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Preface

Transport phenomena constitute an integral part of electrode and membrane
processes. Electrode reactions are heterogeneous and take place on the elec-
trode surface, thus creating concentration differences in the electrode vicinity,
and these differences cause mass transport. In membrane processes, analogous
surface phenomena occur in many cases, but in addition, transport processes
inside the membrane phase can also be decisive.

The characteristic feature of the information obtained from a transport phe-
nomenon is that measurable quantities represent integral values over the entire
surface under study. This means that in, e.g., electrode processes, only the
response function of the chosen perturbation function that has been fed into
the system can be measured. In some cases, however, it is possible to get
complementary spectroscopic information of the surface. When modelling a
heterogeneous process, transport phenomena are of great importance but they
alone do not describe the entire process sufficiently. Various surface phenomena
and reactions must be included in the model. And it has to be realized that the
study of these surface phenomena, e.g. adsorption, is possible only after the
solution of the inherent transport problem and after the subtraction of its effect
on the entire process. Thus, a comprehensive model of a heterogeneous process
is mathematically rather demanding.

This book has originated from the lecture notes of a course held since 1987
at Helsinki University of Technology, Laboratory of Physical Chemistry and
Electrochemistry. The course is principally directed to post-graduates who
already have an electrochemistry background or who are simultaneously attend-
ing an electrochemistry course. Therefore, the current presentation does not
discuss electrochemical methods in depth, rather it concentrates on topics of
transport processes that are usually not encountered in the electrochemical liter-
ature. Also, hydrodynamics is only briefly introduced because of the abundance
of textbooks in this area.

In order to keep the contents within bounds, this text concentrates on
passive transport processes in isothermal and incompressible liquid systems.
Passive processes involve the evolution of the system towards the state of
thermodynamic equilibrium, and biological active-transport processes are thus
excluded. The liquid solutions are described as multicomponent continua, where
the solutes are often electrolytes that dissociate into ions and homogeneous
chemical reactions may take place in its interior. The transport equations are
presented within the theoretical background of macroscopic thermodynamics.
The paradigm adopted here is based on the work by L. Onsager in the early
1930s, which has achieved an undisputed status in the description of transport
phenomena. This theoretical construction is known as the thermodynamics of
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irreversible processes and is based on the study of entropy production and the
properties of phenomenological equations derived thereof.

Chapter 1 presents an introduction to the thermodynamics of irreversible
processes. The fundamental thermodynamic concepts required to study the irre-
versible processes taking place in a moving fluid are described in Section 1.1. A
local approach is followed in which the state variables are functions of time and
the spatial co-ordinates. The local equilibrium hypothesis and its key role in irre-
versible thermodynamics are also explained. The transport processes involve
the exchange of matter, electric charge, linear momentum, energy, entropy,
etc., between the neighbouring volume elements in the fluid. Section 1.2 aims
at establishing the balance equations that rule these exchanges. Among them,
the entropy balance equation receives special attention because it is the start-
ing point for the statement of the phenomenological transport equations in
Chapter 2.

However, Chapter 1 is something more than just groundwork for Chapter
2. The concept of electric potential in thermodynamics and electrochemistry
is controversial and, without entering into subtle details, we explain here the
rationale under the treatment of this quantity in thermodynamics of irreversible
processes. Moreover, a sound understanding of the differences between the
transport mechanisms of convection, chemical diffusion, electrodiffusion, ionic
diffusion, ionic migration, and electric conduction requires Chapters 1 and 2,
particularly Sections 1.2.2,2.1.4,2.1.5, and 2.3.3.

Convection refers to those processes in which there is motion of the fluid
mass with respect to an inertial laboratory reference frame. The maintenance of
the fluid motion requires mechanical forces. In electroneutral solutions and in
the absence of external forces such as gravitational and centrifugal forces, the
only mechanical force that can induce the fluid motion is an applied pressure
gradient. Thus, it is commonly accepted to talk of convection when there is a
pressure gradient.

Chemical diffusion refers to the motion of a neutral component (e.g. a non-
electrolyte) or an electroneutral combination of at least two charged particles
(e.g. a dissociated electrolyte) driven by its concentration gradient. It must
be stressed that whenever we talk about motion, we must specify the refer-
ence frame used to describe such motion. From a theoretical point of view, the
preferred reference frame is the one bound to the local centre of mass of the
solution, which is known as the barycentric reference frame, because only then
chemical diffusion and convection are separate mechanisms. From an experi-
mental point of view, however, diffusion measurements are carried out in the
Fick’s or volume-average reference frame. The relation between different ref-
erence frames is described in Sections 1.2.2 and 2.1.2. Yet, this is done rather
superficially because this text concentrates on dilute solutions and this issue
then becomes of secondary importance.

Electrodiffusion is the transport mechanism for charged species, such as the
ions that result from the dissociation of electrolytes. The motion of an ionic
species (in the barycentric reference frame) is driven by the gradient of its elec-
trochemical potential (at least, within the Nernst—Planck approximation). When
this gradient is considered as a single force, the transport should be described
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as electrodiffusion. However, it is customary to decompose the electrochem-
ical potential as the sum of the chemical potential and a term proportional to
the electric potential, and hence the gradient of the electrochemical potential
of a charged species can be expressed as a term proportional to the concen-
tration gradient and another one proportional to the electric field. When these
gradients are considered as two different driving forces for transport, their asso-
ciated mechanisms are denoted as ionic diffusion and ionic migration. That is,
migration refers to the motion of charged species under the influence of an
electric field regardless of whether there is passage of electric current through
the solution.

Electric conduction is the transport mechanism for electric charge in ionic
conducting solutions. Thus, we can only talk of conduction when a (conduction)
electric current passes through the solution. Since ions carry the electric charge
in solution, every ion contributes to this current in an amount that is proportional
to the current. On the contrary, in the ionic migration mechanism every ion
contributes in an amount that is proportional to the electric field. In the absence
of current, there can still be migration but not conduction.

The difference between conduction and migration mentioned above is closely
related to the coupling of driving forces, and hence of the associated fluxes. Even
though we can think of ionic diffusion and ionic migration as additive transport
mechanisms, they cannot be considered independent because there exists an
electrical coupling between the ionic concentration gradient and fluxes. Thus,
when we evaluate the contribution of the different transport mechanism to
the entropy production rate (or to the dissipation function) it is found that
electric conduction and chemical conduction make separate contributions. On
the contrary, the contributions from ionic diffusion and ionic migration are not
independent and must be grouped in a single electrodiffusion term. Similarly, the
contributions of the chemical diffusion of different electroneutral electrolytes
to the entropy production rate cannot be separated in additive terms because
these processes are also electrically coupled. That is, the chemical diffusion of
a neutral electrolyte is driven not only by its own concentration gradient but
also by the concentration gradient of other electrolytes present in solution.

These transport processes, their description and the coupling phenomena are
thoroughly studied in Chapter 2. It is established there that their rate is propor-
tional to the extent of the deviation from the equilibrium, that is, to the gradients
of electrochemical potential and of mechanical pressure. In Chapter 2 we show
the most common theoretical approaches to describe transport processes: the
phenomenological, the Fickian, the Stefan—-Maxwell, and the Nernst—Planck
approaches. Chapters 3 to 5 consider the description of transport processes in
electrochemical and membrane systems making use of the Nernst—Planck for-
malism and, therefore, special attention is paid to itin Chapter 2. We describe the
assumptions made in the derivation of the Nernst—Planck transport equations,
and outline the main ideas of the alternative formulations that could be useful
when the Nernst—Planck equations are no longer valid.

For those readers who are not so much interested in the foundations of the
description of transport phenomena as in the practical solution of the transport
equations in electrochemical and membrane systems, the core of the text is
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certainly formed by Chapters 3 to 5. These readers might skip Chapters 1 and
2, except for Section 2.3, in a first reading.

Chapter 3 is concerned with transport in the vicinity of electrodes, and hence
on the coupling between Faradaic electrode processes and mass transport. This
chapter covers, at an introductory level, transport in stationary and transient
conditions, planar and spherical geometries, the presence and absence of sup-
porting electrolytes, as well as convective transport in hydrodynamic electrodes.
Some common electrochemical techniques are also discussed and the solutions
of the corresponding transient transport problems are worked out in detail.

Chapter 4 describes transport processes in membrane systems. The emphasis
is placed on stationary processes, although some examples of the solution of
the transport equations in transient conditions are also worked out. This chapter
covers homogeneous and porous membranes, both neutral and charged. Section
4.1 deals with transport through neutral porous membranes under applied con-
centration gradients, electric current, and pressure gradient. The use of mass
balances to analyse the changes in the bathing solution concentration receives
particular attention. Donnan equilibria and the description of the electrical dou-
ble layer at the membrane/external solution interfaces are then presented in
Section 4.2. Section 4.3 describes transport through homogeneous charged
membranes. The solution of the transport equations in multi-ionic systems is
worked out in detail and applied to the study of classical topics such as the
bi-ionic potential and uphill transport. The influence of the diffusion boundary
layers is also analysed. Finally, Section 4.4 describes transport through charged
porous membranes. This is done from a very practical point of view and the
space-charge model is only briefly referred to, although relevant references are
given to the interested reader.

Chapter 5 describes transport in liquid membranes. This chapter aims at intro-
ducing the concepts of carrier-mediated transport and coupled transport. The
topics of facilitated, competitive, co-transport and countertransport are cov-
ered, making use of examples of practical interest. Although we concentrate
on relatively simple transport problems involving neutral solutes and heteroge-
neous complexation reactions, this chapter provides a good introduction to the
solution of reaction—diffusion problems.

Our co-operation with the discipline of pharmaceutical technology has cer-
tainly pressed its footprint in the problem set-ups in Chapter 4, and Chapter
5 approaches the problems of liquid/liquid interfacial electrochemistry also
carried out in our laboratories.

Each chapter contains a few exercises. Some of them are rather demanding.
Solutions are available to lecturers at the web site of this book.

K.K,L.M.,and J. A. M.
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Thermodynamics of
irreversible processes

1.1 Fundamental concepts
1.1.1  Space and time scales of observation

The thermodynamics of irreversible processes relies on two fundamental
hypotheses: the continuum hypothesis and the local equilibrium hypothesis.
Their use amounts to an implicit setting up of the space and time scales of
observation of the processes occurring within the physical system under study.

The system is described as a flowing continuum where state variables such
as energy, pressure, electric potential and composition are functions of posi-
tion 7 and time ¢. Every point 7 in space is occupied by a volume element
dV (or fluid particle) that is small enough so that infinitesimal calculus can
be applied to it but still macroscopic in the sense that it is constituted by a
large number of molecules. In this (Eulerian) description of the fluid motion,
we do not follow any volume element along its trajectory, but we rather look
at the different volume elements (i.e. composed of different molecules) that
occupy a given position 7 at different times. The fluid motion is described by
the velocity field (7, r), where it should be stressed that 7 and ¢ are independent
variables; that is, the expression d7/d¢ is meaningless and v # dr/dt. Veloc-
ities are referred to the (inertial) laboratory reference frame unless otherwise
stated.

The velocity ¥ is the mass-average or barycentric velocity of the volume
element that occupies position 7 at time ¢. This velocity has to be determined
from the balance equation of the linear momentum (see Section 1.2.5) and it
can be related to the velocities of the fluid components as follows. If we denote
by ¥; and dm; the velocity and mass of component i in a volume element of
total mass dm, the barycentric velocity is

6EZwiﬁi, 1.1
i

where w; = dm;/dm is the local mass fraction of component i, and ) ; w; = 1.

Since the system under study is not in (thermodynamic) equilibrium, it might
be argued that equilibrium thermodynamic relations should not be applied.
However, the observed changes in composition, electric potential and/or electric
current passing through the system take place over a time scale much larger
than that of molecular motion. Thus, although the volume elements are not
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in (thermodynamic) equilibrium with each other, it can be assumed' that the
molecular processes occurring within them are so fast that they guarantee the
establishment of internal equilibrium (within the time scale of observation).
The relations between the local values of the thermodynamic functions are then
the same as in a state of complete equilibrium.

1.1.2  Local thermodynamic equations

Thermodynamics of irreversible processes is a field theory in which the system
is described as a continuum and the thermodynamic functions and state variables
are field quantities. The pressure p, the mass fractions w;, and the (molar) chem-
ical potentials p; vary with position, and therefore the usual thermodynamic
equation for the Gibbs potential of a homogeneous system

G=Y wn=U=TS+pV 1.2)
i

cannot be used. Instead, the governing equations must be expressed in a local
form that applies to every point within the continuum.

Imagine that we divide the system volume in elements dV so small that
they can be considered as homogeneous subsystems. The Gibbs potential of a
volume element is

dG =Y widn; = dU — TdS + pdV, (1.3)

1

and dividing it by the volume dV we find the thermodynamic (Euler) equation
that applies at the location of the volume element

g:Zuicizu—Tv—i—pA (1.4)

l

This is a fundamental equation that relates the local values of the state variables,
T and p, and the volume densities of the thermodynamic functions: the internal
energy density u = dU /dV, the Gibbs potential density g = dG/dV, and the
entropy density s = dS/dV. In eqns (1.2)—(1.4), n; is the number of moles of
component i and ¢; = dn;/dV is its molar concentration.

The local equilibrium hypothesis states that the change of the Gibbs potential
follows the Gibbs equation?

bg = —s8T +op+ ) pidcs, (1.5)

1

' This assumption imposes an upper bound on the size of the volume elements.

% The symbol 3 denotes the change in a variable (when the system undergoes an infinitesimal
process) and the symbol d is used for magnitudes referred to a volume element.
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() (r t+ 81

. dg=g(r,t+8)—g(r, 0

—(%
_(atl ot

8g = g(r+vdt, 1+ 8 — g(r.1)

7+ vt _
:|:\7. Vg+(£) :|5t5%52
ot J; Dt

(Fr+vot, t+ 1)

and the combination of eqns (1.4) and (1.5) yields the Gibbs—Duhem equation

Z cidpi = —s8T + ¥p. (1.6)

i

Although many equations presented in this chapter are also valid for com-
pressible fluids, the mechanical expansion work is often negligible in condensed
phases, and therefore we restrict our attention to incompressible fluids. The
fundamental Gibbs equation, eqn (1.5), becomes then equivalent to

Tos=du— Y uidci. 1.7

1

The field quantities may vary from one volume element to another as well as
with time. There are three types of variations that deserve comment (Fig. 1.1):

i) When we compare the values that a function takes in neighbouring volume
elements (at fixed time), the symbol § can be replaced by the gradient
operator V. Thus, for instance, the Gibbs—Duhem equation can be written
for isothermal systems as>

> eiVuir =Vp. (1.8)

i

ii) Inothercases we are interested in comparing the values that a given function
takes in the different volume elements that passed over a given location
in space at different times. Then, the change of, e.g. s is given by ds =
(0s/0t)78¢, and eqn (1.7) can be written as

ds  du Lo

y A 1.9
or ot iy (1.9)

1

3 Since we restrict discussion to isothermal systems, the subscript 7' is often omitted for the sake
of clarity.

Fig. 1.1.

In the upper drawing, we compare the
Gibbs potential density g in two different
fluid particles that occupy the same
position 7 at times ¢ and ¢ + §¢. In the lower
drawing, we compare the values of g in the
same fluid particle at two different
locations and times, (7 + ¥8t, 1 + 8¢) and
(7, 1), where v is the velocity of the fluid
particle. In the first case, the time variation
of g is given by its partial time derivative.
In the second one, it is given by the
substantial time derivative of g.
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iii) From a physical point of view, it is also very interesting to look at a given
volume element and follow it along its trajectory. The change of, e.g. g (1)
when this volume element undergoes a displacement 8R = 98¢ in a time
interval 8¢ is then evaluated as 8g = (Dg/Dt)8t, where

Dg . - g
— =0V e 1.10
;=UVet (ar); (1.10)

is the material or substantial time derivative of g (7, 7).

1.1.3 Electrolyte solutions

The equations in Section 1.1.2 involve sums over all the fluid components and
we have made no reference to their charge state because the thermodynamic
functions g and u introduced there do not contain any electrostatic energy
contribution. The electrostatic energy is discussed in Section 1.2.8, but it seems
convenient to introduce here some fundamental ideas about the thermodynamic
description of electrolyte solutions.

According to eqn (1.5), the elementary change in the Gibbs potential at
constant temperature and pressure due to a change in the local composition is

Sgr.p =Y widci. (1.11)
i

If the change in the local composition affects several charged species in such a
way that

Spe =F Y zidci =0, (1.12)

l

the electrostatic energy of the system is not affected; in eqn (1.12) z; is the
charge number of species i, F is the Faraday constant, and p. is the electric
charge density. Consider for example the solution of a strong binary electrolyte
A,,C,, that dissociates into vy ions A®' and v, ions C*2, where their charge
numbers z] and z; satisfy the stoichiometric relation z; v +z2v, = 0. A change
dc12 in the local stoichiometric electrolyte concentration is equivalent to the
changes dc; = v13c2 and d¢2» = 128c¢y2 in the local ionic concentrations, and
hence the associated change in the Gibbs potential (at constant temperature 7',
pressure p, and solvent concentration cp) can be written as

38T, p.cy = ZIMSC;’ = p1dcy + pnader = pidei, (1.13)
i

where

K12 = Vip + i (1.14)
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is the chemical potential of the electrolyte. Similarly, in multi-ionic systems the
local changes in composition involve changes in the Gibbs potential that can be
written in terms of chemical potentials of neutral components or electroneutral
combinations of charged components.

