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Preface

Transport phenomena constitute an integral part of electrode and membrane
processes. Electrode reactions are heterogeneous and take place on the elec-
trode surface, thus creating concentration differences in the electrode vicinity,
and these differences cause mass transport. In membrane processes, analogous
surface phenomena occur in many cases, but in addition, transport processes
inside the membrane phase can also be decisive.

The characteristic feature of the information obtained from a transport phe-
nomenon is that measurable quantities represent integral values over the entire
surface under study. This means that in, e.g., electrode processes, only the
response function of the chosen perturbation function that has been fed into
the system can be measured. In some cases, however, it is possible to get
complementary spectroscopic information of the surface. When modelling a
heterogeneous process, transport phenomena are of great importance but they
alone do not describe the entire process sufficiently. Various surface phenomena
and reactions must be included in the model. And it has to be realized that the
study of these surface phenomena, e.g. adsorption, is possible only after the
solution of the inherent transport problem and after the subtraction of its effect
on the entire process. Thus, a comprehensive model of a heterogeneous process
is mathematically rather demanding.

This book has originated from the lecture notes of a course held since 1987
at Helsinki University of Technology, Laboratory of Physical Chemistry and
Electrochemistry. The course is principally directed to post-graduates who
already have an electrochemistry background or who are simultaneously attend-
ing an electrochemistry course. Therefore, the current presentation does not
discuss electrochemical methods in depth, rather it concentrates on topics of
transport processes that are usually not encountered in the electrochemical liter-
ature. Also, hydrodynamics is only briefly introduced because of the abundance
of textbooks in this area.

In order to keep the contents within bounds, this text concentrates on
passive transport processes in isothermal and incompressible liquid systems.
Passive processes involve the evolution of the system towards the state of
thermodynamic equilibrium, and biological active-transport processes are thus
excluded.The liquid solutions are described as multicomponent continua, where
the solutes are often electrolytes that dissociate into ions and homogeneous
chemical reactions may take place in its interior. The transport equations are
presented within the theoretical background of macroscopic thermodynamics.
The paradigm adopted here is based on the work by L. Onsager in the early
1930s, which has achieved an undisputed status in the description of transport
phenomena. This theoretical construction is known as the thermodynamics of
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irreversible processes and is based on the study of entropy production and the
properties of phenomenological equations derived thereof.

Chapter 1 presents an introduction to the thermodynamics of irreversible
processes. The fundamental thermodynamic concepts required to study the irre-
versible processes taking place in a moving fluid are described in Section 1.1. A
local approach is followed in which the state variables are functions of time and
the spatial co-ordinates. The local equilibrium hypothesis and its key role in irre-
versible thermodynamics are also explained. The transport processes involve
the exchange of matter, electric charge, linear momentum, energy, entropy,
etc., between the neighbouring volume elements in the fluid. Section 1.2 aims
at establishing the balance equations that rule these exchanges. Among them,
the entropy balance equation receives special attention because it is the start-
ing point for the statement of the phenomenological transport equations in
Chapter 2.

However, Chapter 1 is something more than just groundwork for Chapter
2. The concept of electric potential in thermodynamics and electrochemistry
is controversial and, without entering into subtle details, we explain here the
rationale under the treatment of this quantity in thermodynamics of irreversible
processes. Moreover, a sound understanding of the differences between the
transport mechanisms of convection, chemical diffusion, electrodiffusion, ionic
diffusion, ionic migration, and electric conduction requires Chapters 1 and 2,
particularly Sections 1.2.2, 2.1.4, 2.1.5, and 2.3.3.

Convection refers to those processes in which there is motion of the fluid
mass with respect to an inertial laboratory reference frame. The maintenance of
the fluid motion requires mechanical forces. In electroneutral solutions and in
the absence of external forces such as gravitational and centrifugal forces, the
only mechanical force that can induce the fluid motion is an applied pressure
gradient. Thus, it is commonly accepted to talk of convection when there is a
pressure gradient.

Chemical diffusion refers to the motion of a neutral component (e.g. a non-
electrolyte) or an electroneutral combination of at least two charged particles
(e.g. a dissociated electrolyte) driven by its concentration gradient. It must
be stressed that whenever we talk about motion, we must specify the refer-
ence frame used to describe such motion. From a theoretical point of view, the
preferred reference frame is the one bound to the local centre of mass of the
solution, which is known as the barycentric reference frame, because only then
chemical diffusion and convection are separate mechanisms. From an experi-
mental point of view, however, diffusion measurements are carried out in the
Fick’s or volume-average reference frame. The relation between different ref-
erence frames is described in Sections 1.2.2 and 2.1.2. Yet, this is done rather
superficially because this text concentrates on dilute solutions and this issue
then becomes of secondary importance.

Electrodiffusion is the transport mechanism for charged species, such as the
ions that result from the dissociation of electrolytes. The motion of an ionic
species (in the barycentric reference frame) is driven by the gradient of its elec-
trochemical potential (at least, within the Nernst–Planck approximation). When
this gradient is considered as a single force, the transport should be described
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as electrodiffusion. However, it is customary to decompose the electrochem-
ical potential as the sum of the chemical potential and a term proportional to
the electric potential, and hence the gradient of the electrochemical potential
of a charged species can be expressed as a term proportional to the concen-
tration gradient and another one proportional to the electric field. When these
gradients are considered as two different driving forces for transport, their asso-
ciated mechanisms are denoted as ionic diffusion and ionic migration. That is,
migration refers to the motion of charged species under the influence of an
electric field regardless of whether there is passage of electric current through
the solution.

Electric conduction is the transport mechanism for electric charge in ionic
conducting solutions. Thus, we can only talk of conduction when a (conduction)
electric current passes through the solution. Since ions carry the electric charge
in solution, every ion contributes to this current in an amount that is proportional
to the current. On the contrary, in the ionic migration mechanism every ion
contributes in an amount that is proportional to the electric field. In the absence
of current, there can still be migration but not conduction.

The difference between conduction and migration mentioned above is closely
related to the coupling of driving forces, and hence of the associated fluxes. Even
though we can think of ionic diffusion and ionic migration as additive transport
mechanisms, they cannot be considered independent because there exists an
electrical coupling between the ionic concentration gradient and fluxes. Thus,
when we evaluate the contribution of the different transport mechanism to
the entropy production rate (or to the dissipation function) it is found that
electric conduction and chemical conduction make separate contributions. On
the contrary, the contributions from ionic diffusion and ionic migration are not
independent and must be grouped in a single electrodiffusion term. Similarly, the
contributions of the chemical diffusion of different electroneutral electrolytes
to the entropy production rate cannot be separated in additive terms because
these processes are also electrically coupled. That is, the chemical diffusion of
a neutral electrolyte is driven not only by its own concentration gradient but
also by the concentration gradient of other electrolytes present in solution.

These transport processes, their description and the coupling phenomena are
thoroughly studied in Chapter 2. It is established there that their rate is propor-
tional to the extent of the deviation from the equilibrium, that is, to the gradients
of electrochemical potential and of mechanical pressure. In Chapter 2 we show
the most common theoretical approaches to describe transport processes: the
phenomenological, the Fickian, the Stefan–Maxwell, and the Nernst–Planck
approaches. Chapters 3 to 5 consider the description of transport processes in
electrochemical and membrane systems making use of the Nernst–Planck for-
malism and, therefore, special attention is paid to it in Chapter 2. We describe the
assumptions made in the derivation of the Nernst–Planck transport equations,
and outline the main ideas of the alternative formulations that could be useful
when the Nernst–Planck equations are no longer valid.

For those readers who are not so much interested in the foundations of the
description of transport phenomena as in the practical solution of the transport
equations in electrochemical and membrane systems, the core of the text is
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certainly formed by Chapters 3 to 5. These readers might skip Chapters 1 and
2, except for Section 2.3, in a first reading.

Chapter 3 is concerned with transport in the vicinity of electrodes, and hence
on the coupling between Faradaic electrode processes and mass transport. This
chapter covers, at an introductory level, transport in stationary and transient
conditions, planar and spherical geometries, the presence and absence of sup-
porting electrolytes, as well as convective transport in hydrodynamic electrodes.
Some common electrochemical techniques are also discussed and the solutions
of the corresponding transient transport problems are worked out in detail.

Chapter 4 describes transport processes in membrane systems. The emphasis
is placed on stationary processes, although some examples of the solution of
the transport equations in transient conditions are also worked out. This chapter
covers homogeneous and porous membranes, both neutral and charged. Section
4.1 deals with transport through neutral porous membranes under applied con-
centration gradients, electric current, and pressure gradient. The use of mass
balances to analyse the changes in the bathing solution concentration receives
particular attention. Donnan equilibria and the description of the electrical dou-
ble layer at the membrane/external solution interfaces are then presented in
Section 4.2. Section 4.3 describes transport through homogeneous charged
membranes. The solution of the transport equations in multi-ionic systems is
worked out in detail and applied to the study of classical topics such as the
bi-ionic potential and uphill transport. The influence of the diffusion boundary
layers is also analysed. Finally, Section 4.4 describes transport through charged
porous membranes. This is done from a very practical point of view and the
space-charge model is only briefly referred to, although relevant references are
given to the interested reader.

Chapter 5 describes transport in liquid membranes. This chapter aims at intro-
ducing the concepts of carrier-mediated transport and coupled transport. The
topics of facilitated, competitive, co-transport and countertransport are cov-
ered, making use of examples of practical interest. Although we concentrate
on relatively simple transport problems involving neutral solutes and heteroge-
neous complexation reactions, this chapter provides a good introduction to the
solution of reaction–diffusion problems.

Our co-operation with the discipline of pharmaceutical technology has cer-
tainly pressed its footprint in the problem set-ups in Chapter 4, and Chapter
5 approaches the problems of liquid/liquid interfacial electrochemistry also
carried out in our laboratories.

Each chapter contains a few exercises. Some of them are rather demanding.
Solutions are available to lecturers at the web site of this book.

K. K., L. M., and J. A. M.
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1Thermodynamics of
irreversible processes

1.1 Fundamental concepts
1.1.1 Space and time scales of observation
The thermodynamics of irreversible processes relies on two fundamental
hypotheses: the continuum hypothesis and the local equilibrium hypothesis.
Their use amounts to an implicit setting up of the space and time scales of
observation of the processes occurring within the physical system under study.

The system is described as a flowing continuum where state variables such
as energy, pressure, electric potential and composition are functions of posi-
tion �r and time t. Every point �r in space is occupied by a volume element
dV (or fluid particle) that is small enough so that infinitesimal calculus can
be applied to it but still macroscopic in the sense that it is constituted by a
large number of molecules. In this (Eulerian) description of the fluid motion,
we do not follow any volume element along its trajectory, but we rather look
at the different volume elements (i.e. composed of different molecules) that
occupy a given position �r at different times. The fluid motion is described by
the velocity field �v(�r, t), where it should be stressed that �r and t are independent
variables; that is, the expression d�r/dt is meaningless and �v �= d�r/dt. Veloc-
ities are referred to the (inertial) laboratory reference frame unless otherwise
stated.

The velocity �v is the mass-average or barycentric velocity of the volume
element that occupies position �r at time t. This velocity has to be determined
from the balance equation of the linear momentum (see Section 1.2.5) and it
can be related to the velocities of the fluid components as follows. If we denote
by �vi and dmi the velocity and mass of component i in a volume element of
total mass dm, the barycentric velocity is

�v ≡
∑

i

wi �vi, (1.1)

where wi ≡ dmi/dm is the local mass fraction of component i, and
∑

i wi = 1.
Since the system under study is not in (thermodynamic) equilibrium, it might

be argued that equilibrium thermodynamic relations should not be applied.
However, the observed changes in composition, electric potential and/or electric
current passing through the system take place over a time scale much larger
than that of molecular motion. Thus, although the volume elements are not
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in (thermodynamic) equilibrium with each other, it can be assumed1 that the
molecular processes occurring within them are so fast that they guarantee the
establishment of internal equilibrium (within the time scale of observation).
The relations between the local values of the thermodynamic functions are then
the same as in a state of complete equilibrium.

1.1.2 Local thermodynamic equations
Thermodynamics of irreversible processes is a field theory in which the system
is described as a continuum and the thermodynamic functions and state variables
are field quantities. The pressure p, the mass fractions wi, and the (molar) chem-
ical potentials µi vary with position, and therefore the usual thermodynamic
equation for the Gibbs potential of a homogeneous system

G =
∑

i

µini = U − TS + pV (1.2)

cannot be used. Instead, the governing equations must be expressed in a local
form that applies to every point within the continuum.

Imagine that we divide the system volume in elements dV so small that
they can be considered as homogeneous subsystems. The Gibbs potential of a
volume element is

dG =
∑

i

µidni = dU − TdS + pdV , (1.3)

and dividing it by the volume dV we find the thermodynamic (Euler) equation
that applies at the location of the volume element

g =
∑

i

µici = u − Ts + p. (1.4)

This is a fundamental equation that relates the local values of the state variables,
T and p, and the volume densities of the thermodynamic functions: the internal
energy density u ≡ dU/dV , the Gibbs potential density g ≡ dG/dV , and the
entropy density s ≡ dS/dV . In eqns (1.2)–(1.4), ni is the number of moles of
component i and ci ≡ dni/dV is its molar concentration.

The local equilibrium hypothesis states that the change of the Gibbs potential
follows the Gibbs equation2

δg = −sδT + δp +
∑

i

µiδci, (1.5)

1 This assumption imposes an upper bound on the size of the volume elements.
2 The symbol δ denotes the change in a variable (when the system undergoes an infinitesimal

process) and the symbol d is used for magnitudes referred to a volume element.
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Fig. 1.1.
In the upper drawing, we compare the
Gibbs potential density g in two different
fluid particles that occupy the same
position �r at times t and t + δt. In the lower
drawing, we compare the values of g in the
same fluid particle at two different
locations and times, (�r + �vδt, t + δt) and
(�r, t), where �v is the velocity of the fluid
particle. In the first case, the time variation
of g is given by its partial time derivative.
In the second one, it is given by the
substantial time derivative of g.

and the combination of eqns (1.4) and (1.5) yields the Gibbs–Duhem equation∑
i

ciδµi = −sδT + δp. (1.6)

Although many equations presented in this chapter are also valid for com-
pressible fluids, the mechanical expansion work is often negligible in condensed
phases, and therefore we restrict our attention to incompressible fluids. The
fundamental Gibbs equation, eqn (1.5), becomes then equivalent to

Tδs = δu −
∑

i

µiδci. (1.7)

The field quantities may vary from one volume element to another as well as
with time. There are three types of variations that deserve comment (Fig. 1.1):

i) When we compare the values that a function takes in neighbouring volume
elements (at fixed time), the symbol δ can be replaced by the gradient
operator �∇. Thus, for instance, the Gibbs–Duhem equation can be written
for isothermal systems as3

∑
i

ci �∇µi,T = �∇p. (1.8)

ii) In other cases we are interested in comparing the values that a given function
takes in the different volume elements that passed over a given location
in space at different times. Then, the change of, e.g. s is given by δs =
(∂s/∂t)�rδt, and eqn (1.7) can be written as

T
∂s

∂t
= ∂u

∂t
−

∑
i

µi
∂ci

∂t
. (1.9)

3 Since we restrict discussion to isothermal systems, the subscript T is often omitted for the sake
of clarity.
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iii) From a physical point of view, it is also very interesting to look at a given
volume element and follow it along its trajectory. The change of, e.g. g(�r, t)
when this volume element undergoes a displacement δ�R ≡ �vδt in a time
interval δt is then evaluated as δg = (Dg/Dt)δt, where

Dg

Dt
≡ �v · �∇g +

(
∂g

∂t

)
�r

(1.10)

is the material or substantial time derivative of g(�r, t).

1.1.3 Electrolyte solutions
The equations in Section 1.1.2 involve sums over all the fluid components and
we have made no reference to their charge state because the thermodynamic
functions g and u introduced there do not contain any electrostatic energy
contribution. The electrostatic energy is discussed in Section 1.2.8, but it seems
convenient to introduce here some fundamental ideas about the thermodynamic
description of electrolyte solutions.

According to eqn (1.5), the elementary change in the Gibbs potential at
constant temperature and pressure due to a change in the local composition is

δgT , p =
∑

i

µiδci. (1.11)

If the change in the local composition affects several charged species in such a
way that

δρe ≡ F
∑

i

ziδci = 0, (1.12)

the electrostatic energy of the system is not affected; in eqn (1.12) zi is the
charge number of species i, F is the Faraday constant, and ρe is the electric
charge density. Consider for example the solution of a strong binary electrolyte
Aν1Cν2 that dissociates into ν1 ions Az1 and ν2 ions Cz2 , where their charge
numbers z1 and z2 satisfy the stoichiometric relation z1ν1 + z2ν2 = 0. A change
δc12 in the local stoichiometric electrolyte concentration is equivalent to the
changes δc1 = ν1δc12 and δc2 = ν2δc12 in the local ionic concentrations, and
hence the associated change in the Gibbs potential (at constant temperature T ,
pressure p, and solvent concentration c0) can be written as

δgT , p,c0 =
∑

i

µiδci = µ1δc1 + µ2δc2 = µ12δc12, (1.13)

where

µ12 ≡ ν1µ1 + ν2µ2 (1.14)
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is the chemical potential of the electrolyte. Similarly, in multi-ionic systems the
local changes in composition involve changes in the Gibbs potential that can be
written in terms of chemical potentials of neutral components or electroneutral
combinations of charged components.

This last statement holds true even when the local change in composition
does not satisfy eqn (1.12) because δgT , p,c0 does not account for electrostatic
energy changes. For instance, in the case of a strong binary electrolyte Aν1Cν2 ,
the Gibbs potential change is still described by eqn (1.13), δgT , p,c0 = µ12δc12,
when δρe �= 0. Hence, the changes in the electrostatic energy of the system need
to be described by additional terms. The energy required to bring an electrical
charge δρedV from infinity (where we choose the origin of potential φ = 0) to
a volume element dV where the local electrical potential is φ can be evaluated
as φδρedV . Therefore, the sum of the chemical and electrical contributions to
the change in the energy density is

δgT , p,c0 + φδρe =
∑

i

µiδci + φF
∑

i

ziδci

=
∑

i

(µi + ziFφ)δci =
∑

i

µ̃iδci, (1.15)

where

µ̃i ≡ µi + ziFφ (1.16)

is the (molar) electrochemical potential of species i.

a) Locally electroneutral solutions
The energy required to charge a macroscopic system is very high, and therefore
it seems reasonable to assume that the volume elements are electrically neutral.
The local electroneutrality assumption states that the local electrical charge
density ρe vanishes everywhere within the system

ρe ≡ F
∑

i

zici ≈ 0. (1.17)

This assumption has important implications on the thermodynamic description
of transport processes in solution.

We note first that in a locally electroneutral solution the ionic concentrations
cannot be varied independently and, therefore, ions are constituents of the solu-
tion but not components in the sense of the Gibbs phase rule. The definition of
the chemical potential of an ionic species i

µi ≡
(

∂g

∂ci

)
T , p,{cj �=i}

(1.18)

is not operational because the concentration ci cannot be varied while keeping
all the other concentrations constant and, at the same time, satisfying the local
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electroneutrality condition. On the contrary, the chemical potential of the elec-
trolyte can be defined from eqn (1.13) as µ12 ≡ (∂g/∂c12)T , p,c0 . This means
that the changes in µ12 (but not in µi) are experimentally measurable in this
case.

Another important consequence of eqns (1.15) and (1.17) is that the local
electric potential φ may be relevant when describing the transport of the charged
components separately but not for the electroneutral volume element as a whole.
Equations (1.4)–(1.9) involve sums over all species, and the local electroneu-
trality assumption implies that these equations remain valid if the chemical
potential is replaced by the electrochemical potential inside the sums. For
instance, the volume density of the Gibbs potential is

g =
∑

i

µ̃ici, if ρe = 0. (1.19)

Similarly, the Gibbs–Duhem equation can also be written as∑
i

ci �∇µ̃i = �∇p, if ρe = 0 (1.20)

in the case of electroneutral solutions. However, the use of eqns (1.19) and
(1.20) is not recommended because they are valid in locally electroneutral
solutions only [1]; eqns (1.4) and (1.8) are preferred instead due to their general
validity.

b) Locally charged solutions
The local electroneutrality condition is a reasonable assumption for the descrip-
tion of most transport processes but it is not a strict requirement. In fact, many
electrochemical systems are not strictly electroneutral. Whenever the electric
field varies with position (e.g. when a porous membrane separates two solutions
with different concentrations of the same binary electrolyte or in an electrical
double layer), there are deviations from local electroneutrality [2].

The small deviations from electroneutrality, although irrelevant when spec-
ifying the chemical composition of the solution, are crucial for the electrical
contribution to the electrochemical potential of charged species. Hence, we
should be cautious when extrapolating the conclusions derived for locally elec-
troneutral solutions to real electrochemical systems. For instance, we have
already mentioned that eqn (1.20) is not valid and the Gibbs–Duhem equation
should be written either in terms of electrochemical potentials as∑

i

ci �∇µ̃i = �∇p − ρe �∇φ, (1.21)

or as shown in eqn (1.8). Similarly, we could inquire whether
∑

i µ̃ici =
g+ρeφ represents the sum of the local Gibbs potential and the local electrostatic
energy in the case of locally charged solutions. This latter enquiry is equivalent
to finding out whether is it possible in a charged solution to define locally the



Balance equations 7

electrochemical potential µ̃i without first introducing the electric potential. The
answer to these questions can be found in Section 1.2.8 but now we provide
some hints.

In relation to eqn (1.15), we said that the electrostatic energy required to bring
an electrical charge δρedV from infinity could be evaluated as φδρedV . In fact,
this is only valid if the local electric potential is not affected by the modification
of the electric charge density ρe. Moreover, the local term φδρe does not describe
completely the changes in electrostatic energy density because, due to the long
range of the electrostatic field, the addition of electric charge to a particular
location in the fluid produces changes in the electrostatic energy throughout the
space, even outside the volume of the fluid.

In the case of fluids at rest in thermodynamic equilibrium, it is possible to
formulate a global definition of the electrochemical potential without first intro-
ducing the electric potential. Such a global definition is equivalent to the local
definition in eqn (1.16) [3, 4]. This can be proved by considering a system that
contains not only the multicomponent fluid under study (of finite volume) but
also the electrostatic field (extending to infinity) and all the electrical charges.
In non-equilibrium systems, however, it does not seem possible to define the
electrochemical potential without first introducing the electric potential [4–10].

The electric potential is determined from the Poisson equation of electro-
statics, which relates this potential to the electric charge density. This equation
is not used explicitly in Section 1.2 because the system under consideration
contains only the fluid and its thermodynamic functions do not incorporate elec-
trostatic contributions. However, Poisson’s equation is needed for the solution
of transport problems in locally charged solutions.

1.2 Balance equations
1.2.1 Introduction
The description of transport processes is based on two fundamental principles.
First, some physical quantities like the total mass, the electric charge, the total
energy, and the total linear momentum4 must satisfy principles of conservation.
Second, the evolution of the system towards equilibrium must satisfy the sec-
ond law of thermodynamics. This implies that the entropy of the system is not
conserved and its rate of variation follows a balance equation that contains a
positive term describing the entropy production due to the (irreversible) trans-
port processes. In Sections 1.2.2–1.2.6, we explain the physical meaning of a
balance equation and derive the most relevant ones, particularly the entropy-
balance equation, which is the starting point for the phenomenological transport
equations. We outline first some important ideas.

Every volume element of the fluid has an amount dB of an arbitrary extensive
quantity B. We aim at describing the (time) change in dB due to the interaction
between the volume element and its surroundings as well as the processes taking
place inside it. The first contribution can be evaluated in terms of its flux density,

4 The term total here means that the energy and the linear momentum of both the electrostatic
field and the fluid are involved in the formulation of the conservation laws.
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that is, in terms of the rate at which the quantity B crosses the boundary of the
volume element. The second contribution is associated with the production rate
of B due to the processes that occur inside the volume element. The analysis of
these changes in dB leads to the balance equation

∂b

∂t
+ �∇ · �jb = πb, (1.22)

where b is the local volume density of B, �jb is the flux density of B, and πb is
the local density of the production rate of B; for the sake of simplicity, however,
we often refer to πb as the production rate. For conservative magnitudes, such
as the total mass and the electric charge, πb is zero. On the contrary, non-
conservative quantities such as internal energy and entropy can be produced or
consumed in the transport processes.

The local equilibrium hypothesis (for an incompressible fluid)

T
∂s

∂t
= ∂u

∂t
−

∑
i

µ̃i
∂ci

∂t
(1.23)

is used as the starting point to derive the entropy balance equation. Thus, our first
aim is to derive the balance equations for the amount of component i and for the
internal energy. According to the second law of thermodynamics, the entropy
production rate πs must be positive and therefore the dissipation function θ ≡
Tπs must be positive-definite. In fact, this is the fundamental characteristics of
irreversible processes. We aim below to show that the entropy-balance equation
takes the form

∂s

∂t
+ �∇ · �js = 1

T
(θch + θed + θη) (1.24)

where the three terms in the right-hand side are the contributions of chem-
ical reactions, electrodiffusion, and viscous flow to the dissipation function,
respectively.

The derivation of eqn (1.24) and the expressions for the different contribu-
tions to the dissipation function is rather tedious and it seems convenient to
explain here their importance in order to stimulate the lecture of the following
sections. In equilibrium thermodynamics the expression of one thermodynamic
potential in terms of its natural variables is known as the fundamental relation
of the system. This relation contains all the thermodynamic information of the
system and, therefore, we aim at deriving it. Statistical methods prove to be
very useful in this task. In non-equilibrium thermodynamics we could say that
the fundamental relation is the relation of the local entropy production with the
thermodynamic driving forces and the flux densities. Balance equations allow
us to derive such a relation and, once we know it, the transport equations can
be formulated ‘rigorously’.

The study of the balance equations provide us with much more than the
expression for the dissipation function θ . First, the transport equations are not
sufficient to analyse the transport processes and require to be complemented



Balance equations 9

with the continuity equations, which are mass-balance equations. Second, since
we have to choose a reference frame for the flux densities in the balance
equations, the difference between diffusive and convective transport mecha-
nisms becomes very clear. Convection requires a non-zero barycentric fluid
velocity �v, while diffusion is associated with the exchange of quantity B in a
reference frame bound to the moving fluid. In mathematical terms, the total flux
density �jb is

�jb = �jm
b + b�v, (1.25)

where the flux density relative to the fluid, �jm
b , accounts for the diffusive con-

tribution and the term b�v describes the convective one. Third, the relations
between the flux densities in different reference frames are also worked out.
Fourth, and more important, a balance equation for the linear momentum is so
different from a balance equation for entropy that their study provides us with a
sound understanding of the difference between the transport equations for diffu-
sion or electrodiffusion processes and the mechanical equation for macroscopic
flow.

1.2.2 General form of the balance equations
In thermodynamics of irreversible processes, the governing equations are
expressed in a local form that applies to every point within the continuum.
The derivation of these equations, however, requires consideration of a finite
system and we show below two ways of carrying out such a derivation. In the
first case, we consider a finite system enclosed by a (real or imaginary) sur-
face S that is fixed with respect to the laboratory reference frame. This is an
open system in the sense that it can exchange matter with its surroundings. In
the second one, we analyse a system enclosed by a boundary surface S(t) that
moves with the fluid so that the system is always composed by the same matter
(Fig. 1.2).

The balance equation for an arbitrary extensive quantity B (such as mass,
linear momentum, energy or entropy) can be derived by considering an open
system of volume V enclosed by a fixed surface S. This volume V is divided
into elements whose volume dV and location are time independent. The amount

t t + δt
S(t)

Open system 

Closed system

S(t) = S(t +δt)

S(t) ≠ S(t +δt)

Fig. 1.2.
In the upper drawing, the surface is fixed
in space and does not enclose the same
fluid particles at different times. In the
lower drawing, the surface moves through
the space so that it always encloses the
same fluid particles, i.e. the velocity of a
surface element is equal to that of the
particle at the position of this element.
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of quantity B in a volume element is dB and the total amount in the system is

B =
∫∫∫

V

dB =
∫∫∫

V

bdV , (1.26)

where b(�r, t) ≡ dB/dV is the local volume density of B.
The time variation of B is

δB

δt
= δ

δt

∫∫∫
V

bdV =
∫∫∫

V

∂b

∂t
dV , (1.27)

and this must be equal to sum of the rates at which the quantity B crosses
the surface S or is produced due to the processes taking place within V . The
mathematical formulation of this requirement is the balance equation

δB

δt
= −

∫∫
©
S

�jb · d�S +
∫∫∫

V

πbdV . (1.28)

In order to evaluate the amount of B that enters V through the surface S,
we divide the latter into surface elements and label them by vectors d�S whose
magnitude is equal to the area of the surface element and whose direction is
normal to the surface, d�S = dS n̂, where n̂ is the outward normal unit vector
(Fig. 1.3). The amount of quantity B that enters V through d�S in a time δt is
−�jb ·d�S δt, where�jb is the vector flux density of B at the surface element.5 Thus,
the net influx rate can be obtained by integration over the surface S as

−
∫∫
©
S

�jb · d�S = −
∫∫∫

V

�∇ · �jb dV (1.29)

where the Gauss–Ostrogradski divergence theorem has been used. This is the
first term in the right-hand side of eqn (1.28). Similarly, the contribution of
the sources and sinks of B is given by the second term in the right-hand side
of eqn (1.28), where πb(�r, t) is the local density of the production rate of B.
This quantity can be zero, negative, or positive. It is zero if B is a conservative
quantity. It is negative at those points where B is consumed by the local processes
and positive where B is generated.

Combining eqns (1.27)–(1.29), the balance equation can be stated in terms
of a single volume integral over V . Since this equation must be valid for any
arbitrary volume V , it is concluded that the integrand must vanish everywhere
within V , and therefore

∂b

∂t
+ �∇ · �jb = πb, (1.30)

which is the local form of the balance equation of quantity B.

S

dS jb

Source or sink 
πb

Fig. 1.3.
The surface S encloses a fluid system. The
amount of quantity B in the system may
vary with time either due to the production
of B in processes taking place inside the
system or due to the flow of quantity B
through S. This latter contribution is
evaluated by dividing the surface S in
surface elements. If the scalar product of
the flux density of B, �jb, and the unit vector
normal to S (and directed outwards) is
positive at a given location on the surface,
there is an outflow of B.

5 The derivation of the general balance equation considers vectorial fluxes only although the
description of chemical reactions and viscous flow also involves scalar and tensorial ‘fluxes’,
respectively.
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Alternatively, this local balance equation can be obtained by considering a
volume V (t) enclosed by a boundary surface S(t) that moves with the fluid; i.e.
the volume V (t) that does not exchange matter with its surroundings. The total
amount of B in this volume is

B =
∫∫∫
V (t)

dB =
∫∫∫
V (t)

bdV . (1.31)

The displacement of every surface element d�S in a time interval δt must then
be equal to the displacement δ�R = �vδt of the fluid particle that occupies the
position of the surface element. A straightforward consequence of the motion of
the surface elements is that the time variation of the system volume is given by

δV

δt
= δ

δt

∫∫∫
V (t)

dV =
∫∫
©

S(t)

�v · d�S =
∫∫∫
V (t)

�∇ · �v dV . (1.32)

Similarly, the time variation of the total amount B in the system is

δB

δt
= δ

δt

∫∫∫
V (t)

bdV =
∫∫∫
V (t)

∂b

∂t
dV +

∫∫
©

S(t)

b�v · d�S, (1.33)

where the Reynolds transport theorem [11, 12] has been employed. Using the
Gauss–Ostrogradski divergence theorem, this can be further transformed to

δB

δt
=

∫∫∫
V (t)

[
∂b

∂t
+ �∇ · (b�v)

]
dV . (1.34)

The flux density of B across a surface element that moves with the fluid
is denoted as �jm

b . Then, the amount of quantity B that enters V (t) through an
element d�S of S(t) in a time δt is −�jm

b · d�S δt. In close similarity to eqn (1.28),
the balance equation is obtained as

∂b

∂t
+ �∇ · (�jm

b + b�v) = πb, (1.35)

or, in terms of the substantial derivative, as

Db

Dt
+ b �∇ · �v + �∇ · �jm

b = πb. (1.36)

In incompressible fluids (see Section 1.2.3) this simplifies to

Db

Dt
+ �∇ · �jm

b = πb. (1.37)
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The equivalence between eqns (1.30) and (1.35) requires that

�jb = �jm
b + b�v. (1.38)

Somehow this equation is trivial, because the flux density of B across a sur-
face element that moves with the fluid, �jm

b , must differ from the flux density
�jb across a fixed surface element at the same location in an amount propor-
tional to the fluid velocity �v. Yet, eqn (1.38) is of primary importance because
it tells us that in a flowing fluid there are two transport mechanisms that con-
tribute to the flux of B. The so-called ‘diffusive’ term �jm

b is the flux density
in a reference frame that moves (with respect to the laboratory) with the local
barycentric velocity, which is known as the barycentric reference frame. The
term b�v describes the convective contribution. Thus, convection is associated
with a non-zero barycentric velocity, while ‘diffusion’ is associated with the
exchange of quantity B in a reference frame bound to the moving fluid.

Interestingly, eqn (1.38) reduces to �jm = ρ�v when applied to mass because
there is no fluid motion across S(t) and hence the mass flux density relative
to the fluid is zero, jm

m = 0. This is equivalent to stating that, by definition,
the only transport mechanism for (total) mass is convection. Note also that the
term ‘diffusion’is used above also to describe processes other than (component)
mass diffusion. For instance, we show in Section 1.2.4 that eqn (1.38) takes the
form �I = �Im +ρe�v when applied to electric charge. The ‘diffusive’contribution
�Im may then describe ohmic electric conduction.

Sometimes, reference frames other than the barycentric and the laboratory
ones are convenient (Table 1.1). In a reference frame that moves (with respect
to the laboratory) with the volume-average velocity

�vυ ≡
∑

i

ciυi �vi, (1.39)

where υi is the partial molar volume of component i, the flux density of B is

�jυb = �jb − b�vυ . (1.40)

This is known as the volume-average or Fick’s reference frame and, by defi-
nition, the volume flux density in this reference frame is zero, jυυ = 0. Note
also that the volume flux density in the laboratory reference frame is equal to
the volume-average velocity, �jυ = �vυ , because b = 1 for the case of volume.

Table 1.1. Flux density of B in different reference frames.

Reference frame Frame velocity
with respect to the laboratory

Flux density of B

Laboratory �0 �jb
Barycentric (mass-average) �v ≡ ∑

i wi �vi �jmb = �jb − b�v
Fick’s (volume-average) �vυ ≡ ∑

i ciυi �vi �jυb = �jb − b�vυ

Hittorf’s (solvent-fixed) �v0 �jHb = �jb − b�v0
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The similarity between eqns (1.38) and (1.40) is apparent and, in principle, �jυb
and b�vυ could also be denoted as the diffusive and convective contributions to
the flux density of B. However, there is a fundamental difference between the
reference velocities �v and �vυ : only the former is determined by the conserva-
tion law of linear momentum, and this makes the barycentric velocity preferred
from a theoretical point of view.

Likewise, the flux density of B in the solvent-fixed or Hittorf’s reference
frame is

�j H
b = �jb − b�v0, (1.41)

where �v0 is the solvent velocity (with respect to the laboratory). Thus, the
molar flux density of solvent in the solvent-fixed reference frame is zero,
j H
0 = 0. Hittorf’s reference frame has a wide practical interest because some

measurements (e.g. of transport numbers) are carried out with respect to water.

1.2.3 Total and component mass-balance equations
When the quantity B is the total mass of the system, b is the mass density ρ,
and �jm = ρ�v is the mass flux density in the laboratory reference frame. Since
the mass-production rate is zero because the total mass is conserved, eqn (1.30)
reduces to

∂ρ

∂t
+ �∇ · (ρ�v) = 0. (1.42)

This equation constitutes the principle of conservation of mass and is valid even
in the presence of chemical reactions.6

When the fluid is incompressible, ρ is a constant, and the mass conservation
is described by the simple equation

�∇ · �v = 0. (1.43)

It is then clear from eqn (1.32) that an incompressible system that does not
exchange matter with its surroundings conserves its volume.

The mass-balance equation can also be applied to the system components.
The mass density of component i is ρi = ρwi = Mici, where Mi is its molar
mass, and its balance equation is

∂(ρwi)

∂t
+ �∇ · �jwi = πwi , (1.44)

where the production rate πwi is non-zero if component i is involved in homo-
geneous chemical reactions. Heterogeneous reactions do not contribute to this
production rate and they are only relevant for the statement of the boundary
conditions of the transport equations.

6 Nuclear reactions do not conserve mass and this principle of conservation must then be
extended to include the energy released in the nuclear reaction.
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In a system with N components, there are N mass-balance equations like
eqn (1.44). Equation (1.42) can be considered as the result of summing them
all because

∑
i wi = 1,

∑
i πwi = 0, and

∑
i
�jwi = ρ�v. This latter equation is

another form of the definition of the barycentric velocity, eqn (1.1), because the
mass flux density of component i is �jwi = ρwi �vi.

Equation (1.44) can also be written in terms of the molar concentration ci =
ρwi/Mi as

∂ci

∂t
+ �∇ · �ji = πi, (1.45)

where πi = πwi/Mi and �ji = �jwi/Mi = ci �vi is the molar flux density of
component i. Equation (1.45) is known as the continuity equation for component
i. In the absence of chemical reactions, the amount of component i is conserved
and the balance equation takes the form of a conservation law

∂ci

∂t
+ �∇ · �ji = 0. (1.46)

Furthermore, under steady-state conditions this equation reduces to

�∇ · �ji = 0, (1.47)

which states that the amount of component i entering the system through some
boundaries is equal to the amount that exits through other system boundaries.
Thus, for instance, in one-dimensional systems the steady-state molar flux
density ji is independent of position (in the absence of chemical reactions).

When component i is involved in homogeneous chemical reactions the
change in its concentration is evaluated as a sum of contributions from the
different reactions. If νi,r denotes the stoichiometric coefficient of component
i in reaction r and ξr is the local reaction co-ordinate of this reaction, then
the change in the molar concentration of component i due to reaction r is
δci,r = νi,rδξr . The coefficient νi,r is positive for products and negative for
reactants. Thus, the total production rate of component i is

πi =
∑

r

νi,r
∂ξr

∂t
, (1.48)

where ∂ξr/∂t is the rate of reaction r. Since every reaction conserves the total
mass, the relations

∑
i νi,rMi = 0 and

∑
i πwi = ∑

i πiMi = 0 are satisfied.

1.2.4 Electric charge-balance equation
The homogeneous chemical reactions also conserve the electric charge, and
hence it is satisfied that

∑
i νi,rzi = 0 for every reaction r and

∑
i πizi = 0.

The combination of this equation and eqn (1.45), leads to the mathematical
formulation of the conservation of the electric charge

∂ρe

∂t
+ �∇ · �I = 0, (1.49)
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where

ρe ≡ F
∑

i

zici (1.50)

is the electric charge density and

�I ≡ F
∑

i

zi �ji (1.51)

is the conduction electric current density.
Alternatively, eqn (1.49) can be derived from Maxwell’s equations.Ampere’s

law states that the rotational of the magnetic field �H is equal to the sum of the
conduction current density �I and the displacement current density �Id ≡ ∂ �D/∂t,
where �D is the electric displacement,

�∇ × �H = �Id + �I . (1.52)

Then, the total current density �IT ≡ �Id + �I has zero divergence

�∇ · �IT = �∇ · �Id + �∇ · �I = 0, (1.53)

and the time derivative of Poisson’s equation �∇ · �D = ρe leads to eqn (1.49).
In other words, eqns (1.49) and (1.53) are two forms of the same conserva-
tion equation for the electric charge. Equation (1.53) implies that the net flux
of total current across the system boundaries is zero. In particular, in a one-
dimensional system IT is independent of position and is equal to the current
density exchanged with the surroundings, that is, the current that enters the
system through one boundary and exits through the other.

In electroneutral solutions the electric charge density ρe and the displace-
ment current �Id vanish so that conduction is the only transport mechanism for
the electric charge. Moreover, the electric current density is then independent
of the reference frame. On the contrary, in charged solutions the conduction
current density depends on the reference frame because a convective transport
mechanism is possible. Thus, for instance, the conduction current density can
be written as �I = �Im +ρe�v where �Im and ρe�v are the ‘diffusive’ and convective
contributions, respectively. Note that these two contributions are due to ionic
motions, while the displacement current density is not. The current density �Im

is the conduction current density in the barycentric reference frame. Similarly,
the conduction current densities in the Hittorf, �IH, and in the volume-average,
�Iυ , reference frames satisfy the relation

�I = �IH + ρe�v0 = �Iυ + ρe�vυ . (1.54)

In summary, in electroneutral solutions the electric current density �I ≡
F
∑

i zi�ji is due to the motion of ionic species, is independent of the refer-
ence frame, and has zero divergence. In charged solutions, however, there can
be different contributions to the current density and Table 1.2 summarizes them.
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Table 1.2. Contributions to the electric current density in charged (i.e. non-electroneutral)
solutions.

Current density Comment

‘Diffusive’ �Im ≡ F
∑

i zi �jmi Due to the motion of ionic species in a
barycentric reference frame.

Convective ρe �v Due to the fluid motion. In an
electroneutral fluid, this contribution
vanishes and the conduction current is
independent of the reference frame.

‘Conduction’ �I ≡ F
∑

i zi �ji = �Im + ρe �v Sum of the ‘diffusive’ and convective
contributions. Due to the motion of ionic
species in the laboratory reference
frame.

Displacement �Id ≡ ∂ �D
∂t Significant in very fast transients

(usually, on the scale of ns).
Total �IT ≡ �I + �Id This is the current that crosses the

system boundaries and satisfies
�∇ · �IT = 0.

1.2.5 Linear momentum-balance equation
In eqns (1.30) and (1.37), the balance equation was formulated for a scalar
quantity b but the linear momentum of the moving fluid is a vectorial quan-
tity. In particular, the volume density of linear momentum is the product of the
mass density and the barycentric velocity, ρ�v. The vectorial character makes
the mathematical statement of its balance equation difficult because a vector

balance equation involves a flux density
↔
j �vm that is a second-order tensor. To

avoid this difficulty, we can apply eqn (1.37) to the three components of the lin-
ear momentum separately and end up with three balance equations that involve
three vectors �jm

vj
( j = x, y, z) describing the flux density of these components.

In this section we derive the vector balance equation for the simple case of a
non-viscous fluid as well as the scalar balance equation of a viscous fluid that
moves in the x direction. The linear momentum-balance equation for a viscous
fluid moving arbitrarily is worked out in Section 1.2.7.

a) Linear momentum-balance equation for a non-viscous fluid
Newton’s second law states that the rate of change of the linear momentum
of a system is equal to the net force acting on it. The production rate of the
linear momentum is then equal to the density of the net external force. The net
force on a fluid volume element is the (vector) sum of surface forces that act
on its surfaces and volume forces that act on every point inside it. We consider
here that the only volume force acting on the fluid is the electrical one, and
its density is ρe �E, where ρe is the electric charge density and �E is the electric
field. The surface forces can be pressure forces normal to the surfaces and
shear forces parallel to them. In non-viscous fluids only the pressure forces are
present and our next task is to describe their contribution to the transport of
linear momentum.
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Consider a parallelepipedic volume element with dimensions �x, �y, and
�z in a Cartesian co-ordinate system. This volume element has six faces and
there are six surface forces normal to them. The forces on the x direction are
exerted on the faces normal to the x axis. We identify these faces by their
position co-ordinates x and x+�x. The net force on them is p(x)�y�z −p(x+
�x)�y�z and the force density can be approximated by −∂p/∂x. Similarly,
the other components of the force density are −∂p/∂y and −∂p/∂z, and the
net force density can be written in vector form as −�∇p. The pressure gradient
�∇p describes the transport of linear momentum across the boundaries of the
volume element. Therefore, we conclude that the linear momentum balance
equation is

ρ
D�v
Dt

= −�∇p + ρe �E, (1.55)

which is the Navier–Stokes equation for a non-viscous fluid. If the fluid is
electroneutral, ρe = 0 and this equation becomes the conservation law of linear
momentum.

b) Linear momentum-balance equation for a viscous fluid
that moves along direction x

When the fluid moves in the x direction only, the continuity equation, �∇ · �v = 0,
enforces the velocity vx to be independent of position co-ordinate x, although
it can vary in other directions. For instance, in rectangular channel flow vx may
depend on the distance to the channel walls, while in a cylindrical channel flow
it may depend on the radial position co-ordinate. The variation of velocity vx

with position in the direction normal to the channel walls is evidence of the
fact that linear momentum is being transferred in this direction due to the fluid
viscosity. Then, we conclude that the barycentric velocity �v = (vx, 0, 0) and
the flux density of the linear momentum �jm

vx
are vector magnitudes that do no

have the same direction.
In the absence of external forces, linear momentum is conserved (πvx = 0)

and the balance equation, eqn (1.35) for b = ρvx, reduces to

ρ
∂vx

∂t
+ �∇ · �jm

vx
= 0, (1.56)

where we have used that (�v · �∇) vx = 0. Since the mechanical equilibrium is
established in a much shorter time than the distribution (or diffusional) equilib-
rium, stationary flow is often assumed. The term ρ∂vx/∂t then vanishes, and
the balance equation reduces to �∇ · �jm

vx
= 0, which is applied next to some

typical flows.

c) Stationary Couette flow in planar geometry
Consider an incompressible fluid that occupies the space between two horizon-
tal, parallel plates such that the upper one is moving in the positive x direction
and the lower one is fixed. Due to the fluid viscosity, the fluid moves in the
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positive x direction and the velocity vx varies linearly in the direction normal
to the plates from 0 at the position of the lower plate to its maximum value (the
plate velocity) at the position of the upper plate. The lower plate acts as a sink
and the upper one as a source of linear momentum. If y denotes the position
co-ordinate in the direction normal to the plates, the balance equation �∇ ·�jm

vx
= 0

reduces to

djm
vx ,y/dy = 0, (1.57)

where jm
vx ,y is the component y of the linear momentum flux density �jm

vx
. The

physical meaning of eqn (1.57) is that momentum is transferred through the
fluid without losses. Note that�jm

vx
is the flux density in the barycentric reference

frame, i.e. bound to the fluid motion, and therefore jm
vx ,x = 0.7

The net surface force along the x direction is due to the viscous friction
between elements, which acts on its surfaces normal to the y direction (Fig. 1.4).
The force on every surface can be evaluated as the product of the contact area
and the viscous stress component xy on this surface. This stress component σ ′

xy
is given by Newton’s law of viscosity

σ ′
xy = η

dvx

dy
, (1.58)

where η is the dynamic viscosity of the fluid. Since every volume element
must experience a zero net force in order to move with a stationary velocity
vx, it is required that σ ′

xy(y) = σ ′
xy(y + �y) or, equivalently, that dσ ′

xy/dy = 0.
This turns out to be the balance equation for the component x of the linear
momentum, eqn (1.57); note that �jm

vx
have the dimensions of a surface stress or

pressure. The velocity profile is then linear, as shown in Fig. 1.5, and the vector
�jm
vx

is independent of position and directed from the moving to the fixed plate.

Fig. 1.4.
Shear forces acting on the surfaces normal
to the y direction of a Cartesian volume
element in the stationary Couette flow
between parallel plates.

 

xz

y

σ'xy(y) ∆x∆z

σ'xy(y + ∆y) ∆x∆z

Fig. 1.5.
Velocity profile, schematic drawing of the
flow of linear momentum (from the source
to the sink), and vector field for the linear
momentum flux density in the stationary
Couette flow between parallel plates.

Moving plate

Fixed plate

Source

Sink

Transfer m
vx

jv (y)

7 In the laboratory reference frame the component x of the linear momentum flux density jvx ,x
is non-zero but it is independent of position x.
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d) Stationary Poiseuille flow in planar geometry
In the Poiseuille flow in planar geometry, an incompressible fluid occupies the
space between two horizontal, parallel plates such that both of them are fixed
and a pressure gradient is applied in the x direction, dp/dx < 0. The fluid then
moves in the positive x direction and, due to the fluid viscosity, the velocity vx

varies in the y direction normal to the plates from 0 (in contact with them) to
its maximum value at the channel centre. Both plates act here as sinks of linear
momentum, while the external pump that applies the pressure gradient is the
source of momentum. Linear momentum is transferred without losses through
the fluid.

Once again we can use the idea that for any volume element to move with
a stationary velocity vx, the net force on it must be zero. Along direction x,
there are four forces. They act on the four surfaces (of the fluid element) that
are normal to the directions x and y (Fig. 1.6). Newton’s law of viscosity, eqn
(1.58), can be used to evaluate the stress on the surfaces normal to the y direction
and the net force density due to their imbalance is dσ ′

xy/dy. This force density is
compensated by another one due to the pressure gradient acting on the surfaces
of the volume element normal to the x direction, −dp/dx, and therefore the
force balance requires that

−dp

dx
+ dσ ′

xy

dy
= −dp

dx
+ η

d2vx

dy2
= 0. (1.59)

This statement of mechanical equilibrium is known as the Stokes equation
and constitutes the local balance equation for the component x of the linear
momentum, eqn (1.56), because in this flow the components of the flux density
of linear momentum are jm

vx ,x = p and jm
vx ,y = −σ ′

xy = −ηdvx/dy. Equation
(1.59) implies that the velocity profile is parabolic, as shown in Fig. 1.7, and
the components x and y of the vector�jm

vx
vary linearly with position co-ordinates

x and y, respectively.

p(x)∆y∆z

σ'xy(y)∆x∆z

σ'xy (y + ∆y)∆x∆z

p(x + ∆x)∆y∆z

 

xz

y

Fig. 1.6.
Pressure and shear forces acting on the
surfaces normal to the y direction of a
Cartesian volume element in the stationary
Poiseuille flow between parallel plates.

Moving plate

Fixed plate Sink

Transfer

so
ur

ce

m
vx

jv (y)

Sink
Fig. 1.7.
Velocity profile, schematic drawing of the
flow of linear momentum (from the source
to the sink), and vector field for the linear
momentum flux density in the stationary
Poiseuille flow between parallel plates.
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1.2.6 Energy- and entropy-balance equations in a
non-viscous fluid

Scalar multiplication of the linear momentum balance equation for a non-
viscous fluid, eqn (1.55), and the barycentric velocity, leads to the balance
equation for the translational kinetic energy density ek ≡ ρv2/2,

∂ek

∂t
+ �∇ · [(p + ek)�v] = Dek

Dt
+ �∇ · (p�v) = ρe �E · �v, (1.60)

where the mass continuity equation for incompressible fluids, �∇ · �v = 0, has
been used. The source term ρe �E · �v is the rate of conversion of electric energy
to kinetic energy of the fluid. This conversion can only take place in charged
solutions (ρe �= 0).

The comparison of eqn (1.60) with the general form of the balance equation
in eqn (1.30) evidences that the flux density of kinetic energy in a non-viscous
fluid is

�jek = �jm
ek

+ ek �v = (p + ek)�v. (1.61)

The ‘diffusive’ term �jm
ek

= p�v is then associated with the mechanical power of
pressure forces.

The total energy density of the fluid is the sum of the internal and the trans-
lational kinetic energy densities, e = ek + u. Other contributions such as the
rotational kinetic energy are neglected. The electric field is considered to be
external to the system and the internal energy u does not contain electric con-
tributions. The total energy is not a conservative magnitude because of the
interaction of the fluid with the electric field. The production rate of total energy
πe is equal to the net power of the electrical forces8 (i.e. the sum of the products
of force density Fzici �E acting on every charged species i and its velocity �vi)

πe = F
∑

i

zici �vi · �E = �I · �E. (1.62)

The balance equation for the total energy of the fluid is then

∂e

∂t
+ �∇ · �je = �I · �E. (1.63)

As was stated in Section 1.2.1, the main outcome from Chapter 1 is the bal-
ance equation for the entropy. Irreversible transport processes are characterized
by a positive entropy production πs ≥ 0 and we aim to evaluate it or, equiva-
lently, the dissipation function θ ≡ Tπs because it is used as the starting point

8 In the barycentric reference frame this power can be evaluated as
∑

i Fzici �E · �vm
i = �Im · �E,

but it must then be taken into account that charged fluids can also increase their kinetic energy due
to the power ρe �E · �v. That is, not only the ions but also the solvent obtains energy from the field
due to the ion–solvent interactions. As expected, these two contributions add up to πe = �I · �E.
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for Chapter 2. The entropy production is determined from the entropy-balance
equation

∂s

∂t
+ �∇ · �js = πs = θ

T
, (1.64)

where the flux density of entropy is

�js = �jm
s + s�v = 1

T

(
�jm
u −

∑
i

µi �jm
i

)
+ 1

T

(
u + p −

∑
i

µici

)
�v

= 1

T

(
�ju + p�v −

∑
i

µi�ji
)

. (1.65)

Subtracting eqn (1.50) from eqn (1.63), the balance of internal energy is
obtained as

∂u

∂t
+ �∇ · �ju = �Im · �E, (1.66)

where �ju = �jm
u + u�v and �je = �jek + �ju. The source term �Im · �E represents the

rate of conversion of electric energy to internal energy.
In the absence of chemical reactions, eqn (1.46) leads to

−
∑

i

µi
∂ci

∂t
=

∑
i

µi �∇ · �ji

= �∇ ·
(∑

i

µi�ji − p�v
)

−
∑

i

�jm
i · �∇µi, (1.67)

where the Gibbs–Duhem equation for isothermal fluids,
∑

i ci �∇µi = �∇p, and
the continuity equation, �∇ · �v = 0, have been used. Combining eqns (1.9) and
(1.64)–(1.67), it is concluded that the contribution of electrodiffusion to the
dissipation function is

θed = −
∑

i

�jm
i · �∇µi + �Im · �E = −

∑
i

�jm
i · �∇µ̃i ≥ 0, (1.68)

which takes the form of a sum of products of the flux densities �jm
i and the

negative gradients −�∇µ̃i. The latter are considered to be the driving forces for
electrodiffusion.

The derivation of eqn (1.68) has been based on the consideration of ionic
species. Alternatively, the contribution of electrodiffusion to the dissipation
function can be written as

θed = −
∑

K

�J m
K · �∇µK + �Im · �Eohm ≥ 0, (1.69)
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where the sum extends over neutral components (i.e. dissociated electrolytes,
neutral solutes, and solvent), �Eohm ≡ �Im/κ is the ohmic electric field, and κ

is the local electrical conductivity. The term θohm = �Im · �Eohm = (Im)2/κ ≥
0 can be identified as the Joule power and accounts for the contribution of
the irreversible electric conduction process to the dissipation function. The
other term in eqn (1.69), θdif = −∑

K
�J m

K · �∇µK , is also positive-definite
and describes the contribution of the diffusion of neutral components, also
known as chemical diffusion, to the dissipation function. Note that we have
used uppercase symbols for both the flux densities and the index that runs over
the neutral components to make it clear the difference with the flux densities
and the index that runs over ionic species.

Introducing the diffusional or internal electric field as �Edif ≡ �E − �Eohm and
comparing eqns (1.68) and (1.69), the contribution of chemical diffusion to the
dissipation function can also be written as

θdif = −
∑

i

�jm
i · �∇µi + �Im · �Edif . (1.70)

The relation between ionic and neutral chemical potential gradients is

�∇µK =
∑

i

νi,K �∇µi, (1.71)

where νi,K is the stoichiometric coefficient of ionic species i in component K
(which is zero if the dissociation of component K does not give rise to ionic
species i in solution). Therefore, the equivalence between the ionic and the
component formulations of θdif requires that

�Im · �Edif =
∑

i

(
�jm
i −

∑
K

νi,K �J m
K

)
· �∇µi. (1.72)

In the absence of electric current �Im = �0, �Edif = �E �= �0, and the ionic flux
densities are �jm

i = ∑
K νi,K �J m

K . In the presence of electric current, the ionic
flux density �jm

i is the sum of
∑

K νi,K �J m
K and a term proportional to �Im. In

Sections 2.1.5 and 2.3.3 we pursue further the relation between the ionic and
the component formalisms for the description of transport processes.

In the presence of chemical reactions, using eqn (1.48) and following a similar
procedure, the entropy balance equation takes the form

∂s

∂t
+ �∇ · �js = 1

T
(θch + θed), (1.73)

where the contribution of the chemical reactions to the dissipation function is

θch =
∑

r

Ar
∂ξr

∂t
≥ 0, (1.74)
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and Ar ≡ −∑
i νi,rµi is the chemical affinity of reaction r. The chemical

affinity Ar is zero when the reaction has reached equilibrium. If Ar > 0, the
reaction proceeds towards equilibrium in such a way that ∂ξr/∂t > 0, while
∂ξr/∂t < 0 when Ar < 0, so that θch ≥ 0 in all cases. The chemical affinity is
considered to be the driving force for reaction r, and the reaction rate ∂ξr/∂t
can be denoted as the reaction flux. Thus, θch also takes the form of a sum of
products of forces and fluxes. These forces and fluxes, however, are scalar.

Example: Transport in a binary electrolyte solution
Consider the one-dimensional transport in a 1:1 electrolyte solution under such
conditions that jm

1 = I/z1F and jm
2 = 0. The dissipation function can be

written as

θdif + θohm = −J m
12

dµ12

dx
+ ImEohm or θed = −jm

1
dµ̃1

dx
.

In the first expression, the contributions of mass and electric charge transport
are split into two terms. In the second expression, only one electrodiffusion
term appears because electric charge is bound to ions, and hence mass and
charge transport are not independent.

Using the relations

dµ1

dx
= dµ2

dx
, J m

12 = D2

D1 + D2
jm
1 , and E = − 1

z2F

dµ2

dx
,

which are fully justified in Chapter 2, we aim at discussing the relative
importance of θdif and θohm in terms of the ratio D1/D2 of ionic diffusion
coefficients.

From the above relations, the dissipation function is

θed = −jm
1

dµ̃1

dx
= −jm

1

(
dµ1

dx
− z1FE

)
= −2jm

1
dµ1

dx
.

Since the gradient of the electrolyte chemical potential is

dµ12

dx
= d(µ1 + µ2)

dx
= 2

dµ1

dx
,

the contribution of chemical diffusion to the dissipation function is

θdif = −J m
12

dµ12

dx
= − D2

D1 + D2
2jm

1
dµ1

dx
= D2

D1 + D2
θed.

From eqn (1.72), the diffusion electric field is (implicitly) given by

�Im · �Edif = (jm
1 − J m

12)
dµ1

dx
+ (0 − J m

12)
dµ2

dx
= D1 − D2

D1 + D2
jm
1

dµ1

dx
,
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and, therefore, the contribution of electric conduction to the dissipation
function is

θohm = ImEohm = ImE − ImEdif

= −jm
1

dµ1

dx
− D1 − D2

D1 + D2
jm
1

dµ1

dx
= D1

D1 + D2
θed

as should be expected, because θdif + θohm = θed.
Although both θdif and θohm are positive-definite, it is interesting to observe

that mass and electric charge transport are not independent process because in
the system under consideration only the ionic species 1 moves, and it is respon-
sible for the transport of both mass and electric charge. Since species 2 does not
move, the dissipation function θed cannot depend on the ionic diffusion coeffi-
cient D2. The fact that D2 appears in the expressions for θdif and θohm evidences
that the decomposition of this process as the combination of chemical diffusion
and electric conduction is somehow unnatural. Indeed, when D1/D2 
 1, the
process should be considered as electric conduction because θdif � θohm ≈ θed,
while in the opposite case D1/D2 � 1, the process should be considered as
chemical diffusion of the electrolyte because θohm � θdif ≈ θed. In conclusion,
depending on the value of D1/D2 the same process can be considered as electric
conduction, chemical diffusion or a combination of them, and hence the name
electrodiffusion is better suited in this situation.

1.2.7 Energy- and entropy-balance equations in a
Newtonian viscous fluid

The viscosity of a flowing fluid causes a continuous degradation of kinetic
energy into internal energy and, hence, entropy production. When this irrevers-
ible process is taken into account, the energy- and entropy-balance equations are

∂e

∂t
+ �∇ · �je = �I · �E (1.75)

∂ek

∂t
+ �∇ · �jek = ρe�v · �E − θη (1.76)

∂u

∂t
+ �∇ · �ju = �Im · �E + θη (1.77)

∂s

∂t
+ �∇ · �js = 1

T
(θch + θed + θη), (1.78)

where θη ≥ 0 is the contribution of viscous flow to the dissipation function.
We now aim at showing that the viscous contribution to the dissipation func-

tion θη also takes the form of the product of a ‘force’ and a ‘flux density’,
which are second-order tensors. To avoid the mathematical complexity of alge-
braic and differential operations involving tensors, we describe first the case in
which the fluid moves in the x direction and present the general case later in
this section.
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Consider, in particular, the stationary Poiseuille flow in planar geometry. An
incompressible and electroneutral fluid occupies the space between two hori-
zontal, parallel plates. Both plates are fixed and a pressure gradient dp/dx < 0
is applied in the x direction. The variation of the fluid velocity vx with posi-
tion y is given by the linear momentum-balance equation, eqn (1.59), and the
components of the flux density of the linear momentum �jm

vx
are jm

vx ,x = p and
jm
vx ,y = −σ ′

xy. Scalar multiplication of eqn (1.59) by the velocity vx leads to the
balance equation for the kinetic energy

d(pvx)

dx
− d(σ ′

xyvx)

dy
+ σ ′

xy
dvx

dy
= �∇ · (�jm

vx
vx) + σ ′

xy
dvx

dy
= 0. (1.79)

The first term in the left-hand side of eqn (1.79) is the power of the pressure
forces, i.e. it is the input rate of kinetic energy to the volume element. Since
the velocity is independent of time, this power input must get out of the fluid
element due to shear forces or dissipated inside it due to the fluid viscosity. The
second term in the left-hand side of eqn (1.79), −d(σ ′

xyvx)/dy, represents the
rate of energy transfer due to shear stresses and the third term, σ ′

xydvx/dy =
η(dvx/dy)2 = θη ≥ 0, represents the energy dissipation rate due to the fluid
viscosity. In other words, under stationary conditions, eqn (1.76) reduces to
�∇ · �jek = −θη, where ek = ρv2

x/2. The comparison of this equation and eqn
(1.79) shows that, in this case, the flux density of kinetic energy is�jm

ek
= �jm

vx
vx =

(pvx, −σ ′
xyvx, 0).

In other cases in which the fluid moves in the x direction only and there
are no external forces, scalar multiplication of the linear momentum-balance
equation, eqn (1.56), by the velocity vx leads to the balance equation for the
kinetic energy

∂ek

∂t
+ �∇ · �jm

ek
= ∂ek

∂t
+ �∇ · ( �jm

vx
vx) = �jm

vx
· �∇vx = −θη. (1.80)

Note that the divergence of the convective flux density of kinetic energy �∇·(ek �v)

vanishes when the fluid moves in the x direction only.
Once we have discussed viscous dissipation under relatively simple flow

conditions, we tackle now the difficult task of finding the general expression of
θη. This requires the derivation of the balance equation for the kinetic energy,
eqn (1.76), and the necessary preliminary step is the derivation of the general
form of the balance equation of the linear momentum of a viscous fluid that
was postponed in Section 1.2.5.

The linear momentum is a vector magnitude and its flux density is a second-
order tensor, so that the corresponding balance equation is mathematically
rather complex. In the barycentric reference frame, the flux density of the linear

momentum of the fluid
↔
j�v

m
is related to the surface forces and is equal to the

negative of the stress tensor ↔
σ . In the case of incompressible Newtonian fluids,
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the Cartesian component jk (j,k = x, y, z) of the stress tensor is

σjk = −pδjk + σ ′
jk = −pδjk + η

(
∂vj

∂xk
+ ∂vk

∂xj

)
, (1.81)

where δjk is the Kronecker delta (δjk = 1 if j = k, δjk = 0 if j �= k). This
equation can be written in tensorial form as

↔
σ = −p

↔
1 +

↔
σ ′ = −p

↔
1 + 2η

↔
γ ′ (1.82)

where p is the pressure,
↔
σ ′ is the shear stress tensor, and

↔
γ ′ is the deformation

rate tensor.
In the case of charged fluids, the interaction between the fluid and the elec-

tromagnetic field, through the electrostatic force ρe �E, implies that the linear
momentum of the fluid is not conserved. The linear momentum density associ-
ated to the moving fluid is ρ�v and its production rate is �π�v = ρe �E. The balance
equation for the component j of the linear momentum is then

ρ
Dvj

Dt
= −�∇ · �jm

vj
+ πvj = − ∂p

∂xj
+ η∇2vj + ρeEj, (1.83)

and the balance equation for the vector linear momentum can be written as

ρ
D�v
Dt

= �∇ · ↔
σ + ρe �E = −�∇p + η∇2�v + ρe �E, (1.84)

which is the Navier–Stokes equation in the presence of an electric force.
An alternative form of this equation is

ρ
∂ �v
∂t

+ ρ(�v · �∇)�v − �∇ · ↔
σ = ρ

∂ �v
∂t

+ �∇ · (−↔
σ + ρ�v�v) = ρe �E (1.85)

where the condition of incompressibility of the fluid has been used and the
tensor �v�v is the exterior (or dyadic) product of the fluid velocity and itself.
The component jk of this tensor is vjvk . It is clear from this equation that the

flux density of linear momentum in the laboratory reference frame is
↔
j �v =

−↔
σ + ρ�v�v .
The mathematical modelling of convective transport processes often requires

the solution of eqn (1.84). In practice, however, the Navier–Stokes equation is
reduced to a much simpler form. Since the mechanical equilibrium is much
faster than the distribution (or diffusional) equilibrium, stationary flow is
assumed and ∂ �v/∂t = �0 . In addition, most electrochemical techniques using
convective flow involve such low Reynolds numbers that the convective accel-
eration (�v · �∇)�v can be neglected. Thus, the Navier–Stokes equation is reduced
to the statement of mechanical equilibrium (Stokes equation)

�∇p − ρe �E = η∇2�v, (1.86)
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where the terms in the left-hand side generally represent the forces that induce
the flow motion, and the term in the right-hand side represents the frictional
force due to the solution viscosity. Nevertheless, the solution flow satisfying
the Laplace equation �0 = ∇2�v can also by induced by shear stresses, such as
in the Couette flow.

Scalar multiplication of the linear momentum-balance equation, eqn (1.85),
by the barycentric velocity leads to the balance equation for the kinetic energy
shown in eqn (1.76). In this equation, the flux density of kinetic energy density is

�jek = −↔
σ · �v + ek �v = p�v − ↔

σ
′ · �v + ek �v, (1.87)

and the viscous contribution to the dissipation function is

θη ≡
∑

j

∑
k

σ ′
jk

∂vj

∂xk
=

∑
j

∑
k

σ ′
jkγ

′
kj = ↔

σ
′

:
↔
γ ′ = 2η

↔
γ ′ :

↔
γ ′ ≥ 0. (1.88)

In deriving eqn (1.76), we have also used the relation �v·( �∇· ↔
σ ′) = �∇·( ↔

σ ′ ·�v)−θη.
In closing, we emphasize that the three contributions to the dissipation func-

tion θch, θed, and θη have the similar form of products of forces and fluxes.
However, θch involves products of scalars, θed involves products of vectors,

and θη ≡ ↔
σ

′
:

↔
γ ′ is the product of second order tensors. The fact that not

only the total dissipation function θ but also the individual contributions θch,
θed, and θη are positive-definitive is a consequence of the absence of coupling
phenomena between irreversible processes of different tensorial degree (in a
medium that is isotropic at equilibrium). The mathematical proof of this absence
of coupling is known as the Curie theorem.

1.2.8 Electromagnetic energy and linear momentum
So far we have dealt with the properties of the fluid system only. In this
section we consider the electric field and discuss its balance equations and its
interaction with the fluid system [4,10,13]. We assume that there is no applied
magnetic field and that the magnetization of the fluid is negligible because the
magnetic field created by the electric currents in electrochemical systems is
small. The equations presented in this section correspond to the mathematical
limit in which the magnetic permeability of the fluid µm tends to zero. There-
fore, the magnetic induction �B = µm �H is neglected and the electric field is
assumed to be irrotational, �∇ × �E = −∂ �B/∂t ≈ 0. This implies that an electric
potential φ can be defined from the equation �E = −�∇φ. Note, however, that
the magnetic field �H is not neglected.

a) Electric energy-balance equation
The electric energy density is ee = �D · �E/2 = εE2/2, where we have used
the constitutive equation �D = ε�E. For the sake of simplicity, the dielectric
permittivity ε is considered to be constant (i.e. it is not affected by the changes
in the electric field and the local composition). To derive the balance equation
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of the electric energy, we note first that its time derivative is equal to the scalar
product of the electric field and the displacement current density

∂ee

∂t
= ∂ �D

∂t
· �E = �Id · �E = �IT · �E − �I · �E. (1.89)

The flux density of electromagnetic energy is given by the Poynting vector
�E × �H , and its divergence is

�∇ · (�E × �H ) = �H · ( �∇ × �E) − �E · ( �∇ × �H ) ≈ −�IT · �E, (1.90)

where we have neglected the magnetic energy density and used Ampere’s law,
�∇ × �H = �IT. Combining eqns (1.89) and (1.90), the balance equation for the
electric energy is

∂ee

∂t
+ �∇ · (�E × �H ) = −�I · �E. (1.91)

It is interesting to note that the production rate is the negative of that in the energy
balance equation of the fluid, eqn (1.75). That is, the sum of the energies of the
fluid and the electric field is a conservative magnitude, and their interaction
is described by the product �I · �E, which is the rate at which the electric field
provides energy to the fluid. The mathematical statement of this conservation
law is

∂(e + ee)

∂t
+ �∇ · (�je + �E × �H )

≈ ∂(e + ee)

∂t
+ �∇ · (�je + φ�IT) = 0, (1.92)

where we have used that �∇·�IT = 0 to introduce the approximation �∇·(�E× �H ) ≈
�∇ · (φ�IT).

b) Electromagnetic linear momentum-balance equation
Equations (1.76) and (1.77) show that, from the power �I · �E = �Im · �E +ρe�v · �E,
a fraction �Im · �E is converted to internal energy and a fraction ρe�v · �E to kinetic
energy of the fluid. This can be confirmed by analysing the balance of linear
momentum of the field. The density of electromagnetic linear momentum is
�D × �B = (�E × �H )/c2, where �B is the magnetic induction and c is the speed
of light in the medium. Making use of the Maxwell equations, �∇ · �D = ρe,
�∇ · �B = 0, �∇ × �E = −∂ �B/∂t, and �∇ × �H = �IT, and neglecting the electric
polarization energy and the magnetic energy, the time derivative of the density
of electromagnetic linear momentum is approximately given by

∂( �D × �B)

∂t
≈ �∇ · ↔

T − ρe �E, (1.93)

where
↔
T ≡ �D�E − (1/2)ε0E2

↔
1 is the Maxwell stress tensor, �D�E is a second-

order tensor whose component jk is DjEk , and
↔
1 is the unit second-order tensor
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represented by the matrix diag(1,1,1). This equation shows that (the volume
density of) the production rate of linear momentum of the field is −ρe �E. Since
eqn (1.85) showed that this is the rate of transference of linear momentum from
the field to the fluid, it is concluded that the sum of the linear momenta of the
fluid and the field is also a conservative magnitude. Furthermore, the mechanical
power done by the field on the fluid is ρe�v · �E and this is the increase rate of the
kinetic energy density of the fluid.

c) Thermodynamic potentials revisited
As we noticed in Section 1.1.3, the thermodynamic functions of the fluid, e.g.
u and g, do not contain any electric contribution and that is why the equations
in Section 1.1.2 involve the chemical potentials rather than the electrochemical
potentials. We briefly analyse here the difficulties that arise when attempting to
incorporate the electric energy in the thermodynamic functions.

Replacing the chemical potentials by the electrochemical potentials, the local
equilibrium equation takes the form

∂u

∂t
+ φ

∂ρe

∂t
= T

∂s

∂t
+

∑
i

µ̃i
∂ci

∂t
, (1.94)

which suggests to analyse the contribution φ∂ρe/∂t to the time variation of the
electric energy density. The internal energy balance equation can be written as

∂u

∂t
+ φ

∂ρe

∂t
+ �∇ · (�j+u + φ�I) = −ρe�v · �E + θη, (1.95)

and its combination with the kinetic energy balance leads to

∂e

∂t
+ φ

∂ρe

∂t
+ �∇ · (�j+e + φ�I) = 0. (1.96)

Although this resembles eqn (1.92), it should be noticed that eqn (1.96)
does not describe a conservation law and that the difference between these
equations is

φ
∂ρe

∂t
− ∂ee

∂t
= �∇ · (φ�Id). (1.97)

Some of the difficulties associated with the thermodynamic description
of non-electroneutral solutions come from the fact that φδρe �= δee.9 We
know from classical thermodynamics that heat and (mechanical) work are not
state functions but energies in transfer. In general, their differentials Tδs and
pδ(1/ρ) depend on the process undergone by the system and, therefore, they
are not exact. Similarly, the differential φδρe is not exact because it depends

9 Due to the long range of electrical interactions, changes in the local electric charge density at
a given position can provoke changes in the electric potential and charge density at other positions
in the system or even outside it.
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on the constraints imposed to the process, and this is the reason why it is not
convenient to write the local thermodynamic equations in terms of a kind of
‘electrochemical Gibbs potential’ g̃ ≡ g +ρeφ = ∑

i µ̃ici. Moreover, this also
rules out the possibility of defining the electrochemical potential of an ionic
species as µ̃i ≡ (∂ g̃/∂ci)T ,p,{cj �=i} because the change in the local concentration
of species i implies a change in the local electric potential that cannot be eval-
uated in general. In an attempt to overcome this problem, some authors write
µ̃i ≡ (∂ g̃/∂ci)T ,p,{cj �=i},φ but it should be emphasized that the electric potential
has not appeared in the previous sections as a thermodynamic variable char-
acterizing the state of the system and, more importantly, that the constraint of
constant φ while changing the local electric charge density is hardly realizable
in practice.

