

1 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-ODATA]:
Open Data Protocol (OData)

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

02/27/2009 0.1 Major First Release.

04/10/2009 0.2 Minor Updated the technical content.

05/22/2009 0.2.1 Editorial Revised and edited the technical content.

07/02/2009 1.0 Major Updated and revised the technical content.

08/14/2009 1.1 Minor Updated the technical content.

09/25/2009 1.2 Minor Updated the technical content.

11/06/2009 1.3 Minor Updated the technical content.

12/18/2009 1.3.1 Editorial Revised and edited the technical content.

01/29/2010 1.4 Minor Updated the technical content.

03/12/2010 2.0 Major Updated and revised the technical content.

04/23/2010 2.0.1 Editorial Revised and edited the technical content.

06/04/2010 3.0 Major Updated and revised the technical content.

07/16/2010 4.0 Major Significantly changed the technical content.

08/27/2010 5.0 Major Significantly changed the technical content.

10/08/2010 5.1 Minor Clarified the meaning of the technical content.

11/19/2010 6.0 Major Significantly changed the technical content.

01/07/2011 7.0 Major Significantly changed the technical content.

02/11/2011 8.0 Major Significantly changed the technical content.

03/25/2011 9.0 Major Significantly changed the technical content.

05/06/2011 10.0 Major Significantly changed the technical content.

06/17/2011 10.1 Minor Clarified the meaning of the technical content.

09/23/2011 11.0 Major Significantly changed the technical content.

12/16/2011 12.0 Major Significantly changed the technical content.

03/30/2012 13.0 Major Significantly changed the technical content.

07/12/2012 13.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 14.0 Major Significantly changed the technical content.

3 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

01/31/2013 15.0 Major Significantly changed the technical content.

08/08/2013 16.0 Major Significantly changed the technical content.

11/14/2013 17.0 Major Significantly changed the technical content.

02/13/2014 17.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/15/2014 18.0 Major Significantly changed the technical content.

4 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction ... 11
1.1 Glossary ... 11
1.2 References .. 13

1.2.1 Normative References ... 13
1.2.2 Informative References ... 15

1.3 Overview .. 15
1.4 Relationship to Other Protocols .. 16
1.5 Prerequisites/Preconditions ... 17
1.6 Applicability Statement ... 17
1.7 Versioning and Capability Negotiation ... 17

1.7.1 OData 2.0 Version-Specific Summary ... 18
1.7.2 OData 3.0 Version-Specific Summary ... 20

1.8 Vendor-Extensible Fields ... 25
1.9 Standards Assignments .. 25

2 Messages.. 26
2.1 Transport .. 26
2.2 Message Syntax .. 26

2.2.1 Abstract Data Model ... 27
2.2.1.1 Named Resource Stream ... 28
2.2.1.2 Named Resource Stream Instance .. 28
2.2.1.3 Actions .. 29

2.2.1.3.1 Action Metadata URL ... 29
2.2.1.4 Functions ... 30

2.2.1.4.1 Function Metadata URL .. 31
2.2.1.5 Service Operations.. 31
2.2.1.6 Containment .. 31

2.2.2 Abstract Type System ... 33
2.2.3 URI Format: Resource Addressing Rules .. 41

2.2.3.1 URI Syntax .. 42
2.2.3.2 Service Root (serviceRoot) and Path Prefix (pathPrefix) 48
2.2.3.3 Resource Path (resourcePath) .. 48
2.2.3.4 Resource Path: Construction Rules .. 48
2.2.3.5 Resource Path: Semantics ... 52
2.2.3.6 Query Options .. 61

2.2.3.6.1 System Query Options ... 61
2.2.3.6.1.1 Common Expression Syntax .. 64

2.2.3.6.1.1.1 Expression Construction and Evaluation Rules.............................. 70
2.2.3.6.1.1.2 Operator Precedence .. 93
2.2.3.6.1.1.3 Unary Numeric Promotions .. 94
2.2.3.6.1.1.4 Binary Numeric Promotions ... 94
2.2.3.6.1.1.5 Lifted Operators ... 95
2.2.3.6.1.1.6 Numeric Promotions for Method Call Parameters 96
2.2.3.6.1.1.7 Geospatial Coordinate Transformations 97

2.2.3.6.1.1.7.1 Coordinate Transformations Within a Topology 97
2.2.3.6.1.1.7.2 Arbitrary Coordinate Transformations 97

2.2.3.6.1.1.8 Geospatial Extension Methods.. 98
2.2.3.6.1.1.8.1 Extending Type Support for Defined Functions 98
2.2.3.6.1.1.8.2 Implementing One of the Functions Defined in [OGC-

SFOLECOM] .. 98

5 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.3.6.1.1.8.3 Arbitrary Extensions ... 99
2.2.3.6.1.2 Evaluating System Query Options .. 99
2.2.3.6.1.3 Expand System Query Option ($expand) ... 100
2.2.3.6.1.4 Filter System Query Option ($filter) .. 101
2.2.3.6.1.5 Format System Query Option ($format) .. 102
2.2.3.6.1.6 OrderBy System Query Option ($orderby) 102
2.2.3.6.1.7 Skip System Query Option ($skip) .. 103
2.2.3.6.1.8 Top System Query Option ($top) .. 104
2.2.3.6.1.9 Skip Token System Query Option ($skiptoken) 105
2.2.3.6.1.10 InlineCount System Query Option ($inlinecount) 105
2.2.3.6.1.11 Select System Query Option ($select) ... 106
2.2.3.6.1.12 System Query Option: Additional Construction Rules 110

2.2.3.6.2 Custom Query Options .. 110
2.2.3.6.3 Service Operation Parameters .. 110
2.2.3.6.4 Function Parameters ... 110
2.2.3.6.5 Action Parameters .. 112

2.2.3.7 Data Service Metadata ... 113
2.2.3.7.1 Service Document .. 113
2.2.3.7.2 Conceptual Schema Definition Language Document for Data Services 113

2.2.3.7.2.1 Conceptual Schema Definition Language Document Extensions for
Customizable Feeds ... 118

2.2.3.8 URI Equivalence .. 121
2.2.3.9 Canonical URIs .. 121

2.2.4 HTTP Methods ... 122
2.2.4.1 PATCH/MERGE .. 122

2.2.5 HTTP Header Fields.. 123
2.2.5.1 Accept .. 123

2.2.5.1.1 application/atom+xml ... 125
2.2.5.1.2 application/json ... 125
2.2.5.1.3 application/json;odata=verbose ... 125

2.2.5.2 Content-Type .. 125
2.2.5.3 DataServiceVersion .. 126
2.2.5.4 ETag .. 126
2.2.5.5 If-Match ... 128
2.2.5.6 If-None-Match ... 128
2.2.5.7 MaxDataServiceVersion .. 129
2.2.5.8 X-HTTP-Method ... 129
2.2.5.9 Prefer ... 130
2.2.5.10 Preference-Applied ... 131
2.2.5.11 DataServiceId ... 131

2.2.6 Common Payload Syntax .. 132
2.2.6.1 Common Serialization Rules for XML-Based Formats 132
2.2.6.2 AtomPub Format ... 135

2.2.6.2.1 Entity Set (as an Atom Feed Element) .. 136
2.2.6.2.1.1 InlineCount Representation (for Collections of Entities) 137
2.2.6.2.1.2 Entity Set (as an Atom Feed Element) with Actions 138
2.2.6.2.1.3 Entity Set (as an Atom Feed Element) with Functions 139

2.2.6.2.2 Entity Type (as an Atom Entry Element) ... 140
2.2.6.2.2.1 Entity Type (as an Atom Entry Element) with a Customizable Feed

Property Mapping .. 144
2.2.6.2.2.2 Entity Type (as an Atom Entry Element) with Actions 144
2.2.6.2.2.3 Entity Type (as an Atom Entry Element) with Functions 145

2.2.6.2.3 Complex Type .. 146

6 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.6.2.4 Navigation Property .. 146
2.2.6.2.5 EDMSimpleType Property .. 146
2.2.6.2.6 Deferred Content ... 146

2.2.6.2.6.1 Inline Representation .. 147
2.2.6.2.7 Service Document .. 149
2.2.6.2.8 Additional Representations .. 150
2.2.6.2.9 Collection Property ... 150

2.2.6.2.9.1 Collection Property of Complex Type ... 150
2.2.6.2.9.2 Collection of EDMSimpleType ... 151

2.2.6.2.10 Named Resource Streams.. 151
2.2.6.2.11 Links and Subtypes... 153
2.2.6.2.12 Annotations ... 153

2.2.6.3 Verbose JSON Format .. 156
2.2.6.3.1 Common Verbose JSON Serialization Rules for All EDM Constructs 157

2.2.6.3.1.1 Modifications to GeoJSON for Use in OData 161
2.2.6.3.2 Entity Set (as a Verbose JSON Array) ... 162

2.2.6.3.2.1 InlineCount Representation (for Collections of Entities) 163
2.2.6.3.2.2 Entity Set (as a Verbose JSON Array) with Actions 164
2.2.6.3.2.3 Entity Set (as a Verbose JSON Array) with Functions 165

2.2.6.3.3 Entity Type (as a Verbose JSON Object) .. 166
2.2.6.3.3.1 Entity Type (as a Verbose JSON Object) with Actions 171
2.2.6.3.3.2 Entity Type (as a Verbose JSON Object) with Functions 171

2.2.6.3.4 Complex Type .. 172
2.2.6.3.5 Collection of Complex Type Instances ... 173
2.2.6.3.6 Navigation Property .. 174
2.2.6.3.7 Collection of EDMSimpleType Values ... 174
2.2.6.3.8 EDMSimpleType Property .. 175
2.2.6.3.9 Deferred Content ... 176

2.2.6.3.9.1 Inline Representation .. 176
2.2.6.3.10 Links ... 178
2.2.6.3.11 InlineCount Representation (for Collections of Links) 179
2.2.6.3.12 Service Document .. 179
2.2.6.3.13 Collection Property ... 180
2.2.6.3.14 Named Resource Streams.. 181
2.2.6.3.15 Links and Subtypes... 183
2.2.6.3.16 Annotations ... 183

2.2.6.4 Raw Format .. 183
2.2.6.4.1 EDMSimpleType Property .. 183

2.2.6.5 XML Format .. 183
2.2.6.5.1 Complex Type .. 184
2.2.6.5.2 Collection of Complex Type Instances ... 184
2.2.6.5.3 EDMSimpleType Property .. 184
2.2.6.5.4 Collection of EDMSimpleType Values ... 184
2.2.6.5.5 Links .. 185

2.2.6.5.5.1 InlineCount Representation (for Collections of Links) 186
2.2.6.5.5.2 Next Page (for Collections of Links) ... 186

2.2.6.5.6 Collection of Complex Type ... 186
2.2.6.5.7 Collection of EDMSimpleType ... 187

2.2.6.6 Preferred OData 3.0 JSON Format ... 187
2.2.7 Request Types .. 187

2.2.7.1 Insert Request Types ... 188
2.2.7.1.1 InsertEntity Request ... 188

2.2.7.1.1.1 Examples .. 190

7 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.7.1.2 InsertLink Request ... 196
2.2.7.1.3 InsertMediaResource Request .. 197

2.2.7.2 Retrieve Request Types .. 199
2.2.7.2.1 RetrieveEntitySet Request ... 199
2.2.7.2.2 RetrieveEntity Request .. 200
2.2.7.2.3 RetrieveComplexType Request ... 202
2.2.7.2.4 RetrievePrimitiveProperty Request .. 203
2.2.7.2.5 RetrieveValue Request .. 204
2.2.7.2.6 RetrieveCollectionProperty Request .. 205
2.2.7.2.7 RetrieveServiceMetadata Request .. 207
2.2.7.2.8 RetrieveServiceDocument Request ... 208
2.2.7.2.9 RetrieveLink Request .. 209
2.2.7.2.10 RetrieveCount Request .. 210
2.2.7.2.11 Retrieve Request Containing a Customizable Feed Mapping 211
2.2.7.2.12 RetrieveMediaResource Request ... 212

2.2.7.3 Update Request Types .. 212
2.2.7.3.1 UpdateEntity Request ... 212

2.2.7.3.1.1 Example .. 214
2.2.7.3.2 UpdateComplexType Request .. 215
2.2.7.3.3 UpdatePrimitiveProperty Request ... 217
2.2.7.3.4 UpdateCollectionProperty Request .. 218
2.2.7.3.5 UpdateValue Request .. 220
2.2.7.3.6 UpdateLink Request .. 221
2.2.7.3.7 UpdateMediaResource Request .. 222
2.2.7.3.8 Update Request Containing a Customizable Feed Property Mapping 224

2.2.7.4 Delete Request Types ... 224
2.2.7.4.1 DeleteEntity Request .. 224
2.2.7.4.2 DeleteLink Request ... 225
2.2.7.4.3 DeleteValue Request... 226

2.2.7.5 Invoke Request Types .. 227
2.2.7.5.1 Invoke Action Request .. 229
2.2.7.5.2 Invoke Function Request ... 230

2.2.7.6 Batch Request ... 231
2.2.7.6.1 Change Set Syntax ... 232

2.2.7.6.1.1 Referencing Requests in a Change Set .. 233
2.2.7.6.2 Query Operation Syntax .. 233
2.2.7.6.3 HTTP Request Restrictions ... 233
2.2.7.6.4 Batch Request Syntax ... 234
2.2.7.6.5 Example Batch Request .. 235
2.2.7.6.6 Batch Responses .. 236
2.2.7.6.7 Batch Response Syntax ... 237
2.2.7.6.8 Example Batch Response .. 238

2.2.7.7 Tunneled Requests .. 241
2.2.8 Response Types .. 241

2.2.8.1 Error Response .. 241
2.2.8.1.1 XML Error Response ... 242
2.2.8.1.2 Verbose JSON Error Response .. 243

3 Protocol Details .. 244
3.1 Client Details .. 244

3.1.1 Abstract Data Model .. 244
3.1.2 Timers ... 244
3.1.3 Initialization ... 244

8 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4 Higher-Layer Triggered Events .. 244
3.1.4.1 Common Rules for All Requests ... 244
3.1.4.2 Request to Insert Resources ... 244

3.1.4.2.1 Sending an InsertEntity Request .. 245
3.1.4.2.2 Sending an InsertLink Request ... 245

3.1.4.3 Request to Retrieve Resources .. 245
3.1.4.3.1 Common Rules for Sending Retrieve Requests 246

3.1.4.4 Request to Update Resources .. 246
3.1.4.4.1 Common Rules for Sending Update Requests ... 246

3.1.4.5 Request to Delete Resources ... 247
3.1.4.5.1 Common Rules for Sending Delete Requests .. 247

3.1.4.6 Request to Invoke a Service Operation ... 248
3.1.4.7 Request to Send a Batch of Operations ... 248
3.1.4.8 Request to Invoke an Action ... 248
3.1.4.9 Request to Invoke a Function .. 249

3.1.5 Message Processing Events and Sequencing Rules ... 249
3.1.5.1 Common Rules for Receiving Responses from Data Service Requests 249
3.1.5.2 Responses from Insert Requests .. 250

3.1.6 Timer Events .. 250
3.1.7 Other Local Events .. 250

3.2 Server Details .. 250
3.2.1 Abstract Data Model .. 250
3.2.2 Timers ... 251
3.2.3 Initialization ... 251
3.2.4 Higher-Layer Triggered Events .. 251
3.2.5 Message Processing Events and Sequencing Rules ... 251

3.2.5.1 Common Rules for Receiving All Data Service Requests 251
3.2.5.2 Common Rules for Executing Received Insert, Update, or Delete Data Service

Requests ... 252
3.2.5.2.1 Common Rules for Executing Requests Containing a Customizable Feeds

Mapped Property ... 252
3.2.5.3 Executing a Received Insert Request .. 253

3.2.5.3.1 Executing a Received InsertEntity Request .. 253
3.2.5.3.2 Executing a Received InsertLink Request... 254
3.2.5.3.3 Executing a Received InsertMediaResource Request 254

3.2.5.4 Executing a Received Retrieve Request .. 254
3.2.5.4.1 Executing a Received RetrieveEntitySet Request 255
3.2.5.4.2 Executing a Received RetrieveValue Request ... 255
3.2.5.4.3 Executing a Received RetrieveCount Request ... 256

3.2.5.5 Executing a Received Update Request .. 256
3.2.5.5.1 Executing a Received UpdateEntity Request... 257

3.2.5.6 Executing a Received Delete Request ... 258
3.2.5.7 Executing a Received Invoke Request .. 258
3.2.5.8 Executing a Received Batch Request .. 258
3.2.5.9 Executing a Received Invoke Action Request ... 259
3.2.5.10 Executing a Received Invoke Function Request .. 259

3.2.6 Timer Events .. 260
3.2.7 Other Local Events .. 260
3.2.8 Common Response Codes .. 260

4 Protocol Examples .. 262
4.1 Insert a New Entity ... 262
4.2 Retrieve Resources ... 262

9 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.2.1 Retrieve a Collection of Entities ... 262
4.2.1.1 Retrieve a Collection of Entities by Using the AtomPub Format 262
4.2.1.2 Retrieve a Collection of Entities by Using the Verbose JSON Format 264
4.2.1.3 Retrieve a Partial Collection of Entities by Using the AtomPub Format 265
4.2.1.4 Retrieve a Partial Collection of Entities by Using the Verbose JSON Format 266
4.2.1.5 Retrieve a Collection of Entities with an Inline Count by Using the AtomPub

Format .. 268
4.2.1.6 Retrieve a Collection of Entities with an Inline Count by Using the Verbose

JSON Format .. 269
4.2.1.7 Retrieve a Collection of Entities with Named Resource Streams by Using the

AtomPub Format... 271
4.2.1.8 Retrieve a Collection of Entities with Named Resource Streams by Using the

Verbose JSON Format ... 273
4.2.2 Retrieve a Single Entity by Using the AtomPub Format 274

4.2.2.1 Retrieve a Single Entity with a Mapped Property by Using the AtomPub
Format .. 275

4.2.3 Retrieve a Single Entity by Using the Verbose JSON Format 276
4.2.4 Retrieve a Single Entity and Its Directly Related Entities by Using the AtomPub

Format .. 277
4.2.5 Retrieve a Single Entity and Its Directly Related Entities by Using the Verbose

JSON Format ... 279
4.2.6 Retrieve a Data Service's Metadata Document (CSDL) 281
4.2.7 Retrieve the Count of a Collection of Entities ... 284
4.2.8 Retrieve a Single Entity Exposing an Action by Using the AtomPub Format 284
4.2.9 Retrieve a Single Entity Exposing an Action by Using the Verbose JSON Format 285
4.2.10 Retrieve a Single Entity Exposing a Function by Using the AtomPub Format 286
4.2.11 Retrieve a Single Entity Exposing a Function by Using the Verbose JSON Format . 287

4.3 Update an Existing Entity ... 288
4.3.1 Replace-Based Update by Using the AtomPub Format .. 288
4.3.2 Replace-Based Update by Using the Verbose JSON Format 289
4.3.3 Merge-based Update by Using the AtomPub Format ... 290
4.3.4 Merge-Based Update by Using the Verbose JSON Format 292

4.4 Update the Relationship Between Two Entities .. 293
4.4.1 Update a Relationship by Using the AtomPub Format ... 293
4.4.2 Update a Relationship by Using the Verbose JSON Format 293
4.4.3 Delete an Existing Entity .. 294

4.5 Batch Requests .. 294
4.6 Working with Media Resources (BLOBs) ... 294

4.6.1 Insert a New Media Resource .. 295
4.6.2 Update a Media Resource ... 295
4.6.3 Query an Existing Media Resource ... 296

4.7 Working with Named Resource Streams Instances (BLOBs) 296
4.7.1 Retrieving a Named Resource Stream Instance ... 296
4.7.2 Updating a Named Resource Stream Instance ... 297
4.7.3 Unsupported Operations ... 298

4.7.3.1 Inserting a New Named Resource Stream Instance 298
4.7.3.2 Deleting a New Named Resource Stream Instance 298

4.8 Invoking an Action .. 298
4.9 Invoking a Function .. 299

5 Security .. 300
5.1 Security Considerations for Implementers .. 300
5.2 Index of Security Parameters ... 300

10 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 Appendix A: Sample Entity Data Model and CSDL Document 301

7 Appendix B: Product Behavior .. 307

8 Change Tracking... 312

9 Index ... 315

11 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

The Open Data (OData) protocol enables applications that use common web technologies, like Atom
Publishing Protocol (AtomPub), JavaScript Object Notation (JSON), and XML, to expose data as a
data service that can be consumed by clients within corporate networks and across the Internet.

This document defines version 1.0, version 2.0, and version 3.0 of the Open Data (OData) protocol.
The OData 3.0 protocol is a superset of OData 2.0, which, in turn, is a superset of OData 1.0. OData
3.0 includes incremental additions to OData 2.0, which, in turn, includes incremental additions to
OData 1.0.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

.NET Framework
binary large object (BLOB)
URI
XML Namespace

The following terms are defined in [MC-CSDL]:

alias
annotation
association
cardinality

collection
conceptual schema definition language (CSDL)
conceptual schema definition language (CSDL) document

declared property
dynamic property
entity
Entity Data Model (EDM)
facet
identifier
namespace

schema

The following terms are specific to this document:

AtomPub collection: A set of resources that can be retrieved in whole or in part.

Atom Publishing Protocol (AtomPub): An application-level protocol for publishing and editing
web resources, as specified in [RFC5023].

bind: To associate two EntityType instances. An EntityType ([MC-CSDL] section 2.1.2)

instance in a data service (described by using Entity Data Model (EDM) constructs) may
be related to one or more other conceptual schema definition language (CSDL)
instances. This relationship is represented by using an association in an EDM. The

%5bMS-GLOS%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

12 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

cardinality of a relationship can be determined by inspecting the EDM that describes the
data service. The act of associating two EntityType instances is known as "binding" and of

disassociating two instances is known as "unbinding". If two EntityType instances are
already associated, they are considered to be "bound".

change set: A logical group of one or more of the following request types:

Insert Request Types (section 2.2.7.1)

Update Request Types (section 2.2.7.3)

Delete Request Types (section 2.2.7.4)

Invoke Request Types (section 2.2.7.5) that may be created by using the HTTP PUT, POST,

PATCH, or DELETE method.

All requests within a change set must be successfully processed. If any request in the
change set fails, none of the requests within the change set should be processed.

create retrieve update delete (CRUD): The four basic functions of persistent storage. The "C"
stands for create, the "R" for retrieve, the "U" for update, and the "D" for delete. CRUD is
used to denote these conceptual actions and does not imply the associated meaning in a

particular technology area (such as in databases, file systems, and so on) unless that
associated meaning is explicitly stated.

collection property: An EntityType property that represents a non-nullable, unordered,
homogenous set of type EDMSimpleType or ComplexType, as specified in [MC-CSDL].

customizable feed: A property mapping that is used to define a mapping from the properties of
an EntityType to elements or attributes in any namespace (including the Atom namespace) in
an AtomPub document. When a property is mapped to an element or an attribute of an

element, the value for the property is equal to the value of the specified element or attribute
in the AtomPub document.

data service: A server-side application that implements the OData protocol for the purpose of
enabling clients to publish and edit resources. The resources exposed by data services are
described by using the EDM, as specified in [MC-CSDL].

default EntityContainer: A single EntityContainer [MC-CSDL] (section 2.1.14) within a CSDL
document, as specified in [MC-CSDL]. Entities in the default container may be identified in a

data serviceURI without specifying the container name, as described in URI Format:
Resource Addressing Rules (section 2.2.3).

Entity Data Model Extensions (EDMX): An XML-based file format that serves as the packaging
format for the service metadata of a data service, as specified in [MC-EDMX].

Internationalized Resource Identifier (IRI): A resource identifier that conforms to the rules
for Internationalized Resource Identifiers, as defined in [RFC3987].

JavaScript Object Notation (JSON): A set of formatting rules for the portable representation

of structured data, as specified in [RFC4627].

link: A link is similar to an association, as specified in [MC-CSDL], but describes a
unidirectional relationship between entity types instead of a bidirectional one. A link can be:

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMS-ADCAP%5d.pdf
%5bMC-EDMX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140875
http://go.microsoft.com/fwlink/?LinkId=140879
%5bMC-CSDL%5d.pdf

13 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A unidirectional relationship that occurs when two entity types are related via an

association and only one of the entity types defines a NavigationProperty that is bound to

the association.

A reference to one direction of a bidirectional association between two entity types, as

specified in [MC-CSDL].

named resource stream: A property of an EntityType that is of type Edm.Stream.

named resource stream instance: A named resource stream for a particular entity. Each
named resource stream instance has a content type, a self-link URI for retrieving the stream,
an edit-link URI for updating the stream, and an ETag to facilitate concurrency control.

primitive property: A property of type EDMSimpleType ([MC-CSDL] section 2.2.1) that is

defined on an EntityType.

property: An EntityType or ComplexType can have one or more properties of the specified
EDMSimpleType or ComplexType. A property of an EntityType may be a declared

property or a dynamic property, as specified in [MC-CSDL]. A property of ComplexType
must be a declared property.

Note In CSDL ([MC-CSDL]), dynamic properties are only defined for use with

OpenEntityType ([MC-CSDL]) instances.

query operation: A logical construct that must consist of a single retrieve request type (section
2.2.7.2) or an invoke request (section 2.2.7.5) that uses the HTTP GET method.

resource: A network-accessible data object or service that is identified by an IRI, as defined in
[RFC2616].

resource path: The path of a data service URI, starting immediately after the service root
and continuing to the end of the URI's path, as described in Resource Path (section 2.2.3.3).

service operation: An operation that is exposed by the data service. A service operation is

represented as a FunctionImport, as specified in [MC-CSDL] (section 2.1.15). A service
operation accepts only input parameters.

service root: A URI that represents the root of a data service, as specified in Service Root
(section 2.2.3.2).

unbind: To disassociate two EntityType instances. See also the definition for bind.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMS-ADCAP%5d.pdf
%5bMS-ADCAP%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-ADCAP%5d.pdf
%5bMS-ADCAP%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMS-ADCAP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com

14 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[ECMA-262] ECMA, "ECMAScript Language Specification", Edition 5.1, ECMA-262, June 2011,
http://www.ecma-international.org/publications/standards/Ecma-262.htm

[GeoJSON] Butler, H., Daly, M., Doyle, A., et al., "The GeoJSON Format Specification", June 2008,
http://geojson.org/geojson-spec.html

[IANA-LR] IANA, "Link Relations", http://www.iana.org/assignments/link-relations

[IANA-MMT] IANA, "Mime Media Types", September 2012, http://www.iana.org/assignments/media-
types/

[IEEE754-2008] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-2008, August
2008,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&isnumber=4610934&arnumber=4610935&punumbe
r=4610933

[MC-CSDL] Microsoft Corporation, "Conceptual Schema Definition File Format".

[MC-EDMX] Microsoft Corporation, "Entity Data Model for Data Services Packaging Format".

[MS-ODATAJSON] Microsoft Corporation, "OData Protocol JSON Format Standards Support
Document".

[ODataJSON4.0] OASIS, "OData JSON Format Version 4.0", OASIS Standard, February 2014,
http://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.doc

[OGC-SFOLECOM] Open GIS Consortium, "OpenGIS Simple Features Specification for OLE/COM
Revision 1.1", 99-050, May 1999, http://portal.opengeospatial.org/files/?artifact_id=830

[RFC2045] Freed, N., and Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies", RFC 2045, November 1996, http://ietf.org/rfc/rfc2045.txt

[RFC2046] Freed, N., and Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types", RFC 2046, November 1996, http://ietf.org/rfc/rfc2046.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., et al., "HTTP Authentication: Basic and Digest
Access Authentication", RFC 2617, June 1999, http://www.ietf.org/rfc/rfc2617.txt

[RFC3023] Murata, M., St.Laurent, S., and Kohn, D., "XML Media Types", RFC 3023, January 2001,
http://www.ietf.org/rfc/rfc3023.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", STD 63, RFC 3629,
November 2003, http://www.ietf.org/rfc/rfc3629.txt

[RFC3676] Gellens, R., "The Text/Plain Format and DelSp Parameters", RFC 3676, February 2004,

http://www.ietf.org/rfc/rfc3676.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI):
Generic Syntax", STD 66, RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[RFC3987] Duerst, M., and Suignard, M., "Internationalized Resource Identifiers (IRIs)," RFC 3987,
January 2005, http://www.ietf.org/rfc/rfc3987.txt

http://go.microsoft.com/fwlink/?LinkId=115082
http://go.microsoft.com/fwlink/?LinkId=233589
http://go.microsoft.com/fwlink/?LinkId=233588
http://go.microsoft.com/fwlink/?LinkID=140869
http://go.microsoft.com/fwlink/?LinkID=140869
http://go.microsoft.com/fwlink/?LinkId=154130
http://go.microsoft.com/fwlink/?LinkId=154130
%5bMC-CSDL%5d.pdf
%5bMC-EDMX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=301473
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=90307
http://go.microsoft.com/fwlink/?LinkId=90308
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=140870
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=140872
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=140875

15 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[RFC4287] Nottingham, M., and Sayre, E.R., "The Atom Syndication Format", RFC 4287, December
2005, http://www.ietf.org/rfc/rfc4287.txt

[RFC4627] Crockford, D., "The application/json Media Type for Javascript Object Notation (JSON)",
RFC 4627, July 2006, http://www.ietf.org/rfc/rfc4627.txt

[RFC4646] A. Phillips, Ed., and M. Davis, Ed., "Tags for Identifying Languages", BCP 47, RFC 4646,
September 2006, http://www.ietf.org/rfc/rfc4646.txt

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October
2006, http://www.ietf.org/rfc/rfc4648.txt

[RFC5023] Gregorio, J. Ed., and de hOra, B., Ed., "The Atom Publishing Protocol", RFC 5023,
October 2007, http://www.ietf.org/rfc/rfc5023.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD

68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

[RFC5789] Dusseault, L., and Snell, J., "PATCH Method for HTTP", RFC 5789, March 2010,
http://tools.ietf.org/html/rfc5789

[XML-BASE] Marsh, J., and Tobin, R., Eds., "XML Base (Second Edition)", W3C Recommendation,
December 2009, http://www.w3.org/TR/2009/REC-xmlbase-20090128/

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces in XML 1.0 (Third Edition)",

W3C Recommendation, December 2009, http://www.w3.org/TR/2009/REC-xml-names-20091208/

[XMLSCHEMA1/2] Thompson, H.S., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML
Schema Part 1: Structures Second Edition", W3C Recommendation, October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[XMLSCHEMA1.1/2:2012] Peterson, D., Gao, S., Malhotra, A., et al., Eds., "W3C XML Schema
Definition Language (XSD) 1.1 Part 2: Datatypes", W3C Recommendation, April 2012,
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

[XMLSCHEMA2/2] Biron, P.V., and Malhotra, A., Eds., "XML Schema Part 2: Datatypes Second
Edition", W3C Recommendation, October 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-
20041028/

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[REST] Fielding, R., "Architectural Styles and the Design of Network-based Software Architectures",

2000, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

1.3 Overview

The OData protocol is used for creating Representational State Transfer (REST)-based [REST] data
services, which enable resources, identified using Uniform Resource Identifiers (URIs) and

defined in an abstract data model, to be published and edited by web clients within corporate

networks and across the Internet using simple Hypertext Transfer Protocol (HTTP) messages.

The Atom Publishing Protocol (AtomPub) does not define a URI-addressing scheme, a schema for
the data content of the resources that the services expose, a format for batching requests, a
concurrency policy or mechanism, or alternate data representations. The OData protocol defines a
uniform, HTTP-based interface for data services that address these shortcomings of AtomPub. By

http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=123591
http://go.microsoft.com/fwlink/?LinkId=90487
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=233592
http://go.microsoft.com/fwlink/?LinkId=141106
http://go.microsoft.com/fwlink/?LinkId=191840
http://go.microsoft.com/fwlink/?LinkId=90607
http://go.microsoft.com/fwlink/?LinkId=275207
http://go.microsoft.com/fwlink/?LinkId=90609
http://go.microsoft.com/fwlink/?LinkId=90609
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140866
http://go.microsoft.com/fwlink/?LinkId=140866
%5bMS-ADCAP%5d.pdf
%5bMC-CSDL%5d.pdf

16 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

using this interface, high-level, reusable, general-purpose client libraries and components can
consume different services without needing to accommodate custom semantics for each.

The OData protocol depends on HTTP [RFC2616] for transfer of all protocol messages and user data
and follow or extend the messaging semantics defined in AtomPub [RFC5023].

In this document, the endpoint that initiates the HTTP connection and sends HTTP request messages
is referred to as the client. The entity that responds to the HTTP connection request and sends
HTTP response messages is referred to as the server or data service. For the purposes of this
document, the terms "server" and "data service" have the same meaning and are used
interchangeably.

The use of web-based technologies, such as HTTP, make implementations of this document ideal as
a mid-tier service technology for applications, such as Asynchronous JavaScript and XML (AJAX)

style applications, Rich Interactive Applications (RIA), and other applications that must operate
against data that is stored across Internet trust boundaries.

1.4 Relationship to Other Protocols

This document defines version 1.0, version 2.0, and version 3.0 of the Open Data (OData) protocol.
The OData protocol is based on the AtomPub format, that is described in the [RFC5023]

specification, which, in turn, relies on HTTP, that is described in the [RFC2616] specification. Either
HTTP 1.1 or HTTP 1.0 may be used with the OData protocol. The OData protocol uses HTTP headers
that are defined in the HTTP specification, but are not referenced in the AtomPub specification.

The OData protocol also uses message formats defined by other industry standard specifications,
such as the Multipurpose Internet Mail Extensions (MIME) format that is described in [RFC2046] and
the JavaScript Object Notation (JSON) format that is described in [RFC4627].

Figure 1: OData Relationship to Other Protocols

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?linkid=140880
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90308
http://go.microsoft.com/fwlink/?LinkId=140879

17 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.5 Prerequisites/Preconditions

The OData protocol does not provide a mechanism for a client to discover the existence and location
of arbitrary data services (of the server). It is a prerequisite that the client obtain a URI to the

server before the protocol can be used.

Neither the Atom Publishing Protocol (AtomPub) nor the OData protocol defines an authentication or
authorization scheme. Implementers of the protocol should review the recommended security
prerequisites in Security Considerations for Implementers (section 5.1) of this document and in
[RFC5023] section 15.

1.6 Applicability Statement

AtomPub, as specified in [RFC5023], in combination with the OData protocol, is appropriate for use
in Web services that need a uniform, flexible, general purpose interface for exposing create
retrieve update delete (CRUD) operations on a data model to clients. It is less suited to Web
services that are primarily method-oriented or in which data operations are constrained to certain

prescribed patterns.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas: <1>

Supported Transports: This document can be implemented on top of the Atom Publishing
Protocol (AtomPub) described in Transport (section 2.1).

Protocol Versions: Clients specify the protocol version by using the DataServiceVersion (section
2.2.5.3) and MaxDataServiceVersion (section 2.2.5.7) request headers. Servers specify the
protocol version by using the DataServiceVersion (section 2.2.5.3) response header.

Security and Authentication Methods: This document supports (but does not require) any
authentication scheme that can be supported by using HTTP request and response headers.
An example of such an authentication protocol is HTTP Basic Access Authentication described

in [RFC2617].

Localization: This document does not specify any localization-dependent behavior.

Capability Negotiation: The OData protocol that is defined in this document enables limited
capability negotiation using the DataServiceVersion (section 2.2.5.3) and

MaxDataServiceVersion (section 2.2.5.7) version request headers and the DataServiceVersion
(section 2.2.5.3) response header. These headers provide a way to version the OData protocol
and do not act as a versioning scheme for the AtomPub in general.

In a request from the client to data service, the DataServiceVersion (section 2.2.5.3) and
MaxDataServiceVersion (section 2.2.5.7) version headers may be specified.

If present in the request, the DataServiceVersion (section 2.2.5.3) header value states the
version of the protocol used by the client to generate the request. If no DataServiceVersion

(section 2.2.5.3) header is provided, then the server must assume a value equal to the

maximum version number the server supports.

If present in the request, the MaxDataServiceVersion (section 2.2.5.7) header value specifies
the maximum version number the client can accept in a response. The client should set this
value to the maximum version number of the protocol it is able to interpret. If the header is
not present in a request, the server must assume the same version number as that specified

by the DataServiceVersion (section 2.2.5.3) header. If a DataServiceVersion (section 2.2.5.3)

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?linkid=140880
http://go.microsoft.com/fwlink/?LinkId=90373

18 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

header is not present, then the server should assume the client can interpret the maximum
version number the server can interpret.

When the server receives a request, it must validate that the version number specified in the
DataServiceVersion (section 2.2.5.3) header (or derived value if the header is not present) is

less than or equal to the maximum version number it supports. If it is not, then the server
must return a response with a 4xx response code. The server should also return a description
of the error using the error format defined in Error Response (section 2.2.8.1).

In addition, a server must validate that the version number specified in the
MaxDataServiceVersion (section 2.2.5.7) header (or derived value if the header is not
present) is greater than or equal to the minimum version number the server needs to use to
generate the response. If it is not, then the server must return an error response, described

in Error Response (section 2.2.8.1).

In a response from the server to the client, the DataServiceVersion (section 2.2.5.3) header
should be specified. The value states the version of the protocol that the server used in the
request to generate the response and that should be used by the client to determine if it can

correctly interpret the response (that is, the value is not larger than the value of the
MaxDataServiceVersion (section 2.2.5.7) header sent in the associated request). The value of

the header should be the lowest version of the protocol the server can use to fulfill the
request.

1.7.1 OData 2.0 Version-Specific Summary

Following is a summary of the protocol constructs that are defined in this document that apply to
OData 2.0 and OData 3.0. This section is structured by protocol feature, which is described and lists
the sections that include content that is specific to that feature. Any constructs or semantics that

exist only in OData 2.0 and OData 3.0 are explicitly denoted in that content.

Partial sets of entities: Servers may respond to RetrieveEntitySet (section 2.2.7.2.1) GET
requests with a response body containing a representation of a partial list of the entities that
are identified by the request URI and a link to the next partial list.

2.2.3.6.1 System Query Options

2.2.3.6.1.9 Skip Token System Query Option ($skiptoken)

2.2.6.2.1 Entity Set (as an Atom Feed Element)

2.2.6.3.2 Entity Set (as a JSON Array)

3.2.5.4.1 Executing a Received RetrieveEntitySet Request

RetrieveCount request: The purpose of the RetrieveCount Request (section 2.2.7.2.10) is to
enable the count of a collection of EntityType ([MC-CSDL] section 2.1.2) instances to be

retrieved by the client.

2.2.3.1 URI Syntax

2.2.3.5 Resource Path: Semantics

2.2.3.6.1 System Query Options

2.2.7 Request Types

2.2.7.2.10 RetrieveCount Request

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

19 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.3.1 Common Rules for Sending Retrieve Requests

3.2.5.4.3 Executing a Received RetrieveCount Request

InlineCount system query option: A data service URI with an InlineCount system query option

specifies that the response to the request must include the count N of the total number of
entities in the EntitySet ([MC-CSDL] section 2.1.18) that are identified by the resource path
section of the URI.

2.2.3.1 URI Syntax

2.2.3.5 Resource Path: Semantics

2.2.3.6.1 System Query Options

2.2.3.6.1.2 Evaluating System Query Options

2.2.3.6.1.10 InlineCount System Query Option ($inlinecount)

2.2.6.2.1.1 InlineCount Representation (for Collections of Entities)

2.2.6.3.2.1 InlineCount Representation (for Collections of Entities)

2.2.6.3.11 InlineCount Representation (for Collections of Links)

3.2.5.4 Executing a Received Retrieve Request

Select system query option: A data service URI with a $select system query option identifies
the same set of entities as a URI without a $select query option. However, the presence of a
$select query option specifies that a response from the data service should return a subset,

as identified by the value of the $select query option, of the properties that would have been
returned had the URI not included a $select query option.

2.2.3.1 URI Syntax

2.2.3.6.1 System Query Options

2.2.3.6.1.2 Evaluating System Query Options

2.2.3.6.1.11 Select System Query Option ($select)

Customizable feeds: Customizable feed property mappings can be used to override an entity
type’s default AtomPub representation and specify how one or more properties of an entity
type should be represented within an AtomPub atom:entry element. This feature of the
protocol specifies a set of data service metadata document (see section 2.2.3.7.2)
annotations, which enable a property of an entity type to be mapped to a child element of an
atom:entry element, or an XML attribute on the atom:entry element, or one of its child

elements. When a property is mapped to an element, the value for the property is used as the
value of the mapped-to element or attribute.

2.2.3.7.2 Conceptual Schema Definition Language Document for Data Services

2.2.3.7.2.1 Conceptual Schema Definition Language Document Extensions for Customizable

Feeds

2.2.6.2.2 Entity Type (as an Atom Entry Element)

%5bMC-CSDL%5d.pdf

20 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.6.2.2.1 Entity Type (as an Atom Entry Element) with a Customizable Feed Property

Mapping

2.2.7.1.1 InsertEntity Request

2.2.7.2.11 Retrieve Request Containing a Customizable Feed Mapping

2.2.7.3.1 UpdateEntity Request

2.2.7.3.8 Update Request Containing a Customizable Feed Mapping

3.2.5.2.1 Common Rules for Executing Requests Containing a Customizable Feeds Mapped

Property

Revised Verbose JSON response format: The Verbose JSON representation for collections has
been enhanced to allow for the representation of additional collection-level metadata.

2.2.6.3 JavaScript Object Notation (JSON) Format

1.7.2 OData 3.0 Version-Specific Summary

Following is a summary of the protocol constructs that are defined in this document that apply to

OData 3.0. This section is structured by protocol feature, which is briefly described, and lists the
sections that include content that is specific to that feature. Any constructs or semantics that exist
only in OData 3.0 are explicitly denoted in that content.

Collection properties: A collection property is a property that represents a non-nullable,
unordered, homogenous set of EDMSimpleType or ComplexType, as specified in [MC-
CSDL].

2.2.1 Abstract Data Model

2.2.3.1 URI Syntax

2.2.3.4 Resource Path: Construction Rules

2.2.3.6.1 System Query Options

2.2.6.2.2 Entity Type (as an Atom Entry Element)

2.2.6.2.9 Collection Property

2.2.6.2.9.1 Collection Property of Complex Type

2.2.6.2.9.2 Collection of EDMSimpleType

2.2.6.3.13 Collection Property

2.2.6.2.9.1 Collection Property of Complex Type

2.2.6.2.9.2 Collection of EDMSimpleType

2.2.7.2.6 RetrieveCollectionProperty Request

2.2.7.3.4 UpdateCollectionProperty Request

Geospatial properties: A geospatial property is a property of a geospatial EDMSimpleType, as

specified in [MC-CSDL] (section 2.2.1).

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

21 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.2 Abstract Type System

2.2.3.6.1.1 Common Expression Syntax

2.2.3.6.1.1.1 Expression Construction and Evaluation Rules

2.2.3.6.1.1.7 Geospatial Coordinate Transformations

2.2.3.6.1.1.7.1 Coordinate Transformations Within a Topology

2.2.3.6.1.1.7.2 Arbitrary Coordinate Transformations

2.2.3.6.1.1.8 Geospatial Extension Methods

2.2.3.6.1.1.8.1 Extending Type Support for Defined Functions

2.2.3.6.1.1.8.2 Implementing One of the Functions Defined in [OGC-SFOLECOM]

2.2.3.6.1.1.8.3 Arbitrary Extensions

2.2.6.1 Common Serialization Rules for XML-based Formats

2.2.6.2 AtomPub Format

2.2.6.3.1 Common Verbose JSON Serialization Rules for All EDM Constructs

2.2.6.3.1.1 Modifications to GeoJSON [GeoJSON] for use in OData

2.2.6.3.9.1 Inline Representation

Relationship links: Relationship links can be used to represent the association between related
entities.

2.2.6.2.1.1 InlineCount Representation (for Collections of Entities)

2.2.6.2.2 Entity Type (as an Atom Entry Element)

2.2.6.2.4 Navigation Property

2.2.6.2.6.1 Inline Representation

2.2.6.3.2.1 InlineCount Representation (for collections of entities)

2.2.6.3.3 Entity Type (as a JSON object)

2.2.6.3.6 Navigation Property

2.2.6.3.9 Deferred Content

2.2.6.3.9.1 Inline Representation

2.2.7.1.1.1 Examples

PATCH method: The HTTP PATCH method is defined by [RFC5789] and defines behavior that is
equivalent to the HTTP MERGE method (section 2.2.4.1) that is defined in this specification.

2.2.3.7.2 Conceptual Schema Definition Language Document for Data Services

2.2.4.1 PATCH/MERGE

http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233589
http://go.microsoft.com/fwlink/?LinkId=233592

22 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.5.5 If-Match

2.2.5.6 If-None-Match

2.2.5.8 X-HTTP-Method

2.2.7.3.1 UpdateEntity Request

2.2.7.3.2 UpdateComplexType Request

2.2.7.3.3 UpdatePrimitiveProperty Request

2.2.7.3.4 UpdateCollectionProperty Request

2.2.7.3.5 UpdateValue Request

2.2.7.3.6 UpdateLink Request

2.2.7.3.7 UpdateMediaResource Request

3.2.5.2 Common Rules for Executing Received Insert, Update, or Delete Data Service

Requests

3.2.5.5 Executing a Received Update Request

Prefer header: The prefer header allows a client to request that the server include a
representation of the resource that was updated during a HTTP POST, MERGE, PUT, or PATCH
operation in the body of the response.

2.2.5.9 Prefer

2.2.5.10 Preference-Applied

2.2.5.11 DataServiceId

2.2.7.1.1 InsertEntity Request

2.2.7.1.2 InsertLink Request

2.2.7.1.3 InsertMediaResource Request

2.2.7.3.1 UpdateEntity Request

2.2.7.3.2 UpdateComplexType Request

2.2.7.3.3 UpdatePrimitiveProperty Request

2.2.7.3.4 UpdateCollectionProperty Request

2.2.7.3.5 UpdateValue Request

2.2.7.3.6 UpdateLink Request

2.2.7.3.7 UpdateMediaResource Request

Named resource streams: Named resource streams extend an EntityType definition to include
an optional set of named streams (or byte arrays).

2.2.1 Abstract Data Model

23 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.3.1 URI Syntax

2.2.3.3 Resource Path (resourcePath)

2.2.3.4 Resource Path: Construction Rules

2.2.3.5 Resource Path: Semantics

2.2.3.6.1.11 Select System Query Option ($select)

2.2.3.6.1.12 System Query Option: Additional Construction Rules

2.2.3.7.2 Conceptual Schema Definition Language Document for Data Services

2.2.3.7.2.1 Conceptual Schema Definition Language Document Extensions for Customizable

Feeds

2.2.6.2.10 Named Resource Streams

2.2.6.3.14 Named Resource Streams

Any/All method support: This feature adds support for the Any method and for the All method.

2.2.3.6.1.1 Common Expression Syntax

2.2.3.6.1.1.1 Expression Construction and Evaluation Rules

2.2.3.6.1.4 Filter System Query Option ($filter)

Derived types: This feature adds support for indicating a more specific subtype in various
contexts, such as navigation and filtering. Derived types also allow references to members of

a given subtype.

2.2.3 URI Format: Resource Addressing Rules

2.2.3.1 URI Syntax

2.2.3.5 Resource Path: Semantics

2.2.3.6.1 System Query Options

2.2.3.6.1.1 Common Expression Syntax

2.2.3.6.1.3 Expand System Query Option ($expand)

2.2.3.6.1.4 Filter System Query Option ($filter)

2.2.3.6.1.6 OrderBy System Query Option ($orderby)

2.2.3.6.1.11 Select System Query Option ($select)

2.2.6.2.11 Links and Subtypes

Actions and functions: Actions provide a way to define and invoke side effecting operations
that are associated with an entity or a collection of entities. Functions provide a way to define
and invoke operations that are free of side effects.

2.2.1.3 Actions

24 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.1.3.1 Action Metadata URL

2.2.1.4 Functions

2.2.1.4.1 Function Metadata URL

2.2.1.5 Service Operations

2.2.3.1 URI Syntax

2.2.3.4 Resource Path: Construction Rules

2.2.3.5 Resource Path: Semantics

2.2.3.6.1.1 Common Expression Syntax

2.2.3.6.1.1.1 Expression Construction and Evaluation Rules

2.2.3.6.1.3 Expand System Query Option ($expand)

2.2.3.6.1.11 Select System Query Option ($select)

2.2.3.6.4 Function Parameters

2.2.3.6.5 Action Parameters

2.2.3.7.2 Conceptual Schema Definition Language Document for Data Services

2.2.5.5 If-Match

2.2.6.2.1.2 Entity Set (as an Atom Feed Element) with Actions

2.2.6.2.1.3 Entity Set (as an Atom Feed Element) with Functions

2.2.6.2.2.2 Entity Type (as an Atom Entry Element) with Actions

2.2.6.2.2.3 Entity Type (as an Atom Entry Element) with Functions

2.2.6.3.2.2 Entity Set (as a JSON array) with Actions

2.2.6.3.2.3 Entity Set (as a JSON array) with Functions

2.2.6.3.3.1 Entity Type (as a JSON Object) with Actions

2.2.6.3.3.2 Entity Type (as a JSON Object) with Functions

2.2.7.5.1 Invoke Action Request

2.2.7.5.2 Invoke Function Request

3.1.4.8 Request to Invoke an Action

3.1.4.9 Request to Invoke a Function

3.2.5.9 Executing a Received Invoke Action Request

3.2.5.10 Executing a Received Invoke Function Request

25 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Containment: Containment provides a way to model situations in which an EntityType is
contained by another EntityType. This implies constraints on how to access, create, and

update the contained EntityType.

2.2.1.6 Containment

2.2.3.4 Resource Path: Construction Rules

2.2.3.7.1 Service Document

2.2.3.9 Canonical URIs

New JSON format: A new JSON format provides a preferred JSON with optional metadata that
more closely resembles custom JSON formats.

2.2.5.1.2 application/json

2.2.5.2 Content-Type

2.2.6 Common Payload Syntax

1.8 Vendor-Extensible Fields

The AtomPub-based messages defined in Messages (section 2) may be extended by adding
additional elements or attributes. Such extensions MUST NOT be in any of the namespaces that
are listed in Common Serialization Rules for XML-based Formats (section 2.2.6.1).

Additional extensibility rules are defined in [RFC5023] section 6.2.

1.9 Standards Assignments

None.

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880

26 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Messages

2.1 Transport

The OData protocol that is defined in this specification and the Atom Publishing Protocol (AtomPub)
[RFC5023] both use HTTP (as specified in [RFC2616]) as the transport layer. HTTP operations are
performed on resources identified by a URI. URI Format: Resource Addressing Rules (section 2.2.3)
describes the resource addressing rules defined by this specification which extend the addressing
rules used by AtomPub and HTTP.

A TCP port has not been reserved for this protocol. TCP port 80 is commonly used because many
HTTP proxy servers forward only HTTP traffic that use port 80.

This specification does not prescribe a mechanism to secure (authenticate, encrypt, and so on)
AtomPub communications. For security recommendations which relate to the protocol's transport
layer, see [RFC5023] section 15.

2.2 Message Syntax

This section includes the following:

Abstract Data Model (section 2.2.1) specifies the key concepts of the abstract data model that serve
as the basis for the OData protocol. The subsequent sections each define mappings from the data
model to the OData protocol.

Abstract Type System (section 2.2.2) specifies the abstract type system that is used to define the
primitive types (such as String, Boolean, and so on) that are used by the OData protocol.

URI Format: Resource Addressing Rules (section 2.2.3) specifies a set of rules that are used to

construct the URIs that identify each of the constructs in the data model, described in Abstract Data
Model (section 2.2.1), and that are relevant to the OData protocol.

HTTP Methods (section 2.2.4) specifies how HTTP PATCH and MERGE are used to do partial updates

in the OData protocol.

HTTP Header Fields (section 2.2.5) specifies the syntax for the HTTP headers that are defined in this
document.

The HTTP payload format syntax in Common Payload Syntax (section 2.2.6) specifies how data that
is described by using the abstract data model in Abstract Data Model (section 2.2.1) is mapped to
the AtomPub, JSON, and Verbose JSON serialization formats for use in the payloads of the HTTP
request types that are described in Request Types (section 2.2.7).

Request Types (section 2.2.7) specifies the types of requests that are defined by this document and
how each request type is mapped to AtomPub request types as well as to constructs in the data
model that is described in Abstract Data Model (section 2.2.1).

Response Types (section 2.2.8) specifies how error responses are mapped to XML and Verbose JSON
formats.

Note All the example URIs and message payloads used in this section and throughout the
remainder of this document are based on the sample conceptual schema definition language
(CSDL) document in Appendix A: Sample Entity Data Model and CSDL Document (section 6).

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

27 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.1 Abstract Data Model

This section describes a data modeling vocabulary that a server MUST use to describe the data it
exposes. This modeling vocabulary is also used in subsequent sections of this document to describe

data as exchanged by this document. The use of this modeling vocabulary does not mandate a
particular data persistence format or implementation on the server, as long as the server's interface
is consistent with the OData protocol.

The OData protocol uses the Entity Data Model (EDM) as its data modeling vocabulary. Data
models can be described in EDM terms using a conceptual schema definition language (CSDL)
document [MC-CSDL]. The remainder of this section provides a brief description of the EDM and
defines how EDM constructs are mapped to the resource types defined in the AtomPub specification.

Entity Data Model: The central concepts in the EDM are entities and associations. Entities are
instances of EntityType (such as Customer, Employee, and so on) that are structured records that
consist of named and typed properties and that include a key.

A ComplexType ([MC-CSDL] section 2.1.7) is a structured type that also consists of a list of

properties. However, a ComplexType does not have a key and thus can exist only as a property of
a containing entity or as a temporary value.

A service operation represents a FunctionImport, as specified in [MC-CSDL], that accepts only
input parameters.

A Collection type is a non-nullable, unordered, homogenous set of types EDMSimpleType or
ComplexType.

An EntityKey ([MC-CSDL] section 2.1.5) is formed from a subset of properties of the EntityType.
The EntityKey (such as CustomerId, OrderId, and so on) is a fundamental concept to uniquely
identify instances of EntityType and allows EntityType instances to participate in relationships.

Entities are grouped in EntitySets (for example, Customers is a set of Customer instances).

Associations define the relationship between one EntityType and another (for example, Employee
Works For Department). Instances of associations are grouped in AssociationSets ([MC-CSDL]

section 2.1.19).

NavigationProperties ([MC-CSDL] section 2.1.4) are special properties on an EntityType that are
bound to a specific association and can be used to refer to associations through an entity instead of
explicitly through an association instance.

Finally, all instance containers (EntitySet and AssociationSet) are grouped in an EntityContainer
([MC-CSDL] section 2.1.14).

EDM constructs map to the data model concepts used in the AtomPub specification as shown in the
following Entity Data Model Concepts Mapped to AtomPub Resource Types table. Common Payload
Syntax (section 2.2.6) describes how these conceptual AtomPub resources (such as collection and
Entry Resource) are represented using multiple formats in request and response messages used by

this document.

Entity Data Model

AtomPub Resource

Classification

EntitySet Collection

EntityType with m:HasStream equals true Media Link Entry Resource

EntityType instance Entry Resource

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

28 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Entity Data Model

AtomPub Resource

Classification

NavigationProperty atom:link element

Named resource stream instance atom:link element

FunctionImport with Binding equals true and IsSideEffecting

equals true

m:action element

FunctionImport with Binding equals true and IsSideEffecting

equals false

m:function element

Table: Entity Data Model Concepts Mapped to AtomPub Resource Types

2.2.1.1 Named Resource Stream

Applies to the OData 3.0 protocol

Named resource streams are properties of an EntityType that are of type Edm.Stream, where the
Name of the named resource stream is simply the name of the property. Edm.Stream is an
EDMSimpleType introduced in version 2.2 of the Entity Data Model (EDM).

Named resource streams represent and point at unstructured streams of data (such as images or
documents). Each named resource stream MUST have a name, which is a simple identifier, as
specified in [MC-CSDL] (section 2.2.6). For each named resource stream that is defined on an
EntityType, any corresponding EntityType instance MUST have a corresponding named resource
stream instance.

Named resource streams are supported only in the OData 3.0 protocol.

2.2.1.2 Named Resource Stream Instance

Applies to the OData 3.0 protocol

A named resource stream instance is a named resource stream that is associated with the
Edm.Stream property instance with the same name on a particular EntityType instance. Each
named resource stream instance:

MUST have a Name that matches the Name of a named resource stream that is defined on

either the EntityType or one of its BaseTypes.

MUST have a content type, as specified in [RFC2616].

MAY have a self link, which is a URI from which the actual stream of bytes can be retrieved with

a GET request.

MAY have an edit link, which is a URI that can be used to replace the existing stream with a PUT

request.

MUST have a self link or an edit link or both an edit link and a self link specified.

MAY have an ETag. If present, the ETag MUST represent the concurrency token that is

associated with the named resource stream instance ETag (section 2.2.5.4).

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?linkid=90372

29 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.1.3 Actions

Applies to the OData 3.0 protocol

An action is an operation that MAY be bound to its first parameter. After the action is invoked, the

action MAY have a side effect.

Actions are represented by using a FunctionImport that:

MUST be marked as IsSideEffecting, either because IsSideEffecting is set to "true" or

because IsSideEffecting is omitted and thus defaults to "true".

MAY have IsBindable set to "true".

MUST have a first parameter with a type that is either an EntityType or a collection of an

EntityType if IsBindable is set to "true".

MUST be marked as noncomposable, either because IsComposable is set to "false" or because

IsComposable is omitted and thus defaults to "false".

If the ReturnType of the action is either an EntityType or a collection of an EntityType, the

action MUST have the EntitySet attribute set either to an EntitySet name or an

EntitySetPathExpression that is specified relative to the EntitySet of the Binding parameter.

MUST not have an HttpMethod data service annotations attribute.

MAY have an IsAlwaysBindable data service annotation attribute set to either "true" or "false",

if IsBindable is set to "true". This attribute indicates whether all instances of the first parameter
type (the Binding parameter) can be bound to by the action. This means that servers MAY omit
action information when serializing an entry and its applicable actions if the server follows

conventions in order to be more efficient. When omitted, the IsAlwaysBindable data service
annotations attribute defaults to "false".

MUST not have a declaring EntityContainer that declares another FunctionImport with the

same Name. This means that actions MUST NOT have overloads.

2.2.1.3.1 Action Metadata URL

Applies to the OData 3.0 protocol

An action metadata URL is a URL string that points to the metadata of an action. An action metadata
URL follows these rules:

If the conceptual schema definition language (CSDL) document for data services (section

2.2.3.7.2) can be found by URI convention (section 2.2.3.1) and the action is defined in that
document, the path to the metadata can be established by convention.

If the path to the metadata can be established by convention, the action metadata URL SHOULD

NOT include the metadata URL to the CSDL document.

If the path to the metadata cannot be established by convention, the action metadata URL MUST

begin with an absolute URL that locates the CSDL document that defines the action, followed by a
"#".

The EntityContainer name that contains the FunctionImport that defines the action MUST be

unique across the data service.

30 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A FunctionImport that represents an action MUST NOT have any overloads.

The rules for constructing the action metadata URL are as follows.

actionMetadataUrl = [metadataUrl] "#" ecQualifiedActionName

ecQualifiedActionName = entityContainer "." actionName

entityContainer = *pchar ; section 3.3 of [RFC3986]

 ; the name of an Entity Container in the EDM model

actionName = *pchar ; section 3.3 of [RFC3986]

 ; the name of a FunctionImport in the EDM model that defines an Action

metadataUrl = ; a url that points to the Conceptual Schema Definition Language

 ; Document that contains the definition of the Action.

Listing: ABNF Rule for Constructing the Action Metadata URL

2.2.1.4 Functions

Applies to the OData 3.0 protocol

A function is an operation that can optionally be bound to its first parameter and that has no side
effects when it is invoked.

Functions are represented by using a FunctionImport element that:

MUST have IsSideEffecting set to "false".

MAY have IsBindable set to "true" if the function has a least one parameter.

MAY have IsComposable set to "true" or "false".

MUST have a ReturnType.

If the ReturnType of the action is either an EntityType or a collection of EntityType, the

function MUST have the EntitySet attribute set either to an EntitySet name or to an

EntitySetPathExpression that is specified relative to the EntitySet of the Binding parameter.

MUST not have an HttpMethod data service annotations attribute.

MAY have an IsAlwaysBindable data service annotations attribute set to either "true" or "false",

if IsBindable is set to "true". This attribute indicates whether all instances of the first parameter
type (the Binding parameter) can be bound to by this function. This allows servers to omit
function information when serializing an entry and its applicable functions in an effort to be more

efficient. When omitted, IsAlwaysBindable defaults to "false".

Function imports that represent functions MAY have overloads where an overload is defined as

two or more FunctionImport elements with the same name but a different set of parameters.

If a FunctionImport has overloads, either the set of parameters for each FunctionImport

element MUST have a different number of parameters or, if the number of parameters is the

same, the ordered set of parameter types MUST be different. If the unordered sets of parameters
types are the same, each unordered set of parameter names MUST differ.

31 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.1.4.1 Function Metadata URL

Applies to the OData 3.0 protocol

A function metadata URL is a URL that points to the definition of a function or group of function

overloads.

The rules for constructing a function metadata URL are similar to those for constructing an action
metadata URL (section 2.2.1.3.1) with one difference: functions MAY have overloads. Because
functions can have overloads, the function metadata URL MUST include information about the types
of the parameters in order to uniquely identify a particular function overload when overloads exist.
When no type information is specified, the function metadata URL identifies all overloads for the
identified function.

The rules for constructing the function metadata URL are as follows.

functionMetadataUrl = [metadataUrl] "#" ecQualifiedFunctionName

ecQualifiedFunctionName = entityContainer "." functionName ["(" parameterTypeNames ")"]

 ; the parameterTypeNames are required to uniquely identify the Function

 ; only if the Function in question has overloads.

entityContainer = ; section 2.2.1.3.1

 ; the name of an Entity Container in the EDM model

functionName = *pchar ; section 3.3 of [RFC3986]

 ; the name of a FunctionImport in the EDM model that defines a function

parameterTypeNames = [parameterTypeName *("," parameterTypeName) ")"]

 ; the types of all the parameters to the corresponding functionImport

 ; in the order they are declared in the FunctionImport

parameterTypeName = namespaceQualifiedType ; section 2.2.3.1

metadataUrl = ; section 2.2.1.3.1

Listing: ABNF Rule for Constructing the Function Metadata URL

2.2.1.5 Service Operations

Applies to the OData 3.0 protocol

A service operation is an operation that is described by using a FunctionImport.

Service operations can be distinguished from both actions and functions because they MUST have an

HttpMethod data service annotation attribute on the corresponding FunctionImport.

As of the OData 3.0 protocol, the use of service operations, while still supported, is no longer
recommended. Everything that is possible with a service operation can be achieved by using either
actions or functions in OData 3.0.

Service operations are described in detail in sections 2.2.7.5. and 2.2.3.7.2.

2.2.1.6 Containment

Applies to the OData 3.0 protocol

32 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Containment is specified by using a containment NavigationProperty. A containment
NavigationProperty is a NavigationProperty that has a ContainsTarget attribute set to "true".

The EntityType that declares the NavigationProperty is the container EntityType.

The AssociationType that is specified in the containment NavigationProperty is the containment

AssociationType.

The EntityType specified on the End of the containment AssociationType, with the Name
specified by the containment NavigationProperty ToRole attribute, is the contained EntityType.

When the instances of both contained and container entities reside in the same EntitySet, this is
called recursive containment.

It MUST NOT be possible for an EntityType to contain itself by following more than one
containment NavigationProperty.

The contained EntityType MAY have a NavigationProperty that navigates to the container

EntityType via the containment AssociationType. The End of the containment AssociationType
that is specified by the ToRole attribute of the containment NavigationProperty MAY have any
multiplicity.

For nonrecursive containment, the End of the containment AssociationType that is specified by
the FromRole attribute of the containment NavigationProperty MUST have a multiplicity of '1'.

For recursive containment, the End of the containment AssociationType that is specified by the
FromRole attribute of the containment NavigationProperty MUST have a multiplicity of '0..1'.
Additionally, the End specified by the ToRole MUST not have a multiplicity of '1' because this would
lead to endless recursion.

An AssociationSet MUST have the same EntitySet on both ends if it is for a containment
AssociationType that has either the same EntityType on both ends or an EntityType on one end
that derives from the EntityType on the other end.

An EntitySet MUST NOT be bound, by AssociationSet, to more than one AssociationType via a
containment NavigationProperty that indicates that the EntityType (or derived EntityTypes) of
that EntitySet is contained.

Note Because the EntityType of EntitySets on an AssociationSet End MUST be the same as or
derived from the EntityTypes on the corresponding AssociationType Ends, an EntitySet MUST
either be completely contained or completely noncontained.

Nonrecursive contained EntitySets are accessed only through the URL of the resource that

represents the containment NavigationProperty on the parent Entity instance. Clients MUST NOT
assume that nonrecursive contained EntitySets can be accessed directly from the ServiceRoot.

Recursively contained EntitySets MUST be accessible directly from the ServiceRoot for querying
and inserting "root" entity instances that are not contained by another instance. Entity instances
that are contained by another entity instance, the querying and inserting operations are supported
via the URL of the resource that represents the container NavigationProperty on the parent entity

instance.

When the end of the containment AssociationType that is specified by the ToRole attribute of the
containment NavigationProperty is '1' or '0..1', there is no way to independently insert the
contained entity by using a simple InsertEntity Request (section 2.2.7.1.1). A simple InsertEntity
request would require supporting POST to a URL that represents a ReferenceSet, and a POST to a
URL that represents a ReferenceSet is inconsistent with existing protocol semantics. This type of

33 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

contained entity can still be created either by using a "deep insert" (section 2.2.7.1.1) that creates
both the container and the contained entities in one request or by invoking an action (section 4.8)

that creates the contained entity.

2.2.2 Abstract Type System

The abstract type system that is used to define the primitive types that are supported by a data
service is defined in [MC-CSDL] (section 2.2.1). When the value of a primitive type needs to be
represented in a URI or HTTP header, the representation that is written should use the primitive
type literal form representation that is defined in the following table. A primitive type representation
in a request or a response payload is defined in format-specific sections of this document.

The following listing that follows the grammar rules in this section makes reference to the following

shared ABNF [RFC5234] grammar rules.

SQUOTE = %x27 ; ' (single quote)

EQ = %x3D ; = (equal sign)

SEMI = %x3B ; ; (semicolon)

SP = %x20 ; (single-width horizontal space character)

COMMA = %x2C ; , (comma)

nonZeroDigit = %x31-39 ; all digits except zero

doubleZeroToSixty = "0" DIGIT

 / "1" DIGIT

 / "2" DIGIT

 / "3" DIGIT

 / "4" DIGIT

 / "5" DIGIT

nan = "NaN"

negativeInfinity = "-INF"

positiveInfinity = "INF"

nanInfinity = nan / negativeInfinity / positiveInfinity

sign = "-" / ""

DIGIT = ; see [RFC5234] Appendix B.1 Core Rules

UTF8-char = ; see [RFC3629]

The following table defines the literal form representations of Entity Data Model (EDM) primitive

types.

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

null nullLiteral nullLiteral = "null"

Edm.Binary binaryLiteral binaryUriLiteral =

caseSensitiveToken

 SQUOTE

binaryLiteral

 SQUOTE

binaryLiteral = hexDigPair

caseSensitiveToken = "X" /

"binary"

; X is case sensitive, and

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=123096

34 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

binary is not case sensitive

hexDigPair = 2*HEXDIG

[hexDigPair]

Edm.Boolean booleanLiteral booleanLiteral = true / false

true = "true" / "1"

; clients/servers SHOULD also

recognize "True"

false = "false" / "0"

; clients/servers SHOULD also

recognize "False"

Edm.Byte byteLiteral byteLiteral = 1*3DIGIT;

; For further information on

the value range for

; the Edm.Byte type, see [MC-

CSDL]

Edm.DateTime dateTimeUriLiteral datetimeUriLiteral = "datetime"

 SQUOTE

dateTimeLiteral

 SQUOTE

dateTimeLiteral = year "-"

 month "-"

 day "T"

 hour ":"

 minute

 [":" second

["." nanoSeconds]]

 [timeZone]

year = 4Digit;

month = <any number between 1

and 12 inclusive>

day = nonZeroDigit

 / ("0" nonZeroDigit)

 /("1" DIGIT)

 / ("2" DIGIT)

 / "3" ("0" / "1")

hour = nonZeroDigit

 / ("0" nonZeroDigit)

 / ("1" DIGIT)

 / ("2" zeroToFour)

zeroToFour= <any nuumber

35 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

between 0 and 4 inclusive>

minute =doubleZeroToSixty

second = doubleZeroToSixty

nanoSeconds= 1*7Digit

timeZone = (

 ("+" / "-")

 hour ':' minute

)

 / 'Z'

Edm.Decimal decimalUriLiteral decimalUriLiteral =

decimalLiteral

 ("M"/"m")

decimalLiteral = sign

1*29DIGIT

 ["."

1*29DIGIT]

Edm.Double doubleLiteral doubleLiteral = (

 (

 nonDecimalPoint /

 nonExpDecimal /

 expDecimal

)

 "D" / "d"

) /

(nanInfinity ["D" / "d"])

nonDecimalPoint= sign 1*17DIGIT

nonExpDecimal = sign* DIGIT

"." *DIGIT

expDecimal = sign

 1*DIGIT

 "."

 16DIGIT

 ("e" / "E")

 sign

 1*3DIGIT

; for additional information on

the value range

; of the Edm.Double type, see

[MC-CSDL]

Edm.Single singleUriLiteral singleUriLiteral =

 (singleLiteral ("F" / "f"))/

 (nanInfinity ["F" / "f"])

singleLiteral =

 nonDecimalPoint /

36 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

 nonExpDecimal /

 expDecimal

nonDecimalPoint = sign 1*8DIGIT

nonExpDecimal = sign

 *DIGIT

 "."

 *DIGIT

expDecimal = sign

 1*DIGIT

 "."

 8DIGIT

 ("e" / "E")

 sign

 1*2DIGIT

; for additional information on

the value range

; of the Edm.Single type, see

[MC-CSDL]

Edm.Float singleLiteral See Edm.Single.

Edm.Guid guidUriLiteral guidUriLiteral= "guid"

 SQUOTE

 guidLiteral

 SQUOTE

guidLiteral = 8HEXDIG "-"

 4HEXDIG "-"

 4HEXDIG "-"

 4HEXDIG "-"

 12HEXDIG

Edm.Int16 int16Literal int16Literal= sign 1*5DIGIT

Edm.Int32 int32Literal int32Literal= sign 1*10DIGIT

Edm.Int64 int64UriLiteral int64UriLiteral= int64Literal

 ("L" / "l")

int64Literal = sign 1*19DIGIT

Edm.SByte sbyteliteral sbyteliteral= sign 1*3DIGIT

Edm.String stringUriLiteral stringUriLiteral = SQUOTE

[*characters]

 SQUOTE

37 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

characters = UTF8-char

Edm.Time timeUriLiteral timeUriLiteral =

 "time"

 SQUOTE

 timeLiteral

 SQUOTE

timeLiteral = <Defined by the

lexical representation

for dayTimeDuration in

[XMLSCHEMA1.1/2:2012]>

Edm.DateTimeOffset dateTimeOffsetUriLiteral dateTimeOffsetUriLiteral =

 "datetimeoffset"

 SQUOTE

 dateTimeOffsetLiteral

 SQUOTE

dateTimeOffsetLiteral =

<Defined by the lexical

representation

for datetime (including

timezone offset) in

[XMLSCHEMA2/2].

The timezone offset is

required.>

Edm.Geography N/A N/A

Edm.GeographyPoint geographyFullPointLiteral

The two doubles in position

literals are to be interpreted as

longitude, then latitude.

geographyFullPointLiteral =

 geographyPrefix

 fullPointLiteral

 SQUOTE

geographyPrefix =

 "geography"

 SQUOTE

fullPointLiteral =

 sridLiteral

 pointLiteral

pointLiteral =

 "Point"

 pointData

pointData =

 "("

 positionLiteral

 ")"

positionLiteral =

38 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

 doubleLiteral

 SP

 doubleLiteral

sridLiteral =

 "SRID"

 EQ

 1*5DIGIT

 SEMI

Edm.GeographyLineString geographyFullLineStringLiteral

The two doubles in position

literals are to be interpreted as

longitude, then latitude.

geographyFullLineStringLiteral

=

 geographyPrefix

 fullLineStringLiteral

 SQUOTE

fullLineStringLiteral =

 sridLiteral

 lineStringLiteral

lineStringLiteral =

 "LineString"

 lineStringData

lineStringData =

 "("

 positionLiteral

 [COMMA positionLiteral]+

 ")"

Edm.GeographyPolygon geographyFullPolygonLiteral

The two doubles in position

literals are to be interpreted as

longitude, then latitude.

geographyFullPolygonLiteral =

 geographyPrefix

 fullPolygonLiteral

 SQUOTE

fullPolygonLiteral =

 sridLiteral

 polygonLiteral

polygonLiteral =

 "Polygon"

 polygonData

polygonData =

 "("

 ringLiteral

 [COMMA ringLiteral]*

 ")"

ringLiteral =

 "("

 firstPosition

 [COMMA positionLiteral]*

 COMMA

39 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

 firstPosition

 ")"

firstPosition =

 positionLiteral

Within each ringLiteral, the

two firstPosition elements MUST

be an exact syntactic match to

each other.

Within the polygonData, the

ringLiterals MUST specify their

points in appropriate winding

order. In order of traversal,

points to the left side of the

ring are interpreted as being

in the polygon.

Edm.GeographyCollection geographyFullGeoCollectionLiter

al

The two doubles in position

literals are to be interpreted as

longitude, then latitude.

geographyFullGeoCollectionLiter

al =

 geographyPrefix

 fullGeoCollectionLiteral

 SQUOTE

fullGeoCollectionLiteral =

 sridLiteral

 geoCollectionLiteral

geoCollectionLiteral =

 "GeometryCollection("

 geoLiteral

 [COMMA geoLiteral]*

 ")"

geoLiteral =

 pointLiteral

 | lineStringLiteral

 | polygonLiteral

 | geoCollectionLiteral

 | multiPointLiteral

 | multiLineStringLiteral

 | multiPolygonLiteral

Edm.GeographyMultiPoint geographyFullMultiPointLiteral

The two doubles in position

literals are to be interpreted as

longitude, then latitude.

geographyFullMultiPointLiteral

=

 sridLiteral

 multiPointLiteral

multiPointLiteral =

 "MultiPoint("

 [pointData

 [COMMA pointData]*

]?

40 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

 ")"

Edm.GeographyMultiLineStr

ing

geographyFullMultiLineStringLit

eral

The two doubles in position

literals are to be interpreted as

longitude, then latitude.

geographyFullMultiLineStringLit

eral =

 geographyPrefix

 fullMultiLineStringLiteral

 SQUOTE

fullMultiLineStringLiteral =

 sridLiteral

 multiLineStringLiteral

multiLineStringLiteral =

 "MultiLineString("

 [lineStringData

 [COMMA lineStringData]*

]?

 ")"

Edm.GeographyMultiPolygo

n

geographyFullMultiPolygonLiter

al

The two doubles in position

literals are to be interpreted as

longitude, then latitude.

geographyFullMultiPolygonLitera

l =

 geographyPrefix

 fullMultiPolygonLiteral

 SQUOTE

fullMultiPolygonLiteral =

 sridLiteral

 multiPolygonLiteral

multiPolygonLiteral =

 "MultiPolygon("

 [polygonData

 [COMMA polygonData]*

]?

 ")"

Edm.Geometry N/A N/A

Edm.GeometryPoint geometryFullPointLiteral

The two doubles in position

literals are to be interpreted as

X, then Y.

geometryFullPointLiteral =

 geometryPrefix

 fullPointLiteral

 SQUOTE

geometryPrefix =

 "geometry"

 SQUOTE

Edm.GeometryLineString geometryFullLineStringLiteral

The two doubles in position

literals are to be interpreted as

X, then Y.

geometryFullLineStringLiteral =

 geometryPrefix

 fullLineStringLiteral

 SQUOTE

41 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in URIs and

HTTP headers

Primitive type literal form (ABNF

definition)

Edm.GeometryPolygon geometryFullPolygonLiteral

The two doubles in position

literals are to be interpreted as

X, then Y.

geometryFullPolygonLiteral =

 geometryPrefix

 fullPolygonLiteral

 SQUOTE

Edm.GeometryCollection geometryFullGeoCollectionLiter

al

The two doubles in position

literals are to be interpreted as

X, then Y.

geometryFullGeoCollectionLitera

l =

 geometryPrefix

 fullGeoCollectionLiteral

 SQUOTE

Edm.GeometryMultiPoint geometryFullMultiPointLiteral

The two doubles in position

literals are to be interpreted as

X, then Y.

geometryFullMultiPointLiteral =

 geometryPrefix

 fullMultiPointLiteral

 SQUOTE

Edm.GeometryMultiLineStri

ng

geometryFullMultiLineStringLite

ral

The two doubles in position

literals are to be interpreted as

X, then Y.

geometryFullMultiLineStringLite

ral =

 geometryPrefix

 fullMultiLineStringLiteral

 SQUOTE

Edm.GeometryMultiPolygon geometryFullMultiPolygonLiteral

The two doubles in position

literals are to be interpreted as

X, then Y.

geometryFullMultiPolygonLiteral

=

 geometryPrefix

 fullMultiPolygonLiteral

 SQUOTE

Edm.Stream N/A N/A

Collection N/A N/A

Table: Literal Form of Entity Data Model Primitive Types

2.2.3 URI Format: Resource Addressing Rules

The Atom Publishing (AtomPub) Protocol specifies operations for publishing and editing resources by
using HTTP, but does not constrain the form of the URIs, as specified in [RFC3986], that are used to
identify the resources (see [RFC5023] section 4.1). This document extends AtomPub by defining a
mapping from elements in an Entity Data Model (EDM), described by using a conceptual schema
definition language (CSDL) document, to the resource types defined in [RFC5023] section 4.2. See
Abstract Data Model (section 2.2.1) for a mapping of EDM constructs to AtomPub resources.

As specified in [RFC5023] (section 4.1), the Atom Publishing Protocol [RFC5023] specifies the

formats of the representations that are exchanged and the actions that can be performed on the
Internationalized Resource Identifiers (IRIs) embedded in those representations. AtomPub
does not constrain the form of the URIs that are used. Following that paradigm, this section and its
subsections defines a set of recommended, but not required, rules for constructing a URI or IRI to
identify the various parts of the data and metadata in an EDM.

http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880

42 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Servers and clients MAY use alternate URI path construction rules because HTTP [RFC2616]
specifies that the URI space of each server is controlled by that server. The OData protocol imposes

no further constraints on that control when constructing the authority and path segments of a URI.
However, servers that conform to this specification MUST honor the rules for query string

construction as defined in this section and its subsections.

Server authors are encouraged to follow the URI path construction rules, in addition to the required
query string rules, that are defined in this specification when possible. Such consistency promotes
an ecosystem of reusable client components and libraries.

Before an IRI can be used by an HTTP request, the IRI is first converted to a URI, according to the
algorithm defined in [RFC3987] section 3.1. For the remainder of this document, the term URI is
used to refer to a URI or an IRI that has been converted to a URI.

2.2.3.1 URI Syntax

The Augmented BNF for URI Construction listing in this section specifies that a data service URI (see
dataSvcAbs-URI) is comprised of four sections: the scheme [RFC3986], a data service root or path

prefix, a resource path, and query options, which, when composed, form an absolute URI to
address any EntitySet, EntityType instance, property, or service operation result in an Entity Data

Model (EDM).

Servers that conform to this specification MAY follow the grammar below when constructing the
scheme, service root, and resource path URI components of a data service URI. All servers MUST
follow these grammar rules when constructing and parsing the query options section of a data
service URI.

dataSvcAbs-URI = scheme ; see section 3.1 of [RFC3986]

 host ; section 3.2.2 of [RFC3986]

 [":" port] ; section 3.2.3 of [RFC3986]

 (serviceRoot ["/$metadata" / "/$batch"]) ; see section 2.2.3.2

 / (pathPrefix [dataSvcRel-URI])

dataSvcAbsNqo-URI = scheme

 ; see section 3.1 of [RFC3986]

 serviceRoot ; see section 2.2.3.2

 [resourcePath]

dataSvcRel-URI = resourcePath ["?" queryOptions] ; see section 2.2.3.3

serviceRoot =

 *("/" segment-nz) ; section 3.3 of [RFC3986]

 ; segment-nz = the non empty sequence of characters

 ; outside the set of URI reserved

 ; characters as specified in [RFC3986]

pathPrefix = *("/" segment-nz)

 ; zero or more URI path segments

resourcePath = "/"

 (

 (

 [entityContainer "."] entitySet

 / serviceOperation-collEt

)

 [paren] ["/" namespaceQualifiedEntityType] [navPath] [count]

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140875
http://go.microsoft.com/fwlink/?LinkId=90453
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

43 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

)

 / functionCall ["/" namespaceQualifiedEntityType] [navPath] [count]

 / serviceOperation ["/" namespaceQualifiedEntityType]

 / actionCall

paren = "()"

serviceOperation = serviceOperation-et

 / serviceOperation-collCt

 / serviceOperation-ct

 / serviceOperation-collPrim

 / serviceOperation-prim [value]

 / serviceOperation-void

count = "/$count"

 ; count is supported only in OData 2.0 and OData 3.0

navPath = ("("keyPredicate")" [navPath-options]) /

 operation

operation = "/"

 (actionCall /

 (functionCall-partiallyBound [navPath-options])

)

 ; operation segments can only be composed if the type of theprevious segment matches

 ; the type of the first parameter of the action or function being called.

actionCall = actionFQName "()"

 ; TODO: parameters to actions are provided in the BODY

 ; TOOD: we are considering allowing some parameters in the URL

actionFQName = [entityContainer "."] actionName

actionName = ; section 2.2.1.3.1

 ; name of an Action defined by a FunctionImport in the EDM model

 ; associated with this data service.

functionFQName = [entityContainer "."] functionName

functionName = ; section 2.2.1.4.1

 ; name of a function defined by a FunctionImport in the EDM model

 ; associated with this data service.

functionCall = functionFQName "(" [functionParameters] ")"

 ; if this function call is the last function call in the path,

 ; from left to right, then the parameters MAY be provided in the query

 ; part of the URI, without using parameterAlias(es) but instead using the

 ; names of the FunctionImport parameters, as per serviceOperations.

functionParameters = (functionParameter *("," functionParameter))

functionParameter = functionParameterName "=" primitiveValue / functionParameterAlias /

null

functionParameterName = *pchar

 ; the name of the parameter as found in the corresponding FunctionImport

 ; definition.