This last statement holds true even when the local change in composition
does not satisfy eqn (1.12) because 3gr, ., does not account for electrostatic
energy changes. For instance, in the case of a strong binary electrolyte A, C,,,
the Gibbs potential change is still described by eqn (1.13), 3gr, p.c, = H123¢12,
when 3p. # 0. Hence, the changes in the electrostatic energy of the system need
to be described by additional terms. The energy required to bring an electrical
charge 3p.dV from infinity (where we choose the origin of potential ¢ =0) to
a volume element dV where the local electrical potential is ¢ can be evaluated
as ¢pdpedV. Therefore, the sum of the chemical and electrical contributions to
the change in the energy density is

38T, p.cy + PO = Z wide; + oF ZZiSCi

=) (wi+uFe)dei =) fide,  (115)

where
Wi =pi+zF¢ (1.16)
is the (molar) electrochemical potential of species i.

a) Locally electroneutral solutions

The energy required to charge a macroscopic system is very high, and therefore
it seems reasonable to assume that the volume elements are electrically neutral.
The local electroneutrality assumption states that the local electrical charge
density p. vanishes everywhere within the system

peEFZZiCi%(). (1.17)
i

This assumption has important implications on the thermodynamic description
of transport processes in solution.

We note first that in a locally electroneutral solution the ionic concentrations
cannot be varied independently and, therefore, ions are constituents of the solu-
tion but not components in the sense of the Gibbs phase rule. The definition of
the chemical potential of an ionic species i

9
i = <i> (1.18)
dei T,pcji}

is not operational because the concentration ¢; cannot be varied while keeping
all the other concentrations constant and, at the same time, satisfying the local
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electroneutrality condition. On the contrary, the chemical potential of the elec-
trolyte can be defined from eqn (1.13) as w12 = (0g/9c12)T, p.co- This means
that the changes in w12 (but not in u;) are experimentally measurable in this
case.

Another important consequence of eqns (1.15) and (1.17) is that the local
electric potential ¢ may be relevant when describing the transport of the charged
components separately but not for the electroneutral volume element as a whole.
Equations (1.4)—(1.9) involve sums over all species, and the local electroneu-
trality assumption implies that these equations remain valid if the chemical
potential is replaced by the electrochemical potential inside the sums. For
instance, the volume density of the Gibbs potential is

g=Y fici, ifpe=0. (1.19)

1

Similarly, the Gibbs—Duhem equation can also be written as

Zcﬁﬁi =Vp, ifpe=0 (1.20)

i

in the case of electroneutral solutions. However, the use of eqns (1.19) and
(1.20) is not recommended because they are valid in locally electroneutral
solutions only [1]; eqns (1.4) and (1.8) are preferred instead due to their general
validity.

b) Locally charged solutions

The local electroneutrality condition is a reasonable assumption for the descrip-
tion of most transport processes but it is not a strict requirement. In fact, many
electrochemical systems are not strictly electroneutral. Whenever the electric
field varies with position (e.g. when a porous membrane separates two solutions
with different concentrations of the same binary electrolyte or in an electrical
double layer), there are deviations from local electroneutrality [2].

The small deviations from electroneutrality, although irrelevant when spec-
ifying the chemical composition of the solution, are crucial for the electrical
contribution to the electrochemical potential of charged species. Hence, we
should be cautious when extrapolating the conclusions derived for locally elec-
troneutral solutions to real electrochemical systems. For instance, we have
already mentioned that eqn (1.20) is not valid and the Gibbs—Duhem equation
should be written either in terms of electrochemical potentials as

> iV = Vp = peVe, (1.21)

1

or as shown in eqn (1.8). Similarly, we could inquire whether Zi wici =
g+ pe¢ represents the sum of the local Gibbs potential and the local electrostatic
energy in the case of locally charged solutions. This latter enquiry is equivalent
to finding out whether is it possible in a charged solution to define locally the
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electrochemical potential ji; without first introducing the electric potential. The
answer to these questions can be found in Section 1.2.8 but now we provide
some hints.

Inrelation to eqn (1.15), we said that the electrostatic energy required to bring
an electrical charge 8p.dV from infinity could be evaluated as ¢3.dV . In fact,
this is only valid if the local electric potential is not affected by the modification
of the electric charge density p.. Moreover, the local term ¢ 3 p. does not describe
completely the changes in electrostatic energy density because, due to the long
range of the electrostatic field, the addition of electric charge to a particular
location in the fluid produces changes in the electrostatic energy throughout the
space, even outside the volume of the fluid.

In the case of fluids at rest in thermodynamic equilibrium, it is possible to
formulate a global definition of the electrochemical potential without first intro-
ducing the electric potential. Such a global definition is equivalent to the local
definition in eqn (1.16) [3, 4]. This can be proved by considering a system that
contains not only the multicomponent fluid under study (of finite volume) but
also the electrostatic field (extending to infinity) and all the electrical charges.
In non-equilibrium systems, however, it does not seem possible to define the
electrochemical potential without first introducing the electric potential [4—10].

The electric potential is determined from the Poisson equation of electro-
statics, which relates this potential to the electric charge density. This equation
is not used explicitly in Section 1.2 because the system under consideration
contains only the fluid and its thermodynamic functions do not incorporate elec-
trostatic contributions. However, Poisson’s equation is needed for the solution
of transport problems in locally charged solutions.

1.2 Balance equations
1.2.1 Introduction

The description of transport processes is based on two fundamental principles.
First, some physical quantities like the total mass, the electric charge, the total
energy, and the total linear momentum®* must satisfy principles of conservation.
Second, the evolution of the system towards equilibrium must satisfy the sec-
ond law of thermodynamics. This implies that the entropy of the system is not
conserved and its rate of variation follows a balance equation that contains a
positive term describing the entropy production due to the (irreversible) trans-
port processes. In Sections 1.2.2-1.2.6, we explain the physical meaning of a
balance equation and derive the most relevant ones, particularly the entropy-
balance equation, which is the starting point for the phenomenological transport
equations. We outline first some important ideas.

Every volume element of the fluid has an amount dB of an arbitrary extensive
quantity B. We aim at describing the (time) change in dB due to the interaction
between the volume element and its surroundings as well as the processes taking
place inside it. The first contribution can be evaluated in terms of its flux density,

* The term total here means that the energy and the linear momentum of both the electrostatic
field and the fluid are involved in the formulation of the conservation laws.
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that is, in terms of the rate at which the quantity B crosses the boundary of the
volume element. The second contribution is associated with the production rate
of B due to the processes that occur inside the volume element. The analysis of
these changes in dB leads to the balance equation

b - -
E-}—ij:ﬂb, (1.22)

where b is the local volume density of B, 7;, is the flux density of B, and m;, is
the local density of the production rate of B; for the sake of simplicity, however,
we often refer to 77, as the production rate. For conservative magnitudes, such
as the total mass and the electric charge, m;, is zero. On the contrary, non-
conservative quantities such as internal energy and entropy can be produced or
consumed in the transport processes.

The local equilibrium hypothesis (for an incompressible fluid)

as u - dcj
T—=—— i— 1.23
ar ot Xi:“' ot (1.23)

is used as the starting point to derive the entropy balance equation. Thus, our first
aim is to derive the balance equations for the amount of component i and for the
internal energy. According to the second law of thermodynamics, the entropy
production rate 7ty must be positive and therefore the dissipation function 6 =
T 7ty must be positive-definite. In fact, this is the fundamental characteristics of
irreversible processes. We aim below to show that the entropy-balance equation
takes the form

B9 J= 2 Oen+bea+6,) (1.24)
ot T

where the three terms in the right-hand side are the contributions of chem-
ical reactions, electrodiffusion, and viscous flow to the dissipation function,
respectively.

The derivation of eqn (1.24) and the expressions for the different contribu-
tions to the dissipation function is rather tedious and it seems convenient to
explain here their importance in order to stimulate the lecture of the following
sections. In equilibrium thermodynamics the expression of one thermodynamic
potential in terms of its natural variables is known as the fundamental relation
of the system. This relation contains all the thermodynamic information of the
system and, therefore, we aim at deriving it. Statistical methods prove to be
very useful in this task. In non-equilibrium thermodynamics we could say that
the fundamental relation is the relation of the local entropy production with the
thermodynamic driving forces and the flux densities. Balance equations allow
us to derive such a relation and, once we know it, the transport equations can
be formulated ‘rigorously’.

The study of the balance equations provide us with much more than the
expression for the dissipation function 6. First, the transport equations are not
sufficient to analyse the transport processes and require to be complemented
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with the continuity equations, which are mass-balance equations. Second, since
we have to choose a reference frame for the flux densities in the balance
equations, the difference between diffusive and convective transport mecha-
nisms becomes very clear. Convection requires a non-zero barycentric fluid
velocity v, while diffusion is associated with the exchange of quantity B in a
reference frame bound to the moving fluid. In mathematical terms, the total flux
density jp is

- -

Jb =Jp + b, (1.25)

where the flux density relative to the fluid, ;}’:’, accounts for the diffusive con-
tribution and the term bv describes the convective one. Third, the relations
between the flux densities in different reference frames are also worked out.
Fourth, and more important, a balance equation for the linear momentum is so
different from a balance equation for entropy that their study provides us with a
sound understanding of the difference between the transport equations for diffu-
sion or electrodiffusion processes and the mechanical equation for macroscopic
flow.

1.2.2 General form of the balance equations

In thermodynamics of irreversible processes, the governing equations are
expressed in a local form that applies to every point within the continuum.
The derivation of these equations, however, requires consideration of a finite
system and we show below two ways of carrying out such a derivation. In the
first case, we consider a finite system enclosed by a (real or imaginary) sur-
face S that is fixed with respect to the laboratory reference frame. This is an
open system in the sense that it can exchange matter with its surroundings. In
the second one, we analyse a system enclosed by a boundary surface S (¢) that
moves with the fluid so that the system is always composed by the same matter
(Fig. 1.2).

The balance equation for an arbitrary extensive quantity B (such as mass,
linear momentum, energy or entropy) can be derived by considering an open
system of volume V enclosed by a fixed surface S. This volume V is divided
into elements whose volume dV and location are time independent. The amount

Open system
o S(f) = S(t+d1)

Closed system
o S(t) # S(t +61)

Fig. 1.2.

In the upper drawing, the surface is fixed
in space and does not enclose the same
fluid particles at different times. In the
lower drawing, the surface moves through
the space so that it always encloses the
same fluid particles, i.e. the velocity of a
surface element is equal to that of the
particle at the position of this element.



10

Source or sink
\

Fig. 1.3.

The surface S encloses a fluid system. The
amount of quantity B in the system may
vary with time either due to the production
of B in processes taking place inside the
system or due to the flow of quantity B
through S. This latter contribution is
evaluated by dividing the surface S in
surface elements. If the scalar product of
the flux density of B, ;’b, and the unit vector
normal to S (and directed outwards) is
positive at a given location on the surface,
there is an outflow of B.

T
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of quantity B in a volume element is dB and the total amount in the system is

=/f/d3=///bdv, (1.26)
v v
where b(F,t) = dB/dV is the local volume density of B.
The time variation of B is
bdV = —dV 1.27
6t / / / / / ( )

and this must be equal to sum of the rates at which the quantity B crosses
the surface S or is produced due to the processes taking place within V. The
mathematical formulation of this requirement is the balance equation

» y]% ds+[// av.
TT,
Y Jb b

In order to evaluate the amount of B that enters V' through the surface S,
we divide the latter into surface elements and label them by vectors dS whose
magnitude is equal to the area of the surface element and whose direction is
normal to the surface, ds = ds it, where 1 is the outward normal unit vector
(Fig. 1.3). The amount of quantity B that enters V' through dS in a tlme dt is
—jp- dS 8¢, where j J is the vector flux density of B at the surface element.> Thus,
the net influx rate can be obtained by integration over the surface S as

_ﬂ;,,.dgz_///v;,,dv
14

N

(1.28)

(1.29)

where the Gauss—Ostrogradski divergence theorem has been used. This is the
first term in the right-hand side of eqn (1.28). Similarly, the contribution of
the sources and sinks of B is given by the second term in the right-hand side
of eqn (1.28), where 7, (7, 1) is the local density of the production rate of B.
This quantity can be zero, negative, or positive. It is zero if B is a conservative
quantity. Itis negative at those points where B is consumed by the local processes
and positive where B is generated.

Combining eqns (1.27)—(1.29), the balance equation can be stated in terms
of a single volume integral over V. Since this equation must be valid for any
arbitrary volume V, it is concluded that the integrand must vanish everywhere
within V, and therefore

ab
— 4V =

a7 (1.30)

which is the local form of the balance equation of quantity B.

5 The derivation of the general balance equation considers vectorial fluxes only although the
description of chemical reactions and viscous flow also involves scalar and tensorial ‘fluxes’,
respectively.
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Alternatively, this local balance equation can be obtained by considering a
volume V (¢) enclosed by a boundary surface S(¢) that moves with the fluid; i.e.
the volume V (¢) that does not exchange matter with its surroundings. The total
amount of B in this volume is

e fffusffu

V() V()

The displacement of every surface element dS in a time interval 8¢ must then
be equal to the displacement 3R = vd¢ of the fluid particle that occupies the
position of the surface element. A straightforward consequence of the motion of
the surface elements is that the time variation of the system volume is given by

BV—S//de—#7 dS‘—//f% dv (1.32)
Yk =(pv = vdV. .
V() S V()
Similarly, the time variation of the total amount B in the system is
3B 3 ab I
—:—///de:/f —dV-f—#bv-dS, (1.33)
3 8t ot
V() 140) S(0)

where the Reynolds transport theorem [11, 12] has been employed. Using the
Gauss—Ostrogradski divergence theorem, this can be further transformed to

5B b -
= =/// [E+V~(bv)] av. (1.34)
V(t)

The flux density of B across a surface element that moves with the fluid
is denoted as ji'. Then, the amount of quantity B that enters V (¢) through an

element dS of S(¢) in a time 8¢ is —]1’7” - dS 8. In close similarity to eqn (1.28),
the balance equation is obtained as

b o
5 TV Gy +b0) =, (1.35)

or, in terms of the substantial derivative, as

Db - . = -
E—FbV-v—I—V-]Z’:nb. (1.36)

In incompressible fluids (see Section 1.2.3) this simplifies to

— 4V =, (1.37)

11
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The equivalence between eqns (1.30) and (1.35) requires that
o =J" 4 bi. (1.38)

Somehow this equation is trivial, because the flux density of B across a sur-
face element that moves with the fluid, jg”, must differ from the flux density
;b across a fixed surface element at the same location in an amount propor-
tional to the fluid velocity ©. Yet, eqn (1.38) is of primary importance because
it tells us that in a flowing fluid there are two transport mechanisms that con-
tribute to the flux of B. The so-called ‘diffusive’ term _72’ is the flux density
in a reference frame that moves (with respect to the laboratory) with the local
barycentric velocity, which is known as the barycentric reference frame. The
term bv describes the convective contribution. Thus, convection is associated
with a non-zero barycentric velocity, while ‘diffusion’ is associated with the
exchange of quantity B in a reference frame bound to the moving fluid.

Interestingly, eqn (1.38) reduces to ]m = pv when applied to mass because
there is no fluid motion across S(¢) and hence the mass flux density relative
to the fluid is zero, j;; = 0. This is equivalent to stating that, by definition,
the only transport mechanism for (total) mass is convection. Note also that the
term ‘diffusion’ is used above also to describe processes other than (component)
mass diffusion. For instance, we show in Section 1.2.4 that eqn (1.38) takes the
form I=1"+ 0V when applied to electric charge. The ‘diffusive’ contribution
I may then describe ohmic electric conduction.

Sometimes, reference frames other than the barycentric and the laboratory
ones are convenient (Table 1.1). In a reference frame that moves (with respect
to the laboratory) with the volume-average velocity

Ty = Zciuia,-, (1.39)

i
where v; is the partial molar volume of component i, the flux density of B is
Y =Jp — by, (1.40)

This is known as the volume-average or Fick’s reference frame and, by defi-
nition, the volume flux density in this reference frame is zero, j;, = 0. Note
also that the volume flux density in the laboratory reference frame is equal to
the volume-average velocity, ;’U = 7y, because b = 1 for the case of volume.

Table 1.1. Flux density of B in different reference frames.

Reference frame Frame velocity Flux density of B
with respect to the laboratory

Laboratory 0 Jb

Barycentric (mass-average) U= Y_; w;y; }Zl =;b —bo

Fick’s (volume-average) Uy = Y, Civiv; j—z =Jp — by
Hittorf’s (solvent-fixed) Vo ;;I:l =jp — bl
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The similarity between eqns (1.38) and (1.40) is apparent and, in principle,fi)J
and bv,, could also be denoted as the diffusive and convective contributions to
the flux density of B. However, there is a fundamental difference between the
reference velocities ¥ and ¥y,: only the former is determined by the conserva-
tion law of linear momentum, and this makes the barycentric velocity preferred
from a theoretical point of view.