Finally, it is interesting to observe that the classical expression for the energy
density of a continuous distribution of electric charges is neither ee = εE2/2
nor ρeφ, but ρeφ/2. The relation between them is

ee = 1

2
ρeφ − 1

2
�∇ · (φ �D), (1.98)

which is obtained from the mathematical identity �∇ · (φ �D) = φ �∇ · �D + �D · �∇φ.

d) Example 1: Discharge of a capacitor over a resistance
Consider a dielectric film between the plates of a parallel capacitor of capac-
itance C that is initially charged under a potential difference �φ(0). At time
t = 0, it is allowed to discharge over a resistance R. The transient current is
given by I(t) = I(0) e−t/τ , where τ = RC is the electrical relaxation time,
I(0) = Q(0)/τ is the initial current, and Q(0) = C�φ(0) is the initial charge
on the plates. The total current density IT = I + Id is constant along the cir-
cuit, as required by the principle of conservation of charge, �∇ · �IT = 0, but
inside the resistance there is only conduction current and inside the capaci-
tor there is only displacement current. In the discharge process, the energy
Q(0)�φ(0)/2 = Q(0)2/2C initially stored in the capacitor is dissipated as
Joule heat inside the resistance. The electric energy flux density in the capaci-
tor is φ�Id and the energy that flows out of it can be evaluated by integrating the
divergence of this flux over the volume of the dielectric film

∫∫∫
C

�∇ · (φ�Id) dV =
∫∫
©
C

φ�Id · d�S = �φIA,

where A is the area of the plates. Thus, inside the capacitor there are no (free)
electric charges and φ∂ρe/∂t = 0, but the electric energy density changes and,
in agreement with eqn (1.97), ∂ee/∂t = −�∇ · (φ�Id) < 0.

Similarly, the electrostatic energy flux density in the resistance is φ�I and the
energy that flows through it can be evaluated by integrating the divergence of
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this flux over the volume of the resistance

−
∫∫∫

R

�∇ · (φ�I) dV = −
∫∫
©
R

φ�I · d�S =�φIA,

where the minus sign comes from the fact that we are evaluating the flow of
energy towards the inside of the resistance. In the resistance, electric energy is
converted to internal energy due to the Joule dissipation at a rate −�I · �E and the
total electric energy converted is

−
∫∫∫

R

�I · �E dV =
∫∫∫

R

�∇ · (φ�I) dV =
∫∫
©
R

φ�I · d�S = −�φIA.

Therefore, there is no change in the electric energy of the resistance because all
the electric energy that enters is converted to internal energy. In fact, this balance
also holds locally in the resistance because �∇ · (φ�I) = −�I · �E, and therefore
∂ee/∂t = 0; note that in the resistance both the space charge density and
the displacement current density are zero. In conclusion, the above equations
describe well the conversion of electric energy into internal energy that takes
place in this electrical relaxation process.

e) Example 2: Electrical double-layer formation at an isolated
metal electrode

Consider that a piece of metal, with no electrical contacts, is introduced instan-
taneously at time t = 0 in an electrolyte solution containing the redox couple
Fe2+/Fe3+ [14]. The molar concentrations of these ions in the solution are cFe2+
and cFe3+ . Initially, the metal is electrically neutral and the electrical potential
difference between the metal and the solution is zero, �m

s φ(0) = 0. The metal
is not in equilibrium with the solution because there is a tendency for the redox
couple to exchange electrons with the piece of metal until the Nernst equilibrium
potential

�m
s φeq = �φ◦ + RT

F
ln

cFe3+

cFe2+

is reached. That is, the potential difference �m
s φ = φm − φs evolves

monotonically with time from 0 to �m
s φeq.

The value of the Nernst equilibrium potential can be positive or negative
depending on the solution composition. Similarly, the affinity for the iron
oxidation, Fe2+ →← Fe3+ + e−, which can be written as A = −∑

i νiµ̃i =
F(�m

s φ − �m
s φeq), can also be positive or negative. Oxidation occurs when

A > 0, and reduction when A < 0.
The iron (cathodic) reduction takes place when �m

s φeq > �m
s φ(t) > 0. The

conduction electric current then flows from the solution towards the electrode,
and hence the electrode becomes positively charged; the solution adjacent to
the electrode bears a compensating negative charge density. Still, the metal



32 Thermodynamics of irreversible processes

behaves as a cathode. The electric field is then directed from the electrode
towards the solution, and hence the conduction current density and the electric
field are directed in opposite directions in the solution adjacent to the electrode,
�I · �E < 0. Similar arguments lead to the conclusion that �I · �E < 0 also when
�m

s φeq < �m
s φ(t) < 0 and iron (anodic) oxidation takes place.

The fact that the power �I · �E = �Im· �E is negative might be surprising but it is not
in contradiction either with the second law of thermodynamics or with Ohm’s
law, �I = κ �Eohm. In the process described, �Im · �E �= �Im · �Eohm = θohm ≥ 0
because the concentrations are non-uniform and the diffusion electric field,
�Edif = �E − �Eohm, is important. Moreover, θed = ∑

i
�jm
i · �∇µi + �Im · �E =

−∑
i
�jm
i · �∇µ̃i ≥ 0 because the ionic motions take place mainly as a result of

diffusion (although the effect of the electric field cannot be neglected) and the
contribution −∑

i
�jm
i · �∇µi is always positive and compensates for any eventual

negative values of �Im · �E.
Since the metal is not connected to any external circuit, the total current

density is zero and the conduction and displacement current densities in the
solutions are opposite to each other, �I = −�Id. Thus, in agreement with eqn
(1.89), the formation of the electrical double layer implies an increase of the
electric energy of the system

∂ee

∂t
= �Id · �E = −�I · �E > 0,

at the expense of decreasing the internal energy. Hence, we conclude that the
equations derived in Section 1.2.8 also describe satisfactorily the conversion of
internal energy into electric energy that takes place in this process driven by a
chemical affinity.

f) Example 3: Electrical transient of the formation
of the liquid-junction potential

Consider two dilute NaCl aqueous solutions at (slightly) different concentra-
tions separated by an impermeable wall. At time t = 0, the wall is removed
and the solutions are allowed to mix. The mixing, however, is constrained
to a region of thickness d centred at the wall. That is, the solution con-
centrations at x = 0 and x = d are kept constant, and the system evolves
from an initial situation in which the concentration is uniform (although
with different values) in the regions 0 < x < d /2 and d /2 < x < d , to
a final stationary situation in which the concentration distribution is linear
throughout the constraint diffusion region 0 < x < d . We are interested
here in the initial times of this process in which the most interesting elec-
trical phenomena take place. This is the so-called electrical relaxation process
[15].

In the initial state the solutions are electroneutral, and internal energy is
the only contribution to the total energy. After removing the wall, the solu-
tions start to mix. During this evolution, the system is electrically isolated
and the total current �IT is zero. The open-circuit condition �IT = �0 implies
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that the conduction current carried by the ions moving initially at different
velocities is ‘compensated’ by the displacement current associated with the
time-dependent electric field, �Id = −�I . In their tendency towards making
uniform the concentration, Na+ and Cl− ions try to move independently. At
the initial stages, when no electric field exists, Cl− ions move faster than
Na+ ions because of their larger diffusion coefficient, and there is a non-zero
conduction current density �I = �Im from the low to the high concentration
region. A space-charge region (i.e. a non-electroneutral region) with intense
electric fields appears at the junction. The electric field thus created tends to
slow down the Cl− ions and to speed up the Na+ ions, until they eventually
move at the same velocity, much as if transport of neutral NaCl molecules
were then taking place. However, the electric field has not disappeared com-
pletely. An electric field is needed to keep Cl− and Na+ ions moving at the
same velocity. When this electrical relaxation process is concluded (which
requires a time of the order of nanoseconds [15]), the conduction electric
current �Im is negligible, and no more charge separation occurs. The space-
charge region simply spreads out due to the diffusional relaxation. This time
evolution of the space-charge density is illustrated in Fig. 1.8, which has
been obtained from the solution of the Nernst–Planck and Poisson equations
(see Ref. [15] for details) in a system where the diffusional relaxation time,
τd = d2/[π2(DNa+ + DCl−)], is 100 times larger than the electrical relaxation
time τe.

The formation of a space charge-region with intense electric fields requires
energy (Fig. 1.9). Since the total energy is conserved, the electric energy
associated to this space-charge region is taken from the internal energy. When,
in the initial stages, Cl− ions move faster than Na+ ions, there is a non-zero con-
duction current density �I = �Im from the low to the high concentration solution.
The conduction current has the same direction throughout the region, takes its
maximum value at the position of the initial junction and decreases rapidly with
the distance to the junction. The electric field created at the junction has the
opposite direction and the electric power �Im · �E is negative. Thus, according to
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Fig. 1.8.
Space-charge density (in arbitrary units)
vs. position at times t/τe = 0.01, 0.1, 1,
and 10 (the arrow indicates the direction of
increasing time) during the formation of
the liquid junction potential between two
NaCl solutions of slightly different
concentrations that meet at x = d /2, where
d is the thickness of the constrained
diffusion region [15].
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Fig. 1.9.
Electric energy density (in arbitrary units)
vs. position at times t/τe = 0.1, 0.5, 1, 2, 5,
10, and 50 (the arrow indicates the
direction of increasing time) for the system
described in Fig. 1.8. x / d
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the balance equations eqns (1.66) and (1.91), the internal energy decreases and
the electric energy increases at the junction. After the electrical relaxation time,
when both ions move at the same velocity and the liquid-junction potential has
reached its steady-state value, the conduction current density �Im is negligible,
and so is the power �Im · �E, which means that no more energy conversion takes
place.

As a final comment, it should be mentioned that the internal energy of dilute
electrolyte solutions depends on the temperature but not so much on other
state variables. This means that changes in internal energy involve changes in
temperature, whereas thermal conduction has been neglected in our descrip-
tion. Similarly, we have neglected the transport of solvent or, equivalently, the
solution motion due to the (very small) Lorentz force that acts on the space-
charge region. All this is justified because they are second-order effects that
are not essential for the understanding of the formation of the liquid-junction
potential.

Exercises
1.1 The local Gibbs equation describes the change in the Gibbs potential density g

with temperature, pressure, and composition. In the aqueous solution of a strong
binary electrolyte at constant temperature, pressure, and solvent concentration, this
change is given by δgT,p,c0 = µ12δc12, where c12 is the stoichiometric electrolyte
concentration. Consider now a weak binary electrolyte solution, in equilibrium
with respect to the dissociation reaction Aν1 Cν2

→← ν1Az1 + ν2Cz2 , and show that
the local Gibbs equation takes the form

δgT ,p,c0 = µ12δc12,T,

where c12,T = c12 + c12,u is the total electrolyte molar concentration (dissoci-
ated plus undissociated). Therefore, the only chemical potential experimentally
measurable under these conditions is

µ12 =
(

∂g

∂c12,T

)
T,p,c0

.
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1.2 Use the equation of continuity of mass in a compressible fluid

∂ρ

∂t
+ �∇ · (ρ�v) = 0

to show the equivalence between the following forms of the general balance
equation

∂b

∂t
+ �∇ · �jb = Db

Dt
− b

ρ

Dρ

Dt
+ �∇ · �jmb = πb.

1.3 Show that in a locally electroneutral solution, the conduction electric current
density is independent of the reference frame in which it is evaluated.

1.4 Prove that the conservation of electrical charge in homogeneous chemical reac-
tions,

∑
i νi,rzi = 0, implies that the chemical affinity can also be written as

Ar = −∑
i νi,rµ̃i .

1.5 Write down the energy- and entropy-balance equations in an electroneutral,
isothermal, non-viscous, and chemically inert solution in the absence of external
forces.

1.6 The Couette flow between two parallel plane walls located at y = 0 and y = h is
due to the application of shear stresses in opposite directions on the plates. The
motion is described with respect to the wall at y = 0 (which is then fixed) and the
wall at y = h moves at velocity U along direction x. The (barycentric) velocity
distribution is then

vx(y) = Uy/h.

The velocity gradient is U /h and, according to Newton’s law of viscosity, the shear
stress is ηU /h. This stress is uniform inside the fluid. The shear stress externally
applied on the wall at y = h to cause the motion is ηU /h, while that applied on
the wall at y = 0 to keep it fixed is −ηU /h. Thus, the net force is zero, as should
be expected in a stationary flow. The external power on the fluid, however, is not
zero because the fixed plate makes no power and the moving one gives energy to
the fluid at a rate A(ηU/h)U , where A is the plate area. This energy is dissipated
uniformly within the fluid volume Ah.
(a) Evaluate the components of the deformation rate tensor

γ ′
jk = 1

2

(
∂vj

∂xk
+ ∂vk

∂xj

)
,

and the shear stress tensor, σ ′
jk = 2ηγ ′

jk .

(b) Show that the viscous dissipation function θη ≡ ↔
σ

′
:

↔
γ ′ = ∑

j

∑
k

σ ′
jkγ ′

kj can be

written as

θη = JX ,

where J = 〈vx〉 = U/2 is the volume flux density and X = [(ηU/h) − ( − ηU/h)]/h =
2ηU/h2 is the shear stress gradient.
(c) Show that the expression θη = −�∇ · �jek , which is valid for stationary flows,
leads to the same result for θη.

1.7 The Poiseuille flow in a cylindrical, horizontal tube of (inner) radius R is due to
the application of pressure gradient along the tube axis, �∇p = (dp/dx, 0, 0) =
(−�p/L, 0, 0), where �p > 0 is the pressure drop over a length L of the tube.
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Under steady-state conditions, the velocity distribution (with respect to the tube)
can be expressed as

vx(r) = vx(0)

[
1 −

( r

R

)2
]

= �p

4ηL
(R2 − r2),

where r is the radial position co-ordinate. The average velocity across the tube
Section is 〈vx〉 = vx(0)/2 = R2�p/(8ηL), which is also equal to the average
volume flow density J ≡ 〈vx〉, and the corresponding ‘driving force’is the negative
pressure gradient X ≡ �p/L.
(a) Evaluate the components of the deformation rate tensor

γ ′
jk = 1

2

(
∂vj

∂xk
+ ∂vk

∂xj

)

and the shear stress tensor, σ ′
jk = 2ηγ ′

jk .

(b) Show that the viscous dissipation function is θη ≡ ∑
j

∑
k

σ ′
jkγ ′

kj =

(r2/4η)(�p/L)2 and its average value can be written as〈
θη

〉 = JX ,

where J and X are the flow and the driving force defined above.
(c) Show that the expression θη = −�∇ · �jek , which is valid for stationary flows,
leads to the same result for θη.
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2 Transport equations

2.1 Linear phenomenological equations
2.1.1 Introduction
Irreversible processes are described in terms of generalized fluxes and forces.
These quantities vanish at equilibrium and, therefore, they somehow quantify
the departure from equilibrium. The fluxes and forces are denoted by J and X ,
respectively, and can be scalars, vectors or tensors of second order, depending
on the process under consideration. The dissipation function is given by the
sum of their products

θ = �
s

JsXs + �
v

→
J v · →

X v + �t
↔
J t :

↔
X t , (2.1)

where the indices s, v, and t stand for scalar, vector, and tensor. Indeed, we
know from eqns (1.68), (1.74), and (1.88) that

θ = θch + θed + θη =
∑

r

dξr

dt
Ar +

∑
i

�jm
i · (−�∇µ̃i) +

↔
σ ′ :

↔
γ ′, (2.2)

so that the generalized fluxes and forces can be selected as follows Jr = dξr/dt,

Xr = Ar , �Ji = �jm
i , �Xi = −�∇µ̃i,

↔
J = ↔

γ ′, and
↔
X = ↔

σ ′.
Assuming that the fluxes are functions of the forces only, we can write

dξr/dt = fr(A1, A2, . . .) (2.3)

�jm
i = �gi( �∇µ̃1, �∇µ̃2, . . .) (2.4)
↔
γ ′ = ↔

h(
↔
σ ′). (2.5)

These equations represent the general form of the phenomenological equations,
which are the starting point for the description of transport processes. It has to be
realized that eqns (2.3)–(2.5) do not exclude, e.g. the possible mutual coupling
of chemical reactions and diffusion via mass balance.1

1 Direct mutual coupling is forbidden by the Curie–Prigogine principle because they are of
different tensorial degree [1]. However, this principle only applies as long as the system is isotropic
at equilibrium. The coupling of transport processes and chemical reactions occurs, e.g. in biological
systems.
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The next task is to determine the functions fr , �gi and
↔
h. In Section 1.2.7 we

already used an equation similar to eqn (2.5): the linear relation
↔
σ ′ = 2η

↔
γ ′

that defines a Newtonian fluid. When describing the balance of electrostatic
energy in Section 1.2.8 we also used Ohm’s law �Im = κ �Eohm, which is related
to eqn (2.4) because �Im = F

∑
i zi�jm

i . Similarly, Fick’s first law �jυi = −Di �∇ci

for diffusion and Fourier’s law �jm
u = �jm

q = −κT �∇T for thermal conduction are
also linear transport equations.

Linear relations can be understood as the first-order term in the Taylor series
expansions of the functions in eqns (2.3)–(2.5) and this justifies their validity
when the system is not too far from equilibrium. In fact, it has been con-
firmed by statistical mechanics studies that as far as electrodiffusional transport
processes are concerned, the linear equations are as general as the local formu-
lation of the thermodynamics of irreversible processes. On the contrary, linear
equations apply to chemical reactions only in the very close vicinity of chemical
equilibrium. Nevertheless, the phenomenological equations for homogeneous
chemical reactions are not of interest in this book because chemical relaxation
times are usually much smaller than diffusional relaxation times. Furthermore,
it can often be assumed that the chemical equilibrium has already been reached
when describing electrodiffusional processes.

2.1.2 Ionic transport equations
In the linear approximation, the phenomenological equations for electrodiffu-
sion state that all the thermodynamic driving forces contribute to every flux
density so that the latter can be evaluated as

�jm
i = −

∑
k

li,k �∇µ̃k , (2.6)

where the li,ks are the phenomenological coefficients. These coefficients can
depend on the local state variables (temperature, pressure, and concentrations)
but not on fluxes and forces (because otherwise we would observe a non-linear
behaviour). It has been experimentally verified that the coefficients satisfy the
Onsager reciprocal theorem

li,k = lk,i, (2.7)

which is also supported by microscopic considerations [2].
In principle, the sum in eqn (2.6) and that in the contribution of electro-

diffusion to the dissipation function

θed = −
∑

i

�jm
i · �∇µ̃i (2.8)

extend over all the system components. We denote the number of compo-
nents, including the solvent, by N + 1. However, all flux densities �jm

i are not
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independent because they are linked through the definition of the barycentric
velocity �v ≡ ∑

i wi �vi. This definition can be rewritten as

∑
i

Mi �jm
i = �0, (2.9)

and it is then clear that the number of independent flux densities cannot
exceed N . Similarly, the gradients of the electrochemical potentials must satisfy
the Gibbs–Duhem equation (for isothermal and incompressible systems)

∑
i

ci �∇µ̃i = �∇p − ρe �E. (2.10)

This all means that if we are using the barycentric velocity and the pressure
gradient to describe the transport of linear momentum, the description of elec-
trodiffusion can only involve N fluxes and N forces, where N is the number of
components excluding the solvent.

By elimination of the solvent flux density from eqn (2.9) as

�jm
0 = c0(

⇀
v0 − �v) = − 1

M0

∑
i �=0

Mi �jm
i , (2.11)

where the sum excludes the solvent (i = 0), the electrodiffusional contribution
to the dissipation function can be written as

θed = −
∑

i

�jm
i · �∇µ̃i = −

∑
i �=0

�jm
i ·

(
�∇µ̃i − Mi

M0

�∇µ0

)
. (2.12)

Similarly, eliminating the solvent chemical potential gradient from eqn
(2.10), θed can be written as

θed = −�jm
0 · �∇µ0 −

∑
i �=0

�jm
i · �∇µ̃i

= −(
⇀
v0 − �v) · ( �∇p − ρe �E) −

∑
i �=0

�jH
i · �∇µ̃i, (2.13)

where

�j H
i ≡ ci(�vi − �v0) (2.14)

is the molar flux density of species i in a reference frame bound to the solvent.
This is known as the Hittorf reference frame and eqn (2.14) allows us to evaluate
θed when the flux densities are referred to this frame.
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The flux densities can also be referred to the Fick reference frame, which is
bound to the volume flux density

�vυ ≡
∑

i

υi�ji = �vm
υ + �v = �vH

υ + �v0, (2.15)

where υi is the partial molar volume of species i and
∑

i ciυi = 1. When the
flux densities are referred to the Fick reference frame

�jυi = �ji − ci �vυ = �jm
i − ci �vm

υ (2.16)

the electrodiffusional contribution to the dissipation function takes the form

θed = −�vm
υ ·

∑
i

ci �∇µ̃i −
∑

i

�jυi · �∇µ̃i

= −(�vυ − �v) · ( �∇p − ρe �E) −
∑
i=1

�jυi ·
(

�∇µ̃i − υi

υ0

�∇µ0

)
, (2.17)

where we have used the condition
∑

i υi�jυi = �0 to eliminate the solvent flux
density.

The above equations are most often applied to electroneutral solutions in
the absence of a pressure gradient. Table 2.1 shows the corresponding form of
the electrodiffusional contribution to the dissipation function for electroneutral
solutions in different reference frames; note that the sums in the dissipation
function exclude the solvent, i = 0.

It should be stressed that the flux densities are coupled through the definition
of the reference velocity and the driving forces are coupled through the Gibbs–
Duhem equation. As far as the following sections are concerned, the different
reference frames introduced are of secondary importance since most of them
are restricted to dilute solutions and then

�jm
i ≈ �jυi ≈ �jH

i , �v ≈ �v0 ≈ �vv , (2.18)

and

θed = −
∑
i �=0

�jH
i · �∇µ̃i. (2.19)

Table 2.1. Electrodiffusional contribution to the dissipation function in different
reference frames

Reference frame Reference velocity Dissipation function

Barycentric �v ≡ 1
ρ

∑
i

Mi�ji = ∑
i

wi �vi θed = − ∑
i �=0

�jmi ·
( �∇µ̃i − Mi

M0
�∇µ0

)
Fick’s �vυ ≡ ∑

i
υi�ji = ∑

i
ciυi �vi θed = − ∑

i �=0

�jυi ·
( �∇µ̃i − υi

υ0
�∇µ0

)
Hittorf’s �v0 θed = − ∑

i �=0

�jHi · �∇µ̃i
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From the above dissipation function, the phenomenological transport
equations in a multicomponent system can be written as

�jH
i = −

∑
k

li,k �∇µ̃k , (2.20)

or, in matrix form,
�jH
1

�jH
2
...

�jH
N

 = −


l1,1 l1,2 · · · l1,N
l1,2 l2,2 · · · l2,N

...
...

. . .
...

l1,N l2,N · · · lN ,N




�∇µ̃1
�∇µ̃2

...
�∇µ̃N

 , (2.21)

where the Onsager reciprocal relations, eqn (2.7), have already been used and,
therefore, there are only N (N + 1)/2 independent ionic phenomenological
transport coefficients, li,k . Note that the index k in eqn (2.20) excludes the
solvent, even though no explicit reference to this fact is shown hereinafter.

2.1.3 Binary electrolyte solution
In this section we consider an electrodiffusion process in a binary electrolyte
solution. The electrolyte Aν1Cν2 is assumed to be completely dissociated into
ν1 ions Az1 and ν2 ions Bz2 whose charge numbers z1 and z2 satisfy the
stoichiometric relation z1ν1 + z2ν2 = 0. The dissipation function is

−θed = �j H
1 · �∇µ̃1 +�j H

2 · �∇µ̃2, (2.22)

and, therefore, the ionic phenomenological transport equations can be written
as ( �j H

1
�j H
2

)
= −

(
l1,1 l1,2
l1,2 l2,2

) ( �∇µ̃1
�∇µ̃2

)
. (2.23)

Other choices of fluxes and forces are also possible provided that the sum
of their products leads to the same dissipation function, that is, the dissipation
function must remain invariant [2]. The choice can be made, for instance, on the
basis of the simplicity of the transport equations. We show next the transforma-
tion rules for forces, fluxes, and phenomenological coefficients by comparing
the transport equations for neutral components and those for ionic species in a
binary solution.

The dissipation function in eqn (2.22) can also be written as

−θed = �J H
12 · �∇µ12 + �I · �∇φohm, (2.24)
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and an alternative set of phenomenological transport equations is( �J H
12
�I

)
= −

(
L12,12 L12,φ
L12,φ Lφ,φ

) ( �∇µ12
�∇φohm

)
, (2.25)

where �J H
12, �I , �∇µ12, and �∇φohm are the electrolyte flux density, the conduction

current density and the gradients of the electrolyte chemical potential and of
the ohmic potential, respectively. These fluxes and forces are related to those
used in eqn (2.22) by the following equations( �J H

12
�I

)
=

(
t2/ν1 t1/ν2
z1F z2F

) ( �jH
1

�jH
2

)
(2.26)

( �∇µ̃1
�∇µ̃2

)
=

(
t2/ν1 z1F
t1/ν2 z2F

) ( �∇µ12
�∇φohm

)
, (2.27)

where

t1 ≡ z1(z1l1,1 + z2l1,2)

z2
1 l1,1 + 2z1z2l1,2 + z2

2 l2,2
, (2.28)

and t2 = 1 − t1 are the migrational transport numbers of the ionic species. It is
then required that the two sets of transport coefficients satisfy the relation [2](

L12,12 L12,φ
L12,φ Lφ,φ

)
=

(
t2/ν1 t1/ν2
z1F z2F

) (
l1,1 l1,2
l1,2 l2,2

) (
t2/ν1 z1F
t1/ν2 z2F

)
. (2.29)

Notice that the transformation matrices between the fluxes and forces in
eqns (2.26) and (2.27) are the transpose of each other.

Interestingly, the matrix multiplication in eqn (2.29) leads to the result

L12,φ = 0, (2.30)

and hence the transport equations in eqn (2.25) simplify to

�J H
12 = −L12,12 �∇µ12 (2.31)

�I = −κ �∇φohm, (2.32)

where κ ≡ Lφ,φ ≡ F2(z2
1 l1,1 + 2z1z2l1,2 + z2

2 l2,2) is the electrical conductivity
of the solution. These equations can be considered as generalizations of Fick’s
first law and Ohm’s law, respectively, and they show that the mass and charge
transport are decoupled [3, 4]. This important conclusion is not exclusive of the
binary case under consideration and it is a natural consequence of the fact that
the fluxes of the electrically neutral components cannot depend on the ohmic
potential gradient.
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2.1.4 Electric conduction
In Section 1.2.6 it was stated that the electric conduction is an irreversible
process whose contribution to the dissipation function is

θohm = −�I · �∇φohm = I2/κ ≥ 0. (2.33)

This equation was not proved there and the ohmic potential gradient was defined
through the generalized Ohm’s law

�I = −κ �∇φohm. (2.34)

In Section 2.1.3 we have shown that eqns (2.33) and (2.34) are valid in binary
solutions. These equations can also be applied to multi-ionic solutions provided
that the electrical conductivity and the ohmic potential gradient are defined as

κ ≡ F2
∑

i

∑
k

zizk li,k , (2.35)

�∇φohm = 1

F

∑
i

ti
zi

�∇µ̃i, (2.36)

where ti is the transport number of species i. Introducing the contribution of
species i to the electrical conductivity of the solution as

κi ≡ F2zi

∑
k

zk li,k , (2.37)

the definition of the transport number becomes

ti ≡ κi/κ , (2.38)

and the ohmic conduction contribution to the flux density of species i is

�ji, ohm = ti�I
ziF

. (2.39)

Note that κ = ∑
i κi,

∑
i ti = 1, and �I = F

∑
i zi�ji, ohm. Equations (2.33)–

(2.39) describe electric conduction even in the presence of concentration
gradients.

2.1.5 Component transport equations
The contribution of the diffusion of dissociated electrolytes and neutral solutes
to the dissipation function, θdif ≡ θed − θohm, is determined from eqns (2.19)
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and (2.36) as

θdif = −
∑

i

�jH
i · �∇µ̃i + �I · �∇φohm = −

∑
i

(
�jH
i − ti�I

ziF

)
· �∇µ̃i

= −
∑

i

(
�jH
i − ti�I

ziF

)
· �∇µi. (2.40)

In these sums, the index i runs over the ionic species, but it should be apparent
that the electrolyte diffusion can be described more naturally in terms of the
neutral electrolyte components. If we use uppercase symbols for both the flux
densities and the index that runs over the neutral components, the ionic flux
density �j H

i can be expressed in terms of the component flux densities �J H
K as2

�j H
i =

∑
K

νi,K �J H
K + ti�I

ziF
, (2.41)

where νi,K is the stoichiometric coefficient of ion i in component K (which is
zero if the dissociation of component K does not produce species i in solution).

By noting that the chemical potential gradient of electrolyte K is

�∇µK =
∑

i

νi,K �∇µ̃i =
∑

i

νi,K �∇µi, (2.42)

where the relation
∑

i ziνi,K = 0 has been used in the last equality, the diffusion
contribution to the dissipation function can also be written as

θdif = −
∑

K

�J H
K · �∇µK . (2.43)

The phenomenological transport equations for the electrolytes are then

�J H
I = −

∑
K

LI ,K �∇µK . (2.44)

The equivalence between the descriptions of transport processes based on
either the ionic species or the neutral components requires that they involve
the same number of transport coefficients. In an electroneutral solution with
N ionic species there are N − 1 independent neutral electrolytes. In the ionic
approach, the number of phenomenological transport coefficients is N (N+1)/2.
In the component approach there are N (N −1)/2 independent coefficients LI ,K ,
(N − 1) independent transport numbers ti (which are involved in the definition
of the ohmic potential gradient), and the electrical conductivity κ . This also
makes a total of N (N + 1)/2 coefficients.

2 The indices i and K also run over the non-dissociated neutral components, but there is no
difference then between the ionic and the component formulations.
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2.1.6 Ternary electrolyte solutions
Consider a ternary electrolyte solution formed by two binary electrolytes with
a common ion. The common ion is denoted by index i = 3, and the other
two by indices 1 and 2. The electrolytes Aν1Cν3,1 and Dν2Cν3,2 are denoted by
indices 13 and 23, respectively; and are completely dissociated according to
the equilibria

Aν1Cν3,1 � ν1Az1 + ν3,1Cz3 (2.45)

Dν2Cν3,2 � ν2Dz2 + ν3,2Cz3 . (2.46)

The electrolyte molar concentrations are c13 and c23, and the stoichiometric
relations3 z1ν1 + z3ν3,1 = 0 and z2ν2 + z3ν3,2 = 0 are satisfied.

The phenomenological transport equations can be written in matrix form as

 �J H
13

�J H
23
�I

 = −
L13,13 L13,23 0

L13,23 L23,23 0
0 0 κ

  �∇µ13
�∇µ23
�∇φohm

 , (2.47)

where the Onsager reciprocal relation has been applied. Since the driving forces
and the fluxes satisfy the equations

 �∇µ13
�∇µ23
�∇φohm

 =
 ν1 0 ν3,1

0 ν2 ν3,2
t1/z1F t2/z2F t3/z3F

  �∇µ̃1
�∇µ̃2
�∇µ̃3

 (2.48)

 �j H
1

�j H
2

�j H
3

 =
 ν1 0 t1/z1F

0 ν2 t2/z2F
ν3,1 ν3,2 t3/z3F


 �J H

13
�J H

23
�I

 , (2.49)

we conclude that the relation between the phenomenological transport coeffi-
cients in the ionic and component formalisms is

l1,1 l1,2 l1,3
l1,2 l2,2 l2,3
l1,3 l2,3 l3,3


=

 ν1 0 t1/z1F
0 ν2 t2/z2F

ν3,1 ν3,2 t3/z3F

 L13,13 L13,23 0
L13,23 L23,23 0

0 0 κ

 ν1 0 ν3,1
0 ν2 ν3,2

t1/z1F t2/z2F t3/z3F

 .

3 The stoichiometric coefficients ν1, ν2, ν3,1, and ν3,2 correspond to ν1,13, ν2,23, ν3,13, and
ν3,23, respectively, in the notation of the previous section.
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2.2 The Fickian approach
2.2.1 Introduction
The Fickian approach provides an alternative description of the diffusion of
neutral components. In the phenomenological approach, the driving forces are
the chemical potential gradients. In the Fickian approach, the concentration
gradients are used as driving forces and the transport equations are

�J H
I = −

∑
J

DI ,J �∇cJ , (2.50)

where the sum runs over all the neutral components and DI ,K are known as the
Fickian diffusion coefficients.4 Note that the flux density of any component is
influenced by the concentration gradients of all components.

The diffusion coefficients can be related to the phenomenological transport
coeficients as follows. Neglecting the influence of the pressure gradient on the
electrolyte diffusion, the gradient of the chemical potential of component K can
be written as

�∇µK ≈ �∇µc
K =

∑
J

∂µc
K

∂cJ

�∇cJ , (2.51)

where the superscript c on µc
K indicates that this is only the composition-

dependent contribution to the chemical potential. Substituting eqn (2.51) in
eqn (2.44) and comparing with eqn (2.50), the relation between diffusion and
phenomenological coefficients is

DI ,J =
∑

K

LI ,K
∂µc

K

∂cJ
. (2.52)

Equation (2.52) shows that the diffusion coefficients of the neutral component
depend on the composition. In fact, one of the practical problems of the Fickian
approach is that this dependence is strong in multicomponent systems. The
simplified approach based on the Nernst–Planck approximation (see Section
2.3.1 below) then proves to be very useful because it involves measurable
ionic fluxes and ionic diffusion coefficients (that are proportional to the ionic
mobilities), which show a much weaker dependence on the composition.

2.2.2 Fick’s law
In an aqueous solution of a neutral (non-dissociable) solute and in the absence
of a pressure gradient, eqn (2.50) reduces to5

�J H
1 = −D1 �∇c1, (2.53)

4 They are named Fickian diffusion coefficients to make clear the difference with the Stefan–
Maxwell diffusion coefficients introduced in Sections 2.4.2 and 2.4.4. These adjectives refer to the
formalism and not to the reference frame.

5 In this case, the diffusion coefficient is written as D1 instead of D1,1 for the sake of simplicity.
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which is known as Fick’s first law. From eqn (2.52) and assuming ideal
behaviour, the diffusion coefficient can be related to the phenomenological
coefficient as

L1,1 = D1

∂µc
1/∂c1

≈ D1c1

RT
. (2.54)

Although the diffusion coefficient D1 is not a constant either, eqn (2.54) shows
that the phenomenological coefficient L1,1 depends on the local composi-
tion (and temperature). The integration of a transport equation as simple as
�J H

1 = −L1,1 �∇µ1 then becomes a difficult task unless we know the depen-
dence of L1,1 and µ1 on the concentration c1. The integration of Fick’s first law,
�J H

1 = −D1 �∇c1, on the contrary, is much easier under the assumption that the
diffusion coefficient is a constant.

From an experimental point of view, Fick’s first law should be stated in the
Fick reference frame as

�J υ
1 = −D1 �∇c1, (2.55)

and the diffusion coefficient should include a superscript υ to stress its depen-
dence on the reference frame. However, in dilute solutions such a difference
is negligible; note that the transport equations have been deduced from the
approximate expression of θed in eqn (2.19).

The diffusion coefficient D1 is not a property of the solute only, but of the sys-
tem solvent–solute and, in fact, it should be denoted as D1,0 (see Section 2.4.2).
To show this in a simple way, we start from the Euler equation c0υ0 +c1υ1 = 1,
which simply states that the sum of the fractions of volume occupied by the
solvent and the solute is one. Taking the gradient of this equation and assuming
that the partial molar volumes υi (i = 0, 1) remain approximately constant
when the composition varies, we obtain the relation

υ0 �∇c0 + υ1 �∇c1 = �0. (2.56)

Since the volume-average velocity is zero in Fick’s reference frame, we have
that

υ0�J υ
0 + υ1�J υ

1 = �0 (2.57)

and eqn (2.55) can be rewritten as

�J υ
0 = −D1 �∇c0, (2.58)

so that D1 is also the diffusion coefficient of the solvent. This result should be
expected because diffusion cannot take place in a monocomponent system. In a
binary solution the diffusion of the solute and the solvent are not two different
processes but a single process, which is characterized by a single diffusion
coefficient.
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2.2.3 Diffusion-conduction equations
When the Fickian transport equations for the neutral components are substituted
into eqn (2.41), the ionic flux density �jH

i can be expressed as

�jH
i = −

∑
J

∑
K

νi,K DK ,J �∇cJ︸ ︷︷ ︸
chemical diffusion

+ ti�I
ziF︸︷︷︸

ohmic conduction

. (2.59)

This is the diffusion–conduction equation for the ionic species i. It must be
stressed that it involves diffusion of neutral components (not of ions) and ohmic
conduction. The term chemical diffusion is sometimes used to make explicit
the difference from the ionic diffusion [5].

The simplest particular case of these equations corresponds to a strong binary
electrolyte solution where the ionic flux densities are

�jH
i = −νiD12 �∇c12 + ti�I

ziF
, i = 1, 2. (2.60)

Similarly, in the ternary electrolyte case described in Section 2.1.6, the
Fickian transport equations for the components are

−�J H
13 = D13,13 �∇c13 + D13,23 �∇c23, (2.61)

−�J H
23 = D23,13 �∇c13 + D23,23 �∇c23, (2.62)

and the diffusion–conduction equations are

�jH
1 = − ν1(D13,13 �∇c13 + D13,23 �∇c23) + t1�I

z1F
, (2.63)

�jH
2 = − ν2(D23,13 �∇c13 + D23,23 �∇c23) + t2�I

z2F
, (2.64)

�jH
3 = − ν3,1(D13,13 �∇c13 + D13,23 �∇c23)

− ν3,2(D23,13 �∇c13 + D23,23 �∇c23) + t3�I
z3F

, (2.65)

where the cross-diffusion coefficients D13,23 and D23,13 are not equal to each
other. Although these equations look relatively simple, it must be observed that
the electrolyte diffusion coefficients and the ionic transport numbers6 are not
constant, and we require expressions to evaluate them before these transport
equations can be integrated. Such expressions are derived in Section 2.3.7,
making use of the Nernst–Planck approximation.

6 The transport numbers can be related to the ionic phenomenological coefficients as shown
in eqn (2.38), but in the component approach, either Fickian or phenomenological, they are
independent transport coefficients that cannot be related to the electrolyte diffusion coefficients.
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2.3 The Nernst–Planck approximation
2.3.1 Introduction
The transport equations include cross-coefficients that couple the transport of
the different components. In fact, one of the major achievements of the ther-
modynamics of irreversible processes was the explanation of coupled transport
phenomena. The phenomenological and the Fickian approaches, however, can-
not provide estimates for the cross-coefficients. Moreover, these approaches
do not help much in understanding the physical basis of such coupled trans-
port phenomena. Such understanding is only possible when we realize that the
electrolytes are dissociated into ions in solution. Ions are charged species that
interact with each other as well as with the solvent. These interactions are quite
complex and difficult to model, but a simple approach proposed by the end
of nineteenth century has proved to be able to provide a satisfactory explana-
tion to most transport processes in ionic solutions. It has become essential for
the development of electrochemical transport processes, membrane separation
processes, and even semiconductor devices.

The fundamental idea behind this approach is the so-called principle of inde-
pendence of the ionic fluxes. This principle states that, in a first approximation,
cross-phenomenological coefficients can be neglected in the transport equations
for ionic species, so that

li,k ≈ 0 if i �= k, (2.66)

and

�jH
i ≈ −li,i �∇µ̃i = − tiκ

z2
i F2

�∇µ̃i. (2.67)

The flux density of a species i is then determined by its electrochemical poten-
tial gradient only, and not by the electrochemical potential gradients of other
species. The coefficient li,i is related to the short-range interaction between the
ionic species i and the solvent. The approximation li,k ≈ 0 (i �= k) is somehow
equivalent to assuming that there are no short-range interactions among ions.7

In dilute solutions, the probability that two ions get close is relatively small and
this picture works nicely. But in concentrated solutions, an ion is surrounded
not only by solvent molecules but also by other ions. Short-range interactions
become then important and eqn (2.66) is no longer valid. Either the full set of
phenomenological equations, eqn (2.20), or the Stefan–Maxwell approach, are
then better suited.

7 However, long-range electrostatic interactions among the ionic species in solution are not
negligible. These are satisfactorily described in dilute solutions within the Nernst–Planck approach,
as explained in Section 2.3.3.
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2.3.2 Nernst–Planck equation
If we introduce the ionic diffusion coefficient Di from the relation li,i =
Dici/RT , and approximate the electrochemical potential gradient by �∇µ̃i ≈
RT �∇ ln ci + ziF �∇φ, eqn (2.67) can be transformed to

�jH
i = −Di �∇ci︸ ︷︷ ︸

ionic diffusion

+ ziDicif �E︸ ︷︷ ︸
ionic migration

= −Di( �∇ci + zici f �∇φ) (2.68)

where f ≡ F/RT . This is known as the classical Nernst–Planck equation and
shows that the ionic flux density (in Hittorf’s reference frame) has one contri-
bution proportional to the concentration gradient and another one proportional
to the electric field. The first one is related to ionic diffusion and the second one
to ionic migration (or drift) and for this reason the Nernst–Planck equation is
also known as the diffusion-migration equation (or drift-diffusion equation).

In the absence of concentration changes, an ionic species of charge number
zi under the influence of an electric field �E moves with respect to the solvent
with an average velocity

�vH
i = uiziF �E, (2.69)

where ui is the (electrochemical or mechanical) mobility of species i.8 The
comparison of the flux density

�jH
i = ci �vH

i = ciuiziF �E = −uiziciF �∇φ, (2.70)

with eqn (2.68) shows that the transport coefficients Di and ui must satisfy the
Nernst–Einstein relation, Di = uiRT .

For the sake of simplicity, we drop the superscript H on the flux densities
hereinafter. In the presence of convective flow we write the Nernst–Planck
equation as

�ji = −Di( �∇ci + zici f �∇φ) + ci �v, (2.71)

where, in principle, �v should be the barycentric velocity. In practice, this
equation is also used taking �v as the solvent velocity �v0. This approximation
is considered to be consistent with the other ones used in the derivation of
eqn (2.67), which are:

1) cross-phenomenological coefficients are neglected, li,k ≈ 0 if i �= k,
2) deviations from the Nernst–Einstein relation (due, e.g. to electrophoretic

contributions) are neglected, i.e. the electrical and the diffusion mobilities,
ui and Di/RT , are the same and the phenomenological coefficient is li,i =
Dici/RT = uici,

3) the gradient of the activity coefficient is neglected (i.e. the activity coefficient
is independent of concentration), and

8 The electric or electrophoretic mobility, uiziF , is used in some other references.
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4) the difference between the barycentric and the solvent velocity is neglected.
They all can be accepted as reasonable approximations for dilute solutions.
Accordingly, the coefficients Di are usually given the (constant) values cor-
responding to infinite dilution, which do not depend on the other ions present
in solution.

Finally, it is interesting to note that neglecting the cross-phenomenological
coefficients in the Nernst–Planck approximation simplifies significantly the
description of electric conduction. Thus, for instance, the ionic transport number
becomes

ti ≡ λici

κ
≡ κi

κ
= z2

i Dici∑
k z2

k Dkck
, (2.72)

where9 λi ≡ κi/ci = z2
i F2Di/RT is the molar conductivity of species i and

κ =
∑

i

κi = F2

RT

∑
i

z2
i Dici (2.73)

is the electrical conductivity of the solution.

2.3.3 Electrical coupling between the ionic fluxes
We have explained in Section 2.3.1 that the Nernst–Planck approach is based on
the principle of independence of the ionic fluxes. The name of this principle is
rather unfortunate because the migration term in eqn (2.68) couples the motions
of all charged species and they are not independent. In fact, the flux density of
species i can also be written in electroneutral solutions as

−�ji =
∑

k

Di,k �∇ck − ti�I
ziF

, (2.74)

which involves the concentration gradients of all the ionic species, k =
1, 2, . . ., N , where N is the number of ionic species. The diffusion coefficients
in eqn (2.74) are

Di,k ≡ Diδik + ti
zi

zk(Di − Dk), (2.75)

where δik is the Kronecker delta (δik = 1 when i = k and δik = 0 when
i �= k).

Equation (2.74) resembles eqn (2.59) and it is indeed another form of the
diffusion–conduction equation. The difference between them is that the former
involves ionic species, while the latter involves neutral components. In order
for them to be really equivalent, they should also involve the same number

9 This is another form of the Nernst–Einstein relation.
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of transport coefficients. On the one hand, the sum in eqn (2.74) runs over all
ionic species and hence there are N 2 ionic diffusion coefficients Di,k . On the
other hand, the sum in eqn (2.59) runs over neutral components and hence there
are (N − 1)2 Fickian diffusion coefficients DI ,K because in an electroneutral
solution with N ionic species there are N − 1 independent neutral components.
This suggests that we can use the local electroneutrality assumption to eliminate
in eqn (2.74) the concentration of, e.g. species i = N in terms of the others.
In this case the number of ionic diffusion coefficients Di,k is also reduced to
(N − 1)2. The flux density of species i = N is calculated from the equation for
the electric current as zN�jN = (�I/F) − ∑

k �=N zk�jk , where index k runs from 1
to N − 1. The flux densities of species i = 1, 2, . . ., N − 1 are given by

−�ji =
∑
k �=N

D′
i,k

�∇ck − ti�I
ziF

, (2.76)

where the cross-diffusion coefficients D′
i,k are defined as

D′
i,k ≡ Diδik + ti

zi
zk(DN − Dk). (2.77)

The (N − 1)2 diffusion coefficients D′
i,k are not independent, and so neither are

the Fickian coefficients DI ,K . In fact, in the Nernst–Planck approach the num-
ber of independent transport coefficients is simply N (the diffusion coefficients
Di), while in the Fickian (and in the phenomenological) approach there are
N (N + 1)/2 independent coefficients. The difference between these two
numbers is N (N − 1)/2, which is just equal to the number of ionic cross-
phenomenological coefficients li,k that are neglected in the Nernst–Planck
approach.

The diffusion coefficients Di,k and D′
i,k can be conveniently written in terms

of the ionic molar conductivities λi as

Di,k = RT

z2
i F2

(
λiδik + ti

z2
kλi − z2

i λk

zizk

)
, (2.78)

D′
i,k = RT

z2
i F2

(
λiδik + ziti

z2
kλN − z2

N λk

z2
N zk

)
. (2.79)

Note finally that, since the ionic cross-diffusion coefficients Di,k(i �= k) are
proportional to (Di − Dk), in solutions that do not contain significant concen-
trations of ions with relatively high or low diffusion coefficients (like hydrogen
ions or large organic ions, respectively), the transport equations decouple and
take the approximate form

−�ji = D �∇ci − ti�I
ziF

, (2.80)

where D is an average diffusion coefficient.
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2.3.4 Diffusion potential
We have shown in Sections 2.2.3 and 2.3.2 that the flux density of an ionic
species i can be written either as the sum of two contributions describing chemi-
cal diffusion and ohmic conduction or as the sum of two contributions describing
ionic diffusion and ionic migration

�ji = �ji, chem dif +�ji, ohm = �ji, ion dif +�ji, mig. (2.81)

It is important to observe that the ionic migration contribution to the flux density

�ji, mig ≡ −ziDici f �∇φ = − tiκ

ziF
�∇φ (2.82)

is not equal to the electric conduction contribution

�ji, ohm = ti�I
ziF

= − tiκ

ziF
�∇φohm (2.83)

because the total electric potential gradient and the ohmic potential gradient are
not the same. Their difference is the diffusion potential gradient10

�∇φdif ≡ �∇φ − �∇φohm = − 1

F

∑
k

tk
zk

�∇µk , (2.84)

where we have used eqn (2.36).
An interesting consequence of the above equations is that under open-circuit

conditions (I = 0) there can be ionic migration but not conduction, because
the field involved in the electric conduction is only the ‘external’ or ohmic
electric field, −�∇φohm ≡ �I/κ . On the contrary, the electric field involved in
the migration term is the sum of the ‘internal’ field (−�∇φdif ) and the ohmic
field (−�∇φohm) imposed externally to force the flow of electric current. Thus,
the difference between the migration and the conduction terms in the ionic flux
equation is

�ji, mig −�ji, ohm = − tiκ

ziF
�∇φdif , (2.85)

and, according to eqn (2.81), this is also the difference between the chemical
diffusion and the ionic diffusion terms

�ji, chem dif −�ji, ion dif = − tiκ

ziF
�∇φdif . (2.86)

These equations evidence that the diffusion potential is responsible for the
electrical coupling between the ionic fluxes.

10 In the presence of a pressure gradient, there is another contribution to the electric potential
gradient.
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The origin of the diffusion potential gradient can be clarified by making use
of the local electroneutrality assumption

∑
i

zici = 0. (2.87)

Taking the chemical diffusion term from eqn (2.74)11 with the cross-diffusion
coefficients defined in eqn (2.75), and substituting it in eqn (2.86), it is obtained
that the diffusion potential gradient in electroneutral solutions can also be
evaluated as

�∇φdif = F

κ

∑
k

zk(Di − Dk) �∇ck . (2.88)

Hence, the diffusion potential originates from the differences in the ionic diffu-
sion coefficients (and the need to maintain the local electroneutrality). In fact,
since the ionic diffusion coefficients are usually of similar order of magnitude
(with the exceptions of H+ and OH− ions), the diffusion potential gradient
can be relatively small in the presence of electric current. Actually, in elec-
trochemical cells with supporting electrolytes and applied current, the electric
field is mostly ohmic. Nevertheless, we can assure that the diffusion potential
gradient is important whenever there is electrostatic coupling between different
ionic flux densities, and in the absence of electric current the electric field has
a purely diffusional origin.

Finally, it is also interesting to comment that any ohmic potential gradient
involves Joule dissipation because θohm = −�I · �∇φohm = ( �∇φohm)2/κ ≥ 0.
On the contrary, a non-zero diffusion potential gradient does not necessarily
involve the existence of an irreversible process [6]. To clarify this point we
must note first that eqn (2.84) is not restricted to electroneutral solutions. How-
ever, in non-electroneutral solutions, this potential gradient does not originate
only from the coupling between the ion fluxes, and indeed the name ‘diffu-
sion potential gradient’ becomes inappropriate. For instance, in the equilibrium
electric double layer close to a charged electrode, there are no flux densities
and no irreversible process takes place. However, in this layer there are con-
centration gradients and electric field. According to eqn (2.84) this field is
�∇φ = �∇φdif = −(1/F)

∑
k (tk/zk) �∇µk . Similarly, if we look at the Nernst–

Planck equation, the flux density is zero but the ionic diffusion contribution and
the ionic migration contribution (which is proportional to the diffusion potential
gradient) are non-zero separately.

11 Indeed, eqn (2.74) is obtained after inserting in eqn (2.68). The decomposition of the electric
field �∇φ = �∇φdiff + �∇ohm, and making use of eqns (2.84) and (2.87).
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2.3.5 Integration of the transport equations in
multi-ionic solutions

In Section 2.3.3 we learned that the ionic fluxes are coupled because their driving
forces are also coupled through the common electric field in the migration terms.
This field is indirectly determined from the equation for the electric current
density

�I = F
∑

i

zi �ji, (2.89)

and the need to satisfy the local electroneutrality condition.12 Equation (2.74)
shows this electrical coupling between the ionic fluxes. However, when we try
to integrate it, we face the problem that the diffusion coefficients Di,k involve
the transport numbers ti, and these are functions of the unknown local ionic
concentrations in multi-ionic solutions. Therefore, we have to find an alternative
approach.

Making use of the local electroneutrality assumption in the form
∑

i zi �∇ci =
�0, the Nernst–Planck equations of the different ionic species, eqn (2.68), can
be combined to yield the following expression for the electric field

f �∇φ = −
∑

k (zk/Dk)�jk∑
j z2

j cj
. (2.90)

The individual Nernst–Planck equations can then be cast in the form

�ji
Di

= −�∇ci + zici∑
j z2

j cj

∑
k

zk

�jk
Dk

, (2.91)

and solved in terms of sums such as∑
i

�ji
Di

= −�∇
∑

i

ci. (2.92)

This procedure can be illustrated by considering a system with only two ionic
classes, in which the charge number of all cations is z+ and that of all anions is
z−. This system satisfies the relation

∑
j z2

j cj = −z+z−cT where cT ≡ ∑
i ci

is the total ionic concentration, and therefore eqns (2.90) and (2.92) lead to

f �∇φ = � �∇ ln cT, (2.93)

where

� ≡ − 1

z+z−

∑
k zk jk/Dk∑

i ji/Di
. (2.94)

12 The Poisson equation of electrostatics must be used when this approximation fails.
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Under steady-state conditions the flux densities, the ionic flux densities and �

are constant, so that eqns (2.92) and (2.93) can be integrated providing cT and
φ are functions of position. Moreover, multiplying both sides of the Nernst–
Planck equation for species i by (cT)zi� and making use of eqns (2.92) and
(2.93), it can be transformed to13

ji/Di∑
k jk/Dk

�∇ [(cT)1+zi�]
1 + zi�

= �∇ [ci(cT)zi�], (2.95)

which can be integrated easily because it is a linear equation with constant
coefficients. This procedure is explained in further detail in Section 3.2.6.

2.3.6 Binary electrolyte solution
In a strong binary electrolyte the two ionic concentrations are coupled through
the electroneutrality assumption, z1c1 + z2c2 = 0. Therefore, the solution com-
position can be specified by only one concentration variable, which can be either
of the two ionic concentrations, the stoichiometric electrolyte concentration
c12 ≡ c1/ν1 = c2/ν2, the mean electrolyte concentration c±,12 ≡ (cν1

1 cν2
2 )1/ν12 ,

the total concentration cT ≡ c1 + c2, the ionic strength I ≡ (z2
1c1 + z2

2c2)/2,
the electrical conductivity κ = (F2/RT )(z2

1D1c1 + z2
2D2c2), etc. The transport

equations obtained when employing any of these variables are all equivalent to
each other.

In a binary solution, the local ionic transport numbers defined in eqn (2.72)
are independent of the position and take the values

t1 = ν2D1

ν2D1 + ν1D2
= z1D1

z1D1 − z2D2
= 1 − t2. (2.96)

Furthermore, the sum in eqn (2.76) reduces to just one term, and the only
diffusion coefficient is D′

1,1 = t1D2 + t2D1 ≡ D12. This is the Nernst–
Hartley diffusion coefficient of the dissociated electrolyte and, with the help of
eqn (2.96), it can be easily seen that

D12 ≡ t1D2 + t2D1 = ν12D1D2

ν2D1 + ν1D2
= (z1 − z2)D1D2

z1D1 − z2D2
, (2.97)

where ν12 ≡ ν1 + ν2. Since D12 and ti are constant, the transport equation

�ji = −νiD12 �∇c12 + ti�I
ziF

= −D12 �∇ci + ti�I
ziF

(2.98)

can be integrated straightforwardly. It is important to stress that eqn (2.98) is
the same as eqn (2.60), but the strength of the Nernst–Planck approach is that
it also provides eqns (2.96) and (2.97) as estimates for the transport numbers

13 In the case zi� = −1, the term �∇ [(cT)1+zi�]/(1 + zi�) should be replaced by �∇ ln cT.
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and the electrolyte diffusion coefficient, while similar equations were missing
in the Fickian approach.

The electric field can be evaluated from eqn (2.90) as

f �∇φ = − 1

z2
1c1 + z2

2c2

(
z1�j1
D1

+ z2�j2
D2

)
. (2.99)

Substitution of eqn (2.99) into the Nernst–Planck equation, eqn (2.68), for any
of the two ions gives the Fick first law

�J12 = −D12 �∇c12, (2.100)

where

�J12 ≡ t2
ν1

�j1 + t1
ν2

�j2 (2.101)

is the electrolyte flux density. Under steady-state conditions, the flux densities
are constant, and eqn (2.100) implies that the concentration profiles are linear.
Similarly, the integration of eqn (2.99) shows that the electric potential varies
logarithmically with position. Finally, as was shown in eqn (2.84), it must be
observed that the electric field is the sum of the ohmic field and the diffusion
electric field due to the difference in ionic mobilities,

�∇φ = �∇φdif + �∇φohm = −1

f

(
t1
z1

+ t2
z2

)
�∇ ln c12 − �I

κ

= −1

f

D1 − D2

z1D1 − z2D2

�∇ ln c12 − �I
κ

. (2.102)

2.3.7 Ternary electrolyte solutions
In Section 2.3.6 we have shown that the Nernst–Planck approach provides
estimates for the transport numbers and the electrolyte diffusion coefficient in
a binary solution. In this section we derive approximate expressions for the
phenomenological coefficients LI ,K and the Fickian diffusion coefficients DI ,K
in a ternary system. Following the notation introduced in Sections 2.1.6 and
2.2.3, the electrolytes Aν1Cν3,1 and Dν2Cν3,2 are denoted by indices 13 and
23, respectively, and they are assumed to be completely dissociated according
to the reactions (2.45) and (2.46). The electrolyte molar concentrations are
c13 and c23, the ionic molar concentrations are c1 = ν1c13, c2 = ν2c23, and
c3 = ν3,1c13 + ν3,2c23, and the stoichiometric relations z1ν1 + z3ν3,1 = 0 and
z2ν2 + z3ν3,2 = 0 are satisfied.
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From eqns (2.41) and (2.47), the component flux densities can be written in
terms of the ionic flux densities as

−�J13 = L13,13 �∇µ13 + L13,23 �∇µ23 = − 1

ν1

(
�j1 − t1�I

z1F

)
, (2.103)

−�J23 = L13,23 �∇µ13 + L23,23 �∇µ23 = − 1

ν2

(
�j2 − t2�I

z2F

)
, (2.104)

where the chemical potential of the electrolytes are

µ13 = ν1µ̃1 + ν3,1µ̃3, (2.105)

µ23 = ν2µ̃2 + ν3,2µ̃3. (2.106)

With the help of eqns (2.34), (2.36), and (2.67), eqn (2.103) is transformed to

−�J13 = t1κ

z1ν1F2

(
1 − t1

z1

�∇µ̃1 − t2
z2

�∇µ̃2 − t3
z3

�∇µ̃3

)
= t1(1 − t1)κ

(Fz1ν1)2
�∇µ13 − t1t2κ

F2z1ν1z2ν2

�∇µ23, (2.107)

and therefore the phenomenological coefficients are identified as

L13,13 = t1(1 − t1)κ

(Fz1ν1)2
= (1 − t1)D1c13

ν1RT
> 0, (2.108)

L13,23 = L23,13 = − t1t2κ

F2z1ν1z2ν2
< 0. (2.109)

Similarly, eqn (2.104) leads to

L23,23 = t2(1 − t2)κ

(Fz2ν2)2
= (1 − t2)D2c23

ν2RT
> 0. (2.110)

From these equations we derive the following conclusions:

1) the Nernst–Planck approximation allows us to obtain simple (and rather
accurate) expressions for the phenomenological coefficients LI ,K of the
components;

2) the phenomenological transport coefficients are functions of the local
composition and cannot be considered as constant when integrating the
phenomenological transport equations, eqn (2.44);

3) the cross-coefficient L13,23 = L23,13 is of the same order of magnitude
as L13,13 and L23,23 and, therefore, cross-effects cannot be neglected in
component diffusion; and

4) the cross-coefficient L13,23 = L23,13 is negative, which allows for the pos-
sibility of transport against concentration gradients (i.e. the so-called uphill
transport that is discussed, e.g., in Section 4.1.8).
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We aim now at obtaining the estimates for the Fickian diffusion coefficients.
From the comparison of eqns (2.59) and (2.74) we have that

−
∑

J

∑
K

νi,K DK ,J �∇cJ = −
∑

k

Di,k �∇ck = −
∑

J

∑
k

Di,kνk,J �∇cJ ,

(2.111)

and, therefore, the two sets of diffusion coefficients must satisfy the stoichio-
metric relation ν1 0

0 ν2
ν3,1 ν3,2

(
D13,13 D13,23
D23,13 D23,23

)
=

D1,1 D1,2 D1,3
D2,1 D2,2 D2,3
D3,1 D3,2 D3,3

 ν1 0
0 ν2

ν3,1 ν3,2

 .

(2.112)

Using eqn (2.75) for the Nernst–Planck ionic coefficients Di,k , we conclude
that

D13,13 = (1 − t1)D1 + t1D3, (2.113)

D23,23 = (1 − t2)D2 + t2D3, (2.114)

D13,23 = ν3,2

ν3,1
t1(D3 − D2), (2.115)

D23,13 = ν3,1

ν3,2
t2(D3 − D1). (2.116)

Interestingly, if we use the coefficients D′
i,k defined in eqn (2.77) with N = 3,

it is found that D′
1,1 = D13,13, D′

2,2 = D23,23, D′
1,2 = (ν1/ν2)D13,23, and

D′
2,1 = (ν2/ν1)D23,13.
It should be observed that D13,23 �= D23,13 and that all these coefficients

are functions of the local concentration. It is also clear from eqns (2.115) and
(2.116) that the cross-coefficients D13,23 and D23,13 can be negative and this
allows for the description of uphill transport in the Fickian approach. Moreover,
as mentioned in relation to the phenomenological coefficients, it must be noticed
that the cross-diffusion coefficients are of the same order of magnitude as D13,13
and D23,23, so that cross-effects cannot be neglected when describing electrolyte
diffusion.

Note, finally, that although the relation li,i = Dici/RT holds in a binary
solution (within the Nernst–Planck approximation), similar equations do not
hold in the ternary solution, e.g. L13,13 �= D13,13c13/RT ; moreover, �∇µ12 =
(ν1 + ν2) �∇ ln c12 in a binary solution but �∇µ13 �= (ν1 + ν3,1) �∇ ln c13 in a
ternary solution.

Example: Effective diffusion coefficient of a polyelectrolyte
Consider the solution formed by the complete dissolution of sodium chloride
and an anionic polyelectrolyte in sodium form, and denote the ions P−z , Cl−, and
Na+ as species 1, 2, and 3, respectively. The charge numbers and stoichiometric



The Nernst–Planck approximation 61

coefficients are then −z1 = ν3,1 = z and −z2 = z3 = ν1 = ν2 = ν3,2 = 1. The
flux density of the polyelectrolyte salt is

−�J13 = D13,13 �∇c13 + D13,23 �∇c23,

where the diffusion coefficients are given in eqns (2.113) and (2.115). In
the presence of an excess of NaCl, the transport number of the polyelec-
trolyte ion vanishes, the cross-diffusion coefficient D13,23 is negligible, and
the polyelectrolyte flux density reduces to

−�J13 ≈ D1 �∇c13 , when t1 → 0.

This equation shows that the effective diffusion coefficient of the polyelectrolyte
in the limit of excess added salt is equal to that of the polyelectrolyte anion.
In the opposite limit of absence of added salt, c23 = 0, the flux density of the
polyelectrolyte salt is

−�J13 ≈ D13 �∇c13,

where

D13 ≡ t3D1 + t1D3 = (z + 1)D1D3

zD1 + D3

is the Nernst–Hartley diffusion coefficient of the polyelectrolyte salt. Since
D3 > D1 (due to the smaller size of the sodium ion), the Nernst–Hartley
diffusion coefficient of the polyelectrolyte salt is larger than that of the polyelec-
trolyte ion, D13 > D1. This means that the polyelectrolyte diffusion proceeds
faster than in the case of excess added salt; note, however, that the sodium ion
is slowed down because it also moves with the electrolyte diffusion coefficient
D13 < D3. These limiting behaviours have been represented in Fig. 2.1 and are
in agreement with experimental evidence [7]. An important conclusion of this
example is that the Fickian diffusion coefficients can vary significantly with the
local composition and they cannot be considered as constant in the integration
of transport equations.

D13,13 ≈D1

D13,13 ≈D13
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Fig. 2.1.
Variation of the diffusion coefficient D13,13

with the concentration ratio cb
13/cb

23. In the
presence of an excess added NaCl,
cb

13/cb
23 � 1, the effective diffusion

coefficient of the polyelectrolyte salt is that
of its ion. In the absence of added NaCl,
cb

13/cb
23 
 1, the polyelectrolyte salt

diffuses with its Nernst–Hartley
coefficient. This plot has been calculated
using the values z = 20, D2/D1 = 20, and
D2/D3 = 2.0/1.3.

2.3.8 Weak electrolytes
In weak electrolytes, ion transport is coupled to the homogeneous dissociation
reaction

Aν1Cν2
→← ν1Az1 + ν2Cz2 . (2.117)

The ionic concentrations are c1 = ν1c12 and c2 = ν2c12, where c12 is the con-
centration of dissociated electrolyte, and the stoichiometric coefficients satisfy
the relation z1ν1+z2ν2 = 0. The ionic flux densities are still given by eqn (2.98)

�ji = −νiD12 �∇c12 + ti�I
ziF

, (2.118)
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where the transport numbers and the electrolyte diffusion coefficient are
independent of the local composition, as shown in eqns (2.96) and (2.97).
However, the ionic flux densities �ji (i = 1, 2), and those of the dissociated

�J12 = −D12 �∇c12 (2.119)

and the undissociated electrolyte

�J12,u = −D12,u �∇c12,u (2.120)

vary now with position because the dissociation degree α also does.
The continuity equation ensures that the total electrolyte flux density

�J12,T = �J12,u + �J12 = −D12,T �∇c12,T (2.121)

is constant throughout the system. The effective diffusion coefficient of the
weak electrolyte D12,T is a function of c12,T and has yet to be determined.
Introducing the dissociation degree α through the relations c12 = αc12,T and
c12,u = (1 − α)c12,T, the diffusion coefficient D12,T can be expressed as

D12,T ≡ ν12(1 − α)D12,u + αD12

ν12(1 − α) + α
(2.122)

where ν12 ≡ ν1 + ν2. When the dissociation reaction is fast compared with the
transport process, local chemical equilibrium can be assumed, and the relation
between c12,T and α is

K = cν1
1 cν2

2

c12,u
= (c12,T)ν12−1 ν

ν1
1 ν

ν2
2 αν12

1 − α
. (2.123)

As expected, in the limiting cases of very weak, K � (c12,T)ν12−1, and very
strong dissociation, K 
 (c12,T)ν12−1, the effective diffusion coefficient of the
electrolyte reduces to the diffusion coefficient of the undissociated electrolyte
D12,T ≈ D12,u and to the Nernst–Hartley diffusion coefficient D12,T ≈ D12,
respectively.

The integration of eqn (2.121) can be better carried out by evaluating the flux
density of the total electrolyte as

−�J12,T = D12,u �∇ [(1 − α)c12,T] + D12 �∇ [αc12,T]. (2.124)

Since the diffusion coefficients D12,u and D12 are constant, the steady-state
continuity equation �∇ · �J12,T = 0 leads to a Laplace equation, ∇2(D12,uc12,u +
D12c12) = 0, that can often be solved analytically.

It was mentioned above that the ionic flux density �ji is a function of position
and this can complicate the integration of eqn (2.118). To solve this problem, it is
convenient to introduce the concept of the total ionic constituent concentration.
If we consider the amount of species 1 that is either dissociated or in the form of
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undissociated electrolyte, its total concentration is c1,T = c1+ν1c12,u. Similarly,
the total concentration of species 2 is c2,T = c2 + ν2c12,u. The flux density of
the total ionic constituent i (i = 1, 2) is then

�ji,T ≡ �ji + νi�j12,u = νi�J12,T + ti�I
ziF

, (2.125)

and the continuity equation ensures that �ji,T is independent of position.14

2.3.9 Moderately concentrated solutions
When dealing with moderately concentrated solutions, the Nernst–Planck
equations can be modified to account for the fact that the gradient of the
electrochemical potential of species i actually is15

�∇µ̃i = RT �∇ ln ai + ziF �∇φ =
(

1 + d ln γi

d ln ci

)
RT �∇ ln ci + ziF �∇φ. (2.126)

This implies that the diffusion coefficients must be modified to

Dγ
i ≡

(
1 + d ln γi

d ln ci

)
Di ≡ βiDi (2.127)

where the superscript γ on Dγ
i denotes that it contains the activity coefficient

correction. Note that the derivative d ln γi/d ln ci can be either positive or neg-
ative and that the correction does not apply to the migrational contribution to
the flux density.

The only activity coefficient that can be measured is the mean activity coeffi-
cient of a binary electrolyteγ12 = (γ

ν1
1 γ

ν2
2 )1/ν12 . However, eqn (2.127) involves

the ionic activity coefficient, and hence some (arbitrary) convention is needed
to calculate them from γ12. This is usually done by employing the equation [8]∑

i

ci

zi
ln γi = 0, (2.128)

which retains the concept of the ionic strength in the sense of the Debye–Hückel
theory. Thus, for example, in the case of 1:1 electrolytes eqn (2.128) implies
γ12 = γ1 = γ2. Equations (2.127) and (2.128) then allow the activity correction
to the diffusion coefficient to be determined from the measured thermodynamic
data [9].

14 Strictly speaking, the continuity equation says that this flux density has zero divergence, but
in one-dimensional systems these two statements are equivalent to each other.

15 In thermodynamics textbooks, the symbol used for the activity coefficient depends on the
concentration scale used. In the molar concentration scale, the symbol most often used is yi rather
than the symbol γi employed here. The latter, however, is commonly used in books on transport
phenomena where only one concentration scale is used.
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In the presence of convection, it must be taken into account that the barycen-
tric solution velocity and the solvent velocity may differ. Thus, since convective
velocity is determined from the momentum balance as a barycentric velocity,
the ionic flux densities must also be expressed in the barycentric reference
frame. In concentrated solutions this implies that we must note, according to
eqn (2.12), that the driving force for species i is �∇µ̃i − (Mi/M0) �∇µ0. Thus,
the Nernst–Planck equation takes the form [10, 11]

�jm
i = −li,i

(
�∇µ̃i − Mi

M0

�∇µ0

)
= −li,i

[(
1 + d ln γi

d ln ci

)
RT �∇ ln ci + ziF �∇φ + υi �∇p − Mi

M0

�∇µ0

]
= −Dγ

i
�∇ci − ziciDi

F

RT
�∇φ − Dici

RT

(
υi∇p − Mi

M0

�∇µ0

)
, (2.129)

where the effect of the pressure gradient on �∇µ̃i [not shown in eqn (2.126)] has
also been taken into account. This equation is certainly more difficult to solve
than the simple �jH

i = −li,i �∇µ̃i that we can use in diluted solutions.
Finally, it is important to remember that the Nernst–Planck approach neglects

the cross-phenomenological coefficients. Thus, although the activity correction
makes the diffusion coefficient concentration dependent, the Nernst–Planck
approach is only strictly applicable to dilute solutions. In other words, the
accurate description of transport processes in concentrated solutions requires
more transport coefficients than are available in the Nernst–Planck approach.

2.4 The Stefan-Maxwell approach
2.4.1 Introduction
The Nernst–Planck equation states that the molar flux density of species i,
that is, the product of its molar concentration and its velocity, is proportional
to the thermodynamic force, �ji = ci �vi = −li,i �∇µ̃i. That is, in the time regime
when this equation is valid, the thermodynamic force −�∇µ̃i no longer produces
an acceleration of these ions but keeps them moving at constant velocity �vi.
This must obviously be due to the fact that additional frictional forces are
present. These are proportional to the relative velocities of the components (and
hence to the flux densities in an appropriate reference frame or to differences
of flux densities with appropriate factors). The transport equations can then be
understood as a statement of equilibrium of (vector) forces

driving force + frictional force = 0.

This equation is the starting point for the frictional or Stefan–Maxwell approach
for the description of transport processes, which was also proposed by Onsager
[12, 13].

Although in some simple cases they can be shown to be equivalent to each
other, the Stefan–Maxwell and the Fickian approaches differ in the transport
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coefficients that they use. In the Fickian approach, the velocity of the solute
(with respect to the solvent) is considered to be proportional to the force as

velocity = mobility × driving force.

In the Stefan–Maxwell approach, the basic scheme for the transport equations
is

driving force = friction coefficient × relative velocity.

In multicomponent systems the right-hand side of this equation contains a sum
of terms.

It is important to note that both the diffusion coefficients and the friction
coefficients depend on the composition of the multicomponent system (as well
as on temperature and pressure). The strength of the Stefan–Maxwell approach
is that it provides a particular functional dependence of the friction coefficients
on the concentrations and proposes the use of another type of diffusion coeffi-
cient. Thus, when concentrated solutions are considered, the Fickian diffusion
coefficients depend strongly on the concentrations, while the Stefan–Maxwell
diffusion coefficients are roughly constant. This explains why the Stefan–
Maxwell approach is often preferred for the description of transport processes
in concentrated solutions.16

2.4.2 Diffusion of a neutral component
The Stefan–Maxwell approach can be introduced by considering a two-
component solution. The solvent is denoted by the index i = 0 and the solute
by i = 1. The driving force for the motion of the solute is the negative gradi-
ent of its chemical potential. During its motion, the solute can only experience
friction with the solvent, and then the Stefan–Maxwell transport equation can
be written as

c1 �∇µ1 = K1,0(�v0 − �v1), (2.130)

where K1,0 is the friction coefficient between solvent and solute. The solute
molar flux density in the Hittorf reference frame is

�jH
1 = c1(�v1 − �v0) = − c2

1

K1,0

�∇µ1. (2.131)

Introducing the Stefan–Maxwell diffusion coefficient

D1,0 ≡ RT
c1x0

K1,0
, (2.132)

16 Although it should be applied to dilute solutions only, the Nernst–Planck approach is, by far,
the most widely used in electrochemistry because it provides a simple and satisfactory understanding
of the transport processes.
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where x0 is the molar fraction of the solvent in the solution, the flux equation
can also be written as

�jH
1 = −D1,0c1

RTx0

�∇µ1. (2.133)

In dilute solutions, ideal behaviour can be assumed so that �∇µ1 ≈ RT �∇ ln c1
and x0 ≈ 1. Equation (2.133) then takes the form of Fick’s first law, �jH

1 =
−D1 �∇c1, so that the Fick and Stefan–Maxwell diffusion coefficients, D1 and
D10, become equivalent. In concentrated solutions, however, they can differ
significantly.

From Stokes’law for the frictional force of a viscous continuum on a spherical
particle of radius R1 [14], the friction coefficient can be estimated as K1,0 ≈
6πR1ηNAc1, where NA is Avogadro’s constant, and eqn (2.132) then leads to

D1 ≈ RT
c1x0

K1,0
≈ RT

6πR1ηNA
(2.134)

which is known as the Stokes–Einstein equation.
In closing, it is interesting to observe that it is also possible to write an

equation like eqn (2.130) for the solvent, that is,

c0 �∇µ0 = K1,0(�v1 − �v0). (2.135)

This equation brings nothing new to the formulation of the problem because it
contains just the same information as eqn (2.130). However, it serves to stress an
important point. Equations (2.130) and (2.135) are only valid if the mechanical
equilibrium condition

c0 �∇µ0 + c1 �∇µ1 = �∇p = �0 (2.136)

is fulfilled. This occurs in free solution, but not in membrane processes, where
a pressure gradient is either imposed or develops as a consequence of the solute
concentration gradient (i.e. due to the osmotic pressure gradient). In fact, when
the Stefan–Maxwell approach is applied to transport across membranes, there
is an additional friction force with the membrane that needs to be added to the
right-hand side of these equations. This is due to the fact that the membrane
is an additional component in the system, making it a multicomponent one. In
Sections 2.4.3 and 2.4.4, transport across membranes is not considered and the
condition �∇p = �0 is accepted implicitly.

