/config/routing.yml
contact:

path: /{_locale}/contact
defaults: { _controller: AppBundle:Main:contact }
requirements:

_locale: "%app.locales%"

You can now control and set the app.locales parameter somewhere in your container:

1
2
3

# app/config/config.yml
parameters:

app.locales: en|es

You can also use a parameter to define your route path (or part of your path):

1
2
3
4

# app/config/routing.yml
some_route:

path: /%app.route_prefix%/contact
defaults: { _controller: AppBundle:Main:contact }

PDF brought to you by
generated on March 11, 2015

Chapter 84: How to Use Service Container Parameters in your Routes | 304

http://sensiolabs.com


Just like in normal service container configuration files, if you actually need a % in your route, you
can escape the percent sign by doubling it, e.g. /score-50%%, which would resolve to /score-50%.

However, as the % characters included in any URL are automatically encoded, the resulting URL of
this example would be /score-50%25 (%25 is the result of encoding the % character).

For parameter handling within a Dependency Injection class see Using Parameters within a Dependency
Injection Class.

PDF brought to you by
generated on March 11, 2015

Chapter 84: How to Use Service Container Parameters in your Routes | 305

http://sensiolabs.com


Listing 85-1

Chapter 85

How to Create a custom Route Loader

A custom route loader allows you to add routes to an application without including them, for example,
in a YAML file. This comes in handy when you have a bundle but don't want to manually add the routes
for the bundle to app/config/routing.yml. This may be especially important when you want to make
the bundle reusable, or when you have open-sourced it as this would slow down the installation process
and make it error-prone.

Alternatively, you could also use a custom route loader when you want your routes to be automatically
generated or located based on some convention or pattern. One example is the FOSRestBundle1 where
routing is generated based off the names of the action methods in a controller.

There are many bundles out there that use their own route loaders to accomplish cases like
those described above, for instance FOSRestBundle2, JMSI18nRoutingBundle3, KnpRadBundle4 and
SonataAdminBundle5.

Loading Routes
The routes in a Symfony application are loaded by the DelegatingLoader6. This loader uses several other
loaders (delegates) to load resources of different types, for instance YAML files or @Route and @Method
annotations in controller files. The specialized loaders implement LoaderInterface7 and therefore have
two important methods: supports()8 and load()9.

Take these lines from the routing.yml in the AcmeDemoBundle of the Standard Edition:

1. https://github.com/FriendsOfSymfony/FOSRestBundle

2. https://github.com/FriendsOfSymfony/FOSRestBundle

3. https://github.com/schmittjoh/JMSI18nRoutingBundle

4. https://github.com/KnpLabs/KnpRadBundle

5. https://github.com/sonata-project/SonataAdminBundle

6. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Routing/DelegatingLoader.html

7. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html

8. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html#supports()

9. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html#load()

PDF brought to you by
generated on March 11, 2015

Chapter 85: How to Create a custom Route Loader | 306

http://sensiolabs.com


Listing 85-2

1
2
3
4
5

# src/Acme/DemoBundle/Resources/config/routing.yml
_demo:

resource: "@AcmeDemoBundle/Controller/DemoController.php"
type: annotation
prefix: /demo

When the main loader parses this, it tries all the delegate loaders and calls their supports()10 method
with the given resource (@AcmeDemoBundle/Controller/DemoController.php) and type (annotation)
as arguments. When one of the loader returns true, its load()11 method will be called, which should
return a RouteCollection12 containing Route13 objects.

Creating a custom Loader
To load routes from some custom source (i.e. from something other than annotations, YAML or XML
files), you need to create a custom route loader. This loader should implement LoaderInterface14.

The sample loader below supports loading routing resources with a type of extra. The type extra isn't
important - you can just invent any resource type you want. The resource name itself is not actually used
in the example:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

namespace Acme\DemoBundle\Routing;

use Symfony\Component\Config\Loader\LoaderInterface;
use Symfony\Component\Config\Loader\LoaderResolverInterface;
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\RouteCollection;

class ExtraLoader implements LoaderInterface
{

private $loaded = false;

public function load($resource, $type = null)
{

if (true === $this->loaded) {
throw new \RuntimeException('Do not add the "extra" loader twice');

}

$routes = new RouteCollection();

// prepare a new route
$path = '/extra/{parameter}';
$defaults = array(

'_controller' => 'AcmeDemoBundle:Demo:extra',
);
$requirements = array(

'parameter' => '\d+',
);
$route = new Route($path, $defaults, $requirements);

// add the new route to the route collection:

10. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html#supports()

11. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html#load()

12. http://api.symfony.com/2.6/Symfony/Component/Routing/RouteCollection.html

13. http://api.symfony.com/2.6/Symfony/Component/Routing/Route.html

14. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 85: How to Create a custom Route Loader | 307

http://sensiolabs.com


Listing 85-3

Listing 85-4

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

$routeName = 'extraRoute';
$routes->add($routeName, $route);

$this->loaded = true;

return $routes;
}

public function supports($resource, $type = null)
{

return 'extra' === $type;
}

public function getResolver()
{

// needed, but can be blank, unless you want to load other resources
// and if you do, using the Loader base class is easier (see below)

}

public function setResolver(LoaderResolverInterface $resolver)
{

// same as above
}

}

Make sure the controller you specify really exists.

Now define a service for the ExtraLoader:

1
2
3
4
5

services:
acme_demo.routing_loader:

class: Acme\DemoBundle\Routing\ExtraLoader
tags:

- { name: routing.loader }

Notice the tag routing.loader. All services with this tag will be marked as potential route loaders and
added as specialized routers to the DelegatingLoader15.

Using the custom Loader

If you did nothing else, your custom routing loader would not be called. Instead, you only need to add a
few extra lines to the routing configuration:

1
2
3
4

# app/config/routing.yml
AcmeDemoBundle_Extra:

resource: .
type: extra

The important part here is the type key. Its value should be "extra". This is the type which the
ExtraLoader supports and this will make sure its load() method gets called. The resource key is
insignificant for the ExtraLoader, so it is set to ".".

15. http://api.symfony.com/2.6/Symfony/Bundle/FrameworkBundle/Routing/DelegatingLoader.html

PDF brought to you by
generated on March 11, 2015

Chapter 85: How to Create a custom Route Loader | 308

http://sensiolabs.com


Listing 85-5

The routes defined using custom route loaders will be automatically cached by the framework. So
whenever you change something in the loader class itself, don't forget to clear the cache.

More advanced Loaders
In most cases it's better not to implement LoaderInterface16 yourself, but extend from Loader17. This
class knows how to use a LoaderResolver18 to load secondary routing resources.

Of course you still need to implement supports()19 and load()20. Whenever you want to load another
resource - for instance a YAML routing configuration file - you can call the import()21 method:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

namespace Acme\DemoBundle\Routing;

use Symfony\Component\Config\Loader\Loader;
use Symfony\Component\Routing\RouteCollection;

class AdvancedLoader extends Loader
{

public function load($resource, $type = null)
{

$collection = new RouteCollection();

$resource = '@AcmeDemoBundle/Resources/config/import_routing.yml';
$type = 'yaml';

$importedRoutes = $this->import($resource, $type);

$collection->addCollection($importedRoutes);

return $collection;
}

public function supports($resource, $type = null)
{

return $type === 'advanced_extra';
}

}

The resource name and type of the imported routing configuration can be anything that would
normally be supported by the routing configuration loader (YAML, XML, PHP, annotation, etc.).

16. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html

17. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/Loader.html

18. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderResolver.html

19. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html#supports()

20. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/LoaderInterface.html#load()

21. http://api.symfony.com/2.6/Symfony/Component/Config/Loader/Loader.html#import()

PDF brought to you by
generated on March 11, 2015

Chapter 85: How to Create a custom Route Loader | 309

http://sensiolabs.com


Listing 86-1

Listing 86-2

Chapter 86

Redirect URLs with a Trailing Slash

The goal of this cookbook is to demonstrate how to redirect URLs with a trailing slash to the same URL
without a trailing slash (for example /en/blog/ to /en/blog).

Create a controller that will match any URL with a trailing slash, remove the trailing slash (keeping query
parameters if any) and redirect to the new URL with a 301 response status code:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// src/AppBundle/Controller/RedirectingController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;

class RedirectingController extends Controller
{

public function removeTrailingSlashAction(Request $request)
{

$pathInfo = $request->getPathInfo();
$requestUri = $request->getRequestUri();

$url = str_replace($pathInfo, rtrim($pathInfo, ' /'), $requestUri);

return $this->redirect($url, 301);
}

}

After that, create a route to this controller that's matched whenever a URL with a trailing slash is
requested. Be sure to put this route last in your system, as explained below:

1
2
3
4
5
6

remove_trailing_slash:
path: /{url}
defaults: { _controller: AppBundle:Redirecting:removeTrailingSlash }
requirements:

url: .*/$
methods: [GET]

PDF brought to you by
generated on March 11, 2015

Chapter 86: Redirect URLs with a Trailing Slash | 310

http://sensiolabs.com


Redirecting a POST request does not work well in old browsers. A 302 on a POST request would
send a GET request after the redirection for legacy reasons. For that reason, the route here only
matches GET requests.

Make sure to include this route in your routing configuration at the very end of your route listing.
Otherwise, you risk redirecting real routes (including Symfony core routes) that actually do have a
trailing slash in their path.

PDF brought to you by
generated on March 11, 2015

Chapter 86: Redirect URLs with a Trailing Slash | 311

http://sensiolabs.com


Listing 87-1

Listing 87-2

Chapter 87

How to Pass Extra Information from a Route to
a Controller

Parameters inside the defaults collection don't necessarily have to match a placeholder in the route
path. In fact, you can use the defaults array to specify extra parameters that will then be accessible as
arguments to your controller:

1
2
3
4
5
6
7

# app/config/routing.yml
blog:

path: /blog/{page}
defaults:

_controller: AppBundle:Blog:index
page: 1
title: "Hello world!"

Now, you can access this extra parameter in your controller:

1
2
3
4

public function indexAction($page, $title)
{

// ...
}

As you can see, the $title variable was never defined inside the route path, but you can still access its
value from inside your controller.

PDF brought to you by
generated on March 11, 2015

Chapter 87: How to Pass Extra Information from a Route to a Controller | 312

http://sensiolabs.com


Listing 88-1

Chapter 88

How to Build a Traditional Login Form

If you need a login form and are storing users in some sort of a database, then you should consider
using FOSUserBundle1, which helps you build your User object and gives you many routes and
controllers for common tasks like login, registration and forgot password.

In this entry, you'll build a traditional login form. Of course, when the user logs in, you can load your
users from anywhere - like the database. See B) Configuring how Users are Loaded for details.

This chapter assumes that you've followed the beginning of the security chapter and have http_basic
authentication working properly.

First, enable form login under your firewall:

1
2
3
4
5
6
7
8
9

10
11

# app/config/security.yml
security:

# ...

firewalls:
default:

anonymous: ~
http_basic: ~
form_login:

login_path: /login
check_path: /login_check

The login_path and check_path can also be route names (but cannot have mandatory wildcards
- e.g. /login/{foo} where foo has no default value).

Now, when the security system initiates the authentication process, it will redirect the user to the login
form /login. Implementing this login form visually is your job. First, create a new SecurityController
inside a bundle with an empty loginAction:

1. https://github.com/FriendsOfSymfony/FOSUserBundle

PDF brought to you by
generated on March 11, 2015

Chapter 88: How to Build a Traditional Login Form | 313

http://sensiolabs.com


Listing 88-2

Listing 88-3

Listing 88-4

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/SecurityController.php
namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class SecurityController extends Controller
{

public function loginAction(Request $request)
{

// todo...
}

}

Next, create two routes: one for each of the paths your configured earlier under your form_login
configuration (/login and /login_check):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// src/AppBundle/Controller/SecurityController.php
// ...
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class SecurityController extends Controller
{

/**
* @Route("/login", name="login_route")
*/
public function loginAction(Request $request)
{

// todo ...
}

/**
* @Route("/login_check", name="login_check")
*/
public function loginCheckAction()
{
}

}

Great! Next, add the logic to loginAction that will display the login form:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Controller/SecurityController.php
// ...

public function loginAction(Request $request)
{

$authenticationUtils = $this->get('security.authentication_utils');

// get the login error if there is one
$error = $authenticationUtils->getLastAuthenticationError();

// last username entered by the user
$lastUsername = $authenticationUtils->getLastUsername();

return $this->render(
'security/login.html.twig',
array(

PDF brought to you by
generated on March 11, 2015

Chapter 88: How to Build a Traditional Login Form | 314

http://sensiolabs.com


Listing 88-5

17
18
19
20
21
22

// last username entered by the user
'last_username' => $lastUsername,
'error' => $error,

)
);

}

New in version 2.6: The security.authentication_utils service and the AuthenticationUtils2 class
were introduced in Symfony 2.6.

Don't let this controller confuse you. As you'll see in a moment, when the user submits the form, the
security system automatically handles the form submission for you. If the user had submitted an invalid
username or password, this controller reads the form submission error from the security system so that it
can be displayed back to the user.

In other words, your job is to display the login form and any login errors that may have occurred, but the
security system itself takes care of checking the submitted username and password and authenticating
the user.

Finally, create the template:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

{# app/Resources/views/security/login.html.twig #}
{# ... you will probably extends your base template, like base.html.twig #}

{% if error %}
<div>{{ error.messageKey|trans(error.messageData) }}</div>

{% endif %}

<form action="{{ path('login_check') }}" method="post">
<label for="username">Username:</label>
<input type="text" id="username" name="_username" value="{{ last_username }}" />

<label for="password">Password:</label>
<input type="password" id="password" name="_password" />

{#
If you want to control the URL the user
is redirected to on success (more details below)
<input type="hidden" name="_target_path" value="/account" />

#}

<button type="submit">login</button>
</form>

The error variable passed into the template is an instance of AuthenticationException3. It may
contain more information - or even sensitive information - about the authentication failure, so use
it wisely!

The form can look like anything, but has a few requirements:

• The form must POST to /login_check, since that's what you configured under the
form_login key in security.yml.

• The username must have the name _username and the password must have the name
_password.

2. http://api.symfony.com/2.6/Symfony/Component/Security/Http/Authentication/AuthenticationUtils.html

3. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Exception/AuthenticationException.html

PDF brought to you by
generated on March 11, 2015

Chapter 88: How to Build a Traditional Login Form | 315

http://sensiolabs.com


Listing 88-6

Actually, all of this can be configured under the form_login key. See Form Login Configuration for
more details.

This login form is currently not protected against CSRF attacks. Read Using CSRF Protection in the
Login Form on how to protect your login form.

And that's it! When you submit the form, the security system will automatically check the user's
credentials and either authenticate the user or send the user back to the login form where the error can
be displayed.

To review the whole process:
1. The user tries to access a resource that is protected;
2. The firewall initiates the authentication process by redirecting the user to the login form

(/login);
3. The /login page renders login form via the route and controller created in this example;
4. The user submits the login form to /login_check;
5. The security system intercepts the request, checks the user's submitted credentials,

authenticates the user if they are correct, and sends the user back to the login form if they are
not.

Redirecting after Success
If the submitted credentials are correct, the user will be redirected to the original page that was requested
(e.g. /admin/foo). If the user originally went straight to the login page, they'll be redirected to the
homepage. This can all be customized, allowing you to, for example, redirect the user to a specific URL.

For more details on this and how to customize the form login process in general, see How to Customize
your Form Login.

Avoid common Pitfalls
When setting up your login form, watch out for a few common pitfalls.

1. Create the correct routes

First, be sure that you've defined the /login and /login_check routes correctly and that they correspond
to the login_path and check_path config values. A misconfiguration here can mean that you're
redirected to a 404 page instead of the login page, or that submitting the login form does nothing (you
just see the login form over and over again).

2. Be sure the login page isn't secure (redirect loop!)

Also, be sure that the login page is accessible by anonymous users. For example, the following
configuration - which requires the ROLE_ADMIN role for all URLs (including the /login URL), will cause
a redirect loop:

1
2
3
4
5

# app/config/security.yml

# ...
access_control:

- { path: ^/, roles: ROLE_ADMIN }

PDF brought to you by
generated on March 11, 2015

Chapter 88: How to Build a Traditional Login Form | 316

http://sensiolabs.com


Listing 88-7

Listing 88-8

Adding an access control that matches /login/* and requires no authentication fixes the problem:

1
2
3
4
5
6

# app/config/security.yml

# ...
access_control:

- { path: ^/login, roles: IS_AUTHENTICATED_ANONYMOUSLY }
- { path: ^/, roles: ROLE_ADMIN }

Also, if your firewall does not allow for anonymous users (no anonymous key), you'll need to create a
special firewall that allows anonymous users for the login page:

1
2
3
4
5
6
7
8
9

10
11

# app/config/security.yml

# ...
firewalls:

# order matters! This must be before the ^/ firewall
login_firewall:

pattern: ^/login$
anonymous: ~

secured_area:
pattern: ^/
form_login: ~

3. Be sure /login_check is behind a firewall

Next, make sure that your check_path URL (e.g. /login_check) is behind the firewall you're using
for your form login (in this example, the single firewall matches all URLs, including /login_check). If
/login_check doesn't match any firewall, you'll receive a Unable to find the controller for path
"/login_check" exception.

4. Multiple firewalls don't share the same security context

If you're using multiple firewalls and you authenticate against one firewall, you will not be authenticated
against any other firewalls automatically. Different firewalls are like different security systems. To do
this you have to explicitly specify the same Firewall Context for different firewalls. But usually for most
applications, having one main firewall is enough.

5. Routing error pages are not covered by firewalls

As routing is done before security, 404 error pages are not covered by any firewall. This means you can't
check for security or even access the user object on these pages. See How to Customize Error Pages for
more details.

PDF brought to you by
generated on March 11, 2015

Chapter 88: How to Build a Traditional Login Form | 317

http://sensiolabs.com


Listing 89-1

Chapter 89

How to Load Security Users from the Database
(the Entity Provider)

The security layer is one of the smartest tools of Symfony. It handles two things: the authentication
and the authorization processes. Although it may seem difficult to understand how it works internally,
the security system is very flexible and allows you to integrate your application with any authentication
backend, like Active Directory, an OAuth server or a database.

Introduction
This article focuses on how to authenticate users against a database table managed by a Doctrine entity
class. The content of this cookbook entry is split in three parts. The first part is about designing a
Doctrine User entity class and making it usable in the security layer of Symfony. The second part
describes how to easily authenticate a user with the Doctrine EntityUserProvider1 object bundled with
the framework and some configuration. Finally, the tutorial will demonstrate how to create a custom
EntityUserProvider2 object to retrieve users from a database with custom conditions.

Code along with the Example

If you want to follow along with the example in this chapter, create an AcmeUserBundle via:

1 $ php app/console generate:bundle --namespace=Acme/UserBundle

1. http://api.symfony.com/2.6/Symfony/Bridge/Doctrine/Security/User/EntityUserProvider.html

2. http://api.symfony.com/2.6/Symfony/Bridge/Doctrine/Security/User/EntityUserProvider.html

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 318

http://sensiolabs.com


Listing 89-2

Listing 89-3

The Data Model
For the purpose of this cookbook, the AcmeUserBundle bundle contains a User entity class with the
following fields: id, username, password, email and isActive. The isActive field tells whether or not
the user account is active.

To make it shorter, the getter and setter methods for each have been removed to focus on the most
important methods that come from the UserInterface3.

You can generate the missing getter and setters by running:

1 $ php app/console doctrine:generate:entities Acme/UserBundle/Entity/User

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Security\Core\User\UserInterface;

/**
* Acme\UserBundle\Entity\User
*
* @ORM\Table(name="acme_users")
* @ORM\Entity(repositoryClass="Acme\UserBundle\Entity\UserRepository")
*/
class User implements UserInterface, \Serializable
{

/**
* @ORM\Column(type="integer")
* @ORM\Id
* @ORM\GeneratedValue(strategy="AUTO")
*/
private $id;

/**
* @ORM\Column(type="string", length=25, unique=true)
*/
private $username;

/**
* @ORM\Column(type="string", length=64)
*/
private $password;

/**
* @ORM\Column(type="string", length=60, unique=true)
*/
private $email;

/**
* @ORM\Column(name="is_active", type="boolean")
*/
private $isActive;

3. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 319

http://sensiolabs.com


42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

public function __construct()
{

$this->isActive = true;
// may not be needed, see section on salt below
// $this->salt = md5(uniqid(null, true));

}

/**
* @inheritDoc
*/
public function getUsername()
{

return $this->username;
}

/**
* @inheritDoc
*/
public function getSalt()
{

// you *may* need a real salt depending on your encoder
// see section on salt below
return null;

}

/**
* @inheritDoc
*/
public function getPassword()
{

return $this->password;
}

/**
* @inheritDoc
*/
public function getRoles()
{

return array('ROLE_USER');
}

/**
* @inheritDoc
*/
public function eraseCredentials()
{
}

/**
* @see \Serializable::serialize()
*/
public function serialize()
{

return serialize(array(
$this->id,
$this->username,
$this->password,
// see section on salt below
// $this->salt,

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 320

http://sensiolabs.com


Listing 89-4

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

));
}

/**
* @see \Serializable::unserialize()
*/
public function unserialize($serialized)
{

list (
$this->id,
$this->username,
$this->password,
// see section on salt below
// $this->salt

) = unserialize($serialized);
}

}

If you choose to implement EquatableInterface4, you determine yourself which properties need
to be compared to distinguish your user objects.

Generate the database table for your User entity by running:

1 $ php app/console doctrine:schema:update --force

In order to use an instance of the AcmeUserBundle:User class in the Symfony security layer, the entity
class must implement the UserInterface5. This interface forces the class to implement the five following
methods:

• getRoles()6

• getPassword()7

• getSalt()8

• getUsername()9

• eraseCredentials()10

For more details on each of these, see UserInterface11.

4. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/EquatableInterface.html

5. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html

6. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#getRoles()

7. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#getPassword()

8. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#getSalt()

9. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#getUsername()

10. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#eraseCredentials()

11. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 321

http://sensiolabs.com


Listing 89-5

What is the importance of serialize and unserialize?

The Serializable12 interface and its serialize and unserialize methods have been added to
allow the User class to be serialized to the session. This may or may not be needed depending
on your setup, but it's probably a good idea. The id is the most important value that needs to be
serialized because the refreshUser()13 method reloads the user on each request by using the id.
In practice, this means that the User object is reloaded from the database on each request using the
id from the serialized object. This makes sure all of the User's data is fresh.

Symfony also uses the username, salt, and password to verify that the User has not changed
between requests. Failing to serialize these may cause you to be logged out on each request. If your
User implements EquatableInterface14, then instead of these properties being checked, your
isEqualTo method is simply called, and you can check whatever properties you want. Unless you
understand this, you probably won't need to implement this interface or worry about it.

Below is an export of the User table from MySQL with user admin and password admin (which has been
encoded). For details on how to create user records and encode their password, see C) Encoding the User's
Password.

1
2
3
4
5
6

$ mysql> SELECT * FROM acme_users;
+----+----------+------------------------------------------+--------------------+-----------+
| id | username | password | email | is_active |
+----+----------+------------------------------------------+--------------------+-----------+
| 1 | admin | d033e22ae348aeb5660fc2140aec35850c4da997 | admin@example.com | 1 |
+----+----------+------------------------------------------+--------------------+-----------+

The next part will focus on how to authenticate one of these users thanks to the Doctrine entity user
provider and a couple of lines of configuration.

Do you need to use a Salt?

Yes. Hashing a password with a salt is a necessary step so that encoded passwords can't be
decoded. However, some encoders - like Bcrypt - have a built-in salt mechanism. If you configure
bcrypt as your encoder in security.yml (see the next section), then getSalt() should return
null, so that Bcrypt generates the salt itself.

However, if you use an encoder that does not have a built-in salting ability (e.g. sha512), you must
(from a security perspective) generate your own, random salt, store it on a salt property that is
saved to the database, and return it from getSalt(). Some of the code needed is commented out
in the above example.

Authenticating Someone against a Database
Authenticating a Doctrine user against the database with the Symfony security layer is a piece of cake.
Everything resides in the configuration of the SecurityBundle stored in the app/config/security.yml
file.

Below is an example of configuration where the user will enter their username and password via HTTP
basic authentication. That information will then be checked against your User entity records in the
database:

12. http://php.net/manual/en/class.serializable.php

13. http://api.symfony.com/2.6/Symfony/Bridge/Doctrine/Security/User/EntityUserProvider.html#refreshUser()

14. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/EquatableInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 322

http://sensiolabs.com


Listing 89-6

Listing 89-7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

# app/config/security.yml
security:

encoders:
Acme\UserBundle\Entity\User:

algorithm: bcrypt

role_hierarchy:
ROLE_ADMIN: ROLE_USER
ROLE_SUPER_ADMIN: [ ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH ]

providers:
administrators:

entity: { class: AcmeUserBundle:User, property: username }

firewalls:
admin_area:

pattern: ^/admin
http_basic: ~

access_control:
- { path: ^/admin, roles: ROLE_ADMIN }

The encoders section associates the bcrypt password encoder to the entity class. This means that
Symfony will expect the password that's stored in the database to be encoded using this encoder. For
details on how to create a new User object with a properly encoded password, see the C) Encoding the
User's Password section of the security chapter.

If you're using PHP 5.4 or lower, you'll need to install the ircmaxell/password-compat library via
Composer in order to be able to use the bcrypt encoder:

1
2
3
4
5
6

{
"require": {

...
"ircmaxell/password-compat": "~1.0.3"

}
}

The providers section defines an administrators user provider. A user provider is a "source" of where
users are loaded during authentication. In this case, the entity keyword means that Symfony will use
the Doctrine entity user provider to load User entity objects from the database by using the username
unique field. In other words, this tells Symfony how to fetch the user from the database before checking
the password validity.

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 323

http://sensiolabs.com


Listing 89-8

Listing 89-9

By default, the entity provider uses the default entity manager to fetch user information from the
database. If you use multiple entity managers, you can specify which manager to use with the
manager_name option:

1
2
3
4
5
6
7
8
9

10
11
12

# app/config/config.yml
security:

# ...

providers:
administrators:

entity:
class: AcmeUserBundle:User
property: username
manager_name: customer

# ...

Forbid inactive Users
If a User's isActive property is set to false (i.e. is_active is 0 in the database), the user will still be
able to login access the site normally. To prevent "inactive" users from logging in, you'll need to do a little
more work.

The easiest way to exclude inactive users is to implement the AdvancedUserInterface15 interface
that takes care of checking the user's account status. The AdvancedUserInterface16 extends the
UserInterface17 interface, so you just need to switch to the new interface in the AcmeUserBundle:User
entity class to benefit from simple and advanced authentication behaviors.

The AdvancedUserInterface18 interface adds four extra methods to validate the account status:

• isAccountNonExpired()19 checks whether the user's account has expired;
• isAccountNonLocked()20 checks whether the user is locked;
• isCredentialsNonExpired()21 checks whether the user's credentials (password) has expired;
• isEnabled()22 checks whether the user is enabled.

For this example, the first three methods will return true whereas the isEnabled() method will return
the boolean value in the isActive field.

1
2
3
4
5
6
7
8
9

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Security\Core\User\AdvancedUserInterface;

class User implements AdvancedUserInterface, \Serializable
{

// ...

15. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/AdvancedUserInterface.html

16. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/AdvancedUserInterface.html

17. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html

18. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/AdvancedUserInterface.html

19. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/AdvancedUserInterface.html#isAccountNonExpired()

20. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/AdvancedUserInterface.html#isAccountNonLocked()

21. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/AdvancedUserInterface.html#isCredentialsNonExpired()

22. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/AdvancedUserInterface.html#isEnabled()

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 324

http://sensiolabs.com


Listing 89-10

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

public function isAccountNonExpired()
{

return true;
}

public function isAccountNonLocked()
{

return true;
}

public function isCredentialsNonExpired()
{

return true;
}

public function isEnabled()
{

return $this->isActive;
}

}

Now, if you try to authenticate as a user who's is_active database field is set to 0, you won't be allowed.

When using the AdvancedUserInterface, you should also add any of the properties used by these
methods (like isActive()) to the serialize() method. If you don't do this, your user may not be
deserialized correctly from the session on each request.

The next session will focus on how to write a custom entity provider to authenticate a user with their
username or email address.

Authenticating Someone with a Custom Entity Provider
The next step is to allow a user to authenticate with their username or email address as they are both
unique in the database. Unfortunately, the native entity provider is only able to handle a single property
to fetch the user from the database.

To accomplish this, create a custom entity provider that looks for a user whose username or email field
matches the submitted login username. The good news is that a Doctrine repository object can act as
an entity user provider if it implements the UserProviderInterface23. This interface comes with three
methods to implement: loadUserByUsername($username), refreshUser(UserInterface $user), and
supportsClass($class). For more details, see UserProviderInterface24.

The code below shows the implementation of the UserProviderInterface25 in the UserRepository
class:

1
2
3
4
5

// src/Acme/UserBundle/Entity/UserRepository.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\User\UserProviderInterface;

23. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserProviderInterface.html

24. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserProviderInterface.html

25. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserProviderInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 325

http://sensiolabs.com


6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;
use Doctrine\ORM\EntityRepository;
use Doctrine\ORM\NoResultException;

class UserRepository extends EntityRepository implements UserProviderInterface
{

public function loadUserByUsername($username)
{

$q = $this
->createQueryBuilder('u')
->where('u.username = :username OR u.email = :email')
->setParameter('username', $username)
->setParameter('email', $username)
->getQuery();

try {
// The Query::getSingleResult() method throws an exception
// if there is no record matching the criteria.
$user = $q->getSingleResult();

} catch (NoResultException $e) {
$message = sprintf(

'Unable to find an active admin AcmeUserBundle:User object identified by
"%s".',

$username
);
throw new UsernameNotFoundException($message, 0, $e);

}

return $user;
}

public function refreshUser(UserInterface $user)
{

$class = get_class($user);
if (!$this->supportsClass($class)) {

throw new UnsupportedUserException(
sprintf(

'Instances of "%s" are not supported.',
$class

)
);

}

return $this->find($user->getId());
}

public function supportsClass($class)
{

return $this->getEntityName() === $class
|| is_subclass_of($class, $this->getEntityName());

}
}

To finish the implementation, the configuration of the security layer must be changed to tell Symfony to
use the new custom entity provider instead of the generic Doctrine entity provider. It's trivial to achieve
by removing the property field in the security.providers.administrators.entity section of the
security.yml file.

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 326

http://sensiolabs.com


Listing 89-11

Listing 89-12

1
2
3
4
5
6
7

# app/config/security.yml
security:

# ...
providers:

administrators:
entity: { class: AcmeUserBundle:User }

# ...

By doing this, the security layer will use an instance of UserRepository and call its
loadUserByUsername() method to fetch a user from the database whether they filled in their username
or email address.

Managing Roles in the Database
The end of this tutorial focuses on how to store and retrieve a list of roles from the database. As
mentioned previously, when your user is loaded, its getRoles() method returns the array of security
roles that should be assigned to the user. You can load this data from anywhere - a hardcoded list
used for all users (e.g. array('ROLE_USER')), a Doctrine array property called roles, or via a Doctrine
relationship, as you'll learn about in this section.

In a typical setup, you should always return at least 1 role from the getRoles() method. By
convention, a role called ROLE_USER is usually returned. If you fail to return any roles, it may appear
as if your user isn't authenticated at all.

In order to work with the security configuration examples on this page all roles must be prefixed
with ROLE_ (see the section about roles in the book). For example, your roles will be ROLE_ADMIN or
ROLE_USER instead of ADMIN or USER.