Likewise, the flux density of B in the solvent-fixed or Hittorf’s reference
frame is

it =1, — b, (1.41)

where g is the solvent velocity (with respect to the laboratory). Thus, the
molar flux density of solvent in the solvent-fixed reference frame is zero,
joH = 0. Hittorf’s reference frame has a wide practical interest because some
measurements (e.g. of transport numbers) are carried out with respect to water.

1.2.3 Total and component mass-balance equations

When the quantity B is the total mass of the system, b is the mass density p,
and j,, = pv is the mass flux density in the laboratory reference frame. Since
the mass-production rate is zero because the total mass is conserved, eqn (1.30)
reduces to

ap > R
— + V. (pv) =0. (1.42)
ot
This equation constitutes the principle of conservation of mass and is valid even
in the presence of chemical reactions.®
When the fluid is incompressible, p is a constant, and the mass conservation
is described by the simple equation

-

V.o=0. (1.43)

It is then clear from eqn (1.32) that an incompressible system that does not
exchange matter with its surroundings conserves its volume.

The mass-balance equation can also be applied to the system components.
The mass density of component i is p; = pw; = M;c;, where M; is its molar
mass, and its balance equation is

dpow) - -
(pwi) FV iy = T (1.44)

at

where the production rate 7, is non-zero if component i is involved in homo-
geneous chemical reactions. Heterogeneous reactions do not contribute to this
production rate and they are only relevant for the statement of the boundary
conditions of the transport equations.

® Nuclear reactions do not conserve mass and this principle of conservation must then be
extended to include the energy released in the nuclear reaction.

13
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In a system with N components, there are N mass-balance equations like
eqn (1.44). Equation (1.42) can be considereq as the result of summing them
all because Y ;w; = 1, Y, my, = 0,and >, jw, = pv. This latter equation is
another form of the definition of the barycentric velocity, eqn (1.1), because the
mass flux density of component i is j,,, = pw;?;.

Equation (1.44) can also be written in terms of the molar concentration ¢; =
pw;/M; as

dci >
E"‘V']i:ﬂi, (1.45)
where n; = m,,/M; and fi = }w,i/Mi = ¢;v; is the molar flux density of

component i. Equation (1.45) is known as the continuity equation for component
i. In the absence of chemical reactions, the amount of component i is conserved
and the balance equation takes the form of a conservation law

80,'

Z4v.gi=o. 1.46
8[+ Ji (1.46)

Furthermore, under steady-state conditions this equation reduces to
V.ji=0, (1.47)

which states that the amount of component i entering the system through some
boundaries is equal to the amount that exits through other system boundaries.
Thus, for instance, in one-dimensional systems the steady-state molar flux
density j; is independent of position (in the absence of chemical reactions).

When component i is involved in homogeneous chemical reactions the
change in its concentration is evaluated as a sum of contributions from the
different reactions. If v; - denotes the stoichiometric coefficient of component
i in reaction r and &, is the local reaction co-ordinate of this reaction, then
the change in the molar concentration of component i due to reaction r is
3¢; = v;,8&.. The coefficient v;, is positive for products and negative for
reactants. Thus, the total production rate of component i is

13
i = E i 1.48
T a Vi, o ( )

where 0&,./0t is the rate of reaction r. Since every reaction conserves the total
mass, the relations ) _; v; ,M; =0and ) _; m,, = )Y ; m:M; = 0 are satisfied.

1.2.4 Electric charge-balance equation

The homogeneous chemical reactions also conserve the electric charge, and
hence it is satisfied that ) ; v;,z; = O for every reaction r and ), wiz; = 0.
The combination of this equation and eqn (1.45), leads to the mathematical
formulation of the conservation of the electric charge

one

vV.i=o, 1.49
oy + (1.49)
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where

pe=F Zzici (1.50)
i

is the electric charge density and
I=FY zji (151)
i

is the conduction electric current density.

Alternatively, eqn (1.49) can be derived from Maxwell’s equations. Ampere’s
law states that the rotational of the magnetic field H is equal to the sum of the
conduction current density / and the displacement current density Iq = dD/dt,
where D is the electric displacement,

VxH=I+1. (1.52)

Then, the total current density It = id + I has zero divergence

1

1=0, (1.53)

<t

V.=V

~

4+

and the time derivative of Poisson’s equation V.D= pe leads to eqn (1.49).
In other words, eqns (1.49) and (1.53) are two forms of the same conserva-
tion equation for the electric charge. Equation (1.53) implies that the net flux
of total current across the system boundaries is zero. In particular, in a one-
dimensional system It is independent of position and is equal to the current
density exchanged with the surroundings, that is, the current that enters the
system through one boundary and exits through the other.

In electroneutral solutions the electric charge density pe and the displace-
ment current /g vanish so that conduction is the only transport mechanism for
the electric charge. Moreover, the electric current density is then independent
of the reference frame. On the contrary, in charged solutions the conduction
current density depends on the reference frame because a convective transport
mechanism is possible. Thus, for instance, the conduction current density can
be written as I = I"™ + pet where I, and pe are the “diffusive’ and convective
contributions, respectively. Note that these two contributions are due to ionic
motions, while the displacement current density is not. The current density /,,,
is the conduction current density in the barycentric reference frame. Similarly,
Ehe conduction current densities in the Hittorf, I, and in the volume-average,
IV, reference frames satisfy the relation

T =11+ petio = IV + pety. (1.54)

In summary, in electroneutral solutions the electric current density 1=
FY,; zyji is due to the motion of ionic species, is independent of the refer-
ence frame, and has zero divergence. In charged solutions, however, there can
be different contributions to the current density and Table 1.2 summarizes them.

15
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Table 1.2. Contributions to the electric current density in charged (i.e. non-electroneutral)

solutions.

Current density Comment

‘Diffusive’ m=F > z;;f” Due to the motion of ionic species in a
barycentric reference frame.

Convective el Due to the fluid motion. In an

electroneutral fluid, this contribution
vanishes and the conduction current is
independent of the reference frame.

‘Conduction’ I=F > ZJ,- =I"+ pev Sum of the ‘diffusive’ and convective
contributions. Due to the motion of ionic
species in the laboratory reference
frame.

Displacement id =D Significant in very fast transients
(usually, on the scale of ns).

Total It = I+ Iy This is the current that crosses the
system boundaries and satisfies
VIt =0.

1.2.5 Linear momentum-balance equation

In eqns (1.30) and (1.37), the balance equation was formulated for a scalar
quantity b but the linear momentum of the moving fluid is a vectorial quan-
tity. In particular, the volume density of linear momentum is the product of the
mass density and the barycentric velocity, p©. The vectorial character makes
the mathematical statement of its balance equation difficult because a vector

balance equation involves a flux density ] " that is a second-order tensor. To
avoid this difficulty, we can apply eqn (1.37) to the three components of the lin-
ear momentum separately and end up with three balance equations that involve
three vectors ;1')'; (j = x,y,7) describing the flux density of these components.
In this section we derive the vector balance equation for the simple case of a
non-viscous fluid as well as the scalar balance equation of a viscous fluid that
moves in the x direction. The linear momentum-balance equation for a viscous
fluid moving arbitrarily is worked out in Section 1.2.7.

a) Linear momentum-balance equation for a non-viscous fluid

Newton’s second law states that the rate of change of the linear momentum
of a system is equal to the net force acting on it. The production rate of the
linear momentum is then equal to the density of the net external force. The net
force on a fluid volume element is the (vector) sum of surface forces that act
on its surfaces and volume forces that act on every point inside it. We consider
here that the only volume force acting on the fluid is the electrical one, and
its density is peE where pe is the electric charge density and E is the electric
field. The surface forces can be pressure forces normal to the surfaces and
shear forces parallel to them. In non-viscous fluids only the pressure forces are
present and our next task is to describe their contribution to the transport of
linear momentum.
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Consider a parallelepipedic volume element with dimensions Ax, Ay, and
Az in a Cartesian co-ordinate system. This volume element has six faces and
there are six surface forces normal to them. The forces on the x direction are
exerted on the faces normal to the x axis. We identify these faces by their
position co-ordinates x and x + Ax. The net force on them is p(x) AyAz —p(x+
Ax)AyAz and the force density can be approximated by —dp/dx. Similarly,
the other components of the force density are —dp/dy and —dp/dz, and the
net force density can be written in vector form as —Vp. The pressure gradient
Vp describes the transport of linear momentum across the boundaries of the
volume element. Therefore, we conclude that the linear momentum balance
equation is

Dv S, (1.55)
th_ P T PekL, .

which is the Navier-Stokes equation for a non-viscous fluid. 1f the fluid is
electroneutral, po = 0 and this equation becomes the conservation law of linear
momentum.

b) Linear momentum-balance equation for a viscous fluid
that moves along direction x

When the fluid moves in the x direction only, the continuity equation, V.5 =0,
enforces the velocity v, to be independent of position co-ordinate x, although
it can vary in other directions. For instance, in rectangular channel flow v, may
depend on the distance to the channel walls, while in a cylindrical channel flow
it may depend on the radial position co-ordinate. The variation of velocity v,
with position in the direction normal to the channel walls is evidence of the
fact that linear momentum is being transferred in this direction due to the fluid
viscosity. Then, we conclude that the barycentric velocity v = (vy, 0, 0) and
the flux density of the linear momentum j;' are vector magnitudes that do no
have the same direction.

In the absence of external forces, linear momentum is conserved (7, = 0)
and the balance equation, eqn (1.35) for b = puv,, reduces to

3 -
p% +V . =0, (1.56)

where we have used that (v - %) vy = 0. Since the mechanical equilibrium is
established in a much shorter time than the distribution (or diffusional) equilib-
rium, stationary flow is often assumed. The term pdv, /97 then vanishes, and
the balance equation reduces to V - ji' = 0, which is applied next to some
typical flows. '

c) Stationary Couette flow in planar geometry

Consider an incompressible fluid that occupies the space between two horizon-
tal, parallel plates such that the upper one is moving in the positive x direction
and the lower one is fixed. Due to the fluid viscosity, the fluid moves in the

17
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Fig. 1.4.

Shear forces acting on the surfaces normal
to the y direction of a Cartesian volume
element in the stationary Couette flow
between parallel plates.

Fig. 1.5.

Velocity profile, schematic drawing of the
flow of linear momentum (from the source
to the sink), and vector field for the linear
momentum flux density in the stationary
Couette flow between parallel plates.
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positive x direction and the velocity v, varies linearly in the direction normal
to the plates from O at the position of the lower plate to its maximum value (the
plate velocity) at the position of the upper plate. The lower plate acts as a sink
and the upper one as a source of linear momentum. If y denotes the position
co-ordinate in the direction normal to the plates, the balance equation V. Jo, =0
reduces to

djn /dy =0, (1.57)

where i) ¥ is the component y of the linear momentum flux density ]”; The
physical meaning of eqn (1.57) is that momentum is transferred through the
fluid without losses. Note that /i) is the flux density in the barycentric reference
frame, i.e. bound to the fluid motion, and therefore jy; , = 0.7

The net surface force along the x direction is due to the viscous friction
between elements, which acts on its surfaces normal to the y direction (Fig. 1.4).
The force on every surface can be evaluated as the product of the contact area
and the viscous stress component xy on this surface. This stress component a;y
is given by Newton’s law of viscosity

ol == (1.58)

where 7 is the dynamic viscosity of the fluid. Since every volume element
must experience a zero net force in order to move with a stationary velocity
vy, it is required that oy (y) = ow(y + Ay) or, equivalently, that do;, y/dy =0.
This turns out to be the balance _equation for the component x of the linear
momentum, eqn (1.57); note that j;' have the dimensions of a surface stress or
pressure. The velocity profile is then linear, as shown in Fig. 1.5, and the vector

EZ is independent of position and directed from the moving to the fixed plate.

' (y+Ay) AxAz

y
x
z ¥

(Sh,(y)AxAZ
Moving plate Source
vy
v(y Transfer v v T’,”
=7 v(y) MM v,
> v v Vv
Fixed plate Sink

" In the laboratory reference frame the component x of the linear momentum flux density jy, x
is non-zero but it is independent of position x.
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d) Stationary Poiseuille flow in planar geometry

In the Poiseuille flow in planar geometry, an incompressible fluid occupies the
space between two horizontal, parallel plates such that both of them are fixed
and a pressure gradient is applied in the x direction, dp/dx < 0. The fluid then
moves in the positive x direction and, due to the fluid viscosity, the velocity vy
varies in the y direction normal to the plates from O (in contact with them) to
its maximum value at the channel centre. Both plates act here as sinks of linear
momentum, while the external pump that applies the pressure gradient is the
source of momentum. Linear momentum is transferred without losses through
the fluid.

Once again we can use the idea that for any volume element to move with
a stationary velocity vy, the net force on it must be zero. Along direction x,
there are four forces. They act on the four surfaces (of the fluid element) that
are normal to the directions x and y (Fig. 1.6). Newton’s law of viscosity, eqn
(1.58), can be used to evaluate the stress on the surfaces normal to the y direction
and the net force density due to their imbalance is do,, /dy. This force density is
compensated by another one due to the pressure gradient acting on the surfaces
of the volume element normal to the x direction, —dp/dx, and therefore the
force balance requires that

/ 2

dp o __dp n % o) (1.59)
dx dy dx dy?

This statement of mechanical equilibrium is known as the Stokes equation
and constitutes the local balance equation for the component x of the linear
momentum, eqn (1.56), because in this flow the components of the flux density
of linear momentum are jy , = p and ji) | = —oy, = —ndvy/dy. Equation
(1.59) implies that the velocity profile is parabolic, as shown in Fig. 1.7, and
the components x and y of the vectorjgi vary linearly with position co-ordinates

x and y, respectively.

O’y (v + Ay)AxAz

P)AYAZ <+— p(x + Av)AyAz

y
6’y (VAXAZ . .J—' x

Moving plate Sink
= 0 A7
—>v®) L':‘:%‘ransfer i: :; 4 jm
2 =3
S~~~ e N

Fixed plate Sink
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Fig. 1.6.

Pressure and shear forces acting on the
surfaces normal to the y direction of a
Cartesian volume element in the stationary
Poiseuille flow between parallel plates.

Fig. 1.7.

Velocity profile, schematic drawing of the
flow of linear momentum (from the source
to the sink), and vector field for the linear
momentum flux density in the stationary
Poiseuille flow between parallel plates.
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1.2.6 Energy- and entropy-balance equationsin a
non-viscous fluid

Scalar multiplication of the linear momentum balance equation for a non-
viscous fluid, eqn (1.55), and the barycentric velocity, leads to the balance
equation for the translational kinetic energy density ex = pv?/2,

8ek - - Dek =3 - 2 o
= HV el =S54V (D) = pek -, (1.60)

where the mass continuity equation for incompressible fluids, V-9 = 0, has
been used. The source term pcE - ¥ is the rate of conversion of electric energy
to kinetic energy of the fluid. This conversion can only take place in charged
solutions (pe 7# 0).

The comparison of eqn (1.60) with the general form of the balance equation
in eqn (1.30) evidences that the flux density of kinetic energy in a non-viscous
fluid is

Jeu =72”k + ek = (p + e). (1.61)

The ‘diffusive’ term}??( = p¥ is then associated with the mechanical power of
pressure forces.

The total energy density of the fluid is the sum of the internal and the trans-
lational kinetic energy densities, e = ex + u. Other contributions such as the
rotational kinetic energy are neglected. The electric field is considered to be
external to the system and the internal energy u does not contain electric con-
tributions. The total energy is not a conservative magnitude because of the
interaction of the fluid with the electric field. The production rate of total energy
7, is equal to the net power of the electrical forces? (i.e. the sum of the products
of force density Fz;c;E acting on every charged species i and its velocity v;)

- -

me=FY zeiviE=1E. (1.62)
i

The balance equation for the total energy of the fluid is then
= 4V.j.=1E (1.63)

As was stated in Section 1.2.1, the main outcome from Chapter 1 is the bal-
ance equation for the entropy. Irreversible transport processes are characterized
by a positive entropy production 7ty > 0 and we aim to evaluate it or, equiva-
lently, the dissipation function 6 = T'ms because it is used as the starting point

8 In the barycentric reference frame this power can be evaluated as ) ; FiciE - DAES " . E,
but it must then be taken into account that charged fluids can also increase their kinetic energy due
to the power peE - v. That is, not only the ions but also the solvent obtains energy from the field
due to the ion—solvent interactions. As expected, these two contributions add up to 7, = I-E.
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for Chapter 2. The entropy production is determined from the entropy-balance
equation

%
§+V ]:—ﬂs—T: (1.64)

where the flux density of entropy is

Jo=J" st = = <u Zuu,) (u +p-— Zuzc,) v
1 (- - =
= o \Jutp0 =3 i) (1.65)

i

Subtracting eqn (1.50) from eqn (1.63), the balance of internal energy is
obtained as

a—+% Ju=I"-E, (1.66)
where fu = ;’,’4" + uv and ]1 = ;’ek —|—}u. The source term 1™ - E represents the
rate of conversion of electric energy to internal energy.

In the absence of chemical reactions, eqn (1.46) leads to

—Zmacl =Y w g
i
=V (Z i _pa) =iV, (1.67)
i i

where the Gibbs—Duhem equation for isothermal fluids, ), c,-% ni = %p, and
the continuity equation, V - % = 0, have been used. Combining eqns (1.9) and
(1.64)—(1.67), it is concluded that the contribution of electrodiffusion to the
dissipation function is

b= - Y G+ E= - =0 (169)
i

i

which takes the form of a sum of products of the flux densities ];” and the
negative gradients —%ﬁi. The latter are considered to be the driving forces for
electrodiffusion.