2.4.3 Binary electrolyte solution
Consider now the transport processes in the solution of a binary electrolyte that
dissociates completely into ν1 ions of charge number z1 and ν2 ions of charge
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number z2, such that z1ν1 + z2ν2 = 0. The Stefan–Maxwell transport equations
are

c1 �∇µ̃1 = K1,0(�v0 − �v1) + K1,2(�v2 − �v1), (2.137)

c2 �∇µ̃2 = K2,0(�v0 − �v2) + K2,1(�v1 − �v2), (2.138)

where Onsager’s reciprocal theorem

Ki,j = Kj,i (2.139)

also applies to the friction coefficients between species i and j. We aim at
determining the molar ionic flux densities in the Hittorf reference frame

�jH
i = c1(�v1 − �v0), (2.140)

making use of the local electroneutrality condition

z1c1 + z2c2 = 0 (2.141)

and the definition of the conduction current density

�I = F(z1�jH
1 + z2�jH

2 ) = Fz1c1(�v1 − �v2). (2.142)

In the absence of electric current, eqn (2.142) requires that �v1 = �v2, and eqns
(2.137) and (2.138) simplify to

�jH
i = ci(�vi − �v0) = −Di,0ci

RTx0
( �∇µi + ziF �∇φ)

= −Di,0ci

x0
[ �∇ ln(γici) + zif �∇φ], (2.143)

where Di,0 ≡ RTcix0/Ki,0. Equation (2.143) resembles quite closely the Nernst–
Planck equation, eqn (2.68).

In the case of pure electric conduction, that is, in the absence of concentration
gradients, the Stefan–Maxwell transport equations reduce to

z1c1F �∇φ = K1,0(�v0 − �v1) + K1,2(�v2 − �v1), (2.144)

z2c2F �∇φ = K2,0(�v0 − �v2) + K2,1(�v1 − �v2), (2.145)

and lead to Ohm’s law

�I = −κ �∇φohm = −κ �∇φ ( �∇ci = �0), (2.146)

where the electric conductivity is

κ ≡ z2
1F2c2

1(K1,0 + K2,0)

K1,0K2,0 + K1,2(K1,0 + K2,0)
. (2.147)
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It is interesting to note that the friction between the ions, which is described
by the last terms in the right-hand sides of eqns (2.144) and (2.145), is only
relevant in the presence of electric current because �I = Fz1c1(�v1 − �v2). In
relation to this it can be shown that the diffusion potential gradient is

�∇φdif = − 1

F

(
t1

z1

�∇µ1 + t2

z2

�∇µ2

)
, (2.148)

which does not depend on K1,2 because the ionic transport numbers are defined
as

t1 ≡ K2,0

K1,0 + K2,0
= ν2D1,0

ν2D1,0 + ν1D2,0
= 1 − t2. (2.149)

When concentration gradients and electric current are both present, the trans-
port equations can be transformed to a diffusion–conduction form, quite similar
to eqn (2.60). Introducing the gradient of the chemical potential of the electrolyte
through

c12 �∇µ12 = c1 �∇µ̃1 + c2 �∇µ̃2 = c1 �∇µ1 + c2 �∇µ2, (2.150)

where we have made use of the relation ci = νic12, the above equations can be
written in matrix form as(−K1,0 −K2,0

z1c1 z2c2

) (�v1 − �v0
�v2 − �v0

)
=

(
c12 �∇µ12

�I/F

)
, (2.151)

and inverted to give( �jH
1

�jH
2

)
=

(
c1(�v1 − �v0)

c2(�v2 − �v0)

)
= 1

K1,0 + K2,0

(−c1 K2,0/z1
−c2 K1,0/z2

) (
c12 �∇µ12

�I/F

)
.

(2.152)

In concentrated solutions, �∇µ12 = ν12RT �∇ ln(γ12c12) and the diffusion–
conduction equation becomes

�jH
i = −νi

D12

x0

(
1 + d ln γ12

d ln c12

)
�∇c12 + ti�I

ziF
, (2.153)

where the diffusion coefficient of the electrolyte is

D12 ≡ ν12c12x0RT

K1,0 + K2,0
= ν12D1,0D2,0

ν2D1,0 + ν1D2,0
. (2.154)

In dilute solutions (x1, x2 � x0), the friction coefficients can be approx-
imated by Ki,0 = RTci/Di and ideal behaviour can be assumed to evaluate
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Fig. 2.2.
Concentration dependence of the
Stefan–Maxwell diffusion coefficients in
an aqueous solution of sodium chloride:
D1,0 water-chloride ion, D2,0
water-sodium ion, D1,2 sodium
ion-chloride ion. (Data taken from Ref. [7]
with permission.)

the chemical potential gradient as �∇µ12 = ν12RT �∇ ln c12, so that the above
equations reduce to

�jH
i = −νiD12 �∇c12 + ti�I

ziF
, (2.155)

D12 = ν12c12RT

K1,0 + K2,0
= ν12D1D2

ν2D1 + ν1D2
, (2.156)

κ = z2
1F2c2

1(K1,0 + K2,0)

K1,0K2,0 + K1,2(K1,0 + K2,0)
= F2(z2

1D1c1 + z2
2D2c2)

RT
, (2.157)

t1 = K2,0

K1,0 + K2,0
= ν2D1

ν2D1 + ν1D2
= 1 − t2. (2.158)

Thus, once again, the Nernst–Planck and Stefan–Maxwell approaches are found
to be equivalent in dilute solutions.

Note that D12, ti, and the mean activity coefficient γ12 can be measured at
different concentrations [9]. Thus, the diffusion coefficients Di,0 (i = 1, 2) can
be determined from eqns (2.149) and (2.154). Similarly, the cross-diffusion
coefficient17 D1,2 can be evaluated from electrical conductivity measurements.
Figure 2.2 shows the Stefan–Maxwell diffusion coefficients in sodium chloride
aqueous solutions. The cross-diffusion coefficient D1,2 increases with the elec-
trolyte concentration, roughly as (c12)

0.5, but it is significantly smaller than the
coefficients Di,0 (i = 1, 2) throughout the whole concentration range.

2.4.4 Multi-ionic systems
In a multi-ionic system, the Stefan–Maxwell equations are

ci �∇µ̃i =
∑

j

Ki, j(�vj − �vi), (2.159)

17 The cross-coefficient D1,2 should not be confused with the diffusion coefficient of the
electrolyte D12.
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where the sum also includes the solvent. The friction coefficients are written as

Ki,j = Kj,i = RTcT
xixj

Di,j
, (2.160)

where cT is the total molar concentration (including the solvent) and the recipro-
cal relation Di,j = Dj,i also holds for the Stefan–Maxwell diffusion coefficients.
Equation (2.160) can be written in terms of the flux densities as

ci

RT
�∇µ̃i =

∑
j

1

Di,j
(xi�jj − xj�ji) = −

∑
j

Bi,j�jj, (2.161)

where

Bi,j = − xi

Di,j
+ δij

∑
k=0

xk

Di,k
. (2.162)

Equation (2.161) represents a linear system of equations that can be formulated
in matrix form and solved for the flux densities. We do not pursue this approach
any further here and the interested reader is referred to specialized books such
as [7] and [15]. Newman’s book [16] is also a recommended reference for
electrochemical systems.

Note, finally, that the Stefan–Maxwell equations only involve relative veloc-
ities and they are therefore independent of the reference frame. At the same
time, this implies that additional equations are needed to describe the absolute
motion of the solution with respect to, e.g., the laboratory [7].

Exercises
2.1 The statement that every flux density �Ji(i = 1, 2, . . .) is a function of the gen-

eralized forces can be formally written as �Ji = �fi( �X1, �X2, . . .) where �fi denotes
a generic function. Derive the linear phenomenological equations by expanding
�fi as a Taylor series around the equilibrium state, characterized by the condition
�Xj = �0 for all j. What are the expressions for the phenomenological coeffi-
cients and the dissipation function? What condition do the phenomenological
coefficients have to satisfy to ensure that the entropy production remains positive?

2.2 The phenomenological equations

J1 = L1,1X1 + L1,2X2

J2 = L2,1X1 + L2,2X2

can also be written in the form

X1 = K1,1J1 + K1,2J2

X2 = K2,1J1 + K2,2J2,

where the forces are functions of fluxes. This leads to a different kind of for-
malism, but the phenomenological coefficients can be related to each other.
Derive the friction coefficients Ki, j in terms of the phenomenological transport
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coefficients Li, j . What condition must fulfil the coefficients Ki, j , and what does
it mean in practice? Are Onsager’s reciprocal relations still valid?

2.3 (a) Show that the invariance of the dissipation function under a transformation
of fluxes and forces requires that the matrixes ↔

αJ and ↔
αX that transform a set of

fluxes �J and forces �X into another set �J ′ = ↔
αJ · �J and �X ′ = ↔

αX · �X , satisfy the

relation ↔
α

T
J = ↔

α
−1
X , where the superscript T denote the transpose matrix.

2.4 Consider a binary electrolyte solution. Using the relation between the ionic and
the component phenomenological coefficients(

L12,12 L12,φ
L12,φ Lφ,φ

)
=

(
t2/ν1 t1/ν2
z1F z2F

) (
l1,1 l1,2
l1,2 l2,2

) (
t2/ν1 z1F
t1/ν2 z2F

)
as well as the relations z1ν1 + z2ν2 = 0 and t1 + t2 = 1, show that

L12,φ = 0, Lφ,φ = κ , and L12,12 = t1t2κ

(Fz1ν1)2
+ l1,2

ν1ν2
.

2.5 Show that the ionic phenomenological coefficients li, j(i, j = 1, 2) can be written
in terms of κ , ti , and L12,12 as

li, j = titjκ

F2zizj
+ νiνjL12,12.

2.6 Starting from the dissipation function

−θed = �j1 · �∇µ̃1 +�j2 · �∇µ̃2

(a) show that the transport equations only involve one transport coeffi-
cient when transport occurs subject to the constraint j2 = 0 and
find the relation between this coefficient and the ionic coefficients li, j
(i, j = 1, 2).

(b) Show that the transport equations only involve one transport coeffi-
cient when transport occurs subject to the constraint I = 0 and
find the relation between this coefficient and the ionic coefficients li, j
(i, j = 1, 2).
Starting from the dissipation function

−θed = �J12 · �∇µ12 + �I · �∇φohm

(c) show that the transport equations only involve one transport coefficient when
transport occurs subject to the constraint j2 = 0 and find the relation between
this coefficient and the component coefficients Li, j(i, j = 12, φ).

(d) Show that the transport equations only involve one transport coefficient when
transport occurs subject to the constraint I = 0 and find the relation between
this coefficient and the component coefficients Li, j(i, j = 12, φ).

2.7 Check the invariance of the dissipation function under the transformation between
ionic and component fluxes in a ternary system, i.e. prove that the following
equality holds

−θed = �j1 · �∇µ̃1 +�j2 · �∇µ̃2 +�j3 · �∇µ̃3

= �J13 · �∇µ13 + �J23 · �∇µ̃23 + �I · �∇φohm.
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2.8 (a) Substituting the gradients

�∇µ13 = ν1 �∇µ1 + ν3,1 �∇µ3 = (ν1 + ν3,1)RT �∇ ln c13

+ ν3,1RT �∇ ln(1 + ν3,2c23/ν3,1c13)

�∇µ23 = ν2 �∇µ2 + ν3,2 �∇µ3 = (ν2 + ν3,2)RT �∇ ln c23

+ ν3,2RT �∇ ln(1 + ν3,1c13/ν3,2c23)

in


�jH1
�jH2
�jH3

 =
 ν1 0 t1/z1F

0 ν2 t2/z2F
ν3,1 ν3,2 t3/z3F


 �J H

13
�J H
23
�I



= −
 ν1 0 t1/z1F

0 ν2 t2/z2F
ν3,1 ν3,2 t3/z3F

 L13,13 L13,23 0
L13,23 L23,23 0

0 0 κ

  �∇µ13�∇µ23�∇φohm



and comparing the resulting equations with

�jH1 = −ν1(D13,13 �∇c13 + D13,23 �∇c23) + t1�I
z1F

�jH2 = −ν2(D23,13 �∇c13 + D23,23 �∇c23) + t2�I
z2F

�jH3 = −ν3,1(D13,13 �∇c13+D13,23 �∇c23)

−ν3,2(D23,13 �∇c13+D23,23 �∇c23)+ t3�I
z3F

find the relations between the component phenomenological LI ,K and diffusion
coefficients DI ,K (I , K = 13, 23) in this ternary electrolyte solution.
(b) Substituting in these relations the expressions

L13,13 = t1(1 − t1)κ

(Fz1ν1)2

L13,23 = L23,13 = − t1t2κ

F2z1ν1z2ν2

L23,23 = t2(1 − t2)κ

(Fz2ν2)2

determine the diffusion coefficients DI ,K (I , K = 13, 23).
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2.9 Consider the description of transport in a binary electrolyte solution within the
Nernst–Planck approximation.
(a) Starting from the diffusion–migration form of the ionic flux equation

�ji = −Di( �∇ci + zici f �∇φ)

prove that

�∇φ = �∇φdif + �∇φohm = −1

f

(
t1
z1

+ t2
z2

)
�∇ ln c12 − �I

κ

= −1

f

D1 − D2

z1D1 − z2D2
�∇ ln c12 − �I

κ
.

(b) Starting from the chemical diffusion–ohmic conduction equation

�ji = −νiD12 �∇c12 + ti�I
ziF

= −D12 �∇ci + ti�I
ziF

,

and from

�∇φ = �

f
�∇ ln c12,

prove that �∇φ = �∇φdif + �∇φohm. Remember that

� = − 1

z1z2

z1j1/D1 + z2j2/D2

j1/D1 + j2/D2
.

(c) Would it be possible to make the derivation in case (b) without using the
equation �∇φ = (�/f ) �∇ ln c12?

2.10 Find the effective diffusion coefficient of an electrolyte that can form ion pairs
according to the reaction

M+ + A− →← IP,

where M+, A−, and IP represent the cation, the anion, and the ion pair, respec-
tively. Assume chemical equilibrium and denote the association constant by KIP.

2.11 Show that the effective diffusion coefficient of a symmetric, weak binary
electrolyte

D12,T ≡ ν12(1 − α)D12,u + αD12

ν12(1 − α) + α

can be written as

D12,T ≡ D12,u + (D12 − D12,u)

√
K

K + 4c12,T
.

2.12 Show that in the case of an arbitrary binary electrolyte, the convention∑
i

ci

zi
ln γi = 0
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leads to

ln γ12 = ν1

ν2
ln γ1 = ν2

ν1
ln γ2.

2.13 Find the relation between the activity coefficient corrections

β1 ≡
(

1 + d ln γ1

d ln c1

)
and β2 ≡

(
1 + d ln γ2

d ln c2

)
in the case of an asymmetric 2:1 binary electrolyte.

2.14 Evaluate

β1 ≡ 1 + d ln γ1

d ln c1
= 1 + d ln γ1

d ln c12

at c12= 0.01 M and 0.1 M using the Debye–Hückel limiting law

ln γi ≈ −αz2
i

√
I ,

where I = (z2
1c1 + z2

2c2)/2 is the ionic strength and α = 1.1779M−1/2 at 25◦C.
Discuss the importance of the activity corrections in 1:1 and 2:1 electrolytes.

2.15 (a) Within the Stefan–Maxwell approach, discuss whether friction effects between
the ions act to decrease or to increase the solution electric conductivity

κ = z2
1F2c2

1(K1,0 + K2,0)

K1,0K2,0 + K1,2(K1,0 + K2,0)
.

(b) Using the relation Ki, j = RTcTxixj/Di, j , where cT is the total molar con-
centration (including the solvent), show that the electrical conductivity can
also be expressed as

κ = F2

RT

z2
1c1D1,0 + z2

2c2D2,0

x0 + (x1D2,0 + x2D1,0)/D1,2
.

2.16 In order to determine the cross-diffusion coefficient D1,2 from the measured
electrical conductivity, the equation given in the previous exercise must be used.
Show that this equation can be solved for D1,2 to give

D1,2 = ν1ν2

cT

[
(Fz1ν1c12)2

κ
− t1t2ν12c12x0

D12

]−1

.

2.17 (a) In the Stefan–Maxwell approach, show that the generalized Ohm’s law

�I = −κ �∇φohm

is valid even in the presence of concentration gradients, if we define

�∇φohm ≡ 1

F

(
t1

z1
�∇µ̃1 + t2

z2
�∇µ̃2

)
,
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where the transport numbers are

t1 = K2,0

K1,0 + K2,0
= ν2D1

ν2D1 + ν1D2
= 1 − t2.

(b) Show that the electrolyte flux density

�J H
12 = t2

ν1
�jH1 + t1

ν2
�jH2

is given by

�J H
12 = −L12,12 �∇µ12 = ν12c2

12
K1,0 + K2,0

�∇µ12

even in the presence of electric current.
(c) The Stefan–Maxwell equations

c1 �∇µ̃1 = K1,0(�v0 − �v1) + K1,2(�v2 − �v1)

c2 �∇µ̃2 = K2,0(�v0 − �v2) + K2,1(�v1 − �v2)

contain three transport coefficients. The equations �I = −κ �∇φohm and �J H
12 =

−L12,12 �∇µ12 can be derived from the former, but contain only two transport
coefficients. How can you explain then that they are also of general validity?

(d) Check the consistency of the results of this exercise with those of Exercise 2.4.
2.18 (a) In order to guarantee that the two ions in a binary electrolyte solution move at

the same velocity in the absence of electric current (�v1 = �v2 when z1�jH1 + z2�jH2
= �0) in spite of their different friction coefficients with the solvent (K1,0 �= K2,0
or D1,0 �= D2,0), an electric potential gradient must develop in the solution. This
electric field is internally generated rather than externally imposed. From the flux
equation

�jHi = ci(�vi − �v0) = −Di,0ci

RTx0
( �∇µi + ziF �∇φ)

= −Di,0ci

x0
[ �∇ ln(γici) + zi f �∇φ],

and determining the activity coefficients according to the convention

∑
i

ci

zi
ln γi = 0,

show that the diffusion potential gradient in the Stefan–Maxwell approach is

�∇φdif = RT

F

D2,0 − D1,0

z1D1,0 − z2D2,0

[
1 + ν2

1 D2,0 − ν2
2 D1,0

ν1ν2(D2,0 − D1,0)

d ln γ12

d ln c12

]
�∇ ln c12.

(b) Explain why �∇φdif does not depend on the cross-diffusion coefficient D1,2.
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(c) Show that the diffusion potential gradient in the Stefan–Maxwell approach
can also be written as

�∇φdif = − 1

F

(
t1

z1
�∇µ1 + t2

z2
�∇µ2

)
.

2.19 In the Nernst–Planck approach the principle of independence allows us to write
the flux density of species i as

�ji = − tiκ

z2
i F2

�∇µi .

In the Stefan–Maxwell approach the principle of independence does not apply
and the flux density of species i depends also on the electrochemical potential
gradients of other species. This means that, besides the term shown in the previous
equation, additional terms must arise due to the friction between the ionic species

�ji = − tiκ

z2
i F2

�∇µi + (�ji)cross effects.

Considering the case of a binary electrolyte solution, find the term due to
cross-effects in the Stefan–Maxwell approach.

2.20 The following table shows the definitions of the electrical conductivity and the
migrational transport numbers in the TIP, Nernst–Planck, and Stefan–Maxwell
approaches. However, while those corresponding to the TIP and Nernst–Planck
approaches are valid for multi-ionic systems, the Stefan–Maxwell ones are valid
only for a binary system. Deduce the corresponding Stefan–Maxwell equations
for a multi-ionic system.

Electrical conductivity Migrational transport
number

TIP κ ≡ F2 ∑
i
∑

k zizk li,k ti ≡ zi
∑

k zk li,k∑
j
∑

k zjzk lj,k

Nernst–Planck κ ≡ F2

RT
∑
k

z2
k Dk ck ti ≡ z2

i Dici∑
k z2

k Dk ck

Stefan–Maxwell
(binary)

κ = F2z2
1c2

1

(K−1
1,0 +K−1

2,0 )−1+K1,2
ti = K−1

i,0

K−1
1,0 +K−1

2,0
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3 Transport at
electrodes

3.1 Faraday’s law
Mass transport at electrodes takes place due to electrode reactions, where the
electrode is a surface source or a sink of the species involved in the reaction.
As a consequence, concentration differences are created in the vicinity of the
electrode, which gives rise to mass transport.

An electrode reaction can involve the following mechanisms:

1) a species is reduced (or oxidized) at the electrode and precipitates on the
surface (e.g. CuSO4 + 2e− → Cu(s) + SO2−

4 );
2) a species is reduced (or oxidized) at the electrode, remains in solution and

is transported away from the electrode (e.g. Fe2+ → Fe3+ + e−);
3) a species reacts on the electrode and is transported into the electrode (e.g.

Hg);
4) electrochemical (anodic) dissolution of an electrode (e.g. Cu(s) → Cu2+ +

2e−).

The rate of an electrochemical reaction is accurately known via Faraday’s
law. If the number of electrons exchanged in the electrode reaction is n and
the electric current density is I , Faraday’s law establishes that the reaction rate
(density) is

r = I

nF
. (3.1)

This is an exceptional and valuable feature of electrochemistry: the reaction rate
can be monitored or controlled in situ. Furthermore, with modern equipment
very low currents i = IA, where A is the electrode area, can be measured.
A current of the order of 10−9 A implies a reaction rate rA of the order of
10−14mol s−1, a current of 10−12 A implies a reaction rate of 10−17mol s−1,
and a current of 10−15 A implies a reaction rate of the order of 10−20mol s−1.
Thus, a femtoamp current measures an event where 6000 electrons in a second
are transferred across the electrode solution/interface.

Our sign convention is such that the reaction rate r is always positive, and
I and n have the same sign. This sign is positive in anodic oxidations (i.e.
when the current flows from the electrode to the bulk solution) and negative
in cathodic reductions. Similarly, the flux density of an electroactive species
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(i.e. one that participates in the electrode reaction) is positive when it moves
from the electrode to the bulk solution and negative otherwise. In relation to the
spatial position co-ordinate x, the electrode is located at x = 0 and the solution in
the positive x region. The fluxes and the current density are considered positive
in the positive x direction, and the potential drop �φ in the solution adjacent to
the electrode is defined as the potential in the bulk solution minus the potential
at the electrode surface, i.e. with the same sign as the electric potential gradient
dφ/dx. Hence, for an oxidation reaction �φ is negative, and for a reduction
reaction it is positive. With this convention, the generalized Ohm’s law is written
as I = −κdφohm/dx, where κ > 0 is the electrical conductivity, and dφohm/dx
(or �φohm) and I have opposite signs.

The general form of electrode reaction can be written as∑
i

νiB
zi
i + ne− = 0, (3.2)

where charge conservation requires that n = ∑
i ziνi. In eqn (3.2), the stoi-

chiometric number of species i, νi, and that of the electron, n, are positive for
products and negative for reactants. For instance, in the oxidation R → O+ne−,
νO = −νR = 1 and n > 0, and in the reduction O+|n|e− → R, νR = −νO = 1
and n < 0.

The reaction rate is related to transport through the mass balance. Faraday’s
law implies that the flux density at the electrode surface of an electroactive
species i is

ji = νiI

nF
. (3.3)

Obviously, when there is only one electroactive ion in solution, i.e. when the
electrode reaction involves only one ionic species in solution, eqn (3.3) becomes

ji = I

ziF
. (3.4)

For instance, in the cathodic deposition of copper, Cu2+(aq.) + 2e− → Cu(s),
we have n = −2 and only one electroactive ion in the aqueous solution, the
cupric ion, which has νCu2+ = −1 and zCu2+ = 2. Thus, I < 0 and jCu2+ =
I/2F < 0, which means that these ions are transported from the solution to
the electrode surface (where they are deposited). On the contrary, in the redox
electrode reaction Cu2+(aq.) + e− → Cu+(aq.) there are two active ions in
solution and eqn (3.3) can be applied to any of them with I < 0 and n = −1.
Thus, the flux density of the cupric ion is jCu2+ < 0 because it is consumed at
the electrode, and that of the cuprous ion is jCu+ > 0 because it is produced by
the electrode reaction and transported to the solution.

In three-dimensional systems I and ji in eqn (3.3) must be interpreted as the
components of the corresponding vector quantities in the direction normal to
the electrode surface (positive normal direction is taken from the electrode to
the solution). Nevertheless, the electrode surface is usually equipotential and
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has uniform accessibility to the reactants, so that �I and �ji are actually directed
normal to the electrode surface.

3.2 Electrode processes in stationary state
3.2.1 Nernst diffusion boundary layer
In stationary transport processes, the continuity equation of a species i not
involved in homogeneous chemical reactions reduces to �∇ ·�ji = −∂ci/∂t = 0.
Stirring is necessary to establish the stationary transport conditions because
otherwise the situation becomes ambiguous due to natural convection, which
tends to stir the solution in an uncontrolled fashion.An exception is an electrode
that creates a spherical diffusion process; this case is discussed later in Section
3.2.7. When the solution is stirred, the velocity profile can be determined by
solving the Navier–Stokes equation subject to the appropriate boundary condi-
tions. There is an abundance of literature [1] concerning different hydrodynamic
conditions, but here we present the general features taking the case of a planar
electrode, where the solution is stirred with a propeller, as an example.

When species i reacts at the electrode surface, the situation under limiting
current conditions can be depicted as shown in Fig. 3.1. The diffusion boundary
layer can be some orders of magnitude thinner than the hydrodynamic boundary
layer. The thickness of these layers cannot be defined unambiguously because
the concentration and the velocity approach their bulk values asymptotically.
As far as the diffusion boundary layer is concerned, the concept of Nernst
or unstirred layer adjacent to the electrode surface is customarily introduced.
In this layer, it is assumed that ionic transport takes place only by diffusion
and migration, the convective contribution being negligible. Its thickness δ is
defined as the distance through which the linear portion of the concentration
profile of a reacting species (usually the one that is totally consumed at the
surface under limiting conditions) must be extrapolated to reach its bulk con-
centration. This concept of an unstirred or stagnant layer does not apply as such
in other geometries or stirring conditions and must be modified accordingly. It
must also be emphasized that an experimental determination of the thickness
of the diffusion boundary layer is rarely possible, and therefore, the problem is
treated with the aid of the limiting current (density) as discussed below.

Fig. 3.1.
Solution velocity (long dashed line) and
concentration (solid line) profiles in the
vicinity of an electrode. The diffusion
boundary layer δ is defined by the crossing
of the linearly extrapolated concentration
profile at the electrode surface and the bulk
concentration (short dashed lines).

E
le

ct
ro

de
 s

ur
fa

ce
  (

x
= 

0)

 

Bulk concentration

Bulk velocity

ci
b

0
x

δ



Electrode processes in stationary state 81

3.2.2 Limiting current density
The transport to or from the electrode can take place by diffusion, migration
and convection. At the electrode surface, however, the solution velocity usually
vanishes due to the non-slip and non-penetrability conditions, and transport
takes place by diffusion and migration only. When an electroactive species
is consumed at the electrode surface, its surface concentration is lower than
in the bulk solution. Since migration is proportional to the ionic concentration,
the migrational contribution to the overall mass transport is often smaller than
the diffusional one. In particular, when the surface concentration of reactant
i vanishes, its flux density is purely diffusive close to the electrode surface,1

and is given by �ji = −Di �∇ci. In one-dimensional systems, the concentration
gradient at the electrode surface located at x = 0 then takes its maximum value
(dci/dx)x=0 = cb

i /δ (Fig. 3.1), and the system reaches the limiting current
density

IL,i ≡ nFjL,i

νi
= −nFDicb

i

νiδ
. (3.5)

This is the limiting diffusion current density of species i. Note that δ can be
expressed in terms of IL,i, which is a measurable quantity.

By definition, the flux density under limiting conditions for species i (ci(0) =
0) is negative, jL,i ≡ −Dicb

i /δ < 0. This means that in order for species i to
reach limiting conditions, it must be consumed at the electrode. Species i is
then a reactant in the reaction and νi < 0. The sign of IL,i in eqn (3.5) is then
that of n. Thus, in the anodic oxidation R → O + ne−, the limiting diffusion
current density of species R is IL,R > 0 because n > 0 and νR = −1. Similarly,
in the cathodic reduction O+|n|e− → R, the limiting diffusion current density
of species O is IL,O < 0 because n < 0 and νO = −1. In principle, it is
also possible to apply the definition of IL,i in eqn (3.5) to the products of the
electrode reaction but IL,i then becomes just an auxiliary variable. For instance,
in the anodic oxidation R → O + ne−, the limiting diffusion current density
of species O is IL,O < 0 because n > 0 and νO > 0. But, since I is defined
to be positive in oxidations, it is clear that the situation I = IL,O can never be
realized and the reaction product cannot reach limiting conditions.

When the electrode reaction involves several reactants, the limiting current
density of the system is determined by the reactant that runs out first; in the
following sections we chose subscript 1 for such species. In oxidations, the
limiting current density of the system IL > 0 is equal to the lowest of their
limiting diffusion current densities of the reactant. In reductions, when IL < 0
and the reactants have IL,i < 0, IL is equal to the IL,i that has the lowest absolute
magnitude.

1 In the absence of supporting electrolyte and under limiting conditions, this is not valid because
the electric field becomes so intense at the electrode surface located at x = 0 that other transport
mechanisms (such as electroconvection) come into play.
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3.2.3 Transport equations in multi-ionic solutions
We compile here the main transport equations, in the Nernst–Planck approach,
from Chapter 2. In a multi-ionic system with N species in solution, the number
of unknown variables is N + 1: the N molar concentrations ci and the electric
potential φ. The N + 1 equations that allow for their determination are the N
equations for the flux densities

−�ji = Di( �∇ci + zici f �∇φ), (3.6)

and the local electroneutrality assumption2

∑
i

zici = 0. (3.7)

In non-stationary or transient processes, the time dependence of these
variables is determined by the continuity equation

∂ci

∂t
= −�∇ · �ji + πi, (3.8)

where πi is the net production rate of species i due to homogeneous chemical
reactions. For stationary processes and absence of homogeneous reactions, the
continuity equation reduces to

�∇ · �ji = 0. (3.9)

Moreover, the fluxes are coupled through the equation for the electric current3

�I = F
∑

i

zi�ji. (3.10)

The Nernst–Planck equation can be rewritten by making the ionic contribu-
tion to ohmic conduction explicit (i.e. the so-called chemical diffusion–ohmic
conduction form of the transport equations). In the case of binary electrolyte
solutions, this takes the simple expression

�ji = −D12 �∇ci + ti�I
ziF

, (3.11)

and its general form in multi-ionic solutions (see Section 2.3.3) is

−�ji =
∑

k

Di,k �∇ck − ti�I
ziF

, (3.12)

2 When the current density approaches the limiting value in the absence of a supporting
electrolyte, this approximation fails and electroconvection must be taken into account.

3 In electrical relaxation transients, the displacement current also needs to be taken into account.
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where the cross-diffusion coefficients are

Di,k ≡ Diδik + ti
zi

zk(Di − Dk), (3.13)

and δik is the Kronecker delta (δik = 1 when i = k and δik = 0 when i �= k).
Equation (3.12) shows explicitly that the ionic flux densities are coupled in
a system where the ionic species have different mobilities, due to the local
electroneutrality requirement.4

Alternatively, by elimination of the electric field, the Nernst–Planck equations
can be cast in the form

�ji
Di

= −�∇ci + zici∑
j z2

j cj

∑
k

zk

�jk
Dk

, (3.14)

and solved in terms of sums such as

∑
i

�ji
Di

= −�∇
∑

i

ci, (3.15)

which can be integrated straightforwardly (assuming that the diffusion coeffi-
cients are constant) because the flux densities are constant under steady-state
conditions. Note that in the case of binary solutions, eqn (3.15) is simply Fick’s
first equation for the electrolyte, �J12 = −D12 �∇c12. This procedure is explained
in further detail in Section 3.2.6.

3.2.4 Trace ions
In electrochemical practice, supporting electrolytes are commonly used to
increase the electric conductivity of the solutions. Those other ions that do
not contribute significantly to the conductivity and have negligible transport
numbers, ti � 1, are known as trace ions. Since the second term in the right-
hand side of eqn (3.13) contains a factor ti, the cross-diffusion coefficients
reduce to Di,k ≈ Diδi,k for a trace ion. This means that its transport decouples
from that of the other ionic species, and its flux density is given by

−�ji ≈ Di �∇ci − ti�I
ziF

≈ Di �∇ci. (3.16)

Hence, a trace ion is mainly transported by diffusion and its flux equation can
be approximated by Fick’s first law even though it is charged and an electric
field might be present in the solution. The last approximation in eqn (3.16)
comes from the fact that the contribution of electric conduction to the transport
of a trace ion is negligible, regardless of the relative magnitudes of |ziF�ji| and

4 However, this equation is of limited utility in the solution of transport problems because the
transport numbers ti are functions of the local ionic concentrations. Rather often, eqn (3.12) cannot
be integrated analytically in multicomponent solutions.
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|�I |. In fact, a trace ion might carry all the electric current in the vicinity of the
electrode surface, so that �I = ziF�ji but still |ti�I | � |ziF�ji|.

Under steady-state conditions and in the absence of homogeneous reactions,
the continuity equation for a trace ion reduces to �∇ ·�ji = 0. Equation (3.16) then
implies that the spatial distribution of its concentration is given by the Laplace
equation

∇2ci = 0. (3.17)

Thus, in one-dimensional systems the concentration profile of a trace ion is
linear

ci(x) = ci(0) + [cb
i − ci(0)]x

δ
, (3.18)

and its surface concentration is

ci(0) = cb
i

(
1 − mFji

νiIL,i

)
= cb

i

(
1 − I

IL,i

)
, (3.19)

where IL,i is its limiting diffusion current density.
Equations (3.16) and (3.17) are the most common transport equations in mod-

ern electrochemistry. Although quite a number of assumptions have been made
to derive them, it has to be realized that they are valid with sufficient accuracy
also in cases where the present assumptions are not strictly fulfilled. Finally,
an interesting feature of eqn (3.16) is that it contains the ionic diffusion coeffi-
cient, not that of the component, which makes its experimental determination
feasible.

3.2.5 Solutions with only one electroactive ion
The steady-state transport equations can be easily solved when the solution con-
tains only one electroactive ion. In this section we show the solution procedure
for one-dimensional systems (in the absence of homogeneous reactions) and
illustrate it with an example. Since the electroactive ions are either consumed
or produced at the electrode surface, their flux density is different from zero in
the electrode vicinity. On the contrary, the electroinactive ions have zero flux
density there. Under steady-state conditions, the continuity equation requires
that the flux density of every ion is independent of position. Hence, throughout
the diffusion boundary layer, the ionic flux densities are

j1 = I

z1F
, (3.20)

ji = 0, i �= 1, (3.21)

where the index i = 1 denotes the electroactive ion. Moreover, when there is
only one electroactive ion, its stoichiometric number in the electrode reaction
must be equal to n/z1, where n is the stoichiometric number of the electrons in
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the reaction. Thus, the limiting current density of the active species can also be
written as

IL,1 = − z1FD1cb
1

δ
. (3.22)

In the case of binary electrolyte solutions, the diffusion–conduction form of
the transport equations

j1 = I

z1F
= −D12

dc1

dx
+ t1I

z1F
= −ν1D12

dc12

dx
+ t1I

z1F
(3.23)

j2 = 0 = −D12
dc2

dx
+ t2I

z2F
= −ν2D12

dc12

dx
+ t2I

z2F
(3.24)

allows us to solve easily for the concentration gradient. This gradient

dc12

dx
= − (1 − t1)I

z1ν1FD12
= t2I

z2ν2FD12
(3.25)

can be integrated subject to the boundary condition c12(δ) = cb
12 and leads to

the concentration profile

c12(x) = cb
12 + (1 − t1)I

z1ν1FD12
(δ − x). (3.26)

In the case of a symmetric electrolyte this further simplifies to

c12(x) = cb
12 + I

2z1FD1
(δ − x). (3.27)

The limiting current density can then be evaluated from the condition of
vanishing electrolyte concentration at the electrode surface, c12(0) = 0, as

IL = −2z1FD1cb
12

δ
(3.28)

where the resulting minus sign comes from our sign convention (i.e. c12(0) = 0
can only occur when j1 < 0). Note that this is double the limiting diffusion
current of the active species, IL,1 = −z1FD1cb

1/δ. This feature is known as the
supporting electrolyte paradox: adding an inert electrolyte to the solution, the
conductivity of the solution increases but the limiting current density decreases.
As shown above, this happens because a trace ion has no migrational contribu-
tion in the transport equation, namely t1 ≈ 0. In multi-ionic solutions a similar
approach is not possible because the transport numbers ti are functions of the
(unknown) local ionic concentrations and, hence, eqn (3.23) cannot be inte-
grated analytically. Fortunately, the diffusion–migration form of the transport
equations can be easily integrated as we show next.
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Consider first the case of a binary solution. The diffusion–migration form of
the transport equations

j1 = I

z1F
= −D1

(
dc1

dx
+ z1c1f

dφ

dx

)
(3.29)

j2 = 0 = −D2

(
dc2

dx
+ z2c2f

dφ

dx

)
(3.30)

allows us to solve for the electric potential gradient5

dφ

dx
= − 1

z2f

dlnc2

dx
= − 1

z2f

dlnc12

dx
. (3.31)

Moreover, using the local electroneutrality assumption z1c1 + z2c2 = 0, the
electric potential gradient can be eliminated from the transport equations and
the concentration gradient is found as

dc12

dx
= − I

z1ν12FD1
, (3.32)

which is the same as that shown in eqn (3.25); here, ν12 = ν1+ν2.An interesting
feature of this procedure is that it provides directly the electric potential drop
in the diffusion boundary layer in the form of the Nernstian equation

�φ ≡ φb − φ(0) = 1

z2f
ln

c12(0)

cb
12

(3.33)

as well as the current–voltage curve

I = IL(1 − ez2 f �φ), (3.34)

where we have used the following expression for the surface concentration

c12(0) = cb
12 + Iδ

z1ν12FD1
= cb

12

(
1 − I

IL

)
. (3.35)

In the case of multi-ionic solutions, we take advantage of the fact that
the fluxes of electroinactive ions are zero. Hence, from their Nernst–Planck
equations it is readily seen that they distribute in the boundary layer 0 < x < δ

according to the Boltzmann equation

ci(x) = cb
i e−ziϕ , i �= 1, (3.36)

5 Note that when changing dlnc2 to dlnc12 the stoichiometric coefficient ν2 cancels out.
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where ϕ(x) = f [φ(x)−φb] is the dimensionless local electric potential relative
to the bulk solution. From eqn (3.36) and the local electroneutrality assumption,
the concentration of the electroactive ion is

c1(x) = − 1

z1

∑
i �=1

zici = − 1

z1

∑
i �=1

zic
b
i e−ziϕ , (3.37)

and its flux density is

j1 = I

z1F
= −D1

dc1

dx
−

∑
i �=1

zici
dϕ

dx

 = −D1

dc1

dx
+

∑
i �=1

dci

dx


= −D1

dcT

dx
, (3.38)

where cT ≡ ∑
i ci is the total ionic concentration. The same result is obtained

also by calculating the sum
∑

i (ji/Di) and using the electroneutrality condition.
Then, only I/(z1FD1) is left on the left-hand side, and the terms on the right-
hand side containing dϕ/dx cancel out. As the flux density j1 is independent of
position, this can be integrated from x = 0 to x = δ to give

j1 = D1

δ
[cT(0) − cb

T] = D1

δ

∑
i �=1

(
1 − zi

z1

)
cb

i (e
zif �φ − 1), (3.39)

where �φ ≡ φb − φ(0) = −ϕ(0)/f and we have used eqns (3.36) and (3.37).
Equations (3.36) and (3.39) allow us to calculate the variation of the surface
concentrations with the current density and the current–voltage curve of the
system.

With the help of eqn (3.37), eqn (3.38) can also be written as a generalized
Ohm’s law

I = −κeff
dφ

dx
(3.40)

where the effective electrical conductivity κeff ≡ (F2/RT )D1
∑

i z2
i ci only

involves D1 because the electroactive species is the only one that moves in the
solution.

Particularly interesting is the variation of the surface concentration of the
electroactive ion with the current density. If it is a trace ion, its surface
concentration can be evaluated as

c1(0) = cb
1 + j1δ

D1
= cb

1

(
1 − I

IL,1

)
. (3.41)

It is worth remembering the sign convention. When the active species is con-
sumed at the electrode, c1(0) < cb

1, j1 < 0, and I/IL,1 > 0, and when it is
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generated there (e.g. in a metal electrode dissolution), c1(0) > cb
1, j1 > 0, and

I/IL,1 < 0.
If the electroactive ion does not behave as a trace ion, analytical expressions

for its surface concentration as a function of the current density, similarly to
eqn (3.41), can only be obtained in special cases. We illustrate this with an
example. In particular, we consider the stationary transport in a dilute aque-
ous solution of H2SO4 and K2SO4 associated to the cathodic reaction 2H+ +
2e− → H2.

We denote by index i = 1 the electroactive ion H+ (z1 = +1), by i = 2 the
electroinactive cation K+ (z2 = +1), and by i = 3 the common anion SO2−

4
(z3 = −2). The electrolytes H2SO4 and K2SO4 are characterized by indexes
13 and 23, respectively, and their concentrations in the bulk solution are cb

13
and cb

23. The bulk ionic concentrations are then cb
1 = 2cb

13, cb
2 = 2cb

23, and
cb

3 = cb
13 + cb

23. Bisulphate is thus assumed to be completely dissociated into
sulphate in this example.

From eqn (3.39), the current–voltage curve can be written as

I = FD1

δ
3cb

3(e
−2f �φ − 1) = IL0(1 − e−2f �φ), (3.42)

where IL0 ≡ −3FD1cb
3/δ = −FD1cb

T/δ < 0 is an auxiliary variable. The
limiting current density IL is defined from the condition that the concentration of
the H+ ion vanishes at the electrode surface, and consequently c2(0) = 2c3(0).
From eqn (3.36), the limiting value of the electric potential drop in the diffusion
boundary layer (�φL ≡ �φ when I = IL) is

�φL = − 1

3f
ln

cb
2

2cb
3

= 1

3f
ln(1 + cb

13/cb
23) ≥ 0. (3.43)

Substituting eqn (3.43) in eqn (3.42), the limiting current density is obtained as

IL = IL0(1 − e−2f �φL) = IL0[1 − (1 + cb
13/cb

23)
−2/3] < 0. (3.44)

Equation (3.44) has two interesting limiting cases (Fig. 3.2). First, when cb
13 �

cb
23 we recover the trace ion case, IL ≈ IL,1 � IL0.6 Also, the potential drop

in the diffusion boundary layer �φL vanishes. Second, when cb
23 � cb

13, the
system behaves as a binary electrolyte solution, and it is directly seen from eqn
(3.43) that �φL → ∞, and from eqn (3.44) that the limiting current density
becomes IL ≈ IL0 ≈ (1 − z1/z3)IL,1.

6 The limiting value of eqn (3.44) can be calculated with, e.g., the Taylor series as cb
13 approaches

zero.
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Fig. 3.2.
Limiting current density and potential drop in the boundary layer under limiting conditions as a function of the electrolyte concentration ratio
cb

13/cb
23. When cb

13/cb
23 � 0.1, K2SO4 plays the role of a supporting electrolyte and H+ behaves as a trace ion, so that the potential drop vanishes,

migration is negligible, and the limiting current is IL,1. When cb
13/cb

23 
 100, the reduction of migration by K2SO4 is negligible, and the limiting
current increases by a factor 1 − z1/z3 = 1.5.

The surface concentrations can be evaluated from eqns (3.36) and (3.42) as

c3(0)

cb
3

= e−2f �φ = 1 − I

IL0
= 1 − I

IL
[1 − (1 + cb

13/cb
23)

−2/3], (3.45)

c2(0)

cb
2

= e f �φ =
[

c3(0)

cb
3

]−1/2

, (3.46)

c1(0) = −c2(0) + 2c3(0) = 2c3(0)

[
1 −

(
IL0 − IL

IL0 − I

)3/2
]

. (3.47)

These concentrations are equal to the corresponding bulk values when the
current density vanishes, and to c1(0) = 0, c2(0) = 2c3(0) and c3(0) =
(cb

23)
2/3(cb

13 + cb
23)

1/3 when the current density approaches the limiting value.
We can see from the current–voltage curves in Fig. 3.3 that the behaviour

of the solution is practically ohmic in the presence of excess inert electrolyte.
Indeed, it is easy to check that the current–voltage curve then reduces to I =
−κeff �φ/δ, where κeff = (F2/RT )D1

∑
i z2

i cb
i , as expected from eqn (3.40).

3.2.6 Solutions with several electroactive species
We begin the study of these systems with an example. In particular, we consider
the stationary transport in a dilute aqueous solution of CuSO4 and H2SO4. These
electrolytes are denoted by indexes 13 and 23, respectively, and their concen-
trations in the bulk solution are cb

13 and cb
23. Depending on the concentrations,

different species exist in the solution. We consider here only such concentra-
tions that the free sulphate ion SO2−

4 does not exist, namely cb
23 > 0.1 M. The

systems considered are7

7 To the best of our knowledge, copper bisulphate is an imaginary species.
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Fig. 3.3.
Surface concentrations and potential drop in the boundary layer as a function of the current density for the cases cb

13/cb
23 = 10, 1, and 0.1.

i) Cu2+ + H+ + HSO−
4

ii) Cu(HSO4)+ + H+ + HSO−
4

iii) Cu(HSO4)2 + H+ + HSO−
4

or a mixture thereof and the electrode reactions are, respectively,

Cu2+ + 2e− → Cu(s) (3.48)

Cu(HSO4)+ + 2e− → Cu(s) + HSO−
4 (3.49)

Cu(HSO4)2 + 2e− → Cu(s) + 2HSO−
4 . (3.50)
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In the first and third cases there is only one electroactive ion in solution. The
solution of the transport equations then follows the procedure explained in the
previous section. We concentrate here on case ii).

We denote the species Cu(HSO4)+, H+, and HSO−
4 by indexes i = 1, 2, and

3, respectively, and their bulk concentrations are cb
1 = cb

13, cb
2 = cb

23 − cb
13, and

cb
3 = cb

23. From the electrode reaction in eqn (3.49) and Faraday’s law, the ionic
flux densities are known as j1 = −j3 = I/2F and j2 = 0. The Nernst–Planck
equations are then

− j1
D1

= − I

2FD1
= dc1

dx
+ c1 f

dφ

dx
, (3.51)

− j2
D2

= 0 = dc2

dx
+ c2f

dφ

dx
, (3.52)

− j3
D3

= I

2FD3
= dc3

dx
− c3f

dφ

dx
, (3.53)

and the local electroneutrality condition requires that c3 = c1 + c2. These
equations can be rearranged as

−
(

j1
D1

+ j2
D2

+ j3
D3

)
= − I

2F

(
1

D1
− 1

D3

)
= 2

dc3

dx
, (3.54)

−
(

j1
D1

+ j2
D2

− j3
D3

)
= − I

2F

(
1

D1
+ 1

D3

)
= 2c3 f

dφ

dx
, (3.55)

� ≡
j1
D1

+ j2
D2

− j3
D3

j1
D1

+ j2
D2

+ j3
D3

= D3 + D1

D3 − D1
=

f dφ

dx
dlnc3

dx

. (3.56)

The interest in this algebraic manipulation is that the Nernst–Planck equations
form a system of coupled, non-linear differential equations, while eqns (3.54)
and (3.56) are two uncoupled, linear equations. Moreover, their left-hand sides
are known constants from Faraday’s law.

The integration of eqns (3.54) and (3.56) yields

c3(0) = cb
3 + Iδ

2�FD13
= cb

3

(
1 − I

IL0

)
= cb

3e−f �φ/� , (3.57)

�φ ≡ φb − φ(0) = −�

f
ln

c3(0)

cb
3

= −�

f
ln

(
1 − I

IL0

)
, (3.58)

where

D13 ≡ 2D1D3

D1 + D3
, (3.59)

IL0 ≡ −2�FD13cb
3

δ
. (3.60)
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The surface concentration of the H+ ion is

c2(0) = cb
2

[
c3(0)

cb
3

]−�

= cb
2

(
1 − I

IL0

)−�

, (3.61)

which is obtained by eliminating the electric field from eqns (3.52) and (3.56).
The surface concentration of the Cu(HSO4)+ ion is determined from the

local electroneutrality condition as c1(0) = c3(0)− c2(0). The limiting current
density IL is attained when c1(0) = 0 (Fig. 3.4). Under these conditions, eqns
(3.57) and (3.61) lead to

�φL = − �

f (1 + �)
ln

cb
2

cb
3

= −�

f
ln

(
1 − IL

IL0

)
≥ 0, (3.62)

Fig. 3.4.
Surface concentrations and potential drop in the boundary layer as a function of the current density for the cases cb

13/cb
23 = 0.5, 0.2, and 0.1.



Electrode processes in stationary state 93

and it becomes now clear that IL0 is the value of the limiting current density in
the case cb

2 = 0 (i.e. cb
13 = cb

23), while in general IL = IL0(1 − e−f �φL/�).
Once this example has been explained, we aim next at finding a general solu-

tion procedure for multi-ionic solutions with several electroactive species. Such
a method is necessarily complicated if we consider any charge numbers, but rel-
atively simple if we restrict discussion to a situation of symmetric electrolytes
in which all ions have either charge number z or −z. Similarly to eqns (3.54)–
(3.58) we perform the following algebraic manipulation of the Nernst–Planck
equations

−G0 ≡ −
∑

i

ji
Di

= d

dx

∑
i

ci ≡ dcT

dx
, (3.63)

−G1 ≡ −
∑

i

ziji
Di

=
∑

i

z2
i ci f

dφ

dx
= z2cTf

dφ

dx
, (3.64)

� ≡ G1

z2G0
= f

dφ

dlncT
, (3.65)

where the local electroneutrality condition
∑

i zici = 0 has been used. Since �

is a constant that can be evaluated from Faraday’s law as

� ≡ G1

z2G0
=

∑
i ziji/Di

z2
∑

k jk/Dk
=

∑
i ziνi/Di

z2
∑

k νk/Dk
, (3.66)

where νi is the stoichiometric coefficient of species i in the electrode reaction,
the integration of these equations yields

cT(0) = cb
T + G0δ = cb

T

(
1 − I

IL0

)
= cb

Te−f �φ/� , (3.67)

�φ ≡ φb − φ(0) = −�

f
ln

cT(0)

cb
T

= −�

f
ln

(
1 − I

IL0

)
, (3.68)

φ(x) − φb = �

f
ln

cT(x)

cb
T

, (3.69)

where

IL0 ≡ − cb
TI

δG0
= − nFcb

T

δ(
∑

i νi/Di)
. (3.70)

Finally, the surface concentrations can be calculated as

ci(0) =
cb

i + ji
Di

δ∫
0

ezif φ(x)dx

 e−zif φ(0)

= cb
i

[
1 − ji

Dicb
i

∫ δ

0 czi�
T dcT

G0(cb
T)zi�

][
cT(0)

cb
T

]−zi�
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= cb
i

{
1 − jiδ

Dicb
i

IL0

(1 + zi�)I

[(
1 − I

IL0

)1+zi�

− 1

]}(
1 − I

IL0

)−zi�

= cb
i

{
1+ cb

Tνi/Di

(1 + zi�)cb
i

∑
j νj/Dj

[(
1− I

IL0

)1+zi�

−1

]}(
1− I

IL0

)−zi�

(3.71)

where the integral has been calculated with the help of eqns (3.63) and (3.65).
Note that IL0 is not the limiting current density but a convenient auxiliary
variable, and that eqn (3.71) is only valid if zi� �= −1. If there is only one
active species, then � = 1/z1 and eqn (3.71) reduces to

c1(0) = cb
T

2

(
1 − I

IL0

)
− cb

T − 2cb
1

2

(
1 − I

IL0

)−1

, (3.72)

ci(0) = cb
i

(
1 − I

IL0

)−zi/z1

, i �= 1. (3.73)

If we use the subscript i = 1 for that reactant whose surface concentration
vanishes first when increasing the current density, i.e. for the one that satisfies[

1 − (1 + z1�)IL,1

IL0

]1/(1+z1�)

≥
[

1 − (1 + zi�)IL,i

IL0

]1/(1+zi�)

for all i,

(3.74)

where IL,i ≡ −nFDicb
i /(νiδ) is the limiting diffusion current density of species

i, then eqn (3.71) allows us to determine the limiting current density as

IL = IL0(1 − e−f �φL) = IL0

{
1 −

[
1 − (1 + z1�)IL,1

IL0

]1/(1+z1�)
}

= IL0

1 −
[

1 − (1 + z1�)cb
1

∑
j νj/Dj

cb
Tν1/D1

]1/(1+z1�)
 , (3.75)

which reduces to

IL = IL0

(
1 −

√
1 − 2cb

1

cb
T

)
, (3.76)

if species 1 is the only active species in solution. Note also that when all the
electroactive ions behave as trace ions, � = 0, and eqn (3.74) reduces to
IL,1/IL0 ≤ IL,i/IL0, as expected if species 1 determines the limiting current.

It should be stressed that we have been able to find an analytical expres-
sion for the surface concentrations, eqn (3.71), because we have restricted
discussion to the case of two valency classes (i.e. charge numbers z and −z).
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Although the steady-state transport equations for a general multi-ionic sys-
tem can also be solved [2], an approximate solution procedure proves to be
rather accurate and much simpler in those systems. We refer to the Goldman
constant-field approximation, which leads to the following equation for the
surface concentrations

ci(0) ≈ cb
i ezif �φ + ezif �φ − 1

zif �φ

jiδ

Di
, (3.77)

where the electric potential gradient has been written as dφ/dx = �φ/δ =
[φb − φ(0)]/δ. In eqn (3.77) the ionic flux densities are known from Faraday’s
law and the potential drop is chosen so that the electroneutrality condition∑

i zici(0) = 0 is satisfied.
Table 3.1 summarizes the expressions derived in Sections 3.2.4–3.2.6.

3.2.7 Transport in spherical geometry
Stationary transport conditions usually require vigorous stirring of the elec-
trolyte solutions.An exception to this rule is the transport in spherical geometry,
where the system need not be stirred in order to achieve the steady state. Con-
sider that the transport of an electroactive species i takes place along the radial
direction in a semi-infinite medium limited by a hemispherical electrode of
radius a. In the presence of a supporting electrolyte this species behaves as a
trace ion and its flux density is

ji ≈ −Di
dci

dr
, (3.78)

where r is the distance from the electrode centre. The steady-state continuity
equation, dji/dr = 0, then implies that the spatial distribution of its molar
concentration is given by the Laplace equation

d2ci

dr2
+ 2

r

dci

dr
= 1

r2

d

dr

(
r2 dci

dr

)
= 0, (3.79)

and the boundary conditions(
dci

dr

)
r=a

= − I

ziFDi
, (3.80)

ci(r → ∞) = cb
i , (3.81)

where the first one comes from Faraday’s law (in the case of an electrode
reaction with a single electroactive species i) and the convention of defining
the current density as positive in the direction from the electrode to the solution
(i.e. in the positive radial direction).

The solution of eqn (3.79) is

ci(r) = cb
i + [ci(a) − cb

i ]
a

r
, (3.82)
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Table 3.1. Limiting current density, potential drop in the boundary layer under limiting conditions, current–voltage relation, and surface
concentrations for different types of solutions

Binary solution, symmetric electrolyte Binary solution, symmetric electrolyte
IL = −2z1FD1cb

12/δ IL = −(1 − z1/z2)z1FD1cb
1/δ

z1�φL → ∞ z1�φL → ∞
I = IL(1 − ez2f �φ) I = IL(1 − ez2f �φ)

c12(0) = cb
12(1 − I/IL) c12(0) = cb

12(1 − I/IL)

Multi-ionic solution, only one active species
and it is a trace ion

Multi-ionic solution, all active species are
trace ions, species 1 determines IL

IL = IL,1 ≡ −z1FD1cb
1/δ IL = IL,1 ≡ −nFD1cb

1/ν1δ

�φL ≈ 0 �φ ≈ 0
�φ ≈ 0 �φL ≈ 0
c1(0) = cb

1(1 − I/IL) ci(0) = cb
i (1 − ziνiI/nIL,i)

Multi-ionic solution, one active species, symmetric
electrolytes (charge numbers z and −z)

Multi-ionic solution, one active species,
arbitrary electrolytes

IL = IL0(1 −
√

1 − 2cb
1/cb

T)

2z1f �φL = − ln(1 − 2cb
1/cb

T)

I = IL0(1 − e−z1f �φ) , IL0 ≡ −z1FD1cb
T/δ

c1(0) = cb
T
2 (1 − I/IL0) − cb

T−2cb
1

2 (1 − I/IL0)−1

ci(0) = cb
i (1 − I/IL0)−zi/z1 , i �= 1

cT(0) = cb
T(1 − I/IL0)

IL = (z1FD1/δ)
∑
i �=1

(1 − zi/z1) cb
i (ezi f �φL − 1)

∑
i �=1

zic
b
i ezi f �φL = 0

I = (z1FD1/δ)
∑
i �=1

(1 − zi/z1) cb
i (ezi f �φ − 1)

c1(0) = −(1/z1)
∑
i �=1

zici(0)

ci(0) = cb
i ezi f �φ , i �= 1

Multi-ionic solution, several active species, species 1 determines IL, symmetric electrolytes
(charge numbers z and −z)

IL = IL0{1 − [1 − (1 + z1�)/A1] 1/(1+z1�)}, IL0 ≡ − nFcb
T/δ∑

j νj/Dj
, Ai ≡ cb

Tνi/Di

cb
i
∑

j νj/Dj

(1 + z1�)f �φL = −� ln[1 − (1 + z1�)/A1]
I = IL0(1 − e−f �φ/�)

ci(0) = cb
i (1 − I/IL0)−zi�{1 + Ai[(1 − I/IL0)1+zi� − 1]/(1 + zi�)}, zi �= −1/�

ci(0) = cb
i (1 − I/IL0)[1 + Ai ln(1 − I/IL0)], zi = −1/�

cT(0) = cb
T(1 − I/IL0)

and the relation between the surface concentration ci(a) and the current density
I is

ci(a) = cb
i

(
1 − I

IL

)
, (3.83)

where

IL = − ziFDicb
i

a
(3.84)

is the limiting current density. From eqn (3.84) it can be seen that the mass-
transfer rate is enhanced when the electrode radius a decreases. This observation
has led to the development of ultramicroelectrodes, whose radii are of the order
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of micrometers or less. When the mass-transfer rate is so enhanced, diffusion
is no longer the rate-determining step of the reaction and kinetic measurements
become more feasible.

Let us consider, for example, a first-order reaction taking place on the surface
of a small spherical particle. The reaction rate is r = kci(a), where k is the rate
constant (in s−1 units). At steady state, the diffusion flux towards the surface
equals to the reaction rate

kci(a) = Di

(
∂ci

∂r

)
r=a

= Di

a
[cb

i − ci(a)], (3.85)

from which the surface concentration ci(a) can be solved as

ci(a) = cb
i

1 + ka/Di
. (3.86)

The reaction rate thus becomes

r = kcb
i

1 + ka/Di
. (3.87)

When8 Da ≡ ka/Di � 1 the reaction is under kinetic control and the rate is
r ≈ kcb

i . When Da 
 1, the reaction is under diffusion control and r ≈ Dicb
i /a.

Hence, by reducing the particle size a, reactions with higher values of the rate
constant k can be monitored.

Unlike hemispherical electrodes, which are difficult to prepare, microdisc
electrodes are commonly used because their diffusion field also has a quasi-
spherical symmetry, as shown in Fig. 3.5. Without going into the details of the
description of mass transport to a microdisc electrode9 [4], we mention here
some relevant characteristics. First, the limiting current at a microdisc electrode
of radius a is

iL = πa2IL = −4ziFDic
b
i a, (3.88)

8 Da is known as the second Damköhler number [3].
9 The solution is obtained in cylindrical co-ordinates in terms of modified Bessel functions.
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to be compared with that at a hemispherical electrode iL = 2πa2IL =
−2πziFDicb

i a. It is observed that the limiting current is lower by a factor 2/π
at the microdisc electrode. Second, the current distribution at the microdisc
electrode is not uniform, that is, the current density varies with the radial posi-
tion variable. It can be shown [5] that the functional dependence of the current
distribution is

I(r) ∝ 1√
1 − (r/a)2

, (3.89)

which diverges at the disc edge r = a, as shown in Fig. 3.5. Yet, the integral
over the disc is finite. In practice, the current density is limited at the disc edge
by the kinetics of the electrode reaction.

Ultramicroelectrodes also have the advantage that the current flowing in the
system is very low, and therefore the ohmic loss becomes negligible. Ultra-
microelectrodes of various geometries are widely used in electroanalytical
applications, and the interested reader is directed to, e.g., Ref. [6].

3.3 Hydrodynamic electrodes
Stirring of the electrolyte solution is required to establish a diffusion boundary
layer of well-defined thickness, δ. If the solution is not stirred, this layer expands
from the electrode towards the bulk of the solution as a function of time, until
natural convection begins to mix the solution due to density differences created
by the electrode process. Increasing the stirring rate, decreases δ and, conse-
quently, enhances the mass transport rate. Because the mass transfer frequently
is the rate-determining step of the overall electrode process, its enhancement
makes feasible the determination of higher values of kinetic parameters. Dif-
ferent hydrodynamic methods have different characteristics of mass transfer,
and in the following sections the most usual ones are briefly presented.

3.3.1 Rotating-disc electrode
Perhaps the most common hydrodynamic electrochemical method is the
rotating-disc electrode (RDE). When a disc electrode is rotated, a well-defined
velocity profile is developed at the electrode. This velocity profile is sketched in
Fig. 3.6. A modification of the RDE is the rotating ring-disc electrode (RRDE)
where there is an additional ring-shaped electrode around the disc. The potential
of the ring can be varied independently, so that a species generated in the disc
reaction is collected at the ring. Details of the RRDE can be found in standard
electrochemistry textbooks [1, 7, 8].

a) The convective electrodiffusion equation
When describing mass transport, the flux density is decomposed into electrod-
iffusive and convective contributions, and the steady-state continuity equation
for species i is written as

0 = �∇ · �ji = �∇ · (�jm
i + ci �v) = �∇ · �jm

i + �v · �∇ci, (3.90)
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Fluid velocity field in a rotating-disc
electrode.

where the continuity equation for the total mass, �∇ · �v = 0, has been used.
Since the properties of the disc surface are uniform with respect to the electrode
reaction, the flux density �jm

i and the concentration gradient �∇ci can be assumed
to take place along the normal direction only. Thus, even though the solution
velocity pattern is clearly three-dimensional, eqn (3.90) reduces to

0 = djm
i

dx
+ vx

dci

dx
, (3.91)

where x is the distance to the electrode surface, and the mass transport is
considered as one-dimensional. Equation (3.91) describes the stationary con-
vective electrodiffusion and must be solved under the boundary conditions
ci(x → ∞) = cb

i and jm
i (x = 0) = νiI/nF [see eqn (3.3)].

The convective velocity is determined from the solution of the Navier–Stokes
equation. In the case of a RDE, this solution can be obtained in the form of a
series expansion in the variable x(ω/ν)1/2, where ω is the electrode angular
rotation frequency and ν is the kinematic solution viscosity. The first term of
the series expansion of the normal component of the velocity is

vx ≈ −Bx2, (3.92)

where B = −0.510ω3/2ν−1/2 and the minus sign indicates that the fluid moves
towards the electrode. Since higher-order terms have been neglected, eqn (3.92)
is only valid when x(ω/ν)1/2 � 1, i.e. when x is much smaller than an upper
bound (ν/ω)1/2 that is of the order of 100 µm for a rotation frequency ω/2π =
100 Hz.

b) Trace ion
Consider first the case of a single electroactive ion (denoted by index 1) that
behaves as a trace ion. Since jm

1 (x) = −D1dc1/dx, eqn (3.91) reduces to

djm
1

dx
= vx

D1
jm
1 , (3.93)
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and can be solved as follows

jm
1 (x) = jm

1 (0) exp

[
−(B/D1)

x∫
0

u2du

]
= j1(0)e−Bx3/3D1 , (3.94)

where jm
1 (0) = j1(0) because vx(0) = 0, and u is a dummy variable. As

expected, jm
1 (x) rapidly decreases with the distance to the electrode and becomes

negligible when x 
 (D1/B)1/3 ≈ Sc1/3(ν/ω)1/2, where Sc ≡ ν/D1 ≈ 103 is
the Schmidt number.

As depicted in Fig. 3.1, the common procedure in electrochemistry is to
describe the concentration profile established due to the combined action of
electrodiffusion and convection by a linear profile that neglects convection

c1(x) ≈ c1(0) +
(

dc1

d x

)
x=0

x = c1(0) + cb
1 − c1(0)

δ
x. (3.95)

The effective thickness of the diffusion boundary layer is defined as

δ ≡ cb
1 − c1(0)

(dc1/dx)x=0
=

∫ ∞
0 (dc1/dx)dx

(dc1/dx)x=0
= 1

j1(0)

∞∫
0

jm
1 (x)dx, (3.96)

and integration of eqn (3.94) leads to the result

δ =
∞∫

0

e−Bx3/3D1 dx =
(

3D1

B

)1/3

�(4/3) = 1.61D1/3
1 ω−1/2ν1/6, (3.97)

where we have introduced the gamma function �(n) ≡ ∫ ∞
0 e−t tn−1dt and used

its value �(4/3) = 0.893. There is an apparent dilemma in the derivation of eqn
(3.97): the integration is carried out to infinity, while the parabolic approxima-
tion in eqn (3.92) is valid only at short distances. The error made is, however,
negligible because exp(−Bx3/3D1) goes to zero very fast as x increases.

When the surface concentration c1(0) vanishes, the electric current density
I = z1Fj1(0) takes its maximum value

IL = IL,1 = − z1FD1cb
1

δ
= −0.620z1FD2/3

1 cb
1ω

1/2ν−1/6. (3.98)

This is known as the Levich equation and evidences the characteristic feature
of the RDE: the limiting current density is proportional to the square root of the
rotation frequency.

The actual concentration profile can be written after some cumbersome
algebra in terms of the incomplete gamma function �(n, x) ≡ ∫ ∞

x e−t tn−1dt
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Concentration profile at the rotating-disc
electrode (solid line) as described by eqn
(3.99) and its linear approximation (dashed
line).

[9] as10

c1(x) = c1(0)+
x∫

0

dc1

du
du=c1(0)− 1

D1

x∫
0

jm
1 (u) du=cb

1

[
1− I

IL

�(1/3, ξ)

�(1/3)

]
,

(3.99)

where

ξ = Bx3

3D1
=

[
�(4/3)

x

δ

]3
. (3.100)

Figure 3.7 shows a representation of this profile and its comparison with eqn
(3.95). Note that eqn (3.99) reduces to c1(0) = cb

1(1 − I/IL) at the electrode
surface.

In relation to eqn (3.94) we have mentioned that the diffusive contribution
to the flux density jm

1 (x) decreases (in magnitude) with increasing distance to
the electrode surface. The convective contribution c1vx, on the contrary, is zero
at the interface and increases with this distance because both c1 and vx also
increase. The total flux density in the laboratory reference frame j1 = jm

1 +c1vx

also increases with increasing distance to the electrode, and it can be proved
from eqns (3.90) and (3.91) that dj1/dx = c1dvx/dx. Thus, solute transport is
predominantly diffusive in the vicinity of the electrode and convective in the
outer region of the diffusion boundary layer (Fig. 3.8).

The fact that the flux density is the lowest at the electrode surface means that
the species accessing the electrode and reacting there have flowed through a
smaller cross-sectional area than that of the electrode. This can be seen also in
Fig. 3.6 where the streamlines are radially separated from each other close to the
electrode surface, indicating a decreased flux density normal to the electrode
surface. Yet, at steady state, the flux remains constant throughout the whole
system. It must be emphasized that the parabolic velocity profile, eqn (3.92),
cannot be extended over the distance δ, i.e. the increase of the flux density is
terminated at x = δ.

10 Note that
∫ x

0 jm1 (u)du = ∫ ∞
0 jm1 (u)du−∫ ∞

x jm1 (u)du, which leads to a factor�(1/3) – �(1/3,ξ).
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Fig. 3.8.
Contributions to the solute flux density at
the rotating-disc electrode under limiting
current conditions: diffusive jm1 ,
convective c1vx , and total j1.
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c) Binary electrolyte solution
Although most experimental situations involve the use of supporting electrolyte
and this allows us to treat the electroactive ion as a trace ion, we describe now
the transport at a RDE in the absence of supporting electrolyte [10, 11]. This is a
more complicated situation in which migration is not negligible. Consider that
the solute is a binary electrolyte. By making use of the local electroneutrality
assumption, z1c1 + z2c2 = 0, the electric field can be eliminated from the two
convective electrodiffusion equations11

d2ci

dx2
+ zif

d

dx

(
ci

dφ

dx

)
= vx

Di

dci

dx
, (3.101)

and the convective diffusion equation for the electrolyte is then obtained as

d2ci

dx2
= vx

D12

dci

dx
, (3.102)

where D12 is the Nernst–Hartley electrolyte diffusion coefficient. This equation
can be solved following the same procedure explained above and leads to

δ = 1.61D1/3
12 ω−1/2ν1/6. (3.103)

It is interesting to note that the thickness of the diffusion boundary layer is
determined by D12. This might seem surprising, e.g. in case where only species
1 is electroactive, because the boundary conditions at the electrode surface

( j1)x=0 = I

z1F
= −D1

[(
dc1

dx

)
x=0

+ z1c1(0)f

(
dφ

dx

)
x=0

]
(3.104)

0 =
(

dc2

dx

)
x=0

+ z2c2(0)f

(
dφ

dx

)
x=0

(3.105)

do not involve D2 and hence it could be expected that only D1 determines
δ. However, this is not the case because the ionic flux densities are position

11 The electric field varies with position and hence these convective electrodiffusion equations
cannot be solved with the help of the Goldman constant-field assumption.
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dependent and D2 is involved in the transport equations at all positions except
for the electrode surface.

The limiting current density is defined in this system as

IL =
(

1 − z1

z2

)
IL,1 = −

(
1 − z1

z2

)
z1FD1cb

1

δ
, (3.106)

and the surface concentration of the electroactive species is c1(0) = cb
1(1 −

I/IL). Finally, the electric field at the electrode surface is given from eqns (3.96)
and (3.105) as

z2 f δ

(
dφ

dx

)
x=0

=
(

1 − IL

I

)−1

. (3.107)

This field increases (in magnitude) with increasing current density and
diverges under limiting conditions, which evidences deviations from the local
electroneutrality assumption [1].

d) Ternary electrolyte solution
The last case that we consider is that of a ternary solution formed by the mixture
of two strong binary electrolytes AC and DC. The ions Az , Dz , and C−z are
denoted by the indexes 1, 2, and 3, respectively. Only the ion Az is electroactive,
and DC is an inert electrolyte. The concentration of inert electrolyte is such that
the migrational contribution to the transport of Az is small but not negligible,
and we aim to describe the effect of the electric field on the limiting current
density.

Due to the presence of excess inert electrolyte, we can assume that the electric
field is constant and small (compared to RT/Fδ), so that eqn (3.101)

d2c1

dx2
=

(
vx

D1
− zf

dφ

dx

)
dc1

dx
=

(
−Bx2

D1
− zf

dφ

dx

)
dc1

dx
(3.108)

can be integrated to

dc1

dx
= Ce−ξ exp

(
−zf

dφ

dx
x

)
≈ Ce−ξ

(
1 − zf

dφ

dx
x

)
, (3.109)

where ξ = Bx3/3D1 = [(x/δ)�(4/3)]3. Since the convective velocity is zero
at the electrode surface, the boundary condition for the electroactive ion is

( j1)x=0 = I

zF
= −D1

[(
dc1

d x

)
x=0

+ zc1(0)f
dφ

d x

]
< 0, (3.110)

and the integration constant C can be determined as

C =
(

dc1

dx

)
x=0

= − I

zFD1
− zc1(0)f

dφ

dx
. (3.111)
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Integration of eqn (3.109) over the diffusion boundary layer yields

cb
1 − c1(0) ≈ Cδ

[
1 − �(2/3)

�(1/3)
z f

dφ

dx
δ

]
, (3.112)

where we have used eqn (3.97) and

∞∫
0

e−Bx3/3D1 x dx =
(

3D1

B

)2/3
�(2/3)

3
= �(2/3)

�(1/3)
δ2 ≈ 0.505 δ2. (3.113)

Finally, combining eqns (3.111) and (3.112), the surface concentration is

c1(0) ≈ cb
1

1 − I
IL,1

[
1 − �(2/3)

�(1/3)
z f

dφ

dx
δ

]
1 − z f

dφ

dx
δ

, (3.114)

where IL,1 = −zFD1cb
1/δ and we have neglected second-order terms in the

electric field, for the sake of consistency with the linear approximation intro-
duced in eqn (3.109). Equation (3.114) describes the effect of the electric field
on the transport of the electroactive ion toward the RDE.

If we further assume that the electric field is ohmic, the potential drop in the
boundary later is �φohm = (dφ/dx)δ = −I R, where R = δ/κ is the electrical
resistance12 of the solution in this layer, and the limiting current density can be
written as

IL = − zFD1cb
1

δ

[
1−�(2/3)

�(1/3)
z f

dφ

dx
δ

]−1

≈ − zFD1cb
1

δ

[
1+�(2/3)

�(1/3)
z f �φohm

]
. (3.115)

Since the ions Az (no matter whether they are cations or anions, i.e. regardless
of the sign of z) are consumed at the electrode surface, we have that ( j1)x=0 =
I/zF < 0 and z�φohm = z[φ(δ)−φ(0)] = −zI R > 0. Therefore, we conclude
that the effect of an ohmic electric field is to increase the magnitude of the
limiting current density. In relation to this, it should be remembered that eqn
(3.106) also described an increase in the magnitude of the limiting current
density, in a factor 1 − z1/z2 > 1, due to the effect of the electric field in a
binary electrolyte solution, although in that case the field had both ohmic and
diffusional contributions. The effect of the electric field on the limiting current
density in a ternary electrolyte solution, taking into account both ohmic and
diffusion contributions, is described, e.g., in Ref. [12].

12 Strictly speaking, R is the product of the resistance and the area through which current is
transported. The ohmic potential drop, IR, where I is the current density, has units of electric
potential.
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3.3.2 Channel-flow electrode
The channel-flow electrode (CFE) is frequently used as a detector in liquid
chromatography, capillary electrophoresis, and flow-injection analysis [13]. In
a typical experimental set-up (Fig. 3.9), a channel electrode is located down-
stream after the separation unit and is biased at a sufficiently positive (or
negative) potential such that the analyte is readily oxidized (reduced) at the
electrode. Thus, a CFE is operated under limiting current conditions. The refer-
ence electrode is usually situated upstream of the working electrode, preferably
via a liquid junction, while the counter electrode is placed downstream to pre-
vent contamination of the working electrode due to the electrolysis products
formed at the counter electrode.