In this example, the AcmeUserBundle:User entity class defines a many-to-many relationship with a
AcmeUserBundle:Role entity class. A user can be related to several roles and a role can be composed of
one or more users. The previous getRoles() method now returns the list of related roles. Notice that
__construct() and getRoles() methods have changed:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Doctrine\Common\Collections\ArrayCollection;
// ...

class User implements AdvancedUserInterface, \Serializable
{

// ...

/**
* @ORM\ManyToMany(targetEntity="Role", inversedBy="users")
*
*/
private $roles;

public function __construct()
{

$this->roles = new ArrayCollection();

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 327

http://sensiolabs.com


Listing 89-13

20
21
22
23
24
25
26
27
28
29

}

public function getRoles()
{

return $this->roles->toArray();
}

// ...

}

The AcmeUserBundle:Role entity class defines three fields (id, name and role). The unique role field
contains the role name (e.g. ROLE_ADMIN) used by the Symfony security layer to secure parts of the
application:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// src/Acme/Bundle/UserBundle/Entity/Role.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\Role\RoleInterface;
use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\ORM\Mapping as ORM;

/**
* @ORM\Table(name="acme_role")
* @ORM\Entity()
*/
class Role implements RoleInterface
{

/**
* @ORM\Column(name="id", type="integer")
* @ORM\Id()
* @ORM\GeneratedValue(strategy="AUTO")
*/
private $id;

/**
* @ORM\Column(name="name", type="string", length=30)
*/
private $name;

/**
* @ORM\Column(name="role", type="string", length=20, unique=true)
*/
private $role;

/**
* @ORM\ManyToMany(targetEntity="User", mappedBy="roles")
*/
private $users;

public function __construct()
{

$this->users = new ArrayCollection();
}

/**
* @see RoleInterface
*/

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 328

http://sensiolabs.com


Listing 89-14

Listing 89-15

Listing 89-16

44
45
46
47
48
49
50

public function getRole()
{

return $this->role;
}

// ... getters and setters for each property
}

For brevity, the getter and setter methods are hidden, but you can generate them:

1 $ php app/console doctrine:generate:entities Acme/UserBundle/Entity/User

Don't forget also to update your database schema:

1 $ php app/console doctrine:schema:update --force

This will create the acme_role table and a user_role that stores the many-to-many relationship between
acme_user and acme_role. If you had one user linked to one role, your database might look something
like this:

1
2
3
4
5
6
7
8
9

10
11
12
13

$ mysql> SELECT * FROM acme_role;
+----+-------+------------+
| id | name | role |
+----+-------+------------+
| 1 | admin | ROLE_ADMIN |
+----+-------+------------+

$ mysql> SELECT * FROM user_role;
+---------+---------+
| user_id | role_id |
+---------+---------+
| 1 | 1 |
+---------+---------+

And that's it! When the user logs in, Symfony security system will call the User::getRoles method. This
will return an array of Role objects that Symfony will use to determine if the user should have access to
certain parts of the system.

What's the purpose of the RoleInterface?

Notice that the Role class implements RoleInterface26. This is because Symfony's security system
requires that the User::getRoles method returns an array of either role strings or objects that
implement this interface. If Role didn't implement this interface, then User::getRoles would
need to iterate over all the Role objects, call getRole on each, and create an array of strings to
return. Both approaches are valid and equivalent.

Improving Performance with a Join

To improve performance and avoid lazy loading of roles when retrieving a user from the custom
entity provider, you can use a Doctrine join to the roles relationship in the
UserRepository::loadUserByUsername() method. This will fetch the user and their associated roles
with a single query:

26. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Role/RoleInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 329

http://sensiolabs.com


Listing 89-17 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/Acme/UserBundle/Entity/UserRepository.php
namespace Acme\UserBundle\Entity;

// ...

class UserRepository extends EntityRepository implements UserProviderInterface
{

public function loadUserByUsername($username)
{

$q = $this
->createQueryBuilder('u')
->select('u, r')
->leftJoin('u.roles', 'r')
->where('u.username = :username OR u.email = :email')
->setParameter('username', $username)
->setParameter('email', $username)
->getQuery();

// ...
}

// ...
}

The QueryBuilder::leftJoin() method joins and fetches related roles from the AcmeUserBundle:User
model class when a user is retrieved by their email address or username.

Understanding serialize and how a User is Saved in the Session
If you're curious about the importance of the serialize() method inside the User class or how the User
object is serialized or deserialized, then this section is for you. If not, feel free to skip this.

Once the user is logged in, the entire User object is serialized into the session. On the next request, the
User object is deserialized. Then, value of the id property is used to re-query for a fresh User object from
the database. Finally, the fresh User object is compared in some way to the deserialized User object to
make sure that they represent the same user. For example, if the username on the 2 User objects doesn't
match for some reason, then the user will be logged out for security reasons.

Even though this all happens automatically, there are a few important side-effects.

First, the Serializable27 interface and its serialize and unserialize methods have been added to
allow the User class to be serialized to the session. This may or may not be needed depending on
your setup, but it's probably a good idea. In theory, only the id needs to be serialized, because the
refreshUser()28 method refreshes the user on each request by using the id (as explained above).
However in practice, this means that the User object is reloaded from the database on each request using
the id from the serialized object. This makes sure all of the User's data is fresh.

Symfony also uses the username, salt, and password to verify that the User has not changed between
requests. Failing to serialize these may cause you to be logged out on each request. If your User
implements the EquatableInterface29, then instead of these properties being checked, your isEqualTo
method is simply called, and you can check whatever properties you want. Unless you understand this,
you probably won't need to implement this interface or worry about it.

27. http://php.net/manual/en/class.serializable.php

28. http://api.symfony.com/2.6/Symfony/Bridge/Doctrine/Security/User/EntityUserProvider.html#refreshUser()

29. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/EquatableInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 89: How to Load Security Users from the Database (the Entity Provider) | 330

http://sensiolabs.com


Listing 90-1

Listing 90-2

Chapter 90

How to Add "Remember Me" Login
Functionality

Once a user is authenticated, their credentials are typically stored in the session. This means that when
the session ends they will be logged out and have to provide their login details again next time they wish
to access the application. You can allow users to choose to stay logged in for longer than the session lasts
using a cookie with the remember_me firewall option. The firewall needs to have a secret key configured,
which is used to encrypt the cookie's content. It also has several options with default values which are
shown here:

1
2
3
4
5
6
7
8

# app/config/security.yml
firewalls:

main:
remember_me:

key: "%secret%"
lifetime: 31536000 # 365 days in seconds
path: /
domain: ~ # Defaults to the current domain from $_SERVER

It's a good idea to provide the user with the option to use or not use the remember me functionality, as
it will not always be appropriate. The usual way of doing this is to add a checkbox to the login form. By
giving the checkbox the name _remember_me, the cookie will automatically be set when the checkbox is
checked and the user successfully logs in. So, your specific login form might ultimately look like this:

1
2
3
4
5
6
7
8
9

10

{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}
{% if error %}

<div>{{ error.message }}</div>
{% endif %}

<form action="{{ path('login_check') }}" method="post">
<label for="username">Username:</label>
<input type="text" id="username" name="_username" value="{{ last_username }}" />

<label for="password">Password:</label>

PDF brought to you by
generated on March 11, 2015

Chapter 90: How to Add "Remember Me" Login Functionality | 331

http://sensiolabs.com


Listing 90-3

11
12
13
14
15
16
17

<input type="password" id="password" name="_password" />

<input type="checkbox" id="remember_me" name="_remember_me" checked />
<label for="remember_me">Keep me logged in</label>

<input type="submit" name="login" />
</form>

The user will then automatically be logged in on subsequent visits while the cookie remains valid.

Forcing the User to Re-authenticate before Accessing certain Resources
When the user returns to your site, they are authenticated automatically based on the information stored
in the remember me cookie. This allows the user to access protected resources as if the user had actually
authenticated upon visiting the site.

In some cases, however, you may want to force the user to actually re-authenticate before accessing
certain resources. For example, you might allow "remember me" users to see basic account information,
but then require them to actually re-authenticate before modifying that information.

The Security component provides an easy way to do this. In addition to roles explicitly assigned to them,
users are automatically given one of the following roles depending on how they are authenticated:

• IS_AUTHENTICATED_ANONYMOUSLY - automatically assigned to a user who is in a firewall
protected part of the site but who has not actually logged in. This is only possible if anonymous
access has been allowed.

• IS_AUTHENTICATED_REMEMBERED - automatically assigned to a user who was authenticated via
a remember me cookie.

• IS_AUTHENTICATED_FULLY - automatically assigned to a user that has provided their login
details during the current session.

You can use these to control access beyond the explicitly assigned roles.

If you have the IS_AUTHENTICATED_REMEMBERED role, then you also have the
IS_AUTHENTICATED_ANONYMOUSLY role. If you have the IS_AUTHENTICATED_FULLY role, then you
also have the other two roles. In other words, these roles represent three levels of increasing
"strength" of authentication.

You can use these additional roles for finer grained control over access to parts of a site. For example,
you may want your user to be able to view their account at /account when authenticated by cookie but
to have to provide their login details to be able to edit the account details. You can do this by securing
specific controller actions using these roles. The edit action in the controller could be secured using the
service context.

In the following example, the action is only allowed if the user has the IS_AUTHENTICATED_FULLY role.

1
2
3
4
5
6
7
8
9

// ...
use Symfony\Component\Security\Core\Exception\AccessDeniedException

public function editAction()
{

if (false === $this->get('security.authorization_checker')->isGranted(
'IS_AUTHENTICATED_FULLY'
)) {
throw new AccessDeniedException();

PDF brought to you by
generated on March 11, 2015

Chapter 90: How to Add "Remember Me" Login Functionality | 332

http://sensiolabs.com


Listing 90-4

10
11
12
13

}

// ...
}

New in version 2.6: The security.authorization_checker service was introduced in Symfony 2.6.
Prior to Symfony 2.6, you had to use the isGranted() method of the security.context service.

If your application is based on the Symfony Standard Edition, you can also secure your controller using
annotations:

1
2
3
4
5
6
7
8
9

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Security;

/**
* @Security("has_role('IS_AUTHENTICATED_FULLY')")
*/
public function editAction($name)
{

// ...
}

If you also had an access control in your security configuration that required the user to have a
ROLE_USER role in order to access any of the account area, then you'd have the following situation:

• If a non-authenticated (or anonymously authenticated user) tries to access the account
area, the user will be asked to authenticate.

• Once the user has entered their username and password, assuming the user receives
the ROLE_USER role per your configuration, the user will have the
IS_AUTHENTICATED_FULLY role and be able to access any page in the account section,
including the editAction controller.

• If the user's session ends, when the user returns to the site, they will be able to access
every account page - except for the edit page - without being forced to re-authenticate.
However, when they try to access the editAction controller, they will be forced to re-
authenticate, since they are not, yet, fully authenticated.

For more information on securing services or methods in this way, see How to Secure any Service or
Method in your Application.

PDF brought to you by
generated on March 11, 2015

Chapter 90: How to Add "Remember Me" Login Functionality | 333

http://sensiolabs.com


Listing 91-1

Listing 91-2

Listing 91-3

Listing 91-4

Listing 91-5

Chapter 91

How to Impersonate a User

Sometimes, it's useful to be able to switch from one user to another without having to log out and log
in again (for instance when you are debugging or trying to understand a bug a user sees that you can't
reproduce). This can be easily done by activating the switch_user firewall listener:

1
2
3
4
5
6

# app/config/security.yml
security:

firewalls:
main:

# ...
switch_user: true

To switch to another user, just add a query string with the _switch_user parameter and the username as
the value to the current URL:

1 http://example.com/somewhere?_switch_user=thomas

To switch back to the original user, use the special _exit username:

1 http://example.com/somewhere?_switch_user=_exit

During impersonation, the user is provided with a special role called ROLE_PREVIOUS_ADMIN. In a
template, for instance, this role can be used to show a link to exit impersonation:

1
2
3

{% if is_granted('ROLE_PREVIOUS_ADMIN') %}
<a href="{{ path('homepage', {'_switch_user': '_exit'}) }}">Exit impersonation</a>

{% endif %}

Of course, this feature needs to be made available to a small group of users. By default, access is restricted
to users having the ROLE_ALLOWED_TO_SWITCH role. The name of this role can be modified via the role
setting. For extra security, you can also change the query parameter name via the parameter setting:

PDF brought to you by
generated on March 11, 2015

Chapter 91: How to Impersonate a User | 334

http://sensiolabs.com


1
2
3
4
5
6

# app/config/security.yml
security:

firewalls:
main:

# ...
switch_user: { role: ROLE_ADMIN, parameter: _want_to_be_this_user }

PDF brought to you by
generated on March 11, 2015

Chapter 91: How to Impersonate a User | 335

http://sensiolabs.com


Listing 92-1

Chapter 92

How to Implement your own Voter to Blacklist
IP Addresses

The Symfony Security component provides several layers to authorize users. One of the layers is called
a "voter". A voter is a dedicated class that checks if the user has the rights to connect to the application
or access a specific resource/URL. For instance, Symfony provides a layer that checks if the user is fully
authorized or if it has some expected roles.

It is sometimes useful to create a custom voter to handle a specific case not handled by the framework.
In this section, you'll learn how to create a voter that will allow you to blacklist users by their IP.

The Voter Interface
A custom voter must implement VoterInterface1, which requires the following three methods:

1
2
3
4
5
6

interface VoterInterface
{

public function supportsAttribute($attribute);
public function supportsClass($class);
public function vote(TokenInterface $token, $object, array $attributes);

}

The supportsAttribute()2 method is used to check if the voter supports the given user attribute (i.e: a
role like ROLE_USER, an ACL EDIT, etc.).

The supportsClass()3 method is used to check if the voter supports the class of the object whose access
is being checked.

The vote()4 method must implement the business logic that verifies whether or not the user has access.
This method must return one of the following values:

1. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html

2. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#supportsAttribute()

3. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#supportsClass()

4. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#vote()

PDF brought to you by
generated on March 11, 2015

Chapter 92: How to Implement your own Voter to Blacklist IP Addresses | 336

http://sensiolabs.com


Listing 92-2

• VoterInterface::ACCESS_GRANTED: The authorization will be granted by this voter;
• VoterInterface::ACCESS_ABSTAIN: The voter cannot decide if authorization should be

granted;
• VoterInterface::ACCESS_DENIED: The authorization will be denied by this voter.

In this example, you'll check if the user's IP address matches against a list of blacklisted addresses
and "something" will be the application. If the user's IP is blacklisted, you'll return
VoterInterface::ACCESS_DENIED, otherwise you'll return VoterInterface::ACCESS_ABSTAIN as this
voter's purpose is only to deny access, not to grant access.

Creating a custom Voter
To blacklist a user based on its IP, you can use the request_stack service and compare the IP address
against a set of blacklisted IP addresses:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// src/AppBundle/Security/Authorization/Voter/ClientIpVoter.php
namespace AppBundle\Security\Authorization\Voter;

use Symfony\Component\HttpFoundation\RequestStack;
use Symfony\Component\Security\Core\Authorization\Voter\VoterInterface;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;

class ClientIpVoter implements VoterInterface
{

protected $requestStack;
private $blacklistedIp;

public function __construct(RequestStack $requestStack, array $blacklistedIp = array())
{

$this->requestStack = $requestStack;
$this->blacklistedIp = $blacklistedIp;

}

public function supportsAttribute($attribute)
{

// you won't check against a user attribute, so return true
return true;

}

public function supportsClass($class)
{

// your voter supports all type of token classes, so return true
return true;

}

public function vote(TokenInterface $token, $object, array $attributes)
{

$request = $this->requestStack->getCurrentRequest();
if (in_array($request->getClientIp(), $this->blacklistedIp)) {

return VoterInterface::ACCESS_DENIED;
}

return VoterInterface::ACCESS_ABSTAIN;
}

}

That's it! The voter is done. The next step is to inject the voter into the security layer. This can be done
easily through the service container.

PDF brought to you by
generated on March 11, 2015

Chapter 92: How to Implement your own Voter to Blacklist IP Addresses | 337

http://sensiolabs.com


Listing 92-3

Listing 92-4

Your implementation of the methods supportsAttribute()5 and supportsClass()6 are not
being called internally by the framework. Once you have registered your voter the vote() method
will always be called, regardless of whether or not these two methods return true. Therefore
you need to call those methods in your implementation of the vote() method and return
ACCESS_ABSTAIN if your voter does not support the class or attribute.

Declaring the Voter as a Service
To inject the voter into the security layer, you must declare it as a service, and tag it as a security.voter:

1
2
3
4
5
6
7
8

# src/Acme/AcmeBundle/Resources/config/services.yml
services:

security.access.blacklist_voter:
class: AppBundle\Security\Authorization\Voter\ClientIpVoter
arguments: ["@request_stack", [123.123.123.123, 171.171.171.171]]
public: false
tags:

- { name: security.voter }

Be sure to import this configuration file from your main application configuration file (e.g. app/
config/config.yml). For more information see Importing Configuration with imports. To read
more about defining services in general, see the Service Container chapter.

Changing the Access Decision Strategy
In order for the new voter to take effect, you need to change the default access decision strategy, which,
by default, grants access if any voter grants access.

In this case, choose the unanimous strategy. Unlike the affirmative strategy (the default), with the
unanimous strategy, if only one voter denies access (e.g. the ClientIpVoter), access is not granted to the
end user.

To do that, override the default access_decision_manager section of your application configuration file
with the following code.

1
2
3
4
5

# app/config/security.yml
security:

access_decision_manager:
# strategy can be: affirmative, unanimous or consensus
strategy: unanimous

That's it! Now, when deciding whether or not a user should have access, the new voter will deny access
to any user in the list of blacklisted IPs.

For a more advanced usage see Access Decision Manager.

5. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#supportsAttribute()

6. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#supportsClass()

PDF brought to you by
generated on March 11, 2015

Chapter 92: How to Implement your own Voter to Blacklist IP Addresses | 338

http://sensiolabs.com


Listing 93-1

Chapter 93

How to Use Voters to Check User Permissions

In Symfony, you can check the permission to access data by using the ACL module, which is a bit
overwhelming for many applications. A much easier solution is to work with custom voters, which are
like simple conditional statements.

Voters can also be used in other ways, like, for example, blacklisting IP addresses from the entire application:
How to Implement your own Voter to Blacklist IP Addresses.

Take a look at the authorization chapter for an even deeper understanding on voters.

How Symfony Uses Voters
In order to use voters, you have to understand how Symfony works with them. All voters are called
each time you use the isGranted() method on Symfony's authorization checker (i.e. the
security.authorization_checker service). Each one decides if the current user should have access to
some resource.

Ultimately, Symfony uses one of three different approaches on what to do with the feedback from all
voters: affirmative, consensus and unanimous.

For more information take a look at the section about access decision managers.

The Voter Interface
A custom voter must implement VoterInterface1, which has this structure:

1
2

interface VoterInterface
{

1. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 93: How to Use Voters to Check User Permissions | 339

http://sensiolabs.com


Listing 93-2

3
4
5
6

public function supportsAttribute($attribute);
public function supportsClass($class);
public function vote(TokenInterface $token, $object, array $attributes);

}

The supportsAttribute()2 method is used to check if the voter supports the given user attribute (i.e: a
role like ROLE_USER, an ACL EDIT, etc.).

The supportsClass()3 method is used to check if the voter supports the class of the object whose access
is being checked.

The vote()4 method must implement the business logic that verifies whether or not the user has access.
This method must return one of the following values:

• VoterInterface::ACCESS_GRANTED: The authorization will be granted by this voter;
• VoterInterface::ACCESS_ABSTAIN: The voter cannot decide if authorization should be

granted;
• VoterInterface::ACCESS_DENIED: The authorization will be denied by this voter.

In this example, the voter will check if the user has access to a specific object according to your
custom conditions (e.g. they must be the owner of the object). If the condition fails, you'll return
VoterInterface::ACCESS_DENIED, otherwise you'll return VoterInterface::ACCESS_GRANTED. In case
the responsibility for this decision does not belong to this voter, it will return
VoterInterface::ACCESS_ABSTAIN.

Creating the custom Voter
The goal is to create a voter that checks if a user has access to view or edit a particular object. Here's an
example implementation:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

// src/AppBundle/Security/Authorization/Voter/PostVoter.php
namespace AppBundle\Security\Authorization\Voter;

use Symfony\Component\Security\Core\Authorization\Voter\VoterInterface;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use Symfony\Component\Security\Core\User\UserInterface;

class PostVoter implements VoterInterface
{

const VIEW = 'view';
const EDIT = 'edit';

public function supportsAttribute($attribute)
{

return in_array($attribute, array(
self::VIEW,
self::EDIT,

));
}

public function supportsClass($class)
{

2. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#supportsAttribute()

3. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#supportsClass()

4. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#vote()

PDF brought to you by
generated on March 11, 2015

Chapter 93: How to Use Voters to Check User Permissions | 340

http://sensiolabs.com


23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

$supportedClass = 'AppBundle\Entity\Post';

return $supportedClass === $class || is_subclass_of($class, $supportedClass);
}

/**
* @var \AppBundle\Entity\Post $post
*/
public function vote(TokenInterface $token, $post, array $attributes)
{

// check if class of this object is supported by this voter
if (!$this->supportsClass(get_class($post))) {

return VoterInterface::ACCESS_ABSTAIN;
}

// check if the voter is used correct, only allow one attribute
// this isn't a requirement, it's just one easy way for you to
// design your voter
if (1 !== count($attributes)) {

throw new \InvalidArgumentException(
'Only one attribute is allowed for VIEW or EDIT'

);
}

// set the attribute to check against
$attribute = $attributes[0];

// check if the given attribute is covered by this voter
if (!$this->supportsAttribute($attribute)) {

return VoterInterface::ACCESS_ABSTAIN;
}

// get current logged in user
$user = $token->getUser();

// make sure there is a user object (i.e. that the user is logged in)
if (!$user instanceof UserInterface) {

return VoterInterface::ACCESS_DENIED;
}

switch($attribute) {
case self::VIEW:

// the data object could have for example a method isPrivate()
// which checks the Boolean attribute $private
if (!$post->isPrivate()) {

return VoterInterface::ACCESS_GRANTED;
}
break;

case self::EDIT:
// we assume that our data object has a method getOwner() to
// get the current owner user entity for this data object
if ($user->getId() === $post->getOwner()->getId()) {

return VoterInterface::ACCESS_GRANTED;
}
break;

}

return VoterInterface::ACCESS_DENIED;

PDF brought to you by
generated on March 11, 2015

Chapter 93: How to Use Voters to Check User Permissions | 341

http://sensiolabs.com


Listing 93-3

Listing 93-4

82
83

}
}

That's it! The voter is done. The next step is to inject the voter into the security layer.

Declaring the Voter as a Service
To inject the voter into the security layer, you must declare it as a service and tag it with security.voter:

1
2
3
4
5
6
7

# src/AppBundle/Resources/config/services.yml
services:

security.access.post_voter:
class: AppBundle\Security\Authorization\Voter\PostVoter
public: false
tags:

- { name: security.voter }

How to Use the Voter in a Controller
The registered voter will then always be asked as soon as the method isGranted() from the authorization
checker is called.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

// src/AppBundle/Controller/PostController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

class PostController extends Controller
{

public function showAction($id)
{

// get a Post instance
$post = ...;

// keep in mind, this will call all registered security voters
if (false === $this->get('security.authorization_checker')->isGranted('view',

$post)) {
throw new AccessDeniedException('Unauthorised access!');

}

return new Response('<h1>'.$post->getName().'</h1>');
}

}

New in version 2.6: The security.authorization_checker service was introduced in Symfony 2.6.
Prior to Symfony 2.6, you had to use the isGranted() method of the security.context service.

It's that easy!

PDF brought to you by
generated on March 11, 2015

Chapter 93: How to Use Voters to Check User Permissions | 342

http://sensiolabs.com


Chapter 94

How to Use Access Control Lists (ACLs)

In complex applications, you will often face the problem that access decisions cannot only be based
on the person (Token) who is requesting access, but also involve a domain object that access is being
requested for. This is where the ACL system comes in.

Alternatives to ACLs

Using ACL's isn't trivial, and for simpler use cases, it may be overkill. If your permission logic
could be described by just writing some code (e.g. to check if a Blog is owned by the current User),
then consider using voters. A voter is passed the object being voted on, which you can use to
make complex decisions and effectively implement your own ACL. Enforcing authorization (e.g.
the isGranted part) will look similar to what you see in this entry, but your voter class will handle
the logic behind the scenes, instead of the ACL system.

Imagine you are designing a blog system where your users can comment on your posts. Now, you want a
user to be able to edit their own comments, but not those of other users; besides, you yourself want to be
able to edit all comments. In this scenario, Comment would be the domain object that you want to restrict
access to. You could take several approaches to accomplish this using Symfony, two basic approaches are
(non-exhaustive):

• Enforce security in your business methods: Basically, that means keeping a reference inside each
Comment to all users who have access, and then compare these users to the provided Token.

• Enforce security with roles: In this approach, you would add a role for each Comment object, i.e.
ROLE_COMMENT_1, ROLE_COMMENT_2, etc.

Both approaches are perfectly valid. However, they couple your authorization logic to your business code
which makes it less reusable elsewhere, and also increases the difficulty of unit testing. Besides, you could
run into performance issues if many users would have access to a single domain object.

Fortunately, there is a better way, which you will find out about now.

PDF brought to you by
generated on March 11, 2015

Chapter 94: How to Use Access Control Lists (ACLs) | 343

http://sensiolabs.com


Listing 94-1

Listing 94-2

Listing 94-3

Bootstrapping
Now, before you can finally get into action, you need to do some bootstrapping. First, you need to
configure the connection the ACL system is supposed to use:

1
2
3
4

# app/config/security.yml
security:

acl:
connection: default

The ACL system requires a connection from either Doctrine DBAL (usable by default) or Doctrine
MongoDB (usable with MongoDBAclBundle1). However, that does not mean that you have to use
Doctrine ORM or ODM for mapping your domain objects. You can use whatever mapper you like
for your objects, be it Doctrine ORM, MongoDB ODM, Propel, raw SQL, etc. The choice is yours.

After the connection is configured, you have to import the database structure. Fortunately, there is a task
for this. Simply run the following command:

1 $ php app/console init:acl

Getting Started
Coming back to the small example from the beginning, you can now implement ACL for it.

Once the ACL is created, you can grant access to objects by creating an Access Control Entry (ACE) to
solidify the relationship between the entity and your user.

Creating an ACL and Adding an ACE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;
use Symfony\Component\Security\Acl\Domain\ObjectIdentity;
use Symfony\Component\Security\Acl\Domain\UserSecurityIdentity;
use Symfony\Component\Security\Acl\Permission\MaskBuilder;

class BlogController extends Controller
{

// ...

public function addCommentAction(Post $post)
{

$comment = new Comment();

// ... setup $form, and submit data

if ($form->isValid()) {
$entityManager = $this->getDoctrine()->getManager();

1. https://github.com/IamPersistent/MongoDBAclBundle

PDF brought to you by
generated on March 11, 2015

Chapter 94: How to Use Access Control Lists (ACLs) | 344

http://sensiolabs.com


Listing 94-4

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

$entityManager->persist($comment);
$entityManager->flush();

// creating the ACL
$aclProvider = $this->get('security.acl.provider');
$objectIdentity = ObjectIdentity::fromDomainObject($comment);
$acl = $aclProvider->createAcl($objectIdentity);

// retrieving the security identity of the currently logged-in user
$tokenStorage = $this->get('security.token_storage');
$user = $tokenStorage->getToken()->getUser();
$securityIdentity = UserSecurityIdentity::fromAccount($user);

// grant owner access
$acl->insertObjectAce($securityIdentity, MaskBuilder::MASK_OWNER);
$aclProvider->updateAcl($acl);

}
}

}

There are a couple of important implementation decisions in this code snippet. For now, I only want to
highlight two:

First, you may have noticed that ->createAcl() does not accept domain objects directly, but only
implementations of the ObjectIdentityInterface. This additional step of indirection allows you to
work with ACLs even when you have no actual domain object instance at hand. This will be extremely
helpful if you want to check permissions for a large number of objects without actually hydrating these
objects.

The other interesting part is the ->insertObjectAce() call. In the example, you are granting the user
who is currently logged in owner access to the Comment. The MaskBuilder::MASK_OWNER is a pre-
defined integer bitmask; don't worry the mask builder will abstract away most of the technical details,
but using this technique you can store many different permissions in one database row which gives a
considerable boost in performance.

The order in which ACEs are checked is significant. As a general rule, you should place more
specific entries at the beginning.

Checking Access

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/AppBundle/Controller/BlogController.php

// ...

class BlogController
{

// ...

public function editCommentAction(Comment $comment)
{

$authorizationChecker = $this->get('security.authorization_checker');

// check for edit access
if (false === $authorizationChecker->isGranted('EDIT', $comment)) {

PDF brought to you by
generated on March 11, 2015

Chapter 94: How to Use Access Control Lists (ACLs) | 345

http://sensiolabs.com


Listing 94-5

Listing 94-6

15
16
17
18
19
20

throw new AccessDeniedException();
}

// ... retrieve actual comment object, and do your editing here
}

}

In this example, you check whether the user has the EDIT permission. Internally, Symfony maps the
permission to several integer bitmasks, and checks whether the user has any of them.

You can define up to 32 base permissions (depending on your OS PHP might vary between 30 to
32). In addition, you can also define cumulative permissions.

Cumulative Permissions
In the first example above, you only granted the user the OWNER base permission. While this effectively
also allows the user to perform any operation such as view, edit, etc. on the domain object, there are
cases where you may want to grant these permissions explicitly.

The MaskBuilder can be used for creating bit masks easily by combining several base permissions:

1
2
3
4
5
6
7
8

$builder = new MaskBuilder();
$builder

->add('view')
->add('edit')
->add('delete')
->add('undelete')

;
$mask = $builder->get(); // int(29)

This integer bitmask can then be used to grant a user the base permissions you added above:

1
2

$identity = new UserSecurityIdentity('johannes', 'Acme\UserBundle\Entity\User');
$acl->insertObjectAce($identity, $mask);

The user is now allowed to view, edit, delete, and un-delete objects.

PDF brought to you by
generated on March 11, 2015

Chapter 94: How to Use Access Control Lists (ACLs) | 346

http://sensiolabs.com


Chapter 95

How to Use advanced ACL Concepts

The aim of this chapter is to give a more in-depth view of the ACL system, and also explain some of the
design decisions behind it.

Design Concepts
Symfony's object instance security capabilities are based on the concept of an Access Control List. Every
domain object instance has its own ACL. The ACL instance holds a detailed list of Access Control
Entries (ACEs) which are used to make access decisions. Symfony's ACL system focuses on two main
objectives:

• providing a way to efficiently retrieve a large amount of ACLs/ACEs for your domain objects,
and to modify them;

• providing a way to easily make decisions of whether a person is allowed to perform an action
on a domain object or not.

As indicated by the first point, one of the main capabilities of Symfony's ACL system is a high-
performance way of retrieving ACLs/ACEs. This is extremely important since each ACL might have
several ACEs, and inherit from another ACL in a tree-like fashion. Therefore, no ORM is leveraged,
instead the default implementation interacts with your connection directly using Doctrine's DBAL.

Object Identities

The ACL system is completely decoupled from your domain objects. They don't even have to be stored
in the same database, or on the same server. In order to achieve this decoupling, in the ACL system your
objects are represented through object identity objects. Every time you want to retrieve the ACL for a
domain object, the ACL system will first create an object identity from your domain object, and then pass
this object identity to the ACL provider for further processing.

Security Identities

This is analog to the object identity, but represents a user, or a role in your application. Each role, or user
has its own security identity.