The derivation of eqn (1.68) has been based on the consideration of ionic
species. Alternatively, the contribution of electrodiffusion to the dissipation
function can be written as

96d=—z‘71’(n'%/11< +im thmz0 (1.69)
K
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where the sum extends over neutral components (i.e. dissociated electrolytes,
neutral solutes, and solvent), thm =" /K is the ohmic glectric field, and «
is the local electrical conductivity. The term Oopm = . Eorm = ™2 /K >
0 can be identified as the Joule power and accounts for the contribution of
the irreversible electric conduction process to the dissipation function. The
other term in eqn (1.69), Ogir = — Y g J§' - Vuk, is also positive-definite
and describes the contribution of the diffusion of neutral components, also
known as chemical diffusion, to the dissipation function. Note that we have
used uppercase symbols for both the flux densities and the index that runs over
the neutral components to make it clear the difference with the flux densities
and the index that runs over ionic species. . L

Introducing the diffusional or internal electric field as Egif = E — Eopm and
comparing eqns (1.68) and (1.69), the contribution of chemical diffusion to the
dissipation function can also be written as

Odif = — Z;;" Vi + 1™ - Egi. (1.70)
i

The relation between ionic and neutral chemical potential gradients is

Vg = ZVi,K%Mi’ (1L.71)

1

where v; g is the stoichiometric coefficient of ionic species i in component K
(which is zero if the dissociation of component K does not give rise to ionic
species i in solution). Therefore, the equivalence between the ionic and the
component formulations of 6gir requires that

I"-Ege =) (f{” -2 vi,Ki,?) V. (1.72)
K

1

In the absence of electric current 7" = 6, Edif =E #* 6, and the ionic flux
densities are f;” = >k u,-,Kj ¢ In the presence of electric current, the ionic
flux density ]l’” is the sum of D vikd ¥ and a term proportional to 1" In
Sections 2.1.5 and 2.3.3 we pursue further the relation between the ionic and
the component formalisms for the description of transport processes.

In the presence of chemical reactions, using eqn (1.48) and following a similar
procedure, the entropy balance equation takes the form

as - = 1
P Vjs = ?(gch + Oed)s (1.73)

where the contribution of the chemical reactions to the dissipation function is

%,
o= YA 20, (1.74)
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and A, = —); v, u; is the chemical affinity of reaction r. The chemical
affinity A, is zero when the reaction has reached equilibrium. If A, > 0, the
reaction proceeds towards equilibrium in such a way that 0&,/0¢t > 0, while
d&,/0t < 0O when A, < 0, so that 6, > 0 in all cases. The chemical affinity is
considered to be the driving force for reaction r, and the reaction rate &, /0t
can be denoted as the reaction flux. Thus, 6., also takes the form of a sum of
products of forces and fluxes. These forces and fluxes, however, are scalar.

Example: Transport in a binary electrolyte solution

Consider the one-dimensional transport in a 1:1 electrolyte solution under such
conditions that ji' = I/z1F and j;' = 0. The dissipation function can be
written as

Ay
+1mE0hm or 95d=—]'1n3.

d
Odit + Oohm = —J 1"5%
In the first expression, the contributions of mass and electric charge transport
are split into two terms. In the second expression, only one electrodiffusion
term appears because electric charge is bound to ions, and hence mass and
charge transport are not independent.

Using the relations

d d D 1 d
S mo 2 _jm  and E= S
dx dx D)+ Dy 2F dx

which are fully justified in Chapter 2, we aim at discussing the relative
importance of 6gir and Gopy in terms of the ratio D1/D; of ionic diffusion
coefficients.

From the above relations, the dissipation function is

AT m dp1 du
=g =it (G —are) = -2

Since the gradient of the electrolyte chemical potential is

dpiy  d(pr +p2) 2%
dv dx T T dx

the contribution of chemical diffusion to the dissipation function is

goe = _gmd2 Dy d Dy,
W T D D kD 4Dy

From eqn (1.72), the diffusion electric field is (implicitly) given by

- , duy duz Dy —Ds ,duy
7" Eae = (7" — J7 0—Jm — m ,
it = (] 12)7] + ( 12)7] DD ax
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and, therefore, the contribution of electric conduction to the dissipation
function is

Oohm = I"Eghm = I"E — I"Egi¢
mdu1 Dy =Dy, duy D,

- _jl dx B Dy +D2J1 E - Dy +D296d
as should be expected, because O4ir + Gohm = Ged-

Although both 6gir and O,y are positive-definite, it is interesting to observe
that mass and electric charge transport are not independent process because in
the system under consideration only the ionic species 1 moves, and it is respon-
sible for the transport of both mass and electric charge. Since species 2 does not
move, the dissipation function 6.4 cannot depend on the ionic diffusion coeffi-
cient D;. The fact that D, appears in the expressions for 8gir and Oop, evidences
that the decomposition of this process as the combination of chemical diffusion
and electric conduction is somehow unnatural. Indeed, when Dy /D> >> 1, the
process should be considered as electric conduction because Ogir << Gohm = Oed,
while in the opposite case D1/Dy < 1, the process should be considered as
chemical diffusion of the electrolyte because Opnm <K Ogir ~ Geq. In conclusion,
depending on the value of D1 /D, the same process can be considered as electric
conduction, chemical diffusion or a combination of them, and hence the name
electrodiffusion is better suited in this situation.

1.2.7 Energy- and entropy-balance equationsin a
Newtonian viscous fluid

The viscosity of a flowing fluid causes a continuous degradation of kinetic
energy into internal energy and, hence, entropy production. When this irrevers-
ible process is taken into account, the energy- and entropy-balance equations are

¢ LG5 =1 (1.75)
ot - :
dex
W"‘V Jo = pet - E — 6, (1.76)
ou - oo
EWLV-M=1”’-E+9,7 (1.77)
ds -
E—'_v ]\ = 7(0Ch+06d+9n)3 (178)

where 6, > 0 is the contribution of viscous flow to the dissipation function.

‘We now aim at showing that the viscous contribution to the dissipation func-
tion 6, also takes the form of the product of a ‘force’ and a ‘flux density’,
which are second-order tensors. To avoid the mathematical complexity of alge-
braic and differential operations involving tensors, we describe first the case in
which the fluid moves in the x direction and present the general case later in
this section.



Balance equations

Consider, in particular, the stationary Poiseuille flow in planar geometry. An
incompressible and electroneutral fluid occupies the space between two hori-
zontal, parallel plates. Both plates are fixed and a pressure gradient dp/dx < 0
is applied in the x direction. The variation of the fluid velocity v, with posi-
tion y is given by the linear momentum-balance equation, eqn (1.59), and the
components of the flux density of the linear momentum j) are j' , = p and
Jor. y = —o], - Scalar multiplication of eqn (1.59) by the velocity vy leads to the
balance equation for the kinetic energy

d(pvy)  dlogv) doy doy
dxx _ ;; _'_U;yd _V (JUVUX)—FOxy d =0. (1.79)

The first term in the left-hand side of eqn (1.79) is the power of the pressure
forces, i.e. it is the input rate of kinetic energy to the volume element. Since
the velocity is independent of time, this power input must get out of the fluid
element due to shear forces or dissipated inside it due to the fluid viscosity. The
second term in the left-hand side of eqn (1.79), —d(cr;vvx) /dy, represents the
rate of energy transfer due to shear stresses and the third term, oy, dv,/dy =

n(dv,/dy)? = 6, > 0, represents the energy dissipation rate due to the fluid
viscosity. In other words, under stationary conditions, eqn (1.76) reduces to
V. - je, = —0y, where ex = pv2 /2. The comparison of this equatlon and eqn
(1.79) shows that, in this case, the flux density of kinetic energy is j,; = ij Uy =
(pvx, —oy, 3 Uxs 0).

In other cases in which the fluid moves in the x direction only and there
are no external forces, scalar multiplication of the linear momentum-balance
equation, eqn (1.56), by the velocity v, leads to the balance equation for the
kinetic energy

dex | = - dex = - - N
B -jZf( = §+V~(J;’fx v) = Jyy - Vor = =0y (1.80)

Note that the divergence of the convective flux density of kinetic energy V. (ex V)
vanishes when the fluid moves in the x direction only.

Once we have discussed viscous dissipation under relatively simple flow
conditions, we tackle now the difficult task of finding the general expression of
0,. This requires the derivation of the balance equation for the kinetic energy,
eqn (1.76), and the necessary preliminary step is the derivation of the general
form of the balance equation of the linear momentum of a viscous fluid that
was postponed in Section 1.2.5.

The linear momentum is a vector magnitude and its flux density is a second-
order tensor, so that the corresponding balance equation is mathematically
rather complex. In the barycentric reference frame, the flux density of the linear

momentum of the fluid j; is related to the surface forces and is equal to the
negative of the stress tensor . In the case of incompressible Newtonian fluids,
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the Cartesian component jk (j,k = x, y, z) of the stress tensor is

avj  dug
ik = =P + o = —pdjx +1] (ﬁ + E) ; (1.81)
i
where 8j; is the Kronecker delta (8 = 1if j = k, 3 = 0if j # k). This
equation can be written in tensorial form as

o <

G=—pl+o =—pl+2y) (1.82)

where p is the pressure, o’ is the shear stress tensor, and y’ is the deformation
rate tensor.

In the case of charged fluids, the interaction between the fluid and the elec-
tromagnetic field, through the electrostatic force p.E, implies that the linear
momentum of the fluid is not conserved. The linear momentum density associ-
ated to the moving fluid is p© and its production rate is 73 = p.E. The balance
equation for the component j of the linear momentum is then

Dvj;
p—2L
Dt

ap

r nV20; + peEj, (1.83)
j

= —% ‘;g + j'[vj =
and the balance equation for the vector linear momentum can be written as
p— =V &+ pE = —Vp—+ V2D + pE, (1.84)

which is the Navier—Stokes equation in the presence of an electric force.
An alternative form of this equation is
v - -

oV L 2. 2 o
—v+p(v~V)v—V~U=p—+V-(—a

30) = pE 1.85
a7 a7 + pUV) = pe (1.85)

o
where the condition of incompressibility of the fluid has been used and the
tensor vv is the exterior (or dyadic) product of the fluid velocity and itself.
The component jk of this tensor is vjvg. It is clear from this equation that the

flux density of linear momentum in the laboratory reference frame is 7;] =
—0 + pidv.

The mathematical modelling of convective transport processes often requires
the solution of eqn (1.84). In practice, however, the Navier—Stokes equation is
reduced to a much simpler form. Since the mechanical equilibrium is much
faster than the distribution (or diffusional) equilibrium, stationary flow is
assumed and 99/3t = 0. In addition, most electrochemical techniques using
convective flow involve such low Reynolds numbers that the convective accel-
eration (v - V)¥ can be neglected. Thus, the Navier-Stokes equation is reduced
to the statement of mechanical equilibrium (Stokes equation)

Vp — peE = V27, (1.86)
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where the terms in the left-hand side generally represent the forces that induce
the flow motion, and the term in the right-hand side represents the frictional
force due to the solution v1sc0s1ty Nevertheless, the solution flow satisfying
the Laplace equation 0 = V27 can also by induced by shear stresses, such as
in the Couette flow.

Scalar multiplication of the linear momentum-balance equation, eqn (1.85),
by the barycentric velocity leads to the balance equation for the kinetic energy
shownineqn (1.76). In this equation, the flux density of kinetic energy density is

Jo=—0-T+ed=pi—35 -0+ ed, (1.87)

and the viscous contribution to the dissipation function is

“

9n—22 ]k;):i ZZ ol =5 Y =2y iy = 0. (1.88)

Inderiving eqn (1.76), we have also used the relation v - (% o) = v. (o'-0)—6y.

In closing, we emphasize that the three contributions to the dissipation func-
tion Och, 6ed, and 6, have the similar form of products of forces and fluxes.
However, 6., involves products of scalars, 6¢q involves products of vectors,

and 0, = 5 y’ is the product of second order tensors. The fact that not
only the total dissipation function € but also the individual contributions 6.y,
Bed, and 6, are positive-definitive is a consequence of the absence of coupling
phenomena between irreversible processes of different tensorial degree (in a
medium that is isotropic at equilibrium). The mathematical proof of this absence
of coupling is known as the Curie theorem.

1.2.8 Electromagnetic energy and linear momentum

So far we have dealt with the properties of the fluid system only. In this
section we consider the electric field and discuss its balance equations and its
interaction with the fluid system [4,10,13]. We assume that there is no applied
magnetic field and that the magnetization of the fluid is negligible because the
magnetic field created by the electric currents in electrochemical systems is
small. The equations presented in this section correspond to the mathematical
limit in which the magnetic permeability of the fluid u,, tends to zero. There-
fore, the magnetic 1nduct10n B = /LmH is neglected and the electric field is
assumed to be irrotational, VxE=—03B /8t ~ 0. This implies that an electric
potential ¢ can be defined from the equation E= —V¢ Note, however, that
the magnetic field H is not neglected.

a) Electric energy-balance equation

The electric energy density is e = D-E /2 = gE?/2, where we have used
the constitutive equation D = ¢E. For the sake of simplicity, the dielectric
permittivity ¢ is considered to be constant (i.e. it is not affected by the changes
in the electric field and the local composition). To derive the balance equation
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of the electric energy, we note first that its time derivative is equal to the scalar
product of the electric field and the displacement current density

9 D - - - -
be 0 E=l,-E=I-E—I-E. (1.89)

B o
The flux density of electromagnetic energy is given by the Poynting vector
E x H, and its divergence is

V- (ExH)=H-(VxE)—E-(VxH)~—Ir-E, (1.90)

\yhere_.we Ilave neglected the magnetic energy density and used Ampere’s law,
V x H = It. Combining eqns (1.89) and (1.90), the balance equation for the
electric energy is

0 >

S+ Exi=-I-F. (1.91)
Itisinteresting to note that the production rate is the negative of that in the energy
balance equation of the fluid, eqn (1.75). That is, the sum of the energies of the
fluid and the electric field is a conservative magnitude, and their interaction
is described by the product / - E, which is the rate at which the electric field
provides energy to the fluid. The mathematical statement of this conservation
law is

d(e + ee)
ot
_ 0(e+ee)
T o

+%'(]e+EXIjI)
+ V- (o +¢I) =0, (1.92)

where we have used that V.It = Otointroduce the approximation V. (E x H )~
V- (¢l).

b) Electromagnetic linear momentum-balance equation

Equations (1.76) and (1.77) show that, from the power 1-E=1m. E + pe - E
a fraction 1™ - E is converted to internal energy and a fraction pe? - E to kinetic
energy of the fluid. This can be confirmed by analysing the balance of linear
momentum of the ﬁeld The density of electromagnetic linear momentum is
DxB= (E x H) /c?, where B is the magnetic induction and c is the speed
of light in the medlum Making use of the Maxwell equations, V-D= Des
V.B=0,VxE= —BB/Bt and V x H = IT, and neglecting the electric
polarization energy and the magnetic energy, the time derivative of the density
of electromagnetic linear momentum is approximately given by

<~

DxB) - -
IPXB) 5.7 — peF. (1.93)

at

where T = DE — (1/2)g9E?1 is the Maxwell stress tensor, DE is a second-
order tensor whose component jk is D;Ey, and 1 is the unit second-order tensor
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represented by the matrix diag(1,1,1). This equation shows that (the volume
density of) the production rate of linear momentum of the field is —p.E. Since
eqn (1.85) showed that this is the rate of transference of linear momentum from
the field to the fluid, it is concluded that the sum of the linear momenta of the
fluid and the field is also a conservative magnitude. Furthermore, the mechanical
power done by the field on the fluid is p.© - E and this is the increase rate of the
kinetic energy density of the fluid.

¢) Thermodynamic potentials revisited
As we noticed in Section 1.1.3, the thermodynamic functions of the fluid, e.g.
u and g, do not contain any electric contribution and that is why the equations
in Section 1.1.2 involve the chemical potentials rather than the electrochemical
potentials. We briefly analyse here the difficulties that arise when attempting to
incorporate the electric energy in the thermodynamic functions.

Replacing the chemical potentials by the electrochemical potentials, the local
equilibrium equation takes the form

u 0pe as . 0ci
My g% % iy 1.94
or %% at+l_“’at (1.94)

which suggests to analyse the contribution ¢dp, /9t to the time variation of the
electric energy density. The internal energy balance equation can be written as

ou d - = - L2
b+ V(i 9D = —pei - E+0,, (1.95)

and its combination with the kinetic energy balance leads to

de e | = =y -

— — + V. I)=0. 1.96

ar+¢8t+ (o, +oI) (1.96)
Although this resembles eqn (1.92), it should be noticed that eqn (1.96)

does not describe a conservation law and that the difference between these

equations is

0pe dee = 2

¢ oy V- (ply). 1.97)

Some of the difficulties associated with the thermodynamic description
of non-electroneutral solutions come from the fact that ¢dp. # de..” We
know from classical thermodynamics that heat and (mechanical) work are not
state functions but energies in transfer. In general, their differentials 7'8s and
pd(1/p) depend on the process undergone by the system and, therefore, they
are not exact. Similarly, the differential ¢3p. is not exact because it depends

° Due to the long range of electrical interactions, changes in the local electric charge density at
a given position can provoke changes in the electric potential and charge density at other positions
in the system or even outside it.
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on the constraints imposed to the process, and this is the reason why it is not
convenient to write the local thermodynamic equations in terms of a kind of
‘electrochemical Gibbs potential’ g = g+ pep = Y ; Hici. Moreover, this also
rules out the possibility of defining the electrochemical potential of an ionic
species as ;t; = (0g/ Bci)T,p,{cj i) because the change in the local concentration
of species i implies a change in the local electric potential that cannot be eval-
uated in general. In an attempt to overcome this problem, some authors write
i = (9g/ dCi)T p.{cjzi).p DUt it should be emphasized that the electric potential
has not appeared in the previous sections as a thermodynamic variable char-
acterizing the state of the system and, more importantly, that the constraint of
constant ¢ while changing the local electric charge density is hardly realizable
in practice.