Another large application area of CFEs is in the study of homogeneous chemi-
cal reactions (C) coupled to electrochemical reactions (E). Since hydrodynamics
has a strong effect on the concentration profiles of the species reacting in the
bulk of the solution, while the electrochemical step takes place at the electrode
only, it is possible to distinguish between, say, CE and EC or ECE reaction
mechanisms.

The mass-transfer problem at a CFE can be solved in closed form, because the
convection velocity can be determined from the solution of the Navier–Stokes
equation. The solution flow takes place in the x direction, thus the velocity
components vy and vz are zero; direction y is normal to the electrode surface
and the channel width is defined in the z direction (Fig. 3.9). The diffusion
equation to be solved is eqn (3.90), and in the trace ion case it becomes

D1

(
∂2c1

∂x2
+ ∂2c1

∂y2
+ ∂2c1

∂z2

)
− vx

∂c1

∂x
= 0. (3.116)

The usual approximation made is that the diffusion in the z direction is negligible
if the electrode width w is smaller than the channel width d [1]. Also, since
convection is usually fast compared to diffusion, it appears that (∂2c1/∂x2) �
(∂2c1/∂y2).

In a fully developed Poiseuille flow the velocity profile has a parabolic form

vx(y) = vmax
y

h

(
2 − y

h

)
, (3.117)

with its maximum value vmax at the pore centre y = h and becoming zero at
the pore walls y = 0 and y = 2h due to the non-slip boundary condition. The
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Fig. 3.9.
Sketch of the channel flow electrode. The
solution flows along direction x.
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maximum velocity is usually evaluated from the volume flow V̇ as13

vmax = 3

4

V̇

hd
. (3.118)

Changes in the concentration take place in the close vicinity of the electrode
and, therefore, Lévêque’s approximation

vx(y) ≈ 2vmax
y

h
(3.119)

can be used. Hence, eqn (3.116) is reduced to(
∂2c1

∂y2

)
x
− 2vmax

D1h
y

(
∂c1

∂x

)
y

= 0. (3.120)

Assuming that c1(x, y) depends on the position variables only through the
combination

ξ ≡ 2

9

vmax

D1h

y3

x
(3.121)

eqn (3.120) transforms to the following linear ordinary differential equation for
c1(ξ)

d2c1

dξ2
+

(
1 + 2

3ξ

)
dc1

dξ
= 0. (3.122)

Under limiting current conditions, the boundary conditions for this equation
are c1(0) = 0 and c1(∞) = cb

1, and its integration yields

c1(ξ) = cb
1

ξ∫
0

e−ζ ζ−2/3dζ

∞∫
0

e−ξ ξ−2/3dξ

= cb
1

[
1 − �(1/3, ξ)

�(1/3)

]
, (I = IL). (3.123)

The limiting current flowing across the electrode is then

iL = −z1FD1w

l∫
0

(
∂c1

∂y

)
y=0

dx

= −z1FD1cb
1w

(
vmax

D1h

)1/3 61/3

�(1/3)

l∫
0

x−1/3dx, (3.124)

13 This equation neglects the edge effects on the velocity profile caused by channel walls at z =
0 and z = d but this is a good approximation because d � w.
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Simulated equiconcentration surface at the
channel flow electrode. (Reproduced from
Ref. [18] with permission.)

where l is the length of the electrode (in the flow direction), and using eqn
(3.118) and the value 6−1/3�(1/3) ≈ 1.4743, it can be transformed to the Levich
equation

iL = −0.9244z1FD2/3
1 cb

1w

(
l2V̇

h2d

)1/3

. (3.125)

Sometimes, the numerical coefficient is replaced by 0.835 depending on the
simplifying assumptions made in the derivation of the velocity profile [14].
The essential finding is, however, that the limiting current is proportional to the
cube root of the volume flow rate. In any case, a detector is always calibrated
with known solutions prior to use.

Complete current–voltage characteristics taking electrode kinetics into
account have been provided by Matsuda [15]. Various reaction mechanisms
have been treated in non-stationary cases by Compton et al. [13, 16]. The anal-
ysis of the effect of the channel geometry is also omitted here, as the simula-
tion of the transport problems in arbitrary geometry is feasible nowadays with
numerical software packages [17] (Fig. 3.10).

3.3.3 Wall-jet electrode
An impinging jet electrode is an interesting modification of a RDE. Instead of
rotating the disc, which induces a convective flow towards the electrode, a jet
stream is directed towards the electrode (Fig. 3.11), thus creating a well-defined
flow profile [20] as depicted in Figure 3.12.
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Fig. 3.11.
Schematic picture of a wall-jet electrode.
At the wall-tube region the axial and at the
wall-jet region the radial velocity is
governing. The lengths of the arrows
indicate their relative magnitude.
(Reproduced from Ref. [19] with
permission.)
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(Left) Dimensionless radial (vr) and normal (vn) velocity components as a function of the dimensionless distance η from the electrode.
(Right) Fluid velocity field in the (r, z) plane also showing the curve η = 3.96 where the normal component reverses direction.

The dimensionless distance from the electrode is defined as [21]

η =
(

135M

32ν3

)1/4 z

r5/4
, (3.126)

where r and z are the radial and axial co-ordinates, respectively, M ≡
k4V̇ 3/(2π3d2

n ), ν is the kinematic viscosity of the solution, V̇ is the volume
flow rate of the jet, dn is its diameter, and k = 0.86 is an experimental constant.

As can be seen in Fig. 3.12, the normal velocity vanishes when η = 3.96.
At distances shorter than that the flow is directed towards the electrode and at
larger distances away from the electrode. This velocity pattern means that the
electrode only sees fresh solution passing through the jet nozzle. In the electrode
vicinity, η � 1, the velocity components can be approximated as

vr ≈ 2

9

(
15M

2νr3

)1/2

η (3.127)

vn ≈ 7

36

(
40M ν

3r5

)1/4

η2. (3.128)
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Neglecting the radial diffusion term, (∂2c1/∂r2), the convective diffusion
equation to be solved is

D1
∂2c1

∂z2
− vr

∂c1

∂r
− vn

∂c1

∂z
= 0. (3.129)

Transforming from variables (r, z) to variables (ρ, ξ) defined as ρ ≡ (r/a)9/8

and

ξ ≡ M 1/4
(

9

8D1

)1/3 ( 125

216ν5

)1/12

(a3r7)−1/8z, (3.130)

where a is the electrode radius, eqn (3.129) is converted to

∂2c1

∂ξ2
= ξ

∂c1

∂ρ
. (3.131)

The boundary conditions on c1(ρ, ξ) under limiting conditions are c1(ρ, 0) = 0,
c1(ρ, ∞) = cb

1, and c1(0, ξ) = cb
1. This equation can be solved by Laplace

transformation with respect to variable ρ. Denoting by c̃1(s, ξ) = L[c1(ρ,ξ )]
the transformed concentration, eqn (3.131) becomes

d2c̃1

dξ2
= ξ(sc̃1 − cb

1), (3.132)

and its solution is given in terms of the Airy function as

c̃1 = cb
1

s

[
1 − Ai(s1/3ξ)

Ai(0)

]
, (I = IL). (3.133)

The concentration gradient at the electrode surface can be evaluated using
the inverse Laplace transform L−1 as

(
∂c1

∂z

)
z=0

=
(

∂ξ

∂z

)
z=0

L−1
(

dc̃1

dξ

)
ξ=0

= −cb
1
ξ

z

Ai′(0)

Ai(0)
L−1(s−2/3)

= cb
1
ξ

z

32/3�(2/3)

31/3�(1/3)

ρ−1/3

�(2/3)
= cb

1
ξ

z

31/3

�(1/3)
ρ−1/3

= cb
1M 1/4

(
9

8D1

)1/3 ( 125

216ν5

)1/12 31/3

�(1/3)
r−5/4, (3.134)

where we have used the properties of theAiry function Ai(0) = [32/3�(2/3)]−1

and Ai′(0) = −[31/3�(1/3)]−1. The r−5/4 dependence of the concentration
gradient implies that the electrode is non-uniformly accessible because the
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current density is proportional to this gradient. Finally, the limiting current is
obtained as

iL = −2πz1FD1

a∫
0

(
∂c1

∂z

)
z=0

rdr

= −2πz1FD1cb
1M 1/4

(
9

8D1

)1/3 ( 125

216ν5

)1/12 31/3

�(1/3)

a∫
0

r−1/4dr

= −1.5971kz1FD2/3
1 cb

1
V̇ 3/4a3/4

d1/2
n ν5/12

. (3.135)

The characteristic features of the wall-jet electrode are that the limiting current
density varies with the volume flow rate to the 3/4 power, and that the diffusion
boundary layer thickness is not uniform along the electrode surface.

The wall-jet electrode has the advantage that very high convection rates
are possible, which makes the study of fast heterogeneous kinetics feasible.
Compared with the RDE, the mass-transfer rate at the wall-jet electrode can
correspond to the rotation frequency of 500 000 Hz [19]. In a channel flow, for
example, the convection rate is limited by the onset of turbulence in the cell,
when the Reynolds number exceeds the value of ca. 2000.

3.4 Non-stationary or transient electrode
processes

3.4.1 Introduction
The key equation to describe non-stationary transport processes in the absence
of homogeneous chemical reactions is the continuity equation

∂ci

∂t
= −�∇ · �ji. (3.136)

In one-dimensional problems with no convection, this equation leads to

∂ci

∂t
= Di

[
∂2ci

∂x2
+ zif

∂

∂x

(
ci

∂φ

∂x

)]
, (3.137)

where the Nernst–Planck equation has been used. If migration is negligible
due to the presence of an excess of supporting electrolyte, this reduces to the
diffusion equation

∂ci

∂t
≈ Di

∂2ci

∂x2
. (3.138)

In the case of neutral solutes, including, e.g., the electrolyte in a binary solution,
eqn (3.138) is exact and receives the name of Fick’s second law.



Non-stationary or transient electrode processes 111

In the following sections we consider that there is only one electroactive ion
in solution (i = 1) and it behaves as a trace ion. Equation (3.138) then has to be
solved under the appropriate boundary conditions. The concentration c1(0, t)
at the electrode surface is specified in chronoamperometric techniques, while
the concentration gradient (

∂c1

∂x

)
x=0

= − I(t)

z1FD1
(3.139)

is known in chronopotentiometric techniques. Note that the sign convention is
such that I > 0 if the electroactive ion is anodically dissolved, and I < 0 if it is
reduced at the cathode. The boundary condition that specifies the bulk solution
concentration

c1(x → ∞, t) = cb
1 (3.140)

can be replaced by

c1(δ, t) = cb
1 (3.141)

when the solution is mixed and the diffusion boundary layer has a finite thick-
ness δ. Finally, the initial condition is

c1(x, 0) = cb
1. (3.142)

Equation (3.138) can be solved by the method of Laplace transformation
[22]. It is then converted to the linear ordinary differential equation

sc̃1 − cb
1 = D1

d2c̃1

dx2
, (3.143)

where

c̃1(x, s) ≡
∫ ∞

0
c1(x, t) e−stdt (3.144)

is the Laplace transformed concentration. The general solution of eqn (3.143)
has the form

c̃1 = cb
1

s
+ A eqx + B e−qx = cb

1

s
+ C sinh qx + E cosh qx, (3.145)

where q ≡ √
s/D1. In the absence of mixing, the solution based on the expo-

nentials is preferred because eqn (3.140) imposes that A = 0. In the presence
of mixing, the solution based on the hyperbolic trigonometric functions must
be used and eqn (3.141) requires that

E = −C tanh qδ. (3.146)

In the following sections we determine the coefficients B or C for some of the
most common transient electrochemical techniques.
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3.4.2 Current step in the absence of mixing
In chronopotentiometric techniques, the electric current density is known as a
function of time and eqn (3.139) can be used to determine the coefficient B in
eqn (3.145) as

B = Ĩ(s)

z1F
√

sD1
= Ĩ(s)

z1FD1

1

q
, (3.147)

where Ĩ(s) is the Laplace transform of the current density. The solution of eqn
(3.138) in the time domain is formally given by

c1(x, t) = cb
1 + L−1

(
Ĩ

z1FD1

e−qx

q

)
, (3.148)

where L−1 denotes the inverse Laplace transformation.
In a current step (galvanostatic method) the function I(t) is zero for t < 0

and takes the constant value I0 for t > 0. Its Laplace transform is Ĩ(s) = I0/s
and the inverse Laplace transform in eqn (3.148) can then be found in Laplace
tables [9, 22–24] as

c1(x, t) = cb
1 + 2I0

z1F
√

D1

√
t [π−1/2 e−ζ 2 − ζ erfc(ζ )], (3.149)

where ζ ≡ x/(2
√

D1t) is the Boltzmann variable, and erfc is the complementary
error function. The function inside the brackets in eqn (3.149) is the first integral
of the complementary error function [9]

ierfc(ζ ) ≡ π−1/2 e−ζ 2 − ζ erfc(ζ ). (3.150)

The concentration profile in eqn (3.149) is represented in Fig. 3.13.
At the electrode surface, the concentration takes the value

c1(0, t) = cb
1 + 2I0

z1F
√

πD1

√
t = cb

1

[
1 −

√
t

τ

]
. (3.151)

Fig. 3.13.
Concentration profile in a current step.
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If the electroactive species is reduced at the cathode, then I0 < 0 and the surface
concentration vanishes (Fig. 3.14) after a transition time14 that is given by the
Sand equation

τ = πD1

(
z1Fcb

1

2I0

)2

. (3.152)

Using the values I0 = −0.1 mAcm−2, D1 = 10−5cm2 s−1, z1 = 1, and cb
1 =

10−6mol cm−3, the transition time can be estimated as

τ = π 10−5
(

96 500 × 10−6

2 × 10−4

)2

s ≈ 7 s.

Obviously, for smaller current densities, the transition time would be larger.
But it must be observed that the experimental times cannot be very much larger
because convection might then play a role in the mass transport, and the solution
obtained would no longer be valid.

The electrode potential E, i.e. the potential at the electrode with respect to
the solution, is given by the Nernst equation, which in this case takes the form

E(t) = E◦′ + RT

z1F
ln c1(0, t) = E(0) + RT

z1F
ln

[
1 −

√
t

τ

]
, (3.153)

where E◦′ is the formal standard potential and E(0) = E◦′ + (RT/z1F) ln cb
1

is the initial electrode potential; the concentrations in these equations must be
expressed in M units. It is clearly seen in eqn (3.153) that E diverges when the
transition time is approached (Fig. 3.15). In experimental practice, this means
that the electrode potential changes so much that new electrode processes take
place (before an actual divergence can occur).

The above equations provide an accurate description of the concentration
changes during a current-step experiment. When the current is established at
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Fig. 3.14.
Time variation of the surface concentration
in a current step.

14 When this transition time is determined experimentally, the current density I0 is chosen so
that natural convection and double-layer charging do not interfere with the measurement.
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time t = 0, the concentration of the electroactive species in the vicinity of the
electrode changes in such a way that its gradient at the surface is determined
by the current. The concentration changes propagate towards the bulk solution
and the surface concentration decreases with increasing time. Eventually, the
surface concentration vanishes at the transition time τ . The diffusion front has
then covered a distance of ca. 4

√
D1τ (Fig. 3.16).

The transient transport processes can be better understood with the help
of the concept of diffusion length, Ld(t) ≡ 2

√
D1t/π . This is the distance

across which concentration changes propagate by diffusion in a time t, and
the Boltzmann variable can be rewritten as ζ = x/

√
πLd(t). When ζ 
 1

the concentration changes caused by the electrode reaction have not reached
position x yet and the concentration c1(x, t) is still equal to the initial value cb

1.
On the contrary, the concentration is significantly different from the initial value
at those positions x in which ζ < 1. Interestingly, Figs. 3.13 and 3.16 show that
at time t the concentration changes are confined within a region of thickness
ca. 3Ld, which is thus the maximum distance at which the digital simulation of
this electrochemical process needs to be extended; this conclusion also holds
for other techniques, such as the current scan and the voltage step.

Fig. 3.15.
Time variation of the electrode potential in
a current step.
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3.4.3 Current step with mixing
When the solution is mixed during the current-step experiment, the thickness δ

of the diffusion boundary layer remains constant and the solution of the transport
equations differs from that in eqn (3.149). Following the discussion at the end
of the previous section, the situation is now different because, in addition to x
and Ld(t), δ is another characteristic length of the problem. Accordingly, there
is an additional characteristic time of the system, τδ ≡ πδ2/4D1 which is the
time required by diffusion to reach the outer end of the boundary layer, δ.

Regarding the relative values of the current densities, we can distinguish two
possible regimes: I0/IL,1 > 1 and I0/IL,1 ≤ 1, where IL,1 ≡ −z1FD1cb

1/δ is the
limiting diffusion current density of the electroactive species. When I0/IL,1 > 1
the surface concentration vanishes before the concentration changes reach the
outer end of the boundary layer. That is, the transition time τ defined by Sand’s
equation is smaller than τδ . Hence, the influence of mixing cannot be noticed
and this situation does not differ practically from that considered in the previous
section. Thus, we restrict the present study to the case I0/IL,1 ≤ 1 and τ ≥ τδ .

Due to the mixing, the concentration changes cannot propagate by diffusion
beyond x = δ. At short times (t � τδ and Ld � δ), δ is not a relevant variable
and the concentration c1 must be a function of ζ (and t) practically identical to
that in eqn (3.149). At large times (t 
 τδ and Ld 
 δ), the diffusion length Ld
is not a relevant variable, and the concentration c1 must be a function of x/δ.
In particular, for the current-step technique under consideration, a steady state
is reached at large times, and the diffusion equation reduces to

d2c1

dx2
= 0, t 
 τδ . (3.154)

The solution of this equation is

c1(x) = cb
1 + [c1(0) − cb

1]
(

1 − x

δ

)
, t 
 τδ , (3.155)

and the surface concentration can be calculated from eqn (3.139) as

c1(0) = cb
1

(
1 − I0

IL,1

)
, t 
 τδ . (3.156)

At intermediate times, the concentration c1(x, t) must be determined from
the solution of the diffusion equation, eqn (3.138). Using the last expression in
eqn (3.145) and eqn (3.146), the transformed concentration can be written as

c̃1 = cb
1

s
− C

sinh q(δ − x)

cosh qδ
, (3.157)

where q ≡ √
s/D1. Since the transformed current density is Ĩ(s) = I0/s in a

current step, eqn (3.139) can be used to determine the coefficient C as

C = − Ĩ(s)

z1F
√

sD1
= − I0

z1F
√

s3D1

. (3.158)
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The concentration is then

c1(x, t) = cb
1 − I0

z1FD1
L−1

[
sinh q(δ − x)

cosh qδ

1

qs

]
(3.159)

but this inverse transform cannot be found in the tables. Instead, we use the
series expansion

1

cosh qδ
= 2e−qδ(1 + e−2qδ)−1 = 2e−qδ

∞∑
n=0

(−1)ne−2nqδ

= 2
∞∑

n=0

(−1)ne−(2n+1)qδ . (3.160)

The concentration can now be calculated using the same inverse Laplace
transform as in eqn (3.149) as

c1(x, t) = cb
1 + I0

z1FD1
L−1

[ ∞∑
n=0

(−1)n e−q(2nδ+x)

qs
+

∞∑
n=1

(−1)n e−q(2nδ−x)

qs

]

= cb
1 + 2I0

√
t

z1F
√

D1

[ ∞∑
n=0

(−1)nierfc

(
2nδ + x

2
√

D1t

)

+
∞∑

n=1

(−1)nierfc

(
2nδ − x

2
√

D1t

)]
. (3.161)

This concentration profile has been represented in Figs. 3.17 and 3.18. Equation
(3.161) has the correct limiting behaviour. In the absence of mixing the diffusion
boundary layer thickness goes to infinity (i.e. δ 
 Ld at all times), and the
functions ierfc tend to zero except for the one corresponding to n = 0. Therefore,
eqn (3.161) becomes equal to eqn (3.149), as expected. In fact, regardless of
the value of δ, eqn (3.161) becomes equal to eqn (3.149) at times short enough
that t � τδ and δ 
 Ld.

From eqns (3.152) and (3.161) the surface concentration is

c1(0, t) = cb
1

{
1 −

√
t

τ

[
1 + 2

√
π

∞∑
n=1

(−1)nierfc

(
nδ√
D1t

)]}
, (3.162)

which tends asymptotically towards zero. Since ierfc is a monotonous and
rapidly decreasing function, we conclude that the mixing increases the surface
concentration (Fig. 3.19), that is, c1(0, t) ≥ cb

1(1 − √
t/τ).

In the time range t 
 τδ , the series in eqns (3.161) and (3.162) converge
to the values given in eqns (3.155) and (3.156), respectively, as can be seen in
Figs. 3.17 and 3.18. However, the convergence is rather slow and it is difficult to
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Fig. 3.17.
Concentration profile during a current step
with mixing for I0 = IL,1 and times
t/τδ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0,
and 5.0 (increasing in the arrow direction).
The concentration gradient at the electrode
surface is independent of time (and fixed
by the constant current) only at short
times, while at large times it is determined
by the boundary layer thickness.
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Concentration profile in a current step with
mixing at times t/τδ = 0.01, 0.02, 0.05,
0.1, 0.2, 0.5, 1.0, and 5.0 (increasing in the
arrow direction). This plot is valid for any
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Fig. 3.19.
Time variation of the surface concentration
in a current step with mixing for I0 = IL,1
(solid line) and the comparison with the
variation in the absence of mixing (dashed
line). Note that I0 = IL,1 implies τ = τδ .
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check this limiting behaviour analytically from eqn (3.161). Fortunately, with
the help of the approximation

ierfc(z) =
∞∑

n=1

[ierfc(z + ny − y) − ierfc(z + ny)]

≈ y
∞∑

n=1

erfc
(

z + ny − y

2

)
≈ 2y

∞∑
n=1

erfc(z + 2ny − y)

≈ 2
∞∑

n=1

[
ierfc

(
z + (2n − 1)y − y

2

)
− ierfc

(
z + 2ny − y

2

)]

= −2
∞∑

n=1

(−1)nierfc
(

z + ny − y

2

)
, (3.163)

where we have treated both y and n as dummy variables with the only restriction
that y � z, eqn (3.161) reduces to

c1(x, t) ≈cb
1

{
1 − 1

2

√
π t

τ

[
2 ierfc

(
x

2
√

D1t

)
− ierfc

(
δ + x

2
√

D1t

)

−ierfc

(
δ − x

2
√

D1t

)]}
, (3.164)

for t 
 τδ and Ld 
 δ. When the arguments of the ierfc functions are very
small, we can further use that

ierfc(z) ≈ 1√
π

− z when z � 1, (3.165)

and eqn (3.164) then becomes approximately equal to eqn (3.155); see also
Fig. 3.17.

3.4.4 Current scan
The time dependence of a linear current scan from zero at time t = 0 is

I(t) = I0at, (3.166)

where a > 0 is a constant with dimensions of inverse of time. Its Laplace
transform is

Ĩ(s) = I0a

s2
, (3.167)

and eqn (3.166) can then be used to determine the coefficient B in eqn (3.145) as

B = Ĩ(s)

z1F
√

sD1
= I0a

z1FD1

1

qs2
, (3.168)

where q ≡ √
s/D1 and we have considered that the solution is not mixed.
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The solution of eqn (3.138) in the time domain is now formally given by

c1(x, t) = cb
1 + L−1

(
I0a

z1FD1

e−qx

qs2

)
. (3.169)

This inverse Laplace transform can be found in Laplace tables [9, 22–24] and
leads to

c1(x, t) = cb
1 + I0a

z1F
√

D1
(4t)3/2i3erfc(ζ ), (3.170)

where ζ ≡ x/(2
√

D1t) is the previously defined Boltzmann variable and

i3erfc(ζ ) = π−1/2

6
(ζ 2 + 1)e−ζ 2 − ζ

12
(2ζ 2 + 3)erfc(ζ ) (3.171)

is the third integral of the complementary error function [9]. This concentration
profile has been represented in Fig. 3.20.

The surface concentration

c1(0, t) = cb
1 + 4

3

I0a

z1F
√

πD1
t3/2 = cb

1

[
1 −

(
t

τ

)3/2
]

(3.172)

vanishes (for cathodic reductions where I0 < 0) at the transition time

τ ≡
(

−3z1Fcb
1

√
πD1

4I0a

)2/3

≡ πD1

(
3z1Fcb

1

4I0aτ

)2

, (3.173)

which varies with the scan rate a (Fig. 3.21).
If we compare this transition time with that observed using the current-step

technique we have, from eqns (3.152) and (3.173), that(
τscan

τstep

)1/2

= 3

2

Istep

I(τscan)
, (3.174)
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Fig. 3.20.
Concentration profile in a current scan
(without mixing).
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Fig. 3.21.
Time variation of the surface concentration
in a current scan.
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Fig. 3.22.
Concentration profile during a current scan
at times t/τ = 0.1, 0.2, . . . , 0.9, and 1.0
(increasing in the direction of the arrow).
The concentration gradient at the electrode
surface is proportional to time because it is
determined by the scanned current.
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where I(τscan) = I0aτ ; note that the second equality in eqn (3.173) is very help-
ful to verify eqn (3.174). If we choose the scan rate a so that the transition time
is the same in these two techniques, then the scanned current at the transition
time is 3/2 times higher than in the step technique.

The concentration changes during a current-scan experiment can be better
understood with the help of Fig. 3.22. As time progresses, the concentration
changes propagate towards the bulk solution and the surface concentration
decreases in such a way that the gradient at the surface is determined by the
current, and hence it is proportional to time. Eventually, a transition time τ is
reached when the surface concentration vanishes. The diffusion front has then
covered a distance of ca. 3

√
D1τ .

3.4.5 Voltage step
In chronoamperometric techniques, the electrode potential and hence the sur-
face concentration of the electroactive species is known as a function of time.
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Fig. 3.23.
Concentration profile in a voltage step.

The coefficient B in eqn (3.145) can now be determined as

B = c̃1(0, s) − cb
1

s
, (3.175)

where c̃1(0, s) is the Laplace transform of the surface concentration c1(0, t).
In a voltage step (potentiostatic method) the electrode potential is biased to

a constant negative (or positive) value at t = 0 so that the electroactive species
is immediately reduced (or oxidized). The Nernst equation for the equilibrium
electrode potential implies that the surface concentration of the electroactive
species is fixed after the voltage step (i.e. for t > 0) to the value

c1(0, t) = cb
1ez1f �E , (3.176)

where �E is the voltage step. This surface concentration is practically zero
when the step is very large (i.e. −z1f �E 
 1). Since this concentration is
independent of time, its Laplace transform is c̃1(0, s) = cb

1ez1f �E/s and the
solution of Fick’s second law, eqn (3.138), in the time domain is formally
given by

c1(x, t) = cb
1

[
1 + (ez1f �E − 1)L−1

(
e−qx

s

)]
. (3.177)

Looking for this inverse transform in the Laplace tables [9, 22–24] we get

c1(x, t) = cb
1[1 + (ez1f �E − 1) erfc(ζ )], (3.178)

where ζ ≡ x/2
√

D1t is the Boltzmann variable. This concentration profile is
represented in Fig. 3.23 in a dimensionless form that is valid for all values
of �E. It can be seen from eqn (3.178) that the function represented in this
figure is erf(ζ ). In fact, when −z1f �E 
 1, the concentration profile reduces
to c1(x, t) ≈ cb

1erf (ζ ). Finally, it is interesting to observe once again that the
diffusion front proceeds no further than ca. 6

√
D1t. Thus, digital simulations

of diffusion in an electrochemical process do not need to extend beyond this
distance.



122 Transport at electrodes

The electric current density is then

I(t) = −z1FD1

(
∂c1

∂x

)
x=0

= z1Fcb
1(e

z1f �E − 1)

√
D1

π t
, (3.179)

which is known as the Cottrell equation.

Exercises
3.1 In relation to the example of a ternary electrolyte worked out in Section 3.2.5,

show that the system behaves as a binary electrolyte solution when cb
23 � cb

13
and the ionic concentrations at the electrode surface are then

ci(0) = cb
i

(
1 − I

IL

)
i = 1, 3.

3.2 Consider the cathodic reduction of a univalent metal cation M+ in an aqueous
solution containing the salt M+A− and the acid H+A−. Derive the steady-state
concentration profiles in the following cases:
(a) the salt M+A− is completely dissociated, and
(b) the salt M+A− is completely associated.
How does the diffusion coefficient of A− affect the limiting current in both cases?

3.3 Consider the stationary ionic transport in an aqueous solution of Cu(HSO4)+,
H+, and HSO−

4 in the boundary layer close to an electrode where the reaction

Cu(HSO4)+ + 2e− → Cu(s) + HSO−
4

takes place, i.e. case ii) in Section 3.2.6. Find the ionic concentrations at the
electrode surface as particular cases of the general expression, eqn (3.71)

ci(0) = cb
i

{
1 − jiδ

Dic
b
i

IL0

(1 + zi�)I

[(
1 − I

IL0

)1+zi�

− 1

]}(
1 − I

IL0

)−zi�

worked out at the end of that section. Check also that c1(0) = c3(0) − c2(0).
3.4 Consider the stationary ionic transport in an aqueous solution of Cu+2, H+, and

HSO−
4 in the boundary layer close to a cathode where the reaction

Cu+2 + 2e− → Cu(s)

takes place, i.e. case i) in Section 3.2.6. Determine the limiting current density
and the potential drop in the diffusion boundary layer as a function of the bulk
concentrations of Cu(HSO4)2 and H2SO4. Study also the limiting cases in which
either of these concentrations vanishes.

3.5 A metal electrode is placed in an aqueous solution of a binary electrolyte A+B−.
The initial electrolyte concentration is cb. By imposing a constant current density
I , the reduction of the cation takes place until the stationary state is achieved.
Calculate the final concentration profile and the limiting current density in the
following cases:
(a) The solution is well stirred and the thickness of the Nernst layer close to the

electrode is δ.
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(b) From the beginning, an ideally selective cation-exchange membrane is placed
at a distance δ. From the cathode, and the electrolyte solution is stagnant in
between them.

3.6 Describe the time-dependent concentration and electric potential distribution in
the two cases of the previous exercise.

3.7 An electrode is equilibrated with a solution that contains a redox couple Az1/Az2 .
From time t = 0, a current step of amplitude I0 is applied and the electrode
reaction

Az1 →← Az2 + ne−

proceeds under quasi-equilibrium conditions until species Az1 runs out at the
electrode surface. Using the Nernst equation

E(t) = E◦′ + RT

nF
ln

c2(0, t)

c1(0, t)
,

where E◦′ is the formal standard potential, and assuming that
√

D1cb
1 ≈ √

D2cb
2,

show that the electrode potential can be expressed as

E(t) = E◦′ + 2RT

nF
arctanh

√
t

τ
,

where τ is the transition time.
3.8 Solve the diffusion equation for a current step with mixing using the method of

separating the variables, i.e. introducing the transformation c1 = cb
1 + X (x)T (t)

and writing the concentration of the electroactive ion as a Fourier series.
3.9 The voltage step can be (mathematically) described as a chronopotentiomet-

ric technique in which the current is proportional to t−1/2. Solve the diffusion
equation imposing that the current is I = αt−1/2, and evaluate the surface con-
centration. Then find the value of α by comparing your result with the equation
c1(0, t) = cb

1ez1f �E .
3.10 Consider the irreversible reaction of species 1 at the electrode forming species

2, which undergoes a homogeneous, irreversible reaction forming species 3 (i.e.
the so-called EC mechanism). By solving the equations

∂c1

∂t
= D

∂2c1

∂x2
,

0 = D
d2c2

dx2
− kcm

2 ,

where m ≥ 1 is an integer, obtain the concentration profiles c1(x, t) and c2(x) with
appropriate initial and boundary conditions. Note that the transport of species 2
is assumed to take place under steady state.

3.11 Consider the irreversible reaction of species 1 at the electrode forming species
2, which undergoes a homogeneous, irreversible reaction forming species 3 (i.e.
the so-called EC mechanism). By solving the equations

∂c1

∂t
= D

∂2c1

∂x2

∂c2

∂t
= D

∂2c2

∂x2
− kc2
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obtain the concentration profiles c1(x, t) and c2(x, t) with appropriate initial and
boundary conditions. Compare your solution with that of the previous exercise
for m = 1.

3.12 Find the Cottrell equation corresponding to a large voltage step in a hemispherical
microelectrode of radius a by solving the diffusion equation in spherical geometry

∂c

∂t
= D

1

r2

∂

∂r

(
r2 ∂c

∂r

)
= D

(
∂2c

∂r2
+ 2

r

∂c

∂r

)

under the initial and boundary conditions c(r, 0) = cb and c(a, t) = 0.
(Hint: Use the transformation c(r, t) = cb + u(r, t)/r.)

3.13 Describe the time evolution of the concentration profile during a current step in
a hemispherical microelectrode of radius a by solving the diffusion equation in
spherical geometry

∂c

∂t
= D

1

r2

∂

∂r

(
r2 ∂c

∂r

)
= D

(
∂2c

∂r2
+ 2

r

∂c

∂r

)

under the initial and boundary conditions c(r, 0) = cb and (∂c/∂r)r=a =
−I/zFD. Is there a transition time for any value of the current density as in
the case of a planar electrode?
(Hint: Use the transformation c(r, t) = cb + u(r, t)/r.)

3.14 A simplified conductance cell is formed by two parallel plates of the same metal
M that have a geometrical surface area A and are separated by a distance d . For
the sake of simplicity, consider that the cell has uniform cross-section A. The
cell is filled with an aqueous solution of concentration cb of a strong electrolyte
M+A−, and the electrode reactions are M+ + e− →← M.
(a) Find the dependence of the electric current i = AI through the cell with

the applied potential difference between the metal plates, �
β
αφ ≡ φβ − φα ,

where β and α denote the metal plates. In the solution phase use a position
co-ordinate x ranging from 0 at the plate α to d at the plate β, and define the
current density I as positive from α to β.

(b) From the total power −i�β
αφ consumed by the cell during operation, evaluate

the contribution from ohmic (or Joule) dissipation and the contribution from
electrodiffusion.

(c) Describe the relation between �
β
αφ ≡ φβ − φα and I when I → 0, and

discuss whether diffusion (or concentration polarization) effects can then be
neglected.
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4 Transport in
membranes

4.1 Transport across neutral porous
membranes

In this section we describe different aspects of the one-dimensional trans-
port processes (in the absence of homogeneous chemical reactions) across a
chemically inert, porous membrane, which has the only function of creating a
well-defined unmixed space between two compartments α and β. The compart-
ments are ideally mixed, so that they have homogeneous solute concentrations
cα and cβ at all times. These concentrations may be constant if the compartment
solutions are circulated, or vary with time as a result of the transport across the
membrane if they are not. If the first case, a true steady state can be reached. In
the second one, the transport process is time dependent because so they are the
compartment concentrations. However, when the compartment volumes V α and
V β are large (compared to the membrane volume), the solute flow leads to very
slow time variations of cα(t) and cβ(t), and these can be considered constant
as far as the transport across the membrane is concerned. This type of transient
transport processes are known as quasi-steady processes. In Section 4.1.1 we
consider the transport of a neutral solute under these conditions and then in
Section 4.1.2 we analyse the validity of the quasi-steady-state assumption.

4.1.1 Quasi-steady diffusive transport between two
closed compartments

Consider the transport of a neutral solute in the experimental set-up depicted
in Fig. 4.1. Initially, the solute is present only in compartment α, where its
concentration is cα

0 . The time variation of the concentration in compartment α

is given by the mass balance

j = −V α

A

dcα

dt
, (4.1)

where j is the solute flux density across the membrane and A is the membrane
area. The solute concentration in compartment β can be obtained from the total
mass balance in the cell

V αcα
0 = V αcα(t) + V βcβ(t) (4.2)
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Compartment β Compartment α 

j

cβ ( t )

c α( t )

Stirrers

Membrane

c 0
α

h

V β Vα
Fig. 4.1.
A cell divided into two compartments by a
porous membrane. The compartments are
well stirred so that concentration gradients
only appear inside the membrane. The
solute concentration in the compartments
can vary with time due to the mass
transport across the membrane.

as

cβ(t) = V α

V β
[cα

0 − cα(t)]. (4.3)

The solute concentration inside the membrane is denoted as c(x, t) and its
flux density j is given by Fick’s first equation

j = −D
∂c

∂x
. (4.4)

Under (quasi)steady-state conditions, it can be assumed that j is independent
of position and eqn (4.4) can then be easily integrated over the membrane,
extending from x = 0 where the solute concentration is c(0, t) = cα(t) to
x = h, where it is c(h, t) = cβ(t), to give

j = −D
cβ − cα

h
. (4.5)

The concentrations cα and cβ , and the flux density j, however, are slowly
varying functions of time. In particular, since the solute is initially present in
compartment α only, the flux density varies from an initial maximum value
Dcα

0 /h to zero at large times when the two compartments have the same
concentration

cα∞ = cβ∞ = cα
0

V α

V α + V β
. (4.6)

Inserting eqns (4.5) and (4.3) into eqn (4.1), the solute concentration
in compartment α is found to be given by the linear ordinary differential
equation

dcα

dt
+

(
1

τα
+ 1

τβ

)
cα = cα

0

τβ
, (4.7)
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where the coefficients

τα ≡ V αh

AD
(4.8)

τβ ≡ V βh

AD
(4.9)

are the characteristic times required for diffusion to change significantly the
concentrations of compartments α and β, respectively. The solution of eqn (4.7)
with the initial condition cα(0) = cα

0 is

cα(t) = cα
0
τα + τβ e−t/τ

τα + τβ
= cα

0 e−t/τ + cα∞(1 − e−t/τ ), (4.10)

and, therefore,

cβ(t) = cβ∞(1 − e−t/τ ) (4.11)

j = −V α

A

dcα

dt
= V αcα

0

Aτα
e−t/τ = Dcα

0

h
e−t/τ , (4.12)

where 1/τ ≡ 1/τα + 1/τβ . The fact that the relaxation time of the system
towards equilibrium, τ , is a harmonic mean of τα and τβ implies that the smaller
compartment determines the system response. Thus, for instance, if compart-
ment β is much larger in volume than compartment α, eqn (4.10) reduces to
cα(t) = cα

0 e−t/τα
. Figure 4.2 shows the representation of eqns (4.10) and (4.11)

for different values of the ratio τβ/τα = V β/V α . Note that at large times the
concentrations are given by eqn (4.6) and decrease with increasing V β/V α .

In Fig. 4.2 we have not used the values of the membrane thickness h and
area A because of the use of dimensionless variables. In practice, however, the
so-called membrane constant A/h is not known and has to be determined from
the experimental data of cβ(t). In particular, eqn (4.11) shows that a plot of
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Fig. 4.2.
Time variation of the solute concentration in compartments α and β for τβ/τα = 1, 3, 10, and 30 (increasing in the arrow direction).
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ln[1 − cβ(t)/cβ∞] vs. t must yield a straight line of negative slope 1/τ ∝ A/h
from which A/h can be determined. Alternatively, the analysis of the initial
behaviour leads to

V βcβ(t) ≈ (A/h)Dcα
0 t when t � τ , (4.13)

from which A/h could also be determined if V β and D were known.

4.1.2 Lag time in diffusion
The quasi-steady-state assumption used in Section 4.1.1 implies that the con-
centration profile inside the membrane is linear and can be described by the
expression

c(x, t) = cα(t)
(

1 − x

h

)
+ cβ(t)

x

h

= cα
0 e−t/τ

(
1 − x

h

)
+ cα∞(1 − e−t/τ ), (4.14)

where we have used that cα∞ = cβ∞. This assumption might seem dubious
because the linearity of the profile stems from the absence of time depen-
dence of the diffusion process and, at the same time, the solute concentration
in the compartments varies with time. The validity argument that was given
in Section 4.1.1 is that the solute concentration in the compartments varies
slowly with time when their volumes V α and V β are large compared to the
membrane volume V M = Ah. We can now provide additional reasons. The
time required for the solute to cross the membrane is the diffusional time
τM ≡ h2/D = V Mh/AD. Since the flux density at short times t � τ is
j ≈ Dcα

0 /h [see eqn (4.12)], the amount of solute that transfers to compartment
β in a time τM is

�n ≈ AjτM ≈ V Mcα
0 . (4.15)

When this is compared with the amount of solute initially present in compart-
ment α, nα

0 = V αcα
0 , it becomes clear that the condition V α 
 V M implies

that the changes in the solute concentration in the compartments are negligible
for processes taking place in times of the order of τM, and hence the quasi-
steady transport assumption seems reasonable. In fact, the weakest point in the
use of this assumption is that the flux density in eqn (4.5) is considered to be
established immediately, even though the membrane does not actually have a
linear concentration profile at t = 0. In any case, a more complete analysis of
the validity of the quasi-steady-state assumption seems to be convenient.

The actual time and spatial variation of the solute concentration inside the
membrane should be obtained from the combination of Fick’s first law and the
continuity equation, that is, from Fick’s second equation

∂c

∂t
+ ∂j

∂x
= ∂c

∂t
− D

∂2c

∂x2
= 0. (4.16)
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We solve this equation next for a situation in which the concentration in com-
partments α and β are kept constant (by external circulation) at the values cb

and 0, respectively.At the beginning of the experiment, the solute concentration
inside the membrane is c(x, 0) = 0 and the boundary conditions for eqn (4.16)
are then c(0, t) = cb and c(h, t) = 0. Since the boundary conditions establish
that the changes in concentration must take place over a spatial scale fixed by
the membrane thickness h, a dimensional analysis of eqn (4.16) shows that the
time scale for concentration changes is τM ≡ h2/D. That is, the solution of
eqn (4.16) must approach the steady-state behaviour

c(x, ∞) = cb
(

1 − x

h

)
(4.17)

in a time of the order of τM.
Equation (4.16) does not have an analytical solution in closed form under

these boundary conditions but can be solved by the method of separation of
variables,1 i.e. by writing the solution in the form

c(x, t) = c(x, ∞) + X (x)T (t). (4.18)

Inserting this ansatz into eqn (4.16) we obtain

1

DT

dT

dt
= 1

X

d2X

dx2
. (4.19)

Since the right-hand side of eqn (4.19) is only a function of position and the
left-hand side is only a function of time, we conclude that this can only be true
if both sides are equal to a constant that we write as −λ2. Thus, we can split
eqn (4.19) into two ordinary differential equations

1

DT

dT

dt
= −λ2, (4.20)

1

X

d2X

dx2
= −λ2, (4.21)

whose solutions are

T = e−λ2Dt , (4.22)

X = A sin(λx) + B cos(λx), (4.23)

where we have imposed, without loss of generality, that T (0) = 1. The boundary
condition c(0, t) = cb requires that the coefficient B must vanish, and the

1 Actually, the name of this method is superposition of separated solutions because the solution
is not finally written in the form of eqn (4.18) but as a sum of terms with separated dependence in
x and t.
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boundary condition c(h, t) = 0 requires that sin(λh) = 0, which can be satisfied
if λ is of the form

λn = nπ

h
, n integer. (4.24)

Therefore, the complete solution must be

c(x, t) = cb
(

1 − x

h

)
+

∞∑
n=1

An sin
nπx

h
exp

(
−n2π2Dt

h2

)
. (4.25)

Finally, the orthogonality condition
h∫

0
sin(nπx/h) sin(mπx/h)dx = (h/2)δnm

and the initial condition c(x, 0) = 0 can be used to determine the coefficients
An as

An = −2cb

nπ
. (4.26)

The final solution is then

c(x, t) = cb
(

1 − x

h

)
− 2cb

π

∞∑
n=1

1

n
sin

nπx

h
exp

(
−n2π2Dt

h2

)
, (4.27)

and its graphical representation appears in Fig. 4.3.
Figure 4.3 confirms that the time required to establish the linear concentration

profile inside the membrane is of the order of τM. Therefore, it is only after this
time that the flux density that enters the compartment β

j(h, t) = −D

(
∂c

∂x

)
x=h

= Dcb

h

[
1 + 2

∞∑
n=1

(−1)n exp

(
−n2π2Dt

h2

)]
(4.28)

reaches the steady-state value Dcb/h (Fig. 4.4).
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Fig. 4.3.
Concentration profiles inside the
membrane at times t/τM = Dt/h2 =
10−4, 10−3, 10−2, 10−1, and 1
(increasing in the arrow direction); the first
100 terms have been computed in the
series of eqn (4.27).
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Fig. 4.4.
Time variation of the dimensionless flux
density that reaches the compartment β

according to eqn (4.28); the first 100 terms
have been computed in the series.
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Fig. 4.5.
Cumulative flux density, in hcb units,
against time according to eqn (4.29); the
first 100 terms have been computed in the
series. The dashed line corresponds to the
approximate behaviour at large times
described by eqn (4.30).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t / tM

Q
(t

)
/h

cb

The flux density represented in Fig. 4.4 is not measured directly. Instead, the
concentration in compartment β can be measured as a function of time and used
to evaluate, through the relation Q = V βcβ/A, the cumulative flux

Q(t) ≡
t∫

0

j(h, t′)dt′

= Dcb

h

[
t − τM

6
− 2τM

π2

∞∑
n=1

(−1)n

n2
exp

(
−n2π2Dt

h2

)]
, (4.29)

where we have used that
∞∑

n=1
(−1)n/n2 = −π2/12. Equation (4.29) reduces at

large times to

Q(t) ≈ Dcb

h
(t − τlag) = hcb t − τlag

τM , (4.30)

which is the same as would be expected if the steady-state flux density Dcb/h
were established after a lag time τlag ≡ τM/6 = h2/6D. Figure 4.5 shows a
comparison of the graphical representations of eqns (4.29) and (4.30).

In conclusion, we have shown that the quasi-steady-state approximation is
indeed very good when τM � τα , τβ and that, at times t ≥ τM, the concen-
tration profile is approximately linear and the flux density is independent of
position.
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Fig. 4.6.
A cell divided in two compartments by a
porous membrane. The compartments are
well stirred so that concentration gradients
only appear inside the membrane. The
solute concentration in the compartments
can vary with time due to the mass
transport across the membrane. A potential
difference is applied between two
electrodes in compartments α and β. A
fraction �φ of this potential difference
drops inside the membrane and influences
the transport of the charged solute.

4.1.3 Iontophoretic enhancement
We consider now the transport of a charged solute in the experimental set-up
shown in Fig. 4.6, where a potential difference �φcell is applied between the
electrodes.Afraction �φ of this potential difference drops inside the membrane
and influences the transport of the charged solute. We aim here to determine
the migrational contribution to the steady-state solute flux density across the
membrane.

The solute flux density j is given by the Nernst–Planck equation

j = −D

(
dc

dx
+ zcf

dφ

dx

)
, (4.31)

where f ≡ F/RT and z is the solute charge number, and we consider in detail
those cases in which migration enhances the solute flux in the positive x direction
(i.e. from compartment α to β). This requires that zf dφ/dx < 0. For the sake of
simplicity, we use the Goldman constant-field assumption,2 dφ/dx = �φ/h.
Since the steady-state flux density is independent of position, the Nernst–Planck
equation then becomes a first-order, linear, ordinary differential equation that
can be integrated over the membrane, extending from x = 0, where the solute
concentration is c(0) = cα , to x = h, where it is c(h) = cβ . This leads to an
exponential concentration profile inside the membrane

c(x) = cβ + (cα − cβ)
e−zf �φ − e−zf �φ x/h

e−zf �φ − 1
, (4.32)

2 In principle, the local electric field is an unknown variable that needs to be determined from the
local electroneutrality requirement. This field acts on every charged solute and hence is responsible
for the coupling of the ionic fluxes. In the Goldman approach, the electric field is not determined and
hence the coupling between the ionic flux equations is eliminated, and we can solve the transport
equation of any charged solute without considering the other solutes.
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and to the Goldman equation for the flux density

j = −D

h

zf �φ

ezf �φ − 1
(cβezf �φ − cα) = D

h
E(cα − cβezf �φ), (4.33)

where

E ≡ h∫ h
0 ezf [φ(x)−φ(0)]dx

= zf �φ

ezf �φ − 1
(4.34)

is the so-called iontophoretic enhancement factor. Figure 4.7 shows the effect
of a dimensionless membrane potential on the concentration profile. Obviously,
when �φ = 0 there is no migrational contribution and the concentration profile
is linear, c = cα + (cβ − cα)x/h.

To illustrate the importance of the iontophoretic enhancement factor
(Fig. 4.8), it can be mentioned that in drug-delivery problems, compartment
α might represent a drug patch and compartment β the body circulation, so that
V β 
 V α and cβ ≈ 0 [see eqn (4.3)]. That is, compartment β behaves as a per-
fect sink for the solute. The solute flux density is then j = DEcα/h, so that E tells
us how much the applied electric potential difference (such that −zf �φ > 0)

enhances the flux of the charged drug across the membrane (i.e. across the
human skin). At high potential differences −zf �φ 
 1, E ≈ −zf �φ and,
since 1/f ≈ 25mV, a potential difference �φ = −1V makes E ≈ 40 for a
singly charged drug, z = 1. This explains why iontophoretic drug delivery has
received quite a lot of attention during recent decades.

In closing this section, we analyse how the (time-independent) membrane
potential �φ influences the time evolution of the solute concentration in com-
partments α and β. These vary, respectively, from their initial values cα

0 and 0
to the final equilibrium values. Setting j = 0 in eqn (4.33), it is deduced that
the equilibrium concentrations satisfy the Nernst equation

�φ = φβ − φα = 1

zf
ln

cα∞
cβ∞

. (4.35)

Fig. 4.7.
Dimensionless stationary concentration
profiles calculated from eqn (4.32) for
−zf �φ = 0, 1, 2, and 5 (increasing in the
arrow direction).
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Fig. 4.8.
The iontophoretic enhancement factor
E ≡ zf �φ/(ezf �φ − 1) equals one in the
absence of membrane potential (�φ = 0)
and increases linearly with −zf �φ > 0 at
large membrane potentials.

This equilibrium condition, together with the mass balance V α(cα
0 − cα∞)

= V βcβ∞, determines the final concentrations

cα∞ = cα
0

V α

V α + V βe−zf �φ
(4.36)

cβ∞ = cα
0

V α

V αezf �φ + V β
. (4.37)

From eqns (4.1), (4.3) and (4.33), the time variation of the solute concentra-
tion in compartment α is given by

dcα

dt
+

(
1

τα
+ ezf �φ

τβ

)
Ecα = cα

0 Eezf �φ

τβ
, (4.38)

where τα and τβ are the characteristic times defined in eqns (4.8) and (4.9).
The solution of this equation with the initial condition cα(0) = cα

0 is

cα(t) = cα
0 e−t/τ(�φ) + cα∞[ 1 − e−t/τ(�φ)], (4.39)

cβ(t) = cβ∞[ 1 − e−t/τ(�φ)], (4.40)

j = DEcα
0

h
e−t/τ(�φ), (4.41)

where

1

τ(�φ)
≡ E

(
1

τα
+ ezf �φ

τβ

)
. (4.42)

The time evolution of the solute concentration in the compartments calculated
from eqns (4.39) and (4.40) is presented in Fig. 4.9 for the case τα = τβ . It
is observed that rather modest values of −zf �φ > 0 empty compartment α

very fast and effectively. That is, the effect of a migrational contribution to the
solute flux (from compartment α to β) is to decrease both the characteristic
time of the process τ(�φ) and the final concentration cα∞, as can be deduced
from eqns (4.36) and (4.42).
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Fig. 4.9.
Time variation of the solute concentration in compartments α and β for τα = τβ and −zf �φ = 0, 1, 2, and 5 (increasing in the arrow direction).

4.1.4 Lag time in electrodiffusion
Figure 4.9 and eqn (4.42) show that an increase in the membrane potential
reduces the characteristic time for the observation of the concentration changes
in the compartments. The theoretical approach that has led to Fig. 4.9 is based
on the use of the quasi-steady-state assumption and we can expect, from the
arguments worked out in Section 4.1.2, that this assumption is valid only when
τ(�φ) 
 τM. In other words, a sufficiently large increase in the membrane
potential might have the effect of breaking the validity of the quasi-steady-
state assumption. It is therefore convenient to extend the analysis carried out in
Section 4.1.2 to take into account the effect of migration.

The actual time and spatial variation of the solute concentration inside
the membrane should be obtained from the combination of the Nernst–
Planck equation and the continuity equation. Under the Goldman constant-field
assumption, this equation is

∂c

∂t
+ ∂j

∂x
= ∂c

∂t
− D

(
∂2c

∂x2
+ zf �φ

h

∂c

∂x

)
= 0. (4.43)

We solve this equation next for a situation in which the concentrations in com-
partments α and β are kept constant (by external circulation) to the values cα

and cβ , respectively. At the beginning of the experiment, the solute concen-
tration inside the membrane is c(x, 0) = cβ and the boundary conditions for
eqn (4.43) are then c(0, t) = cα and c(h, t) = cβ . Using an approach similar to
that worked out in Section 4.1.2, we write the solution of eqn (4.43) in the form

c(x, t) = cα + (cβ − cα)
e−zf �φ x/h − 1

e−zf �φ − 1
+ X (x)T (t), (4.44)

and split it into the following two linear, ordinary differential equations

1

DT

dT

dt
= −λ2, (4.45)

1

X

(
d2X

dx2
+ zf �φ

h

dX

dx

)
= −λ2, (4.46)
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whose solutions are

T = e−λ2Dt (4.47)

X = e−zf �φ x/2h(A sin rx + B cos rx), (4.48)

where r ≡ √
λ2 − (zf �φ/2h)2. The boundary condition c(0, t) = cα requires

that B = 0 and the boundary condition c(h, t) = cβ requires that sin rh = 0,
which can be satisfied if r is of the form rn = nπ/h with n integer. Therefore,
the complete solution is

c(x, t) = cα + (cβ − cα)
e−zf �φ x/h − 1

e−zf �φ − 1
+ e−zf �φ x/2h

×
∞∑

n=1

An sin
nπx

h
exp

{
−Dt

h2
[n2π2 + (zf �φ/2)2]

}
. (4.49)

Multiplying both sides of eqn (4.49) by ezf �φ x/2hsin(mπx/h), integrating over
the membrane thickness and making use of the initial condition c(x, 0) = cβ

the coefficients An are determined as

An = 2(cβ − cα)
nπ

n2π2 + (zf �φ/2)2
, (4.50)

and the final solution is then

c(x, t) = cα + (cβ − cα)
e−zf �φ x/h − 1

e−zf �φ − 1
+ 2(cβ − cα)e−zf �φ x/2h

×
∞∑

n=1

nπ

n2π2 + (zf �φ/2)2
sin

nπx

h

× exp

{
−Dt

h2
[n2π2 + (zf �φ/2)2]

}
. (4.51)

Figure 4.10 shows the graphical representation of eqn (4.51) and it is observed
that migration modifies the final concentration profile but the time required to
achieve it is still of the order of τM = h2/D, like in the absence of migration.

The flux density that enters the compartment β is

j(h, t) = − D

[(
∂c

∂x

)
x=h

+ cβ zf �φ

h

]
= −D

h
E(cβezf �φ − cα)

− 2
D

h
(cβ − cα)e−zf �φ/2

∞∑
n=1

(−1)nn2π2

n2π2 + (zf �φ/2)2

× exp

{
− t

τM [n2π2 + (zf �φ/2)2]
}

(4.52)
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Fig. 4.10.
Concentration profiles inside the
membrane according to eqn (4.51) for
−zf �φ = 5 and times t/τM = Dt/h2

= 10−4, 10−3, 10−2, 10−1, and 1
(increasing in the arrow direction); the first
100 terms have been computed in the
series.
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and the cumulative flux is

Q(t) ≡
t∫

0

j(h, t′)dt′ = −hE(cβezf �φ − cα)
t

τM

+ 2h(cβ − cα)e−zf �φ/2
∞∑

n=1

(−1)nn2π2

[n2π2 + (zf �φ/2)2] 2

×
(

exp

{
− t

τM [n2π2 + (zf �φ/2)2]
}

− 1

)
. (4.53)

At large times, the cumulative flux can be approximated by

Q(t) = hE(cα − cβezf �φ)
t − τlag

τM , (4.54)

where

τlag ≡ τM cα − cβ

cα − cβezf �φ

zf �φ coth(zf �φ/2) − 2

(zf �φ)2
, (4.55)

and we have used the result [1, 2]

∞∑
n=1

(−1)nn2π2

[n2π2 + (zf �φ/2)2] 2
= −1

4

zf �φ coth(zf �φ/2) − 2

zf �φ sinh(zf �φ/2)
. (4.56)

The lag time in eqn (4.55) takes its maximum value τM/6 when the membrane
potential vanishes and decreases with increasing −zf �φ > 0 so that at large
potential differences τlag ≈ τM/ |zf �φ|. Figure 4.11 shows the time evolution
of the cumulative flux and its approximate behaviour at large times for the case
cβ = 0.

In conclusion, we have analysed the effect of migration (in cases where
it has the same direction as diffusion) and shown that it increases the flux
density by an amount given by the iontophoretic enhancement factor. In this
case of flux enhancement, migration also reduces both the lag time and the
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Fig. 4.11.
Cumulative electrodiffusive flux density,
in hEcα units, against time for −zf �φ = 5
and cβ = 0 according to eqn (4.53). The
first 100 terms have been computed in the
series. The dashed line corresponds to the
approximate behaviour at large times
described by eqn (4.54). The lag time is
τlag ≈ 0.123τM for −zf �φ = 5 while in

the absence of migration it is τlag ≈ τM/6.
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Fig. 4.12.
Schematic drawing of the cell used to study
the transport of species i through a porous
membrane with circulation of the solution
in compartment β. A volume flow rate V̇ α

of pure water is pumped into compartment
α and the same flow rate is taken as an
outflow, so that no convection takes place
across the membrane. The arrows for the
flux density of species i and the electric
current density indicate the positive
direction, not the actual flow direction.

characteristic time for the changes in the compartment concentrations. The
conditions of validity of the quasi-steady transport approximation are not
significantly modified (at the potential differences considered here).

4.1.5 Circulation of compartments
In Section 4.1.3 we have studied the electrodiffusion of a charged solute across a
neutral porous membrane under quasi-steady-state conditions. We consider now
a similar process in which the solutions in compartments α and β are changed
as shown schematically in Fig. 4.12. The compartments are ideally mixed and
have uniform concentrations of the same binary electrolyte. A volume flow rate
V̇ α of pure water is pumped into compartment α and the same flow rate is taken
as an outflow, so that no convection takes place across the membrane. The
electrolyte concentration in this outflow is cα

12. The volume of compartment
β is circulated and, after a transient period, the system reaches a state with
approximately constant concentrations cα

12 and cβ

12. This is so in spite of the
fact that we are pumping water and taking solution out from compartment α,
because the volume of compartment β is very large, V β 
 V α , and its solute
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concentration is not affected in practice by the flow through the membrane
towards compartment α. In other words, the system can be considered to be in
a steady state.

The mass balance for an ionic species i(i = 1, 2) in compartment α

V α dcα
i

dt
= −jiA − V̇ αcα

i (4.57)

reduces at steady state to

ji = − V̇ αcα
i

A
< 0, (4.58)

which allows us to evaluate the molar flux density ji across the membrane. In
the diffusion–conduction approach, this flux density is given by

ji = −D12
dci

dx
+ tiI

ziF
= −D12

�ci

h
+ tiI

ziF
, (4.59)

where �ci ≡ cβ
i − cα

i and we have made use of the fact that the concentration
profile is linear because ji is a constant under steady-state conditions. Note that
D12 and ti take approximately the same value in the porous membrane as in the
external solutions.

As mentioned in Section 4.1.1, the membrane constant A/h is an important
membrane parameter that has to be determined experimentally. In the cell of
Fig. 4.12, the membrane constant can be determined by analysing the outflow
concentrations as

A

h
= cα

i V̇ α + tiIA/ziF

D12(c
β
i − cα

i )
, (4.60)

where eqns (4.58) and (4.59) have been used. It must be emphasized that the
membrane constant cannot be evaluated from the thickness and porosity pro-
vided by the manufacturer because, among other effects, the membrane swells
in solution. In addition, the effect of the assumptions introduced in the theo-
retical modelling or possible inaccuracies of the experimental set-up are also
hidden in the value of the membrane constant.

4.1.6 Convective electrophoresis
Continuing with the same experimental set-up depicted in Fig. 4.12, let us now
consider that the outflow rate from compartment α, V̇ α

out, is different from the
inflow rate V̇ α

in of pure water. The mass balance for the whole cell shows that
a convective motion is now created across the membrane (Fig. 4.13) and that
the solution velocity is given by

v = V̇ α
in − V̇ α

out

A
. (4.61)
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Fig. 4.13.
Schematic drawing of the cell used to
study the transport of species i through a
porous membrane in the presence of
simultaneous diffusion, conduction and
convection. A volume flow rate V̇ α

in of pure
water is pumped into compartment α and a
different flow rate V̇ α

out is taken as an
outflow. The solution in compartment β is
circulated. The arrows for the flux density
of species i, the convective velocity and
the electric current density indicate the
positive direction, not the actual flow
direction.

The importance of this convective motion in relation to the electrolyte diffusion
across the membrane is characterized by the dimensionless Peclet number

Pe ≡ vh

D12
, (4.62)

so that the influence of convection is expected to be significant when Pe 
 1.
Adding the convection term to the diffusion–conduction equation, the flux

density of a solute species i (in the membrane-fixed reference system) is now
given by

ji = civ − D12
dci

dx
+ tiI

ziF
, (4.63)

or

dci

dx
= Pe

h
(ci − Ci), (4.64)

where

Ci ≡ 1

v

(
ji − tiI

ziF

)
. (4.65)

The solution of this equation under the boundary conditions ci(0) = cα
i and

ci(h) = cβ
i is

ci(x) = Ci + (cα
i − Ci) ePe x/h = cβ

i + (cα
i − cβ

i )
ePe x/h − ePe

1 − ePe . (4.66)

It is interesting to observe that the concentration profile is only determined by
the Peclet number Pe and the external concentrations, although the external
concentration cα

i is determined by the electric current density as explained
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Fig. 4.14.
Concentration profiles in convective
diffusion calculated from eqn (4.66). The
curves correspond to Peclet numbers:
Pe = −10, −5, −2, 0, 2, 5, and 10
(increasing in the arrow direction).
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below. Figure 4.14 shows the concentration profiles corresponding to different
values of Pe. In the absence of convection, Pe = 0, the concentration profile is
linear and the concentration gradient inside the membrane is (cα

i −cβ
i )/h. When

Pe is positive and large, the concentration inside the membrane is equal to that in
compartmentα, except in the close vicinity of the boundary with compartment β

where the concentration drops sharply to cβ
i and the concentration gradient is

−Pe(cα
i − cβ

i )/h. When Pe is negative and large in magnitude, the solution
in compartment β is pushed towards the membrane phase, the concentration
inside the membrane is equal to cβ

i except in the close vicinity of the boundary

with compartment α where the concentration gradient is Pe(cα
i − cβ

i )/h.
The steady-state flux density is a constant that can be evaluated from the

mass balance in compartment α as

ji = − V̇ α
outc

α
i

A
< 0, (4.67)

and related to the solute concentration in compartments α and β by

ji = D12

h

Pe

1 − e−Pe (cα
i − cβ

i e−Pe) + tiI

ziF
. (4.68)

Curiously, the factor Pe/(1 − e−Pe) in eqn (4.68) has a close mathematical
similarity to the iontophoretic enhancement factor introduced in Section 4.1.3.
This is due to the fact that both eqn (4.31) under the Goldman constant-field
assumption and eqn (4.63) are similar first-order, linear, ordinary differential
equations. The important fact, however, is that eqns (4.66) and (4.68) establish
a relation between the solute concentration in the compartments, the convective
flow velocity, and the electric current density. Therefore, for given experimental
values of I , v and cβ

i , these equations allow us to evaluate the concentration cα
i

that we should expect to measure in compartment α when the steady state is
reached.

An interesting particular case of the above situation is that with V̇ α
out = 0. The

transport mechanisms inside the membrane are then coupled in such a way that
the flux density of species i given by eqn (4.68) is zero. This has been studied
here for the case of a binary solution, but it can also be achieved in multi-ionic
solutions.



Transport across neutral porous membranes 143

4.1.7 Liquid-junction potential
We know from Section 2.3.3 that the transport of a charged species is linked
to the transport of other charged species due to the long-range electrostatic
forces. This coupling implies that the transport of ionic species often gives
rise to internal electric fields that must be evaluated from the solution of
the transport equations. In this section we evaluate the electric potential drop
�φdif = φβ − φα that is established between the membrane boundaries due to
the transport of ionic species under open-circuit conditions (i.e. in the absence
of electric current passing through the membrane).3 We do it first for the case
of a binary electrolyte, and then for electrolyte mixtures.

The local electroneutrality assumption accounts for the electrostatic coupling
between ionic species. In the simple case of a binary electrolyte this is

z1c1 + z2c2 = 0, (4.69)

and the diffusion potential gradient

−f
dφdif

dx
= t1

z1

d ln c1

dx
+ t2

z2

d ln c2

dx
(4.70)

can then be easily integrated over the membrane to give

f �φdif = −
(

t1
z1

+ t2
z2

)
ln

cβ

12

cα
12

= D2 − D1

z1D1 − z2D2
ln

cβ

12

cα
12

. (4.71)

This implies that �φdif = φβ − φα has the same sign as �c12 = cβ

12 − cα
12

when the anion has a larger diffusion coefficient than the cation, and vice versa.
That is, the diffusion potential gives a migrational contribution to the ionic flux
densities that enhances the diffusive contribution of the ion with lower mobility
and opposes the diffusive contribution of the ion with higher mobility.

In multi-ionic systems the situation is much more complicated because the
ionic transport numbers vary with position and the expression for the diffusion
potential gradient

−f
dφdif

dx
=

∑
i

ti
zi

d ln ci

dx
=

∑
i ziDi(dci/dx)∑

j z2
j Djcj

(4.72)

cannot be integrated analytically because the concentration profiles are not
known in general. In the case of mixtures of symmetric z:z electrolytes, the
transport equations can be solved and the diffusion potential obtained from the
solution of two algebraic equations. The integration procedure is explained in
detail in Section 4.3.7 and we outline here the most important steps (for the

3 The evaluation of the membrane potential in the presence of an electric current can be done as
a particular case of that considered in Section 4.3.7 when the fixed-charge concentration vanishes.
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case of a neutral membrane). Using the boundary conditions ci(0) = cα
i and

ci(h) = cβ
i , the diffusion potential is

�φdif = �

f
ln

cβ
T

cα
T

, (4.73)

and the flux densities of cations and anions are

ji
Di

= −(1 + z�)
cβ

T − cα
T

h

cβ
i ezf �φdif − cα

i

cβ
T ezf �φdif − cα

T

, if zi = z, (4.74)

ji
Di

= −(1 − z�)
cβ

T − cα
T

h

cβ
i e−zf �φdif − cα

i

cβ
T e−zf �φdif − cα

T

, if zi = −z, (4.75)

where cT ≡ ∑
i ci is the total ionic concentration and � is an unknown constant.

The open-circuit condition, I = F
∑

i zi ji = 0, requires that

ezf �φdif
∑
+

Dic
β
i −∑

+
Dicα

i

cβ
T ezf �φdif −cα

T

=1−z�

1+z�

e−zf �φdif
∑
−

Dic
β
i − ∑

−
Dicα

i

cβ
T e−zf �φdif −cα

T

, (4.76)

and further elimination of the diffusion potential using eqn (4.73) leads to

(cβ
T/cα

T)z� ∑
+

Dic
β
i − ∑

+
Dicα

i

(cβ
T/cα

T)−z�
∑
−

Dic
β
i − ∑

−
Dicα

i

= 1 − z�

1 + z�

(cβ
T/cα

T)1+z� − 1

(cβ
T/cα

T)1−z� − 1
. (4.77)

This transcendental equation must be solved numerically to obtain the value
of �, and then the diffusion potential can be evaluated from eqn (4.73). The
+ and − signs under the sums in eqns (4.76) and (4.77) indicate that they are
restricted to cations and anions, respectively.

Although the above procedure is not too complicated, there are two alter-
native methods that are more popular because they allow for a much simpler
approximate evaluation of the diffusion potential. The first one is Henderson’s
method [3, 4], which assumes that the concentration profiles of all ionic species
have the same functional form

ci = cα
i + �ciδ(x/h) , (4.78)

where �ci ≡ cβ
i − cα

i and δ(x/h) is an undetermined function that satisfies
δ(0) = 0 and δ(1) = 1. Integration of eqn (4.72) gives then

f �φdif ≈ −
∑

i ziDi�ci∑
j z2

j Dj�cj
ln

∑
k z2

k Dkcβ

k∑
l z2

l Dlcα
l

. (4.79)
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In the case of mixtures of z : z symmetric electrolytes, Henderson’s equation
reduces to

zf �φdif ≈ −
∑
+

Di�ci − ∑
−

Di�ci∑
j Dj�cj

ln

∑
k Dkcβ

k∑
l Dlcα

l

. (4.80)

In the case of a binary electrolyte, eqn (4.79) is exact and reduces to eqn (4.71).
The second method is based on the Goldman constant-field assumption. This

amounts to considering that the electric potential gradient in the Nernst–Planck
flux equation is independent of position and can be written as dφ/dx = �φdif /h
(in the case I = 0). The integration of the flux equation for species i then leads
to the Goldman flux equation

ji
Di

= − zi f �φdif

ezi f �φdif − 1

cβ
i ezi f �φdif − cα

i

h
. (4.81)

The use of eqn (4.81) and the open-circuit condition, I = F
∑

i zi ji = 0, leads
in general to an algebraic equation in e f �φdif that allows for the determination of
�φdif . In the case of mixtures of symmetric, z : z electrolytes, this determination
is very simple because the open-circuit condition requires

ezf �φdif
∑
+

Dic
β
i − ∑

+
Dicα

i

ezf �φdif − 1
= −

e−zf �φdif
∑
−

Dic
β
i − ∑

−
Dicα

i

e−zf �φdif − 1
(4.82)

and multiplication of both the numerator and the denominator of the fraction in
the right-hand side of the above equation by ezf �φdif leads immediately to the
Goldman equation for the diffusion potential

zf �φdif = ln

∑
+

Dicα
i + ∑

−
Dic

β
i∑

+
Dic

β
i + ∑

−
Dicα

i

. (4.83)

The + and − signs under the sums indicate, once again, that they are restricted
to cations and anions, respectively.

To compare these three alternative ways of evaluating the diffusion potential
in neutral membranes, we consider a solution formed by mixing two 1:1 elec-
trolytes with a common anion (which is denoted as species 3). Equation (4.77)
then reduces to

(cβ

3 /cα
3 )1+�(rβ

13 + rβ

23) − (rα
13 + rα

23)

(cβ

3 /cα
3 )1+� − 1

= 1 − �

1 + �
, (4.84)
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where rα
13 ≡ D1cα

1 /D3cα
3 , rβ

13 ≡ D1cβ

1 /D3cβ

3 , rα
23 ≡ D2cα

2 /D3cα
3 , and

rβ

23 ≡ D2cβ

2 /D3cβ

3 . Henderson’s equation reduces in this case to

f �φdif = − (rβ

13 + rβ

23 − 1)(cβ

3 /cα
3 ) − (rα

13 + rα
23 − 1)

(rβ

13 + rβ

23 + 1)(cβ

3 /cα
3 ) − (rα

13 + rα
23 + 1)

× ln

(
cβ

3

cα
3

rβ

13 + rβ

23 + 1

rα
13 + rα

23 + 1

)
. (4.85)

And Goldman’s equation becomes

f �φdif = − ln
(rβ

13 + rβ

23)(c
β

3 /cα
3 ) + 1

rα
13 + rα

23 + (cβ

3 /cα
3 )

. (4.86)

Finally, it is noted that the exact diffusion potential can be formally written
as4

f �φdif = − (rβ

13 + rβ

23 − 1)(cβ

3 /cα
3 )1+� − (rα

13 + rα
23 − 1)

(rβ

13 + rβ

23 + 1)(cβ

3 /cα
3 )1+� − (rα

13 + rα
23 + 1)

ln
cβ

3

cα
3

, (4.87)

which resembles eqn (4.85) and, hence, somehow evidences that the Henderson
approximation is more accurate than Goldman’s one. However, eqn (4.87) is
not really useful because it contains the unknown �, which must be evaluated
from eqn (4.84), just like the much simpler eqn (4.73) from which it has been
derived.

Figure 4.15 shows the graphical representation of eqns (4.85)–(4.87) for a
case with 0.2 D1 = D2 = D3 and different values of the ratios rα

13 and rβ

13; the

values of rα
23 and rβ

23 are then determined from the electroneutrality condition
c1 + c2 = c3. It is concluded from these plots that Henderson’s approximation
is a much better approximation than Goldman’s one. The former is exact in the
case of binary solution (i.e. when either rα

13 or rβ

13 vanishes). It is also exact
when the two electrolytes are in the same ratio in compartments α and β, i.e.
when rα

13 = rβ

13, and both eqn (4.85) and eqn (4.87) simplify then to

f �φdif = − rβ

13 + rβ

23 − 1

rβ

13 + rβ

23 + 1
ln

cβ

3

cα
3

. (4.88)

On the contrary, Goldman’s equation only provides a reasonably good
approximation to the exact diffusion potential when cβ

3 ≈ cα
3 . In fact, it can

be proved (see Section 4.3.7) that the electric field is indeed constant when

4 Since � is given by eqn (4.84) and this is a transcendental equation, it is not possible to solve
completely for �. To derive eqn (4.87) we must obtain a formal expression for � and substitute it
in eqn (4.73). We have considered that the left-hand side of eqn (4.84) is known (even though it
contains �) and that � in the right-hand side is the unknown we must solve for.
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Fig. 4.15.
Diffusion potential (in RT/F units) vs. log10(cβ

3 /cα
3 ) in a ternary system formed by mixing two

1:1 electrolytes with a common anion (species 3). The diffusion coefficients satisfy the relation
0.2 D1 = D2 = D3 and the concentrations in compartments α and β are: (a)

cα
1 /cα

3 = 1, cβ
1 /cβ

3 = 1, (b) cα
1 /cα

3 = 0.5, cβ
1 /cβ

3 = 0.5, and (c) cα
1 /cα

3 = 1, cβ
1 /cβ

3 = 0. That is,
plot (a) corresponds to a binary system, plot (b) to a mixture of electrolytes at equal
concentrations, and plot (c) to bi-ionic conditions where the compartments contain different
electrolytes. The solid lines represent exact results, the long dashed lines have been obtained from
the Henderson approximation, and the short dashed lines from the Goldman approximation.
Henderson’s results are exact in cases (a) and (b), and hence the solid and long dashed lines

overlap. Regardless of the value of cβ
3 /cα

3 , � = (D3 − D1)/(D1 + D3) = −2/3 and
� = (2D3 − D1 − D2)/(2D3 + D1 + D2) = −1/2 in cases (a) and (b), respectively. In case (c),
� varies as shown in plot (d).

cβ
T = cα

T,5 and therefore the accuracy of Goldman’s approximation decreases

as the difference between cβ
T and cα

T increases.