PDF brought to you by
generated on March 11, 2015

Chapter 95: How to Use advanced ACL Concepts | 347

http://sensiolabs.com


New in version 2.5: For users, the security identity is based on the username. This means that, if for
any reason, a user's username was to change, you must ensure its security identity is updated too. The
MutableAclProvider::updateUserSecurityIdentity()1 method is there to handle the update, it was
introduced in Symfony 2.5.

Database Table Structure
The default implementation uses five database tables as listed below. The tables are ordered from least
rows to most rows in a typical application:

• acl_security_identities: This table records all security identities (SID) which hold ACEs. The
default implementation ships with two security identities: RoleSecurityIdentity2 and
UserSecurityIdentity3.

• acl_classes: This table maps class names to a unique ID which can be referenced from other
tables.

• acl_object_identities: Each row in this table represents a single domain object instance.
• acl_object_identity_ancestors: This table allows all the ancestors of an ACL to be determined

in a very efficient way.
• acl_entries: This table contains all ACEs. This is typically the table with the most rows. It can

contain tens of millions without significantly impacting performance.

Scope of Access Control Entries
Access control entries can have different scopes in which they apply. In Symfony, there are basically two
different scopes:

• Class-Scope: These entries apply to all objects with the same class.
• Object-Scope: This was the scope solely used in the previous chapter, and it only applies to

one specific object.

Sometimes, you will find the need to apply an ACE only to a specific field of the object. Suppose you
want the ID only to be viewable by an administrator, but not by your customer service. To solve this
common problem, two more sub-scopes have been added:

• Class-Field-Scope: These entries apply to all objects with the same class, but only to a specific
field of the objects.

• Object-Field-Scope: These entries apply to a specific object, and only to a specific field of that
object.

Pre-Authorization Decisions
For pre-authorization decisions, that is decisions made before any secure method (or secure action) is
invoked, the proven AccessDecisionManager service is used. The AccessDecisionManager is also used
for reaching authorization decisions based on roles. Just like roles, the ACL system adds several new
attributes which may be used to check for different permissions.

1. http://api.symfony.com/2.6/Symfony/Component/Security/Acl/Dbal/MutableAclProvider.html#updateUserSecurityIdentity()

2. http://api.symfony.com/2.6/Symfony/Component/Security/Acl/Domain/RoleSecurityIdentity.html

3. http://api.symfony.com/2.6/Symfony/Component/Security/Acl/Domain/UserSecurityIdentity.html

PDF brought to you by
generated on March 11, 2015

Chapter 95: How to Use advanced ACL Concepts | 348

http://sensiolabs.com


Built-in Permission Map

Attribute Intended Meaning Integer Bitmasks

VIEW Whether someone is allowed to
view the domain object.

VIEW, EDIT, OPERATOR,
MASTER, or OWNER

EDIT Whether someone is allowed to
make changes to the domain object.

EDIT, OPERATOR, MASTER, or
OWNER

CREATE Whether someone is allowed to
create the domain object.

CREATE, OPERATOR, MASTER, or
OWNER

DELETE Whether someone is allowed to
delete the domain object.

DELETE, OPERATOR, MASTER, or
OWNER

UNDELETE Whether someone is allowed to
restore a previously deleted domain
object.

UNDELETE, OPERATOR,
MASTER, or OWNER

OPERATOR Whether someone is allowed to
perform all of the above actions.

OPERATOR, MASTER, or OWNER

MASTER Whether someone is allowed to
perform all of the above actions,
and in addition is allowed to grant
any of the above permissions to
others.

MASTER, or OWNER

OWNER Whether someone owns the
domain object. An owner can
perform any of the above actions
and grant master and owner
permissions.

OWNER

Permission Attributes vs. Permission Bitmasks

Attributes are used by the AccessDecisionManager, just like roles. Often, these attributes represent in
fact an aggregate of integer bitmasks. Integer bitmasks on the other hand, are used by the ACL system
internally to efficiently store your users' permissions in the database, and perform access checks using
extremely fast bitmask operations.

Extensibility

The above permission map is by no means static, and theoretically could be completely replaced at will.
However, it should cover most problems you encounter, and for interoperability with other bundles, you
are encouraged to stick to the meaning envisaged for them.

Post Authorization Decisions
Post authorization decisions are made after a secure method has been invoked, and typically involve the
domain object which is returned by such a method. After invocation providers also allow to modify, or
filter the domain object before it is returned.

PDF brought to you by
generated on March 11, 2015

Chapter 95: How to Use advanced ACL Concepts | 349

http://sensiolabs.com


Due to current limitations of the PHP language, there are no post-authorization capabilities build into the
core Security component. However, there is an experimental JMSSecurityExtraBundle4 which adds these
capabilities. See its documentation for further information on how this is accomplished.

Process for Reaching Authorization Decisions
The ACL class provides two methods for determining whether a security identity has the required
bitmasks, isGranted and isFieldGranted. When the ACL receives an authorization request through
one of these methods, it delegates this request to an implementation of PermissionGrantingStrategy5.
This allows you to replace the way access decisions are reached without actually modifying the ACL class
itself.

The PermissionGrantingStrategy first checks all your object-scope ACEs. If none is applicable, the
class-scope ACEs will be checked. If none is applicable, then the process will be repeated with the ACEs
of the parent ACL. If no parent ACL exists, an exception will be thrown.

4. https://github.com/schmittjoh/JMSSecurityExtraBundle

5. http://api.symfony.com/2.6/Symfony/Component/Security/Acl/Domain/PermissionGrantingStrategy.html

PDF brought to you by
generated on March 11, 2015

Chapter 95: How to Use advanced ACL Concepts | 350

http://sensiolabs.com


Listing 96-1

Listing 96-2

Chapter 96

How to Force HTTPS or HTTP for different URLs

You can force areas of your site to use the HTTPS protocol in the security config. This is done through the
access_control rules using the requires_channel option. For example, if you want to force all URLs
starting with /secure to use HTTPS then you could use the following configuration:

1
2

access_control:
- { path: ^/secure, roles: ROLE_ADMIN, requires_channel: https }

The login form itself needs to allow anonymous access, otherwise users will be unable to authenticate.
To force it to use HTTPS you can still use access_control rules by using the
IS_AUTHENTICATED_ANONYMOUSLY role:

1
2

access_control:
- { path: ^/login, roles: IS_AUTHENTICATED_ANONYMOUSLY, requires_channel: https }

It is also possible to specify using HTTPS in the routing configuration, see How to Force Routes to always
Use HTTPS or HTTP for more details.

PDF brought to you by
generated on March 11, 2015

Chapter 96: How to Force HTTPS or HTTP for different URLs | 351

http://sensiolabs.com


Listing 97-1

Chapter 97

How to Restrict Firewalls to a Specific Request

When using the Security component, you can create firewalls that match certain request options. In most
cases, matching against the URL is sufficient, but in special cases you can further restrict the initialization
of a firewall against other options of the request.

You can use any of these restrictions individually or mix them together to get your desired firewall
configuration.

Restricting by Pattern
This is the default restriction and restricts a firewall to only be initialized if the request URL matches the
configured pattern.

1
2
3
4
5
6
7
8

# app/config/security.yml

# ...
security:

firewalls:
secured_area:

pattern: ^/admin
# ...

The pattern is a regular expression. In this example, the firewall will only be activated if the URL starts
(due to the ^ regex character) with /admin. If the URL does not match this pattern, the firewall will not
be activated and subsequent firewalls will have the opportunity to be matched for this request.

PDF brought to you by
generated on March 11, 2015

Chapter 97: How to Restrict Firewalls to a Specific Request | 352

http://sensiolabs.com


Listing 97-2

Listing 97-3

Restricting by Host
If matching against the pattern only is not enough, the request can also be matched against host. When
the configuration option host is set, the firewall will be restricted to only initialize if the host from the
request matches against the configuration.

1
2
3
4
5
6
7
8

# app/config/security.yml

# ...
security:

firewalls:
secured_area:

host: ^admin\.example\.com$
# ...

The host (like the pattern) is a regular expression. In this example, the firewall will only be activated
if the host is equal exactly (due to the ^ and $ regex characters) to the hostname admin.example.com. If
the hostname does not match this pattern, the firewall will not be activated and subsequent firewalls will
have the opportunity to be matched for this request.

Restricting by HTTP Methods
New in version 2.5: Support for restricting security firewalls to specific HTTP methods was introduced in
Symfony 2.5.

The configuration option methods restricts the initialization of the firewall to the provided HTTP
methods.

1
2
3
4
5
6
7
8

# app/config/security.yml

# ...
security:

firewalls:
secured_area:

methods: [GET, POST]
# ...

In this example, the firewall will only be activated if the HTTP method of the request is either GET or
POST. If the method is not in the array of the allowed methods, the firewall will not be activated and
subsequent firewalls will again have the opportunity to be matched for this request.

PDF brought to you by
generated on March 11, 2015

Chapter 97: How to Restrict Firewalls to a Specific Request | 353

http://sensiolabs.com


Chapter 98

How to Restrict Firewalls to a Specific Host

As of Symfony 2.5, more possibilities to restrict firewalls have been added. You can read everything about
all the possibilities (including host) in "How to Restrict Firewalls to a Specific Request".

PDF brought to you by
generated on March 11, 2015

Chapter 98: How to Restrict Firewalls to a Specific Host | 354

http://sensiolabs.com


Listing 99-1

Chapter 99

How to Customize your Form Login

Using a form login for authentication is a common, and flexible, method for handling authentication in
Symfony. Pretty much every aspect of the form login can be customized. The full, default configuration
is shown in the next section.

Form Login Configuration Reference
To see the full form login configuration reference, see SecurityBundle Configuration ("security"). Some of
the more interesting options are explained below.

Redirecting after Success
You can change where the login form redirects after a successful login using the various config options.
By default the form will redirect to the URL the user requested (i.e. the URL which triggered the login
form being shown). For example, if the user requested http://www.example.com/admin/post/18/edit,
then after they successfully log in, they will eventually be sent back to http://www.example.com/admin/
post/18/edit. This is done by storing the requested URL in the session. If no URL is present in the
session (perhaps the user went directly to the login page), then the user is redirected to the default page,
which is / (i.e. the homepage) by default. You can change this behavior in several ways.

As mentioned, by default the user is redirected back to the page originally requested. Sometimes,
this can cause problems, like if a background Ajax request "appears" to be the last visited URL,
causing the user to be redirected there. For information on controlling this behavior, see How to
Change the default Target Path Behavior.

Changing the default Page

First, the default page can be set (i.e. the page the user is redirected to if no previous page was stored in
the session). To set it to the default_security_target route use the following config:

PDF brought to you by
generated on March 11, 2015

Chapter 99: How to Customize your Form Login | 355

http://sensiolabs.com


Listing 99-2

Listing 99-3

Listing 99-4

1
2
3
4
5
6
7

# app/config/security.yml
security:

firewalls:
main:

form_login:
# ...
default_target_path: default_security_target

Now, when no URL is set in the session, users will be sent to the default_security_target route.

Always Redirect to the default Page

You can make it so that users are always redirected to the default page regardless of what URL they had
requested previously by setting the always_use_default_target_path option to true:

1
2
3
4
5
6
7

# app/config/security.yml
security:

firewalls:
main:

form_login:
# ...
always_use_default_target_path: true

Using the Referring URL

In case no previous URL was stored in the session, you may wish to try using the HTTP_REFERER instead,
as this will often be the same. You can do this by setting use_referer to true (it defaults to false):

1
2
3
4
5
6
7

# app/config/security.yml
security:

firewalls:
main:

form_login:
# ...
use_referer: true

Control the Redirect URL from inside the Form

You can also override where the user is redirected to via the form itself by including a hidden field with
the name _target_path. For example, to redirect to the URL defined by some account route, use the
following:

1
2
3
4
5
6
7
8
9

10
11

{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}
{% if error %}

<div>{{ error.message }}</div>
{% endif %}

<form action="{{ path('login_check') }}" method="post">
<label for="username">Username:</label>
<input type="text" id="username" name="_username" value="{{ last_username }}" />

<label for="password">Password:</label>
<input type="password" id="password" name="_password" />

PDF brought to you by
generated on March 11, 2015

Chapter 99: How to Customize your Form Login | 356

http://sensiolabs.com


Listing 99-5

Listing 99-6

12
13
14
15
16

<input type="hidden" name="_target_path" value="account" />

<input type="submit" name="login" />
</form>

Now, the user will be redirected to the value of the hidden form field. The value attribute can be a relative
path, absolute URL, or a route name. You can even change the name of the hidden form field by changing
the target_path_parameter option to another value.

1
2
3
4
5
6

# app/config/security.yml
security:

firewalls:
main:

form_login:
target_path_parameter: redirect_url

Redirecting on Login Failure

In addition to redirecting the user after a successful login, you can also set the URL that the user should
be redirected to after a failed login (e.g. an invalid username or password was submitted). By default, the
user is redirected back to the login form itself. You can set this to a different route (e.g. login_failure)
with the following config:

1
2
3
4
5
6
7

# app/config/security.yml
security:

firewalls:
main:

form_login:
# ...
failure_path: login_failure

PDF brought to you by
generated on March 11, 2015

Chapter 99: How to Customize your Form Login | 357

http://sensiolabs.com


Listing 100-1

Listing 100-2

Chapter 100

How to Secure any Service or Method in your
Application

In the security chapter, you can see how to secure a controller by requesting the
security.authorization_checker service from the Service Container and checking the current user's
role:

1
2
3
4
5
6
7
8
9

10
11

// ...
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

public function helloAction($name)
{

if (false === $this->get('security.authorization_checker')->isGranted('ROLE_ADMIN')) {
throw new AccessDeniedException();

}

// ...
}

New in version 2.6: The security.authorization_checker service was introduced in Symfony 2.6.
Prior to Symfony 2.6, you had to use the isGranted() method of the security.context service.

You can also secure any service in a similar way by injecting the security.authorization_checker
service into it. For a general introduction to injecting dependencies into services see the Service Container
chapter of the book. For example, suppose you have a NewsletterManager class that sends out emails
and you want to restrict its use to only users who have some ROLE_NEWSLETTER_ADMIN role. Before you
add security, the class looks something like this:

1
2
3
4
5
6
7

// src/AppBundle/Newsletter/NewsletterManager.php
namespace AppBundle\Newsletter;

class NewsletterManager
{

public function sendNewsletter()

PDF brought to you by
generated on March 11, 2015

Chapter 100: How to Secure any Service or Method in your Application | 358

http://sensiolabs.com


Listing 100-3

Listing 100-4

Listing 100-5

8
9

10
11
12
13

{
// ... where you actually do the work

}

// ...
}

Your goal is to check the user's role when the sendNewsletter() method is called. The first step towards
this is to inject the security.authorization_checker service into the object. Since it won't make sense
not to perform the security check, this is an ideal candidate for constructor injection, which guarantees
that the authorization checker object will be available inside the NewsletterManager class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

namespace AppBundle\Newsletter;

use Symfony\Component\Security\Core\Authorization\AuthorizationCheckerInterface;

class NewsletterManager
{

protected $authorizationChecker;

public function __construct(AuthorizationCheckerInterface $authorizationChecker)
{

$this->authorizationChecker = $authorizationChecker;
}

// ...
}

Then in your service configuration, you can inject the service:

1
2
3
4
5

# app/config/services.yml
services:

newsletter_manager:
class: "AppBundle\Newsletter\NewsletterManager"
arguments: ["@security.authorization_checker"]

The injected service can then be used to perform the security check when the sendNewsletter() method
is called:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

namespace AppBundle\Newsletter;

use Symfony\Component\Security\Core\Authorization\AuthorizationCheckerInterface;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;
// ...

class NewsletterManager
{

protected $authorizationChecker;

public function __construct(AuthorizationCheckerInterface $authorizationChecker)
{

$this->authorizationChecker = $authorizationChecker;
}

public function sendNewsletter()
{

PDF brought to you by
generated on March 11, 2015

Chapter 100: How to Secure any Service or Method in your Application | 359

http://sensiolabs.com


Listing 100-6

Listing 100-7

18
19
20
21
22
23
24
25
26

if (false === $this->authorizationChecker->isGranted('ROLE_NEWSLETTER_ADMIN')) {
throw new AccessDeniedException();

}

// ...
}

// ...
}

If the current user does not have the ROLE_NEWSLETTER_ADMIN, they will be prompted to log in.

Securing Methods Using Annotations
You can also secure method calls in any service with annotations by using the optional
JMSSecurityExtraBundle1 bundle. This bundle is not included in the Symfony Standard Distribution, but
you can choose to install it.

To enable the annotations functionality, tag the service you want to secure with the
security.secure_service tag (you can also automatically enable this functionality for all services, see
the sidebar below):

1
2
3
4
5
6
7
8

# app/services.yml

# ...
services:

newsletter_manager:
# ...
tags:

- { name: security.secure_service }

You can then achieve the same results as above using an annotation:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

namespace AppBundle\Newsletter;

use JMS\SecurityExtraBundle\Annotation\Secure;
// ...

class NewsletterManager
{

/**
* @Secure(roles="ROLE_NEWSLETTER_ADMIN")
*/
public function sendNewsletter()
{

// ...
}

// ...
}

1. https://github.com/schmittjoh/JMSSecurityExtraBundle

PDF brought to you by
generated on March 11, 2015

Chapter 100: How to Secure any Service or Method in your Application | 360

http://sensiolabs.com


Listing 100-8

The annotations work because a proxy class is created for your class which performs the security
checks. This means that, whilst you can use annotations on public and protected methods, you
cannot use them with private methods or methods marked final.

The JMSSecurityExtraBundle also allows you to secure the parameters and return values of methods. For
more information, see the JMSSecurityExtraBundle2 documentation.

Activating the Annotations Functionality for all Services

When securing the method of a service (as shown above), you can either tag each service
individually, or activate the functionality for all services at once. To do so, set the
secure_all_services configuration option to true:

1
2
3
4

# app/config/config.yml
jms_security_extra:

# ...
secure_all_services: true

The disadvantage of this method is that, if activated, the initial page load may be very slow
depending on how many services you have defined.

2. https://github.com/schmittjoh/JMSSecurityExtraBundle

PDF brought to you by
generated on March 11, 2015

Chapter 100: How to Secure any Service or Method in your Application | 361

http://sensiolabs.com


Listing 101-1

Chapter 101

How to Create a custom User Provider

Part of Symfony's standard authentication process depends on "user providers". When a user submits a
username and password, the authentication layer asks the configured user provider to return a user object
for a given username. Symfony then checks whether the password of this user is correct and generates a
security token so the user stays authenticated during the current session. Out of the box, Symfony has
an "in_memory" and an "entity" user provider. In this entry you'll see how you can create your own user
provider, which could be useful if your users are accessed via a custom database, a file, or - as shown in
this example - a web service.

Create a User Class
First, regardless of where your user data is coming from, you'll need to create a User class that represents
that data. The User can look however you want and contain any data. The only requirement is that
the class implements UserInterface1. The methods in this interface should therefore be defined in the
custom user class: getRoles()2, getPassword()3, getSalt()4, getUsername()5, eraseCredentials()6.
It may also be useful to implement the EquatableInterface7 interface, which defines a method to check
if the user is equal to the current user. This interface requires an isEqualTo()8 method.

This is how your WebserviceUser class looks in action:

1
2
3
4
5
6

// src/Acme/WebserviceUserBundle/Security/User/WebserviceUser.php
namespace Acme\WebserviceUserBundle\Security\User;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\User\EquatableInterface;

1. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html

2. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#getRoles()

3. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#getPassword()

4. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#getSalt()

5. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#getUsername()

6. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserInterface.html#eraseCredentials()

7. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/EquatableInterface.html

8. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/EquatableInterface.html#isEqualTo()

PDF brought to you by
generated on March 11, 2015

Chapter 101: How to Create a custom User Provider | 362

http://sensiolabs.com


7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

class WebserviceUser implements UserInterface, EquatableInterface
{

private $username;
private $password;
private $salt;
private $roles;

public function __construct($username, $password, $salt, array $roles)
{

$this->username = $username;
$this->password = $password;
$this->salt = $salt;
$this->roles = $roles;

}

public function getRoles()
{

return $this->roles;
}

public function getPassword()
{

return $this->password;
}

public function getSalt()
{

return $this->salt;
}

public function getUsername()
{

return $this->username;
}

public function eraseCredentials()
{
}

public function isEqualTo(UserInterface $user)
{

if (!$user instanceof WebserviceUser) {
return false;

}

if ($this->password !== $user->getPassword()) {
return false;

}

if ($this->salt !== $user->getSalt()) {
return false;

}

if ($this->username !== $user->getUsername()) {
return false;

}

return true;

PDF brought to you by
generated on March 11, 2015

Chapter 101: How to Create a custom User Provider | 363

http://sensiolabs.com


Listing 101-2

65
66

}
}

If you have more information about your users - like a "first name" - then you can add a firstName field
to hold that data.

Create a User Provider
Now that you have a User class, you'll create a user provider, which will grab user information from some
web service, create a WebserviceUser object, and populate it with data.

The user provider is just a plain PHP class that has to implement the UserProviderInterface9, which
requires three methods to be defined: loadUserByUsername($username), refreshUser(UserInterface
$user), and supportsClass($class). For more details, see UserProviderInterface10.

Here's an example of how this might look:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// src/Acme/WebserviceUserBundle/Security/User/WebserviceUserProvider.php
namespace Acme\WebserviceUserBundle\Security\User;

use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;

class WebserviceUserProvider implements UserProviderInterface
{

public function loadUserByUsername($username)
{

// make a call to your webservice here
$userData = ...
// pretend it returns an array on success, false if there is no user

if ($userData) {
$password = '...';

// ...

return new WebserviceUser($username, $password, $salt, $roles);
}

throw new UsernameNotFoundException(
sprintf('Username "%s" does not exist.', $username)

);
}

public function refreshUser(UserInterface $user)
{

if (!$user instanceof WebserviceUser) {
throw new UnsupportedUserException(

sprintf('Instances of "%s" are not supported.', get_class($user))
);

}

9. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserProviderInterface.html

10. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/UserProviderInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 101: How to Create a custom User Provider | 364

http://sensiolabs.com


Listing 101-3

Listing 101-4

Listing 101-5

38
39
40
41
42
43
44
45

return $this->loadUserByUsername($user->getUsername());
}

public function supportsClass($class)
{

return $class === 'Acme\WebserviceUserBundle\Security\User\WebserviceUser';
}

}

Create a Service for the User Provider
Now you make the user provider available as a service:

1
2
3
4

# src/Acme/WebserviceUserBundle/Resources/config/services.yml
services:

webservice_user_provider:
class: Acme\WebserviceUserBundle\Security\User\WebserviceUserProvider

The real implementation of the user provider will probably have some dependencies or
configuration options or other services. Add these as arguments in the service definition.

Make sure the services file is being imported. See Importing Configuration with imports for details.

Modify security.yml
Everything comes together in your security configuration. Add the user provider to the list of providers
in the "security" section. Choose a name for the user provider (e.g. "webservice") and mention the id of
the service you just defined.

1
2
3
4
5

# app/config/security.yml
security:

providers:
webservice:

id: webservice_user_provider

Symfony also needs to know how to encode passwords that are supplied by website users, e.g. by filling
in a login form. You can do this by adding a line to the "encoders" section in your security configuration:

1
2
3
4

# app/config/security.yml
security:

encoders:
Acme\WebserviceUserBundle\Security\User\WebserviceUser: sha512

The value here should correspond with however the passwords were originally encoded when creating
your users (however those users were created). When a user submits their password, the salt value
is appended to the password and then encoded using this algorithm before being compared to the

PDF brought to you by
generated on March 11, 2015

Chapter 101: How to Create a custom User Provider | 365

http://sensiolabs.com


Listing 101-6

hashed password returned by your getPassword() method. Additionally, depending on your options,
the password may be encoded multiple times and encoded to base64.

Specifics on how Passwords are Encoded

Symfony uses a specific method to combine the salt and encode the password before comparing it
to your encoded password. If getSalt() returns nothing, then the submitted password is simply
encoded using the algorithm you specify in security.yml. If a salt is specified, then the following
value is created and then hashed via the algorithm:

$password.'{'.$salt.'}';

If your external users have their passwords salted via a different method, then you'll need to do
a bit more work so that Symfony properly encodes the password. That is beyond the scope of
this entry, but would include sub-classing MessageDigestPasswordEncoder and overriding the
mergePasswordAndSalt method.

Additionally, the hash, by default, is encoded multiple times and encoded to base64. For specific
details, see MessageDigestPasswordEncoder11. To prevent this, configure it in your configuration
file:

1
2
3
4
5
6
7

# app/config/security.yml
security:

encoders:
Acme\WebserviceUserBundle\Security\User\WebserviceUser:

algorithm: sha512
encode_as_base64: false
iterations: 1

11. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Security/Core/Encoder/MessageDigestPasswordEncoder.php

PDF brought to you by
generated on March 11, 2015

Chapter 101: How to Create a custom User Provider | 366

http://sensiolabs.com


Listing 102-1

Chapter 102

How to Create a Custom Form Password
Authenticator

Imagine you want to allow access to your website only between 2pm and 4pm UTC. Before Symfony 2.4,
you had to create a custom token, factory, listener and provider. In this entry, you'll learn how to do this
for a login form (i.e. where your user submits their username and password). Before Symfony 2.6, you
had to use the password encoder to authenticate the user password.

The Password Authenticator
New in version 2.6: The UserPasswordEncoderInterface interface was introduced in Symfony 2.6.

First, create a new class that implements SimpleFormAuthenticatorInterface1. Eventually, this will
allow you to create custom logic for authenticating the user:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/Acme/HelloBundle/Security/TimeAuthenticator.php
namespace Acme\HelloBundle\Security;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\Security\Core\Authentication\SimpleFormAuthenticatorInterface;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use Symfony\Component\Security\Core\Authentication\Token\UsernamePasswordToken;
use Symfony\Component\Security\Core\Encoder\UserPasswordEncoderInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Symfony\Component\Security\Core\User\UserProviderInterface;

class TimeAuthenticator implements SimpleFormAuthenticatorInterface
{

private $encoder;

public function __construct(UserPasswordEncoderInterface $encoder)

1. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/SimpleFormAuthenticatorInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 102: How to Create a Custom Form Password Authenticator | 367

http://sensiolabs.com


18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

{
$this->encoder = $encoder;

}

public function authenticateToken(TokenInterface $token, UserProviderInterface
$userProvider, $providerKey)

{
try {

$user = $userProvider->loadUserByUsername($token->getUsername());
} catch (UsernameNotFoundException $e) {

throw new AuthenticationException('Invalid username or password');
}

$passwordValid = $this->encoder->isPasswordValid($user, $token->getCredentials());

if ($passwordValid) {
$currentHour = date('G');
if ($currentHour < 14 || $currentHour > 16) {

throw new AuthenticationException(
'You can only log in between 2 and 4!',
100

);
}

return new UsernamePasswordToken(
$user,
$user->getPassword(),
$providerKey,
$user->getRoles()

);
}

throw new AuthenticationException('Invalid username or password');
}

public function supportsToken(TokenInterface $token, $providerKey)
{

return $token instanceof UsernamePasswordToken
&& $token->getProviderKey() === $providerKey;

}

public function createToken(Request $request, $username, $password, $providerKey)
{

return new UsernamePasswordToken($username, $password, $providerKey);
}

}

How it Works
Great! Now you just need to setup some Configuration. But first, you can find out more about what each
method in this class does.

PDF brought to you by
generated on March 11, 2015

Chapter 102: How to Create a Custom Form Password Authenticator | 368

http://sensiolabs.com


Listing 102-2

Listing 102-3

1) createToken

When Symfony begins handling a request, createToken() is called, where you create a TokenInterface2

object that contains whatever information you need in authenticateToken() to authenticate the user
(e.g. the username and password).

Whatever token object you create here will be passed to you later in authenticateToken().

2) supportsToken

After Symfony calls createToken(), it will then call supportsToken() on your class (and any other
authentication listeners) to figure out who should handle the token. This is just a way to allow several
authentication mechanisms to be used for the same firewall (that way, you can for instance first try to
authenticate the user via a certificate or an API key and fall back to a form login).

Mostly, you just need to make sure that this method returns true for a token that has been created by
createToken(). Your logic should probably look exactly like this example.

3) authenticateToken

If supportsToken returns true, Symfony will now call authenticateToken(). Your job here is to check
that the token is allowed to log in by first getting the User object via the user provider and then, by
checking the password and the current time.

The "flow" of how you get the User object and determine whether or not the token is valid (e.g.
checking the password), may vary based on your requirements.

Ultimately, your job is to return a new token object that is "authenticated" (i.e. it has at least 1 role set on
it) and which has the User object inside of it.

Inside this method, the password encoder is needed to check the password's validity:

1 $passwordValid = $this->encoder->isPasswordValid($user, $token->getCredentials());

This is a service that is already available in Symfony and it uses the password algorithm that is configured
in the security configuration (e.g. security.yml) under the encoders key. Below, you'll see how to inject
that into the TimeAuthenticator.

Configuration
Now, configure your TimeAuthenticator as a service:

1
2
3
4
5
6
7

# app/config/config.yml
services:

# ...

time_authenticator:
class: Acme\HelloBundle\Security\TimeAuthenticator
arguments: ["@security.password_encoder"]

Then, activate it in the firewalls section of the security configuration using the simple_form key:

2. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 102: How to Create a Custom Form Password Authenticator | 369

http://sensiolabs.com


Listing 102-4 1
2
3
4
5
6
7
8
9

10
11
12

# app/config/security.yml
security:

# ...

firewalls:
secured_area:

pattern: ^/admin
# ...
simple_form:

authenticator: time_authenticator
check_path: login_check
login_path: login

The simple_form key has the same options as the normal form_login option, but with the additional
authenticator key that points to the new service. For details, see Form Login Configuration.

If creating a login form in general is new to you or you don't understand the check_path or login_path
options, see How to Customize your Form Login.

PDF brought to you by
generated on March 11, 2015

Chapter 102: How to Create a Custom Form Password Authenticator | 370

http://sensiolabs.com


Listing 103-1

Chapter 103

How to Authenticate Users with API Keys

Nowadays, it's quite usual to authenticate the user via an API key (when developing a web service for
instance). The API key is provided for every request and is passed as a query string parameter or via an
HTTP header.

The API Key Authenticator
Authenticating a user based on the Request information should be done via a pre-authentication
mechanism. The SimplePreAuthenticatorInterface1 allows you to implement such a scheme really
easily.

Your exact situation may differ, but in this example, a token is read from an apikey query parameter, the
proper username is loaded from that value and then a User object is created:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/AppBundle/Security/ApiKeyAuthenticator.php
namespace AppBundle\Security;

use Symfony\Component\Security\Core\Authentication\SimplePreAuthenticatorInterface;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Core\Authentication\Token\PreAuthenticatedToken;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\Exception\BadCredentialsException;

class ApiKeyAuthenticator implements SimplePreAuthenticatorInterface
{

protected $userProvider;

public function __construct(ApiKeyUserProvider $userProvider)
{

$this->userProvider = $userProvider;
}

1. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/SimplePreAuthenticatorInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 371

http://sensiolabs.com


20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

public function createToken(Request $request, $providerKey)
{

// look for an apikey query parameter
$apiKey = $request->query->get('apikey');

// or if you want to use an "apikey" header, then do something like this:
// $apiKey = $request->headers->get('apikey');

if (!$apiKey) {
throw new BadCredentialsException('No API key found');

// or to just skip api key authentication
// return null;

}

return new PreAuthenticatedToken(
'anon.',
$apiKey,
$providerKey

);
}

public function authenticateToken(TokenInterface $token, UserProviderInterface
$userProvider, $providerKey)

{
$apiKey = $token->getCredentials();
$username = $this->userProvider->getUsernameForApiKey($apiKey);

if (!$username) {
throw new AuthenticationException(

sprintf('API Key "%s" does not exist.', $apiKey)
);

}

$user = $this->userProvider->loadUserByUsername($username);

return new PreAuthenticatedToken(
$user,
$apiKey,
$providerKey,
$user->getRoles()

);
}

public function supportsToken(TokenInterface $token, $providerKey)
{

return $token instanceof PreAuthenticatedToken && $token->getProviderKey() ===
$providerKey;

}
}

Once you've configured everything, you'll be able to authenticate by adding an apikey parameter to the
query string, like http://example.com/admin/foo?apikey=37b51d194a7513e45b56f6524f2d51f2.