Finally, it is interesting to observe that the classical expression for the energy
density of a continuous distribution of electric charges is neither e, = ¢E%/2
nor pe@, but pe¢ /2. The relation between them is

1 1o -
e = Eped) - EV - (¢D), (1.98)

which is obtained from the mathematical identity V. (d)ﬁ) = qﬁ .D+D- %qj.

d) Example 1: Discharge of a capacitor over a resistance

Consider a dielectric film between the plates of a parallel capacitor of capac-
itance C that is initially charged under a potential difference A¢(0). At time
t =0, it is allowed to discharge over a resistance R. The transient current is
given by I(¢t) = 1(0) e !/, where T = RC is the electrical relaxation time,
1(0) = Q(0)/7 is the initial current, and Q(0) = CA¢(0) is the initial charge
on the plates. The total current density It = I + Ig is constant along the cir-
cuit, as required by the principle of conservation of charge, V - 7T = 0, but
inside the resistance there is only conduction current and inside the capaci-
tor there is only displacement current. In the discharge process, the energy
00)Ap0)/2 = Q(O)2 /2C initially stored in the capacitor is dissipated as
Joule heat inside the resistance. The electric energy flux density in the capaci-
tor is ¢ly and the energy that flows out of it can be evaluated by integrating the
divergence of this flux over the volume of the dielectric film

///%-((pid)dv = #qsid -dS = AGIA,
C C

where A is the area of the plates. Thus, inside the capacitor there are no (free)
electric charges and ¢dp. /0t = 0, but the electric energy density changes and,
in agreement with eqn (1.97), de. /0t = -Vv. (¢7d) < 0.

Similarly, the electrostatic energy flux density in the resistance is (1)7 and the
energy that flows through it can be evaluated by integrating the divergence of
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this flux over the volume of the resistance

—///%-(qﬁ)dv=—ﬂ¢7-d§=A¢IA,
R R

where the minus sign comes from the fact that we are evaluating the flow of
energy towards the inside of the resistance. In the resistance, electric energy is
converted to internal energy due to the Joule dissipation at a rate —/ - E and the
total electric energy converted is

—///i.édv=[//%.(¢7)dvz#¢7.d§= —AQIA.
R R R

Therefore, there is no change in the electric energy of the resistance because all
the electric energy that enters is converted to internal energy. In fact, this balance
also holds locally in the resistance because V. (¢)I ) = —1 - E, and therefore
de./dt = 0; note that in the resistance both the space charge density and
the displacement current density are zero. In conclusion, the above equations
describe well the conversion of electric energy into internal energy that takes
place in this electrical relaxation process.

e) Example 2: Electrical double-layer formation at an isolated
metal electrode

Consider that a piece of metal, with no electrical contacts, is introduced instan-
taneously at time 7 = 0 in an electrolyte solution containing the redox couple
Fe2* /Fe?* [14]. The molar concentrations of these ions in the solution are Cpe2+
and cpg3+. Initially, the metal is electrically neutral and the electrical potential
difference between the metal and the solution is zero, A"¢ (0) = 0. The metal
is not in equilibrium with the solution because there is a tendency for the redox
couple to exchange electrons with the piece of metal until the Nernst equilibrium
potential

RT ¢
Al peq = Ap® + — In FE=
A F CRe2+
is reached. That is, the potential difference AT¢ = ¢™ — ¢° evolves

monotonically with time from 0 to A{"¢eq.

The value of the Nernst equilibrium potential can be positive or negative
depending on the solution composition. Similarly, the affinity for the iron
oxidation, Fe’* 2 Fe3* 4 e~, which can be written as A = — Y, vi; =
F(AT¢ — Al¢eq), can also be positive or negative. Oxidation occurs when
A > 0, and reduction when A < 0.

The iron (cathodic) reduction takes place when A{"¢eq > AT'¢(r) > 0. The
conduction electric current then flows from the solution towards the electrode,
and hence the electrode becomes positively charged; the solution adjacent to
the electrode bears a compensating negative charge density. Still, the metal
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behaves as a cathode. The electric field is then directed from the electrode
towards the solution, and hence the conduction current density and the electric
field are directed in opposite directions in the solution adjacent to the electrode,
1-E < 0. Similar arguments lead to the conclusion that I1-E < 0also when
AlPeq < AT@ (1) < 0 and iron (anodic) oxidation takes place.

The fact that the poweri E=1"Eis negative might be surprising butitis not
in contradiction either with the second law of thermodynamlcs or with Ohm’s
law, 1= /(thm In the process described, . E #* i Eohm = 6ohm > 0
because the concentrations are non-uniform and the d1ffus1on electric field,
Edlf E— thm, is important. Moreover, 6,q = Z J Vu + " E =
- szl V,u, > 0 because the ionic motions take place mainly as a result of
diffusion (although the effect of the electric field cannot be neglected) and the
contribution — ) _; ;j" v Wi is always positive and compensates for any eventual
negative values of I"-E.

Since the metal is not connected to any external circuit, the total current
density is zero and the conduction and displacement current densities in the
solutions are opposite to each other, 1= —id. Thus, in agreement with eqn
(1.89), the formation of the electrical double layer implies an increase of the
electric energy of the system

at the expense of decreasing the internal energy. Hence, we conclude that the
equations derived in Section 1.2.8 also describe satisfactorily the conversion of
internal energy into electric energy that takes place in this process driven by a
chemical affinity.

f) Example 3: Electrical transient of the formation
of the liquid-junction potential

Consider two dilute NaCl aqueous solutions at (slightly) different concentra-
tions separated by an impermeable wall. At time ¢ = 0, the wall is removed
and the solutions are allowed to mix. The mixing, however, is constrained
to a region of thickness d centred at the wall. That is, the solution con-
centrations at x = 0 and x = d are kept constant, and the system evolves
from an initial situation in which the concentration is uniform (although
with different values) in the regions 0 < x < d/2 and d/2 < x < d, to
a final stationary situation in which the concentration distribution is linear
throughout the constraint diffusion region 0 < x < d. We are interested
here in the initial times of this process in which the most interesting elec-
trical phenomena take place. This is the so-called electrical relaxation process
[15].

In the initial state the solutions are electroneutral, and internal energy is
the only contribution to the total energy. After removing the wall, the solu-
tions start to mix. During this evolution, the system is electrically isolated
and the total current It is zero. The open-circuit condition IT = 0 implies
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that the conduction current carried by the ions moving initially at different
velocities is ‘compensated” by the displacement current associated with the
time-dependent electric field, Iy = —I. In their tendency towards making
uniform the concentration, Na™ and CI™ ions try to move independently. At
the initial stages, when no electric field exists, CI~ ions move faster than
Nat ions because of their larger diffusion coefficient, and there is a non-zero
conduction current density I = I" from the low to the high concentration
region. A space-charge region (i.e. a non-electroneutral region) with intense
electric fields appears at the junction. The electric field thus created tends to
slow down the CI~ ions and to speed up the Na™ ions, until they eventually
move at the same velocity, much as if transport of neutral NaCl molecules
were then taking place. However, the electric field has not disappeared com-
pletely. An electric field is needed to keep CI~ and Na™ ions moving at the
same velocity. When this electrical relaxation process is concluded (which
requires_a time of the order of nanoseconds [15]), the conduction electric
current " is negligible, and no more charge separation occurs. The space-
charge region simply spreads out due to the diffusional relaxation. This time
evolution of the space-charge density is illustrated in Fig. 1.8, which has
been obtained from the solution of the Nernst—Planck and Poisson equations
(see Ref. [15] for details) in a system where the diffusional relaxation time,
y=d 2 / [JTZ(DNa+ + D¢-)], is 100 times larger than the electrical relaxation
time Te.

The formation of a space charge-region with intense electric fields requires
energy (Fig. 1.9). Since the total energy is conserved, the electric energy
associated to this space-charge region is taken from the internal energy. When,
in the initial stages, C1~ ions move faster than Nat ions, there is a non-zero con-
duction current density I = I" from the low to the high concentration solution.
The conduction current has the same direction throughout the region, takes its
maximum value at the position of the initial junction and decreases rapidly with
the distance to the junction. The electric field created at the junction has the
opposite direction and the electric power /" - E is negative. Thus, according to

pe (a.u.)
2

0.2 0.3 0.4 0.5 0.6 0.7 0.8
x/d
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Fig. 1.8.

Space-charge density (in arbitrary units)
vs. position at times #/te = 0.01, 0.1, 1,
and 10 (the arrow indicates the direction of
increasing time) during the formation of
the liquid junction potential between two
NaCl solutions of slightly different
concentrations that meet at x = d/2, where
d is the thickness of the constrained
diffusion region [15].
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Fig. 1.9.

Electric energy density (in arbitrary units)
vs. position at times #/te = 0.1,0.5, 1,2, 5,
10, and 50 (the arrow indicates the
direction of increasing time) for the system
described in Fig. 1.8.

Thermodynamics of irreversible processes

Electric energy density (a.u.)

L

0.2 0.3 0.4 0.5 0.6 0.7 0.8
x/d

the balance equations eqns (1.66) and (1.91), the internal energy decreases and
the electric energy increases at the junction. After the electrical relaxation time,
when both ions move at the same velocity and the liquid-junction potential has
reached its steady-state value, the conduction current density /™ is negligible,
and so is the power /" - E, which means that no more energy conversion takes
place.

As a final comment, it should be mentioned that the internal energy of dilute
electrolyte solutions depends on the temperature but not so much on other
state variables. This means that changes in internal energy involve changes in
temperature, whereas thermal conduction has been neglected in our descrip-
tion. Similarly, we have neglected the transport of solvent or, equivalently, the
solution motion due to the (very small) Lorentz force that acts on the space-
charge region. All this is justified because they are second-order effects that
are not essential for the understanding of the formation of the liquid-junction
potential.

Exercises

1.1 The local Gibbs equation describes the change in the Gibbs potential density g
with temperature, pressure, and composition. In the aqueous solution of a strong
binary electrolyte at constant temperature, pressure, and solvent concentration, this
change is given by 8g7,,¢, = p128¢12, Where ¢ is the stoichiometric electrolyte
concentration. Consider now a weak binary electrolyte solution, in equilibrium
with respect to the dissociation reaction Ay, Cy, < v{A?l + v,C?2, and show that
the local Gibbs equation takes the form

38T p.cy = H128¢12,T5
where cj2 T = c12 + ¢12, is the total electrolyte molar concentration (dissoci-

ated plus undissociated). Therefore, the only chemical potential experimentally
measurable under these conditions is

g
mi2 =\ o .
9121/ 1.y
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1.5

1.6
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Exercises

Use the equation of continuity of mass in a compressible fluid

% 15 (o) =0

at por=

to show the equivalence between the following forms of the general balance
equation

ob - - Db bDp
Vip =
at Dt pDt

Show that in a locally electroneutral solution, the conduction electric current
density is independent of the reference frame in which it is evaluated.

Prove that the conservation of electrical charge in homogeneous chemical reac-
tions, > ; v; ,zi = 0, implies that the chemical affinity can also be written as
Ap = =3 virli.

Write down the energy- and entropy-balance equations in an electroneutral,
isothermal, non-viscous, and chemically inert solution in the absence of external
forces.

The Couette flow between two parallel plane walls located aty =0 and y = h is
due to the application of shear stresses in opposite directions on the plates. The
motion is described with respect to the wall at y = 0 (which is then fixed) and the
wall at y = h moves at velocity U along direction x. The (barycentric) velocity
distribution is then

vx(y) = Uy/h.

The velocity gradient is U/h and, according to Newton’s law of viscosity, the shear
stress is nU/h. This stress is uniform inside the fluid. The shear stress externally
applied on the wall at y = & to cause the motion is nU/h, while that applied on
the wall at y = 0 to keep it fixed is —pU/h. Thus, the net force is zero, as should
be expected in a stationary flow. The external power on the fluid, however, is not
zero because the fixed plate makes no power and the moving one gives energy to
the fluid at a rate A(nU /h)U, where A is the plate area. This energy is dissipated
uniformly within the fluid volume A#h.

(a) Evaluate the components of the deformation rate tensor

1[0y Qv
oo 22y %
Vik = 5 (axk + 3xj->’

and the shear stress tensor, (rj’k = 27;)// .
-
/

(b) Show that the viscous dissipation function 6, = iy = Z % Th y]éj can be
J

written as
0y =JX,

whereJ = (vy) = U /2isthe volume flux density and X =[(nU /h) — (—nU/h)]/h=
2nU /h2 is the shear stress gradient.

(c) Show that the expression 6, = v -;’ek, which is valid for stationary flows,
leads to the same result for 6.

The Poiseuille flow in a cylindrical, horizontal tube of (inner) radius R is due to
the application of pressure gradient along the tube axis, %p = (dp/dx, 0, 0) =
(=Ap/L, 0, 0), where Ap > 0 is the pressure drop over a length L of the tube.
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Under steady-state conditions, the velocity distribution (with respect to the tube)
can be expressed as

vx(r) = vx(0) [1 - (%)2] _ AP g2y

where r is the radial position co-ordinate. The average velocity across the tube
Section is (vy) = vx(0)/2 = RzAp/(SnL), which is also equal to the average
volume flow density / = (vy), and the corresponding ‘driving force’ is the negative
pressure gradient X = Ap/L.

(a) Evaluate the components of the deformation rate tensor

1 {dv; 9y,
ro 22, %%
Vik = 5 (Bxk + 3le>

and the shear stress tensor, Ui/k = 277)/]/](.

(b) Show that the viscous dissipation function is 6, = ZZ"//(V/& =

r? /4n)(Ap/ )2 and its average value can be written as
() = JX,

where J and X are the flow and the driving force defined above.
(c) Show that the expression 6, = —V - je, , which is valid for stationary flows,
leads to the same result for .

References

(1]

(2]

(3]

(4]
(5]
(6]
(71
(8]
[9]

[10]

T.S. Sgrensen and V. Compail, ‘On the Gibbs-Duhem equation for ther-
modynamic systems of mixed Euler order with special reference to
gravitational and nonelectroneutral systems’, Electrochim. Acta, 42 (1997)
639-649.

M. Planck, ‘Ueber die Erregung von Electricitdt und Wirme in Electrolyten’, Ann.
Phys. Chem. N.F., 39 (1890) 161-186.

R. Defay and P. Mazur, ‘Sur la definition locale dels potentials chim-
iques dans les systemes electrochimiques’, Bull. Soc. Chim. Belg., 63 (1954)
562-579.

A. Sandfeld, Thermodynamics of Charged and Polarized Layers, Wiley-
Interscience, London, 1968, p. 7 and 27.

I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Inter-
science Publishers, New York, 1961.

S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland,
Amsterdam, 1962.

R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, Reading,
MA, 1969.

I. Gyarmarti, Non-equilibrium Thermodynamics. Field Theory and Variational
Principles, Springer-Verlag, Berlin, 1970.

S. Wisniewski, B. Staniszewski, and E. Szymanik, Thermodynamics of Nonequi-
librium Processes, D. Reidel Pub. Co., Dordrecht, 1976.

Y.L. Yao, Irreversible Thermodynamics, Science Press, Beijing, 1981.



[11]

[12]
[13]

[14]

[15]

References

D.S. Chandrasekhariah and L. Debnath, Continuum Mechanics, Academic Press,
San Diego, 1994.

J.H. Spurk, Fluid Mechanics, Springer, Berlin, 1997.

G.D.C. Kuiken, Thermodynamics of Irreversible Processes. Applications to Diffu-
sion and Rheology, John Wiley & Sons, Chichester, 1994.

W.D. Murphy, J.A. Manzanares, S. Mafé, and H. Reiss, ‘A numerical study of
the equilibrium and nonequilibrium diffuse double layer in electrochemical cells’,
J. Phys. Chem., 96 (1992) 9983-9991.

S. Mafé, J.A. Manzanares, and J. Pellicer, ‘The charge separation process in non-
homogeneous electrolyte solutions’, J. Electroanal. Chem., 241 (1988) 57-77.