Plots (c) and (d) in Fig. 4.15 correspond to the case cα
23 = cβ

13 = 0 in which
compartment α contains only the electrolyte 13 and compartment β the elec-
trolyte 23. In contrast to plots (a) and (b), the diffusion potential is different
from zero when cα

3 = cβ

3 . This is the so-called bi-ionic potential and amounts to

f �φdif = ln
D1 + D3

D2 + D3
. (4.89)

5 It is also required that there are only two ion classes, i.e. the ions have either charge number
z1 or z2.
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When cβ

3 /cα
3 is much larger than unity, the diffusion potential goes to zero

because electrolyte 23 is then dominant and it creates no diffusion potential
(since we have taken D2 = D3).6 This explains the somewhat fortuitous accu-
racy of the Goldman approximation in this range. When cβ

3 /cα
3 is much smaller

than unity, the electrolyte 13 is then dominant and it creates a significant diffu-
sion potential because we have taken D1 = 5D3. This potential is approximately
given by

f �φdif ≈ −D1 − D3

D1 + D3
ln

cβ

3

cα
3

, cβ

3 /cα
3 � 1. (4.90)

4.1.8 Uphill transport
The transport of a neutral solute across a neutral membrane takes place in the
direction of decreasing concentration. Charged solutes must also respond to the
electric field and, therefore, they can be transported in the direction of increasing
concentration by application of an appropriate electric field. The transport of
an ionic species against its concentration gradient can also be observed in the
absence of an externally applied electric field. The reason is that an internal
field can be generated due to the presence of concentration gradients and the
differences in ionic mobilities [5, 6]. The transport against the concentration
gradient under these conditions receives the name of uphill transport, and it
deserves special attention because it nicely illustrates the coupling of ionic
transport.

Uphill transport can be better understood by analysing the energetics of
ion transport. The transport of one mol of species i from compartment α

where its concentration is cα
i to compartment β where its concentration is

cβ
i > cα

i requires a minimum work �µi = RT ln(cβ
i /cα

i ) > 0. This energy
can be taken from an electric field: if the membrane potential �φ = φβ − φα

satisfies

RT ln(cβ
i /cα

i ) + ziF�φ ≤ 0, (4.91)

then uphill transport is possible. This condition can be written as �µ̃i = µ̃
β
i−µ̃α

i ≤ 0 and highlights an important feature of uphill transport, namely, that
an ionic species i can move down or up its concentration gradient, but it must
move down the gradient of its electrochemical potential.7

Another interesting aspect is that, since the system is under open-circuit
conditions (I = 0), the electrostatic energy −ziF�φ taken by species i
during its uphill transport must be provided by other ionic species that
move down their concentration gradient and generate a diffusion potential

6 This constitutes the principle of the KCl salt bridge.
7 In the Nernst–Planck formalism, the transport of an ionic species always takes place in the

direction of decreasing electrochemical potential. The transport against the gradient of the electro-
chemical potential can take place across biological membranes, where additional sources of energy
are available, and receives the name of active transport.
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�φ = �φdif that satisfies eqn (4.91). As we learned from Chapter 1, the
second law of thermodynamics requires that the dissipation function must be
positive, and therefore

−
∑

i

ji�µ̃i = −
∑

i

ji�µi ≥ 0, (I = 0). (4.92)

For the species that moves against its concentration gradient, the contribution
−ji�µi to the sum is negative, but this is compensated by positive contributions
due to the ions that move down their concentration gradients.

Consider that the membrane separates ternary electrolyte solutions formed
by mixing two 1:1 binary electrolytes AC and DC with a common anion C−.
The electrolytes are denoted by indices 13 and 23, respectively, and are assumed
to be completely dissociated. The electrolyte concentrations in compartments
α and β are, respectively, cα

13, cα
23, cβ

13, and cβ

23 > cα
23. We aim at describing

the uphill transport of the cation D+, that is, those situations in which its flux
density j2 is positive (i.e. from α to β) in spite of the fact that cβ

2 > cα
2 (see

Fig. 4.16). This requires that cα
3 = cα

13 +cα
23 < cβ

13 +cβ

23 = cβ

3 and therefore the

ratio r3 ≡ cα
3 /cβ

3 < 1 is a convenient parameter to be used. The case cβ

3 = cα
3

is not considered here because no uphill transport can be then observed.
In order to obtain the ionic flux densities, the Nernst–Planck equations must

be solved. The local electroneutrality assumption

c1 + c2 = c3 (4.93)

can be used to eliminate the electric field from the Nernst–Planck equations as
follows

G0 ≡ j1
D1

+ j2
D2

+ j3
D3

= −2
dc3

dx
. (4.94)

This implies that the anion concentration profile is linear and that G0 = 2(cα
3 −

cβ

3 )/h. This information can be used in turn to integrate the Nernst–Planck
equation for anions and show that the electric potential profile is given by

f [φ(x) − φα] = � ln
c3(x)

cα
3

, (4.95)

where

� ≡
j1
D1

+ j2
D2

− j3
D3

j1
D1

+ j2
D2

+ j3
D3

. (4.96)

The diffusion potential can then be written as �φ = �φdif = −(�/f ) ln r3 and
the parameter � is yet to be determined.
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Membrane Membrane Membrane

Fig. 4.16.
Schematic illustration of the uphill diffusion process. A neutral membrane separates two solutions
of HCl and KCl. Both electrolytes have a larger concentration in compartment β than in
compartment α. However, while HCl moves from β to α, it is possible to observe under some
conditions that KCl moves from α to β, that is, against its concentration gradient (a). This is due
to the fact that the electrolytes diffuse as ions and the electrodiffusion of the three ions involved is
coupled through the condition I = 0. This creates a diffusion potential that maintains zero current.
As shown in drawing (b), the potassium ions also move against their concentration gradient.
However, all three ions move in the decreasing direction of their electrochemical potentials (c).

The anion flux density is

j3 = D3

h
(1 − �)(cα

3 − cβ

3 ) = D3cβ

3

h
(1 − �)(r3 − 1), (4.97)

and those of the cations are

j1 = D1

h
E (cα

13 − cβ

13e f �φ), (4.98)

j2 = D2

h
E (cα

23 − cβ

23e f �φ), (4.99)

where8

E ≡ h∫ h
o ef [φ(x)−φα]dx

= dc3

dx

h(cα
3 )�∫ cβ

3
cα

3
(c3)�dc3

= (1 + �)
(r3)

1+� − (r3)
�

(r3)1+� − 1
.

(4.100)

The condition I/zF = j1 + j2 − j3 = 0 and eqns (4.97)–(4.99) lead to the
following transcendental equation for �

e f �φ =
(

cβ

3

cα
3

)�

=
∑

i ziDicα
i + �

∑
i Dicα

i∑
i ziDic

β
i + �

∑
i Dic

β
i

. (4.101)

8 In deriving eqn (4.100) it is implicitly assumed that � �= −1. Note the similarity with the factor

E defined in eqn (4.34). When cα
3 ≈ cβ

3 , Goldman’s constant field is a good approximation and
eqn (4.34) yields approximate values of E very close to those obtained from the exact eqn (4.100).
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– 0.9

c23
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f

Fig. 4.17.
Dimensionless diffusion potential
established across a neutral membrane that
separates solutions of a mixture of two 1:1
binary electrolytes 13 and 23 against

cβ
23/cα

23 when cβ
13/cα

13 = 5, and
cα

13/cα
23 = 1, 2, 5, 10, and 50 (from top to

bottom). The diffusion coefficients satisfy
the relation 0.2D1 = D2 = D3.

[Note that eqn (4.101) is the same as eqn (4.84), and it can also be obtained as a
particular case of eqn (4.77).] An initial value that can be used to find iteratively
the numerical solution of this equation is �0 = (D3 − D1)/(D3 + D1), which
corresponds to the absence of electrolyte 23.

Consider that the membrane separates two HCl-KCl solutions such that
cβ

HCl > cα
HCl, cβ

KCl > cα
KCl, and cα

HCl 
 cα
KCl. The last condition allows us to

conclude that the diffusion potential established in this ternary system should
be practically the same as in the absence of KCl. This diffusion potential is then
approximately given by

f �φdif = f �φ ≈ �0 ln
cβ

HCl

cα
HCl

= D3 − D1

D3 + D1
ln

cβ

13

cα
13

, (4.102)

and, since DCl− = D3 < D1 = DH+ , it takes negative values. That is, since
the hydrogen ions have a larger mobility than the chloride ions, they make the
electric potential in compartment α positive (with respect to compartment β)
when they move towards compartment α due to the concentration difference
cβ

HCl − cα
HCl > 0 (see Fig. 4.16). Of course, when taking into account both the

concentration and the electric potential gradient, it turns out that hydrogen and
chloride ions move at the same velocity because the diffusion potential enhances
the diffusive flux of chloride ions and retards that of hydrogen ions, and therefore
j1 ≈ j3. The transport of potassium ions is affected by the diffusion potential
in a similar way to that of hydrogen ions. That is, the migrational contribution
to the flux density of potassium ions is positive (i.e. from compartment α to
β) and this contribution can overrule a moderate concentration gradient in
the opposite direction (i.e. creating a negative diffusive contribution to the
flux density of potassium ions when cβ

KCl > cα
KCl). When this happens, we

talk of uphill transport of potassium ions or, equivalently, uphill transport of
potassium chloride due to the countertransport of hydrochloric acid. Figure 4.16
schematically depicts this situation.

The above comments have referred to a situation in which the concentration
of potassium chloride was much smaller than that of hydrochloric acid, cα

HCl 

cα

KCl, and hence the diffusion potential was mainly governed by the diffusion
of the latter. This helps us in understanding the nature of uphill transport but
it is not a necessary condition. Thus, although the uphill flux of KCl decreases
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Fig. 4.18.
Flux density of ionic species 2 (in

j0 ≡ D3cα
23/h units) against cβ

23/cα
23 when

cβ
13/cα

13 = 5, and cα
13/cα

23 = 50, 10, 5, 2,
and 1 (from top to bottom). The diffusion
coefficients satisfy the relation
0.2D1 = D2 = D3. The positive values
correspond to flux direction from
compartment α to β and hence to uphill
transport.

Downhill transport

Uphill transport

1 2 3 4

–1

0

1

c23
b a/ c23

j 2
/

j 0

in magnitude as cα
HCl/cα

KCl decreases, Figs. 4.17 and 4.18 show that this uphill

transport can also be observed when cα
HCl = cα

KCl and ca. cβ

KCl/cα
KCl < 2.4

because the diffusion potential is still rather large (and negative).

4.2 Donnan equilibrium in charged
membranes

4.2.1 Ion-exchange membranes
Ion-exchange membranes can be defined as ion-exchange resins that can be
regenerated with electric current. They are used in, e.g., various modes of elec-
trodialysis and polymer electrolyte fuel cells as well as to separate (unwanted)
electrode reaction products from the rest of the process. Ion-exchange mem-
branes are either cation or anion selective. This is implemented by insertion
of fixed acidic or basic dissociating groups into the membrane matrix. These
groups can be either weak (like carboxyl and amino groups) or strong (like
sulphonate groups), thus leading to fixed-charge distributions that depend or
not, respectively, on the composition of the solution filling the membrane phase.
The membranes with negatively charged (or anionic) groups repel electrostati-
cally the anions and attract the cations, so that their fixed charge is compensated.
They are known as cation-selective, cation-exchange or anionic membranes,
although the latter denomination is discouraged. Similarly, the membranes with
positively charged (or cationic) groups are known as anion-selective, anion-
exchange or cationic membranes. The ions in the solution filling the membrane
are denoted either as counterions if they are of opposite sign to the fixed charge
groups, or as co-ions if they have similar charge. In general, cation-exchange
membranes are more selective and durable than anion-exchange membranes,
but both types have lately been improved significantly and can resist elevated
temperatures and strong acidic and alkaline solutions. A typical structure of a
cation-exchange membrane is schematically depicted in Fig. 4.19.

4.2.2 Donnan equilibrium
The immobilized ion-exchange groups in the membrane, −Rz , bring about
an interesting equilibrium state between the electrolyte solutions internal and
external to the membrane. Consider that these solutions are composed of the
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Fig. 4.19.
A schematic drawing of a cation-exchange
membrane, with fixed negative groups
(©), counter-ions (⊕), co-ions (−©) and
water (. . .). Solid lines indicate reinforcing
of the membrane matrix. (Reproduced with
permission from Ref. [7].)

same strong binary electrolyte Aν1Cν2 , dissociating completely into ν1 ions
Az1 and ν2 ions Cz2 such that z1ν1 + z2ν2 = 0. The molar concentration9 of
fixed groups is cM and their charge number is zM; in practice, all available
ion-exchange membranes have univalently charged groups and zM = ±1.

The Donnan equilibrium condition for the distribution of an ionic species
i between the internal (phase superscript M) and external (superscript w)
solutions establish that its electrochemical potential is the same in the two
phases

µ̃M
i = µ̃w

i . (4.103)

Similarly, the equilibrium condition for the electrolyte is

µM
12 = ν1µ̃

M
1 + ν2µ̃

M
2 = ν1µ̃

w
1 + ν2µ̃

w
2 = µw

12. (4.104)

Using the expression

µ̃i = µ◦
i + RT ln(γici) + ziFφ (4.105)

for the electrochemical potential of species i, the above distribution equilibrium
conditions become10

µ
◦,M
i + RT ln(γ M

i cM
i ) + ziFφM = µ

◦,w
i + RT ln(γ w

i cw
i ) + ziFφw, (4.106)

µ
◦,M
12 + RT ln(γ M

12 cM±,12) = µ
◦,w
12 + RT ln(γ w

12cw±,12), (4.107)

9 Rather often, the product zMcM is referred to as the fixed-charge concentration, which has the
dimensions of a molar concentration and is positive for anion-exchange membranes and negative
for cation-exchange membranes. Here, we use X for zMcM/z2 > 0, where subscript 2 denotes the
co-ion. Other literature sources may use X for zMcM or |zMcM|.

10 The effect of the pressure difference between the phases M and w is discussed later in this
section.
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where c±,12 ≡ (cν1
1 cν2

2 )1/ν12 and γ±,12 ≡ (γ
ν1
1 γ

ν2
2 )1/ν12 are the electrolyte mean

molar concentration and mean activity coefficient, respectively. The partition
coefficient is then defined as

Ki ≡ cM
i

cw
i

= γ w
i

γ M
i

e−(µ
◦,M
i −µ

◦,w
i )/RT e−zi f �φD , i = 1, 2, (4.108)

K12 ≡ cM±,12

cw±,12
= γ w

12

γ M
12

e−(µ
◦,M
12 −µ

◦,w
12 )/RT , (4.109)

where �φD ≡ φM − φw is the Donnan potential. The first exponential factor

in eqns (4.108) and (4.109), Kc,i ≡ e−(µ
◦,M
i −µ

◦,w
i )/RT (i = 1, 2, 12), is known as

the chemical partition coefficient and accounts for the difference in the solute
environment (water concentration, dielectric constant, short-range interactions,
etc.) in the two phases. The second exponential factor in eqn (4.108), Ke,i ≡
e−zi f �φD, is known as the electrostatic partition coefficient and accounts for
the difference in electrostatic energy of the ions in the two phases due to the
charge associated to the fixed groups. It is greater than unity for counterions
and less than unity for co-ions. In symmetric binary electrolytes the relation
Ke,1Ke,2 = 1 is satisfied.

In membranes with high water content, it can be assumed that the activity
coefficients and the standard chemical potentials are the same in both phases,
and therefore the distribution equilibria are described by the simpler equations

cM
i = cw

i e−zi f �φD , (4.110)

cM±,12 = cw±,12. (4.111)

In the case of multicomponent systems (under equilibrium conditions), similar
equations are valid for all ionic species and neutral electrolytes that achieve the
distribution equilibrium between the two phases.

The above description of the Donnan equilibrium has been based on
the thermodynamically meaningful mean electrolyte concentration c±,12. In
the external solution, this concentration is related to the stoichiometric
concentration

cw
12 ≡ cw

1

ν1
= cw

2

ν2
(4.112)

by the simple relation

cw±,12 = ν±,12cw
12, (4.113)

where ν±,12 ≡ (ν
ν1
1 ν

ν2
2 )1/ν12 . In the electrolyte solution filling the membrane

phase, however, eqn (4.112) is not satisfied, that is, cM
1 /ν1 �= cM

2 /ν2, and
therefore eqn (4.113) does not hold either, cM±,12 �= ν±,12cM

12. In fact, the

stoichiometric electrolyte concentration in the membrane phase cM
12 is yet to

be defined.
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Since the ion-exchange groups −RzM participate in the ionic distribution
equilibrium, the solution filling the membrane can be considered to be composed
of two binary electrolytes with a common ion, the counterion Az1 , which is
denoted as species 1. The electrolyte formed by the counterions and the fixed-
charge groups can be denoted as Aν1,M RνM and that formed with the co-ions is
Aν1 Cν2 . The stoichiometric concentration of the latter is

cM
12 ≡ cM

2 /ν2. (4.114)

This magnitude is the so-called Donnan electrolyte concentration and, contrarily
to c±,12 [see eqn (4.111)], it does not take the same value in the internal and
external phases under equilibrium conditions, i.e. cM

12 �= cw
12.

The local electroneutrality condition inside the membrane

z1cM
1 + z2cM

2 + zMcM = 0 (4.115)

and eqns (4.110) and (4.112) lead to the following equation for the Donnan
potential

X ≡ zMcM/z2 = ν2cw
12 (e−z1f �φD − e−z2 f �φD). (4.116)

Since X > 0, because species 2 is the co-ion (and therefore zMz2 > 0), this
equation implies that z2 f �φD ≥ 0. That is, the potential in the membrane
phase is positive with respect to the external phase, �φD ≡ φM − φw > 0, if
the fixed groups are positively charged and negative otherwise. Moreover, we
conclude that the stoichiometric electrolyte concentration inside the membrane
is smaller than in the external phase

cM
12 = cM

2 /ν2 = cw
12 e−z2 f �φD ≤ cw

12. (4.117)

This phenomenon is known as Donnan exclusion (or co-ion exclusion) and it
is responsible for the permselectivity of the ion-exchange membranes, that is,
for their selectivity with respect to the transfer of charged species across them.

The value of the Donnan potential drop must be obtained from the solution
of eqn (4.116). In general, this is an algebraic, linear equation of order |z1 − z2|,
which has to be solved numerically. Figures 4.20 (a) and (b) show the graphical
representation of eqn (4.116) for different electrolytes. There are some fea-
tures that can be easily identified. In strongly charged membranes, X 
 cw

12,
the co-ions are excluded and their charge number does not affect the value
of the Donnan potential; the magnitude represented in the abscissa axis appa-
rently includes the co-ion charge number, but z2cw

12 can also be rewritten as the
counterion concentration in the external bulk solution. The lines represented in
Fig. 4.20 (a) are then linear with a slope of (60/ |z1|) mV/decade. In weakly
charged membranes, X � cw

12, the Donnan potential is so small that the expo-
nentials in eqn (4.116) can be linearized. This approximately linear relation
between the Donnan potential and the fixed-charge concentration is apparent
in Fig. 4.20 (b).
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Fig. 4.20.
Donnan potential |�φD| vs. X /cw

12 in semi-logarithmic (a) and double-logarithmic plot
(b) calculated from eqn (4.116) for different binary electrolytes: |z1| : |z2| = 1 : 1 (solid line), 2:1
(long dashed line), 3:1 (short dashed line), 1:2 (dotted line), and 1:3 (dot-dashed line). The charge
numbers have been identified by the ratio of the absolute values corresponding to the counterion
and coion, regardless whether they are cations or anions. In positively charged membranes, the
Donnan potential is positive, the counterion is an anion (z1 < 0) and the coion is a cation
(z2 > 0). In negatively charged membranes, �φD < 0, z1 > 0, and z2 < 0. The value 26 mV has
been used for 1/f = RT/F .

In the case of symmetric electrolytes, eqns (4.115) and (4.116) simplify to

cM
1 = cM

2 + X , (4.118)

z2 f �φD = arcsinh
X

2cw
12

= ln

 X

2cw
12

+
[(

X

2cw
12

)2

+ 1

] 1/2
 . (4.119)

From eqns (4.117) and (4.119), the stoichiometric electrolyte concentration in
the membrane phase can be evaluated as

cM
12 = −(X /2) + [(X /2)2 + (cw

12)
2]1/2. (4.120)

In weakly charged membranes, X � cw
12, eqn (4.120) yields the expected

result cM
12 ≈ cw

12. In strongly charged membranes, X 
 cw
12, this can be approx-

imated by cM
12 ≈ (cw

12)
2/X � cw

12. The membranes that are so strongly charged
that cM

12 can be neglected are known as ideally selective membranes. Real
membranes, however, are never ideally selective. This inability to exclude
completely the Donnan electrolyte (that is, the co-ions) is known as Donnan
failure.11

Similarly, the ionic concentrations in the membrane phase can be obtained
as cM

2 = cM
12 and

cM
1 = cw

1 e−z1f �φD = cM
2 + X = (X /2) + [(X /2)2 + (cw

12)
2]1/2, (4.121)

11 Under process conditions, the Donnan electrolyte concentration is a function of position inside
the membrane. The ability to exclude co-ions is then also affected by the extent of the concentration
polarization at the boundary layers flanking the membrane. In operating commercial membranes,
the fraction of counterions is seldom higher than 95%.
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and the total ionic concentration inside the membrane is

cM
1 + cM

2 = [X 2 + (2cw
12)

2]1/2. (4.122)

Remember that eqns (4.118)–(4.122) are only valid for symmetric electrolytes.
In closing this section, we comment on the equilibrium condition for the

solvent. In strongly charged membranes, X 
 cw
12, eqn (4.122) implies that

the total ionic concentration inside the membrane is much larger than outside
the membrane, cM

1 + cM
2 
 2cw

12. If not only the solutes but also the solvent
is equilibrated between the internal and external phases, a significant pres-
sure difference may exist between them. Indeed, the Gibbs–Duhem equation
c0dµ0 + ∑

i cidµi = dp and the Euler equation for the solution volume
c0υ0+∑

i ciυi = 1 lead to dµ0 = υ0(dp−dπ), where π is the osmotic pressure.
The equilibrium condition for water, µM

0 = µw
0 , implies that the Donnan pres-

sure difference must follow the osmotic pressure difference, �pD ≡ pM−pw =
πM − πw ≡ �πD, where it has been assumed that the water partial molar vol-
ume is approximately the same in both phases. The osmotic pressure is given
by the differential dπ ≡ ∑

i cidµc
i /c0υ0 = (RT /c0υ0)d

∑
i ci ≈ RTd

∑
i ci,

and therefore �πD ≈ RT (
∑

i cM
i − ∑

i cw
i ) ≈ RTX [see eqn (4.121)], which

is of the order of 26 atm at 300 K for X = 1 M. If the pυi contribution to the
electrochemical potential of the ions needs to be included in the equilibrium
conditions, these become

cM
i

cw
i

= γ w
i

γ M
i

e−(µ
◦,M
i −µ

◦,w
i )/RT e−zi f �φDe−�πDυi/RT , (4.123)

cM±,12

cw±,12
= γ w

12

γ M
12

e−(µ
◦,M
12 −µ

◦,w
12 )/RT e−�πDυ12/RT , (4.124)

where υ12 = ν1υ1 + ν2υ2 is the electrolyte partial molar volume, and we have
assumed that all partial molar volumes are approximately the same in both
phases. In eqn (4.124), for instance, the pressure correction is approximately
equal to e−X υ12 , which is only significant when the volume fraction occupied
by the fixed-charged groups and their counterions is of the order of unity.

4.2.3 Ion-exchange equilibrium
The ion-exchange membranes owe their name to their ability to equilibrate with
the bathing solution and replace the counterions inside by those present in the
solution. This ion-exchange process requires some time because the counterions
have to diffuse in and out of the membrane. Later in this section we describe the
time evolution of the counterion concentration in the bathing solution within the
context of a particular example of practical interest, the drug-release kinetics
from a reservoir. First, we describe the ion-exchange equilibrium that is attained
at large times.

Consider an ion-exchange membrane with fixed-charged groups −Rz .
Initially the membrane is in Az1 form, that is, the counterions are Az1 ions.
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The membrane is then immersed in a very large volume of a bathing solution
containing counterions Dz2 . The achievement of the thermodynamic distribu-
tion equilibrium requires that some of the Dz2 ions must enter the membrane
and some of the Az1 ions must leave it. This ion-exchange process is described
by either of the two following forms

ν1Az1(M) + ν2Dz2(w) →← ν2Dz2(M) + ν1Az1(w), (4.125)

− RAν1(M) + ν2Dz2(w) →← − RDν2(M) + ν1Az1(w), (4.126)

where the stoichiometric relation z1ν1 = z2ν2 must be satisfied. Assuming
that the activity coefficients satisfy the relation (γ w

1 /γ M
1 )ν1 = (γ w

2 /γ M
2 )ν2 , the

thermodynamic equilibrium condition is represented by the mass action law

K12 = e−�rG◦/RT = (cw
1 )ν1(cM

2 )ν2

(cM
1 )ν1(cw

2 )ν2
(4.127)

where the standard Gibbs potential is �rG◦ = ν1µ
◦,w
1 + ν2µ

◦,M
2 − ν1µ

◦,M
1 −

ν2µ
◦,w
2 . The ion-exchange equilibrium constant can be expressed in terms of

the ionic chemical partition coefficients Kc,i ≡ e−(µ
◦,M
i −µ

◦,w
i )/RT (i = 1, 2) as

K12 = (Kc,2)
ν2(Kc,1)

−ν1 . (4.128)

When the volume of the bathing solution is much larger than that of the
membrane, the final (equilibrium) concentration of Az1 ions is practically zero
in both phases, while that of Dz2 ions in the external solution is practically
unaffected. The ion-exchange process can then be described as the exchange
of the amount n0

1 of moles of of Az1 ions initially present in the membrane by
an equivalent amount (ν1/ν2)n0

1 of Dz2 ions.
When the volumes of the bathing solution and the membrane, V w and V M,

respectively, are comparable, eqn (4.127) must be combined with the mass
balances

n0
1 ≡ cM,0

1 V M = cw
1 V w + cM

1 V M, (4.129)

n0
2 ≡ cw,0

2 V w = cw
2 V w + cM

2 V M, (4.130)

in order to solve for the final equilibrium concentrations. Note, however, that we
have four unknown concentrations and only three equations. The other equation
is the electric charge balance.

In ideally selective membranes, when no co-ions can enter the membrane,
the charge balance simplifies to

z1cM,0
1 = z1cM

1 + z2cM
2 . (4.131)
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If ν1 = ν2 = 1 and the membrane shows no preference for any of the
counterions, K12 = 1, this system of equations reduces to

cM
1 = x1cM,0

1 , cM
2 = (1 − x1)c

M,0
1 ,

cw
1 = x1cw,0

2 , cw
2 = (1 − x1)c

w,0
2 , (4.132)

where x1 ≡ n0
1/(n

0
1 + n0

2). For other values of K12, the system can be reduced
to a linear, second-order algebraic equation.

In non-ideal selective membranes, the amount of co-ions in the membrane
phase is neither negligible nor constant, and their equilibrium distribution also
needs to be taken into account. For the sake of simplicity, we take in this
description all stoichiometric and activity coefficients equal to one. Consider a
membrane that is initially equilibrated with a bathing solution of concentration
c0

13 of electrolyte AC. In this initial situation, the ionic concentrations inside
the membrane are

cM,0
3 = cM,0

1 − X = −(X /2) + [(X /2)2 + K13(c
0
13)

2]1/2, (4.133)

where K13 is the partition coefficient of the electrolyte AC and X ≡ zMcM/z3.
The membrane is then immersed in another bathing solution of the same volume
with a concentration c0

23 of electrolyte DC. After waiting for the subsequent
equilibration, the ionic concentrations inside the membrane are

cM
1 = x13{(X /2) + [(X /2)2 + K13(c

w±13)
2 + K23(c

w±23)
2] 1/2}, (4.134)

cM
2 = x23{(X /2) + [(X /2)2 + K13(c

w±13)
2 + K23(c

w±23)
2] 1/2}, (4.135)

cM
3 = −(X /2) + [(X /2)2 + K13(c

w±13)
2 + K23(c

w±23)
2] 1/2, (4.136)

where cw±,13 ≡ (cw
1 cw

3 )1/2 and cw±,23 ≡ (cw
2 cw

3 )1/2 are the mean electrolyte
concentrations, and

x13 ≡ K13(cw±13)
2

K13(cw±13)
2 + K23(cw±23)

2
= 1 − x23. (4.137)

Equations (4.134)–(4.136) are obtained from the conditions of chemical
equilibria

K13 = cM
1 cM

3

cw
1 cw

3
, K23 = cM

2 cM
3

cw
2 cw

3
, K12 = cw

1 cM
2

cM
1 cw

2

= K23

K13
, (4.138)

and local electroneutrality

cw
1 + cw

2 = cw
3 , (4.139)

cM
1 + cM

2 − cM
3 = X . (4.140)
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A difficulty associated with the use of eqns (4.134)–(4.136) is that the elec-
trolyte concentrations in the external solutions are not known. In fact, the final
equilibrium concentrations in both phases must be determined from the solution
of eqns (4.134)–(4.136) and the mass balances

n0
1 ≡ cM,0

1 V M = cw
1 V w + cM

1 V M, (4.141)

n0
2 ≡ cw,0

2 V w = cw
2 V w + cM

2 V M, (4.142)

n0
3 ≡ cw,0

3 V w + cM,0
3 V M = cw

3 V w + cM
3 V M, (4.143)

where cw,0
2 = cw,0

3 = c0
23.

4.2.4 Electrical double layer at the membrane/
external solution interface

The Donnan potential given by eqn (4.116) is the difference in electric potential
between two homogeneous phases that have uniform potentials φM and φw and
are locally electroneutral. Somewhere in between the two phases, the poten-
tial must show a non-linear spatial variation from φM to φw and, according
to the Poisson equation of electrostatics, this requires a non-zero space-charge
density. In order words, the Donnan potential drop must take place in a non-
electroneutral (or electrified) interfacial region, which is known as the electrical
double layer. Since the local electroneutrality assumption plays a key role in
the solution of the ionic transport equations, it is interesting to determine the
thickness of such electrified interfacial region where the local electroneutrality
condition does not apply. This is calculated below from the equilibrium electri-
cal potential distribution in the interfacial region between a charged membrane
occupying the region x < 0 and a binary electrolyte solution in the region
x > 0. Far from the interface, the electric potential in the membrane phase is
φM, the electric field is zero, and the space-charge density is zero. This is known
as the bulk of the membrane phase. Similarly, in the bulk of the external solu-
tion, the electric potential is φw, the electric field is zero, and the space-charge
density is zero. The membrane is supposed to have a uniform concentration cM
of fixed groups, the electrolyte concentration in the bulk of the water phase is
cw

12, and both phases are assumed to have the same dielectric permittivity ε.
The case z1 = −z2 and K12 = 1 is considered, and a convenient dimensionless
electric potential variable is defined as follows

ϕ(x) ≡ z2 f [φ(x) − φw], (4.144)

where species 2 is the co-ion. This function is continuous and positively defined
over the whole system. It tends to zero in the bulk external phase and to

ϕD ≡ z2 f �φD = arcsinh(X /2cw
12) > 0 (4.145)

in the bulk membrane phase.
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The ionic distributions over the whole system are given by the Boltzmann
equilibrium equations

c1(x) = cw
12 e−z1f [φ(x)−φw] = cw

12 eϕ , (4.146)

c2(x) = cw
12 e−z2 f [φ(x)−φw] = cw

12 e−ϕ . (4.147)

When eqns (4.145)–(4.147) are substituted in the Poisson equation in the
membrane phase

d2φ

dx2
= z2F

ε
(c1 − c2 − X ) (4.148)

this becomes the dimensionless Poisson–Boltzmann equation

d2ϕ

dξ2
= sinh ϕ − sinh ϕD (4.149)

where ξ ≡ κw
D x is a dimensionless position variable and

κw
D ≡

(
2z2

2F2cw
12

εRT

)1/2

(4.150)

is the reciprocal Debye length. Similarly, in the aqueous phase the dimen-
sionless Poisson–Boltzmann equation is

d2ϕ

dξ2
= sinh ϕ. (4.151)

Multiplying eqn (4.151) by 2dϕ/dξ , it can be integrated between the bulk
external phase and a position x > 0 to give

(
dϕ

dξ

)2

= 2(cosh ϕ − 1) = 4 sinh2(ϕ/2). (4.152)

Taking the square root (with negative sign) of eqn (4.152) and rewriting it as

cosh(ϕ/4)

sinh(ϕ/4)

1

cosh2(ϕ/4)

dϕ

dξ
= −4, (4.153)

the electric potential distribution in the external solution can be obtained by
integration between the interface x = 0, where ϕ takes the value ϕs, and a
position x > 0, as

ϕ(x) = 4 arctanh[tanh(ϕs/4) e−κw
D x], (x > 0). (4.154)
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Similarly, multiplying eqn (4.149) by 2dϕ/dξ , it can be integrated between
the bulk membrane phase and a position x < 0 to give(

dϕ

dξ

)2

= 4 sinh2(ϕ/2) − 4 sinh2(ϕD/2) − 2 sinh ϕD (ϕ − ϕD). (4.155)

The condition of continuity of the electric displacement at the interface requires
that eqns (4.152) and (4.155) must take the same value at x = 0. The interfacial
value ϕs can then be determined as

ϕs = ϕD − tanh(ϕD/2). (4.156)

We can take advantage of the information provided by eqn (4.156) to obtain
an approximate analytical integration of eqn (4.155) and hence an expression
for the electric potential distribution in the membrane phase. Since the tanh
function is bound to 1, the difference |ϕ − ϕD| is always smaller than 1 in the
membrane phase and the Poisson–Boltzmann equation can be approximated
there by its linear form

d2ϕ

dξ2
= sinh ϕ − sinh ϕD ≈ cosh ϕD (ϕ − ϕD)

=
(

κM
D

κw
D

)2

(ϕ − ϕD), (4.157)

where

κM
D ≡ κw

D (cosh ϕD)1/2 =
(

z2
2F2

εRT

)1/2

[X 2 + (2cw
12)

2]1/4 (4.158)

is the reciprocal Debye length that characterizes the electrical potential
distribution in the membrane phase. The solution to eqn (4.157) is

ϕ(x) = ϕD − tanh(ϕD/2) eκM
D x , x < 0. (4.159)

Equations (4.154) and (4.159) show that the electrical double layer extends
over a region with a thickness of the order of 1/κw

D in the external phase and
1/κM

D < 1/κw
D in the membrane phase. These equations have been represented

in Fig. 4.21 (a). It is clear there that the electric potential drop in the membrane
phase takes place over a shorter distance than in the external solution. It is also
clear in this figure that the magnitude of the potential drop in the membrane
is smaller than in the external phase. Fig. 4.21 (b) shows the variation of the
electrical charge density with position in the interfacial region.The space-charge
density inside the membrane has the same sign as the fixed-charge groups, and
that in the external phase has the opposite sign. Obviously, the magnitude of the
total charge is the same at either side of the interface but the distribution takes



Donnan equilibrium in charged membranes 163

Membrane

ϕ

(a)

External solution

–4 –2 0 2 4
0

1

2

3

4

5

	 D
w x

Membrane (b) 

External

solution

–2 –1 0 1 2 3 4
–10

–5

0

5

10

	D
w x

r
e

/ 
2

z 1
F

c 1
2w

Fig. 4.21.
(a) Dimensionless electric potential
ϕ ≡ z2 f (φ − φw) vs. κw

D x calculated from
eqns (4.52) and (4.57) and
(b) dimensionless space charge density
ρe/2z1Fcw

12 vs. κw
D x for different values of

ratio fixed charge to external
concentration: X /cw

12 = 100 (solid line),
10 (long dashed line), and 1 (short dashed
line). The charged membrane and the
external solution occupy the regions x < 0
and x > 0, respectively. Note that the
Debye length in the external solution has
been used to scale the position axis.

place with a slightly different functional dependence. Finally, the solid curve
corresponding to the strongly charge membrane, X /cw

12 = 100, shows that the
charge accumulation close to the interface extends over a smaller thickness in
the membrane than in the external solution.
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Fig. 4.22.
Debye length 1/κM

D as a function of the
external electrolyte concentration cw

12 for
different values of the membrane fixed
charge concentration: X = 0.01 M (long
dashed line), 0.1 M (short dashed line),
and 1 M (dotted line). The solid line
corresponds to X = 0 and represents the
Debye length in the external solution,
1/κw

D . As a typical value, the Debye length
in the external phase is ca. 10 nm when
cw

12 = 1 mM. When decreasing the
external electrolyte concentration, the
Debye length 1/κM

D saturates to a value
determined by the fixed charge
concentration. On the contrary, when the
external concentration is very high, the
Debye length is the same in the internal
and external phases.

Since Fig. 4.21 (a) has been presented in dimensionless units, it is convenient
to estimate the values of the relevant magnitudes. The dimensionless electric
potential can be converted to mV by using that 1/f ≈ 26 mV (which corre-
sponds to 25◦ C). The dimensionless Donnan potential values in Fig. 4.21 (a)
can then be compared to those in Fig. 4.20 (solid line) for the same values of
X /cw

12.
The position axis has been scaled with the Debye length in the external phase.

Figure 4.22 shows the values of the Debye lengths 1/κw
D (solid line) and 1/κM

D
(dashed lines) at 25 ◦C as a function of the external electrolyte concentration.
The Debye length describes the screening of the interfacial electric fields and is
larger in the external solution than inside the membrane because the total ionic
concentration is larger inside the membrane.

4.2.5 Influence of the membrane heterogeneities
So far, the membrane phase has been considered to be homogeneous and all
variables are independent of position within the membrane under equilibrium
conditions. Even though this is a reasonable assumption that allows for a simple
description of the ion-exchange membrane equilibrium, it should be realized
that real membranes have a certain degree of heterogeneity. This could result
from an uneven distribution of fixed-charge groups throughout the membrane
volume [8–10] or from the internal structure of the membrane. For instance, in
charged porous membranes the charge groups are distributed on the pore walls
and the solution inside the pore is not homogeneous [11]. These heterogeneities
give rise to deviations from the behaviour predicted in Sections 4.2.1–4.2.4,
and obviously this has practical importance when describing transport through
the membrane. As a rule, the membrane heterogeneities give rise to a loss of
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permselectivity. This was first observed experimentally by Glueckauf and co-
workers [12, 13] and discussed at length by Petropoulos [14]. We prove below
that this is the case under conditions close to equilibrium. However, in the
presence of a relatively large electric current, the heterogeneities may also give
rise to permselectivity enhancement [8–10].

Consider, for instance, that the membrane is immersed in a solution with
a concentration cw

12 of a symmetric binary electrolyte, and that the relations

γ w
i = γ M

i and µ
◦,M
i = µ

◦,w
i hold for both ions. It was shown in Section 4.2.2

that the electrostatic partition coefficients of the ions satisfy the relation
Ke,1Ke,2 = e−zf �φDezf �φD = 1. However, this was based on the idea that
the electric potential inside the membrane takes the same value φM throughout
the membrane. Imagine now that the electric potential inside the membrane is
a function of position, φM(�r). The ionic concentrations inside the membrane
are then given by

cM
i (�r) = cw

12e−zi f (φM−φw), (4.160)

and their average values inside the membrane can be written as〈
cM

i

〉
= cw

12ezi f φw
〈
e−zi f φM

〉
, (4.161)

where the brackets 〈〉 denote spatial averaging over the membrane volume. In
these equations φw is the electric potential in the bulk external solution.

Using the Cauchy–Schwartz–Buniakowski inequality〈
cM

1

〉 〈
cM

2

〉
(cw

12)
2

=
〈
e−zf φM

〉 〈
ezf φM

〉
≥ 1, (4.162)

where the equal sign corresponds to the homogenous case, and the global
electroneutrality condition inside the membrane〈

cM
1

〉
=

〈
cM

2

〉
+ 〈X 〉 , (4.163)

we conclude that the ionic concentrations must be larger than in a homogeneous
membrane with a uniform fixed-charge concentration 〈X 〉. That is, due to the
membrane heterogeneities, both ions increase their concentration in the same
amount 〈c12〉heter ≥ 0, so that〈

cM
1

〉
=

〈
cM

1

〉
hom

+ 〈c12〉heter , (4.164)〈
cM

2

〉
=

〈
cM

2

〉
hom

+ 〈c12〉heter , (4.165)

where the ionic concentration in a homogenous membrane is given by〈
cM

1

〉
hom

=
〈
cM

2

〉
hom

+〈X 〉=(〈X 〉/2)+[(〈X 〉/2)2+(cw
12)

2]1/2, (4.166)
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and subscript 2 denotes the co-ion. Equation (4.165) proves that the Donnan
theory provides an upper bound for co-ion exclusion, but the actual exclusion
is lower due to the membrane heterogeneities.

As mentioned above, the heterogeneities can have different origin (non-
uniform distribution of fixed-charge groups along the flow direction, charged
porous membrane structure, etc.). We close this section with an estimation
of the increase in the co-ion uptake (or absorption), 〈c12〉heter, due to the non-
uniform electric potential distribution in the radial direction of a charged porous
membrane. We consider a membrane in equilibrium with a bathing solution of
concentration cw

12 and assume that the membrane can be described as an array of
parallel, cylindrical capillaries of radius a with a uniform surface-charge con-
centration σ on the pore walls. The relation between the surface-charge density
σ and the fixed-charge concentration cM used above is

zMcM = 2σ/aF . (4.167)

Under these conditions, the electric potential inside the membrane is a func-
tion of a radial position co-ordinate r that measures the distance to the pore
axis. This potential distribution must be obtained from the solution of the
Poisson–Boltzmann equation in the membrane

1

r

d

dr

(
r

dφ

dr

)
= z2F

ε
(c1 − c2) = 2z2Fcw

12

ε
sinh ϕ, (4.168)

where ϕ(r) ≡ z2 f [φ(r) − φw] is the dimensionless electric potential. In terms
of this potential, the Poisson–Boltzmann equation is

1

ξ

d

dξ

(
ξ

dϕ

dξ

)
= sinh ϕ, (4.169)

where ξ ≡ κw
D r is a dimensionless radial position variable and

κw
D ≡

(
2z2

2F2cw
12

εRT

)1/2

(4.170)

is the reciprocal Debye length. The boundary conditions of eqn (4.169) are(
dϕ

dξ

)
ξ=0

= 0, (4.171)(
dϕ

dξ

)
ξ=κw

D a
= z2Fσ

εRTκw
D

. (4.172)

Note that the latter equation arises from Gauss’ law at the pore walls and is
equivalent to the global electroneutrality condition〈

cM
1

〉
=

〈
cM

2

〉
+ X , (4.173)
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where the brackets 〈〉 denote spatial averaging over the pore cross-section,
which in this case is equivalent to an average over the membrane volume.

For the sake of simplicity we consider that the surface-charge density is
so low that ϕ � 1 and, hence, that the Poisson–Boltzmann equation can be
linearized to

1

ξ

d

dξ

(
ξ

dϕ

dξ

)
= ϕ. (4.174)

The solution of this equation is

ϕ(ξ) = z2Fσ

εRTκw
D

I0(ξ)

I1(κ
w
D a)

= X

2cw
12

κw
D a

2

I0(ξ)

I1(κ
w
D a)

= ϕ(0)I0(ξ), (4.175)

where I0(ξ) and I1(ξ) are the modified Bessel functions of orders 0 and 1,
respectively. It is interesting to note that the average value of the potential is

〈ϕ〉 = ϕ(0) 〈I0(ξ)〉 = X /2cw
12, (4.176)

where we have used the relation ξ I0 = d(ξ I1)/dξ to evaluate 〈I0(ξ)〉 =
2I1(κ

w
D a)/κw

D a. Note that eqn (4.145) predicts that the dimensionless Donnan
potential in the limit of weakly charged membranes is 〈ϕ〉 = X /2cw

12.
The average ionic concentrations in the membrane can now be evaluated as〈

cM
1

〉
= cw

12

〈
eϕ

〉 ≈ cw
12

〈
1 + ϕ + (1/2)ϕ2

〉
= cw

12 + (X /2) + 〈c12〉heter , (4.177)〈
cM

2

〉
= cw

12

〈
e−ϕ

〉 ≈ cw
12

〈
1 − ϕ + (1/2)ϕ2

〉
= cw

12 − (X /2) + 〈c12〉heter , (4.178)

where

〈c12〉heter = cw
12ϕ

2(0)

2

〈
[I0(ξ)]2

〉
= X 2

32cw
12

(κw
D a)2

{[
I0(κ

w
D a)

I1(κ
w
D a)

]2

− 1

}
(4.179)

is the additional amount of Donnan electrolyte that enters the membrane due to
the non-uniform distribution of the electric potential along the radial direction.
In the case of wide capillaries, κw

D a 
 1, this can be estimated as

〈c12〉heter ≈ X 2

32cw
12

κw
D a ≈ X

8
ϕ(κw

D a) <
X

8
, (4.180)

since we have assumed that ϕ < 1.
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In narrow capillaries (of weakly charged membranes), κw
D a is smaller than

unity, so that ϕ(0) ≈ ϕ(κw
D a) ≈ X /2cw

12 and 〈c12〉heter ≈ X 2/8cw
12 < X /4. In

any case, the above estimation illustrates that the spatial variation of the electric
potential inside the membrane leads to a poorer co-ion exclusion than predicted
by the Donnan theory. Furthermore, it shows the actual co-ion exclusion can
only be estimated if we know the potential distribution. Since the fixed-charge
distribution inside a membrane cannot be known accurately, it should be appar-
ent that the Donnan theory provides only a rough estimation of the electrolyte
exclusion. In practical situations, the operating conditions (such as the electric
current density passing through the membrane) also affect the co-ion exclusion,
and the deviations from the equilibrium values can be significant [9, 15].

4.3 Steady-state transport across
ion-exchange membranes

In this section we describe the electrodiffusion of electrolyte solutions across
ion-exchange membrane systems in the absence of convection. By membrane
system we refer to a three-layer system composed by the membrane itself and the
two diffusion boundary layers flanking it. The effect of the diffusion boundary
layers on the transport properties of the system is described in Sections 4.3.8 and
4.3.9. Homogeneous membranes with uniform concentration of fixed-charged
groups are considered unless otherwise stated. As a rule, the transport equations
are first formulated inside the membrane for the general case of asymmetric elec-
trolytes and arbitrary geometry. The condition of electrochemical (or Donnan)
equilibrium with the external solution is then applied at the membrane bound-
aries and the Nernst–Planck transport equations are finally solved (for planar
geometry and, most often, for symmetric electrolytes) in order to determine
the flux densities and the potential drop across the membrane, as well as the
concentration and electric-potential distributions inside it.

4.3.1 Transport coefficients and their equilibrium values
The polymer nature, the presence of fixed-charge groups and internal struc-
ture influence the membrane transport properties and make them different from
those in the external solution. We must therefore make explicit the phase in
which the transport magnitudes are evaluated. In the next sections we use the
following convention for the sake of clarity. The concentrations inside the mem-
brane incorporate no superscript, and the concentrations in the external solution
incorporate a superscript w, α or β. The ionic diffusion coefficients incorporate
no superscript, and the symbols of other magnitudes in the internal and external
phase include superscripts M and w, respectively.

Although the ionic diffusion coefficients may take, in practice, different val-
ues inside the membrane and in the external solution, we neglect here such
a difference because we want to concentrate on the effect of the composition
of the membrane phase on its transport properties. However, in membranes
with low water content the diffusion coefficients are significantly smaller than
in the external solutions. Moreover, electrostatic interactions also seem to be



168 Transport in membranes

responsible for the observed reduction in the counterion diffusion coefficients
in strongly charged membranes [16].

Consider the transport of a strong binary electrolyte Aν1 Cν2 dissociated into
ν1 ions Az1 and ν2 ions Cz2 whose charge numbers z1 and z2 satisfy the stoichio-
metric relation z1ν1 + z2ν2 = 0. Fick’s first law for the (Donnan) electrolyte
diffusion

�j12 ≡ tM
2

ν1

�j1 + tM
1

ν2

�j2 = −DM
12

�∇c12, (4.181)

and the generalized Ohm’s law for the electric conduction

�I ≡ F(z1�j1 + z2 �j2) = −κM( �∇φ − �∇φdif ) = −κM �∇φohm (4.182)

are valid inside the membrane, but the values of the electrolyte diffusion coef-
ficient DM

12 ≡ tM
2 D1 + tM

1 D2 and the electrical conductivity κM are different
from those in the external solution (see Table 4.1).

The flux density of an ionic species inside a charged membrane can be
written as

�ji = − tM
i κM

z2
i F2

�∇µ̃i. (4.183)

Taking eqn (4.183) to the expression for the electric current density
�I = F

∑
i zi�ji and comparing it to the generalized Ohm’s law, it is

obtained that the diffusion potential gradient inside the membrane is given

Table 4.1. Transport coefficients inside the membrane and in the external solution.

Transport coefficient External solution Membrane phase

Electrolyte diffusion coefficient

(asymmetric electrolyte) Dw
12 = ν12D1D2

ν2D1 + ν1D2
DM

12 ≡ D1D2(z2
1c1 + z2

2c2)

z2
1D1c1 + z2

2D2c2Electrical conductivity

(asymmetric electrolyte) κw = z2
1ν2

1 F2

RT

(
D1

ν1
+ D2

ν2

)
cw

12 κM ≡ F2

RT

∑
i

z2
i Dici

Transport numbers

(asymmetric electrolyte) twi = Di/νi

D1/ν1 + D2/ν2
tMi ≡ z2

i Dici∑
j z2

j DjcjElectrolyte diffusion coefficient

(symmetric electrolyte) Dw
12 = 2D1D2

D1 + D2
DM

12 ≡ D1D2(c1 + c2)

D1c1 + D2c2
Electrical conductivity

(symmetric electrolyte) κw = z2
1F2

RT
(D1 + D2)cw

12 κM ≡ z2
1F2

RT
(D1c1 + D2c2)

Transport numbers

(symmetric electrolyte) tw
i = Di

D1 + D2
tMi ≡ Dici

D1c1 + D2c2
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Table 4.2. Transport coefficients of a symmetric electrolyte inside an ion-exchange membrane
under equilibrium conditions.

Weakly charged, Moderately charged, Strongly charged,
X � cw

12 X > cw
12 X 
 cw

12

DM
12 ≈ Dw

12 DM
12 ≈ D2

[
1 +

(
1 − D2

D1

)(
cw

12
X

)2]
DM

12 ≈ D2

κM ≈ κw κM ≈ z2
1F2D1X

RT

[
1 +

(
1 + D2

D1

)(
cw

12
X

)2]
κM ≈ z2

1F2D1X

RT

tM
i ≈ twi tM1 = 1 − tM

2 ≈ 1 − D2

D1

(
cw

12
X

)2

tM1 = 1 − tM
2 ≈ 1

by the expression

−f �∇φdif ≡
∑

i

tM
i

zi

�∇ ln ci, (4.184)

where the transport numbers tM
i are functions of the local composition and

hence of position. Thus, for instance, when describing the transport of a binary
electrolyte across a strongly charged membrane, it is satisfied that c1 
 c2 and
tM
1 
 tM

2 , but tM
1

�∇ ln c1 ≈ tM
2

�∇ ln c2.
As described in Section 4.2.2 under equilibrium conditions, the composition

of the solution filling the membrane is determined by the influence of the bound
fixed-charge groups on the electrostatic partitioning of ions. Thus, for instance,
when the membrane is in equilibrium with a bathing solution of a symmetric
binary electrolyte12 of concentration cw

12, the ionic molar concentrations in the
membrane phase are

c1 = c2 + X = (X /2) + [(X /2)2 + (cw
12)

2]1/2, (4.185)

where subscripts 1 and 2 denote the counterion and the co-ion, respectively.
The use of eqn (4.185) allows us to find the approximate expressions of the
transport coefficients shown in Table 4.2.

Figure 4.23 shows the dependence of these transport coefficients on the
fixed-charge concentration for different values of the diffusion coefficient
ratio D2/D1. As a rule, the transport numbers of the co-ions inside the mem-
brane are smaller than in the external solutions while the transport numbers
of the counterions show the opposite behaviour. In the limiting case of very
low external electrolyte concentration (compared with that of the membrane
fixed-charged groups) the co-ion exclusion is practically total, the electri-
cal conductivity is determined by the counterions only, and the membrane is
said to be ideally permselective. The real membrane systems, however, never

12 The restriction of the transport equations to the case of a symmetric electrolyte can often be
identified by the use of magnitude X ≡ zMcM/z2. On the contrary, when asymmetric electrolytes
are considered, the fixed-charge concentration cM is used.
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Fig. 4.23.
(a) Ionic transport numbers (1: counterion,
2: co-ion), (b) permselectivity, (c)
electrical conductivity (referred to the
external conductivity), and (d) electrolyte
diffusion coefficient (referred to the
external value) of an ion-exchange
membrane with a fixed charge
concentration X in equilibrium with a
symmetric, binary electrolyte solution of
concentration cw

12. The ionic diffusion
coefficient ratio has been given the values
D2/D1 = 0.2 (solid lines), 1 (long
dashed), and 2 (short dashed), which could
be considered as characteristic of the
electrolytes HCl, KCl, and TEACl
(tetraethylammonium chloride),
respectively. These transport coefficients
take their external solution values when
the membrane fixed charge concentration
vanishes.
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show ideal permselectivity due to incomplete co-ion exclusion (and the influ-
ence of the diffusion boundary layers). The term membrane permselectivity
refers to its larger permeability to counterions than to co-ions, and it is often
quantified by the ratio

S ≡ tM
1 − tw

1

1 − tw
1

. (4.186)

This magnitude has also been represented in Fig. 4.23.
Note, finally, that the main difficulty in the accurate solution of the transport

equations arises from the fact that the solution composition inside the membrane
depends on position under non-equilibrium conditions. The transport numbers,
the electrical conductivity and the electrolyte diffusion coefficient are deter-
mined by the composition and therefore they also vary with position.13 Their
local values are not known a priori and must be obtained from the solution of
the transport equations.

4.3.2 The diffusion–conduction flux equation inside
charged membranes

Consider the mass transport across a membrane that separates two uniform
solutions of a symmetric, binary electrolyte with concentrations cα

12 and cβ

12

13 In non-equilibrium systems, the membrane permselectivity does not vary with position, but
its definition differs from that in eqn (4.186)[17].
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under closed-circuit conditions, I �= 0. In the diffusion-conduction approach,
the flux density of species i (i = 1, 2) is written in terms of the electric current
density �I and the electrolyte flux density �j12 in eqns (4.1) and (4.2) as

�ji = �j12 + tM
i

zi

�I
F

= −DM
12

�∇ci + tM
i

zi

�I
F

(4.187)

where we have used the fact that the concentration gradient of the Donnan elec-
trolyte inside the membrane is �∇c12 = �∇c1 = �∇c2. Equation (4.187) is the
diffusion–conduction flux equation for a symmetric, binary electrolyte inside
a charged membrane. It is important to observe that the electrolyte diffusion
coefficient DM

12 and the ionic transport numbers tM
i are functions of the local

ionic concentrations (see Table 4.1) and, therefore, they are position depen-
dent under transport conditions. This makes the exact analytical integration of
eqn (4.187) across the membrane difficult.

Approximate solutions can be obtained, however, when the external elec-

trolyte concentrations are very similar to each other, i.e. when
∣∣∣cβ

12 − cα
12

∣∣∣ �
cw

12, where cw
12 ≡ (cβ

12 +cα
12)/2 is the average external concentration. The trans-

port coefficients can then be approximated by the equilibrium (or membrane
average) values

DM
12 ≈ DM

12 = D1D2(c1 + c2)

D1c1 + D2c2
= Dw

12[1 + (2cw
12/X )2] 1/2

tw
1 − tw

2 + [1 + (2cw
12/X )2] 1/2

, (4.188)

tM
1 ≈ tM

1 = D1c1

D1c1 + D2c2
= tw

1 {1 + [1 + (2cw
12/X )2] 1/2}

tw
1 − tw

2 + [1 + (2cw
12/X )2] 1/2

= 1 − tM
2 ,

(4.189)

where the average ionic concentrations are given by

c1 = c2 + X = (X /2) + [(X /2)2 + (cw
12)

2]1/2. (4.190)

The ionic flux equation can then be integrated as

ji ≈ j12 + tM
i

zi

I

F
, (4.191)

where the electrolyte flux density is

j12 ≡ −DM
12�c12/h, (4.192)

and the concentration difference inside the membrane, �c12 ≡ c12(h)−c12(0),
is approximated by

�c12 ≈ �cw
12

[1 + (2cw
12/X )2] 1/2

, (4.193)
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Fig. 4.24.
The effect of increasing the fixed
concentration on the electrolyte transport
as described by eqn (4.192). The
electrolyte flux density has been scaled to
the value corresponding to a neutral

membrane, j012 = Dw
12(cα

12 − cβ
12)/h. The

external concentration ratio has been fixed
to r12 ≡ cα

12/cβ
12 = 1.2 and the diffusion

coefficient ratio D2/D1 has been given the
values: 0.2 (solid lines), 1 (long dashed),
and 2 (short dashed).
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where �cw
12 ≡ cβ

12 − cα
12 is the external concentration difference. Note that in

neutral membranes (cM = 0 and superscript 0), DM
12 = Dw

12, �c12 = �cw
12, and

the electrolyte flux density is

j0
12 ≈ −Dw

12�cw
12/h. (4.194)

As shown in Section 4.3.8, eqn (4.191) can be useful in understanding the
different transport mechanisms inside and outside the ion-exchange membrane.

Figure 4.24 shows the graphical representation of eqns (4.192) and (4.193),
and evidences that, in general, the electrolyte flux density decreases with
increasing fixed-charge concentration. This trend comes from the fact that the
internal concentration difference is smaller than the external one, |�c12| ≤∣∣�cw

12

∣∣, as can be deduced from eqn (4.193). However, since DM
12 can be larger

than Dw
12 (see Fig. 4.23 (d)) it turns out that the electrolyte flux density can

be larger than through a neutral membrane in moderately charged membranes
when tw

1 < tw
2 (or D1 < D2). It must be remembered that eqn (4.192) is only

valid when
∣∣∣cβ

12 − cα
12

∣∣∣ � cw
12; the general expression for j12 is obtained in the

next section.
If we were able to drive an electric current density �I through an ion-exchange

membrane that separates two external solutions of identical composition while
avoiding the development of concentration gradients inside the membrane, the
flux density of ionic species i would then be given by14

�ji = −ziDici f �∇φ = tM
i

zi

�I
F

, (4.195)

and the electric current density would satisfy Ohm’s law �I = −κM �∇φ. Both
tM
i and κM would be independent of position under these conditions and Ohm’s

law could be straightforwardly integrated to �φ = −I RM where RM ≡ h/κM

is the membrane electrical resistance. Note the minus sign due to the sign
convention for �φ ≡ φ(h) − φ(0) and I , and that the SI units of RM and κM

14 In the absence of concentration gradients inside the membrane the transport number tMi is the
fraction of electric current transported by species i, but in general it is defined as the contribution
of this species to the electrical conductivity of the solution and depends on position.
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are � m2 and �−1 m−1, respectively. It must be mentioned, however, that this
case of pure electric conduction is very seldom applicable because concentration
gradients develop even when the external solutions have the same composition
(see Section 4.3.8).

A final interesting case is that of strongly charged membranes or low elec-
trolyte concentrations, cα

12, cβ

12 � X , where the ionic concentrations c1 and c2
are very different from each other and the co-ion transport number is negligible,
tM
2 � tM

1 . The electrolyte diffusion is then determined by the co-ion because
DM

12 ≈ D2 and the ionic flux densities are approximated described by

�j1 ≈ −D2 �∇c1 + �I
z1F

, (4.196)

�j2 ≈ −D2 �∇c2. (4.197)

These transport equations can be integrated immediately and evidence the fact
that in these membranes co-ion transport takes place by diffusion, while counte-
rion transport takes place by diffusion and migration. This conclusion is worked
out in more detail at the end of the next section.

4.3.3 Diffusion of a binary electrolyte
Consider the diffusion process that occurs when a membrane separates two uni-
form solutions of a binary electrolyte Aν1Cν2 with concentrations cα

12 and cβ

12
under open-circuit conditions, I = 0. The ionic flux densities are then related
to the electrolyte flux density by the simple relation �ji = νi�j12 (i = 1, 2), and
we aim to calculate the electrolyte flux density as a function of the external
solution concentrations cα

12 and cβ

12 and the membrane fixed-charge concen-
tration cM. As mentioned in the previous section, this cannot be achieved
from Fick’s equation �j12 = −DM

12
�∇c12 because of the dependence of the elec-

trolyte diffusion coefficient DM
12 on the ionic concentrations, and hence, on

position. Alternatively, the Nernst–Planck formalism is used. In the follow-
ing paragraphs the transport equations are presented for the general case of
an asymmetric electrolyte. The boundary conditions at the membrane/external
solution interfaces require the solution of the equations describing the Donnan
equilibria at the membrane/external solution interfaces, which only have a
simple analytical form in the case of symmetric electrolytes, as described in
Section 4.2.2. The final equations in this section are then restricted to symmetric
electrolytes.

a) Electrolyte flux density
The steady-state Nernst–Planck equations for the ionic flux densities

−�j1 = D1( �∇c1 + z1c1f �∇φ) (4.198)

−�j2 = D2( �∇c2 + z2c2 f �∇φ) (4.199)
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constitute a system of two differential equations with three unknown variables
c1, c2, and φ. The local electroneutrality assumption

z1c1 + z2c2 + zMcM = 0 (4.200)

completes the equation system that allows for the evaluation of the electrolyte
concentration and electric potential inside the membrane, as well as the mem-
brane potential and the electrolyte flux density. In homogeneously charged
membranes, the co-ion and counterion concentrations can differ by several
orders of magnitude, but their gradients must be similar to each other because
the local electroneutrality assumption implies that

z1 �∇c1 + z2 �∇c2 = �0. (4.201)

This fact simplifies the mathematical problem and has interesting consequences.
Dividing eqn (4.198) by D1 and eqn (4.199) by D2, and adding them we get

�j12 = −Dw
12

(
�∇c12 − zMcM

ν12
f �∇φdif

)
, (4.202)

where the relation�ji = νi�j12 (i = 1, 2) has been used and ν12 �∇c12 = �∇c1 + �∇c2
from eqn (4.201). Note that �∇φ = �∇φdif because there is no ohmic drop when
I = 0. Equation (4.202) can be easily integrated because it involves constant
coefficients. Integration over a planar membrane extending from position x = 0
to x = h, where h is the membrane thickness, yields

j12 = −Dw
12

h

(
�c12 − zMcM

ν12
f �φdif

)
, (4.203)

where �c12 ≡ c12(h) − c12(0) is the concentration drop inside the mem-
brane. The electrolyte concentrations at the membrane boundaries are given by
the Donnan equilibrium conditions, eqn (4.111). The diffusion potential drop,
�φdif ≡ φ(h) − φ(0), is given by

�φdif = �

f
ln

c1(h) + c2(h) + zMcM[� + (z1 + z2)/(z1z2)]
c1(0) + c2(0) + zMcM[� + (z1 + z2)/(z1z2)] , (4.204)

where

� ≡ −
(

tw
1

z1
+ tw

2

z2

)
= D2 − D1

z1D1 − z2D2
, (4.205)

and

tw
1 ≡ z1D1

z1D1 − z2D2
= ν2D1

ν2D1 + ν1D2
= 1 − tw

2 (4.206)
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is the counterion transport number in the external solutions. Equation (4.204)
has been obtained by transforming eqn (4.184) to

f �∇φdif = � �∇ ln

(
c1 + zMcMtw

2

z1

)
= � �∇ ln

(
c2 + zMcMtw

1

z2

)
= � �∇ ln

[
c1 + c2 + zMcM

(
tw
1

z2
+ tw

2

z1

)]
(4.207)

and further integration.
It should be noted that the local electroneutrality equation, z1c1(x)+z2c2(x)+

zMcM = 0, implies that the spatial distribution of the counterion and co-ion
concentrations must have the same functional dependence, ci(x) = ci(0) +
�ciδ(x) (i = 1, 2). Therefore, the Henderson equation for the diffusion potential

�φdif = �

f
ln

z2
1D1c1(h) + z2

2D2c2(h)

z2
1D1c1(0) + z2

2D2c2(0)
(4.208)

is exact in this situation and, indeed, eqn (4.204) can be transformed to
eqn (4.208).

In the case of a symmetric electrolyte,15 the total electrolyte concentration
at the membrane boundaries is

cT(0) = c1(0) + c2(0) = [X 2 + (2cα
12)

2]1/2, (4.209)

cT(h) = c1(h) + c2(h) = [X 2 + (2cβ

12)
2]1/2, (4.210)

where X ≡ zMcM/z2 and the electrolyte concentration drop inside the
membrane is

�c12 = �c2 = [(X /2)2 + (cβ

12)
2]1/2 − [(X /2)2 + (cα

12)
2]1/2. (4.211)

The electrolyte flux density can now be evaluated from eqn (4.203) as a func-
tion of the membrane fixed-charge and external solution concentrations. Since
the reversal of the external concentration difference simply changes the flow
direction, only the case cα

12 > cβ

12 ( j12 > 0) is considered. Introducing the aver-

age value cw
12 ≡ (cβ

12 + cα
12)/2 and the ratio r12 ≡ cα

12/cβ

12 of the external
concentrations, eqns (4.203), (4.204), and (4.210) lead to

j12

j0
12,max

= A − B + C(tw
1 − tw

2 ) ln
B + C(tw

1 − tw
2 )

A + C(tw
1 − tw

2 )
, (4.212)

15 Recall that the equations restricted to symmetric electrolytes can be identified by the use of
symbol X . In contrast, the fixed-charge concentration cM appears in the equations valid for general
electrolytes.
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where

A ≡ cT(0)

4cw
12

=
[

C2 +
(

r12

1 + r12

)2
]1/2

, (4.213)

B ≡ cT(h)

4cw
12

=
[

C2 +
(

1

1 + r12

)2
]1/2

, (4.214)

C ≡ X /4cw
12, (4.215)

and j0
12,max ≡ 2Dw

12cw
12/h is the maximum electrolyte flux density across a neu-

tral membrane for a given value of cw
12 (which corresponds to cβ

12 = 0 and
cα

12 = 2cw
12).

Equation (4.212) should be compared to the approximation expression in
eqn (4.192), and to eqn (4.194) corresponding to neutral membranes. It was
shown in Fig. 4.24 that the electrolyte flux density decreases with increasing
fixed-charge concentration; a trend that is broken in the case of moderately
charged membranes and D1 < D2. (Remember that tw

1 − tw
2 is equal to (D1 −

D2)/(D1 + D2) for symmetric electrolytes.) Similarly, the exact eqn (4.212)
also describes this trend, as shown in Fig. 4.25.

Contrarily to the expression j0
12 = −Dw

12�cw
12/h for the electrolyte flux den-

sity through a neutral membrane, eqn (4.212) does not show clearly enough
how the electrolyte flux density varies with the external concentration differ-
ence, �cw

12. It can be observed in Fig. 4.26 that the flux density increases almost

linearly with −�cw
12 = cα

12 − cβ

12, and the effect of increasing the fixed-charge
concentration is to reduce the coefficient of this approximately linear variation.

In Figs. 4.25 and 4.26 the ionic diffusion coefficients have been assumed to
be equal to each other, D1 = D2, and hence the diffusion potential inside the
membrane vanishes. The effect of varying the ratio of the diffusion coefficients
was already shown in Fig. 4.24 and there arise no significant new features from
the use of the exact eqn (4.212), except for the fact that the maximum that
appears when D2 > D1 is slightly less pronounced (in relative terms) when
increasing r12 (see Fig. 4.27).

Fig. 4.25.
The electrolyte flux density decreases
monotonously with the fixed charge
concentration when D1 = D2. The external
concentration ratio takes the values (from
top to bottom) r12 = 1000, 10, 5, and 2.
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Fig. 4.26.
The electrolyte flux density increases
monotonously with the external
concentration difference. The diffusion
coefficients have been assumed to be equal
to each other, D1 = D2, and the ratio of
the fixed charge concentration to the
average external electrolyte concentration,
X /cw

12, takes the values (from top to
bottom) 0, 0.5, 1, 2, 5, 10, and 20.
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0 Fig. 4.27.
Variation of the electrolyte flux density
with the fixed charge concentration for
D2/D1 = 5. The external concentration
ratio takes the values (from top to bottom)
r12 = 1000, 10, 5, and 2. Note that
j12/j012,max = (r12 − 1)/(r12 + 1) in the
limit of weakly charged membranes.

b) Membrane potential
In the Teorell–Meyer–Sievers model [18], the membrane potential �φM ≡
φβ −φα , i.e. the potential drop across the external boundaries of the membrane,
is evaluated as

�φM = �φα
D − �φ

β
D + �φdif , (4.216)

where �φα
D and �φ

β
D are the Donnan potential drops, and �φdif is the diffusion

potential. For symmetric electrolytes, these are given by [see eqn (4.119)]

z2 f �φα
D = ln{(X /2cα

12) + [(X /2cα
12)

2 + 1] 1/2} = ln
(A + C)(1 + r12)

r12
,

(4.217)

z2 f �φ
β
D = ln{(X /2cβ

12) + [(X /2cβ

12)
2 + 1] 1/2} = ln[(B + C)(1 + r12)],

(4.218)

z2 f �φdif = (tw
1 − tw

2 ) ln
B + C(tw

1 − tw
2 )

A + C(tw
1 − tw

2 )
, (4.219)

and the final expression for the membrane potential is

z2 f �φM = −lnr12 + ln
A + C

B + C
+ (tw

1 − tw
2 ) ln

B + C(tw
1 − tw

2 )

A + C(tw
1 − tw

2 )
, (4.220)
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where A, B, and C are defined in eqns (4.213)–(4.215). This can also be
written as

z2 f �φM ≡ (tM
1 − tM

2 ) ln
cβ

12

cα
12

, (4.221)

which constitutes the (implicit) definition of the potentiometric transport

numbers tM
1 and tM

2 = 1 − tM
1 .

In weakly charged membranes, the membrane potential is approximately
given by the diffusion potential, �φM ≈ �φ0

dif , and this can be easily obtained
from eqn (4.204) as

f �φ0
dif = � ln

cβ

12

cα
12

= −� ln r12. (4.222)

The superscript 0 on the diffusion potential indicates the restriction cM ≈ 0.
In strongly charged membranes, C 
 1, the membrane potential

reduces to

z2 f �φM ≈ −lnr12 = ln
cβ

12

cα
12

, (4.223)

which corresponds to the (Nernst) equilibrium potential for the counterion if
the electrolyte is symmetric. That is, since the permeability of the membrane
to the counterion is much larger than to the co-ion, and their fluxes are related
through the open-circuit condition (I = 0), the deviation from equilibrium is
much smaller for the counterion than for the co-ion.

Figure 4.28 shows the variation of the membrane potential with the exter-
nal electrolyte concentration in compartment α (and constant concentration in
compartment β) for different values of D2/D1. All the curves cross at �φM = 0
when cα

12/X = 0.5 = cβ

12/X , which corresponds to the equilibrium condition

j12 = 0. In the region cα
12 < cβ

12(right side of the plot), the flux density j12
is negative and very small in value. Correspondingly, the membrane potential
tends in this region to the Nernstian slope of 60 mV/decade (particularly, when

Fig. 4.28.
Membrane potential �φM ≡ φβ − φα

against electrolyte concentration in
compartment α for constant concentration

in compartment β, cβ
12 = 0.5X , and

different values of the ratio of diffusion
coefficients: D2/D1 = 0.1, 0.2, 0.5, 1, 2, 5,
and 10 (increasing in the direction of the
arrows). The membrane potential vanishes

when the equilibrium condition cα
12 = cβ

12
is satisfied.
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cα
12 � X ). In the region cα

12 > cβ

12 (left side of the plot), the flux density j12
is positive and increases almost linearly with cα

12. The variation of the mem-
brane potential with cα

12 is also logarithmic in the range cα
12 
 X : the slope

is 60 mV/decade when D2/D1 � 1, –60 mV/decade when D2/D1 
 1, and
differs from 60 mV/decade in a factor tw

1 − tw
2 = (D1 −D2)/(D1 +D2) in other

cases. Figure 4.28 can be used for both cation- and anion-exchange membranes.
When used for cation-exchange membranes, the co-ion is an anion (z2 < 0)

and hence the magnitude represented in the ordinate axis, z2�φM, has opposite
sign to the membrane potential. When used for anion-exchange membranes,
there is no sign reversal, but the value of D2/D1 must be reversed, so that it
continues to be the ratio of co-ion to counterion diffusion coefficient.

The experimental study of the membrane potential is often carried out by
keeping constant the electrolyte concentration in, e.g., compartment β and
varying that in compartment α. Obviously, the ratio D2/D1 then takes the value
corresponding to the electrolyte under study (although it must be remembered
that in practice the ionic diffusion coefficients inside the membrane are neither
strictly constant nor exactly equal to those in the external solutions). The plots
obtained in this way for different values of the concentration in compartment β

are shown in Fig. 4.29 for D2/D1 = 0.5 and 2. These values of the ratio D2/D1
have been chosen to compare the membrane potential for the same electrolyte
and external concentration in one anion- and one cation-exchange membrane
that only differ in the sign of the fixed-charge groups. The lack of symmetry
between these two families of curves is useful to identify the sign of the fixed
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Fig. 4.29.
Variation of the membrane potential �φM ≡ φβ − φα with the external electrolyte concentration
in compartment α while keeping constant that in compartment β. (a) The curves correspond to the

values (from top to bottom) cβ
12/X = 10, 5, 2, 1, 0.5, 0.2, and 0.1, and the ratio of diffusion

coefficients is D2/D1 = 0.5. In this case z2�φM increases monotonously with X /cα
12 at constant

cβ
12/X , and hence it also increases monotonously with cβ

12/X at constant X /cα
12. (b) The solid

lines correspond to (from top to bottom) cβ
12/X = 1, 0.5, 0.2, and 0.1, and D2/D1 = 2. The

dashed lines correspond (from top to bottom) to cβ
12/X = 2, 5, and 10, and D2/D1 = 2. The

presence of a minimum in the membrane potential curves in this case leads to a non-monotonous

variation of z2�φM with cβ
12/X at constant X /cα

12. Note that �φM vanishes when the

equilibrium condition cα
12 = cβ

12 is satisfied.
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charge when it is uncertain (note also the sign reversal of the membrane poten-
tial because the ordinate axis includes the co-ion transport number). Moreover,
the values of the membrane potential along one of these curves can be used to
estimate the fixed-charge concentration.