The authentication process has several steps, and your implementation will probably differ:

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 372

http://sensiolabs.com


Listing 103-2

1. createToken

Early in the request cycle, Symfony calls createToken(). Your job here is to create a token object
that contains all of the information from the request that you need to authenticate the user (e.g. the
apikey query parameter). If that information is missing, throwing a BadCredentialsException2 will
cause authentication to fail. You might want to return null instead to just skip the authentication, so
Symfony can fallback to another authentication method, if any.

2. supportsToken

After Symfony calls createToken(), it will then call supportsToken() on your class (and any other
authentication listeners) to figure out who should handle the token. This is just a way to allow several
authentication mechanisms to be used for the same firewall (that way, you can for instance first try to
authenticate the user via a certificate or an API key and fall back to a form login).

Mostly, you just need to make sure that this method returns true for a token that has been created by
createToken(). Your logic should probably look exactly like this example.

3. authenticateToken

If supportsToken() returns true, Symfony will now call authenticateToken(). One key part is the
$userProvider, which is an external class that helps you load information about the user. You'll learn
more about this next.

In this specific example, the following things happen in authenticateToken():
1. First, you use the $userProvider to somehow look up the $username that corresponds to the

$apiKey;
2. Second, you use the $userProvider again to load or create a User object for the $username;
3. Finally, you create an authenticated token (i.e. a token with at least one role) that has the proper

roles and the User object attached to it.

The goal is ultimately to use the $apiKey to find or create a User object. How you do this (e.g. query a
database) and the exact class for your User object may vary. Those differences will be most obvious in
your user provider.

The User Provider

The $userProvider can be any user provider (see How to Create a custom User Provider). In this
example, the $apiKey is used to somehow find the username for the user. This work is done in a
getUsernameForApiKey() method, which is created entirely custom for this use-case (i.e. this isn't a
method that's used by Symfony's core user provider system).

The $userProvider might look something like this:

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Security/ApiKeyUserProvider.php
namespace AppBundle\Security;

use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\User\User;
use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;

class ApiKeyUserProvider implements UserProviderInterface
{

public function getUsernameForApiKey($apiKey)

2. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Exception/BadCredentialsException.html

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 373

http://sensiolabs.com


Listing 103-3

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

{
// Look up the username based on the token in the database, via
// an API call, or do something entirely different
$username = ...;

return $username;
}

public function loadUserByUsername($username)
{

return new User(
$username,
null,
// the roles for the user - you may choose to determine
// these dynamically somehow based on the user
array('ROLE_USER')

);
}

public function refreshUser(UserInterface $user)
{

// this is used for storing authentication in the session
// but in this example, the token is sent in each request,
// so authentication can be stateless. Throwing this exception
// is proper to make things stateless
throw new UnsupportedUserException();

}

public function supportsClass($class)
{

return 'Symfony\Component\Security\Core\User\User' === $class;
}

}

Now register your user provider as service:

1
2
3
4

# app/config/services.yml
services:

api_key_user_provider:
class: AppBundle\Security\ApiKeyUserProvider

Read the dedicated article to learn how to create a custom user provider.

The logic inside getUsernameForApiKey() is up to you. You may somehow transform the API key (e.g.
37b51d) into a username (e.g. jondoe) by looking up some information in a "token" database table.

The same is true for loadUserByUsername(). In this example, Symfony's core User3 class is simply
created. This makes sense if you don't need to store any extra information on your User object (e.g.
firstName). But if you do, you may instead have your own user class which you create and populate here
by querying a database. This would allow you to have custom data on the User object.

Finally, just make sure that supportsClass() returns true for User objects with the same class as
whatever user you return in loadUserByUsername(). If your authentication is stateless like in this

3. http://api.symfony.com/2.6/Symfony/Component/Security/Core/User/User.html

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 374

http://sensiolabs.com


Listing 103-4

Listing 103-5

example (i.e. you expect the user to send the API key with every request and so you don't save the login to
the session), then you can simply throw the UnsupportedUserException exception in refreshUser().

If you do want to store authentication data in the session so that the key doesn't need to be sent on
every request, see Storing Authentication in the Session.

Handling Authentication Failure
In order for your ApiKeyAuthentication to correctly display a 403 http status when either bad
credentials or authentication fails you will need to implement the
AuthenticationFailureHandlerInterface4 on your Authenticator. This will provide a method
onAuthenticationFailure which you can use to create an error Response.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// src/AppBundle/Security/ApiKeyAuthenticator.php
namespace AppBundle\Security;

use Symfony\Component\Security\Core\Authentication\SimplePreAuthenticatorInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Http\Authentication\AuthenticationFailureHandlerInterface;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\Request;

class ApiKeyAuthenticator implements SimplePreAuthenticatorInterface,
AuthenticationFailureHandlerInterface
{

// ...

public function onAuthenticationFailure(Request $request, AuthenticationException
$exception)

{
return new Response("Authentication Failed.", 403);

}
}

Configuration
Once you have your ApiKeyAuthentication all setup, you need to register it as a service and use it in
your security configuration (e.g. security.yml). First, register it as a service. This assumes that you have
already setup your custom user provider as a service called your_api_key_user_provider (see How to
Create a custom User Provider).

1
2
3
4
5
6
7

# app/config/config.yml
services:

# ...

apikey_authenticator:
class: AppBundle\Security\ApiKeyAuthenticator
arguments: ["@api_key_user_provider"]

Now, activate it in the firewalls section of your security configuration using the simple_preauth key:

4. http://api.symfony.com/2.6/Symfony/Component/Security/Http/Authentication/AuthenticationFailureHandlerInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 375

http://sensiolabs.com


Listing 103-6

Listing 103-7

Listing 103-8

1
2
3
4
5
6
7
8
9

10
11
12
13
14

# app/config/security.yml
security:

# ...

firewalls:
secured_area:

pattern: ^/admin
stateless: true
simple_preauth:

authenticator: apikey_authenticator

providers:
api_key_user_provider:

id: api_key_user_provider

That's it! Now, your ApiKeyAuthentication should be called at the beginning of each request and your
authentication process will take place.

The stateless configuration parameter prevents Symfony from trying to store the authentication
information in the session, which isn't necessary since the client will send the apikey on each request. If
you do need to store authentication in the session, keep reading!

Storing Authentication in the Session
So far, this entry has described a situation where some sort of authentication token is sent on every
request. But in some situations (like an OAuth flow), the token may be sent on only one request. In this
case, you will want to authenticate the user and store that authentication in the session so that the user
is automatically logged in for every subsequent request.

To make this work, first remove the stateless key from your firewall configuration or set it to false:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

# app/config/security.yml
security:

# ...

firewalls:
secured_area:

pattern: ^/admin
stateless: false
simple_preauth:

authenticator: apikey_authenticator

providers:
api_key_user_provider:

id: api_key_user_provider

Even though the token is being stored in the session, the credentials - in this case the API key (i.e. $token-
>getCredentials()) - are not stored in the session for security reasons. To take advantage of the session,
update ApiKeyAuthenticator to see if the stored token has a valid User object that can be used:

1
2
3
4
5

// src/AppBundle/Security/ApiKeyAuthenticator.php
// ...

class ApiKeyAuthenticator implements SimplePreAuthenticatorInterface
{

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 376

http://sensiolabs.com


Listing 103-9

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// ...
public function authenticateToken(TokenInterface $token, UserProviderInterface

$userProvider, $providerKey)
{

$apiKey = $token->getCredentials();
$username = $this->userProvider->getUsernameForApiKey($apiKey);

// User is the Entity which represents your user
$user = $token->getUser();
if ($user instanceof User) {

return new PreAuthenticatedToken(
$user,
$apiKey,
$providerKey,
$user->getRoles()

);
}

if (!$username) {
throw new AuthenticationException(

sprintf('API Key "%s" does not exist.', $apiKey)
);

}

$user = $this->userProvider->loadUserByUsername($username);

return new PreAuthenticatedToken(
$user,
$apiKey,
$providerKey,
$user->getRoles()

);
}
// ...

}

Storing authentication information in the session works like this:
1. At the end of each request, Symfony serializes the token object (returned from

authenticateToken()), which also serializes the User object (since it's set on a property on the
token);

2. On the next request the token is deserialized and the deserialized User object is passed to the
refreshUser() function of the user provider.

The second step is the important one: Symfony calls refreshUser() and passes you the user object that
was serialized in the session. If your users are stored in the database, then you may want to re-query
for a fresh version of the user to make sure it's not out-of-date. But regardless of your requirements,
refreshUser() should now return the User object:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/Security/ApiKeyUserProvider.php

// ...
class ApiKeyUserProvider implements UserProviderInterface
{

// ...

public function refreshUser(UserInterface $user)
{

// $user is the User that you set in the token inside authenticateToken()

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 377

http://sensiolabs.com


Listing 103-10

11
12
13
14
15
16
17
18
19
20
21

// after it has been deserialized from the session

// you might use $user to query the database for a fresh user
// $id = $user->getId();
// use $id to make a query

// if you are *not* reading from a database and are just creating
// a User object (like in this example), you can just return it
return $user;

}
}

You'll also want to make sure that your User object is being serialized correctly. If your User object
has private properties, PHP can't serialize those. In this case, you may get back a User object that
has a null value for each property. For an example, see How to Load Security Users from the
Database (the Entity Provider).

Only Authenticating for Certain URLs
This entry has assumed that you want to look for the apikey authentication on every request. But in
some situations (like an OAuth flow), you only really need to look for authentication information once
the user has reached a certain URL (e.g. the redirect URL in OAuth).

Fortunately, handling this situation is easy: just check to see what the current URL is before creating the
token in createToken():

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// src/AppBundle/Security/ApiKeyAuthenticator.php

// ...
use Symfony\Component\Security\Http\HttpUtils;
use Symfony\Component\HttpFoundation\Request;

class ApiKeyAuthenticator implements SimplePreAuthenticatorInterface
{

protected $userProvider;

protected $httpUtils;

public function __construct(UserProviderInterface $userProvider, HttpUtils $httpUtils)
{

$this->userProvider = $userProvider;
$this->httpUtils = $httpUtils;

}

public function createToken(Request $request, $providerKey)
{

// set the only URL where we should look for auth information
// and only return the token if we're at that URL
$targetUrl = '/login/check';
if (!$this->httpUtils->checkRequestPath($request, $targetUrl)) {

return;
}

// ...

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 378

http://sensiolabs.com


Listing 103-11

29
30

}
}

This uses the handy HttpUtils5 class to check if the current URL matches the URL you're looking for.
In this case, the URL (/login/check) has been hardcoded in the class, but you could also inject it as the
third constructor argument.

Next, just update your service configuration to inject the security.http_utils service:

1
2
3
4
5
6
7

# app/config/config.yml
services:

# ...

apikey_authenticator:
class: AppBundle\Security\ApiKeyAuthenticator
arguments: ["@api_key_user_provider", "@security.http_utils"]

That's it! Have fun!

5. http://api.symfony.com/2.6/Symfony/Component/Security/Http/HttpUtils.html

PDF brought to you by
generated on March 11, 2015

Chapter 103: How to Authenticate Users with API Keys | 379

http://sensiolabs.com


Chapter 104

How to Create a custom Authentication
Provider

Creating a custom authentication system is hard, and this entry will walk you through that process.
But depending on your needs, you may be able to solve your problem in a simpler way using these
documents:

• How to Create a Custom Form Password Authenticator
• How to Authenticate Users with API Keys

If you have read the chapter on Security, you understand the distinction Symfony makes between
authentication and authorization in the implementation of security. This chapter discusses the core
classes involved in the authentication process, and how to implement a custom authentication provider.
Because authentication and authorization are separate concepts, this extension will be user-provider
agnostic, and will function with your application's user providers, may they be based in memory, a
database, or wherever else you choose to store them.

Meet WSSE
The following chapter demonstrates how to create a custom authentication provider for WSSE
authentication. The security protocol for WSSE provides several security benefits:

1. Username / Password encryption
2. Safe guarding against replay attacks
3. No web server configuration required

WSSE is very useful for the securing of web services, may they be SOAP or REST.

There is plenty of great documentation on WSSE1, but this article will focus not on the security protocol,
but rather the manner in which a custom protocol can be added to your Symfony application. The basis

1. http://www.xml.com/pub/a/2003/12/17/dive.html

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 380

http://sensiolabs.com


Listing 104-1

of WSSE is that a request header is checked for encrypted credentials, verified using a timestamp and
nonce2, and authenticated for the requested user using a password digest.

WSSE also supports application key validation, which is useful for web services, but is outside the
scope of this chapter.

The Token
The role of the token in the Symfony security context is an important one. A token represents the user
authentication data present in the request. Once a request is authenticated, the token retains the user's
data, and delivers this data across the security context. First, you'll create your token class. This will allow
the passing of all relevant information to your authentication provider.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/AppBundle/Security/Authentication/Token/WsseUserToken.php
namespace AppBundle\Security\Authentication\Token;

use Symfony\Component\Security\Core\Authentication\Token\AbstractToken;

class WsseUserToken extends AbstractToken
{

public $created;
public $digest;
public $nonce;

public function __construct(array $roles = array())
{

parent::__construct($roles);

// If the user has roles, consider it authenticated
$this->setAuthenticated(count($roles) > 0);

}

public function getCredentials()
{

return '';
}

}

The WsseUserToken class extends the Security component's AbstractToken3 class, which provides
basic token functionality. Implement the TokenInterface4 on any class to use as a token.

The Listener
Next, you need a listener to listen on the firewall. The listener is responsible for fielding requests to the
firewall and calling the authentication provider. A listener must be an instance of ListenerInterface5.

2. http://en.wikipedia.org/wiki/Cryptographic_nonce

3. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/Token/AbstractToken.html

4. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html

5. http://api.symfony.com/2.6/Symfony/Component/Security/Http/Firewall/ListenerInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 381

http://sensiolabs.com


Listing 104-2

A security listener should handle the GetResponseEvent6 event, and set an authenticated token in the
token storage if successful.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

// src/AppBundle/Security/Firewall/WsseListener.php
namespace AppBundle\Security\Firewall;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\Security\Core\Authentication\AuthenticationManagerInterface;
use Symfony\Component\Security\Core\Authentication\Token\Storage\TokenStorageInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Http\Firewall\ListenerInterface;
use AppBundle\Security\Authentication\Token\WsseUserToken;

class WsseListener implements ListenerInterface
{

protected $tokenStorage;
protected $authenticationManager;

public function __construct(TokenStorageInterface $tokenStorage,
AuthenticationManagerInterface $authenticationManager)

{
$this->tokenStorage = $tokenStorage;
$this->authenticationManager = $authenticationManager;

}

public function handle(GetResponseEvent $event)
{

$request = $event->getRequest();

$wsseRegex = '/UsernameToken Username="([^"]+)", PasswordDigest="([^"]+)",
Nonce="([^"]+)", Created="([^"]+)"/';

if (!$request->headers->has('x-wsse') || 1 !== preg_match($wsseRegex,
$request->headers->get('x-wsse'), $matches)) {

return;
}

$token = new WsseUserToken();
$token->setUser($matches[1]);

$token->digest = $matches[2];
$token->nonce = $matches[3];
$token->created = $matches[4];

try {
$authToken = $this->authenticationManager->authenticate($token);
$this->tokenStorage->setToken($authToken);

return;
} catch (AuthenticationException $failed) {

// ... you might log something here

// To deny the authentication clear the token. This will redirect to the login
page.

// Make sure to only clear your token, not those of other authentication
listeners.

// $token = $this->tokenStorage->getToken();
// if ($token instanceof WsseUserToken && $this->providerKey ===

6. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Event/GetResponseEvent.html

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 382

http://sensiolabs.com


Listing 104-3

56
57
58
59
60
61

$token->getProviderKey()) {
//     $this->tokenStorage->setToken(null);
// }
// return;

}

// By default deny authorization
$response = new Response();
$response->setStatusCode(Response::HTTP_FORBIDDEN);
$event->setResponse($response);

}
}

This listener checks the request for the expected X-WSSE header, matches the value returned for the
expected WSSE information, creates a token using that information, and passes the token on to the
authentication manager. If the proper information is not provided, or the authentication manager throws
an AuthenticationException7, a 403 Response is returned.

A class not used above, the AbstractAuthenticationListener8 class, is a very useful base class
which provides commonly needed functionality for security extensions. This includes maintaining
the token in the session, providing success / failure handlers, login form URLs, and more. As
WSSE does not require maintaining authentication sessions or login forms, it won't be used for this
example.

Returning prematurely from the listener is relevant only if you want to chain authentication
providers (for example to allow anonymous users). If you want to forbid access to anonymous
users and have a nice 403 error, you should set the status code of the response before returning.

The Authentication Provider
The authentication provider will do the verification of the WsseUserToken. Namely, the provider will
verify the Created header value is valid within five minutes, the Nonce header value is unique within five
minutes, and the PasswordDigest header value matches with the user's password.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Security/Authentication/Provider/WsseProvider.php
namespace AppBundle\Security\Authentication\Provider;

use
Symfony\Component\Security\Core\Authentication\Provider\AuthenticationProviderInterface;
use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Core\Exception\NonceExpiredException;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use AppBundle\Security\Authentication\Token\WsseUserToken;

class WsseProvider implements AuthenticationProviderInterface
{

private $userProvider;
private $cacheDir;

7. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Exception/AuthenticationException.html

8. http://api.symfony.com/2.6/Symfony/Component/Security/Http/Firewall/AbstractAuthenticationListener.html

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 383

http://sensiolabs.com


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

public function __construct(UserProviderInterface $userProvider, $cacheDir)
{

$this->userProvider = $userProvider;
$this->cacheDir = $cacheDir;

}

public function authenticate(TokenInterface $token)
{

$user = $this->userProvider->loadUserByUsername($token->getUsername());

if ($user && $this->validateDigest($token->digest, $token->nonce, $token->created,
$user->getPassword())) {

$authenticatedToken = new WsseUserToken($user->getRoles());
$authenticatedToken->setUser($user);

return $authenticatedToken;
}

throw new AuthenticationException('The WSSE authentication failed.');
}

/**
* This function is specific to Wsse authentication and is only used to help this

example
*
* For more information specific to the logic here, see
* https://github.com/symfony/symfony-docs/pull/3134#issuecomment-27699129
*/
protected function validateDigest($digest, $nonce, $created, $secret)
{

// Check created time is not in the future
if (strtotime($created) > time()) {

return false;
}

// Expire timestamp after 5 minutes
if (time() - strtotime($created) > 300) {

return false;
}

// Validate that the nonce is *not* used in the last 5 minutes
// if it has, this could be a replay attack
if (file_exists($this->cacheDir.'/'.$nonce) &&

file_get_contents($this->cacheDir.'/'.$nonce) + 300 > time()) {
throw new NonceExpiredException('Previously used nonce detected');

}
// If cache directory does not exist we create it
if (!is_dir($this->cacheDir)) {

mkdir($this->cacheDir, 0777, true);
}
file_put_contents($this->cacheDir.'/'.$nonce, time());

// Validate Secret
$expected = base64_encode(sha1(base64_decode($nonce).$created.$secret, true));

return $digest === $expected;
}

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 384

http://sensiolabs.com


Listing 104-4

74
75

public function supports(TokenInterface $token)
{

return $token instanceof WsseUserToken;
}

}

The AuthenticationProviderInterface9 requires an authenticate method on the user token,
and a supports method, which tells the authentication manager whether or not to use this
provider for the given token. In the case of multiple providers, the authentication manager will
then move to the next provider in the list.

The Factory
You have created a custom token, custom listener, and custom provider. Now you need to tie them all
together. How do you make a unique provider available for every firewall? The answer is by using a
factory. A factory is where you hook into the Security component, telling it the name of your provider
and any configuration options available for it. First, you must create a class which implements
SecurityFactoryInterface10.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

// src/AppBundle/DependencyInjection/Security/Factory/WsseFactory.php
namespace AppBundle\DependencyInjection\Security\Factory;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Reference;
use Symfony\Component\DependencyInjection\DefinitionDecorator;
use Symfony\Component\Config\Definition\Builder\NodeDefinition;
use
Symfony\Bundle\SecurityBundle\DependencyInjection\Security\Factory\SecurityFactoryInterface;

class WsseFactory implements SecurityFactoryInterface
{

public function create(ContainerBuilder $container, $id, $config, $userProvider,
$defaultEntryPoint)

{
$providerId = 'security.authentication.provider.wsse.'.$id;
$container

->setDefinition($providerId, new
DefinitionDecorator('wsse.security.authentication.provider'))

->replaceArgument(0, new Reference($userProvider))
;

$listenerId = 'security.authentication.listener.wsse.'.$id;
$listener = $container->setDefinition($listenerId, new

DefinitionDecorator('wsse.security.authentication.listener'));

return array($providerId, $listenerId, $defaultEntryPoint);
}

public function getPosition()
{

return 'pre_auth';

9. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/Provider/AuthenticationProviderInterface.html

10. http://api.symfony.com/2.6/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/SecurityFactoryInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 385

http://sensiolabs.com


33
34
35
36
37
38
39

}

public function getKey()
{

return 'wsse';
}

public function addConfiguration(NodeDefinition $node)
{
}

}

The SecurityFactoryInterface11 requires the following methods:
createcreate

Method which adds the listener and authentication provider to the DI container for the appropriate
security context.

getPositiongetPosition
Method which must be of type pre_auth, form, http, and remember_me and defines the position at
which the provider is called.

getKeygetKey
Method which defines the configuration key used to reference the provider in the firewall
configuration.

addConfigurationaddConfiguration
Method which is used to define the configuration options underneath the configuration key in your
security configuration. Setting configuration options are explained later in this chapter.

A class not used in this example, AbstractFactory12, is a very useful base class which provides
commonly needed functionality for security factories. It may be useful when defining an
authentication provider of a different type.

Now that you have created a factory class, the wsse key can be used as a firewall in your security
configuration.

You may be wondering "why do you need a special factory class to add listeners and providers to
the dependency injection container?". This is a very good question. The reason is you can use your
firewall multiple times, to secure multiple parts of your application. Because of this, each time your
firewall is used, a new service is created in the DI container. The factory is what creates these new
services.

Configuration
It's time to see your authentication provider in action. You will need to do a few things in order to
make this work. The first thing is to add the services above to the DI container. Your factory class above
makes reference to service ids that do not exist yet: wsse.security.authentication.provider and
wsse.security.authentication.listener. It's time to define those services.

11. http://api.symfony.com/2.6/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/SecurityFactoryInterface.html

12. http://api.symfony.com/2.6/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/AbstractFactory.html

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 386

http://sensiolabs.com


Listing 104-5

Listing 104-6

Listing 104-7

Listing 104-8

1
2
3
4
5
6
7
8
9

# src/AppBundle/Resources/config/services.yml
services:

wsse.security.authentication.provider:
class: AppBundle\Security\Authentication\Provider\WsseProvider
arguments: ["", "%kernel.cache_dir%/security/nonces"]

wsse.security.authentication.listener:
class: AppBundle\Security\Firewall\WsseListener
arguments: ["@security.token_storage", "@security.authentication.manager"]

Now that your services are defined, tell your security context about your factory in your bundle class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/AppBundle/AppBundle.php
namespace AppBundle;

use AppBundle\DependencyInjection\Security\Factory\WsseFactory;
use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AppBundle extends Bundle
{

public function build(ContainerBuilder $container)
{

parent::build($container);

$extension = $container->getExtension('security');
$extension->addSecurityListenerFactory(new WsseFactory());

}
}

You are finished! You can now define parts of your app as under WSSE protection.

1
2
3
4
5
6

security:
firewalls:

wsse_secured:
pattern: /api/.*
stateless: true
wsse: true

Congratulations! You have written your very own custom security authentication provider!

A little Extra
How about making your WSSE authentication provider a bit more exciting? The possibilities are endless.
Why don't you start by adding some sparkle to that shine?

Configuration

You can add custom options under the wsse key in your security configuration. For instance, the time
allowed before expiring the Created header item, by default, is 5 minutes. Make this configurable, so
different firewalls can have different timeout lengths.

You will first need to edit WsseFactory and define the new option in the addConfiguration method.

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 387

http://sensiolabs.com


Listing 104-9

Listing 104-10

1
2
3
4
5
6
7
8
9

10
11
12

class WsseFactory implements SecurityFactoryInterface
{

// ...

public function addConfiguration(NodeDefinition $node)
{
$node
->children()
->scalarNode('lifetime')->defaultValue(300)
->end();

}
}

Now, in the create method of the factory, the $config argument will contain a lifetime key, set
to 5 minutes (300 seconds) unless otherwise set in the configuration. Pass this argument to your
authentication provider in order to put it to use.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

class WsseFactory implements SecurityFactoryInterface
{

public function create(ContainerBuilder $container, $id, $config, $userProvider,
$defaultEntryPoint)

{
$providerId = 'security.authentication.provider.wsse.'.$id;
$container

->setDefinition($providerId,
new DefinitionDecorator('wsse.security.authentication.provider'))

->replaceArgument(0, new Reference($userProvider))
->replaceArgument(2, $config['lifetime']);

// ...
}

// ...
}

You'll also need to add a third argument to the wsse.security.authentication.provider
service configuration, which can be blank, but will be filled in with the lifetime in the factory. The
WsseProvider class will also now need to accept a third constructor argument - the lifetime - which
it should use instead of the hard-coded 300 seconds. These two steps are not shown here.

The lifetime of each WSSE request is now configurable, and can be set to any desirable value per firewall.

1
2
3
4
5
6

security:
firewalls:

wsse_secured:
pattern: /api/.*
stateless: true
wsse: { lifetime: 30 }

The rest is up to you! Any relevant configuration items can be defined in the factory and consumed or
passed to the other classes in the container.

PDF brought to you by
generated on March 11, 2015

Chapter 104: How to Create a custom Authentication Provider | 388

http://sensiolabs.com


Listing 105-1

Chapter 105

Using pre Authenticated Security Firewalls

A lot of authentication modules are already provided by some web servers, including Apache. These
modules generally set some environment variables that can be used to determine which user is accessing
your application. Out of the box, Symfony supports most authentication mechanisms. These requests
are called pre authenticated requests because the user is already authenticated when reaching your
application.

X.509 Client Certificate Authentication
When using client certificates, your webserver is doing all the authentication process itself. With Apache,
for example, you would use the SSLVerifyClient Require directive.

Enable the x509 authentication for a particular firewall in the security configuration:

1
2
3
4
5
6
7

# app/config/security.yml
security:

firewalls:
secured_area:

pattern: ^/
x509:

provider: your_user_provider

By default, the firewall provides the SSL_CLIENT_S_DN_Email variable to the user provider, and sets the
SSL_CLIENT_S_DN as credentials in the PreAuthenticatedToken1. You can override these by setting the
user and the credentials keys in the x509 firewall configuration respectively.

1. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Authentication/Token/PreAuthenticatedToken.html

PDF brought to you by
generated on March 11, 2015

Chapter 105: Using pre Authenticated Security Firewalls | 389

http://sensiolabs.com


Listing 105-2

An authentication provider will only inform the user provider of the username that made the
request. You will need to create (or use) a "user provider" that is referenced by the provider
configuration parameter (your_user_provider in the configuration example). This provider will
turn the username into a User object of your choice. For more information on creating or
configuring a user provider, see:

• How to Create a custom User Provider
• How to Load Security Users from the Database (the Entity Provider)

REMOTE_USER Based Authentication
New in version 2.6: REMOTE_USER pre authenticated firewall was introduced in Symfony 2.6.

A lot of authentication modules, like auth_kerb for Apache provide the username using the REMOTE_USER
environment variable. This variable can be trusted by the application since the authentication happened
before the request reached it.

To configure Symfony using the REMOTE_USER environment variable, simply enable the corresponding
firewall in your security configuration:

1
2
3
4
5
6
7

# app/config/security.yml
security:

firewalls:
secured_area:

pattern: ^/
remote_user:

provider: your_user_provider

The firewall will then provide the REMOTE_USER environment variable to your user provider. You can
change the variable name used by setting the user key in the remote_user firewall configuration.

Just like for X509 authentication, you will need to configure a "user provider". See the note previous
note for more information.

PDF brought to you by
generated on March 11, 2015

Chapter 105: Using pre Authenticated Security Firewalls | 390

http://sensiolabs.com


Listing 106-1

Listing 106-2

Chapter 106

How to Change the default Target Path
Behavior

By default, the Security component retains the information of the last request URI in a session variable
named _security.main.target_path (with main being the name of the firewall, defined in
security.yml). Upon a successful login, the user is redirected to this path, as to help them continue from
the last known page they visited.

In some situations, this is not ideal. For example, when the last request URI was an XMLHttpRequest
which returned a non-HTML or partial HTML response, the user is redirected back to a page which the
browser cannot render.

To get around this behavior, you would simply need to extend the ExceptionListener class and override
the default method named setTargetPath().

First, override the security.exception_listener.class parameter in your configuration file. This can
be done from your main configuration file (in app/config) or from a configuration file being imported
from a bundle:

1
2
3
4

# app/config/services.yml
parameters:

# ...
security.exception_listener.class: AppBundle\Security\Firewall\ExceptionListener

Next, create your own ExceptionListener:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/Security/Firewall/ExceptionListener.php
namespace AppBundle\Security\Firewall;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\Security\Http\Firewall\ExceptionListener as BaseExceptionListener;

class ExceptionListener extends BaseExceptionListener
{

protected function setTargetPath(Request $request)
{

PDF brought to you by
generated on March 11, 2015

Chapter 106: How to Change the default Target Path Behavior | 391

http://sensiolabs.com


11
12
13
14
15
16
17
18
19
20

// Do not save target path for XHR requests
// You can add any more logic here you want
// Note that non-GET requests are already ignored
if ($request->isXmlHttpRequest()) {

return;
}

parent::setTargetPath($request);
}

}

Add as much or as little logic here as required for your scenario!

PDF brought to you by
generated on March 11, 2015

Chapter 106: How to Change the default Target Path Behavior | 392

http://sensiolabs.com


Listing 107-1

Chapter 107

Using CSRF Protection in the Login Form

When using a login form, you should make sure that you are protected against CSRF (Cross-site request
forgery1). The Security component already has built-in support for CSRF. In this article you'll learn how
you can use it in your login form.

Login CSRF attacks are a bit less well-known. See Forging Login Requests2 if you're curious about
more details.

Configuring CSRF Protection
First, configure the Security component so it can use CSRF protection. The Security component needs a
CSRF token provider. You can set this to use the default provider available in the Form component:

1
2
3
4
5
6
7
8

# app/config/security.yml
security:

firewalls:
secured_area:

# ...
form_login:

# ...
csrf_provider: form.csrf_provider

The Security component can be configured further, but this is all information it needs to be able to use
CSRF in the login form.