37



Transport equations

2.1 Linear phenomenological equations

2.1.1 Introduction

Irreversible processes are described in terms of generalized fluxes and forces.
These quantities vanish at equilibrium and, therefore, they somehow quantify
the departure from equilibrium. The fluxes and forces are denoted by J and X,
respectively, and can be scalars, vectors or tensors of second order, depending

on the process under consideration. The dissipation function is given by the
sum of their products

- - < o
0=SJX;+2ZJoy Xo+2Z:J:: Xy, (2.1)
s v

where the indices s, v, and ¢ stand for scalar, vector, and tensor. Indeed, we
know from eqns (1.68), (1.74), and (1.88) that

d%‘ S S < <
6 = Ocn + Oea + 6 = Z GAE I VA ey 22
1
so that the generalized fluxes and forces can be selected as follows J, = d&,/dz,

X, = A, Ji=J" Xi==Vji,] =y and X =o',
Assuming that the fluxes are functions of the forces only, we can write

d§,/dt = fr(A1,A2,...) (2.3)
" =gi(Viu, Viia,...) (24)
Y = ho). (2.5)

These equations represent the general form of the phenomenological equations,
which are the starting point for the description of transport processes. It has to be
realized that eqns (2.3)—(2.5) do not exclude, e.g. the possible mutual coupling
of chemical reactions and diffusion via mass balance.!

! Direct mutual coupling is forbidden by the Curie—Prigogine principle because they are of
different tensorial degree [1]. However, this principle only applies as long as the system is isotropic
at equilibrium. The coupling of transport processes and chemical reactions occurs, e.g. in biological
systems.
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The next task is to determine the functions f;, g; and A. In Section 1.2.7 we

already used an equation similar to eqn (2.5): the linear relation o’ = 2ny’
that defines a Newtonian fluid. When describing the balance of electrostatic
energy in Section 1.2;8 we also usgd Ohm’s law I = k Eghm, wbich is relaﬁed
to eqn (2.4) because I = F ), z;j". Similarly, Fick’s first law j/ = —D;V¢;
for diffusion and Fourier’s law ;L" = ;31 = —KT%T for thermal conduction are
also linear transport equations.

Linear relations can be understood as the first-order term in the Taylor series
expansions of the functions in eqns (2.3)—(2.5) and this justifies their validity
when the system is not too far from equilibrium. In fact, it has been con-
firmed by statistical mechanics studies that as far as electrodiffusional transport
processes are concerned, the linear equations are as general as the local formu-
lation of the thermodynamics of irreversible processes. On the contrary, linear
equations apply to chemical reactions only in the very close vicinity of chemical
equilibrium. Nevertheless, the phenomenological equations for homogeneous
chemical reactions are not of interest in this book because chemical relaxation
times are usually much smaller than diffusional relaxation times. Furthermore,
it can often be assumed that the chemical equilibrium has already been reached
when describing electrodiffusional processes.

2.1.2 lonictransport equations

In the linear approximation, the phenomenological equations for electrodiffu-
sion state that all the thermodynamic driving forces contribute to every flux
density so that the latter can be evaluated as

W==>"luViu, 2.6)
k

where the /; ;s are the phenomenological coefficients. These coefficients can
depend on the local state variables (temperature, pressure, and concentrations)
but not on fluxes and forces (because otherwise we would observe a non-linear
behaviour). It has been experimentally verified that the coefficients satisfy the
Onsager reciprocal theorem

lik = I .7
which is also supported by microscopic considerations [2].

In principle, the sum in eqn (2.6) and that in the contribution of electro-
diffusion to the dissipation function

bea = = Y _Ji" Vil 28)

extend over all the system components. We denote the number of compo-
nents, including the solvent, by N + 1. However, all flux densities ji" are not
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independent because they are linked through the definition of the barycentric
velocity v = ), w;i¥;. This definition can be rewritten as

> M =0, (2.9)

and it is then clear that the number of independent flux densities cannot
exceed N. Similarly, the gradients of the electrochemical potentials must satisfy
the Gibbs—Duhem equation (for isothermal and incompressible systems)

Zci%/l,- = §p — peE, (2.10)

1

This all means that if we are using the barycentric velocity and the pressure
gradient to describe the transport of linear momentum, the description of elec-
trodiffusion can only involve N fluxes and N forces, where N is the number of
components excluding the solvent.

By elimination of the solvent flux density from eqn (2.9) as

> — - 1 K
Jo = co(vo—0) = A ZMi i 21D
i#£0

where the sum excludes the solvent (i = 0), the electrodiffusional contribution
to the dissipation function can be written as

I S
bea ==Y J" - Viti==) jI" (V/u - ﬁ(’)wo) : @.12)
i i#0

Similarly, eliminating the solvent chemical potential gradient from eqn
(2.10), Bcq can be written as

Oea = —j§ - Vo — Y _Ji" - Vil

i#0
= —(0o—0)- (Vp = pcE) = Y _ji' - Vi, 2.13)
i#0
where
7B = i@ — o) (2.14)

is the molar flux density of species i in a reference frame bound to the solvent.
This is known as the Hittorf reference frame and eqn (2.14) allows us to evaluate
6.4 when the flux densities are referred to this frame.
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The flux densities can also be referred to the Fick reference frame, which is
bound to the volume flux density

By =Y vy =+ =04 + 7o, (2.15)

l

where v; is the partial molar volume of species i and Zi ¢;v; = 1. When the
flux densities are referred to the Fick reference frame

o =i — ey = — e 2.16)

the electrodiffusional contribution to the dissipation function takes the form

Oea = =T - Y Vil — Y ¥ Vil
i i

- e = w (e~ Vg
~(@y =)+ (Vp— peB) — Y _Jt - (Vm - U—(’)wo) RNCAT)
i=1

where we have used the condition ), UJIU = 0 to eliminate the solvent flux
density.

The above equations are most often applied to electroneutral solutions in
the absence of a pressure gradient. Table 2.1 shows the corresponding form of
the electrodiffusional contribution to the dissipation function for electroneutral
solutions in different reference frames; note that the sums in the dissipation
function exclude the solvent, i = 0.

It should be stressed that the flux densities are coupled through the definition
of the reference velocity and the driving forces are coupled through the Gibbs—
Duhem equation. As far as the following sections are concerned, the different
reference frames introduced are of secondary importance since most of them
are restricted to dilute solutions and then

e A G T & By, (2.18)
and

Oea ==Y - ViL;. (2.19)
i#0

Table 2.1. Electrodiffusional contribution to the dissipation function in different
reference frames

Reference frame  Reference velocity Dissipation function
Barycentric U= % ZM,—},- =Y Wi¥j Oeg =— Zl—,m . (%ﬂi - g—(’)ﬁuo)
i i i£0
Fick’s Ty = P viji = D Civibi Bed = — 2 Ji - (Vﬂi - %Vﬂo)
i i i£0
Hittorf’s o bed = — X JH - Vit
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From the above dissipation function, the phenomenological transport
equations in a multicomponent system can be written as

==l Vin. (2.20)
3
or, in matrix form,
i >
1 hyp hp -+ hw Vit
“H =
I hip by -+ by Viia
=1 . . : N (2.21)
“H hy by -+ Inv) \Viy
IN

where the Onsager reciprocal relations, eqn (2.7), have already been used and,
therefore, there are only N(N + 1)/2 independent ionic phenomenological
transport coefficients, /;x. Note that the index k in eqn (2.20) excludes the
solvent, even though no explicit reference to this fact is shown hereinafter.

2.1.3 Binary electrolyte solution

In this section we consider an electrodiffusion process in a binary electrolyte
solution. The electrolyte A,,C,, is assumed to be completely dissociated into
vy ions A% and v, ions B® whose charge numbers z; and zp satisfy the
stoichiometric relation zjv; + zov2 = 0. The dissipation function is

—bea =1 Viiy +3 - Viia, 2.22)

and, therefore, the ionic phenomenological transport equations can be written

as
“H S~
J1 ha ho Vm)
. =—1,” ’ - ). 2.23
<j2H ) (ll,z lz,z) (V,ug 2.23)

Other choices of fluxes and forces are also possible provided that the sum
of their products leads to the same dissipation function, that is, the dissipation
function must remain invariant [2]. The choice can be made, for instance, on the
basis of the simplicity of the transport equations. We show next the transforma-
tion rules for forces, fluxes, and phenomenological coefficients by comparing
the transport equations for neutral components and those for ionic species in a
binary solution.

The dissipation function in eqn (2.22) can also be written as

e = I - Vi +1 - Veponm, (2.24)
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and an alternative set of phenomenological transport equations is

Jh _ <L12,12 L12,¢> (?Mu) (2.25)
I Liog Lpo) \Voohm/’

where J g, 7, %u 12, and %«ﬁohm are the electrolyte flux density, the conduction
current density and the gradients of the electrolyte chemical potential and of
the ohmic potential, respectively. These fluxes and forces are related to those
used in eqn (2.22) by the following equations

Vi _ (/v n/m Jr (2.26)
7 uF nF ]g ‘

Vit /v aF %Mz)
Vi) _ 2 , 227
(5) = Gome 25) (G a2

where

h = z1(zily + 2201 2)
2ha +2nzmhy +5hy’

(2.28)

and 1, = 1 — 1 are the migrational transport numbers of the ionic species. It is
then required that the two sets of transport coefficients satisfy the relation [2]

Lz Ling) _ (2/vi n/v2) (Lo ha\ (2/vi zF (2.29)
Lig Loy uaF  2F J \lip hy) \n/va nF) 7
Notice that the transformation matrices between the fluxes and forces in

eqns (2.26) and (2.27) are the transpose of each other.
Interestingly, the matrix multiplication in eqn (2.29) leads to the result

Lizg =0, (2.30)
and hence the transport equations in eqn (2.25) simplify to

lez = —Lip Vi (2.31)
I =~V ohm, (2.32)

wherek =Ly gy =F 2 (zlzl 11+ 2z122012 + z%lng) is the electrical conductivity
of the solution. These equations can be considered as generalizations of Fick’s
first law and Ohm’s law, respectively, and they show that the mass and charge
transport are decoupled [3, 4]. This important conclusion is not exclusive of the
binary case under consideration and it is a natural consequence of the fact that
the fluxes of the electrically neutral components cannot depend on the ohmic
potential gradient.
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2.1.4 Electric conduction

In Section 1.2.6 it was stated that the electric conduction is an irreversible
process whose contribution to the dissipation function is

Oohm = _7 : %fﬁohm = 12/K > 0. (2.33)

This equation was not proved there and the ohmic potential gradient was defined
through the generalized Ohm’s law

T = —kVohm. (2.34)

In Section 2.1.3 we have shown that eqns (2.33) and (2.34) are valid in binary
solutions. These equations can also be applied to multi-ionic solutions provided
that the electrical conductivity and the ohmic potential gradient are defined as

K =F? Z Z ZiZkli ks (2.35)
ik
S 1 =
Véonm = 7 2 Vil (2.36)
i o1

where ¢; is the transport number of species i. Introducing the contribution of
species i to the electrical conductivity of the solution as

i =F% ) ik, 2.37)
k

the definition of the transport number becomes
ti = ki/k, (2.38)

and the ohmic conduction contribution to the flux density of species i is

2 l‘i7
Ji,ohm = 27 (2.39)

1

Note that k = ), ki, y ;ti = 1, andl = F > zJi,Ohm. Equations (2.33)-
(2.39) describe electric conduction even in the presence of concentration
gradients.

2.1.5 Component transport equations

The contribution of the diffusion of dissociated electrolytes and neutral solutes
to the dissipation function, gif = 6eq — Gohm, 1S determined from eqns (2.19)
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and (2.36) as

H o 7S o G\ =
Bai —Z}ﬁ-vui+1.v¢ohm=_z<;lﬁ_sz>.wi
: 1

In these sums, the index i runs over the ionic species, but it should be apparent
that the electrolyte diffusion can be described more naturally in terms of the
neutral electrolyte components. If we use uppercase symbols for both the flux
densities and the index that runs over the neutral components, the ionic flux
densny J;" can be expressed in terms of the component flux densities J I? as?

-

= = t‘]
J=D v+ z7 (2.41)
K 1

where v; g is the stoichiometric coefficient of ion i in component K (which is
zero if the dissociation of component K does not produce species i in solution).
By noting that the chemical potential gradient of electrolyte K is

Vi =Y vikViii =y vikVi, (2.42)
i i

where the relation Zi zivi k. = 0has been used in the last equality, the diffusion
contribution to the dissipation function can also be written as

Oait = — Y IR Vux. (2.43)
K

The phenomenological transport equations for the electrolytes are then

- ZL,,KWK. (2.44)

The equivalence between the descriptions of transport processes based on
either the ionic species or the neutral components requires that they involve
the same number of transport coefficients. In an electroneutral solution with
N ionic species there are N — 1 independent neutral electrolytes. In the ionic
approach, the number of phenomenological transport coefficients is N (N +1) /2.
In the component approach there are N (N — 1) /2 independent coefficients Ly k.,
(N — 1) independent transport numbers #; (which are involved in the definition
of the ohmic potential gradient), and the electrical conductivity «. This also
makes a total of N(N + 1)/2 coefficients.

2 The indices i and K also run over the non-dissociated neutral components, but there is no
difference then between the ionic and the component formulations.
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2.1.6 Ternary electrolyte solutions

Consider a ternary electrolyte solution formed by two binary electrolytes with
a common ion. The common ion is denoted by index i = 3, and the other
two by indices 1 and 2. The electrolytes A,, C,;, and D,,C,,, are denoted by
indices 13 and 23, respectively; and are completely dissociated according to
the equilibria

AVICUS.I = 1)1AZl + U3,1Cz3 (2.45)
D,,Cy;, S D2 + 13,C3. (2.46)

The electrolyte molar concentrations are c13 and c»3, and the stoichiometric
relations® zjv; + z3v3,1 = 0 and zpv2 4 z3v32 = O are satisfied.
The phenomenological transport equations can be written in matrix form as

. R

{13 Liziz Lizps O Vs

Jyy | =~ |Lisas Losas O] | Viuos |, (2.47)
7 0 0 K Vd’ohm

where the Onsager reciprocal relation has been applied. Since the driving forces
and the fluxes satisfy the equations

?MB V] 0 V3.1 ?;21
Vux | = 0 v V32 Vil (2.48)
Véohm t/aF t/nF t/3F Viis

“H H

J1 Vi 0 n/afF ]13

=10 v n/F sl (2.49)

jH v vip B3/z3F 7

3

we conclude that the relation between the phenomenological transport coeffi-
cients in the ionic and component formalisms is

iy hp hjs
hip by b3
hiz b3 B3

V| 0 n/aF L33 Lizps O V] 0 V31
=10 v n/nF Lizps Lozpz O 0 %) V32
v w2 t3/z3F 0 0 K t/uF t/nF t3/33F

3 The stoichiometric coefficients Vi, 12, v31, and v3 o correspond to vy 13, V223, V3,13, and
v3 23, respectively, in the notation of the previous section.
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2.2 The Fickian approach
2.2.1 Introduction

The Fickian approach provides an alternative description of the diffusion of
neutral components. In the phenomenological approach, the driving forces are
the chemical potential gradients. In the Fickian approach, the concentration
gradients are used as driving forces and the transport equations are

It ==Y "D1,Vey. (2.50)
J

where the sum runs over all the neutral components and Dy x are known as the
Fickian diffusion coefficients.* Note that the flux density of any component is
influenced by the concentration gradients of all components.

The diffusion coefficients can be related to the phenomenological transport
coeficients as follows. Neglecting the influence of the pressure gradient on the
electrolyte diffusion, the gradient of the chemical potential of component K can
be written as

S ous -
ik ~ Vug =) 55 Ver, (2:51)
J

where the superscript ¢ on % indicates that this is only the composition-
dependent contribution to the chemical potential. Substituting eqn (2.51) in
eqn (2.44) and comparing with eqn (2.50), the relation between diffusion and
phenomenological coefficients is

9
D= Lik o (2.52)

Equation (2.52) shows that the diffusion coefficients of the neutral component
depend on the composition. In fact, one of the practical problems of the Fickian
approach is that this dependence is strong in multicomponent systems. The
simplified approach based on the Nernst—Planck approximation (see Section
2.3.1 below) then proves to be very useful because it involves measurable
ionic fluxes and ionic diffusion coefficients (that are proportional to the ionic
mobilities), which show a much weaker dependence on the composition.

2.2.2 Fick’s law

In an aqueous solution of a neutral (non-dissociable) solute and in the absence
of a pressure gradient, eqn (2.50) reduces to’

I =D Ve, (2.53)

4 They are named Fickian diffusion coefficients to make clear the difference with the Stefan—
Maxwell diffusion coefficients introduced in Sections 2.4.2 and 2.4.4. These adjectives refer to the
formalism and not to the reference frame.

5 In this case, the diffusion coefficient is written as Dy instead of Dy ; for the sake of simplicity.
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which is known as Fick’s first law. From eqn (2.52) and assuming ideal
behaviour, the diffusion coefficient can be related to the phenomenological
coefficient as

_ D] ~ D]C]
—9uS/oc RT

Ly (2.54)

Although the diffusion coefficient D is not a constant either, eqn (2.54) shows
that the phenomenological coefficient L;; depends on the local composi-
tion (and temperature). The integration of a transport equation as simple as

jlﬂ = —L1,1 V1 then becomes a difficult task unless we know the depen-
dence of L 1 and w on the concentration c;. The integration of Fick’s first law,
J lH = —D1Vcy, on the contrary, is much easier under the assumption that the

diffusion coefficient is a constant.
From an experimental point of view, Fick’s first law should be stated in the
Fick reference frame as

-

JV = —DVey, (2.55)

and the diffusion coefficient should include a superscript v to stress its depen-
dence on the reference frame. However, in dilute solutions such a difference
is negligible; note that the transport equations have been deduced from the
approximate expression of 64 in eqn (2.19).