44 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

functionCall-partiallyBound = functionFQName "(" [functionParameters-unbound] ")"

functionParameters-unbound = functionParameter-unbound *("," functionParameter-unbound)

 ; if this function call is the last function call in the path,

 ; from left to right, then the parameters MAY be provided in the query

 ; part of the URI, as per serviceOperation(s), except the bound parameter

 ; which is specified in the path prefix to the function call.

functionParameter-unbound = functionParameter

 ; with the added restriction that the parameter must not be a

 ; binding parameter

functionParameterAlias = @ *pchar ; i.e. @parameterName

navPath-options = [

 navPath-np /

 propertyPath /

 propertyPath-ct /

 namedStreamPath /

 value /

 operation

]

navPath-np = ["/"namespaceQualifiedEntityType] "/"

 (("$links" / entityNavProperty)

 / (entityNavProperty-es [paren] [navPath])

 / (entityNavProperty-et [navPath-options]))

entityNavProperty = (entityNavProperty-es [paren])

 / entityNavProperty-et

propertyPath = ["/"namespaceQualifiedEntityType]"/" (entityProperty [value]) /

entityCollectionProperty

propertyPath-ct = 1*(["/" namespaceQualifiedEntityType]"/" entityComplexProperty) [

propertyPath]

namedStreamPath = ["/" namespaceQualifiedEntityType]"/" entityNamedStream

; the namedStreamPath is supported only in OData 3.0

keyPredicate = keyPredicate-single

 / keyPredicate-cmplx

keyPredicate-single = primitiveValue

primitiveValue = 1*DIGIT ; section B.1 of [RFC5234]

 / ([1*unreserved] "’" 1*unreserved "’") ; section 2.3 of [RFC3986]

 / 1*(HEXDIG HEXDIG)) ; section B.1 of [RFC5234]

namespaceQualifiedType = namespaceQualifiedComplexType |

 namespaceQualifiedEntityType |

 primitiveType |

 "Collection(" namespaceQualifiedEntityType ")" |

 "Collection("

 (namespaceQualifiedComplexType | primitiveType)

 ")"

namespaceQualifiedEntityType = namespace "." entityType

 ; the namespaceQualifiedEntityType is supported only in OData 3.0

45 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

namespaceQualifiedComplexType = namespace "." complexType

namespace = *pchar ; section 3.3 of [RFC3986]

 ; the Namespace of the schema of the EDM model where an EntityType(s),

 ; ComplexType(s) or PrimitiveType(s) is defined.

primitiveType = ["Edm."] primitiveTypeName

 null = "null" ["'" namespaceQualifiedType "'"]

 ; the optional namespaceQualifiedType is used to specify what type this

 ; null value should be considered for function overload resolution purposes.

primitiveTypeName = "binary" |

 "boolean" |

 "byte" |

 "datetime" |

 "decimal" |

 "double" |

 "single" |

 "float" |

 "guid" |

 "int16" |

 "int32" |

 "int64" |

 "sbyte" |

 "string" |

 "time" |

 "datetimeoffset" |

 "stream" |

 concreteSpatialTypeName |

 abstractSpatialTypeName

concreteSpatialTypeName = "point" |

 "linestring" |

 "polygon" |

 "geographycollection" |

 "multipoint" |

 "multilinedtring" |

 "multipolygon" |

 "geometricpoint" |

 "geometriclinestring" |

 "geometricpolygon" |

 "geometrycollection" |

 "geometricmultipoint" |

 "geometricmultilinestring" |

 "geometricmultipolygon" |

abstractSpatialTypeName = "geography" |

 "geometry" |

keyPredicate-cmplx = entityProperty "=" keyPredicate-single

 ["," keyPredicate-cmplx]

value = "/$value"

queryOptions = sysQueryOption ; see section 2.2.3.6.1

 / customQueryOption ; section 2.2.3.6.2

 / serviceOpParam ; see section 2.2.3.6.3

 / functionParameter ; see section 2.2.3.6.4

 *("&"(sysQueryOption / serviceOpParam

 / customQueryOption / functionParameter))

46 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

sysQueryOption = expandQueryOp

 / filterQueryOp

 / orderbyQueryOp

 / skipQueryOp

 / topQueryOp

 / formatQueryOp

 / countQueryOp

 / selectQueryOp

 / skiptokenQueryOpcustomQueryOption = *pchar ; section 3.3 of

[RFC3986]

expandQueryOp = ; see section 2.2.3.6.1.3

filterQueryOp = ; see section 2.2.3.6.1.4

orderbyQueryOp = ; see section 2.2.3.6.1.6

skipQueryOp = ; see section 2.2.3.6.1.7

serviceOpArg = ; see section 2.2.3.6.3

topQueryOp = ; see section 2.2.3.6.1.8

formatQueryOp = ; see section 2.2.3.6.1.5

countQueryOp = ; see section 2.2.3.6.1.10

 ; the countQueryOp is supported only in OData 2.0 and OData 3.0

selectQueryOp = ; see section 2.2.3.6.1.11

skiptokenQueryOp = ; see section 2.2.3.6.1.9

;Note: The semantic meaning, relationship to Entity Data Model

; (EDM) constructs and additional URI construction

; constraints for the following grammar rules are further

; defined in (section 2.2.3.4) and (section 2.2.3.5)

; See [MC-CSDL] for further scoping rules regarding the value

; of each of the rules below

entityContainer = ; section 2.2.1.3.1

 ; the name of an Entity Container in the EDM model

entitySet = *pchar ; section 3.3 of [RFC3986]

 ; the name of an Entity Set in the EDM model

entityType = *pchar ; section 3.3 of [RFC3986]

 ; the name of an Entity Type in the EDM model

complexType = *pchar ; section 3.3 of [RFC3986]

 ; the name of an Complex Type in the EDM model

entityProperty = *pchar ; section 3.3 of [RFC3986]

 ; the name of a property (of type EDMSimpleType) on an

 ; Entity Type in the EDM

 ; model associated with the data service

entityComplexProperty = *pchar ; section 3.3 of [RFC3986]

47 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 ; the name of a property (of type ComplexType) on an

 ; Entity Type in the EDM

 ; model associated with the data service

entityCollectionProperty = *pchar ; section 3.3 of [RFC3986]

 ; the entityCollectionProperty is supported only in OData 3.0

 ; the name of a property (of type Collection) on an

 ; Entity Type in the EDM

 ; model associated with the data service

entityNavProperty-es= *pchar ; section 3.3 of [RFC3986]

 ; the name of a Navigation Property on an Entity Type in

 ; the EDM model associated with the data service. The

 ; Navigation Property MUST identify an Entity Set.

entityNavProperty-et= *pchar ; section 3.3 of [RFC3986]

 ; the name of a Navigation Property on an Entity Type

 ; in the EDM model associated with the data service.

 ; The Navigation Property MUST identify an entity.

entityNamedStream = *pchar ; section 3.3 of [RFC3986]

 ; the entityNamedStream is supported only in OData 3.0

 ; the name of a Named Resource Stream on an Entity Type

 ; in the EDM model associated with the data service.

serviceOperation-collEt = *pchar ; section 3.3 of [RFC3986]

 ; the name of a Function Import in the EDM model which returns a

 ; collection of entities from the same Entity Set

serviceOperation-et = *pchar ; section 3.3 of [RFC3986]

 ; the name of a Function Import which returns a single Entity

 ; Type instance

serviceOperation-collCt = *pchar ; section 3.3 of [RFC3986]

 ; the name of a Function Import which returns a collection of

 ; Complex Type [MC-CSDL] instances. Each member of the

 ; collection is of the same type.

serviceOperation-ct = *pchar ; section 3.3 of [RFC3986]

 ; the name of a Function Import which returns a single

 ; Complex Type [MC-CSDL] instance.

serviceOperation-collPrim = *pchar ; section 3.3 of [RFC3986]

 ; the name of a Function Import which returns a collection

 ; of primitive type (see section 2.2.2) values. Each member

 ; of the collection is of the same type.

serviceOperation-prim = *pchar ; section 3.3 of [RFC3986]

 ; the name of a Function Import which returns a single primitive

 ; type (see section 2.2.2) value.

serviceOperation-void = *pchar ; section 3.3 of [RFC39876]

 ; the name of a Function Import that has no ReturnType.

Listing: Augmented BNF for URI Construction

48 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.3.2 Service Root (serviceRoot) and Path Prefix (pathPrefix)

The serviceRoot section of a data service URI represents the location of the root of a data service.
The resource that is identified by this URI MUST be an AtomPub Service Document, as specified in

[RFC5023] (or an alternate representation of Atom Service Document data if a different format is
requested), that enumerates all of the collections of resources available for the data service.

Example valid URIs (as defined by the grammar in section 2.2.3.1), including only the URI scheme

(http:// in the examples below) and serviceRoot elements are:

http://host

http://::1:8080

http://api.constoso.com/v1/dataservice

This pathPrefix section of a data service URI is a data service defined sequence of URI path

segments. This specification applies no further requirements to a pathPrefix.

Subsequent examples in this document use a URI scheme of http://. This is done to show a

complete example. However, the URI-addressing rules defined in this document do not mandate

that the http:// scheme be used to address elements on an Entity Data Model (EDM).

2.2.3.3 Resource Path (resourcePath)

This section describes the construction rules for the resource path part of a data service URI. These
rules dictate how the names of an EntitySet, EntityType, entity NavigationProperty, Member, named
resource stream, and service operation may be composed to generate a URI that identifies a
resource exposed by a data service.

Using the example Entity Data Model (EDM) in Appendix A: Sample Entity Data Model and CSDL
Document (section 6), example URIs that include the scheme, serviceRoot, and resourcePath

elements are:

http://host/service.svc/Customers

http://host/service.svc/Customers('ALFKI')/Orders

Resource Path: Semantics (section 2.2.3.5) describes the meaning of the various resource paths

that can be constructed by using the rules noted in the Augmented BNF for URI Construction listing
in URI Syntax (section 2.2.3.1). In addition, this section notes additional constraints specific to

particular elements of the resource path.

2.2.3.4 Resource Path: Construction Rules

This section further defines grammar rules noted in the Augmented BNF for URI Construction listing
in URI Syntax (section 2.2.3.1) which map directly to constructs defined in an Entity Data Model
(EDM).

actionFQName: The name of an action (Actions (section 2.2.1.3)) that is defined as a

FunctionImport in the EDM that is associated with the data service. It is possible to have
multiple actions with the same name and same parameter types in different
EntityContainers. To disambiguate between these actions, the name of the action MUST be
prefixed with the name of the entityContainer that defines the action.

http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

49 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

actionCall: A call to an action (section 2.2.1.3) that MUST be made with a POST request, and
that MUST be the last segment of the resource path.

The first (or binding) parameter MAY be specified by the URI path to which the actionCall has
been appended or it MAY be specified in the POST body (Action Parameters (section

2.2.3.6.5)) with all other parameters if the actionCall is made by directly appending the
action segment to the URI that represents the data service.

In order to apply an actionCall to a URI path, the first (or binding) parameter of the
corresponding FunctionImport MUST match (or be coercible to) the type that the URI path
would return if retrieved directly.

functionFQName: The name of a function (section 2.2.1.4) defined as a FunctionImport in the
EDM that is associated with the data service. It is possible to have multiple functions with the

same name and parameter types in different EntityContainers. To disambiguate between
these functions, the name of the function MAY be prefixed with the name of the
entityContainer that defines the function.

functionCall: A call to a function (Functions (section 2.2.1.4)) by appending the function
segment directly to the root of the service. Parameters can be provided in the query in the
same way as parameters are provided to a serviceOperation, or parameters can be provided

inside the paren of the functionCall in the URI path, or parameters can be provided via
query parameters in the query part of the URI that are referenced by aliases that are declared
inside the paren of the functionCall. If any parameters are specified inside the paren (either
inline or via aliases), all parameters MUST be provided inline.

functionCall-partiallyBound: A call to a function (Functions (section 2.2.1.4)) where the first
(or binding) parameter is specified by the URI path to which the functionCall-
partiallyBound has been appended. Subsequent parameters can be provided in three ways:

inside the paren of the functionCall in the URI path, via query parameters in the query part
of the URI that are referenced by aliases declared inside the paren of the functionCall or, if
this is the last functionCall-partiallyBound in the URI path, via query parameters with the
same name as the parameters of the function as declared in the corresponding

FunctionImport.

In order to apply a functionCall-partiallyBound to a URI path, the first (or binding)
parameter of the corresponding FunctionImport MUST match (or be coercible to) the type

that the URI path would return if it were retrieved directly.

entityContainer: The name of an EntityContainer in the EDM that is associated with the data
service.

entitySet: The name of an EntitySet in the EDM that is associated with the data service.
EntitySet names MAY<2> be directly followed by open and close parentheses (for example,
Customers()). However, not appending the parenthesis is also valid and considered the

canonical form of an EntitySet name.

If an EntitySet is not in the default EntityContainer, the URI MUST qualify the EntitySet
name with the EntityContainer name as follows:

http://<Any iauthority [RFC3987] and optional URI path segments>/<Entity Container

name>.<Entity Set name>

entityType: The name of an EntityType in the EDM associated with the data service. The

EntityType identified MAY be an OpenEntityType ([MC-CSDL] section 2.2.8).

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

50 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

namespaceQualifiedEntityType: The name of an EntityType in the EDM that is associated
with the data service qualified with the namespace of the schema that is used in the EDM. The

EntityType identified MAY be an OpenEntityType.

entityProperty: The name of a declared property or dynamic property, of type

EDMSimpleType ([MC-CSDL] section 2.2.1) on an EntityType or a declared property of type
EDMSimpleType defined on a ComplexType in the EDM that is associated with the data
service.

If the prior URI path segment identifies an EntityType instance in EntitySet ES1, this value
MUST be the name of a declared property or dynamic property, of type EDMSimpleType, on
the base EntityType of set ES1.

If the prior URI path segment represents an instance of ComplexType CT1, this value MUST

be the name of a declared property defined on ComplexType CT1.

entityComplexProperty: The name of a declared property, of type ComplexType, on an
EntityType in the EDM associated with the data service.

If the prior URI path segment identifies an instance of an EntityType ET1, this value MUST
be the name of a declared property or dynamic property on type ET1 which represents a
ComplexType instance.

If the prior URI path segment identifies an instance of a ComplexType CT1, this value MUST
be the name of a declared property on CT1 which represents a ComplexType instance.

entityCollectionProperty: The name of a declared property, of type Collection, on an
EntityType in the EDM that is associated with the data service.

If the prior URI path segment identifies an instance of an EntityType ET1, the
entityCollectionProperty MUST be the name of a declared property on type ET1 that
represents a Collection instance.

There MUST NOT be any subsequent path segments in the URI after the

entityCollectionProperty.

entityNavProperty: Identifies the name of a NavigationProperty on an EntityType.

If the prior URI path segment identifies an instance of an EntityType ET1, this value MUST
be the name of a NavigationProperty on type ET1.

If the URI path segment preceding an entityNavProperty segment is "$links", there MUST
NOT be any subsequent path segments in the URI after the entityNavProperty. If additional

segments exist, the URI MUST be treated as invalid. For example, there must not exist a path
segment after the Orders segment in the URI:

http://host/service.svc/Customers('ALFKI')/$links/Orders.

entityNavProperty-es: This rule is the same as entityNavProperty, but with the added

constraint that the NavigationProperty MUST point to an endpoint of an association with a
cardinality of "many" (for example, such that traversing the association yields a set).

entityNavProperty-et: This rule is the same as entityNavProperty, but with the added
constraint that the NavigationProperty MUST identify an EntityType instance.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

51 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

entityNamedStream: Identifies the name of a property on an EntityType that is of type
Edm.Stream.

The prior URI path segment MUST identify an instance of an EntityType.

If the EntityType identified by the prior segment is ET1, this value MUST be the name of a

property of type Edm.Stream defined on either ET1 or on a base type of ET1.

keyPredicate: Specifies the property values of an EntityKey. When the keyPredicate is used
in conjunction with an entityNavProperty-es that identifies a navigation property that, via
the backing AssociationType, has a referential integrity constraint, then the key property
values that are known to be shared between source and target entities MAY be omitted from
the keyPredicate, but the renaming unknown key properties MUST be specified. In all other
cases, all property values of the EntityKey MUST be specified.

keyPredicate-single: Identifies the EntityKey value of an EntityType whose EntityKey is
comprised of only one property.

The EDM defines that each such key value must be non-nullable, immutable, and be an
EDMSimpleType. The representation of an EDMSimpleType value in a data service URI
MUST follow the syntax rules defined in Abstract Type System (section 2.2.2).

An EntityKey consisting of a single EntityType property MAY<3> be represented by using

the "<Entity Type property name> = <Entity Type property value>" syntax, as seen in the
keyPredicate-cmplx grammar rule of the Augmented BNF for URI Construction listing in URI
Syntax (section 2.2.3.1). However, the representation, which only specifies the value of the
property, is the canonical representation for single property EntityKeys.

keyPredicate-cmplx: Identifies an EntityKey consisting of more than one property of the
EntityType. The order in which the properties of a compound EntityKey appear in the URI
MUST NOT be significant.

serviceOperation: Identifies a FunctionImport in an EDM, as seen in [MC-CSDL], which returns
any of the following:

Primitive type

Collection of primitive types

A single ComplexType instance

Collection of ComplexType instances

A single EntityType instance

Collection of EntityType instances

Nothing or void

For additional details on the type system (primitive type, ComplexType, and so on) used by

data services, see Message Syntax (section 2.2).

serviceOperation-collEt: Identifies a FunctionImport ([MC-CSDL] section 2.1.15) in an EDM,
as specified in [MC-CSDL], that returns a collection of entities where each entity is in the
same EntitySet. A service operation of this type acts as a pseudo EntitySet in that additional
resource path (section 2.2.3.3) segments may follow that identify entities or relationships on
entities within the collection that is identified by the service operation.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

52 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.3.5 Resource Path: Semantics

This section describes the semantics for a base set of data service URIs. From these base cases, the
semantics of longer URIs are defined by composing the rules below.

The URI segments used in this section use Augmented Backus-Naur Form (ABNF), as specified in
[RFC5234] syntax, and the rules used in the segments are defined in the Augmented BNF for URI
Construction listing in URI Syntax (section 2.2.3.1) and in [RFC3986]. Directly beneath each ABNF
rule describing a URI there is a description of the semantic meaning for the URI and an example URI
derived from the sample Entity Data Model (EDM) defined in Appendix A: Sample Entity Data Model
and CSDL Document (section 6).

The following rules are in addition to the grammar rules defined in the resource path semantics

listing that appears later in this section:

In each of the grammar rules below, the serviceOperation-collEt rule can be substituted for

the first occurrence of an entitySet rule in the resource path. This type of a substitution
redefines the replaced segment from identifying an EntitySet to identifying a group of entities.

Any rule within the resource path portion of a data service URI, which identifies an EntitySet or

collection of entities, MAY<4> be immediately followed by a parenthesis, as described by the
"paren" rule in the ABNF grammar in URI Format: Resource Addressing Rules (section 2.2.3).

 URI1 = scheme serviceRoot "/" entitySet

MUST identify all instances of the base EntityType or any of the EntityType's subtypes within
the specified EntitySet specified in the last URI segment.

If the EDM associated with the data service does not include an EntitySet with the name
specified, this URI (and any URI created by appending additional path segments) MUST be
treated as identifying a non-existent resource, as described in Message Processing Events and

Sequencing Rules (section 3.2.5).

Example:

URI: http://host/service.svc/Customers

Identifies: All customer entities in the Customers Entity Set

 URI2 = scheme serviceRoot "/" entitySet "(" keyPredicate ")"

MUST identify a single EntityType instance, which is within the EntitySet specified in the URI,
where key EntityKey is equal to the value of the keyPredicate specified.

If no entity identified by the keyPredicate exists in the EntitySet specified, this URI (and any

URI created by appending additional path segments) MUST represent a resource that does not
exist in the data model.

Example:

URI: http://host/service.svc/Customers('ALFKI')

Identifies: The entity in the Customers entity set with the Entity Key 'ALFKI'.

Note The keyPredicate in this example represents an EntityKey made up of a single property

(keyPredicate-single) and the type of that property is Edm.String. The literal value of the

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90453
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

53 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

property is represented using single quotes as per the data literal syntax for primitive types, as
specified in Abstract Type System (section 2.2.2).

 URI3 = scheme serviceRoot "/" entitySet "(" keyPredicate ")/" entityComplexProperty

MUST identify an instance of a ComplexType on the specified EntityType instance. URI 2 (shown
in the preceding example) describes how an entitySet followed by a keyPredicate identifies an

EntityType instance.

Example:

URI: http://host/service.svc/Customers('ALFKI')/Address

Identifies: The value of the Address property of the customer entity identified by key

value 'ALFKI' in the Customers Entity Set.

 URI4 = scheme serviceRoot "/" entitySet "(" keyPredicate ")/" entityComplexProperty "/"

entityProperty

MUST identify a property of a ComplexType defined on the EntityType of the entity whose
EntityKey value is specified by the keyPredicate and is within the specified EntitySet.

As noted in the Augmented BNF for URI Construction listing in URI Syntax (section 2.2.3.1), a
path segment containing only the rule entity property may append a '"/$value" segment. A
$value MUST be interpreted as a dereference operator and indicates only the value of the
property that is being addressed (for example, it does not indicate additional metadata or the
surrounding envelope).

Example:

URI: http://host/service.svc/Customers('ALFKI')/Address/Name

Identifies: The value of the Name property of the Address ComplexType property of the

customer entity identified by key value 'ALFKI' in the Customers Entity Set.

Example:

URI: http://host/service.svc/Customers('ALFKI')/Address/Name/$value

Identifies: Same as the example preceding, but identifies the value of the property

free of any metadata or surrounding markup.

 URI5 = scheme serviceRoot "/" entitySet "(" keyPredicate ")/" entityProperty

MUST identify a property whose type is an EDMSimpleType on the EntityType instance
(identified with EntityKey equal to the specified key predicate) within the specified EntitySet.

As noted in the Augmented BNF for URI Construction listing in URI Syntax (section 2.2.3.1), a
path segment containing only the rule entity property may append a "/$value" segment. A
$value MUST be interpreted as a dereference operator and indicates only the value of the
property that is being addressed (for example, it indicates that no additional metadata or

surrounding envelope is to be used).

Example:

URI: http://host/service.svc/Customers('ALFKI')/CompanyName

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

54 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Identifies: The name of the customer entity in the Customers EntitySet identified by

key 'ALFKI'.

Example:

URI: http://host/service.svc/Customers('ALFKI')/CompanyName/$value

Identifies: Same as preceding, but identifies the value of the property free of any

metadata or surrounding markup.

 URI6 = scheme serviceRoot "/" entitySet "(" keyPredicate ")/" entityNavProperty

MUST identify a set of entities or an EntityType instance that is reached via the specified
NavigationProperty on the entity identified by the EntitySet name and key predicate specified.

For example, given an association between Customer and Order entities, an Order entity type
may define a NavigationProperty named "OrderedBy" that represents the Customer instance

associated with that particular Order instance. Similarly, the Customer entity type may define a
navigation property named "Orders" that represents the Order instances associated to that
particular Customer instance.

Example:

URI: http://host/service.svc/Customers('ALFKI')/Orders

Identifies: The set of Order Entity Type instances (or instances of a sub type of

Order) associated with the customer identified by the key 'ALFKI' through the Orders

Navigation Property.

 URI7 = scheme serviceRoot "/" entitySet "(" keyPredicate ")/$links/" entityNavProperty

MUST identify the collection of all links from the specified EntityType instance (identified by the
EntitySet name and key predicate specified) to all other entities that can be reached via the
navigation property. The path segment following the $links segment specifies the specific

association being addressed, which may identify a single or collection of links. Therefore, this URI
identifies a link or collection of links (depending on the association multiplicity defined by the
navigation property) and not the value of an entity or collection of entities.

Example:

URI: http://host/service.svc/Customers('ALFKI')/$links/Orders

Identifies: The collection of all Links between the entity in the Customers Entity Set

identified by key 'ALFKI' and the Orders entities associated with that customer via

the Orders navigation property.

Example:

URI: http://host/service.svc/Orders(1)/$links/Customer

Identifies: The Link between the order entity with key value 1 in the Orders Entity

Set and customer entity associated with that order via the Customer navigation

property.

 URI8 = scheme serviceRoot "/$metadata"

55 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

MUST identify the Entity Data Model Extensions (EDMX) document, as specified in [MC-
EDMX], which includes the EDM represented using a conceptual schema definition language

(CSDL), as specified in [MC-CSDL], for the data service.

Example:

URI: http://host/service.svc/$metadata

Identifies: The EDMX (metadata) document for the data service

 URI9 = scheme serviceRoot "/$batch"

MUST identify the endpoint of a data service that accepts Batch Requests (section 2.2.7.6).

Example:

URI: http://host/service.svc/$batch

Identifies: The batch request endpoint for a data service

 URI10 = scheme serviceRoot "/" serviceOperation-et

MUST identify a FunctionImport that returns a single EntityType instance.

If no FunctionImport exists in the EDM associated with the data service which has the same
name as specified by the serviceOperation-et rule, this URI MUST represent a resource that
does not exist in the data model.

As per the ABNF grammar in URI Format: Resource Addressing Rules (section 2.2.3), no further
resource path segments can be composed onto a URI of this form.

 URI11 = scheme serviceRoot "/" serviceOperation-collCt

MUST identify a FunctionImport that returns a collection of ComplexType instances.

If no FunctionImport exists in the EDM associated with the data service that has the same
name as specified by the serviceOperation-collCt rule, this URI MUST represent a resource
that does not exist in the data model.

As per the ABNF grammar in URI Format: Resource Addressing Rules (section 2.2.3), no further
resource path segments can be composed onto a URI of this form.

 URI12 = scheme serviceRoot "/" serviceOperation-ct

MUST identify a FunctionImport that returns a ComplexType instance.

If no FunctionImport exists in the EDM associated with the data service that has the same

name as specified by the serviceOperation-ct rule, this URI MUST represent a resource that
does not exist in the data model.

As per the ABNF grammar in URI Format: Resource Addressing Rules (section 2.2.3), no further

resource path segments can be composed onto a URI of this form.

 URI13 = scheme serviceRoot "/" serviceOperation-collPrim

MUST identify a FunctionImport that returns a collection of primitive type values. The set of
primitive types supported is specified in URI Format: Resource Addressing Rules (section 2.2.3).

%5bMC-EDMX%5d.pdf
%5bMC-EDMX%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

56 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If no FunctionImport exists in the EDM associated with the data service that has the same
name as specified by the serviceOperation-prim rule, this URI MUST represent a resource that

does not exist in the data model.

As per the ABNF grammar in URI Format: Resource Addressing Rules (section 2.2.3), no further

resource path segments can be composed on to a URI of this form.

 URI14 = scheme serviceRoot "/" serviceOperation-prim

MUST identify a FunctionImport that returns a single primitive type value. The set of primitive
types supported is defined in section 2.2.2.

If no FunctionImport exists in the EDM associated with the data service that has the same
name as specified by the serviceOperation-prim rule, this URI MUST represent a resource that
does not exist in the data model.

A path segment containing only the rule serviceOperation-prim may append a "/$value"

segment. A $value MUST be interpreted as a dereference operator and indicates only the value of

the property that is being addressed (for example, it indicates no additional metadata or
surrounding envelope is to be used).

 URI15 = scheme serviceRoot "/" entitySet count

MUST identify the count of all instances of the base EntityType or any of the EntityType's
subtypes within the specified EntitySet specified in the last URI segment.

If the EDM associated with the data service does not include an EntitySet with the name
specified, this URI MUST be treated as identifying a non-existent resource, as described in

Message Processing Events and Sequencing Rules (section 3.2.5).

The $count segment is supported only in the OData 2.0 and OData 3.0 protocols.

 URI16 = scheme serviceRoot "/" entitySet "(" keyPredicate ") count

MAY identify the count of a single EntityType instance (the count value SHOULD always equal

one), which is within the EntitySet specified in the URI, where key EntityKey is equal to the
value of the keyPredicate specified.

If the EDM associated with the data service does not include an EntitySet instance with the
keyPredicate specified, this URI MUST be treated as identifying a nonexistent resource, as

described in Message Processing Events and Sequencing Rules (section 3.2.5).

 URI17 = scheme serviceRoot "/" entitySet "(" keyPredicate ")" value

MUST identify the Media Resource [RFC5023] associated with the identified EntityType instance.
The EntityType that defines the entity identified MUST be annotated with the HasStream
attribute, as defined in Conceptual Schema Definition Language Document for Data Services
(section 2.2.3.7.2). As shown in the ABNF grammar in section 2.2.3.1, the "value" segment
shown in this URI MAY be appended to any path which identifies a single entity.

Example:

URI: http://host/service.svc/Documents(1)/$value

Identifies: The Media Resource associated with the Document Entity Type

instance identified

 URI18 = scheme serviceRoot "/" entitySet "(" keyPredicate ")”/” entityCollectionProperty

http://go.microsoft.com/fwlink/?LinkId=140880

57 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

MUST identify a property whose type is a Collection on the EntityType instance (which is
identified with EntityKey equal to the specified key predicate) within the specified EntitySet. As

per the ABNF grammar in URI Format: Resource Addressing Rule (section 2.2.3), no further
resource path segments can be composed onto a URI of this form.

The entityCollectionProperty segment is supported only in the OData 3.0 protocol.

Example:

URI: http://host/service.svc/Customers(1)/AlternateAddresses

Identifies: A Collection Property on the entity.

The named resource stream segment is supported only in the OData 3.0 protocol.

 URI19 = scheme serviceRoot "/" entitySet "(" keyPredicate ")/" entityNamedStream

MUST identify a named resource stream that is associated with the identified EntityType

instance. The EntityType that defines the entity that is identified MUST declare or inherit from a
base type a property of type Edm.Stream with the same name.

Example:

URI: http://host/service.svc/Photos(1)/Thumbnail/

Identifies: The ‘Thumbnail’ Named Resource Stream associated with the specified Photo

The namespaceQualifiedEntityType segment is supported only in the OData 3.0 protocol.

 URI20 = scheme serviceRoot "/" entitySet"/" namespaceQualifiedEntityType

MUST identify all instances of the EntityType, subtype of the base EntityType, or any of its

subtypes within the specified EntitySet specified in the prior URI segment.

If the EDM that is associated with the data service does not include an EntityType with the

namespace-qualified EntityType specified, this URI (and any URI created by appending
additional path segments) MUST be treated as identifying a nonexistent resource, as described in
Message Processing Events and Sequencing Rules (section 3.2.5).

Example:

URI: http://host/service.svc/Customers/SampleModel.VipCustomer

Identifies: All customer entities in the Customers Entity Set that are of type

SampleModel.VipCustomer

 URI21 = scheme serviceRoot "/" entitySet"/" namespaceQualifiedEnitityType "("

keyPredicate ")"

 URI22 = scheme serviceRoot "/" entitySet"(" keyPredicate ")" "/"

namespaceQualifiedEnitityType

Both of the previous URIs are equivalent and MUST identify a single namespace-qualified
EntityType instance or one of its subtypes. In each case, the entity instance MUST be within the
EntitySet that is specified in the URI, where key EntityKey is equal to the value of the specified

keyPredicate.

58 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If no entity identified by the keyPredicate exists in the specified EntitySet, this URI (and any
URI created by appending additional path segments) MUST represent a resource that does not

exist in the data model.

Examples:

URI: http://host/service.svc/Customers/SampleModel.VipCustomer('ALFKI2')

Identifies: The entity in the Customers entity set, of type SampleModel.VipCustomer,

with the Entity Key 'ALFKI2'.

URI: http://host/service.svc/Customers('ALFKI2')/SampleModel.VipCustomer

Identifies: The entity in the Customers entity set, of type SampleModel.VipCustomer,

with the Entity Key 'ALFKI2'.

The following path segments MAY be used following a URI in which

namespaceQualifiedEntityType is used to specify a derived property:

entityComplexProperty

entityProperty

entityNavProperty

entityCollectionProperty

entityNamedStream

Example:

URI:

http://host/service.svc/Customers('ALFKI2')/SampleModel.VipCustomer/CreditPurchases/Ba

lance

Identifies: The value of the Balance property of the CreditPurchases ComplexType

property of the VipCustomer entity identified by key value 'ALFKI2' in the Customers

Entity Set.

Examples:

URI:

http://host/service.svc/Customers/SampleModel.VipCustomer('ALFKI2')/CreditPurchases/Ba

lance/$value

Identifies: Same as the example preceding, but identifies the value of the property

free of any metadata or surrounding markup.

URI: http://host/service.svc/Customers/SampleModel.VipCustomer('ALFKI2')/InHouseStaff

Identifies: The set of Employee Entity Type instances (or instances of a sub type of

Employee) associated with the VipCustomer identified by the key 'ALFKI2' through the

InHouseStaff Navigation Property.

URI:

http://host/service.svc/Customers/SampleModel.VipCustomer('ALFKI2')/$links/InHouseStaf

f

Identifies: The collection of all Links between the VipCustomer entity in the

Customers Entity Set identified by key 'ALFKI2' and the Employee entities associated

with that VipCustomer via the InHouseStaff navigation property.

URI: http://host/service.svc/Customers/SampleModel.VipCustomer('ALFKI2')/$value

Identifies: The Media Resource associated with the VipCustomer Entity Type

instance in the Customers Entity Set

URI:

http://host/service.svc/Customers/SampleModel.VipCustomer('ALFKI2')/CountriesOfOperati

on

59 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Identifies: A Collection Property on the VipCustomer entity.

URI: http://host/service.svc/Customers/SampleModel.VipCustomer('ALFKI2')/Logo

Identifies: The 'Logo' Named Resource Stream associated with the specified property of

the VipCustomer entity identified by key value 'ALFKI2' in the Customers Entity Set.

The functionCall segment is supported only in the OData 3.0 protocol.

 URI23 = scheme serviceRoot "/" functionCall

The functionCall segment MUST identify a FunctionImport that represents a function
(Functions (section 2.2.1.4)). If the EDM that is associated with the data service does not include
a FunctionImport with IsSideEffecting set to "false" and the name specified, this URI MUST
be treated as identifying a nonexistent resource, as described in Message Processing Events and
Sequencing Rules (section 3.2.5).

Further resource path segments or query options MAY be specified only if the FunctionImport
does not have IsComposable set to "false".

Examples:

URI: http://host/service.svc/TopTenCustomersInCity(city='Seattle')

Identifies: Results of evaluating the TopTenCustomersInCity function with a parameter

value of ‘Seattle’ specified inline.

URI: http://host/service.svc/TopTenCustomersInCity(city=@c)?@c='Seattle'

Identifies: Results of evaluating the TopTenCustomersInCity function with a parameter

value of ‘Seattle’ specified via a parameter alias.

URI: http://host/service.svc/TopTenCustomersInCity()?city='Seattle'

Identifies: Results of evaluating the TopTenCustomersInCity function with a parameter

value of ‘Seattle’ specified by parameter name in the query.

The functionCall-partiallyBound segment is supported only in the OData 3.0 protocol.

 URI24 = scheme serviceRoot "/" entitySet "(" keyPredicate ")/" functionCall-

partiallyBound

The functionCall-partiallyBound segment MUST identify a FunctionImport that represents a
function (Functions (section 2.2.1.4)). If the EDM that is associated with the data service does
not include a FunctionImport (that has no side effects) with the name specified, this URI MUST
be treated as identifying a nonexistent resource, as described in Message Processing Events and

Sequencing Rules (section 3.2.5).

The FunctionImport MUST have IsBindable set to "true", and MUST have at least one
parameter. The first (binding) parameter MUST be of the same type as is represented by the
resource path to which the functionCall-partiallyBound segment is appended.

Further resource path segments or query options MAY be specified only if the FunctionImport is
composable.

Example:

URI: http://host/service.svc/Customers('ALFKI')/TopTenOrders

Identifies: Results of evaluating the TopTenOrders function with the first (or

binding) parameter value of ‘http://host/service.svc/Customers('ALFKI')’

This functionCall-partiallyBound segment MAY also be applied to entitySet segments directly.

60 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 URI25 = scheme serviceRoot "/" entitySet "/" functionCall-partiallyBound

The functionCall-partiallyBound segment MUST identify a FunctionImport that represents a
function (Functions), that has a least one (the binding) parameter of type
Collection(entityType) where entitySet contains entityType instances.

Other rules are the same as for URI24.

Example:

URI: http://host/service.svc/Customers/TopTenCustomers

Identifies: Results of evaluating the TopTenCustomers function with the first (or

binding) parameter value of ‘http://host/service.svc/Customers’.

Notice that functionCall-partiallyBound, actionCall, and namespaceQualifiedEntityType

segments are the only resource path segments that can be directly appended to a resource path
that represents a collection of entities without first selecting a single entity using a

keyPredicate. A functionCall—partiallyBound segment is also the only segment that can be
appended to a resource path that represents a collection of primitive types or ComplexTypes.

This functionCall-partiallyBound segment MAY also be applied to arbitrary navPaths.

 URI26 = scheme serviceRoot "/" entitySet navPath "/" functionCall-partiallyBound

Examples:

URI: http://host/service.svc/SalesPeople(6)/Customers/TopTenCustomers()

Identifies: Results of evaluating the TopTenCustomers function with the first (or

binding) parameter value of ‘http://host/service.svc/SalesPeople(6)/Customers’, i.e.

the Customers of SalesPerson(6).

URI: http://host/service.svc/SalesPeople(6)/Customers/Best()/TopTenOrders()

Identifies: Results of evaluating the TopTenOrders function with the first (or

binding) parameter value being the result of evaluating the Best function which

returns a single customer, and which has been evaluated with its first (or binding)

parameter value set to ‘http://host/service.svc/SalesPeople(6)/Customers’, i.e. the

Customers of SalesPerson(6)

Notice that multiple functionCall-partiallyBound segments can be used in a single resource

path, as in the previous second example.

The actionCall segment is supported only in the OData 3.0 protocol.

 URI27 = scheme serviceRoot "/" entitySet "(" keyPredicate ")/" actionCall

The actionCall segment MUST identify a FunctionImport that represents an action (Actions
(section 2.2.1.3)). If the EDM associated with the data service does not include a
FunctionImport with the name specified, this URI MUST be treated as identifying a non-

existent resource, as described in Message Processing Events and Sequencing Rules (section
3.2.5).

The FunctionImport MUST have IsBindable set to "true", and MUST have at least one
parameter. The first (binding) parameter MUST be of the same type as is represented by the
resource path to which the actionCall segment is appended.

Further resource path segments or query options MAY be specified only if the FunctionImport is

composable.

61 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

To invoke an action a POST request MUST be used. All parameters other than the first

(binding) parameter MUST be specified in the body of the POST request used to invoke

this action (see section 2.2.3.6.5).

 URI28 = scheme serviceRoot "/" actionCall

The actionCall segment MAY be called directly off the service root if it has binding set to "false"
or if the binding parameter is specified in the POST body (see Action Parameters (section
2.2.3.6.5)).

Listing: Resource Path Semantics

2.2.3.6 Query Options

As described in section 2.2.3, all data services MUST follow the query string parsing and

construction rules as defined in this section and its subsections.

The query options section of a data service URI specifies three types of information: system query
options (2.2.3.6.1), custom query options (2.2.3.6.2), and service operation parameters
(2.2.3.6.3). System query options and service operation parameters MUST conform to the following
rules:

Any number of the query options MAY<5> be specified in a data service URI.

The order of query options within a URI MUST be insignificant.

Query option names and values MUST be treated as case sensitive.

System query option names MUST begin with a "$", as seen in System Query Options (section

2.2.3.6.1).

Custom Query Options (section 2.2.3.6.2) MUST NOT begin with a "$".

2.2.3.6.1 System Query Options

System query options in a data service URI, defined in URI Format: Resource Addressing Rules
(section 2.2.3) are directives that are defined by this document that a client MAY specify to control
the amount and order of the data that a data service returns for the resource identified by the URI.
The names of all system query options are prefixed with a "$" character.

A data service MAY<6> support some or all of the system query options defined in this document. If

a data service does not support a system query option, it MUST reject any requests which contain
the unsupported option, as seen in Message Processing Events and Sequencing Rules (section 3.2.5)
for HTTP-specific server details.

The following table summarizes the system query options defined in this document.

If a system query option is included in a data service URI identifying a resource that is incompatible
with the query option, as shown in the following system query options supported per URI table, the

URI MUST be considered malformed.

System

query

option Description Additional details

$expand This option indicates entities associated with the EntityType See Expand System

%5bMC-CSDL%5d.pdf

62 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

System

query

option Description Additional details

instance or EntitySet, identified by the resource path section of

the URI, and MUST be represented inline in the data service's

response, as opposed to being represented with Deferred

Content markers in Deferred Content (section 2.2.6.2.6) and

Deferred Content (section 2.2.6.3.9).

Query Option

($expand) (section

2.2.3.6.1.3).

$filter This option specifies a predicate used to filter the elements from

the EntitySet identified by the resource path section of the URI.

See Filter System

Query Option ($filter)

(section 2.2.3.6.1.4).

$orderby This option specifies the sort properties and sort direction

(ascending or descending) that the data service MUST use to

order the entities in the EntitySet, identified by the resource

path section of the URI.

See OrderBy System

Query Option

($orderby) (section

2.2.3.6.1.6).

$format This option specifies the media type acceptable in a response. If

present, this value SHOULD take precedence over value(s)

specified in an Accept (section 2.2.5.1) request header.

See Format System

Query Option

($format) (section

2.2.3.6.1.5).

$skip This option specifies a positive integer N that represents the

number of entities, counted from the first entity in the

EntitySet and ordered as specified by the $orderby option,

that the data service should skip when returning the entities in

the EntitySet, which is identified by the resource path section

of the URI. The data service SHOULD return all subsequent

entities, starting from the one in position N+1.

See Skip System

Query Option ($skip)

(section 2.2.3.6.1.7).

$top This option specifies a positive integer N that is the maximum

number of entities in the EntitySet, identified by the resource

path section of the URI, that the data service MUST return.

See Top System

Query Option ($top)

(section 2.2.3.6.1.8).

$skiptoken The value of a $skiptoken query option is an opaque token

which identifies an index into the collection of entities identified

by the URI containing the $skiptoken parameter.

See Skip Token Query

Option ($skiptoken)

(section 2.2.3.6.1.9)

$inlinecount For a value of "allpages", this option indicates that the response

to the request MUST include the count of the number of entities

in the EntitySet, identified by the resource path section of the

URI after all $filter system query options have been applied.

For a value of "none", this option indicates that the response to

the request MUST NOT include the count value.

See InlineCount

System Query Option

($inlinecount)

(section 2.2.3.6.1.10)

$select This option is used to specify that a subset of the properties of

the entities identified by the path of the request URI and

$expand query option SHOULD be returned in the response

from the data service.

See Select System

Query Option (section

2.2.3.6.1.11)

Table: Summary of Supported System Query Options

In the following table, the row labels (URI1, URI2, and so on) refer to the resource path semantics
table in URI types defined by the grammar rules in Resource Path: Semantics (section 2.2.3.5). A
cell value of "Yes" indicates the system query option MAY be used with the URI type associated with
the row. A blank cell indicates that if the system query option is present on a URI of the form
indicated by the associated row, the URI MUST be considered malformed.

%5bMC-CSDL%5d.pdf

63 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

$expan

d

$filte

r

$forma

t

$orderb

y

$ski

p

$to

p

$skiptoke

n

$inlinecou

nt (Note 3)

$selec

t

(Note

3)

URI1 Yes Yes Yes Yes Yes Yes Yes Yes Yes

URI2 Yes Yes Yes

URI3 Yes Yes

URI4 Yes

URI5 Yes

URI6

(Note

1)

Yes Yes Yes Yes

URI6

(Note

2)

Yes Yes Yes Yes Yes Yes Yes Yes Yes

URI7 Yes Yes Yes Yes Yes

URI8

URI9

URI1

0

 Yes

URI1

1

 Yes

URI1

2

 Yes

URI1

3

 Yes

URI1

4

 Yes

URI1

5

Yes Yes Yes Yes

URI1

6

Yes Yes

URI1

7

 Yes

URI1

8

 Yes

URI1

9

 Yes

URI2 Yes Yes Yes Yes Yes Yes Yes Yes Yes

64 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

$expan

d

$filte

r

$forma

t

$orderb

y

$ski

p

$to

p

$skiptoke

n

$inlinecou

nt (Note 3)

$selec

t

(Note

3)

0

URI2

1

Yes Yes Yes

URI2

2

Yes Yes Yes

URI2

3

Yes Yes Yes Yes Yes Yes Yes Yes Yes

URI2

4

Yes Yes Yes Yes Yes Yes Yes Yes Yes

URI2

5

Yes Yes Yes Yes Yes Yes Yes Yes Yes

URI2

6

Yes Yes Yes Yes Yes Yes Yes Yes Yes

URI2

7

 Yes

URI2

8

 Yes

Table: System Query Options Supported Per URI

Note 1: Applies when the NavigationProperty in the final path segment of the URI identifies a single
EntityType instance.

Note 2: Applies when the NavigationProperty in the final path segment of the URI identifies a set
of entities.

Note 3: The $inlinecount and $select system query options are supported in the OData 2.0 and
OData 3.0 protocols.

2.2.3.6.1.1 Common Expression Syntax

The Filter and OrderBy query options are specified in the data service URI via the common
expression syntax defined in following Augmented BNF for query option expressions listing.

commonExpression = [WSP] (boolCommonExpression / methodCallExpression /

 parenExpression / literalExpression / addExpression /

 subExpression / mulExpression / divExpression /

 modExpression / negateExpression / memberExpression

 / firstMemberExpression / castExpression / functionCallExpression) [WSP]

boolCommonExpression = [WSP] (boolLiteralExpression / andExpression /

 orExpression /

 boolPrimitiveMemberExpression / eqExpression / neExpression /

 ltExpression / leExpression / gtExpression /

 geExpression / notExpression / isofExpression/

%5bMC-CSDL%5d.pdf

65 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 boolCastExpression / boolMethodCallExpression /

 firstBoolPrimitiveMemberExpression / boolParenExpression /

 boolFunctionCallExpression) [WSP]

parenExpression = "(" [WSP] commonExpression [WSP] ")"

boolParenExpression = "(" [WSP] boolCommonExpression [WSP] ")"

andExpression = boolCommonExpression WSP "and" WSP boolCommonExpression

orExpression = boolCommonExpression WSP "or" WSP boolCommonExpression

eqExpression = commonExpression WSP "eq" WSP commonExpression

neExpression = commonExpression WSP "ne" WSP commonExpression

ltExpression = commonExpression WSP "lt" WSP commonExpression

leExpression = commonExpression WSP "le" WSP commonExpression

gtExpression = commonExpression WSP "gt" WSP commonExpression

geExpression = commonExpression WSP "ge" WSP commonExpression

addExpression = commonExpression WSP "add" WSP commonExpression

subExpression = commonExpression WSP "sub" WSP commonExpression

mulExpression = commonExpression WSP "mul" WSP commonExpression

divExpression = commonExpression WSP "div" WSP commonExpression

modExpression = commonExpression WSP "mod" WSP commonExpression

negateExpression = "-" [WSP] commonExpression

notExpression = "not" WSP commonExpression

isofExpression = "isof" [WSP] "("[[WSP] commonExpression [WSP] ","][WSP]

 stringUriLiteral [WSP] ")"

castExpression = "cast" [WSP] "("[[WSP] commonExpression [WSP] ","][WSP]

 stringUriLiteral [WSP] ")"

boolCastExpression = "cast" [WSP]

 "("[[WSP] commonExpression [WSP] ","][WSP]

 "Edm.Boolean" [WSP] ")"

firstMemberExpression = [WSP] [namespaceQualifiedEnitityType "/"]

 [lambdaPredicatePrefixExpression]

 ; A lambdaPredicatePrefixExpression is only defined inside a

 ; lambdaPredicateExpression. A lambdaPredicateExpression is required

 ; inside a lambdaPredicateExpression.

 entityNavProperty /

 ; section 2.2.3.1

 entityComplexProperty /

 ; section 2.2.3.1

 entityProperty /

 ; section 2.2.3.1

66 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 entityCollectionProperty

 ; section 2.2.3.1

firstBoolPrimitiveMemberExpression = [namespaceQualifiedEntityType "/"]entityProperty

 ; section 2.2.3.1

memberExpression = commonExpression [WSP] "/" [WSP] [namespaceQualifiedEntityType "/"]

 entityNavProperty / ; section 2.2.3.1

 entityComplexProperty / ; section 2.2.3.1

 entityProperty / ; section 2.2.3.1

 entityCollectionProperty ; section 2.2.3.1

boolPrimitiveMemberExpression = commonExpression [WSP] "/" [WSP]

 [namespaceQualifiedEntityType "/"]entityProperty

 ; section 2.2.3.1

literalExpression = stringUriLiteral ; section 2.2.2

 / dateTimeUriLiteral ; section 2.2.2

 / dateTimeOffsetUriLiteral ; section 2.2.2

 / timeUriLiteral ; section 2.2.2

 / decimalLiteral ; section 2.2.2

 / guidUriLiteral ; section 2.2.2

 / singleLiteral ; section 2.2.2

 / doubleLiteral ; section 2.2.2

 / int16Literal ; section 2.2.2

 / int32Literal ; section 2.2.2

 / int64Literal ; section 2.2.2

 / binaryLiteral ; section 2.2.2

 / nullLiteral ; section 2.2.2

 / byteLiteral ; section 2.2.2

 / fullPointLiteral ; section 2.2.2

 / fullLineStringLiteral ; section 2.2.2

 / fullPolygonLiteral ; section 2.2.2

 / fullGeoCollectionLiteral ; section 2.2.2

 / fullMultiPointLiteral ; section 2.2.2

 / fullMultiLineStringLiteral ; section 2.2.2

 / fullMultiPolygonLiteral ; section 2.2.2

boolLiteralExpression = boolLiteral ; section 2.2.2

methodCallExpression = boolMethodCallExpression

 / indexOfMethodCallExpression

 / replaceMethodCallExpression

 / toLowerMethodCallExpression

 / toUpperMethodCallExpression

 / trimMethodCallExpression

 / substringMethodCallExpression

 / concatMethodCallExpression

 / lengthMethodCallExpression

 / yearMethodCallExpression

 / monthMethodCallExpression

 / dayMethodCallExpression

 / hourMethodCallExpression

 / minuteMethodCallExpression

 / secondMethodCallExpression

 / roundMethodCallExpression

 / floorMethodCallExpression

 / ceilingMethodCallExpression

 / distanceMethodCallExpression

67 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 / geoLengthMethodCallExpression

boolMethodCallExpression = endsWithMethodCallExpression

 / startsWithMethodCallExpression

 / substringOfMethodCallExpression

 / intersectsMethodCallExpression

 / anyMethodCallExpression

 / allMethodCallExpression

endsWithMethodCallExpression = "endswith" [WSP]

 "(" [WSP] commonexpression [WSP]

 "," [WSP] commonexpression [WSP] ")"

indexOfMethodCallExpression = "indexof" [WSP]

 "(" [WSP] commonexpression [WSP]

 "," [WSP] commonexpression [WSP] ")"

replaceMethodCallExpression = "replace" [WSP]

 "(" [WSP] commonexpression [WSP]

 "," [WSP] commonexpression [WSP]

 "," [WSP] commonexpression [WSP] ")"

startsWithMethodCallExpression = "startswith" [WSP]

 "(" [WSP] commonexpression [WSP]

 "," [WSP] commonexpression [WSP] ")"

toLowerMethodCallExpression = "tolower" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

toUpperMethodCallExpression = "toupper" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

trimMethodCallExpression = "trim" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

substringMethodCallExpression = "substring" [WSP]

 "(" [WSP] commonexpression [WSP]

 "," [WSP] commonexpression [WSP]

 ["," [WSP] commonexpression [WSP]] ")"

substringOfMethodCallExpression = "substringof" [WSP]

 "(" [WSP] commonexpression [WSP]

 ["," [WSP] commonexpression [WSP]] ")"

concatMethodCallExpression = "concat" [WSP]

 "(" [WSP] commonexpression [WSP]

 ["," [WSP] commonexpression [WSP]] ")"

lengthMethodCallExpression = "length" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

getTotalOffsetMinutesMethodCallExpression = "gettotaloffsetminutes" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

yearMethodCallExpression = "year" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

monthMethodCallExpression = "month" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

68 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

dayMethodCallExpression = "day" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

hourMethodCallExpression = "hour" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

minuteMethodCallExpression = "minute" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

secondMethodCallExpression = "second" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

roundMethodCallExpression = "round" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

floorMethodCallExpression = "floor" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

ceilingMethodCallExpression = "ceiling" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

distanceMethodCallExpression = "geo.distance" [WSP]

 "(" [WSP] commonexpression [WSP]

 "," [WSP] commonexpression [WSP] ")"

geoLengthMethodCallExpression = "geo.length" [WSP]

 "(" [WSP] commonexpression [WSP] ")"

intersectsMethodCallExpression = "geo.intersects" [WSP]

 "(" [WSP] commonexpression [WSP]

 "," [WSP] commonexpression [WSP] ")"

implicitVariableExpression = "$it"

 ; references the unnamed outer variable of the query

lambdaVariableExpression = *pchar

 ; section 3.3 of [RFC3986]

 ; a identifier/name that complies with EDM identifier rules

lambdaPredicatePrefixExpression = inscopeVariableExpression "/"

lambdaPredicateExpression = boolCommonExpression

 ; this is a boolCommonExpression with the added restriction that any

 ; firstMemberExpression expressions that are inside the methodPredicateExpression

 ; MUST have a prefix of lambdaPredicatePrefixExpression.

inscopeVariableExpression = implicitVariableExpression | lambdaVariableExpression

 ; the lambdaVariableExpression must be the name of a variable introduced by either the

 ; current lambdaMethodCallExpression’s lambdaVariableExpression or via a wrapping

 ; lambdaMethodCallExpression’s lambdaVariableExpression.

lambdaMethodCallExpression = anyMethodCallExpression | allMethodCallExpression.

anyMethodCallExpression = pathExpression-collection "/"

 "any"

 "("

 [lambdaVariableExpression ":" lambdaPredicateExpression]

 ")"

69 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

allMethodCallExpression = pathExpression-collection "/"

 "all"

 "("

 lambdaVariableExpression ":" lambdaPredicateExpression

 ")"

singlePathExpression = [WSP]

 "("singlePathExpression / inscopeVariableExpression

 "/" entityNavProperty-et | entityComplexProperty

collectionPathExpression = [WSP] commonexpression [WSP]

 singlePathExpression / inscopeVariableExpression

 "/"

 (entityNavProperty-es | entityCollectionProperty)

functionCallExpression = [(memberExpression / firstMemberExpression) "/"]

 functionFQName ; section 2.2.3.1

 "(" [functionParametersExpression] ")"

boolFunctionCallExpression = functionCallExpression

 ; with the added restriction that the specified FunctionImport

 ; has a ReturnType of Edm.Boolean

functionParametersExpression =

 functionParameterExpression *("," functionParameterExpression)

functionParameterExpression = [WSP]

 functionParameterName ; section 2.2.3.1

 [WSP] "="

 [WSP]

 literalExpression / structuralValue / entityReference

 [WSP]

structuralValue = ; a JSON or Verbose JSON encoding of a complex type, multi-value,

 ; entity, or collection of entities

entityReference = "KEY("

 [entityContainer "."]

 entitySet

 "("keyPredicate")"

 ")"

 ["/" namespaceQualifiedEntityType]

 ; refers a single Entity by key, and optionally allows a cast to a

 ; derived type.

Listing: Augmented BNF for Query Option Expressions

A data service MAY<7> support some or all of the boolCommonExpression expressions for the
Filter ($filter) system query option. A data service MAY<8> support some or all of the

commonExpression expressions for the OrderBy ($orderby) query option.

If a data service does not support a given expression, it MUST reject any requests which contain the
unsupported expression.

A data service MAY reject any requests that contain expressions not defined in this document.

70 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Common expressions SHOULD be constructed and evaluated according to the rules defined in
common expression syntax for each specific expression type.

2.2.3.6.1.1.1 Expression Construction and Evaluation Rules

commonExpression: A data service MAY support the commonExpression common
expression. If supported, a commonExpression MUST represent any and all supported
common expression types.

boolCommonExpression: A data service MAY support the boolCommonExpression common
expression. If supported, a boolCommonExpression MUST be a common expression that
evaluates to the Entity Data Model (EDM) primitive type Edm.Boolean.

parenExpression: A data service MAY support the enclosing of expressions in parentheses. This

expression is represented as a parenExpression common expression in the common
expression syntax.

If supported, a parenExpression MUST be evaluated by evaluating the expression with the

parentheses, starting with the innermost parenthesized expressions, and proceeding
outwards, following proper precedence rules where parentheses override any other operator
precedence. The result of the parenExpression MUST be the result of the evaluation of the

contained expression.

boolParenExpression: A data service MAY support the enclosing of Boolean expressions in
parentheses. This expression is represented as a boolParenExpression common expression
in the common expression syntax.

If supported, a boolParenExpression MUST be evaluated by evaluating the expression with
the parentheses. The result of the boolParenExpression MUST be the result of the
evaluation of the contained expression and MUST be of the EDM primitive type Edm.Boolean.

addExpression: A data service MAY support the binary addition operator. The operation of
adding two expressions is represented as an addExpression common expression in the
common expression syntax. If this operation is supported, the data service MAY<9> support

some or all of the common expressions as operands of the operation. Those operand
expressions MUST evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Int16

Edm.Int32

Edm.Int64

The addExpression SHOULD NOT be supported for any other EDM primitive types.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a
common supported EDM primitive type. The EDM primitive type of the result of evaluating the
addExpression MUST be the same type as the operands after binary numeric promotion
rules have been applied to operands.

71 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If supported, the data service SHOULD evaluate the operation represented by the
addExpression, according to the rules of [IEEE754-2008] for the addition operation. Further,

the data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

subExpression: A data service MAY support the binary subtraction operator. The operation of
subtracting two expressions is represented as a subExpression common expression in the
common expression syntax. If this operation is supported, the data service MAY<10> support
some or all of the common expressions as operands of the operation. Those operand
expressions MUST evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Int16

Edm.Int32

Edm.Int64

The subExpression SHOULD NOT be supported for operands of any other EDM primitive
type.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a
common supported EDM primitive type. The EDM primitive type of the result of evaluating the
subExpression MUST be the same type as the operands after binary numeric promotion

rules have been applied to operands.

If supported, the data service SHOULD evaluate the operation represented by the
subExpression, according to the rules of [IEEE754-2008] for the subtraction operation.

Further, the data service MAY support evaluating operands with null values following the rules
defined in Lifted Operators (section 2.2.3.6.1.1.5).

mulExpression: A data service MAY support the binary multiplication operator. The operation of
multiplying two expressions is represented as a mulExpression common expression in the

common expression syntax. If this operation is supported, the data service MAY<11> support
some or all of the common expressions as operands of the operation. Those operand
expressions MUST evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Int16

Edm.Int32

Edm.Int64

The mulExpression SHOULD NOT be supported for operands of any other EDM primitive

type.

http://go.microsoft.com/fwlink/?LinkId=154130
http://go.microsoft.com/fwlink/?LinkId=154130

72 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a

common supported EDM primitive type. The EDM primitive type of the result of evaluating the
mulExpression MUST be the same type as the operands after binary numeric promotion

rules have been applied to operands.

If supported, the data service SHOULD evaluate the operation represented by the
mulExpression, according to the rules of [IEEE754-2008] for the multiplication operation.
Further, the data service MAY support evaluating operands with null values following the rules
defined in Lifted Operators (section 2.2.3.6.1.1.5).

divExpression: A data service MAY support the binary division operator. The operation of
dividing two expressions is represented as a divExpression common expression in the

common expression syntax. If this operation is supported, the data service MAY<12> support
some or all of the common expressions as operands of the operation. Those operand
expressions MUST evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Int16

Edm.Int32

Edm.Int64

The divExpression SHOULD NOT be supported for operands of any other EDM primitive type.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a
common supported EDM primitive type. The EDM primitive type of the result of evaluating the

divExpression MUST be the same type as the operands after binary numeric promotion rules
have been applied to operands.

If supported, the data service SHOULD evaluate the operation represented by the
divExpression, according to the rules of [IEEE754-2008] for the division operation. Further,

the data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

modExpression: A data service MAY support the binary remainder operator. The operation of
computing the remainder of two expressions is represented as a modExpression common
expression in the common expression syntax. If this operation is supported, the data service
MAY<13> support some or all of the common expressions as operands of the operation. Those

operand expressions MUST evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Int16

Edm.Int32

http://go.microsoft.com/fwlink/?LinkId=154130
http://go.microsoft.com/fwlink/?LinkId=154130

73 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Edm.Int64

The modExpression SHOULD NOT be supported for operands of any other EDM primitive
type.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a
common supported EDM primitive type. The EDM primitive type of the result of evaluating the
modExpression MUST be the same type as the operands after binary numeric promotion
rules have been applied to operands.

If supported, the data service SHOULD evaluate the operation represented by the
modExpression, according to the rules of [IEEE754-2008] for the remainder operation.

Further, the data service MAY support evaluating operands with null values following the rules
defined in Lifted Operators (section 2.2.3.6.1.1.5).

negateExpression: A data service MAY support the unary negate operator. The operation of
negating an expression is represented by the negateExpression common expression in the

common expression syntax. If this operation is supported, the data service MAY<14> support
some or all of the common expressions as operands of the operation. The operand expression
MUST evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Int16

Edm.Int32

Edm.Int64

The data service SHOULD NOT support operand expressions of any other EDM primitive type
for the negateExpression.

If supported, a data service SHOULD follow the unary numeric promotion rules defined in
Unary Numeric Promotions (section 2.2.3.6.1.1.3) to implicitly convert the operand to a

supported EDM primitive type. The EDM primitive type of the result of evaluating the
negateExpression MUST be the same type as the operand after binary numeric promotion
rules have been applied to the operand.

If supported, the data service SHOULD evaluate the operation represented by the
negateExpression by subtracting the operand value from zero. This result of evaluating the
negateExpression SHOULD always be equal to the result of evaluating the subExpression
where one operand is the value zero and the other is the value of the operand.

The data service MAY support evaluating an operand with a null value following the rules
defined in Lifted Operators (section 2.2.3.6.1.1.5).

andExpression: A data service MAY support the binary logical-and operator. The operation of
evaluating whether two expressions both evaluate to the value of true is represented by the
andExpression common expression in the common expression syntax. If this operation is
supported, the data service MAY<15> support some or all of the boolCommonExpression

expressions as operands of the operation. Those operand expressions MUST evaluate to the

http://go.microsoft.com/fwlink/?LinkId=154130

74 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive types of Edm.Boolean. The andExpression SHOULD NOT be supported for
operands of any other EDM primitive types.

The EDM primitive type of the result of evaluating the andExpression MUST be
Edm.Boolean.

If supported, a data service MUST evaluate the expression to the value of true if the values of
the operands are both true after being evaluated. If either operand is false after being
evaluated, the expression MUST evaluate to the value of false.

The data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

orExpression: A data service MAY support the binary logical-or operator. The operation of
evaluating whether at least one of two expressions evaluate to the value of true is

represented by the orExpression common expression in the common expression syntax. If
this operation is supported, the data service MAY<16> support some or all of the
boolCommonExpression common expressions as operands of the operation. Those operand

expressions MUST evaluate to the EDM primitive types of Edm.Boolean. The orExpression
SHOULD NOT be supported for operands of any other EDM primitive types.

The EDM primitive type of the result of evaluating the orExpression MUST be Edm.Boolean.

If supported, a data service MUST evaluate the expression to the value of true if at least one
of the operands is true after being evaluated. If both operands are false after being evaluated,
the expression MUST evaluate to the value of false.

The data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

memberExpression: A data service MAY support the referencing of a navigation, complex, or
simple property of an EntityType. This is represented by the memberExpression common

expression in the common expression syntax.

If supported, the common expression that is the target of the memberExpression MUST be
a known EntityType or ComplexType. If supported, the memberExpression MAY
reference an entity NavigationProperty (entityNavProperty, as specified in Resource Path:
Construction Rules (section 2.2.3.4)), or an entity complex type property
(entityComplexProperty, as specified in Resource Path: Construction Rules (section
2.2.3.4)), or an entity simple property, as specified in Resource Path: Construction Rules

(section 2.2.3.4). For entity NavigationProperties, the target relationship end must have a
cardinality of 1 (single entity, mandatory) or 0..1 (single entity, optional).

The type of the result of evaluating the memberExpression MUST be the same type as the
property reference in the memberExpression.

The data service MAY support evaluating a memberExpression where instance values of a
property are null following the rules defined in Binary Numeric Promotions (section

2.2.3.6.1.1.4).

firstMemberExpression: A data service MAY support the referencing of a navigation, complex,
or simple property of the EntityType or ComplexType represented by the last segment in the
navigation portion of the URI. This is represented by the firstMemberExpression common
expression in the common expression syntax.

If supported, the firstMemberExpression MAY reference an entity navigation property
(entityNavProperty, as specified in Resource Path: Construction Rules (section 2.2.3.4)), or

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

75 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

an entity complex type property (entityComplexProperty, as specified in Resource Path:
Construction Rules (section 2.2.3.4)), or an entity simple property, as specified in Resource

Path: Construction Rules (section 2.2.3.4). For entity NavigationProperties, the target
relationship end must have a cardinality of 1 (single entity, mandatory) or 0..1 (single entity,

optional).

The type of the result of evaluating the firstMemberExpression MUST be the same type as
the property reference in the firstMemberExpression.

The data service MAY support evaluating a firstMemberExpression where instance values of
a property are null following the rules defined in Binary Numeric Promotions (section
2.2.3.6.1.1.4).

When nested inside lambdaPredicateExpression, firstMemberExpression MUST be

prefixed with a lambdaPredicatePrefixExpression that identifies to what the
firstMemberExpression is bound.

boolPrimitiveMemberExpression: A data service MAY support the referencing of a Boolean

simple property of an EntityType or ComplexType. This is represented by the
boolPrimitiveMemberExpression common expression in the common expression syntax.

The type of the result of evaluating the boolPrimitiveMemberExpression MUST be EDM

primitive type Edm.Boolean.

The data service MAY support evaluating a Boolean memberExpression where the property
instance value is null following the rules defined in Binary Numeric Promotions (section
2.2.3.6.1.1.4).

firstBoolPrimitiveMemberExpression: A data service MAY support the referencing of a
Boolean simple property of an EntityType or ComplexType represented by the last segment
in the navigation portion of the URI. This is represented by the

firstBoolPrimitiveMemberExpression common expression in the common expression
syntax.

The type of the result of evaluating the boolPrimitiveMemberExpression MUST be EDM
primitive type Edm.Boolean.

The data service MAY support evaluating a Boolean memberExpression where the property
instance value is null following the rules defined in Binary Numeric Promotions (section
2.2.3.6.1.1.4).

eqExpression: A data service MAY support the binary equality operator. The operation of
evaluating whether two expressions are equal is represented as an eqExpression common
expression in the common expression syntax. If this operation is supported, the data service
MAY<17> support some or all of the common expressions as operands of the operation. Those
operand expressions MUST evaluate to a value of a known EntityType (see [MC-CSDL] for
the definition of equality between two EntityType instances) or one of the following EDM

primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Boolean

%5bMC-CSDL%5d.pdf

76 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Edm.DateTimeOffset

Edm.Time

Edm.Byte

Edm.SByte

Edm.Int16

Edm.Int32

Edm.Int64

Edm.String

Edm.DateTime

Edm.Guid

Edm.Binary

The eqExpression SHOULD NOT be supported for any other EDM primitive types.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a
common supported EDM primitive type. The EDM primitive type of the result of evaluating the
eqExpression MUST be Edm.Boolean.

If supported, a data service MUST return a value of true if the values of the operands are
equal and false if they are not equal. If the type of the operands is a known EntityType, then

a value of true MUST be returned if the operand expressions, once evaluated, represent the
same entity instance. Actual comparison of values is data service-specific and no semantics
for doing so are mandated; however, a data service MUST always use consistent semantics
when comparing values.

The data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

neExpression: A data service MAY support the binary non-equality operator. The operation of

evaluating whether two expressions are not equal is represented as an neExpression
common expression in the common expression syntax. If this operation is supported, the data
service MAY<18> support some or all of the common expressions as operands of the
operation. Those operand expressions MUST evaluate to a value of a known EntityType or
one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Boolean

Edm.DateTimeOffset

Edm.Time

77 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Edm.Byte

Edm.SByte

Edm.Int16

Edm.Int32

Edm.Int64

Edm.String

Edm.DateTime

Edm.Guid

Edm.Binary

The neExpression SHOULD NOT be supported for any other EDM primitive types.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a
common supported EDM primitive type. The EDM primitive type of the result of evaluating the

neExpression MUST be Edm.Boolean.

If supported, a data service MUST return a value of true if the values of the operands are not
equal and false if they are equal. If the type of the operands is a known EntityType, then a
value of true MUST be returned if the operand expressions once evaluated do not represent
the same entity instance. Actual comparison of values is data service-specific and no
semantics for doing so are mandated; however, a data service MUST always use consistent

semantics when comparing values.

The data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

ltExpression: A data service MAY support the binary less than operator. The operation of
evaluating whether one expression is less than the other expression is represented as an
ltExpression common expression in the common expression syntax. If this operation is
supported, the data service MAY<19> support some or all of the common expressions as

operands of the operation. Those operand expressions MUST evaluate to a value of one of the
following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.DateTimeOffset

Edm.Time

Edm.Byte

Edm.SByte

Edm.Int16

78 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Edm.Int32

Edm.Int64

Edm.String

Edm.DateTime

Edm.Guid

The ltExpression SHOULD NOT be supported for any other EDM primitive types.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a

common supported EDM primitive type. The EDM primitive type of the result of evaluating the
ltExpression MUST be Edm.Boolean.

If supported, a data service MUST return a value of true if the value of the first operand is

less than the value of the second operand and false if not. Actual ordering and comparison of
values is data service-specific and no semantics for doing so are mandated; however, a data
service MUST always use consistent semantics when ordering and comparing values.

The data service MAY support evaluating operands with null values following the rules defined

in Lifted Operators (section 2.2.3.6.1.1.5).

leExpression: A data service MAY support the binary less than or equal to the operator. The
operation of evaluating whether one expression is less than or equal to the other expression is
represented as an leExpression common expression in the common expression syntax. If
this operation is supported, the data service MAY<20> support some or all of the common
expressions as operands of the operation. Those operand expressions MUST evaluate to a

value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.DateTimeOffset

Edm.Time

Edm.Byte

Edm.SByte

Edm.Int16

Edm.Int32

Edm.Int64

Edm.String

Edm.DateTime

Edm.Guid

The leExpression SHOULD NOT be supported for any other EDM primitive types.

79 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a

common supported EDM primitive type. The EDM primitive type of the result of evaluating the
leExpression MUST be Edm.Boolean.

If supported, a data service MUST return a value of true if the value of the first operand is
less than or equal the value of the second operand, and false if not. Actual ordering and
comparison of values is data service specific and no semantics for doing so are mandated;
however, a data service MUST always use consistent semantics when ordering and comparing
values.

The data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

gtExpression: A data service MAY support the binary greater than operator. The operation of
evaluating whether one expression is greater than the other expression is represented as a
gtExpression common expression in the common expression syntax. If this operation is
supported, the data service MAY<21> support some or all of the common expressions as

operands of the operation. Those operand expressions MUST evaluate to a value of one of the
following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.DateTimeOffset

Edm.Time

Edm.Byte

Edm.SByte

Edm.Int16

Edm.Int32

Edm.Int64

Edm.String

Edm.DateTime

Edm.Guid

The gtExpression SHOULD NOT be supported for any other EDM primitive types.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a

common supported EDM primitive type. The EDM primitive type of the result of evaluating the
gtExpression MUST be Edm.Boolean.

If supported, a data service MUST return a value of true if the value of the first operand is
greater than or equal to the value of the second operand, and false if not. Actual ordering and
comparison of values is data service-specific and no semantics for doing so are mandated;

80 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

however, a data service MUST always use consistent semantics when ordering and comparing
values.

The data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

geExpression: A data service MAY support the binary greater than or equal operator. The
operation of evaluating whether one expression is greater than or equal to the other
expression is represented as a geExpression common expression in the common expression
syntax. If this operation is supported, the data service MAY<22> support some or all of the
common expressions as operands of the operation. Those operand expressions MUST evaluate
to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.DateTimeOffset

Edm.Time

Edm.Byte

Edm.SByte

Edm.Int16

Edm.Int32

Edm.Int64

Edm.String

Edm.DateTime

Edm.Guid

The geExpression SHOULD NOT be supported for any other EDM primitive types.

If supported, a data service SHOULD follow the binary numeric promotion rules defined in
Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert the operands to a
common supported EDM primitive type. The EDM primitive type of the result of evaluating the
geExpression MUST be Edm.Boolean.

If supported, a data service MUST return a value of true if the value of the first operand is
greater than or equal to the value of the second operand, and false if not. Actual ordering and
comparison of values is data service-specific and no semantics for doing so are mandated;

however, a data service MUST always use consistent semantics when ordering and comparing
values.

The data service MAY support evaluating operands with null values following the rules defined
in Lifted Operators (section 2.2.3.6.1.1.5).

notExpression: A data service MAY support the unary logical negation operator. The operation
of logically negating an expression is represented by the notExpression common expression
in the common expression syntax. If this operation is supported, the data service MAY<23>

81 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

support some or all of the common expressions as operand values of the operation as long as
the operand expression evaluates to a value of the EDM primitive type Edm.Boolean. The

data service SHOULD NOT support operand expressions of any other EDM primitive type for
the notExpression.

The EDM primitive type of the result of evaluating the notExpression MUST be
Edm.Boolean.

If supported, the data service MUST evaluate the logical negation operation by returning false
if the operand value is true and returning true if the operand value is false.

The data service MAY support evaluating an operand with a null value following the rules
defined in Lifted Operators (section 2.2.3.6.1.1.5).

isofExpression: A data service MAY support the isof operation. The operation of checking

whether an instance is compatible with a given type is represented by the isofExpression
common expression in the common expression syntax. If this operation is supported, the data
service MAY<24> support some or all of the common expressions as the first operand value.

In addition, the data service MAY support the first operand as being optional. In the case
where it is not included, then the isof operation is interpreted to apply to the entity instance
specified by the navigation portion of the request URI. The second operand MUST be a

stringUriLiteral that represents the name of a known entity or EDM primitive type.

The EDM primitive type of the result of evaluating the isofExpression MUST be
Edm.Boolean.

If supported, the data service MUST evaluate the isofExpression to return a value of true if
the targeted instance MAY be converted to the specified type. If the conversion is not allowed,
the expression MUST be evaluated to false.

The data service MAY support evaluating an operand with a null value following the rules

defined in Lifted Operators (section 2.2.3.6.1.1.5).

castExpression: A data service MAY support the cast expression. The operation of converting an

expression to a given type is represented by the castExpression common expression in the
common expression syntax. If this operation is supported, the data service MAY<25> support
some or all of the common expressions as the first operand value. In addition, the data
service MAY support the first operand as being optional. In the case where it is not included,
then the cast operation is interpreted to apply to the entity instance specified by the

navigation portion of the request URI. The second operand MUST be a stringUriLiteral that
represents the name of a known entity or EDM primitive type to convert the first operand to.

The type of the result of evaluating the castExpression MUST be the same type as
represented by the string literal value from the second operand. A data service MAY support
any cast operations where there exists an explicit conversion from the targeted instance (first
operand) to the type represented by second operand. In all other cases, the data service

SHOULD NOT support the specified cast operation.

The data service MAY support evaluating an operand with a null value following the rules
defined in Lifted Operators (section 2.2.3.6.1.1.5).

boolCastExpression: A data service MAY support the Boolean cast expression. The operation of
converting an expression to a Boolean value is represented by the boolCastExpression
common expression in the common expression syntax. If this operation is supported, the data
service MAY<26> support some or all of the common expressions as the first operand value.

In addition, the data service MAY support the first operand as being optional. In the case
where it is not included, then the cast operation is interpreted to apply to the entity instance

82 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

specified by the navigation portion of the request URI. The second operand MUST be the
stringUriLiteral "Edm.Boolean".

The type of the result of evaluating the boolCastExpression MUST be EDM primitive type
Edm.Boolean. A data service MAY support any cast operations where there exists an explicit

conversion from the targeted instance (first operand) to the EDM primitive type
Edm.Boolean. In all other cases, the data service SHOULD NOT support the specified cast
operation.

The data service MAY support evaluating an operand with a null value following the rules
defined in Lifted Operators (section 2.2.3.6.1.1.5).

boolLiteralExpression: A data service MAY support expressions that are literals representing a
Boolean value. These expressions are represented by the boolLiteralExpression common

expression in the common expression syntax.

If supported, the type of the boolLiteralExpression MUST always be the EDM primitive type
Edm.Boolean.

literalExpression: A data service MAY support expressions that are literals. These expressions
are represented by the literalExpression common expression in the common expression
syntax.

If supported, the type of the literalExpression MUST be the EDM primitive type for the
lexical representation of the literal, as specified in Abstract Type System (section 2.2.2).

methodCallExpression: A data service MAY support the methodCallExpression common
expression. If supported, a methodCallExpression MUST represent a method call in the
common expression syntax.

boolMethodCallExpression: A data service MAY support the boolMethodCallExpression
common expression. If supported, a boolMethodCallExpression MUST be a method call

expression that evaluates to the EDM primitive type Edm.Boolean.

endsWithMethodCallExpression: A data service MAY support the EndsWith method. This
method call is represented as an endsWithMethodCallExpression common expression in
the common expression syntax. If this method is supported, the data service MAY<27>
support some or all of the common expressions as the parameters of this method. The
parameter expressions MUST evaluate to a value of the EDM primitive type Edm.String.

The endsWithMethodCallExpression SHOULD NOT be supported for parameters of any

other EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
endsWithMethodCallExpression SHOULD be a value of the EDM primitive type
Edm.Boolean.

If supported, the data service SHOULD evaluate the method call represented by the
endsWithMethodCallExpression by returning a Boolean value indicating whether the end of
the first parameter value matches the second parameter value. Actual comparison of values is

data service-specific and no semantics for doing so are mandated; however, a data service
MUST always use consistent semantics when comparing values.

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert
the parameters to a supported EDM primitive type.

indexOfMethodCallExpression: A data service MAY support the IndexOf method. This method
call is represented as an indexOfMethodCallExpression common expression in the common

83 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

expression syntax. If this method is supported, the data service MAY<28> support some or all
of the common expressions as the parameters of this method. The parameter expressions

MUST evaluate to a value of the EDM primitive type Edm.String.

The indexOfMethodCallExpression SHOULD NOT be supported for parameters of any other

EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
indexOfMethodCallExpression SHOULD be a value of the EDM primitive type Edm.Int32.

If supported, the data service SHOULD evaluate the method call represented by the
indexOfMethodCallExpression by returning an integer value indicating the index of the first
occurrence of the second parameter value in the first parameter value. If no index is found, a
value of -1 SHOULD be returned. Actual comparison of values is data service-specific and no
semantics for doing so are mandated; however, a data service MUST always use consistent

semantics when comparing values.

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert
the parameters to a supported EDM primitive type.

replaceMethodCallExpression: A data service MAY support the replace method. This method
call is represented as a replaceMethodCallExpression common expression in the common

expression syntax. If this method is supported, the data service MAY<29> support some or all
of the common expressions as the parameters of this method. The parameter expressions
MUST evaluate to a value of the EDM primitive type Edm.String.

The replaceMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
replaceMethodCallExpression SHOULD be a value of the EDM primitive type Edm.String.

If supported, the data service SHOULD evaluate the method call represented by the

replaceMethodCallExpression by returning a string value with all occurrences of the second
parameter value replaced by the third parameter value in the first parameter value. Actual
comparison of values is data service-specific and no semantics for doing so are mandated;
however, a data service MUST always use consistent semantics when comparing values.

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters, as defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4), to implicitly
convert the parameters to a supported EDM primitive type.

startsWithMethodCallExpression: A data service MAY support the startswith method. This
method call is represented as a startsWithMethodCallExpression common expression in
the common expression syntax. If this method is supported, the data service MAY<30>
support some or all of the common expressions as the parameters of this method. The
parameter expressions MUST evaluate to a value of the EDM primitive type Edm.String.

The startsWithMethodCallExpression SHOULD NOT be supported for parameters of any

other EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
startsWithMethodCallExpression SHOULD be a value of the EDM primitive type
Edm.Boolean.

If supported, the data service SHOULD evaluate the method call represented by the
startsWithMethodCallExpression by returning a Boolean value indicating whether the
beginning of the first parameter values matches the second parameter value. Actual
comparison of values is data service-specific and no semantics for doing so are mandated,

however a data service MUST always use consistent semantics when comparing values.

84 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert

the parameters to a supported EDM primitive type.

toLowerMethodCallExpression: A data service MAY support the tolower method. This method

call is represented as a toLowerMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<31> support some or all
of the common expressions as the parameter of this method. The parameter expressions
MUST evaluate to a value of the EDM primitive type Edm.String.

The toLowerMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
toLowerMethodCallExpression SHOULD be a value of the EDM primitive type Edm.String.

If supported, the data service SHOULD evaluate the method call represented by the
toLowerMethodCallExpression by returning a string value with the contents of the
parameter value converted to lower case. Actual definition of lower case is data service-
specific and no semantics are mandated; however, a data service MUST always use consistent

semantics when converting to lower case.

If supported, a data service SHOULD follow the numeric promotion rules for method call

parameters, defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4), to implicitly
convert the parameters to a supported EDM primitive type.

toUpperMethodCallExpression: A data service MAY support the toupper method. This method
call is represented as a toUpperMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<32> support some or all
of the common expressions as the parameter of this method. The parameter expressions
MUST evaluate to a value of the EDM primitive type Edm.String.

The toUpperMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
toUpperMethodCallExpression SHOULD be a value of the EDM primitive type Edm.String.

If supported, the data service SHOULD evaluate the method call represented by the
toUpperMethodCallExpression by returning a string value with the contents of the
parameter value converted to upper case. Actual definition of upper case is data service-
specific and no semantics are mandated; however, a data service MUST always use consistent

semantics when converting to upper case.

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters, defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4), to implicitly
convert the parameters to a supported EDM primitive type.

trimMethodCallExpression: A data service MAY support the trim method. This method call is
represented as a trimMethodCallExpression common expression in the common expression

syntax. If this method is supported, the data service MAY<33> support some or all of the
common expressions as the parameter of this method. The parameter expressions MUST
evaluate to a value of the EDM primitive type Edm.String.

The trimMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
trimMethodCallExpression SHOULD be a value of the EDM primitive type Edm.String.

If supported, the data service SHOULD evaluate the method call represented by the

trimMethodCallExpression by returning a string value with the contents of the parameter
value with all leading and trailing white-space characters removed. Actual definition of white

85 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

space is data service-specific and no semantics are mandated; however, a data service MUST
always use consistent semantics when identifying white space.

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters, defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4), to implicitly

convert the parameters to a supported EDM primitive type.

substringMethodCallExpression: A data service MAY support the substring method. This
method call is represented as a substringMethodCallExpression common expression in the
common expression syntax. If this method is supported, the data service MAY<34> support
some or all of the common expressions as the parameters of this method. The first parameter
expression MUST evaluate to a value of the EDM primitive type Edm.String. The second and
third parameter expressions MUST evaluate to a value of the EDM primitive type Edm.Int32.

The substringMethodCallExpression SHOULD NOT be supported for parameters of any
other EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
substringMethodCallExpression SHOULD be a value of the EDM primitive type
Edm.String.

If supported, the data service SHOULD evaluate the method call represented by the
substringMethodCallExpression by returning the string value starting at the character

index specified by the second parameter value in the first parameter string value. If the
optional third parameter is specified, then the resulting string should be the length (in
characters) of the third parameter value. Otherwise, the entire string from the specified
starting index is returned.

subStringOfMethodCallExpression: A data service MAY support the substringof method. This
method call is represented as a substringOfMethodCallExpression common expression in
the common expression syntax. If this method is supported, the data service MAY<35>

support some or all of the common expressions as the parameters of this method. The
parameter expressions MUST evaluate to a value of the EDM primitive type Edm.String.

The substringOfMethodCallExpression SHOULD NOT be supported for parameters of any
other EDM primitive types. If supported, the EDM primitive type of the result of evaluating the

substringOfMethodCallExpression SHOULD be a value of the EDM primitive type
Edm.Boolean.

If supported, the data service SHOULD evaluate the method call represented by the

substringOfMethodCallExpression by returning a Boolean value indicating whether the
first parameter string value occurs in the second parameter string value. Actual comparison of
values is data service-specific and no semantics for doing so is mandated; however, a data
service MUST always use consistent semantics when comparing values.

concatMethodCallExpression: A data service MAY support the concat method. This method
call is represented as a concatMethodCallExpression common expression in the common

expression syntax. If this method is supported, the data service MAY<36> support some or all
of the common expressions as the parameters of this method. The parameter expressions
MUST evaluate to a value of the EDM primitive type Edm.String.

The concatMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
concatMethodCallExpression SHOULD be a value of the EDM primitive type Edm.String.

If supported, the data service SHOULD evaluate the method call represented by the

concatMethodCallExpression by returning a string value that is the first and second
parameter values merged together with the first parameter value coming first in the result.

86 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

lengthMethodCallExpression: A data service MAY support the length method. This method
call is represented as a lengthMethodCallExpression common expression in the common

expression syntax. If this method is supported, the data service MAY<37> support some or all
of the common expressions as the parameter of this method. The parameter expressions

MUST evaluate to a value of the EDM primitive type Edm.String.

The lengthMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types. If supported, the EDM primitive type of the result of evaluating the
lengthMethodCallExpression SHOULD be a value of the EDM primitive type Edm.Int32.

If supported, the data service SHOULD evaluate the method call represented by the
lengthMethodCallExpression by returning the number of characters in the specified
parameter value. Actual definition of how to calculate string length is data service-specific and

no semantics for doing so are mandated; however, a data service MUST always use consistent
semantics when calculating the length.

getTotalOffsetMinutesMethodCallExpression: A data service MAY support the
getTotalOffsetMinutes method. This method call is represented as a

getTotalOffsetMinutesMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<38> support some or all

of the common expressions as the parameter of this method. The parameter expression MUST
evaluate to a value of the EDM primitive type Edm.DateTimeOffset.

The getTotalOffsetMinutesMethodCallExpression SHOULD NOT be supported for
parameters of any other EDM primitive types.

If supported, the EDM primitive type of the result of evaluating the
getTotalOffsetMinutesMethodCallExpression SHOULD be the EDM primitive type
Edm.Int32.

If supported, the data service SHOULD evaluate the method call represented by the
getTotalOffsetMinutesMethodCallExpression by returning the signed number of minutes
in the time zone offset part of the DateTimeOffset parameter value, evaluated in the time
zone of the DateTimeOffset parameter value.

yearMethodCallExpression: A data service MAY support the year method. This method call is
represented as a yearMethodCallExpression common expression in the common expression
syntax. If this method is supported, the data service MAY<39> support some or all of the

common expressions as the parameter of this method. The parameter expression MUST
evaluate to a value of either the EDM primitive type Edm.DateTime or the EDM primitive
type Edm.DateTimeOffset.

The yearMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types.

If supported, the EDM primitive type of the result of evaluating the

yearMethodCallExpression SHOULD be the EDM primitive type Edm.Int32.

If supported, the data service SHOULD evaluate the method call represented by the
yearMethodCallExpression by returning the year component value of the parameter value.

monthMethodCallExpression: A data service MAY support the month method. This method
call is represented as a monthMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<40> support some or all
of the common expressions as the parameter of this method. The parameter expression MUST

evaluate to a value of either the EDM primitive type Edm.DateTime or the EDM primitive
type Edm.DateTimeOffset.

87 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The monthMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types.

If supported, the EDM primitive type of the result of evaluating the
monthMethodCallExpression SHOULD be the EDM primitive type Edm.Int32.

If supported, the data service SHOULD evaluate the method call represented by the
monthMethodCallExpression by returning the month component value of the parameter
value.

dayMethodCallExpression: A data service MAY support the day method. This method call is
represented as a dayMethodCallExpression common expression in the common expression
syntax. If this method is supported, the data service MAY<41> support some or all of the
common expressions as the parameter of this method. The parameter expression MUST

evaluate to a value of either the EDM primitive type Edm.DateTime or the EDM primitive
type Edm.DateTimeOffset.

The dayMethodCallExpression SHOULD NOT be supported for parameters of any other EDM

primitive types.

If supported, the EDM primitive type of the result of evaluating the
dayMethodCallExpression SHOULD be the EDM primitive type Edm.Int32.

If supported, the data service SHOULD evaluate the method call represented by the
dayMethodCallExpression by returning the day component value of the parameter value.

hourMethodCallExpression: A data service MAY support the hour method. This method call is
represented as an hourMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<42> support some or all
of the common expressions as the parameter of this method. The parameter expression MUST
evaluate to a value of EDM primitive type Edm.DateTime, Edm.DateTimeOffset, or

Edm.Time.

The hourMethodCallExpression SHOULD NOT be supported for parameters of any other

EDM primitive types.

If supported, the EDM primitive type of the result of evaluating the
hourMethodCallExpression SHOULD be the EDM primitive type Edm.Int32.

If supported, the data service SHOULD evaluate the method call represented by the
hourMethodCallExpression by returning the hour component value of the parameter value

using a 24-hour range to cover an entire day without an AM/PM indicator and by starting at 0.

minuteMethodCallExpression: A data service MAY support the minute method. This method
call is represented as a minuteMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<43> support some or all
of the common expressions as the parameter of this method. The parameter expression MUST
evaluate to a value of EDM primitive type Edm.DateTime, Edm.DateTimeOffset, or

Edm.Time.

The minuteMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types.

If supported, the EDM primitive type of the result of evaluating the
minuteMethodCallExpression SHOULD be the EDM primitive type Edm.Int32.

88 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If supported, the data service SHOULD evaluate the method call represented by the
minuteMethodCallExpression by returning the minute component value of the parameter

value.

secondMethodCallExpression: A data service MAY support the second method. This method

call is represented as a secondMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<44> support some or all
of the common expressions as the parameter of this method. The parameter expression MUST
evaluate to a value of EDM primitive type Edm.DateTime, Edm.DateTimeOffset, or
Edm.Time.

The secondMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types.

If supported, the EDM primitive type of the result of evaluating the
secondMethodCallExpression SHOULD be the EDM primitive type Edm.Int32.

If supported, the data service SHOULD evaluate the method call represented by the

secondMethodCallExpression by returning the second component value of the parameter
value.

roundMethodCallExpression: A data service MAY support the round method. This method call

is represented as a roundMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<45> support some or all
of the common expressions as the parameter of this method. The parameter expression MUST
evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

The roundMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types.

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert
the parameters to a supported EDM primitive type. The EDM primitive type of the result of
evaluating the roundMethodCallExpression MUST be the same type as the parameter.

If supported, the data service SHOULD evaluate the method call represented by the

roundMethodCallExpression by returning the nearest integral value to the parameter
value, following the rules defined in [IEEE754-2008] for the rounding operation.

floorMethodCallExpression: A data service MAY support the floor method. This method call is
represented as a floorMethodCallExpression common expression in the common expression
syntax. If this method is supported, the data service MAY<46> support some or all of the
common expressions as the parameter of this method. The parameter expression MUST

evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

The floorMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types.

http://go.microsoft.com/fwlink/?LinkId=154130

89 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert

the parameters to a supported EDM primitive type. The EDM primitive type of the result of
evaluating the floorMethodCallExpression MUST be the same type as the parameter after

the promotion rules have been applied.

If supported, the data service SHOULD evaluate the method call represented by the
floorMethodCallExpression by returning the largest integral value less than or equal to the
parameter value, following the rules defined in [IEEE754-2008] for the floor operation.

ceilingMethodCallExpression: A data service MAY support the ceiling method. This method
call is represented as a ceilingMethodCallExpression common expression in the common
expression syntax. If this method is supported, the data service MAY<47> support some or all

of the common expressions as the parameter of this method. The parameter expression MUST
evaluate to a value of one of the following EDM primitive types:

Edm.Decimal

Edm.Double

The ceilingMethodCallExpression SHOULD NOT be supported for parameters of any other

EDM primitive types.

If supported, a data service SHOULD follow the numeric promotion rules for method call
parameters defined in Binary Numeric Promotions (section 2.2.3.6.1.1.4) to implicitly convert
the parameters to a supported EDM primitive type. The EDM primitive type of the result of
evaluating the floorMethodCallExpression MUST be the same type as the parameter after
the promotion rules have been applied.

If supported, the data service SHOULD evaluate the method call represented by the

ceilingMethodCallExpression by returning the smallest integral value greater than or equal
to the parameter value, following the rules defined in [IEEE754-2008] for the ceiling
operation.

distanceMethodCallExpression: A data service MAY support the geo.distance method. This
method call is represented as a distanceMethodCallExpression common expression in the
common expression syntax. If this method is supported, the data service MAY support some
or all of the common expressions as the parameter of this method. The parameter expression

MUST evaluate to a value of one of the following EDM primitive types:

Edm.GeographyPoint

Edm.GeometryPoint

The distanceMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types, except in compliance with Geospatial Extension Methods (section

2.2.3.6.1.1.8).

If supported, a data service MAY perform coordinate transformations, as specified in
Geospatial Coordinate Transformations (section 2.2.3.6.1.1.7) to implicitly convert the

parameters to the same EDM primitive type, with the same system reference identifier
(SRID). For further details about SRID, see [MC-CSDL] Edm.GeographyPoint SRID (section
2.2.1.18.1.1) and Edm.GeometryPoint SRID (section 2.2.1.26.1.1). If the system does not
support coordinate transformations, it MUST require that the two arguments be of the same

type and in the same SRID. The EDM primitive type of the result of evaluating the
distanceMethodCallExpression MUST be Edm.Double.

http://go.microsoft.com/fwlink/?LinkId=154130
http://go.microsoft.com/fwlink/?LinkId=154130
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

90 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If supported, the data service SHOULD evaluate the method call that is represented by the
distanceMethodCallExpression by computing the geospatial distance between the two

points in the coordinate reference system signified by the two points' SRIDs, according to an
algorithm that is correct for the datum of that coordinate reference system. For

Edm.GeometryPoint, the algorithm is minimum-distance, as defined in [OGC-SFOLECOM].
Multiple reasonable algorithms exist for Edm.GeographyPoint, such as minimum-distance or
length of great elliptical arc. The implementation SHOULD choose some reasonable algorithm.

If the implementation supports both geoLengthMethodCallExpression and
distanceMethodCallExpression, it MUST use compatible algorithms for these two
operations. In particular, for any two positions A & B, geo.distance(Point(A), Point(B)) MUST
equal geo.Length(LineString(A, B)).

geoLengthMethodCallExpression: A data service MAY support the geo.length method. This
method call is represented as a geoLengthMethodCallExpression common expression in
the common expression syntax. If this method is supported, the data service MAY support
some or all of the common expressions as the parameter of this method. The parameter
expression MUST evaluate to a value of one of the following EDM primitive types:

Edm.GeographyLineString

Edm.GeometryLineString

The distanceMethodCallExpression SHOULD NOT be supported for parameters of any other
EDM primitive types, except in compliance with Geospatial Extension Methods (section
2.2.3.6.1.1.8).

The EDM primitive type of the result of evaluating the distanceMethodCallExpression
MUST be Edm.Double.

If supported, the data service SHOULD evaluate the method call represented by the
geoLengthMethodCallExpression by computing the path length of the LineString in the
coordinate reference system signified by its SRID, according to an algorithm that is correct for
the datum of that coordinate reference system. For Edm.GeometryLineString, the

algorithm is sum of minimum-distance, as defined in [OGC-SFOLECOM]. Multiple reasonable
algorithms exist for Edm.GeographyLineString, such as sum of minimum-distance or sum
of length of great elliptical arc. The implementation SHOULD choose some reasonable

algorithm.

If the implementation supports both geoLengthMethodCallExpression and
distanceMethodCallExpression, it MUST use compatible algorithms for these two
operations. In particular, for any two positions A & B, geo.distance(Point(A), Point(B)) MUST
equal geo.Length(LineString(A, B)).

intersectsMethodCallExpression: A data service MAY support the geo.intersects method.

This method call is represented as an intersectsMethodCallExpression common expression
in the common expression syntax. If this method is supported, the data service MAY support
some or all of the common expressions as the parameter of this method. The parameter
expression MUST evaluate to a value such that the arguments are one of the following sets of

EDM primitive types:

Edm.GeographyPoint and Edm.GeographyPolygon, in either order

Edm.GeometryPoint and Edm.GeometryPolygon, in either order

http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591

91 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The intersectsMethodCallExpression SHOULD NOT be supported for parameters of any
other EDM primitive types, except in compliance with Geospatial Extension Methods (section

2.2.3.6.1.1.8).

If supported, a data service MAY perform coordinate transformations, as specified in

Geospatial Coordinate Transformations (section 2.2.3.6.1.1.7) to implicitly convert the
parameters to a supported set of EDM primitive types, with the same SRID. If the system
does not support coordinate transformations, it MUST require that the two arguments be of a
supported set of types and in the same SRID. The EDM primitive type of the result of the
evaluation of the distanceMethodCallExpression MUST be Boolean.

If supported, the data service SHOULD evaluate the method call that is represented by the
intersectsMethodCallExpression by computing whether the point lies within the interior or

the boundary of the polygon, as defined in [OGC-SFOLECOM].

implicitVariableExpression: Within a lambdaPredicateExpression a data service SHOULD
support an implicitVariableExpression ($it) to unambiguously refer to a variable that
represents the members of the collection that are being filtered by the filterQueryOption.

lambdaVariableExpression: To allow a lambdaPredicateExpression to refer to the members
of the collection that a lambdaMethodCallExpression call is bound to, a

lambdaVariableExpression MUST be specified.

A variable name is specified by using a lambdaVariableExpression common expression in
the common expression syntax. This variable name can then be used in a
lambdaPredicateExpression to specify a filter over the corresponding collection.

inscopeVariableExpression: When firstMemberExpression expressions are inside a
lambdaPredicateExpression, variable names MUST be used to avoid ambiguity. Referring to
variables that are currently available (in scope) is represented by using an

inscopeVariableExpression common expression in the common expression syntax.

Inside a lambdaPredicateExpression there are at least two collection variables that can be
referred to, namely $it (implicitVariableExpression) and whatever explicit names have

been introduced by lambdaVariableExpression.

lambdaMethodCallExpression expressions can be nested inside an
inscopeVariableExpression, which would mean that three or more variables can be in
scope.

lambdaPredicateExpression: A data service MAY support use of nested filters with
lambdaMethodCallExpression expressions. The nested filter is applied to the members of
the collection to which the lambdaMethodCallExpression is bound. This nested filter is
represented as a lambdaPredicateExpression common expression in the common
expression syntax.

A lambdaPredicateExpression follows the same rules as a boolCommonExpression, with

the additional restriction that any nested firstMemberExpression expressions MUST be
disambiguated using a lambdaPredicatePrefixExpression.

lambdaPredicatePrefixExpression: This is a prefix based on an inscopeVariableExpression
that MUST be prepended to all firstMemberExpression expressions that are found inside
lambdaPredicateExpression expressions.

collectionPathExpression: lambdaMethodCallExpression expressions MUST be bound to
either an entityCollectionProperty or an entityNavProperty-es. This is specified by using

collectionPathExpression common expression in common expression syntax.

http://go.microsoft.com/fwlink/?LinkId=233591

92 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the collectionPathExpression is nested inside a lambdaPredicateExpression, an
inscopeVariableExpression MUST be used to identify the variable that the expression is

bound to.

singlePathExpression: Sometimes the entityCollectionProperty or entityNavProperty-es

that should be bound to lambdaMethodCallExpression is not directly available; in this case,
clients may need to first go through an entityNavProperty-et or an
entityComplexProperty. A data service MAY choose to support accessing nested collections
by using a singlePathExpression common expression in common expression syntax.

If the singlePathExpression is nested inside a lambdaPredicateExpression, an
inscopeVariableExpression MUST be used to identify what variable to bind the expression
to.

lambdaMethodCallExpression: A lambdaMethodCallExpression is either an
anyMethodCallExpression or an allMethodCallExpression.

anyMethodCallExpression: A data service MAY support the any method. This method MUST be

bound to a collection, either an entityNavProperty-es or an entityCollectionProperty, via
a collectionPathExpression.

If there is no lambdaVariableExpression or lambdaPredicateExpression, the data

service MUST return false if the bound collection is empty or otherwise true.

If a lambdaVariableExpression is specified, a lambdaPredicateExpression MUST also be
specified.

The data service method MUST return true if any members of the collection satisfy the filter
that is specified in the lambdaPredicateExpression or otherwise false.

lambdaMethodCallExpression expressions can be nested inside an
anyMethodCallExpression.

allMethodCallExpression: A data service MAY support the all method. This method call is

represented as an allMethodCallExpression common expression in the common expression
syntax.

The data service method MUST return true if there are no members in the bound collection.

The data service MUST return true if all members of the bound collection satisfy the filter that
is specified by the lambdaVariableExpression or otherwise false.

lambdaMethodCallExpression expressions can be nested inside an

allMethodCallExpression.

functionCallExpression: A data service MAY support functionCallExpression. Non-binding
parameters to functionCallExpression MUST be provided inline.

Binding parameters to functionCallExpression expressions MUST be provided either inline,
or via the optional memberExpression or firstMemberExpression that starts the

functionCallExpression.

boolFunctionCallExpression: A data service MAY support boolFunctionCallExpression,
which is a functionCallExpression with the added restriction that the ReturnType of the
corresponding function MUST be a Boolean value.

93 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

functionParametersExpression: A data service MAY support passing one or more parameters
in a functionCallExpression by using the functionParametersExpression.

functionParameterExpression: A parameter within a functionParametersExpression is
represented by using a functionParameterExpression that contains the name and value of

the parameter. The data service MAY<48> support some or all of the allowable expressions
for the value of the parameter.

structuralValue: A data service MAY support passing a complex type, multi-value, entity, or
collection of entities as the value in a functionParameterExpression by using a
structuralValue.

entityReference: A data service MAY support passing an entity or collection of entities by
reference as the value in a functionParameterExpression by using an entityReference.

2.2.3.6.1.1.2 Operator Precedence

The following table summarizes the precedence of operators in the common expression syntax.

Operators are listed by operator category in order of precedence from highest to lowest. Operators
in the same category have equal precedence.

Category Expression Common Expression

Grouping (x) parenExpression, boolParenExpression

Primary x/m memberExpression

Primary x(…) methodCallExpression, boolMethodCallExpression

Unary -x negateExpression

Unary not x notExpression

Unary cast(T), cast(x, T) castExpression

Multiplicative x mul y mulExpression

Multiplicative x div y divExpression

Multiplicative x mod y modExpression

Additive x add y addExpression

Additive x sub y subExpression

Relational and type testing x lt y ltExpression

Relational and type testing x gt y gtExpression

Relational and type testing x le y leExpression

Relational and type testing x ge y geExpression

Relational and type testing isof(T), isof(x, T) isofExpression

Equality x eq y eqExpression

Equality x ne y neExpression

94 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Category Expression Common Expression

Conditional AND x and y andExpression

Conditional OR x or y orExpression

Table: Operator Precedence for Query Option Expressions

A data service MAY<49> support some or all of the common expressions that represent the
operators above. For supported operators, the data service SHOULD evaluate the operators in a

common expression in order of precedence of operator category.

2.2.3.6.1.1.3 Unary Numeric Promotions

A data service MAY support unary numeric promotions for the negation operator
(negateExpression common expressions). Unary promotions consist of converting operands of
type Edm.Byte or Edm.Int16 to Edm.Int32 and of type Edm.Single to Edm.Double.

2.2.3.6.1.1.4 Binary Numeric Promotions

A data service MAY support binary numeric promotion for operands of the following operations.

Operation Common Expression

Addition addExpression

Subtraction subExpression

Multiplication mulExpression

Division divExpression

Modulo modExpression

Equality eqExpression

Non-Equality neExpression

Greater Than gtExpression

Less Than ltExpression

Greater Than or Equal geExpression

Less Than or Equal leExpression

Table: Operations that Support Binary Numeric Promotion

If supported, binary numeric promotion SHOULD implicitly convert both operands to a common type
and, in the case of the nonrelational operators, also become the return type.

If supported, a data service SHOULD support binary numeric promotion for the following Entity Data
Model (EDM) primitive types:

Edm.Decimal

Edm.Double

95 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Edm.Single

Edm.Byte

Edm.Int16

Edm.Int32

Edm.Int64

If supported, binary numeric promotion SHOULD consist of the application of the following rules in
the order specified:

If either operand is of type Edm.Decimal, the other operand is converted to Edm.Decimal

unless it is of type Edm.Single or Edm.Double.

Otherwise, if either operand is Edm.Double, the other operand is converted to type

Edm.Double.

Otherwise, if either operand is Edm.Single, the other operand is converted to type Edm.Single.

Otherwise, if either operand is Edm.Int64, the other operand is converted to type Edm.Int64.

Otherwise, if either operand is Edm.Int32, the other operand is converted to type Edm.Int32

Otherwise, if either operand is Edm.Int16, the other operand is converted to type Edm.Int16.

If binary numeric promotion is supported, a data service SHOULD use a castExpression to

promote an operand to the target type.

2.2.3.6.1.1.5 Lifted Operators

A data service MAY support the allowance of operators that operate on Entity Data Model (EDM)
primitive types to also be used with nullable forms of those types for the following operations.

Type Operation Common Expression

unary negate

not

negateExpression

notExpression

binary add

sub

mul

div

mod

addExpression

subExpression

mulExpression

divExpression

modExpression

relational gt

ge

lt

le

gtExpression

geExpression

ltExpression

leExpression

equality eq

ne

eqExpression

neExpression

logical and andExpression

96 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Type Operation Common Expression

or orExpression

member / memberExpression

boolPrimitiveMemberExpression

Table: Lifted operators

If supported, for unary operators, a data service MUST return the value null if the operand value

is null.

If supported, for binary operators, a data service MUST return the value null if either operand

value is null.

If supported, for relational operators, a data service MUST return the value false if one or both of

the operands is null.

If supported, for equality operators, a data service MUST consider two null values equal and a

null value unequal to any non-null value.

If supported, for logical operators, a data service MUST return the true or false, even if one or

more operand values are null. For the purposes of comparison semantics, any null operand to a

logical operation SHOULD be treated as false.<50>

If supported, for member operators, a data service MUST return null if any of the

NavigationProperties are null.

If supported, for Boolean expressions evaluated to the value of null, a data service MUST return

the value of false.

2.2.3.6.1.1.6 Numeric Promotions for Method Call Parameters

A data service MAY support numeric promotions for method call parameters.

If supported, a data service SHOULD support binary numeric promotions for the following Entity
Data Model (EDM) primitive types:

Edm.Decimal

Edm.Double

Edm.Single

Edm.Byte

Edm.Int16

Edm.Int32

Edm.Int64

If supported, numeric promotions for method parameters SHOULD consist of the application of the
following rules in the order specified:

If either operand is of type Edm.Double, the other operand is converted to type Edm.Double.

%5bMC-CSDL%5d.pdf

97 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Otherwise, if either operand is of type Edm.Single, the other operand is converted to type

Edm.Single.

Otherwise, if either operand is of type Edm.Decimal, the other operand is converted to type

Edm.Decimal.

Otherwise, if either operand is of type Edm.Int64, the other operand is converted to type

Edm.Int64.

Otherwise, if either operand is of type Edm.Int32, the other operand is converted to type

Edm.Int32

Otherwise, if either operand is of type Edm.Int16, the other operand is converted to type

Edm.Int16.

If binary numeric promotion is supported, a data service SHOULD use a castExpression to

promote an operand to the target type.

2.2.3.6.1.1.7 Geospatial Coordinate Transformations

A data service MAY choose to support transformation between geospatial coordinate systems. If so,
the implementation MUST support one of the following two levels of transformation: coordinate
transformations within a topology, or arbitrary coordinate transformations, that is, transformation
between any two coordinate systems.

2.2.3.6.1.1.7.1 Coordinate Transformations Within a Topology

Coordinate transformations within a topology MUST NOT change the type of the Edm.Primitive that

is being transformed. Coordinate transformations change the SRID, as well as the values for the
positions in the value.

A data service MAY choose to allow coordinate transformations between any pairs of SRIDs that the
data service is capable of transforming. If a service chooses to support a particular transformation,
the algorithm that it chooses is undefined by this standard. However, it MUST meet the following

two criteria:

The geospatial value before and after the transformation MUST represent the same, or as a

similar as possible, set of positions on the earth. One potential algorithm is to directly transform
each control position within the geospatial value. Whichever algorithm is chosen MUST NOT result
in a greater margin of error than this potential algorithm.

The algorithm SHOULD comply with common practice in the geospatial field. If possible, it

SHOULD follow a standard provided by a relevant standards body.

2.2.3.6.1.1.7.2 Arbitrary Coordinate Transformations

The types that inherit from Edm.Geography constitute the geographic topology, while the types
that inherit from Edm.Geometry constitute the geometric topology. The former uses a round model
of Earth, while the latter uses a flat model.

A service that supports arbitrary coordinate transformation MAY allow coordinate transformations
that change the type of the value, but only to transform it between corresponding types in these

two topologies. In particular, the type transformations MUST be between types in one of the
following pairs, in either direction:

Edm.GeographyPoint and Edm.GeometryPoint

98 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Edm.GeographyLineString and Edm.GeometryLineString

Edm.GeographyPolygon and Edm.GeometryPolygon

Edm.GeographyCollection and Edm.GeometryCollection

Edm.GeographyMultiPoint and Edm.GeometryMultiPoint

Edm.GeographyMultiLineString and Edm.GeometryMultiLineString

Edm.GeographyMultiPolygon and Edm.GeometryMultiPolygon

The algorithm that is used for the coordinate transformation MUST meet all of the same
requirements as specified in Coordinate Transformations Within a Topology (section

2.2.3.6.1.1.7.1).

2.2.3.6.1.1.8 Geospatial Extension Methods

A data service MAY support arbitrary method calls on geospatial types by using the function's
extensibility point. If the data service supports methods beyond those that are defined in this
standard, each method MUST meet exactly one of the following sets of criteria:

Extends types that are supported for defined functions.

Implements one of the functions defined in [OGC-SFOLECOM].

Arbitrary extension in a private namespace.

2.2.3.6.1.1.8.1 Extending Type Support for Defined Functions

A data service MAY extend the Edm.Primitive types that are allowed as parameters to the standard

geospatial functions. If the data service extends the Edm.Primitive types that are allowed as
parameters to the standard geospatial functions, the implementation MUST meet the following
criteria:

The parameters MUST be from the same topology after any coordinate transformations are

applied.

For types in the geometric topology, the behavior of the function MUST match the [OGC-

SFOLECOM] specification.

For types in the geographic topology, the behavior SHOULD be as similar to the [OGC-

SFOLECOM] specification as possible, taking into account the differences in the topologies.

The method MUST be implemented as an overload of the defined method. In particular, it MUST

have the same representation in URLs, varying only in the types of the parameters.

2.2.3.6.1.1.8.2 Implementing One of the Functions Defined in [OGC-SFOLECOM]

A data service MAY support additional functions as defined in [OGC-SFOLECOM]. If the data service

supports additional functions as defined in [OGC-SFOLECOM], the implementation MUST meet the
following criteria:

The parameters MUST be from the same topology after any coordinate transformations are

applied.

The parameters MUST be of types on which the function is supported in [OGC-SFOLECOM].

http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591

99 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

For types in the geometric topology, the behavior of the function MUST match the [OGC-

SFOLECOM] specification.

The function MAY be defined for types in the geographic topology. If it is, the behavior SHOULD

be as similar to the [OGC-SFOLECOM] specification as possible, taking into account the
differences in the topologies.

The method MAY be named in the geo namespace. If so, the name MUST be the name as defined

in [OGC-SFOLECOM], but translated to all lowercase. For example, a compliant version of the
[OGC-SFOLECOM] function “Union” MAY be named "geo.union".

2.2.3.6.1.1.8.3 Arbitrary Extensions

A data service MAY provide any additional geospatial operations, by defining them as functions.
Each such extension MUST meet the criteria of that section. Such extensions MUST NOT be placed in
the geo namespace. They SHOULD be placed in a namespace under the control of that data service.

2.2.3.6.1.2 Evaluating System Query Options

Any combination of the system query options defined in this document MAY be present on a valid

data service URI. A data service URI with more than one query option present MUST be evaluated as
if the query options were applied to the resource(s) identified by the resource path section of the
URI, in the following order: $filter, $inlinecount, $orderby, $skiptoken, $skip, $top, $expand,
$select, $format.

For example, using data from Appendix A: Sample Entity Data Model and CSDL Document (section
6), the resource identified by the data service URI
http://host/service/Customers?$expand=Orders&$filter=substringof(CompanyName

, 'bikes')&$orderby=CompanyName

asc&$top=2&$skip=3&$skiptoken='Contoso','AKFNU'&$inlinecount=allpages&$selec

t=CustomerID,CustomerName,Orders is determined as follows:

1. Start with the set of all EntityType instances in the Customers EntitySet in the data service.

2. Remove all customer instances that do not have "bikes" in their company name (the entities that
do not satisfy the condition in the $filter query option).

3. Determine the count N of all customers identified in step 2.

4. Sort the set of customers identified in step 2 in ascending order using the values from the
CompanyName property defined on the Customer EntityType.

5. Seek in to the collection up to the index identified by the $skiptoken query option. Select all
entities at the index through the end of the collection.

6. Starting from the 4th entity (from the collection returned by step 4), as directed by $skip=3,
select the next two entities (for example, the 5th and 6th entities in the set), as directed by
$top=2.

7. Of the two entities returned from step 6, select only the CustomerName and CustomerID
properties of the Customer entities and all properties of the Order entities. The preceding URI
identifies the two entities (and their related entities) returned from this step.

http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

100 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.3.6.1.3 Expand System Query Option ($expand)

The presence of the $expand system query option indicates that entities associated with the
EntityType instance or EntitySet, identified by the resource path section of the URI, MUST be

represented inline instead of as Deferred Content (section 2.2.6.2.6) and Deferred Content (section
2.2.6.3.9).

The server MUST include any actions or functions that are bound to the associated entities that are
introduced via an expandClause, unless a select system query option is also included in the
request and that $select requests that the actions/functions be omitted (section 2.2.3.6.1.11).

The following rules supplement the grammar below, which represents the syntax of this system
query option.

expandQueryOp = "$expand=" expandClause *("," expandClause)

expandClause = [namespaceQualifiedEnitityType"/"] entityNavProperty

*(["/"namespaceQualifiedEnitityType]"/" entityNavProperty)

 ; section 2.2.3.1

The left most entityNavProperty in an expandClause MUST represent a NavigationProperty
defined in the EntityType, or a subtype thereof, associated with the resource path section of the

URI. A subsequent NavigationProperty in the same expandClause MUST represent a
NavigationProperty defined on the EntityType, or a subtype thereof, represented by the prior
NavigationProperty in the expandClause.

Redundant expandClause rules on the same data service URI MAY be considered valid, but MUST
NOT alter the meaning of the URI.

Examples

http://host/service.svc/Customers?$expand=Orders

For each customer entity within the Customers EntitySet, the value of all associated Orders should

be represented inline.

http://host/service.svc/Orders?$expand=OrderLines/Product,Customer

For each Order within the Orders EntitySet, the following should be represented inline:

The Order lines associated to the Orders identified by the resource path section of the URI and

the products associated to each Order line.

The customer associated with each Order returned.

The OData 3.0 protocol supports specifying the namespace-qualified EntityType on which the
NavigationProperty is defined as part of the expand statement.

http://host/service.svc/Customers?$expand=SampleModel.VipCustomer/InHouseStaff

For each Customer entity in the Customers EntitySet, the value of all associated InHouseStaff
MUST be represented inline if the entity is of type VipCustomer or a subtype of that. For entity

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

101 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

instances that are not of type VipCustomer, or any of its subtypes, that entity instance MUST be
returned with no inline representation for the expanded NavigationProperty.

2.2.3.6.1.4 Filter System Query Option ($filter)

A data service URI with a $filter system query option identifies a subset of the entities in the
EntitySet, identified by the resource path section of the URI, by only selecting the entities that
satisfy the predicate expression specified by the query option.

The syntax of the filter system query option is defined as:

filterQueryOption = "$filter" [WSP] "=" [WSP] boolCommonExpression

Examples:

http://host/service.svc/Orders?$filter=ShipCountry eq 'France'

The set of Order entity instances where the ShipCountry is equal to the value "France".

http://host/service.svc/Orders?$filter = Customer/ContactName ne 'Fred'

The set of Order entity instances where the associated Customer entity instance has a
ContactName not equal to the value "Fred".

The syntax, construction, and evaluation rules for boolCommonExpression are defined in
Common Expression Syntax (section 2.2.3.6.1.1).

The OData 3.0 protocol supports specifying the namespace-qualified EntityType of the property

that is used in the filter.

http://host/service.svc/Customers?$filter =

SampleModel.VipCustomer/CreditPurchases/CreditLimit gt '5000'

The previous example shows the set of Customer entity instances that are of subtype

VipCustomer, or any of its subtypes, with a CreditLimit greater than $5000. If an entity instance
in the Customers EntitySet is not of type VipCustomer, or any of its subtypes, this falsifies the
terms within the predicate and MUST result in the exclusion of the entity instance from the results.

The OData 3.0 protocol supports anyMethodCallExpression and allMethodCallExpression used
in the filter.

Examples:

http://host/service.svc/Orders?$filter=OrderLines/any(ol: ol/Quantity gt 10)

In the previous example, the Orders that have any Orderlines with a Quantity greater than 10.

http://host/service.svc/Orders?$filter=OrderLines/all(ol: ol/Quantity gt 10)

In the previous example, the Orders for which all Orderlines have a Quantity greater than 10.

%5bMC-CSDL%5d.pdf

102 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.3.6.1.5 Format System Query Option ($format)

A data service URI with a $format system query option specifies that a response to the request
SHOULD use the media type specified by the query option.

If the $format query option is present in a request URI, it SHOULD take precedence over the
value(s) specified in the Accept (section 2.2.5.1) request header.

The syntax of the format system query option is defined as follows.

formatQueryOp = "$format="

 ("verbosejson"

 / "json"

 / "atom"

 / "xml"

 / <a data service specific value indicating a format specific

 to the specific data service>

 / <An IANA-defined [IANA-MMT] content type>

)

If the value of the query option is "atom", the media type used in the response MUST be

"application/atom+xml".

If the value of the query option is "verbosejson", the media type used in the response MUST be

"application/json;odata=verbose".

If the value of the query option is "json", the media type used in the response MUST be

"application/json".

If the value of the query option is "xml", the media type used in the response MUST be

"application/xml".

Examples:

http://host/service.svc/Orders?$format=verbosejson

The set of Order entities represented using the Verbose JSON media type, as specified in

[RFC4627].

The $format query option MAY be used in conjunction with RAW format (section 2.2.6.4) to specify
which RAW format is returned.

Example:

http://host/service.svc/Orders(1)/ShipCountry/$value/?$format=verbosejson

2.2.3.6.1.6 OrderBy System Query Option ($orderby)

A data service URI with a $orderby system query option specifies an expression for determining
what values are used to order the entities in the EntitySet, identified by the resource path section of
the URI.

The syntax of the OrderBy system query option is defined as:

orderByQueryOption = "$orderby" [WSP] "=" [WSP] commonExpression [WSP] [asc / desc]

http://go.microsoft.com/fwlink/?LinkId=140879
%5bMC-CSDL%5d.pdf

103 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 *("," [WSP] commonExpression [WSP] [asc / desc])

If supported, the data service MUST return the entities, in order, based on the expression specified.

If multiple expressions are specified and a data service supports sorting based on multiple values,
then a data service MUST return the entities ordered by a secondary sort for each additional
expression specified.

If the expression includes the optional asc clause or if no option is specified, the entities MUST be
returned in ascending order. If the expression includes the optional desc clause, the entities MUST
be returned in descending order. Actual ordering of results is data service specific and no semantics
for doing so are mandated. However, a data service MUST always use the same semantics when

ordering the results of a URI request.

Examples:

http://host/service.svc/Orders?$orderby=ShipCountry

The set of Order entity instances returned in ascending order of the ShipCountry property.

http://host/service.svc/Orders?$orderby = ShipCountry ne 'France' desc

The set of Order entity instances returned in descending order of the ShipCountry property not

equal to the value "France".

The syntax, construction, and evaluation rules for commonExpression are defined in Common

Expression Syntax (section 2.2.3.6.1.1).

The OData 3.0 protocol supports specifying the namespace-qualified EntityType of the property
that is used in the order by clause.

http://host/service.svc/Customers?$orderby

=SampleModel.VipCustomer/CreditPurchases/CreditLimit desc

The set of Customer entity instances returned in descending order CreditLimit if the instance is of

type VipCustomer. If the entity instance is not of type VipCustomer, or any of its subtypes, the
order for that entity instance is undefined. Actual ordering of such entity instances is specific to the
data service and no semantics for doing so are mandated; however, a data service MUST always use
the same semantics when ordering the results for such a URI request.

2.2.3.6.1.7 Skip System Query Option ($skip)

A data service URI with a $skip system query option identifies a subset of the entities in the
collection of entities identified by the resource path section of the URI. That subset is defined by

seeking N entities into the collection and selecting only the remaining entities (starting with entity
N+1). N is a positive integer specified by this query option.

The value of this query option, referred to as N in the preceding paragraph, MUST be an integer

greater than or equal to zero. If a value less than 0 is specified, the URI should be considered
malformed.

104 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the data service URI contains a $skip query option, but does not contain an $orderby option,
then the entities in the set MUST first be fully ordered by the data service. Such a full order SHOULD

be obtained by sorting the entities based on their EntityKey values. While no ordering semantics are
mandated, a data service MUST always use the same semantics to obtain a full ordering for all

requests.

The syntax of the skip system query option is defined as follows.

skipQueryOp = "$skip=" 1*DIGIT

Examples:

http://host/service.svc/Orders?$order=OrderDate desc&$skip=10

The set of Order entities sorted by ShippedDate (descending), starting with the 11th order.

http://host/service.svc/Customers('ALFKI')/Orders?$skip=10

The set of Order entity type instances (associated with the Customer entity type instance identified

by EntityKey value 'ALFKI') starting with the 11th order.

2.2.3.6.1.8 Top System Query Option ($top)

A data service URI with a $top system query option identifies a subset of the entities in the
collection of entities, identified by the resource path section of the URI. This subset is formed by

selecting only the first N items of the set, where N is a positive integer specified by this query
option.

The value of this query option, referred to as N in the preceding paragraph, MUST be an integer
greater than or equal to zero. If a value less than 0 is specified, the URI should be considered

malformed.

If the data service URI contains a $top query option, but does not contain an $orderby option,

then the entities in the set MUST first be fully ordered by the data service. Such a full order SHOULD
be obtained by sorting the entities based on their EntityKey values. While no ordering semantics are
mandated, a data service MUST always use the same semantics to obtain a full ordering across
requests.

The syntax of the top system query option is defined as follows.

topQueryOp = "$top=" 1*DIGIT

Examples:

http://host/service.svc/Orders?$orderby=ShippedDate desc&$top=20

The first 20 Order entity instances returned in descending order when sorted by the ShippedDate

property.

http://host/service.svc/Orders?$top=20

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

105 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The first 20 Order entity instances returned in order of a sorting scheme determined by the data

service.

2.2.3.6.1.9 Skip Token System Query Option ($skiptoken)

The value of a $skiptoken system query option is an opaque token that MUST identify a starting
point in the collection of entities identified by the URI containing the $skiptoken parameter. For
example, the value of a $skiptoken query option could identify the first entity in a collection, the
3rd entity in a collection containing 10 entities, or any other position within the collection
represented by the URI containing the $skiptoken parameter.

Since the value of a $skiptoken query option identifies an index into a collection of entities, a data
service URI containing a $skiptoken query option identifies a subset of the entities identified by the

resource path section of the URI. The subset identified consists of the entities in the entity set
identified by the resource path section of the URI, starting from the first entity at the index
identified by the value of the $skiptoken query option through the last entity in the entity set.

If the data service URI contains a $skiptoken query option, but does not contain an $orderby

option that identifies a full ordering of the collection of entities identified by the URI, then the
entities in the set MUST first be fully ordered by the data service. Such a full order SHOULD be

obtained by sorting the entities based on their EntityKey values. While no ordering semantics are
mandated, a data service MUST always use the same semantics to obtain a full ordering across
different requests on the same entity set. The syntax of the skip token system query option is
defined as follows.

skiptokenQueryOp = "$skiptoken=" 1*pchar

Examples:

http://host/service.svc/Orders?$orderby=OrderID&$skiptoken=13S35K

A subset of the Order entity instances (sorted by the OrderID property) starting from a position in
the collection of all Order entities identified by the skip token parameter.

2.2.3.6.1.10 InlineCount System Query Option ($inlinecount)

Applies to the OData 2.0 and OData 3.0 protocols

A data service URI with an $inlinecount system query option specifies that the response to the
request MUST include the count of the number of entities in the collection of entities, which are
identified by the resource path section of the URI after all $filter system query options have been
applied. A data service MAY support the $inlinecount system query option on a RetrieveEntity

request. Actual counting of items in the EntitySet is data-service specific and no semantics for doing
so are mandated. The InlineCount system query option is supported only in the OData 2.0 and
OData 3.0 protocols.

The syntax of the InlineCount system query option is defined as follows.

inlineCountQueryOp = "$inlinecount="

 ("allpages" / "none")

If a value other than "allpages" or "none" is specified, the data service MUST return a 4xx error

response code.

%5bMC-CSDL%5d.pdf

106 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If a value of "none" is specified, the data service MUST NOT include the count in the response.

For information about including the count when using the AtomPub, JSON, and Verbose JSON
serialization formats, refer to section 2.2.6.2.8 of this document, to section 4.5.4 of

[ODataJSON4.0], and to section 2.2.6.3.9.1 of this document, respectively.

Examples:

http://host/service.svc/Orders?$inlinecount=allpages

All order instances and the count of all order instances returned.

http://host/service.svc/Orders?$inlinecount=allpages&$top=10

Returns the first 10 order instances and the count of all matching order instances.

http://host/service.svc/Orders?$inlinecount=none&$top=10

Returns the first 10 order instances with no count of matching order instances.

http://host/service.svc/Orders?$inlinecount=allpages&$filter=ShipCountry eq 'France'

Returns all order instances with ShipCountry equal to "France" and the count of all order instances

with ShipCountry equal to "France".

2.2.3.6.1.11 Select System Query Option ($select)

Applies to the OData 2.0 and OData 3.0 protocols

A data service URI with a $select system query option identifies the same set of entities as a URI

without a $select query option; however, the presence of a $select query option specifies that a
response from the data service SHOULD return a subset, as identified by the value of the $select

query option, of the properties that would have been returned had the URI not included a $select
query option. A data service MAY return properties of the resources identified by the request URI
beyond those identified by the $select query option.

The following rules supplement the following grammar that represents the syntax of this system
query option. The select system query option is supported only in the OData 2.0 and OData 3.0
protocols.

selectQueryOp = "$select=" selectClause

selectClause = [WSP] selectItem [[WSP] "," selectClause] [WSP]

selectItem = star / ["/"namespaceQualifiedEntityType](selectedProperty /

selectedNamedStream / selectedAction / selectedFunction / (selectedNavProperty ["/"

selectItem]))

selectedProperty = entityProperty / entityComplexProperty

selectedNamedStream = entityNamedStream

selectedAction = allActions / individualAction

individualAction = ecQualifiedActionName ; section 2.2.1.3.1.

allActions = entityContainer ".*" ; section 2.2.1.3.1

selectedFunctions = allFunctions / individualFunction

http://go.microsoft.com/fwlink/?LinkId=301473

107 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

individualFunction = ecQualifiedFunctionName; section 2.2.1.4.1.

allFunctions = functions ".*"

selectedNavProperty = entityNavProperty-es / entityNavProperty-et

star = "*"

The left most selectedProperty, selectedNamedStream, or selectedNavProperty in a

selectClause MUST be a star or represent a member that is defined in the EntityType, or a
subtype thereof, that is identified by the resource path section of the URI.

A subsequent selectedProperty or selectedNavProperty in the same selectClause MUST

represent a property defined on the EntityType, or a subtype thereof, that is represented by the
prior navigation property in the selectClause.

For AtomPub formatted responses: The value of a selectQueryOp applies only to the properties

returned within the m:properties element as specified in section 2.2.6.2.2. For example, if a
property of an entity type is mapped with the attribute KeepInContent=false, according to

Customizable Feeds (section 2.2.6.2.2.1), to an element or attribute in the response, then that
property MUST always be included in the response according to its customizable feed mapping.

For JSON formatted responses: See [ODataJSON4.0] section 6.

For Verbose JSON formatted responses: The value of a selectQueryOp applies only to the

name/value pairs with a name that does not begin with two consecutive underscore characters.

If a property is not requested as a selectItem (explicitly or via a star), it SHOULD NOT be

included in the response.

If a selectedProperty appears alone as a selectItem in a request URI, then the response MUST

contain the value of the property as per the serialization rules defined in sections 2.2.6.2.2 and
2.2.6.3.3.

If a star appears alone in a selectClause, all properties on the EntityType within the collection

of entities identified by the last path segment in the request URI MUST be included in the
response.

If a star appears in a selectItem following a selectedNavProperty, all non-navigation

properties of the entity or entities represented by the prior selectedNavProperty MUST be
included in the response.

If a navigation property appears as the last segment of a selectItem and does not appear in an

$expand query option, the entity or collection of entities identified by the navigation property
MUST be represented as deferred content as described in sections 2.2.6.2.6 and 2.2.6.3.9.

If a navigation property appears as the last segment of a selectItem and the same property is

specified as a segment of a path in an $expand query option, then all the properties of the
entity identified by the selectItem MUST be in the response. In addition, all the properties of the
entities identified by segments in the $expand path after the segment that matched the

selectItem MUST also be included in the response.

If multiple selectClause instances exist in a $select query option, then the total set of property

values to be returned is equal to the union of the set of properties identified by each
selectClause.

Redundant selectClause rules on the same URI MAY be considered valid, but MUST NOT alter

the meaning of the URI.

http://go.microsoft.com/fwlink/?LinkID=301473

108 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The presence of a selectClause means that both actions and functions SHOULD be omitted from

the response, unless they are reintroduced explicitly by using a selectedAction or

selectedFunction clause. A star SHOULD NOT reintroduce actions or functions.

The individualAction clause requests a single action by name.

The allActions clause requests all actions that are known to the server and that are bindable to
the entities in the response.

If an action is requested as a selectItem, either explicitly by using an individualAction clause
or implicitly by using an allActions clause, the server MUST include in the response information
about how to invoke that action (sections 2.2.6.2.2.2 and 2.2.6.3.3.1) for each of the entities
identified by the last path segment in the request URI, if and only if the action can be bound to

those entities.

If an action that is requested by an individualAction clause cannot be bound to the entities
requested, the server MUST ignore the individualAction clause.

The individualFunction clause requests a single function by name.

The allFunctions clause requests all functions that are known to the server and that are
bindable to the entities in the response.

If a function is requested as a selectItem, either explicitly by using an individualFunction

clause or implicitly by using an allFunctions clause, the server MUST include in the response
information about how to invoke that function (sections 2.2.6.2.2.3 and 2.2.6.3.3.2) for each of
the entities that are identified by the last path segment in the request URI, if and only if the
function can be bound to those entities.

If a function requested by an individualFunction clause cannot be bound to the entities that are
requested, the server MUST ignore the individualFunction clause.

The selectClause does not provide a way to request actions or functions that are bound to the
feed definition.

The following set of examples use the data model described in Appendix A: Sample Entity Data
Model and CSDL Document (section 6) and describe the semantics for a base set of data service
URIs using the $select system query option. From these base cases, the semantics of longer URIs
are defined by composing the following rules.

Examples:

http://host/service.svc/Customers?$select=CustomerID,CompanyName,Address

In a response from a data service, only the CustomerID, CompanyName, and Address property

values are returned for each customer entity within the Customers EntitySet. When a complex type
is selected, all properties defined on that complex type property MUST be returned.

http://host/service.svc/Customers?$select=CustomerID,Orders

In a response from a data service, only the CustomerID property value and a link to the collection

of related entities identified by the Orders navigation property SHOULD be returned for each
customer entity within the Customers EntitySet. Note: For the Orders navigation property

referenced in the above URI, the $select option only states a link to the corresponding collection of
orders will be returned.

109 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

http://host/service.svc/Customers?$select=CustomerID,Orders&$expand=Orders/OrderDetails

In a response from a data service, only the CustomerID property of the customer's entities

SHOULD be returned, but all the properties of the entities identified by the Orders and
OrderDetails navigation properties SHOULD be returned.

http://host/service.svc/Customers?$select=*

In a response from a data service, all properties are returned for each customer entity within the

Customers EntitySet. Note: The star syntax is used to refer to all properties of the entity that are
identified by the path of the URI or all properties of a navigation property, but does not refer to
actions or functions. In other words, the * syntax causes all properties on an entity to be included
without traversing associations or including information about actions or functions.

http://host/service.svc/$select=CustomerID,Orders/*&$expand=Orders/OrderDetails

In a response from a data service, the CustomerID is included, along with the Order entities and

all properties of the Order entities. But rather than including the fully expanded Order Detail entities
referenced in the expand clause, each Order will contain a link that references the corresponding
collection of Order Detail entities.

http://host/service.svc/Photos/?$select=Name,Thumbnail

In a response from a data service, only the Name property and the thumbnail named resource

stream are included.

The OData 3.0 protocol supports specifying the namespace-qualified EntityType in conjunction with
$select.

http://host/service.svc/Customers/SampleModel.VipCustomer/?$select=Logo

In a response from a data service, only the logo named resource stream is included for all

VipCustomer EntityTypes or its subtypes.

http://host/service.svc/Customers/?$select= SampleModel.VipCustomer/Logo

In a response from a data service, only the logo named resource stream is included for all

VipCustomer EntityTypes or its subtypes, with empty content for non-VipCustomers.

http://host/service.svc/Customers('ALFKI2')/?$select=SampleModel.VipCustomer/Logo

In a response from a data service, only the logo named resource stream is included for the single

VipCustomer type identified.

http://host/service.svc/Customers/?$select=CustomerID,CompanyName,$actions.CreateOrder

In a response from a data service, only the CustomerID and CompanyName properties are

included for all Customer EntityType and/or subtypes. Additionally, the CreateOrders action is

110 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

included for each customer if and only if the action is bindable to that customer. All other actions
and functions are omitted.

2.2.3.6.1.12 System Query Option: Additional Construction Rules

The following rules are in addition to the grammar rules that are defined in each of the individual
system query option sections:

If the last segment of the ResourcePath is an entityNamedStream, the system query options

MAY include the format system query option. But all other query options MUST NOT be used.

2.2.3.6.2 Custom Query Options

Custom query options provide an extensible mechanism for data service-specific information to be
placed in a data service URI query string. A custom query option is any query option of the form
shown by the rule "customQueryOption" in URI Syntax (section 2.2.3.1). Custom query options
MUST NOT begin with a "$" character because the character is reserved for system query options,

as described in System Query Options (section 2.2.3.6.1).

2.2.3.6.3 Service Operation Parameters

Service operations represent the FunctionImports, as specified in [MC-CSDL], which accept only
primitive type input parameters defined in the Entity Data Model (EDM) associated with a data
service. If a FunctionImport requires input parameters, those parameters are passed via query
string name/value pairs appended to the data service URI identifying the FunctionImport, as
described in Resource Path: Semantics (section 2.2.3.5).

If a service operation requires input parameters, a null value may be specified for nullable type
parameters by not including the parameter in the query string of the request URI.

To pass parameters to a service operation, the following syntax is used.

serviceOpParam = <The name of the parameter required by the Service Operation

 addressed in the Resource Path>

 "="

 <The value of the Primitive type parameter formatted as per section

 2.2.2>

; see the ABNF grammar in section 2.2.3.1 which describes how

; each parameter is to be composed to a data service URI query string.

Listing: ABNF Grammar for Service Operation Parameters

2.2.3.6.4 Function Parameters

Applies to OData 3.0 protocol

Functions are represented by using FunctionImport elements, as specified in Functions (section

2.2.1.4). Functions, unlike service operations and actions, have IsSideEffecting set to "false". If a
Function requires input parameters, those parameters can be passed to the function in four
possible ways:

If the FunctionImport has IsBindable set to "true", the first (or binding) parameter MAY be

provided by appending a functionCall-partiallyBound (section 2.2.3.1) to a resource path that
represents that parameter value.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

111 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If a functionCall or functionCall-partiallyBound (URI Syntax (section 2.2.3.1)) is the last call

to a function in the resource path, the function's unbound parameters MAY be specified via query

string name/value pairs that are appended to the data service URI that identifies the

FunctionImport, as described in Resource Path: Semantics (section 2.2.3.5). The name of each
of the function's unbound parameters in the corresponding FunctionImport is used as the name
in the name/value pair. All unbound parameters MUST be provided either in the query string or
inline in the URI Path. Primitive type parameters MAY be specified in the resource path between
the parentheses of the functionCall or functionCall-partiallyBound (URI Syntax (section
2.2.3.1)) segments.

Parameters, primitive or otherwise, MAY be passed by using parameter aliases (URI Syntax

(section 2.2.3.1)). The aliases are introduced between the parentheses of the functionCall or
functionCall-partiallyBound segments, in place of parameter values. Then the actual
parameter values are specified via query string name/value pairs where the name is the alias
that is introduced and the value is the parameter value provided.

If parameters to a functionCall or functionCall-partiallyBound segment are specified inline

either directly or by using parameter aliases, the parameter names MUST be included via the

functionParameterName in the functionParameter.

; OData 3.0 only

functionParameter = functionParameterName

 "="

 (functionParameterValue / functionParameterAlias)

functionParameterName = ; section 2.2.3.1

 ; the name of a parameter of the final Function segment

 ; in the Uri path, defined in the EDM model

 ; associated with the Data Service, specified in the URI path

functionParameterAlias = ; section 2.2.3.1

 ; the name of an alias, introduced in the URI path for a

 ; particular parameter value, prefixed with ‘@’.

functionParameterValue = null

 primitiveLiteral /

 entityTypeBody /

 entityCTBody /

 collectionInVJson /

 entityCollectionValueInVJson /

 collectionInJson /

 entityCollectionValueInJson

null = ; section 2.2.3.1

 ; not to be confused with nullLiteral (in JSON)

entityTypeBody = ; section 2.2.6.3.3

entityCTBody = ; section 2.2.6.3.4

collectionInVJson = ; a Collection of ComplexTypes or PrimitiveTypes formatted

 ; in OData Verbose JSON format (section 2.2.6.3.3) and UrlEncoded.

entityCollectionValueInVJson = ; a collection of Entities formatted in

 ; OData Verbose JSON format (section 2.2.6.3.2)

 ; and UrlEncoded.

collectionInJson = ; a collection of primitive values or of complex values formatted

112 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 ; in JSON format as per [ODataJSON4.0] sections 7.3 and 7.4,

 ; respectively, and UrlEncoded.

entityCollectionValueInJson = ; a collection of entities formatted in JSON format

 ; as per [ODataJSON4.0] section 12 and UrlEncoded.

Listing: ABNF Grammar for Function Parameters

2.2.3.6.5 Action Parameters

Applies to the OData 3.0 protocol

Actions are represented by using FunctionImport elements, as specified in [MC-CSDL] (section
2.1.15).

Actions are invoked by using a POST request to a URI that identifies an action. Where specified,
parameters to actions MUST be provided in the POST body. If not specified, parameter values MUST

be assumed to be null.

The POST body MUST be encoded in JSON format (according to Action Parameters in
[ODataJSON4.0] section 17) or in Verbose JSON format 2.2.6.3. Therefore, the Content-Type of the

POST request SHOULD be set to application/json or application/json;odata=verbose, respectively.

When passing parameters by using the Verbose JSON format, the body MUST consist of a single
JSON object. Each parameter that is specified in the body MUST be a top level property of this single
JSON object, where the property name is the same as the parameter name and the property value
is the standard OData Verbose JSON encoding for that parameter type (Verbose JSON Format
(section 2.2.6.3)).

Any parameters to the action that is identified by the request URI that are omitted MUST be

interpreted as having a null value.

A client MAY choose to provide no Body and Content-Type header if the Action has either no

parameters or all parameter values are null.

To pass parameters to an action in a POST request body by using the preferred OData 3.0 JSON
format, see Action Parameters in [ODataJSON4.0] section 17. To pass parameters by using the
Verbose JSON format, the following syntax is used.

; OData 3.0 only

actionParametersInVJson = begin-object

 [actionParameter]

 *(value-seperator actionParameter)

 end-object

actionParameter = quotation-mark

 actionParameterName

 quotation-mark

 name-seperator

 actionParameterValue

actionParameterName = *pchar ; section 3.3 of [RFC3986]

 ; the name of a parameter to an Action defined as a

 ; FunctionImport in the EDM

 ; model associated with the data service

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkID=301473

113 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

actionParameterValue = nullLiteral |

 primitiveValueInVJson |

 entityTypeBody |

 entityCTBody |

 collectionInVJson |

 entityCollectionValueInVJson

primitiveValueInVJson = <EDMSimple type serialized as per section 2.2.6.3.1>

entityTypeBody = ; section 2.2.6.3.3

entityCTBody = ; section 2.2.6.3.4

collectionInVJson = ; section 2.2.6.3.3

entityCollectionValueInVJson = ; section 2.2.6.3.2

nullLiteral = ; section 2.2.3.6.1.1

begin-object = ; [RFC4627] section 2

name-seperator = ; [RFC4627] section 2

value-seperator = ; [RFC4627] section 2

Listing: ABNF Grammar for Action Parameters

2.2.3.7 Data Service Metadata

2.2.3.7.1 Service Document

For a client to interact with a data service, it needs to discover the locations of the available
collections of resources. AtomPub [RFC5023] defines Service Documents to support this discovery
process.

The ServiceRoot of a data service MUST identify the Service Document for the data service.

Service Document (section 2.2.6.2.7) describes how Entity Data Model (EDM) constructs are

represented in a Service Document. As per [RFC5023], AtomPub Service Documents MUST be

identified with the "application/atomsvc+xml" media type (see [RFC5023] section 8).

See Service Document in [MS-ODATAJSON] section 2.1.16 for details about the representation of
the data provided by a Service Document in the preferred OData 3.0 JSON format.

Service Document (section 2.2.6.3.12) describes a Verbose JSON representation of the data
provided by a Service Document. The section also describes how EDM constructs are represented in
the Verbose JSON-based Service Document. Verbose JSON Service Documents MUST be identified
using the "application/jsonodata=verbose" media type.

EntitySets that are contained by a different EntitySet (see Containment (section 2.2.1.6)) MUST
NOT have a corresponding collection for AtomPub (section 2.2.6.2.7) or a corresponding EntitySet
for JSON ([MS-ODATAJSON] section 2.1.16) or for Verbose JSON (section 2.2.6.3.12) in the Service
Document, as described in this section.

2.2.3.7.2 Conceptual Schema Definition Language Document for Data Services

All data services SHOULD expose a conceptual schema definition language (CSDL) based metadata

endpoint that describes the structure and organization of all the resources exposed as HTTP
endpoints by a data service.

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=304226

114 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

This document defines data-service-specific extensions and mappings to the constructs of a CSDL
document. These extensions MUST be used by a data service in conjunction with the "dataservices"

node defined in [MC-EDMX] such that an Entity Data Model Extensions (EDMX) document is returned
from the URI identifying the serviceRoot with a "/$metadata" path segment appended to the path.

The syntax of the metadata document of a data service returned as the content of the dataservices
element is described in [MC-EDMX]. As noted in [MC-EDMX], the contents of the edmx:Edmx
element, in the context of a data service, is an edmx:DataServices element that contains one or
more CSDL documents, as specified in [MC-CSDL], with data service annotations.

The data service CSDL annotations are described and highlighted in the XML schema that follows, as
specified in [XMLSCHEMA1/2]. Elements that do not include data-service-specific annotations have
been omitted from the XSD document. See [MC-CSDL] for a complete structural description of a

CSDL document.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:cg="http://schemas.microsoft.com/ado/2006/04/codegeneration"

xmlns:edm="http://schemas.microsoft.com/ado/2006/04/edm"

xmlns:m=”http:// http://schemas.microsoft.com/ado/2007/08/dataservices"

targetNamespace="http://schemas.microsoft.com/ado/2006/04/edm">

<!-- Elements not annotated for data services have been omitted. See [MC-CSDL] for a

complete structural description of a CSDL document -->

 <!-- Elements extended to specify mime type content for data services -->

 <xs:element name="Property" type="edm:TComplexTypeProperty" minOccurs="0"

 maxOccurs="unbounded" />

 <xs:complexType name="TComplexTypeProperty">

 <xs:sequence>

 <xs:group ref="edm:GEmptyElementExtensibility" minOccurs="0"

 maxOccurs="1" />

 </xs:sequence>

 <xs:attributeGroup ref="edm:TCommonPropertyAttributes" />

 <!-- The m:TWebCustomizableFeedsAttributes attributeGroup is

 supported only in Oata 2.0 and OData 3.0 (see section 2.2.3.7.2.1) -->

 <xs:attributeGroup ref="m:TWebCustomizableFeedsAttributes" />

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 <xs:attributeGroup name="TCommonPropertyAttributes">

 <xs:attribute name="Name" type="edm:TSimpleIdentifier" use="required" />

 <xs:attribute name="Type" type="edm:TPropertyType" use="required" />

 <xs:attribute name="Nullable" type="xs:boolean" default="true"

 use="optional" />

 <xs:attribute name="DefaultValue" type="xs:string" use="optional" />

 <!-- Start Facets -->

 <xs:attribute name="MaxLength" type="edm:TMaxLengthFacet"

 use="optional" />

 <xs:attribute name="FixedLength" type="edm:TIsFixedLengthFacet"

 use="optional" />

 <xs:attribute name="Precision" type="edm:TPrecisionFacet"

 use="optional" />

 <xs:attribute name="Scale" type="edm:TScaleFacet" use="optional" />

%5bMC-EDMX%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90607

115 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <xs:attribute name="Unicode" type="edm:TIsUnicodeFacet"

 use="optional" />

 <xs:attribute name="Collation" type="edm:TCollationFacet"

 use="optional" />

 <!--End Facets -->

 <xs:attribute name="ConcurrencyMode" type="edm:TConcurrencyMode"

 use="optional" />

 <xs:attribute ref="cg:SetterAccess" use="optional" />

 <xs:attribute ref="cg:GetterAccess" use="optional" />

 <!-- Data Service Attributes -->

 <xs:attribute name="m:MimeType" type="xs:string" use="optional" />

 </xs:attributeGroup>

 <!-- Elements extended to specify HTTP method information

 for data services -->

 <xs:element name="FunctionImport">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Documentation" type="edm:TDocumentation"

 minOccurs="0" maxOccurs="1" />

 <xs:element name="Parameter" type="edm:TFunctionImportParameter"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attributeGroup ref="edm:TFunctionImportAttributes" />

 </xs:complexType>

 </xs:element>

 <xs:attributeGroup name="TFunctionImportAttributes">

 <xs:attribute name="Name" type="edm:TSimpleIdentifier" use="required" />

 <xs:attribute name="ReturnType" type="edm:TFunctionType" use="optional" />

 <xs:attribute name="EntitySet" type="edm:TSimpleIdentifier" use="optional" />

 <xs:attribute ref="cg:MethodAccess" use="optional" />

 <xs:attribute ref="m:HttpMethod" type="m:HttpMethod" use="optional" />

 <xs:attribute ref="m:IsAlwaysBindable" type="xs:boolean" default="false" />

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:attributeGroup>

 <xs:simpleType name="m:HttpMethod">

 <xs:restriction base="xs:string">

 <xs:enumeration value="POST" />

 <xs:enumeration value="PUT" />

 <xs:enumeration value="GET" />

 <xs:enumeration value="MERGE" />

 <xs:enumeration value="DELETE" />

 <xs:enumeration value="PATCH" />

 </xs:restriction>

 </xs:simpleType>

<xs:element name="EntityType" type="edm:TEntityType" minOccurs="0" maxOccurs="unbounded" />

 <xs:complexType name="TEntityType">

 <xs:sequence>

 <xs:element name="Documentation" type="edm:TDocumentation"

 minOccurs="0" maxOccurs="1"

 />

 <xs:element name="Key" type="edm:TEntityKeyElement" minOccurs="0"

 maxOccurs="1" />

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="Property" type="edm:TEntityProperty" minOccurs="0"

 maxOccurs="unbounded" />

116 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <xs:element name="NavigationProperty" type="edm:TNavigationProperty"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xs:choice>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

 maxOccurs="unbounded"

 />

 </xs:sequence>

 <xs:attributeGroup ref="edm:TDerivableTypeAttributes" />

 <--Data Service Attribute group. The m:TWebCustomizableFeedsAttributes attributeGroup

 is supported only in OData 2.0 and OData 3.0 (see section 2.2.3.7.2.1) -->

 <xs:attributeGroup ref="m:TWebCustomizableFeedsAttributes" />

 <xs:attribute name="m:HasStream" type="xs:boolean" use="optional" />

 <xs:attribute ref="cg:TypeAccess" use="optional" />

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 </xs:element>

 <xs:complexType name="TEntityProperty">

 <xs:sequence>

 <xs:group ref="edm:GEmptyElementExtensibility" minOccurs="0"

 maxOccurs="1" />

 </xs:sequence>

 <xs:attributeGroup ref="edm:TCommonPropertyAttributes" />

 <xs:anyAttribute namespace="##other" processContents="lax" />

 <--Data Service Attribute group. The m:TWebCustomizableFeedsAttributes

 attributeGroup is supported only in OData 2.0 and OData 3.0 (see section 2.2.3.7.2.1)

-->

 <xs:attributeGroup ref="m:TWebCustomizableFeedsAttributes" />

 </xs:complexType>

</xs:schema>

The following listing describes the extensions to CSDL [MC-CSDL] that are defined by this document

(and shown in the previous XML schema).

IsDefaultEntityContainer: This attribute MUST be used on an EntityContainer element [MC-CSDL]
to indicate which EntityContainer is the default container for the data service. Each CSDL
document that is used to describe a data service MUST mark exactly one EntityContainer with this

attribute to denote that it is the default.

The valid values for this attribute are "true" or "false". True signifies that the container is the default
container and, therefore, does not need to be specified in a resource path (section 2.2.3.3). False
signifies that the container is not the default container and needs to be specified in the URI
according to the URI construction rules that are noted in section 2.2.3.4.

MimeType: This attribute MAY<51> be used on a Property element [MC-CSDL] to indicate the
media type of the content to be stored in the property that is being defined by the XML element.

Each Property element that defines an EDMSimpleType property MAY include exactly one
occurrence of this attribute.

Any media type (see [IANA-MMT]) is a valid value for this attribute. If this attribute is present on a
property definition, any RetrieveValue Request (RetrieveValue Request (section 2.2.7.2.5)) for the
property MUST return a response that uses the specified MIME type as the content type of the
response body.

HttpMethod: This attribute MUST be used on a FunctionImport element [MC-CSDL] (section
2.1.15)] to indicate the HTTP method that is to be used to invoke the ServiceOperation that

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140869
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

117 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

exposes the FunctionImport. If this attribute is present, the FunctionImport MUST be callable by
using the HTTP method that is specified.

IsAlwaysBindable: This attribute MAY be used on a FunctionImport element [MC-CSDL] (section
2.1.15) to indicate whether the corresponding action or function can be bound to all instances of the

binding parameter type. This attribute MUST not be specified if the IsBindable attribute is set to
false or omitted (see sections 2.2.1.3 and 2.2.1.4).

HasStream: This attribute MUST only be used on an EntityType element [MC-CSDL]. The
presence of this attribute with a value of "true" on an EntityType element states that the entity
type is associated with a Media Resource (for example, the entity type represents a Media Link Entry
[RFC5023]).

In addition to the extensions defined in the preceding example, the following mapping of data

service constructs to CSDL constructs MUST be used by a data service to generate its metadata
document.

Service Operations: A service operation MUST be represented as a FunctionImport element in

the data services' CSDL document. The Name attribute on the element MUST be equal to the name
of the service operation that is exposed by the data service.

For an example of a data services EDMX document, see Appendix A: Sample Entity Data Model and

CSDL Document (section 6).

The following listing describes the extensions to the EDM for data services packaging format [MC-
EDMX] that is defined by this document.

DataServiceVersion: This attribute MUST be in the data service metadata namespace

(http://schemas.microsoft.com/ado/2007/08/dataservices) and SHOULD be present on

an edmx:DataServices element [MC-EDMX] to indicate the version of the data service CSDL

annotations (attributes in the data service metadata namespace) that are used by the document.
Consumers of a data-service metadata endpoint should first read this attribute value to determine if
they can safely interpret all constructs within the document. The value of this attribute MUST be 1.0
unless a "FC_KeepInContent" customizable feed annotation (section 2.2.3.7.2.1) with a value equal

to false is present in the CSDL document within the edmx:DataServices node. In this case, the
attribute value MUST be 2.0 or greater.

In the absence of DataServiceVersion, consumers of the CSDL document should assume the

highest DataServiceVersion they can handle.

Named resource streams: A named resource stream MUST be represented as a Property of type
Edm.Stream under the EntityType element in the data services’ conceptual schema definition
language (CSDL) document. The Name attribute of the Property MUST be equal to the name of the
named resource stream exposed by the data service.

Properties of type Edm.Stream are used to define the named resource streams of an EntityType.

For example, this EntityType has two named resource streams (Thumbnail and PrintReady).

 <EntityType Name="Photo" m:HasStream=”true”>

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Name" Type="Edm.String" Nullable="true" />

 <Property Name="Thumbnail" Type="Edm.Stream" />

 <Property Name="PrintReady" Type="Edm.Stream" />

http://go.microsoft.com/fwlink/?LinkId=140880

118 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 </EntityType>

2.2.3.7.2.1 Conceptual Schema Definition Language Document Extensions for

Customizable Feeds

Applies to the OData 2.0 and OData 3.0 protocols

This section defines OData protocol specific extensions (shown in the XML schema that follows) to
the data-service-specific metadata document that is defined in the preceding section. These

attributes define customizable feed property mappings for the AtomPub format. Customizable feed
property mappings are defined in the OData 2.0 and OData 3.0 protocols.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="qualified"

 elementFormDefault="qualified"

 targetNamespace="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:attributeGroup name="TWebCustomizableFeedsAttributes">

 <xs:attribute name="FC_KeepInContent"/>

 <xs:attribute name="FC_ContentKind"/>

 <xs:attribute name="FC_NsPrefix"/>

 <xs:attribute name="FC_NsUri" />

 <xs:attribute name="FC_SourcePath" />

 <xs:attribute name="FC_TargetPath" />

 <xs:attribute name="FC_Criteria" />

 <xs:attribute name="FC_CriteriaValue" />

 </xs:attributeGroup>

</xs:schema>

Listing: Conceptual Schema Definition Language Document XSD Schema Extensions for

Customizable Feeds

The customizable feed property mappings are used to define a mapping from the properties of an
EntityType to elements or attributes in any namespace (including the Atom namespace) in an

AtomPub document. When a property is mapped to an element or to an attribute of an element, the
value for the property is equal to the value of the specified element or attribute in the AtomPub
document. An example of a mapped property value is described in Retrieve a Single Entity with a
Mapped Property by Using the AtomPub Format (section 4.2.2.1).

The following example shows a Conceptual Schema Definition Language (CSDL) definition of an
entity type that includes customizable feed property mappings. The customizable feed annotations

that are defined on the entity type map the EmployeeName property of the Employee entity type to
the atom:title element in the Atom namespace. The following example also includes a mapping that
specifies the City property of the Address ComplexType property to be represented by using the
service-defined XML element emp:Location xmlns:"http://www.microsoft.com".

<EntityType Name="Employee" m:FC_KeepInContent="true"

 m:FC_TargetPath="Location" m:FC_SourcePath="Address/City"

 m:FC_NsUri="http://www.microsoft.com" m:FC_NsPrefix="emp">

 <Key>

 <PropertyRef Name="EmployeeID" />

 </Key>

 <Property Name="EmployeeID" Type="Edm.String" Nullable="false"

%5bMC-CSDL%5d.pdf

119 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 MaxLength="5" Unicode="true" FixedLength="true" />

 <Property Name="EmployeeName" Type="Edm.String" Nullable="false"

 MaxLength="40" Unicode="true" FixedLength="false"

 m:FC_KeepInContent="false"

 m:FC_TargetPath="SyndicationTitle"/>

 <Property Name="Address" Type="Sample.EAddress" Nullable="true" />

 <Property Name="Version" Type="Edm.Binary" Nullable="true" MaxLength="8"

 FixedLength="true" ConcurrencyMode="Fixed" />

</EntityType>

<ComplexType Name="EAddress">

 <Property Name="Street" Type="Edm.String" Unicode="true" />

 <Property Name="City" Type="Edm.String" Unicode="true"/>

</ComplexType>

A property mapping MUST be defined as an attribute on the Property element of an entity type (as

in the previous example) or on the EntityType element that contains the property to be mapped. A

single EntityType property MUST NOT have more than one property mapping defined.

The following listing describes the extensions to CSDL [MC-CSDL] that are defined by this section
(and are shown in the preceding XML schema). These extensions are supported only in the OData
2.0 and OData 3.0 protocols.

FC_ContentKind: The FC_ContentKind attribute specifies the content type of the value of the
property being mapped via a customizable feed mapping.

The syntax of the FC_ContentKind attribute is defined as follows.

FC_ContentKind = "text " / "html" / "xhtml"

If the FC_ContentKind property is not defined for an EntityType property, the value of the

property should be assumed to be "text ".

FC_KeepInContent: The FC_KeepInContent attribute specifies whether the value of the property
on the EntityType of this attribute should be included in both the element specified via the
customizable feed mapping as well as the original m:properties elements inside the atom:content
element, as specified in section 2.2.6.2.2. The value for the FC_KeepInContent attribute MUST
have either the value "true" or "false". If the FC_KeepInContent attribute is not supplied in the

mapping, the data service MUST function as if it were specified with a value of true.

FC_NsPrefix: The FC_NsPrefix attribute specifies the XML namespace prefix to use when an
entity type's property is mapped to an XML element in a data-service-specific namespace. If the
FC_TargetPath attribute of the property mapping does not specify an Atom element, then the
FC_NsPrefix attribute is optional. If the entity type property is being mapped to an AtomPub
element, then the FC_NsPrefix attribute MUST NOT be specified. If the FC_TargetPath attribute
of the property mapping does not specify an Atom element and the FC_NsPrefix attribute is not

supplied, then this document does not mandate a particular prefix be used.

FC_NsUri: The FC_NsUri attribute specifies the namespace to use when the FC_TargetPath of
the entity type’s property mapping does not specify an AtomPub element. If the FC_TargetPath of
the entity type’s property mapping does not specify an AtomPub element, then the FC_NsUri
attribute MUST be specified on the entity type’s definition. If the property is being mapped to an
AtomPub element, then the FC_NsUri attribute MUST NOT be specified on the entity type’s
definition.

%5bMC-CSDL%5d.pdf
%5bMS-GLOS%5d.pdf

120 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

FC_TargetPath: The FC_TargetPath attribute identifies the element within an atom:entry
element to which to map the entity type’s property. All mapped properties MUST be mapped to

distinct elements within the Atom feed.

If the mapping is not to an Atom element, the value of the FC_TargetPath MUST identify either an

element or an attribute on an element in the AtomPub document. All paths' expressions MUST be
rooted at the entry element in the Atom feed.

The syntax of the target path is defined as follows.

targetPath = targetPathExpression ["/" attribute] / atomSpecificElement

targetPathExpresion = targetPathExpression "/" targetPathExpression

 / element

element = <the name of an element in the AtomPub document>

atomSpecificElementName =

 ; the following values are defined in OData 2.0 and OData 3.0

 "SyndicationAuthorName"

 / "SyndicationAuthorEmail"

 / "SyndicationAuthorUri"

 / "SyndicationPublished"

 / "SyndicationRights"

 / "SyndicationTitle"

 / "SyndicationUpdated"

 / "SyndicationContributorName"

 / "SyndicationContributorEmail"

 / "SyndicationContributorUri"

 / "SyndicationSource"

attribute = "@" <the name of an attribute in the AtomPub document>

A data service SHOULD allow customizable feed mappings for distinct entity type properties that

have partially overlapping FC_TargetPaths (a set of FC_TargetPaths are overlapping when they
have some target elements in common). A data service SHOULD support target paths that define
elements with mixed content. For example, the following three target paths on distinct properties
will create an element structure with overlapping target paths and XML elements with mixed
content.

TargetPath1: "a/b/c"

TargetPath2: "a/b/d"

TargetPath3: "a/b"

The following is the resulting element structure.

<a>

 <c>propertyValue1</c>

 <d>propertyValue2</d>

 propertyValue3

121 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

FC_SourcePath: The FC_SourcePath attribute specifies the entity type property that is the source

property for the mapping. If the property mapping is specified directly on a property definition

(properties are defined by using the Property element) in the CSDL and the property is a primitive
property, the mapping MAY NOT specify the FC_SourcePath attribute and the property identified

by the Property element MUST be used as the source property of the mapping. If the property
mapping is defined on an EntityType element, the FC_SourcePath attribute MUST be specified
and the value MUST be the name of either a primitive property defined on the EntityType or a
primitive property of a ComplexType, which is the type of a property on the EntityType.

The syntax of the FC_SourcePath is defined as follows.

FC_SourcePath = FC_SourcePathExpression

FC_SourcePathExpression = FC_SourcePathExpression "/" FC_SourcePathExpression

 / element

The FC_SourcePath MUST NOT address an EntityType property that represents a ComplexType

but MAY address a declared EDMSimpleType property that is defined on a ComplexType.

For example, using the EntityType Employee, as specified in Appendix A: Sample Entity Data Model
and CSDL Document (section 6), specifying the City property of an Address ComplexType on an
Employee EntityType, an FC_TargetPath value of "Location", an FC_NsPrefix value of "emp",
and an FC_NsUri value of "http://www.microsoft.com" would create the following element under
the atom:entry element.

<emp:Location xmlns:emp="http://www.microsoft.com">Seattle</emp:Location>

2.2.3.8 URI Equivalence

When determining if two URIs are equivalent, each URI SHOULD be normalized by using the rules
specified in [RFC3987] and [RFC3986] and then compared for equality by using the equivalence

rules specified in [RFC2616] section 3.2.3.

2.2.3.9 Canonical URIs

For data services conformant with the URI path construction rules defined in this specification, the
canonical form of an absolute URI identifying a single EntityType instance MUST be formed by
adding a single path segment to the Path Prefix. The path segment MUST be made up of the
EntitySet name associated with the entity followed by the key predicate identifying the entity within

the set.

For example, the URIs http://host/service.svc/Customers('ALFKI')/Orders(1) and

http://host/service.svc/Orders(1) identify the same entity in the example data model

shown in Appendix A: Sample Entity Data Model and CSDL Document (section 6). Following the
rules outlining the canonical form for URIs identifying single entities, the canonical URI in the

example is http://host/service.svc/Orders(1).

If an EntityType instance is contained by another EntityType instance (see Containment (section
2.2.1.6)), the canonical URI for the contained EntityType instance SHOULD be relative to the
canonical URI of the containing EntityType instance.

If the server follows the URI conventions that are specified by the OData protocol, the canonical URL
for contained entities MUST start with the canonical URL of the container entity, followed by a '/',

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140875
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

122 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

and then the name of the containment NavigationProperty. If the container can contain at most
one contained entity, the canonical URL is complete.

For example, if a BookAbstract EntityType contains at most one Book EntityType via a 'Book'
containment NavigationProperty, the canonical URL of the Book would be as follows:
http://host/service.svc/BookAbstracts(1)/Book.

More commonly, the container can contain many contained entities. For example, an 'Order' entity
can contain many 'OrderLines' via the 'Lines' containment NavigationProperty. In situations like
this, the URI conventions in the OData protocol state that the canonical URI of a contained entity
MUST include a keyPredicate (see Resource Path: Construction Rules (section 2.2.3.4)) that
identifies the particular contained entity among the other contained entities. An example would be

the following: http://host/service.svc/Orders(1)/Lines(6).

Further, if a containment NavigationProperty is backed by an AssociationType that includes a
Referential Integrity Constraint that indicates that the contained EntityType shares key values with
its container EntityType, then the keyPredicate that is used in the canonical URI for the contained
EntityType instance SHOULD omit the key values shared between the containing and the contained

EntityType instances.

2.2.4 HTTP Methods

This section describes only the HTTP methods that are defined by this document and are not
specified in [RFC2616]. All additional HTTP methods that are referred to in this document are
specified in [RFC2616].

2.2.4.1 PATCH/MERGE

Data services support two types of update operations: merge and replace. In accordance with
[RFC5023] and as described in Update Request Types (section 2.2.7.3), the HTTP PUT method
specifies that an update operation MUST be carried out by using replace semantics.