1. http://en.wikipedia.org/wiki/Cross-site_request_forgery

2. http://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests

PDF brought to you by
generated on March 11, 2015

Chapter 107: Using CSRF Protection in the Login Form | 393

http://sensiolabs.com


Listing 107-2

Listing 107-3

Rendering the CSRF field
Now that Security component will check for the CSRF token, you have to add a hidden field to the
login form containing the CSRF token. By default, this field is named _csrf_token. That hidden field
must contain the CSRF token, which can be generated by using the csrf_token function. That function
requires a token ID, which must be set to authenticate when using the login form:

1
2
3
4
5
6
7
8
9

10
11
12

{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}

{# ... #}
<form action="{{ path('login_check') }}" method="post">

{# ... the login fields #}

<input type="hidden" name="_csrf_token"
value="{{ csrf_token('authenticate') }}"

>

<button type="submit">login</button>
</form>

After this, you have protected your login form against CSRF attacks.

You can change the name of the field by setting csrf_parameter and change the token ID by
setting intention in your configuration:

1
2
3
4
5
6
7
8
9

# app/config/security.yml
security:

firewalls:
secured_area:

# ...
form_login:

# ...
csrf_parameter: _csrf_security_token
intention: a_private_string

PDF brought to you by
generated on March 11, 2015

Chapter 107: Using CSRF Protection in the Login Form | 394

http://sensiolabs.com


Listing 108-1

Listing 108-2

Listing 108-3

Chapter 108

How to Choose the Password Encoder
Algorithm Dynamically

New in version 2.5: Named encoders were introduced in Symfony 2.5.

Usually, the same password encoder is used for all users by configuring it to apply to all instances of a
specific class:

1
2
3
4
5

# app/config/security.yml
security:

# ...
encoders:

Symfony\Component\Security\Core\User\User: sha512

Another option is to use a "named" encoder and then select which encoder you want to use dynamically.

In the previous example, you've set the sha512 algorithm for Acme\UserBundle\Entity\User. This may
be secure enough for a regular user, but what if you want your admins to have a stronger algorithm, for
example bcrypt. This can be done with named encoders:

1
2
3
4
5
6
7

# app/config/security.yml
security:

# ...
encoders:

harsh:
algorithm: bcrypt
cost: 15

This creates an encoder named harsh. In order for a User instance to use it, the class must implement
EncoderAwareInterface1. The interface requires one method - getEncoderName - which should return
the name of the encoder to use:

1. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Encoder/EncoderAwareInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 108: How to Choose the Password Encoder Algorithm Dynamically | 395

http://sensiolabs.com


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\Encoder\EncoderAwareInterface;

class User implements UserInterface, EncoderAwareInterface
{

public function getEncoderName()
{

if ($this->isAdmin()) {
return 'harsh';

}

return null; // use the default encoder
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 108: How to Choose the Password Encoder Algorithm Dynamically | 396

http://sensiolabs.com


Listing 109-1

Chapter 109

How Does the Security access_control Work?

For each incoming request, Symfony checks each access_control entry to find one that matches the
current request. As soon as it finds a matching access_control entry, it stops - only the first matching
access_control is used to enforce access.

Each access_control has several options that configure two different things:
1. should the incoming request match this access control entry
2. once it matches, should some sort of access restriction be enforced:

1. Matching Options
Symfony creates an instance of RequestMatcher1 for each access_control entry, which determines
whether or not a given access control should be used on this request. The following access_control
options are used for matching:

• path
• ip or ips
• host
• methods

Take the following access_control entries as an example:

1
2
3
4
5
6
7
8

# app/config/security.yml
security:

# ...
access_control:

- { path: ^/admin, roles: ROLE_USER_IP, ip: 127.0.0.1 }
- { path: ^/admin, roles: ROLE_USER_HOST, host: symfony\.com$ }
- { path: ^/admin, roles: ROLE_USER_METHOD, methods: [POST, PUT] }
- { path: ^/admin, roles: ROLE_USER }

For each incoming request, Symfony will decide which access_control to use based on the URI, the
client's IP address, the incoming host name, and the request method. Remember, the first rule that

1. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/RequestMatcher.html

PDF brought to you by
generated on March 11, 2015

Chapter 109: How Does the Security access_control Work? | 397

http://sensiolabs.com


matches is used, and if ip, host or method are not specified for an entry, that access_control will match
any ip, host or method:

URI IP HOST METHOD access_controlaccess_control Why?

/admin/
user

127.0.0.1 example.com GET rule #1
(ROLE_USER_IP)

The URI matches path
and the IP matches ip.

/admin/
user

127.0.0.1 symfony.com GET rule #1
(ROLE_USER_IP)

The path and ip still
match. This would also
match the
ROLE_USER_HOST entry,
but only the first
access_control match is
used.

/admin/
user

168.0.0.1 symfony.com GET rule #2
(ROLE_USER_HOST)

The ip doesn't match the
first rule, so the second
rule (which matches) is
used.

/admin/
user

168.0.0.1 symfony.com POST rule #2
(ROLE_USER_HOST)

The second rule still
matches. This would also
match the third rule
(ROLE_USER_METHOD), but
only the first matched
access_control is used.

/admin/
user

168.0.0.1 example.com POST rule #3
(ROLE_USER_METHOD)

The ip and host don't
match the first two entries,
but the third -
ROLE_USER_METHOD -
matches and is used.

/admin/
user

168.0.0.1 example.com GET rule #4 (ROLE_USER) The ip, host and method
prevent the first three
entries from matching. But
since the URI matches the
path pattern of the
ROLE_USER entry, it is
used.

/foo 127.0.0.1 symfony.com POST matches no entries This doesn't match any
access_control rules,
since its URI doesn't
match any of the path
values.

2. Access Enforcement
Once Symfony has decided which access_control entry matches (if any), it then enforces access
restrictions based on the roles, allow_if and requires_channel options:

• role If the user does not have the given role(s), then access is denied (internally, an
AccessDeniedException2 is thrown);

2. http://api.symfony.com/2.6/Symfony/Component/Security/Core/Exception/AccessDeniedException.html

PDF brought to you by
generated on March 11, 2015

Chapter 109: How Does the Security access_control Work? | 398

http://sensiolabs.com


Listing 109-2

Listing 109-3

• allow_if If the expression returns false, then access is denied;
• requires_channel If the incoming request's channel (e.g. http) does not match this value

(e.g. https), the user will be redirected (e.g. redirected from http to https, or vice versa).

If access is denied, the system will try to authenticate the user if not already (e.g. redirect the user
to the login page). If the user is already logged in, the 403 "access denied" error page will be shown.
See How to Customize Error Pages for more information.

Matching access_control By IP
Certain situations may arise when you need to have an access_control entry that only matches requests
coming from some IP address or range. For example, this could be used to deny access to a URL pattern
to all requests except those from a trusted, internal server.

As you'll read in the explanation below the example, the ips option does not restrict to a specific
IP address. Instead, using the ips key means that the access_control entry will only match this IP
address, and users accessing it from a different IP address will continue down the access_control
list.

Here is an example of how you configure some example /internal* URL pattern so that it is only
accessible by requests from the local server itself:

1
2
3
4
5
6
7

# app/config/security.yml
security:

# ...
access_control:

#
- { path: ^/internal, roles: IS_AUTHENTICATED_ANONYMOUSLY, ips: [127.0.0.1, ::1] }
- { path: ^/internal, roles: ROLE_NO_ACCESS }

Here is how it works when the path is /internal/something coming from the external IP address
10.0.0.1:

• The first access control rule is ignored as the path matches but the IP address does not match
either of the IPs listed;

• The second access control rule is enabled (the only restriction being the path) and so it
matches. If you make sure that no users ever have ROLE_NO_ACCESS, then access is denied
(ROLE_NO_ACCESS can be anything that does not match an existing role, it just serves as a trick
to always deny access).

But if the same request comes from 127.0.0.1 or ::1 (the IPv6 loopback address):

• Now, the first access control rule is enabled as both the path and the ip match: access is
allowed as the user always has the IS_AUTHENTICATED_ANONYMOUSLY role.

• The second access rule is not examined as the first rule matched.

Securing by an Expression

Once an access_control entry is matched, you can deny access via the roles key or use more complex
logic with an expression in the allow_if key:

PDF brought to you by
generated on March 11, 2015

Chapter 109: How Does the Security access_control Work? | 399

http://sensiolabs.com


Listing 109-4

1
2
3
4
5
6
7

# app/config/security.yml
security:

# ...
access_control:

-
path: ^/_internal/secure
allow_if: "'127.0.0.1' == request.getClientIp() or has_role('ROLE_ADMIN')"

In this case, when the user tries to access any URL starting with /_internal/secure, they will only be
granted access if the IP address is 127.0.0.1 or if the user has the ROLE_ADMIN role.

Inside the expression, you have access to a number of different variables and functions including
request, which is the Symfony Request3 object (see Request).

For a list of the other functions and variables, see functions and variables.

Forcing a Channel (http, https)
You can also require a user to access a URL via SSL; just use the requires_channel argument in any
access_control entries. If this access_control is matched and the request is using the http channel,
the user will be redirected to https:

1
2
3
4
5

# app/config/security.yml
security:

# ...
access_control:

- { path: ^/cart/checkout, roles: IS_AUTHENTICATED_ANONYMOUSLY, requires_channel:
https }

3. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by
generated on March 11, 2015

Chapter 109: How Does the Security access_control Work? | 400

http://sensiolabs.com


Listing 110-1

Listing 110-2

Chapter 110

How to Use multiple User Providers

Each authentication mechanism (e.g. HTTP Authentication, form login, etc) uses exactly one user
provider, and will use the first declared user provider by default. But what if you want to specify a few
users via configuration and the rest of your users in the database? This is possible by creating a new
provider that chains the two together:

1
2
3
4
5
6
7
8
9

10
11
12

# app/config/security.yml
security:

providers:
chain_provider:

chain:
providers: [in_memory, user_db]

in_memory:
memory:

users:
foo: { password: test }

user_db:
entity: { class: Acme\UserBundle\Entity\User, property: username }

Now, all authentication mechanisms will use the chain_provider, since it's the first specified. The
chain_provider will, in turn, try to load the user from both the in_memory and user_db providers.

You can also configure the firewall or individual authentication mechanisms to use a specific provider.
Again, unless a provider is specified explicitly, the first provider is always used:

1
2
3
4
5
6
7
8
9

10
11

# app/config/security.yml
security:

firewalls:
secured_area:

# ...
pattern: ^/
provider: user_db
http_basic:

realm: "Secured Demo Area"
provider: in_memory

form_login: ~

PDF brought to you by
generated on March 11, 2015

Chapter 110: How to Use multiple User Providers | 401

http://sensiolabs.com


In this example, if a user tries to log in via HTTP authentication, the authentication system will use the
in_memory user provider. But if the user tries to log in via the form login, the user_db provider will be
used (since it's the default for the firewall as a whole).

For more information about user provider and firewall configuration, see the SecurityBundle
Configuration ("security").

PDF brought to you by
generated on March 11, 2015

Chapter 110: How to Use multiple User Providers | 402

http://sensiolabs.com


Listing 111-1

Chapter 111

How to Use the Serializer

Serializing and deserializing to and from objects and different formats (e.g. JSON or XML) is a very
complex topic. Symfony comes with a Serializer Component, which gives you some tools that you can
leverage for your solution.

In fact, before you start, get familiar with the serializer, normalizers and encoders by reading the Serializer
Component. You should also check out the JMSSerializerBundle1, which expands on the functionality
offered by Symfony's core serializer.

Activating the Serializer
New in version 2.3: The Serializer has always existed in Symfony, but prior to Symfony 2.3, you needed
to build the serializer service yourself.

The serializer service is not available by default. To turn it on, activate it in your configuration:

1
2
3
4
5

# app/config/config.yml
framework:

# ...
serializer:

enabled: true

Adding Normalizers and Encoders
Once enabled, the serializer service will be available in the container and will be loaded with two
encoders (JsonEncoder2 and XmlEncoder3) but no normalizers, meaning you'll need to load your own.

You can load normalizers and/or encoders by tagging them as serializer.normalizer and serializer.encoder.
It's also possible to set the priority of the tag in order to decide the matching order.

Here is an example on how to load the GetSetMethodNormalizer4:

1. http://jmsyst.com/bundles/JMSSerializerBundle

2. http://api.symfony.com/2.6/Symfony/Component/Serializer/Encoder/JsonEncoder.html

3. http://api.symfony.com/2.6/Symfony/Component/Serializer/Encoder/XmlEncoder.html

PDF brought to you by
generated on March 11, 2015

Chapter 111: How to Use the Serializer | 403

http://sensiolabs.com


Listing 111-2 1
2
3
4
5
6

# app/config/config.yml
services:

get_set_method_normalizer:
class: Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer
tags:

- { name: serializer.normalizer }

The GetSetMethodNormalizer5 is broken by design. As soon as you have a circular object graph,
an infinite loop is created when calling the getters. You're encouraged to add your own normalizers
that fit your use-case.

4. http://api.symfony.com/2.6/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer.html

5. http://api.symfony.com/2.6/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer.html

PDF brought to you by
generated on March 11, 2015

Chapter 111: How to Use the Serializer | 404

http://sensiolabs.com


Listing 112-1

Chapter 112

How to Create an Event Listener

Symfony has various events and hooks that can be used to trigger custom behavior in your application.
Those events are thrown by the HttpKernel component and can be viewed in the KernelEvents1 class.

To hook into an event and add your own custom logic, you have to create a service that will act as an
event listener on that event. In this entry, you will create a service that will act as an Exception Listener,
allowing you to modify how exceptions are shown by your application. The KernelEvents::EXCEPTION
event is just one of the core kernel events:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// src/AppBundle/EventListener/AcmeExceptionListener.php
namespace AppBundle\EventListener;

use Symfony\Component\HttpKernel\Event\GetResponseForExceptionEvent;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpKernel\Exception\HttpExceptionInterface;

class AcmeExceptionListener
{

public function onKernelException(GetResponseForExceptionEvent $event)
{

// You get the exception object from the received event
$exception = $event->getException();
$message = sprintf(

'My Error says: %s with code: %s',
$exception->getMessage(),
$exception->getCode()

);

// Customize your response object to display the exception details
$response = new Response();
$response->setContent($message);

// HttpExceptionInterface is a special type of exception that
// holds status code and header details
if ($exception instanceof HttpExceptionInterface) {

1. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelEvents.html

PDF brought to you by
generated on March 11, 2015

Chapter 112: How to Create an Event Listener | 405

http://sensiolabs.com


Listing 112-2

Listing 112-3

27
28
29
30
31
32
33
34
35
36

$response->setStatusCode($exception->getStatusCode());
$response->headers->replace($exception->getHeaders());

} else {
$response->setStatusCode(Response::HTTP_INTERNAL_SERVER_ERROR);

}

// Send the modified response object to the event
$event->setResponse($response);

}
}

Each event receives a slightly different type of $event object. For the kernel.exception event, it
is GetResponseForExceptionEvent2. To see what type of object each event listener receives, see
KernelEvents3.

When setting a response for the kernel.request, kernel.view or kernel.exception events, the
propagation is stopped, so the lower priority listeners on that event don't get called.

Now that the class is created, you just need to register it as a service and notify Symfony that it is a
"listener" on the kernel.exception event by using a special "tag":

1
2
3
4
5
6

# app/config/services.yml
services:

kernel.listener.your_listener_name:
class: AppBundle\EventListener\AcmeExceptionListener
tags:

- { name: kernel.event_listener, event: kernel.exception, method:
onKernelException }

There is an additional tag option priority that is optional and defaults to 0. This value can be
from -255 to 255, and the listeners will be executed in the order of their priority (highest to lowest).
This is useful when you need to guarantee that one listener is executed before another.

Request Events, Checking Types
A single page can make several requests (one master request, and then multiple sub-requests), which is
why when working with the KernelEvents::REQUEST event, you might need to check the type of the
request. This can be easily done as follow:

1
2
3
4
5
6

// src/AppBundle/EventListener/AcmeRequestListener.php
namespace AppBundle\EventListener;

use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\HttpKernel\HttpKernel;

2. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html

3. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/KernelEvents.html

PDF brought to you by
generated on March 11, 2015

Chapter 112: How to Create an Event Listener | 406

http://sensiolabs.com


Listing 112-4

Listing 112-5

7
8
9

10
11
12
13
14
15
16
17
18

class AcmeRequestListener
{

public function onKernelRequest(GetResponseEvent $event)
{

if (!$event->isMasterRequest()) {
// don't do anything if it's not the master request
return;

}

// ...
}

}

Two types of request are available in the HttpKernelInterface4 interface:
HttpKernelInterface::MASTER_REQUEST and HttpKernelInterface::SUB_REQUEST.

Debugging Event Listeners
New in version 2.6: The debug:event-dispatcher command was introduced in Symfony 2.6.

You can find out what listeners are registered in the event dispatcher using the console. To show all
events and their listeners, run:

1 $ php app/console debug:event-dispatcher

You can get registered listeners for a particular event by specifying its name:

1 $ php app/console debug:event-dispatcher kernel.exception

4. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/HttpKernelInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 112: How to Create an Event Listener | 407

http://sensiolabs.com


Chapter 113

How to Work with Scopes

This entry is all about scopes, a somewhat advanced topic related to the Service Container. If you've ever
gotten an error mentioning "scopes" when creating services, then this entry is for you.

If you are trying to inject the request service, the simple solution is to inject the request_stack
service instead and access the current Request by calling the getCurrentRequest()1 method (see
Injecting the Request). The rest of this entry talks about scopes in a theoretical and more advanced
way. If you're dealing with scopes for the request service, simply inject request_stack.

Understanding Scopes
The scope of a service controls how long an instance of a service is used by the container. The
DependencyInjection component provides two generic scopes:

• container (the default one): The same instance is used each time you request it from this
container.

• prototype: A new instance is created each time you request the service.

The ContainerAwareHttpKernel2 also defines a third scope: request. This scope is tied to the request,
meaning a new instance is created for each subrequest and is unavailable outside the request (for instance
in the CLI).

An Example: Client Scope

Other than the request service (which has a simple solution, see the above note), no services in the
default Symfony2 container belong to any scope other than container and prototype. But for the
purposes of this entry, imagine there is another scope client and a service client_configuration that
belongs to it. This is not a common situation, but the idea is that you may enter and exit multiple client
scopes during a request, and each has its own client_configuration service.

1. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/RequestStack.html#getCurrentRequest()

2. http://api.symfony.com/2.6/Symfony/Component/HttpKernel/DependencyInjection/ContainerAwareHttpKernel.html

PDF brought to you by
generated on March 11, 2015

Chapter 113: How to Work with Scopes | 408

http://sensiolabs.com


Scopes add a constraint on the dependencies of a service: a service cannot depend on services from
a narrower scope. For example, if you create a generic my_foo service, but try to inject the
client_configuration service, you will receive a ScopeWideningInjectionException3 when
compiling the container. Read the sidebar below for more details.

Scopes and Dependencies

Imagine you've configured a my_mailer service. You haven't configured the scope of the service,
so it defaults to container. In other words, every time you ask the container for the my_mailer
service, you get the same object back. This is usually how you want your services to work.

Imagine, however, that you need the client_configuration service in your my_mailer service,
maybe because you're reading some details from it, such as what the "sender" address should be.
You add it as a constructor argument. There are several reasons why this presents a problem:

• When requesting my_mailer, an instance of my_mailer (called MailerA here) is created
and the client_configuration service ( called ConfigurationA here) is passed to it.
Life is good!

• Your application now needs to do something with another client, and you've
architected your application in such a way that you handle this by entering a new
client_configuration scope and setting a new client_configuration service into
the container. Call this ConfigurationB.

• Somewhere in your application, you once again ask for the my_mailer service. Since
your service is in the container scope, the same instance (MailerA) is just re-used. But
here's the problem: the MailerA instance still contains the old ConfigurationA object,
which is now not the correct configuration object to have (ConfigurationB is now the
current client_configuration service). This is subtle, but the mis-match could cause
major problems, which is why it's not allowed.

So, that's the reason why scopes exist, and how they can cause problems. Keep reading
to find out the common solutions.

A service can of course depend on a service from a wider scope without any issue.

Using a Service from a Narrower Scope
There are several solutions to the scope problem:

• A) Use setter injection if the dependency is synchronized (see A) Using a Synchronized
Service);

• B) Put your service in the same scope as the dependency (or a narrower one). If you depend on
the client_configuration service, this means putting your new service in the client scope
(see B) Changing the Scope of your Service);

• C) Pass the entire container to your service and retrieve your dependency from the container
each time you need it to be sure you have the right instance -- your service can live in the
default container scope (see C) Passing the Container as a Dependency of your Service).

Each scenario is detailed in the following sections.

3. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Exception/ScopeWideningInjectionException.html

PDF brought to you by
generated on March 11, 2015

Chapter 113: How to Work with Scopes | 409

http://sensiolabs.com


Listing 113-1

Listing 113-2

Listing 113-3

A) Using a Synchronized Service

New in version 2.3: Synchronized services were introduced in Symfony 2.3.

Both injecting the container and setting your service to a narrower scope have drawbacks. Assume first
that the client_configuration service has been marked as synchronized:

1
2
3
4
5
6
7
8

# app/config/config.yml
services:

client_configuration:
class: AppBundle\Client\ClientConfiguration
scope: client
synchronized: true
synthetic: true
# ...

Now, if you inject this service using setter injection, there are no drawbacks and everything works
without any special code in your service or in your definition:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/AppBundle/Mail/Mailer.php
namespace AppBundle\Mail;

use AppBundle\Client\ClientConfiguration;

class Mailer
{

protected $clientConfiguration;

public function setClientConfiguration(ClientConfiguration $clientConfiguration = null)
{

$this->clientConfiguration = $clientConfiguration;
}

public function sendEmail()
{

if (null === $this->clientConfiguration) {
// throw an error?

}

// ... do something using the client configuration here
}

}

Whenever the client scope is active, the service container will automatically call the
setClientConfiguration() method when the client_configuration service is set in the container.

You might have noticed that the setClientConfiguration() method accepts null as a valid value
for the client_configuration argument. That's because when leaving the client scope, the
client_configuration instance can be null. Of course, you should take care of this possibility in your
code. This should also be taken into account when declaring your service:

1
2
3
4
5
6

# app/config/services.yml
services:

my_mailer:
class: AppBundle\Mail\Mailer
calls:

- [setClientConfiguration, ["@?client_configuration="]]

PDF brought to you by
generated on March 11, 2015

Chapter 113: How to Work with Scopes | 410

http://sensiolabs.com


Listing 113-4

Listing 113-5

Listing 113-6

B) Changing the Scope of your Service

Changing the scope of a service should be done in its definition. This example assumes that the Mailer
class has a __construct function whose first argument is the ClientConfiguration object:

1
2
3
4
5
6

# app/config/services.yml
services:

my_mailer:
class: AppBundle\Mail\Mailer
scope: client
arguments: ["@client_configuration"]

C) Passing the Container as a Dependency of your Service

Setting the scope to a narrower one is not always possible (for instance, a twig extension must be in the
container scope as the Twig environment needs it as a dependency). In these cases, you can pass the
entire container into your service:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

// src/AppBundle/Mail/Mailer.php
namespace AppBundle\Mail;

use Symfony\Component\DependencyInjection\ContainerInterface;

class Mailer
{

protected $container;

public function __construct(ContainerInterface $container)
{

$this->container = $container;
}

public function sendEmail()
{

$request = $this->container->get('client_configuration');
// ... do something using the client configuration here

}
}

Take care not to store the client configuration in a property of the object for a future call of the
service as it would cause the same issue described in the first section (except that Symfony cannot
detect that you are wrong).

The service config for this class would look something like this:

1
2
3
4
5
6

# app/config/services.yml
services:

my_mailer:
class: AppBundle\Mail\Mailer
arguments: ["@service_container"]
# scope: container can be omitted as it is the default

PDF brought to you by
generated on March 11, 2015

Chapter 113: How to Work with Scopes | 411

http://sensiolabs.com


Injecting the whole container into a service is generally not a good idea (only inject what you need).

PDF brought to you by
generated on March 11, 2015

Chapter 113: How to Work with Scopes | 412

http://sensiolabs.com


Listing 114-1

Chapter 114

How to Work with Compiler Passes in Bundles

Compiler passes give you an opportunity to manipulate other service definitions that have been registered
with the service container. You can read about how to create them in the components section "Compiling
the Container". To register a compiler pass from a bundle you need to add it to the build method of the
bundle definition class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/Acme/MailerBundle/AcmeMailerBundle.php
namespace Acme\MailerBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;

use Acme\MailerBundle\DependencyInjection\Compiler\CustomCompilerPass;

class AcmeMailerBundle extends Bundle
{

public function build(ContainerBuilder $container)
{

parent::build($container);

$container->addCompilerPass(new CustomCompilerPass());
}

}

One of the most common use-cases of compiler passes is to work with tagged services (read more about
tags in the components section "Working with Tagged Services"). If you are using custom tags in a bundle
then by convention, tag names consist of the name of the bundle (lowercase, underscores as separators),
followed by a dot, and finally the "real" name. For example, if you want to introduce some sort of
"transport" tag in your AcmeMailerBundle, you should call it acme_mailer.transport.

PDF brought to you by
generated on March 11, 2015

Chapter 114: How to Work with Compiler Passes in Bundles | 413

http://sensiolabs.com


Listing 115-1

Listing 115-2

Chapter 115

Session Proxy Examples

The session proxy mechanism has a variety of uses and this example demonstrates two common uses.
Rather than injecting the session handler as normal, a handler is injected into the proxy and registered
with the session storage driver:

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage;
use Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler;

$proxy = new YourProxy(new PdoSessionHandler());
$session = new Session(new NativeSessionStorage(array(), $proxy));

Below, you'll learn two real examples that can be used for YourProxy: encryption of session data and
readonly guest sessions.

Encryption of Session Data
If you wanted to encrypt the session data, you could use the proxy to encrypt and decrypt the session as
required:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

use Symfony\Component\HttpFoundation\Session\Storage\Proxy\SessionHandlerProxy;

class EncryptedSessionProxy extends SessionHandlerProxy
{

private $key;

public function __construct(\SessionHandlerInterface $handler, $key)
{

$this->key = $key;

parent::__construct($handler);
}

public function read($id)

PDF brought to you by
generated on March 11, 2015

Chapter 115: Session Proxy Examples | 414

http://sensiolabs.com


Listing 115-3

15
16
17
18
19
20
21
22
23
24
25
26
27

{
$data = parent::read($id);

return mcrypt_decrypt(\MCRYPT_3DES, $this->key, $data);
}

public function write($id, $data)
{

$data = mcrypt_encrypt(\MCRYPT_3DES, $this->key, $data);

return parent::write($id, $data);
}

}

Readonly Guest Sessions
There are some applications where a session is required for guest users, but where there is no particular
need to persist the session. In this case you can intercept the session before it is written:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

use Foo\User;
use Symfony\Component\HttpFoundation\Session\Storage\Proxy\SessionHandlerProxy;

class ReadOnlyGuestSessionProxy extends SessionHandlerProxy
{

private $user;

public function __construct(\SessionHandlerInterface $handler, User $user)
{

$this->user = $user;

parent::__construct($handler);
}

public function write($id, $data)
{

if ($this->user->isGuest()) {
return;

}

return parent::write($id, $data);
}

}

PDF brought to you by
generated on March 11, 2015

Chapter 115: Session Proxy Examples | 415

http://sensiolabs.com


Listing 116-1

Chapter 116

Making the Locale "Sticky" during a User's
Session

Prior to Symfony 2.1, the locale was stored in a session attribute called _locale. Since 2.1, it is stored in
the Request, which means that it's not "sticky" during a user's request. In this article, you'll learn how to
make the locale of a user "sticky" so that once it's set, that same locale will be used for every subsequent
request.

Creating a LocaleListener
To simulate that the locale is stored in a session, you need to create and register a new event listener.
The listener will look something like this. Typically, _locale is used as a routing parameter to signify the
locale, though it doesn't really matter how you determine the desired locale from the request:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/AppBundle/EventListener/LocaleListener.php
namespace AppBundle\EventListener;

use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\HttpKernel\KernelEvents;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class LocaleListener implements EventSubscriberInterface
{

private $defaultLocale;

public function __construct($defaultLocale = 'en')
{

$this->defaultLocale = $defaultLocale;
}

public function onKernelRequest(GetResponseEvent $event)
{

$request = $event->getRequest();

PDF brought to you by
generated on March 11, 2015

Chapter 116: Making the Locale "Sticky" during a User's Session | 416

http://sensiolabs.com


Listing 116-2

Listing 116-3

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

if (!$request->hasPreviousSession()) {
return;

}

// try to see if the locale has been set as a _locale routing parameter
if ($locale = $request->attributes->get('_locale')) {

$request->getSession()->set('_locale', $locale);
} else {

// if no explicit locale has been set on this request, use one from the session
$request->setLocale($request->getSession()->get('_locale',

$this->defaultLocale));
}

}

public static function getSubscribedEvents()
{

return array(
// must be registered before the default Locale listener
KernelEvents::REQUEST => array(array('onKernelRequest', 17)),

);
}

}

Then register the listener:

1
2
3
4
5
6

services:
app.locale_listener:

class: AppBundle\EventListener\LocaleListener
arguments: ["%kernel.default_locale%"]
tags:

- { name: kernel.event_subscriber }

That's it! Now celebrate by changing the user's locale and seeing that it's sticky throughout the request.
Remember, to get the user's locale, always use the Request::getLocale1 method:

1
2
3
4
5
6
7

// from a controller...
use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{

$locale = $request->getLocale();
}

1. http://api.symfony.com/2.6/Symfony/Component/HttpFoundation/Request.html#getLocale()

PDF brought to you by
generated on March 11, 2015

Chapter 116: Making the Locale "Sticky" during a User's Session | 417

http://sensiolabs.com


Listing 117-1

Listing 117-2

Chapter 117

Configuring the Directory where Session Files
are Saved

By default, the Symfony Standard Edition uses the global php.ini values for session.save_handler
and session.save_path to determine where to store session data. This is because of the following
configuration:

1
2
3
4
5

# app/config/config.yml
framework:

session:
# handler_id set to null will use default session handler from php.ini
handler_id: ~

With this configuration, changing where your session metadata is stored is entirely up to your php.ini
configuration.

However, if you have the following configuration, Symfony will store the session data in files in the
cache directory %kernel.cache_dir%/sessions. This means that when you clear the cache, any current
sessions will also be deleted:

1
2
3

# app/config/config.yml
framework:

session: ~

Using a different directory to save session data is one method to ensure that your current sessions aren't
lost when you clear Symfony's cache.

Using a different session save handler is an excellent (yet more complex) method of session
management available within Symfony. See Configuring Sessions and Save Handlers for a discussion
of session save handlers. There is also an entry in the cookbook about storing sessions in the
database.

To change the directory in which Symfony saves session data, you only need change the framework
configuration. In this example, you will change the session directory to app/sessions:

PDF brought to you by
generated on March 11, 2015

Chapter 117: Configuring the Directory where Session Files are Saved | 418

http://sensiolabs.com


Listing 117-3 1
2
3
4
5

# app/config/config.yml
framework:

session:
handler_id: session.handler.native_file
save_path: "%kernel.root_dir%/sessions"

PDF brought to you by
generated on March 11, 2015

Chapter 117: Configuring the Directory where Session Files are Saved | 419

http://sensiolabs.com


Listing 118-1

Listing 118-2

Chapter 118

Bridge a legacy Application with Symfony
Sessions

New in version 2.3: The ability to integrate with a legacy PHP session was introduced in Symfony 2.3.

If you're integrating the Symfony full-stack Framework into a legacy application that starts the session
with session_start(), you may still be able to use Symfony's session management by using the PHP
Bridge session.