The diffusion coefficient D is not a property of the solute only, but of the sys-
tem solvent—solute and, in fact, it should be denoted as D o (see Section 2.4.2).
To show this in a simple way, we start from the Euler equation covg+cjv; = 1,
which simply states that the sum of the fractions of volume occupied by the
solvent and the solute is one. Taking the gradient of this equation and assuming
that the partial molar volumes v; (i = 0, 1) remain approximately constant
when the composition varies, we obtain the relation

vo%co + Ul%Cl =0. (2.56)

Since the volume-average velocity is zero in Fick’s reference frame, we have
that

vodd +ui? =0 (2.57)

and eqn (2.55) can be rewritten as
J{ = =D Ve, (2.58)
so that D is also the diffusion coefficient of the solvent. This result should be
expected because diffusion cannot take place in a monocomponent system. In a
binary solution the diffusion of the solute and the solvent are not two different

processes but a single process, which is characterized by a single diffusion
coefficient.
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2.2.3 Diffusion-conduction equations

When the Fickian transport equations for the neutral components are substituted
into eqn (2.41), the ionic flux density;’lH can be expressed as

. - 41
;lH = — Z Z vikDg jVey+ 217 . (2.59)
J K !

{

. en ohmic conduction
chemical diffusion

This is the diffusion—conduction equation for the ionic species i. It must be
stressed that it involves diffusion of neutral components (not of ions) and ohmic
conduction. The term chemical diffusion is sometimes used to make explicit
the difference from the ionic diffusion [5].

The simplest particular case of these equations corresponds to a strong binary
electrolyte solution where the ionic flux densities are

-

“H > til .
Jji = —viDi2Venp+ —, i=1,2. (2.60)
ZiF

Similarly, in the ternary electrolyte case described in Section 2.1.6, the
Fickian transport equations for the components are

—Jf = Di313Vers + Di3paVers, (2.61)
—J8 = Dy313Vers + DazasVens, (2.62)

and the diffusion—conduction equations are

“H 2 = nl

Ji = —viD13,13Vc13 + Di323Ves) + o (2.63)
1

-4 - - tl

Jo» =—v2(D2313Vc13 + D23p3Ves) + oF (2.64)
2

;? = —v3.1(D1313Vers + D133 Ves)

= = t3i
—32(D23,13Ve13 + D23p3Vers) + oF (2.65)

where the cross-diffusion coefficients D323 and D»3 13 are not equal to each
other. Although these equations look relatively simple, it must be observed that
the electrolyte diffusion coefficients and the ionic transport numbers® are not
constant, and we require expressions to evaluate them before these transport
equations can be integrated. Such expressions are derived in Section 2.3.7,
making use of the Nernst—Planck approximation.

% The transport numbers can be related to the ionic phenomenological coefficients as shown
in eqn (2.38), but in the component approach, either Fickian or phenomenological, they are
independent transport coefficients that cannot be related to the electrolyte diffusion coefficients.
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2.3 The Nernst-Planck approximation
2.3.1 Introduction

The transport equations include cross-coefficients that couple the transport of
the different components. In fact, one of the major achievements of the ther-
modynamics of irreversible processes was the explanation of coupled transport
phenomena. The phenomenological and the Fickian approaches, however, can-
not provide estimates for the cross-coefficients. Moreover, these approaches
do not help much in understanding the physical basis of such coupled trans-
port phenomena. Such understanding is only possible when we realize that the
electrolytes are dissociated into ions in solution. Ions are charged species that
interact with each other as well as with the solvent. These interactions are quite
complex and difficult to model, but a simple approach proposed by the end
of nineteenth century has proved to be able to provide a satisfactory explana-
tion to most transport processes in ionic solutions. It has become essential for
the development of electrochemical transport processes, membrane separation
processes, and even semiconductor devices.

The fundamental idea behind this approach is the so-called principle of inde-
pendence of the ionic fluxes. This principle states that, in a first approximation,
cross-phenomenological coefficients can be neglected in the transport equations
for ionic species, so that

Lix = 0if i #k, (2.66)
and
“H ~ - LKk - -
Jt =iV = _z’;?w‘” (2.67)

i

The flux density of a species i is then determined by its electrochemical poten-
tial gradient only, and not by the electrochemical potential gradients of other
species. The coefficient /;; is related to the short-range interaction between the
ionic species i and the solvent. The approximation /; ; ~ 0 (i # k) is somehow
equivalent to assuming that there are no short-range interactions among ions.”
In dilute solutions, the probability that two ions get close is relatively small and
this picture works nicely. But in concentrated solutions, an ion is surrounded
not only by solvent molecules but also by other ions. Short-range interactions
become then important and eqn (2.66) is no longer valid. Either the full set of
phenomenological equations, eqn (2.20), or the Stefan-Maxwell approach, are
then better suited.

However, long-range electrostatic interactions among the ionic species in solution are not
negligible. These are satisfactorily described in dilute solutions within the Nernst—Planck approach,
as explained in Section 2.3.3.
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2.3.2 Nernst-Planck equation

If we introduce the ionic diffusion coefficient D; from the relation /;; =
Dici/RT, and approximate the electrochemical potential gradient by Vii; =~
RTVIn ci + ziF%qb, eqn (2.67) can be transformed to

M= —DiVe + uDicf E = —Di(Vei + zicif V) (2.68)
N— — N —

ionic diffusion  jonic migration

where f = F /RT. This is known as the classical Nernst—Planck equation and
shows that the ionic flux density (in Hittorf’s reference frame) has one contri-
bution proportional to the concentration gradient and another one proportional
to the electric field. The first one is related to ionic diffusion and the second one
to ionic migration (or drift) and for this reason the Nernst—Planck equation is
also known as the diffusion-migration equation (or drift-diffusion equation).

In the absence of concentration changes, an ionic species of charge number
z; under the influence of an electric field £ moves with respect to the solvent
with an average velocity

oM = w7, FE, (2.69)

where u; is the (electrochemical or mechanical) mobility of species i.3 The
comparison of the flux density
}';H = c;ﬁlH = ciuiziFE = —u;ziciFV, (2.70)

with eqn (2.68) shows that the transport coefficients D; and u; must satisfy the
Nernst—Einstein relation, D; = u;RT .

For the sake of simplicity, we drop the superscript H on the flux densities
hereinafter. In the presence of convective flow we write the Nernst—Planck
equation as

-

Ji= —D,‘(%Ci + Zicif %d’) + Ci;}, (27])

where, in principle, ¥ should be the barycentric velocity. In practice, this
equation is also used taking ¥ as the solvent velocity vg. This approximation
is considered to be consistent with the other ones used in the derivation of
eqn (2.67), which are:

1) cross-phenomenological coefficients are neglected, /;; ~ 0if i # k,

2) deviations from the Nernst-Einstein relation (due, e.g. to electrophoretic
contributions) are neglected, i.e. the electrical and the diffusion mobilities,
u; and D;/RT, are the same and the phenomenological coefficient is /;; =
Dici/RT = ujc;,

3) the gradient of the activity coefficient is neglected (i.e. the activity coefficient
is independent of concentration), and

8 The electric or electrophoretic mobility, u;z; F, is used in some other references.
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4) the difference between the barycentric and the solvent velocity is neglected.
They all can be accepted as reasonable approximations for dilute solutions.
Accordingly, the coefficients D; are usually given the (constant) values cor-
responding to infinite dilution, which do not depend on the other ions present
in solution.

Finally, it is interesting to note that neglecting the cross-phenomenological
coefficients in the Nernst—Planck approximation simplifies significantly the
description of electric conduction. Thus, for instance, the ionic transport number
becomes

Aici Ki 22Djc;
= ”Ef':’f”, (2.72)
K K >k Zi Dy c

where® A; = k;/ci = zi2F 2D, /RT is the molar conductivity of species i and

F2
K= Xi:ici = RT Xi:zizD,-ci (2.73)

is the electrical conductivity of the solution.

2.3.3 Electrical coupling between the ionic fluxes

We have explained in Section 2.3.1 that the Nernst—Planck approach is based on
the principle of independence of the ionic fluxes. The name of this principle is
rather unfortunate because the migration term in eqn (2.68) couples the motions
of all charged species and they are not independent. In fact, the flux density of
species i can also be written in electroneutral solutions as

= d t;
—ji =Y DixVep — TF (2.74)
k

which involves the concentration gradients of all the ionic species, k =
1,2,...,N, where N is the number of ionic species. The diffusion coefficients
in eqn (2.74) are

t.
Diy = DSy + Z—’_Zk (Di — Dy), (2.75)
15

where §;; is the Kronecker delta (§;; = 1 when i = k and §;z; = O when
i #k).

Equation (2.74) resembles eqn (2.59) and it is indeed another form of the
diffusion—conduction equation. The difference between them is that the former
involves ionic species, while the latter involves neutral components. In order
for them to be really equivalent, they should also involve the same number

9 P . . .
% This is another form of the Nernst—Einstein relation.
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of transport coefficients. On the one hand, the sum in eqn (2.74) runs over all
ionic species and hence there are N 2 jonic diffusion coefficients D; . On the
other hand, the sum in eqn (2.59) runs over neutral components and hence there
are (N — 1)2 Fickian diffusion coefficients Dj g because in an electroneutral
solution with N ionic species there are N — 1 independent neutral components.
This suggests that we can use the local electroneutrality assumption to eliminate
in eqn (2.74) the concentration of, e.g. species i = N in terms of the others.
In this case the number of ionic diffusion coefficients D; is also reduced to
(N — 1)2. The flux denmty of species i = N is calculated from the equation for
the electric current as zyjy = (I JF) =3 kAN zk]k, where index k runs from 1
to N — 1. The flux densities of species i = 1,2,...,N — 1 are given by

i = > D, NVer — (2.76)
k#£N

where the cross-diffusion coefficients le . are defined as
l.
Djy = Didix + ;Zk(DN — Dy). (2.77)
1

The (N — l)2 diffusion coefficients D', ;4 arenot independent, and so neither are
the Fickian coefficients Dy . In fact, in the Nernst—Planck approach the num-
ber of independent transport coefficients is simply N (the diffusion coefficients
D;), while in the Fickian (and in the phenomenological) approach there are
N(N + 1)/2 independent coefficients. The difference between these two
numbers is N(N — 1)/2, which is just equal to the number of ionic cross-
phenomenological coefficients /;; that are neglected in the Nernst-Planck
approach.

The diffusion coefficients D; ; and Dz,‘,k can be conveniently written in terms
of the ionic molar conductivities A; as

RT i — 22k

Dig = 55— | b + 1, 2——, (2.78)
i F ZiZk
RT AN — M

Dy =5 (AiSik el I (2.79)
i F Tk

Note finally that, since the ionic cross-diffusion coefficients D; ; (i # k) are
proportional to (D; — Dy), in solutions that do not contain significant concen-
trations of ions with relatively high or low diffusion coefficients (like hydrogen
ions or large organic ions, respectively), the transport equations decouple and
take the approximate form

- - 41
—ji = DVe¢; — —, (2.80)
ziF

where D is an average diffusion coefficient.
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2.3.4 Diffusion potential

We have shown in Sections 2.2.3 and 2.3.2 that the flux density of an ionic
species i can be written either as the sum of two contributions describing chemi-
cal diffusion and ohmic conduction or as the sum of two contributions describing
ionic diffusion and ionic migration

- -

Ji = Ji,chemdit +Ji,ohm = Ji,iondif + Ji, mig- (2.81)
Itis important to observe that the ionic migration contribution to the flux density

- - tik =
Ji,mig = —ziDicif V¢ = —Zf—FVab (2.82)

1

is not equal to the electric conduction contribution

- l‘ii tik -
. = —_ \v} 2.83
Ji,ohm uF F Pohm ( )

because the total electric potential gradient and the ohmic potential gradient are
not the same. Their difference is the diffusion potential gradient!?

o o - 1 ty =
Voais = V¢ — Voborm = —7 D o Vi (2.84)
k

where we have used eqn (2.36).

An interesting consequence of the above equations is that under open-circuit
conditions (/ = 0) there can be ionic migration but not conduction, because
the field involved in the electric conduction is only the ‘external’ or ohmic
electric field, —V@onm = I/k. On the contrary, the elegtric field involved in
the migriition term is the sum of the ‘internal’ field (—V¢gir) and the ohmic
field (—V¢onm) imposed externally to force the flow of electric current. Thus,
the difference between the migration and the conduction terms in the ionic flux
equation is

tik
il

Vi, (2.85)

ji,mig _ji, ohm =
and, according to eqn (2.81), this is also the difference between the chemical
diffusion and the ionic diffusion terms

tik
ZiF

Vi (2.86)

Ji,chemdif — Ji,iondif = —

These equations evidence that the diffusion potential is responsible for the
electrical coupling between the ionic fluxes.

1 In the presence of a pressure gradient, there is another contribution to the electric potential
gradient.
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The origin of the diffusion potential gradient can be clarified by making use
of the local electroneutrality assumption

> ziei =0. (2.87)
i

Taking the chemical diffusion term from eqn (2.74)!'! with the cross-diffusion
coefficients defined in eqn (2.75), and substituting it in eqn (2.86), it is obtained
that the diffusion potential gradient in electroneutral solutions can also be
evaluated as

- F -
Vait = o Z 2k (D; — Dy)Veg. (2.88)
k

Hence, the diffusion potential originates from the differences in the ionic diffu-
sion coefficients (and the need to maintain the local electroneutrality). In fact,
since the ionic diffusion coefficients are usually of similar order of magnitude
(with the exceptions of H" and OH™ ions), the diffusion potential gradient
can be relatively small in the presence of electric current. Actually, in elec-
trochemical cells with supporting electrolytes and applied current, the electric
field is mostly ohmic. Nevertheless, we can assure that the diffusion potential
gradient is important whenever there is electrostatic coupling between different
ionic flux densities, and in the absence of electric current the electric field has
a purely diffusional origin.

Finally, it is also interesting to comment that any ohmic potennal gradient
involves Joule dissipation because Oopm = _y V¢0hm = (V(f)ohm) /k > 0.
On the contrary, a non-zero diffusion potential gradient does not necessarily
involve the existence of an irreversible process [6]. To clarify this point we
must note first that eqn (2.84) is not restricted to electroneutral solutions. How-
ever, in non-electroneutral solutions, this potential gradient does not originate
only from the coupling between the ion fluxes, and indeed the name ‘diffu-
sion potential gradient’ becomes inappropriate. For instance, in the equilibrium
electric double layer close to a charged electrode, there are no flux densities
and no irreversible process takes place. However, in this layer there are con-
centration gradients and electric field. According to eqn (2.84) this field is
V¢ V¢dlf = —(1/F) Zk (tk/zk)Vuk Similarly, if we look at the Nernst—
Planck equation, the flux density is zero but the ionic diffusion contribution and
the ionic migration contribution (which is proportional to the diffusion potential
gradient) are non-zero separately.

! Indeed, eqn (2.74) is obtained after inserting in eqn (2.68). The decomposition of the electric
field V¢ = Vgigr + Vohm, and making use of eqns (2.84) and (2.87).
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2.3.5 Integration of the transport equations in
multi-ionic solutions

In Section 2.3.3 we learned that the ionic fluxes are coupled because their driving
forces are also coupled through the common electric field in the migration terms.
This field is indirectly determined from the equation for the electric current
density

I=FY uj. (2.89)
i

and the need to satisfy the local electroneutrality condition.!? Equation (2.74)
shows this electrical coupling between the ionic fluxes. However, when we try
to integrate it, we face the problem that the diffusion coefficients D; ; involve
the transport numbers #;, and these are functions of the unknown local ionic
concentrations in multi-ionic solutions. Therefore, we have to find an alternative
approach.

Making use of the local electroneutrality assumption in the form ) _; zi%ci =
0, the Nernst—Planck equations of the different ionic species, eqn (2.68), can
be combined to yield the following expression for the electric field

- Du)j)
Vg = Dy (Zk/2 k)Jk. (2.90)
> 3¢
The individual Nernst—Planck equations can then be cast in the form
LRE PR L oL 2.91)
D 256 7 D

and solved in terms of sums such as
Ji -
Ei E =-V Ei ci. (2.92)

This procedure can be illustrated by considering a system with only two ionic
classes, in which the charge number of all cations is z+ and that of all anions is
z—. This system satisfies the relation Zj zjzcj = —z4z—cT Where ¢ = Zi ci
is the total ionic concentration, and therefore eqns (2.90) and (2.92) lead to

fV¢=TVincr, (2.93)
where
1 iv/D
r=_ L 2a®k/De (2.94)
42—y ;Ji/Di

12 The Poisson equation of electrostatics must be used when this approximation fails.
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Under steady-state conditions the flux densities, the ionic flux densities and I"
are constant, so that eqns (2.92) and (2.93) can be integrated providing ct and
¢ are functions of position. Moreover, multiplying both sides of the Nernst—
Planck equation for species i by (ct)%" and making use of eqns (2.92) and
(2.93), it can be transformed to!3

ji/Di Viep'™tiy oo L
ST GG (2.95)

which can be integrated easily because it is a linear equation with constant
coefficients. This procedure is explained in further detail in Section 3.2.6.