PATCH is an HTTP verb defined by [RFC5789] and is supported only in the OData 3.0 protocol. The

semantics of the method for use in this protocol are as defined by [RFC5789], except where
explicitly noted in this document.

Note that this protocol does not define the semantics for the OPTIONS request method that is
defined in [RFC5789].

The remainder of this section defines a custom HTTP MERGE method that is used in the OData 1.0
and OData 2.0 protocols to specify that an update is to be completed by using merge semantics. All
the directives defined for the PUT method in HTTP, as specified in [RFC2616], and AtomPub, as
specified in [RFC5023], apply equally to the HTTP MERGE method. The only difference between an
HTTP request that uses MERGE or PATCH and PUT is client intent.

Since MERGE is not one of the verbs that is defined in the HTTP specification [RFC2616], using the
MERGE verb may not flow through network intermediaries as seamlessly as methods that are
defined in the HTTP specification. The HTTP PATCH verb is preferred over HTTP MERGE when
working with data services that support the OData 3.0 protocol. Data services that support the

OData 2.0 and OData 3.0 protocols can support verb tunneling to mitigate this limitation, as defined
in Tunneled Requests (section 2.2.7.7).

The semantics of a MERGE request on a data service entity is to merge the content in the request

payload with the entity's current state. The merging is done by comparing each component (that is,
each individual primitive-valued or collection-valued property of the entity or complex type) within
the request body to the entity as it exists on the server.

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=233592
http://go.microsoft.com/fwlink/?LinkId=233592
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372

123 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If a component in the request body is not defined on the entity that is to be updated, the request
MAY be considered malformed.

If a component in the request body does match a component on the entity that is to be updated, the
value of the component in the request body MUST replace the matching component of the entity to

be updated and the matching process continues with the children of the component from the
request body.

The ABNF syntax of the HTTP MERGE method is defined as follows.

Method = "MERGE" ; see [RFC2616] section 5.1.1

Listing: ABNF Grammar for HTTP MERGE Method

2.2.5 HTTP Header Fields

The OData protocol uses existing headers as specified in [RFC2616] as well as custom HTTP headers

that are defined in this document. Some of the headers that are specified in [RFC2616] are further
restrained in how they can be used, as specified in this document. These additionally restrained
headers and the custom headers are defined in this section.

Unless otherwise specified, the headers that are defined in this document and any tokens (also
called tags or directives) that are used on those headers are defined for use on both requests and
responses.

If a client or server receives an HTTP header that is not defined in this section or if the header is not
defined in the current context (for example, a request-only header is received in a response), the
header MUST be ignored, as specified in [RFC2616].

If a client or server receives an HTTP header that is defined in this section and the header contains

an unknown or malformed token, as specified in this section, the request or response that contains
the header MUST be considered malformed.

If a client or server receives an HTTP header that is defined in this section, but the header contains
a token that is not defined in the current context (for example, a request-only token is received in a
response), the request or response that contains the header and token MUST be considered
malformed.

This section defines the syntax of the HTTP headers that are defined in this section by using the
Augmented Backus-Naur Form (ABNF) syntax, as specified in [RFC5234]. Any ABNF syntax rules
that are not specified in [RFC5234] use the ABNF extensions that are specified in [RFC2616].

The grammar in this section is word-based. Except where noted otherwise, linear white space
(LWS), as specified in [RFC2616], can be included between any two adjacent words (token or
quoted-string) and between adjacent words and separators without changing the interpretation of a
field. At least one delimiter (LWS and/or separators) MUST exist between any two tokens, as

specified in [RFC2616], because they would otherwise be interpreted as a single token.

2.2.5.1 Accept

A primary goal of data services is to allow a client of the service to focus on the data being
transmitted and not be required to understand a single data format. As such, the OData protocol
that is defined in this document enables exchanging resources using AtomPub semantics in multiple
serialization formats (AtomPub, JSON, Verbose JSON, and so on).

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

124 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The nature of the client application using a data service and its runtime environment determines
which format is best. For example, Asynchronous JavaScript (AJAX)-based applications that run

inside web browsers may find JSON easier to use because this format can be directly turned into
JavaScript objects. On the other hand, a client application may be written with a language/runtime

library that has a rich, built-in XML parser, making an XML-based format an appropriate choice.

The OData protocol uses the Accept request-header field, as specified in [RFC2616]. Once a
requested format is determined using the rules specified in [RFC2616], the following Accept Request
Header to Content-Type Response Header Mapping table is used to determine the value of the
Content-Type response header and the format of the response payload.

Value of Accept request header Value of Content-Type response header

/

Specified in [RFC2616] and [RFC2045]

application/atom+xml

text/*

Specified in [RFC2046]

Behavior is not defined by this document

application/*

Specified in [RFC2046]

Behavior is not defined by this document

text/plain

Specified in [RFC3676]

text/plain

text/xml

Specified in [RFC3023]

text/xml

application/xml

Specified in [RFC3023]

application/xml

application/atom+xml

Specified in [RFC5023]

application/atom+xml

application/atom+xml;type=entry

Specified in [RFC5023]

application/atom+xml;type=entry

application/atom+xml;type=feed

Specified in [RFC5023]

application/atom+xml;type=feed

application/json

Specified in [RFC4627]

For OData 1.0 and OData 2.0 responses:

application/json;odata=verbose

For OData 3.0 responses:

application/json

application/json;odata=verbose application/json;odata=verbose

Table: Accept Request Header to Content-Type Response Header Mapping

If the server cannot send a response that is acceptable, as indicated in the preceding Accept
Request Header to Content-Type Response Header Mapping table and according to the Accept
header value, then, as specified in [RFC2616], the server SHOULD return a 4xx response.

The OData protocol can be extended to support arbitrary message formats. However, the scope of
this section is to define the use of the application/atom+xml (section 2.2.5.1.1), application/json

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90307
http://go.microsoft.com/fwlink/?LinkId=90308
http://go.microsoft.com/fwlink/?LinkId=90308
http://go.microsoft.com/fwlink/?LinkId=140872
http://go.microsoft.com/fwlink/?LinkId=140870
http://go.microsoft.com/fwlink/?LinkId=140870
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=90372

125 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

(section 2.2.5.1.2), and application/json;odata=verbose (section 2.2.5.1.3) formats. A data service
MAY accept requests with Accept header values other than those shown in the preceding table. The

returned Content-Type response header value for such requests is not defined by this specification.

2.2.5.1.1 application/atom+xml

This content type is used to request the data service format for the response payload by using the
application/atom+xml format according to the formatting rules that are outlined in AtomPub Format
(section 2.2.6.2). A data service MUST support this content type.

2.2.5.1.2 application/json

For OData 1.0 and OData 2.0 services, this content type is used to request the data service format

for the response payload according to the formatting rules that are outlined in Verbose JSON Format
(section 2.2.6.3).

For OData 3.0 services, the application/json content type returns the preferred OData 3.0 JSON

format as defined in [MS-ODATAJSON] section 2.1.5.

2.2.5.1.3 application/json;odata=verbose

This content type is used to request the data service format for the response payload by using the

application/json;odata=verbose format according to the formatting rules that are outlined in
Verbose JSON Format (section 2.2.6.3). A data service MAY support this content type.

2.2.5.2 Content-Type

The Content-Type header is used as specified in [RFC2616]. However, because this document
describes messages for the application/atom+xml (section 2.2.5.1.1), application/json (section

2.2.5.1.2), application/json;odata=verbose (section 2.2.5.1.3), application/xml, text/plain, and
text/xml formats, a data service client or server SHOULD only use HTTP messages with a Content-
Type header value as shown in the ABNF grammar that follows and is specified in [RFC5234]. The
exception to the above rule is when messages are used that represent a Media Resource [RFC5023]

or the raw value of an entity's property (see section 2.2.3.5).

Content-Type = "Content-Type:"

 ("application/atom+xml"

 / "application/atom+xml;type=entry"

 / "application/atom+xml;type=feed"

 / "application/json;odata=verbose"

 / "application/json"

 / "application/xml"

 / "text/plain"

 / "text/xml"

 / "octet/stream")

 CRLF

 ";" <Remainder of rule is per the Content-Type rule in [RFC2616]>

Listing: Content-Type Header ABNF Grammar

Example: Content-Type: application/atom+xml;charset=UTF-8

http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=140880

126 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.5.3 DataServiceVersion

This header is a custom HTTP header defined by this document for protocol versioning purposes.
This header MAY be present on any request or response message.

The syntax of the DataServiceVersion header is defined as follows:

DataServiceVersion = "DataServiceVersion:"

 VersionNum

 [";"

 VersionClientUserAgent]

 CRLF

VersionNum = DIGIT *DIGIT "." DIGIT *DIGIT

VersionClientUserAgent = *token ; see [RFC2616] section 2.2

 ; SHOULD contain information about the user agent

 ; originating the request

Listing: DataServiceVersion Header ABNF Grammar

Example: DataServiceVersion: 1.0;AspNetAjax

If present in a request, the VersionNum section of the header value states the version of the OData
protocol that the client used to generate the request, as specified in the preceding
DataServiceVersion Header ABNF Grammar listing.

If present in a response, the VersionNum section of the header value states the version of the
OData protocol that the server used to generate the response, as specified in the preceding
DataServiceVersion Header ABNF Grammar listing.

For additional processing rules for this header, see Versioning and Capability Negotiation (section
1.7).

The VersionClientUserAgent section, as specified in the previous listing in this section,
DataServiceVersion Header ABNF GrammarService Operation Parameters, of the header value is not

significant, SHOULD NOT be interpreted by a data service, and SHOULD NOT affect the versioning
semantics of a data service.

This document defines OData 1.0, OData 2.0, and OData 3.0.

2.2.5.4 ETag

An ETag (entity tag) is an HTTP response header returned by an HTTP/1.1 compliant web server
used to determine change in content of a resource at a given URL. The value of the header is an

opaque string representing the state of the resource at the time the response was generated.

The ETag header is used as specified in [RFC2616]. However, this document adds constraints to the
header value to enable its use for optimistic concurrency control when performing operations that

update entities on the server. Optimistic concurrency support is described in If-Match (section
2.2.5.5), If-None-Match (section 2.2.5.6), and later in this section.

In the Entity Data Model (EDM) associated with a service, some EntityTypes may have properties

defined with a concurrencyMode, as specified in [MC-CSDL] section 2.2.4, whose value is "Fixed".
Such EntityTypes are considered enabled for optimistic concurrency control. For example, the
Version property on the Customer EntityType defined in the model shown in Appendix A: Sample

http://go.microsoft.com/fwlink/?LinkId=90372
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

127 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Entity Data Model and CSDL Document (section 6) defines the entire concurrency token of the type
because no other properties on the type have the concurrencyMode facet. If a base EntityType

does not define a concurrency token, then that EntityType, and any of its subtypes, are not
considered enabled for optimistic concurrency control.

When a server responds, indicating success, to a request performed against a URI that identifies a
single entity, properties of an entity or a Media Resource (as specified in URI Format: Resource
Addressing Rules (section 2.2.3)), and whose EntityType is enabled for optimistic concurrency
control, it MUST include an ETag header in the HTTP response. The value of the header MUST
represent the concurrency token for the entity that is identified by the request URI. The server
MUST NOT include an ETag header in a response to any request performed against a URI that does
not identify, as specified in URI Format: Resource Addressing Rules (section 2.2.3), a single entity,

properties of an entity, or a Media Resource. In addition, the server MUST NOT include an ETag
header if the request URI identifies a single entity whose type is not enabled for optimistic
concurrency control. Server response requests performed against URIs that do not return single
entities MUST provide concurrency tokens in the response payload for any entities that are enabled
for concurrency control.

For example, using the model in Appendix A: Sample Entity Data Model and CSDL Document, a valid

URI identifying an EntityType instance is http://host/service.svc/Customers('ALFKI').

As a counter example, the URIs http://host/service.svc/Customers and

http://host/service.svc/Customers('ALFKI')?$expand=Orders identify a collection of

entities and thus MUST NOT include an ETag in a response associated with these request URIs.

A data service MAY<52> define concurrency tokens on the base EntityType associated with each

EntitySet in the EDM used by the service. Concurrency tokens are defined using the
concurrencyMode facet, with a value of "Fixed", on a property of an EntityType, as specified in
[MC-CSDL].

An entity's concurrency token MUST be comprised of only primitive type values
(NavigationProperties and ComplexTypes cannot be annotated with the concurrencyMode facet
and therefore cannot participate in the concurrency token for an EntityType), as specified in [MC-

CSDL]. Because this document relies on the definition of concurrency tokens per [MC-CSDL],

optimistic concurrency control is not defined for links or associations. Therefore, a server MAY NOT
perform optimistic concurrency control for operations that create or remove associations. If a data
service implementation is able to provide concurrency support on such operations without altering
the rules in this section, it SHOULD do so.

Implementers of this document are recommended to order the property values that make up the
concurrency token for an EntityType, and all of its subtypes, using the same order of the properties

listed in the metadata document of the data service. RetrieveServiceMetadata Request (section
2.2.7.2.7) describes the Data Service Metadata document.

The syntax of the ETag header is defined as follows:

ETag = "ETag" ":"

 entity-tag

 CRLF ; exactly as specified in [RFC2616] section 14.19

entity-tag = [weak] opaque-tag ; exactly as specified in [RFC2616] section 3.11

weak = "W/" ; exactly as specified in [RFC2616] section 3.11

; The rule below redefines the opaque-tag rule defined in [RFC2616]

opaque-tag = <ASCII encoded value of entityProperty rules from (section 2.2.3.1)>

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

128 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

["," opaque-tag]

Example following the model defined in Appendix A: Sample Entity Data Model and CSDL Document:

ETag: W/"X'000000000000D2F3'"

2.2.5.5 If-Match

The If-Match request-header field is used with a method to make it conditional. As specified in
[RFC2616], "the purpose of this feature is to allow efficient updates of cached information with a
minimum amount of transaction overhead. It is also used, on updating requests, to prevent

inadvertent modification of the wrong version of a resource".

The If-Match header is used in this document as specified in [RFC2616]. However, this document
adds additional constraints to the types of requests for which the header may be provided.
Additional constraints are also added to the syntax of the header value.

This header MAY<53> only be present on HTTP GET, MERGE, PATCH, or PUT requests to request

URIs which identify the same Entity Data Model (EDM) constructs as URI 2, URI 3, URI 4, URI 5, and
URI 17 that are defined in Resource Path: Semantics (section 2.2.3.5). Additionally, this header

MAY<54> be present on DELETE requests to request URIs that identify the same EDM constructs as
URI 2, as specified in Resource Path: Semantics (section 2.2.3.5), and any data service URI whose
last path segment is "/$value".

Additionally, this header MAY be present on POST requests to invoke an action (section 2.2.1.3)
bound to an entity. This allows clients to prevent an action from having inadvertent side effects
based on the wrong version of a resource.

This header MUST NOT be on any POST request other than a request to invoke an action (section

2.2.1.3).

Client processing rules for this header are defined in Request Types (section 2.2.7) and server
processing rules are in Message Processing Events and Sequencing Rules (section 3.2.5).

The syntax of the If-Match header is defined as follows:

; entity-tag is as per the definition in (section 2.2.5.4)

If-Match = "If-Match" ":" ("*" / 1*entity-tag) CRLF

Example: If-Match: W/"X'000000000000D2F3'"

2.2.5.6 If-None-Match

The If-None-Match request header is used with a method to make it conditional. As specified in
[RFC2616], "The purpose of this feature is to allow efficient updates of cached information with a
minimum amount of transaction overhead. It is also used to prevent a method (for example, PUT)
from inadvertently modifying an existing resource when the client believes that the resource does

not exist."

The If-None-Match header is used in this document as specified in [RFC2616]. However, this
document further limits it to the types of requests with which the header may be used. Additional
constraints are also added to the syntax of the header value.

This header MAY<55> be present only on HTTP GET, MERGE, PATCH, or PUT requests to request
URIs that identify the same Entity Data Model (EDM) constructs as URI 2, URI 3, URI 4, URI 5, and

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

129 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

URI 17, as defined in the Resource Path Semantics table in Resource Path: Semantics (section
2.2.3.5). Additionally, this header MAY<56> be used on DELETE requests to URIs which identify the

same EDM constructs as URI 2, as specified in the table in Resource Path: Semantics (section
2.2.3.5), and any data service URI whose last path segment is "/$value". This header MUST NOT be

used on any POST requests to a data service.

Client processing rules for this header are defined in Request Types (section 2.2.7) and server
processing rules are in Message Processing Events and Sequencing Rules (section 3.2.5).

The syntax of the If-None-Match header is defined as follows:

; entity-tag is as per the definition in (section 2.2.4.4)

If-None-Match = "If-None-Match" ":" ("*" / 1*entity-tag) CRLF

2.2.5.7 MaxDataServiceVersion

This header is a custom HTTP request only header defined by this document for protocol versioning
purposes. This header MAY be present on any request message from client to server.

If present in a request, the VersionNum section, as specified in the following ABNF grammar list, of
the header value states the maximum version of the protocol the client can accept in a response.

For additional processing rules for this header, see Versioning and Capability Negotiation (section
1.7).

The VersionServerUserAgent section, as specified in the following ABNF grammar list, of the header
value is not significant and SHOULD NOT affect the versioning semantics of a data service.

The syntax of the MaxDataServiceVersion header is defined as follows:

MaxDataServiceVersion = "MaxDataServiceVersion: "

 VersionNum ; (section 2.2.5.3)

 [";"

 VersionServerUserAgent]

 CRLF

VersionServerUserAgent = <0 or more of any valid character in an HTTP header that

 identifies the server sending the request>

Listing: Syntax of the MaxDataServiceVersion Header

Example: MaxDataServiceVersion: 1.0;AspNetAjax

2.2.5.8 X-HTTP-Method

This header is a custom HTTP request header defined by this document.

It is possible to instruct network intermediaries (proxies, firewalls, and so on) inspecting traffic at
the application protocol layer (for example, HTTP) to block requests that contain certain HTTP verbs.
In practice, GET and POST verbs are rarely blocked (traditional web pages rely heavily on these
HTTP methods), while, for a variety of reasons (such as security vulnerabilities in prior protocols),
other HTTP methods (PUT, DELETE, and so on) are at times blocked by intermediaries. Additionally,
some existing HTTP libraries do not allow creation of requests using verbs other than GET or POST.

130 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Therefore, an alternative way of specifying request types which use verbs other than GET and POST
is needed to ensure that this document works well in a wide range of environments.

To address this need, the X-HTTP-Method header can be added to a POST request that signals that
the server MUST process the request not as a POST, but as if the HTTP verb specified as the value of

the header was used as the method on the HTTP request's request line, as specified in [RFC2616]
section 5.1. This technique is often referred to as "verb tunneling".

This header is only valid when on POST requests. A server MAY<57> support verb tunneling as
defined in the preceding paragraph. If a server implementing this document does not support verb
tunneling, it MUST ignore an X-HTTP-Method header, if present in a POST request, and treat the
request as a standard POST request. This implies that a client of such a data service must determine
in advance (using server documentation, and so on) if a given data service endpoint supports verb

tunneling. A tunneled request sent to a service that does not support verb tunneling will interpret
the request as an insert request since POST requests map to an insert request, as specified in
[RFC5023].

The syntax of the X-HTTP-Method is defined as follows:

XHTTPMethod = "X-HTTP-Method: "

 ("PUT"

 / "MERGE"

 / "PATCH"

 / "DELETE")

 CRLF

For example, the HTTP request in the following Delete Request Tunneled in a POST Request listing

instructs the server to delete the EntityType instance identified by EntityKey value 5 in the
Categories EntitySet instead of performing an insert operation.

POST /Categories(5)

HTTP/1.1

Host: server

X-HTTP-Method: DELETE

Listing: Delete Request Tunneled in a POST Request

2.2.5.9 Prefer

A Prefer header is included in a request to state the client’s preferred, but not required, server
behavior (that is, a hint to the server). The Prefer header MAY be included on any request type
(within a standalone or batch request), and a server MAY honor the header for HTTP POST, PUT,
PATCH, and MERGE requests. A Prefer header with a value of “return-content” MUST NOT be

specified on a DELETE request, a batch request as a whole, or a PUT request to update a named
stream.

The syntax of the Prefer header is defined as follows:

Prefer = "Prefer" ":" preference

preference = "return-no-content" |

 "return-content" |

 preference-extension

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

131 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

preference-extension = prefer-params *(";" prefer-params])

prefer-params = token ["=" (token | quoted-string)

A header value of "return-no-content" indicates that the client prefers that the server not include an

entity representing the current state of the resource in the response to a successful request. If the
value is “return-no-content”, the server MAY choose to return an empty response payload with
status code 204.

A header value of "return-content" indicates that the client prefers that the server include an entity
that represents the current state of the resource in the response to a successful request. If the
value is “return-content”, the representation (as requested by the Accept header) of the current
state of the inserted or updated resource MAY be returned in the body of the response. If it is

included, the resource MUST be formatted as if it was being retrieved with a GET operation.
However, in the case of a PUT request to a media stream, the response is formatted as if it is the
response to a successful POST operation with the specified content.

When the Prefer header is included with a request that uses POST tunneling, as specified in section

2.2.5.8, the preference is to be applied to the tunneled request.

Preference values of the prefer header other than return-content or return-no-content are not
defined by this specification. If any of the preference values of the Prefer header are not recognized

by the service, those values of the Prefer header MUST be ignored by the server and the server
MUST continue processing the request as if the Prefer header was not specified.

2.2.5.10 Preference-Applied

When a Prefer (section 2.2.5.9) header value is successfully honored by the server, it MAY include a
Preference-Applied response header that states which preference values were honored by the

server. The grammar of the Preference-Applied response header is shown below.

The syntax of the Preference-Applied response header is defined as follows:

Prefer = "Preference-Applied" ":" preference

2.2.5.11 DataServiceId

The DataServiceId response header is returned by the server when the response payload for an
InsertEntity request (section 2.2.7.1.1) or an InsertMediaResource request (section 2.2.7.1.3) is
empty. The value of the header is the identifier of the entity that was acted on by the request. The
identifier, in this case, is the same identifier that would have been returned in the response payload
(for example, as the value of the atom:id element for Atom responses).

The DataServiceId response header is defined by the following grammar.

DataServiceId = "DataServiceId" ":" (token)

The content of the DataServiceId header MUST be an IRI as defined by [RFC3987].

The DataServiceId header is only meaningful in a response to an InsertEntity request or an
InsertMediaResource request with a 204-No Content response. If it is included on any other
response or request, the DataServiceId header MUST be ignored.

http://go.microsoft.com/fwlink/?LinkId=140875

132 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.6 Common Payload Syntax

The OData protocol that is defined in this document enables clients and servers to perform actions
(for example, CRUD operations) on entities in an Entity Data Model (EDM), as specified in [MC-

CSDL], that is represented by using one of multiple possible formats (AtomPub, JSON, Verbose
JSON, and so on). Each serialization format or representation of an entity may be used in the
payload of request and response messages, as specified in Request Types (section 2.2.7).

AtomPub Format (section 2.2.6.2) specifies how to represent EDM constructs (single EntityType
instance, multiple EntityType instances in an EntitySet, NavigationProperties, and so on) by using
the AtomPub [RFC5023] format.

[MS-ODATAJSON] and Verbose JSON Format (section 2.2.6.3) each specify how to represent EDM

constructs (single EntityType instance, multiple EntityType instances in an EntitySet,
NavigationProperty properties, and so on) by using the JavaScript Object Notation (JSON)
[RFC4627] format: see [MS-ODATAJSON] for the preferred OData 3.0 representation and section
2.2.6.3 for the Verbose JSON legacy representation.

It should be noted that Request Types (section 2.2.7) defines additional payload syntax directives,
dependent on the message context, that MUST be adhered to in addition to those defined in this

section.

2.2.6.1 Common Serialization Rules for XML-Based Formats

AtomPub and custom XML formatted payloads that represent Entity Data Model (EDM) constructs, as
specified in [MC-CSDL] and defined in AtomPub Format (section 2.2.6.2) and XML Format (section
2.2.6.5), consist of XML elements and attributes in the XML Namespaces, as specified in [XMLNS],
that are shown in the following table. All XML elements and attributes associated with the protocol

that is defined in this document and custom XML formats that hold data are defined in the "data
service" namespace.

All metadata-related elements that are defined in this document are defined in the "data service
metadata" namespace.

Namespace Namespace URI

Atom 1.0

Namespace

(Atom only)

http://www.w3.org/2005/Atom

The common namespace prefix for this namespace is "atom". Subsequent sections of this

document refer to elements and attributes in this namespace by using the notation

"atom:elementName".

Data

Service

Namespace

http://schemas.microsoft.com/ado/2007/08/dataservices

This namespace URI may be changed to something more applicable to the particular

service. The namespace URI preceding SHOULD be used if a data service does not wish to

use an alternate.

Servers are not required to use the namespace prefix "d" for this namespace. Subsequent

sections of this document refer to elements in this namespace by using the notation

"d:elementName".

Data

Services

Metadata

Namespace

http://schemas.microsoft.com/ado/2007/08/dataservices/metadata

Servers are not required to use the namespace prefix 'm' for this namespace. Subsequent

sections of this document refer to elements in this namespace by using the notation

"m:elementName".

Table: Protocol Namespace Definitions

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=304226
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90602

133 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

XML payloads defined in this document may use the xml:base [XML-BASE] attribute, as specified in
[RFC5023]. A data service and its client MUST understand and appropriately process this directive.

All EDM primitive types represented as XML element values MUST be formatted as defined by the
rules in the following EDM Primitive Type Formats for Element Values table. In addition to the rules

stated in the table, if the value of a primitive or ComplexType type is null, then the value of the
associated XML element MUST be empty. In addition, an m:null attribute with value set to "true"
MUST be present on the containing element.

EDM primitive type

ABNF rule for primitive

type representation in

XML-based payloads

Serialization format (ABNF

grammar)

Edm.Binary binary binary = <Base64 encoded byte

stream. See [RFC4648] for further

details>

Edm.Boolean booleanLiteral See booleanLiteral in the Literal Form

of Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.Byte byteLiteral See byteLiteral in the Literal Form of

Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.DateTime dateTimeLiteral See dateTimeLiteral in the Literal

Form of Entity Data Model Primitive

Types table in Abstract Type System

(section 2.2.2).

Edm.Decimal decimalLiteral See decimalLiteral in the Literal Form

of Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.Double doubleLiteral See doubleLiteral in the Literal Form

of Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.Single singleLiteral See singleLiteral in the Literal Form of

Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.Guid guidLiteral See guidLiteral in the Literal Form of

Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.Int16 int16Literal See int16Literal in the Literal Form of

Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.Int32 int32Literal See int32Literal in the Literal Form of

Entity Data Model Primitive Types

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90487

134 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive

type representation in

XML-based payloads

Serialization format (ABNF

grammar)

table in Abstract Type System

(section 2.2.2).

Edm.Int64 int64Literal See int64Literal in the Literal Form of

Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.SByte sbyteliteral See sbyteliteral in the Literal Form of

Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.String stringUriLiteral See stringUriLiteral in the Literal Form

of Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.Time timeLiteral See timeLiteral in the Literal Form of

Entity Data Model Primitive Types

table in Abstract Type System

(section 2.2.2).

Edm.DateTimeOffset dateTimeOffsetLiteral See dateTimeOffsetLiteral in the

Literal Form of Entity Data Model

Primitive Types table in Abstract Type

System (section 2.2.2).

Edm.Geography N/A N/A

Edm.GeographyPoint pointGmlLiteral pointGmlLiteral = <See [OGC-

SFOLECOM] representation for a

Point>

Edm.GeographyLineString lineStringGmlLiteral lineStringGmlLiteral = <See [OGC-

SFOLECOM] representation for a

LineString>

Edm.GeographyPolygon polygonGmlLiteral polygonGmlLiteral = <See [OGC-

SFOLECOM] representation for a

Polygon, except as modified below>

In Ellipsoidal coordinates, all rings are

equally interpretable as "outer".

Therefore, the rings MUST have their

control points in left-foot winding

order. This means that the points to

the left side of the ring, when

traversing in serialized order, are in

the polygon, while those to the right

side are not.

In planar coordinates, where "outer"

is well defined, the first ring MUST be

the outer ring, in accordance with the

GML standard.

http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591

135 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive

type representation in

XML-based payloads

Serialization format (ABNF

grammar)

Edm.GeographyCollection geoCollectionGmlLiteral geoCollectionGmlLiteral = <See

[OGC-SFOLECOM] representation for

a GeometryCollection>

Edm.GeographyMultiPoint multiPointGmlLiteral multiPointGmlLiteral = <See [OGC-

SFOLECOM] representation for a

MultiPoint>

Edm.GeographyMultiLineString multiLineStringGmlLiteral multiLineStringGmlLiteral = <See

[OGC-SFOLECOM] representation for

a MultiLineString>

Edm.GeographyMultiPolygon multiPolygonGmlLiteral multiPolygonGmlLiteral = <See [OGC-

SFOLECOM] representation for a

MultiPolygon, as modified below>

In Ellipsoidal coordinates, all rings are

equally interpretable as "outer".

Therefore, the rings MUST have their

control points in left-foot winding

order. This means that the points to

the left side of the ring, when

traversing in serialized order, are in

the polygon, while those to the right

side are not.

In planar coordinates, where "outer"

is well defined, the first ring MUST be

the outer ring, in accordance with the

GML standard.

Edm.Geometry N/A N/A

Edm.GeometryPoint pointGmlLiteral N/A

Edm.GeometryLineString lineStringGmlLiteral N/A

Edm.GeometryPolygon polygonGmlLiteral N/A

Edm.GeometryCollection geoCollectionGmlLiteral N/A

Edm.GeometryMultiPoint multiPointGmlLiteral N/A

Edm.GeometryMultiLineString multiLineStringGmlLiteral N/A

Edm.GeometryMultiPolygon multiPolygonGmlLiteral N/A

Table: EDM Primitive Type Formats for XML Element Values

2.2.6.2 AtomPub Format

Atom is an XML-based document format described in [RFC4287] and extended with AtomPub
specific extensions in [RFC5023]. This section uses the term AtomPub as shorthand to refer to the
union of the document format rules that are defined in [RFC4287] and [RFC5023].

http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=233591
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140880

136 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

AtomPub describes lists of related information (a collection in the abstract AtomPub Protocol Model
[RFC5023] section 4.2) known as "feeds". Feeds are composed of a number of items, known as

"entries" (Entry Resources in the abstract AtomPub Protocol Model [RFC5023] section 4.2), each
with an extensible set of attached metadata. For example, each entry MUST have a title.

The following subsections define the mapping of constructs in the Entity Data Model (EDM) to Atom
format elements for use in request/response messages as specified in Request Types (section
2.2.7). In all the subsections that follow, if a data model construct is not explicitly described, an
associated Atom-based representation is not defined by this document. For such constructs, servers
and clients MAY<58> either:

Define their own representations and include them in a request or response if valid according to

[RFC5023].

Exclude them from requests and responses.

The examples in this section use the sample data model that is defined in Appendix A: Sample
Entity Data Model and CSDL Document (section 6).

2.2.6.2.1 Entity Set (as an Atom Feed Element)

An EntitySet or collection of entities MUST be represented as an atom:feed element, as specified in
[RFC4287] section 4.1.1. This section adds constraints to the formatting rules defined in AtomPub
for atom:feed elements.

An Atom-formatted EntitySet or collection of entities MUST adhere to the rules that are defined in
this section.

atom:feed Element

The atom:feed element is specified in [RFC4287] section 4.1.1

atom:feed Subelements

The atom:id element, as specified in [RFC4287] section 4.2.6, MUST contain the URI that identifies
the EntitySet that is represented by the parent atom:feed element. For example, assuming the
parent element represented the Customers EntitySet (as described in Appendix A: Sample Entity
Data Model and CSDL Document (section 6)), the value of this element would be
http://host/service.svc/Customers.

The atom:title element, as specified in [RFC4287] section 4.2.14, MAY contain the name of the
EntitySet that is represented by the parent atom:feed element. The set name MAY be qualified
with the name of the Entity Data Model (EDM) namespace in which it is defined, as specified in [MC-
CSDL]. If the URI in the sibling atom:id element is of the same form as URI6, as defined in
Resource Path: Semantics (section 2.2.3.5) (last path segment is a NavigationProperty) and the
NavigationProperty identifies an EntitySet, then the atom:title element MAY contain the name
of the NavigationProperty instead of the name of the EntitySet that is identified by the property.

An atom:link element, as specified in [RFC4287] section 4.2.7, with a rel="self" attribute MUST
contain an href attribute with a value equal to the URI used to identify the set that the parent

atom:feed element represents. When used in HTTP responses, this URI MUST be equal to the
associated HTTP request URI. When used in HTTP deep insert requests, this URI MUST identify a
related collection of entities (identified by a NavigationProperty on the base EntityType of the
EntitySet that is identified by the request URI) into which the deep/related new entities will be

inserted, as specified in InsertEntity Request (section 2.2.7.1.1).

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140877
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140877
%5bMC-CSDL%5d.pdf

137 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

An atom:entry element, as specified in [RFC4287] section 4.1.2, within the atom:feed element, is
formatted as specified in Entity Type (as an Atom Entry Element) (section 2.2.6.2.2).

In response payloads only, if the server does not include an atom:entry element as a child element
of the atom:feed element for every entity in the collection of entities that is identified by the

associated URI, the atom:feed element represents a partial collection as defined in AtomPub
[RFC5023] section 10.1. The href attribute of the atom:link rel="next" element that is mandated
by AtomPub [RFC5023] section 10.1 for such partial representations MUST have a value equal to the
URI that identifies the next partial set of entities from the originally identified complete set. Such a
URI SHOULD include a Skip Token system query option (section 2.2.3.6.1.9) to indicate that the URI
addresses the next (after the partial set represented by the parent atom:feed element) partial set
of entities.

Implementers of this protocol should note that the inclusion of an atom:link rel="next" element in
a response payload has protocol versioning implications as described in Executing a Received
RetrieveValue Request (section 3.2.5.4.2).

2.2.6.2.1.1 InlineCount Representation (for Collections of Entities)

Applies to the OData 2.0 and OData 3.0 protocols

This section defines an extended representation of a collection of entities from that described in
section 2.2.6.2.1. This representation is supported only in the OData 2.0 and OData 3.0 protocols.

A request URI MAY contain an $inlinecount system query option to indicate that the count of the
number of entities represented by the query after filters have been applied and before applying any
other query option processing MUST be included in the result sent by the data service.

The count value included in the result MUST be enclosed in an m:count element. The m:count
element MUST be a direct child element of the feed element and MUST occur before any

atom:entry elements in the feed.

The m:count element MUST NOT be present in any feed elements nested within any atom:entry
elements.

For example, the count of all Customer entities using the Customer EntityType instance described
in Appendix A: Sample Entity Data Model and CSDL Document (section 6) is represented in Atom as
described in the following feed. In the example, the request included the InlineCount system query
option and the Top system query option with a value of 1.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<feed xml:base="http://sburges-devpc/FFEdmx/ffedmx.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Customers</title>

 <id>http://host/service.svc/Customers</id>

 <updated>2009-03-27T23:41:29Z</updated>

 <link rel="self" title="Customers" href="Customers" />

 <m:count>91</m:count>

 <entry>

 <id> http://host/service.svc/Customers('ALFKI')</id>

 <title type="text"></title>

 <updated>2009-03-27T23:41:29Z</updated>

 <author>

 <name />

 </author>

http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880

138 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <link rel="edit" title="Customers" href="Customers('ALFKI')" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

 type="application/atom+xml;type=feed" title="Orders"

 href="Customers('ALFKI')/Orders" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Orders"

 type="application/xml" title="Orders"

 href="Customers('ALFKI')/$links/Orders" /> <link

 rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/related/CustomerDemographics" type="application/atom+xml;type=feed"

 title="CustomerDemographics" href="Customers('ALFKI')/CustomerDemographics" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/relatedlinks/CustomerDemographics" type="application/xml "

 title="CustomerDemographics" href="Customers('ALFKI')/$links/CustomerDemographics" />

 <category term="NorthwindModel.Customers"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Alfreds Futterkiste</d:CompanyName>

 <d:ContactName>Maria Anders</d:ContactName>

 <d:ContactTitle>Sales Representative</d:ContactTitle>

 <d:Address>Obere Str. 578</d:Address>

 <d:City>Toronto</d:City>

 <d:Region m:null="true" />

 <d:PostalCode>12209</d:PostalCode>

 <d:Country>Germany</d:Country>

 <d:Phone>030-0074321</d:Phone>

 <d:Fax>030-0076545</d:Fax>

 </m:properties>

 </content>

 </entry>

</feed>

Listing: OData 3.0 Atom-Formatted InLineCount Representation

2.2.6.2.1.2 Entity Set (as an Atom Feed Element) with Actions

Applies to the OData 3.0 protocol

In OData 3.0, it is possible to advertise the availability of actions (section 2.2.1.3) that are bound to

the definition of the feed, in the feed.

Actions that are advertised by the server MUST be encoded in an m:action element under the
atom:feed element that corresponds to the feed that the action is bound to. There can be any
number of actions bound to the feed, and therefore, there can be an arbitrary number of m:action
elements.

The m:action element MUST have a metadata attribute that contains the Action Metadata URL
(section 2.2.1.3.1) of the action.

The m:action element MUST have a target attribute containing a URL. This is the URL to which
clients should issue an Invoke Action request (section 2.2.7.5.1) to invoke the action. The binding
parameter is assumed to be bound to the encompassing feed definition. Therefore, if the client
invokes the action via the target URL, the target URL MUST not include a value for the binding
parameter in the request body.

139 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The m:action element MUST have a title attribute that contains a simple string that is used as a
simple but not necessarily unique name for the action. Generally, servers SHOULD specify a title

that would be easily understood by any user because the title is likely to be used by clients to
display options to an end user.

Actions advertised in the Atom feed element MUST be interpreted as being bound to the definition of
the feed and not to the items that are represented in the feed.

Actions that operate on a feed MUST only be advertised in an Atom feed element if the server can
fully encode the action, the resource path, and the appropriate system query options that define the
feed.

System query options (section 2.2.3.6.1) that change the membership of the feed MUST be
considered to be part of the feed definition. In practice, this means that the target URL that is used

to invoke the action MUST encode the following system query options if they are used to define the
feed:

$filter (section 2.2.3.6.1.4)

$expand (section 2.2.3.6.1.3)

$orderby (section 2.2.3.6.1.6)

$skip (section 2.2.3.6.1.7)

$top (section 2.2.3.6.1.8)

The remaining system query options, generally, do not define the feed and, therefore, do not need
to be encoded in the target of the action:

$format (section 2.2.3.6.1.5)

$skiptoken (section 2.2.3.6.1.9)

$inlinecount (section 2.2.3.6.1.10)

$select (section 2.2.3.6.1.11)

2.2.6.2.1.3 Entity Set (as an Atom Feed Element) with Functions

Applies to the OData 3.0 protocol

In the OData 3.0 protocol, it is possible to advertise the availability of functions (section 2.2.1.4)
that are bindable to the definition of the feed, in the feed.

Functions that are advertised by the server MUST be encoded in an m:function element under the
atom:feed element that corresponds to the feed that the function is bound to. There can be any

number of functions bound to the feed, and therefore, there can be an arbitrary number of
m:function elements.

The m:function element MUST have a metadata attribute that contains the function metadata URL

(section 2.2.1.4.1). The function metadata URL MUST identify only functions that are bindable to the
current feed definition. If overloads exist that cannot be bound to the current feed definition,
individual m:Function elements SHOULD be returned that each have a function metadata URL that

identifies a specific bindable overload.

The m:function element MUST have a target attribute that contains a URL. This is the URL to which
clients should issue an Invoke Function request (section 2.2.7.5.2) to invoke the function. The

140 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

binding parameter is assumed to be bound to the encompassing feed definition. Therefore, if the
client invokes the function via the target URL, it MUST not include a value for the binding parameter

in the request via a parameter appended to the target URL.

The m:function element MUST have a title attribute that contains a simple string that is used as a

simple but not necessarily unique name for the function. Generally, servers SHOULD specify a title
that would be easily understood by any user because the title is likely to be used by clients to
display options to an end user.

If a function to be advertised has overloads, the server SHOULD expose a single m:function
element with a metadata attribute that identifies all the overloads.

Functions advertised in the Atom feed element MUST be interpreted as being bound to the definition
of the feed and not to the items that are represented in the feed.

Functions that operate on a feed MUST only be advertised in an Atom feed element if the server can
fully encode the function, the resource path, and the appropriate system query options that define
the feed.

System query options (section 2.2.3.6.1) that change the membership of the feed MUST be
considered part of the feed definition. In practice, this means that the target URL that is used to
invoke the function MUST encode the following system query options if they are used to define the

feed:

$filter (section 2.2.3.6.1.4)

$expand (section 2.2.3.6.1.3)

$orderby (section 2.2.3.6.1.6)

$skip (section 2.2.3.6.1.7)

$top (section 2.2.3.6.1.8)

The remaining system query options, generally, do not define the feed and, therefore, do not need

to be encoded in the target of the function:

$format (section 2.2.3.6.1.5)

$skiptoken (section 2.2.3.6.1.9)

$inlinecount (section 2.2.3.6.1.10)

$select (section 2.2.3.6.1.11)

2.2.6.2.2 Entity Type (as an Atom Entry Element)

An EntityType instance MUST be represented as an atom:entry element, as specified in [RFC4287],
section 4.1.2. This section adds additional constraints to the formatting rules defined in Atom for
atom:entry elements.

An Atom-formatted EntityType instance MUST adhere to the rules defined in this section.

atom:entry element: This element is specified in [RFC4287] section 4.1.2

atom:entry child elements: If the entity represents an AtomPub Entry Resource [RFC5023]

(section 4.2), the atom:content element MUST contain a "type" attribute with the value
"application/xml". The atom:content element SHOULD<59> also contain one m:properties

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=140880

141 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

child element. The m:properties element MUST contain one child element for each
EDMSimpleType, ComplexType, and Collection type property of the EntityType instance

that is represented by the atom:entry element that is not otherwise mapped through a
customizable feed property mapping in its Data Service Metadata Document (as defined in

section 2.2.3.7.2.1). Child elements of the m:properties element that represent entity
properties MUST have the same name as the property they represent, MUST belong to the
data services namespace (section 2.2.6.1), and MAY have an m:type attribute to specify the
EDM type of the property. If the m:type attribute is missing, the EDM type of the property
MUST be assumed to be Edm.String. If the EntityType instance being represented was
identified with a URI that includes a Select system query option (section 2.2.3.6.1.11), the
prior rule is relaxed such that only the properties identified by the $select query option

SHOULD be represented as child elements of the m:properties element. Each child element
that represents a property MUST be defined in the data service namespace, as described in
Common Serialization Rules for XML-Based Formats (section 2.2.6.1), and the element name
must be the same as the property it represents. The rules for how to represent an entity type
as an atom:entry element that contains customizable feed property mappings are defined in
Entity Type (as an Atom Entry Element) with a Customizable Feed Property Mapping (section

2.2.6.2.2.1).

If the entity represents an AtomPub Media Link Entry, as specified in [RFC5023] (section 4.2),
the m:properties element MUST also contain the EDMSimpleType, ComplexType, and, in
the OData 3.0 protocol, the collection properties of the EntityType instance, as described in
the preceding paragraph. However, the m:properties element MUST be a direct child of the
atom:entry element (as opposed to the atom:content element). Additionally, as specified in
[RFC5023], an atom:link element SHOULD be included, which contains a rel="edit-media"

attribute. If such an atom:link element identifies a Media Resource with an associated
concurrency token, the element SHOULD include an m:etag attribute with a value equal to
the ETag of the media resource identified by the atom:link element.

An atom:category element containing a term attribute and a scheme attribute MUST be
included if the EntityType of the EntityType instance represented by the atom:entry object
is part of an inheritance hierarchy, as described in [MC-CSDL] (section 1). If the EntityType
is not part of an inheritance hierarchy, the atom:category element SHOULD be included. The

value of the term attribute MUST be the namespace qualified name of the EntityType of the
instance represented by the atom:entry element. The value of the scheme attribute MUST
be a data service specific IRI which, as specified in [RFC4287], identifies the categorization
scheme used. If a data service does not have a scheme IRI, it SHOULD use the URI shown in
grammar rule dataServiceSchemeURI in the Entity Type Atom Representation URIs (ABNF
Grammar) listing that follows in this section.

An m:etag attribute MAY be included on the entry element representing the EntityType
instance. In this context, the "m" prefix refers to the data service metadata namespace
defined in Common Serialization Rules for XML-Based Formats (section 2.2.6.1). When
included, it MUST represent the concurrency token associated with the EntityType instance,
as defined in ETag (section 2.2.5.4), and MUST be used instead of the ETag HTTP header
defined in ETag (section 2.2.5.4), which, according to [RFC2616], is used to represent a
single entity when multiple entities are present in a single payload.

An atom:link element SHOULD be included, which contains a rel="edit" or rel="self"

attribute. The rel attribute MAY<60> be used to indicate that a resource is read-only (when
the value of the attribute is "self") or read-write (when the attribute's value is "edit"). If such
an atom:link element is included, it MUST have an href attribute whose value is a URI that
identifies the entity represented by the atom:entry element.

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkId=90372

142 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

In responses to retrieve requests, as specified in RetrieveEntity Request (section 2.2.7.2.2),
servers MUST represent the URI that represents a related entity or collection of entities

(NavigationProperty) of the EntityType as an atom:link element that is a child element of
the atom:entry element. Each atom:link element MUST contain a rel attribute with the

value defined by the relNavigationlLinkURI rule shown in the following grammar, as defined in
the listing that follows. The element SHOULD also contain a title attribute with the value
equal to the NavigationProperty name and MUST contain an href attribute with value equal
to the URI which identifies the NavigationProperty on the EntityType. Implementers
should note that Atom also requires a type attribute, which MUST have a value of
"application/atom+xml;type=entry" when the NavigationProperty identifies a single entity
instance and "application/atom+xml;type=feed" when the property identifies an EntitySet.

dataServiceNs = "http://schemas.microsoft.com/ado/2007/08/dataservices"

 / <Server specified "Data Service namespace" URI>

 ; see section 2.2.6.1

dataServiceSchemeURI=

"http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"

relNavigationLinkURI= dataServiceNs

 "/related/"

 ; line below represents the name of the Navigation Property

 ; (not type qualified) being represented by the current

 ; atom:link element

 entityNavProperty ; section 2.2.3.1

In OData 3.0, responses to retrieve requests, as specified in RetrieveEntity Request (section
2.2.7.2.2), MAY represent the URI that identifies the association between the entity

represented by the response payload and a related entity (or collection of entities) as an
atom:link element that is a child element of the atom:entry element. If present, each
atom:link element MUST contain a rel attribute with the value defined by the
relAssociationlLinkURI rule shown in the grammar defined in the listing that follows. The
element MUST also contain an href attribute with a value equal to the URI that identifies the
association represented by the atom:link element (that is, the NavigationProperty on the

EntityType). Implementers should note that Atom also requires an atom:type attribute,

which MUST have a value of "application/xml".

relAssociationLinkURI= dataServiceNs

 "/relatedlinks/"

 ; line below represents the name of the Navigation Property

 ; (not type qualified) being represented by the current

 ; atom:link element

 entityNavProperty ; section 2.2.3.1

Listing: URI of the atom:link rel attribute for Navigation Properties of an Entity Type

(ABNF Grammar)

For example, the Customer EntityType instance described in Appendix A: Sample Entity Data
Model and CSDL Document (section 6) is represented in Atom as described in the following

listing.

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

143 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

xmlns:gml=”http://schemas.opengis.net/gml/3.1.1/profiles/gmlsfProfile/1.0.0/gmlsf.x

sd”

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <category term="SampleModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Customers('ALFKI')</id>

 <title type="text" />

 <updated>2008-03-30T21:32:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ALFKI')" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

 type="application/atom+xml;type=feed"

 title="Orders"

 href="Customers('ALFKI')/Orders" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/relatedlinks/Orders" type="application/xml"

 title="Orders"

 href="Customers('ALFKI')/$links/Orders" />

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Alfreds Futterkiste</d:CompanyName>

 <d:Address>

 <d:Street>57 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 <d:Location m:type=”Edm.GeographyPoint”><gml:Point srsName=”4326”>-

127.345345 48.23423</gml:Point></d:Location>

 </d:Address>

 <d:EmailAddresses m:type="Collection(Edm.String)">

 <d:element>altaddress1@company.com</d:element>

 <d:element>altaddress2@company.com</d:element>

 </d:EmailAddresses>

 <d:AlternateAddresses m:type="Collection(SampleModel.Address)">

 <d:element m:type="SampleModel.EAddress">

 <d:Street>123 contoso street</d:Street>

 </d:element>

 <d:element>

 <d:Street>834 1st street</d:Street>

 <d:Apartment>102</d:Apartment>

 </d:element>

 </d:AlternateAddresses>

 <d:Version>AAAAAAAA+gE=</d:Version>

 </m:properties>

 </content>

</entry>

Listing: OData 3.0 Atom-Formatted Customer Entity

144 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.6.2.2.1 Entity Type (as an Atom Entry Element) with a Customizable Feed

Property Mapping

If the EntityType instance that is represented includes customizable feed annotations in the data
services metadata document, the properties with custom mappings must be represented as directed
by the mappings information specified in Conceptual Schema Definition Language Document
Extensions for Customizable Feeds (section 2.2.3.7.2.1). Properties that do not have customizable
feed mappings defined are represented according to the previous section, Entity Type (as an Atom
Entry Element) (section 2.2.6.2.2).

In the OData 2.0 protocol, if the property of an EntityType instance in a data service response

includes customizable feed annotations in the data services metadata document and has a value of
null, then the element or attribute being mapped to MAY be present and MUST be empty.

For example, the Employee EntityType instance that is described in Appendix A: Sample Entity
Data Model and CSDL Document (section 6) is represented in Atom as described in the following
listing.

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns:m="http://schemas.microsoft.com/ado/2008/11/dataservices/metadata"

 xmlns:gml=http://schemas.opengis.net/gml/3.1.1/profiles/gmlsfProfile/1.0.0/gmlsf.xsd

 xmlns="http://www.w3.org/2005/Atom" m:etag="W/"X'000000000000FA01'"">

 <category term="SampleModel.Employee"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Employees(1)</id>

 <title type="text">Eric Gruber</title>

 <updated>2008-03-30T21:32:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Employees" href="Employees(1)" />

 <content type="application/xml">

 <m:properties>

 <d:EmployeeID>ALFKI</d:EmployeeID>

 <d:Address>

 <d:Street>4567 Main Street<d:Street>

 <d:City>Seattle</d:City>

 <d:Location m:type=”Edm.GeographyPoint”><gml:Point srsName=”4326”>-127.345345

48.23423</gml:Point></d:Location>

 </d:Address>

 <d:Version>BBBBBBBB+gE=</d:Version>

 </m:properties>

 </content>

 <emp:Location xmlns:emp="http://www.microsoft.com">Seattle</emp:Location>

</entry>

Listing: Atom-formatted Customer Entity with a Property Mapping

2.2.6.2.2.2 Entity Type (as an Atom Entry Element) with Actions

Applies to the OData 3.0 protocol

In the OData 3.0 protocol, it is possible to advertise the availability of actions (section 2.2.1.3) that
are bindable to an entity.

145 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

For the server to advertise actions that can be bound to the current entity, the current entity MUST
be encoded in a m:action element under the atom:entry element that corresponds to the entity

that the action is bound to. Any number of actions can be bound to the entity, and therefore, there
can be an arbitrary number of m:action elements.

The m:action element MUST have a metadata attribute that contains the action metadata URL
(section 2.2.1.3.1) of the action.

The m:action element MUST have a target attribute containing a URL. This is the URL to which
clients should issue an Invoke Action request (section 2.2.7.5.1) to invoke the action. The binding
parameter is assumed to be bound to the encompassing EntityType, and therefore, if the client
invokes the action via the target URL, it MUST not include a value for the binding parameter in the
request body.

The m:action element MUST have a title attribute containing a simple string used as a simple but
not necessarily unique name for the action. Generally, servers SHOULD specify a title that is easily
understood by the user because the title is likely to be used by clients to display options to an end
user.

Actions can also be selectively requested or omitted by using different Select system query option
(section 2.2.3.6.1.11) combinations.

If the Atom Entry Element is retrieved as part of a feed (section 2.2.6.2.1) and it is expensive to
identify whether an action requested, either implicitly or explicitly, by using Select system query
option (section 2.2.3.6.1.11) can be bound to a particular entity, a server SHOULD advertise the
action and fail later if the action is invoked and found to be unavailable.

2.2.6.2.2.3 Entity Type (as an Atom Entry Element) with Functions

Applies to the OData 3.0 protocol

In the OData 3.0 protocol, it is possible to advertise the availability of functions (section 2.2.1.4)
that are bindable to an entity.

Functions that the server advertises MUST be encoded in an m:function element under the
atom:entry element that corresponds to the entity that the function is bound to. Any number of
functions can be bound to the entity, and therefore, there can be an arbitrary number of
m:function elements.

The m:function element MUST have a metadata attribute that contains the Function Metadata URL

(section 2.2.1.4.1). The function metadata URL MUST identify only functions that are bindable to the
current EntityType. If overloads exist that cannot be bound to the current EntityType, individual
m:Function elements SHOULD be returned that each have a function metadata URL that identifies
a specific bindable overload.

The m:function element MUST have a target attribute that contains a URL. This is the URL to which
clients should issue an Invoke Function request (section 2.2.7.5.2) if they want to invoke the

function. The binding parameter is assumed to be bound to the encompassing EntityType.
Therefore, if the client invokes the function via the target URL, it MUST not include a value for the

binding parameter in the request via a parameter that is appended to the target URL.

The m:function element MUST have a title attribute that contains a simple string that is used as a
simple but not necessarily unique name for the action. Generally, servers SHOULD specify a title
that is easily understood by the user because the title is likely to be used by clients to display
options to an end user.

146 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If a function to be advertised has overloads, the server SHOULD if possible expose a single
m:function element with a metadata attribute that identifies all the overloads bindable to the

current entity.

Functions and function groups can also be selectively requested or omitted by using different Select

system query option (section 2.2.3.6.1.11) combinations. If the Atom Entry Element is retrieved as
part of a feed (section 2.2.6.2.1) and it is expensive to identify whether a function requested
explicitly by using a Select system query option (section 2.2.3.6.1.11) is available, a server SHOULD
advertise the requested function and fail later if the function is invoked and found to be unavailable.

2.2.6.2.3 Complex Type

A ComplexType property on an EntityType MUST be serialized within the m:properties element of

an atom:content element or atom:entry element, as specified in Entity Type (as an Atom Entry
Element) (section 2.2.6.2.2).

Each declared property defined on a ComplexType MUST be represented as a child element (in the
data service namespace defined in Common Serialization Rules for XML-based Formats (section

2.2.6.1)) of the element representing the ComplexType as a whole, and MAY have an m:type
attribute to specify the EDM type of the property. If the m:type attribute is missing, the EDM type

of the property MUST be assumed to be Edm.String.

An Atom representation of a ComplexType outside the context of an atom:entry element as
described in the preceding paragraph is not defined by this document. See Complex Type (section
2.2.6.5.1) for details regarding formatting a ComplexType by using XML independent from the
content of the defining EntityType.

2.2.6.2.4 Navigation Property

See Entity Type (as an Atom Entry Element) (section 2.2.6.2.2) and Deferred Content (section
2.2.6.2.6) for the description of using the atom:link element to represent:

A URI that identifies a related entity or collection of entities.

A URI that identifies the association to a related entity or collection of entities.

2.2.6.2.5 EDMSimpleType Property

For a description of how properties are serialized in request/response payloads that represent an
EntityType instance, see Entity Type (as an Atom Entry Element) (section 2.2.6.2.2).

An Atom representation of properties outside of the context of an atom:entry element is not
defined. See EDMSimpleType Property (section 2.2.6.5.3) for details regarding formatting an
EDMSimpleType property using XML independent from the content of the defining EntityType.

2.2.6.2.6 Deferred Content

The serialized representation of an entity and its related entities, identified by NavigationProperties,
may be large. For resource conservation purposes (bandwidth, CPU, and so on) a data service will

generally not want to return the full graph of entities related to the EntityType instance or set
identified in a request URI. For example, a data service SHOULD defer sending entities represented
by any navigation property in a response unless explicitly asked to send those entities via the
$expand system query option, as described in Expand System Query Option ($expand) (section

2.2.3.6.1.3).

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

147 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Entity Type (as an Atom Entry Element) (section 2.2.6.2.2) specifies Atom-formatted EntityType
instances which MUST contain atom:link elements for each NavigationProperty on the

EntityType. When these atom:link elements are empty, they signify deferred
NavigationProperty content (for example, the entities represented by the NavigationProperty

are not serialized inline). For example, using the two EntityTypes Customer and Order, as specified
in Appendix A: Sample Entity Data Model and CSDL Document (section 6), the default Atom
serialization of the Customer instance with EntityKey value of "ALFKI" is shown with deferred
NavigationProperty content in the Atom-formatted Customer entity listing in Entity Type (as an
Atom Entry Element) (section 2.2.6.2.2).

In the example, the presence of the empty atom:link element with rel attribute whose value is
http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders signifies

that the value of the Order's NavigationProperty is deferred (this is not directly represented in
this serialization). In order to retrieve the deferred value(s), a client can make a separate request to

the navigation property URIservice.svc/Customers('ALFKI')/Orders or explicitly ask that

the property be loaded inline via the $expand system query option, as described in Expand System
Query Option ($expand) (section 2.2.3.6.1.3).

2.2.6.2.6.1 Inline Representation

A request URI can include the $expand system query option to explicitly request that the entity or
entities represented by a NavigationProperties property be serialized inline (rather than deferred),
as described in Expand System Query Option ($expand) (section 2.2.3.6.1.3). The example that
follows uses the same data model as the Deferred Content example referenced previously; however,
this example shows the value of the Order's NavigationProperty serialized inline.

A NavigationProperty that represents an EntityType instance or a group of entities and that is
serialized inline MUST be placed within a single m:inline element that is a child element of the
atom:link element representing the NavigationProperty. Since a NavigationProperty identifies
a collection of entities or a single entity, the contents of the m:inline element will be described in
Entity Set (as an Atom Feed Element) (section 2.2.6.2.1) or Entity Type (as an Atom Entry Element)
(section 2.2.6.2.2).

If NavigationProperty represents an EntityType instance and that instance is null, an empty
m:inline element MUST appear under the atom:link element that represents
NavigationProperty. If NavigationProperty represents a collection of entities and the collection
is empty, an m:inline element with a nested atom:Feed element with no atom:Entry subelements
MUST appear under the atom:link element that represents NavigationProperty. In both cases,
the presence of the m:inline element indicates that NavigationProperty has been expanded but
that no content was associated with it.

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <category term="SampleModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Customers('ALFKI')</id>

 <title type="text" />

 <updated>2008-03-30T21:32:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ALFKI')" />

 <link

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

148 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/relatedlinks/Orders" type="application/xml"

 title="Orders"

 href="Customers('ALFKI')/$links/Orders" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

 type="application/atom+xml;type=feed"

 title="Orders"

 href="Customers('ALFKI')/Orders">

 <m:inline>

 <feed>

 <title type="text">Orders</title>

 <id>http://host/service.svc/Customers('ALFKI')/Orders</id>

 <updated>2008-03-30T21:52:46Z</updated>

 <link rel="self" title="Orders" href="Customers('ALFKI')/Orders" />

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(1)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(1)" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(1)/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/relatedlinks/Customer" type="application/xml"

 title="Customer"

 href="Orders(1)/$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(1)/OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/relatedlinks/OrderLines" type="application/xml"

 title="OrderLines"

 href="Orders(1)/$links/OrderLines" />

 <content type="application/xml">

 <d:OrderID m:type="Edm.Int32">1</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-08-25T00:00:00</d:ShippedDate>

 </content>

 </entry>

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(2)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(2)" />

149 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(2)/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/relatedlinks/Customer" type="application/xml"

 title="Customer"

 href="Orders(2)/$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(2)/OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/relatedlinks/OrderLines" type="application/xml"

 title="OrderLines"

 href="Orders(2)/$links/OrderLines" />

 <content type="application/xml">

 <d:OrderID m:type="Edm.Int32">2</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-10-03T00:00:00</d:ShippedDate>

 </content>

 </entry>

 </feed>

 </m:inline>

 </link>

 <content type="application/xml">

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Alfreds Futterkiste</d:CompanyName>

 <d:Address>

 <d:Street>57 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 </d:Address>

 <d:Version>AAAAAAAA+gE=</d:Version>

 </content>

</entry>

Listing: Version 3.0 Atom-formatted Customer Entity with the Order's NavigationProperty

Value Formatted Inline

2.2.6.2.7 Service Document

Service Document (section 2.2.3.7.1) specifies that AtomPub, as specified in [RFC5023], defines a
service document which describes collections of resources available from a data service. The root
URL of a data service that implements the protocol defined in this document MUST identify such a
service document. In this service document, a data service MUST represent all available collections
in a single app:workspace element. See [RFC5023] section 8.3.2 for the definition of the
app:workspace element and [RFC5023] section 6.1 for the definition of the "app" prefix. Within

that workspace, a data service MUST represent each EntitySet in its associated Entity Data Model
(EDM), as described in Abstract Data Model (section 2.2.1), as an app:collection element, as
specified in [RFC5023] section 8.3.3. The URI identifying the EntitySet MUST be used as the value
of the href attribute of the app:collection element. The name of the EntitySet MAY be used as the
value of the atom:title element which, as specified in [RFC5023], is a mandatory child element of
the app:collection element.

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880

150 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The following is an example AtomPub Service Document, as specified in [RFC5023], for the EDM
described in Appendix A: Sample Entity Data Model and CSDL Document (section 6).

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<service xml:base="http://localhost:2032/nw.svc/"

 xmlns:atom="http://www.w3.org/2005/Atom"

 xmlns:app="http://www.w3.org/2007/app"

 xmlns="http://www.w3.org/2007/app">

 <workspace>

 <atom:title>Default</atom:title>

 <collection href="Customers">

 <atom:title>Customers</atom:title>

 </collection>

 <collection href="Orders">

 <atom:title>Orders</atom:title>

 </collection>

 <collection href="OrderLines">

 <atom:title>OrderLines</atom:title>

 </collection>

 </workspace>

</service>

Listing: AtomPub Service Document Describing a Data Service

2.2.6.2.8 Additional Representations

In AtomPub, as specified in [RFC5023], the structured unit of information is an Entry Resource that
is represented as an atom:entry element and, as specified in Entity Type (as an Atom Entry
Element) (section 2.2.6.2.2), is used to represent EntityTypes. A standalone Atom-based
representation of the constituent EDM constructs of an EDMSimpleType property is not defined by
this document.

The URI-addressing scheme for data services, as defined in URI Format: Resource Addressing Rules

(section 2.2.3), does enable addressing the constituent EDM constructs of an EntityType directly.
For XML, JSON, and Verbose JSON serialization rules for such resources, see XML Format (section
2.2.6.5), [MS-ODATAJSON], and Verbose JSON Format (section 2.2.6.3), respectively.

2.2.6.2.9 Collection Property

A collection property on an EntityType that is not otherwise mapped through a customizable feed

property mapping MUST be represented within the m:properties element of the atom:entry and
MUST contain one child element for each collection property of the represented EntityType
instance. Each child element representing a collection property MUST be defined in the data service
namespace (http://schemas.microsoft.com/ado/2007/08/dataservices), and the element name must
be the same as the property it represents, as described in Collection Property of Complex Type
(section 2.2.6.2.9.1) and Collection of EDMSimple Type (section 2.2.6.5.7). An attribute named
"type" (in the Data Service Metadata namespace), as described in Common Serialization Rules for

XML-based Formats (section 2.2.6.1), MAY exist on the element representing the collection as a

whole.

2.2.6.2.9.1 Collection Property of Complex Type

A property of an EntityType that represents a collection of complex types (that is not otherwise
mapped through a customizable feed property mapping) MUST be represented within the
m:properties element of an atom:content element or atom:entry element, as specified in

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=304226

151 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Collection Property (section 2.2.6.2.9). Each ComplexType instance in the collection MUST be
represented as a child element of the element that represents the collection as a whole and be

named "element" and MUST be defined in the data service namespace
(http://schemas.microsoft.com/ado/2007/08/dataservices). Each property of the ComplexType

instance MUST be represented in the same way as in the serialization of a single ComplexType, as
described in section 2.2.6.2.3. All properties of the ComplexType MUST be serialized to the same
parent “element”. An attribute named "type" (in the Data Service Metadata namespace, as
described in Common Serialization Rules for XML-based Formats (section 2.2.6.1)), MAY exist on the
element representing the item in the collection.

A collection property of ComplexType MUST NOT contain null values of the ComplexType. If the
collection property is empty, the element representing the collection property as a whole MUST NOT

have any child elements.

2.2.6.2.9.2 Collection of EDMSimpleType

A property of an EntityType that represents a collection of primitive values (that is not otherwise

mapped through a customizable feed property mapping) MUST be serialized within the
m:properties element of an atom:content element or atom:entry element, as specified in

Collection Property (section 2.2.6.2.9). Each value in the Collection MUST be represented as an
element named "element", and "element" MUST be defined in the data service namespace as
(http://schemas.microsoft.com/ado/2007/08/dataservices) and be a direct child element of the
element representing the collection as a whole. Each EDMSimpleType in the collection MUST be
represented as described in EDMSimpleType Property (section 2.2.6.2.5).

A collection property of EDMSimpleType MUST NOT contain null values of the EDMSimpleType. If
the collection property is empty, the element representing the collection property as a whole MUST

NOT have any child elements.

2.2.6.2.10 Named Resource Streams

An Entry Resource MAY include one or more named resource streams.

When a server responds to a client request to retrieve an Entry Resource that contains named
resource streams, the server MUST include information about those named resource streams in the
response. That metadata for each named resource stream instance MUST be represented inside

atom atom:link elements.

The edit link for a named resource stream, if present, MUST be represented as a link element that
has:

The rel attribute set to http://schemas.microsoft.com/ado/2007/08/dataservices/edit-media/

with the name of the named resource stream appended and the href attribute set to the edit link
for the named resource stream.

The "type attribute set to the Content Type of the named resource stream.

The m:etag attribute, if present, set to the ETag (section 2.2.5.4) value for the named resource

stream.

There MAY also be a link element for the named resource stream’s self link. If this element is
present, it MUST have:

The rel attribute set to http://schemas.microsoft.com/ado/2007/08/dataservices/mediaresource/

with the name of the named resource stream appended.

152 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The title attribute set to the name of the named resource stream.

The href attribute set to the self link for the named resource stream.

The type attribute set to the Content Type of the named resource stream.

The m:etag attribute, if present, set to the ETag value for the named resource stream.

If the edit link and self link are the same for the named resource stream instance, the server MAY
optimize payload size by excluding the self link atom:link element. In the absence of a self link
atom:link element for the named resource stream, clients MUST assume that the self link and edit
link are the same and that the href of the edit link atom:link element MAY be used instead.

Similarly, the server MAY expose the named resource stream instance as read-only by including only

the self link. This would retrieve the stream and omit the edit link.

For example, the entry in the following listing indicates that:

The "Thumbnail" named resource stream MAY be retrieved from

'http://server/Thumbnail564.jpeg'.

The "Thumbnail" named resource stream MAY be updated at

'http://server/uploads/Thumbnail564.jpeg'.

The "Thumbnail" named resource stream has a Content Type of "image/jpeg".

The "PrintReady" named resource stream MAY be both retrieved and updated at the same URI,

namely, "Photos(1)/PrintReady/$value"

<entry>

 <category term="SampleModel.Photo"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Photos(1)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Photos" href="Photos(1)" />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/mediaresource/Thumbnail"

 type="image/jpeg"

 title="Thumbnail"

 href="http://server/Thumbnail546.jpeg" />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/edit-media/Thumbnail"

 type="image/jpeg"

 title="Thumbnail"

 href=" http://server/uploads/Thumbnail546.jpeg"

 m:etag="####" />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/edit-media/PrintReady"

 type="image/png"

 title="PrintReady"

 href="Photos(1)/PrintReady " />

 <content type="application/xml">

 <d:ID m:type="Edm.Int32">1</d:ID>

 <d:Name m:type="Edm.String">Mount Fuji</d:Name>

153 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 </content>

</entry>

Listing: AtomPub Entry with Named Resource Stream links

2.2.6.2.11 Links and Subtypes

Entity instances in an EntitySet MAY not belong to the same EntityType but MUST all be derived
from the EntityType baseType associated with the EntitySet. In addition to the rules described in
Entity Set (as an Atom Feed Element (section 2.2.6.2.1), the following rules apply:

The edit link for an EntityType, if present, MUST be represented as a link element that SHOULD

have an href attribute that includes the namespace qualified EntityType. For example,

http://host/service.svc/Customers/ ('ALFKI2')/ SampleModel.VipCustomer

There MAY also be a link element for the entity’s self link. If this element is present, it SHOULD

have the href attribute set to the namespace-qualified EntityType. For

example,http://host/service.svc/Customers/ ('ALFKI2')/ SampleModel.VipCustomer

If an EntityType has a NavigationProperty, the following rules apply (in addition to those

described in Deferred Content (section 2.2.6.2.6)):

The link for the NavigationProperty on the EntityType, if present, MUST be represented as

a link element that SHOULD have an href attribute that includes the namespace qualified
EntityType on which the NavigationProperty exists. For
example,http://host/service.svc/Customers/ ('ALFKI2')/
SampleModel.VipCustomer/InHouseStaff

The association link that describes the relationship between the related entities MUST be

represented as a link element that SHOULD have the href attribute that includes the
namespace qualified EntityType on which the NavigationProperty exists. For example,
http://host/service.svc/Customers/ ('ALFKI2')/ SampleModel.VipCustomer/$links/InHouseStaff

If an EntityType has named resource streams, the following rules apply (in addition to those

described in section Named Resource Streams (section 2.2.6.2.10)):

The href attribute of the, media-resource and edit-media links SHOULD include the

namespace-qualified EntityType on which the named resource stream exists. For example,
http://host/service.svc/Customers/ ('ALFKI2')/ SampleModel.VipCustomer/Logo

2.2.6.2.12 Annotations

In OData 3.0, just as annotations can be applied to metadata constructs in the service metadata
document (section 2.2.3.7.2), annotations MAY also be applied to elements in an AtomPub payload.

Annotations are represented as annotation elements that follow the rules detailed in this section.

Any AtomPub element that represents an Entity Data Model (EDM) construct (for more details, see
[MC-CSDL] section 2.2.6.2 and its subsections) MAY be annotated. Parsers MAY choose to ignore

annotations.

Rules for Instance Annotations: An instance annotation is represented as an XML element with
the name "annotation" in the metadata namespace (see section 2.2.6.1). The annotation element

MUST have a term attribute that specifies the fully qualified name of the term being applied.

%5bMC-CSDL%5d.pdf

154 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the type of the annotation value is anything other than Edm.String, a type attribute MUST be
present with a value that is equal to the name of the type.

The value of the element that represents a value annotation whose type is a primitive value MUST
be an EDM primitive value that is formatted as per section 2.2.6.1.

The value of the element the represents a value annotation whose type is a collection MUST be the
individual elements of that collection formatted as direct child elements of the annotation element,
as specified in Collection Property of Complex Type (section 2.2.6.2.9.1) and Collection of
EDMSimple Type (section 2.2.6.5.7).

Each property of an annotation whose type is a ComplexType or EntityType MUST be represented
as a direct child element of the annotation element. The name of the child element MUST be the
name of the property and MUST be in the data service namespace (for more information, see

Common Serialization Rules for XML-based Formats (section 2.2.6.1)). Further formatting rules that
MUST be adhered to when representing properties within an annotation are the same as the rules
for primitive and complex properties of an EntityType or ComplexType in an AtomPub payload, as
defined in section 2.2.6.2.2 or 2.2.6.2.3, respectively, and their respective subsections.

target Attribute: The annotation element MAY have a target attribute to state the target element
that is being annotated. Legal values for this annotation are '.' or the name of the target element

that is being annotated.

If the value of the target attribute is '.' or if the target attribute is omitted, the target of the
annotation is the model element that is represented by the direct parent element that the
annotation is within.

If the value of the target attribute is the name of the target element that is being annotated, that
element MUST be a sibling of the annotation element. If multiple possible target elements exist, the
value of this attribute MUST be a namespace qualified (namespacePrefix.targetElementName)

element name.

When annotating a property, the annotation element MUST be a direct child of the properties
element that is defined in the metadata namespace, and the value of the target attribute MUST

specify the property that is being annotated.

When annotating a navigation property, named stream, or other element that is represented by a
link element, the annotation element MUST be a direct child of the link element that represents
the navigation property.

When annotating an entity, the annotation element MUST be a direct child of the entry element
that represents the entity.

When annotating a feed, the annotation element MUST be a direct child of the feed element.

When annotating an error, the annotation element MUST be a direct child of the error element and
MAY target the code, message, or innererror, or the error itself if target is not specified or is
specified with a value of ".".

Instance annotations are not supported when serializing single EdmSimpleType properties in XML,

as described in 2.2.6.5.3.

The following example shows an annotated collection of the Customer Entities described in Appendix
A: Sample Entity Data Model and CSDL Document (section 6) with the following annotations.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<feed xml:base="http://host/service.svc"

155 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Customers</title>

 <id>http://host/service.svc/Customers</id>

 <updated>2009-03-27T23:41:29Z</updated>

 <link rel="self" title="Customers" href="Customers" />

 <!-- instance annotation targetting the collection of Customers -->

 <annotation term="com.contoso.customervocab.setkind">VIPs</annotation>

 <entry>

 <!-- instance annotation targetting the Entity Type instance -->

 <annotation term="com.contoso.customervocab.kind">VIP</annotation>

 <id> http://host/service.svc/Customers('ALFKI')</id>

 <title type="text"></title>

 <updated>2009-03-27T23:41:29Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ALFKI')" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

 type="application/atom+xml;type=feed" title="Orders"

 href="Customers('ALFKI')/Orders">

 <!-- instance annotation targetting the Orders navigation property -->

 <annotation term="com.contoso.purchaseordervocab.priority"

m:type="Edm.Int">1</annotation>

 </link>

 <!-- Note: navigation properties have been removed to limit the size of this example -->

 <content type="application/xml">

 <m:properties>

 <!-- instance of a structured annotation targetting the CompanyName property -->

 <annotation term="con.contoso.displayvocabulary.displayInfo m:target="CompanyName">

 <d:title m:type="Edm.Boolean">true</d:title>

 <d:order m:type="Edm.Int">1</d:order>

 </annotation>

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Alfreds Futterkiste</d:CompanyName>

 <d:ContactName> Alfreds Futterkiste </d:ContactName>

 <d:ContactTitle>Sales Representative</d:ContactTitle>

 <d:Address>Obere Str. 578</d:Address>

 <d:City>Toronto</d:City>

 <d:Region m:null="true" />

 <d:PostalCode>12209</d:PostalCode>

 <d:Country>Germany</d:Country>

 <d:Phone>030-0074321</d:Phone>

 <d:Fax>030-0076545</d:Fax>

 </m:properties>

 </content>

 </entry>

</feed>

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<feed xml:base="http://host/service.svc"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns:cust="http://contoso.com/customervocab"

 xmlns:display="http://contoso.com/displayvocab"

 xmlns:po="http://contoso.com/purchaseordervocab"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Customers</title>

 <id>http://host/service.svc/Customers</id>

156 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <updated>2009-03-27T23:41:29Z</updated>

 <link rel="self" title="Customers" href="Customers" />

 <!-- instance value annotation targetting the collection of Customers -->

 <cust:setkind m:target=".">VIPs</cust:setkind>

 <entry>

 <!-- instance value annotation targetting the Entity Type instance -->

 <cust:kind m:target="." m:type="Edm.String">VIP</cust:kind>

 <id> http://host/service.svc/Customers('ALFKI')</id>

 <title type="text"></title>

 <updated>2009-03-27T23:41:29Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ALFKI')" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

 type="application/atom+xml;type=feed" title="Orders"

 href="Customers('ALFKI')/Orders">

 <!-- instance value annotation targetting the Orders navigation property -->

 <po:priority m:target="." m:type="Edm.Int">1</po:priority>

 </link>

 <!-- Note: navigation properties have been removed to limit the size of this example -->

 <content type="application/xml">

 <m:properties>

 <!-- instance of a type annotation targetting the CompanyName property -->

 <display:display m:target="CompanyName">

 <display:title m:type="Edm.Boolean">true</display:title>

 <display:order m:type="Edm.Int">1</display:order>

 </display:display>

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Alfreds Futterkiste</d:CompanyName>

 <d:ContactName> Alfreds Futterkiste </d:ContactName>

 <d:ContactTitle>Sales Representative</d:ContactTitle>

 <d:Address>Obere Str. 578</d:Address>

 <d:City>Toronto</d:City>

 <d:Region m:null="true" />

 <d:PostalCode>12209</d:PostalCode>

 <d:Country>Germany</d:Country>

 <d:Phone>030-0074321</d:Phone>

 <d:Fax>030-0076545</d:Fax>

 </m:properties>

 </content>

 </entry>

</feed>

2.2.6.3 Verbose JSON Format

Verbose JavaScript Object Notation (JSON) is a lightweight data interchange format based on a
subset of the JavaScript Programming Language standard, as specified in [ECMA-262]. JSON is a
text format that is language independent, but uses conventions that are familiar to programmers of
the C-family of languages (C, C++, JavaScript, and so on). Data serialized using JSON can easily be

turned into JavaScript objects for programmatic manipulation. JSON notation consists of two
structures: a JSON Object (collection of name/value pairs) and a JSON Array (an ordered list of

values).

The following subsections define the mapping between Entity Data Model constructs and their
serialized representations in the Verbose JSON, as specified in [RFC4627], for use in
request/response messages, as specified in Request Types (section 2.2.7).

http://go.microsoft.com/fwlink/?LinkId=115082
http://go.microsoft.com/fwlink/?LinkId=140879

157 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

In all subsections that follow, if a data model construct is not explicitly referenced, then an
associated Verbose JSON representation is not defined by this document.

Note Verbose JSON is considered a legacy format. OData 3.0 services MAY<61> support the
Verbose JSON format and SHOULD<62> support the preferred OData 3.0 JSON format 2.2.6.6.

2.2.6.3.1 Common Verbose JSON Serialization Rules for All EDM Constructs

Literal values of the Entity Data Model (EDM) primitive types are represented as Verbose JSON
literal values, as defined by the rules in the following Common Verbose JSON Serialization Rules for
All EDM Constructs table. Grammar rules not defined here are specified in [RFC5234], [RFC4627], or
both.

EDM primitive type

ABNF rule for primitive type

representation in Verbose

JSON payloads

Verbose JSON serialization format

(ABNF grammar)

null nullLiteral nullLiteral = "null"

Edm.Binary VJsonBinary VJsonBinary = quotation-mark

<Base64 encoded value of the

EDM.Binary

 property

represented as a JSON string.

 See [RFC4627]

for further details>

quotation-mark

Edm.Boolean VJsonBoolean VJsonBoolean = false / true

false = ; see [RFC4627]

section 2.1

true = ; see [RFC4627]

section 2.1

Edm.Byte VJsonByte VJsonByte = ; see the

byteLiteral rule in

 ; section 2.2.2

Edm.DateTime VJsonDateTime VJsonDateTime= quotation-mark

 "\/Date("

 ticks

 [("+" / "-")

offset]

 ")\/"

 quotation-mark

ticks = *DIGIT

; ticks is the number of

milliseconds since midnight

; January 1, 1970

offset = 4DIGIT

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=140879

158 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in Verbose

JSON payloads

Verbose JSON serialization format

(ABNF grammar)

; offset represents the number

of minutes to add (if preceded

by "+") or substract

(if preceded by "-") from the

time value represented by

ticks

; if no offset is specified,

the value MUST be interpreted

as UTC.

;Note: This format is the same

used by the ASP.NET

;AJAX framework, described in

http://msdn2.microsoft.com/en-

;us/library/bb299886.aspx

Edm.Decimal VJsonDecimal VJsonDecimal = quotation-

mark

decimalLiteral

 quotation-

mark

decimalLiteral = ; see

section 2.2.2

quotation-mark = ; see

[RFC4627] section 2.5

Edm.Double VJsonDouble VJsonDouble =

doubleLiteral

doubleLiteral = ; see

section 2.2.2

Edm.Guid VJsonGuid VJsonGuid = quotation-

mark

 guidLiteral

 quotation-

mark

guidLiteral = ; see section

2.2.2

Edm.Int16 VJsonInt16 VJsonInt16 = ; see

int16Literal in section 2.2.2

Edm.Int32 VJsonInt32 VJsonInt32 = ; see

int32Literal in section 2.2.2

Edm.Int64 VJsonInt64 VJsonInt64 = quotation-mark

 int64Literal

159 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in Verbose

JSON payloads

Verbose JSON serialization format

(ABNF grammar)

 quotation-mark

int64Literal = ; see section

2.2.2

Edm.SByte VJsonSByte VJsonSByte = ; see

sByteLiteral in section 2.2.2

Edm.Single VJsonSingle VJsonSingle =

singleLiteral

singleLiteral = ; see

section 2.2.2

Edm.String VJsonString VJsonString = string

string = ; see [RFC4627]

section 2.5

Edm.Time VJsonTime VJsonTime = quotation-

mark

 timeLiteral

 quotation-

mark

timeLiteral = ; see

section 2.2.2

Edm.DateTimeOffset VJsonDateTimeOffset VJsonDateTimeOffset =

VJsonDateTime

; offset is required

Edm.Stream N/A namedStreamInVJson= see

section 2.2.6.3.14

Edm.Geography N/A N/A

Edm.GeographyPoint pointVJsonLiteral pointVJsonLiteral = <See

[GeoJSON] representation for a

Point>

Edm.GeographyLineString lineStringVJsonLiteral lineStringVJsonLiteral = <See

[GeoJSON] representation for a

LineString>

Edm.GeographyPolygon polygonVJsonLiteral polygonVJsonLiteral = <See

[GeoJSON] representation for a

Polygon, except as modified

160 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in Verbose

JSON payloads

Verbose JSON serialization format

(ABNF grammar)

below>

In Ellipsoidal coordinates,

all rings are equally

interpretable as “outer”.

Therefore, the rings MUST have

their control points in left-

foot winding order. This means

that the points to the left

side of the ring, when

traversing in serialized

order, are in the polygon,

while those to the right side

are not.

In planar coordinates, where

“outer” is well defined, the

first ring MUST be the outer

ring, in accordance with the

JSON standard.