If the application has sets it's own PHP save handler, you can specify null for the handler_id:

1
2
3
4

framework:
session:

storage_id: session.storage.php_bridge
handler_id: ~

Otherwise, if the problem is simply that you cannot avoid the application starting the session with
session_start(), you can still make use of a Symfony based session save handler by specifying the save
handler as in the example below:

1
2
3
4

framework:
session:

storage_id: session.storage.php_bridge
handler_id: session.handler.native_file

If the legacy application requires its own session save-handler, do not override this. Instead set
handler_id: ~. Note that a save handler cannot be changed once the session has been started. If
the application starts the session before Symfony is initialized, the save-handler will have already
been set. In this case, you will need handler_id: ~. Only override the save-handler if you are sure
the legacy application can use the Symfony save-handler without side effects and that the session
has not been started before Symfony is initialized.

For more details, see Integrating with Legacy Sessions.

PDF brought to you by
generated on March 11, 2015

Chapter 118: Bridge a legacy Application with Symfony Sessions | 420

http://sensiolabs.com


Listing 119-1

Chapter 119

Limit Session Metadata Writes

The default behavior of PHP session is to persist the session regardless of whether the session data has
changed or not. In Symfony, each time the session is accessed, metadata is recorded (session created/last
used) which can be used to determine session age and idle time.

If for performance reasons you wish to limit the frequency at which the session persists, this feature can
adjust the granularity of the metadata updates and persist the session less often while still maintaining
relatively accurate metadata. If other session data is changed, the session will always persist.

You can tell Symfony not to update the metadata "session last updated" time until a certain amount
of time has passed, by setting framework.session.metadata_update_threshold to a value in seconds
greater than zero:

1
2
3

framework:
session:

metadata_update_threshold: 120

PHP default's behavior is to save the session whether it has been changed or not. When using
framework.session.metadata_update_threshold Symfony will wrap the session handler
(configured at framework.session.handler_id) into the WriteCheckSessionHandler. This will
prevent any session write if the session was not modified.

Be aware that if the session is not written at every request, it may be garbage collected sooner than
usual. This means that your users may be logged out sooner than expected.

PDF brought to you by
generated on March 11, 2015

Chapter 119: Limit Session Metadata Writes | 421

http://sensiolabs.com


Listing 120-1

Listing 120-2

Chapter 120

Avoid Starting Sessions for Anonymous Users

Sessions are automatically started whenever you read, write or even check for the existence of data in the
session. This means that if you need to avoid creating a session cookie for some users, it can be difficult:
you must completely avoid accessing the session.

For example, one common problem in this situation involves checking for flash messages, which are
stored in the session. The following code would guarantee that a session is always started:

1
2
3
4
5

{% for flashMessage in app.session.flashbag.get('notice') %}
<div class="flash-notice">

{{ flashMessage }}
</div>

{% endfor %}

Even if the user is not logged in and even if you haven't created any flash messages, just calling the get()
(or even has()) method of the flashbag will start a session. This may hurt your application performance
because all users will receive a session cookie. To avoid this behavior, add a check before trying to access
the flash messages:

1
2
3
4
5
6
7

{% if app.request.hasPreviousSession %}
{% for flashMessage in app.session.flashbag.get('notice') %}

<div class="flash-notice">
{{ flashMessage }}

</div>
{% endfor %}

{% endif %}

PDF brought to you by
generated on March 11, 2015

Chapter 120: Avoid Starting Sessions for Anonymous Users | 422

http://sensiolabs.com


Chapter 121

How Symfony2 Differs from Symfony1

The Symfony2 framework embodies a significant evolution when compared with the first version of the
framework. Fortunately, with the MVC architecture at its core, the skills used to master a symfony1
project continue to be very relevant when developing in Symfony2. Sure, app.yml is gone, but routing,
controllers and templates all remain.

This chapter walks through the differences between symfony1 and Symfony2. As you'll see, many tasks
are tackled in a slightly different way. You'll come to appreciate these minor differences as they promote
stable, predictable, testable and decoupled code in your Symfony2 applications.

So, sit back and relax as you travel from "then" to "now".

Directory Structure

When looking at a Symfony2 project - for example, the Symfony2 Standard Edition1 - you'll notice a very
different directory structure than in symfony1. The differences, however, are somewhat superficial.

The app/ Directory

In symfony1, your project has one or more applications, and each lives inside the apps/ directory
(e.g. apps/frontend). By default in Symfony2, you have just one application represented by the app/
directory. Like in symfony1, the app/ directory contains configuration specific to that application. It also
contains application-specific cache, log and template directories as well as a Kernel class (AppKernel),
which is the base object that represents the application.

Unlike symfony1, almost no PHP code lives in the app/ directory. This directory is not meant to house
modules or library files as it did in symfony1. Instead, it's simply the home of configuration and other
resources (templates, translation files).

The src/ Directory

Put simply, your actual code goes here. In Symfony2, all actual application-code lives inside a bundle
(roughly equivalent to a symfony1 plugin) and, by default, each bundle lives inside the src directory.

1. https://github.com/symfony/symfony-standard

PDF brought to you by
generated on March 11, 2015

Chapter 121: How Symfony2 Differs from Symfony1 | 423

http://sensiolabs.com


Listing 121-1

In that way, the src directory is a bit like the plugins directory in symfony1, but much more flexible.
Additionally, while your bundles will live in the src/ directory, third-party bundles will live somewhere
in the vendor/ directory.

To get a better picture of the src/ directory, first think of the structure of a symfony1 application. First,
part of your code likely lives inside one or more applications. Most commonly these include modules,
but could also include any other PHP classes you put in your application. You may have also created a
schema.yml file in the config directory of your project and built several model files. Finally, to help with
some common functionality, you're using several third-party plugins that live in the plugins/ directory.
In other words, the code that drives your application lives in many different places.

In Symfony2, life is much simpler because all Symfony2 code must live in a bundle. In the pretend
symfony1 project, all the code could be moved into one or more plugins (which is a very good practice,
in fact). Assuming that all modules, PHP classes, schema, routing configuration, etc. were moved into a
plugin, the symfony1 plugins/ directory would be very similar to the Symfony2 src/ directory.

Put simply again, the src/ directory is where your code, assets, templates and most anything else specific
to your project will live.

The vendor/ Directory

The vendor/ directory is basically equivalent to the lib/vendor/ directory in symfony1, which was the
conventional directory for all vendor libraries and bundles. By default, you'll find the Symfony2 library
files in this directory, along with several other dependent libraries such as Doctrine2, Twig and Swift
Mailer. 3rd party Symfony2 bundles live somewhere in the vendor/.

The web/ Directory

Not much has changed in the web/ directory. The most noticeable difference is the absence of the
css/, js/ and images/ directories. This is intentional. Like with your PHP code, all assets should also
live inside a bundle. With the help of a console command, the Resources/public/ directory of each
bundle is copied or symbolically-linked to the web/bundles/ directory. This allows you to keep assets
organized inside your bundle, but still make them available to the public. To make sure that all bundles
are available, run the following command:

1 $ php app/console assets:install web

This command is the Symfony2 equivalent to the symfony1 plugin:publish-assets command.

Autoloading
One of the advantages of modern frameworks is never needing to worry about requiring files. By making
use of an autoloader, you can refer to any class in your project and trust that it's available. Autoloading
has changed in Symfony2 to be more universal, faster, and independent of needing to clear your cache.

In symfony1, autoloading was done by searching the entire project for the presence of PHP class files
and caching this information in a giant array. That array told symfony1 exactly which file contained each
class. In the production environment, this caused you to need to clear the cache when classes were added
or moved.

PDF brought to you by
generated on March 11, 2015

Chapter 121: How Symfony2 Differs from Symfony1 | 424

http://sensiolabs.com


Listing 121-2

Listing 121-3

In Symfony2, a tool named Composer2 handles this process. The idea behind the autoloader is simple:
the name of your class (including the namespace) must match up with the path to the file containing that
class. Take the FrameworkExtraBundle from the Symfony2 Standard Edition as an example:

1
2
3
4
5
6
7
8
9

namespace Sensio\Bundle\FrameworkExtraBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
// ...

class SensioFrameworkExtraBundle extends Bundle
{

// ...
}

The file itself lives at vendor/sensio/framework-extra-bundle/Sensio/Bundle/
FrameworkExtraBundle/SensioFrameworkExtraBundle.php. As you can see, the second part of the
path follows the namespace of the class. The first part is equal to the package name of the
SensioFrameworkExtraBundle.

The namespace, Sensio\Bundle\FrameworkExtraBundle, and package name, sensio/framework-
extra-bundle, spells out the directory that the file should live in (vendor/sensio/framework-extra-
bundle/Sensio/Bundle/FrameworkExtraBundle/). Composer can then look for the file at this specific
place and load it very fast.

If the file did not live at this exact location, you'd receive a Class
"Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle" does not exist. error. In
Symfony2, a "class does not exist" error means that the namespace of the class and physical location do
not match. Basically, Symfony2 is looking in one exact location for that class, but that location doesn't
exist (or contains a different class). In order for a class to be autoloaded, you never need to clear your
cache in Symfony2.

As mentioned before, for the autoloader to work, it needs to know that the Sensio namespace lives in
the vendor/sensio/framework-extra-bundle directory and that, for example, the Doctrine namespace
lives in the vendor/doctrine/orm/lib/ directory. This mapping is entirely controlled by Composer.
Each third-party library you load through Composer has its settings defined and Composer takes care of
everything for you.

For this to work, all third-party libraries used by your project must be defined in the composer.json file.

If you look at the HelloController from the Symfony2 Standard Edition you can see that it lives
in the Acme\DemoBundle\Controller namespace. Yet, the AcmeDemoBundle is not defined in your
composer.json file. Nonetheless are the files autoloaded. This is because you can tell Composer to
autoload files from specific directories without defining a dependency:

1
2
3

"autoload": {
"psr-0": { "": "src/" }

}

This means that if a class is not found in the vendor directory, Composer will search in the src
directory before throwing a "class does not exist" exception. Read more about configuring the Composer
autoloader in the Composer documentation3.

2. http://getcomposer.org

3. http://getcomposer.org/doc/04-schema.md#autoload

PDF brought to you by
generated on March 11, 2015

Chapter 121: How Symfony2 Differs from Symfony1 | 425

http://sensiolabs.com


Listing 121-4

Listing 121-5

Listing 121-6

Listing 121-7

Using the Console
In symfony1, the console is in the root directory of your project and is called symfony:

1 $ php symfony

In Symfony2, the console is now in the app sub-directory and is called console:

1 $ php app/console

Applications
In a symfony1 project, it is common to have several applications: one for the frontend and one for the
backend for instance.

In a Symfony2 project, you only need to create one application (a blog application, an intranet
application, ...). Most of the time, if you want to create a second application, you might instead create
another project and share some bundles between them.

And if you need to separate the frontend and the backend features of some bundles, you can create
sub-namespaces for controllers, sub-directories for templates, different semantic configurations, separate
routing configurations, and so on.

Of course, there's nothing wrong with having multiple applications in your project, that's entirely up to
you. A second application would mean a new directory, e.g. my_app/, with the same basic setup as the
app/ directory.

Read the definition of a Project, an Application, and a Bundle in the glossary.

Bundles and Plugins
In a symfony1 project, a plugin could contain configuration, modules, PHP libraries, assets and anything
else related to your project. In Symfony2, the idea of a plugin is replaced by the "bundle". A bundle is
even more powerful than a plugin because the core Symfony2 framework is brought in via a series of
bundles. In Symfony2, bundles are first-class citizens that are so flexible that even core code itself is a
bundle.

In symfony1, a plugin must be enabled inside the ProjectConfiguration class:

1
2
3
4
5
6

// config/ProjectConfiguration.class.php
public function setup()
{

// some plugins here
$this->enableAllPluginsExcept(array(...));

}

In Symfony2, the bundles are activated inside the application kernel:

PDF brought to you by
generated on March 11, 2015

Chapter 121: How Symfony2 Differs from Symfony1 | 426

http://sensiolabs.com


Listing 121-8

Listing 121-9

Listing 121-10

Listing 121-11

Listing 121-12

1
2
3
4
5
6
7
8
9

10
11
12

// app/AppKernel.php
public function registerBundles()
{

$bundles = array(
new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
new Symfony\Bundle\TwigBundle\TwigBundle(),
...,
new Acme\DemoBundle\AcmeDemoBundle(),

);

return $bundles;
}

Routing (routing.yml) and Configuration (config.yml)

In symfony1, the routing.yml and app.yml configuration files were automatically loaded inside any
plugin. In Symfony2, routing and application configuration inside a bundle must be included manually.
For example, to include a routing resource from a bundle called AcmeDemoBundle, you can do the
following:

1
2
3

# app/config/routing.yml
_hello:

resource: "@AcmeDemoBundle/Resources/config/routing.yml"

This will load the routes found in the Resources/config/routing.yml file of the AcmeDemoBundle.
The special @AcmeDemoBundle is a shortcut syntax that, internally, resolves to the full path to that bundle.

You can use this same strategy to bring in configuration from a bundle:

1
2
3

# app/config/config.yml
imports:

- { resource: "@AcmeDemoBundle/Resources/config/config.yml" }

In Symfony2, configuration is a bit like app.yml in symfony1, except much more systematic. With
app.yml, you could simply create any keys you wanted. By default, these entries were meaningless and
depended entirely on how you used them in your application:

1
2
3
4

# some app.yml file from symfony1
all:
email:
from_address: foo.bar@example.com

In Symfony2, you can also create arbitrary entries under the parameters key of your configuration:

1
2

parameters:
email.from_address: foo.bar@example.com

You can now access this from a controller, for example:

1
2
3
4

public function helloAction($name)
{

$fromAddress = $this->container->getParameter('email.from_address');
}

PDF brought to you by
generated on March 11, 2015

Chapter 121: How Symfony2 Differs from Symfony1 | 427

http://sensiolabs.com


In reality, the Symfony2 configuration is much more powerful and is used primarily to configure objects
that you can use. For more information, see the chapter titled "Service Container".

PDF brought to you by
generated on March 11, 2015

Chapter 121: How Symfony2 Differs from Symfony1 | 428

http://sensiolabs.com


Listing 122-1

Listing 122-2

Listing 122-3

Listing 122-4

Chapter 122

How to Inject Variables into all Templates (i.e.
global Variables)

Sometimes you want a variable to be accessible to all the templates you use. This is possible inside your
app/config/config.yml file:

1
2
3
4
5

# app/config/config.yml
twig:

# ...
globals:

ga_tracking: UA-xxxxx-x

Now, the variable ga_tracking is available in all Twig templates:

1 <p>The google tracking code is: {{ ga_tracking }}</p>

It's that easy!

Using Service Container Parameters
You can also take advantage of the built-in Service Parameters system, which lets you isolate or reuse the
value:

1
2
3

# app/config/parameters.yml
parameters:

ga_tracking: UA-xxxxx-x

1
2
3
4

# app/config/config.yml
twig:

globals:
ga_tracking: "%ga_tracking%"

PDF brought to you by
generated on March 11, 2015

Chapter 122: How to Inject Variables into all Templates (i.e. global Variables) | 429

http://sensiolabs.com


Listing 122-5

The same variable is available exactly as before.

Referencing Services
Instead of using static values, you can also set the value to a service. Whenever the global variable is
accessed in the template, the service will be requested from the service container and you get access to
that object.

The service is not loaded lazily. In other words, as soon as Twig is loaded, your service is
instantiated, even if you never use that global variable.

To define a service as a global Twig variable, prefix the string with @. This should feel familiar, as it's the
same syntax you use in service configuration.

1
2
3
4
5

# app/config/config.yml
twig:

# ...
globals:

user_management: "@acme_user.user_management"

Using a Twig Extension
If the global variable you want to set is more complicated - say an object - then you won't be able to use
the above method. Instead, you'll need to create a Twig Extension and return the global variable as one of
the entries in the getGlobals method.

PDF brought to you by
generated on March 11, 2015

Chapter 122: How to Inject Variables into all Templates (i.e. global Variables) | 430

http://sensiolabs.com


Listing 123-1

Listing 123-2

Listing 123-3

Chapter 123

How to Use and Register Namespaced Twig
Paths

Usually, when you refer to a template, you'll use the MyBundle:Subdir:filename.html.twig format (see
Template Naming and Locations).

Twig also natively offers a feature called "namespaced paths", and support is built-in automatically for all
of your bundles.

Take the following paths as an example:

1
2

{% extends "AppBundle::layout.html.twig" %}
{% include "AppBundle:Foo:bar.html.twig" %}

With namespaced paths, the following works as well:

1
2

{% extends "@App/layout.html.twig" %}
{% include "@App/Foo/bar.html.twig" %}

Both paths are valid and functional by default in Symfony.

As an added bonus, the namespaced syntax is faster.

Registering your own Namespaces
You can also register your own custom namespaces. Suppose that you're using some third-party library
that includes Twig templates that live in vendor/acme/foo-bar/templates. First, register a namespace
for this directory:

PDF brought to you by
generated on March 11, 2015

Chapter 123: How to Use and Register Namespaced Twig Paths | 431

http://sensiolabs.com


Listing 123-4

Listing 123-5

Listing 123-6

1
2
3
4
5

# app/config/config.yml
twig:

# ...
paths:

"%kernel.root_dir%/../vendor/acme/foo-bar/templates": foo_bar

The registered namespace is called foo_bar, which refers to the vendor/acme/foo-bar/templates
directory. Assuming there's a file called sidebar.twig in that directory, you can use it easily:

1 {% include '@foo_bar/sidebar.twig' %}

Multiple Paths per Namespace

You can also assign several paths to the same template namespace. The order in which paths are
configured is very important, because Twig will always load the first template that exists, starting from
the first configured path. This feature can be used as a fallback mechanism to load generic templates
when the specific template doesn't exist.

1
2
3
4
5
6
7

# app/config/config.yml
twig:

# ...
paths:

"%kernel.root_dir%/../vendor/acme/themes/theme1": theme
"%kernel.root_dir%/../vendor/acme/themes/theme2": theme
"%kernel.root_dir%/../vendor/acme/themes/common": theme

Now, you can use the same @theme namespace to refer to any template located in the previous three
directories:

1 {% include '@theme/header.twig' %}

PDF brought to you by
generated on March 11, 2015

Chapter 123: How to Use and Register Namespaced Twig Paths | 432

http://sensiolabs.com


Listing 124-1

Listing 124-2

Chapter 124

How to Use PHP instead of Twig for Templates

Symfony defaults to Twig for its template engine, but you can still use plain PHP code if you want. Both
templating engines are supported equally in Symfony. Symfony adds some nice features on top of PHP to
make writing templates with PHP more powerful.

Rendering PHP Templates
If you want to use the PHP templating engine, first, make sure to enable it in your application
configuration file:

1
2
3
4
5

# app/config/config.yml
framework:

# ...
templating:

engines: ['twig', 'php']

You can now render a PHP template instead of a Twig one simply by using the .php extension in the
template name instead of .twig. The controller below renders the index.html.php template:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/Controller/HelloController.php

// ...
public function indexAction($name)
{

return $this->render(
'AppBundle:Hello:index.html.php',
array('name' => $name)

);
}

You can also use the @Template1 shortcut to render the default AppBundle:Hello:index.html.php
template:

1. http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/view`

PDF brought to you by
generated on March 11, 2015

Chapter 124: How to Use PHP instead of Twig for Templates | 433

http://sensiolabs.com


Listing 124-3

Listing 124-4

Listing 124-5

Listing 124-6

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Controller/HelloController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

// ...

/**
* @Template(engine="php")
*/
public function indexAction($name)
{

return array('name' => $name);
}

Enabling the php and twig template engines simultaneously is allowed, but it will produce an
undesirable side effect in your application: the @ notation for Twig namespaces will no longer be
supported for the render() method:

1
2
3
4
5
6
7
8
9

10

public function indexAction()
{

// ...

// namespaced templates will no longer work in controllers
$this->render('@App/Default/index.html.twig');

// you must use the traditional template notation
$this->render('AppBundle:Default:index.html.twig');

}

1
2
3
4
5

{# inside a Twig template, namespaced templates work as expected #}
{{ include('@App/Default/index.html.twig') }}

{# traditional template notation will also work #}
{{ include('AppBundle:Default:index.html.twig') }}

Decorating Templates
More often than not, templates in a project share common elements, like the well-known header and
footer. In Symfony, this problem is thought about differently: a template can be decorated by another
one.

The index.html.php template is decorated by layout.html.php, thanks to the extend() call:

1
2
3
4

<!-- src/AppBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AppBundle::layout.html.php') ?>

Hello <?php echo $name ?>!

The AppBundle::layout.html.php notation sounds familiar, doesn't it? It is the same notation used to
reference a template. The :: part simply means that the controller element is empty, so the corresponding
file is directly stored under views/.

Now, have a look at the layout.html.php file:

PDF brought to you by
generated on March 11, 2015

Chapter 124: How to Use PHP instead of Twig for Templates | 434

http://sensiolabs.com


Listing 124-7

Listing 124-8

Listing 124-9

Listing 124-10

1
2
3
4
5
6

<!-- src/AppBundle/Resources/views/layout.html.php -->
<?php $view->extend('::base.html.php') ?>

<h1>Hello Application</h1>

<?php $view['slots']->output('_content') ?>

The layout is itself decorated by another one (::base.html.php). Symfony supports multiple decoration
levels: a layout can itself be decorated by another one. When the bundle part of the template name is
empty, views are looked for in the app/Resources/views/ directory. This directory stores global views
for your entire project:

1
2
3
4
5
6
7
8
9

10
11

<!-- app/Resources/views/base.html.php -->
<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title><?php $view['slots']->output('title', 'Hello Application') ?></title>

</head>
<body>

<?php $view['slots']->output('_content') ?>
</body>

</html>

For both layouts, the $view['slots']->output('_content') expression is replaced by the content
of the child template, index.html.php and layout.html.php respectively (more on slots in the next
section).

As you can see, Symfony provides methods on a mysterious $view object. In a template, the $view
variable is always available and refers to a special object that provides a bunch of methods that makes the
template engine tick.

Working with Slots
A slot is a snippet of code, defined in a template, and reusable in any layout decorating the template. In
the index.html.php template, define a title slot:

1
2
3
4
5
6

<!-- src/AppBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AppBundle::layout.html.php') ?>

<?php $view['slots']->set('title', 'Hello World Application') ?>

Hello <?php echo $name ?>!

The base layout already has the code to output the title in the header:

1
2
3
4
5

<!-- app/Resources/views/base.html.php -->
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title><?php $view['slots']->output('title', 'Hello Application') ?></title>

</head>

The output() method inserts the content of a slot and optionally takes a default value if the slot is not
defined. And _content is just a special slot that contains the rendered child template.

PDF brought to you by
generated on March 11, 2015

Chapter 124: How to Use PHP instead of Twig for Templates | 435

http://sensiolabs.com


Listing 124-11

Listing 124-12

Listing 124-13

Listing 124-14

Listing 124-15

For large slots, there is also an extended syntax:

1
2
3

<?php $view['slots']->start('title') ?>
Some large amount of HTML

<?php $view['slots']->stop() ?>

Including other Templates
The best way to share a snippet of template code is to define a template that can then be included into
other templates.

Create a hello.html.php template:

1
2

<!-- src/AppBundle/Resources/views/Hello/hello.html.php -->
Hello <?php echo $name ?>!

And change the index.html.php template to include it:

1
2
3
4

<!-- src/AppBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AppBundle::layout.html.php') ?>

<?php echo $view->render('AppBundle:Hello:hello.html.php', array('name' => $name)) ?>

The render() method evaluates and returns the content of another template (this is the exact same
method as the one used in the controller).

Embedding other Controllers
And what if you want to embed the result of another controller in a template? That's very useful when
working with Ajax, or when the embedded template needs some variable not available in the main
template.

If you create a fancy action, and want to include it into the index.html.php template, simply use the
following code:

1
2
3
4
5
6
7

<!-- src/AppBundle/Resources/views/Hello/index.html.php -->
<?php echo $view['actions']->render(

new
\Symfony\Component\HttpKernel\Controller\ControllerReference('AppBundle:Hello:fancy', array(

'name' => $name,
'color' => 'green',

))
) ?>

Here, the AppBundle:Hello:fancy string refers to the fancy action of the Hello controller:

1
2
3
4
5

// src/AppBundle/Controller/HelloController.php

class HelloController extends Controller
{

public function fancyAction($name, $color)

PDF brought to you by
generated on March 11, 2015

Chapter 124: How to Use PHP instead of Twig for Templates | 436

http://sensiolabs.com


Listing 124-16

Listing 124-17

Listing 124-18

6
7
8
9

10
11
12
13
14
15
16
17

{
// create some object, based on the $color variable
$object = ...;

return $this->render('AppBundle:Hello:fancy.html.php', array(
'name' => $name,
'object' => $object

));
}

// ...
}

But where is the $view['actions'] array element defined? Like $view['slots'], it's called a template
helper, and the next section tells you more about those.

Using Template Helpers
The Symfony templating system can be easily extended via helpers. Helpers are PHP objects that provide
features useful in a template context. actions and slots are two of the built-in Symfony helpers.

Creating Links between Pages

Speaking of web applications, creating links between pages is a must. Instead of hardcoding URLs in
templates, the router helper knows how to generate URLs based on the routing configuration. That way,
all your URLs can be easily updated by changing the configuration:

1
2
3

<a href="<?php echo $view['router']->generate('hello', array('name' => 'Thomas')) ?>">
Greet Thomas!

</a>

The generate() method takes the route name and an array of parameters as arguments. The route name
is the main key under which routes are referenced and the parameters are the values of the placeholders
defined in the route pattern:

1
2
3
4

# src/AppBundle/Resources/config/routing.yml
hello: # The route name

path: /hello/{name}
defaults: { _controller: AppBundle:Hello:index }

Using Assets: Images, JavaScripts and Stylesheets

What would the Internet be without images, JavaScripts, and stylesheets? Symfony provides the assets
tag to deal with them easily:

1
2
3

<link href="<?php echo $view['assets']->getUrl('css/blog.css') ?>" rel="stylesheet"
type="text/css" />

<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>" />

PDF brought to you by
generated on March 11, 2015

Chapter 124: How to Use PHP instead of Twig for Templates | 437

http://sensiolabs.com


Listing 124-19

Listing 124-20

Listing 124-21

The assets helper's main purpose is to make your application more portable. Thanks to this helper,
you can move the application root directory anywhere under your web root directory without changing
anything in your template's code.

Profiling Templates

By using the stopwatch helper, you are able to time parts of your template and display it on the timeline
of the WebProfilerBundle:

1
2
3

<?php $view['stopwatch']->start('foo') ?>
... things that get timed
<?php $view['stopwatch']->stop('foo') ?>

If you use the same name more than once in your template, the times are grouped on the same line
in the timeline.

Output Escaping
When using PHP templates, escape variables whenever they are displayed to the user:

1 <?php echo $view->escape($var) ?>

By default, the escape() method assumes that the variable is outputted within an HTML context. The
second argument lets you change the context. For instance, to output something in a JavaScript script,
use the js context:

1 <?php echo $view->escape($var, 'js') ?>

PDF brought to you by
generated on March 11, 2015

Chapter 124: How to Use PHP instead of Twig for Templates | 438

http://sensiolabs.com


Listing 125-1

Chapter 125

How to Write a custom Twig Extension

The main motivation for writing an extension is to move often used code into a reusable class like adding
support for internationalization. An extension can define tags, filters, tests, operators, global variables,
functions, and node visitors.

Creating an extension also makes for a better separation of code that is executed at compilation time and
code needed at runtime. As such, it makes your code faster.

Before writing your own extensions, have a look at the Twig official extension repository1.

Create the Extension Class

This cookbook describes how to write a custom Twig extension as of Twig 1.12. If you are using
an older version, please read Twig extensions documentation legacy2.

To get your custom functionality you must first create a Twig Extension class. As an example you'll create
a price filter to format a given number into price:

1
2
3
4
5
6
7
8

// src/AppBundle/Twig/AppExtension.php
namespace AppBundle\Twig;

class AppExtension extends \Twig_Extension
{

public function getFilters()
{

return array(

1. https://github.com/twigphp/Twig-extensions

2. http://twig.sensiolabs.org/doc/advanced_legacy.html#creating-an-extension

PDF brought to you by
generated on March 11, 2015

Chapter 125: How to Write a custom Twig Extension | 439

http://sensiolabs.com


Listing 125-2

Listing 125-3

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

new \Twig_SimpleFilter('price', array($this, 'priceFilter')),
);

}

public function priceFilter($number, $decimals = 0, $decPoint = '.', $thousandsSep =
',')

{
$price = number_format($number, $decimals, $decPoint, $thousandsSep);
$price = '$'.$price;

return $price;
}

public function getName()
{

return 'app_extension';
}

}

Along with custom filters, you can also add custom functions and register global variables.

Register an Extension as a Service
Now you must let the Service Container know about your newly created Twig Extension:

1
2
3
4
5
6
7

# app/config/services.yml
services:

app.twig_extension:
class: AppBundle\Twig\AppExtension
public: false
tags:

- { name: twig.extension }

Keep in mind that Twig Extensions are not lazily loaded. This means that there's a higher chance
that you'll get a ServiceCircularReferenceException3 or a
ScopeWideningInjectionException4 if any services (or your Twig Extension in this case) are
dependent on the request service. For more information take a look at How to Work with Scopes.

Using the custom Extension
Using your newly created Twig Extension is no different than any other:

1
2

{# outputs $5,500.00 #}
{{ '5500'|price }}

3. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Exception/ServiceCircularReferenceException.html

4. http://api.symfony.com/2.6/Symfony/Component/DependencyInjection/Exception/ScopeWideningInjectionException.html

PDF brought to you by
generated on March 11, 2015

Chapter 125: How to Write a custom Twig Extension | 440

http://sensiolabs.com


Listing 125-4

Passing other arguments to your filter:

1
2

{# outputs $5500,2516 #}
{{ '5500.25155'|price(4, ',', '') }}

Learning further

For a more in-depth look into Twig Extensions, please take a look at the Twig extensions documentation5.

5. http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension

PDF brought to you by
generated on March 11, 2015

Chapter 125: How to Write a custom Twig Extension | 441

http://sensiolabs.com


Listing 126-1

Listing 126-2

Chapter 126

How to Render a Template without a custom
Controller

Usually, when you need to create a page, you need to create a controller and render a template from
within that controller. But if you're rendering a simple template that doesn't need any data passed
into it, you can avoid creating the controller entirely, by using the built-in
FrameworkBundle:Template:template controller.

For example, suppose you want to render a AppBundle:Static:privacy.html.twig template, which
doesn't require that any variables are passed to it. You can do this without creating a controller:

1
2
3
4
5

acme_privacy:
path: /privacy
defaults:

_controller: FrameworkBundle:Template:template
template: 'AppBundle:Static:privacy.html.twig'

The FrameworkBundle:Template:template controller will simply render whatever template you've
passed as the template default value.

You can of course also use this trick when rendering embedded controllers from within a template. But
since the purpose of rendering a controller from within a template is typically to prepare some data in
a custom controller, this is probably only useful if you'd like to cache this page partial (see Caching the
static Template).

1 {{ render(url('acme_privacy')) }}

Caching the static Template
Since templates that are rendered in this way are typically static, it might make sense to cache them.
Fortunately, this is easy! By configuring a few other variables in your route, you can control exactly how
your page is cached:

PDF brought to you by
generated on March 11, 2015

Chapter 126: How to Render a Template without a custom Controller | 442

http://sensiolabs.com


Listing 126-3 1
2
3
4
5
6
7

acme_privacy:
path: /privacy
defaults:

_controller: FrameworkBundle:Template:template
template: 'AppBundle:Static:privacy.html.twig'
maxAge: 86400
sharedAge: 86400

The maxAge and sharedAge values are used to modify the Response object created in the controller. For
more information on caching, see HTTP Cache.