In order to derive the expressions for the electrolyte flux density and the diffu-
sion potential, eqns (4.203) and (4.204), we have integrated the corresponding
differential equations, eqns (4.202) and (4.207), over the membrane thickness.
By performing these integrations from the boundary x = 0 to an arbitrary posi-
tion x, the concentration c12(x) = c2(x) and electric-potential distributions
inside the membrane can be calculated. In the case of symmetric electrolytes
these are given by the following equations

x

h
= c12(x) − c12(0) − (X /2)z2 f [φ(x) − φ(0)]

c12(h) − c12(0) − (X /2)z2 f [φ(h) − φ(0)] , (4.224)

z2 f [φ(x) − φ(0)] = (tw
1 − tw

2 ) ln
c12(x) + tw

1 X

c12(0) + tw
1 X

, (4.225)

c12(0) = −(X /2) + [(X /2)2 + (cα
12)

2]1/2, (4.226)

c12(h) = −(X /2) + [(X /2)2 + (cβ

12)
2]1/2, (4.227)

and have been represented in Figs. 4.30 and 4.31 for the case cα
12 = 2X = 4cβ

12
and three values of the diffusion coefficient ratio D2/D1. We can observe there
that the concentration and electric-potential profiles are almost linear under
these conditions. Note that these figures are also valid for both anion- and
cation-exchange membranes.

c) Co-ions move by diffusion in strongly charged membranes
We now discuss the relative importance of the diffusional and migrational
contributions to the ionic flux densities in strongly charged membranes. The
diffusional contributions of co-ions and counterions are similar in magnitude
because of the local electroneutrality. The migrational contributions, on the
contrary, are very different because they are proportional to the ionic concen-
trations and the counterion and co-ion concentrations are very different. It is
then concluded that, when �j1 and �j2 are of similar magnitude, the migrational

Fig. 4.30.
Donnan electrolyte (or coion)
concentration profiles for the case

cα
12 = 2X = 4cβ

12 and different values of
the diffusion coefficient ratio:
D2/D1 = 0.2 (long dashed line), 1 (solid),
and 5 (short dashed).
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Fig. 4.31.
Electric potential profile for the case

cα
12 = 2X = 4cβ

12 and different values of
the diffusion coefficient ratio:
D2/D1 = 0.2 (long dashed line), 1 (solid),
and 5 (short dashed).

contribution to the flux of co-ions must be negligible and �j2 ≈ −D2 �∇c2. Thus,
the main transport mechanism for co-ions under these conditions is diffusion,
while counterion transport takes place both by diffusion and migration. Fur-
thermore, the diffusion potential is negligible in strongly charged membranes.
Indeed, since the co-ion concentration is then much smaller than the fixed-
charge concentration, the argument of the logarithm in eqn (4.207) varies very
slightly with position inside the membrane and the diffusion potential gradient
is approximately given by

f �∇φdif ≈ D1 − D2

zMcMD1

�∇c1, (4.228)

which is very small in strongly charged membranes. Note, however, that the
migrational contribution to the counterion flux is not negligible, except for the
trivial case D1 = D2 in which there is no potential gradient. This contribution
is approximately given by (D1 − D2) �∇c1 and eqn (4.198) becomes

�j1 ≈ −D1( �∇c1 − zMcM f �∇φdif ) ≈ −D2 �∇c1, (4.229)

which fully agrees with �j2 ≈ −D2 �∇c2 because �j1 = (ν1/ν2)�j2 = −(z2/z1)�j2.
Although these conclusions were also obtained in Section 4.3.2, we are now

in position to work them out in more detail and deduce the conditions that make
the migrational contribution to the coion flux negligible. Taking the (implicit)
derivative of eqn (4.224) and making use of eqn (4.203) the concentration
gradient inside the membrane can be written as

dc12

dx
= − j12

Dw
12

c12(x) + tw
1 X

c12(x) + (X /2)
. (4.230)

The relative contribution of diffusion to the co-ion flux density is then

j2,dif (x)

j2
= −D2

j2

dc2

dx
= (1/tw

1 )c12(x) + X

2c12(x) + X
, (4.231)

which has been represented at x = 0 in Fig. 4.32. This means that when the
membrane fixed-charge concentration is larger than the external electrolyte
concentration (in both compartments) by ca. a factor 10, eqn (4.203) can be
approximated by the much simpler expression j12 ≈ −D2�c12/h.
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Fig. 4.32.
Variation of the diffusive contribution to
the coion flux density, evaluated from
eqn (4.231) at x = 0, with the fixed charge
concentration for different values of the
diffusion coefficient ratio: D2/D1 = 0.2
(long dashed line), 1 (solid line), and 5
(short dashed line).
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d) Membrane permeability
We close this section with some additional comments on the electrolyte flux
density. The membrane permeability to the electrolyte is defined as

P12 ≡ − j12

�cw
12

. (4.232)

The SI unit of this magnitude is m/s, as can be easily checked from the expression
corresponding to a neutral membrane

P0
12 ≡ − j0

12

�cw
12

= Dw
12

h
. (4.233)

We obtained in eqn (4.203) that j12 is the sum of −Dw
12�c12/h and another term

proportional to �φdif . Since the concentration drop of the Donnan electrolyte
inside the membrane, �c12 ≡ c12(h) − c12(0), is generally smaller (in magni-
tude) than the difference of the external concentrations, �cw

12 ≡ cβ

12 − cα
12, it

is often the case that the permeability of a charged membrane to an electrolyte
is significantly smaller than that of a neutral membrane, i.e. P12 < P0

12. There
are, however, exceptions to this rule.

The term proportional to �φdif in eqn (4.203) may have equal or opposite
sign to that proportional to �c12 depending on the values of the ionic transport
numbers in the external solutions. In particular, we have observed in Figs.
4.24 and 4.27 that the electrolyte flux density may exhibit some maxima as a
function of X /cw

12 when the co-ion diffusion coefficient is larger than that of the
counterion. It is then possible to find ‘abnormal’ situations in which a charged
membrane is more permeable to the electrolyte than a neutral membrane of
equal thickness in spite of the fact that the fixed charges exclude the (Donnan)
electrolyte.

4.3.4 Membrane permselectivity
As an extension of the transport problem considered in Section 4.3.3, we
consider here the conduction of an electric current density by a binary electrolyte

�I = F(z1 �j1 + z2 �j2) (4.234)
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across a membrane that separates two uniform solutions of a binary elec-
trolyte with concentrations cα

12 and cβ

12. The main difference from the situation
described in Section 4.3.3 is that the two ionic flux densities are no longer
similar to each other. That is, the relation �ji = νi�j12(i = 1, 2) describing elec-
trolyte diffusion does not hold and must be replaced by the diffusion–conduction
equation, �ji = νi�j12 + tM

i
�I/(ziF). In relation to the conduction term it must be

observed that the transport numbers of the counterion and the co-ion inside
charged membranes can be very different from each other and, therefore, the
flux densities �j1 and �j2 can also be very different. As a limiting situation, we
could think of an ideally permselective membrane in which �j1 ≈ �I/z1F and
�j2 ≈ �0. In general, however, both ions contribute to the transport of electric
current and it becomes convenient to introduce the integral transport numbers
Ti(i = 1, 2) as

�ji ≡ Ti

zi

�I
F

. (4.235)

Under steady-state conditions, the ionic flux densities and the electric current
density are independent of position (or, at least, show no divergence in the case
of non-planar geometry), and therefore the integral transport numbers are also
independent of position. This is one of the main differences between Ti and
the local migrational transport number tM

i that appears in eqn (4.189). The
other difference is that tM

i is only related to electric conduction, while Ti is
also affected by the electrolyte diffusion. In other words, the integral transport
numbers should be rather understood as dimensionless values for the ionic flux
densities. They are obtained by scaling the actual flux densities by the value
that corresponds to the case in which only the species under consideration is
responsible for electric current transport. Obviously, Ti = tM

i in the absence
of concentration gradients inside the membrane, but this situation occurs very
seldom in practice.

Our aim in this section is to solve the Nernst–Planck equations and local
electroneutrality approximation, eqns (4.198)–(4.200), and to evaluate the ionic
flux densities, the membrane potential �φM, and related magnitudes like the
membrane permselectivity

S ≡ T1 − tw
1

1 − tw
1

(4.236)

and the membrane electrical resistance

RM ≡ −�φohm/I . (4.237)

A rather general solution procedure of the transport equations for asymmetric
electrolytes is based on the use of a new set of concentration and flux-density
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variables. These are defined as

S0 ≡ c1 + c2 ≡ cT, (4.238)

S1 ≡ z1c1 + z2c2 = −zMcM, (4.239)

S2 ≡ z2
1c1 + z2

2c2 = (z1 + z2)S1 − z1z2cT, (4.240)

�G0 ≡ �j1
D1

+ �j2
D2

, (4.241)

�G1 ≡ z1�j1
D1

+ z2�j2
D2

. (4.242)

Moreover, assuming that the vectors �G0 and �G1 have the same direction, a
convenient dimensionless constant � can be defined implicitly through the
relation

�G1 ≡ −z1z2� �G0. (4.243)

The Nernst–Planck equations are then written in terms of these variables as

−�G0 = �∇S0 + S1 f �∇φ = �∇cT − zMcM f �∇φ, (4.244)

−�G1 = �∇S1 + S2 f �∇φ = S2 f �∇φ, (4.245)

where we have used that �∇S1 = −zM �∇cM = �0. Since S2 and cT are
related through eqn (4.240), eqns (4.244) and (4.245) can be considered as
an equation system in the variables cT and φ. This system can be easily inte-
grated. Equation (4.244) has constant coefficients, and eqn (4.243) can be used
to obtain the following expression for the electric potential gradient

f �∇φ = � �∇ ln{cT + zMcM[� + (z1 + z2)/(z1z2)]}. (4.246)

Finally, combining eqns (4.234), (4.241) and (4.242), the current density can
be written as

�I =
(

� + tw
1

z1
+ tw

2

z2

)
z1z2

z2 − z1
(z1D1 − z2D2)F �G0, (4.247)

and this equation allows us to determine �; note that �G0 is also known as
a function of � after integration of eqns (4.244) and (4.246). The ionic flux
densities are then evaluated as

�j1 = z2D1

z2 − z1
(1 + z1�) �G0 = ν1Dw

12

ν12

�G0 + tw
1
�I

z1F
, (4.248)

�j2 = z1D2

z1 − z2
(1 + z2�) �G0 = ν2Dw

12

ν12

�G0 + tw
2
�I

z2F
. (4.249)
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In the case of a symmetric electrolyte and planar geometry, this solution
procedure is applied as follows. Integration of eqns (4.244) and (4.246) over
the membrane leads to

G0h = −�cT + z2Xf �φ, (4.250)

f �φ = � ln
cT(h) + z2�X

cT(0) + z2�X
, (4.251)

where cT(0) and cT(h) are given by eqns (4.209) and (4.210), and X ≡ zMcM/z2.
The parameter � must be evaluated from the solution of the transcendental
equation

I = (z2� − tw
1 + tw

2 )
z1F(D1 + D2)

2h

×
[
�cT − z2�X ln

cT(h) + z2�X

cT(0) + z2�X

]
, (4.252)

which is obtained after substitution of eqn (4.250) into eqn (4.247). Note that
� is related to the membrane permselectivity

S ≡ T1 − tw
1

1 − tw
1

= ν1Dw
12

ν12(1 − tw
1 )

z1FG0

I

= z1FD1G0

I
= 2tw

1

tw
1 − tw

2 − z2�
, (4.253)

where eqns (4.247) and (4.248) have been used. Thus, when the membrane is
strongly charged and exhibits a high permselectivity (S ≈ 1), z2� takes the
value −1.

The total ionic concentration cT(x) and the electric-potential distributions
inside the membrane can be calculated by integrating eqns (4.244) and (4.246)
from x = 0 to an arbitrary position x. The expressions thus obtained are

x

h
= cT(0) − cT(x) + z2Xf [φ(x) − φ(0)]

cT(0) − cT(h) + z2Xf [φ(h) − φ(0)] , (4.254)

and

f [φ(x) − φ(0)] = � ln
cT(x) + z2�X

cT(0) + z2�X
. (4.255)

The ionic concentrations are then obtained as c1 = (cT + X )/2 and c2 =
(cT − X )/2. The close similarity between eqns (4.254) and (4.255), on the one
hand, and eqns (4.224) and (4.225), on the other hand, can be expected from the
fact that all equations in Section 4.3.3 could have been obtained as particular
cases of those in the present section after setting I = 0.

The potential drop inside the membrane, i.e. the electric potential difference
between the internal boundaries of the membrane, can be written as the sum of
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ohmic and diffusional contributions, �φ = �φdif + �φohm. The diffusional
contribution is given by eqns (4.204) or (4.208) and is rewritten here as

z2 f �φdif = (tw
1 − tw

2 ) ln
cT(h) + (tw

1 − tw
2 )X

cT(0) + (tw
1 − tw

2 )X
. (4.256)

The ohmic contribution can be evaluated from eqns (4.251) and (4.256) as

z2 f �φohm = z2� ln
cT(h) + z2�X

cT(0) + z2�X

− (tw
1 − tw

2 ) ln
cT(h) + (tw

1 − tw
2 )X

cT(0) + (tw
1 − tw

2 )X
. (4.257)

Remember that tw
1 − tw

2 is the value of z2� when I = 0.
The membrane potential, i.e. the electric potential difference between the

external boundaries of the membrane, is

�φM = �φα
D − �φ

β
D + �φ (4.258)

where �φα
D and �φ

β
D are the Donnan potential drops given by eqns (4.217) and

(4.218).
The graphical representation of the above transport magnitudes can be con-

veniently done after the introduction of the average value cw
12 ≡ (cβ

12 + cα
12)/2

and the ratio r12 ≡ cα
12/cβ

12 of the external concentrations, as in Section 4.3.3.
Equations (4.250)–(4.252) then take the form

G0

G0
0,max

= A − B + z2�C ln
B + z2�C

A + z2�C
, (4.259)

f �φ = � ln
B + z2�C

A + z2�C
, (4.260)

z2� = tw
1 − tw

2 − 2tw
1 tw

2
I

I0

G0
0,max

G0
, (4.261)

where G0
0,max ≡ 4cw

12/h is the maximum value of G0 in the case of neutral mem-

branes, I0 ≡ 2z1FDw
12cw

12/h, and A, B, C are defined in eqns (4.213)–(4.215).
Figures 4.33 (a)–(f) show graphical representations of G0/G0

0,max vs.

log10(X /cw
12) = log10(4C) under different conditions. In very weakly charged

membranes, C � 1, and

G0 ≈ −2�cw
12

h
= 2(cα

12 − cβ

12)

h
= G0

0,max
r12 − 1

r12 + 1
. (4.262)

In very strongly charged membranes, co-ion exclusion is almost complete, so
that c1 ≈ X , �cT ≈ 0, and j2 ≈ 0. As a consequence, z2� ≈ −1, and

G0

G0
0,max

≈ tw
2

I

I0
. (4.263)
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Fig. 4.33.
Variation of the magnitude G0/G0

0,max
with the fixed charge concentration for
different values (from top to bottom) of
I/I0 = 1.0 (dotted), 0.5, 0, −0.5, and −1.0
(dashed) and D2/D1 = 0.5 (a, b), 1.0 (c,
d), and 2.0 (e, f). The external
concentration ratio takes the values
r12 = 10 (a, c, e) and 0.1 (b, d, f). Note
that changing r12 to its reciprocal simply
reverses the sign of G0/G0

0,max.

In the absence of current density, I = 0, the results obtained in Section 4.3.3 are
reproduced. In particular, G0/G0

0,max is then equal to j12/j0
12,max in Figs. 4.25

and 4.27.
Figures 4.34 (a)–(f) show the values of parameter z2� corresponding to

Figs. 4.33 (a)–(f). In the absence of current density, this parameter takes the
constant value z2� = tw

1 − tw
2 , as we deduced in Section 4.3.3. In the presence

of current, the variation of z2� with X /cw
12 can be rather complicated and shows

some singularities when G0 vanishes. Since G0/G0
0,max takes the value given in

eqn (4.262) in the limit of weakly charged membranes, the parameter z2� dif-
fers then from tw

1 − tw
2 in a value proportional to the current, z2� − tw

1 + tw
2 ∝ I .

In the opposite limit of very strongly charged membranes, z2� tends to −1 in
the presence of current.
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Fig. 4.34.
Variation of parameter � with the fixed
charge concentration for different values of
I/I0 = 1.0 (dotted), 0.5, 0, −0.5, and −1.0
(dashed) and D2/D1 = 0.5 (a, b), 1.0 (c,
d), and 2.0 (e, f). The external
concentration ratio takes the values
r12 = 10 (a, c, e) and 0.1 (b, d, f).

Figures 4.35 (a)–(f) show the graphical representations of the counterion and
co-ion flux densities corresponding to Figs. 4.33 (a), (d), and (e). The counterion
and co-ion flux densities are linked by the relation ( j1 − j2)/j0

12,max = I/I0,
and they are equal to the electrolyte flux density in the absence of current,
j1 = j2 = j12. Note also that Figs. 4.35 (a), (d), and (e) and Figs. 4.33 (a),
(d), and (e) contain similar information because the magnitudes represented
there satisfy the relation j1/j0

12,max = G0/G0
0,max + tw

1 I/I0. Since the co-ions are

excluded from very strongly charged membranes, j2 ≈ 0 and j1/j0
12,max = I/I0

in this limit.
Figures 4.36 (a)–(f) show some graphical representations of the membrane

potential for electric current densities in the range, |I/I0| ≤ 1; values outside this
range could have been considered as well because I0 is merely a convenient unit.
In very weakly charged membranes, the potential drops are �φα

D − �φ
β
D ≈ 0
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Fig. 4.35.
Variation of counterion (a, c, e) and co-ion
flux densities (b, d, f), in j012,max units,
with the fixed charge concentration for an
external concentration ratio r12 = 10,
different values of the diffusion coefficient
ratio D2/D1 = 0.5 (a, b), 1.0 (c, d), and 2.0
(e, f), and different values of I/I0 = 1.0
(dotted), 0.5, 0, −0.5, and −1.0 (dashed).

and �φ ≈ (�/f ) ln(cβ

12/cα
12) = −(�/f ) ln r12. The latter can be written as the

sum of a diffusional contribution

�φdif = −1

f

(
tw
1

z1
+ tw

2

z2

)
ln

cβ

12

cα
12

, (4.264)

which coincides with that in eqn (4.258), and an ohmic contribution �φohm ≡
−I RM, where

RM ≡
h∫

0

dx

κM = RT

z2
1F2(D1 + D2)

h∫
0

dx

cM
12

= hRT

z2
1F2(D1 + D2)�cw

12

ln
cβ

12

cα
12

(4.265)
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Fig. 4.36.
(a, c, e) Variation of the membrane potential �φM with the electrolyte concentration in compartment α while keeping constant cβ

12 = 0.5X . The
electric current densities are I/I0 = 1.0 (dotted), 0.5, 0, −0.5, and −1.0 (dashed), and the diffusion coefficient ratios are D2/D1 = 0.5 (a), 1 (c),

and 2 (e). Note that �φM = −I RM when the equilibrium condition cα
12 = cβ

12 is satisfied.
(b, d, f) Variation of �φM with the electric current density I/I0 for different values of the external concentration ratio r12 = 0.1, 1, and 10 (from
top to bottom), and fixed diffusion coefficient ratio, D2/D1 = 0.5. Plot (b) corresponds to a weakly charged membrane with X /cw

12 = 0.01,

plot (d) to a moderately charged one with X /cw
12 = 1, and plot (f) to a strongly charged one with X /cw

12 = 10.

is the membrane electrical resistance. When evaluating the integral, we have
used the fact that the distribution of the electrolyte concentration is linear inside
the membrane.

In Fig. 4.36 (b), we have represented z2�φM ≈ −(z2�/f ) ln r12 against the
current density at constant r12 for a weakly charged membrane. It is observed
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that z2�φM varies almost linearly with I . Since the Donnan potential drops are
negligible then, and the diffusional contribution to the potential drop is constant
under these conditions, the variation must be due to the ohmic potential drop,
z2 f �φohm ≈ −(z2� − tw

1 + tw
2 ) ln r12. Note that, according to eqns (4.261)

and (4.262), z2� − tw
1 + tw

2 ∝ I and this latter expression of z2�φohm can be
transformed to �φohm ≡ −I RM.

In very strongly charged membranes, co-ion exclusion is almost complete,
the Donnan potential drops are z2 f (�φα

D − �φ
β
D) ≈ ln(cβ

12/cα
12) = − ln r12,

and the potential drop in the membrane is ohmic, i.e. �φ = −I RM where
RM ≡ h/κM is the membrane electrical resistance and κM ≈ z2

1F2D1X /RT is
its conductivity.

In Fig. 4.36 (f), we have represented z2�φM ≈ −(z2�/f ) ln r12 against the
current density at constant r12 for a strongly charged membrane. It is observed
that z2 �φM varies almost linearly with I . Since the diffusive contribution to
the potential drop is negligible then, it is observed that z2 f �φM ≈ − ln r12
when I = 0. In the presence of electric current, the membrane potential varies
linearly and the slope is smaller (i.e. the membrane resistance is lower) than
in Figs. 4.36 (b) and (d), where the fixed-charge concentration is smaller. This
reflects the fact that the membrane electrical conductivity increases with X .
Moreover, using the values X /cw

12 = 10 and D2/D1 = 0.5, corresponding
to Fig. 4.36 (f), it can be obtained that �φ = −I RM ≈ 3.5 mV (I/I0), in
agreement with the slopes observed in this plot.

4.3.5 Counterion interdiffusion through an ideally
permselective membrane

Consider a ternary electrolyte solution formed by two binary electrolytes with
a common ion. The common ion is considered to be the co-ion and is denoted
by index i = 3. The counterions are denoted by indices 1 and 2. The electrolytes
Aν1 Cν3,1 and Dν2Cν3,2 are denoted by indices 13 and 23, respectively, and are
assumed to be completely dissociated according to

Aν1Cν3,1
→← ν1Az1 + ν3,1Cz3 , (4.266)

Dν2Cν3,2
→← ν2Dz2 + ν3,2Cz3 , (4.267)

where the stoichiometric relations z1ν1 + z3ν3,1 = 0 and z2ν2 + z3ν3,2 = 0 are
satisfied.

In the general case, the ion-exchange membrane separates two uniform sol-
utions with electrolyte concentrations cα

13, cα
23 and cβ

13, cβ

23 under closed-circuit
conditions, I �= 0. For the sake of simplicity, the membrane is considered to
be ideally selective and the co-ion (i = 3) is completely excluded from the
membrane phase. In a binary electrolyte case, cα

23 = cβ

23 = 0, the only transport
process that can occur across an ideally selective membrane is the conduction of
electric current by the counterions, j1 = I/z1F and j3 = 0. Electrolyte diffusion
cannot then take place because the electrolyte Aν1Cν3,1 is not a component in the
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membrane phase and j13 = 0. Similarly, in the ternary electrolyte case under
consideration, the electrolytes Aν1 Cν3,1 and Dν2Cν3,2 are not components of the
membrane phase if this is ideally selective and there is no diffusion of neutral
electrolytes, j13 = 0 and j23 = 0. Still, however, the interdiffusion of ions 1 and
2 can occur in addition to the conduction of electric current by the counterions.

Writing the electric potential gradient as the sum of ohmic and diffusion
contributions

�∇φ = �∇φdif + �∇φohm = −1

f

(
tM
1

z1

�∇ ln c1 + tM
2

z2

�∇ ln c2

)
− �I

κ
, (4.268)

and substituting it in the Nernst–Planck equations for the ionic flux densities,
these can be written in the diffusion–conduction form

�j1 = −DM
12

�∇c1 + tM
1

z1

�I
F

, (4.269)

�j2 = −DM
12

�∇c2 + tM
2

z2

�I
F

, (4.270)

where DM
12 ≡ tM

2 D1 + tM
1 D2, and

tM
1 = z2

1D1c1

z2
1D1c1 + z2

2D2c2
, (4.271)

and tM
2 = 1 − tM

1 are the local transport numbers of the counterions in the
membrane. It should be stressed that the diffusion coefficient DM

12 does not
describe the diffusion of any ‘electrolyte’ formed by the two counterions, but
their interdiffusion across the membrane. The derivation of eqns (4.269) and
(4.270) has made use of the relation z1 �∇c1 = −z2 �∇c2 that arises from the local
electroneutrality assumption

z1c1 + z2c2 + zMcM = 0, (4.272)

and the uniformity of the fixed-charge distribution. This relation implies that
there is only one ‘diffusional’ driving force for the transport across the mem-
brane (more exactly, a relation between the driving forces for the two ions) and
therefore that a single diffusion coefficient, DM

12, characterizes the interdiffusion
process.

As commented in Section 4.3.2 for the case of a binary electrolyte, the
diffusion–conduction equations, eqns (4.269) and (4.270), are not very useful
for calculating the ionic flux densities as a function of the external solution con-
centrations and the electric current density because the transport coefficients
DM

12 and tM
1 = 1 − tM

2 are functions of the local concentrations and, hence,
of position. Interestingly, the procedure worked out in Section 4.3.4 for the
solution of the Nernst–Planck equations in a binary electrolyte can be directly
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applied to this case because there are two ionic species inside the ideally selec-
tive membrane and no assumption on the values of the charge numbers was
used in Section 4.3.4.

If both counterions have the same charge number z1 = z2 = z, the parameter
� ≡ −G1/(z1z2G0) = −1/z and the concentrations gradients of the counteri-
ons are opposite and equal in magnitude, so that dcT/dx = 0. The electric field
inside the membrane is then constant, and the Nernst–Planck equations can be
integrated to give the Goldman equation

ji = −Di

h

zf �φ

ezf �φ − 1
[ci(h)ezf �φ − ci(0)]. (4.273)

The ionic concentrations at the membrane boundaries are given by the Donnan
equilibrium conditions and the local electroneutrality condition as

c1(h)

cβ

1

= c2(h)

cβ

2

= − zMcM

z(cβ

1 + cβ

2 )
= − zMcM

zcβ
T

, (4.274)

c1(0)

cα
1

= c2(0)

cα
2

= − zMcM

z(cα
1 + cα

2 )
= − zMcM

zcα
T

. (4.275)

The electric potential drop can be determined by substituting eqn (4.273) in the
equation for the electric current density, I = zF(j1 + j2), as the solution to the
following transcendental equation

�φ = − 1

zf
ln

D1c1(h) + D2c2(h) + i

D1c1(0) + D2c2(0) + i
, (4.276)

where i ≡ IRTh/(z2F2�φ). In the absence of electric current (I = 0) this
reduces to

�φdif = − 1

zf
ln

D1c1(h) + D2c2(h)

D1c1(0) + D2c2(0)
, (4.277)

and in the absence of concentration gradients (dci/dx = 0) the potential
drop is

�φohm = −I RM, (4.278)

where RM ≡ h/κM is the membrane electrical resistance and κM is its electrical
conductivity. Note, finally, that the ionic flux densities can also be expressed as

j1 = D1D2

D1 − D2
G0 + D1

D1 − D2

I

zF
, (4.279)

j2 = D1D2

D2 − D1
G0 + D2

D2 − D1

I

zF
, (4.280)

where G0 ≡ ( j1/D1) + (j2/D2) = zMcM f �φ/h.



194 Transport in membranes

If the counterions have different charge numbers z1 �= z2, the ionic flux
densities are given by [see eqns (4.248)–(4.251)]

j1 = z2D1

z2 − z1
(1 + z1�)G0, (4.281)

j2 = z1D2

z1 − z2
(1 + z2�)G0, (4.282)

where G0 = (−�cT + zMcM f �φ)/h and the electric potential drop is

f �φ = � ln
cT(h) + zMcM[� + (z1 + z2)/(z1z2)]
cT(0) + zMcM[� + (z1 + z2)/(z1z2)] , (4.283)

where � has to be determined as the solution of the transcendental equation

I =
(

� + tw
1

z1
+ tw

2

z2

)
z1z2F(z1D1 − z2D2)

(z1 − z2)h

×
{
�cT − zMcM� ln

cT(h) + zMcM[� + (z1 + z2)/(z1z2)]
cT(0) + zMcM[� + (z1 + z2)/(z1z2)]

}
. (4.284)

It is worth noting that when that the membrane separates solutions of differ-
ent electrolytes, cβ

13 = cα
23 = 0, the flux densities and the potential drop inside

the membrane are independent of the values of the external concentrations cα
13

and cβ

23. This occurs because the boundary concentrations are only determined
by the fixed charge concentration, z1c1(0) = z2c2(h) = −zMcM, and the mem-
brane phase cannot ‘know’ the external concentrations. The situation of ideal
permselectivity considered here is an approximation that can only be used when
the external concentrations are much lower than the fixed-charge concentration,
and hence this independence of the flux densities and the potential drop inside
the membrane from the external concentrations should not be surprising. Yet,
the Donnan potential drops

f �φα
D = − 1

z1
ln

c1(0)

cα
1

= − 1

z1
ln

−zMcM

z1cα
1

(4.285)

f �φ
β
D = − 1

z2
ln

c2(h)

cβ

2

= − 1

z2
ln

−zMcM

z2cβ

2

(4.286)

are sensitive to the external concentrations.
Continuing with the discussion of the situation cβ

13 = cα
23 = 0, the ionic flux

densities reduce under open-circuit conditions, I = 0, to

z1 j1 = −z2 j2 = − z1z2D1D2G0

z1D1 − z2D2

= − zMcM

h

z1z2D1D2

z1D1 − z2D2

(
1

z2
− 1

z1
+ f �φdif

)
, (4.287)
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Fig. 4.37.
Diffusion potential, in RT/z1F units, and
flux density of counterion 1, in
j0 ≡ −zMcMD1/z1h units, against the
counterion diffusion coefficient ratio,
D1/D2, in the interdiffusion of counterions
across an ideally permselective membrane.
The counterion charge number ratios used
are: z1/z2 = 1/3, 1/2, 1, 2, and 3
(increasing in the arrow direction).

where the diffusion potential

f �φdif = D1 − D2

z1D1 − z2D2
ln

z1D1

z2D2
(4.288)

can be obtained either from eqn (4.283) or from the Henderson approxima-
tion (which is exact in this case). Figure 4.37 shows the representation of
eqns (4.287) and (4.288). When D1 > D2 we observe that z1f �φdif is posi-
tive, and that the flux density j1 is smaller than j0 ≡ −zMcMD1/z1h, which can
be understood as a typical value when D1 ≈ D2. Contrarily, we observe that
z1f �φdif is negative and j1/j0 > 1 when D1 < D2.

4.3.6 Bi-ionic potential
The bi-ionic potential is the potential difference between two solutions of dif-
ferent binary electrolytes with a common co-ion at the same concentration that
are separated by a charged membrane under open-circuit conditions, I = 0. We
consider here that all ions are monovalent. Let us denote the counterions by
indices 1 and 2, and the common co-ion by index i = 3. The electrolytes Aν1Cν3,1

and Dν2Cν3,2 are denoted by indices 13 and 23, respectively, and are assumed

to be completely dissociated. The electrolyte concentrations are cα
13 = cβ

23, and

cα
23 = cβ

13 = 0. In the absence of chemical partition coefficients this implies
that the two Donnan interfacial potential drops cancel out, and therefore the
bi-ionic potential is equal to the diffusion potential drop inside the membrane.

Since the total ionic concentration, cT = c1 +c2 +c3, is constant throughout
the membrane, the electric field is also constant, and the ionic flux densities are
given by the Goldman flux equation

ji = −Di

h

zi f �φ

ezi f �φ − 1
[ci(h)ezi f �φ − ci(0)]. (4.289)

The zero current condition, 0 = j1 + j2 − j3, leads then to the Goldman equation
for the diffusion potential

z3 f �φdif = ln
D2c2(h) + D3c3(0)

D1c1(0) + D3c3(h)
. (4.290)
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In strongly charged membranes, the bi-ionic potential is approximately given
by

z3 f �φdif ≈ ln
D2

D1
, (4.291)

and in very weakly charged membranes it can be evaluated as

z3 f �φdif ≈ ln
D2 + D3

D1 + D3
, (4.292)

which agrees with eqn (4.89). This asymptotic behaviour has been represented
in Fig. 4.38.

Finally, it should be mentioned that boundary-layer effects have been
neglected in this simple description of the bi-ionic potential. These effects are
particularly important in the case of strongly charged membranes [19] and
account for the deviations of the actual measurements from eqn (4.290).

z3 f � dif

ln
D2

D1

ln
D2 �D3

D1 �D3

�2 �1 0 1 2

log10 X/( )c13
�

φ

Fig. 4.38.
Schematic representation of the variation
of the bi-ionic potential with the

electrolyte concentration cα
13 = cβ

23.

4.3.7 Transport in multi-ionic solutions
In the previous sections we have explained a solution procedure for steady-
state transport equations in one-dimensional systems. This procedure is applied
here to multi-ionic systems. We consider mixtures of electrolytes such that all
counterions have the same charge number z1 and all co-ions have the same
charge number z2; that is, there are only two classes of ions. It is assumed that
all ionic concentrations at the (internal) membrane boundaries, ci(0) and ci(h),
are known and we aim to evaluate the ionic flux densities and the potential drop
across the membrane as a function of the electric current density I crossing the
membrane.

The basic idea behind the method employed here to solve this problem is
that the Nernst–Planck equations can be combined to yield an equation for
the electric field. The solution of this equation and further integration allows
us to obtain the electric-potential distribution φ(x). Then, the Nernst–Planck
equation for species i can be multiplied by ezi f φ(x) and integrated between the
membrane boundaries. This leads to the following equation for the flux density
of species i

ji = −Di
ci(h) ezi f �φ − ci(0)∫ h

0 ezi f [φ(x)−φ(0)] dx
. (4.293)

This equation is known as Kramer’s equation and can be considered as a
generalization of the Goldman flux equation, eqn (4.289).

In order to obtain the above-mentioned equation for the electric field, we
introduce first a transformation of variables. The Nernst–Planck equations of
the counterions can be combined in the form

−G0,1 = dC1

dx
+ z1C1 f

dφ

dx
, (4.294)
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where

C1 ≡
∑

counterions

ci (4.295)

is the total counterion concentration and

G0,1 ≡
∑

counterions

ji
Di

. (4.296)

After multiplication by ez1 f φ , eqn (4.294) can be formally integrated between
the membrane boundaries to give

G0,1 = −C1(h) ez1 f �φ − C1(0)∫ h
0 ez1 f [φ(x)−φ(0)] dx

. (4.297)

Combination of eqns (4.293) and (4.297) allows us to write the flux density of
any counterion species as

ji = DiG0,1
ci(h) ez1 f �φ − ci(0)

C1(h) ez1 f �φ − C1(0)
, zi = z1. (4.298)

Similarly, the flux density of any co-ion species can be written as

ji = DiG0,2
ci(h) ez2 f �φ − ci(0)

C2(h) ez2 f �φ − C2(0)
, zi = z2, (4.299)

where

C2 ≡
∑

co-ions

ci (4.300)

is the total co-ion concentration and

G0,2 ≡
∑

co-ions

ji
Di

. (4.301)

The ionic flux densities are coupled through the equation for the electric current
density, I = F

∑
i ziji. Equations (4.298) and (4.299) lead then to

I

F
= z1G0,1

∑
zi=z1

Dici(h) ez1 f �φ − ∑
zi=z1

Dici(0)

C1(h) ez1 f �φ − C1(0)

+ z2G0,2

∑
zi=z2

Dici(h) ez2 f �φ − ∑
zi=z2

Dici(0)

C2(h) ez2 f �φ − C2(0)
. (4.302)
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This equation plays a key role in the solution procedure but involves the
variables G0,1, G0,2, and �φ that are still to be determined.

Let us introduce the additional auxiliary variables

cT ≡
∑

i

ci = C1 + C2, (4.303)

S1 ≡ z1C1 + z2C2 = −zMcM, (4.304)

G0 ≡
∑

i

ji
Di

= G0,1 + G0,2, (4.305)

G1 ≡
∑

i

ziji
Di

= z1G0,1 + z2G0,2, (4.306)

� ≡ − G1

z1z2G0
, (4.307)

and combine the Nernst–Planck equations in the forms

−G0 = dcT

dx
− zMcMf

dφ

dx
, (4.308)

−G1 = (z2
1C1 + z2

2C2)f
dφ

dx

= −z1z2[cT + zMcM(z1 + z2)/(z1z2)] f
dφ

dx
, (4.309)

where we have used the fact that dcM/dx = 0. Equation (4.308) allows us
to conclude that the electric field is constant throughout the membrane when
cT(0) = cT(h), a case that is considered later in this section.

From eqns (4.307)–(4.309), the equation for the electric field is

f
dφ

dx
= �

cT + zMcM[� + (z1 + z2)/(z1z2)]
dcT

dx
, (4.310)

and hence the electric potential drop in the membrane is

f �φ = � ln
cT(h) + zMcM[� + (z1 + z2)/(z1z2)]
cT(0) + zMcM[� + (z1 + z2)/(z1z2)] . (4.311)

Similarly, the integration of eqn (4.308) over the membrane leads to

G0h = −�cT + zMcM f �φ. (4.312)

This equation system is solved as follows. First, we guess a value of � and
evaluate the electric potential drop and G0 from eqns (4.311) and (4.312). Then,
we calculate

G0,1 = z2

z2 − z1
(1 + z1�)G0, (4.313)

G0,2 = z1

z1 − z2
(1 + z2�)G0, (4.314)



Steady-state transport across ion-exchange membranes 199

and substitute them in eqn (4.302). The value of � is iteratively modified until
this equation is satisfied.

As a final comment it is worth remembering that the above equations only
apply to the case of two ion classes. Although the procedure can be extended
for as many ion classes as ions that are present in the system [20–22], this is
obviously rather complicated, and a much simpler approximate solution gives
good results in the case of multi-ionic systems. This is the so-called Goldman
constant-field assumption that decouples the transport equations of the different
ionic species by assuming that the electric field is a constant. The flux density
of species i is then given by the Goldman equation

ji = −Di
zi f �φ

ezi f �φ − 1
[ci (h) ezi f �φ − ci(0)]. (4.315)

Taking eqn (4.315) to the equation for the electric current density I = F
∑

i ziji,
the electric potential drop across the membrane can be obtained as the solution of
a transcendental equation. In the case of a mixture of symmetric z : z electrolytes
this equation is

zf �φ = ln

∑
+

Dici(0) + ∑
−

Dici(h) + i∑
+

Dici(h) + ∑
−

Dici(0) + i
, (4.316)

where i ≡ IRTh/(z2F2�φ) and the signs under the sums indicate that they are
restricted to either cations or anions. Note also that eqns (4.315) and (4.316)
become exact when dcT/dx = 0, a case to which eqns (4.310)–(4.314) cannot
be applied. This means that the Goldman constant-field assumption is expected
to be more accurate when �cT/cT � 1 or, equivalently, when the electrical
conductivity of the multi-ionic solution does not vary much with position [23].

4.3.8 Concentration polarization in ion-exchange
membrane systems

Under steady-state conditions, the ionic flux density ji is independent of
position. The diffusion-conduction equation for a binary system

ji = νi j12 + ti
zi

I

F
(4.317)

shows that the electrolyte diffusion and the conduction contributions to ji can
depend on position, but their sum cannot. That is, when the migrational trans-
port number ti varies with position (and I �= 0), the electrolyte flux density
j12 must vary accordingly. The fixed charge in an ion-exchange membrane
increases the transport number of the counterions and decreases that of co-ions
(with respect to the external solution values). This difference in the migrational
transport numbers inside and outside the membrane implies that (electrolyte)
concentration gradients must evolve on both sides of the membrane when an
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Fig. 4.39.
Schematic representation of the electrolyte
concentration profile in the membrane
system under consideration.
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electric current is forced through it.16 This phenomenon is known as concen-
tration polarization. In particular, in the ‘feeding’ side of the membrane there is
a deficit of counterions, and in the ‘receiving’ side there is an excess of coun-
terions. Because of the electroneutrality condition, this also means that there is
a deficit and an excess of electrolyte, respectively.

Consider that the membrane separates two solutions with the same electrolyte
concentration cw

12 and compare the diffusive and ohmic contributions to the
flux density of counterions (i = 1) in the membrane phase and in the feeding
external solution. Since the flux density of the counterions is the same in both
phases

ν1 jw
12 + tw

1

z1

I

F
= ν1jM

12 + tM
1

z1

I

F
, (4.318)

and

ν1( jw
12 − jM

12) = (tM
1 − tw

1 )
I

z1F
. (4.319)

The sign of jw
12 is that of I/z1 because tM

1 > tw
1 , and this means that electrolyte

diffusion in the feeding solution occurs in the same direction as the motion of
counterions inside the membrane.

The flux density jM
12 takes place in the opposite direction to jw

12 if the bulk
solutions have the same concentration and it is usually much smaller in mag-
nitude. By neglecting jM

12 and replacing the local counterion transport number
in the membrane by its average value, eqn (4.319) can be integrated over the
external phase, extending from x = −δ to 0 (see Fig. 4.39), to give

ν1jw
12 = −ν1Dw

12
c12(0) − cw

12

δ
= (tM

1 − tw
1 )

I

z1F
, (4.320)

where c12(−δ) = cw
12 is the bulk electrolyte concentration. An increase in the

magnitude of the current density then leads to a decrease in the surface con-
centration c12(0). This concentration becomes zero when the limiting current

16 We arrive at similar conclusions when these arguments are applied to ternary and multi-ionic
systems.
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density

IL ≡ z1ν1FDw
12cw

12

δ(tM
1 − tw

1 )
(4.321)

is reached. Note that I and IL can be either positive or negative (depending on
whether the membrane is of cation- or anion-exchange type), but the ratio I/IL

is positive since the surface concentration is given by

c12(0) = cw
12(1 − I/IL) < cw

12. (4.322)

In the case of an ideally selective membrane jM
12 = 0, tM

1 = 1 and

IL ≡ z1ν1FDw
12cw

12

δ(1 − tw
1 )

= z1ν12FD1cw
12

δ
, (4.323)

which is smaller (in magnitude) than that in eqn (4.321) because tM
1 ≤ 1.

Moreover, this limiting current does not depend on D2, as should be expected
from the fact that the ionic transport equations in the diffusion boundary layers
reduce in this case to

− I

z1FD1
= dc1

dx
+ z1c1 f

dφ

dx
= ν12

dc12

dx
, (4.324)

0 = dc2

dx
+ z2c2 f

dφ

dx
. (4.325)

In closing, it is interesting to observe that tM
1 is related to the membrane

permselectivity S and to z2� by eqn (4.253)

S ≈ tM
1 − tw

1

1 − tw
1

= 2tw
1

tw
1 − tw

2 − z2�
. (4.326)

By elimination of tM
1 , eqn (4.326) can also be written (for a symmetric

electrolyte) as

IL ≡ −(z2� − tw
1 + tw

2 )
z1F(D1 + D2)cw

12

δ
, (4.327)

and the parameter z2� must be evaluated from the solution of the transcendental
equation

I = − (z2� − tw
1 + tw

2 )
z1F(D1 + D2)

h

×
[
−�cT + z2�X ln

cT(h) + z2�X

cT(0) + z2�X

]
, (4.328)
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where

cT(0) = {X 2 + [cw
T (0)]2}1/2, (4.329)

cT(h) = {X 2 + [cw
T (h)]2}1/2, (4.330)

cw
T (0) = cw

T (1 − I/IL), (4.331)

cw
T (h) = cw

T (1 + I/IL). (4.332)

Note that cw
T = 2cw

12 in a symmetric electrolyte. Equation (4.321) is a very

simple expression for the limiting current density IL but it assumes that tM
1

is known. Equations (4.327)–(4.332) look much more complicated, but they

provide both IL and z2� or, equivalently, IL and tM
1 .

4.3.9 Influence of the diffusion boundary layers
on the permselectivity

In the previous sections we have considered both the cases of ideally perm-
selective membranes that completely exclude the co-ions from their interior,
and real membranes containing both co-ions and counterions. By comparing
eqns (4.321) and (4.323) it becomes apparent that the permselectivity of a mem-
brane in relation to its performance in electrically driven separation processes
can be characterized by means of the coefficient

S = tM
1 − tw

1

1 − tw
1

. (4.333)

The permselectivity of a membrane system, however, is not only determined
by the number of co-ions in the membrane. When an electric current density I
crosses the system, concentration polarization develops as explained in the pre-
vious section. Even in the limiting case I → 0, this concentration polarization
affects the value of the counterion flux density. To account for the influence of
concentration polarization, the counterion integral transport number

T1 ≡ z1Fj1
I

(4.334)

is used instead of tM
1 in eqn (4.333). We aim at determining the value of T1 for

a membrane system composed of a membrane of thickness h flanked by two
diffusion boundary layers of the same thickness δ. For the sake of simplicity,
we consider that the membrane separates two identical solutions of a symmetric
binary electrolyte.

In eqn (4.181), the electrolyte flux density was written in terms of the
gradient of the stoichiometric concentration of the Donnan electrolyte as
�j12 = −DM

12
�∇c12, where the electrolyte diffusion coefficient is

DM
12 ≡ tM

2 D1 + tM
1 D2 = D1D2(c1 + c2)

D1c1 + D2c2
. (4.335)
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The Donnan equilibrium requires that the mean electrolyte concentration c±,12
must be continuous across the membrane/external solution interfaces. This con-
dition makes it convenient to use c±,12 rather than c12. The stoichiometric
concentration gradient can be related to the mean concentration gradient by

2

c±,12

�∇c±,12 = 1

c1

�∇c1 + 1

c2

�∇c2 = c1 + c2

c1c2

�∇c12

= c1 + c2

(c±,12)2
�∇c12. (4.336)

Thus, the diffusion–conduction flux equation becomes

�ji = −νiD
M±,12

�∇c±,12 + tM
i

zi

�I
F

, (4.337)

where

DM±,12 ≡ 2D1D2c±,12

D1c1 + D2c2
, (4.338)

and

tM
i ≡ Dici

D1c1 + D2c2
. (4.339)

In order to evaluate the counterion integral transport number T1, eqn (4.337)
has to be integrated over the membrane system extending from x = −δ to
h + δ. Multiplying this equation by D1c1 + D2c2, and calculating the integral,
we obtain

ji(D1c1 + D2c2) = Dici

zi

I

F
, (4.340)

where the overbars denote the average value over −δ ≤ x ≤ h + δ. In
this integration, we have used the fact that c±,12 is continuous across the
membrane/external solution interfaces and that it takes the same value cw±,12
at x = −δ and at x = h + δ. The counterion integral transport number is then
given by

T1 = D1c1

D1c1 + D2c2
= tw

1 c1

tw
1 c1 + tw

2 c2
. (4.341)

Since the concentration profiles in the diffusion boundary layers are linear and
have the same gradient, the average concentrations over the whole membrane
system can be related to the average concentrations inside the membrane by the
simple relation

ci ≡ 1

2δ + h

 0∫
−δ

cidx+
h+δ∫
h

cidx+
h∫

0

cidx

=2δcw
12 + hcM

i

2δ + h
, (4.342)
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and eqn (4.341) becomes

T1 = tw
1 (2δcw

12 + hcM
1 )

tw
1 (2δcw

12 + hcM
1 ) + tw

2 (2δcw
12 + hcM

2 )

= tw
1

r + cM
1 /X

r + (tw
1 cM

1 + tw
2 cM

2 )/X
, (4.343)

where r ≡ 2δcw
12/hX . Due to the boundary-layer effects, the integral counterion

transport number is lower than unity even in ideally selective membranes and
eqn (4.343) then reduces to

T1 = tw
1

r + cM
1 /X

r + tw
1 cM

1 /X
< 1. (4.344)

Indeed, substituting eqn (4.343) in eqn (4.333) it becomes evident that the
membrane permselectivity is smaller than unity because of both the presence
of co-ions inside the membrane and the boundary-layer effects

S = tw
1

tw
1 + r + cM

2 /X
. (4.345)

For small electric current densities, the average ionic concentrations do no
differ much from the equilibrium values given by eqns (4.121) and (4.122)

cM
1 = (X /2) + [(X /2)2 + (cw

12)
2]1/2, (4.346)

cM
2 = −(X /2) + [(X /2)2 + (cw

12)
2]1/2, (4.347)

and the integral counterion transport number can be evaluated from eqn (4.343)
for different values of the parameter r characterizing the importance of the
diffusion boundary layers. Figure 4.40 shows the boundary-layer effects on the
membrane permselectivity as evaluated from eqns (4.345) and (4.347).

Fig. 4.40.
Variation of the membrane permselectivity
with the fixed charge concentration for
tw1 = 0.5 and different values of the ratio
r ≡ 2δcw

12/hX that describes the relative
importance of the boundary layer effects:
r = 0.01, 0.1, 1, and 10 (from top to
bottom).
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4.4 Steady-state transport across charged
porous membranes

Porous membrane with charges on its pore walls are permselective. These
charges may be due to dissociating groups in the membrane matrix
(e.g.–COOH) or ion adsorption. For instance, a neutral membrane often exhibits
cation selectivity in chloride solutions because chloride anions are strongly
adsorbed on hydrophilic surfaces. In the former case, the membrane charge
can be assumed to be constant along the pore, while in the latter case, it is
determined through an adsorption isotherm, and therefore it depends on the
concentration distribution in the pore. For the sake of simplicity, we consider
throughout this section that the membrane is immersed in a symmetric (binary)
electrolyte solution and that the fixed-charge groups are uniformly distributed
along the transport (or axial) direction. Moreover, no pressure gradient exists
inside the membrane.

4.4.1 The radial electrical double layer
a) The membrane model
Charged porous membranes are most often modelled as an array of parallel,
cylindrical capillaries of radius a with a uniform surface-charge density σ on
the pore walls. Since all pores are assumed to be identical, the entire membrane
is analysed as if it were a single pore. The pore length h is much larger than
the radius a, and hence edge (i.e. pore entrance) effects are neglected. The total
surface charge in a pore is σ2πah and the charge density per pore volume
is σ2πah/(πa2h). The charges bound to the pore walls can then be described
either in terms of the surface-charge density σ or in terms of an equivalent
molar concentration of fixed-charge groups

cM ≡ 2σ

zMFa
. (4.348)

Because of the cylindrical symmetry of the membrane model, all transport
magnitudes are considered to be dependent, in principle, on two spatial co-
ordinates: the axial position x and the radial position r. The former varies
between 0 at the interface with compartment α and h at the interface with
compartment β. The latter varies between 0 at the pore axis and a at the pore
wall.

b) The radial electrical double layer
The charges on the pore walls create an electrical double layer in the radial
direction, as discussed in Section 4.2.5. The electrolyte solution filling the pores
is not locally electroneutral, and the ionic concentrations c1(r, x) and c2(r, x)
can be different at every location inside the pore. A global electroneutrality
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condition, however, must hold at every axial position

σ2πa = −
a∫

0

ρe2πrdr = −F

a∫
0

(z1c1 + z2c2)2πrdr

= z2Fπa2(〈c1〉 − 〈c2〉), (4.349)

or

X ≡ zMcM/z2 = 〈c1〉 − 〈c2〉 , (4.350)

where ρe = F(z1c1 + z2c2) is the space-charge density associated to the ions
in the pore solution and the symbol 〈〉 denotes the average value over the
pore cross-section. The subscripts 1 and 2 are used for counterion and co-ion,
respectively. The average ionic concentrations 〈ci〉 (x)(i = 1, 2) may still vary
along the pore axis.

The electric potential φ(r, x) is conveniently decomposed into two contribu-
tions, V (x) and ψ(r, x). The potential contribution ψ(r, x) is defined from the
equilibrium condition along the radial direction

∂µ̃i

∂r
= RT

∂

∂r
(ln ci + zi f φ) = 0 , i = 1, 2 (4.351)

as

ψ ≡ − 1

z1 f
ln

c1

c±,12
= − 1

z2 f
ln

c2

c±,12
, (4.352)

where c±,12(x) = [c1(r, x)c2(r, x)]1/2 is the mean electrolyte concentration.
The contribution V (x) then becomes defined as

V (x) ≡ φ(r, x) − ψ(r, x). (4.353)

Equation (4.351) simply states that the radial component of the ionic flux
densities must vanish because the pore wall is impenetrable to the ions.

The variation of ψ(r, x) along the radial direction is described by the Poisson
equation ∇2φ = −ρe/ε, where ε is the electrical permittivity of the solution.
The left-hand side of this equation is

∇2φ = ∇2V + ∇2ψ = d2V

dx2
+ ∂2ψ

∂x2
+ ∂2ψ

∂r2
+ 1

r

∂ψ

∂r
, (4.354)

and the space-charge density can be written as

ρe = F(z1c1 + z2c2) = −z2Fc±,12(e
−z1 f ψ − e−z2 f ψ)

= −2z2Fc±,12 sinh(z2 f ψ). (4.355)
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The Poisson equation becomes the Poisson–Boltzmann equation when the
equilibrium ionic distributions are used to evaluate the space-charge density
in this way. The boundary conditions for the Poisson–Boltzmann equation are

∂ψ

∂r

∣∣∣∣
r=0

= 0, (4.356)

∂ψ

∂r

∣∣∣∣
r=a

= σ

ε
, (4.357)

and the integration of the Poisson equation over any pore cross-section leads to

d2V

dx2
+ d2 〈ψ〉

dx2
= 0 (4.358)

which can be considered as a straightforward consequence of the global elec-
troneutrality condition, eqn (4.350). Although the potential ψ(r, x) is not
identical to its pore average value 〈ψ〉 (x), eqn (4.358) implies that the first
two terms in the right-hand side of eqn (4.354) partially cancel out. Moreover,
since the pore length is much larger than the pore radius, the second deriva-
tive of the potential along the axial direction is expected to be much smaller
than its second derivative in the radial direction. Thus, we conclude that the
Poisson–Boltzmann equation can be approximated by

z2 f

(
∂2ψ

∂r2
+ 1

r

∂ψ

∂r

)
= z2 f

r

∂

∂r

(
r
∂ψ

∂r

)
≈ (κw

D )2 sinh(z2 f ψ), (4.359)

where κw
D (x) ≡ [2z2

1F2c±,12(x)/εRT ]1/2 is the Debye parameter at position x.
In general, this equation must be solved numerically, but analytical solutions
can also be obtained in some cases. As a preliminary step, it is interesting to
write down the boundary condition at the pore wall, eqn (4.357), as

2z2 f
∂ψ

∂r

∣∣∣∣
r=a

= (κX
D )2a, (4.360)

where κX
D ≡ (z2

1F2X /εRT )1/2 is the Debye parameter referred to the mem-
brane fixed-charge concentration. Moreover, by multiplication of both sides
of eqn (4.359) by 2πr and further integration along the pore radius, with the
boundary conditions in eqns (4.356) and (4.357), it is obtained that

〈sinh(z2 f ψ)〉 =
(

κX
D

κw
D

)2

= X

2c±,12
. (4.361)
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Equations (4.360) and (4.361) state that the electric field at the pore wall and
the average value of the potential17 are determined by κX

D a and κX
D /κw

D , respec-
tively. These conclusions help in the analysis of the approximate solutions of
eqn (4.359).

c) Linear approximation
When the surface-charge density is so low that z2 f ψ(r, x) < 1, the Poisson–
Boltzmann equation can be linearized to

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
≈ (κw

D )2ψ . (4.362)

The solution of this equation is

ψ(r, x) = σ

εκw
D

I0(κ
w
D r)

I1(κ
w
D a)

= X

4z2 fc±,12

κw
D aI0(κ

w
D r)

I1(κ
w
D a)

= ψ(0, x)I0(κ
w
D r), (4.363)

where I0(ξ) and I1(ξ) are the modified Bessel functions of orders 0 and 1, respec-
tively, and argument ξ ≡ κw

D r. It is interesting to note that eqn (4.361) implies
that the average value of this potential contribution is 〈ψ〉 ≈ X /(2z2 fc±,12).18

Moreover, since this approximate solution of the Poisson–Boltzmann equation
is expected to be valid when the pore radius is much larger than the Debye length
(i.e. the reciprocal of the Debye parameter κw

D ) and the difference between
I0(κ

w
D a) and I1(κ

w
D a) is smaller than 10% when ca. κw

D a > 6, we can write
down the condition of validity, z2 f ψ(a, x) � 1, of this approximation as
X � 4c±,12/(κ

w
D a).

Figure 4.41 shows a graphical representation of the potential distribution
described by eqn (4.363) that evidences that the thickness of the electrical dou-
ble layer adjacent to the pore wall decreases with increasing κw

D a. In particular,
it is observed that the electrical double layer extends to ca. half of the pore radius
when κw

D a = 10 and that it is confined to the close vicinity of the pore wall
when κw

D a is larger than this value. Figure 4.41 (b) shows that the value poten-
tial gradient at the pore wall is determined by κX

D a, as imposed by eqn (4.360).
Note, finally, that the condition of validity of this linear approximation can also
be stated as (κX

D a)2/(2κw
D a) � 1.

17 Expressing the potential as ψ = 〈ψ〉+ψ̃ , it is easy to see that 〈sinh( z2 f ψ )〉 ≈ sinh(z2 f 〈ψ〉)
when z2 f ψ̃ � 1. It is possible, however, that z2 f ψ̃ > 1 when κX

D a 
 1, but this fact does not
significantly modify our conclusions.

18 This conclusion can also be derived from eqn (4.360) as 〈ψ〉 = σ 〈I 0 (κw
D r )〉 /

[εκw
D I1(κw

D a)] and evaluating 〈I 0 (κw
D r )〉 = (2/κw

D a)I1(κw
D a) from the relation ξ I0 = d(ξ I1)/dξ .
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Fig. 4.41.
Radial distribution of the electric potential inside a charged cylindrical pore in the linear approximation. (a) Potential relative to its maximum
value at the pore wall evaluated for κw

D a = 10 (solid line), 20 (long dashed line), and 100 (short dashed line). For a given value of the average
potential, the potential at the pore centre decreases and that at the pore wall increases with increasing κw

D a. (b) Potential distribution for

κw
D a = 20 and κX

D a = 4 (solid line), 2 (long dashed), and 1 (short dashed).

d) Total co-ion exclusion approximation
When the surface charge density is so high that z2 f ψ(r, x) 
 1, the Poisson–
Boltzmann equation can be approximated by

z2 f

(
∂2ψ

∂r2
+ 1

r

∂ψ

∂r

)
= (κX

D )2 sinh(z2 f ψ)

〈sinh(z2 f ψ)〉 ≈ (κX
D )2 exp(z2 f ψ)

〈exp(z2 f ψ)〉 ,

(4.364)

or, in short,

∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
≈ (κX

D )2 eϕ

〈eϕ〉 = (κ0
D)2eϕ , (4.365)

where ϕ ≡ z2 f [ψ(r, x) − ψ(0, x)] and κ0
D ≡ [z2

1F2c1(0, x)/εRT ]1/2 is the
Debye parameter referred to the counterion concentration at the pore axis,
c1(0, x) = c±,12 exp[z2 f ψ(0, x)].19 Equation (4.365) can also be obtained by
noting that the co-ion concentration can be neglected inside the pore solution
when z2 f ψ(r, x) 
 1. The solution of eqn (4.365) is

ϕ(r, x) = −2 ln[1 − (κ0
Dr)2/8]. (4.366)

Since the (dimensionless) average space-charge density is〈
eϕ

〉 =
〈
[1 − (κ0

Dr)2/8]−2
〉
= [1 − (κ0

Da)2/8]−1, (4.367)

19 Note that these different Debye parameters are conveniently introduced for the sake of simplic-
ity of our notation. It is shown below, when describing the ‘flat’distribution approximation, that the
potential distribution inside the pore is actually determined by κM

D ≡ [z2
1F2(X +2c±,12)/εRT ]1/2,

which closely resembles that defined in eqn (4.158) and reduces to either κw
D or κX

D in the limits of
weakly and strongly charged membranes, respectively.
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Fig. 4.42.
Radial distribution of the electric potential inside a charged cylindrical pore in the total coion exclusion approximation. (a) Difference between the
local potential and the potential at the pore axis relative to the potential drop along the pore radius. (b) Difference between the local potential and
the potential at the pore axis, in RT/z2F units. The distributions have been evaluated for κX

D a = 4 (solid line), 2 (long dashed), and 1 (short dashed).

and eqn (4.361) becomes 〈exp(z2 f ψ)〉 ≈ 2 〈sinh(z2 f ψ)〉 = X /c±,12, the
counterion concentration at the pore axis can be evaluated as

c1(0, x) = X

1 + (κX
D a)2/8

. (4.368)

This is equivalent to the relation (κ0
D)2 = (κX

D )2/[1 + (κX
D a)2/8], which pre-

vents the argument of the logarithm in eqn (4.366) to take negative values. The
potential drop in the radial direction can thus be evaluated as

ϕ(a, x) = −2 ln[1 − (κ0
Da)2/8] = 2 ln[1 + (κX

D a)2/8]. (4.369)

The potential distribution in eqn (4.366) has been represented in Fig. 4.42 for
different values of κX

D a. It is clear from the above equations that κX
D a determines

the potential gradient at the pore wall and the potential drop along the pore
radius, and both increase with κX

D a.
Finally, since the potential at the pore axis is

z2 f ψ(0, x) = ln
c1(0, x)

c±,12
= ln

2(κ0
D)2

(κw
D )2

= ln
2(κX

D )2

(κw
D )2[1 + (κX

D a)2/8] , (4.370)

the condition of validity of this total co-ion exclusion approximation,
z2 f ψ(0, x) 
 1, can be established as X /[1 + (κX

D a)2/8] 
 c±,12.

e) ‘Flat’ distribution approximation
When the deviation ψ̃ = ψ −〈ψ〉 of the local potential from the average value
is small, z2 f ψ̃ � 1, it is possible to derive a third approximation solution
of the Poisson–Boltzmann equation that can be used in the intermediate case
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z2 f 〈ψ〉 ≈ 1. By substituting the decomposition ψ = 〈ψ〉 + ψ̃ in the Poisson–
Boltzmann equation, this can be transformed to

z2 f

(
∂2ψ̃

∂r2
+ 1

r

∂ψ̃

∂r

)
≈ (κw

D )2[sinh(z2 f 〈ψ〉) + cosh(z2 f 〈ψ〉)z2 f ψ̃]

≈ (κX
D )2 + (κM

D )2z2 f ψ̃ , (4.371)

where κM
D ≡ [(κw

D )4 + (κX
D )4]1/4 = [z2

1F2(2c±,12 + X )/εRT ]1/2 is the Debye
parameter inside the pore and we have used the fact that 〈sinh(z2 f ψ)〉 =
(κX

D /κw
D )2 ≈ sinh(z2 f 〈ψ〉). The solution of eqn (4.371) is

z2 f ψ̃(r, x) = z2 f σ

εκM
D

I0(κ
M
D r)

I1(κ
M
D a)

− (κX
D )2

(κM
D )2

= (κX
D )2

(κM
D )2

[
κM

D a I0(κ
M
D r)

2I1(κ
M
D a)

− 1

]
.

(4.372)

Since
〈
I0(κ

M
D r)

〉 = (2/κM
D a)I1(κ

M
D a), it is satisfied that

〈
ψ̃
〉

= 0, as required

by its definition. Figure 4.43 shows that this ‘flat’ distribution approximation is
most useful when κX

D a ≈ κw
D a ≈ 1. Finally, Fig. 4.44 shows several potential

distributions obtained with the appropriate approximations. Some cases, like
κX

D a = 10 and κw
D a = 10 (not shown), cannot be described with any of the

above approximations and would require a numerical solution of the Poisson–
Boltzmann equation.
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Fig. 4.43.
Radial distribution of the electric potential
inside a charged cylindrical pore for: (a)
κX

D a = 1, κw
D a = 0.5, (b)

κX
D a = 2, κw

D a = 1, (c)

κX
D a = 0.5, κw

D a = 1, and (d)

κX
D a = 1, κw

D a = 2. The line styles
correspond to the different
approximations: (solid) ‘flat’ distribution,
(long dashed) total coion exclusion, and
(short dashed) linear approximation. In
cases (a) and (b) the linear approximation
is not valid. In cases (c) and (d) the total
coion exclusion approximation is not valid.
Note that z2ψ ≥ 0 because subscript 2
denotes the coion. In the case
κX

D a = κw
D a = 1 (not shown), only the

‘flat’ distribution approximation is valid.
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Fig. 4.44.
Radial distribution of the electric potential
inside a charged cylindrical pore for: (a)
κX

D a = 5 and κw
D a = 0.1 (solid line), 1

(long dashed), and 10 (short dashed), and
(b) κw

D a = 0.5 and κX
D a = 2 (solid line), 1

(long dashed), and 0.5 (short dashed). Note
that the electrical double layer extends
over the whole pore cross section in all
cases except for κX

D a = 5 and κw
D a = 10.
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4.4.2 Electro-osmotic convection
In the previous section we have described the most important issue for under-
standing the ion transport in charged porous membranes: the radial electrical
double layer. We now study another key characteristic: the occurrence of con-
vective flow. Consider a charged porous membrane that separates two solutions
with the same concentration of a symmetric electrolyte. Although we should
expect neither a solution flow nor a solvent flow through the membrane under
these conditions, it is experimentally observed that convective flow is estab-
lished when an electric potential difference is applied between the two external
solutions to drive an electric current through the pores under steady-state con-
ditions. The origin of this solution flow is related to the radial electrical double
layer. The solution inside the pores is not locally electroneutral. The applied
electric field acts on the charge in every solution volume element and, in com-
bination with the effect of viscosity, causes its steady motion in the direction of
the field in cation-exchange membranes and in the opposite direction in anion-
exchange membranes. In other words, the counterions are the majority in the
pore solution and, due to their interaction with the field, impart more momen-
tum to the solution than the co-ions do. Since this convective flow takes place
in the same direction of motion as that of the counterions, they move faster than
they would do in a stationary liquid. The opposite is true for the co-ions. As a
consequence, this convection increases the current efficiency of the membrane.

a) Electro-osmotic velocity
In the situation under consideration, the ionic flux densities are

ji = −ziDici f
dV

dx
+ civ, (4.373)

and the solution velocity v(r) is given by the axial component of the Navier–
Stokes equation, eqn (1.86),

η
1

r

d

dr

(
r

dv

dr

)
= ρe

dV

dx
. (4.374)
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By elimination of the space-charge density ρe = F(z1c1 + z2c2) between the
Navier–Stokes equation and the Poisson equation

1

r

d

dr

(
r

dψ

dr

)
= −ρe

ε
, (4.375)

and after a first integration with respect to r (using the symmetry boundary
conditions at the pore axis), we obtain

η
dv

dr
= −ε

dV

dx

dψ

dr
. (4.376)

Therefore, the solution velocity is related to the electric potential contribution
ψ by

v(r) = ε

η

dV

dx
[ψ(a) − ψ(r)], (4.377)

where the non-slip boundary condition, v(a) = 0, has been used at the pore
wall. The average velocity is then

〈v〉 = ε

η

dV

dx
[ψ(a) − 〈ψ〉] = ε

η
ψ̃(a)

dV

dx
, (4.378)

where ψ̃ ≡ ψ − 〈ψ〉 denotes the deviation from the average value.
Equation (4.378) is known as the Helmholtz–Smoluchowski formula in elec-
trokinetics.

The magnitude ψ̃(a) can be evaluated from the approximate solutions of the
Poisson–Boltzmann equation derived above. Thus, when the radial electrical
double layer is described in terms of the total co-ion exclusion approximation

z2 f ψ̃(a) = ϕ(a) − 〈ϕ〉

= 2 ln[1 + (κX
D a)2/8] − 2

{
1 − ln[1 + (κX

D a)2/8]
(κX

D a)2/8

}
= 2[1 + 8/(κX

D a)2] ln[1 + (κX
D a)2/8] − 2, (4.379)

where we have used eqn (4.369) and calculated the average of ϕ in eqn (4.366).
Similarly, when the radial electrical double layer is described in terms of the
‘flat’ distribution approximation

z2 f ψ̃(a) = (κX
D )2

(κM
D )2

[
κM

D a I0(κ
M
D a)

2I1(κ
M
D a)

− 1

]
. (4.380)

This expression can also be used when the membrane is weakly charged, X �
c±,12, and the linear approximation is then valid, because κM

D ≈ κw
D . These

expressions are represented in Fig. 4.45. As expected, ψ̃(a) can take larger
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Fig. 4.45.
Difference between the electric potential at the pore wall and its average value (in RT/z2F units) inside a charged cylindrical pore against κX

D a:
(a) total co-ion exclusion approximation and (b) ‘flat’ distribution approximation with κw

D a = 10 (solid line), 5 (long dashed), and 2 (short
dashed). In case (a), κw

D a should be small enough to ensure the validity of the total co-ion exclusion approximation. In case (b), the curves have
been drawn only within the range of validity of the ‘flat’ distribution approximation.

values when the total co-ion exclusion is valid and, particularly, when κX
D a

is large. This implies that the electro-osmotic velocity is more important in
membranes with high surface-charge density and wide pores (because of their
large hydraulic permeability).

Before the development of the charged capillary model by Dresner [24] and
Osterle and co-workers [25–27], Schlögl clearly explained the importance of
convection in transport processes across charged porous membranes. He found
that it was not only responsible for the phenomenon of anomalous osmosis
but also caused an increase in the electrical conductivity between ca. 10 and
45% [28–30]. Since Schlögl did not describe the variation of the electrostatic
potential in the radial direction inside the pores, his expression for the average
velocity20 can be obtained after replacing ρe by 〈ρe〉 = −zMFcM = −z2FX
in the Navier–Stokes equation, eqn (4.374), and integrating it subject to the
non-slip condition at the pore wall and the symmetry condition at the pore axis.
Thus, the average electro-osmotic velocity can be estimated in this approach as

〈v〉 ≈ z2FXa2

8η

dV

dx
= ε

η

(κX
D a)2

8z2 f

dV

dx
. (4.381)

It is noteworthy that eqn (4.381) leads to the same conclusion as the charged
capillary model, i.e. that the electro-osmotic velocity is larger in membranes
with large pore radius and large surface-charge density. In fact, eqn (4.381)
can be obtained from eqn (4.380) when κM

D a < 1, and from eqn (4.379) when
(κX

D a)2/8 < 1 after introducing the approximation ln(1 + x) ≈ x − x2/2. As
a final comment, we mention that convection was neglected in the classical
Teorell–Meyer–Sievers theory of membrane transport.

20 For instance, in Ref. [29], Schlögl obtained the (average) velocity from the balance of hydro-
dynamical forces K 〈v〉+〈ρe〉 dV /dx = 0, where K is the hydraulic flow resistance of the membrane
(i.e. the reciprocal of the hydraulic permeability).
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b) Convective conductivity
The electric current density that flows through the pores is

I = F(z1j1 + z2j2) = −κ
dV

dx
+ ρev

= −
{
κ − ε

η
ρe[ψ(a) − ψ(r)]

}
dV

dx
, (4.382)

where κ ≡ F2(z2
1D1c1 + z2

2D2c2)/RT is the electrical conductivity. The terms
−κdV /dx and ρev are the conduction and the electro-osmotic current densities,
respectively, and both are proportional to the applied electric field in the axial
direction.21

The average value of the electro-osmotic current density is

〈Ic〉 = 〈ρev〉 = − 〈κc〉 dV

dx
, (4.383)

where

〈κc〉 ≡ z2εF

η
[X ψ(a) − 〈(c1 − c2)ψ〉] (4.384)

is the ‘convective electrical conductivity’ of the symmetric electrolyte, and
we have used the global electroneutrality condition, 〈c1 − c2〉 = X . Since
z2ψ(r) ≤ z2ψ(a), it should be clear from the right-hand side of eqn (4.384)
that 〈κc〉 > 0, and therefore the solution flow induced by the applied current
enhances the effective electrical conductivity. In other words, the conductive
and the convective contributions to the electric current density have the same
direction. The equations describing electric conduction are then

〈I〉 = −(〈κ〉 + 〈κc〉)dV

dx
, (4.385)

dV

dx
= −〈I〉 − 〈Ic〉

〈κ〉 , (4.386)

where 〈κ〉 is the average electrical conductivity of the pore solution and 〈I〉 the
average current density.

c) Weakly charged membranes
In weakly charged membranes the deviations of the transport magnitudes with
respect to their pore average values are relatively small and the average value of
a product of two magnitudes can be approximated by the product of the average
values. For instance, the convective contribution to the electric current density
is then

〈Ic〉 ≈ 〈ρe〉 〈v〉 = −z2FX 〈v〉 , (4.387)

21 In fact, the proportionality between the convective velocity and the axial field can be used to
define the mechanical mobility uc of the pore solution from the relation 〈v〉 = z2FucdV /dx [31].
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and, from eqn (4.378), the convective conductivity can be approximated by

〈κc〉 ≈ z2FX
ε

η
ψ̃(a). (4.388)

Similarly, the ionic flux densities can be approximated in weakly charged
membranes by

〈ji〉 ≈ −ziDi 〈ci〉 f
dV

dx
+ 〈ci〉 〈v〉 , (4.389)

and the current efficiency, i.e. the integral transport number of the counterion,
can be approximated by

T1 ≡ z1F 〈j1〉
〈I〉 ≈ 〈κ1〉 + (〈c1〉 /X ) 〈κc〉

〈κ〉 + 〈κc〉 , (4.390)

where κ1 ≡ z2
1F2D1c1/RT is the counterion contribution to the electri-

cal conductivity. Note that the current efficiency increases with increasing
electro-osmotic convection [32] because 〈κ1〉 / 〈κ〉 < 1 < 〈c1〉 /X .

d) “Barycentric” reference frame
In a reference frame moving with respect to the membrane with the average
solution velocity 〈v〉 (which can be understood as a kind of barycentric reference
frame), the corresponding equations would be

〈
jm
i

〉 ≈ −ziDi 〈 ci 〉 f
dV

dx
(4.391)

〈
Im 〉 = F(z1

〈
jm
1

〉 + z2
〈
jm
2

〉
) = − 〈 κ 〉 dV

dx
, (4.392)

where the superscript m identifies the magnitudes relative to this reference
frame. Since the fixed charges bound to the membrane would move with velocity
− 〈v〉 in this reference frame, they would carry an electric current〈

Im
M

〉 = −zMFcM 〈 v 〉 , (4.393)

which, obviously, coincides with that shown in eqn (4.387), i.e.
〈
Im
M

〉 = 〈Ic〉 and
〈Im〉 = 〈I〉 − 〈Ic〉. In fact, the flux density of the fixed-charge groups in this
reference frame can be written as

〈
jm
M

〉 = −cM 〈 v 〉 =
〈
Im
M

〉
zMF

= −zMDm
McMf

dV

dx
, (4.394)

where

Dm
M ≡ RT

z2
MF2cM

〈 κc 〉 (4.395)

is the effective diffusion coefficient of the fixed groups in this reference frame.
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In the laboratory reference frame, the fixed groups are immobile and their
flux density is obviously zero, jM = 0. The average ionic flux densities can be
written as

〈 ji 〉 ≈ 〈
jm
i

〉 + 〈 ci 〉 〈 v 〉 = −(ziDi − zMDm
M) 〈 ci 〉 f

dV

dx
(4.396)

Note that, as already explained above, the conductive and convective contribu-
tions are in the same direction for the counterion and in opposite directions for
the co-ion.