Edm.GeographyCollection geoCollectionVJsonLiteral geoCollectionVJsonLiteral =

<See [GeoJSON] representation

for a GeometryCollection>

Edm.GeographyMultiPoint multiPointVJsonLiteral multiPointVJsonLiteral = <See

[GeoJSON] representation for a

MultiPoint>

Edm.GeographyMultiLineString multiLineStringVJsonLiteral multiLineStringVJsonLiteral =

<See [GeoJSON] representation

for a MultiLineString>

Edm.GeographyMultiPolygon multiPolygonVJsonLiteral multiPolygonVJsonLiteral =

<See [GeoJSON] representation

for a MultiPolygon, as

modified below>

In Ellipsoidal coordinates,

all rings are equally

interpretable as “outer”.

Therefore, the rings MUST have

their control points in left-

foot winding order. This means

that the points to the left

side of the ring, when

traversing in serialized

order, are in the polygon,

while those to the right side

are not.

In planar coordinates, where

“outer” is well defined, the

first ring MUST be the outer

161 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

EDM primitive type

ABNF rule for primitive type

representation in Verbose

JSON payloads

Verbose JSON serialization format

(ABNF grammar)

ring, in accordance with the

 JSON standard.

Edm.Geometry N/A N/A

Edm.GeometryPoint pointVJsonLiteral N/A

Edm.GeometryLineString lineStringVJsonLiteral N/A

Edm.GeometryPolygon polygonVJsonLiteral N/A

Edm.GeometryCollection geoCollectionVJsonLiteral N/A

Edm.GeometryMultiPoint multiPointVJsonLiteral N/A

Edm.GeometryMultiLineString multiLineStringVJsonLiteral N/A

Edm.GeometryMultiPolygon multiPolygonVJsonLiteral N/A

Table: Common Verbose JSON Serialization Rules for All EDM Constructs

2.2.6.3.1.1 Modifications to GeoJSON for Use in OData

Any GeoJSON value that is used in OData SHOULD order the keys with type first, then coordinates,
then any other keys. This improves streaming parser performance when parsing values on open
types or in other cases where metadata is not present.

The GeoJSON [GeoJSON] standard requires that type LineString contains a minimum number of
positions in its coordinates collection. This prevents serializing certain valid geospatial values.
Therefore, in GeoJSON, the requirement that is stated as “For type ‘LineString’, the ‘coordinates’
member must be an array of two or more positions” is replaced with the requirement “For type
‘LineString’, the ‘coordinates’ member must be an array of positions” when used in OData.

All other arrays in GeoJSON are allowed to be empty, so no change is necessary. GeoJSON does
require that any LinearRing contain a minimum of four positions. That requirement still holds that

LinearRings can show up only in other arrays and that those arrays can be empty.

GeoJSON allows multiple types of coordinate reference systems (CRSs). In OData, only one of those
types is allowed. In GeoJSON in OData, a CRS MUST be a named CRS. In addition, Open Geospatial

Consortium CRS uniform resource names (URNs) are not supported. The CRS identifier MUST be a
European Petroleum Survey Group (EPSG) system resource identifier (SRID) legacy identifier.

http://go.microsoft.com/fwlink/?LinkId=233589

162 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.6.3.2 Entity Set (as a Verbose JSON Array)

An EntitySet or collection of entities MUST be represented as an array of Verbose JSON objects, with
one object for each EntityType instance within the set. A Verbose JSON-based format for

EntityTypes is defined in Entity Type (as a Verbose JSON object) (section 2.2.6.3.3).

An empty EntitySet or collection of entities (one that contains no EntityType instances) MUST be
represented as an empty JSON array.

The syntax of the Verbose JSON representation of a collection of entities is defined by the grammar
listed in this section. The grammar rule "entitySetInVJson" defines the Verbose JSON representation
of a collection of entities that can be used in all versions of a request payload and OData 1.0
response payloads. The grammar rule "entitySetInVJson2" defines the OData 2.0 and OData 3.0

Verbose JSON representations of a collection of entities for response payloads only.

; Request and OData 1.0 response Verbose JSON representation of a collection of entities:

entitySetInVJson = begin-array

 [entityTypeInVJson *(value-seperator entityTypeInVJson)]

 end-array

; OData 2.0 and OData 3.0 response Verbose JSON representation of a collection of entities:

entitySetInVJson2 = begin-object

 [countNVP value-seperator]

 resultsNVP

 [value-seperator nextLinkNVP]

 end-object

resultsNVP = quotation-mark "results" quotation-mark

 name-seperator

 begin-array

 [entityTypeInVJson *(value-seperator entityTypeInVJson)]

 end-array

; see section 2.2.6.3.2.1 for additional details

countNVP = quotation-mark "__count" quotation-mark

 name-seperator

 <count value as defined in section 2.2.6.3.2.1>

nextLinkNVP = quotation-mark "__next" quotation-mark

 name-seperator

 quotation-mark

 resourcePath "?" [skiptokenQueryOp]

 quotation-mark

entityTypeInVJson = ; see section 2.2.6.3.3

resourcePath = ; see section 2.2.3.1

sysQueryOption = ; see section 2.2.3.1

Listing: Entity Set Verbose JSON Representation

In response payloads representing a collection of entities, if the server does not include an
"entityTypeInVJson" name/value pair (see section 2.2.6.3.3) for every entity in the collection of
entities identified by the associated URI, then the JSON array represents a partial collection of
entities. In this case, a "nextLinkNVP" name/value pair MUST be included in the JSON array to
indicate it represents a partial collection. The URI in the associated "nextLinkNVP" name/value pair

MUST have a value equal to the URI, which identifies the next partial set of entities from the

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

163 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

originally identified complete set. Such a URI SHOULD include a Skip Token system query option
(section 2.2.3.6.1.9) to indicate that the URI addresses the subsequent partial set of entities.

Implementers of this protocol should note that the inclusion of a "nextLinkNVP" name/value pair in a
Verbose JSON representation of a collection of entities has protocol versioning implications as

described in Executing a Received RetrieveValue Request (section 3.2.5.4.2).

2.2.6.3.2.1 InlineCount Representation (for Collections of Entities)

Applies to the OData 2.0 and OData 3.0 protocols

This section defines the semantics of the "countNVP" grammar rule in section 2.2.6.3.2, which is
supported only in OData 2.0 and OData 3.0.

A request URI MAY contain an $inlinecount system query option to indicate that the count of the

number of entities represented by the query after filters have been applied should be included in the
collection of entities returned from a data service. If such a query string object is present, the
response MUST include the "countNVP" name/value pair with the value of the name/value pair equal

to the count of the total number of entities addressed by the request URI.

The "countNVP" name/value pair MUST NOT be inside the Inline Representation of a related
collection (section 2.2.6.3.9.1).

For example, the count of all Customer Entities using the Customer EntityType instance described in
Appendix A: Sample Entity Data Model and CSDL Document (section 6) is represented in Verbose
JSON as shown in the following sample response payload. This example assumes the request URI
includes the InlineCount system query option and the Top system query option with a value of 1.

{

 d:{

 "__count": "91",

 "results":[

 {

 "__metadata": { "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\"",

 "properties" : {

 "Orders" : {

 "associationuri" : "Customers(\'ALFKI\')/$links/Orders"

 }

 }

 },

 "CustomerID": "ALFKI",

 "CompanyName": "Alfreds Futterkiste",

 "Address": { "Street": "57 Contoso St", "City": "Seattle" },

 "Version": "AAAAAAAA+gE=",

 "Orders": {

 "results": [

 {

 "__metadata": { "uri": "Orders(1)",

 "type": "SampleModel.Order",

 "properties" : {

 "Customer" : {

 "associationuri" : "Orders(1)/$links/Customer",

 },

 "OrderLines" : {

 "associationuri" : "Orders(1)/$links/OrderLines",

%5bMC-CSDL%5d.pdf

164 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 }

 }

 },

 "OrderID": 1,

 "ShippedDate": "\/Date(872467200000)\/",

 "Customer": { "__deferred": { "uri": "Orders(1)/Customer"} },

 "OrderLines": { "__deferred": { "uri": "Orders(1)/OrderLines"} }

 },

 {

 "__metadata": { "uri": "Orders(2)",

 "type": "SampleModel.Order",

 "properties" : {

 "Customer" : {

 "associationuri" : "Orders(2)/$links/Customer",

 . },

 "OrderLines" : {

 "associationuri" : "Orders(2)/$links/OrderLines",

 }

 }

 },

 "OrderID": 2,

 "ShippedDate": "\/Date(875836800000)\/",

 "Customer": { "__deferred": { "uri": "Orders(2)/Customer"} },

 "OrderLines": { "__deferred": { "uri": "Orders(2)/OrderLines"} }

 }

]

 }

]

 }

}

Listing: OData 3.0 Verbose JSON-Formatted InlineCount representation

2.2.6.3.2.2 Entity Set (as a Verbose JSON Array) with Actions

Applies to the OData 3.0 protocol

In OData 3.0, it is possible to advertise actions (section 2.2.1.3) that are bound to the definition of
the feed (or EntitySet) in the feed.

A new action's name/value pair MAY be included as a property of the JSON object that is the value
of the optional "__metadata" JSON object. The "__metadata" JSON object is a peer of the results
name/value pair that actually holds the array of entities.

The value of the action's name/value pair is a JSON object that contains name/value pairs for each
action that the server advertises as bindable to the definition of the feed.

For each action, the name MUST be the Action Metadata URL (section 2.2.1.3.1) that identifies the
action and the value MUST be an array of JSON objects. Any number of JSON objects is allowed in
this array. Each object in this array MUST have at least two name/value pairs: title and target. The

order of these name/value pairs is insignificant.

The target name/value pair MUST be included and MUST contain a URL. This is the URL to which
clients should issue an Invoke Action request (section 2.2.7.5.1) to invoke the action. The binding
parameter is assumed to be bound to the encompassing feed definition. Therefore, if the client
invokes the action via the target URL, the request body MUST not include a value for the binding
parameter.

165 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The title name/value pair MUST be included and MUST contain a simple string that is used as a
simple but not necessarily unique name for the action. Generally, servers SHOULD specify a value

that would be easily understood by any user because the title is likely to be used by clients to
display options to an end user.

Actions advertised in the feed MUST be interpreted as being bound to the definition of the feed and
not to the items that are represented in the feed.

Actions that are advertised in the feed MUST be advertised only if the server can fully encode the
action, the resource path, and the appropriate system query options that define the feed.

System Query Options (section 2.2.3.6.1) that change the membership of the feed MUST be
considered part of the feed definition. In practice, this means that the target URL that is used to
invoke the action MUST encode the following system query options if they are used to define the

feed:

$filter (section 2.2.3.6.1.4)

$expand (section 2.2.3.6.1.3)

$orderby (section 2.2.3.6.1.6)

$skip (section 2.2.3.6.1.7)

$top (section 2.2.3.6.1.8)

The remaining system query options, generally, do not define the feed and do not need to be
encoded in the target of the action:

$format (section 2.2.3.6.1.5)

$skiptoken (section 2.2.3.6.1.9)

$inlinecount (section 2.2.3.6.1.10)

$select (section 2.2.3.6.1.11)

2.2.6.3.2.3 Entity Set (as a Verbose JSON Array) with Functions

Applies to the OData 3.0 protocol

In OData 3.0, the functions name/value pair MAY be included as a property JSON object that is the
value of the optional "__metadata" JSON object. The value of the functions name/value pair is a
JSON object that contains name/value pairs for each function that the server advertises as bindable
to the definition of the feed.

For each function, the name MUST be the function metadata URL (section 2.2.1.4.1) that identifies
the function or a set of bindable function overloads and the value MUST be an array of JSON
objects. Any number of JSON objects is allowed in this array. Each object in this array MUST have a

least two name/value pairs: title and target. The order of these name/value pairs is insignificant.

The target name/value pair MUST be included and MUST contain a URL. This is the URL to which
clients should issue an Invoke Function request (section 2.2.7.5.2) to invoke the function. The
binding parameter is assumed to be bound to the encompassing feed definition. Therefore, if the
client invokes the function, the invoke request URL MUST not include a value for the binding
parameter by appending the value as a parameter to the target URL.

166 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The title name/value pair MUST be included and MUST contain a simple string that is used as a
simple but not necessarily unique name for the function. Generally, servers SHOULD specify a value

that would be easily understood by any user because the title is likely to be used by clients to
display options to an end user.

The function metadata URL MUST identify only functions that are bindable to the current feed
definition. If overloads exist that cannot be bound to the current feed definition, individual
m:Function elements SHOULD be returned that each have a function metadata URL that identifies
a specific bindable overload.

Functions advertised in the feed MUST be interpreted as being bound to the definition of the feed
and not to the items that are represented in the feed.

Functions that are advertised in the feed MUST only be advertised if the server can fully encode the

function, the resource path, and the appropriate system query options (section 2.2.3.6.1) that
define the feed.

System query options (section 2.2.3.6.1) that change the membership of the feed MUST be

considered part of the feed definition. In practice, this means that the target URL used to invoke the
function MUST encode the following system query options if they are used to define the feed:

($filter) (section 2.2.3.6.1.4)

($expand) (section 2.2.3.6.1.3)

($orderby) (section 2.2.3.6.1.6)

($skip) (section 2.2.3.6.1.7)

($top) (section 2.2.3.6.1.8)

The remaining system query options, generally do not define the feed and do need not to be
encoded in the target of the function:

($format) (section 2.2.3.6.1.5)

($skiptoken) (section 2.2.3.6.1.9)

$inlinecount) (section 2.2.3.6.1.10)

($select) (section 2.2.3.6.1.11)

2.2.6.3.3 Entity Type (as a Verbose JSON Object)

An instance of an EntityType MUST be serialized as a Verbose JSON object.

Each property on the EntityType MUST be represented as a name/value pair, as specified in
[RFC4627], within the object. Alternatively, if the EntityType instance being represented is
identified with a URI that includes a Select system query option (section 2.2.3.6.1.11), the prior rule

is relaxed such that only the properties identified by the $select query option MUST be represented

by name/value pairs. The name in the name/value pair is the name of the property as defined on
the EntityType, and the value of the pair is the value of the property. The order name/value pairs
that appear within a JSON object MUST be considered insignificant. Name/value pairs not
representing a property defined on the EntityType SHOULD NOT be included. The following
subsections describe additional formatting rules for each type of property defined on an EntityType.

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140879

167 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Verbose JSON serialization of an EntityType instance MAY<63> include a name/value pair
named "__metadata". This name/value pair is not data, but instead, by convention defined in this

document, specifies the metadata for the EntityType instance that the JSON object represents. The
ordering of this name/value pair with respect to other name/value pairs that represent properties

that are defined on the EntityType is insignificant. In OData 1.0 and OData 2.0, the value of the
"__metadata" property contains seven name/value pairs: "uri", "type," "etag", "edit_media",
"media_src", "media_etag", and "content_type". In OData 3.0, four more name/value pairs are
added: "properties", "actions", "functions", and "id". The order of these name/value pairs is
insignificant. The value of the "uri" name/value pair MUST be the Canonical URIs identifying the
EntityType instance represented by the JSON object.

The "type" name/value pair MUST be included if the EntityType of the EntityType instance

represented by the JSON object is part of an inheritance hierarchy, as described in [MC-CSDL]
(section 1). If the EntityType is not part of an inheritance hierarchy, the "type" name/value pair
MAY be included. The value of the "type" name/value pair MUST be the namespace qualified name,
as specified in [MC-CSDL], of the EntityType of the instance that the JSON object represents.

The "etag" name/value pair MAY be included. When included, it MUST represent the concurrency

token associated with the EntityType instance ETag (section 2.2.5.4) and MUST be used instead of

the ETag HTTP header defined in ETag (section 2.2.5.4), which, as specified in [RFC2616], is used to
represent a single entity when multiple entities are present in a single payload.

The "media_src" and "content_type" name/value pairs MUST be included and the "edit_media" and
"media_etag" name/value pairs MAY be included if the entity being represented is a Media Link
Entry. For example, the description of the entity type as shown in the data services’ conceptual
schema definition language document includes the HasStream="true" attribute as defined in
section 2.2.3.7.2. If the entity being represented is not a Media Link Entry, then the "edit_media",

"media_src", "media_etag", and "content_type" name/value pairs MUST NOT be included.

The "id" name/value pair MAY be included if the server is using OData 2.0 and MUST be included if
the server is using OData 3.0.

The value of the "edit_media" name/value pair MUST be a URI that is equivalent to the value of the

"href" attribute on an atom:link rel="edit-media" AtomPub element if the entity was to be
represented by the AtomPub [RFC5023] format, instead of Verbose JSON. The value of the
"media_src" name/value pair MUST be a URI that is equivalent to the value of the "src" attribute on

the atom:content AtomPub element if the entity was to be represented using the AtomPub
[RFC5023] format, instead of Verbose JSON. The value of the "content_type" name/value pair MUST
be equivalent to the value of the "type" attribute on the atom:content AtomPub element if the
entity was to be represented using the AtomPub [RFC5023] format, instead of Verbose JSON. The
value of the "media_etag" name/value pair MUST be equal to the value of the concurrency token
associated with the Media Resource identified by the "edit_media" and/or "media_src" name/value

pairs.

The value of the "properties" name/value pair MAY contain a JSON object for each
NavigationProperty. Each NavigationProperty is serialized as name/value pairs in which the
value is a JSON object that contains a single name/value pair, with the name equal to the name of
the NavigationProperty and a value equal to the URI that can be used to manage the relationship
between the related entities.

The JSON object representing the EntityType SHOULD also contain representations of the

properties defined on the EntityType. Each EDMSimpleType, ComplexType, and
NavigationProperty defined on the EntityType MUST be formatted according to the directives in
sections EDMSimpleType Property (section 2.2.6.3.8), Complex Type (section 2.2.6.3.4), and
Navigation Property (section 2.2.6.3.6).

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880

168 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The syntax of the Verbose JSON representation of an entity is defined by the grammar listed in this
section. The grammar rule "entityTypeInVJson" defines the representation of an entity that can be

used in both request and response payloads.

; OData 1.0, OData 2.0, and OData 3.0 Verbose JSON representation of an entity:

entityTypeInVJson = entityTypeBody

entityTypeBody = begin-object

 (

 (entityTypeProperty)

 *(value-seperator (entityTypeProperty / entityTypeProperty))

 [value-seperator metadataNVP]

)

 / metadataNVP

 end-object

metadataNVP = quotation-mark "__metadata" quotation-mark

 name-seperator

 begin-object

 (uriNVP

 [value-seperator idNVP]

 [value-seperator typeNVP]

 [value-seperator etagNVP]

 [value-separator mleMetadata])

 [propmetadataNVP]

 [actionsNVP]

 [functionsNVP]

 /

 (typeNVP

 [value-seperator etagNVP])

 [propmetadataNVP]

 /

 etagNVP

 [propmetadataNVP]

 /

 propmetadataNVP

 end-object

entityTypeProperty = entityPropertyInVJson

 /entityCTInVJson

 /deferredNavProperty

 /namedSteamInVJson

uriNVP = quotation-mark "uri" quotation-mark

 name-seperator

 quotation-mark resourcePath quotation-mark

; OData 3.0 Verbose JSON representation of Actions:

actionsNVP = quotation-mark "actions" quotation-mark

 name-seperator

 begin-object

 [actionNVP

 *(value-seperator actionNVP)]

 end-object

actionNVP = quotation-mark actionUri quotation-mark

 name-seperator

 begin-object

 titleNVP

169 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 value-seperator targetNVP

 end-object

; OData 3.0 Verbose JSON representation of Functions:

functionsNVP = quotation-mark "functions" quotation-mark

 name-seperator

 begin-object

 [functionNVP

 *(value-seperator functionNVP)]

 end-object

functionNVP = quotation-mark functionUri quotation-mark

 name-seperator

 begin-object

 titleNVP

 value-seperator targetNVP

 end-object

titleNVP = quotation-mark "title" quotation-mark

 name-seperator

 quotation-mark titleValue quotation-mark

titleValue = *pchar ; section 3.3 of [RFC3986]

targetNVP = quotation-mark "target" quotation-mark

 name-seperator

 quotation-mark targetUrl quotation-mark

targetUrl = ; a Url that can be used as the target for

 ; either an Invoke Action Request (section 2.2.7.5.1) or

 ; an Invoke Function Request (section 2.2.7.5.2)

actionUrl = ; an Action Metadata URL (section 2.2.1.3.1)

functionUrl = ; a Function Metadata URL (section 2.2.1.4.1)

; OData 3.0 Verbose JSON representation of the URI representing the relationship between ;

related entities:

propmetadataNVP = quotation-mark "properties" quotation-mark

 name-seperator

 begin-object

 (

 entityTypeProperty

 name-seperator

 begin-object

 (

 quotation-mark "associationuri" quotation-mark

 name-seperator

 quotation-mark resourcePath quotation-mark

)

)

 end-object

typeNVP = quotation-mark "type" quotation-mark

 name-seperator

 quotation-mark entityType quotation-mark

etagNVP = quotation-mark "type" quotation-mark

 name-seperator

170 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 quotation-mark entityTag quotation-mark

editMediaNVP = quotation-mark "edit_media" quotation-mark

 name-seperator

 quotation-mark resourcePath quotation-mark

mediaSrcNVP = quotation-mark "media_src" quotation-mark

 name-seperator

 quotation-mark resourcePath quotation-mark

contentTypeNVP = quotation-mark "content_type" quotation-mark

 name-seperator

 quotation-mark contentType quotation-mark

idNVP = quotation-mark "id" quotation-mark

 name-seperator

 quotation-mark resourcePath quotation-mark

mleMetadata =

 media_srcNVP

 value-seperator contentTypeNVP

 [value-seperator etagNVP]

 [value-seperator editMediaNVP]

deferredNavProperty = entityNavProperty name-seperator

 begin-object

 quotation-mark "__deferred" quotation-mark

 name-seperator

 begin-object

 uriNVP

 end-object

 end-object

contentType = <An IANA-defined [IANA-MMT] content type>

resourcePath = ; section 2.2.3.1

entityCTInVJson = ; section 2.2.6.3.4

entityPropertyInVJson = ; section 2.2.6.3.8

entityPropertyValueInVJson = ; section 2.2.6.3.8

entityType = ; section 2.2.3.1

entityNavProperty = ; section 2.2.3.1

entityTag = ; section 2.2.5.4

begin-object = ; [RFC4627] section 2

name-seperator = ; [RFC4627] section 2

value-seperator = ; [RFC4627] section 2

value = ; [RFC4627] section 2.1

Listing: OData 3.0 Entity Type Verbose JSON Representation

For example, the Customer EntityType instance described in Appendix A: Sample Entity Data Model
and CSDL Document (section 6) is represented in Verbose JSON, as shown in the following listing.

{

 "CustomerID": "ALFKI",

171 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "CompanyName": "Alfreds Futterkiste",

 "Address": { "Street": "57 Contoso St", "City": "Seattle" },

 "Version": "AAAAAAAA+gE=",

 "Orders": { "__deferred": { "uri": "Customers(\'ALFKI\')/Orders"

 } },

 "__metadata": { "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\"",

 "properties" : {

 "Orders" : {

 "associationuri" : "Customers(\'ALFKI\')/$links/Orders"

 }

 }

 }

}

Listing: OData 3.0 Verbose JSON-formatted Customer Entity

2.2.6.3.3.1 Entity Type (as a Verbose JSON Object) with Actions

Applies to the OData 3.0 protocol

In the OData 3.0 protocol, the actions name/value pair MAY be included. The value is a JSON object
that contains name/value pairs of each action that the server looks for to advertise as bindable to
the entity.

For each action, the name MUST be the action metadata URL (section 2.2.1.3.1) that identifies the
action and the value MUST be an array of JSON objects. Any number of JSON objects is allowed in
this array. Each object in this array MUST have at least two name/value pairs: title and target. The
order of these name/value pairs is insignificant.

The target name/value pair MUST be included and MUST contain a URL. When a client issues an
Invoke Action request (section 2.2.7.5.1), the value should be used as the URL. The binding

parameter is assumed to be bound to the encompassing entity. Therefore, if the client invokes the

action via the target URL, it MUST not include a value for the binding parameter in the request body.

The title name/value pair MUST be included and MUST contain a simple string that is used as a
simple but not necessarily unique name for the action. Generally, servers SHOULD specify a value
that would be easily understood by any user because the title is likely to be used by clients to
display options to an end user.

Actions can also be selectively requested or omitted by using different Select system query option
(section 2.2.3.6.1.11) combinations.

If the EntityType JSON Object is retrieved as part of a feed (see section 2.2.6.3.2) and it is
expensive to identify whether an action that is requested, either implicitly or explicitly, by using
Select system query option (section 2.2.3.6.1.11) can be bound to a particular entity, a server
SHOULD advertise the action and fail later if the action is invoked and found to be unavailable.

2.2.6.3.3.2 Entity Type (as a Verbose JSON Object) with Functions

Applies to the OData 3.0 protocol

In the OData 3.0 protocol, the function's name/value pair MAY be included. The value is a JSON
object which contains name/value pairs of each function the server advertises as bindable to the
entity.

172 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

For each function, the name MUST be the function metadata URL (section 2.2.1.4.1) that identifies
the function and the value MUST be an array of JSON objects. Any number of JSON objects is

allowed in this array. Each object in this array MUST have a least two name/value pairs: title and
target. The order of these name/value pairs is insignificant.

The target name/value pair MUST be included and MUST contain a URL. When a client issues an
Invoke Function request (section 2.2.7.5.2), this is the URL to use. The binding parameter is
assumed to be bound to the encompassing entity. Therefore, if the client invokes the function via
the target URL, it MUST not include a value for the binding parameter by appending a parameter to
the target URL.

The title name/value pair MUST be included and MUST contain a simple string that is used as a
simple but not necessarily unique name for the function. Generally, servers SHOULD specify a value

that would be easily understood by any user because the title is likely to be used by clients to
display options to an end user.

The function metadata URL MUST only identify functions that are bindable to the current
EntityType. If overloads exist that cannot be bound to the current EntityType, individual

m:Function elements SHOULD be returned that each have a function metadata URL that identifies
a specific bindable overload.

If a function to be advertised has overloads that can all be bound to the current EntityType, the
server SHOULD expose a single function that contains a name equal to the function metadata URL
that identifies all the overloads.

Functions can also be selectively requested or omitted by using different Select system query option
(section 2.2.3.6.1.11) combinations.

If the EntityType JSON Object is retrieved as part of a Feed (see section 2.2.6.2.1) and it is
expensive to identify whether a function that is requested explicitly by using a Select system query

option (section 2.2.3.6.1.11) is available, a server SHOULD advertise the requested function and
fail later if the function is invoked and found to be unavailable.

2.2.6.3.4 Complex Type

An instance of a ComplexType MUST be represented as a Verbose JSON object. Each declared
property defined on the ComplexType MUST be represented as a name/value pair within the JSON
object. Additional name/value pairs that do not represent a declared property of the ComplexType

SHOULD NOT be included. The name in the name/value pair MUST equal the name of the declared
property on the ComplexType and the value of the pair MUST equal the value of the property. The
order name/value pairs that appear within the JSON object MUST be considered insignificant.

The syntax of the Verbose JSON representation of a ComplexType is defined by the grammar listed
in this section. The grammar rule "entityCTInVJson" defines the Verbose JSON representation of a
ComplexType that can be used in both request and response payloads.

entityCTInVJson = begin-object

 entityCTBody

 end-object

entityCTBody = quotation-mark entityComplexProperty quotation-mark

 name-seperator

 entityCTValue

entityCTMetadata = quotation-mark "__metadata" quotation-mark

 name-seperator

%5bMC-CSDL%5d.pdf

173 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 begin-object

 [typeNVP]

 end-object

entityCTValue = begin-object

 [

 (

 entityPropertyInVJson /

 entityCTBody /

 entityCTMetadata

)

 *(

 (value-seperator entityPropertyInVJson) /

 (value-seperator entityCTBody)

)

]

 end-object

entityPropertyInVJson = ; see section 2.2.6.3.8

typeNVP = ;see section 2.2.6.3.3

Listing: ComplexType Verbose JSON Representation

2.2.6.3.5 Collection of Complex Type Instances

A collection of ComplexType instances MUST be represented as an array of JSON objects. Each
object in the array represents a single ComplexType instance as specified in Complex Type (section
2.2.6.3.4).

The syntax of the Verbose JSON representation of a collection of ComplexType instances is defined
by the grammar listed in this section. The grammar rule "entityCollCTInVJson" defines the Verbose

JSON representation of a collection of ComplexType instances that can be used in all versions of
request payloads and OData 1.0 response payloads. The grammar rule "entityCollCTInVJson2"
defines the OData 2.0 Verbose JSON representation of a collection of ComplexType instances for
response payloads only. The grammar rule "entityCollCTInVJson3" defines the OData 3.0 Verbose
JSON representation of a collection of ComplexType instances for response payloads only.

; Request and OData 1.0 response Verbose JSON representation of a collection of ComplexType

instances:

entityCollCTInVJson = begin-array

 entityCTValue ; see section 2.2.6.3.4

 *(value-seperator entityCTValue)

 end-array

; OData 2.0 response Verbose JSON representation of a collection of ComplexType instances;

entityCollCTInVJson2 = begin-object

 resultsNVP

 [(value-seperator entityCTMetadata)] ; see section 2.2.6.3.4

 end-object

; OData 3.0 response Verbose JSON representation of a collection of ComplexType instances:

entityCollCTInVJson3 = begin-object

 [collMetadataNVP value-seperator]

 resultsNVP

 end-object

%5bMC-CSDL%5d.pdf

174 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

collMetadataNVP = quotation-mark "__metadata" quotation-mark

 name-seperator

 begin-object

 [collComplexTypeNVP]

 end-object

collComplexTypeNVP = quotation-mark "type" quotation-mark

 name-seperator

 quotation-mark "Collection(" complexTypeNVP ")" quotation-mark

resultsNVP = quotation-mark "results" quotation-mark

 name-seperator

 begin-array

 entityCTValue ; see section 2.2.6.3.4

 *(value-seperator entityCTValue)

 end-array

2.2.6.3.6 Navigation Property

The default representation of a NavigationProperty is as a JSON name/value pair. The name is equal

to "__deferred" and the value is a JSON object that contains a single name/value pair with the name
equal to "uri". The value of the "uri" name/value pair MUST be a URI relative to the service root
URI, as specified in Service Root (section 2.2.3.2), that identifies the NavigationProperty.

The syntax of a NavigationProperty, represented within a JSON object, is shown using the
grammar rule "deferredNavProperty" in the Entity Type Verbose JSON Representation listing in
Entity Type (as a JSON Object) (section 2.2.6.3.3).

OData 3.0 adds another JSON object with the name "properties" to the "__metadata" object that
contains an array of objects, each of which SHOULD have the name of a NavigationProperty in
the entity. Each object has one name/value pair with the name "associationuri". The value of the
"associationuri" name/value pair MUST be a URI that represents the association between the related

entities.

The syntax of the OData 3.0 properties object is shown by using the grammar rule
"propmetadataNVP" in the Entity Type Verbose JSON Representation listing in Entity Type (as a

JSON Object) (section 2.2.6.3.3).

2.2.6.3.7 Collection of EDMSimpleType Values

A collection of EDMSimpleType values MUST be represented as an array of JSON primitives. Each
element in the array represents a single primitive type value.

The syntax of the Verbose JSON representation of a collection of EDMSimpleType values is defined
by the grammar listed in this section. The grammar rule "entityCollPrimValueInVJson" defines the

Verbose JSON representation of a collection of EDMSimpleType values that can be used in all
versions of request payloads and OData 1.0 response payloads. The grammar rule
"entityCollPrimValueInVJson2" defines the OData 2.0 Verbose JSON representation of a collection of

EDMSimpleType values for response payloads only. The grammar rule
"entityCollPrimValueInVJson3" defines the OData 3.0 Verbose JSON representation of a collection of
EDMSimpleType values for response payloads only.

; Request and OData 1.0 response Verbose JSON representation of a collection of EDMSimpleType

values:

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

175 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

entityCollPrimValueInVJson = begin-array

 entityPropertyValueInVJson

 ; see section 2.2.6.3.8

 *(value-seperator entityPropertyValueInVJson)

 end-array

; OData 2.0 response Verbose JSON representation of a collection of EDMSimpleType values:

entityCollPrimValueInVJson2 = quotation-mark "results" quotation-mark

 name-seperator

 begin-array

 entityPropertyValueInVJson

 ; see section 2.2.6.3.8

 *(value-seperator entityPropertyValueInVJson)

 end-array

; OData 3.0 response Verbose JSON representation of a collection of EDMSimpleType values:

entityCollPrimValueInVJson3 = begin-object

 [collEdmSimpleMetadataNVP value-seperator]

 resultsNVP

 end-object

collEdmSimpleMetadataNVP = quotation-mark "__metadata" quotation-mark

 name-seperator

 begin-object

 [collEdmSimpleTypeNVP]

 end-object

collEdmSimpleTypeNVP = quotation-mark "type" quotation-mark

 name-seperator

 quotation-mark "Collection(" edmSimpleTypeNVP ")" quotation-mark

edmSimpleTypeNVP =; EDM SimleType name

2.2.6.3.8 EDMSimpleType Property

A property of type EDMSimpleType MUST be represented as a JSON name/value pair. The name in
the name/value pair MUST be equal to the name of the Entity Data Model (EDM) property and the

value must be set to the value of the property. The value MUST be formatted, as specified in
Common Verbose JSON Serialization Rules for All EDM Constructs (section 2.2.6.3.1).

When represented as part of the Verbose JSON representation of an EntityType or ComplexType,
the syntax of an EDMSimpleType property formatted in Verbose JSON is as follows.

entityPropertyInVJson = quotation-mark entityProperty quotation-mark

 name-seperator

 entityPropertyValueInVJson

entityPropertyValueInVJson = <EDMSimple type serialized as per section 2.2.6.3.1>

When represented as a standalone construct, the syntax of the Verbose JSON representation of an

EDMSimpleType is defined by the grammar listed in this section. The grammar rule
"entityPropertyInVJson" defines the Verbose JSON representation of an EDMSimpleType property

that can be used in all versions of request payloads and OData 1.0 response payloads. The grammar
rule "entityPropertyInVJson2" defines the OData 2.0 and OData 3.0 Verbose JSON representations
of an EDMSimpleType property for response payloads only.

%5bMC-CSDL%5d.pdf

176 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

; Request and OData 1.0 response Verbose JSON representation of a property:

entityPropertyInVJson = quotation-mark entityProperty quotation-mark

 name-seperator

 entityPropertyValueInVJson

; OData 2.0 and OData 3.0 response Verbose JSON representation of a property:

entityPropertyInVJson2 = quotation-mark "results" quotation-mark

 name-seperator

 begin-object

 quotation-mark entityProperty quotation-mark

 name-seperator

 entityPropertyValueInVJson

 end-object

2.2.6.3.9 Deferred Content

The serialized representation of an entity and its related entities, identified by NavigationProperties,

may be large. To conserve resources (bandwidth, CPU, and so on), it is generally not a good idea for
a data service to return the full graph of entities related to the EntityType instance or set identified
in a request URI. For example, a data service SHOULD defer sending entities represented by any

navigation property in a response unless explicitly asked to send those entities via the $expand
system query option, as described in Expand System Query Option ($expand) (section 2.2.3.6.1.3).

In Verbose JSON-formatted EntityType instances (see Entity Type (as a JSON Object) (section
2.2.6.3.3)), NavigationProperties serialized as name/value pairs in which the value is a JSON
object containing a single name/value pair with the name "__deferred" and a value that is a JSON
object containing a single name/value pair with the name "uri" and a string value, which is a URL

that can be used to retrieve the deferred content, signify deferred NavigationProperty content (for
example, the entities represented by the NavigationProperty are not serialized inline). For
example, using the two EntityTypes Customer and Order, as described in Appendix A: Sample
Entity Data Model and CSDL Document (section 6), the default Verbose JSON serialization (with
deferred NavigationProperty content) of the Customer instance with EntityKey value of "ALFKI" is

shown in Entity Type (as a JSON object) (section 2.2.6.3.3).

In the example, the presence of the "__deferred" name/value pair signifies that the value of the

Orders NavigationProperty is not directly represented on the JSON object in this serialization. In
order to obtain the deferred value(s), a client would make a separate request directly to the

navigation property URI (service.svc/Customers('ALFKI')/Orders) or explicitly ask that the

property be serialized inline via the $expand system query option, as described in Expand System
Query Option ($expand) (section 2.2.3.6.1.3).

2.2.6.3.9.1 Inline Representation

As described in Expand System Query Option ($expand) (section 2.2.3.6.1.3), a request URI may
include the $expand system query option to explicitly request the entity or entities represented by
a NavigationProperty be serialized inline, rather than deferred. The example shown in this section
uses the same data model as the Deferred Content example referenced in the preceding section.
However, the following example shows the value of the Orders NavigationProperty serialized

inline.

A NavigationProperty that is serialized inline MUST be represented as a name/value pair on the
JSON object with the name equal to the NavigationProperty name. If the NavigationProperty
identifies a single EntityType instance, the value MUST be a JSON object representation of that
EntityType instance, as specified in Entity Type (as a JSON object) (section 2.2.6.3.3). If the

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

177 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

NavigationProperty represents an EntitySet, the value MUST be as specified in Entity Set (as a
JSON array) (section 2.2.6.3.2).

 "etag": "W/\"X\'000000000000FA01\'""

{

 "CustomerID": "ALFKI",

 "CompanyName": "Alfreds Futterkiste",

 "Address": { "Street": "57 Contoso St", "City": "Seattle",

 “Location”: {

 "crs": {

 "type": "name",

 "properties": { "name": "EPSG:4326" }

 },

 “type”: “Point”, “coordinates”: [-127.9324, 49.2345]

 }

 },

 "Version": "AAAAAAAA+gE=",

 "Orders":

 {

 Results: [

 {

 "__metadata": { "uri": "Orders(1)",

 "type": "SampleModel.Order"

 },

 "OrderID": 1,

 "ShippedDate": "\/Date(872467200000)\/",

 "Customer": { "__deferred": { "uri": "Orders(1)/Customer"} },

 "OrderLines": { "__deferred": { "uri": "Orders(1)/OrderLines"} },

 "__metadata": { "uri": "Orders(1)",

 "type": "SampleModel.Order",

 "properties" : {

 "Customer" : {

 "associationuri" : "Orders(1)/$links/Customer"

 },

 "OrderLines" : {

 "associationuri" : "Orders(1)/$links/OrderLines"

 }

 }

 }

 },

 {

 "OrderID": 2,

 "ShippedDate": "\/Date(875836800000)\/",

 "Customer": { "__deferred": { "uri": "Orders(2)/Customer" } },

 "OrderLines": { "__deferred": { "uri": "Orders(2)/OrderLines" } },

 "__metadata": { "uri": "Orders(2)",

 "type": "SampleModel.Order",

 "properties" : {

 "Customer" : {

 "associationuri" : "Orders(2)/$links/Customer"

 },

 "OrderLines" : {

 "associationuri" : "Orders(2)/$links/OrderLines"

 }

 }

 }

%5bMC-CSDL%5d.pdf

178 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 }

] ,

 "__metadata": { "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\"",

 "properties" : {

 "Orders" : {

 "associationuri" : "Customers(\'ALFKI\')/$links/Orders"

 }

 }

 }

}

Listing: OData Verbose 3.0 JSON-Formatted Customer Entity with the Orders Navigation

Property Value Formatted Inline

2.2.6.3.10 Links

Links represent unidirectional associations or one direction of a bidirectional association between
EntityType instances. In the Verbose JSON format, Links are serialized as an array of URIs, each of
which identifies a single linked entity.

When represented in Verbose JSON, Links MUST be formatted, as shown in the table in the following
listing, ABNF Grammar for Links Represented in Verbose JSON, using one JSON object containing a
single "uri" name/value pair per Link. The value of the "uri" name/value pair on each object MUST
equal the absolute, canonical URI representing the linked-to EntityType instance.

The syntax of the Verbose JSON representation of a collection of links is defined by the grammar
listed in this section. The grammar rule "linkCollVJson" defines the Verbose JSON representation of a
collection of links that can be used in all versions of a request payload and OData 1.0 response

payloads. The grammar rule "linkCollVJson2" defines the OData 2.0 and OData 3.0 Verbose JSON
representations of a collection of links for response payloads only.

; Request and OData 1.0 response Verbose JSON representation of a collection of links

linkCollVJson = begin-array

 *linkVJson

 end-array

; OData 2.0 and OData 3.0 response Verbose JSON representation of a collection of links

linkCollVJson2 = begin-object

 [countNVP value-seperator]

 linkCollResultsNVP

 [value-seperator nextUriNVP]

 end-object

linkCollResultsNVP = quotation-mark "results" quotation-mark

 name-seperator

 begin-array

 *linkVJson

 end-array

countNVP = ; see section 2.2.6.3.2

%5bMC-CSDL%5d.pdf

179 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

nextUriNVP = ; see section 2.2.6.3.2 for ABNF.

 ; see section 2.2.6.5.5.2 for AtomPub Format.

;Grammar rules common to OData 1.0, OData 2.0, and OData 3.0

linkVJson = begin-object

 [linkUriNVP

 *(value-seperator linkUriNVP)]

 end-object

linkUriNVP = quotation-mark "uri" quotation-mark

 name-seperator

 quotation-mark dataServiceNqo-URI quotation-mark

 ; see section 2.2.3.1

Listing: ABNF Grammar for Links Represented in Verbose JSON

For example, when using the sample model and instance data, as described in Appendix A: Sample

Entity Data Model and CSDL Document (section 6), the Links from the Customer with EntityKey
"ALFKI" to Order instances is represented as shown in the following Example of Links Formatted by
Using OData 1.0 Verbose JSON Representation listing. Each URI in the array identifies a single Order

that is associated with the Customer.

[

 {"uri": "http://host/service.svc/Orders(1)"},

 {"uri": "http://host/service.svc/Orders(2)"}

]

Listing: Example of Links Formatted by Using OData 1.0 Verbose JSON Representation

2.2.6.3.11 InlineCount Representation (for Collections of Links)

Applies to the OData 2.0 and OData 3.0 protocols

This section defines the semantics of the "countNVP" grammar rule in section 2.2.6.3.10, which is
supported only in the OData 2.0 and OData 3.0 protocols.

A request URI MAY contain an $inlinecount system query option to indicate that the count of the
number of links represented by the query should be included in the collection of links returned from
the data service. If such a query string token is present, the response MUST include the countNVP
name/value pair (before any linkURINVP name/value pairs) with the value of the name/value pair
equal to the count of the total number of links addressed by the request URI.

2.2.6.3.12 Service Document

Service Document specifies that AtomPub, as specified in [RFC5023], defines a Service Document
that describes collections of resources available from a data service. The root URL of a data service
that implements the protocol defined in this document MUST identify such a service document. This
section defines a Verbose JSON representation, as specified in [RFC4627], of the data provided in an

AtomPub, as specified in [RFC5023] Service Document. For a description of the contents of a
Service Document for which this section defines a Verbose JSON serialization, see Service

Document.

The syntax of a Verbose JSON-serialized Service Document is as shown in the grammar that follows:

%5bMC-CSDL%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=140880

180 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

VJsonServiceDocument = begin-object

 quotation-mark "EntitySets" quotation-mark

 name-seperator

 begin-array

 entitySetName ; One for each Entity Set in the data service

 ; as defined by the Entity Sets shown in the

 ; CSDL document returned from the data

 ; service's $metadata endpoint

 *("," entitySetName)

 end-array

 end-object

entitySetName = <A JSON string literal (quoted) equal to the name of an Entity Set

 in the data model associated with the data service>

The following is an example Verbose JSON, as specified in [RFC4627], representation of the
information provided by an AtomPub, as specified in [RFC5023], Service Document for the Entity

Data Model (EDM) that is described in Appendix A: Sample Entity Data Model and CSDL Document.

{

 "EntitySets": [

 "Customers",

 "Orders",

 "OrderDetails"

]

}

Listing: Verbose JSON Service Document Describing a Data Service

2.2.6.3.13 Collection Property

Applies to the OData 3.0 protocol

In the OData 3.0 protocol, a collection property of a ComplexType or EDMSimpleType MUST be
represented in the same way as collections of a ComplexType, as described in Collection of
Complex Type Instances (section 2.2.6.3.5). Similarly, collections of EDMSimpleTypes MUST be
represented the same as collections of EDMSimpleTypes, as described in Collection of

EDMSimpleType Values (section 2.2.6.3.7). A "__metadata" object with a name/value pair called
“type” MAY be present to specify the EDMSimpleType or the ComplexType.

{

 "__metadata": { "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\"",

 "properties" : {

 "Orders" : {

 "associationuri" : " Customers(\'ALFKI\')/$links/Orders "

 }

 }

 },

 "CustomerID": "ALFKI",

 "CompanyName": "Alfreds Futterkiste",

 "Address": { "Street": "57 Contoso St", "City": "Seattle" },

http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=140880

181 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "Version": "AAAAAAAA+gE=",

 "EmailAddresses": {"__metadata": { "type": "Collection(Edm.String)" },

 "results":["mike@company.com", "mike2@company.com"]},

 "AlternateAddresses":{"__metadata": { "type": "Collection(SampleModel.Address)" },

 "results":[{"Street": "123 contoso street", "Apartment": "508"},

 {"__metadata": { "type": "SampleModel.EAddress"},

 "Street": "834 1st street" }

]},

 "Orders": { "__deferred": { "uri": "Customers(\'ALFKI\')/Orders" } }

 }

Listing: Verbose JSON-Formatted Customer Entity with Collection Properties

2.2.6.3.14 Named Resource Streams

When an EntityType includes named resource streams, any representations of whole EntityType
instances MUST include named resource stream instances by using the grammar listed in this

section. The grammar rule "namedStreamInVJson" specifies how a named resource stream instance
is represented. This rule is referenced, in turn, by the rule "entityPropertyInVJson" that specifies
how EntityType instance members MUST be represented when representing an EntityType
instance in Verbose JSON. See Entity Type (as a JSON object) (section 2.2.6.3.3) for more

information on how EntityType instances are represented in Verbose JSON.

namedStreamInVJson = quotation-mark entityNamedStream quotation-mark

 name-seperator

 entityNamedStreamInVJson

entityNamedStreamInVJson = begin-object mediaResourceNVP end-object

mediaResourceNVP = quotation-mark "__mediaresource" quotation-mark

 name-seperator

 begin-object

 mleMetadata

 [value-seperator etagNVP]

 end-object

 ; defined in section 2.2.6.3.3

mleMetadata =

 mediaSrcNVP

 value-seperator contentTypeNVP

 [value-seperator editMediaNVP]

 ; defined in section 2.2.6.3.3

etagNVP = quotation-mark "media_etag" quotation-mark

 name-seperator

 quotation-mark entityTag quotation-mark

 ; defined in section 2.2.6.3.3

editMediaNVP = quotation-mark "edit_media" quotation-mark

 name-seperator

 quotation-mark resourcePath quotation-mark

 ; defined in section 2.2.6.3.3

mediaSrcNVP = quotation-mark "media_src" quotation-mark

 name-seperator

182 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 quotation-mark resourcePath quotation-mark

 ; defined in section 2.2.6.3.3

contentTypeNVP = quotation-mark "content_type" quotation-mark

 name-seperator

 quotation-mark contentType quotation-mark

 ; defined in section 2.2.6.3.3

entityNamedStream = ; see section 2.2.3.6.1.11

entityTypeProperty=; see section 2.2.6.3.3

When a named resource stream is present on the declaring EntityType and not excluded from the

results explicitly by using $select, the named resource stream instance MUST be present in the
Verbose JSON representation.

The "media_src" and "content_type" name/value pairs MUST be included.

The "edit_media" name/value pair MAY be included if the named resource stream instance can be
updated.

The "media_etag" name/value pair MAY contain an ETag (ETag (section 2.2.5.4)). When the ETag is
included, the value MUST be the value of the ETag for the named resource stream instance.

The value of the "edit_media" name/value pair MUST be a URI that can be used to replace the
existing stream with a HTTP PUT request. The value of the "media_src" name/value pair MUST be a

URI that can be used to retrieve the stream of bytes with a GET request.

The value of the "content_type" name/value pair MUST specify the content type of the binary
stream (as specified in [RFC2616]) that is represented by the "edit_media" URI . If the
"media_etag" name/value pair is present, the value MUST be the ETag (ETag (section 2.2.5.4))
value for the named resource stream retrieved from the "edit_media" URI.

{

 "__metadata": { "uri": "Photos(1)",

 "type": "SampleModel.Photo",

 },

 "ID": 1,

 "Name": "Mount Fuji",

 "Thumbnail": {

 "__mediaresource": {

 "edit_media": " http://server/uploads/Thumbnail546.jpg ",

 "media_src": "http://server/Thumbnail546.jpeg ",

 "content-type": "img/jpeg",

 "media_etag": "####"

 }

 },

 "PrintReady": {

 "__mediaresource": {

 "edit_media": "Photos(1)/PrintReady",

 "media_src": "Photos(1)/PrintReady ",

 "content-type": "img/png",

 }

 }

}

http://go.microsoft.com/fwlink/?LinkId=90372

183 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Listing: Entity with Named Resource Streams Formatted in Verbose JSON

2.2.6.3.15 Links and Subtypes

Entity instances in an EntitySet MAY not belong to the same EntityType but MUST all be derived

from the EntityType baseType associated with the EntitySet. In the OData 3.0 protocol, in
addition to the rules described in Entity Type (as a JSON object) (section 2.2.6.3.3), the value of the
ResourcePath for the following grammar rules (described in Entity Type (as a JSON object)
(section 2.2.6.3.3),) SHOULD include the EntityType instance (as described in Resource Path
(resourcePath) (section 2.2.3.3)):

uriNVP

associationuri

editMediaNVP

mediaSrcNVP

2.2.6.3.16 Annotations

Instance annotations are not supported in the Verbose JSON format.

2.2.6.4 Raw Format

The data service URI addressing scheme, as specified in URI Format: Resource Addressing Rules
(section 2.2.3), enables directly addressing the "raw" value (see URI 4 and URI 5 in Resource Path:
Semantics (section 2.2.3.5)) of EDMSimpleType properties defined on an EntityType or
ComplexType. This allows the constituent parts of an EntityType to be identified independent of the

rest of the EntityType and without any wrapping syntax.

2.2.6.4.1 EDMSimpleType Property

By default, the raw value (identified via URIs with resource paths ending in "$value") of any
EDMSimpleType property (except those of type Edm.Binary) SHOULD be represented using the
text/plain media type and MUST be serialized as specified in Common Serialization Rules for XML-
based Formats (section 2.2.6.1). A $value request for a property that is NULL SHOULD result in a

"404 Not Found" response. A data service MAY<64> customize the media type used for any
property. The raw value of an Edm.Binary property MUST be an unencoded byte stream.

If the value of the property to be serialized is null, see Common Serialization Rules for XML-based
Formats (section 2.2.6.1), because the representation is format specific.

2.2.6.5 XML Format

The data service URI addressing scheme, specified in URI Format: Resource Addressing Rules

(section 2.2.3), enables the constituent parts of an EntityType and associations between
EntityTypes to be identified directly. This allows interaction with a specific piece of data or
relationship, independent of the rest of the EntityType. Servers responding to requests identifying

a constituent part of an EntityType instance MUST respond with an XML-based serialization of that
part's value, as specified in this section, unless the request URI's resource path ends in "$value" (in
which case it should use the format defined in Raw Format (section 2.2.6.4)).

The serializations defined in the following subsections MUST be identified with the application/xml

media type or text/xml media types.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

184 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.6.5.1 Complex Type

A ComplexType property, defined on an EntityType, MUST be represented in the same way as it is
within in the Atom-based format, as specified in section Complex Type (section 2.2.6.2.3); however,

the XML element representing the ComplexType instance as a whole MUST be the root of the XML
document (for example, not a child element, as described in section Complex Type (section
2.2.6.2.3)). For example, the Address property of type CAddress (a ComplexType) in the sample
model (see Appendix A: Sample Entity Data Model and CSDL Document (section 6)) is represented
in the following listing.

If the value of the ComplexType is null, the element MUST be empty and MUST include the m:null
attribute set to true, as required by the Common Serialization Rules for XML-based Formats (section

2.2.6.3.1).

<?xml version="1.0" encoding="utf-8"?>

<Address xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">

 <Street>57 Contoso St</Street>

 <City>Seattle</City>

</Address>

Listing: XML-formatted Complex Type

2.2.6.5.2 Collection of Complex Type Instances

A collection of ComplexType instances MUST be represented in XML as a single XML document with
the root element of the document equal to the same name of the service operation returning the
ComplexType instances. The root element and all its child elements MUST exist in the Data Service

Metadata namespace, as specified in Common Serialization Rules for XML-based Formats (section
2.2.6.1).

Each ComplexType instance in the collection must be represented as a child element of the root
element and be named "element". An attribute named "type" (in the Data Service Metadata

namespace, as described in Common Serialization Rules for XML-based Formats (section 2.2.6.1),
MUST exist on the element. The value of this attribute MUST specify the namespace qualified type
name of the ComplexType.

Each property of the ComplexType instance MUST be represented in the same way as in the XML
serialization of a single ComplexType, as described in Complex Type (section 2.2.6.2.3).

2.2.6.5.3 EDMSimpleType Property

Properties of type EDMSimpleType MUST be represented as a single (root) XML element in the data
service namespace, as described in Common Serialization Rules for XML-based Formats (section

2.2.6.1), with the same name as the property. The element MAY have an m:type attribute to
specify the Entity Data Model (EDM) type of the property. If the m:type attribute is missing, the
EDM type of the property MUST be assumed to be Edm.String. The text value of the element MUST
be equal to the value of the property. The property value is formatted, as described in the EDM
Primitive Type Formats for XML Element Values table in Common Serialization Rules for XML-based

Formats (section 2.2.6.1).

2.2.6.5.4 Collection of EDMSimpleType Values

A collection of EDMSimpleType values MUST be represented as a single XML document with the root
element of the document equal to the name of the service operation, action, or function returning

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

185 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

the values. The root element and all its child elements MUST exist in the Data Service Namespace,
as described in Common Serialization Rules for XML-based Formats (section 2.2.6.1).

Each value in the collection must be represented as a child element of the root element and be
named "element". The text value of the XML element MUST be formatted, as described in the EDM

Primitive Type Formats for XML Element Values table in Common Serialization Rules for XML-based
Formats (section 2.2.6.1).

2.2.6.5.5 Links

Links represent unidirectional associations or one direction of a bidirectional association between
EntityTypes. Using the Customer and Order EntityTypes, associations, and instance sample data,
as described in Appendix A: Sample Entity Data Model and CSDL Document (section 6), the set of

links from the Customer with EntityKey "ALFKI" to Order instances are represented by a set of URIs,
with each URI in the set identifying a single Order that is linked to the Customer. Such link
information MUST be serialized as an XML document that conforms to the XML schema
[XMLSCHEMA1/2] shown in the following XML Schema for a Set of Links Represented Using XML

listing. In the serialization, one URI element MUST exist for each link, with the text value of the
element equal to the canonical URI of the linked-to EntityType instance. Additionally, the target

namespace MAY be server-specific, as described in Common Serialization Rules for XML-based
Formats (section 2.2.6.1).

<?xml version="1.0" encoding="utf-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://schemas.microsoft.com/ado/2007/08/dataservices">

 <xsd:element name="links">

 <xsd:complexType mixed="false">

 <xsd:sequence>

 <xsd:element name="uri" type="xsd:string" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

Listing: XML Schema for a Set of Links Represented Using XML

A single link, which is not part of a set, MUST be serialized as an XML document that conforms to
the XML schema [XMLSCHEMA1/2] shown in following XML Schema for a Single Link Represented
Using XML listing. The definition of the URI element in this case is unchanged from above. The
targetNamespace in the XSD MAY be server-specific, as described in Common Serialization Rules for
XML-based Formats (section 2.2.6.1).

<?xml version="1.0" encoding="utf-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://schemas.microsoft.com/ado/2007/08/dataservices">

 <xsd:element name="uri" type="xsd:string" minOccurs="1"

 maxOccurs="1"/>

</xsd:schema>

Listing: XML Schema for a Single Link Represented Using XML

For example, using the sample model and instance data, as described in Appendix A: Sample Entity
Data Model and CSDL Document (section 6), the links from the Customer with EntityKey entity
"ALFKI" to Order instances are represented as follows.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90607
http://go.microsoft.com/fwlink/?LinkId=90607

186 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<links xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">

 <uri>http://host/service.svc/Orders(1)</uri>

 <uri>http://host/service.svc/Orders(2)</uri>

</links>

Listing: Example of Links Formatted as XML

2.2.6.5.5.1 InlineCount Representation (for Collections of Links)

Applies to the OData 2.0 and OData 3.0 protocols

This section defines an extended representation of a collection of links from that described in section
2.2.6.5.5. This representation of a collection of links is supported only in the OData 2.0 and OData
3.0 protocols.

A request URI MAY contain an $inlinecount system query option to indicate that the count of the

number of links represented by the query should be included in the collection of links returned by a
data service.

The count value included in the result MUST be enclosed in an m:count element which MUST be the

first child element of the root links element.

2.2.6.5.5.2 Next Page (for Collections of Links)

A response containing a collection of links MAY include a next element in the Data Service
Namespace (section 2.2.6.1) as the final child element of the root links element if the server only
returned a subset (or single page) of the collection of links.

The value of the next element MUST be a URI that identifies the next page of the links in the

collection; often the URI will include a Skip Token system query option (section 2.2.3.6.1.9).

2.2.6.5.6 Collection of Complex Type

In the OData 3.0 protocol, a collection property of complex types, defined on an EntityType, MUST
be represented in the same way that it is in the Atom-based format, as specified in section
Collection Property (section 2.2.6.2.9). However, the XML element that represents the collection
instance as a whole MUST be the root of the XML document (not a child element, as described in

Collection Property of Complex Type (section 2.2.6.2.9.1)). For example, the Address property of
type AlternateAddresses (a ComplexType) in the sample model (see Appendix A: Sample EDM and
CSDL Document (section 6)) is represented in the following listing.

<?xml version="1.0" encoding="utf-8"?>

<d: AlternateAddresses m:type="Collection(SampleModel.Address)"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">

 <d:element m:type="Collection(SampleModel.EAddress)>

 <d:Street>123 contoso street</d:Street>

 </d:element>

 <d:element >

 <d:Street>834 1st street</d:Street>

 <d:Apartment>102</d:Apartment>

 </d:element>

</d: AlternateAddresses>

187 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Listing: XML Formatted Collection of Complex Type

2.2.6.5.7 Collection of EDMSimpleType

In the OData 3.0 protocol, a collection property of simple types, defined on an EntityType, MUST

be represented in the same way that it is in the Atom-based format, as specified in section
2.2.6.2.9.2. However, the XML element that represents the collection instance as a whole MUST be
the root of the XML document (not a child element, as described in section 2.2.6.2.9.2. For
example, the EmailAddress property of type string (an EDMSimpleType) in the sample model (see
Appendix A: Sample EDM and CSDL Document (section 6)) is represented in the following listing.

<?xml version="1.0" encoding="utf-8"?>

<d:EmailAddresses m:type="Collection(Edm.String)"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">

 <d:element>alternate1@company.com</d:element>

 <d:element>alternate2@company.com</d:element>

</d:EmailAddresses>

Listing: XML Formatted Collection of EDMSimpleType

2.2.6.6 Preferred OData 3.0 JSON Format

OData 3.0 services SHOULD<65> support the preferred OData 3.0 JSON format as defined in [MS-

ODATAJSON].

2.2.7 Request Types

This document defines requests that a client can send to a data service.

The request types defined in this document either extend the request types defined in AtomPub, as
specified in [RFC5023], by providing additional rules for each type. Or, they add additional types, in

addition to those defined in [RFC5023].

In general, this document adopts the protocol semantics of AtomPub, as specified in [RFC5023], but
extends AtomPub to allow the use of alternate formats (such as JSON as specified in [RFC4627]), in
addition to Atom, and defines a URI addressing scheme for the abstract data model used in this
document. This document's data model maps 1-to-1 to the model constructs defined in AtomPub
and defines additional constructs not present in the AtomPub model.

As specified in [RFC5023] and extended in this section, the requests from the client and the
corresponding responses from the server are exchanged using HTTP request methods. Each request

type defined is mapped to an HTTP request method (for example, GET, POST, and so on) and HTTP
request URI pair.

In general, the request types defined allow clients to:

Retrieve, edit, and delete Entity Data Model (EDM) constructs represented as data service or

AtomPub resources using HTTP's GET, PUT, PATCH, and DELETE methods. For details, see
Retrieve Request Types (section 2.2.7.2), Update Request Types (section 2.2.7.3), and Delete

Request Types (section 2.2.7.4).

Insert new EntityType instances into an EntitySet represented as an AtomPub Collection. See

Insert Request Types (section 2.2.7.1) for details.

http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

188 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Invoke a data service service operation. For further details see Invoke Request (section 2.2.7.5).

Package many requests using a batch request type. See Batch Request (section 2.2.7.6) for

details.

Issue any of the above non-batch operations using a technique commonly referred to as POST

tunneling (Tunneled Requests (section 2.2.7.7)).

This section defines the syntax rules for each request type. Any ABNF syntax rules that are not
specified in [RFC5234] or [RFC4627] use the extensions defined in [RFC2616]. The following are
common ABNF syntax rules used throughout this section.

HTTP-Header-Types = *((general-header

 ; see section 4.5 of [RFC2616]

 / request-header

 ; see section 5.3 of [RFC2616]

 / entity-header) CRLF)

 ; see section 7.1 of [RFC2616]

Listing: Common Grammar Rules for Request Types

2.2.7.1 Insert Request Types

This section defines all the insert request types a client may send to a data service. All insert
requests use the HTTP POST request method. The type of insert action is further defined by the
request URI used in a POST request.

InsertEntity Request (section 2.2.7.1.1) defines the InsertEntity request type that enables a client to
insert a new EntityType instance into an EntitySet.

InsertLink Request (section 2.2.7.1.2) defines the InsertLink request type that is used to add a new

link between EntityTypes instances.

2.2.7.1.1 InsertEntity Request

The purpose of the InsertEntity request is to enable a new EntityType instance, potentially with new
related entities, to be inserted into an EntitySet. The base rules and semantics of this request type
are defined by AtomPub, as specified in [RFC5023] section 5.3 - Creating a Resource, and, as
described in Abstract Data Model (section 2.2.1), Entity Data Model (EDM) constructs are mapped

directly to data model concepts used in AtomPub. For example, EntityTypes are AtomPub Entry
Resources and collections of entities (entity sets and so on) are AtomPub collections. This section
adds constraints to those defined in AtomPub for this request type.

As specified in [RFC5023] section 9.2, insert requests use the HTTP POST method and the request
URI must represent an AtomPub collection. Because a collection maps to a conceptual schema
definition language (CSDL) in an EDM, the HTTP request line URI MUST be any valid data service
URI, as defined in URI Format: Resource Addressing Rules (section 2.2.3), which identifies a

collection of entities.

[RFC5023] section 9.2 states that the request body in the POST MAY be an AtomPub Entry Resource
(which maps to an EntityType instance in an EDM) represented as an Atom Entry document. This
document extends this rule to allow additional representations of an Entry Resource to be posted to
a URI representing a collection. This document defines three such representations of EntityTypes
that map to Entry Resources: AtomPub as defined in Entity Type (as an Atom Entry Element)

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880

189 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

(section 2.2.6.2.2), JSON as defined in Entity [ODataJSON4.0] section 6, and Verbose JSON as
defined in Entity Type (as a Verbose JSON Object) (section 2.2.6.3.3).

When the request body is a representation of an Entry Resource (Entity Type in EDM terms), the
client MAY specify if the resource/entity should be automatically linked to other already existing

entities in the data service. For example, a new order entity may need to be bound to an existing
customer entity in a customer relationship management focused data service. Such linking MUST be
supported only if the EntityType of the to-be-inserted entity defines a NavigationProperty which
associates the new entity and the to-be-related entity.

To bind the new entity to one or more (as defined by the cardinality of the NavigationProperty)
existing entities, the client MUST include the required binding information in the representation of
the associated NavigationProperty in the request payload.

To bind the new entity to an existing entity by using the Atom format, the NavigationProperty
MUST be represented, as specified in Navigation Property (section 2.2.6.2.4), with one exception:
the href attribute of the atom:link element must represent the URI of the entity to be linked to.

To bind the new entity to an existing entity by using the preferred OData 3.0 JSON format, see
[ODataJSON4.0] section 8.5.

To bind the new entity to an existing entity by using the Verbose JSON format, the

NavigationProperty MUST be represented using the inline representation of a
NavigationProperty, as specified in Inline Representation (section 2.2.6.3.9.1), with the inlined
entities represented using only the "__metadata" name/value pair (the properties of each inlined
entity SHOULD NOT be provided).

In addition to supporting the insertion of a new EntityType instance (E1) into an EntitySet, this
request type allows inserting new entities related to E1 (described by a NavigationProperty on the
EntityType associated with E1) using a single InsertEntity request. For example, in a customer

relationship management focused data service, a new customer entity and new related order
entities could be inserted by using a single InsertEntity request. This form of an InsertEntity request
is also known as a "deep insert".

To insert a new EntityType instance (E1) and related entities, the related entities MUST be
represented using the inline representation of the NavigationProperty (associated with E1) that
identifies the link to the (to-be-inserted) related entities, as described in Inline Representation
(section 2.2.6.3.9.1) and Inline Representation (section 2.2.6.2.6.1).

The syntax of an InsertEntity request is defined as follows.

insertEntity-Req = insertEntity-ReqLine

 insertEntity-ReqHeaders

 CRLF

 insertEntity-ReqBody

insertEntity-ReqLine = "POST"

 SP entitySetUri insertEntity-QueryOps

 SP HTTP-Version CRLF

insertEntity-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 *(HTTP-Header-Types)

entitySetUri = <Any Resource Path which identifies collection of

http://go.microsoft.com/fwlink/?LinkID=301473
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=301473

190 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 entities>

 ; see section 2.2.3 and section 2.2.3.5 -- URI1 & URI6

insertEntity-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

 ; see section 2.2.3.1

insertEntity-ReqBody = <Entity in JSON format as per [ODataJSON4.0] section 6>

 / <Entity Type in Verbose JSON format as per section 2.2.6.3.3>

 / <Entity Type in Atom format as per section 2.2.6.2.2>

 / <Entity Type in Atom Format with Customizable Feeds Property

 Mapping as per section 2.2.6.2.2.1>

The syntax of a response to a successful InsertEntity request is defined as follows.

insertEntity-Resp = Status-Line ; see [RFC2616] section 6.1.1

 insertEntity-RespHeaders

 CRLF

 insertEntity-RespBody

insertEntity-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Preference-Applied] ; see section 2.2.5.10

 [DataServiceId] ; see section 2.2.5.11

 <Location header, described in [RFC5023] section 9.2>

 "Content-Type: "

 <One of the Media types which defines a representation of

 an Entity Type> ; see section 2.2.6

 *(HTTP-Header-Types)

insertEntity-RespBody = <Entity in JSON format as per [ODataJSON4.0] section 6>

 / <Entity Type in Atom format as per section 2.2.6.2.2>

 / (begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 entityTypeInVJson

 end-object)

 ; see section 2.2.6.3.3

The syntax of an error response is shown in Error Response (section 2.2.8.1).

2.2.7.1.1.1 Examples

See Appendix A: Sample Entity Data Model and CSDL Document (section 6) for the sample model
and data used in this section.

Example 1: Insert a new Customer and bind it to existing Orders with key values 1 and 2 by
using the Atom format.

HTTP Request:

POST /service.svc/Customers HTTP/1.1

Host: host

Content-Type: application/atom+xml

DataServiceVersion: 1.0

Accept: application/atom+xml

191 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Content-Length: nnn

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <id>http://host/service.svc/Customers('ASDFG')</id>

 <title type="text" />

 <updated>2008-12-07T8:00:00Z</updated>

 <author>

 <name />

 </author>

 <link rel="http://schemas.microsoft.com/ado/2007/08

 /dataservices/related/Orders"

 href="Orders(1)" />

 <link rel="http://schemas.microsoft.com/ado/2007/08

 /dataservices/related/Orders"

 href="Orders(2)" />

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ASDFG</d:CustomerID>

 <d:CompanyName>Contoso Widgets</d:CompanyName>

 <d:Address>

 <d:Street>58 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 </d:Address>

 </m:properties>

 </content>

</entry>

HTTP Response:

HTTP/1.1 201 Created

Date: Fri, 12 Dec 2008 17:17:11 GMT

Location: http://host/service.svc/Customers('ASDFG')

Content-Type: application/atom+xml;type=entry

DataServiceVersion: 3.0

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <category term="SampleModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08

 /dataservices/scheme"/>

 <id>http://host/service.svc/Customers('ASDFG')</id>

 <title type="text" />

 <updated>2008-03-30T21:32:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ASDFG')" />

 <link rel="http://schemas.microsoft.com/ado/2007/08

 /dataservices/related/Orders"

192 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 type="application/atom+xml;type=feed"

 title="Orders"

 href="Customers('ASDFG')/Orders" />

 xmlns:d="http://schemas.microsoft.com/ado/2007/08

/dataservices/relatedlinks /dataservices/related/Orders"

 type="application/xml"

 title="Orders"

 href="Customers('ASDFG')/$links/Orders" />

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ASDFG</d:CustomerID>

 <d:CompanyName>Contoso Widgets</d:CompanyName>

 <d:Address>

 <d:Street>58 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 </d:Address>

 <d:Version>AAAAAAAA+gE=</d:Version>

 </m:properties>

 </content>

</entry>

Example 2: Insert a new Customer and bind it to existing Orders with key values 1 and 2 by

using the Verbose JSON format.

HTTP Request:

POST /service.svc/Customers HTTP/1.1

Host: host

Content-Type: application/json;odata=verbose

Accept: application/json;odata=verbose

DataServiceVersion: 1.0

Content-Length: nnn

{

 "__metadata": { "uri": "Customers(\'ASDFG\')" },

 "CustomerID": "ASDFG",

 "CompanyName": "Contoso Widgets",

 "Address": { "Street": "58 Contoso St", "City": "Seattle" },

 "Orders": [

 { "__metadata": {"uri": "Order(1)"} },

 { "__metadata": {"uri": "Order(2)"} }

]

}

HTTP Response (Version 3.0):

HTTP/1.1 201 Created

Date: Fri, 12 Dec 2008 17:17:11 GMT

Location: http://host/service.svc/Customers('ASDFG')

Content-Type: application/json;odata=verbose

DataServiceVersion: 3.0

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

{

193 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "d":

 {

 "__metadata": { "uri": "Customers(\'ASDFG\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\"",

 "properties" : {

 "Orders" : {

 "associationuri" :

"Customers(\'ASDFG\')/$links/Orders"

 }

 }

 },

 "CustomerID": "ASDFG",

 "CompanyName": "Contoso Widgets",

 "Address": { "Street": "58 Contoso St", "City": "Seattle" },

 "Version": "AAAAAAAA+gE=",

 "Orders": { "__deferred": { "uri": "Customers(\'ASDFG\')/Orders"} }

 }

}

Example 3: Insert a new Customer and two new related orders by using the Atom format.

HTTP Request:

POST /service.svc/Customers HTTP/1.1

Host: host

Content-Type: application/atom+xml

DataServiceVersion: 1.0

Accept: application/atom+xml

Content-Length: nnn

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <id>http://host/service.svc/Customers('ASDFG')</id>

 <title type="text" />

 <updated>2008-03-30T21:52:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="http://schemas.microsoft.com/ado/2007/08

 /dataservices/related/Orders"

 href="Customers('ASDFG')/Orders">

 <m:inline>

 <feed>

 <title type="text">Orders</title>

 <id>http://host/service.svc/Customers('ASDFG')/Orders</id>

 <updated>2008-03-30T21:52:46Z</updated>

 <link rel="self" title="Orders"

 href="Customers('ASDFG')/Orders" />

 <entry>

 <id>http://host/service.svc/Orders(3)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

194 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <name />

 </author>

 <content type="application/xml">

 <m:properties>

 <d:OrderID>3</d:OrderID>

 <d:ShippedDate>

 2008-03-30T21:52:45Z</d:ShippedDate>

 </m:properties>

 </content>

 </entry>

 <entry>

 <id>http://host/service.svc/Orders(4)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <content type="application/xml">

 <m:properties>

 <d:OrderID>4</d:OrderID>

 <d:ShippedDate>2008-03-30T21:52:45Z</d:ShippedDate>

 </m:properties>

 </content>

 </entry>

 </feed>

 </m:inline>

 </link>

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ASDFG</d:CustomerID>

 <d:CompanyName>Contoso Widgets</d:CompanyName>

 <d:Address>

 <d:Street>58 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 </d:Address>

 </m:properties>

 </content>

</entry>

HTTP Response (Version 3.0):

HTTP/1.1 201 Created

Date: Fri, 12 Dec 2008 17:17:11 GMT

Location: http://host/service.svc/Customers('ASDFG')

Content-Type: application/atom+xml;type=entry

DataServiceVersion: 3.0

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <category term="SampleModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08

 /dataservices/scheme"/>

 <id>http://host/service.svc/Customers('ASDFG')</id>

195 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <title type="text" />

 <updated>2008-03-30T21:32:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ASDFG')" />

 <link rel="http://schemas.microsoft.com/ado/2007/08

 /dataservices/related/Orders"

 type="application/atom+xml;type=feed"

 title="Orders"

 href="Customers('ASDFG')/Orders" />

 <link rel="http://schemas.microsoft.com/ado/2007/08

 /dataservices/relatedlinks/Orders"

 type="application/xml"

 title="Orders"

 href="Customers('ASDFG')/$links/Orders" />

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ASDFG</d:CustomerID>

 <d:CompanyName>Contoso Widgets</d:CompanyName>

 <d:Address>

 <d:Street>58 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 </d:Address>

 <d:Version m:type="Edm.Binary">AAAAAAAA+gE=</d:Version>

 </m:properties>

 </content>

</entry>

Example 4: Insert a new Customer and two new related orders by using the Verbose JSON.

HTTP Request:

POST /service.svc/Customers HTTP/1.1

Host: host

Content-Type: application/json;odata=verbose

Accept: application/json;odata=verbose

DataServiceVersion: 1.0

Content-Length: nnn

{

 "CustomerID": "ASDFG",

 "CompanyName": "Contoso Widgets",

 "Address": { "Street": "58 Contoso St", "City": "Seattle" },

 "Orders": [

 {

 "OrderID": 1,

 "ShippedDate": "\/Date(872467200000)\/"

 },

 {

 "OrderID": 2,

 "ShippedDate": "\/Date(875836800000)\/"

 }

]

}

196 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HTTP Response (Version 3.0):

HTTP/1.1 201 Created

Date: Fri, 12 Dec 2008 17:17:11 GMT

Location: http://host/service.svc/Customers('ASDFG')

Content-Type: application/json;odata=verbose

DataServiceVersion: 3.0

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

{"d":

 {

 "__metadata": { "uri": "Customers(\'ASDFG\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\"",

 "properties" : {

 "Orders" : {

 "associationuri" :

"Customers(\'ASDFG\')/$links/Orders"

 }

 }

 },

 "CustomerID": "ASDFG",

 "CompanyName": "Contoso Widgets",

 "Address": { "Street": "58 Contoso St", "City": "Seattle" },

 "Version": "AAAAAAAA+gE=",

 "Orders": { "__deferred": { "uri": "Customers(\'ASDFG\')/Orders"} }

 }

}

2.2.7.1.2 InsertLink Request

The purpose of the InsertLink request is to enable a new link to be created between two EntityType

instances. AtomPub, as specified in [RFC5023], does not define a request of this type. Therefore,
this request type is not based on an AtomPub-defined request, as specified in [RFC5023].

An InsertLink Request MUST use the HTTP POST method and the URI specified by the client in the
HTTP request line MUST be a valid data service URI, as specified in URI Format: Resource
Addressing Rules (section 2.2.3), which identifies the collection of links between an EntityType

instance and an EntitySet. The EntitySet MUST be related to the instance by a NavigationProperty
on the instance's EntityType, as specified in the URI7 grammar rule in Resource Path: Semantics
(section 2.2.3.5). For example, by using Appendix A: Sample Entity Data Model and CSDL Document
(section 6), the following is a valid URI for requests of this type:
http://host/service.svc/Customers('ALFKI')/$links/Orders.

In this context, the EntityType instance that is identified by the resource path segment

immediately prior to the "$links" segment in the request URI is referred to as the source entity.
Requests of this type MUST contain a request body (formatted as a link according to [MS-

ODATAJSON] section 2.1.23, formatted according to the "linkVJson" rule in EDMSimpleType Property
(section 2.2.6.3.8), or formatted according to the XML schema for a single link in EDMSimpleType
property) that contains a URI that identifies the entity to be linked to from the source entity.

If the new link defined by a request of this type represents one direction of a bidirectional
association, inserting the link (one direction of the bidirectional association) implies the opposite

direction is also inserted.

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=304226

197 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If an InsertLink request is successful, the response MUST have a 204 status code, as specified in
[RFC2616], and contain an empty response body.

If the InsertLink request is not successful (an error occurred while processing the request), the
response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of an InsertLink request is defined as follows.

insertLink-Req = insertLink-ReqLine

 insertLink-ReqHeaders

 CRLF

 insertLink-ReqBody

insertLink-ReqLine = "POST"

 SP entityTypeInstanceLinksUri insertLink-QueryOps

 SP HTTP-Version

 CRLF

insertLink-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 *(HTTP-Header-Types)

insertLink-ReqBody = <JSON representtation of a single link per [MS-ODATAJSON]

 section 2.1.23>

 / linkVJson ; see section 2.2.6.3.10

 / <XML Representation of a single link as per the XML

 Schema in section 2.2.6.5.5>

entityTypeInstanceLinksUri = <Any Resource Path identifying a collection of Links

 where the final URI segment is a navProperty

 (section 2.2.3.1) representing an Entity Set>

 ; see section 2.2.3.5 -- URI7

insertLink-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

 ; see section 2.2.3.1

The syntax of a response to a successful InsertLink request is defined as follows.

insertLink-Resp = Status-Line ; see [RFC2616] section 6.1.1

 insertLink-RespHeaders

 CRLF

insertLink-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Preference-Applied] ; see section 2.2.5.10

 *(HTTP-Header-Types)

2.2.7.1.3 InsertMediaResource Request

The purpose of the InsertMediaResource request is to enable a BLOB (in other words, a media
resource) along with an associated EntityType instance which, potentially with new related entities,
is to be inserted into an EntitySet. The base rules and semantics of this request type are defined by

AtomPub, as specified in [RFC5023] section 9.6 - Media Resources and Media Link Entries, and, as
described in Abstract Data Model (section 2.2.1), Entity Data Model (EDM) constructs are mapped

http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-GLOS%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880

198 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

directly to data model concepts used in AtomPub. If an EntityType instance is created via an
InsertMediaResource request, the created entity represents an AtomPub Media Link Entry (MLE) and

the associated BLOB represents the media resource described by the MLE.

The remainder of this section adds constraints to those defined in AtomPub for this request type.

As specified in [RFC5023] section 9.6, insert requests of this type use the HTTP POST method and
the request URI must represent an AtomPub collection. Because a collection maps to an EntitySet
(that is, a collection of entities) in an EDM, the HTTP request line URI MUST be any URI that
identifies a collection of entities. If the EntityType associated with the implicitly created MLE
defines a concurrency token, a successful response MUST contain an ETag header with a value equal
to the value of the concurrency token of the MLE created.

The syntax of an InsertMediaResource request is defined as follows.

insertMR-Req = insertEntity-ReqLine ; section 2.2.7.1.1

 insertMR-ReqHeaders

 CRLF

 insertMR-ReqBody

insertMR-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [Accept] ; see section 2.2.5.1

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 [<Slug header as defined in [RFC5023] section 9.7>]

 *(HTTP-Header-Types)

entitySetUri = <Any data service URI which identifies a collection of entities>

insertEntity-QueryOps = ; section 2.2.7.1.1

insertMR-ReqBody = <Any valid HTTP request body> ; see [RFC5023] section 9.6

The syntax of a response to a successful InsertMediaResource request is defined as follows.

insertMR-Resp = Status-Line ; see [RFC2616] section 6.1.1

 insertEntity-RespHeaders

 CRLF

 insertEntity-RespBody

insertMR-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 <Location header, as described in [RFC5023] section 9.6>

 "Content-Type: "

 <One of the Media types which defines a representation of

 an Entity Type> ; see section 2.2.6

 [Preference-Applied] ; see section 2.2.5.10

 [DataServiceId] ; see section 2.2.5.11

 *(HTTP-Header-Types)

insertEntity-RespBody = <Media Entity in JSON as per [ODataJSON4.0] section 10>

 / <Entity Type representing a Media Link Entry in Atom format as

 per section 2.2.6.2.2>

 / (begin-object

 quotation-mark "d" quotation-mark

http://go.microsoft.com/fwlink/?LinkId=140880

199 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 name-seperator

 entityTypeInVJson

 end-object)

 ; see section 2.2.6.3.3

 ; the entityTypeInVJson representation MUST include all name

 ; value/pairs denoted in the mleMetadata rule

The syntax of an error response is shown in Error Response (section 2.2.8.1).

2.2.7.2 Retrieve Request Types

2.2.7.2.1 RetrieveEntitySet Request

A RetrieveEntitySet request is used by a client to retrieve the entries in an AtomPub collection, as

specified in [RFC5023], that maps to an EntitySet in the abstract data model used in this document,
as described in Abstract Data Model (section 2.2.1). The base rules and semantics of this request

type are defined by AtomPub, as specified in [RFC5023] section 5.2 -- Listing Collection Members.
This section adds constraints to those defined in AtomPub for this request type.

According to [RFC5023] section 5.2, requests of this type MUST use the HTTP GET method and the
URI specified by the client in the HTTP request line must represent an AtomPub collection. Because

a collection maps to an EntitySet in an Entity Data Model (EDM), the HTTP request line URI MUST
be equal to any valid data service URI that identifies an EntitySet, as specified in URI Format:
Resource Addressing Rules (section 2.2.3).

[RFC5023] section 9.2 states that the response body from such a request must be an Atom Feed
document. This document extends this rule to allow additional representations of a collection (or
EntitySet) to be retrieved by a data service client. This document defines three representations of
EntitySet: AtomPub as specified in Entity Set (as an Atom Feed Element) (section 2.2.6.2.1),

Collection of Entities as specified in [ODataJSON4.0] section 12, and Verbose JSON as specified in
Entity Set (as a Verbose JSON Array) (section 2.2.6.3.2).

If a RetrieveEntitySet request was successful, the response payload MUST contain the requested
representation of the entities in the EntitySet identified in the request URI. The payload of such a
response MUST be formatted using AtomPub, JSON, or Verbose JSON, according to the rules defined
in AtomPub Format (section 2.2.6.2), JSON format [ODataJSON4.0] section 12, and Verbose JSON
Format (section 2.2.6.3), respectively.