There is also a private variable (not shown here). By default, the Response will be made public, as long
as maxAge or sharedAge are passed. If set to true, the Response will be marked as private.

PDF brought to you by
generated on March 11, 2015

Chapter 126: How to Render a Template without a custom Controller | 443

http://sensiolabs.com


Listing 127-1

Listing 127-2

Listing 127-3

Chapter 127

How to Simulate HTTP Authentication in a
Functional Test

If your application needs HTTP authentication, pass the username and password as server variables to
createClient():

1
2
3
4

$client = static::createClient(array(), array(
'PHP_AUTH_USER' => 'username',
'PHP_AUTH_PW' => 'pa$$word',

));

You can also override it on a per request basis:

1
2
3
4

$client->request('DELETE', '/post/12', array(), array(), array(
'PHP_AUTH_USER' => 'username',
'PHP_AUTH_PW' => 'pa$$word',

));

When your application is using a form_login, you can simplify your tests by allowing your test
configuration to make use of HTTP authentication. This way you can use the above to authenticate in
tests, but still have your users log in via the normal form_login. The trick is to include the http_basic
key in your firewall, along with the form_login key:

1
2
3
4
5

# app/config/config_test.yml
security:

firewalls:
your_firewall_name:

http_basic: ~

PDF brought to you by
generated on March 11, 2015

Chapter 127: How to Simulate HTTP Authentication in a Functional Test | 444

http://sensiolabs.com


Listing 128-1

Chapter 128

How to Simulate Authentication with a Token
in a Functional Test

Authenticating requests in functional tests might slow down the suite. It could become an issue especially
when form_login is used, since it requires additional requests to fill in and submit the form.

One of the solutions is to configure your firewall to use http_basic in the test environment as explained
in How to Simulate HTTP Authentication in a Functional Test. Another way would be to create a token
yourself and store it in a session. While doing this, you have to make sure that an appropriate cookie is
sent with a request. The following example demonstrates this technique:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// src/AppBundle/Tests/Controller/DefaultControllerTest.php
namespace Appbundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
use Symfony\Component\BrowserKit\Cookie;
use Symfony\Component\Security\Core\Authentication\Token\UsernamePasswordToken;

class DefaultControllerTest extends WebTestCase
{

private $client = null;

public function setUp()
{

$this->client = static::createClient();
}

public function testSecuredHello()
{

$this->logIn();

$crawler = $this->client->request('GET', '/admin');

$this->assertTrue($this->client->getResponse()->isSuccessful());
$this->assertGreaterThan(0, $crawler->filter('html:contains("Admin

Dashboard")')->count());

PDF brought to you by
generated on March 11, 2015

Chapter 128: How to Simulate Authentication with a Token in a Functional Test | 445

/var/www/symfony.com/bin/../var/docs/build/symfony/en/2.6/cookbook/http_authentication.html
/var/www/symfony.com/bin/../var/docs/build/symfony/en/2.6/cookbook/http_authentication.html
http://sensiolabs.com


26
27
28
29
30
31
32
33
34
35
36
37
38
39

}

private function logIn()
{

$session = $this->client->getContainer()->get('session');

$firewall = 'secured_area';
$token = new UsernamePasswordToken('admin', null, $firewall, array('ROLE_ADMIN'));
$session->set('_security_'.$firewall, serialize($token));
$session->save();

$cookie = new Cookie($session->getName(), $session->getId());
$this->client->getCookieJar()->set($cookie);

}
}

The technique described in How to Simulate HTTP Authentication in a Functional Test is cleaner
and therefore the preferred way.

PDF brought to you by
generated on March 11, 2015

Chapter 128: How to Simulate Authentication with a Token in a Functional Test | 446

/var/www/symfony.com/bin/../var/docs/build/symfony/en/2.6/cookbook/http_authentication.html
/var/www/symfony.com/bin/../var/docs/build/symfony/en/2.6/cookbook/http_authentication.html
http://sensiolabs.com


Listing 129-1

Listing 129-2

Chapter 129

How to Test the Interaction of several Clients

If you need to simulate an interaction between different clients (think of a chat for instance), create
several clients:

1
2
3
4
5
6
7
8
9

10

// ...

$harry = static::createClient();
$sally = static::createClient();

$harry->request('POST', '/say/sally/Hello');
$sally->request('GET', '/messages');

$this->assertEquals(Response::HTTP_CREATED, $harry->getResponse()->getStatusCode());
$this->assertRegExp('/Hello/', $sally->getResponse()->getContent());

This works except when your code maintains a global state or if it depends on a third-party library that
has some kind of global state. In such a case, you can insulate your clients:

1
2
3
4
5
6
7
8
9

10
11
12
13

// ...

$harry = static::createClient();
$sally = static::createClient();

$harry->insulate();
$sally->insulate();

$harry->request('POST', '/say/sally/Hello');
$sally->request('GET', '/messages');

$this->assertEquals(Response::HTTP_CREATED, $harry->getResponse()->getStatusCode());
$this->assertRegExp('/Hello/', $sally->getResponse()->getContent());

Insulated clients transparently execute their requests in a dedicated and clean PHP process, thus avoiding
any side-effects.

PDF brought to you by
generated on March 11, 2015

Chapter 129: How to Test the Interaction of several Clients | 447

http://sensiolabs.com


As an insulated client is slower, you can keep one client in the main process, and insulate the other
ones.

PDF brought to you by
generated on March 11, 2015

Chapter 129: How to Test the Interaction of several Clients | 448

http://sensiolabs.com


Listing 130-1

Chapter 130

How to Use the Profiler in a Functional Test

It's highly recommended that a functional test only tests the Response. But if you write functional tests
that monitor your production servers, you might want to write tests on the profiling data as it gives you
a great way to check various things and enforce some metrics.

The Symfony Profiler gathers a lot of data for each request. Use this data to check the number of database
calls, the time spent in the framework, etc. But before writing assertions, enable the profiler and check
that the profiler is indeed available (it is enabled by default in the test environment):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

class HelloControllerTest extends WebTestCase
{

public function testIndex()
{

$client = static::createClient();

// Enable the profiler for the next request (it does nothing if the profiler is
not available)

$client->enableProfiler();

$crawler = $client->request('GET', '/hello/Fabien');

// ... write some assertions about the Response

// Check that the profiler is enabled
if ($profile = $client->getProfile()) {

// check the number of requests
$this->assertLessThan(

10,
$profile->getCollector('db')->getQueryCount()

);

// check the time spent in the framework
$this->assertLessThan(

500,
$profile->getCollector('time')->getDuration()

);
}

PDF brought to you by
generated on March 11, 2015

Chapter 130: How to Use the Profiler in a Functional Test | 449

http://sensiolabs.com


Listing 130-2

Listing 130-3

28
29

}
}

If a test fails because of profiling data (too many DB queries for instance), you might want to use the Web
Profiler to analyze the request after the tests finish. It's easy to achieve if you embed the token in the error
message:

1
2
3
4
5
6
7
8

$this->assertLessThan(
30,
$profile->getCollector('db')->getQueryCount(),
sprintf(

'Checks that query count is less than 30 (token %s)',
$profile->getToken()

)
);

The profiler store can be different depending on the environment (especially if you use the SQLite
store, which is the default configured one).

The profiler information is available even if you insulate the client or if you use an HTTP layer for
your tests.

Read the API for built-in data collectors to learn more about their interfaces.

Speeding up Tests by not Collecting Profiler Data
To avoid collecting data in each test you can set the collect parameter to false:

1
2
3
4
5
6
7

# app/config/config_test.yml

# ...
framework:

profiler:
enabled: true
collect: false

In this way only tests that call $client->enableProfiler() will collect data.

PDF brought to you by
generated on March 11, 2015

Chapter 130: How to Use the Profiler in a Functional Test | 450

http://sensiolabs.com


Listing 131-1

Chapter 131

How to Test Code that Interacts with the
Database

If your code interacts with the database, e.g. reads data from or stores data into it, you need to adjust
your tests to take this into account. There are many ways how to deal with this. In a unit test, you can
create a mock for a Repository and use it to return expected objects. In a functional test, you may need
to prepare a test database with predefined values to ensure that your test always has the same data to
work with.

If you want to test your queries directly, see How to Test Doctrine Repositories.

Mocking the Repository in a Unit Test
If you want to test code which depends on a Doctrine repository in isolation, you need to mock the
Repository. Normally you inject the EntityManager into your class and use it to get the repository. This
makes things a little more difficult as you need to mock both the EntityManager and your repository
class.

It is possible (and a good idea) to inject your repository directly by registering your repository as a
factory service. This is a little bit more work to setup, but makes testing easier as you only need to
mock the repository.

Suppose the class you want to test looks like this:

1
2
3
4

namespace AppBundle\Salary;

use Doctrine\Common\Persistence\ObjectManager;

PDF brought to you by
generated on March 11, 2015

Chapter 131: How to Test Code that Interacts with the Database | 451

http://sensiolabs.com


Listing 131-2

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

class SalaryCalculator
{

private $entityManager;

public function __construct(ObjectManager $entityManager)
{

$this->entityManager = $entityManager;
}

public function calculateTotalSalary($id)
{

$employeeRepository = $this->entityManager->getRepository('AppBundle::Employee');
$employee = $employeeRepository->find($id);

return $employee->getSalary() + $employee->getBonus();
}

}

Since the ObjectManager gets injected into the class through the constructor, it's easy to pass a mock
object within a test:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

use AppBundle\Salary\SalaryCalculator;

class SalaryCalculatorTest extends \PHPUnit_Framework_TestCase
{

public function testCalculateTotalSalary()
{

// First, mock the object to be used in the test
$employee = $this->getMock('\AppBundle\Entity\Employee');
$employee->expects($this->once())

->method('getSalary')
->will($this->returnValue(1000));

$employee->expects($this->once())
->method('getBonus')
->will($this->returnValue(1100));

// Now, mock the repository so it returns the mock of the employee
$employeeRepository = $this->getMockBuilder('\Doctrine\ORM\EntityRepository')

->disableOriginalConstructor()
->getMock();

$employeeRepository->expects($this->once())
->method('find')
->will($this->returnValue($employee));

// Last, mock the EntityManager to return the mock of the repository
$entityManager =

$this->getMockBuilder('\Doctrine\Common\Persistence\ObjectManager')
->disableOriginalConstructor()
->getMock();

$entityManager->expects($this->once())
->method('getRepository')
->will($this->returnValue($employeeRepository));

$salaryCalculator = new SalaryCalculator($entityManager);
$this->assertEquals(2100, $salaryCalculator->calculateTotalSalary(1));

}
}

PDF brought to you by
generated on March 11, 2015

Chapter 131: How to Test Code that Interacts with the Database | 452

http://sensiolabs.com


Listing 131-3

In this example, you are building the mocks from the inside out, first creating the employee which gets
returned by the Repository, which itself gets returned by the EntityManager. This way, no real class is
involved in testing.

Changing Database Settings for Functional Tests
If you have functional tests, you want them to interact with a real database. Most of the time you want
to use a dedicated database connection to make sure not to overwrite data you entered when developing
the application and also to be able to clear the database before every test.

To do this, you can specify a database configuration which overwrites the default configuration:

1
2
3
4
5
6
7
8

# app/config/config_test.yml
doctrine:

# ...
dbal:

host: localhost
dbname: testdb
user: testdb
password: testdb

Make sure that your database runs on localhost and has the defined database and user credentials set up.

PDF brought to you by
generated on March 11, 2015

Chapter 131: How to Test Code that Interacts with the Database | 453

http://sensiolabs.com


Listing 132-1

Chapter 132

How to Test Doctrine Repositories

Unit testing Doctrine repositories in a Symfony project is not recommended. When you're dealing with
a repository, you're really dealing with something that's meant to be tested against a real database
connection.

Fortunately, you can easily test your queries against a real database, as described below.

Functional Testing
If you need to actually execute a query, you will need to boot the kernel to get a valid connection. In this
case, you'll extend the KernelTestCase, which makes all of this quite easy:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/Acme/StoreBundle/Tests/Entity/ProductRepositoryFunctionalTest.php
namespace Acme\StoreBundle\Tests\Entity;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class ProductRepositoryFunctionalTest extends KernelTestCase
{

/**
* @var \Doctrine\ORM\EntityManager
*/
private $em;

/**
* {@inheritDoc}
*/
public function setUp()
{

self::bootKernel();
$this->em = static::$kernel->getContainer()

->get('doctrine')
->getManager()

;
}

PDF brought to you by
generated on March 11, 2015

Chapter 132: How to Test Doctrine Repositories | 454

http://sensiolabs.com


24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

public function testSearchByCategoryName()
{

$products = $this->em
->getRepository('AcmeStoreBundle:Product')
->searchByCategoryName('foo')

;

$this->assertCount(1, $products);
}

/**
* {@inheritDoc}
*/
protected function tearDown()
{

parent::tearDown();
$this->em->close();

}
}

PDF brought to you by
generated on March 11, 2015

Chapter 132: How to Test Doctrine Repositories | 455

http://sensiolabs.com


Listing 133-1

Listing 133-2

Listing 133-3

Chapter 133

How to Customize the Bootstrap Process
before Running Tests

Sometimes when running tests, you need to do additional bootstrap work before running those tests. For
example, if you're running a functional test and have introduced a new translation resource, then you will
need to clear your cache before running those tests. This cookbook covers how to do that.

First, add the following file:

1
2
3
4
5
6
7
8
9

10

// app/tests.bootstrap.php
if (isset($_ENV['BOOTSTRAP_CLEAR_CACHE_ENV'])) {

passthru(sprintf(
'php "%s/console" cache:clear --env=%s --no-warmup',
__DIR__,
$_ENV['BOOTSTRAP_CLEAR_CACHE_ENV']

));
}

require __DIR__.'/bootstrap.php.cache';

Replace the test bootstrap file bootstrap.php.cache in app/phpunit.xml.dist with
tests.bootstrap.php:

1
2
3
4
5
6
7

<!-- app/phpunit.xml.dist -->

<!-- ... -->
<phpunit

...
bootstrap = "tests.bootstrap.php"

>

Now, you can define in your phpunit.xml.dist file which environment you want the cache to be
cleared:

PDF brought to you by
generated on March 11, 2015

Chapter 133: How to Customize the Bootstrap Process before Running Tests | 456

http://sensiolabs.com


1
2
3
4

<!-- app/phpunit.xml.dist -->
<php>

<env name="BOOTSTRAP_CLEAR_CACHE_ENV" value="test"/>
</php>

This now becomes an environment variable (i.e. $_ENV) that's available in the custom bootstrap file
(tests.bootstrap.php).

PDF brought to you by
generated on March 11, 2015

Chapter 133: How to Customize the Bootstrap Process before Running Tests | 457

http://sensiolabs.com


Listing 134-1

Listing 134-2

Chapter 134

How to Upgrade Your Symfony Project

So a new Symfony release has come out and you want to upgrade, great! Fortunately, because Symfony
protects backwards-compatibility very closely, this should be quite easy.

There are two types of upgrades, and both are a little different:

• Upgrading a Patch Version (e.g. 2.6.0 to 2.6.1)
• Upgrading a Minor Version (e.g. 2.5.3 to 2.6.1)

Upgrading a Patch Version (e.g. 2.6.0 to 2.6.1)
If you're upgrading and only the patch version (the last number) is changing, then it's really easy:

1 $ composer update symfony/symfony

That's it! You should not encounter any backwards-compatibility breaks or need to change anything
else in your code. That's because when you started your project, your composer.json included Symfony
using a constraint like 2.6.*, where only the last version number will change when you update.

You may also want to upgrade the rest of your libraries. If you've done a good job with your version
constraints1 in composer.json, you can do this safely by running:

1 $ composer update

But beware. If you have some bad version constraints2 in your composer.json, (e.g. dev-master), then
this could upgrade some non-Symfony libraries to new versions that contain backwards-compatibility
breaking changes.

1. https://getcomposer.org/doc/01-basic-usage.md#package-versions

2. https://getcomposer.org/doc/01-basic-usage.md#package-versions

PDF brought to you by
generated on March 11, 2015

Chapter 134: How to Upgrade Your Symfony Project | 458

http://sensiolabs.com


Listing 134-3

Listing 134-4

Listing 134-5

Upgrading a Minor Version (e.g. 2.5.3 to 2.6.1)
If you're upgrading a minor version (where the middle number changes), then you should also not
encounter significant backwards compatibility changes. For details, see our Our backwards Compatibility
Promise.

However, some backwards-compatibility breaks are possible, and you'll learn in a second how to prepare
for them.

There are two steps to upgrading:

1) Update the Symfony Library via Composer; 2) Updating Your Code to Work with the new Version

1) Update the Symfony Library via Composer

First, you need to update Symfony by modifying your composer.json file to use the new version:

1
2
3
4
5
6
7
8
9

10

{
"...": "...",

"require": {
"php": ">=5.3.3",
"symfony/symfony": "2.6.*",
"...": "... no changes to anything else..."

},
"...": "...",

}

Next, use Composer to download new versions of the libraries:

1 $ composer update symfony/symfony

You may also want to upgrade the rest of your libraries. If you've done a good job with your version
constraints3 in composer.json, you can do this safely by running:

1 $ composer update

But beware. If you have some bad version constraints4 in your composer.json, (e.g. dev-master), then
this could upgrade some non-Symfony libraries to new versions that contain backwards-compatibility
breaking changes.

2) Updating Your Code to Work with the new Version

In theory, you should be done! However, you may need to make a few changes to your code to
get everything working. Additionally, some features you're using might still work, but might now be
deprecated. That's actually ok, but if you know about these deprecations, you can start to fix them over
time.

Every version of Symfony comes with an UPGRADE file that describes these changes. Below are links to
the file for each version, which you'll need to read to see if you need any code changes.

3. https://getcomposer.org/doc/01-basic-usage.md#package-versions

4. https://getcomposer.org/doc/01-basic-usage.md#package-versions

PDF brought to you by
generated on March 11, 2015

Chapter 134: How to Upgrade Your Symfony Project | 459

http://sensiolabs.com


Don't see the version here that you're upgrading to? Just find the UPGRADE-X.X.md file for the
appropriate version on the Symfony Repository5.

Upgrading to Symfony 2.6

First, of course, update your composer.json file with the 2.6 version of Symfony as described above in
1) Update the Symfony Library via Composer.

Next, check the UPGRADE-2.66 document for details about any code changes that you might need to
make in your project.

Upgrading to Symfony 2.5

First, of course, update your composer.json file with the 2.5 version of Symfony as described above in
1) Update the Symfony Library via Composer.

Next, check the UPGRADE-2.57 document for details about any code changes that you might need to
make in your project.

5. https://github.com/symfony/symfony

6. https://github.com/symfony/symfony/blob/2.6/UPGRADE-2.6.md

7. https://github.com/symfony/symfony/blob/2.5/UPGRADE-2.5.md

PDF brought to you by
generated on March 11, 2015

Chapter 134: How to Upgrade Your Symfony Project | 460

http://sensiolabs.com


Listing 135-1

Chapter 135

How to Create a custom Validation Constraint

You can create a custom constraint by extending the base constraint class, Constraint1. As an example
you're going to create a simple validator that checks if a string contains only alphanumeric characters.

Creating the Constraint Class
First you need to create a Constraint class and extend Constraint2:

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Validator/Constraints/ContainsAlphanumeric.php
namespace AppBundle\Validator\Constraints;

use Symfony\Component\Validator\Constraint;

/**
* @Annotation
*/
class ContainsAlphanumeric extends Constraint
{

public $message = 'The string "%string%" contains an illegal character: it can only
contain letters or numbers.';
}

The @Annotation annotation is necessary for this new constraint in order to make it available for
use in classes via annotations. Options for your constraint are represented as public properties on
the constraint class.

1. http://api.symfony.com/2.6/Symfony/Component/Validator/Constraint.html

2. http://api.symfony.com/2.6/Symfony/Component/Validator/Constraint.html

PDF brought to you by
generated on March 11, 2015

Chapter 135: How to Create a custom Validation Constraint | 461

http://sensiolabs.com


Listing 135-2

Listing 135-3

Creating the Validator itself
As you can see, a constraint class is fairly minimal. The actual validation is performed by another
"constraint validator" class. The constraint validator class is specified by the constraint's validatedBy()
method, which includes some simple default logic:

1
2
3
4
5

// in the base Symfony\Component\Validator\Constraint class
public function validatedBy()
{

return get_class($this).'Validator';
}

In other words, if you create a custom Constraint (e.g. MyConstraint), Symfony will automatically look
for another class, MyConstraintValidator when actually performing the validation.

The validator class is also simple, and only has one required method validate():

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// src/AppBundle/Validator/Constraints/ContainsAlphanumericValidator.php
namespace AppBundle\Validator\Constraints;

use Symfony\Component\Validator\Constraint;
use Symfony\Component\Validator\ConstraintValidator;

class ContainsAlphanumericValidator extends ConstraintValidator
{

public function validate($value, Constraint $constraint)
{

if (!preg_match('/^[a-zA-Za0-9]+$/', $value, $matches)) {
// If you're using the new 2.5 validation API (you probably are!)
$this->context->buildViolation($constraint->message)

->setParameter('%string%', $value)
->addViolation();

// If you're using the old 2.4 validation API
/*
$this->context->addViolation(

$constraint->message,
array('%string%' => $value)

);
*/

}
}

}

Inside validate, you don't need to return a value. Instead, you add violations to the validator's context
property and a value will be considered valid if it causes no violations. The buildViolation method
takes the error message as its argument and returns an instance of
ConstraintViolationBuilderInterface3. The addViolation method call finally adds the violation to
the context.

New in version 2.5: The buildViolation method was added in Symfony 2.5. For usage examples with
older Symfony versions, see the corresponding versions of this documentation page.

3. http://api.symfony.com/2.6/Symfony/Component/Validator/Violation/ConstraintViolationBuilderInterface.html

PDF brought to you by
generated on March 11, 2015

Chapter 135: How to Create a custom Validation Constraint | 462

http://sensiolabs.com


Listing 135-4

Listing 135-5

Listing 135-6

Listing 135-7

Listing 135-8

Using the new Validator
Using custom validators is very easy, just as the ones provided by Symfony itself:

1
2
3
4
5
6

# src/AppBundle/Resources/config/validation.yml
AppBundle\Entity\AcmeEntity:

properties:
name:

- NotBlank: ~
- AppBundle\Validator\Constraints\ContainsAlphanumeric: ~

If your constraint contains options, then they should be public properties on the custom Constraint class
you created earlier. These options can be configured like options on core Symfony constraints.

Constraint Validators with Dependencies

If your constraint validator has dependencies, such as a database connection, it will need to be configured
as a service in the dependency injection container. This service must include the
validator.constraint_validator tag and an alias attribute:

1
2
3
4
5
6

# app/config/services.yml
services:

validator.unique.your_validator_name:
class: Fully\Qualified\Validator\Class\Name
tags:

- { name: validator.constraint_validator, alias: alias_name }

Your constraint class should now use this alias to reference the appropriate validator:

1
2
3
4

public function validatedBy()
{

return 'alias_name';
}

As mentioned above, Symfony will automatically look for a class named after the constraint, with
Validator appended. If your constraint validator is defined as a service, it's important that you override
the validatedBy() method to return the alias used when defining your service, otherwise Symfony won't
use the constraint validator service, and will instantiate the class instead, without any dependencies
injected.

Class Constraint Validator

Beside validating a class property, a constraint can have a class scope by providing a target in its
Constraint class:

1
2
3
4

public function getTargets()
{

return self::CLASS_CONSTRAINT;
}

With this, the validator validate() method gets an object as its first argument:

1
2

class ProtocolClassValidator extends ConstraintValidator
{

PDF brought to you by
generated on March 11, 2015

Chapter 135: How to Create a custom Validation Constraint | 463

http://sensiolabs.com


Listing 135-9

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

public function validate($protocol, Constraint $constraint)
{

if ($protocol->getFoo() != $protocol->getBar()) {
// If you're using the new 2.5 validation API (you probably are!)
$this->context->buildViolation($constraint->message)

->atPath('foo')
->addViolation();

// If you're using the old 2.4 validation API
/*
$this->context->addViolationAt(

'foo',
$constraint->message,
array(),
null

);
*/

}
}

}

Note that a class constraint validator is applied to the class itself, and not to the property:

1
2
3
4

# src/AppBundle/Resources/config/validation.yml
AppBundle\Entity\AcmeEntity:

constraints:
- AppBundle\Validator\Constraints\ContainsAlphanumeric: ~

PDF brought to you by
generated on March 11, 2015

Chapter 135: How to Create a custom Validation Constraint | 464

http://sensiolabs.com


Listing 136-1

Listing 136-2

Chapter 136

How to Use PHP's built-in Web Server

New in version 2.6: The ability to run the server as a background process was introduced in Symfony 2.6.

Since PHP 5.4 the CLI SAPI comes with a built-in web server1. It can be used to run your PHP applications
locally during development, for testing or for application demonstrations. This way, you don't have to
bother configuring a full-featured web server such as Apache or Nginx.

The built-in web server is meant to be run in a controlled environment. It is not designed to be
used on public networks.

Starting the Web Server
Running a Symfony application using PHP's built-in web server is as easy as executing the server:start
command:

1 $ php app/console server:start

This starts the web server at localhost:8000 in the background that serves your Symfony application.

By default, the web server listens on port 8000 on the loopback device. You can change the socket passing
an IP address and a port as a command-line argument:

1 $ php app/console server:run 192.168.0.1:8080

1. http://www.php.net/manual/en/features.commandline.webserver.php

PDF brought to you by
generated on March 11, 2015

Chapter 136: How to Use PHP's built-in Web Server | 465

http://sensiolabs.com


Listing 136-3

Listing 136-4

Listing 136-5

Listing 136-6

Listing 136-7

You can use the server:status command to check if a web server is listening on a certain socket:

1
2
3

$ php app/console server:status

$ php app/console server:status 192.168.0.1:8080

The first command shows if your Symfony application will be server through localhost:8000, the
second one does the same for 192.168.0.1:8080.

Before Symfony 2.6, the server:run command was used to start the built-in web server. This
command is still available and behaves slightly different. Instead of starting the server in the
background, it will block the current terminal until you terminate it (this is usually done by
pressing Ctrl and C).

Using the built-in Web Server from inside a Virtual Machine

If you want to use the built-in web server from inside a virtual machine and then load the site from
a browser on your host machine, you'll need to listen on the 0.0.0.0:8000 address (i.e. on all IP
addresses that are assigned to the virtual machine):

1 $ php app/console server:start 0.0.0.0:8000

You should NEVER listen to all interfaces on a computer that is directly accessible from
the Internet. The built-in web server is not designed to be used on public networks.

Command Options

The built-in web server expects a "router" script (read about the "router" script on php.net2) as an
argument. Symfony already passes such a router script when the command is executed in the prod or in
the dev environment. Use the --router option in any other environment or to use another router script:

1 $ php app/console server:start --env=test --router=app/config/router_test.php

If your application's document root differs from the standard directory layout, you have to pass the
correct location using the --docroot option:

1 $ php app/console server:start --docroot=public_html

Stopping the Server
When you are finished, you can simply stop the web server using the server:stop command:

2. http://php.net/manual/en/features.commandline.webserver.php#example-401

PDF brought to you by
generated on March 11, 2015

Chapter 136: How to Use PHP's built-in Web Server | 466

http://sensiolabs.com


Listing 136-8

1 $ php app/console server:stop

Like with the start command, if you omit the socket information, Symfony will stop the web server bound
to localhost:8000. Just pass the socket information when the web server listens to another IP address
or to another port:

1 $ php app/console server:stop 192.168.0.1:8080

PDF brought to you by
generated on March 11, 2015

Chapter 136: How to Use PHP's built-in Web Server | 467

http://sensiolabs.com


Listing 137-1

Chapter 137

How to Create a SOAP Web Service in a
Symfony Controller

Setting up a controller to act as a SOAP server is simple with a couple tools. You must, of course, have
the PHP SOAP1 extension installed. As the PHP SOAP extension can not currently generate a WSDL, you
must either create one from scratch or use a 3rd party generator.

There are several SOAP server implementations available for use with PHP. Zend SOAP2 and
NuSOAP3 are two examples. Although the PHP SOAP extension is used in these examples, the
general idea should still be applicable to other implementations.

SOAP works by exposing the methods of a PHP object to an external entity (i.e. the person using the
SOAP service). To start, create a class - HelloService - which represents the functionality that you'll
expose in your SOAP service. In this case, the SOAP service will allow the client to call a method called
hello, which happens to send an email:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/Acme/SoapBundle/Services/HelloService.php
namespace Acme\SoapBundle\Services;

class HelloService
{

private $mailer;

public function __construct(\Swift_Mailer $mailer)
{

$this->mailer = $mailer;
}

public function hello($name)
{

1. http://php.net/manual/en/book.soap.php

2. http://framework.zend.com/manual/en/zend.soap.server.html

3. http://sourceforge.net/projects/nusoap

PDF brought to you by
generated on March 11, 2015

Chapter 137: How to Create a SOAP Web Service in a Symfony Controller | 468

http://sensiolabs.com


Listing 137-2

Listing 137-3

15
16
17
18
19
20
21
22
23
24
25

$message = \Swift_Message::newInstance()
->setTo('me@example.com')
->setSubject('Hello Service')
->setBody($name . ' says hi!');

$this->mailer->send($message);

return 'Hello, '.$name;
}

}

Next, you can train Symfony to be able to create an instance of this class. Since the class sends an e-mail,
it's been designed to accept a Swift_Mailer instance. Using the Service Container, you can configure
Symfony to construct a HelloService object properly:

1
2
3
4
5

# app/config/services.yml
services:

hello_service:
class: Acme\SoapBundle\Services\HelloService
arguments: ["@mailer"]

Below is an example of a controller that is capable of handling a SOAP request. If indexAction() is
accessible via the route /soap, then the WSDL document can be retrieved via /soap?wsdl.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

namespace Acme\SoapBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

class HelloServiceController extends Controller
{

public function indexAction()
{

$server = new \SoapServer('/path/to/hello.wsdl');
$server->setObject($this->get('hello_service'));

$response = new Response();
$response->headers->set('Content-Type', 'text/xml; charset=ISO-8859-1');

ob_start();
$server->handle();
$response->setContent(ob_get_clean());

return $response;
}

}

Take note of the calls to ob_start() and ob_get_clean(). These methods control output buffering4

which allows you to "trap" the echoed output of $server->handle(). This is necessary because Symfony
expects your controller to return a Response object with the output as its "content". You must also
remember to set the "Content-Type" header to "text/xml", as this is what the client will expect. So, you
use ob_start() to start buffering the STDOUT and use ob_get_clean() to dump the echoed output
into the content of the Response and clear the output buffer. Finally, you're ready to return the Response.