4.4.3 Transport mechanisms in charged porous membranes
The transport of a binary electrolyte across a charged porous membrane
separating two solutions at different concentrations is characterized by the ratio
a/Lw

D = κw
D a between the pore radius a and the thickness Lw

D ≡ 1/κw
D of the

radial double layer, where κw
D ≡ [2z2

1F2c±,12/εRT ]1/2 is the Debye param-
eter. Somewhat arbitrarily, we can assume that the transport mechanisms are
different depending on the value of this ratio. When a/Lw

D � 1, the double
layer fills the entire pore, co-ions are excluded and counterion transport takes
place through a migrational hopping mechanism. That is, the counterions hope
from a fixed-charge group to another. Electro-osmotic convection might also be
important if the hydraulic permeability of the membrane is not too low. When
a/Lw

D 
 1, both diffusion and migration take place inside the pore, but the elec-
trical double layer plays an important role in the analysis. Finally, diffusion,
migration, and convection come into play when a/Lw

D ≈ 1. We write below the
corresponding transport equations in these three cases. For the sake of clarity,
we avoid the use of the average symbol 〈〉 and understand implicitly that all
magnitudes involved are average values over the pore cross-section.

a) Narrow pores a � Lw
D

When the double layer fills the entire pore, the membrane actually is an ideally
selective membrane in which co-ions are completely excluded and electrolyte
diffusion cannot take place (see Section 4.3.5). The counterion transport number
is one, and its flux density (in the membrane-fixed reference system) is

j1 = t1
z1

I − Ic

F
+ c1v = I − Ic

z1F
+ X v = I

z1F
. (4.397)

Moreover, the electrical conductivity of the pore solution is κ = z2
1F2D1X /RT .

b) Wide pores a � Lw
D

The condition a 
 Lw
D also implies that the membrane is weakly charged and

that the space-charge density is small. The electro-osmotic velocity is propor-
tional to the electrical force acting on the solution, which in turn is proportional
to the space-charge density, and therefore convection is expected to be negligible
in the case a 
 LM

D . The charge on the pore walls, however, affects the transport



218 Transport in membranes

phenomena because the ionic concentrations must satisfy the electroneutrality
condition, eqn (4.350), c1 = c2 + X .

The flux density of species i is22

ji = −Di

(
dci

dx
+ zici f

dφ

dx

)
. (4.398)

The equivalent diffusion–conduction form [see eqn (4.187)] is

ji = −DM
12

dci

dx
+ tM

i

zi

I

F
, (4.399)

where, for a symmetric electrolyte, tM
i = Dici/(D1c1 + D2c2) and DM

12 ≡
tM
2 D1 + tM

1 D2. Using the electroneutrality condition c1 = c2 + X , it can be
easily shown that

1

tM
1

= 1 + D2c2

D1c1
= 1 + D2

D1
− D2X

D1c1
= 1

tw
1

− D2X

D1c1
, (4.400)

and hence we conclude that

θ ≡ X

c1
= D1

D2

(
1

tw
1

− 1

tM
1

)
(4.401)

is always a positive magnitude. Moreover, θ is measurable because the trans-
port numbers tw

1 and tM
1 can be experimentally determined (and the diffusion

coefficients D1 and D2 are known with good accuracy). If species 1 is the coun-
terion, θ varies between 0 and 1, depending on the ion-exchange capacity of
the membrane.

The condition a 
 Lw
D also implies that the ionic concentrations vary very

smoothly with the radial position coordinate. Then, it can be assumed that the
average value of the product of ionic concentrations is equal to the product of
average concentrations. The Donnan equilibrium condition then states that

(cw
12)

2 = (cw±,12)
2 = (cM±,12)

2 ≈ c1c2, (4.402)

where the right-hand side should be read as the product of the average concen-
trations, and it has been assumed that the activity coefficients are the same in
the two phases. The combination of eqn (4.402) and the global electroneutrality
condition, c1 = c2 + X , leads to

(cw
12)

2 ≈ c1c2 = c1(c1 − X ) = c2
1(1 − θ). (4.403)

22 Remember that the average symbols have been suppressed but the concentration in eqn (4.398)
is the pore-average concentration and this justifies the use of the total derivative symbols.
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Since θ can be measured by means of eqn (4.401), eqn (4.403) can be used to
evaluate the average ionic concentrations in the membrane phase as

c1 = cw
12(1 − θ)−1/2, (4.404)

c2 = cw
12(1 − θ)1/2. (4.405)

c) Intermediate pore sizes, a ≈ Lw
D

Ionic transport results in this case from a combination of three mechanisms:
diffusion, migration, and convection. The flux density of species i (in the
membrane-fixed reference frame) is

ji = −Di

(
dci

dx
+ zici f

dφ

dx

)
+ civ, (4.406)

and the electric current density is

I = −κ

(
dφ

dx
− dφdif

dx

)
+ z1FX v, (4.407)

where

f
dφdif

dx
= −

(
tM
1

z1
+ tM

2

z2

)
dci

dx
(4.408)

is the diffusion potential gradient and tM
i = Dici/(D1c1+D2c2) for a symmetric

electrolyte. The flux density of species i can also be written as

ji = −DM
12

dci

dx
+ tM

i

z1

I

F
+ [ci − (z1/zi)t

M
i X ]v, (4.409)

where DM
12 ≡ tM

2 D1 + tM
1 D2.

4.4.4 Theoretical approaches for describing transport
in porous membranes

In the previous sections we have discussed the basic ideas for the description of
mass-transport processes in charged porous membranes. We briefly outline here
some alternative theoretical approaches in order to clarify their differences.

The simplest possibility for describing transport processes in charged porous
membranes makes use of a single axial position co-ordinate, and neglects the
radial dependence of all transport magnitudes. This is known as the homoge-
neous membrane or homogeneous potential model. In contrast, the space-charge
or charged-capillary model takes into account both the radial and axial posi-
tion co-ordinates, and solves the Nernst–Planck (including convection) and
Navier–Stokes equations, together with the Poisson–Boltzmann equation in



220 Transport in membranes

the radial direction. This latter model is considered to be the most appropri-
ate for the description of transport across charged porous membranes, but its
solution is rather demanding from the point of view of numerical computation.
Naturally, there have been several studies aiming at determining under which
conditions the space-charge model leads to results significantly different from
those obtained from the much simpler homogeneous potential model. Thus,
for instance, one of the conclusions of these studies is that, as we explained in
Section 4.2.5, the radial dependence of the electric potential inside a charged
porous membrane implies that the co-ion exclusion is poorer. This is more
noticeable when the radial dependence of the potential is stronger (that is,
when κX

D a 
 1 and κw
D a � 1; see Fig. 4.44), and implies that (tM

1 − tM
2 ) is

smaller in the space-charge model than in the homogeneous potential model
due to the poorer co-ion exclusion. Therefore, the diffusion potential inside the
membrane, see eqn (4.408),

z2 f �φdif =
c1(h)∫

c1(0)

(tM
1 − tM

2 )dc1 (4.410)

is also smaller than predicted by the homogeneous potential model [33]. Note,
however, that both models give similar results when the fixed-charge concen-
tration is small.Acomplete comparison of transport magnitudes evaluated from
these two models can be found in Ref. [33].

In the homogeneous potential model, symbols like φ, ci or tM
i denote average

values over the pore cross-section. This is the approach followed in Section 4.4.3
and closely resembles that used in Section 4.3. The fundamental set of transport
equations (for a symmetric binary electrolyte) is

c1 = c2 + X , (4.411)

ji = −Di

(
dci

dx
+ zici f

dφ

dx

)
+ civ, (4.412)

I = F(z1j1 + z2j2), (4.413)

where the convective velocity v is either determined experimentally or
estimated from

v = dh z2FX
dφ

dx
, (4.414)

where dh is the hydraulic permeability of the membrane.
The integration of the transport equations over the membrane thickness is

done as follows [34]. First, we note that dX /dx = 0 because the fixed-charge
concentration is independent of the axial position x, and eliminate the con-
centration gradient from the flux-density equations for the two ionic species,
eqn (4.412), to obtain the electric potential gradient as

z2 f
dφ

dx
= 2

Dw
12(c1 + c2)

[
tw
2 j1 − tw

1 j2 − (tw
2 c1 − tw

1 c2)v
]

, (4.415)
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where tw
1 = D1/(D1 + D2) = 1 − tw

2 and Dw
12 = 2D1D2/(D1 + D2). Similarly,

we can eliminate the electric potential gradient from the flux-density equations
for the two ionic species and obtain the concentration gradient

dc1

dx
= dc2

dx
= 2

Dw
12(c1 + c2)

[
c1c2v − (c1tw

1 j2 + c2tw
2 j1)

]
. (4.416)

This equation can be written as

2v

Dw
12

dx = (2c2 + X )dc2

(c2 − c+)(c2 − c−)
=

(
X + 2c+
c2 − c+

− X + 2c−
c2 − c−

)
dc2

c+ − c−
,

(4.417)

where c+ and c− are the two roots of the equation (c2+X )c2v = (c2+X )tw
1 j2+

c2tw
2 j1 (solved with respect to c2). Equation (4.417) can be integrated over the

membrane thickness to give

2vh

Dw
12

(c+ − c−) = (X + 2c+) ln
c2(h) − c+
c2(0) − c+

− (X + 2c−) ln
c2(h) − c−
c2(0) − c−

, (4.418)

and the Donnan equilibrium conditions at the membrane boundaries, together
with eqn (4.350), then allow determination of the flux densities. Similarly,
eliminating the position co-ordinate from eqns (4.415) and (4.416), we obtain

z2 f dφ = tw
2 j1 − tw

1 j2 − (tw
2 c1 − tw

1 c2)v

c1c2v − (c1tw
1 j2 + c2tw

2 j1)
dc2

=
[
(tw

1 − tw
2 )c+ + (tw

2 j1 − tw
1 j2)/v − tw

2 X

c2 − c+

− (tw
1 − tw

2 )c− + (tw
2 j1 − tw

1 j2)/v − tw
2 X

c2 − c−

]
dc2

c+ − c−
, (4.419)

which can be integrated to obtain the potential drop in the membrane.

Exercises
4.1 Employing the Goldman constant-field assumption, dφ/dx = �φ/h, solve the

steady-state Nernst–Planck equation

j = −D

(
dc

dx
+ zcf

dφ

dx

)
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under the boundary conditions c(0) = cα and c(h) = cβ , and show that the
concentration profile is

c = cα + (cβ − cα)
e−zf �φ x/h − 1

e−zf �φ − 1

= cβ + (cα − cβ) × e−zf �φ − e−zf �φ x/h

e−zf �φ − 1

and that the flux density is given by the Goldman equation

j = −D

h

zf �φ

ezf �φ − 1
(cβezf �φ − cα).

4.2 The lag time in diffusion processes can be evaluated solving Fick’s second law

∂c

∂t
= D

∂2c

∂x2

by the Laplace transform method.
(a) Transform this equation and its boundary conditions (see Section 4.1.2) and

show that the Laplace-transformed concentration is

c̃ = cb

s

sinh q(h − x)

sinh qh
.

(b) Using the inverse transform formula

L−1
(

e−qx

s

)
= erfc

(
x

2
√

Dt

)
= 1 − erf

(
x

2
√

Dt

)
and a series expansion of 1/ sinh qh [see eqn (3.160)], show that the
concentration is

c = L−1(c̃) = cb
∞∑

n=0

[
erf

(
nh + h − x/2√

Dt

)
− erf

(
nh + x/2√

Dt

)]
,

and reproduce Fig. 4.3 using this equation.
4.3 In the experimental set-up of Fig. 4.12 the membrane constant is given by

A

h
= cα

i V̇ α + tiIA/ziF

D12(cβ
i − cα

i )
,

and does not depend on the volume of compartment β. Explain the influence of
the compartment volumes in this experimental set-up and compare it with the
experimental set-up of Fig. 4.1.

4.4 In the experimental set-up considered in Fig. 4.12 the electric current density and
the volume flow rate are independent parameters that can take any value. How
can the membrane constant

A

h
= cα

i V̇ α + tiIA/ziF

D12(cβ
i − cα

i )

be determined when I = −ziFcα
i V̇ α/tiA?
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4.5 It has been shown in Section 4.1.7 that when a membrane that bears no
fixed-charge groups separates a mixture of two 1:1 electrolytes, the diffusion
potential is

�φdif = �

f
ln

cβ
T

cα
T

,

where cT ≡ ∑
i ci is the total ionic concentration and � is a constant that must

be determined from the solution of the following transcendental equation

(cβ
3 /cα

3 )1+�(rβ
13 + rβ

23) − (rα
13 + rα

23)

(cβ
3 /cα

3 )1+� − 1
= 1 − �

1 + �
,

where rα
13 ≡ D1cα

1 /D3cα
3 , rβ

13 ≡ D1cβ
1 /D3cβ

3 , rα
23 ≡ D2cα

2 /D3cα
3 , and rβ

23 ≡
D2cβ

2 /D3cβ
3 .

(a) Using the above equations, evaluate the liquid junction potential �φdif =
φβ −φα when a saturated 4.2 M KCl solution (compartment α) is in contact
(through a neutral membrane) with a 0.1 M HCl (compartment β).

(b) Evaluate this liquid junction potential using Henderson’s equation

f �φdif = − (rβ
13 + rβ

23 − 1)(cβ
3 /cα

3 ) − (rα
13 + rα

23 − 1)

(rβ
13 + rβ

23 + 1)(cβ
3 /cα

3 ) − (rα
13 + rα

23 + 1)

ln

(
cβ

3
cα

3

rβ
13 + rβ

23 + 1

rα
13 + rα

23 + 1

)
.

(c) Evaluate this liquid-junction potential using Goldman’s equation

f �φdif = − ln
(rβ

13 + rβ
23)(cβ

3 /cα
3 ) + 1

rα
13 + rα

23 + (cβ
3 /cα

3 )
.

In all cases, denote the ions H+, K+, Cl−as species 1, 2, and 3, respectively,
and take DCl− = 1.037DK+ = 0.218DH+ and 1/f = 26 mV.

4.6 It has been shown in Section 4.1.7 that when a membrane that bears no
fixed-charge groups separates a mixture of symmetric z : z electrolytes under
strong stirring conditions, the exact value of the diffusion potential �φdif
= φβ − φα is

�φdif = �

f
ln

cβ
T

cα
T

,

where cT ≡ ∑
i ci is the total ionic concentration and � is a constant that must

be determined from the solution of the following transcendental equation

(cβ
T/cα

T)z� ∑
+

Dic
β
i − ∑

+
Dic

α
i

(cβ
T/cα

T)−z� ∑
−

Dic
β
i − ∑

−
Dic

α
i

= 1 − z�

1 + z�

(cβ
T/cα

T)1+z� − 1

(cβ
T/cα

T)1−z� − 1
,
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where the + and − signs under the sums indicate that they are restricted to cations
and anions, respectively. Prove that when the solution contains only a 1:1 binary
electrolyte these equations reduce to

f �φdif = D2 − D1

D1 + D2
ln

cβ
12

cα
12

,

where species 1 is the cation and species 2 is the anion.
4.7 Using Henderson’s equation

f �φdif ≈ −
∑

i ziDi�ci∑
j z2

j Dj�cj
ln

∑
k z2

k Dk cβ

k∑
l z2

l Dlc
α
l

evaluate the liquid-junction potential �φdif = φβ − φα when a x M NaCl
solution (compartment α) is in contact (through a neutral membrane) with a 1 M
Na2SO4 solution (compartment β). Take DNa+ = 0.656 DCl− = 0.314 DSO2−

4
and 1/f = 26 mV, and plot your result as a function of x.

4.8 In cell biophysics, the resting potential is usually estimated using Goldman’s
equation for the liquid-junction potential

�φdif = 1

f
ln

∑
+

Dic
α
i + ∑

−
Dic

β
i∑

+
Dic

β
i + ∑

−
Dic

α
i

.

Denote the outside of the cell as compartment α and the inside as compartment
β, and consider that they both contain NaCl+KCl mixtures with the following

concentrations cα
Na+ = 145 mM, cα

K+ = 4 mM, cα
Cl− = 149 mM, cβ

Na+ = 12 mM,

cβ

K+ = 150 mM, and cβ

Cl− = 162 mM.
(a) Using the values DNa+ = 1.556 DCl− = 0.007 DK+ and 1/f = 26.7mV,

show that the Goldman approximation provides a value very close to the
actual liquid-junction potential. Evaluate the latter from

�φdif = �

f
ln

cβ
T

cα
T

,

where � must be obtained first by solving numerically the equation

(cβ
3 /cα

3 )1+�(rβ
13 + rβ

23) − (rα
13 + rα

23)

(cβ
3 /cα

3 )1+� − 1
= 1 − �

1 + �
,

where rα
13 ≡ D1cα

1 /D3cα
3 , rβ

13 ≡ D1cβ
1 /D3cβ

3 , rα
23 ≡ D2cα

2 /D3cα
3 , and

rβ
23 ≡ D2cβ

2 /D3cβ
3 .

(b) Estimate also the liquid-junction potential under the above conditions from
the Henderson approximation.

4.9 It can be considered that the ions that determine the resting potential in non-
excitable cells are sodium, potassium and chloride ions, because they are in
larger concentration in the outer (α) and inner (β) solutions. The chloride ions,
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however, do not really need to be taken into account because their distribution
is very close to equilibrium and their flux density can be neglected in the open-
circuit equation I/F = jNa+ + jK+ − jCl− = 0. This means that Goldman’s
equation for the liquid-junction potential can be used taking into account only
the Na+ and K+ ions

�φdif ≈ 1

f
ln

DNa+cα
Na+ + DK+cα

K+

DNa+cβ

Na+ + DK+cβ

K+
.

(a) Estimate the diffusion coefficient ratio DNa+/DK+ from the measured values
of the resting potential �φdif = −90 mV and ionic concentrations cα

Na+ =

145 mM, cα
K+ = 4 mM, cβ

Na+ = 12 mM, and cβ

K+ = 150 mM. Take 1/f = 26.7
mV.

(b) Show that the above equation for �φdif can be deduced from jNa+ +jK+ ≈ 0
and the formal integration of the Nernst–Planck equations without employing
Goldman’s constant-field approximation.

4.10 P. Fatt and B.L. Ginsborg [Journal of Physiology (London), 142 (1958) 516]
studied the action potential in crustacean muscle fibres and concluded that the
resting potential (i.e. the diffusion potential across the cell membrane) was deter-
mined by the exchange of Ca2+ and K+ ions. Denoting the outside of the cell
as compartment α and the inside as compartment β, the ionic concentrations are

cα

Ca2+ = 1.5 mM, cα
K+ = 4 mM, cβ

Ca2+ = 0.1 µM, and cβ

K+ = 155 mM.
(a) From the Goldman flux equation

ji
Di

= − zi f �φdif

ezi f �φdif − 1

cβ
i ezi f �φdif − cα

i
h

and the open-circuit equation, I/F = 2jCa2+ + jK+ = 0, show that the resting
potential (under the conditions described here) is approximately given by

�φdif = φβ − φα = 1

2 f
ln

4DCa2+cβ

Ca2+
DK+cα

K+
.

The ionic permeability ratio in these fibres is PCa2+/PK+ = 3000, and we can
simulate it in our formalism (without introducing partition coefficients or other
magnitudes) with a diffusion coefficient ratio DCa2+/DK+ = 3000. Evaluate the
resting potential using 1/f = 26.7mV.

4.11 A neutral membrane separates two compartments containing NaCl+KCl mix-
tures with the following concentrations cα

Na+ = 100 mM, cα
K+ = 1 mM, cα

Cl− =
101 mM, cβ

Na+ = 1 mM, cβ

K+ = 1.2 mM, and cβ

Cl− = 2.2 mM. The ionic
diffusion coefficients inside the membrane satisfy the ratios DK+ = DCl− =
1.5DNa+ .
(a) Evaluate the diffusion potential �φdif = φβ − φα . (Take 1/f = 26 mV.)
(b) Evaluate the ionic flux densities and comment on their direction in relation

to the direction of the concentration gradient.
(c) Evaluate the Gibbs potential change associated to the transfer of one mole of

sodium, potassium and chloride ions from compartment α to β.
4.12 Derive the expression for the Donnan potential in the case of a multi-ionic system

with two ion classes.
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4.13 Extend the diffuse layer model in Section 4.2.4 to the case of different dielec-
tric permittivities in the two phases and show that the surface potential is then
given by

ϕs = z2 f (φs − φw) = z2 f �φD − tanh(z2 f �φD/2)

− 2 sinh2(ϕs/2)

sinh(z2 f �φD)

[(
εw

εM

)2
− 1

]
.

4.14 Extend the diffuse layer model in Section 4.2.4 to include the effect of the
ionic chemical partition coefficients Kc,i and show that the Donnan and surface
potentials are now given by

z2 f �φD = arcsinh

(
X

2αcw
12

)
+ β,

ϕs = ϕD − tanh[(ϕD − β)/2] + 2

sinh(ϕD − β)

×
{

sinh2[(ϕs − β)/2] − 1

α
sinh2(ϕs/2)

}

where α ≡ (Kc,1Kc,2)1/2 and β ≡ (1/2) ln(Kc,2/Kc,1).
4.15 Extend the diffuse layer model in Section 4.2.4 to the case of weakly dissociating

fixed-charge groups. Consider that the dissociation reaction

−RA →← −RzM + A−zM

has an equilibrium constant K , that the total molar concentration of fixed-charge
groups (dissociated or not) is cM, and that the membrane is equilibrated with a
solution of a symmetric binary electrolyte of the same counterion A−zM .

4.16 Consider the interfacial region between a charged membrane occupying the
region x<0 and a 1:1 binary electrolyte solution in the region x>0. Far from
the interface, the electric potential in the membrane phase is φM, the electric
field is zero, and the space-charge density is zero. The membrane has charged
mobile groups with charge number zM that can distribute according to the local
electric potential. The concentration of this charged mobile groups in the bulk
membrane phase is cM. In the bulk of the external solution, the electrolyte con-
centration is cw

12, the electric potential is φw, the electric field is zero, and the
space-charge density is zero. Both phases are assumed to have the same dielectric
permittivity ε. Calculate the equilibrium electrical-potential distribution in this
interfacial region by solving the Poisson–Boltzmann equation

d2φ

dx2
= −F

ε

{
cw

12e−ϕ − cw
12eϕ , x > 0

cw
12e−ϕ − cw

12eϕ + zMcMe−zMϕ , x < 0
,

where ϕ(x) ≡ f [φ(x) − φw] is a dimensionless electric potential variable that
varies continuously from zero in the bulk external phase to

ϕD ≡ f �φD = arcsinh
zMcM

2cw
12

in the bulk membrane phase.



Exercises 227

4.17 The Poisson–Boltzmann equation cannot be integrated in exact form in the mem-
brane phase. The approximate analytical solution given in eqn (4.157) has been
based on the linearization of the Poisson–Boltzmann equation in the membrane
phase. An alternative approximate analytical solution can be obtained by assum-
ing that the region −LM

d < x < 0 (where the value of LM
d is yet to be determined)

is depleted of mobile ions in the membrane side of the interfacial region. This is
the so-called depleted layer model (DLM). The Poisson–Boltzmann equation in
this region then becomes

d2ϕ

dξ2
= − cM

cw
12

,

where ξ ≡ κw
D x.

(a) Solve this equation under the boundary conditions ϕ(ξ = −κw
D LM

d ) =
z2 f �φD, (dϕ/dξ)

ξ=−κw
D LM

d
= 0, and ϕ(0) = ϕs to obtain the potential

distribution in the region −LM
d < x < 0. Note that the Donnan potential is

given by sinh(z2 f �φD) = cM/cw
12.

(b) Make use of the continuity of the electric displacement at the interface as well
as the electric-potential distribution in the external phase given by eqn (4.154)
to show that the depleted layer model overestimates the electric potential drop
in the external phase, that is, (ϕs)

depleted > (ϕs)
diffuse > 0.

(c) Find the value of LM
d .

4.18 (a) Derive the expression of the diffusion potential drop inside an ion-exchange
membrane for the case of a 1:1 electrolyte and singly charged fixed groups.

(b) Take the limit of a highly charged membrane and show that substitution
of the resulting equation into eqn (4.203) leads to the expression j12 =
−D2�c12/h.

(c) Take the limit of a weakly charged membrane and show that substitution
of the resulting equation into eqn (4.203) leads to the expression j12 =
−Dw

12�
β
αc12/h.

4.19 Under steady-state conditions and in the absence of homogeneous chemical reac-
tions, the ionic flux densities and the electric current density have zero divergence,
�∇ · �ji = 0 and �∇ · �I = 0. In a one-dimensional membrane system this implies
that these fluxes are independent of position and do not change when crossing
the membrane boundaries. By analysing the diffusion-conduction flux equation

�ji = νi�j12 + ti
zi

�I
F

,

what can you say about the position dependence of the Donnan electrolyte flux
density �j12?

4.20 Using a phenomenological approach with cross-coefficients, show that the inter-
diffusion of two counterions across an ideally selective ion-exchange membrane
under open-circuit conditions only involves one diffusion coefficient even when
the Nernst–Planck approximation is not employed.

4.21 Apply the equations derived in Section 4.3.7 to a much simpler situation in which
all cations have the same charge number z and all anions have the same charge
number −z, the membrane is neutral, the electric current is zero, and both sides
of the membrane have similar ionic strength,

∑
i ci(h) ≈ ∑

i ci(0). Show that the
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diffusion potential is then given by the Goldman–Hodgkin–Katz (GHK) equation

�φdif = 1

zf
ln

∑
+

Pici(0) + ∑
−

Pici(h)∑
+

Pici(h) + ∑
−

Pici(0)
,

where Pi denotes the permeability of the membrane to ionic
species i.

4.22 From the equations derived in Section 4.3.7, determine the expression for the
potential drop in a membrane that is so strongly charged that co-ions are excluded
from the membrane and do not contribute to the current transport.

4.23 In Section 4.3.4 it was obtained that the ohmic potential drop, when a symmetric
binary electrolyte is transported across an ion-exchange membrane, is given by

z2 f �φohm = z2� ln
cT(h) + z2�X

cT(0) + z2�X
− (tw

1 − tw
2 ) ln

cT(h) + (tw
1 − tw

2 )X

cT(0) + (tw
1 − tw

2 )X
.

(a) Show that this expression can also be derived from the evaluation of the
membrane resistance as

�φohm = −I RM ≡ −I

h∫
0

dx

κM = − IRT

z2
1F2

h∫
0

dx

D1c1 + D2c2
.

(b) Find the expression for the ohmic potential drop in the limit cα
12 ≈ cβ

12, i.e.

when |cα
12 − cβ

12| � cw
12.

Hint: Remember that c1 = (cT + X )/2 and c2 = (cT − X )/2, and evaluate
dcT/dx from

xG0 = cT(0) − cT(x) + z2�X ln
cT(x) + z2�X

cT(0) + z2�X
.

4.24 In Section 4.4.2 we have obtained that the electric conduction equation in charged
porous membranes, in the absence of concentration gradients, is

〈I〉 = −(〈κ〉 + 〈κc〉)dV

dx
.

This equation can also be written as

〈I〉 = −
(

2πa

πa2
Ks + κb

)
dV

dx

where κb is the bulk conductivity (i.e. the electrical conductivity of the exter-
nal solution) and Ks is the surface conductivity (note that it does not have the
dimensions of a conductivity because of the geometrical factor). Thus, the surface
conductivity accounts for the differences between electric conduction inside the
membrane pores and in the external solution, which involve mainly two aspects.
First, the (total) ionic concentration is larger than in the external solution because
there is a need to counterbalance the fixed charge on the pore walls. And second,
electro-osmotic convection influences the ionic motion.



References 229

Knowing that the convective conductivity in the linear approximation is

〈κc〉 ≈ X
εRT

η
z2 f ψ̃(a) ≈ X

εRT

η

(κX
D )2

(κw
D )2

[
κw

D a I0(κw
D a)

2I1(κw
D a)

− 1

]

obtain an expression for Ks.
4.25 In Section 4.4.4 we have obtained that the potential drop when a symmetric binary

electrolyte is transported across a charged porous membrane can be evaluated in
the homogeneous potential approach by integration of the equation

z2 f dφ =
[

(tw
1 − tw

2 )c+ + (tw
2 j1 − tw

1 j2)/v − tw
2 X

c2 − c+
− (tw

1 − tw
2 )c− + (tw

2 j1 − tw
1 j2)/v − tw

2 X

c2 − c−

]
dc2

c+ − c−

where c+ and c− are the two roots of the equation (c2 +X )c2v = (c2 +X )tw
1 j2 +

c2tw
2 j1 (solved with respect to c2). Show that this equation reduces to

z2 f dφ = tw
1 − tw

2
c2 + Xtw

1
dc2,

when convection is negligible and no electric current is transported across the
membrane, v = 0 and I = 0, and compare the expression for the (diffusion)
potential drop thus obtained with the expression

z2 f �φdif = (tw
1 − tw

2 ) ln
c1(h) + c2(h) + X (tw

1 − tw
2 )

c1(0) + c2(0) + X (tw
1 − tw

2 )

that was obtained in Section 4.3.3.
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5 Transport through
liquid membranes

5.1 Distribution equilibria in liquid
membrane systems

5.1.1 Liquid membranes
Liquid membranes form an interesting group of membranes, which can be
used to selectively separate or extract solutes from one phase to another [1].
They can also be used as a crude model for a biomembrane, although they
have no organized structure on the molecular level like a phospholipid bilayer.
Liquid membranes can either be emulsion-like or supported. In an emulsion liq-
uid membrane (or surfactant liquid membrane) the solutes to be separated are
enriched in the stripping phase inside the micelle created by the membrane-
forming surfactant. This type of liquid membrane is common in practical
extraction processes, but they are not considered here.

A supported liquid membrane is usually a porous hydrophobic membrane1

where an organic solvent is impregnated. The solvent is held inside the mem-
brane by capillary forces. Extraction by liquid membranes takes place in one
stage only, i.e. separate extraction and stripping stages are not required. Extrac-
tion is often based on some selective carrier molecule in the membrane phase,
whereby solutes can be transferred across the membrane against their concen-
tration gradient. In this case, the chemical energy needed for the process is
taken from the transfer of some other species, e.g. a proton. As the volume of
the membrane phase is very small, expensive and/or even toxic carriers can
be utilized in extraction because the amount of material is minimized. By the
appropriate choice of the carrier molecule and the solvent, extraction can be
made very selective.

Also, electric fields can be used to run extraction processes of metal cations,
for example. There exist, however, a few difficulties. Firstly, the membrane
phase must remain electroneutral. If an ion enters the membrane at one inter-
face, either another ion must leave the membrane at the opposing interface, or
an ion with an opposite charge has to enter the membrane. Secondly, because
the membrane presumably is thin, of the order of 100 µm, the potential dif-
ference across the individual aqueous/organic interfaces cannot be monitored

1 Although other geometries might be preferable for some applications [2], in this chapter we
consider only planar membranes.
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or controlled. Only the total potential difference across the membrane can be
controlled, and as a consequence of the coupling of charges, the total potential
difference distributes itself asymmetrically in the system. It may create initially,
for instance, such a high potential difference on the stripping side, as no ions
are available yet, that the interface becomes unstable, or the base electrolytes of
the aqueous or membrane phase cross the interface. Next, we are considering
the distribution equilibrium of different species between the liquid membrane
and one of the aqueous solutions in contact with it.

5.1.2 Equilibrium partitioning at the aqueous/organic
solution interface

When a liquid membrane is clamped by two aqueous phases, i.e. the feed and
the strip solutions, two aqueous/organic solution interfaces are formed. We
consider here one of those interfaces and describe the equilibrium partitioning
i(w) →← i(o) of a solute i. The ability of neutral solute to cross the interface
depends only on the solute and solvent properties. The equilibrium partition
ratio ao

i /aw
i is then equal to its chemical partition coefficient Ki, and this is

determined by the Gibbs free energy of transfer of the solute i from the organic
to the aqueous solution, �w

o G◦
i ≡ µ

◦,w
i −µ

◦,o
i , through the thermodynamic

relation Ki ≡ e�w
o G◦

i /RT . For hydrophobic neutral solutes, �w
o G◦

i > 0 and
ao

i /aw
i = Ki > 1 so that they have a higher activity in the organic phase. On

the contrary, for hydrophilic neutral solutes �w
o G◦

i < 0 and ao
i /aw

i = Ki < 1.
In the case of an ionic solute i, the distribution equilibrium requires that

the electrochemical potential of this solute takes the same value in both
phases, µ̃w

i = µ̃o
i , and therefore the equilibrium condition involves the electric

potentials in these phases

µ
◦,w
i + RT ln aw

i + ziFφw = µ
◦,o
i + RT ln ao

i + ziFφo. (5.1)

This implies that ionic solutes can be ‘pushed’ across the interface by adjusting
the interfacial potential difference �w

o φ ≡ φw − φo. In fact, their partitioning
is often explained in terms of potential differences only by writing the Gibbs
free energy of transfer as �w

o G◦
i ≡ −ziF�w

o φ◦
i . This expression constitutes the

definition of the standard transfer potential of species i, �w
o φ◦

i . The transfer
potential is positive for hydrophilic cations and hydrophobic anions, and neg-
ative otherwise. A few values are given in Table 5.1. The chemical affinity of a
hydrophilic cation for the aqueous phase is then interpreted in terms of a pos-
itive transfer potential �w

o φ◦
i so that the interfacial potential drop �w

o φ must
be increased above �w

o φ◦
i to ‘push’ this hydrophilic cation from the aqueous to

the organic phase. The equilibrium partition ratio for ionic solutes is then

ao
i

aw
i

= Kie
zif �w

o φ = ezif (�w
o φ−�w

o φ◦
i ), (5.2)

which is equivalent to eqn (5.1). Thus, for instance, increasing the electrostatic
energy of a hydrophilic solute in the aqueous phase so much that the difference
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Table 5.1. Ionic standard transfer potentials �w
o φo

i (mV) for mutually sat-
urated water–organic solvent systems at 25◦C. (Extracted from Ref. [3] with
permission.)

Ion nitrobenzene 1,2-dichloroethane dichloromethane

Li+ 298 493
Na+ 355 490
H+ 337
NH+

4 284
K+ 241 499
Rb+ 201 445
Cs+ 159 360
acetylcholine 52
(CH3)4N+ 37 182 195
(C2H5)4N+ −63 44 44
(C3H7)4N+ −160 −91 −91
(C4H9)4N+ −270 −225 −230
(C5H11)4N+ −360 −377
(C6H5)4As+ −372 −364
crystal violet −410
(C6H13)4N+ −472 −494 −455
Mg2+ 370
Ca2+ 354
Sr2+ 348
Ba2+ 328
Cl− −395 −481 −481
Br− −335 −408 −408
NO−

3 −270
I− −195 −273 −273
SCN− −161
BF−

4 −91
ClO−

4 −91 −178 −221
2,4-dinitrophenolate −77
PF−

6 12
picrate 47 −69
(C6H5)4B− 372 364
dipicrylaminate 414
dicarbolylcobaltate 520

in standard chemical potentials is overcome, zi�
w
o φ > zi�

w
o φ◦

i , it can be forced
into the organic phase.2

The activity coefficients of species i in the two phases are often assumed to
be equal to each other, γ o

i ≈ γ w
i , and the partitioning equilibrium equation is

simplified to

co
i

cw
i

≈ Kie
zi f �w

o φ , (5.3)

which can also be applied to neutral solutes (zi = 0).

2 This actually means that the activity of the hydrophobic solute in the aqueous phase can be
raised above the activity in the organic phase.
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Fig. 5.1.
Equilibrium partitioning of a neutral solute
A and a ligand C that can associate to form
a complex CA.

5.1.3 Finite-volume effects on the partitioning of
a neutral solute

As the volume of the liquid membrane is much smaller than those of the bathing
aqueous solutions, partitioning of solutes between an aqueous solution and the
membrane has some interesting characteristics. Let us consider first a case
where the aqueous solution contains a hydrophilic solute A that can partition
to the membrane and the membrane contains a hydrophobic ligand C that can
also partition to the aqueous solution (Fig. 5.1). Initially, i.e. before the equi-
librium distribution is established, the solute A is only present in the aqueous
phase with a concentration cw,0

A and the ligand C is only present in the liquid

membrane with a concentration co,0
C .After the equilibrium has been established,

their concentrations in both phases are3

co
A = KAcw

A = cw,0
A

KAr

KA + r
, (5.4)

co
C = KCcw

C = co,0
C

KC

KC + r
, (5.5)

where r = V w/V o is the volume ratio of the aqueous and membrane phase,
and KA, KC are the partition coefficients of A and C, respectively. Thus, for
instance, in order not to lose ligand from the membrane, it must be satisfied that
r � KC.

Consider now that A and C can form a hydrophobic ligand–solute complex
CA that can also be present in both phases. The chemical equilibrium condition
for this complexation reaction in the aqueous phase is

Kw
CA = cw

CA

cw
C cw

A
, (5.6)

and a similar mass-action law can be written for the membrane phase, although
this is not an independent relation because the corresponding equilibrium

3 These equations are derived from mass balances as explained below.
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constant Ko
CA is determined by Kw

CA and the partition coefficients as4 Ko
CA =

Kw
CAKCA/KCKA. The equilibrium concentrations of the different species in the

aqueous and membrane phases are no longer given by eqns (5.4) and (5.5) and
they must be found out from the mass balances

cw,0
A V w = (cw

A + cw
CA)V w + (co

A + co
CA)V o solute balance, (5.7)

co,0
C V o = (cw

C + cw
CA)V w + (co

C + co
CA)V o ligand balance. (5.8)

Introducing the volume ratio r, the partition coefficients, and the reaction
equilibrium constant, the mass balances can be transformed to

cw,0
A r = [KA + r + (KCA + r)Kw

CAcw
C ]cw

A, (5.9)

co,0
C = [KC + r + (KCA + r)Kw

CAcw
A]cw

C , (5.10)

which is a simple equation system that can be solved for the variables cw
A and cw

C .
Some typical results are shown in Fig. 5.2 for the parameter values: KA = 10−3,
KC = 104, KCA = 103, Kw

CA = 3 × 103 M, cw,0
A = 0.01 M, and co,0

C = 0.1 M.
Figure 5.2 shows that the total ligand concentration in the membrane, co

C +
co

CA, is practically equal to the initial value co,0
C for all values of the volume ratio

in the range, r � KC, as was also concluded from eqn (5.5) in the absence of a
complexation reaction. The solute concentration in the aqueous phase cw

A drops

significantly from the initial value, cw,0
A , due to the complexation reaction when

r ≈ KCAKw
CAco,w

C /KC, which corresponds to the condition cw
AV w ≈ co

CAV o,
i.e. when the amount of solute in free form in the aqueous solution is of the
same order of magnitude as the amount of solute in complexed form inside the
membrane.
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Fig. 5.2.
Equilibrium concentrations (aqueous left, membrane right) as a function of the volume ratio; parameter values given in the text.

4 Note that KCA without superscript denotes here the partition coefficient of the ligand–solute
complex.
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5.1.4 Finite-volume effects on the partitioning of an
ionic solute

Consider next the case where the bathing solution contains a strong acid AB,
say HCl, and the organic phase contains a hydrophobic ligand C (e.g. an amine
R–NH2) that can extract the acid from the aqueous to the organic phase by
forming an acid–amine complex. This partitioning process can be illustrated
by either of the two schemes in Fig. 5.3. In the aqueous solution the strong
acid is dissociated into the ions A+ and B−(e.g. H+ and Cl−), and in the
organic solution it is more likely in the form of ion pairs AB due to its lower
relative electrical permittivity. Similarly, the acid–amine complex CAB can be
considered to be dissociated into the ions CA+ and B− (e.g. R − NH3Cl or
R−NH+

3 and Cl−). The important point, however, is that the partition constant
of species i is now the product of two terms, a chemical partition coefficient Ki

and an electrostatic coefficient ezi f �w
o φ , and that the latter is not a property of the

ion and the solvents, but it is rather determined by the concentrations of all the
ions dissolved in both phases. Let us then introduce the variable Ke = e f �w

o φ

and write the partition constant of the cations as KiKe and that of the anion as
Ki/Ke. The partition coefficient of the ion pairs is the product of the chemical
partition coefficients of the corresponding ions, e.g. KR−NH3Cl = KR−NH+

3
KCl−

and KHCl = KH+KCl− .
Initially, i.e. before the equilibrium distribution is established, the acid AB is

only present in the aqueous phase with a concentration cw,0
AB and the amine C is

only present in the liquid membrane with a concentration co,0
C . The equilibrium

concentrations of the different species in the aqueous and organic phases must
be found from the mass balances

cw,0
AB V w = (cw

A+ + cw
CA+)V w + (co

A+ + co
CA+)V o ionic solute balance,

(5.11)

co,0
C V o = (cw

C + cw
CA+)V w + (co

C + co
CA+)V o amine balance.

(5.12)

w o

A� A�

C C

C�A� CA� C�A� CA�

CA� CA�

B� B�

w o

AB AB

C C

C�AB CAB C�AB CAB

CAB CAB

Fig. 5.3.
Equilibrium partitioning of an acid AB and an amine C that can associate to form an acid–amine complex CAB. The equilibrium distribution can
be described considering either ions or ion pairs.
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The chemical equilibrium condition for the complexation reaction in the
aqueous phase is

Kw
CA+ = cw

CA+

cw
C cw

A+
, (5.13)

and a similar mass-action law can be written for the organic phase with an
equilibrium constant Ko

CA+ = Kw
CA+KCA+/KCKA+ .

The electrostatic contribution to the partition coefficient of the cations, Ke =
e f �w

o φ , can be determined from the electroneutrality condition in both phases,
cw

B− = cw
A+ + cw

CA+ and co
B− = co

A+ + co
CA+ . The latter can be transformed to

(KB−/Ke)c
w
B− = (KB−/Ke)(c

w
A+ + cw

CA+)

= KA+Kecw
A+ + KCA+Kecw

CA+ , (5.14)

and, therefore,

Ke =
[

KB−(1 + Kw
CA+cw

C )

KA+ + KCA+Kw
CA+cw

C

] 1/2

, (5.15)

where we have introduced the complexation constant defined in eqn (5.13).
Similarly, the mass balances can be transformed to

cw,0
AB r = [KA+Ke + r + (KCA+Ke + r)Kw

CA+cw
C )]cw

A+ , (5.16)

co,0
C = [KC + r + (KCA+Ke + r)Kw

CA+cw
A+]cw

C , (5.17)

where r = V w/V o is the volume ratio of the aqueous and membrane phase.
Note that these equations only differ from eqns (5.9) and (5.10) in the factor
Ke, which is given by eqn (5.15). This equation system can be solved for the
variables cw

A and cw
C in terms of r,5 and some typical results are shown in

Figs. 5.4 and 5.5 for the parameter values: KA+ = 10−5, KB− = 2 × 10−5,
KC = 104, KCA+ = 10−2, Kw

CA+ = 106 M, cw,0
AB = 0.01 M, and co,0

C = 0.1 M.
Figure 5.5 shows that, even in the absence of an external electric circuit, a

substantial galvanic potential difference �w
o φ ≡ φw − φo is developed across

the phase boundary, which changes the partition equilibrium accordingly. This
has a significant impact in the partitioning of ionic drugs into biomembranes,
for example. The sign of the potential drop, negative in the aqueous phase, is
due to the fact that we have considered an acid–amine complex that is much
less hydrophilic than the acid ions A+ and B−, see eqn (5.15).

Although the exact form of the curves depends strongly on the given para-
meter values, Fig. 5.4 shows that the total ligand concentration in the membrane,
co

C +co
CA+ , is significantly smaller than the initial value co,0

C for all values of the

5 In fact, it is simpler to solve for the variables r and cw
A in terms of cw

C , and the graphical
representation of the solution is then made as a parametric plot.
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Fig. 5.4.
Equilibrium concentrations (aqueous left, membrane right) as a function of the volume ratio; parameter values given in the text.
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Fig. 5.5.
Distribution potential (at 25◦C) as a
function of the volume ratio r for the
partitioning equilibrium considered in
Fig. 5.4.

volume ratio in the range, r > 10. This is due in this case to the complexation
reaction and that fact that the acid–amine complex is hydrophilic and parti-
tions preferably to the aqueous phase. Similarly, the solute concentration in the
aqueous phase cw

A+ drops significantly from the initial value, cw,0
AB , due to the

complexation reaction except for such high values of r that most of the ligand
is in complex form.

A detailed analysis of the multi-ionic equilibria at the liquid/liquid interface,
considering the effect of the volume ratio and pH was first given by Hung
[4, 5] and later by Kakiuchi [6], emphasizing the effect on the ion-selective
electrodes, in particular.

5.2 Ion transfer across a liquid membrane
To illustrate the description of steady-state ion transfer across a liquid mem-
brane, we consider in this section the electrically driven transport of a trace ion
between two aqueous solutions, α and β, of identical composition. Such an ion
(identified by subscript 1) could typically be tetraethylammonium (C2H5)4N+,
or TEA+, and its transfer from compartment α to β across the membrane is
driven by applying a potential difference �

β
αφ ≡ φβ −φα < 0. Moreover, this

is the only electroactive species in the system, and its flux density is propor-
tional to the electric current density, j1 = I/z1F . Our aim is to find the equation
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describing the current–voltage curve of this membrane system and to analyse
the influence of the different transport parameters, such as the concentrations
of the transferring ion in the aqueous solutions, cw

b , and in the membrane phase,
co

b, and the thickness of the membrane, h, and of the diffusion boundary layers
in the aqueous phases, δ. The most interesting characteristic of this system is
that the transferring ion encounters some resistance to its transfer from both the
membrane and the aqueous diffusion boundary layers. The current density can
then be limited by either the membrane or the diffusion boundary layers.

Supporting electrolyte is added in the aqueous phases, such that transfer
of TEA+ is under diffusion control. Under steady-state conditions, the flux
density of this ion is constant throughout the system and in the aqueous diffusion
boundary layers it is

j1 = −Dw
1

dc1

dx
= I

z1F
(−δ < x < 0, h < x < h + δ). (5.18)

The concentration profiles are then linear and their values at the (external)
membrane boundaries are

cw
1 (0) = cw

b (1 − I/Iw
L ), (5.19)

cw
1 (h) = cw

b (1 + I/Iw
L ), (5.20)

where

Iw
L ≡ z1FDw

1 cw
b

δ
(5.21)

is the limiting current density in the aqueous phases6 and the boundary
conditions cw

1 (−δ) = cw
1 (h + δ) = cw

b have been used.
The electrolyte solution inside the membrane is binary (i.e. there is no sup-

porting electrolyte and migration is not negligible), but the other ion, e.g.
tetraphenylborate TPB−, is not capable of crossing the interface. Since only
species 1 can cross the membrane boundaries, the transport equations in the
membrane are

j1 = −Do
1

(
dc1

dx
+ z1c1 f

dφ

dx

)
= I

z1F
(0 < x < h), (5.22)

j2 = −Do
2

(
dc2

dx
+ z2c2 f

dφ

dx

)
= 0 (0 < x < h). (5.23)

The local electroneutrality condition z1c1 +z2c2 = 0 then implies that the ionic
concentration distributions are also linear in the organic phase. The average

6 For the sake of convenience, we have chosen I = Iw
L when cw

1 (0) = 0. If we had chosen
I = Iw

L when cw
1 (h) = 0, a negative sign would appear and eqn (5.21) would then resemble eqn

(3.22).
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concentration in the membrane phase is bound to be its ‘bulk’ value

co
b ≡ 1

h

∫ h

0
c1 dx, (5.24)

and, therefore, at the membrane centre the transferring ion concentration is
co

1(h/2) = co
b. The concentration drop inside the membrane then depends on

the electric current density, and its maximum is �co
1 = co

1(h) − co
1(0) = −2co

b
that corresponds to the limiting current in the organic phase, Io

L. Thus, at the
(internal) membrane boundaries, the concentrations of the transferring ion are

co
1(0) = co

b(1 + I/Io
L), (5.25)

co
1(h) = co

b(1 − I/Io
L), (5.26)

where

Io
L ≡ 2z1(1 − z1/z2)FDo

1co
b

h
. (5.27)

The interfacial electric potential drops are given by eqn (5.2) (with the
assumption γ o

1 ≈ γ w
1 ) as

�w
o φ(0) ≈ �w

o φ◦
1 + 1

z1 f
ln

co
1(0)

cw
1 (0)

= �w
o φ◦

1 + 1

z1 f
ln

co
b(1 + I/Io

L)

cw
b (1 − I/Iw

L )
, (5.28)

�w
o φ(h) ≈ �w

o φ◦
1 + 1

z1 f
ln

co
1(h)

cw
1 (h)

= �w
o φ◦

1 + 1

z1 f
ln

co
b(1 − I/Io

L)

cw
b (1 + I/Iw

L )
, (5.29)

and the potential drop in the membrane can be obtained from eqns (5.23)–
(5.26) as

�φo ≡ φo(h) − φo(0) = − 1

z2 f
ln

co
2(h)

co
2(0)

= − 1

z2 f
ln

co
1(h)

co
1(0)

= − 1

z2 f
ln

1 − I/Io
L

1 + I/Io
L

. (5.30)

The cell potential �φcell ≡ φβ − φα = φw(h) − φw(0) is then

�φcell = �w
o φ(h) + �φo − �w

o φ(0)

= 1

z1 f
ln

1 − I/Iw
L

1 + I/Iw
L

+ z2 − z1

z1z2 f
ln

1 − I/Io
L

1 + I/Io
L

= − 2

z1 f
arctanh

I

Iw
L

− 2(z2 − z1)

z1z2 f
arctanh

I

Io
L

, (5.31)

where the standard potentials have cancelled out.
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Equation (5.31) describes the current–voltage characteristics of the mem-
brane system under consideration. The current–voltage relation is linear at low
deviations from equilibrium (i.e. low electric current or low electric potential
difference). The behaviour of the system is then ohmic, −�φcell = IR, where
the total electrical resistance is the sum of the contributions from the three lay-
ers, R = 2Rw + Ro with Rw = δ/κw

eff , Ro = h/κo
eff , and κ

ϕ

eff = z2
1F2Dϕ

1 cϕ

b /RT
being the effective electrical conductivity of phase ϕ(ϕ = o, w). At higher
applied potentials, the current–voltage curve is non-linear and shows a limiting
current density, which is the lower of Io

L and Iw
L . It can also be noticed that the

current–voltage characteristics are symmetric. That is, reversing the sign of the
cell potential leads to a reversal of the electric current density without affecting
its magnitude.

Figures 5.6 and 5.7 show some typical results corresponding to z1 = −z2 = 1
and �w

o φ◦
1 = 44 mV, which is roughly the value corresponding to TEA+ at the

water/1,2-dichloroethane interface. Figure 5.6 shows the current–voltage curve
and the contributions �w

o φ(h), �φo, and −�w
o φ(0) to the cell potential for a

case in which co
b/cw

b = 100 and Io
L/Iw

L = 5. The limiting current density is then
determined by the aqueous phase (i.e. the depleted diffusion boundary layer)
and the membrane does not get polarized practically (and hence, |�φo| �
|�φcell|).

Figure 5.7 shows the current–voltage curve and the contributions �w
o φ(h),

�φo, and −�w
o φ(0) to the cell potential for a case in which co

b/cw
b = 10 and

Io
L/Iw

L = 0.5. The limiting current density is then determined by the membrane,
but the interfacial potential drops are still relevant. In fact, it can be shown
that �φo ≈ �w

o φ(h) − �w
o φ(0) ≈ �φcell/2. Note also that, in spite of the

close similarity of the current–voltage curves in Figs. 5.6 and 5.7, these two
curves are not exactly equal to each other. First, the limiting current is differ-
ent. And second, the cell potential axis is also different. Note, for instance,
that their initial slopes are (5/14)fIw

L and (1/5)fIo
L, respectively, as can be
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Fig. 5.6.
(Left) Current-voltage curve (at 25◦C) for cation transfer across a liquid membrane when co

b/cw
b = 100 and Io

L/Iw
L = 5, a case in which the

current is limited by the transport in the depleted diffusion boundary layer. (Right) The cell potential is the sum of three contributions: the potential
drop in the organic phase �φo, and the interfacial potential drops at the boundaries x = 0 and h, �w

o φ(0) and �w
o φ(h). When the limiting current

density is approached, the interfacial potential drop �w
o φ(0) diverges.



Carrier-mediated transport 243

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

I
/

I Lo

�� f f

f

f

f

cell (mV)

0 100 200 300 400

�100

�50

0

50

100

150

200

Po
te

nt
ia

ld
ro

p
(m

V
)

�� cell (mV)

�o
w (0)

��o
w (h)

�� o

Fig. 5.7.
(Left) Current-voltage curve (at 25◦C) for a cation transfer across a liquid membrane when co

b/cw
b = 10 and Io

L/Iw
L = 0.5, a case in which the

current is limited by the transport in the membrane. (Right) The cell potential is the sum of three contributions: the potential drop in the organic
phase �φo, and the interfacial potential drops at the boundaries x = 0 and h, �w

o φ(0) and �w
o φ(h). When the limiting current density is

approached, both the potential drop inside the membrane �φo and the interfacial potential drop �w
o φ(h) diverge.

deduced from (
I

−�φcell

)
I=0

= z1 f

2

Iw
L Io

L

Io
L + (1 − z1/z2)Iw

L
. (5.32)

Experimentally, ion-transfer processes in liquid membranes can be conve-
niently studied, e.g., in a rotating diffusion cell [7]. This cell consists of a rotating
cylinder that contains one cell compartment and is limited by the membrane
from below. The other solution compartment surrounds the rotating cylinder.
By adjusting the rotation speed, regular convection profiles are created on both
sides of the membrane and the thickness of the aqueous diffusion boundary lay-
ers varies in a controlled way with the rotation speed. The difference with the
rotating-disc electrode is that only slow rotation speeds (ca. 20 rpm) are possible
in this system due to the mechanical instability of the liquid membrane.

5.3 Carrier-mediated transport
5.3.1 Solute permeability in a supported liquid membrane
In this section we describe the steady-state transport of a neutral solute A across
a supported liquid membrane from a concentrated to a dilute aqueous solution.
The solute transport is driven by the molar concentration difference �α

βcA ≡
cα

A − cβ

A > 0, where compartment α contains the source or feed solution and
compartment β contains the receiving, strip or sweep solution, and hence the
molar flux density of this solute jA is positive in the direction from α to β. In this
transport process, the solute has to overcome different (transport) resistances:
diffusional resistance to transport in the aqueous phase α, interfacial resistance
to partition to the membrane phase, diffusional resistance in the membrane
phase, interfacial resistance to partition to the receiving aqueous phase β, and
diffusional resistance to transport in the latter. In the case of supported liquid
membranes, the interfacial resistances are negligible compared to the other
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ones, and hence the partitioning between the aqueous and organic phase can be
assumed to take place under equilibrium conditions. The solute permeability
PA in the membrane system is defined (implicitly) by the equation

jA = PA(cα
A − cβ

A). (5.33)

It is a positive-definite quantity with dimensions of velocity. Our aim in
the following sections is to identify the factors that determine the solute
permeability.

5.3.2 Free solute transport: the solubility–diffusion mechanism
The diffusional transport resistance in the aqueous phase can be reduced by
stirring, so that the rate-limiting transport resistance comes from diffusion in
the liquid membrane. In this case the solute concentration difference (cα

A−cβ

A) in
eqn (5.33) is approximately equal to the concentration drop across the outer (i.e.
aqueous phase) membrane boundaries, cw

A(0)−cw
A(h), where h is the membrane

thickness (Fig. 5.8). The transport can then be explained in terms of the so-called
solubility–diffusion mechanism. The solute that reaches the supported liquid
membrane from the concentrated aqueous solution must become soluble in the
organic membrane phase before it can diffuse across it. We assume that this
partitioning process is thermodynamically reversible. The membrane offers
some resistance to the diffusion process, which is the only resistance under
consideration in this section. At the other interface, the solute must transfer the
aqueous phase, and this process releases the same amount of Gibbs free energy
of transfer that was consumed when crossing the first interface.

The flux density of a neutral solute in the membrane phase is given by

jA = −Do
A

dco
A

dx
. (5.34)

Under steady-state conditions, the flux density is constant and the integration
of eqn (5.34) over the membrane (i.e. from x = 0 to h) leads to

jA = (Do
A/h)[co

A(0) − co
A(h)]. (5.35)

Fig. 5.8.
Schematic concentration profile for free
solute transport across a supported liquid
membrane flanked by two aqueous
diffusion boundary layers. � 0 h h�
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Since the solute concentration ratio at the membrane/external solution inter-
faces is given by the solute chemical partition coefficient KA = co

A(0)/cw
A(0) =

co
A(h)/cw

A(h), see eqn (5.2), the solute permeability across the membrane
reduces in this case to

PA = Po
A ≡ KADo

A

h
. (5.36)

This equation shows that solutes that are poorly soluble in the organic phase
find a large overall resistance to their transfer across the membrane. If we
want to increase the rate of solute transfer, we can only change the organic
solvent (trying to maximize the product KADo

A) and to decrease the membrane
thickness h. Moreover, the selectivity of this type of solute transport is quite
limited because the choice of solvent is our only degree of freedom.

It is worth observing that the chemical partition coefficient of the solute was
not considered in the description of transport across the membranes considered
in Chapter 4. This was justified on the basis that no significant difference in
the standard chemical potential of the solute should be expected between the
solutions internal and external to the membrane because they were both aque-
ous; this holds true unless the water content of the membrane were extremely
low. However, when considering the transport across supported liquid mem-
branes, the use of organic solvents in the membrane phase makes it necessary to
take into account the difference in the standard chemical potential of the solute
between the internal and external solutions at the membrane boundaries.

In the case of ions, the electrostatic solvation energy in an organic phase, as
deduced for instance from the Born equation, is much larger than in an aqueous
phase due to their different dielectric permittivities. The solubility of ions in the
organic phase is then very small (particularly in the case of small ions) and the
membrane is practically impermeable to them. There are, however, some ways
to increase the solubility of charged solutes in the membrane phase. These are
studied in the next sections and can be either chemical methods, for example
the complexation with some appropriate ligand in the membrane phase, or elec-
trochemical methods, which require control of the electric potential difference
between the aqueous and the organic phases (and not necessarily via the use of
electrodes in these phases).

5.3.3 The effect of the diffusion boundary layers on free
solute transport

When the stirring of the aqueous solutions is not so efficient, we must consider
that the membrane is flanked by two diffusion boundary layers of thickness δ that
also offer some resistance to the solute transport and, therefore, affect the solute
permeability (Fig. 5.8). Using an electrical analogy, the three layers (liquid
membrane and aqueous diffusion boundary layers) behave as three resistors in
series (Fig. 5.9) and, therefore, the overall resistance of the membrane system
to the solute transport is the sum of the three resistances. Hence, we show below
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Fig. 5.9.
The total resistance to solute transport of a supported liquid membrane flanked by two aqueous
diffusion boundary layers can be evaluated as the sum of three transport resistances in series. The
permeability of each one of these layers to the solute is the reciprocal of its transport resistance.

that the solute permeability is

1

PA
= 2

Pw
A

+ 1

Po
A

= 2δ

Dw
A

+ h

KADo
A

. (5.37)

Across the aqueous diffusion boundary layer in the source solution the solute
concentration profile is linear and its flux density is

jA = −Dw
A

dcw
A

dx
= Pw

A [cα
A − cw

A(0)], (5.38)

where Pw
A ≡ Dw

A/δ is the solute permeability in this layer. Similarly, in the

boundary layer of the receiving solution, we have jA = Pw
A [cw

A(h) − cβ

A]. Note
that under steady-state conditions the solute flux density is independent of
position, and this justifies the absence of a phase superscript on jA. By writing
the overall concentration drop as the sum of three concentration drops

cα
A − cβ

A = cα
A − cw

A(0) + cw
A(0) − cw

A(h) + cw
A(h) − cβ

A, (5.39)

and using the above equation, this can be transformed to

jA
PA

= jAδ

Dw
A

+ jAh

KADo
A

+ jAδ

Dw
A

, (5.40)

which is the same as eqn (5.37). We conclude then that the aqueous diffusion
boundary layers decrease the permeability of the membrane system to the solute,
and this effect is particularly important when the permeability of the organic
phase is high and when the boundary layers have a thickness comparable to
that of the membrane because stirring is not very strong.

5.3.4 Carrier-mediated solute transport: the facilitation factor
The study of liquid membranes is important because of industrial applications,
but also because it resembles in some aspects the solute transport across bio-
logical membranes. The mechanisms of transport across biological membranes
are quite diverse, but many of them are characterized by a high specificity with
respect to the solutes and by a saturation of the rate of transport at high solute
concentrations in the source solution. These characteristics can be explained
(although not exclusively) assuming that the solute transport is mediated by a
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carrier molecule inside the membrane. This is a mobile molecule that binds the
solute at one interface and releases it at the opposite interface. The presence
of carriers in biological membranes was first proposed by Pfeffer in 1890 and
received widespread interest after Pressman found that valinomycin facilitated
selective transport of potassium in a factor of several thousands [8]. When its
role in transport across biological membranes was understood, the use of carri-
ers was also proposed in commercial membrane-separation processes [9, 10],
and in ion-selective electrodes [11].

Consider a liquid membrane that separates two aqueous solutions of a neutral
solute A at concentrations cα

A (source or feed compartment) and cβ

A (receiving
or strip compartment). These solutions are assumed to be ideally mixed, so
that the aqueous diffusion boundary layers offer no transport resistance, and
approximately cα

A and cβ

A are the concentrations at the external membrane
boundaries. The (free) solute can partition inside the membrane and diffuse
from the source to the receiving solution. As we have studied in Section 5.3.2,
the solute permeability in the membrane associated to this transport mechanism
is Po

A = KADo
A/h, where Do

A is the diffusion coefficient of the free solute inside
the membrane and KA = co

A/cw
A is its partition coefficient.

The membrane also contains a carrier C (Fig. 5.10) that is able to complex
with the solute at the membrane aqueous solution interfaces as described by
the reaction7

A(w) + C(o) →← CA(o), (5.41)

with an equilibrium constant8

KCA = cCA

cCcw
A

. (5.42)

0 h

o

A A

CA CA

CC

A A A A

� �

Fig. 5.10.
Carrier-mediated transport of a neutral
solute A across a supported liquid
membrane. A solubility–diffusion transport
mechanism of the free solute runs in
parallel with the carrier-mediated transport
mechanism.

7 The complexation reaction could be presented as A(o) + C(o)
→← CA(o), but we recommend

eqn (5.41), involving species in different phases, to emphasize that it does not take place inside
the membrane (i.e. it is not a homogeneous reaction) but at the interfaces (i.e. it is a heterogeneous
reaction).

8 Not to be confused with a partition equilibrium constant for the complex CA, because it is
assumed here that this complex cannot partition to the aqueous phase. This interfacial complexation
constant also differs from the bulk complexation constants Kw

CA and Ko
CA defined in Sections 5.1.3

and 5.1.4.
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Note that no phase superscript is used for the carrier and the complex CA
because they can only be in the membrane phase. Since the supported liquid
membranes are relatively thick and the limitation to solute transport arises
from the diffusion inside the membrane and not from the interfacial kinetics
[12], it is a very good approximation to consider that the reaction (5.41) is
under conditions of thermodynamic equilibrium. Yet, there is a small, positive
(i.e. in the forward direction) net rate at the source solution/liquid membrane
interface, and a small, negative (i.e. in the backward direction) net rate at the
liquid membrane/receiving solution interface. The carrier-mediated transport
then proceeds following the steps:

1) at the source solution/liquid membrane interface, the solute A binds to the
free carrier molecules C and forms the complex CA,

2) the complex CA diffuses through the membrane,
3) at the liquid membrane/receiving solution interface, the complex CA disso-

ciates, the solute is released and partitions to the receiving aqueous solution,
and the complex C remains in the liquid membrane because it has a negligible
solubility in the aqueous phase,

4) the carrier C diffuses back to the source solution/liquid membrane interface,
and the cycle is repeated.

The solute flux density across the membrane due to the carrier-mediated
mechanism is also driven by the concentration difference �α

βcA ≡ cα
A−cβ

A > 0,
and we can formally write the contribution of this mechanism to the solute flux
density as jCA = PCA�α

βcA, which constitutes the definition of the solute
permeability PCA due to the carrier-mediated transport mechanism. Since two
transport mechanisms (free and carrier-mediated transport) take place in parallel
in the membrane phase, the total permeability PA of the membrane to the solute
is the sum of the permeabilities Po

A and PCA,

PA = Po
A + PCA. (5.43)

This equation simply states that the total solute flux density across the mem-
brane is the sum of the flux density of free carrier and that of the complex, Po

A
and PCA, jA = jo

A + jCA. Remember that the total permeability is defined by
eqn (5.33).

The facilitation factor F is defined as the relative increase in the flux across
the membrane due to the carrier

F = jA
jo
A

= PA

Po
A

= 1 + PCA

Po
A

. (5.44)

When the chemical partition coefficient KA is small and the solubility–diffusion
mechanism is practically inoperative, the facilitation factor is very large, thus
showing the importance of the carrier-mediated transport to increase the rate of
solute transport from the source to the receiving solution.

We aim at evaluating the permeability PCA, and hence, the total permeability
PA as a function of the solute concentrations cα

A and cβ

A, the equilibrium and



Carrier-mediated transport 249

partition constants, the carrier concentration and the diffusion coefficients of
the free carrier and complex. Since the complexation reaction, eqn (5.41), takes
place at the interfaces and not inside the membrane, the concentrations of the
free and complexed forms of the carrier, and hence also its total concentration
cCT ≡ cC + cCA, vary linearly with position. Introducing the average total
carrier concentration, cb

CT ≡ (1/h)
∫ h

0 cCT(x)dx, the total carrier concentration
at the membrane boundaries satisfies the relation

cCT(0) + cCT(h) = 2cb
CT. (5.45)

Note that cb
CT is determined by the amount of carrier dissolved in the organic

solvent when the liquid membrane is prepared and is one of the key parameters
in carrier-mediated transport.

The flux densities of free and complexed carrier are

jC = −DC
dcC

dx
= (DC/h)[cC(0) − cC(h)], (5.46)

jCA = −DCA
dcCA

dx
= (DCA/h)[cCA(0) − cCA(h)], (5.47)

and it is assumed that jC + jCA = 0, which states that the total (i.e. free and
complexed) carrier flux density must be zero because the carrier cannot parti-
tion to the aqueous phase. Moreover, since the carrier is often a macrocyclic
compound that accommodates the solute in its interior, the size and shape of
the carrier is not significantly modified by the complexation with the solute and
it can be assumed that DC = DCA. The above equations then imply that the
total carrier has a uniform distribution, cCT(0) = cCT(h) = cb

CT. We restrict the
discussion to this case hereafter and eliminate the superscript b for the sake of
clarity.

The fraction of complexed carrier θ ≡ cCA/cCT depends on the amount of
solute available. At the membrane boundaries this is given by

θα = KCAcα
A

1 + KCAcα
A

, (5.48)

θβ = KCAcβ

A

1 + KCAcβ

A

, (5.49)

where eqn (5.42) has been used.9 The solute flux density due to the carrier-
mediated mechanism can then be written as

jCA = DCcCT

h
(θα − θβ), (5.50)

9 Although eqns (5.48) and (5.49) are of the form of the Langmuir adsorption isotherm, no
adsorption isotherm is assumed.
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and a comparison with the expression jCA = PCA�α
βcA allows us to determine

the permeability PCA as

PCA = DC

h

KCAcCT

(1 + KCAcα
A)(1 + KCAcβ

A)
. (5.51)

It is noteworthy that this permeability depends on the solute concentrations cα
A

and cβ

A, which implies that the flux density jCA, and hence jA, is a non-linear
function of the concentration drop �α

βcA. Only when the solute concentration

is small, cβ

A < cα
A � 1/KCA, does the permeability PCA reduce to PCA,dil ≈

KCADCcCT/h, and the solute flux density jA become proportional to �α
βcA.

From an experimental point of view, carrier-mediated transport can be conve-
niently studied by analysing the initial-time solute flux density.This corresponds
to a situation where the solute is present only in the source compartment and the
running time of the experiment is so short that we can assume cβ

A ≈ 0. In this
case, the solute flux density due to the carrier-mediated mechanism reduces to

jCA = PCAcα
A ≈ jC,L

KCAcα
A

1 + KCAcα
A

(cβ

A ≈ 0), (5.52)

and saturates to its maximum value jC,L ≡ DCcCT/h in the limit of high solute
concentration, KCAcα

A 
 1. Since jC,L is determined by the amount of carrier
inside the membrane, and not by the solute concentration cα

A, a plot of jA vs. cα
A

shows a tendency to saturation at high solute concentrations that corresponds to
jA ≈ jo

A + jC,L = Po
Acα

A + jC,L (Fig. 5.11). This is one of the most distinguishing
characteristics of carrier-mediated transport.

Due to this tendency to saturation in the flux density (for the case cβ

A ≈ 0),
the solute permeability in the membrane due to carrier-mediated transport is a
decreasing function of the solute concentration in the source solution (Fig. 5.12).
At low concentrations, KCAcα

A � 1, the permeability PCA takes its maximum
value, PCA,dil = KCADCcCT/h, and at high concentrations it decreases with
increasing concentration as PCA,sat = DCcCT/cα

Ah. Note that the complexation
constant KCA can be experimentally determined, e.g., from the ratio of the
permeability at low concentrations PCA,dil and the saturation flux density jC,L.

Fig. 5.11.
Schematic representation of the initial

(cβ
A ≈ 0) solute flux density vs. the solute

concentration in the source solution for
carrier-mediated transport. The solute flux
density is the sum of the contributions of
the carrier-mediated mechanism and the
solubility–diffusion mechanism. The first
one saturates at high solute concentrations,
while the latter shows a linear behaviour.
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Fig. 5.12.
The solute permeability in the membrane
due to carrier-mediated transport is a
decreasing function of the solute
concentration in the source solution (for

the case cβ
A ≈ 0). At low concentrations,

KCAcα
A � 1, the permeability PCA takes

its maximum value, PCA,dil = KCAjC,L.
At high concentrations, KAcα

A 
 1, it
decreases with increasing cα

A as
PCA,sat = jC,L/cα

A.

It was mentioned at the beginning of this section that carrier-mediated trans-
port is also characterized by a high solute selectivity. Specific carriers are
available (or can be designed with the current supramolecular chemistry tech-
niques) for a large number of solutes. This means that the equilibrium constant
KCA is large for the complexation of the carrier with a given solute and very
small for other solutes, so that only the former is effectively transported across
the liquid membrane. In other words, while in the solubility–diffusion mecha-
nism we could only change the organic solvent to affect the solute flux across
the membrane, the choice of different carriers implies a much more significant
change in the solute flux.

This comment on the selectivity leads us to another interesting issue of carrier-
mediated transport. In the case cβ

A ≈ 0 considered above we have concluded
that the solute flux density is a monotonously increasing function of the solute
concentration in the source solution that saturates to the value jC,L ≡ DCcCT/h
in the limit of high solute concentration, KCAcα

A 
 1. Thus, one is tempted
to conclude that the facilitation factor increases with increasing complexation
equilibrium constant KCA. However, this is not correct and a very high value of
this constant may result in a low solute flux density, and hence, on a facilitation
factor of the order of one. The reason for this behaviour is the fact that the
solute is not released at the membrane receiving solution interface when KCA
is very large. All the carrier molecules are then in the form of solute–carrier
complex, and they do not contribute to solute transport. To analyse this effect,
we have to consider the case cβ

A �= 0. Figure 5.13 shows the solute flux density

against KCAcα
A for some values of the solute concentration ratio cβ

A/cα
A. It is

observed that there is an optimum value of the complexation constant KCA that
leads to a maximum facilitation of the solute transport through the membrane
when KCAcα

A ≈ 1. The saturation behaviour of the solute flux density mentioned

above is therefore a peculiarity of the case cβ

A = 0. Moreover, since the diffusion
boundary layer at the receiving side makes the solution concentration at the
membrane interface larger than cβ

A, it is to be expected that this layer leads
to a significant reduction in the solute flux density in the limit of high solute
concentrations (in the source solution).

In conclusion, the coupling between diffusion of the different species and the
complexation reactions at the membrane interfaces gives rise to a non-linear
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Fig. 5.13.
The solute flux density due to
carrier-mediated transport shows a
maximum when KCAcα

A ≈ 1 for non-zero

values of the concentration ratio cβ
A/cα

A.
This implies that the complexation
constant has to be optimized in order to
maximize the facilitation factor.
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Fig. 5.14.
The total resistance to solute transport of a
supported liquid membrane that
incorporates a carrier and is flanked by two
aqueous diffusion boundary layers can be
evaluated as the sum of three transport
resistances in series, the middle one
representing the liquid membrane and
consisting in turn in a parallel association
of two transport resistances.
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dependence of the solute flux density with the system variables (concentrations
and equilibrium constant) and, therefore, to a rather rich system behaviour. The
general equations that describe the solute flux are eqns (5.43) and (5.51). Their
particular cases have limited ranges of validity that have to be clearly stated to
avoid errors in the analysis of experimental data.

5.3.5 The effect of the diffusion boundary layers on
carrier-mediated transport

As explained in Section 5.3.3, the liquid membrane is flanked by two diffu-
sion boundary layers of thickness δ when the aqueous solutions are poorly
stirred and offer some resistance to the solute transport. Using an electrical
analogy, the three layers (liquid membrane and aqueous diffusion boundary
layers) behave as three resistors in series, but the resistor representing the liquid
membrane consists in turn in a parallel association of resistors representing the
different transport mechanisms inside the membrane, such as free and carrier-
mediated solute transport. Since the transport resistance is the reciprocal of the
solute permeability in the corresponding phase, it can be shown that the solute
permeability is (Fig. 5.14)

1

PA
= 2

Pw
A

+ 1

Po
A + PCA

. (5.53)



Carrier-mediated transport 253

The derivation of this formula runs parallel to that of eqn (5.37) and the con-
clusion is similar, that is, the aqueous diffusion boundary layers decrease
the permeability of the membrane system to the solute, and this effect is
particularly important when the permeability of the organic phase is high.
Thus, since the presence of the carrier significantly increases the perme-
ability of the solute in the liquid membrane, we conclude that the effect of
the aqueous diffusion boundary layers is more important in carrier-mediated
transport than when solute is only transported by the solubility–diffusion
mechanism.