If the RetrieveEntitySet request is not successful (for example, an error occurred while processing
the request), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of a RetrieveEntitySet request is defined as follows:

retrieveEntitySet-Req = retrieveEntitySet-ReqLine

 retrieveEntitySet-ReqHeaders

 CRLF

retrieveEntitySet-ReqLine = "GET"

 SP entitySetUri retrieveEntitySet-

 QueryOps

 SP HTTP-Version

 CRLF

retrieveEntitySet-ReqHeaders = [DataServiceVersion]

 ; see section 2.2.5.3

http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkID=301473

200 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [MaxDataServiceVersion]

 ; see section 2.2.5.7

 [Accept]

 ; see section 2.2.5.1

 *(HTTP-Header-Types)

entitySetUri = ; see section 2.2.7.1.1

retrieveEntitySet-QueryOps = ["?" (customQueryOption /sysQueryOption)

 *("&"customQueryOption / sysQueryOption)]

 ; see section 2.2.3.1 & section 2.2.3.6.1.5

The syntax of a response to a successful RetrieveEntitySet request is defined as follows:

retrieveEntitySet-Resp = Status-Line

 ; see [RFC2616] section 6.1.1

 retrieveEntitySet-RespHeaders

 CRLF

 retrieveEntitySet-RespBody

retrieveEntitySet-RespHeaders= DataServiceVersion

 ; see section 2.2.5.3

 [Content-Type]

 ; see section 2.2.5.2

 [ETag]

 ; see section 2.2.5.4

 *(HTTP-Header-Types)

retrieveEntitySet-RespBody = <Collectons of entities in JSON as per [ODataJSON4.0]

 section 12>

 / <Entity Set formatted as per section

 2.2.6.2.1>

 / (begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 (entitySetInVJson / entitySetInVJson2)

 end-object)

 ; see section 2.2.6.3.2

2.2.7.2.2 RetrieveEntity Request

A RetrieveEntity request is used by a client to retrieve an AtomPub entry resource, as specified in
[RFC5023], and potentially related entities that map to EntityType instances, as described in
Abstract Data Model (section 2.2.1).

Requests of this type MUST use the HTTP GET method and the URI specified by the client in the
HTTP request line MUST represent an AtomPub entry resource. Because an entry resource maps to
an EntityType in an Entity Data Model (EDM), the HTTP request line URI MUST be any valid data

service URI that identifies an EntityType instance, as defined in URI Format: Resource Addressing

Rules (section 2.2.3). A client will typically obtain such a URI after parsing one of the EntityType
instances serialized in the response payload from a prior RetrieveEntitySet request, as specified in
Retrieve Request Types (section 2.2.7.2). When using the AtomPub format in a RetrieveEntitySet
request, such a URI is typically obtained from the "edit" or "self" URIs described in AtomPub, as
specified in [RFC5023] section 11.1 (The "edit" Link Relation), [RFC4287] section 4.2.7.2, and Entity
Type (as an Atom Entry Element) (section 2.2.6.2.2). Using Verbose JSON in the RetrieveEntitySet

http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140877

201 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

request, the URI is obtained from the metadata name/value pair of a JSON object representing an
entity, as described in Entity Type (as a Verbose JSON object) (section 2.2.6.3.3). For information

about obtaining the URI for the RetrieveEntitySet request in the preferred OData 3.0 JSON format,
see [ODataJSON4.0] section 4.5.8.

AtomPub [RFC5023] describes retrieving an AtomPub entry resource, which maps to an EntityType
instance in an EDM, in an HTTP response payload that MUST be represented as an Atom entry
document, as specified in [RFC4287] section 4.1.2. This document extends that behavior to allow
additional representations of an entry resource to be retrieved by a data service client. A client
states the desired response payload format by using the Accept (section 2.2.5.1) request header.
This document defines three representations of EntityTypes: entity type as an Atom Entry element
(section 2.2.6.2.2), entity as a JSON object ([ODataJSON4.0] section 6), and entity type as a

Verbose JSON object (section 2.2.6.3.3).

If the RetrieveEntity request was successful, the response payload MUST contain the requested
representation of the EntityType instance identified in the request URI. The payload of such a
response MUST be formatted by using Atom, JSON, or Verbose JSON according to the rules defined
in Entity Type (as an Atom Entry Element) (section 2.2.6.2.2), Entity (as a JSON object)

([ODataJSON4.0] section 6), and Entity Type (as a Verbose JSON object) (section 2.2.6.3.3).

If the RetrieveEntity request is not successful (for example, an error occurred while processing the
request), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of a RetrieveEntity request is defined as follows:

retrieveEntity-Req = retrieveEntity-ReqLine

 retrieveEntity-ReqHeaders

 CRLF

retrieveEntity-ReqLine = "GET"

 SP entityTypeInstanceUri retrieveEntity-

 QueryOps

 SP HTTP-Version

 CRLF

retrieveEntity-ReqHeaders = [DataServiceVersion]

 ; see section 2.2.5.3

 [MaxDataServiceVersion]

 ; see section 2.2.5.7

 [If-None-Match]

 ; see section 2.2.5.6

 [Accept]

 ; see section 2.2.5.1

 *(HTTP-Header-Types)

entityTypeInstanceUri = ; see section 2.2.7.4.1

retrieveEntity-QueryOps = ["?"(customQueryOption /sysQueryOption)

 *("&" customQueryOption / sysQueryOption)]

The syntax of a response to a successful RetrieveEntity request is defined as follows:

retrieveEntity-Resp = Status-Line

 ; see [RFC2616] section 6.1.1

 retrieveEntity-RespHeaders

 CRLF

http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140877
http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkID=301473

202 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 retrieveEntity-RespBody

retrieveEntity-RespHeaders = DataServiceVersion

 ; see section 2.2.5.3

 [Content-Type]

 ; see section 2.2.5.2

 [ETag]

 ; see section 2.2.5.4

 *(HTTP-Header-Types)

; Responses including related entities were requesting using the

; $expand query string operator defined in section 2.2.3.6.1

retrieveEntity-RespBody = <Entity (possibly with Expanded Navigation Property)

 formatted by using JSON as per [ODataJSON4.0]

 sections 6 and 8.3>

 / <Entity Type instance (possibly with

 related instances) formatted by using

 Atom as per sections

 2.2.6.2.2 and 2.2.6.2.6.1>

 / (begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 entityTypeInVJson

 end-object)

 ; see section 2.2.6.3.3 &

 ; 2.2.6.3.9.1

2.2.7.2.3 RetrieveComplexType Request

The purpose of the RetrieveComplexType request is to enable the value of a ComplexType property
on an EntityType instance to be retrieved by a client. AtomPub, as specified in [RFC5023], does not
define operations on subcomponents of an entry resource. As such, this request type is not based on

an AtomPub-defined [RFC5023] request.

A RetrieveComplexType request MUST use the HTTP GET method and the URI specified in the HTTP
request line MUST be a valid data service URI that identifies a ComplexType property on an
EntityType instance, as specified in URI Format: Resource Addressing Rules (section 2.2.3).

If the RetrieveComplexType request was successful, the response MUST have a 200 status code as
specified in [RFC2616]. The payload of such a response MUST be formatted using XML, JSON, or
Verbose JSON, according to the rules defined in Complex Type (section 2.2.6.5.1), Complex Value

([ODataJSON4.0] section 7.2), and Complex Type (section 2.2.6.3.4), respectively.

If the RetrieveComplexType request is not successful (for example, an error occurred while
processing the request), the response MUST be formatted according to Error Response (section
2.2.8.1).

The syntax of a RetrieveComplexType request is defined as follows:

retrieveCT-Req = retrieveCT-ReqLine

 retrieveCT-ReqHeaders

 CRLF

retrieveCT-ReqLine = "GET"

 SP entityTypeInstanceCTPropertyUri retrieveCT-QueryOps

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkID=301473

203 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 SP HTTP-Version

 CRLF

retrieveCT-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-None-Match] ; see section 2.2.5.6

 [Accept] ; see section 2.2.5.1

 *(HTTP-Header-Types)

entityTypeInstanceCTPropertyUri = <Any Resource Path identifying a ComplexType

 property on an Entity Type instance>

 ; see section 2.2.3 and section 2.2.3.5 -- URI3

retrieveCT-QueryOps = ["?" (customQueryOption / formatQueryOp)

 *("&" customQueryOption)]

 ; see section 2.2.3.1 & section 2.2.3.6.1.5

The syntax of a response to a successful RetrieveComplexType request is defined as follows:

retrieveCT-Resp = Status-Line ; see [RFC2616] section 6.1.1

 retrieveCT-RespHeaders

 CRLF

 retrieveCT-RespBody

retrieveCT-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 *(HTTP-Header-Types)

retrieveCT-RespBody = <Complex value formatted by using JSON as per [ODataJSON4.0]

 section 7.2>

 / <ComplexType property value formatted by using XML as per

 section 2.2.6.5.1>

 /(begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 (entityCTInVJson

 end-object)

 ; see section 2.2.6.3.4

2.2.7.2.4 RetrievePrimitiveProperty Request

The purpose of the RetrievePrimitiveProperty request is to enable the value of an EDMSimpleType
property on an EntityType instance (or one of its constituent ComplexType instances) to be retrieved
by a client. AtomPub, as specified in [RFC5023], does not define operations on subcomponents of an
Entry Resource. As such, this request type is not based on any AtomPub-defined [RFC5023] request.

A RetrievePrimitiveProperty request MUST use the HTTP GET method and the URI specified by the
client in the HTTP request line MUST be a valid data service URI that identifies a property of type

EDMSimpleType on an EntityType instance or ComplexType instance, as described in URI

Format: Resource Addressing Rules (section 2.2.3).

If the RetrievePrimitiveProperty request was successful, the response MUST have a 2xx status code
as specified in [RFC2616]. The payload of such a response MUST be formatted using XML, JSON, or
Verbose JSON, as defined in EDMSimpleType Property (section 2.2.6.5.3), Primitive Value ([MS-
ODATAJSON] section 2.1.17), and EDMSimpleType Property (section 2.2.6.3.8), respectively.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkID=301473

204 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the RetrievePrimitiveProperty request is not successful (for example, an error occurred while
processing the request) the response MUST be formatted according to Error Response (section

2.2.8.1).

The syntax of a RetrievePrimitiveProperty request is defined as follows:

retrievePP-Req = retrievePP-ReqLine

 retrievePP-ReqHeaders

 CRLF

retrievePP-ReqLine = "GET"

 SP entityTypeInstancePropertyUri retrievePP-QueryOps

 SP HTTP-Version

 CRLF

retrievePP-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-None-Match] ; see section 2.2.5.6

 [Accept] ; see section 2.2.5.1

 *(HTTP-Header-Types)

entityTypeInstancePropertyUri = ; see section 2.2.7.4.3

retrievePP-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

 ; see section 2.2.3.1

The syntax of a response to a successful RetrievePrimitiveProperty request is defined as follows:

retrievePP-Resp = Status-Line ; see [RFC2616] section 6.1.1

 retrievePP-RespHeaders

 CRLF

 retrievePP-RespBody

retrievePP-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Content-Type] ; see section 2.2.5.2

 *(HTTP-Header-Types)

retrievePP-RespBody = <Property value formatted in JSON as per [ODataJSON4.0]

 section 7>

 / <Property value formatted in XML as per section

 2.2.6.5.3>

 / (begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 begin-object

 (entityPropertyInVJson / entityPropertyInVJson2)

 end-object

 end-object)

 ; see section 2.2.6.3.8

2.2.7.2.5 RetrieveValue Request

The purpose of the RetrieveValue Request is to enable the raw value of an EDMSimpleType property

on an EntityType instance to be retrieved by a client. AtomPub, as specified in [RFC5023], does not

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880

205 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

define operations on subcomponents of an Entry Resource. As such, this request type is not based
on any AtomPub-defined [RFC5023] request.

A RetrieveValue Request MUST use the HTTP GET method and the URI specified by the client in the
HTTP request line MUST be a valid data service URI that identifies the raw value of a property (of

type EDMSimpleType) on an EntityType instance, as specified in URI Format: Resource
Addressing Rules (section 2.2.3).

If the RetrieveValue Request was successful, the response MUST have a 2xx status code, as
specified in [RFC2616], and the response body must be formatted as specified in EDMSimpleType
Property (section 2.2.6.4.1).

If the RetrieveValue Request is not successful (for example, an error occurred while processing the
request), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of a RetrieveValue Request is defined as follows:

retrieveValue-Req = retrieveValue-ReqLine

 retrieveValue-ReqHeaders

 CRLF

retrieveValue-ReqLine = "GET"

 SP entityTypeInstancePropertyUri

 "/$value"

 retrieveValue-QueryOps

 SP HTTP-Version

 CRLF

retrieveValue-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-None-Match] ; see section 2.2.5.6

 *(HTTP-Header-Types)

entityTypeInstancePropertyUri = ; see section 2.2.7.4.3

retrieveValue-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

 ; see section 2.2.3.6

The syntax of a response to a successful RetrieveValue Request is defined as follows:

retrieveValue-Resp = Status-Line ; see [RFC2616] section 6.1.1

 retrieveValue-RespHeaders

 CRLF

 retrieveValue-RespBody

retrieveValue-RespHeaders= DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Content-Type] ; see section 2.2.5.2

 *(HTTP-Header-Types)

retrieveValue-RespBody = <Property value formatted as per section 2.2.6.4.1>

2.2.7.2.6 RetrieveCollectionProperty Request

The purpose of the RetrieveCollectionProperty request is to enable the value of a collection property
on an EntityType instance to be retrieved by a client. AtomPub, as specified in [RFC5023], does not

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?linkid=140880

206 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

define operations on subcomponents of an entry resource. As such, this request type is not based on
any AtomPub-defined [RFC5023] request.

A RetrieveCollectionProperty Request MUST use the HTTP GET method. Additionally, the URI
specified by the client in the HTTP request line MUST be a valid data service URI that identifies a

property of type collection, as described in URI Format: Resource Addressing Rules (section 2.2.3).

If the RetrieveCollectionProperty request is successful, the response MUST have a 2xx status code,
as specified in [RFC2616]. The payload of such a response MUST be formatted by using XML as
defined in Collection of EDMSimpleType Values (section 2.2.6.5.3), JSON as defined in Collection of
Primitive Values ([ODataJSON4.0] section 7.3), or Verbose JSON as defined in Collection of
EDMSimpleType Values (section 2.2.6.3.7).

If the RetrieveCollectionProperty request is not successful, the response MUST be formatted

according to Error Response (section 2.2.8.1).

The syntax of a RetrieveCollectionProperty request is defined as follows:

retrieveCollection-Req = retrieveCollection-ReqLine

 retrieveCollection-ReqHeaders

 CRLF

retrieveCollection-ReqLine = "GET"

 SP entityTypeInstanceCollectionPropertyUri

 SP HTTP-Version

 CRLF

retrieveCollection-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-None-Match] ; see section 2.2.5.6

 [Accept] ; see section 2.2.5.1

 *(HTTP-Header-Types)

entityTypeInstanceCollectionPropertyUri = <Any Resource Path identifying a Collection

 property on an Entity Type instance>

 ; see section 2.2.3 and section 2.2.3.5 – URI18

The syntax of a response to a successful RetrieveCollectionProperty request is defined as follows:

retrieveCollection-Resp = Status-Line ; see [RFC2616] section 6.1.1

 retrieveCollection-RespHeaders

 CRLF

 retrieveCollection-RespBody

retrieveCollection-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Content-Type] ; see section 2.2.5.2

 *(HTTP-Header-Types)

retrieveCollection-RespBody = <Collection of primitive values and collection of complex

 values formatted in JSON as per [ODataJSON4.0]

 sections 7.3 and 7.4, respectively>

 / <Collection property values formatted in

 Verbose JSON as per sections 2.2.6.3.5 and 2.2.6.3.7>

 / <Collection property values formatted in XML as

 per sections 2.2.6.5.6 and 2.2.6.5.7>

http://go.microsoft.com/fwlink/?linkid=140880
http://go.microsoft.com/fwlink/?LinkID=301473

207 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.7.2.7 RetrieveServiceMetadata Request

The purpose of the RetrieveServiceMetadata Request is to enable a client to retrieve the conceptual
schema definition language (CSDL) document, as specified in [MC-CSDL], describing the data model

associated with the data service. AtomPub, as specified in [RFC5023], does not define the usage of
an Entity Data Model, as specified in [MC-CSDL], with data services. As such, this request type is
not based on any AtomPub-defined [RFC5023] request.

A RetrieveServiceMetadata Request MUST use the HTTP GET method and the URI specified by the
client in the HTTP request line MUST be a valid data service URI, that identifies the $metadata
endpoint of a data service, as specified in URI Syntax (section 2.2.3.1).

If the RetrieveServiceMetadata Request was successful, the response MUST have a 200 status code,

as specified in [RFC2616], and the response body must be formatted as specified in Conceptual
Schema Definition Language Document for Data Services (section 2.2.3.7.2). If the
RetrieveServiceMetadata Request is not successful (for example, an error occurred while processing
the request), the response MUST be formatted according to Error Response (section 2.2.8.1). The
version number returned as the value of the DataServiceVersion response header MUST match the

value of the DataServiceVersion attribute (section 2.2.3.7.2) in the returned EDMX [MC-EDMX]

document.

The syntax of a RetrieveServiceMetadata Request is defined as follows:

retrieveServiceMD-Req = retrieveServiceMD-ReqLine

 retrieveServiceMD-ReqHeaders

 CRLF

retrieveServiceMD-ReqLine = "GET"

 SP serviceRootNoHost

 "/$metadata"

 retrieveServiceMD-QueryOps

 SP HTTP-Version

 CRLF

retrieveServiceMD-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 *(HTTP-Header-Types)

serviceRootNoHost = <the ServiceRoot section of the data service URI

 beginning after the definition of the host>

 ; see section 2.2.3.2

retrieveServiceMD-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

 ; see section 2.2.3.6

The syntax of a response to a successful RetrieveServiceMetadata Request is defined as follows:

retrieveServiceMD-Resp = Status-Line ; see [RFC2616] section 6.1.1

 retrieveServiceMD-RespHeaders

 CRLF

 retrieveServiceMD-RespBody

retrieveServiceMD-RespHeaders= DataServiceVersion ; see section 2.2.5.3

 [Content-Type] ; see section 2.2.5.2

 *(HTTP-Header-Types)

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMC-EDMX%5d.pdf

208 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

retrieveServiceMD-RespBody = <CSDL-based document describing the data model

 defining the data service>

 ; see section 2.2.3.7.2

2.2.7.2.8 RetrieveServiceDocument Request

The purpose of the RetrieveServiceDocument request is to enable a client to retrieve the Service
Document describing the collection of resources exposed by a data service, as described in Service
Document (section 2.2.3.7.1).

AtomPub, as specified in [RFC5023], describes the retrieval of an AtomPub Service Document in an
HTTP response payload. This document extends that behavior to allow additional representations of
the Service Document to be retrieved by a data service client. A client states the desired response
payload format by using the Accept (section 2.2.5.1) request header. This document defines three

such representations of Service Documents: Service Document (section 2.2.6.2.7) for AtomPub,
Service Document ([MS-ODATAJSON] section 2.1.16) for JSON, and Service Document (section

2.2.6.3.12) for Verbose JSON.

A RetrieveServiceDocument Request MUST use the HTTP GET method and the URI specified by the
client in the HTTP request line MUST be a valid data service URI that identifies the service root
(section 2.2.3.2).

If the RetrieveServiceDocument request was successful, the response MUST have a 200 status code,

as specified in [RFC2616], and the response body must be formatted as specified in Service
Document (section 2.2.6.2.7) for AtomPub-based requests, Service Document ([MS-ODATAJSON]
section 2.1.16) for JSON-based requests, and Service Document (section 2.2.6.3.12) for Verbose
JSON-based requests. If the RetrieveServiceDocument request is not successful (for example, an
error occurred while processing the request), the response MUST be formatted according to Error
Response (section 2.2.8.1).

The syntax of a RetrieveServiceDocument request is defined as follows:

retrieveServiceDocument-Req = retrieveServiceDocument-ReqLine

 retrieveServiceDocument-ReqHeaders

retrieveServiceDocument-ReqLine = "GET"

 SP serviceRoot

 retrieveServiceDocument-QueryOps

 SP HTTP-Version

 CRLF

retrieveServiceDocument-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [Accept] ; see section 2.2.5.1

 *(HTTP-Header-Types)

serviceRoot = ; see section 2.2.3.2

retrieveServiceDocument-QueryOps = ["?" customQueryOption

 *("&" customQueryOption)]

 ; see section 2.2.3.6

The syntax of a response to a successful RetrieveServiceDocument request is defined as follows:

retrieveServiceDocument-Resp = Status-Line ; see [RFC2616] section 6.1.1

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=304226

209 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 retrieveServiceDocument-RespHeaders

 CRLF

 retrieveServiceDocument-RespBody

retrieveServiceDocument-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [Content-Type] ; see section 2.2.5.2

 *(HTTP-Header-Types)

retrieveServiceDocument-RespBody = <Service Document formatted by using AtomPub

 as per section 2.2.6.2.7>

 /<Service Document formatted by using JSON as per

 [MS-ODATAJSON] (section 2.1.16)>

 /(begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 VJsonServiceDocument

 end-object)

 ; see section 2.2.6.3.11

2.2.7.2.9 RetrieveLink Request

The purpose of the RetrieveLink request is to enable the links representing the relationships from
one EntityType instance to another or from one EntityType instance to all others in a specified

EntitySet to be retrieved by a client. AtomPub, as specified in [RFC5023], does not define a request
of this type. Therefore, this request type is not based on an AtomPub-defined [RFC5023] request.

A RetrieveLink request MUST use the HTTP GET method and the URI specified by the client in the
HTTP request line MUST be a valid data service URI that identifies the links from one EntityType
instance to another or from one EntityType instance to all other entities in a specified EntitySet,
as described in the URI7 grammar rule in Resource Path: Semantics (section 2.2.3.5).

If the RetrieveLink request was successful, the response MUST have a 2xx status code, as specified
in [RFC2616]. The response payload MUST contain a representation of the set of links or single link

identified by the request URI. A client states the desired response payload format using the Accept
(section 2.2.5.1) request header. This document defines three such formats for links: XML, JSON,
and Verbose JSON, as defined in Links (section 2.2.6.5.5), links formatted as a resource reference
([MS-ODATAJSON] section 2.1.23), and Links (section 2.2.6.3.10), respectively.

If the RetrieveLink request is not successful (for example, an error occurred while processing the

request) the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of a RetrieveLink Request is defined as follows:

retrieveLink-Req = retrieveLink-ReqLine

 retrieveLink-ReqHeaders

 CRLF

retrieveLink-ReqLine = "GET"

 SP entityTypeInstanceLinksUri retrieveLink-QueryOps

 SP HTTP-Version

 CRLF

retrieveLink-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [Accept] ; see section 2.2.5.1

 *(HTTP-Header-Types)

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=304226

210 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

entityTypeInstanceLinksUri = <Any Resource Path identifying a single Link or collection

 of Links>

 ; see section 2.2.3 and section 2.2.3.5 -- URI7

retrieveLink-QueryOps = ["?" (customQueryOption / formatQueryOp)

 *("&" customQueryOption)]

 ; see section 2.2.3.1

The syntax of a response to a successful RetrieveLink Request is defined as follows:

retrieveLink-Resp = Status-Line ; see [RFC2616] section 6.1.1

 retrieveLink-RespHeaders

 CRLF

 retrieveLink-RespBody

retrieveLink-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 *(HTTP-Header-Types)

retrieveLink-RespBody = <Representation of the links or link addressed in the

 request URI formatted as per [MS-ODATAJSON] section 2.1.23>

 / <Representation of the links or link addressed in the

 request URI formatted as per section 2.2.6.5.5>

 / quotation-mark "d" quotation-mark

 name-seperator

 <Representation of the links or link addressed in the

 request URI formatted as per section 2.2.6.3.10>

2.2.7.2.10 RetrieveCount Request

Applies to the OData 2.0 and OData 3.0 protocols

The purpose of the RetrieveCount request is to enable the count of a collection of EntityType

instances or a single EntityType instance to be retrieved by the client. AtomPub, as specified in
[RFC5023], does not define a request of this type. Therefore, this request type is not based on an
AtomPub-defined [RFC5023] request.

A RetrieveCount Request MUST use the HTTP GET method and the URI specified by the client in the
HTTP request line MUST be a valid data service URI that identifies a collection of EntityType
instances, as specified in URI Format: Resource Addressing Rules (section 2.2.3).

If the RetrieveValue Request was successful, the response MUST have a 2xx status code, as

specified in [RFC2616], and the response body must be formatted as specified in EDMSimpleType
Property (section 2.2.6.4.1).

If the RetrieveValue Request is not successful (for example, an error occurred while processing the
request), the response MUST be formatted according to Error Response (section 2.2.8.1).

The RetrieveCount Request is supported only in the OData 2.0 and OData 3.0 protocols.

The syntax of a RetrieveCount Request is defined as follows:

retrieveCount-Req = retrieveCount-ReqLine

 retrieveCount-ReqHeaders

 CRLF

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372

211 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

retrieveCount-ReqLine = "GET"

 SP entitySetUri [/ entityTypeInstanceUri]

 "/$count"

 retrieveCount-QueryOps

 SP HTTP-Version

 CRLF

retrieveCount-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 *(HTTP-Header-Types)

entitySetUri = ; see section 2.2.7.1.1

entityTypeInstanceUri = ; see section 2.2.7.4.1

retrieveCount-QueryOps = ["?" customQueryOption

 /sysQueryOption *("&"

 customQueryOption

 / sysQueryOption)]

 ; see section 2.2.3.1

The syntax of a response to a successful RetrieveCount Request is defined as follows:

retrieveCount-Resp = Status-Line ; see [RFC2616] section 6.1.1

 retrieveCount-RespHeaders

 CRLF

 retrieveCount-RespBody

retrieveCount-RespHeaders= DataServiceVersion ; see section 2.2.5.3

 [Content-Type] ; see section 2.2.5.2

 *(HTTP-Header-Types)

retrieveCount-RespBody = <Count value formatted as per section 2.2.6.4.1>

2.2.7.2.11 Retrieve Request Containing a Customizable Feed Mapping

Applies to the OData 2.0 and OData 3.0 protocols

In OData 2.0 and OData 3.0, it is possible to map the value of a property on an EntityType to

another location in the feed. A retrieve request made to an EntityType or to a collection of
EntityType instances with a property mapping has the same format as a request made to an
EntityType or collection of EntityType instances without a property mapping. The response to a
retrieve request made to an EntityType or to a collection of EntityType instances with a property
mapping MUST be formatted according to the rules defined in Entity Type (as an Atom Entry
Element) with a Customizable Feed Property Mapping (section 2.2.6.2.2.1).

The format of the URI in a Retrieve request does not change when the request is being made to an

EntityType instance or collection of EntityType instances with a customizable feed property
mapping. System query options and service operations that accept a property name as a parameter
MUST treat the value of the parameter as identifying the name of a property identified on an
EntityType and not the mapped location of that property.

%5bMC-CSDL%5d.pdf

212 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.7.2.12 RetrieveMediaResource Request

A RetrieveMediaResource Request is used by a client to retrieve an AtomPub Media Resource, as
specified in [RFC5023] section 9.6, that maps to a BLOB associated with an EntityType instance, as

described in Abstract Data Model (section 2.2.1). A request of this type is defined by AtomPub
[RFC5023] section 9.6. This section adds constraints to those defined in AtomPub for this request
type.

If the RetrieveMediaResource Request was successful, the response payload MUST contain the
requested representation of the media resource identified in the request URI. If the
RetrieveMediaResource Request is not successful (for example, an error occurred while processing
the request), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of a RetrieveMediaResource Request is defined as follows:

retrieveMR-Req = retrieveMR-ReqLine

 retrieveEntity-ReqHeaders

 CRLF

retrieveMR-ReqLine = "GET"

 SP entityTypeInstanceMRUri

 retrieveEntity-QueryOps

 SP HTTP-Version

 CRLF

retrieveEntity-ReqHeaders = ; section 2.2.7.2.2

retrieveEntity-QueryOps = ; section 2.2.7.2.2

entityTypeInstanceMRUri = ; see section 2.2.7.3.5

The syntax of a response to a successful RetrieveMediaResource Request is defined as follows:

retrieveMR-Resp = Status-Line

 ; see [RFC2616] section 6.1.1

 retrieveEntity-RespHeaders

 CRLF

 retrieveMR-RespBody

retrieveEntity-RespHeaders = ; section 2.2.7.2.2

retrieveMR-RespBody = <Any valid HTTP response body>

2.2.7.3 Update Request Types

2.2.7.3.1 UpdateEntity Request

An UpdateEntity Request is used by a client to update an existing AtomPub Entry Resource, as

specified in [RFC5023], that maps to an EntityType instance in the abstract data model used in this

document, as described in Abstract Data Model (section 2.2.1). The base rules and semantics of this
request type are defined by AtomPub, as specified in [RFC5023] section 5.4. This section adds
constraints to those defined in AtomPub for this request type.

As in [RFC5023] section 5.4.2, requests of this type use the HTTP PUT method, and the URI
specified by the client in the HTTP request line must represent an AtomPub entry resource. Given

http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880

213 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

that an entry resource maps to an EntityType instance in an Entity Data Model (EDM), the HTTP
request line URI MUST be equal to any valid data service URI that identifies an EntityType

instance, as described in URI Format: Resource Addressing Rules (section 2.2.3). Additionally, this
specification allows UpdateEntity requests to use the MERGE method (as defined in PATCH/MERGE

(section 2.2.4.1)) or PATCH method (as defined in [RFC5789]) instead of PUT to specify that a
merge-based update should be performed.

[RFC5023] section 5.4.2 states that the request body MAY be an AtomPub entry resource (that
maps to an EntityType instance in an EDM) that is represented as an Atom entry document. This
document extends this rule to allow additional representations of an entry resource to be used. This
document defines three such representations: entity type as an Atom Entry element (section
2.2.6.2.2), entity as a JSON object ([ODataJSON4.0] section 6), and entity type as a Verbose JSON

object (section 2.2.6.3.3). A client SHOULD specify the representation used in the request body by
including a Content-Type header in the request.

When the request body is a representation of an Entry Resource (EntityType instance in EDM
terms), the client can specify if the resource/entity (in addition to being updated) should be
automatically linked to other already existing entities in the data service that are related through

associations such that the opposite association end has a cardinality of 1 or 0-or-1. Such linking

MUST only be supported if the EntityType of the to-be-edited entity defines a NavigationProperty
that identifies a single EntityType instance. For example, an existing employee entity may need to
be rebounded to an existing manager entity in a human resources management focused data
service.

To rebind the entity to an existing entity, the client MUST include the required binding information in
the representation of the associated NavigationProperty in the request payload.

To bind the entity to an existing entity using the Atom format, the NavigationProperty MUST be

represented as specified in Navigation Property (section 2.2.6.2.4) with one exception; the href
attribute of the atom:link element must equal the URI that identifies the existing entity that is the
target of the link.

To bind the new entity to an existing entity by using the preferred OData 3.0 JSON format, see

[ODataJSON4.0] section 8.5.

To bind the new entity to an existing entity by using the Verbose JSON format, the
NavigationProperty MUST represent the entity that is the target of the link by using the Inline

Representation (section 2.2.6.3.9.1) of a NavigationProperty with the single inlined entity
represented using only the "__metadata" name/value pair (the properties of the inlined entity
SHOULD NOT be provided). If the inlined entity's properties are provided, they MUST be ignored by
the data service.

If the UpdateEntity request is successful, the response in OData 1.0 and OData 2.0 MUST have a
204 response code, as specified in [RFC2616], and have 0 bytes in the response body, unless a

Prefer header (section 2.2.5.9) has been specified to request content. When an OData 1.0 or OData
2.0 request contains a Prefer header value that requests content or when OData 3.0 is used, the
response MAY have a 200 response code, as specified in [RFC2616], and a response body that
MUST be formatted the same as the response body to a RetrieveEntity request (section 2.2.7.2.2).

If the UpdateEntity request is not successful (for example, if an error occurs during the request
processing), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of an UpdateEntity request is defined as follows:

updateEntity-Req = updateEntity-ReqLine

 updateEntity-ReqHeaders

http://go.microsoft.com/fwlink/?LinkId=233592
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkID=301473
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

214 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 CRLF

 updateEntity-ReqBody

updateEntity-ReqLine = ("PUT" / "MERGE"/ "PATCH")

 SP entityTypeInstanceUri updateEntity-QueryOps

 SP HTTP-Version CRLF

updateEntity-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-Match] ; see section 2.2.5.5

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 *(HTTP-Header-Types)

entityTypeInstanceUri = ; see section 2.2.7.4.1

updateEntity-QueryOps = ["?" (customQueryOption / filterQueryOp) *("&" customQueryOption)]

 ; see section 2.2.3.1

updateEntity-ReqBody = <Entity in JSON format as per [ODataJSON4.0] section 6>

 / <entityTypeInVJson ; see section 2.2.6.3.3>

 / <Entity Type in Atom format as per section 2.2.6.2.2>

 / <Entity Type with Property Mapping in Atom format as per section

 2.2.6.2.2.1>

The syntax of a response to a successful UpdateEntity request is defined as follows:

updateEntity-Resp = Status-Line ; see [RFC2616] section 6.1.1

 updateEntity-RespHeaders

 CRLF

 [updateEntity-RespBody]

updateEntity-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Preference-Applied] ; see section 2.2.5.10

 *(HTTP-Header-Types)

updateEntity-RespBody = <Entity (possibly with expanded navigation properties) formatted

 by using JSON as per [ODataJSON4.0] sections 6 and 8.3>

 / <Entity Type instance (possibly with

 related instances) formatted by using

 Atom as per sections 2.2.6.2.2 and 2.2.6.2.6.1>

 / (begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 entityTypeInVJson

 end-object)

 ; see section 2.2.6.3.3 &

 ; 2.2.6.3.9.1

2.2.7.3.1.1 Example

See Appendix A: Sample Entity Data Model and CSDL Document (section 6) for the sample model
and data used in this section.

The example below updates an existing Order entity and rebinds it to Customer with EntityKey value

"ALFKI".

%5bMC-CSDL%5d.pdf

215 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HTTP Request:

PUT /service.svc/Orders(1) HTTP/1.1

Host: host

Content-Type: application/json;odata=verbose

Accept: application/json;odata=verbose

Content-Length: nnn

{

 "__metadata":{ "uri": "Orders(1)" },

 "OrderID": 1,

 "ShippedDate": "\/Date(872467200000)\/",

 "Category" : { __metadata: {uri:"/Customers('ALFKI')" } }

}

HTTP Response:

HTTP/1.1 204 No Content

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Length: nnn

DataServiceVersion: 1.0

ETag: W/"X'000000000000FA01'"

2.2.7.3.2 UpdateComplexType Request

The purpose of the UpdateComplexType request is to enable the value of a ComplexType instance to

be updated. AtomPub, as specified in [RFC5023], does not define operations on subcomponents of
an entry resource. As such, this request type is not based on an AtomPub-defined [RFC5023]
request.

An UpdateComplexType request MUST use the HTTP PUT, PATCH, or MERGE method, as specified in
PATCH/MERGE (section 2.2.4.1). Additionally, the URI specified by the client in the HTTP request

line MUST be a valid data service URI, that identifies a ComplexType instance, as specified in URI
Format: Resource Addressing Rule (section 2.2.3) .

The payload of the request MAY be formatted using the XML, JSON, or Verbose JSON format,
according to the rules defined in Complex Type (section 2.2.6.5.1), Complex Value ([ODataJSON4.0]
section 7.2), and Complex Type (section 2.2.6.3.4), respectively. A server accepting a request of
this type using the PUT method MUST replace the value of the ComplexType addressed via the
request URI with the value provided in the payload. A server accepting a request of this type using
the MERGE or PATCH method MUST merge the property values of the ComplexType addressed via

the request URI with the property values that are provided in the payload, as specified in
PATCH/MERGE (section 2.2.4.1).

If the UpdateComplexType request is successful, the response in OData 1.0 and OData 2.0 MUST
have a 204 response code, as specified in [RFC2616], and have 0 bytes in the response body,
unless a Prefer header (section 2.2.5.9) has been specified to request content. When an OData 1.0
or OData 2.0 request contains a Prefer header value that requests content or when OData 3.0 is

used, the response MAY have a 200 response code, as specified in [RFC2616], and a response body

that MUST be formatted the same as a response body to an RetrieveComplexType request (section
2.2.7.2.3).

If the UpdateComplexType request is not successful (for example, if an error occurs during request
processing), the response MUST be formatted according to Error Response (section 2.2.8.1).

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkId=90372

216 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The syntax of an UpdateComplexType request is defined as follows:

updateCT-Req = updateCT-ReqLine

 updateCT-ReqHeaders

 CRLF

 updateCT-ReqBody

updateCT-ReqLine = "PUT" / "MERGE" / "PATCH"

 SP entityTypeInstanceCTUri updateCT-QueryOps

 SP HTTP-Version

 CRLF

updateCT-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-Match] ; see section 2.2.5.5

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 *(HTTP-Header-Types)

updateCT-ReqBody = <Complex value formatted in JSON as per [ODataJSON4.0]

 section 7.2>

 / <ComplexType value formatted in XML as

 per section 2.2.6.5.1>

 / (begin-object entityCTInVJson end-object)

 ; see section 2.2.6.3.4

entityTypeInstanceCTUri = <Any Resource Path identifying a Complex Type instance>

 ; see section 2.2.3 and section 2.2.3.5 -- URI3

updateCT-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

The syntax of a response to a successful UpdateComplexType request is defined as follows:

updateCT-Resp = Status-Line ; see [RFC2616] section 6.1.1

 updateCT-RespHeaders

 CRLF

 [updateCT-RespBody]

updateCT-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Preference-Applied] ; see section 2.2.5.10

 *(HTTP-Header-Types)

updateCT-RespBody = <Complex value formatted by using JSON as per [ODataJSON4.0]

 section 7.2>

 /<ComplexType property value formatted by using XML as per

 section 2.2.6.5.1>

 /(begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 (entityCTInVJson / entityCTInVJson2)

 end-object)

 ; see section 2.2.6.3.4

217 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.7.3.3 UpdatePrimitiveProperty Request

The purpose of the UpdatePrimitiveProperty request is to enable the value of an EDMSimpleType
property on an EntityType instance to be updated. AtomPub, as specified in [RFC5023], does not

define operations on subcomponents of an Entry Resource. As such, this request type is not based
on an AtomPub-defined [RFC5023] request.

An UpdatePrimitiveProperty request MUST use either the HTTP PUT, PATCH, or MERGE (as specified
in PATCH/MERGE (section 2.2.4.1)) and the URI specified by the client in the HTTP request line
MUST be a valid data service URI, as specified in URI Format: Resource Addressing Rules (section
2.2.3), which identifies a property (of type EDMSimpleType) on an EntityType instance (or on one
of the ComplexType properties of that EntityType instance).

The payload of the request MAY be formatted by using XML, JSON, or Verbose JSON, according to
the rules defined in EDMSimpleType Property (section 2.2.6.5.3), Primitive Value ([MS-ODATAJSON]
section 2.1.17), and EDMSimpleType Property (section 2.2.6.3.8), respectively. A server receiving a
request of this type MUST replace the value of the property addressed via the request URI with the
property value provided in the payload. The server MUST perform the same behavior whether the

request uses the MERGE, PATCH, or PUT method.

If the property addressed is one of the properties which define the EntityKey for the addressed
entity, then the request MUST be considered invalid.

If the UpdatePrimitiveProperty request is successful, the response in OData 1.0 and OData 2.0 MUST
have a 204 response code, as specified in [RFC2616], and have 0 bytes in the response body,
unless a Prefer header (section 2.2.5.9) has been specified to request content. When an OData 1.0
or OData 2.0 request contains a Prefer header value that requests content or when OData 3.0 is
used, the response MAY have a 200 response code, as specified in [RFC2616], and a response body

that includes the updated entity that MUST be formatted the same as a response body to a
RetrievePrimitiveProperty request (section 2.2.7.2.4).

If the UpdatePrimitiveProperty request is not successful (for example, if an error occurs during
request processing), the response MUST be formatted according to Error Response (section

2.2.8.1).

The syntax of an UpdatePrimitiveProperty request is defined as follows:

updatePP-Req = updatePP-ReqLine

 updatePP-ReqHeaders

 CRLF

 updatePP-ReqBody

updatePP-ReqLine = "PUT" / "MERGE" / "PATCH"

 SP entityTypeInstancePropertyUri updatePP-QueryOps

 SP HTTP-Version

 CRLF

updatePP-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-Match] ; see section 2.2.5.5

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 *(HTTP-Header-Types)

updatePP-ReqBody = <Primitive value formatted in JSON as per {MS-ODATAJSON]

 section 2.1.17>

 / <Property value formatted in XML as per section 2.2.6.5.3>

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

218 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 / (begin-object entityPropertyInVJson end-object)

 ; see section 2.2.6.3.8

entityTypeInstancePropertyUri = ; see section 2.2.7.4.3

updatePP-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

The syntax of a response to a successful UpdatePrimitiveProperty request is defined as follows:

updatePP-Resp = Status-Line ; see [RFC2616] section 6.1.1

 updatePP-RespHeaders

 CRLF

 [updatePP-RespBody]

updatePP-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Preference-Applied] ; see section 2.2.5.10

 *(HTTP-Header-Types)

updatePP-RespBody = <Primitive value formatted in JSON as per {MS-ODATAJSON]

 section 2.1.17>

 / <Property value formatted in XML as per section

 2.2.6.5.3>

 / (begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 begin-object

 (entityPropertyInVJson / entityPropertyInVJson2)

 end-object

 end-object)

 ; see section 2.2.6.3.8

2.2.7.3.4 UpdateCollectionProperty Request

The purpose of the UpdateCollectionProperty request is to enable the value of a collection instance
to be updated. AtomPub, as specified in [RFC5023], does not define operations on subcomponents
of an Entry Resource. As such, this request type is not based on an AtomPub-defined [RFC5023]
request.

UpdateCollectionProperty request MUST use the HTTP PUT method. Additionally, the URI specified

by the client in the HTTP request line MUST be a valid data service URI that identifies a collection
property instance, as specified in URI Format: Resource Addressing Rule (section 2.2.3). HTTP
PATCH and MERGE methods are not valid with the UpdateCollectionProperty request.

The payload of the request MAY be formatted by using XML, JSON, or Verbose JSON format,
according to the rules defined in Collection of Complex Type Instances (section 2.2.6.5.2) and
Collection of EDMSimpleType Values (section 2.2.6.5.4) for XML, Collection of Primitive Values
(section 7.3) and Collection of Complex Values (section 7.4) in [ODataJSON4.0] for JSON, or

Collection of Complex Type Instances (section 2.2.6.3.5) and Collection of EDMSimpleType Values

(section 2.2.6.3.7) for Verbose JSON. A server accepting a request of this type by using the PUT
method MUST replace the entire value of the collection type addressed via the request URI with the
value provided in the payload.

If the UpdateCollectionProperty request is successful, the response in OData 1.0 and OData 2.0
MUST have a 204 response code, as specified in [RFC2616], if the response contains no response

body, unless a Prefer header (section 2.2.5.9) has been specified to request content. When an

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?linkid=90372

219 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

OData 1.0 or OData 2.0 request contains a Prefer header value that requests content or when OData
3.0 is used, the response MAY have a 200 response code, as specified in [RFC2616], and a response

body that MUST be formatted the same as the response body to a RetrieveCollectionProperty
request (section 2.2.7.2.6).

If the UpdateCollectionProperty request is not successful (for example, if an error occurs during
request processing), the response MUST be formatted according to Error Response (section
2.2.8.1).

The syntax of an UpdateCollectionProperty request is defined as follows:

updateCollection-Req = updateCollection-ReqLine

 updateCollection-ReqHeaders

 CRLF

 updateCollection-ReqBody

updateCollection-ReqLine = "PUT"

 SP entityTypeInstanceCollectionUri

 SP HTTP-Version

 CRLF

updateCollection-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-Match] ; see section 2.2.5.5

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 *(HTTP-Header-Types)

updateCollection-ReqBody = <Collection of primitive values or collection of

 complex values formatted in JSON

 as per [ODataJSON4.0] sections 7.3 and 7.4>

 / <Collection of values formatted in Verbose JSON as

 per sections 2.2.6.3.5 or 2.2.6.3.7>

 / <Collection of values formatted in XML as

 per sections 2.2.6.5.6 and 2.2.6.5.7>

entityTypeInstanceCollectionUri = <Any Resource Path identifying a Collection instance>

 ; see section 2.2.3 and section 2.2.3.5 – URI8

The syntax of a response to a successful UpdateComplexType Request is defined as follows:

updateCollection-Resp = Status-Line ; see [RFC2616] section 6.1.1

 updateCollection-RespHeaders

 CRLF

 [updateCollection-RespBody]

updateCollection-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [Preference-Applied] ; see section 2.2.5.10

 *(HTTP-Header-Types)

updateCollection-RespBody = <Collection of primitive values or collection of

 complex values formatted in JSON

 as per [ODataJSON4.0] sections 7.3 and 7.4>

 / <Collection of values formatted in Verbose JSON

 as per sections 2.2.6.3.5 or 2.2.6.3.7>

 / <Collection of values formatted in XML

http://go.microsoft.com/fwlink/?linkid=90372

220 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 as per sections 2.2.6.5.6 and 2.2.6.5.7>

2.2.7.3.5 UpdateValue Request

The purpose of the UpdateValue request is to enable the value of an EDMSimpleType property on an
EntityType instance to be updated. AtomPub [RFC5023] does not define operations on
subcomponents of an Entry Resource. As such, this request type is not based on an AtomPub-
defined [RFC5023] request.

An UpdateValue request MUST use the HTTP PUT, PATCH, or MERGE method (as specified in

PATCH/MERGE (section 2.2.4.1)). Additionally, the URI specified by the client in the HTTP request
line MUST be a valid data service URI, as specified in URI Format: Resource Addressing Rules
(section 2.2.3), that identifies the raw value of a property (of type EDMSimpleType) on an
EntityType instance (or on one of the ComplexType properties of that EntityType instance).

The payload of the request MUST be formatted according to the rules defined in EDMSimpleType

Property (section 2.2.6.4.1). A server receiving a request of this type MUST replace the value of the
property addressed via the request URI with the value provided in the payload. The server MUST

perform the same behavior whether the request uses the HTTP MERGE, PATCH, or PUT method.

If the UpdateValue request is successful, the response in OData 1.0 and OData 2.0 MUST have a
204 response code, as specified in [RFC2616], and have a 0 byte response body, unless a Prefer
header (section 2.2.5.9) has been specified to request content. When an OData 1.0 or OData 2.0
request contains a Prefer header value that requests content or when OData 3.0 is used, the
response MAY have a 200 response code, as specified in [RFC2616], and a response body that
includes the updated entity that MUST be formatted the same as a response body to a RetrieveValue

request (section 2.2.7.2.5).

If the UpdateValue request is not successful (for example, if an error occurs during request
processing), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of an UpdateValue request is defined as follows:

updateValue-Req = updateValue-ReqLine

 updateValue-ReqHeaders

 CRLF

 updateValue-ReqBody

updateValue-ReqLine = "PUT" | "MERGE"| "PATCH"

 SP entityTypeInstancePropertyUri

 "/$value"

 updateValue-QueryOps

 SP HTTP-Version

 CRLF

updateValue-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-Match] ; see section 2.2.5.5

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 *(HTTP-Header-Types)

updateValue-ReqBody = <Property value formatted as per section 2.2.6.4.1>

entityTypeInstancePropertyUri = ; see section 2.2.7.4.3

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

221 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

updateValue-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

The syntax of a response to a successful UpdateValue request is defined as follows:

updateValue-Resp = Status-Line ; see [RFC2616] section 6.1.1

 updateValue-RespHeaders

 CRLF

 [updateValue-RespBody]

updateValue-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Preference-Applied] ; see section 2.2.5.10

 *(HTTP-Header-Types)

updateValue-RespBody = <Property value formatted as per section 2.2.6.4.1>

2.2.7.3.6 UpdateLink Request

The purpose of the UpdateLink request is to enable a Link to be established between two EntityType
instances. AtomPub [RFC5023] does not define a request of this type. Therefore, this request type is
not based on an AtomPub-defined [RFC5023] request.

An UpdateLink request MUST use the HTTP PUT, PATCH, or MERGE method (as specified in
PATCH/MERGE (section 2.2.4.1)). Addtionally, the URI specified by the client in the HTTP request

line MUST be a valid data service URI that identifies a single link between two EntityType
instances, as described in URI Format: Resource Addressing Rules (section 2.2.3).

For example, when using the model described in Appendix A: Sample Entity Data Model and CSDL

Document (section 6), http://host/service.svc/Orders(1)/$links/Customer is a valid

URI for updating which Customer is associated with Orders(1). However,
http://host/service.svc/Customers('ALFKI')/$links/Orders(1) is not valid for an

UpdateLink request because the navigation property on Customer identifies a collection of Orders.

In this context, the EntityType instance identified by the resource path segment immediately prior
to the "$links" segment in the request URI is referred to as the source entity. Requests of this type
MUST contain a request body (formatted as a resource reference according to [MS-ODATAJSON]
section 2.1.23, formatted according to the "linkVJson" rule in Links (section 2.2.6.3.10), or
formatted according to the XML schema for a single link in Links (section 2.2.6.5.5)) that contains a

URI that identifies the EntityType instance to be linked to from the source entity.

If the UpdateEntity request is successful, the response in OData 1.0 and OData 2.0 MUST have a
204 response code, as specified in [RFC2616], and have 0 bytes in the response body, unless a
Prefer header (section 2.2.5.9) has been specified to request content. When an OData 1.0 or OData
2.0 request contains a Prefer header value that requests content or when OData 3.0 is used, the
response MAY have a 200 response code, as specified in [RFC2616], and a response body that

MUST be formatted the same as a response body to an RetrieveLink request (section 2.2.7.2.9).

If the UpdateLink request is not successful (for example, if an error occurs during request
processing), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of an UpdateLink request is defined as follows:

updateLink-Req = updateLink-ReqLine

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=90372

222 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 updateLink-ReqHeaders

 CRLF

 updateLink-ReqBody

updateLink-ReqLine = "PUT" / "MERGE"/ "PATCH

 SP entityTypeInstanceSingleLinkUri updateLink-QueryOps

 SP HTTP-Version

 CRLF

 updateLink-ReqBody

updateLink-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [Content-Type] ; see section 2.2.5.2

 [Prefer] ; see section 2.2.5.9

 *(HTTP-Header-Types)

updateLink-ReqBody = <Resource reference formatted in JSON as per

 [MS-ODATAJSON] section 2.1.23>

 / linkVJson ; see section 2.2.6.3.10

 / <XML representation of a single link as per the XML

 Schema in section 2.2.6.5.3>

entityTypeInstanceSingleLinkUri = ; section 2.2.7.4.2

updateLink-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

 ; see section 2.2.3.1

The syntax of a response to a successful UpdateLink request is defined as follows:

updateLink-Resp = Status-Line ; see [RFC2616] section 6.1.1

 updateLink-RespHeaders

 CRLF

 [updateLink-RespBody]

updateLink-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [Preference-Applied] ; see section 2.2.5.10

 *(HTTP-Header-Types)

updateLink-RespBody = <Representation of the links or link addressed in the

 request URI formatted as per [MS-ODATAJSON] section 2.1.23>

 / <Representation of the links or link addressed in the

 Request URI formatted as per section 2.2.6.5.5 >

 / quotation-mark "d" quotation-mark

 name-seperator

 <Representation of the links or link addressed in the

 request URI formatted as per section 2.2.6.3.10>

2.2.7.3.7 UpdateMediaResource Request

An UpdateMediaResource request is used by a client to update an existing AtomPub media resource,

as specified in [RFC5023] section 9.6. The AtomPub media resource maps to BLOB, which is
described by an EntityType instance in the abstract data model used in this document, as described
in Abstract Data Model (section 2.2.1). The base rules and semantics of this request type are
defined by AtomPub, as specified in [RFC5023] section 9.6. This section adds constraints to those
defined in AtomPub for this request type.

http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880

223 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

As in [RFC5023] section 9.6, requests of this type use the HTTP PUT method, and the URI specified
by the client in the HTTP request line must represent an AtomPub media resource. Given that media

resources are described by Media Links Entries, which map to EntityType instances in an Entity
Data Model (EDM), the HTTP request line URI MUST be equal to any valid URI that identifies a media

resource associated with an existing EntityType instance. The MERGE and PATCH methods defined
in this document are not supported for requests of this type.

If the UpdateMediaResource request is successful, the response in OData 1.0 and OData 2.0 MUST
have a 204 response code, as specified in [RFC2616], and have 0 bytes in the response body,
unless a Prefer header (section 2.2.5.9) has been specified to request content. When an OData 1.0
or OData 2.0 request contains a Prefer header value that requests content or when OData 3.0 is
used, the response MAY have a 200 response code, as specified in [RFC2616], and a response body

that MUST be formatted the same as the response body to an InsertMediaResource request (section
2.2.7.1.3).

If the UpdateMediaResource request is not successful (for example, an error occurred during request
processing), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of an UpdateMediaResource request is defined as follows:

updateMR-Req = updateMREntity-ReqLine

 updateEntity-ReqHeaders

 CRLF

 updateEntity-ReqBody

updateMREntity-ReqLine = "PUT"

 SP entityTypeInstanceMRUri updateEntity-QueryOps

 SP HTTP-Version CRLF

updateEntity-ReqHeaders = [Prefer] ; see section 2.2.5.9

 ; see section 2.2.7.3.1

entityTypeInstanceMRUri = <Any Resource Path identifying the Media Resource described by an

 Entity Type instance represnting a Media Link Entry>

 ; see section 2.2.3 and section 2.2.3.5 – URI17

updateEntity-QueryOps = ; see section 2.2.7.3.1

updateMR-ReqBody = <Any valid HTTP request body> ; see [RFC5023] section 9.6

The syntax of a response to a successful UpdateMediaResource request is defined as follows:

updateMR-Resp = Status-Line ; see [RFC2616] section 6.1.1

 updateMR-RespHeaders

 CRLF

 [updateMR-RespBody]

updateMR-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 [Preference-Applied] ; see section 2.2.5.10

 *(HTTP-Header-Types)

updateMR-RespBody = <Media Entity in JSON format as per [ODataJSON4.0] section 10>

 / <Entity Type representing a Media Link Entry in Atom format as

 per section 2.2.6.2.2>

 / (begin-object

 quotation-mark "d" quotation-mark

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

224 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 name-seperator

 entityTypeInVJson

 end-object)

 ; see section 2.2.6.3.3

 ; the entityTypeInVJson representation MUST include all name

 ; value/pairs denoted in the mleMetadata rule

2.2.7.3.8 Update Request Containing a Customizable Feed Property Mapping

Applies to the OData 2.0 and OData 3.0 protocols

In OData 2.0 and OData 3.0, it is possible to map the value of a property on an EntityType to
another location in the feed. If the EntityType instance contained in an UpdateEntity,

UpdateComplexType, or UpdatePrimitiveType Request has a property mapping defined on it and the
Content-Type is AtomPub, then the request body MUST be formatted by using the EntityType
formatting rules defined in Entity Type (as an Atom Entry Element) with a Customizable Feed
Property Mapping (section 2.2.6.2.2.1).

When sending an Update Request to an EntityType instance that has a customizable feed property
mapping, the client MAY include the property value in an m:properties element as described in
Entity Type (as an Atom Entry Element) (section 2.2.6.2.2). If the property value is included in the

m:properties element (as described in section 2.2.6.2.2), the data service MUST use that value
when updating the EntityType instance.

2.2.7.4 Delete Request Types

2.2.7.4.1 DeleteEntity Request

The purpose of the DeleteEntity request is to enable an EntityType instance to be deleted from a

data service. The base rules and semantics of this request type are defined by AtomPub, as specified
in [RFC5023] section 9.4 -- Deleting Resources with DELETE. As described in Abstract Data Model
(section 2.2.1), Entity Data Model constructs are mapped directly to data model concepts used in

AtomPub. For example, EntityTypes are AtomPub Entry Resources and EntitySets are AtomPub
collections. This section adds constraints to those defined in AtomPub for this request type.

As in [RFC5023] section 9.4, DeleteEntity requests MUST use the HTTP DELETE method and the
URI specified by the client in the HTTP request line should address an AtomPub Member Resource.

Because an Entry Resource (subtype of Member Resource) maps to an EntityType instance in an
Entity Data Model, the HTTP request line URI MUST be any valid data service URI which identifies a
single EntityType instance, as specified in URI Format: Resource Addressing Rules (section 2.2.3).

A DeleteEntity request MAY<66> cause additional side effects (for example, cascading deletes) to
the entities in a data service.

If a DeleteEntity request is sent to a URI that identifies an entity that represents a Media Link Entry,

then as part of deleting the entity, the associated Media Resource SHOULD also be deleted.

A DeleteEntity request MUST have an empty (0 bytes) payload. If the DeleteEntity request was

successful, the response MUST have a 204 (No Content) status code, as specified in [RFC2616]. If
the DeleteEntity request is not successful, the response MUST be formatted according to Error
Response (section 2.2.8.1).

The syntax of a DeleteEntity request is defined as follows:

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372

225 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

deleteEntity-Req = deleteEntity-ReqLine

 deleteEntity-ReqHeaders

 CRLF

deleteEntity-ReqLine = "DELETE"

 SP entityTypeInstanceUri deleteEntity-QueryOps

 SP HTTP-Version CRLF

deleteEntity-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-Match] ; see section 2.2.5.5

 *(HTTP-Header-Types)

entityTypeInstanceUri = <Any Resource Path identifying an Entity Type instance>

 ; see section 2.2.3 and section 2.2.3.5 -- URI2 & URI6

deleteEntity-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

 ; see section 2.2.3.1

The syntax of a response to a successful DeleteEntity request is defined as follows:

deleteEntity-Resp = Status-Line ; see [RFC2616] section 6.1.1

 deleteEntity-RespHeaders

 CRLF

deleteEntity-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 *(HTTP-Header-Types)

2.2.7.4.2 DeleteLink Request

The purpose of the DeleteLink request is to enable an existing link between two EntityType instances
to be removed. AtomPub [RFC5023] does not define a request of this type. Therefore, this request

type is not based on an AtomPub-defined [RFC5023] request.

A DeleteLink request MUST use the HTTP DELETE method and the URI specified by the client in the
HTTP request line MUST be a valid data service URI that identifies a single link between two
EntityType instances, as specified in URI Format: Resource Addressing Rules (section 2.2.3). For
example, using Appendix A: Sample Entity Data Model and CSDL Document (section 6), the
following are valid URIs for requests of this type:
http://host/service.svc/Customers('ALFKI')/$links/Orders(1) and

http://host/service.svc/Orders(1)/$links/Customer.

DeleteLink request MUST contain 0 bytes in the payload. If a DeleteLink request is successful, the
response MUST have a 204 status code, as specified in [RFC2616], and an empty response body.

If the DeleteLink request is not successful (for example, an error occurred while processing the
request), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of a DeleteLink request is defined as follows:

deleteLink-Req = deleteLink-ReqLine

 deleteLink-ReqHeaders

 CRLF

deleteLink-ReqLine = "DELETE"

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372

226 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 SP entityTypeInstanceSingleLinkUri deleteLink-QueryOps

 SP HTTP-Version

 CRLF

deleteLink-ReqHeaders = [DataServiceVersion]

 ; see section 2.2.5.3

 [MaxDataServiceVersion]

 ; see section 2.2.5.7

 *(HTTP-Header-Types)

entityTypeInstanceSingleLinkUri = <Any Resource Path identifying a single link>

 ; see section 2.2.3 and section 2.2.3.5 -- URI7

deleteLink-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

 ; see section 2.2.3.1

The syntax of a response to a successful DeleteLink request is defined as follows:

deleteLink-Resp = Status-Line ; see [RFC2616] section 6.1.1

 deleteLink-RespHeaders

 CRLF

deleteLink-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 *(HTTP-Header-Types)

2.2.7.4.3 DeleteValue Request

The purpose of the DeleteValue Request is to enable an EDMSimpleType property of an EntityType
instance to be set to null. AtomPub [RFC5023] does not define operations on subcomponents of an
Entry Resource. As such this request type is not based on an AtomPub-defined [RFC5023] request.

DeleteValue request MUST use the HTTP DELETE method and the URI specified by the client in the

HTTP request line MUST be a valid data service URI, as defined in URI Format: Resource Addressing
Rules (section 2.2.3), that identifies the raw value of a nullable property (of type EDMSimpleType)

on an EntityType instance or on one of the ComplexType properties of that EntityType instance.

A DeleteValue request sent to a URI identifying a property for which null is not a valid value
SHOULD be considered a malformed request (the server should respond with the HTTP 4xx range of
status codes).

A DeleteValue request MUST contain 0 bytes in the payload. If the DeleteValue request was
successful, the response MUST have a 204 (No Content) status code, as specified in [RFC2616]. If
the DeleteValue request is not successful, the response MUST be formatted according to Error

Response (section 2.2.8.1).

The syntax of a DeleteValue request is defined as follows:

deleteValue-Req = deleteValue-ReqLine

 deleteValue-ReqHeaders

 CRLF

deleteValue-ReqLine = "DELETE"

 SP entityTypeInstancePropertyUri

 "/$value"

 deleteValue-QueryOps

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372

227 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 SP HTTP-Version

 CRLF

deleteValue-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 [If-Match] ; see section 2.2.5.5

 *(HTTP-Header-Types)

entityTypeInstancePropertyUri = <Any Resource Path identifying a EDMSimpleType

 property on an Entity Type instance>

 ; see section section 2.2.3 and section 2.2.3.5 -- URI4 &

URI5

deleteValue-QueryOps = ["?" customQueryOption *("&" customQueryOption)]

The syntax of a response to a successful DeleteValue request is defined as follows:

deleteValue-Resp = Status-Line ; see [RFC2616] section 6.1.1

 deleteValue-RespHeaders

 CRLF

deleteValue-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 *(HTTP-Header-Types)

2.2.7.5 Invoke Request Types

The purpose of the Invoke request is to enable a client to call a FunctionImport, as specified in
[MC-CSDL] 2.1.15, that is exposed by a service operation in a data service. Note that this excludes
function imports that are used to specify either actions (section 2.2.1.3) or functions (section
2.2.1.4). AtomPub [RFC5023] does not define operations of this type. As such, this request type is
not based on any AtomPub-defined [RFC5023] request.

Invoke Request MUST use the HTTP method specified by the data service's metadata document, as
described in Conceptual Schema Definition Language Document for Data Services (section

2.2.3.7.2), and the URI specified by the client in the HTTP request line MUST be a URI which
identifies a service operation, as described in Resource Path: Semantics (section 2.2.3.5).

If the FunctionImport, as specified in [MC-CSDL], that is exposed by a service operation requires
input parameters, those parameters MUST be provided, as specified in Service Operation
Parameters (section 2.2.3.6.3).

If the Invoke request is not successful (for example, an error occurred while processing the
request), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of an Invoke request is defined as follows:

invoke-Req = invoke-ReqLine

 invoke-ReqHeaders

 CRLF

invoke-ReqLine = <Any standard or custom HTTP method>

 ; The method supported for a particular

 ; service operation

 ; is defined by the httpMethod CSDL annotation

 ; defined in section 2.2.3.7.2

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=140880

228 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 SP serviceOperationUri invoke-QueryOps

 SP HTTP-Version

 CRLF

invoke-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 *(HTTP-Header-Types)

serviceOperationUri = <Any Resource Path identifying a Service Operation>

 ; see section 2.2.3 and section 2.2.3.5

invoke-QueryOps = ["?" (sysQueryOption / customQueryOption / serviceOpParam)

 *("&" (customQueryOption / serviceOpParam))]

 ; see section 2.2.3.1 & section 2.2.3.6.3

The syntax of a response to a successful Invoke request is defined as follows:

invoke-Resp = Status-Line ; see [RFC2616] section 6.1.1

 invoke-RespHeaders

 CRLF

 invoke-RespBody

invoke-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [ETag] ; see section 2.2.5.4

 *(HTTP-Header-Types)

invoke-RespBody = invoke-RespBody-collEt

 / invoke-RespBody-et

 / invoke-RespBody-collCt

 / invoke-RespBody-ct

 / invoke-RespBody-collPrim

; a Function Import which returns a collection of entities

invoke-RespBody-collEt = retrieveEntitySet-RespBody ; see section 2.2.7.2.1

; a Function Import which returns an entity

invoke-RespBody-et = retrieveEntity-RespBody ; see section 2.2.7.2.2

; a Function Import which returns a collection of complex types

invoke-RespBody-collCt = <Collection of complex values formatted by using JSON

 as per [ODataJSON4.0] section 7.4>

 /<Collection of complex type instances formatted by using XML

 as per section 2.2.6.5.2>

 /(begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 entityCollCTInVJson

 end-object)

 ; see section 2.2.6.3.5

; a Function Import which returns a single Complex Type

invoke-RespBody-ct = retrieveCT-RespBody ; see section 2.2.7.2.3

; a Function Import which returns a collection of primitives

invoke-RespBody-collPrim = <Collection of primitive values formatted by using JSON

 as per [ODataJSON4.0] section 7.3>

 /<Collection of primitive type values formatted by using XML

229 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 as per section 2.2.6.5.4>

 /(begin-object

 quotation-mark "d" quotation-mark

 name-seperator

 entityCollPrimValueInVJson)

 end-object

 ; see section 2.2.6.3.7

quotation-mark = ; see [RFC4627] section 2.5

; a Function Import which returns a single primitive type value

invoke-RespBody-prim = retrievePP-RespBody ; see section 2.2.7.2.4

2.2.7.5.1 Invoke Action Request

Applies to the OData 3.0 protocol

The purpose of the Invoke Action request is to enable a client to call a FunctionImport, as
specified in [MC-CSDL] section 2.1.15, that is exposed as an action (section 2.2.1.3) in a data

service.

An Invoke Action request MUST use an HTTP POST. Additionally, the URI specified by the client in
the HTTP request line MUST be a URI that identifies an action, as described in Resource Path:
Semantics (section 2.2.3.5).

If the FunctionImport, as specified in [MC-CSDL], that is exposed as an action requires input
parameters other than the binding parameter, those parameters MUST be provided in the body of

the request by using the application/json or application/json;odata=verbose Content-Type, as
specified in Action Parameters (section 2.2.3.6.5).

If the Invoke Action request is not successful (for example, an error occurred while processing the
request), the response MUST be formatted according to Error Response (section 2.2.8.1).

In particular, if the Invoke Action request includes an If-Match (section 2.2.5.5) header that
contains an ETag for the resource against which the request is bound, servers MUST check that
version of the ETag against the latest server known value. If the server discovers the client’s version

is out of date, the server MUST fail the request with a 412 Precondition Failed response (section
3.2.8).

The OData protocol provides a way to pass action parameters in JSON and Verbose JSON formats
only.

The syntax of an Invoke Action request is defined as follows:

invoke-Req = invokeAction-ReqLine

 invokeAction-ReqHeaders

 CRLF

 invokeAction-Parameters

invokeAction-ReqLine = "POST"

 SP actionUri

 SP HTTP-Version

 CRLF

invokeAction-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

%5bMC-CSDL%5d.pdf

230 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [If-Match] ; see section 2.2.5.5

 ["Content-Type" WSP "=" WSP "application/json;odata=verbose"

CRLF]

 *(HTTP-Header-Types)

actionUri = <Any Resource Path identifying an Action>

 ; see section 2.2.3 and section 2.2.3.5

invokeAction-Parameters = <Action parameters in JSON as per [ODataJSON4.0] section 17>

 / begin-object

 [actionParameterNVP

 *(value-seperator actionParameterNVP)]

 end-object

actionParameterNVP = quotation-mark actionParameterName quotation-mark

 name-seperator

 actionParameterValue

actionParameterName = *pchar

 ; the name of a parameter to the Action

 ; as defined by the corresponding FunctionImport.

actionParameterValue = "null" | typeInVJson

typeInVJson = <Any type (or collection) serialized in Verbose JSON>

 ; formatted as per the rules described in section 2.2.6.3

The syntax of a response to a successful Invoke Action request is defined as follows:

invokeAction-Resp = Status-Line ; see [RFC2616] section 6.1.1

 invoke-RespHeaders ; section 2.2.7.5

 CRLF

 [invoke-RespBody] ; missing if the Action has no ReturnType

2.2.7.5.2 Invoke Function Request

Applies to the OData 3.0 protocol

The purpose of the Invoke Function request is to enable a client to call a FunctionImport, as
specified in [MC-CSDL] 2.1.15, that is exposed as a function (section 2.2.1.4) in a data service.

An Invoke Function request MUST use the HTTP GET method. Additionally, the URI specified by the
client in the HTTP request line MUST be a URI that identifies one or more functions, as described in
Resource Path: Semantics (section 2.2.3.5).

If the FunctionImport element(s), as specified in [MC-CSDL], that is exposed by one or more
functions requires input parameters other than the binding parameter, those parameters MUST be
provided, as specified in Function Parameters (section 2.2.3.6.4).

If the Invoke Function request is not successful (for example, an error occurred during the request

processing), the response MUST be formatted according to Error Response (section 2.2.8.1).

The syntax of an Invoke Function request is defined as follows:

invokeFunction-Req = invoke-ReqLine

 invoke-ReqHeaders

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

231 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 CRLF

invoke-ReqLine = "GET"

 SP functionUri invoke-QueryOps

 SP HTTP-Version

 CRLF

invoke-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 *(HTTP-Header-Types)

functionUri = <Any Resource Path identifying one or more Functions>

 ; see section 2.2.3 and section 2.2.3.5

invoke-QueryOps = ["?" (sysQueryOption / customQueryOption / serviceOpParam)

 *("&" (customQueryOption / serviceOpParam))]

 ; see section 2.2.3.1 & section 2.2.3.6.3

The syntax of a response to a successful Invoke request is defined as follows:

invokeFunction-Resp = invoke-Resp

 ; see section 2.2.7.5

2.2.7.6 Batch Request

The request types defined in the preceding subsections provide mechanisms for a client to query
and manipulate resources exposed by a data service whereby each request type maps to a single
HTTP request/response exchange. Such request types integrate deeply with HTTP, as specified in
[RFC2616], allowing a client to leverage the services (for example, caching) provided by the HTTP
infrastructure deployed at large.

While the request types noted above address many common data service scenarios, as described in
Protocol Examples (section 4), use cases exist where it is beneficial to enable a client of a data
service to "batch" up a group of requests and send that Batch to the data service in a single HTTP
request. This section defines a Batch request type that reduces the number of roundtrips to a data
service for applications that need to make numerous requests and a change set syntax as a way to
logically group a set of requests in a single unit within a batch.

A data service MAY<67> support requests of this type. If a data service does not implement support

for a Batch request, it must return a 4xx response code in the response to any Batch request sent to
it.

Batch request MUST use the HTTP POST method and the URI specified by the client in the HTTP
request line MUST be a valid data service URI that identifies the batch endpoint of a data service,
see URI9 in Resource Path: Semantics (section 2.2.3.5).

Query operations and change sets MAY<68> be intermixed within a Batch request and occur in

any order. A query operation MUST consist of a single Retrieve request, as defined in Retrieve
Request Types (section 2.2.7.2), or of an Invoke Request (section 2.2.7.5) that uses the HTTP GET
method. Change sets MUST consist of one or more of the following request types:

Insert Request Types (section 2.2.7.1)

Update Request Types (section 2.2.7.3)

http://go.microsoft.com/fwlink/?LinkId=90372

232 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Delete Request Types (section 2.2.7.4)

Invoke Request (section 2.2.7.5)), by using the HTTP PUT, POST, PATCH, MERGE, or DELETE

methods.

Request types within a batch MUST be performed by the server with the same semantics used when
the request type is used outside of the context of a batch.

The order of change sets and query operations within a Batch request is significant, as it states the
order in which the data service MUST process the components of a Batch. The order of requests
within a change set MUST NOT be significant such that a data service may process the requests in a
change set in any order. All operations in a change set represent a single change unit so the server
MUST successfully process and apply all the requests in the change set or else apply none of the

requests in the change set. It is up to the data service to define rollback semantics to undo any
requests within a change set that may have been applied before another request in that same
change set failed and thereby honor this all-or-nothing requirement.

A Batch request is represented by using a single HTTP POST request with a payload of the

multipart/mixed media type, as specified in [RFC2046]. The request MUST use Multipurpose Internet
Mail Extensions (MIME) version 1.0 and include a Content-Type header that conforms to the

contentTypeMime rule in the grammar shown in the following Batch request headers listing. Each
change set and/or query operation in a Batch request is represented as a distinct MIME part,
separated by the boundary defined in the Content-Type header of the request. Implementers
SHOULD follow the recommendations for boundary generation described in [RFC2046] section 5.1.

Preambles and Epilogues in the MIME payload, as defined in [RFC2046], are valid but MUST be
ignored by the server.

Note Unlike the other grammars described in Request Types (section 2.2.7), all ABNF grammars

defined in this document that add constraints to rules defined in MIME-related RFCs, [RFC2045],
and [RFC2046], do not follow the ABNF rules defined in [RFC2616] section 2.1.

contentTypeMime = "Content-Type:multipart/mixed;"

 ; see [RFC2045] section 5 & [RFC2046] section 5.1

 *SP

 "boundary="

 boundary ; see [RFC2046] section 5.1.1

Listing: Batch Request Headers

2.2.7.6.1 Change Set Syntax

Each change set MUST be represented within its MIME part in the Batch payload as a nested
multipart/mixed message. This MUST be specified by including a Content-Type header, which

conforms to the contentTypeMime rule in the Batch Request Headers listing in Batch Request
(section 2.2.7.6). This Content-Type header MUST appear in the header section of the MIME part in
the Batch Request (section 2.2.7.6) associated with the change set, MUST state that the media type
is multipart/mixed, and MUST define the boundary for the nested multipart/mixed content, as

specified in [RFC2046], of the change set. This boundary, which separates requests within a single
change set, is different from that used by the batch to separate change sets from one another and
from Query Operations.

Each MIME part that represents a request within a change set in the multipart/mixed message that
defines a single change MUST include a Content-Type MIME part header, a Content-Transfer-
Encoding MIME part header, and a Content-ID MIME part header. These MIME part headers are

http://go.microsoft.com/fwlink/?LinkId=90308
http://go.microsoft.com/fwlink/?LinkId=90308
http://go.microsoft.com/fwlink/?LinkId=90308
http://go.microsoft.com/fwlink/?LinkId=90307
http://go.microsoft.com/fwlink/?LinkId=90308
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90308

233 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

described in the grammar that is shown in the following Required Batch Request MIME Part Headers
listing.

contentTypeMime-Part = "Content-Type:application/http;" [*SP "version=1.1"]

 ; see [RFC2045] section 5 & [RFC2616] section 19.1

contentTransferEncodingMime-Part = "Content-Transfer-Encoding:binary"

 ; see [RFC2045] section 6

contentIdMime-Part = "Content-ID:" msgId

 ; see [RFC2045] section 7

Listing: Required Batch Request MIME Part Headers

As described by the "application/http" media type in the preceding grammar, the body of a MIME
part that represents a request within a change set MUST be formatted as an HTTP request just as if

it was a standalone HTTP request (not part of a Batch request) and follow the rules for Insert,
Update, Delete, or Invoke request types, as defined in Insert Request Types (section 2.2.7.1),
Update Request Types (section 2.2.7.3), Delete Request Types (section 2.2.7.4), and Invoke

Request (section 2.2.7.5). The only exception is that the Content-Length request header is not
mandatory in requests that include request payloads. For restrictions on the HTTP constructs that
can be used in batched HTTP requests, see HTTP Request Restrictions (section 2.2.7.6.3).

2.2.7.6.1.1 Referencing Requests in a Change Set

To enable referencing a new entity created via an Insert request, as described in Insert Request
Types (section 2.2.7.1), from a subsequent request within the same change set, this document
defines a request referencing mechanism.

Each MIME part that represents a request in a change set MUST include a Content-ID MIME header
as an HTTP header of the MIME part request. If a MIME part defines an InsertEntity request or
invokes an action that returns an entity, then the entity, as defined by the InsertEntity request or

action invocation, MAY be referenced by subsequent requests in the change set by using the
"$<Content-ID value of previous request>" token as the root of the resource path that is used in a

subsequent request within the change set. When used in this way, the token acts as an alias for the
resource path that identifies the new entity. Requests in different change sets cannot reference one
another, even if they are in the same batch.

2.2.7.6.2 Query Operation Syntax

Each query operation in a Batch Request is represented as a MIME part, separated from other MIME
parts using the boundary defined in the Content-Type header of the Batch request.

A MIME part representing a query operation in a Batch request MUST include Content-Type and
Content-Transfer-Encoding MIME headers, as described in the grammar in the Required Batch
Request MIME Part Headers listing in Change Set Syntax (section 2.2.7.6.1).

As described by the "application/http" media type, specified in [RFC2616], in the grammar

referenced, the body of a MIME part representing a query operation MUST be formatted as an HTTP
request just as if it was a standalone HTTP request (not part of a Batch request) and follow the rules

defined in Retrieve Request Types (section 2.2.7.2). For restrictions on the HTTP constructs that can
be used in batched HTTP requests, see HTTP Request Restrictions (section 2.2.7.6.3).

2.2.7.6.3 HTTP Request Restrictions

Each MIME part body which represents a single request SHOULD NOT:

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372

234 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Include authentication or authorization related HTTP headers because it is unlikely the

infrastructure used for authentication will parse and utilize such headers.

Include Expect, From, Max-Forwards, Range, or TE headers because their contents will be

ignored.

Data services MAY choose to disallow additional HTTP constructs in HTTP requests serialized within
MIME part bodies. For example, a data service MAY choose to disallow chunked encoding to be used
by such HTTP requests.

2.2.7.6.4 Batch Request Syntax

The syntax of a Batch request is defined as follows.

batch-Req = batch-ReqLine

 batch-ReqHeaders

 CRLF

 batch-ReqBody

batch-ReqLine = "POST"

 SP batchUri

 SP HTTP-Version

 CRLF

batch-ReqHeaders = [DataServiceVersion] ; see section 2.2.5.3

 [MaxDataServiceVersion] ; see section 2.2.5.7

 contentTypeMime CRLF ; see section 2.2.7.6

 *(HTTP-Header-Types)

batchUri = ; see URI9 in section 2.2.3.5

batch-ReqBody = [preamble CRLF]

 dash-boundary transport-padding CRLF

 body-part *encapsulation

 close-delimiter transport-padding

 [CRLF epilogue]

body-part = batchQueryOperation-ReqBodyPart

 / batchChangeSet-ReqMultiPart

; this rule redefines and adds constraints to the 'body-part' grammar rule in [RFC2046]

batchQueryOperation-ReqBodyPart = mimePart-ReqHeaders

 <Any Retrieve request as described in section

 2.2.7.2>

mimePart-ReqHeaders = contentTypeMime-Part ; see section 2.2.7.6.1

 CRLF

 contentTypeEncodingMime-Part ; see section 2.2.7.6.1

 CRLF

batchChangeSet-ReqMultiPart = contentTypeMime CRLF ; see section 2.2.7.6

 batchChangeSet-ReqBody

batchChangeSet-ReqBody = [preamble CRLF]

 dash-boundary transport-padding CRLF

 batchChangeSet-ReqBodyPart

 *batchChangeSet-ReqEncapsulation

 close-delimiter transport-padding

 [CRLF epilogue]

235 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

batchChangeSet-ReqBodyPart= mimePart-ReqHeaders

 contentIdMime-Part ; see section 2.2.7.6.1

 [Prefer] ; see section 2.2.5.9

 <Any request type valid within a Change Set as defined

 in section 2.2.7.6>

batchChangeSet-ReqEncapsulation = delimiter transport-padding

 CRLF batchChangeSet-ReqBodyPart

preamble = ; see [RFC2046] section 5.1.1

dash-boundary = ; see [RFC2046] section 5.1.1

transport-padding = ; see [RFC2046] section 5.1.1

encapsulation = ; see [RFC2046] section 5.1.1

close-delimiter = ; see [RFC2046] section 5.1.1

transport-padding = ; see [RFC2046] section 5.1.1

epilogue = ; see [RFC2046] section 5.1.1

id = ; see [RFC2045] section 7

2.2.7.6.5 Example Batch Request

This section shows an example Batch request that contains the following operations in the order
described:

A query operation

A change set that contains the following requests:

InsertEntity Request (with Content-ID = 1)

Insert Entity (references request with Content-ID = 1)

UpdateEntity Request

A second query operation

Legend:

Request bodies are excluded in favor of English descriptions inside "<>" brackets to simplify the

example

POST /service.svc/$batch HTTP/1.1

Host: host

Content-Type: multipart/mixed; boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: application/http

Content-Transfer-Encoding:binary

GET /service.svc/Customers('ALFKI')

Host: host

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: multipart/mixed; boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd621

236 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Content-Length: ###

--changeset(77162fcd-b8da-41ac-a9f8-9357efbbd621)

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

POST /service.svc/Customers HTTP/1.1

Host: host

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of a new Customer>

--changeset(77162fcd-b8da-41ac-a9f8-9357efbbd621)

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

POST $1/Orders HTTP/1.1

Host: host

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of a new Order>

--changeset(77162fcd-b8da-41ac-a9f8-9357efbbd621)

Content-Type: application/http

Content-Transfer-Encoding:binary

Content-ID: 3

PUT /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Content-Type: application/json;odata=verbose

If-Match: xxxxx

Content-Length: ###

<Verbose JSON representation of Customer ALFKI>

--changeset(77162fcd-b8da-41ac-a9f8-9357efbbd621)--

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)

Content-Type: application/http

Content-Transfer-Encoding:binary

GET service.svc/AnEntitySetWhichDoesNotExist HTTP/1.1

Host: host

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)--

2.2.7.6.6 Batch Responses

If a data service receives a Batch request (section 2.2.7.6) with a valid set of HTTP request headers,
it MUST respond with a 202 Accepted HTTP response code to indicate that the request has been

237 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

accepted for processing, but that the processing has not yet been completed. The requests within
the Batch request body may subsequently fail or be malformed. However, this mechanism enables

clients of a Batch implementation to stream the results of a Batch request without having to first
wait for all requests to be processed.

Alternatively, if a data service receives a Batch request with an invalid set of headers, it MUST
return a 4xx response code. For example, a Batch request cannot use post tunneling, as described
in Tunneled Requests (section 2.2.7.7), and therefore, the presence of an X-HTTP-Method header in
a Batch request MUST result in a response containing a 4xx response code.