4. http://php.net/manual/en/book.outcontrol.php

PDF brought to you by
generated on March 11, 2015

Chapter 137: How to Create a SOAP Web Service in a Symfony Controller | 469

http://sensiolabs.com


Listing 137-4

Listing 137-5

Below is an example calling the service using a NuSOAP5 client. This example assumes that the
indexAction in the controller above is accessible via the route /soap:

1
2
3

$client = new \Soapclient('http://example.com/app.php/soap?wsdl', true);

$result = $client->call('hello', array('name' => 'Scott'));

An example WSDL is below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

<?xml version="1.0" encoding="ISO-8859-1"?>
<definitions xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="urn:arnleadservicewsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="urn:helloservicewsdl">

<types>
<xsd:schema targetNamespace="urn:hellowsdl">

<xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
<xsd:import namespace="http://schemas.xmlsoap.org/wsdl/" />

</xsd:schema>
</types>

<message name="helloRequest">
<part name="name" type="xsd:string" />

</message>

<message name="helloResponse">
<part name="return" type="xsd:string" />

</message>

<portType name="hellowsdlPortType">
<operation name="hello">

<documentation>Hello World</documentation>
<input message="tns:helloRequest"/>
<output message="tns:helloResponse"/>

</operation>
</portType>

<binding name="hellowsdlBinding" type="tns:hellowsdlPortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="hello">

<soap:operation soapAction="urn:arnleadservicewsdl#hello" style="rpc"/>

<input>
<soap:body use="encoded" namespace="urn:hellowsdl"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>

<output>
<soap:body use="encoded" namespace="urn:hellowsdl"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

5. http://sourceforge.net/projects/nusoap

PDF brought to you by
generated on March 11, 2015

Chapter 137: How to Create a SOAP Web Service in a Symfony Controller | 470

http://sensiolabs.com


49
50
51
52
53
54
55
56
57

</operation>
</binding>

<service name="hellowsdl">
<port name="hellowsdlPort" binding="tns:hellowsdlBinding">

<soap:address location="http://example.com/app.php/soap" />
</port>

</service>
</definitions>

PDF brought to you by
generated on March 11, 2015

Chapter 137: How to Create a SOAP Web Service in a Symfony Controller | 471

http://sensiolabs.com


Listing 138-1

Listing 138-2

Chapter 138

How to Create and Store a Symfony Project in
Git

Though this entry is specifically about Git, the same generic principles will apply if you're storing
your project in Subversion.

Once you've read through Creating Pages in Symfony and become familiar with using Symfony, you'll no-
doubt be ready to start your own project. In this cookbook article, you'll learn the best way to start a new
Symfony project that's stored using the Git1 source control management system.

Initial Project Setup
To get started, you'll need to download Symfony and get things running. See the Installing and
Configuring Symfony chapter for details.

Once your project is running, just follow these simple steps:

1. Initialize your Git repository:

1 $ git init

2. Add all of the initial files to Git:

1 $ git add .

1. http://git-scm.com/

PDF brought to you by
generated on March 11, 2015

Chapter 138: How to Create and Store a Symfony Project in Git | 472

http://sensiolabs.com


Listing 138-3

As you might have noticed, not all files that were downloaded by Composer in step
1, have been staged for commit by Git. Certain files and folders, such as the project's
dependencies (which are managed by Composer), parameters.yml (which contains
sensitive information such as database credentials), log and cache files and dumped
assets (which are created automatically by your project), should not be committed in
Git. To help you prevent committing those files and folders by accident, the Standard
Distribution comes with a file called .gitignore, which contains a list of files and folders
that Git should ignore.

You may also want to create a .gitignore file that can be used system-wide. This allows
you to exclude files/folders for all your projects that are created by your IDE or operating
system. For details, see GitHub .gitignore2.

3. Create an initial commit with your started project:

1 $ git commit -m "Initial commit"

At this point, you have a fully-functional Symfony project that's correctly committed to Git. You can
immediately begin development, committing the new changes to your Git repository.

You can continue to follow along with the Creating Pages in Symfony chapter to learn more about how
to configure and develop inside your application.

The Symfony Standard Edition comes with some example functionality. To remove the sample
code, follow the instructions in the "How to Remove the AcmeDemoBundle" article.

Managing Vendor Libraries with composer.json

How Does it Work?

Every Symfony project uses a group of third-party "vendor" libraries. One way or another the goal is to
download these files into your vendor/ directory and, ideally, to give you some sane way to manage the
exact version you need for each.

By default, these libraries are downloaded by running a composer install "downloader" binary. This
composer file is from a library called Composer3 and you can read more about installing it in the
Installation chapter.

The composer command reads from the composer.json file at the root of your project. This is an
JSON-formatted file, which holds a list of each of the external packages you need, the version to be
downloaded and more. composer also reads from a composer.lock file, which allows you to pin each
library to an exact version. In fact, if a composer.lock file exists, the versions inside will override those
in composer.json. To upgrade your libraries to new versions, run composer update.

2. https://help.github.com/articles/ignoring-files

3. http://getcomposer.org/

PDF brought to you by
generated on March 11, 2015

Chapter 138: How to Create and Store a Symfony Project in Git | 473

http://sensiolabs.com


Listing 138-4

If you want to add a new package to your application, run the composer require command:

1 $ composer require doctrine/doctrine-fixtures-bundle

To learn more about Composer, see GetComposer.org4:

It's important to realize that these vendor libraries are not actually part of your repository. Instead, they're
simply un-tracked files that are downloaded into the vendor/. But since all the information needed to
download these files is saved in composer.json and composer.lock (which are stored in the repository),
any other developer can use the project, run composer install, and download the exact same set of
vendor libraries. This means that you're controlling exactly what each vendor library looks like, without
needing to actually commit them to your repository.

So, whenever a developer uses your project, they should run the composer install script to ensure that
all of the needed vendor libraries are downloaded.

Upgrading Symfony

Since Symfony is just a group of third-party libraries and third-party libraries are entirely controlled
through composer.json and composer.lock, upgrading Symfony means simply upgrading each of
these files to match their state in the latest Symfony Standard Edition.

Of course, if you've added new entries to composer.json, be sure to replace only the original parts
(i.e. be sure not to also delete any of your custom entries).

Storing your Project on a remote Server
You now have a fully-functional Symfony project stored in Git. However, in most cases, you'll also want
to store your project on a remote server both for backup purposes, and so that other developers can
collaborate on the project.

The easiest way to store your project on a remote server is via a web-based hosting service like GitHub5

or Bitbucket6. Of course, there are more services out there, you can start your research with a comparison
of hosting services7.

Alternatively, you can store your Git repository on any server by creating a barebones repository8 and then
pushing to it. One library that helps manage this is Gitolite9.

4. http://getcomposer.org/

5. https://github.com/

6. https://bitbucket.org/

7. http://en.wikipedia.org/wiki/Comparison_of_open-source_software_hosting_facilities

8. http://git-scm.com/book/en/Git-Basics-Getting-a-Git-Repository

9. https://github.com/sitaramc/gitolite

PDF brought to you by
generated on March 11, 2015

Chapter 138: How to Create and Store a Symfony Project in Git | 474

http://sensiolabs.com


Listing 139-1

Chapter 139

How to Create and Store a Symfony Project in
Subversion

This entry is specifically about Subversion, and based on principles found in How to Create and
Store a Symfony Project in Git.

Once you've read through Creating Pages in Symfony and become familiar with using Symfony, you'll
no-doubt be ready to start your own project. The preferred method to manage Symfony projects is using
Git1 but some prefer to use Subversion2 which is totally fine!. In this cookbook article, you'll learn how to
manage your project using SVN3 in a similar manner you would do with Git4.

This is a method to tracking your Symfony project in a Subversion repository. There are several
ways to do and this one is simply one that works.

The Subversion Repository
For this article it's assumed that your repository layout follows the widespread standard structure:

1
2
3
4

myproject/
branches/
tags/
trunk/

1. http://git-scm.com/

2. http://subversion.apache.org/

3. http://subversion.apache.org/

4. http://git-scm.com/

PDF brought to you by
generated on March 11, 2015

Chapter 139: How to Create and Store a Symfony Project in Subversion | 475

http://sensiolabs.com


Listing 139-2

Listing 139-3

Listing 139-4

Listing 139-5

Most Subversion hosting should follow this standard practice. This is the recommended layout in
Version Control with Subversion5 and the layout used by most free hosting (see Subversion Hosting
Solutions).

Initial Project Setup
To get started, you'll need to download Symfony and get the basic Subversion setup. First, download and
get your Symfony project running by following the Installation chapter.

Once you have your new project directory and things are working, follow along with these steps:

1. Checkout the Subversion repository that will host this project. Suppose it is hosted on Google
code6 and called myproject:

1 $ svn checkout http://myproject.googlecode.com/svn/trunk myproject

2. Copy the Symfony project files in the Subversion folder:

1 $ mv Symfony/* myproject/

3. Now, set the ignore rules. Not everything should be stored in your Subversion repository. Some
files (like the cache) are generated and others (like the database configuration) are meant to be
customized on each machine. This makes use of the svn:ignore property, so that specific files
can be ignored.

1
2
3
4
5
6
7
8
9

10
11
12

$ cd myproject/
$ svn add --depth=empty app app/cache app/logs app/config web

$ svn propset svn:ignore "vendor" .
$ svn propset svn:ignore "bootstrap*" app/
$ svn propset svn:ignore "parameters.yml" app/config/
$ svn propset svn:ignore "*" app/cache/
$ svn propset svn:ignore "*" app/logs/

$ svn propset svn:ignore "bundles" web

$ svn ci -m "commit basic Symfony ignore list (vendor, app/bootstrap*, app/config/
parameters.yml, app/cache/*, app/logs/*, web/bundles)"

4. The rest of the files can now be added and committed to the project:

1
2

$ svn add --force .
$ svn ci -m "add basic Symfony Standard 2.X.Y"

That's it! Since the app/config/parameters.yml file is ignored, you can store machine-specific settings
like database passwords here without committing them. The parameters.yml.dist file is committed,
but is not read by Symfony. And by adding any new keys you need to both files, new developers can
quickly clone the project, copy this file to parameters.yml, customize it, and start developing.

At this point, you have a fully-functional Symfony project stored in your Subversion repository. The
development can start with commits in the Subversion repository.

5. http://svnbook.red-bean.com/

6. http://code.google.com/hosting/

PDF brought to you by
generated on March 11, 2015

Chapter 139: How to Create and Store a Symfony Project in Subversion | 476

http://sensiolabs.com


Listing 139-6

You can continue to follow along with the Creating Pages in Symfony chapter to learn more about how
to configure and develop inside your application.

The Symfony Standard Edition comes with some example functionality. To remove the sample
code, follow the instructions in the "How to Remove the AcmeDemoBundle" article.

Managing Vendor Libraries with composer.json

How Does it Work?

Every Symfony project uses a group of third-party "vendor" libraries. One way or another the goal is to
download these files into your vendor/ directory and, ideally, to give you some sane way to manage the
exact version you need for each.

By default, these libraries are downloaded by running a composer install "downloader" binary. This
composer file is from a library called Composer7 and you can read more about installing it in the
Installation chapter.

The composer command reads from the composer.json file at the root of your project. This is an
JSON-formatted file, which holds a list of each of the external packages you need, the version to be
downloaded and more. composer also reads from a composer.lock file, which allows you to pin each
library to an exact version. In fact, if a composer.lock file exists, the versions inside will override those
in composer.json. To upgrade your libraries to new versions, run composer update.

If you want to add a new package to your application, run the composer require command:

1 $ composer require doctrine/doctrine-fixtures-bundle

To learn more about Composer, see GetComposer.org8:

It's important to realize that these vendor libraries are not actually part of your repository. Instead, they're
simply un-tracked files that are downloaded into the vendor/. But since all the information needed to
download these files is saved in composer.json and composer.lock (which are stored in the repository),
any other developer can use the project, run composer install, and download the exact same set of
vendor libraries. This means that you're controlling exactly what each vendor library looks like, without
needing to actually commit them to your repository.

So, whenever a developer uses your project, they should run the composer install script to ensure that
all of the needed vendor libraries are downloaded.

Upgrading Symfony

Since Symfony is just a group of third-party libraries and third-party libraries are entirely controlled
through composer.json and composer.lock, upgrading Symfony means simply upgrading each of
these files to match their state in the latest Symfony Standard Edition.

Of course, if you've added new entries to composer.json, be sure to replace only the original parts
(i.e. be sure not to also delete any of your custom entries).

7. http://getcomposer.org/

8. http://getcomposer.org/

PDF brought to you by
generated on March 11, 2015

Chapter 139: How to Create and Store a Symfony Project in Subversion | 477

http://sensiolabs.com


Subversion Hosting Solutions

The biggest difference between Git9 and SVN10 is that Subversion needs a central repository to work. You
then have several solutions:

• Self hosting: create your own repository and access it either through the filesystem or the
network. To help in this task you can read Version Control with Subversion.

• Third party hosting: there are a lot of serious free hosting solutions available like GitHub11,
Google code12, SourceForge13 or Gna14. Some of them offer Git hosting as well.

9. http://git-scm.com/

10. http://subversion.apache.org/

11. https://github.com/

12. http://code.google.com/hosting/

13. http://sourceforge.net/

14. http://gna.org/

PDF brought to you by
generated on March 11, 2015

Chapter 139: How to Create and Store a Symfony Project in Subversion | 478

http://svnbook.red-bean.com/
http://sensiolabs.com





	The Cookbook Version: 2.6 generated on March 11, 2015
	

	Contents at a Glance
	How to Use Assetic for Asset Management
	Assets
	Including JavaScript Files
	Including CSS Stylesheets
	Including Images
	Fixing CSS Paths with the cssrewrite Filter
	Combining Assets
	Using Named Assets

	Filters
	Controlling the URL Used
	Dumping Asset Files
	Dumping Asset Files in the prod Environment
	Dumping Asset Files in the dev Environment


	How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS)
	Install UglifyJS
	Configure the uglifyjs2 Filter
	Configure the node Binary
	Minify your Assets
	Disable Minification in Debug Mode

	Install, Configure and Use UglifyCSS

	How to Minify JavaScripts and Stylesheets with YUI Compressor
	Download the YUI Compressor JAR
	Configure the YUI Filters
	Minify your Assets
	Disable Minification in Debug Mode

	How to Use Assetic for Image Optimization with Twig Functions
	Using Jpegoptim
	Removing all EXIF Data
	Lowering maximum Quality

	Shorter Syntax: Twig Function

	How to Apply an Assetic Filter to a specific File Extension
	Filter a single File
	Filter multiple Files
	Filtering Based on a File Extension

	How to Install 3rd Party Bundles
	A) Add Composer Dependencies
	1) Find out the Name of the Bundle on Packagist
	2) Install the Bundle via Composer

	B) Enable the Bundle
	C) Configure the Bundle
	Other Setup

	Best Practices for Reusable Bundles
	Bundle Name
	Directory Structure
	Classes
	Vendors
	Tests
	Documentation
	Installation Instructions

	Routing
	Templates
	Translation Files
	Configuration
	Custom Validation Constraints
	Learn more from the Cookbook

	How to Use Bundle Inheritance to Override Parts of a Bundle
	Overriding Controllers
	Overriding Resources: Templates, Routing, etc

	How to Override any Part of a Bundle
	Templates
	Routing
	Controllers
	Services & Configuration
	Entities & Entity Mapping
	Forms
	Validation Metadata
	Translations

	How to Remove the AcmeDemoBundle
	1. Unregister the Bundle in the AppKernel
	2. Remove Bundle Configuration
	2.1 Remove Bundle Routing
	2.2 Remove Bundle Configuration

	3. Remove the Bundle from the Filesystem
	3.1 Remove Bundle Assets

	4. Remove Integration in other Bundles

	How to Load Service Configuration inside a Bundle
	Creating an Extension Class
	Manually Registering an Extension Class

	Using the load() Method
	Using Configuration to Change the Services


	How to Create Friendly Configuration for a Bundle
	Using the Bundle Extension
	Processing the $configs Array

	Modifying the Configuration of Another Bundle
	Dump the Configuration
	Supporting XML
	Make your Config Tree ready for XML
	Choosing an XML Namespace
	Providing an XML Schema


	How to Simplify Configuration of multiple Bundles
	How to Use Varnish to Speed up my Website
	Make Symfony Trust the Reverse Proxy
	Routing and X-FORWARDED Headers
	Cookies and Caching
	Ensure Consistent Caching Behaviour
	Enable Edge Side Includes (ESI)
	Cache Invalidation

	Caching Pages that Contain CSRF Protected Forms
	Why Caching Pages with a CSRF token is Problematic
	How to Cache Most of the Page and still be able to Use CSRF Protection

	Installing Composer
	Install Composer on Linux and Mac OS X
	Install Composer on Windows
	Learn more

	How to Master and Create new Environments
	Different Environments, different Configuration Files
	Executing an Application in different Environments
	Selecting the Environment for Console Commands

	Creating a new Environment
	Environments and the Cache Directory
	Going further

	How to Override Symfony's default Directory Structure
	Override the cache Directory
	Override the logs Directory
	Override the web Directory
	Override the vendor Directory

	Using Parameters within a Dependency Injection Class
	Understanding how the Front Controller, Kernel and Environments Work together
	The Front Controller
	The Kernel Class
	The Environments

	How to Set external Parameters in the Service Container
	Environment Variables
	Constants
	Miscellaneous Configuration

	How to Use PdoSessionHandler to Store Sessions in the Database
	Configuring the Table and Column Names
	Sharing your Database Connection Information
	Example SQL Statements
	MySQL
	PostgreSQL
	Microsoft SQL Server


	How to Use the Apache Router
	Change Router Configuration Parameters
	Generating mod_rewrite Rules
	Additional Tweaks

	Configuring a Web Server
	Apache2 with mod_php/PHP-CGI
	Apache2 with PHP-FPM
	Using mod_proxy_fcgi with Apache 2.4
	PHP-FPM with Apache 2.2

	Nginx

	How to Organize Configuration Files
	Different Directories per Environment
	Semantic Configuration Files
	Advanced Techniques
	Mix and Match Configuration Formats
	Global Configuration Files


	How to Create a Console Command
	Automatically Registering Commands
	Register Commands in the Service Container
	Getting Services from the Service Container
	Testing Commands

	How to Use the Console
	How to Generate URLs and Send Emails from the Console
	Configuring the Request Context Globally
	Configuring the Request Context per Command
	Using Memory Spooling

	How to Enable Logging in Console Commands
	Manually Logging from a Console Command
	Enabling automatic Exceptions Logging
	Logging non-0 Exit Statuses

	How to Define Commands as Services
	Using Dependencies and Parameters to Set Default Values for Options

	How to Customize Error Pages
	Using the Default ExceptionController
	How the Template for the Error and Exception Pages Is Selected
	Overriding or Adding Templates
	Testing Error Pages during Development

	Replacing the Default ExceptionController
	Working with the kernel.exception Event

	How to Define Controllers as Services
	Defining the Controller as a Service
	Referring to the Service
	Alternatives to base Controller Methods

	How to Optimize your Development Environment for Debugging
	Disabling the Bootstrap File and Class Caching

	How to Deploy a Symfony Application
	Symfony Deployment Basics
	How to Deploy a Symfony Application
	Basic File Transfer
	Using Source Control
	Using Build Scripts and other Tools

	Common Post-Deployment Tasks
	A) Check Requirements
	B) Configure your app/config/parameters.yml File
	C) Install/Update your Vendors
	D) Clear your Symfony Cache
	E) Dump your Assetic Assets
	F) Other Things!

	Application Lifecycle: Continuous Integration, QA, etc

	Deploying to Microsoft Azure Website Cloud
	Setting up the Azure Website
	Step 1: Create Web Site
	Step 2: New MySQL Database
	Step 3: Where Is your Source Code
	Step 4: New Username and Password

	Configuring the Azure Website for Symfony
	Configuring the latest PHP Runtime
	Tweaking php.ini Configuration Settings
	Enabling the PHP intl Extension
	Deploying from Git
	Configure the Symfony Application
	Configure the Web Server

	Conclusion

	Deploying to Heroku Cloud
	Setting up
	Preparing your Application

	Creating a new Application on Heroku
	Deploying your Application on Heroku
	Creating a Procfile
	Setting the prod Environment
	Pushing to Heroku


	Deploying to Platform.sh
	Deploy an Existing Site
	Get a Project on Platform.sh
	Prepare Your Application
	Configure Database Access
	Deploy your Application

	Deploy a new Site

	How to Handle File Uploads with Doctrine
	Basic Setup
	Using Lifecycle Callbacks
	Using the id as the Filename

	How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc.
	How to Register Event Listeners and Subscribers
	Configuring the Listener/Subscriber
	Creating the Listener Class
	Creating the Subscriber Class

	How to Use Doctrine DBAL
	Registering custom Mapping Types
	Registering custom Mapping Types in the SchemaTool

	How to Generate Entities from an Existing Database
	How to Work with multiple Entity Managers and Connections
	How to Register custom DQL Functions
	How to Define Relationships with Abstract Classes and Interfaces
	Background
	Set up
	Final Thoughts

	How to Provide Model Classes for several Doctrine Implementations
	How to Implement a simple Registration Form
	The simple User Model
	Create a Form for the Model
	Embedding the User Form into a Registration Form
	Handling the Form Submission
	Add new Routes
	Update your Database Schema

	Console Commands
	How to Send an Email
	Configuration
	Sending Emails

	How to Use Gmail to Send Emails
	How to Use the Cloud to Send Emails
	How to Work with Emails during Development
	Disabling Sending
	Sending to a Specified Address
	Sending to a Specified Address but with Exceptions

	Viewing from the Web Debug Toolbar

	How to Spool Emails
	Spool Using Memory
	Spool Using a File

	How to Test that an Email is Sent in a functional Test
	How to Setup before and after Filters
	Token Validation Example
	Before Filters with the kernel.controller Event
	Tag Controllers to Be Checked
	Creating an Event Listener
	Registering the Listener

	After Filters with the kernel.response Event

	How to Extend a Class without Using Inheritance
	How to Customize a Method Behavior without Using Inheritance
	Doing something before or after a Method Call

	How to use Expressions in Security, Routing, Services, and Validation
	Security: Complex Access Controls with Expressions

	How to Customize Form Rendering
	Form Rendering Basics
	What are Form Themes?
	Form Theming
	Form Theming in Twig
	Method 1: Inside the same Template as the Form
	Method 2: Inside a separate Template
	Multiple Templates
	Child Forms


	Form Theming in PHP
	Referencing base Form Blocks (Twig specific)
	Referencing Blocks from inside the same Template as the Form
	Referencing base Blocks from an external Template

	Making Application-wide Customizations
	Twig
	PHP

	How to Customize an individual Field
	Other common Customizations
	Customizing Error Output
	Customizing the "Form Row"
	Adding a "Required" Asterisk to Field Labels
	Adding "help" Messages

	Using Form Variables

	How to Use Data Transformers
	Creating the Transformer
	Using the Transformer
	Model and View Transformers

	So why Use the Model Transformer?
	Using Transformers in a custom Field Type

	How to Dynamically Modify Forms Using Form Events
	Customizing your Form Based on the Underlying Data
	Adding an Event Listener to a Form Class
	Adding an Event Subscriber to a Form Class

	How to dynamically Generate Forms Based on user Data
	Creating the Form Type
	Customizing the Form Type
	Using the Form
	a) Creating the Form manually
	b) Defining the Form as a Service


	Dynamic Generation for Submitted Forms
	Suppressing Form Validation

	How to Embed a Collection of Forms
	Allowing "new" Tags with the "Prototype"
	Allowing Tags to be Removed
	Template Modifications


	How to Create a Custom Form Field Type
	Defining the Field Type
	Creating a Template for the Field
	Using the Field Type
	Creating your Field Type as a Service

	How to Create a Form Type Extension
	Defining the Form Type Extension
	Registering your Form Type Extension as a Service
	Adding the extension Business Logic
	Override the File Widget Template Fragment
	Using the Form Type Extension

	How to Reduce Code Duplication with "inherit_data"
	How to Unit Test your Forms
	The Basics
	Adding a Type your Form Depends on
	Adding custom Extensions
	Testing against different Sets of Data

	How to Configure empty Data for a Form Class
	Option 1: Instantiate a new Class
	Option 2: Provide a Closure

	How to Use the submit() Function to Handle Form Submissions
	Calling Form::submit() manually
	Passing a Request to Form::submit() (Deprecated)

	How to Use the virtual Form Field Option
	How to Use Monolog to Write Logs
	Usage
	Handlers and Channels: Writing Logs to different Locations
	Using several Handlers
	Changing the Formatter

	Adding some extra Data in the Log Messages
	Adding a Session/Request Token

	Registering Processors per Handler
	Registering Processors per Channel

	How to Configure Monolog to Email Errors
	How to Configure Monolog to Display Console Messages
	How to Configure Monolog to Exclude 404 Errors from the Log
	How to Log Messages to different Files
	Switching a Channel to a different Handler
	YAML Specification
	Creating your own Channel
	Configure Additional Channels without Tagged Services

	Learn more from the Cookbook

	How to Create a custom Data Collector
	Creating a custom Data Collector
	Enabling custom Data Collectors
	Adding Web Profiler Templates

	How to Use Matchers to Enable the Profiler Conditionally
	Using the built-in Matcher
	Creating a custom Matcher

	Switching the Profiler Storage
	How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy
	Solution: trusted_proxies
	But what if the IP of my Reverse Proxy Changes Constantly!
	My Reverse Proxy Uses Non-Standard (not X-Forwarded) Headers

	How to Register a new Request Format and Mime Type
	Configure your New Format

	How to Force Routes to always Use HTTPS or HTTP
	How to Allow a "/" Character in a Route Parameter
	Configure the Route

	How to Configure a Redirect without a custom Controller
	Redirecting Using a Path
	Redirecting Using a Route

	How to Use HTTP Methods beyond GET and POST in Routes
	Faking the Method with _method

	How to Use Service Container Parameters in your Routes
	How to Create a custom Route Loader
	Loading Routes
	Creating a custom Loader
	Using the custom Loader

	More advanced Loaders

	Redirect URLs with a Trailing Slash
	How to Pass Extra Information from a Route to a Controller
	How to Build a Traditional Login Form
	Redirecting after Success
	Avoid common Pitfalls

	How to Load Security Users from the Database (the Entity Provider)
	Introduction
	The Data Model
	Authenticating Someone against a Database
	Forbid inactive Users
	Authenticating Someone with a Custom Entity Provider
	Managing Roles in the Database
	Improving Performance with a Join

	Understanding serialize and how a User is Saved in the Session

	How to Add "Remember Me" Login Functionality
	Forcing the User to Re-authenticate before Accessing certain Resources

	How to Impersonate a User
	How to Implement your own Voter to Blacklist IP Addresses
	The Voter Interface
	Creating a custom Voter
	Declaring the Voter as a Service
	Changing the Access Decision Strategy

	How to Use Voters to Check User Permissions
	How Symfony Uses Voters
	The Voter Interface
	Creating the custom Voter
	Declaring the Voter as a Service
	How to Use the Voter in a Controller

	How to Use Access Control Lists (ACLs)
	Bootstrapping
	Getting Started
	Creating an ACL and Adding an ACE
	Checking Access

	Cumulative Permissions

	How to Use advanced ACL Concepts
	Design Concepts
	Object Identities
	Security Identities

	Database Table Structure
	Scope of Access Control Entries
	Pre-Authorization Decisions
	Built-in Permission Map
	Permission Attributes vs. Permission Bitmasks
	Extensibility

	Post Authorization Decisions
	Process for Reaching Authorization Decisions

	How to Force HTTPS or HTTP for different URLs
	How to Restrict Firewalls to a Specific Request
	Restricting by Pattern
	Restricting by Host
	Restricting by HTTP Methods

	How to Restrict Firewalls to a Specific Host
	How to Customize your Form Login
	Form Login Configuration Reference
	Redirecting after Success
	Changing the default Page
	Always Redirect to the default Page
	Using the Referring URL
	Control the Redirect URL from inside the Form
	Redirecting on Login Failure


	How to Secure any Service or Method in your Application
	Securing Methods Using Annotations

	How to Create a custom User Provider
	Create a User Class
	Create a User Provider
	Create a Service for the User Provider
	Modify security.yml

	How to Create a Custom Form Password Authenticator
	The Password Authenticator
	How it Works
	1) createToken
	2) supportsToken
	3) authenticateToken

	Configuration

	How to Authenticate Users with API Keys
	The API Key Authenticator
	1. createToken
	2. supportsToken
	3. authenticateToken
	The User Provider

	Handling Authentication Failure
	Configuration
	Storing Authentication in the Session
	Only Authenticating for Certain URLs

	How to Create a custom Authentication Provider
	Meet WSSE
	The Token
	The Listener
	The Authentication Provider
	The Factory
	Configuration
	A little Extra
	Configuration


	Using pre Authenticated Security Firewalls
	X.509 Client Certificate Authentication
	REMOTE_USER Based Authentication

	How to Change the default Target Path Behavior
	Using CSRF Protection in the Login Form
	Configuring CSRF Protection
	Rendering the CSRF field

	How to Choose the Password Encoder Algorithm Dynamically
	How Does the Security access_control Work?
	1. Matching Options
	2. Access Enforcement
	Matching access_control By IP
	Securing by an Expression

	Forcing a Channel (http, https)

	How to Use multiple User Providers
	How to Use the Serializer
	Activating the Serializer
	Adding Normalizers and Encoders

	How to Create an Event Listener
	Request Events, Checking Types
	Debugging Event Listeners

	How to Work with Scopes
	Understanding Scopes
	An Example: Client Scope

	Using a Service from a Narrower Scope
	A) Using a Synchronized Service
	B) Changing the Scope of your Service
	C) Passing the Container as a Dependency of your Service


	How to Work with Compiler Passes in Bundles
	Session Proxy Examples
	Encryption of Session Data
	Readonly Guest Sessions

	Making the Locale "Sticky" during a User's Session
	Creating a LocaleListener

	Configuring the Directory where Session Files are Saved
	Bridge a legacy Application with Symfony Sessions
	Limit Session Metadata Writes
	Avoid Starting Sessions for Anonymous Users
	How Symfony2 Differs from Symfony1
	Directory Structure
	The app/ Directory
	The src/ Directory
	The vendor/ Directory
	The web/ Directory

	Autoloading
	Using the Console
	Applications
	Bundles and Plugins
	Routing (routing.yml) and Configuration (config.yml)


	How to Inject Variables into all Templates (i.e. global Variables)
	Using Service Container Parameters
	Referencing Services
	Using a Twig Extension

	How to Use and Register Namespaced Twig Paths
	Registering your own Namespaces
	Multiple Paths per Namespace


	How to Use PHP instead of Twig for Templates
	Rendering PHP Templates
	Decorating Templates
	Working with Slots
	Including other Templates
	Embedding other Controllers
	Using Template Helpers
	Creating Links between Pages
	Using Assets: Images, JavaScripts and Stylesheets
	Profiling Templates

	Output Escaping

	How to Write a custom Twig Extension
	Create the Extension Class
	Register an Extension as a Service
	Using the custom Extension
	Learning further

	How to Render a Template without a custom Controller
	Caching the static Template

	How to Simulate HTTP Authentication in a Functional Test
	How to Simulate Authentication with a Token in a Functional Test
	How to Test the Interaction of several Clients
	How to Use the Profiler in a Functional Test
	Speeding up Tests by not Collecting Profiler Data

	How to Test Code that Interacts with the Database
	Mocking the Repository in a Unit Test
	Changing Database Settings for Functional Tests

	How to Test Doctrine Repositories
	Functional Testing

	How to Customize the Bootstrap Process before Running Tests
	How to Upgrade Your Symfony Project
	Upgrading a Patch Version (e.g. 2.6.0 to 2.6.1)
	Upgrading a Minor Version (e.g. 2.5.3 to 2.6.1)
	1) Update the Symfony Library via Composer
	2) Updating Your Code to Work with the new Version
	Upgrading to Symfony 2.6
	Upgrading to Symfony 2.5



	How to Create a custom Validation Constraint
	Creating the Constraint Class
	Creating the Validator itself
	Using the new Validator
	Constraint Validators with Dependencies
	Class Constraint Validator


	How to Use PHP's built-in Web Server
	Starting the Web Server
	Command Options

	Stopping the Server

	How to Create a SOAP Web Service in a Symfony Controller
	How to Create and Store a Symfony Project in Git
	Initial Project Setup
	Managing Vendor Libraries with composer.json
	How Does it Work?

	Storing your Project on a remote Server

	How to Create and Store a Symfony Project in Subversion
	The Subversion Repository
	Initial Project Setup
	Managing Vendor Libraries with composer.json
	How Does it Work?

	Subversion Hosting Solutions