In this section we describe the solute flux density across the supported liquid
membrane taking into account the diffusion boundary layers, thus extending
the analyses made in the previous two sections. For the sake of simplicity, we
introduce the following assumptions:

1) DC ≈ DCA, and hence cCT is independent on position,
2) cβ

A ≈ 0, i.e. we discuss only the initial measurements, and
3) Po

A � PCA, so that the free solute cannot get inside the membrane.

Under these conditions, the total permeability of solute A in the membrane
system is PA = [2/Pw

A + 1/PCA]−1, where Pw
A ≡ Dw

A/δ is the permeability in
one boundary layer and the permeability in the membrane

PCA = DC

h

KCAcCT

[1 + KCAcw
A(0)][1 + KCAcw

A(h)] (5.54)

is a non-linear function of the solute concentration at the membrane boundaries
(see below). We aim at finding the relation between the solute flux density jA
and its source concentration cα

A.
When the liquid membrane offers a negligible transport resistance, it is said

that the system operates under conditions of film control. The maximum solute
flux density would then be jw

A,L ≡ Dw
Acα

A/2δ. This is expected to occur at
low solute concentrations, KCAcα

A � 1, since PCA then takes its maximum
value PCA,dil = KCADCcCT/h (Fig. 5.12), but it also requires that Pw

A �
PCA,dil (otherwise both the membrane and the boundary layers control the solute
flux).

When the diffusion boundary layers were disregarded in Section 5.3.4 it was
concluded that the maximum solute flux density was the saturation flux density
jC,L ≡ DCcCT/h, which corresponds to the limit of high solute concentration
in the source solution, KCAcα

A 
 1. The question to be solved in this section
is whether jC,L is also the maximum solute flux density when the diffusion
boundary layers in the aqueous solution have a high solute permeability. In
other words, we have to determine whether it is possible that Pw

A 
 PCA and
hence PA ≈ PCA under any conditions. If this were the case, we would say that
the system operates under conditions of membrane control. On the contrary,
if Pw

A and PCA are of the same order of magnitude, the system operates under
conditions of mixed control, i.e. both the diffusion boundary layers and the
liquid membrane offer a significant transport resistance.
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The flux density of the solute across the diffusion boundary layer in the source
compartment is jA = Pw

A [cα
A − cw

A(0)]. Then, the solute concentration at the
membrane source solution interface is given by

cw
A(0) = cα

A − jA
Pw

A
. (5.55)

Similarly, at the membrane receiving solution interface the solute concentra-
tion is

cw
A(h) = jA

Pw
A,L

. (5.56)

Since we are assuming that Po
A � PCA, the transport in the membrane phase is

only carrier-mediated, and hence jA ≈ jCA = PCA[cw
A(0) − cw

A(h)]. Denoting
the concentration of the complexed carrier as cCA = cCTθ , the solute flux
density in the liquid membrane is

jA ≈ jCA = DCcCT

h
[θ(0) − θ(h)] = jC,L

KCA[cw
A(0) − cw

A(h)]
[1 + KCAcw

A(0)][1 + KCAcw
A(h)] .

(5.57)

Introducing the auxiliary parameter

p ≡ PCA,dil

Pw
A

= KCADCcCTδ

Dw
Ah

= KCA
jC,L

Pw
A

, (5.58)

eqn (5.57) can be transformed to

jA
jC,L

[
1 + KCAcα

A − p
jA

jC,L

] [
1 + p

jA
jC,L

]
= KCAcα

A − 2p
jA

jC,L
. (5.59)

This is the relation between jA and cα
A that we were looking for. This can

be interpreted as a third-order algebraic equation in jA, but it is much more
convenient to consider it as a first-order equation in cα

A. Thus, eqn (5.59) can
be presented as

KCAcα
A = jA

jC,L

p2( jA/jC,L)2 − 2p − 1

p(jA/jC,L)2 + ( jA/jC,L) − 1
. (5.60)

At low concentrations, KCAcα
A � 1, (which also implies jA/jC,L � 1) this

reduces to

jA,dil = jC,L
KCAcα

A

1 + 2p
, (5.61)
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which is equivalent to jA ≈ jw
A,L if p 
 1. At high concentrations, KCAcα

A 
 1,
the solute flux density saturates to

jA,sat = jC,L

√
1 + 4p − 1

2p
, (5.62)

which is equivalent to jA ≈ jC,L only if p � 1.
Figure 5.15 shows the graphical representation of eqn (5.60) for different

values of the parameter p. It is observed that the diffusion boundary layers
make the saturation current smaller than jC,L, and this effect becomes more
significant as Pw

A decreases (or p increases). In the limit of low concentration
cα

A and low permeability Pw
A, the solute flux density is jA ≈ jw

A,L, as indicated
by the dashed line in Fig. 5.15. This is the only case where the diffusion bound-
ary layers completely control the solute transport. Membrane control can be
observed when p = 0. Otherwise, solute transport occurs under conditions of
mixed control. In fact, the most significant conclusion is that even at high con-
centrations cα

A, when the permeability PCA decrease to low values, we cannot
neglect the influence of the diffusion boundary layers on the solute transport.

5.3.6 Extraction of an acid
Facilitated diffusion was originally employed in gas separations but the range
of applications has widened considerably in recent decades. We consider here
as a practical example the case of acid extraction. The source (or feed) solution
α contains the acid A (e.g., HCl) to be extracted, and contains an excess of
supporting electrolyte (e.g., NaCl). The receiving (or strip) solution β contains
an excess of base B (e.g., NaOH). The acid extracted reacts with the base and
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Fig. 5.15.
Solute flux density against concentration in source compartment for carrier-mediated transport
across a liquid membrane flanked by two diffusion boundary layers. Parameter p is the ratio
between the solute permeability in the membrane when the source solution is diluted and the
permeability in the boundary layers. Thus, p = 0 corresponds to the absence of boundary layers.
The saturation current decreases with increasing p, and therefore the effect of the boundary layers
cannot be neglected even at high solute concentrations. At low concentrations and high p, the
boundary layers control the solute flux and jA ≈ jwA,L (dashed line). The situations marked with
the labels A and B are analysed in Fig. 5.16.
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Fig. 5.16.
Concentration profiles in the membrane system corresponding to a permeability ratio p = 10 and the two solute concentrations marked with the
labels A and B in Fig. 5.15. In the boundary layers, the magnitude represented in the ordinate axis is cA/cα

A, and in the membrane it is
θ = cCA/cCT; note that jA,sat/jC,L = θ(0) − θ(h). At low solute concentrations and high p (case A) most of the concentration drop takes place in
the diffusion boundary layers, a situation known as film control. At high concentrations (case B) the concentration drops in these layers are smaller
but significant. Hence, their influence cannot be neglected. This occurs because the solute concentration at the membrane receiving solution

interface determines the concentration drop (of the complexed solute) inside the membrane and it is finite, although cβ
A = 0.

produces salt BA (e.g., NaCl) in the receiving compartment. The membrane
is flanked by two diffusion boundary layers of thickness δ. The heterogeneous
reactions at the membrane interfaces are

A(α) + C(o) →← CA(o) feed, (5.63)

CA(o) + B(β) →← C(o) + BA(β) strip, (5.64)

where the carrier C is typically an amine and CA is the amine–acid complex.
That is, reaction (5.63) could be

HCl(w) + R − NH2(o) →← R − NH+
3 Cl−(o). (5.65)

The five stages of this transport process are:

1) diffusion of A across the diffusion boundary layer in the source solution
(−δ < x < 0),

2) reaction of A with C at the source solution/membrane interface,
3) diffusion of complex CA across the membrane, accompanied by simultane-

ous diffusion of free C in the opposite direction,
4) dissociation of complex CA via the reaction with B at the mem-

brane/receiving solution interface, and
5) diffusion of BA and B across the receiving diffusion layer (h < x < h + δ).

Figure 5.17 illustrates the interfacial reactions involved in this acid-extraction-
process. At the interface between the membrane and the source solution, the
amine carrier reacts with the acid. At the opposite interface, the amine–acid
complex reacts with the base, producing salt and the free carrier. This figure
also shows schematically the concentration profiles in the system.
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Fig. 5.17.
(Left) Schematic reaction mechanism for the extraction of an acid A using carrier-mediated transport across a supported liquid membrane.
Species B at the receiving solution β is a base. (Right) Schematic concentration profiles in the membrane and the aqueous diffusion boundary
layers for the situation considered in this section.

The interfacial heterogeneous reactions are not rate limiting and can be
assumed to be described by the equilibria10

KCA = cCA

cCcA
, (5.66)

KBA = cCcBA

cCAcB
, (5.67)

where no phase superscripts are needed because it is assumed that species A, B
and BA can only be present in the aqueous phases and species C and CA cannot
leave the membrane. Since the receiving solution contains an excess of base,
it can be assumed that cB in eqn (5.67) is a constant (equal to cβ

B). Although
the acid does not exist as a solute in the receiving solution, it is convenient to
defined its ‘concentration’ in the receiving diffusion boundary layer as

cA ≡ cBA

KCAKBAcB
, (h < x < h + δ). (5.68)

Under steady-state conditions the flux density of the acid A across the diffusion
boundary layer in the source solution is the same as the flux density of amine–
acid complex CA in the liquid membrane, and also the same as the flux density
of salt BA in the receiving diffusion boundary layer, jA = jCA = jBA. These
flux densities can be written as

jA = Pw
A [cα

A − cA(0)], (5.69)

jCA = (DC/h)[cCA(0) − cCA(h)] = PCA[cA(0) − cA(h)], (5.70)

jBA = (DBA/δ)[cBA(h) − cβ

BA] = PBA[cA(h) − cβ

A], (5.71)

10 The reaction of the acid with the base at the membrane/receiving solution interface also
produces water, and the equilibrium constant includes the water concentration.
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where Pw
A ≡ DA/δ, PBA ≡ KCAKBAcBDBA/δ, and

PCA ≡ DC

h

KCAcCT

[1 + KCAcA(0)][1 + KCAcA(h)] . (5.72)

The solute permeability across the membrane system, PA ≡ jA/(cα
A − cβ

A), is
then

1

PA
= 1

Pw
A

+ 1

PCA
+ 1

PBA
, (5.73)

as expected for the transport across three layers in series. In these expressions,
the effective diffusion coefficients have to be determined. In the source diffusion
boundary layer, the acid is completely dissociated. Since there is an excess of
salt (acting as supporting electrolyte), this is the trace-ion diffusion case, see
eqn (3.16), and the effective diffusion coefficient of the HCl component is then
the diffusion coefficient of the H+ ion, DA = DH+ . Similarly, the (H2O-NaOH-
NaCl) solution in the receiving diffusion boundary layer is essentially ternary
(Na+, OH−, Cl−) because the concentration of H+ ions is negligible, and the
situation is again that of trace-ion diffusion (due to the excess of base). So, the
effective diffusion coefficient of the salt is DBA = DCl− . In the membrane, it
is assumed that DCA = DC as usual.

As in the previous sections, we consider the situation of practical importance
of short running times (and efficient stirring) where the amount of salt AB in the
bulk of compartment β is negligible, cβ

BA = 0 = cβ

A. If we consider the solute
flux density jA to be known, the above equations can be used to determine all
the concentrations at the membrane boundaries as follows

cA(0) = cα
A − jA

Pw
A

, (5.74)

cA(h) ≡ cBA(h)

KCAKBAcB
= jA

PBA
, (5.75)

jA
jC,L

[1 + KCAcA(0)][1 + KCAcA(h)] = KCA[cA(0) − cA(h)], (5.76)

where jC,L ≡ DCcCT/h is the limiting, carrier-mediated solute flux density.
Introducing the auxiliary parameters

p ≡ PCA,dil

Pw
A

= KCADCcCTδ

Dw
Ah

, (5.77)

q ≡ Pw
A

PBA
= Dw

A

KCAKBAcBDBA
, (5.78)

eqn (5.76) can be transformed to

jA
jC,L

[
1 + KCAcα

A − p
jA

jC,L

] [
1 + pq

jA
jC,L

]
= KCAcα

A − p(1 + q)
jA

jC,L
.

(5.79)
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Fig. 5.18.
Solute flux density against concentration in source compartment for the acid extraction as an
example of carrier-mediated transport across a liquid membrane flanked by two diffusion
boundary layers. Parameter q is the ratio between the solute permeability in the source boundary
layer and in the receiving boundary layer, where it is transported in the form of salt; the value
q = 1 reproduces the situation analysed in Fig. 5.15. The ratio between the solute permeability
across the liquid membrane in dilute source solutions and the solute permeability in the source
boundary layer has been fixed as p = 10. Thus, the curve q = 0 corresponds to no polarization
(i.e. no concentration drop) of the receiving boundary layer and saturates to jA = jC,L. The
situations marked with the labels A and B are analysed in Fig. 5.19.

This relation between jA and cα
A can be interpreted as a third-order algebraic

equation in jA or, more conveniently, as a first-order equation in cα
A that can be

solved to obtain the following solute flux density–source concentration relation

KCAcα
A = jA

jC,L

p2q( jA/jC,L)2 + p(1 − q)( jA/jC,L) − p(1 + q) − 1

pq( jA/jC,L)2 + ( jA/jC,L) − 1
. (5.80)

At high concentrations, KCAcα
A 
 1, the solute flux density saturates to

jA,sat = jC,L

√
1 + 4pq − 1

2pq
, (5.81)

which is equivalent to jA ≈ jC,L if p � 1 or q � 1.
Figure 5.18 shows the graphical representation of eqn (5.80) for p = 10 and

different values of the parameter q. At high solute concentrations, KCAcα
A 
 1,

the liquid membrane is always limiting the transport because this is essential to
carrier-mediated transport. If pq � 1, the diffusion boundary layers do not limit
the transport at high concentrations and the maximum solute flux density is jC,L.
However, if pq is of the order of or larger than unity, mixed control (membrane
and boundary layers) takes place at high concentrations. At low concentrations,
KCAcα

A � 1, the membrane determines the rate of solute transport if p � 1 and
pq � 1, and the flux density is then jA ≈ PCA,dilcα

A. The source boundary layer
determines the rate if p 
 1 and q � 1, so that the flux density is jA ≈ Pw

Acα
A.

Finally, the receiving boundary layer determines the rate if p 
 1 and q 
 1,
so that the flux density is jA ≈ PBAcα

A.
In conclusion, since the acid transport takes place in different form in the

source and receiving boundary layers, the phenomenology is richer than in
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Fig. 5.19.
Concentration profiles in the membrane system corresponding to a solute concentration in the source compartment KCAcα

A = 25, and permeability
ratios (A) p = 10, q = 0 and (B) p = 10, q = 10, corresponding to the labels A and B in Fig. 5.18. In the boundary layers, the magnitude
represented is cA/cα

A, and in the liquid membrane it is θ = cCA/cCT; note that jA,sat/jC,L = θ(0) − θ(h). At low values of q (case A) the
concentration drop in the receiving boundary layer vanishes, the fraction of complexed carrier vanishes at the membrane receiving solution
interface and, therefore, the solute flux density can reach the saturation value jC,Lat high solute concentration in the source solution. At high values
of q (case B) the concentration drop in the source boundary layer is small compared to that in the receiving layer.

Section 5.3.5. Any of the three layers (membrane and the two boundary layers)
may determine the rate the acid transport, and this depends on the component
concentrations in the different phases. By measuring the flux with varying
bulk concentrations of A, B and C, the rate-determining step can be found
experimentally.11

5.3.7 Additional comments on the modelling of
carrier-mediated transport

The mathematical modelling of carrier-mediated transport constitutes a compli-
cated and diverse problem [13]. Both the complexation reactions and diffusion
in the aqueous phases as well as in the membrane need to be taken into account.
Analysis is further complicated by the fact that solvents used in liquid mem-
branes are usually non-polar and, as a consequence, their relative permittivities
(dielectric constants) are very low, causing agglomeration of carriers. Therefore,
the transport of electrolytes is usually feasible only as ion pairs. If electroassisted
transport is considered, the membrane solvent must have sufficiently high rela-
tive permittivity to allow for the dissociation of electrolytes, and hence ensure
some conductivity in the membrane.

Some simplifying assumptions often introduced in the theoretical modelling
are widely accepted, such as:

1) the transport can be studied using the quasi-steady-state approximation,

11 A secondary problem when analysing the experimental data is that the numerical values of
the equilibrium constants and the diffusion coefficients are not always available in the literature
but they can be either estimated or found from the best fit to the experimental data. The diffusion
coefficients can be estimated, if no better data is available, with Walden’s rule, which states that
the ratio Dη/T is independent of the solvent. In this relation, D is the diffusion coefficient, η the
solvent viscosity and T the absolute temperature. The Walden rule can formally be derived from
the Stokes law for spherical solutes.
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2) the membrane is so porous that the area of the aqueous/membrane interface
is equal to the geometrical area of the membrane, and

3) both aqueous phases are well stirred, forming diffusion boundary layers of
thickness δ.

Other approximations need to be tested for the experimental set-up used, such
as the assumption that the carrier does not dissolve in the aqueous phases.As we
have learned from Sections 5.1.3 and 5.1.4 this approximation might fail and
the partitioning of the carrier must then be considered. Possibly, the approx-
imation that is more open to discussion refers to the complexation reactions
[14]. In this chapter we assume that they are heterogeneous and take place at
the interfaces, not inside the membrane. This assumption has been experimen-
tally confirmed in some systems discussed in Sections 5.4.4 and 5.4.5, and it is
widely used when describing carrier-mediated transport in biomembranes. On
the contrary, most theoretical analyses of carrier-mediated transport in chem-
ical engineering assume that the complexation reactions take place inside the
membrane. The theoretical description of these diffusion–reaction problems
is more complicated because the flux densities are not constant with position
under steady-state conditions, and the differential transport equations are non-
linear [15]. However, in some cases the homogeneous reaction takes place in a
region so close to the interface that it can hardly be discriminated from a true
heterogeneous reaction.

5.4 Carrier-mediated coupled transport
5.4.1 Introduction
When two neutral solutes A and B are simultaneously transported across a
supported liquid membrane by a carrier-mediated mechanism involving a sin-
gle carrier, their transport is coupled. From the point of view of the transport
equations, this implies that the driving force for the flux of solute A is not only
the concentration gradient of this solute but also the concentration gradient
of solute B, and vice versa. The coupled transport of the two solutes in the
same direction is known as co-transport and the coupled transport in opposite
directions in known as countertransport. Coupled transport is widely used in
practical applications like liquid-phase extraction.

The transport of these two solutes is a spontaneous process towards equilib-
rium that leads to a decrease of Gibbs free energy and, hence, it does not require
an external source of energy. In the biophysical jargon, it is said that this is a
case of passive transport, as opposed to the case of primary active transport
(not considered here) where the coupled transport requires an external source
of metabolic energy because it drives the system to a non-equilibrium state.

Two related concepts are that of downhill transport and uphill transport.
When applied to neutral solutes, the former refers to the diffusion from a more
concentrated solution to a less concentration solution, and the uphill trans-
port refers to the opposite case of diffusion from a less to a more concentrated
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solution. In the case of independent transport of a solute, the second law of ther-
modynamics requires that passive transport occurs downhill. However, when
the two solutes share the same carrier and their transport is coupled, it is possible
that one of them is transported uphill. Again, the second law of thermodynam-
ics requires that the other solute must be transported downhill. From the point
of view of the rate of variation of Gibbs free energy in the transport process,
the uphill transport of one of the solutes requires a source of free energy. Such
a source is provided by the downhill transport of the second solute. Simi-
larly, from the point of view of entropy production, we could say then that
the solute that is transported against its concentration gradient has a negative
contribution to the entropy production, and the second law of thermodynamics
requires that the downhill transport of the other solute produces more entropy
than the uphill transport of the first one. In biophysics, the uphill transport of
a solute using the free energy released by the simultaneous, coupled downhill
transport of another solute is known as secondary active transport.

In the next sections we consider two mechanisms for carrier-mediated cou-
pled transport of two neutral solutes A and B. We choose solute B as the one
that is always transported downhill. First, we consider competitive binding to
a carrier dissolved in the membrane. When the two solutes flow in the same
directions, soluteAcan only be transported downhill. However, when the solutes
flow in opposite directions, solute A can be transported uphill under some con-
ditions. For this reason, competitive binding to a carrier is often related to
countertransport. Second, we consider sequential binding to a carrier. When
the two solutes flow in opposite directions, solute A can only be transported
downhill. However, when the solutes flow in the same direction, solute A can
be transported against its concentration gradient under some conditions. For
this reason, sequential binding to a carrier is often related to co-transport.

5.4.2 Competitive binding of two neutral solutes to a carrier
Consider a liquid membrane that separates two aqueous solutions, α and β,
containing two neutral solutes A and B at molar concentrations cα

A, cα
B, cβ

A, and

cβ
B. Without loss of generality, we consider that cα

B > cβ
B and that the transport

of this solute proceeds from compartment α to β. These solutions are assumed
to be ideally mixed, so that the aqueous diffusion boundary layers offer no
transport resistance. The membrane contains a neutral carrier C that can bind
competitively to either solute A or solute B (Figs. 5.20 and 5.21). For the sake
of simplicity, we neglect free solute diffusion. That is, none of the solutes
can partition inside the membrane without binding to the carrier. Thus, only
the solute–carrier complexes CA and CB, and the free carrier C, can diffuse
throughout the membrane.

The complexation reactions at the membrane aqueous solution interfaces

A(w) + C(o) →← CA(o), (5.82)

B(w) + C(o) →← CB(o) (5.83)
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have equilibrium constants12

KCA = cCA

cCcw
A

, (5.84)

KCB = cCB

cCcw
B

. (5.85)

The flux densities of free and complexed carrier are

jC = −DC
dcC

dx
= (DC/h)[cC(0) − cC(h)], (5.86)

jCA = −DCA
dcCA

dx
= (DCA/h)[cCA(0) − cCA(h)], (5.87)

jCB = −DCB
dcCB

dx
= (DCB/h)[cCB(0) − cCB(h)], (5.88)

and it is assumed that jC+jCA +jCB = 0, which states that the total (i.e. free and
complexed) carrier flux density must be zero because the carrier cannot partition
to the aqueous phase. Furthermore, we assume that DC = DCA = DCB, so that
the above equations imply that the total carrier cCT = cC + cCA + cCB has a

12 Since the supported liquid membranes are relatively thick and the limitation to solute transport
arises from the diffusion inside the membrane and not from the interfacial kinetics, it is a very good
approximation to consider that reactions (5.82) and (5.83) are under conditions of thermodynamic
equilibrium.
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uniform distribution. Then, the fraction of carrier in CA form at the membrane
solution α interface is

θ(0) = cCA(0)

cCT
= KCAcα

A

1 + KCAcα
A + KCBcα

B
, (5.89)

and similar expressions can be written for CB and the other interface.
Since free solute transport is not possible, the flux density of solute A

across the membrane is jA = jCA, and using eqns (5.87) and (5.89) it can
be evaluated as

jA = DCcCT

h
KCA

cα
A(1 + KCBcβ

B) − cβ

A(1 + KCBcα
B)

[1 + KCAcα
A + KCBcα

B][1 + KCAcβ

A + KCBcβ
B]

. (5.90)

The most important characteristic of this equation is that it is no longer conve-
nient to present it in the form jA = PCA(cα

A − cβ

A), because the permeability

PCA would then be a complicated function of the concentrations cα
A, cα

B, cβ

A,

and cβ
B, and the equilibrium constants KCA and KCB. In fact, the transport of

solute A is not only driven by the concentration difference �α
βcA ≡ cα

A − cβ

A

but the concentration difference of the other solute �α
βcB ≡ cα

B − cβ
B > 0 can

also act as a driving force for A, and vice versa. Indeed, the solute flux densities
are given by the equations

jA = jC,L
(1 + KCBc̄B)KCA(cα

A − cβ

A) − KCAc̄AKCB(cα
B − cβ

B)

[1 + KCAcα
A + KCBcα

B][1 + KCAcβ

A + KCBcβ
B]

, (5.91)

jB = jC,L
(1 + KCAc̄A)KCB(cα

B − cβ
B) − KCBc̄BKCA(cα

A − cβ

A)

[1 + KCAcα
A + KCBcα

B][1 + KCAcβ

A + KCBcβ
B]

, (5.92)

where c̄A ≡ (cα
A + cβ

A)/2 and c̄B ≡ (cα
B + cβ

B)/2 are the average solute concen-
trations and jC,L = DCcCT/h is the limiting flux density in a carrier-mediated
transport mechanism.

Equation (5.90) clearly shows that the sign of jA, and hence the flow direction
for solute A, is equal to the sign of [cα

A(1 + KCBcβ
B) − cβ

A(1 + KCBcα
B)] and

not to the sign of (cα
A − cβ

A). This opens up the possibility for uphill transport.

If cα
A < cβ

A then jA < 0 and the countertransport proceeds downhill for both

solutes (Fig. 5.20, left). If cα
A > cβ

A, we can observe that jA < 0 (i.e. solute A
can flow from a low concentration solution β to a high concentration solution
α) provided that 1 < cα

A/cβ

A < (1 + KCBcα
B)/(1 + KCBcβ

B) (Fig. 5.20, right).

Obviously, this requires that cα
B > cβ

B and also that a significant fraction of the

carrier is coupled to solute B, because otherwise KCBcβ
B < KCBcα

B � 1 and the
above requirement could not be satisfied. These two conditions then imply that
jB > 0 and, therefore, that solute B must be transported downhill if solute A
is transported uphill. Finally, if the concentration difference for solute A is so
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high that cα
A/cβ

A > (1 + KCBcα
B)/(1 + KCBcβ

B) > 1, then the coupled transport
of the two solutes proceeds in the same direction (Fig. 5.21).

Let us analyse in more detail the carrier-mediated countertransport illustrated
in Fig. 5.20. If the free carrier were not able to diffuse across the membrane,
the countertransport could be understood as the following sequence of steps:

1) at the interface between the liquid membrane and the solution with a low
concentration of solute B, the equilibria in eqns (5.82) and (5.83) are dis-
placed towards the dissociation of carrier complex CB and the formation
of carrier complex CA, releasing solute B to and taking solute A from the
aqueous solution,

2) the carrier complex CA diffuses across the membrane,
3) at the opposite interface, the equilibria in eqns (5.82) and (5.83) are displaced

towards the dissociation of carrier complex CA and the formation of carrier
complex CB, releasing solute A to and taking solute B from the aqueous
solution,

4) the carrier complex CB diffuses back across the membrane, and the cycle
is repeated.

In this case, the transport of the two solutes satisfies a 1:1 stoichiometric rela-
tion since jCA = −jCB when jC = 0. Stoichiometric countertransport is very
common in biomembranes, although the coupling mechanism there is usually
a channel protein or an ionic pump rather than a carrier.

When the free carrier also diffuses across the membrane, as we have con-
sidered in the above theoretical description, the countertransport could be
understood as the following sequence of steps:

1) at the interface between the liquid membrane and the solution β (diluted in
solute B), the equilibria in eqns (5.82) and (5.83) are displaced towards the
dissociation of carrier complex CB and the formation of carrier complex
CA, releasing solute B to and taking solute A from the aqueous solution. In
addition, the interfacial reaction produces some free carrier C, which has a
high concentration there,

2) the carrier complex CA and the free carrier C diffuse across the membrane,
3) at the opposite interface, the equilibria in eqns (5.82) and (5.83) are displaced

towards the dissociation of carrier complex CA and the formation of carrier
complex CB, releasing solute A to and taking solute B from the solution. In
addition, the interfacial reaction consumes some free carrier C, which has a
low concentration there,

4) the carrier complex CB diffuses back across the membrane, and the cycle
is repeated.

The interesting thing here is that the fraction of complex CA at the interfaces
with the solution α and β is not only determined by the concentrations of solute
A at the respective solutions but also by the concentrations of solute B. Thus, if
the concentration of solute B in solution α is very high, the fraction of carrier in
CA form at this interface is very small. Conversely, the concentration of solute
B in solution β is low, and the fraction of carrier in CA form at this interface
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is large, even if the concentration of solute A in solution β is lower than in
solution α. This explains why uphill countertransport is then observed.

Figure 5.22 shows the solute flux densities evaluated from eqns (5.91) and
(5.92) as a function of KCAc̄A for different values of the concentration ratio
rA ≡ cα

A/cβ

A and fixed values of rB ≡ cα
B/cβ

B and KCBc̄B. It is observed that the
flux density jA vanishes when KCAc̄A does. This is because jA ∝ KCAc̄A in this
range. It is also observed that jA vanishes when KCAc̄A takes very large values, a
phenomenon already noted and illustrated in Fig. 5.13.At intermediate values of
KCAc̄A the flux density jA is of the order of the maximum value jC,L = DCcCT/h.

If rA > (1 + KCBcα
B)/(1 + KCBcβ

B), both solutes flow from solution α to β. If
rA < 1, solute A flows from solution β to α. Uphill countertransport of solute
A is observed when 1 < rA < (1 + KCBcα

B)/(1 + KCBcβ
B), which corresponds

to 1 < rA < 1.16 when KCBc̄B = 0.1 and 1 < rA < 6.80 when KCBc̄B = 10.
In relation to the flux density jB, it is noticed that it is independent of rA when
KCAc̄A � 1, as expected because the transport of B must be independent of
solute A when the latter is present in trace amounts. Again, the flux density
jB vanishes when KCAc̄A 
 1 because the carrier is then in CA form and is
not able to transport any of the solutes. At intermediate values of KCAc̄A the
coupling between the transport of the two solutes is more important and it is
observed that it can lead to either an enhancement of jB or even to a situation of
uphill countertransport of B driven by the concentration gradient of solute A.

Figure 5.23 clearly shows the regions when uphill countertransport is
possible. Note that the asymmetry in this diagram arises from the values
considered for KCAc̄A and KCBc̄B. Otherwise, eqns (5.91) and (5.92) evidence
the symmetry of the transport equations with respect to solutesAand B, although

Fig. 5.22.
Solute flux densities as a function of
KCA c̄A evaluated from eqns (5.91) and
(5.92) for the following values of the

concentration ratio rA ≡ cα
A/cβ

A = 0.5, 1,
2, 3, 5, 7, 10, and 15 (increasing in the
arrow direction). The concentration ratio
of solute B has been fixed to
rB ≡ cα

B/cβ
B = 10 and two values of its

average concentration have been
considered, KCBc̄B = 0.1 and 10.
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Fig. 5.23.
The arrows in every region of this diagram
show the flow direction of solutes A and B
(upper and lower arrows, respectively), as
evaluated from eqn (5.91) and (5.92) for
the values KCA c̄A = 1 and KCBc̄B = 10.
The shaded regions correspond to uphill
countertransport: in regions 1 and 3, solute
B is transported uphill driven by the
concentration gradient of solute A, and in
regions 2 and 4, the uphill transport of
solute A is driven by the concentration
gradient of solute B.

we have chosen above to discuss the situations when B is transported downhill
for the sake of clarity.

The energetics of uphill countertransport is analysed next. The rate of change
of Gibbs free energy per unit membrane area can be understood as a sum of
two contributions, �rG = �rGA + �rGB where �rGA ≡ jA(µ

β

A − µα
A) =

−RTjA ln rA, �rGB ≡ −RTjB ln rB and the solute flux densities are given
by eqns (5.91) and (5.92). The second law of thermodynamics requires that
�rG < 0 but there is no constraint on the contributions �rGA and �rGB.
Uphill transport of solute A is characterized by the condition �rGA > 0, and
similarly for solute B. Figure 5.24 shows the contributions �rGA and �rGB for
the transport conditions considered in Fig. 5.22. For the situations considered
here, uphill transport of A is observed when rA= 2, 3, 5 and KCBc̄B = 10, and
uphill transport of B is observed, in a limited range of values of KCAc̄A, when
rA= 15 and KCBc̄B = 10.

5.4.3 Sequential binding of two neutral solutes to a carrier
Consider a liquid membrane that separates two aqueous solutions, α and β,
containing two neutral solutes A and B at molar concentrations cα

A, cα
B, cβ

A,

and cβ
B. Without loss of generality, we consider that cα

B > cβ
B and that the

transport of this solute proceeds from compartment α to β. The solutions are
assumed to be ideally mixed, so that the aqueous diffusion boundary layers
offer no transport resistance. The membrane contains a neutral carrier C that
can bind sequentially first to solute A and then to solute B (Fig. 5.25). For the
sake of simplicity, we neglect free solute diffusion. That is, none of the solutes
can partition inside the membrane without binding to the carrier. Thus, only
the solute–carrier complexes CA and CAB, and the free carrier C, can diffuse
throughout the membrane.

The complexation reactions at the membrane aqueous solution interfaces

A(w) + C(o) →← CA(o), (5.82)

CA(o) + B(w) →← CAB(o), (5.93)
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Fig. 5.24.
Rate of Gibbs free energy change in the
carrier-mediated coupled transport of two
neutral solutes A and B. The contributions
of the two solutes are shown as a function
of KCA c̄A for the following values of the

concentration ratio rA ≡ cα
A/cβ

A = 0.5, 1,
2, 3, 5, 7, 10, and 15 (increasing in the
direction indicated by the arrows); in the
first plot the dashed curve corresponds to
rA= 0.5 and in the third one the dashed
curves correspond to rA= 0.5, 1, 2, and 3.
Two average concentrations of solute B
have been considered, KCBc̄B = 0.1 and
10, and its ratio has been fixed to
rB ≡ cα

B/cβ
B = 10.
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Fig. 5.25.
The carrier-mediated co-transport of two neutral solutes A and B that bind sequentially to the same carrier may proceed downhill (left) or uphill
(right) for one of the solutes.

have equilibrium constants13

KCA = cCA

cCcw
A

, (5.84)

KCAB = cCAB

cCAcw
B

. (5.94)

13 As explained before, it is a very good approximation to consider that these reactions are under
conditions of thermodynamic equilibrium.
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The flux densities of free and complexed carrier are

jC = −DC
dcC

dx
= (DC/h)[cC(0) − cC(h)], (5.86)

jCA = −DCA
dcCA

dx
= (DCA/h)[cCA(0) − cCA(h)], (5.87)

jCAB = −DCAB
dcCAB

dx
= (DCAB/h)[cCAB(0) − cCAB(h)], (5.95)

and it is assumed that jC + jCA + jCAB = 0, which states that the total (i.e. free
and complexed) carrier flux density must be zero because the carrier cannot
partition to the aqueous phase. Furthermore, we assume that DC = DCA =
DCAB, so that the above equations imply that the total carrier cCT = cC +
cCA + cCAB has a uniform distribution. Then, the fraction of carrier in CA and
CAB forms at the membrane, solution α interface are

θCA(0) = cCA(0)

cCT
= KCAcα

A

1 + KCAcα
A(1 + KCABcα

B)
, (5.96)

θCAB(0) = cCAB(0)

cCT
= KCAKCABcα

Acα
B

1 + KCAcα
A(1 + KCABcα

B)
, (5.97)

and similar expressions can be written for the other interface.
Since free solute transport is not possible, the flux density of solute A across

the membrane is jA = jCA + jCAB, and it can be evaluated as

jA = jC,LKCA
cα

A(1 + KCABcα
B) − cβ

A(1 + KCABcβ
B)

[1 + KCAcα
A(1 + KCABcα

B)][1 + KCAcβ

A(1 + KCABcβ
B)]

,

(5.98)

where jC,L = DCcCT/h. As in the case of competitive binding to the carrier,
it is not convenient to write this flux density in the form jA = PCA(cα

A −
cβ

A) because the permeability PCA would then be a complicated function of

the concentrations cα
A, cα

B, cβ

A, and cβ
B, and the equilibrium constants KCA and

KCAB. Equation (5.98) clearly shows that the sign of jA is equal to the sign of
[cα

A(1 + KCABcα
B) − cβ

A(1 + KCABcβ
B)] and not to the sign of (cα

A − cβ

A). This
opens the possibility for uphill co-transport.

If cα
A > cβ

A then jA > 0 and the co-transport proceeds downhill for both

solutes (Fig. 5.25, left). If cα
A < cβ

A, we can observe that jA > 0 (i.e. solute
A can flow uphill from a low concentration solution α to a high concentra-
tion solution β) provided that (1 + KCABcα

B)/(1 + KCABcβ
B) > cβ

A/cα
A > 1

(Fig. 5.25, right). Obviously, this requires that cα
B > cβ

B and also that a sig-
nificant fraction of the carrier is in CAB form. These two conditions then
imply that jB > 0 and, therefore, that solute B must be transported down-
hill when solute A is transported uphill. Finally, if the concentration difference
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Fig. 5.26.
The carrier-mediated countertransport of
two neutral solutes A and B that bind
sequentially to the same carrier always
proceeds downhill for both solutes. 0 h
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for solute A is so high that cβ

A/cα
A > (1 + KCABcα

B)/(1 + KCABcβ
B) > 1,

then the coupled transport of the two solutes proceeds in the opposite direction
(Fig. 5.26).

In relation to the carrier-mediated co-transport illustrated in Fig. 5.25, it is
interesting to note that if the complexed carrier CA were not able to diffuse
across the membrane, the transport of the two solutes would satisfy a 1:1 stoi-
chiometric relation. This stoichiometric co-transport could then be understood
as the following sequence of steps:

1) at the interface with solution α, the solutes A and B bind to the carrier and
form CAB,

2) the carrier complex CAB diffuses across the membrane,
3) at the opposite interface, solutes A and B are released,
4) the free carrier C diffuses back across the membrane, and the cycle is

repeated.

In this simple situation the uphill co-transport of solute A can be easily under-
stood because its transport across the membrane depends on the difference
(cα

Acα
B − cβ

Acβ
B), which can be positive even though cα

A < cβ

A.

5.4.4 Polyelectrolyte extraction by carrier-mediated
co-transport with an acid

As an application example of the theory presented in the previous sections, we
consider the extraction of an anionic polyelectrolyte PEm− by carrier-mediated
co-transport using supported liquid membranes. The carrier C is an amine, and
the solute that is co-transported is an acid. A specific system that we have inves-
tigated is the extraction of lignosulphonate using trilaurylamine as a carrier and
decanol as the membrane solvent [16]. The feed solution (solution α) contains
HCl and the polyelectrolyte in sodium form NamPE. The strip solution (solution
β) contains NaOH.
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The reactions taking place at the membrane interfaces are

HCl(α) + C(o) →← C : HCl(o) feed, (5.99)

NamPE(α) + m C : HCl(o) →← (C : H)mPE(o) + m NaCl(α) feed, (5.100)

C : HCl(o) + NaOH(β) →← C(o) + NaCl(β) + H2O(β) strip, (5.101)

(C : H)mPE(o) + m NaOH(β) →← m C(o) + NamPE(β) + m H2O(β) strip,
(5.102)

where the semicolon (e.g. in C:HCl) illustrates the electrostatic bond between
the carrier and the hydrogen ion. As usual, reactions (5.99)–(5.102) are consid-
ered to be in equilibrium. Although the polyelectrolyte has several counterions,
not all of them are released when it binds to the C:HCl complex in reaction
(5.100). In the experiments reported in Ref. [16] it was verified that low molec-
ular mass lignosulphonate exchanged only one counterion when binding to the
amine complex, that is, m = 1 in reactions (5.100) and (5.102). Thus, in the
following paragraphs we denote the polyelectrolyte anion with the counterions
that have not been released as PE−.

Before proceeding to the theoretical description of this transport problem, it
is in order to discuss whether it corresponds to a sequential or a competitive
binding mechanism. The species of interest, PE−, cannot bind to the free carrier
C unless the latter binds first to H+, thus forming the complex C:HPE. From
this point of view, it could be understood that binding is sequential, as shown in
reactions (5.99) and (5.100). Nevertheless, due to the low relative permittivity of
the membrane, the protonated amine C:H+ can only diffuse through the liquid
membrane in salt (or ion pair) form, C:HCl. Thus, the theoretical modelling
of this transport problem resembles one of competitive binding where the two
neutral solutes that compete for using the carrier to cross the membrane are HCl
and HPE, and the two carrier complexes are C:HCl and C:HPE. It should be
stressed, however, that in the aqueous feed solution there is no species like HPE
trying to compete with HCl for the carrier. Reaction (5.100) occurs between
PE− in the aqueous phase and C:HCl in the organic phase.

Let us then introduce the notationA= HPE, B = HCl, CA= C:HPE complex,
and CB = C:HCl complex. Reaction (5.100) then reads

A(α) + CB(o) →← CA(o) + B(α), (5.103)

and its equilibrium constant is14

K = cCAcB

cCBcA
, (5.104)

where no phase superscripts are needed because every species can only be in
one phase.

14 If there were a reaction like HPE(α) + C(o)
→← C:HPE(o), then K would be the ratio of the

equilibrium constants of this reaction and (5.99), i.e. it would be K = KCA/KCB in the notation
of Section 5.4.3.
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Under the appropriate experimental conditions, it can be assumed that:

1) the aqueous phases do not get polarized, i.e. the rate-determining step is the
transport across the membrane, and hence the concentrations of the carrier
complexes on the strip side are zero, cCA(h) ≈ 0 and cCB(h) ≈ 0, and

2) reaction (5.99) is so displaced towards the formation of complexed carrier
C:HCl that there is no free carrier C at the feed side, cC(0) ≈ 0.

Figure 5.27 shows a sketch of the concentration profiles in the system, where it
has been illustrated that the total carrier concentration at the interface with the
feed solution, cCT(0) = cCA(0) + cCB(0), might be different from that at the
interface with the strip solution, cCT(h) = cC(h).

The flux densities inside the membrane are

jC = −DC

h
cC(h), (5.105)

jCA = DCA

h
cCA(0), (5.106)

jCB = DCB

h
cCB(0). (5.107)

The condition that the carrier cannot exit the membrane phase,
jC + jCA + jCB = 0, implies that the distribution of the total carrier concen-
tration is linear and, therefore, that

cCT(0) + cCT(h) = 2cb
CT, (5.108)

where cb
CT is the average total carrier concentration. If we could use the approx-

imation DC ≈ DCA ≈ DCB, as in the previous sections, the polyelectrolyte flux
density, jA = jCA, would be given by

jA = jC,L
Kcα

A

Kcα
A + cα

B
, (5.109)

where jC,L ≡ DCcb
CT/h. This result can be considered a particular case of eqn

(5.90) corresponding to cβ

A ≈ 0, cβ
B ≈ 0, and cC(0) ≈ 0. However, the C:HPE

complex is much larger that the free carrier and the C:HCl complex, and the
differences in their diffusion coefficients are significant. The polyelectrolyte
flux density, jA = jCA, can then be evaluated as

jA = DCcb
CT

h

2DCAKcα
A

(DC + DCA)Kcα
A + (DC + DCB)cα

B
. (5.110)

As expected in the case of membrane-control under study, eqn (5.110) shows
that the polyelectrolyte flux density is proportional to the total carrier con-
centration. This is a good diagnostic criterion for the analysis of experimental
results. However, the carrier concentration cannot be increased arbitrarily, as
after certain limit (typically of the order of 0.1 M) the carrier begins to aggregate.



Carrier-mediated coupled transport 273

Introducing the approximation DCA � DC ≈ DCB, eqn (5.110) can be further
simplified to

1

jA
= h

2DCAcb
CT

(
1 + 2cα

B

Kcα
A

)
, (5.111)

which shows that a linear plot of measured values of 1/jA against cα
B/cα

A allows
us to determine DCAcb

CT/h and K from the intercept at the origin and slope,
respectively. Note that the maximum flux density is 2DCAcb

CT/h, where the
factor 2 arises from the approximation DCA � DC. Equation (5.110) provides
several diagnostic criteria for membrane control. Reducing the membrane thick-
ness, increasing the carrier concentration, or increasing DCA by reducing the
solvent viscosity all increase the flux. These variations cannot, of course, be
realized without limitation, as the rate-determining step may change to, for
example, the stripping reaction.

5.4.5 Polyelectrolyte extraction by carrier-mediated
countertransport with an acid

The experimental set-up and theoretical modelling considered in Section 5.4.4
can be used, with minor changes, to study the extraction of an anionic poly-
electrolyte (PE−) using carrier-mediated counter-transport with an acid. Most
assumptions employed there, including that the transport across the membrane
is the rate-determining step, are also used here. The feed solution (solution
α) contains HCl and the polyelectrolyte in sodium form NaPE, and the solu-
tion receiving the polyelectrolyte (solution β) contains HCl in a concentration
larger than in the feed side. Moreover, it can be assumed here that the fraction
of free carriers can be neglected, cC ≈ 0 (Fig. 5.28). This implies that the
countertransport of polyelectrolyte and acid takes place in a 1:1 stoichiometric
relation, i.e. one HCl molecule is transported to the compartment for every
extracted polyelectrolyte molecule.

0 h

o

A
B

cC(0) 0

cCA(0)

cCB(0)

cCA(h)�
� �

0
cCB(h) 0

cC(h)

a b

Fig. 5.27.
Schematic concentration profiles in
polyelectrolyte extraction by
carrier-mediated co-transport with an acid.
The carrier is an amine and the complexes
are CA = C:HPE and CB = C:HCl.



274 Transport through liquid membranes

Fig. 5.28.
Schematic concentration profiles in
polyelectrolyte extraction by
carrier-mediated countertransport with an
acid. The carrier is an amine and the
complexes are CA = C:HPE and CB =
C:HCl. The polyelectrolyte concentration
at the receiving solution is negligible when
transport through the membrane is the
rate-determining step. 0 h

o

A
B

cCA(0)

cCB(0)
cCA(h) 0

cCB(h)

�

a b

The flux densities inside the membrane are

jCA = DCA

h
cCA(0), (5.106)

jCB = DCB

h
[cCB(0) − cCB(h)]. (5.112)

The condition that the carrier cannot exit the membrane phase, jCA + jCB = 0,
implies that the distribution of the total carrier concentration is linear and,
therefore, that

cCA(0) + cCB(0) + cCB(h) = 2cb
CT, (5.113)

where cb
CT is the average total carrier concentration. As already explained in

Section 5.4.4, if we could use the approximation DC ≈ DCA ≈ DCB, the
polyelectrolyte flux density would be given by eqn (5.109). However, the C:HPE
complex is much larger that the free carrier and the C:HCl complex, and the
differences in their diffusion coefficients are significant. The polyelectrolyte
flux density, jA = jCA, can then be evaluated as

jA = DCBcb
CT

h

2DCAKcα
A

(DCA + DCB)Kcα
A + 2DCBcα

B
. (5.114)

Once again, since the transport is controlled by the membrane, eqn (5.114)
shows that the polyelectrolyte flux density is proportional to the total carrier
concentration. Moreover, introducing the approximation DCA � DC ≈ DCB,
eqn (5.114) also simplifies to eqn (5.111). Therefore, we conclude that a linear
plot of measured values of 1/jA against cα

B/cα
A allows us to determine DCAcb

CT/h
and K from the intercept at the origin and slope, respectively; that is, similar
information as in co-transport would be obtained.

Contrary to the predictions from eqn (5.114), it can be experimentally
observed that the polyelectrolyte flux density depends on the HCl concentration
in the strip side, cβ

B. This interesting situation occurs when the strip reaction
is kinetically controlled, as we show below. Heterogeneous reaction kinetics is
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often dictated by the adsorption equilibria of the reacting species. The reaction
mechanism can thus be formally written as

CA(o) + B(w) →← CA(σ) + B(σ), (5.115)

CA(σ) + B(σ) → CB(o) + A(w), (5.116)

where σ denotes the membrane/stripping solution interface. It is reasonable to
assume that reaction (5.116) is the rate-determining step. At steady state, the
rate of this reaction is equal to the flux density, and we can write

jA = kθCAθB, (5.117)

where θCA and θB are the surface coverage fractions at the strip interface and k
is the kinetic rate constant of the heterogeneous reaction (5.116). The concen-
tration cCA(h) is probably so low that the surface coverage follows the linear
form of the Langmuir adsorption isotherm

θCA = κCAcCA(h), (5.118)

while for the hydrochloric acid the full form of the Langmuir isotherm is needed

θB = κBcβ
B

1 + κBcβ
B

. (5.119)

In eqns (5.118) and (5.119), κCA and κB are the adsorption constants. At steady
state, the governing equations are

cCB(0)

cCA(0)
= cα

B

Kcα
A

, (5.120)

jA = jCA = DCA[cCA(0) − cCA(h)]
h

= DCB[cCB(h) − cCB(0)]
h

= −jCB,

(5.121)

cCA(0) + cCB(0) + cCA(h) + cCB(h) = 2cb
CT, (5.122)

jA = kθCAθB = kκCAcCA(h)κBcβ
B

1 + κBcβ
B

. (5.123)

After some algebra, the polyelectrolyte flux density can be shown to satisfy

cb
CTKcα

A

jA
= h

DCB

(DCA + DCB)Kcα
A + 2DCBcα

B

2DCA
+ 1

k

Kcα
A + cα

B

κCA

(
1 + 1

κBcβ
B

)
,

(5.124)
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which reduces to eqn (5.114) when the kinetic rate constant k is very large and
describes well the experimentally observed dependence on cβ

B. Thus, although
kinetic limitations have been neglected throughout this chapter because it is a
good approximation in supported liquid membranes due to their relatively large
thickness, this last application example serves to emphasize that the simplifying
assumptions introduced in any theoretical modelling have to be supported by
the experimental data.

Exercises
5.1 Assume that a weak 1:1 electrolyte is partitioning at the aqueous/organic interface,

i.e. both the cation and anion, as well as the undissociated species are in equilibrium
between the two phases. How does the distribution ratio co

T/cw
T change as the ratio

of the volumes of the phases vary?
5.2 Evaluate the facilitation factor F for the transport of a single solute A in the limit of

small concentration differences �
β
αcA � c̄A, where c̄A ≡ (cα

A +cβ
A)/2, and show

that it is roughly proportional to the total carrier concentration in the membrane.
5.3 Show that the facilitation factor F for the transport of an electrolyte AB that is

completely in A+ and B− ions in the aqueous phase and transported as ion pairs
AB, either free or complexed to the carrier, in a liquid membrane is

F = 1 + DCcCT

Do
ABKAB

KCAB(cα
AB + cβ

AB)

[1 + KCAB(cα
AB)2][1 + KCAB(cβ

AB)2]
,

where Do
AB is the diffusion coefficient of the ion pairs in the liquid membrane,

KAB ≡ √
KA+KB− is the partition coefficient of the electrolyte that is given by

the geometric mean of the chemical partition coefficients of the ions, and KCAB
is the equilibrium constant of the complexation reaction A+(w) + B−(w) + C(o)→← CAB(o). Assume that DC = DCAB and neglect boundary-layer effects.

5.4 Show that in the case DC �= DCA the permeability of the membrane to the solute
(due to the carrier-mediated transport) is

Po
CA = −DC

h

DCA

DC(1 − θ̄ ) + DCA θ̄

�θ cb
CT

�cw
A

where θ̄ ≡ [θ(0) + θ(h)]/2 is the average value of the fraction of complexed
carriers.
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List of symbols

For those symbols that have been used with different meanings (e.g.,
B, c, h, I , R, U , . . .) or as auxiliary variables (e.g., A, B, C, E,. . .) only the most
frequent use is mentioned here. Other symbols (e.g., Da, Pe, Sc, l, Ri, w, . . .)
are used only once in the text and are not included here either. Note that the
phase superscript ϕ is included here in many symbols, although they are used
sometimes in the text without it.

Acronyms
BRF barycentric reference frame
FRF Fick’s reference frame
HRF Hittorf’s reference frame
LRF laboratory reference frame

Roman symbols
a electrode radius, m
aϕ

i activity of component i in phase ϕ, 1
A electrode or membrane area, m2

Ar ≡ −∑
i νi,rµi, chemical affinity of reaction r, J mol−1

b volume density of an arbitrary extensive quantity B, [B] m−3

B arbitrary extensive quantity, [B]
Bi,k auxiliary variable, s m−2

cϕ
i molar concentration of component i in phase ϕ, mol m−3

dh hydraulic permeability of the membrane, m2 s−1Pa−1

�D electric displacement, C m−2

Dϕ
i diffusion coefficient of component i in phase ϕ, m2 s−1

Dγ
i ≡ βiDi, diffusion coefficient of component i corrected for activity,

m2 s−1

Di,k cross-diffusion coefficient, m2 s−1

Di,k Stefan–Maxwell diffusion coefficient, m2 s−1

DI ,K Fickian diffusion coefficient, m2 s−1

e ≡ ek + u, total energy density, J m−3

ek ≡ ρv2/2, translational kinetic energy density, J m−3

E electrode potential, V
E electrophoretic enhancement factor, 1
�E electric field intensity, V m−1

�Edif ≡ �E − �Eohm, diffusion electric field, V m−1

�Eohm ≡ �Im/κ , ohmic electric field, V m−1
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f = F/RT , auxiliary variable, V−1

F Faraday constant, C mol−1

F facilitation factor, 1
g volume density of Gibbs potential, J m−3

G Gibbs potential or Gibbs free energy, J
Gk ≡ ∑

i zk
i ji/Di, auxiliary variable, mol m−4

�rG rate of change of the Gibbs free energy due to a transport process,
J m−2 s−1

�w
o G◦

i ≡ µ
◦,w
i − µ

◦,o
i , standard Gibbs free energy of transfer of component

i, J mol−1

h membrane thickness, m
i electric current, A
�I ≡ F

∑
i zi �ji, conduction electric current density (in the LRF if used

without superscript), A m−2

�Id ≡ ∂ �D/∂t, displacement electric current density,
A m−2

IL,i ≡ −nFDicb
i /νiδ, limiting diffusion current density of component i,

A m−2

Iϕ
L limiting current density in phase ϕ, A m−2

�IT ≡ �Id + �I , total electric current density, A m−2

�jb flux density of B (in the LRF if used without superscript),
[B] m−2 s−1

�ji = ci �vi, molar flux density of component i in the LRF,
mol m−2 s−1

�jm
i molar flux density of component i in the BRF, mol m−2 s−1

�jυ = �vυ , volume flux density in the LRF, m s−1

�JK = cK �vK , molar flux density of neutral component K in the LRF,
mol m−2 s−1

�J H
K molar flux density of neutral component K in the HRF, mol m−2 s−1

k reaction rate constant, [k]
K thermodynamic equilibrium constant (of a homogeneous

reaction), [K]
Ki equilibrium partition constant of component i, 1
Ki,k Stefan–Maxwell friction coefficient, N s m−4

li,k ionic phenomenological transport coefficient, mol2 J−1 m−1 s−1

Ld diffusion length, m
LI ,K component phenomenological transport coefficient, mol2 J−1

m−1 s−1

mi mass of component i, kg
Mi molar mass of component i, kg mol−1

n stoichiometric number of the electron in an electrode reaction, 1
ni amount of matter of component i, mol
N number of components, 1
NA Avogadro’s constant, mol−1

p mechanical pressure, Pa
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Pϕ
i permeability of component i in phase ϕ, m s−1

Q cumulative flux, mol m2

r radial position co-ordinate, m
r (electrode) reaction rate, mol m−2 s−1

r auxiliary variable used for different ratios, 1
�r position, m

ri ≡ cα
i /cβ

i , concentration ratio of component i, 1
R universal gas constant, J K−1 mol−1

R electrical resistance, � m2

�R position along a fluid particle trajectory, m
s volume density of entropy, J K−1 m−3

s variable in Laplace domain, s−1

S entropy, J K−1

S membrane permselectivity, 1
Sk ≡ ∑

i zk
i ci, auxiliary concentration variable, mol m−3

ti transport number of ionic species i, 1
T temperature, K
Ti ≡ ziFji/I , integral transport number of ionic species i, 1
u volume density of internal energy, J m−3

ui mobility of component i, m mol N−1s−1

U internal energy, J
v solution velocity, m s−1

�v ≡ ∑
i wi�vi, barycentric velocity in the LRF, m s−1

�vi velocity of component i in the LRF, m s−1

�vυ ≡ ∑
i ciυi �vi, volume-average velocity in the LRF, m s−1

V ϕ volume of phase ϕ, m3

V (x) electric potential component, V
V̇ volume flow rate, m3 s−1

wi mass fraction of component i, 1
x Cartesian position co-ordinate, m
X ≡ zMcM/z2, membrane fixed-charge concentration, mol m−3

y Cartesian position co-ordinate, m
z Cartesian position co-ordinate, m
zi charge number of ionic species i, 1

Greek symbols
α dissociation degree, 1
βi activity correction factor for the diffusion coefficient of ionic

species i, 1
δ diffusion boundary layer thickness, m
δjk = 1 if i = k, = 0 if i �= k, Kronecker delta, 1
φ electric potential, V

�
β
αφ ≡ φβ − φα, potential difference between bulk phases, V

�w
o φ◦

i ≡ −�w
o G◦

i /ziF , standard transfer potential of component i, V
ϕ ≡ z2f [φ(x) − φw], dimensionless electric potential, 1
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↔
γ ′ viscous deformation rate tensor, s−1

γ
ϕ
i molar activity coefficient of component i in phase ϕ, 1

� auxiliary variable, 1
�(n) ≡ ∫ ∞

0 e−t tn−1dt, gamma function of argument n, 1
�(n, x) ≡ ∫ ∞

x e−t tn−1dt, incomplete gamma function of argument n, 1
η dynamic viscosity, Pa s
κϕ electrical conductivity in phase ϕ, �−1 m−1

κ
ϕ
D Debye parameter (or reciprocal Debye length) in phase ϕ, m−1

κi contribution of ionic species i to the electrical conductivity,
�−1 m−1

κT thermal conductivity, W K−1 m−1

λi molar electrical conductivity of ionic species i, m2�−1 mol−1

µi chemical potential of component i, J mol−1

µ̃i electrochemical potential of component i, J mol−1

ν kinematic viscosity, m2 s−1

νi stoichiometric coefficient of ionic species i, 1
νi,r stoichiometric coefficient of component i in reaction r, 1
νi,K stoichiometric coefficient of component i in component K , 1
π osmotic pressure, Pa
πb volume density of production rate of B, [B] m−3 s−1

πe volume density of production rate of total energy, Jm−3 s−1

πi volume density of production rate of amount of component i,
mol m−3 s−1

πs volume density of production rate of entropy, J K−1 m−3 s−1

�π�v volume density of external force, Pa m−1

πwi volume density of production rate of mass of component i,
kg m−3 s−1

θ ≡ Tπs, dissipation function, J m−3 s−1

θ auxiliary variable (used for different concentration fractions), 1
θch contribution of homogeneous chemical reactions to the dissipation

function, J m−3 s−1

θdif contribution of chemical diffusion to the dissipation function,
J m−3 s−1

θed = θdif + θohm, contribution of electrodiffusion to the dissipation
function, J m−3 s−1

θη contribution of viscous flow to the dissipation function, J m−3 s−1

θohm contribution of electric conduction to the dissipation function,
J m−3 s−1

ρ mass density, kg m−3

ρi ≡ ρwi, mass density of component i, kg m−3

ρe ≡ F
∑

i zici, electric charge density, C m−3

σ membrane surface-charge concentration, C m−2

↔
σ stress tensor, Pa
↔
σ ′ viscous stress tensor, Pa
τ transition or relaxation time, s
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υi partial molar volume of component i, m3 mol−1

ω angular rotation frequency, rad s−1

ξ dimensionless position variable, 1
ξr molar reaction co-ordinate, mol m−3

ψ(r, x), electric potential component, V
ζ ≡ x/(2

√
D1t), Boltzmann variable, 1

Subscripts and superscripts
0 solvent
1 electroactive species (in electrode processes)
2 co-ion (in membrane processes)
3 common ion (in ternary systems)
12 electrolyte
12,d dissociated electrolyte
12,T total electrolyte
12,u undissociated electrolyte
13 electrolyte
23 electrolyte
c chemical contribution
cell cell (potential)
ch chemical reaction
chem dif chemical diffusion
D Donnan
D Debye
e electrostatic contribution
ed electrodiffusion
eff effective value
dif (chemical) diffusion
dif diffusion (potential)
H Hittorf
i charged species
ion dif ionic diffusion
I neutral component
j spatial direction
k spatial direction
K neutral component
L limiting value
m barycentric
mig ionic migration
M membrane
o organic phase
ohm ohmic or electric conduction
T total
υ Fick
w aqueous phase
± thermodynamic mean value



List of symbols 283

Mathematical symbols
≡ definition
〈 〉 average value (in radial direction or over the membrane volume)

average value (in axial direction or average of values in bulk solutions
or over the membrane system)

∼ Laplace transformed variable (except in µ̃ and ψ̃)
∼ deviation from average value
δ change in a variable when the system undergoes an infinitesimal process
d magnitudes referred to a volume element
� increment
L Laplace transform operator
L−1 inverse Laplace transform operator
�∇ gradient operator, m−1

D
Dt

≡ �v · �∇ + (
∂
∂t

)
�r , material or substantial time derivative, s−1
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Index

acid extraction, 255
active transport, 148

primary, 261
secondary, 262

activity coefficient, 63, 73
affinity, 23, 35
Airy function, 109
average velocity

barycentric or mass, 1, 14, 40
electro-osmotic, 213
volume, 12

balance equation
component, 14

chemical reaction, 14
component mass, 13
electric energy, 28
energy of the fluid, 20, 24, 29
entropy, 8, 21

chemical reaction, 22
viscous flow, 24

general, 8, 10, 35
internal energy, 21, 24, 29
kinetic energy, 20, 24, 25
linear momentum, 16

Cartesian component, 19
electromagnetic field, 28
non-viscous fluid, 17
viscous flow, 25

mass, 13
barycentric reference frame, 12
bi-ionic potential, 147, 195
binary diffusion, 48
binding

competitive, 262
sequential, 267

Boltzmann distribution, 86
Boltzmann variable, 112, 114, 119, 121

capacitor discharge, 30
carrier-mediated transport, 246

coupled transport, 261
effect of diffusion boundary layers, 253, 255
optimal complexation constant, 251
saturation, 250
selectivity, 251

Cauchy-Schwartz-Buniakowski
inequality, 164

channel flow electrode, 105
charge density, 4, 5, 206

balance equation, 15
charged capillary model, 219
chemical diffusion, 22, 49
chemical potential

binary electrolyte, 5, 6
ion vs. component formalism, 45
ionic species, 5
weak electrolyte, 34

chemical reaction
affinity, 23, 35
EC mechanism, 123
heterogeneous, 97
rate, 14

chronoamperometry, 111, 120
chronopotentiometry, 111, 112
complementary error function, 112, 121

first integral, 112, 116
third integral, 119

co-ion, 152
diffusive transport, 173, 180
exclusion, 209, 220

complexation reaction
equilibrium constant, 247
heterogeneous vs. homogeneous, 261

concentrated solution, transport in, 50, 65
concentration

average ionic, 171
Donnan electrolyte, 155
mean electrolyte, 154
membrane, average ionic, 166

concentration polarization, 200
conservation law

component, 14
electric charge, 14, 15
linear momentum, 17, 29
mass, 13
total energy, 20, 28
vs. balance equation, 8

continuity equation
component, 14, 82

steady-state, 14, 82
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continuity equation (cont.)
convective electrodiffusion, 98, 102,

105, 109
diffusion, 110
incompressible fluid, 13

continuum hypothesis, 1
convection, 12, 51

electro-osmotic, 212, 228
convective electrodiffusion see continuity

equation
convective electrophoresis, 140
co-transport, 261
Couette flow, 17, 35
counterion, 152

interdiffusion, 191, 227
counter-transport, 261
Curie-Prigogine principle, 38
current density

conduction, 15
convective, 15
displacement, 15, 28, 30
electro-osmotic, 215
reference frame, 15, 35
total, 15

current efficiency, 212, 216
current scan, 118
current step, 112

hemispherical electrode, 125
mixing, 115

current-voltage curve
electrode, 87, 96
ion-exchange membrane, 185, 197, 198
liquid membrane, 242

Damköhler number, 97
Debye parameter, 163

external aqueous phase, 161, 165, 207
membrane phase, 162, 207
membrane phase, total coion exclusion, 209

degree of dissociation, 62
depleted layer model, 227
dielectric permittivity, 27
diffuse layer model, 160, 226
diffusion, 12

chemical, 22, 49
diffusion boundary layer, 80

RDE, 102
diffusion coefficient

activity correction, 63, 74
binary solution, 48
cross, 49, 74, 83
effective, fixed charge, 216
electrical coupling, 52
electrolyte, membrane, 171
Fickian, 47

ionic, 51
Nernst-Hartley, 57
polyelectrolyte, 61
relation to friction coefficients, 68
relation to molar conductivity, 53
relation to phenomenological coefficient,

47, 60
Stefan-Maxwell, 65
ternary electrolyte, 60
weak electrolyte, 62, 73

diffusion length, 114
diffusion potential, 54, 55

Goldman equation, 145
Henderson, 144, 175
ion-exchange membrane, 174
membrane, binary system, 143
membrane, multi-ion system, 144
Stefan-Maxwell, 75

displacement current. see current density,
displacement

dissipation function, 8, 20, 27, 38
chemical diffusion, 22, 44, 45

binary electrolyte, 23
chemical reaction, 22
electrodiffusion, 21, 39, 40

binary electrolyte, 23
ohmic conduction, 22, 44

binary electrolyte, 24
invariance under transformation of fluxes

and forces, 71
viscous flow, 24, 27, 35, 36

distribution equilibrium, 153, 233
divergence theorem, 10, 11
Donnan

equilibrium, 153
exclusion, 155, 165, 167, 209
failure, 156
potential, ion-exchange membrane, 154,

177, 225
pressure difference, 157

downhill transport, 261

electric current density see current density
electric energy

conversion to internal energy, 21, 28, 31, 32
conversion to kinetic energy, 20, 28

electric field
diffusional or internal, 22, 54, 55, 75, 168
ohmic, 22

electrical conductivity, 22, 52, 76
binary electrolyte, 43
convective, 215, 229
ionic contribution, 44
molar, 52
multi-ionic solution, 44
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relation to friction coefficients, 67
Stefan-Maxwell, 74, 76
surface, 228

electrical double layer, 160, 205
formation, 31

electrical relaxation, 32
electroactive species, 78
electrochemical potential, 5, 7, 30, 153, 233
electroconvection, 81, 82
electrode

channel flow, 105
hemispherical, 95, 125
hydrodynamic, 98
rotating disc, 98
rotating ring disc, 98
wall jet, 107

electrodiffusion
driving force, 21

electroneutrality, 5, 55, 82
deviations, 6
global, 164, 205
local, membrane, 174

electro-osmosis, 212
energy of the fluid, 20

balance equation, 20, 24, 29
production rate, 20

enhancement factor, iontophoretic, 134
entropy

balance equation, 8
production, 8, 20
equation
balance see balance equation
Boltzmann, 86, 161
Born, 245
continuity see continuity equation
convective-electrodiffusion, 98, 102,

105, 109
Cottrell, 122, 125
diffusion, 110, 125
Euler, 2, 157
Fourier, 39
Gibbs, 2, 3
Gibbs-Duhem, 3, 6, 36, 40, 157
Goldman, diffusion potential, 223,

224, 225
Goldman, flux density, 134, 145, 222, 225
Goldman-Hodgkin-Katz, 228
Henderson, 145, 175, 223, 224
Kramer, 196
Laplace, 27, 62, 84
Laplace, spherical symmetry, 95
Levich, CFE, 107
Levich, RDE, 100
Maxwell, 28
Navier-Stokes, 17, 26
Nernst, 123

Nernst-Einstein, 51, 52
Nernst-Planck see Nernst-Planck equation
phenomenological, 38
Poisson, 15, 56, 161
Poisson-Boltzmann, 165, 208, 227
Sand, 113
Stokes, 19, 26
Stokes-Einstein, 66
transport. see transport equation

facilitation factor, 248, 276
Faraday’s law, 78, 79
Fick’s first law, 39, 43, 48, 83, 127
Fick’s reference frame, 12, 41, 48
Fick’s second law, 110, 129
fixed-charge concentration, 153
flat distribution approximation, 211
fluid particle, 1
flux density, 10

barycentric reference frame, 9, 11
binary electrolyte, 58
convective, 12
diffusive, 12
electromagnetic energy, 28
energy of the fluid, 21
entropy, 21
Fick’s reference frame, 12, 41, 47
Hittorf’s reference frame, 13, 40
internal energy, 21
kinetic energy, 20, 27
laboratory reference frame, 8
linear momentum, 16, 25

laboratory reference frame, 26
viscous flow, 25

mass, 13
principle of independence, 50, 52, 76
solvent, 40

force
driving, electrodiffusion, 21
driving, reaction, 23
driving, Stefan-Maxwell, 65
electric, 16, 20, 26
generalized, 8, 38
Lorentz, 34
surface, 16
tensor, 24, 35

Fourier series, 123, 131
Fourier’s law, 39
friction coefficient, 65

multi-ionic solution, 70

gamma function, 100
incomplete, 100, 106

Gibbs free energy of transfer, 225, 233
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Gibbs potential, 2, 6
standard, 158

Goldman constant field, 95, 103, 133, 136,
145, 150, 221

Helmholtz-Smoluchowski formula, 213
hemispherical diffusion. see electrode,

hemispherical
Hittorf’s reference frame, 13
hydrodynamic boundary layer, 80
hydrodynamic electrode, 98
hydrophobicity, 233

interdiffusion, 192, 227
interfacial kinetics, 248, 275
ion pair, 73, 122, 276
ionic strength, 57
iontophoretic enhancement factor, 134

Joule power, 22, 31, 55, 125

lag time
diffusion, 132, 222
electrodiffusion, 138

Langmuir adsorption isotherm, 275
Laplace transformation, 109, 111, 112, 222
Lévêque’s approximation, 106
limiting current density, 95, 96

binary electrolyte, 85
diffusion, 81
effect of electric field, 104
hemispherical electrode, 96
liquid membrane, 241
multi-ionic solution, 94
ternary electrolyte, 88
three-layer system, 240
wall jet, 110

liquid junction
formation, 32
potential, 33, 143, 223

local electroneutrality see electroneutrality
local equilibrium hypothesis, 2, 8

mass balance, 158
compartments, 126, 135
membrane, 160

material time derivative, 4, 11
Maxwell stress tensor, 28
membrane

charged capillary model, 219
charged porous, 205
constant, 128, 140, 222
heterogenities, 163
homogeneous potential model, 219

ideally selective, 156, 158, 169, 183, 191
ion-exchange, 152
liquid, supported, 232
potential, 148, 177

mobility, 51

Navier-Stokes equation, 26
non-viscous fluid, 17

Nernst layer, 80
Nernst potential, 31
Nernst-Einstein relation, 51, 52
Nernst-Planck equation, 51

concentrated solution, 64
convection, 51
general solution procedure, 93, 183, 196
multi-ionic solution, 82

Newton’s law of viscosity, 18, 35

Ohm’s law, 22, 39, 43, 79, 168
ohmic electric field, 22, 44
ohmic resistance, 104, 189
Onsager reciprocal relations, 39, 42, 67, 71
osmotic pressure, 157
oxidation, 81

partition coefficient
chemical, 154, 158, 233
electrolyte, 159
electrostatic, 154, 237

partition ratio, 233
finite-volume effects, 235, 237

Peclet number, 141
perfect sink, 134
permeability, 244

biological membrane, 228
carrier-mediated transport, 248, 250, 253
effect of diffusion boundary layers, 246, 258
ion-exchange membrane, 182
membrane, hydraulic, 214, 220
solubility-diffusion mechanism, 245

permselectivity, 170, 183, 201
effect of concentration polarization, 204
effect of heterogeneities, 164
enhancement, 164

phenomenological coefficient, 39
conditions, 70
cross, 59
ionic, 50
relation to diffusion coefficient, 47, 60
ternary electrolyte, 59, 72
transformation, 43, 45, 46, 71

Poiseuille flow
cylindrical, 35
planar, 19, 25, 105
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polyelectrolyte
diffusion coefficient, 60
extraction, 270, 273

potential
bi-ionic, 147, 195

potential (cont.)
diffusion see diffusion potential
Donnan, 154, 155, 177, 225
membrane, 148, 177

production rate, 8
electric energy, 28
energy of the fluid, 20
internal energy, 21
linear momentum, 26

quasi-steady state assumption, 126, 136

reduction, 81
reference frame

barycentric, 12
barycentric, membrane, 216
Fick, 12, 41, 48
Hittorf, 13, 40, 65
laboratory, 1, 9
membrane-fixed, 141

relaxation time
diffusional, 33, 115
electrical, 32

Reynolds transport theorem, 11
rotating diffusion cell, 243

salt bridge, 148, 223
Schmidt number, 100
separation of variables, 123, 130
sign convention, 78
solubility-diffusion mechanism, 244
space charge density see charge density
space charge model, 219
space charge region, 33
spatial averaging, 166, 206
standard transfer potential, 233
state variables, 1, 2, 39
Stefan-Maxwell

diffusion coefficient, 65
diffusion potential, 75
electrical conductivity, 74, 76
transport equation, 67, 69
transport number, 68, 76
vs. Fickian approach, 64

stoichiometric coefficient
in electrolyte dissociation, 22, 45
in electrode reaction, 79

Stokes equation, 19
in non-electroneutral solutions, 26

Stokes’ law, 66
stress tensor, 25

Maxwell, 28
shear components, 26, 35

substantial time derivative, 4, 11
supporting electrolyte, 83

paradox, 85
surface charge density, 165, 205
surface conductivity, 228

Teorell-Meyer-Sievers model, 177, 214
time derivative, substantial or material, 4, 11
trace ion, 83
transition time

current scan, 119
current step, 113, 119, 123

transport equation
diffusion-conduction, 49, 52, 68, 82, 170
diffusion-migration, 51
Fickian, 47, 49
ion vs. component formalism, 22, 24
phenomenological, 45, 46
Stefan-Maxwell, 67

transport number
integral, 183
membrane, 171
migrational, 43, 44, 52, 76
potentiometric, 178
Stefan-Maxwell, 68, 76

ultramicroelectrodes, 98
uphill transport, 148, 261, 264

co-transport, 269
counter-transport, 266, 267

velocity see average velocity
viscosity, dynamic, 18
viscous flow, 25
viscous stress tensor, 18
voltage step, 120, 123
volume density

charge, 4
electric energy, 27, 30
energy of the fluid, 20
linear momentum, 16
thermodynamic potential, 2

Walden’s rule, 260
weak electrolyte, 61, 73, 276