All responses to Batch request MUST use the multipart/mixed media type by including the Content-
Type header as defined by the contentTypeMime rule in the ABNF grammar shown in Batch
Request (section 2.2.7.6).

The server is free to re-order responses within a change set. In order for the client to correlate
responses with requests, all responses within a change set MUST include the Content-ID MIME part
header with the value of the Content-ID specified for the corresponding request. To support early
client implementations that specify Content-ID as part of the individual request rather than as a

MIME part header for that request and where use within the individual request does not conflict with
some other use by the server, servers SHOULD recognize the Content-ID in either location and write

it in the response in the same location in which it is read in the request.

Structurally, a Batch Response body MUST match one-to-one with the corresponding Batch Request
(section 2.2.7.6) body, such that the same multipart MIME message structure defined for requests is
used for responses. The difference is that each MIME part represents a response instead of request.
The exception to this rule is that when a request within a change set fails, the change set response
is not represented using the multipart/mixed media type. Instead, a single response, using the
"application/http" media type, is returned that applies to all requests in the change set and MUST be

formatted according to Error Response (section 2.2.8.1).

2.2.7.6.7 Batch Response Syntax

The syntax of a Batch response is defined as follows.

batch-Resp = Status-Line

 batch-RespHeaders

 CRLF

 batch-RespBody

batch-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 contentTypeMime CRLF ; see section 2.2.7.6

 *(HTTP-Header-Types)

batch-RespBody = [preamble CRLF]

 dash-boundary transport-padding CRLF7

 [body-part] *encapsulation

 close-delimiter transport-padding

 [CRLF epilogue]

body-part = batchQueryOperation-RespBodyPart

 / batchChangeSet-RespMultiPart

 / batchChangeSetErr-RespBodyPart

 ;used only for Change Set error responses

; this rule (body-part) redefines and adds additional constraints to the 'body-part' grammar

rule in [RFC2046]

batchQueryOperation-RespBodyPart = mimePartResponseHeaders

238 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <A response to a Retrieve request as described

 in section 2.2.7.2>

mimePart-RespHeaders = contentTypeMime-Part ; see section 2.2.7.6.1

 CRLF

 contentTypeEncodingMime-Part ; see section 2.2.7.6.1

 CRLF

 [DataServiceId] ; see section 2.2.5.11

batchChangeSet-RespMultiPart = contentTypeMime CRLF ; see section 2.2.7.6

 batchChangeSet-RespBody

batchChangeSet-RespBody = [preamble CRLF]

 dash-boundary transport-padding CRLF

 batchChangeSet-RespBodyPart

 *batchChangeSet-RespEncapsulation

 close-delimiter transport-padding

 [CRLF epilogue]

batchChangeSet-RespBodyPart = mimePart-RespHeaders

 contentIdMime-Part ; see section 2.2.7.6.1

 [Preference-Applied] ; see section 2.2.5.10

 <A (success) response to any request type

 valid within a Change Set as defined in

 section 2.2.7.6>

batchChangeSetErr-RespBodyPart = mimePartResp-Headers

 <A Change Set error response as defined in

 section 2.2.7.6.6>

batchChangeSet-RespEncapsulation = delimiter transport-padding

 CRLF batchChangeSet-RespBodyPart

preamble = ; see [RFC2046] section 5.1.1

dash-boundary = ; see [RFC2046] section 5.1.1

transport-padding = ; see [RFC2046] section 5.1.1

encapsulation = ; see [RFC2046] section 5.1.1

close-delimiter = ; see [RFC2046] section 5.1.1

transport-padding = ; see [RFC2046] section 5.1.1

epilogue = ; see [RFC2046] section 5.1.1

Status-Line = ; see [RFC2616] section 6.1

2.2.7.6.8 Example Batch Response

The examples below represent a few of the possible responses to the Batch Request shown in
Example Batch Request (section 2.2.7.6.5).

Example 1: The following example response assumes all requests except the Retrieve Request in

the final query operation succeeded. The Retrieve operation is assumed to have failed because
the requested resource did not exist.

The formatting used is the same as that defined in Example Batch Request (section

2.2.7.6.5). Response bodies are excluded in favor of English descriptions inside "<>" brackets
to simplify the example.

239 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HTTP/1.1 202 Accepted

DataServiceVersion: 1.0

Content-Length: ####

Content-Type: multipart/mixed; boundary=batch(36522ad7-fc75-4b56-8c71-56071383e77b)

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 200 Ok

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of the Customer entity with EntityKey ALFKI>

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)

Content-Type: multipart/mixed; boundary=changeset(77162fcd-b8da-41ac-a9f8-

9357efbbd621)

Content-Length: ###

--changeset(77162fcd-b8da-41ac-a9f8-9357efbbd621)

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

HTTP/1.1 201 Created

Content-Type: application/atom+xml;type=entry

Location: http://host/service.svc/Customer('POIUY')

Content-Length: ###

<AtomPub representation of a new Customer entity>

--changeset(77162fcd-b8da-41ac-a9f8-9357efbbd621)

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

HTTP/1.1 201 Created

Content-Type: application/atom+xml;type=entry

Location: http://host/service.svc/Orders(200)

Content-Length: ###

<AtomPub representation of a new Order entity>

--changeset(77162fcd-b8da-41ac-a9f8-9357efbbd621)

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 3

HTTP/1.1 204 No Content

Host: host

--changeset(77162fcd-b8da-41ac-a9f8-9357efbbd621)--

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)

Content-Type: application/http

240 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Content-Transfer-Encoding: binary

HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: ###

<Error message>

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)--

Example 2: The example response below assumes that at least one of the requests in the

change set failed due to a failed data service specific authorization check, and that the
Retrieve Request in the final query operation failed because the requested resource did not
exist. All other requests should be assumed to have succeeded.

The formatting used is the same as that defined in Example Batch Request (section
2.2.7.6.5). Response bodies are excluded in favor of English descriptions inside "<>" brackets

to simplify the example.

HTTP/1.1 202 Accepted

DataServiceVersion: 1.0

Content-Length: ####

Content-Type: multipart/mixed

 ; boundary=batch(36522ad7-fc75-4b56-8c71-56071383e77b)

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 200 Ok

Content-Type: application/atom+xml;type=entry

Content-Length: ###

<AtomPub representation of the Customer entity with EntityKey ALFKI>

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 403 Forbidden

Content-Type: application/xml

Content-Length: ###

<Error message>

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)

Content-Type: application/http

Content-Transfer-Encoding: binary

HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: ###

<Error message>

--batch(36522ad7-fc75-4b56-8c71-56071383e77b)--

241 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.7.7 Tunneled Requests

This section does not define a new request type, but rather defines an alternate way of representing
Update Request Types (section 2.2.7.3) and Delete Request Types (section 2.2.7.4) by using a POST

request and the X-HTTP-Method (section 2.2.5.8) request header. This alternative representation is
often referred to as "POST tunneling".

This Tunneled Request type is fully defined through X-HTTP-Method header usage. As such, see X-
HTTP-Method (section 2.2.5.8) for details regarding how the X-HTTP-Method header is used to
create a Tunneled Request.

2.2.8 Response Types

2.2.8.1 Error Response

This section defines the structure of a response payload if a request to a data service completed in
error. Two types of error conditions are defined: "in-stream" and "top-level".

An in-stream error occurs when a data service that is processing a request detects an error after the
status line and zero or more response headers and potentially part of the response body have been
sent to the client. For an in-stream error, the HTTP response code, headers, and payload cannot be

used to indicate that an error has occurred. This document does not prescribe an error response
generation method for in-stream errors.

In the context of this document, "top-level" errors SHOULD be used when the data service that is
processing a request detects that an error has occurred before the status line or any response
headers have been sent to the client. This document defines three formats for top-level error
messages: XML, JSON, and Verbose JSON, as specified in [RFC4627].

XML Error Response (section 2.2.8.1.1) defines the rules for a top-level error in a response body
that is formatted by using XML. Servers MUST use this format when sending a top-level error
response to a request that includes an Accept (section 2.2.5.1) request header with the values
"application/xml" or "application/atom+xml", or to a request that does not include an Accept

(section 2.2.5.1) request header. When formatting error responses by using XML, servers SHOULD
include a Content-Type response header with the value "application/xml".

For details about formatting an error by using the preferred OData3.0 JSON format, see [MS-

ODATAJSON] section 2.1.28.

Verbose JSON Error Response (section 2.2.8.1.2) defines the rules for a top-level error in a
response body that is formatted by using Verbose JSON, as specified in [RFC4627]. Servers MUST
use this format when a sending top-level error response to a request that includes an Accept
(section 2.2.5.1) request header with the value "application/json;odata=verbose". When formatting
error responses by using Verbose JSON, servers SHOULD include a Content-Type response header
with the value "application/json;odata=verbose".

The syntax of a top-level error response is defined as follows:

stdError-Resp = Status-Line ; see [RFC2616] section 6.1.1

 stdError-RespHeaders

 CRLF

 stdError-RespBody

stdError-RespHeaders = DataServiceVersion ; see section 2.2.5.3

 [Content-Type] ; see section 2.2.5.2

 *(HTTP-Header-Types)

http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=140879

242 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

stdError-RespBody = <Error response in JSON as per [MS-ODATAJSON]

 section 2.1.28>

 / <XML representation of a top-level error as defined in

 section 2.2.8.1.1>

 / stdErrorVJson-RespBody ; see section 2.2.8.1.2

Listing: Top-level Error Response ABNF Grammar

2.2.8.1.1 XML Error Response

This section defines an XML format for error messages that MUST be used in response payloads
representing top-level errors, as specified in Error Response (section 2.2.8.1), when the server uses

the default XML format. For examples of errors that are defined in JSON, see Error Response in [MS-
ODATAJSON] section 2.1.28, and for examples of errors that are defined in Verbose JSON, see
Verbose JSON Error Response (section 2.2.8.1.2).

The structure of a top-level error message formatted as XML (application/xml) is defined in the
following XSD Schema for Top-level Error Payloads Formatted by Using XML listing.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://schemas.microsoft.com/ado/2007/08/

 dataservices/metadata">

<xs:element name="error">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="code" type="xs:string" minOccurs="1"

 maxOccurs="1"/>

 <xs:element name="message" minOccurs="1" maxOccurs="1">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute ref="xml:lang" type="xs:string"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="innererror" type="xs:any"

 minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Listing: XSD Schema for Top-level Error Payloads Formatted by Using XML

code: A data-service-defined string that serves as a substatus to the HTTP response code.

message: A human-readable string that describes the error.

innererror: An optional element that contains data-service–specific debugging information to
assist a service implementer in determining the cause of an error.

http://go.microsoft.com/fwlink/?LinkId=304226
http://go.microsoft.com/fwlink/?LinkId=304226

243 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Note The innererror element should be used only in development environments. If it is
present in a response from a production data service, it should not include system internal

information in order to guard against information disclosure security concerns.

2.2.8.1.2 Verbose JSON Error Response

This section defines the structure of an error message represented in Verbose JSON, as specified in
[RFC4627], that MUST be used in response payloads representing top-level errors, as specified in
Error Response (section 2.2.8.1). For examples of errors that are represented in the preferred
OData 3.0 JSON format, see [MS-ODATAJSON] section 2.1.28. For examples of errors that are
defined in XML format, see XML Error Response (section 2.2.8.1.1).

The syntax of a top-level error using Verbose JSON (application/json;odata=verbose) is shown in

the following ABNF Grammar for Top-level Error Payloads Formatted Using Verbose JSON listing.

stdErrorVJson-RespBody = begin-object

 quotation-mark "error" quotation-mark

 name-seperator

 begin-object

 codeNVP

 value-seperator messageNVP

 [value-seperator innererrorNVP]

 end-object

 end-object

codeNVP = quotation-mark "code" quotation-mark name-seperator string

 ; A data service defined string which serves as a

 ; sub status to the HTTP response code

messageNVP = quotation-mark "message" quotation-mark name-seperator

 begin-object

 langNVP

 value-seperator valueNVP

 end-object

 ; Human readable description of the error

langNVP = quotation-mark "lang" quotation-mark name-seperator string

 ; A string as per [RFC4646]

valueNVP = quotation-mark "value" quotation-mark name-seperator string

 ; Human readable message describing the error

innererrorNVP = quotation-mark

 "innererror" quotation-mark name-seperator object

 ; Data service defined debugging information

 ; This name/value pair should only be used in development environments.

 ; If present in a response from a production data service, it should not

 ; include system internal information in order to guard against information

 ; disclosure security concerns.

begin-object = ; see [RFC4627] section 2

end-object = ; see [RFC4627] section 2

object = ; see [RFC4627] section 2.2

string = ; see [RFC4627] section 2.5

Listing: ABNF Grammar for Top-level Error Payloads Formatted by Using Verbose JSON

http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=304226

244 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Protocol Details

3.1 Client Details

3.1.1 Abstract Data Model

The abstract data model used by data service clients is described in Abstract Data Model (section
2.2.1).

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

Clients MUST adhere to the request generation and response processing rules (for the client role)
defined in AtomPub [RFC5023] and HTTP [RFC2616]. This section defines the additional rules,
specific to this document, to which clients MUST adhere.

3.1.4.1 Common Rules for All Requests

Requests sent by clients MUST NOT specify any of the HTTP headers or tokens defined in HTTP
Header Fields (section 2.2.5) or [RFC2616] which are defined for use only in responses.

In order to make use of the versioning scheme defined in Versioning and Capability Negotiation
(section 1.7), a client SHOULD specify the DataServiceVersion (section 2.2.5.3) and
MaxDataServiceVersion (section 2.2.5.7) headers in all requests.

For all request types in which the response may include a response body, the client SHOULD specify
the Accept (section 2.2.5.1) header or Format System Query Option ($format) (section 2.2.3.6.1.5)
to control the content type of the response. If no Accept (section 2.2.5.1) header or $format query
string option is specified, the data service SHOULD return an application/atom+xml (section

2.2.5.1.1)-based response. If an application/atom+xml (section 2.2.5.1.1) response, as specified in
AtomPub Format (section 2.2.6.2), is not defined for the target resource, then the service SHOULD
use application/xml as the response format (see XML Format (section 2.2.6.5)).

After sending a request, the client MUST wait for another higher-layer triggered event or for the
response to the request to be received.

3.1.4.2 Request to Insert Resources

When a higher layer needs to insert entities into a data service, it MUST cause the client to send the
appropriate Insert request type, as specified in Insert Request Types (section 2.2.7.1) and as

detailed in the remainder of this section.

The higher layer MUST provide the URI, which the higher layer obtained from a prior data service
response or other means that will be specified in all requests sent by the client. As defined by the
Insert request types, Insert Request Types (section 2.2.7.1), the URI MUST identify the EntitySet or

collection of entities that the new EntityType instance is to be inserted into. In addition, the higher
layer MAY specify the preference/hint about whether to include an entity that represents the current

http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

245 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

state of the resource in the response to a successful insert request by using the Prefer (section
2.2.5.9) header.

3.1.4.2.1 Sending an InsertEntity Request

The InsertEntity Request (section 2.2.7.1.1) MUST adhere to the syntax specified in InsertEntity
Request (section 2.2.7.1.1).

The client SHOULD specify the Content-Type (section 2.2.5.2) header in the request, and the media
type specified in the header value MUST be application/atom+xml (section 2.2.5.1.1),
application/json (section 2.2.5.1.2), or application/json;odata=verbose (section 2.2.5.1.3).

If the higher layer requests to bind the new entity specified in the request body to one or more
existing entities, the client MUST indicate this by specifying values for the NavigationProperties,

which represent the association between the new and existing entity, as specified in InsertEntity
Request (section 2.2.7.1.1).

If the higher layer requests to insert the entity specified in the request body as well as additional

related entities, the client MUST indicate this by also specifying the related entities in the request
payload, as specified in InsertEntity Request (section 2.2.7.1.1).

If the new entity is to be inserted in an EntitySet whose base EntityType does not define any

subtypes, the representation of the new entity MAY specify its EntityType in the request payload.
However, if the new entity is to be inserted in an EntitySet with a base EntityType that does have
subtypes, the representation of the new entity (in the request) MUST specify its EntityType if it is
not the base EntityType. InsertEntity Request (section 2.2.7.1.1) describes the syntax rules for
specifying an entity's type information in a request.

Rules for processing the response to an InsertEntity are specified in Responses from Insert Requests
(section 3.1.5.2).

3.1.4.2.2 Sending an InsertLink Request

The InsertLink request MUST adhere to the syntax specified in InsertLink Request (section
2.2.7.1.2).

The client SHOULD specify the Content-Type (section 2.2.5.2) header in the request and the media
type specified in the header value MUST be application/atom+xml (section 2.2.5.1.1),
application/json (section 2.2.5.1.2), or application/json;odata=verbose (section 2.2.5.1.3).

Rules for processing the response to an InsertLink Request (section 2.2.7.1.2) are specified in
Common Rules for Receiving Responses from Data Service Requests (section 3.1.5.1).

3.1.4.3 Request to Retrieve Resources

When a higher layer needs to retrieve resources from a data service, it MUST cause the client to
send the appropriate Retrieve Request Type (section 2.2.7.2), as specified in the remainder of this
section.

The higher layer MUST provide the URI, which the higher layer obtained from a prior data service
response or other means that will be specified in all requests sent by the client. As defined by the
Retrieve Request Types (section 2.2.7.2), the URI MUST identify the data service resource(s) to be
retrieved. Such a URI MAY include Query Options (section 2.2.3.6) which further define the
resources to be retrieved.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

246 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.4.3.1 Common Rules for Sending Retrieve Requests

This section defines all the rules to which clients MUST adhere when sending Retrieve requests.
Therefore, no additional rules for specific Retrieve request types are defined in this document.

Retrieve requests MUST adhere to the syntax rules that are specified in Retrieve Request Types
(section 2.2.7.2).

As noted in Common Rules for all Requests (section 3.1.4.1), the client SHOULD specify the Accept
(section 2.2.5.1) header or the Format system query option ($format) (section 2.2.3.6.1.5) to
specify its preference regarding the content type used in the response.

If the higher layer causes the client to send a RetrieveEntitySet request or RetrieveEntity request,
the media type(s) specified by the client in the Accept (section 2.2.5.1) header or the Format

system query option (section 2.2.3.6.1.5) SHOULD include application/atom+xml (section
2.2.5.1.1), application/json (section 2.2.5.1.2), and/or application/json;odata=verbose (section
2.2.5.1.3). If the request type is RetrieveComplexType, RetrievePrimitiveProperty, or RetrieveLink,
the media type(s) specified in the Accept (section 2.2.5.1) header or the $format query string option

SHOULD include application/xml, application/json (section 2.2.5.1.2), and/or
application/json;odata=verbose (section 2.2.5.1.3). If the request is a RetrieveValue or

RetrieveMediaResource, the required media type(s) are data dependent and are not defined by this
document. If the request is a RetrieveServiceDocument request, the required media types SHOULD
include application/xml and application/atomsvc+xml, application/json (section 2.2.5.1.2), and/or
application/json;odata=verbose (section 2.2.5.1.3). Finally, if the request is a RetrieveCount
request, the media type specified in the Accept (section 2.2.5.1) header or the $format query string
option MUST be text/plain.

If the retrieve request URI (provided by the higher layer) identifies an entity, ComplexType,

primitive property, or property value, and the associated EntityType defines a concurrency token,
the client MAY include an If-None-Match in the request. Even if the request URI includes a $expand
query option, the concurrency token provided as the value of the If-None-Match header MUST be a
token associated with the EntityType of the entity identified by the request URI. RetrieveLink
requests MUST NOT include an If-None-Match or If-Match header.

If the retrieve request URI identifies a Media Resource, the request MAY include an If-None-Match
(section 2.2.5.6) header.

For rules for processing responses, see Retrieve Request Types (section 2.2.7.2).

3.1.4.4 Request to Update Resources

When a higher layer needs to update an existing resource in a data service, it MUST cause the client
to send the appropriate Update Request Type (section 2.2.7.3), as specified in the remainder of this
section.

The higher layer MUST provide the request URI, which it obtained from a prior data service response
or other means, as specified in Update Request Types (section 2.2.7.3). The URI MUST identify the
data service resource to be updated.

3.1.4.4.1 Common Rules for Sending Update Requests

This section defines all the rules to which clients MUST adhere when sending Update requests.
Therefore, no additional rules for specific Update request types are defined in this document.

Update requests MUST adhere to the syntax rules specified in Update Request Types (section
2.2.7.3).

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

247 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The client SHOULD specify the Content-Type (section 2.2.5.2) header in the request. If the higher
layer issues an UpdateEntity request, the media type specified by the client in the Content-Type

header MUST be application/atom+xml (section 2.2.5.1.1), application/json (section 2.2.5.1.2), or
application/json;odata=verbose (section 2.2.5.1.3). If the request type is UpdateComplexType or

UpdatePrimitiveProperty, the media type specified MUST be application/xml or
application/json;odata=verbose (section 2.2.5.1.3). Finally, if the request is an UpdateValue or
UpdateMediaResource request, a required media type is data dependent and not defined by this
document.

If the Update request URI (provided by the higher layer) identifies an entity, ComplexType instance,
primitive property, or property value, and the associated EntityType defines a concurrency token,
the client SHOULD include an If-Match (section 2.2.5.5) header in the request. The concurrency

token provided as the value of the header MUST be a token that is associated with the EntityType of
the entity identified by the request URI. UpdateLink requests MUST NOT include an If-Match (section
2.2.5.5) header.

If the update request URI identifies a Media Resource, the request MAY include an If-Match (section
2.2.5.5) header. If an If-Match header is included, the value of the header MUST be the concurrency

token associated with the Media Resource.

Use of the If-None-Match request header with Update request types is undefined by this document.

If the data service identified by the request URI supports tunneled requests, any of the Update
Request Types (section 2.2.7.3) MAY be sent as a tunneled request (section 2.2.7.7).

Rules for processing responses to Update requests are specified in Update Request Types (section
2.2.7.3).

The client MAY specify a preference/hint about whether to include an entity that represents the
current state of the resource in the response to a successful update request by using the Prefer

(section 2.2.5.9) header.

3.1.4.5 Request to Delete Resources

When the higher layer needs to delete an existing resource in a data service it MUST cause the
client to send the appropriate Delete Request Type (section 2.2.7.4), as specified in the remainder
of this section.

The higher layer MUST provide the request URI, which the higher layer obtained from a prior data

service response or other means. The URI MUST identify the data service resource to be deleted.

3.1.4.5.1 Common Rules for Sending Delete Requests

This section defines all the rules to which clients MUST adhere when sending Delete requests.
Therefore, no additional rules for specific Delete request types are defined in this document.

Delete requests MUST adhere to the syntax rules specified in Delete Request Types (section

2.2.7.4).

If the delete request URI (provided by the higher layer) identifies an EntityType instance for a type
that has a concurrency token defined, then the client SHOULD include an If-Match (section 2.2.5.5)
header in the request. The concurrency token provided as the value of the If-Match header MUST be
a token associated with the EntityType of the entity identified by the request URI. DeleteLink
requests MUST NOT include an If-Match (section 2.2.5.5).

Use of the If-None-Match request header with Delete request types is not defined in this document.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

248 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the data service identified by the request URI supports tunneled requests, then any of the Delete
Request Types (section 2.2.7.4) MAY be sent as a tunneled request (section 2.2.7.7).

Rules for processing the response to Delete Requests is specified in Common Rules for Receiving
Responses from Data Service Requests (section 3.1.5.1).

3.1.4.6 Request to Invoke a Service Operation

When the higher layer needs to invoke a Service Operation in a data service, it MUST cause the
client to send the appropriate Invoke Request (section 2.2.7.5) type.

The higher layer MUST provide the request URI, which the higher layer obtained from a prior data
service response or other means. As defined by the Invoke request types, Invoke Request (section
2.2.7.5), the URI MUST identify the service operation to be invoked.

Invoke requests MUST adhere to the syntax rules specified in Invoke Request (section 2.2.7.5).

If the Invoke request URI provided by the higher layer identifies a Service Operation that returns a

collection of EntityType instances, then system query options and additional resource path segments
may be included in the request URI, as described in Query Options (section 2.2.3.6) and Resource
Path: Semantics (section 2.2.3.5).

Request headers MAY be provided with Invoke request types. However, this document defines no

additional meaning or semantics to such request headers.

If the data service identified by the request URI supports tunneled requests, then an Invoke Request
(section 2.2.7.5) MAY be sent as a tunneled request (section 2.2.7.7).

Rules for processing the response to Service Operation requests are specified in Common Rules for
Receiving Responses from Data Service Requests (section 3.1.5.1).

3.1.4.7 Request to Send a Batch of Operations

When the higher layer needs to send a batch of operations to a data service, it MUST cause the

client to send a Batch Request (section 2.2.7.6), as specified in the remainder of this section.

The higher layer MUST provide the request URI, which the higher layer obtained from a prior data
service response or other means. The request URI MUST identify the data service's batch endpoint,
as specified in Batch Request.

Batch requests MUST adhere to the syntax rules specified in Batch Request.

Each operation sent within a Batch Request MUST follow the guidelines for the associated request

types specified in section 3.1.4.

3.1.4.8 Request to Invoke an Action

Applies to the OData 3.0 protocol

When the higher layer needs to invoke an action in a data service, it MUST cause the client to send

the appropriate Invoke Action request (section 2.2.7.5.1) type, as specified in the remainder of this
section.

The higher layer MUST provide the request URI, which the higher layer obtained from a prior data
service response or other means. As defined in Invoke Action Request (section 2.2.7.5.1), the URI
MUST identify the Action to be invoked.

%5bMC-CSDL%5d.pdf

249 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Requests to invoke an action MUST adhere to the syntax rules specified in Invoke Action Request
(section 2.2.7.5.1).

Request headers MAY be provided with Invoke Action request types. However, this document
defines no additional meaning or semantics to such request headers.

If the data service identified by the request URI supports tunneled requests and the action requires
no parameter to be passed in the POST body, then an Invoke Action Request (section 2.2.7.5.1)
MAY be sent as a tunneled request (section 2.2.7.7).

Rules for processing the response to an Invoke Action request are specified in Common Rules for
Receiving Responses from Data Service Requests (section 3.1.5.1) and Executing a Received Invoke
Action Request (section 3.2.5.9).

3.1.4.9 Request to Invoke a Function

Applies to the OData 3.0 protocol

When the higher layer needs to invoke a function in a data service, it MUST cause the client to send
the appropriate Invoke Function request (section 2.2.7.5.2) as specified in the remainder of this
section.

The higher layer MUST provide the request URI, which the higher layer obtained from a prior data

service response or other means. As defined by the Invoke Function Request (section 2.2.7.5.2), the
URI MUST identify the function to be invoked.

Requests to invoke a function MUST adhere to the syntax rules specified in Invoke Function Request
(section 2.2.7.5.2).

Request headers MAY be provided with Invoke Function request types. However, this document
defines no additional meaning or semantics to such request headers.

Rules for processing the response to Invoke function requests are specified in Common Rules for

Receiving Responses from Data Service Requests (section 3.1.5.1) and Executing a Received Invoke

Function Request (section 3.2.5.10).

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Common Rules for Receiving Responses from Data Service Requests

This section defines a common set of rules to which a client MUST adhere when receiving a response

to any data service request that is sent.

The client MUST verify that the response adheres to the syntax specified in the subsection of
Request Types (section 2.2.7) that defines the response associated with the request type.

If the HTTP status code indicates that the request completed in error, the client MUST validate and
interpret the response body (if one is present) by using the syntax rules in Error Response (section
2.2.8.1).

If the HTTP status code indicates that the request succeeded, the client MUST validate and interpret

the response body (if one is present) by using the syntax rules defined in the appropriate
subsection(s) of Common Payload Syntax (section 2.2.6).

250 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If a Content-Type (section 2.2.5.2) header is present in the response and its value is not one of the
valid values for an Accept (section 2.2.5.1) request header on the associated request type, then the

client SHOULD report an error to the higher layer.

If a DataServiceVersion (section 2.2.5.3) header is included in the response, the client MUST

validate that the version number in the header is lower than or equal to the highest version of this
document that it understands. If it is lower than or equal to the highest version of this document
that the client understands, then the client should continue processing the request. If the version
number in the header is higher than the highest version of this document that the client can
interpret, then the client MUST report an error to the higher layer.

If no DataServiceVersion (section 2.2.5.3) header is present in the response, then the client
SHOULD interpret the request by using the highest version number of this document that it

understands. For additional details on the versioning scheme defined by this document, see
Versioning and Capability Negotiation (section 1.7).

If the ETag (section 2.2.5.4) header is present in the response, the client SHOULD report the value
of the header (which represents the concurrency token associated with the resource on which the

request acted) to the higher layer such that the value may be used in a future request, in an If-
Match (section 2.2.5.5), or If-None-Match (section 2.2.5.6) request header.

3.1.5.2 Responses from Insert Requests

In addition to the common response processing rules in Common Rules: Receiving Responses from
Data Service Requests (section 3.1.5.1), the client MUST interpret the response body of a response
to an Insert request in Insert Request Types (section 2.2.7.1) as containing the most recent values
(as known to the client) for the inserted entity. Such behavior allows a data service to alter the data
(by using, for example, data service specific validation rules) it received in an Insert Request and

reflect the alterations back to the client.

As specified in [RFC5023], the client MUST use the URI returned in the Location response header as
the request URI in subsequent requests to the entity.

In OData 3.0, it is possible for the client to express the preference of receiving no response to an
insert request (see Prefer (section 2.2.5.9)). In this case, the data service alters the data it received
in an Insert request and the alterations are not reflected back to the client.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

If the TCP connection to the server is disconnected after the client has sent a request but before it
has completely received the response, and the client did not initiate the disconnection, the client
SHOULD report this event as an error to the higher layer.

3.2 Server Details

3.2.1 Abstract Data Model

The abstract data model used by data services is described in Abstract Data Model (section 2.2.1).

http://go.microsoft.com/fwlink/?LinkId=140880

251 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Common Rules for Receiving All Data Service Requests

This section outlines a set of directives that a server MUST follow when processing requests. In

addition, further directives specific to each request type are defined in the following sections.

If a request includes a DataServiceVersion (section 2.2.5.3) header, the server MUST validate that
the header value is correctly formatted according to the rules in DataServiceVersion (section
2.2.5.3) and that the version number provided in the header is less than or equal to the maximum

version of this document the data service implements. If so, then the server MUST interpret the
request as defined by the protocol version specified in the header. If the version number in the
DataServiceVersion (section 2.2.5.3) header of the request is larger than the maximum version
number the server implements or is malformed, the server MUST return a 4xx error response code.
If a request does not specify a DataServiceVersion (section 2.2.5.3) header, the server MUST
interpret the request as defined by the highest protocol version number the server understands.

If the request includes a MaxDataServiceVersion (section 2.2.5.7) header, the server MUST parse

and validate the header value to ensure it adheres to the syntax specified in MaxDataServiceVersion
(section 2.2.5.7). If the header value is malformed, the server MUST return a 4xx error response
code. If a valid version number is provided, the server MUST use the version number as specified in

Versioning and Capability Negotiation (section 1.7), which outlines this document's versioning
scheme. If no MaxDataServiceVersion (section 2.2.5.7) header is present, the server SHOULD
assume the client understands all the protocol versions that the server implements.

If the request includes an If-Match (section 2.2.5.5) or an If-None-Match (section 2.2.5.6) header
but the EntityType associated with the resource identified by the request URI, referred to as the
"target EntityType", does not define a concurrency token, then the server MUST return a 4xx error
response. The one exception to this rule is that if an If-Match header with a value of "*" is present
on the request, then a data service MAY accept the request.

If the request includes an If-Match (section 2.2.5.5) header, it MUST be parsed and processed
according to If-Match (section 2.2.5.5). If the value of the header is "*" and the target EntityType

defines a concurrency token, then the request should be processed as if the concurrency check
succeeded.

Servers MAY<69> choose to implement access control policies where certain requests are rejected
based on the requesting identity, the target resource, and potentially other environmental
information.

%5bMC-CSDL%5d.pdf

252 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.5.2 Common Rules for Executing Received Insert, Update, or Delete Data

Service Requests

This section outlines a set of directives that a server MUST follow when processing requests of the
Insert, Update, or Delete requests types (whether those requests are sent standalone, tunneled, or
are included in Batch Requests). In addition, further directives specific to each request type are
defined in the following sections.

Servers SHOULD respond to any HTTP PUT, HTTP MERGE, HTTP PATCH, HTTP POST, or HTTP
DELETE requests sent to a URI that does not support the method with a 405 (Method Not Allowed)
response.

When executing an HTTP request that is intended to change the state of a resource, if the server
determines that executing the operation would require violating the rules defined by the abstract
data model which describes the data service, as defined in Request Types (section 2.2.7), it MUST
respond with a 4xx response code.

When executing an HTTP request that is intended to change the state of a resource, the server

SHOULD execute the requested changes in an order such that any interim changes that are

externally visible while the request is being executed maintain the consistency of the data model of
the data service. If no such ordering can be determined, the request SHOULD be rejected with a
5xx response code.

If the resource identified by the request URI defines a concurrency token, but the request does not
include an If-Match (section 2.2.5.5) request header, then the server should return a 4xx response
code.

The execution of an HTTP request that is intended to change the state of a resource MAY<70> have

additional side effects on that resource, on other resources accessible through the data service
interface, or on data or processes outside of the data service itself.

3.2.5.2.1 Common Rules for Executing Requests Containing a Customizable Feeds

Mapped Property

Applies to the OData 2.0 and OData 3.0 protocols

In OData 2.0 and OData 3.0, it is possible to map the value of a property on an EntityType to
another location in the feed.

If a property mapping that has been defined in the CSDL contains an FC_KeepInContent attribute
with value "false", the value of the property MUST NOT be included inside the m:properties
element in the response.

If all property mappings that have been defined in the CSDL on EntityTypes that are addressed by
the request contain an FC_KeepInContent attribute with value "true", the data service SHOULD

respond with an OData 1.0 response, provided that no other aspect of the response would cause the
version of the response to be higher. If any EntityType addressed by the request has a property
mapping defined on it in the CSDL with an FC_KeepInContent attribute with a value of "false", the
data service MUST respond with an OData 2.0 or an OData 3.0 response.

For OData 2.0, if an EntityType instance included in a data service response contains a mapped
property that has a value of null, the property element for that property MUST be included in the

m:properties element and the property element MUST have an attribute of m:null with a value of
"true". If an EntityType instance included in a data service response contains a mapped property
that has a value of null, the element being mapped to MAY still be present and MUST have empty
content. If the property value is included in the m:properties element (as described in section

%5bMC-CSDL%5d.pdf

253 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.6.2.2), the data service MUST use that value when updating or inserting the EntityType
instance.

The format of the URI in a request does not change when the request is being made to an
EntityType instance or collection of EntityType instances with a customizable feed property

mapping. System query options and service operations that accept a property name as a parameter
MUST be addressed by using the name of a property identified on an EntityType and not the
mapped location of that property.

3.2.5.3 Executing a Received Insert Request

The directives defined in this section apply when executing a received request of any of the Insert
request types defined in Insert Request Types (section 2.2.7.1).

The server MUST validate the HTTP request URI identified as an EntitySet, collection of entities, or a
collection of Links, as defined by the data service's data model in Abstract Data Model (section
2.2.1). If this validation fails, a 4xx error response code MUST be returned, as specified in Common
Response Codes (section 3.2.8). If the validation succeeds, the server MUST insert the new entity,

Media Resource, or Link as appropriate, based on the description in Insert Request Types (section
2.2.7.1).

If an Insert request is received with a null value for a data service resource and the type of that
resource is not nullable (as defined by the Entity Data Model associated with the data service) then
the server MUST return a 4xx response code, as specified in Common Response Codes (section
3.2.8).

If an Insert request is received with an empty value for a data service resource and the type of that
resource does not define an empty state, the server MUST return a 4xx response code, as specified
in Common Response Codes (section 3.2.8).<71>

Any inlined content (section 2.2.6.2.6.1) in a request payload MUST be treated as a "deep insert" as
specified in InsertEntity Request (section 2.2.7.1.1), inlined content (section 2.2.6.2.6.1), and
Deferred Content (section 2.2.6.3.9).

If the request URI does not match associated URIs anywhere in the request payload where URIs are
expected, then the request URI takes precedence and the payload SHOULD be treated as if the URIs
in it matched the value of the request URI.

A data service MAY alter or ignore any of the values provided in the request payload before

performing the insert operation.

3.2.5.3.1 Executing a Received InsertEntity Request

In addition to the directives specified in sections Common Rules: Receiving Responses from Data
Service Requests (section 3.1.5.1), Common Rules for Executing Received Insert, Update, or Delete
Data Service Requests (section 3.2.5.2), and Executing a Received Insert Request (section 3.2.5.3),

the directives defined in this section apply when executing an InsertEntity Request (section
2.2.7.1.1).

Any data in the request payload not required to complete the insert operation SHOULD be ignored
by a data service. If a data service ignores a particular payload construct, the client MAY<72> omit
the construct from the request payload.

If the entity represented in the request payload is an instance of an OpenEntityType, then the
property values in the request payload, in addition to those that represent the values of declared

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

254 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

properties on the OpenEntityType, MUST be treated as values of dynamic properties associated
with the OpenEntityType instance being inserted.

In OData 1.0 and OData 2.0, if the insert succeeds in full, the server MUST return a response with a
201 (Created) status code and a response body that conforms to the syntax specified in InsertEntity

Request (section 2.2.7.1.1). The response body MUST contain the values of the inserted resource
after the server has executed all its server-specific data processing rules (validation, and so on). The
server MAY alter the values of the resource received from the client before the resource is inserted
on the server.

In OData 3.0, the response MAY have a 204 status code, as specified in [RFC2616], based on the
client preference (see Prefer (section 2.2.5.9)) on the InsertEntity Request.

3.2.5.3.2 Executing a Received InsertLink Request

In addition to the directives specified in Common Rules for Receiving All Data Service Requests
(section 3.2.5.1), Common Rules for Executing Received Insert, Update, or Delete Data Service
Requests (section 3.2.5.2), and Executing a Received Insert Request (section 3.2.5.3), the

directives defined in this section apply when executing an InsertLink request (section 2.2.7.1.2).

In OData 1.0 and OData 2.0, if the insert succeeds in full, the server MUST return a 204 (No

Content) response code. In OData 3.0, the response MAY have a 201 response code, as specified in
[RFC2616], if the UpdateLink response body includes the updated link. Then, the response will have
a response body that is the same as the response body to a RetrieveLink request (section
2.2.7.2.9).

3.2.5.3.3 Executing a Received InsertMediaResource Request

In addition to the directives specified in sections 3.2.5.2 and 3.2.5.3, the directives defined in this

section apply when executing an InsertMediaResource Request (section 2.2.7.1.3).

In addition to inserting the provided Media Resource, the data service MUST also create an
EntityType instance which represents the Media Link Entry for the newly inserted Media Resource.

In OData 1.0 and OData 2.0, if the insert succeeds in full, the server MUST return a response with a
201 (Created) status code and a request body that conforms to the syntax specified in InsertEntity
Request (section 2.2.7.1.1). The response body MUST contain a representation of the entity created
as the Media Link Entry that holds the metadata about the created Media Resource. Processing of

the SLUG header [RFC5023] section 9.7 is data service-specific and is undefined by this
specification.

In OData 3.0, the response MAY have a 204 response code, as specified in [RFC2616], based on the
client preference (see Prefer (section 2.2.5.9)) on the InsertMediaResource Request.

3.2.5.4 Executing a Received Retrieve Request

The directives defined in this section apply when executing a received request of any of the Retrieve

request types defined in Retrieve Request Types (section 2.2.7.2).

If the request includes an If-None-Match (section 2.2.5.6), the header MUST be parsed and
processed, as described in If-None-Match (section 2.2.5.6). If the value of the header is "*" and the
target EntityType defines a concurrency token, then a 304 (Not Modified) response MUST be
returned. When retrieving a Media Resource, the target EntityType in the prior sentence is the
EntityType of the entity, which is the Media Link Entry for the Media Resource being retrieved.

http://go.microsoft.com/fwlink/?linkid=90372
http://go.microsoft.com/fwlink/?linkid=90372
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?linkid=90372
%5bMC-CSDL%5d.pdf

255 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the request is a RetrievePrimitiveProperty (section 2.2.7.2.4), RetrieveComplexType (section
2.2.7.2.3), or RetrieveValue (section 2.2.7.2.5) request and the request URI identifies a dynamic

property that does not currently exist (on the associated OpenEntityType), then the server MUST
respond as if the property existed and its value is null.

If the request includes an InlineCount system query option (section 2.2.3.6.1.10), the response
SHOULD include a DataServiceVersion (section 2.2.5.3) response header that indicates that the
response is using either the OData 2.0 or OData 3.0 protocol.

In addition to validating the request headers, the server MUST validate that the HTTP request URI
and payload adheres to the syntax for Retrieve Request Types (section 2.2.7.2). The server should
validate the request based on its knowledge of the Entity Data Model associated with the service.
For example, the server should validate each request URI path segment against the EntityTypes,

EntitySets, and so on, in the associated data model to ensure that each identifies a valid construct
defined in the data service's Abstract Data Model (section 2.2.1) and that the request URI as a
whole identifies a valid resource.

If this validation fails, the server MUST respond with a valid HTTP [RFC2616] error status code, as

specified in Common Response Codes (section 3.2.8), and an error message that is formatted
according to Error Response (section 2.2.8.1).

If the validation succeeds, the server MUST obtain the requested resource(s) and return a response
(with a 2xx response code) following the rules for the retrieve request type, as specified in Retrieve
Request Types (section 2.2.7.2).

3.2.5.4.1 Executing a Received RetrieveEntitySet Request

In addition to the directives specified in sections Common Rules: Receiving Responses from Data
Service Requests (section 3.1.5.1) and Executing a Received Retrieve Request (section 3.2.5.4), the

directives defined in this section apply when receiving a RetrieveEntitySet request, see
RetrieveEntitySet Request (section 2.2.7.2.1).

As described in AtomPub [RFC5023] section 10.1, when processing a request of this type, the server

MUST determine if the response returned to the client will include all entities or a partial set of the
entities identified by the request URI. Whether or not a partial collection is returned is data service
dependent.

Partial collections of entities are supported only in OData 2.0 and OData 3.0. Therefore, if the

response from server to client includes a representation of a partial set of the entities identified by
the request URI, then the response MUST include a "next link" as defined in Entity Set (as an Atom
Feed Element) (section 2.2.6.2.1), Annotation odata.nextLink ([ODataJSON4.0] section 4.5.5), or
Entity Set (as a Verbose JSON array) (section 2.2.6.3.2), as appropriate. Such a response MUST
also include a DataServiceVersion (section 2.2.5.3) response header that indicates which version of
the OData protocol that the response is. The header indicates the OData 2.0 protocol if there are no

OData 3.0 features (as defined in section 1.7.2). Otherwise, the response header indicates that the
response is using OData 3.0. See sections 4.2.1.3 and 4.2.1.4 for examples of data service
responses that include partial sets of entities.

3.2.5.4.2 Executing a Received RetrieveValue Request

In addition to the directives specified in sections Common Rules: Receiving Responses from Data
Service Requests (section 3.1.5.1), and Executing a Received Retrieve Request (section 3.2.5.4),

the directives defined in this section apply when receiving a RetrieveValue request, see
RetrieveValue Request (section 2.2.7.2.5).

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkID=301473

256 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the value to be returned by a response to a RetrieveValue request is null, then the server MUST
respond with a 404 (Not Found) and an error message formatted according to Error Response

(section 2.2.8.1).

3.2.5.4.3 Executing a Received RetrieveCount Request

Applies to the OData 2.0 and OData 3.0 protocols

In addition to the directives specified in the sections Common Rules: Receiving Responses from Data
Service Requests (section 3.1.5.1) and Executing a Received Retrieve Request (section 3.2.5.4), the
directives defined in this section apply when receiving a RetrieveCount request; see RetrieveCount
Request (section 2.2.7.2.10).

When the InlineCount system query option is used, the resource path section of the URI MUST

identify a collection of entities. If the Resource Path section of the URI does not identify a collection
of entities or a single EntityType instance, then the data service MUST return a 4xx error response
code. As well, the data service MAY support the InlineCount system query option on a URI that
identifies a single EntityType instance.

The presence of the $top, $skip, $orderby, $format, or $expand query option in the data
service URI MUST NOT change the count value N.

The InlineCount system query option MUST be used with an HTTP GET request type. If an
InlineCount request is made by using an HTTP verb other than GET, the data service MUST return a
4xx error response code.

RetrieveCount requests are supported in the OData 2.0 and OData 3.0 protocols. A response to a
RetrieveCount request MUST also include a DataServiceVersion (section 2.2.5.3) response header to
indicate which version of the OData protocol that the response is using.

3.2.5.5 Executing a Received Update Request

The directives defined in this section apply when executing a received request of any of the Update

request types that are defined in Update Request Types (section 2.2.7.3).

The server MUST validate the HTTP request URI identified as an existing EntityType, ComplexType
instance, primitive property, Media Resource, or Link, as defined by the data service's data model
in Abstract Data Model (section 2.2.1). If this validation fails, a 4xx error response code MUST be
returned, as specified in Common Response Codes (section 3.2.8). If the validation succeeds, the

server MUST update the value of the resource identified by the request URI with the values specified
in the request's payload.

If the Update request used the HTTP PUT method, the request MUST be processed by first setting
the resource identified in the request URI to its default value(s) and then updating the default
value(s) with those provided in the request payload.

If the Update request used the HTTP PATCH or HTTP MERGE method, the request MUST be

processed using a merge-based update, as specified in PATCH/MERGE (section 2.2.4.1).

The HTTP MERGE, HTTP PATCH, and HTTP PUT methods are defined by this document to have
identical semantics for UpdateProperty (section 2.2.7.3.3), UpdateLink (section 2.2.7.3.6), and
UpdateValue (section 2.2.7.3.5) request types. Thus, when servers execute such requests, there
MUST NOT be any observable difference (from the client's perspective) between a successful
response to a request made by using the HTTP MERGE method and the same request made by using
the HTTP PUT method.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

257 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If an Update request is received that would set the value of a data service resource to null when the
type of that resource is not nullable, as defined by the Entity Data Model associated with the data

service, then the server MUST return a 4xx response code, as specified in Common Response Codes
(section 3.2.8).

If an Update request is received that would set the value of a resource to empty when the type of
that resource does not define an empty state, the server MUST return a 4xx response code, as
specified in Common Response Codes (section 3.2.8).<73>

Any inlined content in an Update request payload SHOULD be ignored, as specified in Inline
Representation (section 2.2.6.2.6.1), Deferred Content (section 2.2.6.3.9), and Inline
Representation (section 2.2.6.3.9.1).

If the request URI does not match associated URIs that are anywhere in the request payload where

URIs are expected, then the request URI takes precedence and the payload MAY be treated as if the
URIs in it match the value of the request URI.

If the payload of an Update request contains, as part of the serialization of a resource, one or more

of the key properties for the associated EntityType, those key values MUST be ignored by the server
because EntityKeys are immutable.

If the request URI identifies a property P of an OpenEntityType instance and P does not represent a

declared property or NavigationProperty of the entity, then P MUST be considered to represent a
dynamic property, and the request represents a request to update the value of P.

In OData 1.0 and OData 2.0, if the update succeeds in full, the server MUST return a 204 (No
Content) response code.

In OData 3.0, the response MAY have a 200 response code, as specified in [RFC2616], if the
response body includes the updated values as they exist on the server.

3.2.5.5.1 Executing a Received UpdateEntity Request

In addition to the directives specified in Common Rules: Receiving Responses from Data Service

Requests (section 3.1.5.1), Common Rules for Executing Received Insert, Update, or Delete Data
Service Requests (section 3.2.5.2), and Executing a Received Update Request (section 3.2.5.5), the
directives defined in this section apply when executing any received request of the UpdateEntity
request type UpdateEntity Request (section 2.2.7.3.1).

If the request payload includes (re)binding information, then the server MUST rebind the EntityType

instance being updated to the existing entities specified in the request payload. A rebind request
may be included in the request payload for each NavigationProperty defined on the associated
EntityType.

If the entity represented in the request payload is an instance of an OpenEntityType, then the
property values in the request payload, in addition to those that represent the values of declared
properties on the OpenEntityType, MUST be treated as values of dynamic properties associated

with the OpenEntityType instance being inserted.

An update MUST only be considered successful if the target EntityType instance's EDMSimpleType

and ComplexType property values are updated (with the values specified in the request payload)
and all rebind operations are completed successfully. If all requested updates are not completed, an
error response code MUST be returned.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?linkid=90372
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

258 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.5.6 Executing a Received Delete Request

The directives defined in this section apply when executing a received request of any of the Delete
request types defined in Delete Request Types (section 2.2.7.4).

The server MUST validate the HTTP request URI identifies an existing EntityType instance, an
EntityType instance property value, or a link. If this validation fails, a 4xx error response code
MUST be returned, as specified in Common Response Codes (section 3.2.8). If the validation
succeeds, the server MUST delete the resource (entityor link) identified by the request URI and
return a response following the rules for the request type as specified in Delete Request Types
(section 2.2.7.4).

This document defines the semantics of Delete request types (section 2.2.7.4) such that the

resource identified by the request URI MUST no longer be available at that URI after the request
successfully completes. This does not imply any mandatory action by the server in regard to the
underlying resource; however, it SHOULD be deleted or moved to an alternate location (such as the
recycle bin).

[RFC2616] stipulates that "A successful response SHOULD be 200 (OK) if the response includes an
entity describing the status, 202 (Accepted) if the action has not yet been enacted, or 204 (No

Content) if the action has been enacted but the response does not include an entity". A data service
MUST complete the requested action prior to responding to a Delete request, and thus, successful
delete operations MUST always return a 204 (No Content) response code.

If a Delete request type (section 2.2.7.4) includes a request payload, it MUST be ignored and the
request MUST be treated as if no entity body was provided.

3.2.5.7 Executing a Received Invoke Request

The directives defined in this section apply when executing a received Invoke request, as specified
in Invoke Request (section 2.2.7.5).

The server MUST validate that the HTTP request URI identifies a service operation exposed by the

data service. If this validation fails, a 4xx response code MUST be returned. If the validation
succeeds, the server MUST read all required input parameter values from the request URI query
string. If any of the parameter values are malformed, a 4xx response code MUST be returned. If the
request URI is valid, the server MUST invoke the FunctionImport, as specified in [MC-CSDL],

associated with the service operation by using the parameter values specified in the request URI.

If a FunctionImport requires an input parameter not present in the request URI, the server
SHOULD pass null for the parameter value to the function. If the parameter type is not nullable, as
specified in [MC-CSDL], a 4xx response code MUST be returned.

If the FunctionImport, as specified in [MC-CSDL], is invoked successfully, the return value MUST
be serialized according to the syntax rules defined in Invoke Request (section 2.2.7.5).

3.2.5.8 Executing a Received Batch Request

The directives defined in this section apply when executing a received Batch request as specified in

Batch Request (section 2.2.7.6).

The server MUST validate the HTTP request using the "multipart/mixed" content type, and the
request MUST conform to the syntax for Batch requests defined in Batch Request (section 2.2.7.6).
If this validation fails, a 4xx error response code MUST be returned, as specified in Common

Response Codes (section 3.2.8). If the validation succeeds, the server MUST parse the batch

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

259 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

request into a set of individual operations and perform each operation specified in the batch
according to the semantics outlined in Batch Request (section 2.2.7.6).

Each MIME part within the Batch request using the application/http content type must be processed
according to the "executing rules" for the request type defined in Message Processing Events and

Sequencing Rules (section 3.2.5).

If the headers of a Batch request are received successfully, a data service MUST respond with a 202
(Accepted) response code allowing the service to signal that part of the request is received, but that
processing of the request has not yet occurred. The response to a Batch request MUST adhere to the
syntax and rules defined in Batch Responses (section 2.2.7.6.6).

3.2.5.9 Executing a Received Invoke Action Request

The directives defined in this section apply when executing a received Invoke Action request, as
specified in Invoke Action Request (section 2.2.7.5.1).

The server MUST validate that the HTTP request URI identifies an action exposed by the data

service. If this validation fails, a 4xx response code MUST be returned. If the validation succeeds,
the server MUST read all required input parameter values from the request body (section 2.2.7.5.1).
If any of the parameter values are malformed, a 4xx response code MUST be returned. If the

request URI is valid, the server MUST invoke the FunctionImport, as specified in [MC-CSDL],
associated with the action by using the parameter values specified in the request URI.

If a FunctionImport requires an input parameter not present either in the request body or as a
binding parameter prefix, the server SHOULD pass null for the parameter value to the function. If
the parameter type is not nullable, as specified in [MC-CSDL], a 4xx response code MUST be
returned.

If the FunctionImport, as specified in [MC-CSDL], is invoked successfully, the return value MUST

be serialized according to the syntax rules defined in Invoke Request Types (section 2.2.7.5).

If the Invoke Action request is bound to a resource that does not exist, the server MUST return a
404 response code.

If an Invoke Action request is received in which the action name is not the last segment in the URI
path or the action identified is not available on the current resource, the server MUST return a 405
(Method Not Allowed) response code.

If the Invoke Action request includes an If-Match (section 2.2.5.5) header and the request URI binds

the action to a resource, the server MUST verify that the bound resource has not changed by
comparing its current ETag with the ETag included in the If-Match header. If the resource has
changed, the server MUST return a 412 (Precondition Failed) response code, in accordance with the
rules specified in [RFC2616].

3.2.5.10 Executing a Received Invoke Function Request

The directives defined in this section apply when executing a received Invoke Function request, as
specified in Invoke Function Request (section 2.2.7.5.2).

The server MUST validate that the HTTP request URI identifies a function exposed by the data
service. If this validation fails, a 4xx response code MUST be returned. If the validation succeeds,
the server MUST read all required input parameter values from the request URI (section 2.2.7.5.2).

If the server has multiple FunctionImport elements with the same Name (that is, a function has
overloads), the server SHOULD use the parameter types and parameter names that are provided to

http://go.microsoft.com/fwlink/?linkid=90372

260 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

resolve which FunctionImport should be invoked. If the server fails to resolve the request to a
specific FunctionImport, the server MUST not execute any FunctionImport and MUST instead

return a 4xx response code.

If any of the parameter values are malformed, a 4xx response code MUST be returned. If the

request URI is valid, the server MUST invoke the FunctionImport, as specified in [MC-CSDL],
associated with the function by using the parameter values specified in the request URI.

If a FunctionImport is invoked with no parameter names mentioned in the URI path and a
required parameter is not present in the query string, the server SHOULD pass null for the
parameter value to the function.

If the parameter type is not nullable, as specified in [MC-CSDL], a 4xx response code MUST be
returned.

If the FunctionImport, as specified in [MC-CSDL], is invoked successfully, the return value MUST
be serialized according to the syntax rules defined in Invoke Request Types (section 2.2.7.5).

If the Invoke Function request is bound to a resource that does not exist on the server, the server
MUST return a 404 response code.

If the Invoke Function Request is bound to a resource that does not support the function, the server
MUST return a 405 (Method Not Allowed) response code.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

If the TCP connection to the client is disconnected after the server started processing a received
request but before it has completely finished processing the request, and the server did not initiate

the disconnection, the server SHOULD complete the requested action even though all of the results
cannot be returned to the client.

3.2.8 Common Response Codes

This section summarizes the response codes a data service SHOULD use to indicate various
conditions. A data service MAY use alternate or additional response codes. If multiple conditions
apply, the HTTP [RFC2616] and AtomPub specification [RFC5023] should be consulted to determine

the most appropriate response code. Additional information about the following response codes is
provided in [RFC2616].

200 (OK): Indicates that a request has been received and processed successfully by a data
service and that the response includes a non-empty response body.

202 (Accepted): Indicates that a batch request has been accepted for processing, but that the
processing has not been completed.

204 (No Content): Indicates that a request has been received and processed successfully by a

data service and that the response does not include a response body.

400 (Bad Request): Indicates that the payload, request headers, or request URI provided in a
request are not correctly formatted according to the syntax rules defined in this document.

%5bMC-CSDL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=140880
http://go.microsoft.com/fwlink/?LinkId=90372

261 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

404 (Not Found): Indicates that a segment in the request URI's Resource Path does not map to
an existing resource in the data service. A data service MAY<74> respond with a

representation of an empty collection of entities if the request URI addressed a collection of
entities.

405 (Method Not Allowed): Indicates that a request used an HTTP method not supported by
the resource identified by the request URI, see Request Types (section 2.2.7).

412 (Precondition Failed): Indicates that one or more of the conditions specified in the
request headers evaluated to false. This response code is used to indicate an optimistic
concurrency check failure, see If-Match (section 2.2.5.5) and If-None-Match (section 2.2.5.6).

500 (Internal Server Error): Indicates that a request being processed by a data service
encountered an unexpected error during processing.

262 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4 Protocol Examples

All examples in this section use the sample data model and instance data shown in Appendix A:
Sample Entity Data Model and CSDL Document (section 6).

4.1 Insert a New Entity

Detailed examples for inserting a new entity are provided in Examples (section 2.2.7.1.1.1).

4.2 Retrieve Resources

4.2.1 Retrieve a Collection of Entities

4.2.1.1 Retrieve a Collection of Entities by Using the AtomPub Format

The following example illustrates the exchange of messages required for a client to retrieve a

collection of Order entities related to a specific Customer entity from a data service.

Request:

GET /service.svc/Customers('ALFKI')/Orders HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=feed

Content-Length: nnn

DataServiceVersion:3.0

<feed xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Orders</title>

 <id>http://host/service.svc/Customers('ALFKI')/Orders</id>

 <updated>2008-03-30T21:52:46Z</updated>

 <link rel="self" title="Orders" href="Customers('ALFKI')/SampleModel.Customer

/Orders" />

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(1)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(1)/SampleModel.Order " />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

263 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(1)/SampleModel.Order/Customer" />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Customer"

 type="application/xml" title="Customer"

 href="Orders(1)/ SampleModel.Order/$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(1)/SampleModel.Order/OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/OrderLines"

 type="application/xml" title="OrderLines"

 href="Orders(1)/SampleModel.Order/$links/OrderLines" />

 <content type="application/xml">

 <m:properties>

 <d:OrderID m:type="Edm.Int32">1</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-08-25T00:00:00</d:ShippedDate>

 </m:properties>

 </content>

 </entry>

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(2)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(2)/SampleModel.Order" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(2)/SampleModel.Order/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Customer"

 type="application/xml" title="Customer"

 href="Orders(2)/SampleModel.Order/$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(2)/SampleModel.Order/OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/OrderLines"

 type="application/xml" title="OrderLines"

 href="Orders(2)/SampleModel.Order/$links/OrderLines" />

 <content type="application/xml">

 <m:properties>

 <d:OrderID m:type="Edm.Int32">2</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-10-03T00:00:00</d:ShippedDate>

 </m:properties>

 </content>

 </entry>

</feed>

264 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.2.1.2 Retrieve a Collection of Entities by Using the Verbose JSON Format

The following example illustrates the exchange of messages that is required for a client to retrieve a
collection of Order entities that are related to a specific Customer entity from a data service.

Request:

GET /service.svc/Customers('ALFKI')/Orders HTTP/1.1

Host: host

Accept: application/json;odata=verbose

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose

Content-Length: nnn

DataServiceVersion: 3.0

{"d": [

 {

 "__metadata": { "uri": "Orders(1)",

 "type": "SampleModel.Order",

 "properties" : {

 "Customer" : {

 "associationuri" :

"Orders(1)/SampleModel.Order/$links/Customer",

 },

 "OrderLines" : {

 "associationuri" :

"Orders(1)/SampleModel.Order/$links/OrderLines",

 }

 }

 },

 "OrderID": 1,

 "ShippedDate": "\/Date(872467200000)\/",

 "Customer": { "__deferred": { "uri": "Orders(1)/SampleModel.Order/Customer" } }

 "OrderLines": { "__deferred": { "uri": "Orders(1)/SampleModel.Order/OrderLines"}

}

 },

 {

 "__metadata": { "uri": "Orders(2)",

 "type": "SampleModel.Order",

 "properties" : {

 "Customer" : {

 "associationuri" :

"Orders(2)/SampleModel.Order/$links/Customer",

 },

 "OrderLines" : {

 "associationuri" :

"Orders(2)/SampleModel.Order/$links/OrderLines",

 }

 }

 },

265 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "OrderID": 2,

 "ShippedDate": "\/Date(875836800000)\/",

 "Customer": { "__deferred": { "uri": "Orders(2)/SampleModel.Order/Customer"} }

 "OrderLines": { "__deferred": { "uri": "Orders(2)/SampleModel.Order/OrderLines"}

}

 }

]}

4.2.1.3 Retrieve a Partial Collection of Entities by Using the AtomPub Format

The following example illustrates the exchange of messages that is required for a client to retrieve a

collection of Order entities that are related to a specific Customer entity from a data service. This
example assumes that the server has a limit in place to return, at the most, two Order entities at a
time and that there exist more than two Order entities associated with the Customer entity that is
identified by the key value "ALFKI".

Request:

GET /service.svc/Customers('ALFKI')/Orders HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=feed

Content-Length: nnn

DataServiceVersion: 3.0

<feed xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Orders</title>

 <id>http://host/service.svc/Customers('ALFKI')/Orders</id>

 <updated>2008-03-30T21:52:46Z</updated>

 <link rel="self" title="Orders" href="Customers('ALFKI')/SampleModel.Customer/Orders"

/>

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(1)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(1)/SampleModel.Order " />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(1)/SampleModel.Order /Customer" />

266 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Customer"

 type="application/ xml " title="Customer"

 href="Orders(1)/SampleModel.Order /$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(1)/SampleModel.Order /OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/OrderLines"

 type="application/xml " title="OrderLines"

 href="Orders(1)/SampleModel.Order /$links/OrderLines" />

 <content type="application/xml">

 <d:OrderID m:type="Edm.Int32">1</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-08-25T00:00:00</d:ShippedDate>

 </content>

 </entry>

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(2)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(2)/SampleModel.Order " />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(2)/SampleModel.Order /Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Customer"

 type="application/ xml" title="Customer"

 href="Orders(2)/SampleModel.Order /$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(2)/SampleModel.Order /OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/OrderLines"

 type="application/xml " title="OrderLines"

 href="Orders(2)/SampleModel.Order /$links/OrderLines" />

 <content type="application/xml">

 <d:OrderID m:type="Edm.Int32">2</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-10-03T00:00:00</d:ShippedDate>

 </content>

 </entry>

 <link rel="next"

 href="http://host/service.svc/Customers('ALFKI')/Orders?$skiptoken=2" />

</feed>

4.2.1.4 Retrieve a Partial Collection of Entities by Using the Verbose JSON Format

The following example illustrates the exchange of messages that is required for a client to retrieve,
from a data service, a collection of Order entities that are related to a specific Customer entity.

267 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Request:

GET /service.svc/Customers('ALFKI')/Orders HTTP/1.1

Host: host

Accept: application/json;odata=verbose

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose

Content-Length: nnn

DataServiceVersion: 3.0

{"d": { "results":[

 {

 "__metadata": { "uri": "Orders(1)",

 "type": "SampleModel.Order"

 "properties" : {

 "Customer" : {

 "associationuri" :

"Orders(1)/SampleModel.Order/$links/Customer"

 },

 "OrderLines" : {

 "associationuri" :

"Orders(1)/SampleModel.Order/$links/OrderLines"

 }}

 },

 "OrderID": 1,

 "ShippedDate": "\/Date(872467200000)\/",

 "Customer": { "__deferred": { "uri": "Orders(1)/SampleModel.Order/Customer" } }

 "OrderLines": { "__deferred": { "uri": "Orders(1)/SampleModel.Order/OrderLines" }

}

 },

 {

 "__metadata": { "uri": "Orders(2)",

 "type": "SampleModel.Order"

 "properties" : {

 "Customer" : {

 "associationuri" :

"Orders(2)/SampleModel.Order/$links/Customer"

 },

 "OrderLines" : {

 "associationuri" :

"Orders(2)/SampleModel.Order/$links/OrderLines"

 }}

 },

 "OrderID": 2,

 "ShippedDate": "\/Date(875836800000)\/",

 "Customer": { "__deferred": { "uri": "Orders(2)/SampleModel.Order/Customer" } }

 "OrderLines": { "__deferred": { "uri": "Orders(2)/SampleModel.Order /OrderLines"

} }

 }],

 "__next":

 "http://host/service.svc/Customers('ALFKI')/Orders?$skiptoken=3"

 }

268 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 }

4.2.1.5 Retrieve a Collection of Entities with an Inline Count by Using the

AtomPub Format

The following example illustrates the exchange of messages required for a client to retrieve a
collection of Order entities related to a specific Customer entity and include the count of all orders
associated with the Customer entity in the response from the data service. This example is

supported in the OData 2.0 and OData 3.0 protocols.

Request:

GET /service.svc/Customers('ALFKI')/Orders?$inlinecount=allpages HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 2.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=feed

Content-Length: nnn

DataServiceVersion: 3.0

<feed xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Orders</title>

 <id>http://host/service.svc/Customers('ALFKI')/Orders</id>

 <updated>2008-03-30T21:52:46Z</updated>

 <link rel="self" title="Orders" href="Customers('ALFKI')/SampleModel.Customer/Orders"

/>

 <m:count>2<m:count>

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(1)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(1)/SampleModel.Order" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(1)/SampleModel.Order/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Customer"

 type="application/xml " title="Customer"

 href="Orders(1)/SampleModel.Order/$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

269 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(1)/SampleModel.Order/OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/OrderLines"

 type="application/ xml " title="OrderLines"

 href="Orders(1)/SampleModel.Order/$links/OrderLines" />

 <content type="application/xml">

 <d:OrderID m:type="Edm.Int32">1</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-08-25T00:00:00</d:ShippedDate>

 </content>

 </entry>

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(2)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(2)/SampleModel.Order " />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(2)/SampleModel.Order/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Customer"

 type="application/ xml " title="Customer"

 href="Orders(2)/SampleModel.Order/$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(2)/SampleModel.Order/OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/OrderLines"

 type="application/ xml " title="OrderLines"

 href="Orders(2)/SampleModel.Order/$links/OrderLines" />

 <content type="application/xml">

 <d:OrderID m:type="Edm.Int32">2</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-10-03T00:00:00</d:ShippedDate>

 </content>

 </entry>

</feed>

4.2.1.6 Retrieve a Collection of Entities with an Inline Count by Using the Verbose

JSON Format

The following example illustrates the exchange of messages required for a client to retrieve a
collection of Order entities related to a specific Customer entity and a count of all orders associated
with the Customer entity from a data service. This example is supported only in the OData 2.0 and

OData 3.0 protocols.

Request:

GET /service.svc/Customers('ALFKI')/Orders?$inlinecount=allpages HTTP/1.1

Host: host

Accept: application/json;odata=verbose

270 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

DataServiceVersion: 2.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose

Content-Length: nnn

DataServiceVersion: 3.0

{"d": [

 {

 "__count": "2"

 },

 {

 "__metadata": { "uri": "Orders(1)",

 "type": "SampleModel.Order",

 "properties" : {

 "Customer" : {

 "associationuri" :

"Orders(1)/SampleModel.Order/$links/Customer"

 },

 "OrderLines" : {

 "associationuri" :

"Orders(1)/SampleModel.Order/$links/OrderLines"

 }}

 },

 "OrderID": 1,

 "ShippedDate": "\/Date(872467200000)\/",

 "Customer": { "__deferred": { "uri": "Orders(1)/SampleModel.Order/Customer" } }

 "OrderLines": { "__deferred": { "uri": "Orders(1)/SampleModel.Order/OrderLines" }

}

 },

 {

 "__metadata": { "uri": "Orders(2)",

 "type": "SampleModel.Order",

 "properties" : {

 "Customer" : {

 "associationuri" :

"Orders(2)/SampleModel.Order/$links/Customer"

 },

 "OrderLines" : {

 "associationuri" :

"Orders(2)/SampleModel.Order/$links/OrderLines"

 }}

 },

 "OrderID": 2,

 "ShippedDate": "\/Date(875836800000)\/",

 "Customer": { "__deferred": { "uri": "Orders(2)/SampleModel.Order/Customer" } }

 "OrderLines": { "__deferred": { "uri": "Orders(2)/SampleModel.Order/OrderLines" }

}

 }

]}

271 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.2.1.7 Retrieve a Collection of Entities with Named Resource Streams by Using

the AtomPub Format

The following example illustrates the exchange of messages that is required for a client to retrieve a
collection of Photo entities, each with two named resource streams (Thumbnail and PrintReady), by
using the AtomPub format. This example is supported only in the OData 3.0 protocol.

Request:

GET /service.svc/Photos HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 3.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=feed

Content-Length: nnn

DataServiceVersion: 3.0

<feed xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Photos</title>

 <id>http://host/service.svc/Photos</id>

 <updated>2008-03-30T21:52:46Z</updated>

 <link rel="self" title="Photos" href="Photos/SampleModel.Photo" />

 <entry>

 <category term="SampleModel.Photo"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Photos(1)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Photos" href="Photos(1)/SampleModel.Photo " />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/mediaresource/Thumbnail"

 type="image/png"

 title="Thumbnail"

 href="Photos(1)/SampleModel.Photo/Thumbnail " />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/edit-media/Thumbnail"

 type="image/png"

 title="Thumbnail"

 href="Photos(1)/SampleModel.Photo/Thumbnail " />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/mediaresource/PrintReady"

 type="image/png"

 title="PrintReady"

272 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 href="Photos(1)/SampleModel.Photo/PrintReady " />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/edit-media/PrintReady"

 type="image/png"

 title="PrintReady"

 href="Photos(1)/SampleModel.Photo/PrintReady " />

 <content type="application/xml">

 <m:properties>

 <d:ID m:type="Edm.Int32">1</d:ID>

 <d:Name m:type="Edm.String">Mount Fuji</d:Name>

 </m:properties>

 </content>

 </entry>

 <entry>

 <category term="SampleModel.Photo"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Photos(2)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Photos" href="Photos(2)/SampleModel.Photo" />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/mediaresource/Thumbnail"

 type="image/png"

 title="Thumbnail"

 href="Photos(2)/SampleModel.Photo/Thumbnail " />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/edit-media/Thumbnail"

 type="image/png"

 title="Thumbnail"

 href="Photos(2)/SampleModel.Photo/Thumbnail "

 m:etag="######" />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/mediaresource/PrintReady"

 type="image/png"

 title="PrintReady"

 href="Photos(2)/SampleModel.Photo/PrintReady " />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/edit-media/PrintReady"

 type="image/png"

 title="PrintReady"

 href="Photos(2)/SampleModel.Photo/PrintReady "

 m:etag="######" />

 <content type="application/xml">

 <m:properties>

 <d:ID m:type="Edm.Int32">2</d:ID>

 <d:Name m:type="Edm.String">Mount Rainier</d:Name>

 </m:properties>

 </content>

 </entry>

</feed>

273 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.2.1.8 Retrieve a Collection of Entities with Named Resource Streams by Using

the Verbose JSON Format

The following example illustrates the exchange of messages that is required for a client to retrieve a
collection of Photo entities that each contain two named resource streams (Thumbnail and
PrintReady) by using the Verbose JSON Format. This example is supported only in the OData 3.0
protocol.

Request:

GET /service.svc/Photos HTTP/1.1

Host: host

Accept: application/json;odata=verbose

DataServiceVersion: 3.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose; type=feed

Content-Length: nnn

DataServiceVersion: 3.0

{"d": [

 {

 "__metadata": { "uri": "Photos(1)",

 "type": "SampleModel.Photo",

 },

 "ID": 1,

 "Name": "Mount Fuji",

 "Thumbnail": {

 "__mediaresource": {

 "edit_media": "Photos(1)/SampleModel.Photo/Thumbnail ",

 "media_src": "Photos(1)/SampleModel.Photo/Thumbnail ",

 "content-type": "img/jpeg",

 "media_etag": "####"

 }

 },

 "PrintReady": {

 "__mediaresource": {

 "edit_media": "Photos(1)/SampleModel.Photo/PrintReady ",

 "media_src": "Photos(1)/SampleModel.Photo/PrintReady ",

 "content-type": "img/png",

 "media_etag": "####"

 }

 },

 },

 {

 "__metadata": { "uri": "Photos(2)",

 "type": "SampleModel.Photo",

 },

 "ID": 2,

 "Name": "Mount Rainier",

 "Thumbnail": {

 "__mediaresource": {

 "edit_media": "Photos(2)/SampleModel.Photo/Thumbnail ",

274 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "media_src": "Photos(2)/SampleModel.Photo/Thumbnail ",

 "content-type": "img/jpeg",

 "media_etag": "####"

 }

 },

 "PrintReady": {

 "__mediaresource": {

 "edit_media": "Photos(2)/SampleModel.Photo/PrintReady ",

 "media_src": "Photos(2)/SampleModel.Photo/PrintReady ",

 "content-type": "img/png",

 "media_etag": "####"

 }

 }

 }

]}

4.2.2 Retrieve a Single Entity by Using the AtomPub Format

The following example illustrates the exchange of messages that is required for a client to retrieve a
Customer entity with an EntityKey value equal to "ALFKI" by using the AtomPub format.

Request:

GET /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=entry

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

DataServiceVersion: 3.0

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:gml=http://schemas.opengis.net/gml/3.1.1/profiles/gmlsfProfile/1.0.0/gmlsf.xsd

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom" m:etag="W/"X'000000000000FA01'"">

 <category term="SampleModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Customers('ALFKI')</id>

 <title type="text" />

 <updated>2008-03-30T21:32:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customer" href="Customers('ALFKI')/SampleModel.Customer " />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

 type="application/atom+xml;type=feed"

 title="Orders"

%5bMC-CSDL%5d.pdf

275 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 href="Customers('ALFKI')/SampleModel.Customer/Orders" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Orders"

 type="application/ xml "

 title="Orders"

 href="Customers('ALFKI')/SampleModel.Customer/$links/Orders" />

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Alfreds Futterkiste</d:CompanyName>

 <d:Address>

 <d:Street>57 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 <d:Location m:type=”Edm.GeographyPoint”><gml:Point srsName=”4326”>-127.345345

48.23423</gml:Point></d:Location>

 </d:Address>

 <d:Version>AAAAAAAA+gE=</d:Version>

 </m:properties>

 </content>

</entry>

4.2.2.1 Retrieve a Single Entity with a Mapped Property by Using the AtomPub

Format

The following example illustrates the exchange of messages required for a client to retrieve an
Employee entity with an EntityKey value equal to 1 by using the AtomPub format. The
EmployeeName property and the City property of the Address complex-type property on the

Employee EntityType have been mapped to another element by using the customizable feeds
attributes that are included in the CSDL file. One of the property mappings on the Employee
EntityType has the FC_KeepInContent attribute set to "false" and, as a result, the following
exchange of messages is supported only in OData 2.0 and OData 3.0.

Request:

GET /service.svc/Employees(1) HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 1.0

MaxDataServiceVersion: 2.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=entry

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

DataServiceVersion: 2.0

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns:gml=http://schemas.opengis.net/gml/3.1.1/profiles/gmlsfProfile/1.0.0/gmlsf.xsd

 xmlns="http://www.w3.org/2005/Atom" m:etag="W/"X'000000000000FA01'"">

 <category term="SampleModel.Employee"

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

276 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Employees(1)</id>

 <title type="text"> Nancy Davolio</title>

 <updated>2008-03-30T21:32:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Employees" href="Employees(1)/SampleModel.Employee" />

 <content type="application/xml">

 <m:properties>

 <d:EmployeeID>ALFKI</d:EmployeeID>

 <d:Address>

 <d:Street>507 - 20th Ave. E. Apt. 2A<d:Street>

 <d:City>Seattle</d:City>

 <d:Location m:type=”Edm.GeographyPoint”><gml:Point srsName=”4326”>-127.345345

48.23423</gml:Point></d:Location>

 </d:Address>

 <d:Version>BBBBBBBB+gE=</d:Version>

 </m:properties>

 </content>

 <emp:Location xmlns:emp="http://www.microsoft.com">Seattle</emp:Location>

</entry>

4.2.3 Retrieve a Single Entity by Using the Verbose JSON Format

The following example illustrates the exchange of messages that is required for a client to retrieve a

Customer entity with an EntityKey value that is equal to "ALFKI" by using the Verbose JSON format.

Request:

GET /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Accept: application/json;odata=verbose

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

DataServiceVersion: 3.0

{"d":

 {

 "__metadata": { "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\""

 "properties" : {

 "Orders" : {

 "associationuri" :

"Customers(\'ALFKI\')/SampleModel.Customer/$links/Orders ",

 },

 },

%5bMC-CSDL%5d.pdf

277 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "CustomerID": "ALFKI",

 "CompanyName": " Alfreds Futterkiste",

 "Address": { "Street": "57 Contoso St", "City": "Seattle",

 “Location”: {

 "crs": {

 "type": "name",

 "properties": { "name": "EPSG:4326" }

 },

 “type”: “Point”, “coordinates”: [-127.9324, 49.2345]

 }

 },

 "Version": "AAAAAAAA+gE=",

 "Orders": { "__deferred": { "uri": "Customers(\'ALFKI\')/SampleModel.Customer/Orders" } }

 }

}

4.2.4 Retrieve a Single Entity and Its Directly Related Entities by Using the

AtomPub Format

The following example illustrates the exchange of messages that is required for a client to retrieve a
Customer entity (with EntityKey value equal to "ALFKI") and its associated Order EntityType
instances. This example uses the AtomPub format for all messages.

Request:

GET /service.svc/Customers('ALFKI')?$expand=Orders HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=entry

Content-Length: nnn

DataServiceVersion: 3.0

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns:gml=http://schemas.opengis.net/gml/3.1.1/profiles/gmlsfProfile/1.0.0/gmlsf.xsd

 xmlns="http://www.w3.org/2005/Atom">

 <category term="SampleModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Customers('ALFKI')</id>

 <title type="text" />

 <updated>2008-03-30T21:32:23Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ALFKI')/SampleModel.Customer" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

%5bMC-CSDL%5d.pdf

278 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 type="application/atom+xml;type=feed"

 title="Orders"

 href="Customers('ALFKI')/SampleModel.Customer/Orders">

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Orders"

 type="application/xml"

 title="Orders"

 href="Customers('ALFKI')/SampleModel.Customer/$links/Orders">

 <m:inline>

 <feed>

 <title type="text">Orders</title>

 <id>http://host/service.svc/Customers('ALFKI')/Orders</id>

 <updated>2008-03-30T21:52:46Z</updated>

 <link rel="self" title="Orders" href="Customers('ALFKI')/SampleModel.Customer/Orders"

/>

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(1)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(1)/SampleModel.Order" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(1)/SampleModel.Order/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Customer"

 type="application/xml" title="Customer"

 href="Orders(1)/SampleModel.Order/$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(1)/SampleModel.Order/OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/OrderLines"

 type="application/xml" title="OrderLines"

 href="Orders(1)/SampleModel.Order/$links/OrderLines" />

 <content type="application/xml">

 <m:properties>

 <d:OrderID m:type="Edm.Int32">1</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-08-25T00:00:00</d:ShippedDate>

 </m:properties>

 </content>

 </entry>

 <entry>

 <category term="SampleModel.Order"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Orders(2)</id>

 <title type="text" />

 <updated>2008-03-30T21:52:45Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Orders" href="Orders(2)/SampleModel.Order" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer"

279 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 type="application/atom+xml;type=entry" title="Customer"

 href="Orders(2)/SampleModel.Order/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Customer"

 type="application/xml" title="Customer"

 href="Orders(2)/SampleModel.Order/$links/Customer" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/OrderLines"

 type="application/atom+xml;type=feed" title="OrderLines"

 href="Orders(2)/SampleModel.Order/OrderLines" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/OrderLines"

 type="application/xml" title="OrderLines"

 href="Orders(2)/SampleModel.Order/$links/OrderLines" />

 <content type="application/xml">

 <m:properties>

 <d:OrderID m:type="Edm.Int32">2</d:OrderID>

 <d:ShippedDate m:type="Edm.DateTime">1997-10-03T00:00:00</d:ShippedDate>

 </m:properties>

 </content>

 </entry>

 </feed>

 </m:inline>

 </link>

 <content type="application/xml">

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Alfreds Futterkiste</d:CompanyName>

 <d:Address>

 <d:Street>57 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 <d:Location m:type=”Edm.Point”><gml:Point srsName=”4326”>-127.345345

48.23423</gml:Point></d:Location>

 </d:Address>

 <d:Version>AAAAAAAA+gE=</d:Version>

 </content>

</entry>

4.2.5 Retrieve a Single Entity and Its Directly Related Entities by Using the

Verbose JSON Format

The following example illustrates the exchange of messages that is required for a client to retrieve a
Customer entity (with EntityKey value equal to "ALFKI") and its associated Order EntityType
instances. This example uses the Verbose JSON Format for all messages.

Request:

GET /service.svc/Customers('ALFKI')?$expand=Orders HTTP/1.1

Host: host

Accept: application/json;odata=verbose

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

%5bMC-CSDL%5d.pdf

280 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Content-Type: application/json;odata=verbose

Content-Length: nnn

DataServiceVersion: 3.0

{"d": {

 "__metadata": { "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\""

 "properties" : {

 "Orders" : {

 "associationuri" :

"Customer(\'ALFKI\')/SampleModel.Customer/$links/Orders"

}}

 },

 "CustomerID": "ALFKI",

 "CompanyName": "Alfreds Futterkiste",

 "Address": { "Street": "57 Contoso St", "City": "Seattle",

 “Location”: {

 "crs": {

 "type": "name",

 "properties": { "name": "EPSG:4326" }

 },

 “type”: “Point”, “coordinates”: [-127.9324, 49.2345]

 }

 },

 "Version": "AAAAAAAA+gE=",

 "Orders": [

 {

 "__metadata": { "uri": "Orders(1)",

 "type": "SampleModel.Order"

 "properties" : {

 "Customer" : {

 "associationuri" :

"Orders(1)/SampleModel.Order/$links/Customer",

 },

 "OrderLines" : {

 "associationuri" :

"Orders(1)/SampleModel.Order/$links/OrderLines",

 }}

 },

 "OrderID": 1,

 "ShippedDate": "\/Date(872467200000)\/",

 "Customer": { "__deferred": { "uri": "Orders(1)/SampleModel.Order/Customer" } }

 "OrderLines": { "__deferred": { "uri": "Orders(1)/SampleModel.Order/OrderLines" }

}

 },

 {

 "__metadata": { "uri": "Orders(2)",

 "type": "SampleModel.Order"

 "properties" : {

 "Customer" : {

 "associationuri" :

"Orders(2)/SampleModel.Order/$links/Customer",

 },

 "OrderLines" : {

 "associationuri" :

"Orders(2)/SampleModel.Order/$links/OrderLines",

 }}

 },

281 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "OrderID": 2,

 "ShippedDate": "\/Date(875836800000)\/",

 "Customer": { "__deferred": { "uri": "Orders(2)/SampleModel.Order/Customer" } }

 "OrderLines": { "__deferred": { "uri": "Orders(2)/SampleModel.Order/OrderLines" }

}

 }

]

} }

4.2.6 Retrieve a Data Service's Metadata Document (CSDL)

The following example illustrates the exchange of messages that is required for a client to obtain a
description document of a data service, as specified in RetrieveServiceMetadata Request (section

2.2.7.2.7).

The following data service metadata document contains customizable feed property mappings that

are supported only in OData 2.0 and OData 3.0.

The data service metadata document also contains named resource streams that are supported only
in OData 3.0.

Request:

GET /service.svc/$metadata HTTP/1.1

Host: host

Accept: application/xml

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/xml

Content-Length: nnn

DataServiceVersion: 3.0

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<edmx:Edmx Version="1.0"

 xmlns:edmx="http://schemas.microsoft.com/ado/2010/02/edmx"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">

<edmx:DataServices m:DataServiceVersion="3.0">

 <Schema Namespace="SampleModel"

 xmlns="http://schemas.microsoft.com/ado/2007/05/edm">

 <EntityContainer Name="SampleEntities"

 m:IsDefaultEntityContainer="true">

 <EntitySet Name="Customers" EntityType="SampleModel.Customer" />

 <EntitySet Name="Employees" EntityType="SampleModel.Employee" />

 <EntitySet Name="Orders" EntityType="SampleModel.Order" />

 <EntitySet Name="OrderLines" EntityType="SampleModel.OrderLine" />

 <EntitySet Name="Photos" EntityType="SampleModel.Photo" />

 <AssociationSet Name="Orders_Customers"

 Association="SampleModel.Orders_Customers">

 <End Role="Customers" EntitySet="Customers" />

 <End Role="Orders" EntitySet="Orders" />

282 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 </AssociationSet>

 <AssociationSet Name="OrderLines_Orders"

 Association="SampleModel.OrderLines_Orders">

 <End Role="OrderLine" EntitySet="OrderLines" />

 <End Role="Order" EntitySet="Orders" />

 </AssociationSet>

 <FunctionImport Name="CustomersByCity"

 EntitySet="Customers"

 ReturnType="Collection(SampleModel.Customer)"

 m:HttpMethod="GET">

 <Parameter Name="city" Type="Edm.String" Mode="In" />

 </FunctionImport>

 <FunctionImport Name="GetRelatedCustomers"

 EntitySet="Customers"

 IsBindable="true"

 ReturnType="Collection(SampleModel.Customer)"

 IsSideEffecting="false">

 <Parameter Name="company" Type="SampleModel.Company" Mode="In" />

 </FunctionImport>

 <FunctionImport Name="CreateOrder"

 EntitySet="Orders"

 IsBindable="true"

 IsSideEffecting="true"

 m:IsAlwaysBindable="true">

 <Parameter Name="customer" Type="SampleModel.Customer" Mode="In" />

 <Parameter Name="quantity" Type="Edm.Int32" Mode="In" />

 <Parameter Name="discountCode" Type="Edm.String" Mode="In" />

 </FunctionImport>

 </EntityContainer>

 <EntityType Name="Order">

 <Key>

 <PropertyRef Name="OrderID" />

 </Key>

 <Property Name="OrderID" Type="Edm.Int32" Nullable="false" />

 <Property Name="ShippedDate" Type="Edm.DateTime" Nullable="true"

 DateTimeKind="Unspecified" PreserveSeconds="true" />

 <NavigationProperty Name="Customer"

 Relationship="SampleModel.Orders_Customers"

 FromRole="Order" ToRole="Customer" />

 <NavigationProperty Name="OrderLines"

 Relationship="SampleModel.OrderLines_Orders"

 FromRole="Order" ToRole="OrderLine" />

 </EntityType>

 <EntityType Name="OrderLine">

 <Key>

 <PropertyRef Name="OrderLineID" />

 </Key>

 <Property Name="OrderLineID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Quantity" Type="Edm.Int32" Nullable="false" />

 <Property Name="UnitPrice" Type="Edm.Decimal" Nullable="false" />

 <NavigationProperty Name="Order"

 Relationship="SampleModel.OrderLines_Orders"

 FromRole="OrderLine" ToRole="Order" />

 </EntityType>

 <EntityType Name="Customer">

 <Key>

 <PropertyRef Name="CustomerID" />

 </Key>

 <Property Name="CustomerID" Type="Edm.String" Nullable="false"

283 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 MaxLength="5" Unicode="true" FixedLength="true" />

 <Property Name="CompanyName" Type="Edm.String" Nullable="false"

 MaxLength="40" Unicode="true" FixedLength="false" />

 <Property Name="Address" Type="Sample.CAddress" Nullable="true" />

 <Property Name="Version" Type="Edm.Binary" Nullable="true" MaxLength="8"

 FixedLength="true" ConcurrencyMode="Fixed" />

 <NavigationProperty Name="Orders"

 Relationship="SampleModel.Orders_Customers"

 FromRole="Customer" ToRole="Order" />

 </EntityType>

 <EntityType Name="Employee" m:FC_KeepInContent="true"

 m:FC_TargetPath="Location" m:FC_SourcePath="Address/City"

 m:FC_NsUri="http://www.microsoft.com" m:FC_NsPrefix="emp">

 <Key>

 <PropertyRef Name="EmployeeID" />

 </Key>

 <Property Name="EmployeeID" Type="Edm.String" Nullable="false"

 MaxLength="5" Unicode="true" FixedLength="true" />

 <Property Name="EmployeeName" Type="Edm.String" Nullable="false"

 MaxLength="40" Unicode="true" FixedLength="false"

 m:FC_KeepInContent="false"

 m:FC_TargetPath="SyndicationTitle"/>

 <Property Name="Address" Type="Sample.EAddress" Nullable="true" />

 <Property Name="Version" Type="Edm.Binary" Nullable="true" MaxLength="8"

 FixedLength="true" ConcurrencyMode="Fixed" />

 </EntityType>

 <EntityType Name="Company">

 <Key>

 <PropertyRef Name="CompanyID" />

 </Key>

 <Property Name="CompanyID" Type="Edm.String" Nullable="false"

 MaxLength="5" Unicode="true" FixedLength="true" />

 <Property Name="CompanySize" Type="Edm.String" Nullable="true"/>

 </EntityType>

 <EntityType Name="Photo" m:HasStream=”true”>

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Name" Type="Edm.String" Nullable="true" />

 <Property Name="Thumbnail" Type="Edm.Stream" />

 <Property Name="PrintReady" Type="Edm.Stream" />

 </EntityType>

 <ComplexType Name="CAddress">

 <Property Name="Street" Type="Edm.String" Unicode="true" />

 <Property Name="City" Type="Edm.String" Unicode="true"/>

 </ComplexType>

 <ComplexType Name="EAddress">

 <Property Name="Street" Type="Edm.String" Unicode="true" />

 <Property Name="City" Type="Edm.String" Unicode="true"/>

 </ComplexType>

 <Association Name="Orders_Customers">

 <End Role="Customer" Type="SampleModel.Customer"

 Multiplicity="0..1" />

 <End Role="Order" Type="SampleModel.Order" Multiplicity="*" />

 </Association>

 <Association Name="OrderLines_Orders">

284 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <End Role="Order" Type="SampleModel.OrderLine"

 Multiplicity="*" />

 <End Role="OrderLine" Type="SampleModel.Order" Multiplicity="0..1" />

 </Association>

 </Schema>

 </edmx:DataServices>

</edmx:Edmx>

4.2.7 Retrieve the Count of a Collection of Entities

The following example illustrates the exchange of messages required for a client to retrieve a count
of all Customer entities. This example is supported only in the OData 2.0 and OData 3.0 protocols.

Request:

GET /service.svc/Customers/$count HTTP/1.1

Host: host

Accept: text/plain

DataServiceVersion: 2.0

MaxDataServiceVersion: 2.0

Content-Type: text/plain

Response:

HTTP/1.1 200 OK

Content-Type: text/plain

DataServiceVersion: 2.0;

Date: Fri, 01 May 2009 21:41:31 GMT

Content-Length: 2

91

4.2.8 Retrieve a Single Entity Exposing an Action by Using the AtomPub Format

The following example illustrates the exchange of messages that is required for a client to retrieve a
Company entity with an EntityKey value equal to 1 using the AtomPub format. The server indicates
that the returned Company allows an action (Audit) to be invoked against it. Actions are supported

only in the OData 3.0 protocol.

Request:

GET /service.svc/Company(1) HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Thu, 02 Sep 2010 03:40:29 GMT

Content-Type: application/atom+xml;type=entry

%5bMC-CSDL%5d.pdf

285 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Content-Length: nnn

DataServiceVersion: 3.0

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <id>http://host/service.svc/Company(1)</id>

 <title type="text"/>

 <updated> 2010-08-28T01:29:11Z </updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Company" href="Company(1)/SampleModel.Company" />

 <m:action rel="SampleEntities.Audit"

 title="Audit"

 target="Company(1)/SampleEntities.Audit" />

 <category term="SampleModel.Company"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

 <category term="Large" scheme="http://company.com/CompanySize" />

 <content type="application/xml">

 <m:properties>

 <d:CompanyID>1</d:CompanyID>

 </m:properties>

 </content>

</entry>

4.2.9 Retrieve a Single Entity Exposing an Action by Using the Verbose JSON

Format

The following example illustrates the exchange of messages that is required for a client to retrieve a

Customer entity with EntityKey value equal to "ALFKI" by using the Verbose JSON format. The
server indicates that the returned Customer allows an action (CreateOrder) to be invoked against it.

Actions are supported only in the OData 3.0 protocol.

Request:

GET /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Accept: application/json;odata=verbose

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

DataServiceVersion: 3.0

{"d":

 {

 "__metadata": {

%5bMC-CSDL%5d.pdf

286 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\""

 "properties" : {

 "Orders" : {

 "associationuri" : "Customers(\'ALFKI\')/SampleModel.Customer/$links/Orders",

 }

 },

 "actions" : {

 "SampleEntities.CreateOrder" : [{

 "title" : "Create Order",

 "target" : "Customers(\'ALFKI\')/SampleEntities.CreateOrder"

 }]

 }

 },

 "CustomerID": "ALFKI",

 "CompanyName": " Alfreds Futterkiste",

 "Address": { "Street": "57 Contoso St", "City": "Seattle",

 “Location”: {

 "crs": {

 "type": "name",

 "properties": { "name": "EPSG:4326" }

 },

 “type”: “Point”, “coordinates”: [-127.9324, 49.2345]

 }

 },

 "Version": "AAAAAAAA+gE=",

 "Orders": { "__deferred": { "uri": "Customers(\'ALFKI\')/SampleModel.Customer/Orders" } }

 }

}

4.2.10 Retrieve a Single Entity Exposing a Function by Using the AtomPub Format

The following example illustrates the exchange of messages that is required for a client to retrieve a

Company entity with an EntityKey value equal to 2 by using the AtomPub format. The server
indicates that the returned Company supports a GetRelatedCustomers function. Functions are
supported only in the OData 3.0 protocol.

Request:

GET /service.svc/Company(2) HTTP/1.1

Host: host

Accept: application/atom+xml

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Thu, 02 Sep 2010 03:40:29 GMT

Content-Type: application/atom+xml;type=entry

Content-Length: nnn

DataServiceVersion: 3.0

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

287 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <id>http://host/service.svc/Company(2)</id>

 <title type="text"/>

 <updated> 2010-08-28T01:29:11Z </updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Company" href="Company(2)/SampleModel.Company" />

 <m:function rel="SampleEntities.GetRelatedCustomers"

 title="Get Related Customers"

 target="Company(2)/SampleEntities.GetRelatedCustomers" />

 <category term="SampleModel.Company"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

 <category term="Large" scheme="http://company.com/CompanySize" />

 <content type="application/xml">

 <m:properties>

 <d:CompanyID>2</d:CompanyID>

 </m:properties>

 </content>

</entry>

4.2.11 Retrieve a Single Entity Exposing a Function by Using the Verbose JSON

Format

The following example illustrates the exchange of messages that is required for a client to retrieve a
Customer entity with EntityKey value equal to "ALFKI" by using the Verbose JSON format. The
server indicates that the returned Customer allows a function (TopTenOrders) to be invoked against

it. Functions are supported only in the OData 3.0 protocol.

Request:

GET /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Accept: application/json;odata=verbose

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Response:

HTTP/1.1 200 OK

Date: Fri, 12 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose

Content-Length: nnn

ETag: W/"X'000000000000FA01'"

DataServiceVersion: 3.0

{"d":

 {

 "__metadata": {

 "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA01\'\""

 "properties" : {

 "Orders" : {

288 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "associationuri" : "Customers(\'ALFKI\')/SampleModel.Customer/$links/Orders",

 }

 },

 "functions" : {

 "SampleEntities.TopTenOrders" : [{

 "title" : "Get Top Ten Orders for this Customer",

 "target" : "Customers(\'ALFKI\')/SampleEntities.TopTenOrders"

 }]

 }

 },

 "CustomerID": "ALFKI",

 "CompanyName": " Alfreds Futterkiste",

 "Address": { "Street": "57 Contoso St", "City": "Seattle",

 “Location”: {

 "crs": {

 "type": "name",

 "properties": { "name": "EPSG:4326" }

 },

 “type”: “Point”, “coordinates”: [-127.9324, 49.2345]

 }

 },

 "Version": "AAAAAAAA+gE=",

 "Orders": { "__deferred": { "uri": "Customers(\'ALFKI\')/SampleModel.Customer/Orders" } }

 }

}

4.3 Update an Existing Entity

4.3.1 Replace-Based Update by Using the AtomPub Format

The following example illustrates the exchange of messages that is required for a client to update an
existing entity in a data service by using the AtomPub format and replace-based update semantics.

HTTP Request:

PUT /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Content-Type: application/atom+xml

If-Match: W/"X'000000000000FA01'"

Accept: application/atom+xml

Content-Length: nnn

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Prefer: return-content

<?xml version="1.0" encoding="utf-8"?>

<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Updated Company Name</d:CompanyName>

 <d:Address>

 <d:Street>Updated Street</d:Street>

 </d:Address>

 </m:properties>

 </content>

289 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

</entry>

HTTP Response:

HTTP/1.1 200 OK

Date: Thurs, 4 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=entry

Content-Length: nnn

ETag: W/"X'000000000000FA02'"

DataServiceVersion: 3.0

Preference-Applied: return-content

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:gml=http://schemas.opengis.net/gml/3.1.1/profiles/gmlsfProfile/1.0.0/gmlsf.xsd

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <category term="SampleModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Customers('ALFKI')</id>

 <title type="text" />

 <updated>2008-04-30T17:17:11Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ALFKI')/SampleModel.Customer" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

 type="application/atom+xml;type=feed"

 title="Orders"

 href="Customers('ALFKI')/SampleModel.Customer/Orders" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Orders"

 type="application/xml "

 title="Orders"

 href="Customers('ALFKI')/SampleModel.Customer/$links/Orders" />

 <content type="application/xml">

 <m:properties>

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Updated Company Name</d:CompanyName>

 <d:Address>

 <d:Street>Updated Street</d:Street>

 <d:City></d:City>

 <d:Location m:type=”Edm.GeographyPoint”></d:Location>

 </d:Address>

 <d:Version>AAAAAAAA+gF=</d:Version>

 </m:properties>

 </content>

</entry>

4.3.2 Replace-Based Update by Using the Verbose JSON Format

The following example illustrates the exchange of messages that is required for a client to update an
existing entity in a data service by using the Verbose JSON format and replace-based update
semantics.

HTTP Request:

290 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PUT /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Content-Type: application/json;odata=verbose

If-Match: W/"X'000000000000FA01'"

Accept: application/json;odata=verbose

Content-Length: nnn

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Prefer: return-content

{"d":

 {

 "CustomerID": "ALFKI",

 "CompanyName": "Updated Company Name",

 "Address": { "Street": "Updated Street" },

 }

}

HTTP Response:

HTTP/1.1 200 OK

Date: Thurs, 4 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose

Content-Length: nnn

ETag: W/"X'000000000000FA02'"

DataServiceVersion: 3.0

Preference-Applied: return-content

{"d":

 {

 "__metadata": { "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA02\'\""

 "properties" : {

 "Orders" : {

 "associationuri" : "

Customers(\'ALFKI\')/SampleModel.Customer/$links/Orders"

 }

 }

 },

 "CustomerID": "ALFKI",

 "CompanyName": "Updated Company Name",

 "Address": { "Street": "Updated Street", "City": "", “Location”=”NULL” },

 "Version": "AAAAAAAA+gF=",

 "Orders": { "__deferred": { "uri": "Customers(\'ALFKI\')/Orders" } }

 }

}

4.3.3 Merge-based Update by Using the AtomPub Format

The following example illustrates the exchange of messages that is required for a client to update an
existing entity in a data service by using the AtomPub format and merge-based update semantics.

HTTP Request:

291 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

PATCH /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Content-Type: application/atom+xml

If-Match: W/"X'000000000000FA01'"

Accept: application/atom+xml

Content-Length: nnn

DataServiceVersion: 1.0

MaxDataServiceVersion: 3.0

Prefer: return-content

<?xml version="1.0" encoding="utf-8"?>

<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <content type="application/xml">

 <m:properties>

 <d:CompanyName>Updated Company Name</d:CompanyName>

 </m:properties>

 </content>

</entry>

HTTP Response:

HTTP/1.1 200 OK

Date: Thurs, 4 Dec 2008 17:17:11 GMT

Content-Type: application/atom+xml;type=entry

Content-Length: nnn

ETag: W/"X'000000000000FA02'"

DataServiceVersion: 3.0

Preference-Applied: return-content

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base="http://host/service.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

xmlns:gml=http://schemas.opengis.net/gml/3.1.1/profiles/gmlsfProfile/1.0.0/gmlsf.xsd

 xmlns="http://www.w3.org/2005/Atom">

 <category term="SampleModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <id>http://host/service.svc/Customers('ALFKI')</id>

 <title type="text" />

 <updated>2008-04-30T17:17:11Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customers" href="Customers('ALFKI')/SampleModel.Customer" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"

 type="application/atom+xml;type=feed"

 title="Orders"

 href="Customers('ALFKI')/SampleModel.Customer/Orders" />

 <link

rel="http://schemas.microsoft.com/ado/2007/08/dataservices/relatedlinks/Orders"

 type="application/xml"

 title="Orders"

 href="Customers('ALFKI')/SampleModel.Customer/$links//Orders" />

 <content type="application/xml">

 <m:properties>

292 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <d:CustomerID>ALFKI</d:CustomerID>

 <d:CompanyName>Updated Company Name</d:CompanyName>

 <d:Address>

 <d:Street>57 Contoso St</d:Street>

 <d:City>Seattle</d:City>

 <d:Location m:type=”Edm.GeographyPoint”><gml:Point srsName=”4326”>-127.345345

48.23423</gml:Point></d:Location>

 </d:Address>

 <d:Version>AAAAAAAA+gF=</d:Version>

 </m:properties>

 </content>

</entry>

4.3.4 Merge-Based Update by Using the Verbose JSON Format

The following example illustrates the exchange of messages that is required for a client to update an

existing entity in a data service by using the Verbose JSON format and merge-based update
semantics. The PATCH verb is supported only in the OData 3.0 protocol.

HTTP Request

PATCH /service.svc/Customers('ALFKI') HTTP/1.1

Host: host

Content-Type: application/json;odata=verbose

If-Match: W/"X'000000000000FA01'"

Accept: application/json;odata=verbose

Content-Length: nnn

DataServiceVersion: 3.0

MaxDataServiceVersion: 3.0

Prefer: return-content

{"d":

 {

 "CompanyName": "Updated Company Name",

 "Address": { "Street": "Updated Street" }

 }

}

HTTP Response

HTTP/1.1 200 OK

Date: Thurs, 4 Dec 2008 17:17:11 GMT

Content-Type: application/json;odata=verbose

Content-Length: nnn

ETag: W/"X'000000000000FA02'"

DataServiceVersion: 3.0

Preference-Applied: return-content

{"d":

 {

 "__metadata": { "uri": "Customers(\'ALFKI\')",

 "type": "SampleModel.Customer",

 "etag": "W/\"X\'000000000000FA02\'\""

 "properties" : {

 "Orders" : {

293 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "associationuri" :

 "

Customers(\'ALFKI\')/SampleModel.Customer/$links/Orders "

 }

 }

 },

 "CustomerID": "ALFKI",

 "CompanyName": "Updated Company Name",

 "Address": { "Street": "Updated Street", "City": "Seattle",

 “Location”: {

 "crs": {

 "type": "name",

 "properties": { "name": "EPSG:4326" }

 },

 “type”: “Point”, “coordinates”: [-127.9324, 49.2345]

 }

 },

 "Version": "AAAAAAAA+gF=",

 "Orders": { "__deferred": { "uri": "Customers(\'ALFKI\')/Orders" } }

 }

}

4.4 Update the Relationship Between Two Entities

4.4.1 Update a Relationship by Using the AtomPub Format

The following example illustrates the exchange of messages that is required for a client to update
the association between the Order entity with EntityKey value 1 and its associated Customer. This
example binds the Order 1 to Customer "ASDFG" by using the AtomPub format.

HTTP Request:

PUT /service.svc/Order(1)/SampleModel.Customer/$links/Customer HTTP/1.1

Host: host

Content-Type: application/atom+xml

Content-Length: nnn

DataServiceVersion: 1.0

MaxDataServiceVersion: 1.0

<uri

xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">http://host/service.svc/Custome

r('ASDFG')</uri>

HTTP Response:

HTTP/1.1 204 No Content

Date: Fri, 12 Dec 2008 17:17:11 GMT

DataServiceVersion: 1.0

4.4.2 Update a Relationship by Using the Verbose JSON Format

The following example illustrates the exchange of messages required for a client to update the
association between the Order entity with EntityKey value 1 and its associated Customer. This

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

294 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

example binds the Order 1 to Customer "ASDFG" by using the Verbose JSON format (section
2.2.6.3).

HTTP Request:

PUT /service.svc/Order(1)/SampleModel.Customer/$links/Customer HTTP/1.1

Host: host

Content-Type: application/json;odata=verbose

Content-Length: nnn

DataServiceVersion: 1.0

MaxDataServiceVersion: 1.0

{"uri": "http://host/service.svc/Customers('ASDFG')"}

HTTP Response:

HTTP/1.1 204 No Content

Date: Fri, 12 Dec 2008 17:17:11 GMT

DataServiceVersion: 1.0

4.4.3 Delete an Existing Entity

The following example illustrates the exchange of messages required for a client to delete an
existing entity in a data service. This example shows the deletion of the Customer entity with the
EntityKey value equal to "ALFKI".

HTTP Request:

DELETE /service.svc/Customers('ALFKI')/SampleModel.Customer HTTP/1.1

If-Match: W/"X'000000000000FA01'"

Host: host

DataServiceVersion: 1.0

MaxDataServiceVersion: 1.0

HTTP Response:

HTTP/1.1 204 No Content

Date: Fri, 12 Dec 2008 17:17:11 GMT

DataServiceVersion: 1.0

4.5 Batch Requests

Detailed Batch request and response examples are provided in sections Example Batch Request
(section 2.2.7.6.5) and Example Batch Response (section 2.2.7.6.8).

4.6 Working with Media Resources (BLOBs)

The examples that follow in this section illustrate the exchange of messages required for a client to
create a Media Resource, update it, and then retrieve the associated Media Link Entry. This example

shows the deletion of the Document entity with the EntityKey value equal to 300.

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

295 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.6.1 Insert a New Media Resource

HTTP Request:

 POST /Documents/ HTTP/1.1

 Host: host

 Content-Type: application/rtf

 Slug: Meeting Notes

 Content-Length: ####

 DataServiceVersion: 1.0

 MaxDataServiceVersion: 1.0

 ...binary data for the rtf document...

HTTP Response:

 HTTP/1.1 201 Created

 Date: Fri, 11 Oct 2008 04:23:49 GMT

 Content-Length: ###

 Content-Type: application/atom+xml;type=entry;charset="utf-8"

 DataServiceVersion: 1.0

 Location: http://host/service.svc/Documents(300)

 <?xml version="1.0"?>

 <entry xmlns="http://www.w3.org/2005/Atom">

 <title type=”text”/>

 <id> http://host/service.svc/Documents(300)</id>

 <updated>2008-11-03T04:23:49Z</updated>

 <author><name></name></author>

 <category term="SampleModel.Document"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

 <summary type="text" />

 <content type="application/rtf"

 src="http://host/service.svc/Documents(300)/$value"/>

 <m:properties>

 <d:DocumentID>300</d:DocumentID>

 <d:Author>Joe Smith</d:Author>

 <d:Title>Meeting Notes</d:Title>

 </m:properties>

 <link rel="edit-media"

 href="http://host/service.svc/Documents(300)/SampleModel.Document/$value" />

 <link rel="edit"

 href="http://host/service.svc/Documents(300)/SampleModel.Document" />

 </entry>

4.6.2 Update a Media Resource

HTTP Request:

 PUT /Documents(300)/SampleModel.Document HTTP/1.1

 Host: host

 Content-Type: application/rtf

 DataServiceVersion: 1.0

296 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 MaxDataServiceVersion: 1.0

 Content-Length: ####

 ...binary data for the rtf document...

HTTP Response:

 HTTP/1.1 204 No Content

 Date: Fri, 11 Oct 2008 04:23:49 GMT

 DataServiceVersion: 1.0

4.6.3 Query an Existing Media Resource

HTTP Request:

 GET /Documents(300)/SampleModel.Document/$value HTTP/1.1

 Host: host

 Accept: application/rtf

 DataServiceVersion: 1.0

 MaxDataServiceVersion: 1.0

HTTP Response:

 HTTP/1.1 200 OK

 Date: Fri, 11 Oct 2008 04:23:49 GMT

 Content-Length: ####

 DataServiceVersion: 1.0

 ...binary data for the rtf document...

4.7 Working with Named Resource Streams Instances (BLOBs)

4.7.1 Retrieving a Named Resource Stream Instance

To retrieve a named resource stream instance, a client MUST issue an HTTP GET request against the
named resource stream self-link.

To acquire a named resource stream self-link, clients MAY issue a request as described in section
4.2.1.7 for AtomPub, in Stream Property in [ODataJSON4.0] section 9 for JSON, or in section
4.2.1.8 for Verbose JSON. And, clients MAY interpret the response according to the rules that are

specified in section 2.2.6.2.10 for AtomPub, in Stream Property in [ODataJSON4.0] section 9 for
JSON, or in section 2.2.6.3.14 for Verbose JSON.

Clients SHOULD set the Accept header value to the ContentType of the named resource stream
instance.

Clients SHOULD set both the DataServiceVersion and the MaxDataServiceVersion of header values
to 2.0 or higher.

http://go.microsoft.com/fwlink/?LinkID=301473
http://go.microsoft.com/fwlink/?LinkID=301473

297 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When the server responds, the response header SHOULD contain the current DataServiceVersion.

HTTP Request:

 GET /Photos(1)/SampleModel.Photo/Thumbnail HTTP/1.1

 Host: host

 Accept: image/png

 DataServiceVersion: 1.0

 MaxDataServiceVersion: 3.0

HTTP Response:

 HTTP/1.1 200 OK

 Date: Fri, 11 Oct 2008 04:23:49 GMT

 Content-Length: ####

 DataServiceVersion: 1.0

 ...binary data for the png thumbnail ...

If the server returns an ETag for the named resource stream instance and the client opts to retrieve
the stream only when the known ETag no longer represents the current version, the client SHOULD
include the ETag with the request in the If-None-Match (section 2.2.5.6) header.

Servers that do support the If-None-Match header SHOULD return the stream only when it has been
modified because the version represented by the ETag specified in the If-None-Match header is no
longer the current version.

4.7.2 Updating a Named Resource Stream Instance

To update the named resource stream instance, clients MUST use a standard HTTP [RFC2616] PUT

to the URI that is specified in the named resource stream instance’s edit link.

The server MAY indicate that updates to the named resource stream instance are subject to
concurrency control checks by returning an ETag (section 2.2.5.4) for the named resource stream
instance whenever a client retrieves the containing EntityType instance.

If an ETag is specified, the client SHOULD set the value of the If-Match header to the known ETag
value.

HTTP Request:

 PUT /Photos(1)/SampleModel.Photo/Thumbnail HTTP/1.1

 Host: host

 Content-Type: application/png

 DataServiceVersion: 1.0

 MaxDataServiceVersion: 3.0

 If-Match: ...ETag...

 Content-Length: ####

 ...binary data for the png thumbnail ...

HTTP Response:

http://go.microsoft.com/fwlink/?linkid=90372

298 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 HTTP/1.1 204 No Content

 Date: Fri, 11 Oct 2008 04:23:49 GMT

 DataServiceVersion: 1.0

4.7.3 Unsupported Operations

4.7.3.1 Inserting a New Named Resource Stream Instance

There is no direct way to insert a named resource stream instance.

Instead, a named resource stream instance MUST come into existence when the owning EntityType
instance is created.

Clients may attempt to retrieve a named resource stream instance (section 4.7.2) immediately after
creating the containing EntityType instance.

Servers may choose to initialize the named resource stream to a nonempty value when the

containing EntityType instance is created. However, it is likely that the named resource stream
instance will be empty immediately after creating the EntityType instance.

4.7.3.2 Deleting a New Named Resource Stream Instance

There is no direct way to delete a named resource stream instance.

Instead, you can update the named resource stream instance by using its edit link so that it
contains an empty stream. Or, you can delete the containing EntityType instance.

4.8 Invoking an Action

To invoke an action, a client MUST send an HTTP POST request to the URL that represents the
action. Binding allows a client to send a POST request to a URL that represents the action with the

binding parameter that is already provided.

In the following example, the binding parameter (called “Customer”; see section 6) to the
CreateOrder action is the resource identified by the URL preceding the fully-qualified action name.

The remaining parameters are specified in the body according to the rules specified in section
2.2.7.5.1.

Additionally, in the following request, the client optionally included an ETag for the Customer’s
('ALFKI') entity. As a result, the server MUST process the Invoke Action request only if the ETag
identifies the most up-to-date version of the entity.

HTTP Request:

 POST /Customers('ALFKI')/SampleEntities.CreateOrder HTTP/1.1

 Host: host

 Content-Type: application/json;odata=verbose

 DataServiceVersion: 3.0

 MaxDataServiceVersion: 3.0

 If-Match: ...ETag...

 Content-Length: ####

 {

 "quantity": 2,

%5bMC-CSDL%5d.pdf

299 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 "discountCode": "BLACKFRIDAY"

 }

HTTP Response:

 HTTP/1.1 204 OK

 Date: Fri, 11 Oct 2008 04:23:49 GMT

Notice in this example that because the CreateOrder action has no ReturnType, the response code is

204 (No Content).

4.9 Invoking a Function

To invoke a function, a client sends an HTTP GET request to the URL that represents the function.

Binding allows the client to send the GET request to a URL that represents the function with the

binding parameter that is already specified.

In the following example, the binding parameter (called “Customer”; see section 6) to the
HasOrderFor function is the resource identified by the URL preceding the fully-qualified function
name. In this example, the remaining parameters (productType) are specified in the query string
according to the rules specified in section 2.2.7.5.2.

In this example, the request asked for a response formatted in Verbose JSON, so the Boolean return
value for this function is returned in a standard OData Verbose JSON response, with a name/value
pair, where the name is the name of the function and value is returnType serialized in OData
Verbose JSON format.

HTTP Request:

 GET /Customers('ALFKI')/SampleEntities.HasOrderFor?productType='luxury goods' HTTP/1.1

 Host: host

 Accept: application/json;odata=verbose

 DataServiceVersion: 3.0

 MaxDataServiceVersion: 3.0

HTTP Response:

 HTTP/1.1 200 OK

 Date: Fri, 11 Oct 2008 04:23:49 GMT

 DataServiceVersion: 3.0

 {

 "d" : {

 "HasOrderFor": true

 }

 }

300 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 Security

5.1 Security Considerations for Implementers

Implementers of the protocol defined in this document should review sections 14 and 15 of

[RFC5023], which outline security considerations for the Atom Publishing Protocol. Such
considerations apply directly to the protocol defined in this document.

5.2 Index of Security Parameters

None.

http://go.microsoft.com/fwlink/?LinkId=140880

301 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 Appendix A: Sample Entity Data Model and CSDL Document

An Entity Data Model conceptual schema, as specified in [MC-CSDL], is an XML document written
with the conceptual schema definition language (CSDL), which describes entities and the
associations between entities.

The following example conceptual schema definition language (CSDL) document defines seven
EntityTypes (Customer, Order, OrdersLine, Employee, Document, Company, and Photo), each with
Primitive type properties and some with NavigationProperties (which refer to the associations
between the entities and NamedStream properties). In the example conceptual schema definition

language (CSDL) document, a 1-to-many association exists between Customer and Order entities
and a 1-to-many association exists between Order and OrderLine entities.

The conceptual schema definition language (CSDL) document also defines a single FunctionImport,
as described in [MC-CSDL], named "CustomersByCity", which returns a collection of Customer
EntityType instances in a particular city.

All examples in this document use the conceptual schema definition language (CSDL) and sample
data set defined below.

Sample Data:

A Customer EntityType instance exists with EntityKey value ALFKI.

A total of 91 Customer EntityType instances exist.

An Employee EntityType instance exists with EntityKey value 1.

Two Order EntityType instances exist, one with EntityKey value 1 and the other with

EntityKey value 2. Order 1 and 2 are associated with Customer ALFKI.

Two OrderLine EntityType instances exist, one with EntityKey value 100 and the other

with EntityKey value 200. OrderLine 100 is associated with Order 1 and OrderLine 200
with Order 2.

Two Document EntityType instances exist, one with EntityKey value 300 and the other

with EntityKey value 301.

URI: The scheme and Service Root for this sample is http://host/service.svc.

Valid URIs that identify resources described using the conceptual schema definition language
(CSDL) below are:

All Customers:

http://host/service.svc/Customers

Customer with key "ALFKI":

http://host/service.svc/Customers('ALFKI')

Orders for the Customer with key "ALFKI":

http://host/service.svc/Customers('ALFKI')/Orders

%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

302 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

OrderLines for Order 1 associated with Customer ALFKI:

http://host/service.svc/Customers('ALFKI')/Orders(1)/OrderLines

The metadata document CSDL for the service:

http://host/service.svc/$metadata

The rules for constructing URIs which address aspects of an Entity Data Model are defined in
Abstract Type System (section 2.2.2).

CSDL Document:

Note The conceptual schema definition language (CSDL) document below is shown within an
<edmx:DataServices> element, as specified in [MC-EDMX].

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<edmx:Edmx Version="1.0"

 xmlns:edmx="http://schemas.microsoft.com/ado/2010/02/edmx"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">

<edmx:DataServices m:DataServiceVersion="3.0">

 <Schema Namespace="SampleModel"

 xmlns="http://schemas.microsoft.com/ado/2006/04/edm">

 <EntityContainer Name="SampleEntities"

 m:IsDefaultEntityContainer="true">

 <EntitySet Name="Customers" EntityType="SampleModel.Customer" />

 <EntitySet Name="Orders" EntityType="SampleModel.Order" />

 <EntitySet Name="OrderLines" EntityType="SampleModel.OrderLine" />

 <EntitySet Name="Employees" EntityType="SampleModel.Employee" />

 <EntitySet Name="Documents" EntityType="SampleModel.Document" />

 <EntitySet Name="Companies" EntityType="SampleModel.Company" />

 <EntitySet Name="Photos" EntityType="SampleModel.Photo" />

 <AssociationSet Name="Orders_Customers"

 Association="SampleModel.Orders_Customers">

 <End Role="Customers" EntitySet="Customers" />

 <End Role="Orders" EntitySet="Orders" />

 </AssociationSet>

 <AssociationSet Name="OrderLines_Orders"

 Association="SampleModel.OrderLines_Orders">

 <End Role="OrderLine" EntitySet="OrderLines" />

 <End Role="Order" EntitySet="Orders" />

 </AssociationSet>

 <!-- Service Operation -->

 <FunctionImport Name="CustomersByCity"

 EntitySet="Customers"

 ReturnType="Collection(SampleModel.Customer)"

 m:HttpMethod="GET">

 <Parameter Name="city" Type="Edm.String" Mode="In" />

 </FunctionImport>

 <!-- Functions -->

 <FunctionImport Name="GetRelatedCustomers"

 EntitySet="Customers"

 IsBindable="true"

%5bMC-EDMX%5d.pdf

303 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 ReturnType="Collection(SampleModel.Customer)"

 IsSideEffecting="false">

 <Parameter Name="company" Type="SampleModel.Company" Mode="In" />

 </FunctionImport>

 <FunctionImport Name="TopTenCustomers"

 EntitySet="Customers"

 IsBindable="true"

 ReturnType="Collection(SampleModel.Customer)"

 IsSideEffecting="false">

 <Parameter Name="customers" Type="Collection(SampleModel.Customer)" Mode="In" />

 </FunctionImport>

 <FunctionImport Name="Best"

 EntitySet="Customers"

 IsBindable="true"

 ReturnType="SampleModel.Customer"

 IsSideEffecting="false"

 m:IsAlwaysBindable="false">

 <Parameter Name="customers" Type="Collection(SampleModel.Customer)" Mode="In" />

 </FunctionImport>

 <FunctionImport Name="TopTenOrders"

 EntitySet="Orders"

 IsBindable="true"

 ReturnType="Collection(SampleModel.Order)"

 IsSideEffecting="false">

 <Parameter Name="customer" Type="SampleModel.Customer" Mode="In" />

 </FunctionImport>

 <FunctionImport Name="TopTenCustomersInCity"

 EntitySet="Customers"

 IsBindable="true"

 ReturnType="Collection(SampleModel.Customer)"

 IsSideEffecting="false">

 <Parameter Name="city" Type="Edm.String" Mode="In" />

 </FunctionImport>

 <FunctionImport Name="HasOrderFor"

 IsBindable="true"

 ReturnType="Edm.Boolean"

 IsSideEffecting="false">

 <Parameter Name="customer" Type="SampleModel.Customer" Mode="In" />

 <Parameter Name="productType" Type="Edm.String" Mode="In" />

 </FunctionImport>

 <!-- Actions -->

 <FunctionImport Name="CreateOrder"

 EntitySet="Orders"

 IsBindable="true"

 IsSideEffecting="true"

 m:IsAlwaysBindable="true">

 <Parameter Name="customer" Type="SampleModel.Customer" Mode="In" />

 <Parameter Name="quantity" Type="Edm.Int32" Mode="In" />

 <Parameter Name="discountCode" Type="Edm.String" Mode="In" />

 </FunctionImport>

 <FunctionImport Name="Audit"

304 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 IsBindable="true"

 IsSideEffecting="true">

 <Parameter Name="company" Type="SampleModel.Company" Mode="In" />

 </FunctionImport>

 </EntityContainer>

 <EntityType Name="Order">

 <Key>

 <PropertyRef Name="OrderID" />

 </Key>

 <Property Name="OrderID" Type="Edm.Int32" Nullable="false" />

 <Property Name="ShippedDate" Type="Edm.DateTime" Nullable="true"

 DateTimeKind="Unspecified" PreserveSeconds="true" />

 <NavigationProperty Name="Customer"

 Relationship="SampleModel.Orders_Customers"

 FromRole="Order" ToRole="Customer" />

 <NavigationProperty Name="OrderLines"

 Relationship="SampleModel.OrderLines_Orders"

 FromRole="Order" ToRole="OrderLine" />

 </EntityType>

 <EntityType Name="OrderLine">

 <Key>

 <PropertyRef Name="OrderLineID" />

 </Key>

 <Property Name="OrderLineID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Quantity" Type="Edm.Int32" Nullable="false" />

 <Property Name="UnitPrice" Type="Edm.Decimal" Nullable="false" />

 <NavigationProperty Name="Order"

 Relationship="SampleModel.OrderLines_Orders"

 FromRole="OrderLine" ToRole="Order" />

 </EntityType>

 <EntityType Name="Customer">

 <Key>

 <PropertyRef Name="CustomerID" />

 </Key>

 <Property Name="CustomerID" Type="Edm.String" Nullable="false"

 MaxLength="5" Unicode="true" FixedLength="true" />

 <Property Name="CompanyName" Type="Edm.String" Nullable="false"

 MaxLength="40" Unicode="true" FixedLength="false" />

 <Property Name="Address" Type="Sample.CAddress" Nullable="true" />

 <Property Name="Version" Type="Edm.Binary" Nullable="true" MaxLength="8"

 FixedLength="true" ConcurrencyMode="Fixed" />

 <Property Name="EmailAddresses" Type="Collection" Nullable="false">

 <TypeRef Type ="Edm.String” Nullable="false"/>

 </Property>

 <Property Name="AlternateAddresses" Type="Collection" Nullable="false">

 <TypeRef Type ="SampleModel.Address” Nullable="false"/>

 </Property>

 <NavigationProperty Name="Orders"

 Relationship="NorthwindModel.Orders_Customers"

 FromRole="Customer" ToRole="Order" />

 </EntityType>

<EntityType Name="VipCustomer" baseType="SampleModel.Customer"

 m:HasStream="true" >

305 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <Property Name="CreditPurchases" Type="SampleModel.CustomerCredit.Int32"

Nullable="false"/>

 <Property Name="Logo" Type="Edm.Stream" />

 <Property Name="CountriesOfOperation" Type="Collection" Nullable="false">

 <TypeRef Type ="Edm.String” Nullable="false"/>

 </Property>

 <NavigationProperty Name="InHouseStaff"

 Relationship="NorthwindModel.Employee_VipCustomer"

 FromRole="VipCustomer" ToRole="Employee" />

 </EntityType>

 <EntityType Name="GovernmentOrder" baseType="SampleModel.Order" >

 <Property Name="Country" Type="SampleModel.String" Nullable="false"/>

 </EntityType>

<!—- The Employee EntityType has Web Customizable Feed property mappings that are supported

only in OData 2.0 and OData 3.0 -->

 <EntityType Name="Employee" m:FC_KeepInContent="true"

 m:FC_TargetPath="Location" m:FC_SourcePath="Address/City"

 m:FC_NsUri="http://www.microsoft.com" m:FC_NsPrefix="emp">

 <Key>

 <PropertyRef Name="EmployeeID" />

 </Key>

 <Property Name="EmployeeID" Type="Edm.String" Nullable="false"

 MaxLength="5" Unicode="true" FixedLength="true" />

 <Property Name="EmployeeName" Type="Edm.String" Nullable="false"

 MaxLength="40" Unicode="true" FixedLength="false"

 m:FC_KeepInContent="false"

 m:FC_TargetPath="SyndicationTitle"/>

 <Property Name="Address" Type="Sample.EAddress" Nullable="true" />

 <Property Name="Version" Type="Edm.Binary" Nullable="true" MaxLength="8"

 FixedLength="true" ConcurrencyMode="Fixed" />

 </EntityType>

 <EntityType Name="Document" m:HasStream="true">

 <Key>

 <PropertyRef Name="DocumentID" />

 </Key>

 <Property Name="DocumentID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Title" Type="Edm.String" Unicode="true" />

 <Property Name="Author" Type="Edm.String" Unicode="true" />

 </EntityType>

 <EntityType Name="Company">

 <Key>

 <PropertyRef Name="CompanyID" />

 </Key>

 <Property Name="CompanyID" Type="Edm.String" Nullable="false"

 MaxLength="5" Unicode="true" FixedLength="true" />

 <Property Name="CompanySize" Type="Edm.String" Nullable="true"/>

 </EntityType>

 <ComplexType Name="Address" BaseType="SampleModel.EAddress">

 <Property Name="Apartment" Type="Edm.Int"/> </ComplexType>

 <EntityType Name="Photo" m:HasStream=”true”>

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Edm.Int32" Nullable="false" />

 <Property Name="Name" Type="Edm.String" Nullable="true" />

 <Property Name="Thumbnail" Type="Edm.Stream" />

306 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <Property Name="PrintReady" Type="Edm.Stream" />

 </EntityType>

 <ComplexType Name="EAddress">

 <Property Name="Street" Type="Edm.String" Unicode="true" />

 <Property Name="City" Type="Edm.String" Unicode="true"/>

 </ComplexType>

 <ComplexType Name="CAddress">

 <Property Name="Street" Type="Edm.String" Unicode="true" />

 <Property Name="City" Type="Edm.String" Unicode="true"/>

 <Property Name="Location" Type="Edm.GeographyPoint" SRID="4326"/>

 </ComplexType>

 <ComplexType Name="CustomerCredit">

 <Property Name="CreditLimit" Type="Edm.Int32" />

 <Property Name="Balance" Type="Edm.Int32" />

 </ComplexType>

 <Association Name="Orders_Customers">

 <End Role="Customer" Type="SampleModel.Customer"

 Multiplicity="0..1" />

 <End Role="Order" Type="SampleModel.Order" Multiplicity="*" />

 </Association>

 <Association Name="OrderLines_Orders">

 <End Role="Order" Type="SampleModel.OrderLine"

 Multiplicity="*" />

 <End Role="OrderLine" Type="SampleModel.Order" Multiplicity="0..1" />

 </Association>

 </Schema>

 </edmx:DataServices>

</edmx:Edmx>

307 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

7 Appendix B: Product Behavior

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see .NET Framework.

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft .NET Framework 3.5 Service Pack 1 (SP1)

Microsoft .NET Framework 4.0

Microsoft .NET Framework 4.5

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.7: The following table describes, as specified in this document, which versions of the
OData protocol are supported by which versions of .NET Framework.

.NET

Framework

3.5 SP1

Data Services

Update for .NET

Framework 3.5

SP1, KB # 976127

.NET

Framework

4.0

.NET

Framework

4.5

WCF Data

Services 5* for

.NET Framework

4.0/4.5

OData

1.0

x x x x x

OData

2.0

 x x x x

OData

3.0

 x

*WCF Data Services 5 includes WCF Data Services Server, WCF Data Services Client, and ODataLib.

<2> Section 2.2.3.4: The data service client library always appends parentheses after EntitySet
names. The data service server library accepts EntitySet names appended with parentheses, but
never generates such URIs in response payloads or HTTP response headers.

<3> Section 2.2.3.4: The data service client and server libraries generate key predicates of the

form "<Entity Type property name> = <Entity Type property value>" in the case where multiple
properties form the key. Otherwise, the canonical form for a single property EntityKey, as seen in
section 2.2.3.4, is used.

<4> Section 2.2.3.5: The data service client library always appends parentheses after EntitySet
names or NavigationProperty names identifying a collection of entities. The data service server
library accepts EntitySet names and NavigationProperty names that identify a collection of entities

%5bMS-GLOS%5d.pdf
%5bMC-CSDL%5d.pdf
%5bMC-CSDL%5d.pdf

308 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

appended with parentheses, but never generates such URIs in response payloads or HTTP response
headers.

<5> Section 2.2.3.6: The data service client library always generates a single system query option
of a particular type. For example, if a complex filter expression is defined, a single $filter system

query option (section 2.2.3.6.1.4) will be present.

<6> Section 2.2.3.6.1: The data service client library and server libraries support all system query
options except the $format option, as specified in Format System Query Option ($format) (section
2.2.3.6.1.5). No support is provided in .NET Framework 3.5 SP1 for $skiptoken, as specified in
Skip Token System Query Option ($skiptoken) (section 2.2.3.6.1.9); $inlinecount, as specified in
InlineCount System Query Option ($inlinecount) (section 2.2.3.6.1.10); or $select, as specified in
Select System Query Option ($select) (section 2.2.3.6.1.11).

<7> Section 2.2.3.6.1.1: The data service server library supports all of the expressions.

<8> Section 2.2.3.6.1.1: The data service server library supports all of the expressions.

<9> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<10> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<11> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<12> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<13> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<14> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<15> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<16> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<17> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<18> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<19> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<20> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<21> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<22> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<23> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<24> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<25> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<26> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<27> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<28> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<29> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

309 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<30> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<31> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<32> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<33> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<34> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<35> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<36> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<37> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<38> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<39> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<40> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<41> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<42> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<43> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<44> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<45> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<46> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<47> Section 2.2.3.6.1.1.1: The data service server library supports all of the expressions.

<48> Section 2.2.3.6.1.1.1: The data service server library supports all of the allowable
expressions.

<49> Section 2.2.3.6.1.1.2: The data service server library supports all of the expressions.

<50> Section 2.2.3.6.1.1.5: The data service library in the .NET Framework will not return null as a
result of a logical operator if an operand is also null.

<51> Section 2.2.3.7.2: The data service server library includes the mimeType attribute only if the

developer who authors the service explicitly defines a media type for the property. By default, the
mimeType attribute is not included on the definition of a property.

<52> Section 2.2.5.4: In the data service server library the default behavior is that each
EntityType does not define a concurrency token. Definition of a concurrency token requires an
explicit step by the developer who authors the data service that uses the server library.

<53> Section 2.2.5.5: The data service client library includes the If-Match header only if the
EntityType associated with the request defines a concurrency token.

<54> Section 2.2.5.5: The data service client library includes the If-Match header only if the
EntityType associated with the request defines a concurrency token.

%5bMC-CSDL%5d.pdf

310 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<55> Section 2.2.5.6: The data service client library includes the If-None-Match header only if the
EntityType associated with the request defines a concurrency token.

<56> Section 2.2.5.6: The data service client library includes the If-None-Match header only if the
EntityType associated with the request defines a concurrency token.

<57> Section 2.2.5.8: The data service client library and server library support verb tunneling.

<58> Section 2.2.6.2: The data service client library and server library use only the request and
response messages that are defined in this document.

<59> Section 2.2.6.2.2: The data service libraries do not write the m:properties element if it is
empty.

<60> Section 2.2.6.2.2: The data service client library and server library do not generate or parse
self links.

<61> Section 2.2.6.3: The data service client library and server library in the .NET Framework

support the Verbose JSON format in OData 1.0, OData 2.0, and OData 3.0.

<62> Section 2.2.6.3: The data service client library and server library in the .NET Framework
support the preferred OData 3.0 JSON format only in OData 3.0.

<63> Section 2.2.6.3.3: The data service server library generates and parses the "__metadata"
name/value pair.

<64> Section 2.2.6.4.1: The data service server library alters the media type associated with an
EntityType property only if the developer who authors the service explicitly defines a media type
for the property.

<65> Section 2.2.6.6: The data service client library and server library in the .NET Framework
support the preferred OData 3.0 JSON format only in OData 3.0.

<66> Section 2.2.7.4.1: By default, the server library does not cause any additional side effects on

the data model. Lower or higher layers may cause side effects.

<67> Section 2.2.7.6: The data service server library does implement Batch request

<68> Section 2.2.7.6: The data service client library does not support creating a Batch request that
includes both a query operation and a change set.

<69> Section 3.2.5.1: The data service libraries do not implement any access control policies. Such
policies may be applied by a higher or lower layer.

<70> Section 3.2.5.2: By default, the server library does not cause any additional side effects on
the data model. Lower or higher layers may cause side effects.

<71> Section 3.2.5.3: The data service server library in the .NET Framework will return a 500
response code instead of a 4xx response if an Insert request is received with an empty value for a
data service resource and the type of that resource does not permit an empty value.

<72> Section 3.2.5.3.1: By default, the data service client library does not omit any constructs.

<73> Section 3.2.5.5: The server library returns a 500 response code rather than the required 4xx
response code when an Update request is received that would set the value of a resource to empty

when the type of that resource does not define an empty state.

%5bMC-CSDL%5d.pdf

311 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<74> Section 3.2.8: The data service server library in the .NET Framework will return an empty
collection of entities with a 200 response code instead of a 404 response code if the last URI path

segment in the request URI is a NavigationProperty name that identifies a collection of entities.

%5bMC-CSDL%5d.pdf

312 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

8 Change Tracking

This section identifies changes that were made to the [MS-ODATA] protocol document between the
February 2014 and May 2014 releases. Changes are classified as New, Major, Minor, Editorial, or No
change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are
updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed.
Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor
editorial and formatting changes may have been made, but the technical content of the document is
identical to the last released version.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

313 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

1.2.1

Normative References

Removed reference [OGC-GMLSFP/2.0]. Y Content

updated.

1.7

Versioning and Capability

Negotiation

1811475

Removed information from the product behavior

note about .NET Framework 3.0 and added

information about .NET Framework 4.5.

Y Content

updated.

2.2.3.6.1

System Query Options

1811413

Added information about which system query

options may be used with URI19 through URI28.

Y Content

updated.

2.2.3.6.1.1.1

Expression Construction

and Evaluation Rules

1811417

Added term and definition for

getTotalOffsetMinutesMethodCallExpression,

lambdaMethodCallExpression,

functionParametersExpression,

functionParameterExpression, structuralValue, and

entityReference.

Y Content

updated.

2.2.3.7.2.1

Conceptual Schema

Definition Language

Document Extensions for

Customizable Feeds

1811425

Identified content as being applicable to OData 3.0.

Y Content

updated.

2.2.6.2.2

Entity Type (as an Atom

Entry Element)

1811436

Changed "collection TypeComplexType" to

"Collection type".

Y Content

updated.

2.2.6.3.2

Entity Set (as a Verbose

JSON Array)

1811446

Clarified which grammar rule defines which OData

Verbose JSON representation for request and

response payloads.

Y Content

updated.

2.2.6.3.5

Collection of Complex Type

Instances

1811446

Clarified which grammar rule defines which OData

Verbose JSON representation for request and

response payloads.

Y Content

updated.

mailto:dochelp@microsoft.com

314 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

2.2.6.3.7

Collection of

EDMSimpleType Values

1811446

Clarified which grammar rule defines which OData

Verbose JSON representation for request and

response payloads.

Y Content

updated.

2.2.6.3.8

EDMSimpleType Property

1811446

Clarified which grammar rule defines which OData

Verbose JSON representation for request and

response payloads.

Y Content

updated.

2.2.6.3.10

Links

1811456

Clarified which grammar rule defines which OData

Verbose JSON representation for request and

response payloads.

Y Content

updated.

2.2.7.3.4

UpdateCollectionProperty

Request

1811465

Changed "updateCT" to "updateCollection" in

schema.

Y Content

updated.

315 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

9 Index

A

A single entity exposing a function by using the
Verbose JSON format
retrieving count 287

A single entity exposing an action by using the
AtomPub format
retrieving count 284

A single entity exposing an action by using the
Verbose JSON format
retrieving count 285

A single entity exposing function by using the
AtomPub format
retrieving count 286

Abstract data model
actions 29
client 244
functions 30
message syntax 27
named resource stream instances 28
named resource streams 28
server 250
service operations 31

Abstract type system 33
Accept HTTP header field

application/atom+xml 125
application/json 125
application/json;odata=verbose 125
overview 123

Actions
abstract data model 29

Annotations (section 2.2.6.2.12 153, section
2.2.6.3.16 183)
AtomPub format 179
Verbose JSON format 183

Applicability 17
AtomPub format

additional representations 150
annotations 179

collection of entities with Inline Count 268
collection of entities with named resource

streams 271
collection property 150
Complex Type property 146
deferred content

inline representation 147
overview 146

EDMSimpleType property 146
Entity Set element 136
Entity Type element 140
links and subtypes 153
merge-based update 290
named resource streams 151
navigation property 146
overview 135
replace-based update 288
retrieving collection of entities 262

retrieving single entity (section 4.2.1.3 265,
section 4.2.2 274)

retrieving single entity and related entities 277
retrieving single entity with a mapped property

275
service document 149
updating relationship 293

B

Batch request
Change Set syntax 232
example (section 2.2.7.6.5 235, section 4.5 294)
example response (section 2.2.7.6.8 238, section

4.5 294)
executing received 258
HTTP request restrictions 233
overview 231
Query Operation syntax 233
response syntax 237
responses 236
syntax 234

C

Canonical URIs 121
Capability negotiation 17
Change Set syntax

overview 232
referencing requests 233

Change tracking 312
Client

abstract data model 244
higher-layer triggered events

common rules for all requests 244
overview 244
request to delete resources 247

request to insert resources 244
request to invoke a function 249
request to invoke an action 248
request to invoke service operation 248
request to retrieve resources 245
request to send batch of operations 248
request to update resources 246

initialization 244
local events 250
message processing

receiving responses to data service requests
249

receiving responses to insert requests 250
sequencing rules

receiving responses to data service requests
249

receiving responses to insert requests 250
timer events 250
timers 244

Collection of entities
retrieving count 284

316 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Collection property
AtomPub format 150

Common expression syntax
binary numeric promotions 94
construction and evaluation 70
lifted operators 95
numeric promotions for method call parameters

96
operator precedence 93
overview 64
unary numeric promotions 94

Complex Type property
AtomPub format 146
Verbose JSON format 172
XML format 184

Construction rules 48
Containment

abstract data model 31
Content-Type HTTP header field 125
CSDL document 301

D

Data model
abstract

client 244
message syntax 27
server 250

sample Entity 301
Data service metadata

Conceptual Schema Definition Language
document for data services 113

service document 113
Data service request

receiving responses to 249
rules for receiving 251

Dataserviceid HTTP header field
overview 131

DataServiceVersion HTTP header field 126
Delete request types

DeleteEntity 224
DeleteLink 225
DeleteValue 226
executing received request 258
rules for executing received request 252
sending request 247

E

EDMSimpleType property
AtomPub format 146
raw format 183
Verbose JSON format 175
XML format 184

Entity data model 301
Entity Set element (section 2.2.6.2.1.2 138, section

2.2.6.2.1.3 139)
AtomPub format 136
Verbose JSON format 162

Entity type 144
Entity Type element

AtomPub format 140

Verbose JSON format 166
ETag HTTP header field 126
Examples

inserting new entity 262
invoking a function 299
invoking an action 298
overview 262
retrieving resources

a single entity exposing a function by using the
AtomPub format 286

a single entity exposing a function by using the
Verbose JSON format 287

a single entity exposing an action by using the
AtomPub format 284

a single entity exposing an action by using the
Verbose JSON format 285

collection of entities 262
collection of entities with Inline Count by using

AtomPub format 268
collection of entities with Inline Count by using

Verbose JSON format 269
collection of entities with named resource

streams by using AtomPub format 271

collection of entities with named resource
streams by using Verbose JSON format 273

data service's metadata document 281
partial collection of entities by using Verbose

JSON format 266
single entity and related entities by using

AtomPub format 277
single entity and related entities by using

Verbose JSON format 279
single entity by using AtomPub format (section

4.2.1.3 265, section 4.2.2 274)
single entity by using Verbose JSON format 276
single entity with a mapped property by using

AtomPub format 275
the count of collection of entities 284

updating existing entity
merge-based update by using Verbose JSON

format 292
merge-based update using AtomPub format

290
replace-based update by using AtomPub format

288
replace-based update by using Verbose JSON

format 289
updating relationship between two entities

by using Verbose JSON format 293
deleting existing entity 294
using AtomPub format 293

F

Fields - vendor-extensible 25
Functions

abstract data model 30

G

Glossary 11

317 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

H

Higher-layer triggered events
client

common rules for all requests 244
overview 244
request to delete resources 247
request to insert resources 244
request to invoke a function 249
request to invoke an action 248
request to invoke service operation 248
request to retrieve resources 245
request to send batch of operations 248
request to update resources 246

server 251
HTTP header fields

Accept 123
Content-Type 125

dataserviceid 131
DataServiceVersion 126
ETag 126
If-Match 128
If-None-Match 128
MaxDataServiceVersion 129
overview 123
prefer 130
preference-applied 131
X-HTTP-Method 129

HTTP methods
MERGE 122
overview 122
PATCH 122

HTTP request restrictions 233

I

If-Match HTTP header field 128
If-None-Match HTTP header field 128
Implementer - security considerations 300
Index of security parameters 300
Informative references 15
Initialization

client 244
server 251

Insert examples 262
Insert request types

InsertEntity
examples 190
executing received request 253
overview 188
sending request 245

InsertLink
executing received request 254
overview 196
sending request 245

overview 188
receiving responses to requests 250
rules for executing received request (section

3.2.5.2 252, section 3.2.5.3 253)
UpdateEntity - executing received request 257

Introduction 11

Invoke Action request
executing received 259

Invoke Function request
executing received 259

Invoke request
executing received 258
overview 227

Invoke request types
action 229
Function 230

Invoking a function example 299
Invoking an action example 298

L

Links and subtypes
AtomPub format 153

Local events
client 250

server 260

M

MaxDataServiceVersion HTTP header field 129
Media resource

insert new 295
query existing 296
update 295

MERGE HTTP method 122
Message processing

client
receiving responses to data service requests

249
receiving responses to insert requests 250

server
executing received Batch request 258
executing received data service request 252
executing received Delete request 258
executing received Insert request 253
executing received Invoke Action request 259
executing received Invoke Function request

259
executing received Invoke request 258
executing received Retrieve request 254
executing received Update request 256
rules for receiving data service requests 251

Messages
syntax

abstract data model 27
abstract type system 33
common payload 132
HTTP header fields 123
HTTP methods 122
overview 26
request types 187
resource addressing rules 41
response types 241

transport 26

N

Named resource stream instance

318 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

retrieve 296
update 297

Named resource stream instances 28
Named resource streams 28

AtomPub format 151
Navigation property

AtomPub format 146
Verbose JSON format 174

Normative references 13
Numeric promotions

binary 94
for method call parameters 96
unary 94

O

Overview (synopsis) 15

P

Parameters - security index 300
PATCH HTTP method 122
Payload syntax

AtomPub format 135
common serialization rules for XML-based

formats 132
overview 132
raw format 183
Verbose JSON format 156
XML format 183

Preconditions 17
Prefer HTTP header field

overview 130
Preference-applied HTTP header field

overview 131
Prerequisites 17
Product behavior 307

Q

Query Operation syntax 233
Query options

custom 110
overview 61
service operation parameters 110
system

common expression syntax 64
evaluating 99
expanding 100
filter 101
format 102
OrderBy 102
overview 61
skip 103
top 104

R

Raw format
EDMSimpleType property 183
overview 183

References

informative 15
normative 13

Relationship to other protocols 16
Request types

Batch 231
delete 224
insert 188
Invoke 227
overview 187
retrieve 199
tunneled 241
update 212

Requests - client
common rules 244
deleting resources

common rules for sending all Delete requests
247

overview 247
inserting resources

overview 244
sending InsertEntity request 245
sending InsertLink request 245

invoking a function 249

invoking an action 248
invoking service operation 248
retrieving resources

common rules for sending Retrieve requests
246

overview 245
sending batch of operations 248
updating resources

common rules for sending Update requests 246
overview 246

Resource addressing rules
canonical URIs 121
data service metadata 113
overview 41
query options 61
resource path 48
service root 48
URI equivalence 121
URI syntax 42

Resource path 48
Response codes 260
Response types - error

overview 241
Verbose JSON 243
XML 242

Retrieve request examples
a single entity exposing a function by using the

AtomPub format 286
a single entity exposing a function by using the

Verbose JSON format 287
a single entity exposing an action by using the

AtomPub format 284
a single entity exposing an action by using the

Verbose JSON format 285
collection of entities with Inline Count by using

AtomPub format 268
collection of entities with Inline Count by using

Verbose JSON format 269

319 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

collection of entities with named resource
streams by using AtomPub format 271

collection of entities with named resource
streams by using Verbose JSON format 273

partial collection of entities by using Verbose
JSON format 266

retrieving collection of entities
by using AtomPub format 262
by using Verbose JSON format 264

retrieving data service's metadata document 281
retrieving single entity and related entities by

using AtomPub format 277
retrieving single entity and related entities by

using Verbose JSON format 279
single entity by using AtomPub format (section

4.2.1.3 265, section 4.2.2 274)
single entity by using Verbose JSON format 276
single entity with a mapped property by using

AtomPub format 275
the count of collection of entities 284

Retrieve request types
executing received request

overview 254

RetrieveValue 255
RetrieveCollectionProperty 205
RetrieveComplexType 202
RetrieveEntity 200
RetrieveEntitySet 199
RetrieveLink 209
RetrievePrimitiveProperty 203
RetrieveServiceDocument 208
RetrieveServiceMetadata 207
RetrieveValue 204
sending request 246

S

Security
parameter index 300

Security - implementer considerations 300
Semantics 52
Sequencing rules

client
receiving responses to data service requests

249
receiving responses to insert requests 250

server
executing received Batch request 258
executing received data service request 252
executing received Delete request 258
executing received Insert request 253
executing received Invoke Action request 259
executing received Invoke Function request

259
executing received Invoke request 258
executing received Retrieve request 254
executing received Update request 256
rules for receiving data service requests 251

Serialization rules
EDM constructs 157
XML formats 132

Server

abstract data model 250
higher-layer triggered events 251
initialization 251
local events 260
message processing

executing received Batch request 258
executing received data service request 252
executing received Delete request 258
executing received Insert request 253
executing received Invoke Action request 259
executing received Invoke Function request

259
executing received Invoke request 258
executing received Retrieve request 254
executing received Update request 256
rules for receiving data service requests 251

response codes 260
sequencing rules

executing received Batch request 258
executing received data service request 252
executing received Delete request 258
executing received Insert request 253
executing received Invoke Action request 259

executing received Invoke Function request
259

executing received Invoke request 258
executing received Retrieve request 254
executing received Update request 256
rules for receiving data service requests 251

timer events 260
timers 251

Service operations
abstract data model 31

Service root 48
Standards assignments 25
Syntax

abstract data model 27
abstract type system 33
common payload 132
HTTP header fields 123
HTTP methods 122
overview 26
request types 187
resource addressing rules 41
response types 241

T

Timer events
client 250
server 260

Timers
client 244
server 251

Tracking changes 312
Transport 26
Triggered events - higher-layer

client
common rules for all requests 244
overview 244
request to delete resources 247
request to insert resources 244

320 / 320

[MS-ODATA] — v20140502
 Open Data Protocol (OData)

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

request to invoke a function 249
request to invoke an action 248
request to invoke service operation 248
request to retrieve resources 245
request to send batch of operations 248
request to update resources 246

server 251
Tunneled request type 241

U

Update request examples
merge-based update by using Verbose JSON

format 292
merge-based update using AtomPub format 290
replace-based update by using AtomPub format

288
replace-based update by using Verbose JSON

format 289

Update request types
rules for executing received request (section

3.2.5.2 252, section 3.2.5.5 256)
sending request 246
UpdateComplexType 215
UpdateEntity

example 214
overview 212

UpdateLink 221
UpdatePrimitiveProperty 217
UpdateValue 220

Updating relationship examples
by using Verbose JSON format 293
deleting existing entity 294
using AtomPub format 293

URI format
canonical URIs 121
data service metadata 113
equivalence 121
overview 41
query options 61
resource path 48
service root 48
syntax 42

V

Vendor-extensible fields 25
Verbose JSON format

annotations 183
collection of Complex Type instances 173
collection of EDMSimpleType values 174
collection of entities with Inline Count 269
collection of entities with named resource

streams 273
collection property 180
common serialization rules for all EDM constructs

157
Complex Type property 172
deferred content

inline representation 176
overview 176

EDMSimpleType property 175

Entity Set element 162
Entity Type element 166
error response 243
links 178
links and subtypes 183
merge-based update 292
named resource streams 181
Navigation property 174
overview 156
replace-based update 289
retrieving collection of entities 264
retrieving partial collection of entities 266
retrieving single entity 276
retrieving single entity and related entities 279
service document 179
updating relationship 293

Versioning 17

X

X-HTTP-Method HTTP header field 129
XML format

collection of complex type 186
collection of Complex Type instances 184
collection of EDMSimpleType 187
collection of EDMSimpleType values 184
Complex Type property 184
EDMSimpleType property 184
error response 242
links 185
overview 183

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.7.1 OData 2.0 Version-Specific Summary
	1.7.2 OData 3.0 Version-Specific Summary

	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Abstract Data Model
	2.2.1.1 Named Resource Stream
	2.2.1.2 Named Resource Stream Instance
	2.2.1.3 Actions
	2.2.1.3.1 Action Metadata URL

	2.2.1.4 Functions
	2.2.1.4.1 Function Metadata URL

	2.2.1.5 Service Operations
	2.2.1.6 Containment

	2.2.2 Abstract Type System
	2.2.3 URI Format: Resource Addressing Rules
	2.2.3.1 URI Syntax
	2.2.3.2 Service Root (serviceRoot) and Path Prefix (pathPrefix)
	2.2.3.3 Resource Path (resourcePath)
	2.2.3.4 Resource Path: Construction Rules
	2.2.3.5 Resource Path: Semantics
	2.2.3.6 Query Options
	2.2.3.6.1 System Query Options
	2.2.3.6.1.1 Common Expression Syntax
	2.2.3.6.1.1.1 Expression Construction and Evaluation Rules
	2.2.3.6.1.1.2 Operator Precedence
	2.2.3.6.1.1.3 Unary Numeric Promotions
	2.2.3.6.1.1.4 Binary Numeric Promotions
	2.2.3.6.1.1.5 Lifted Operators
	2.2.3.6.1.1.6 Numeric Promotions for Method Call Parameters
	2.2.3.6.1.1.7 Geospatial Coordinate Transformations
	2.2.3.6.1.1.7.1 Coordinate Transformations Within a Topology
	2.2.3.6.1.1.7.2 Arbitrary Coordinate Transformations

	2.2.3.6.1.1.8 Geospatial Extension Methods
	2.2.3.6.1.1.8.1 Extending Type Support for Defined Functions
	2.2.3.6.1.1.8.2 Implementing One of the Functions Defined in [OGC-SFOLECOM]
	2.2.3.6.1.1.8.3 Arbitrary Extensions

	2.2.3.6.1.2 Evaluating System Query Options
	2.2.3.6.1.3 Expand System Query Option ($expand)
	2.2.3.6.1.4 Filter System Query Option ($filter)
	2.2.3.6.1.5 Format System Query Option ($format)
	2.2.3.6.1.6 OrderBy System Query Option ($orderby)
	2.2.3.6.1.7 Skip System Query Option ($skip)
	2.2.3.6.1.8 Top System Query Option ($top)
	2.2.3.6.1.9 Skip Token System Query Option ($skiptoken)
	2.2.3.6.1.10 InlineCount System Query Option ($inlinecount)
	2.2.3.6.1.11 Select System Query Option ($select)
	2.2.3.6.1.12 System Query Option: Additional Construction Rules

	2.2.3.6.2 Custom Query Options
	2.2.3.6.3 Service Operation Parameters
	2.2.3.6.4 Function Parameters
	2.2.3.6.5 Action Parameters

	2.2.3.7 Data Service Metadata
	2.2.3.7.1 Service Document
	2.2.3.7.2 Conceptual Schema Definition Language Document for Data Services
	2.2.3.7.2.1 Conceptual Schema Definition Language Document Extensions for Customizable Feeds

	2.2.3.8 URI Equivalence
	2.2.3.9 Canonical URIs

	2.2.4 HTTP Methods
	2.2.4.1 PATCH/MERGE

	2.2.5 HTTP Header Fields
	2.2.5.1 Accept
	2.2.5.1.1 application/atom+xml
	2.2.5.1.2 application/json
	2.2.5.1.3 application/json;odata=verbose

	2.2.5.2 Content-Type
	2.2.5.3 DataServiceVersion
	2.2.5.4 ETag
	2.2.5.5 If-Match
	2.2.5.6 If-None-Match
	2.2.5.7 MaxDataServiceVersion
	2.2.5.8 X-HTTP-Method
	2.2.5.9 Prefer
	2.2.5.10 Preference-Applied
	2.2.5.11 DataServiceId

	2.2.6 Common Payload Syntax
	2.2.6.1 Common Serialization Rules for XML-Based Formats
	2.2.6.2 AtomPub Format
	2.2.6.2.1 Entity Set (as an Atom Feed Element)
	2.2.6.2.1.1 InlineCount Representation (for Collections of Entities)
	2.2.6.2.1.2 Entity Set (as an Atom Feed Element) with Actions
	2.2.6.2.1.3 Entity Set (as an Atom Feed Element) with Functions

	2.2.6.2.2 Entity Type (as an Atom Entry Element)
	2.2.6.2.2.1 Entity Type (as an Atom Entry Element) with a Customizable Feed Property Mapping
	2.2.6.2.2.2 Entity Type (as an Atom Entry Element) with Actions
	2.2.6.2.2.3 Entity Type (as an Atom Entry Element) with Functions

	2.2.6.2.3 Complex Type
	2.2.6.2.4 Navigation Property
	2.2.6.2.5 EDMSimpleType Property
	2.2.6.2.6 Deferred Content
	2.2.6.2.6.1 Inline Representation

	2.2.6.2.7 Service Document
	2.2.6.2.8 Additional Representations
	2.2.6.2.9 Collection Property
	2.2.6.2.9.1 Collection Property of Complex Type
	2.2.6.2.9.2 Collection of EDMSimpleType

	2.2.6.2.10 Named Resource Streams
	2.2.6.2.11 Links and Subtypes
	2.2.6.2.12 Annotations

	2.2.6.3 Verbose JSON Format
	2.2.6.3.1 Common Verbose JSON Serialization Rules for All EDM Constructs
	2.2.6.3.1.1 Modifications to GeoJSON for Use in OData

	2.2.6.3.2 Entity Set (as a Verbose JSON Array)
	2.2.6.3.2.1 InlineCount Representation (for Collections of Entities)
	2.2.6.3.2.2 Entity Set (as a Verbose JSON Array) with Actions
	2.2.6.3.2.3 Entity Set (as a Verbose JSON Array) with Functions

	2.2.6.3.3 Entity Type (as a Verbose JSON Object)
	2.2.6.3.3.1 Entity Type (as a Verbose JSON Object) with Actions
	2.2.6.3.3.2 Entity Type (as a Verbose JSON Object) with Functions

	2.2.6.3.4 Complex Type
	2.2.6.3.5 Collection of Complex Type Instances
	2.2.6.3.6 Navigation Property
	2.2.6.3.7 Collection of EDMSimpleType Values
	2.2.6.3.8 EDMSimpleType Property
	2.2.6.3.9 Deferred Content
	2.2.6.3.9.1 Inline Representation

	2.2.6.3.10 Links
	2.2.6.3.11 InlineCount Representation (for Collections of Links)
	2.2.6.3.12 Service Document
	2.2.6.3.13 Collection Property
	2.2.6.3.14 Named Resource Streams
	2.2.6.3.15 Links and Subtypes
	2.2.6.3.16 Annotations

	2.2.6.4 Raw Format
	2.2.6.4.1 EDMSimpleType Property

	2.2.6.5 XML Format
	2.2.6.5.1 Complex Type
	2.2.6.5.2 Collection of Complex Type Instances
	2.2.6.5.3 EDMSimpleType Property
	2.2.6.5.4 Collection of EDMSimpleType Values
	2.2.6.5.5 Links
	2.2.6.5.5.1 InlineCount Representation (for Collections of Links)
	2.2.6.5.5.2 Next Page (for Collections of Links)

	2.2.6.5.6 Collection of Complex Type
	2.2.6.5.7 Collection of EDMSimpleType

	2.2.6.6 Preferred OData 3.0 JSON Format

	2.2.7 Request Types
	2.2.7.1 Insert Request Types
	2.2.7.1.1 InsertEntity Request
	2.2.7.1.1.1 Examples

	2.2.7.1.2 InsertLink Request
	2.2.7.1.3 InsertMediaResource Request

	2.2.7.2 Retrieve Request Types
	2.2.7.2.1 RetrieveEntitySet Request
	2.2.7.2.2 RetrieveEntity Request
	2.2.7.2.3 RetrieveComplexType Request
	2.2.7.2.4 RetrievePrimitiveProperty Request
	2.2.7.2.5 RetrieveValue Request
	2.2.7.2.6 RetrieveCollectionProperty Request
	2.2.7.2.7 RetrieveServiceMetadata Request
	2.2.7.2.8 RetrieveServiceDocument Request
	2.2.7.2.9 RetrieveLink Request
	2.2.7.2.10 RetrieveCount Request
	2.2.7.2.11 Retrieve Request Containing a Customizable Feed Mapping
	2.2.7.2.12 RetrieveMediaResource Request

	2.2.7.3 Update Request Types
	2.2.7.3.1 UpdateEntity Request
	2.2.7.3.1.1 Example

	2.2.7.3.2 UpdateComplexType Request
	2.2.7.3.3 UpdatePrimitiveProperty Request
	2.2.7.3.4 UpdateCollectionProperty Request
	2.2.7.3.5 UpdateValue Request
	2.2.7.3.6 UpdateLink Request
	2.2.7.3.7 UpdateMediaResource Request
	2.2.7.3.8 Update Request Containing a Customizable Feed Property Mapping

	2.2.7.4 Delete Request Types
	2.2.7.4.1 DeleteEntity Request
	2.2.7.4.2 DeleteLink Request
	2.2.7.4.3 DeleteValue Request

	2.2.7.5 Invoke Request Types
	2.2.7.5.1 Invoke Action Request
	2.2.7.5.2 Invoke Function Request

	2.2.7.6 Batch Request
	2.2.7.6.1 Change Set Syntax
	2.2.7.6.1.1 Referencing Requests in a Change Set

	2.2.7.6.2 Query Operation Syntax
	2.2.7.6.3 HTTP Request Restrictions
	2.2.7.6.4 Batch Request Syntax
	2.2.7.6.5 Example Batch Request
	2.2.7.6.6 Batch Responses
	2.2.7.6.7 Batch Response Syntax
	2.2.7.6.8 Example Batch Response

	2.2.7.7 Tunneled Requests

	2.2.8 Response Types
	2.2.8.1 Error Response
	2.2.8.1.1 XML Error Response
	2.2.8.1.2 Verbose JSON Error Response

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Common Rules for All Requests
	3.1.4.2 Request to Insert Resources
	3.1.4.2.1 Sending an InsertEntity Request
	3.1.4.2.2 Sending an InsertLink Request

	3.1.4.3 Request to Retrieve Resources
	3.1.4.3.1 Common Rules for Sending Retrieve Requests

	3.1.4.4 Request to Update Resources
	3.1.4.4.1 Common Rules for Sending Update Requests

	3.1.4.5 Request to Delete Resources
	3.1.4.5.1 Common Rules for Sending Delete Requests

	3.1.4.6 Request to Invoke a Service Operation
	3.1.4.7 Request to Send a Batch of Operations
	3.1.4.8 Request to Invoke an Action
	3.1.4.9 Request to Invoke a Function

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Common Rules for Receiving Responses from Data Service Requests
	3.1.5.2 Responses from Insert Requests

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Common Rules for Receiving All Data Service Requests
	3.2.5.2 Common Rules for Executing Received Insert, Update, or Delete Data Service Requests
	3.2.5.2.1 Common Rules for Executing Requests Containing a Customizable Feeds Mapped Property

	3.2.5.3 Executing a Received Insert Request
	3.2.5.3.1 Executing a Received InsertEntity Request
	3.2.5.3.2 Executing a Received InsertLink Request
	3.2.5.3.3 Executing a Received InsertMediaResource Request

	3.2.5.4 Executing a Received Retrieve Request
	3.2.5.4.1 Executing a Received RetrieveEntitySet Request
	3.2.5.4.2 Executing a Received RetrieveValue Request
	3.2.5.4.3 Executing a Received RetrieveCount Request

	3.2.5.5 Executing a Received Update Request
	3.2.5.5.1 Executing a Received UpdateEntity Request

	3.2.5.6 Executing a Received Delete Request
	3.2.5.7 Executing a Received Invoke Request
	3.2.5.8 Executing a Received Batch Request
	3.2.5.9 Executing a Received Invoke Action Request
	3.2.5.10 Executing a Received Invoke Function Request

	3.2.6 Timer Events
	3.2.7 Other Local Events
	3.2.8 Common Response Codes

	4 Protocol Examples
	4.1 Insert a New Entity
	4.2 Retrieve Resources
	4.2.1 Retrieve a Collection of Entities
	4.2.1.1 Retrieve a Collection of Entities by Using the AtomPub Format
	4.2.1.2 Retrieve a Collection of Entities by Using the Verbose JSON Format
	4.2.1.3 Retrieve a Partial Collection of Entities by Using the AtomPub Format
	4.2.1.4 Retrieve a Partial Collection of Entities by Using the Verbose JSON Format
	4.2.1.5 Retrieve a Collection of Entities with an Inline Count by Using the AtomPub Format
	4.2.1.6 Retrieve a Collection of Entities with an Inline Count by Using the Verbose JSON Format
	4.2.1.7 Retrieve a Collection of Entities with Named Resource Streams by Using the AtomPub Format
	4.2.1.8 Retrieve a Collection of Entities with Named Resource Streams by Using the Verbose JSON Format

	4.2.2 Retrieve a Single Entity by Using the AtomPub Format
	4.2.2.1 Retrieve a Single Entity with a Mapped Property by Using the AtomPub Format

	4.2.3 Retrieve a Single Entity by Using the Verbose JSON Format
	4.2.4 Retrieve a Single Entity and Its Directly Related Entities by Using the AtomPub Format
	4.2.5 Retrieve a Single Entity and Its Directly Related Entities by Using the Verbose JSON Format
	4.2.6 Retrieve a Data Service's Metadata Document (CSDL)
	4.2.7 Retrieve the Count of a Collection of Entities
	4.2.8 Retrieve a Single Entity Exposing an Action by Using the AtomPub Format
	4.2.9 Retrieve a Single Entity Exposing an Action by Using the Verbose JSON Format
	4.2.10 Retrieve a Single Entity Exposing a Function by Using the AtomPub Format
	4.2.11 Retrieve a Single Entity Exposing a Function by Using the Verbose JSON Format

	4.3 Update an Existing Entity
	4.3.1 Replace-Based Update by Using the AtomPub Format
	4.3.2 Replace-Based Update by Using the Verbose JSON Format
	4.3.3 Merge-based Update by Using the AtomPub Format
	4.3.4 Merge-Based Update by Using the Verbose JSON Format

	4.4 Update the Relationship Between Two Entities
	4.4.1 Update a Relationship by Using the AtomPub Format
	4.4.2 Update a Relationship by Using the Verbose JSON Format
	4.4.3 Delete an Existing Entity

	4.5 Batch Requests
	4.6 Working with Media Resources (BLOBs)
	4.6.1 Insert a New Media Resource
	4.6.2 Update a Media Resource
	4.6.3 Query an Existing Media Resource

	4.7 Working with Named Resource Streams Instances (BLOBs)
	4.7.1 Retrieving a Named Resource Stream Instance
	4.7.2 Updating a Named Resource Stream Instance
	4.7.3 Unsupported Operations
	4.7.3.1 Inserting a New Named Resource Stream Instance
	4.7.3.2 Deleting a New Named Resource Stream Instance

	4.8 Invoking an Action
	4.9 Invoking a Function

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Sample Entity Data Model and CSDL Document
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