2.3.6 Binary electrolyte solution

In a strong binary electrolyte the two ionic concentrations are coupled through
the electroneutrality assumption, zjcj 4+ z2¢2 = 0. Therefore, the solution com-
position can be specified by only one concentration variable, which can be either
of the two ionic concentrations, the stoichiometric electrolyte concentration
c12 = ¢1/v1 = ¢2/vy, the mean electrolyte concentration ¢+ 12 = (c|'cy?)/"12,
the total concentration ¢t = ¢1 + ¢3, the ionic strength I = (zlzcl + z%cz) /2,
the electrical conductivity x = (F 2 /RT) (z%Dl c1+ z%chz), etc. The transport
equations obtained when employing any of these variables are all equivalent to
each other.

In a binary solution, the local ionic transport numbers defined in eqn (2.72)
are independent of the position and take the values

Dy _ 21Dy
Dy +viDy 21Dy —22D;

H = =1-n. (2.96)

Furthermore, the sum in eqn (2.76) reduces to just one term, and the only
diffusion coefficient is D’L1 = 11Dy + nD; = Dj;. This is the Nernst—

Hartley diffusion coefficient of the dissociated electrolyte and, with the help of
eqn (2.96), it can be easily seen that

vieDiDy (21 —22)D1Dy

Dp=tDy+ 10Dy = = s
Dy + viDy 21D1 — z22D»

(2.97)

where vi2 = v; + vp. Since D2 and ¢; are constant, the transport equation

ul = —DpVe + I
_ o
iF 12 i

til

ZiF

ji = —viDiVen + (2.98)

Z

can be integrated straightforwardly. It is important to stress that eqn (2.98) is
the same as eqn (2.60), but the strength of the Nernst—Planck approach is that
it also provides eqns (2.96) and (2.97) as estimates for the transport numbers

13 In the case zi' = —1, the term v [(CT)]+7ir]/(l + z;I") should be replaced by Vin CT.-
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and the electrolyte diffusion coefficient, while similar equations were missing
in the Fickian approach.
The electric field can be evaluated from eqn (2.90) as

[ E—— <Z”' + m) : (2.99)

2o+ \ D1 Dy

Substitution of eqn (2.99) into the Nernst—Planck equation, eqn (2.68), for any
of the two ions gives the Fick first law

Jia = =DiaVern, (2.100)
where
3 - I~
Jo=—ji1+—) (2.101)
V1 1%}

is the electrolyte flux density. Under steady-state conditions, the flux densities
are constant, and eqn (2.100) implies that the concentration profiles are linear.
Similarly, the integration of eqn (2.99) shows that the electric potential varies
logarithmically with position. Finally, as was shown in eqn (2.84), it must be
observed that the electric field is the sum of the ohmic field and the diffusion
electric field due to the difference in ionic mobilities,

- - - 1/(n n)-= I
V¢ = Vit + Véohm = —= | — + — ) VIncip — —
fla =z K
| D —D, - I

=2 U2 Glnep— - (2.102)
fz21D1 — 22D K

2.3.7 Ternary electrolyte solutions

In Section 2.3.6 we have shown that the Nernst—Planck approach provides
estimates for the transport numbers and the electrolyte diffusion coefficient in
a binary solution. In this section we derive approximate expressions for the
phenomenological coefficients L; x and the Fickian diffusion coefficients Dy x
in a ternary system. Following the notation introduced in Sections 2.1.6 and
2.2.3, the electrolytes Ay, C,,, and D,,C,,, are denoted by indices 13 and
23, respectively, and they are assumed to be completely dissociated according
to the reactions (2.45) and (2.46). The electrolyte molar concentrations are
c13 and c¢»3, the ionic molar concentrations are ¢; = vici3, ¢ = V223, and
c3 = v31¢13 + V3223, and the stoichiometric relations zjv; + z3v3,1 = 0 and
22v2 4 z3v32 = 0 are satisfied.
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From eqns (2.41) and (2.47), the component flux densities can be written in
terms of the ionic flux densities as

- - - 1 = tl;
—J13 =L13,13Vi13 + Li323Vuos = —— (Jl - ) , (2.103)

V] uF

- - - 1 4 fz;
—J3=Li33Vpiz + Lo3ssVpuss =—— o — — |, (2.104)

2 2F

where the chemical potential of the electrolytes are

W13 = vijiy + v3 13, (2.105)
W23 = V2jly + V3o fL3. (2.106)

With the help of eqns (2.34), (2.36), and (2.67), eqn (2.103) is transformed to

- tk 1—1 = o 3o
—Ji3 = Vit — =V, — =Vis3
22 3

ZIV F? 21
t1(1 —t)k = itk -
= Vs — Vs, (2.107)
(Fz1v1)2 F2zivizon

and therefore the phenomenological coefficients are identified as

nd—mx A —t)Dici3

L = = 0, 2.108
N L WRT (2.108)
titak
Lizpz = L1313 = —% <0. (2.109)
Fozivizavs
Similarly, eqn (2.104) leads to
(-t 1—1)D
sy = 2( DK ( 2)Dac23 -0 (2.110)

(Fv)? v RT
From these equations we derive the following conclusions:

1) the Nernst—Planck approximation allows us to obtain simple (and rather
accurate) expressions for the phenomenological coefficients Ly x of the
components;

2) the phenomenological transport coefficients are functions of the local
composition and cannot be considered as constant when integrating the
phenomenological transport equations, eqn (2.44);

3) the cross-coefficient L1323 = L343 is of the same order of magnitude
as L1313 and Lp323 and, therefore, cross-effects cannot be neglected in
component diffusion; and

4) the cross-coefficient L1323 = Ly313 is negative, which allows for the pos-
sibility of transport against concentration gradients (i.e. the so-called uphill
transport that is discussed, e.g., in Section 4.1.8).
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We aim now at obtaining the estimates for the Fickian diffusion coefficients.
From the comparison of eqns (2.59) and (2.74) we have that

- Z Z vikDky Vey = — ZDiJﬁck == Z ZDi,ka,J%CJ,
J K k Ik
@.111)

and, therefore, the two sets of diffusion coefficients must satisfy the stoichio-
metric relation

vp 0 D D Dy Dip Dij vp 0
0 ( 13.13 13’23> = |D21 D2p D13 0
D D 23 5 >
V31 V32 B13 TR D3y D3z D33 V31 V32
(2.112)

Using eqn (2.75) for the Nernst—Planck ionic coefficients D;;, we conclude
that

D313 = (1 —11)Dy + t1D3, (2.113)

Dy323 = (1 —12)Dy + 12D3, (2.114)
V32

D323 = —11(D3 — Dy), (2.115)
V3,1
V3|

D313 = ——n(D3 — Dy). (2.116)
V32

Interestingly, if we use the coefficients Dl/.,k defined in eqn (2.77) with N = 3,
it is found that D/l,] = Di313, D/2,2 = D323, D,],2 = (vl/vz)D13,23, and
D)y | = (12/v1)D23 3.

It should be observed that D323 # D7313 and that all these coefficients
are functions of the local concentration. It is also clear from eqns (2.115) and
(2.116) that the cross-coefficients D133 and D313 can be negative and this
allows for the description of uphill transport in the Fickian approach. Moreover,
as mentioned inrelation to the phenomenological coefficients, it must be noticed
that the cross-diffusion coefficients are of the same order of magnitude as D13 13
and D73 23, so that cross-effects cannot be neglected when describing electrolyte
diffusion.

Note, finally, that although the relation /;; = D;c;/RT holds in a binary
solution (within the Nernst-Planck approximation), similar equations do not
hold in the ternary solution, e.g. L1313 # D13,13¢13/RT; moreover, Vo =
(v + vz)ﬁln c12 in a binary solution but %[143 #= (v + V3,1)§ln c13 in a
ternary solution.

Example: Effective diffusion coefficient of a polyelectrolyte

Consider the solution formed by the complete dissolution of sodium chloride
and an anionic polyelectrolyte in sodium form, and denote the ions P~%, C1™, and
Na™ as species 1, 2, and 3, respectively. The charge numbers and stoichiometric



The Nernst—Planck approximation

coefficients are then —z; = v3 ] = zand —zp = z3 = v; = vp = v32 = 1. The
flux density of the polyelectrolyte salt is

—J13 = D1313Vc13 + D1323Veos,

where the diffusion coefficients are given in eqns (2.113) and (2.115). In
the presence of an excess of NaCl, the transport number of the polyelec-
trolyte ion vanishes, the cross-diffusion coefficient D133 is negligible, and
the polyelectrolyte flux density reduces to
—j13 %Dl%CB , when t; — 0.

This equation shows that the effective diffusion coefficient of the polyelectrolyte
in the limit of excess added salt is equal to that of the polyelectrolyte anion.
In the opposite limit of absence of added salt, ¢33 = 0, the flux density of the
polyelectrolyte salt is

—Ji13 & D13Veys,

where

(z+ 1)D1D3

D3 =3D1 +1D3 =
13 =001 103 2D + Ds

is the Nernst—Hartley diffusion coefficient of the polyelectrolyte salt. Since
D3 > Dj (due to the smaller size of the sodium ion), the Nernst-Hartley
diffusion coefficient of the polyelectrolyte salt is larger than that of the polyelec-
trolyte ion, D13 > Dj. This means that the polyelectrolyte diffusion proceeds
faster than in the case of excess added salt; note, however, that the sodium ion
is slowed down because it also moves with the electrolyte diffusion coefficient
D13 < Ds. These limiting behaviours have been represented in Fig. 2.1 and are
in agreement with experimental evidence [7]. An important conclusion of this
example is that the Fickian diffusion coefficients can vary significantly with the
local composition and they cannot be considered as constant in the integration
of transport equations.

2.3.8 Weak electrolytes

In weak electrolytes, ion transport is coupled to the homogeneous dissociation
reaction

Ay, C,, 2 VAT + 1, C2, 2.117)
The ionic concentrations are ¢; = vicy2 and ¢y = vacy2, Where ¢y is the con-
centration of dissociated electrolyte, and the stoichiometric coefficients satisfy
the relation z; vy +z2v2 = 0. The ionic flux densities are still given by eqn (2.98)

- - 4l
Ji=—viDiVen + —,

Zi

(2.118)
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Fig. 2.1.

Variation of the diffusion coefficient D13 13
with the concentration ratio ckl’3 / 053. In the
presence of an excess added NaCl,

b /c8y <« 1, the effective diffusion
coefficient of the polyelectrolyte salt is that
of its ion. In the absence of added NaCl,
0?3 /033 > 1, the polyelectrolyte salt
diffuses with its Nernst—Hartley
coefficient. This plot has been calculated
using the values z = 20, D, /D1 = 20, and
Dy/D3 =2.0/1.3.
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where the transport numbers and the electrolyte diffusion coefficient are
independent of the local compo&ition, as shown in eqns (2.96) and (2.97).
However, the ionic flux densities j; (i = 1, 2), and those of the dissociated

Jia = =D1aVenn (2.119)
and the undissociated electrolyte
Ji2a = —Di2uVeiny (2.120)

vary now with position because the dissociation degree « also does.
The continuity equation ensures that the total electrolyte flux density

Jior = Jiow +J12 = =DiaxVerar (2.121)

is constant throughout the system. The effective diffusion coefficient of the
weak electrolyte Do 1 is a function of cjp 1 and has yet to be determined.
Introducing the dissociation degree o through the relations c¢j2 = acj2 1 and
ci2u = (1 — a)cya 1, the diffusion coefficient D T can be expressed as

_vi2(l =)Dy +aDpp
Dpr =
vio(l —a) +

(2.122)

where vi2 = v; + v2. When the dissociation reaction is fast compared with the
transport process, local chemical equilibrium can be assumed, and the relation
between ci2,r and o is

K=992 _ (ppmet i 2% 7 (2.123)

As expected, in the limiting cases of very weak, K < (c127)"27!, and very
strong dissociation, K > (¢ 12,T)“12_1, the effective diffusion coefficient of the
electrolyte reduces to the diffusion coefficient of the undissociated electrolyte
D121 = Diy and to the Nernst-Hartley diffusion coefficient Dot = D12,
respectively.

The integration of eqn (2.121) can be better carried out by evaluating the flux
density of the total electrolyte as

—Jia1 = Di2uV [(1 = @)erar] + DiaV [acinl. (2.124)

Since the diffusion coefficients D12, and Dj; are constant, the steady-state
continuity equation v.J 12,7 = 0 leads to a Laplace equation, VZ(D 12.uC12u +
Disc12) = 0, that can often be solved analytically.

It was mentioned above that the ionic flux density 7,» is a function of position
and this can complicate the integration of eqn (2.118). To solve this problem, it is
convenient to introduce the concept of the total ionic constituent concentration.
If we consider the amount of species 1 that is either dissociated or in the form of
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undissociated electrolyte, its total concentrationis ¢1 T = c1+vjci2,y. Similarly,
the total concentration of species 2 is ¢o 1 = ¢z + v2ci2,u. The flux density of
the total ionic constituent i (i = 1, 2) is then

2 2 > > til
Jir =Jji + vijize = vidiar + ——, (2.125)
ziF

and the continuity equation ensures that fi,T is independent of position. '

2.3.9 Moderately concentrated solutions

When dealing with moderately concentrated solutions, the Nernst—Planck
equations can be modified to account for the fact that the gradient of the
electrochemical potential of species i actually is'?

dIn Yi
dIn Cj

Vii;=RTVna; + ziFV¢ = (1 + )RT% Inci +zFV$. (2.126)

This implies that the diffusion coefficients must be modified to

diny;
D! = (1 + EZ)D,- = BiD; (2.127)

where the superscript y on Dl)./ denotes that it contains the activity coefficient
correction. Note that the derivative d In y;/d In ¢; can be either positive or neg-
ative and that the correction does not apply to the migrational contribution to
the flux density.

The only activity coefficient that can be measured is the mean activity coeffi-
cient of a binary electrolyte y12 = ()/]Vl y; 2)1/vi2 However, eqn (2.127) involves
the ionic activity coefficient, and hence some (arbitrary) convention is needed
to calculate them from y,. This is usually done by employing the equation [8]

Y Ly =0, (2.128)
;i

which retains the concept of the ionic strength in the sense of the Debye—Hiickel
theory. Thus, for example, in the case of 1:1 electrolytes eqn (2.128) implies
y12 = y1 = y2. Equations (2.127) and (2.128) then allow the activity correction
to the diffusion coefficient to be determined from the measured thermodynamic
data [9].

14 Strictly speaking, the continuity equation says that this flux density has zero divergence, but
in one-dimensional systems these two statements are equivalent to each other.

5 m thermodynamics textbooks, the symbol used for the activity coefficient depends on the
concentration scale used. In the molar concentration scale, the symbol most often used is y; rather
than the symbol y; employed here. The latter, however, is commonly used in books on transport
phenomena where only one concentration scale is used.
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In the presence of convection, it must be taken into account that the barycen-
tric solution velocity and the solvent velocity may differ. Thus, since convective
velocity is determined from the momentum balance as a barycentric velocity,
the ionic flux densities must also be expressed in the barycentric reference
frame. In concentrated solutions this implies that we must note, according to
eqn (2.12), that the driving force for species i is Vi; — (M;/Mo)V uo. Thus,
the Nernst—Planck equation takes the form [10, 11]

==t (Vi - %%MO
i 1,0 i Mo

dlny R N - M; -
=—l;|(1+ RTVinc; +ziFV$ +viVp — —Vug
dng; Mo

=-DI'V . L Ve — 2 (v Mi g (2.129)
D'V — oD e - Pl Mi i .
pva T uatier RT \UYP T 3, VRO

where the effect of the pressure gradient on v i [not shown in eqn (2.126)] has
also been taken into account. This equation is certainly more difficult to solve
than the simplej'ffI = —I;;V1; that we can use in diluted solutions.

Finally, it is important to remember that the Nernst—Planck approach neglects
the cross-phenomenological coefficients. Thus, although the activity correction
makes the diffusion coefficient concentration dependent, the Nernst—Planck
approach is only strictly applicable to dilute solutions. In other words, the
accurate description of transport processes in concentrated solutions requires
more transport coefficients than are available in the Nernst—Planck approach.

2.4 The Stefan-Maxwell approach
2.4.1 Introduction

The Nernst—Planck equation states that the molar flux density of species i,
that is, the product of its molar concentration and its velocity, is proportional
to the thermodynamic force, j; = ¢;v; = —I;;V1;. That is, in the time regime
when this equation is valid, the thermodynamic force -V [t no longer produces
an acceleration of these ions but keeps them moving at constant velocity ¥;.
This must obviously be due to the fact that additional frictional forces are
present. These are proportional to the relative velocities of the components (and
hence to the flux densities in an appropriate reference frame or to differences
of flux densities with appropriate factors). The transport equations can then be
understood as a statement of equilibrium of (vector) forces

driving force + frictional force = 0.

This equation is the starting point for the frictional or Stefan—-Maxwell approach
for the description of transport processes, which was also proposed by Onsager
[12, 13].

Although in some simple cases they can be shown to be equivalent to each
other, the Stefan—-Maxwell and the Fickian approaches differ in the transport
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coefficients that they use. In the Fickian approach, the velocity of the solute
(with respect to the solvent) is considered to be proportional to the force as

velocity = mobility x driving force.

In the Stefan-Maxwell approach, the basic scheme for the transport equations
is

driving force = friction coefficient x relative velocity.

In multicomponent systems the right-hand side of this equation contains a sum
of terms.

It is important to note that both the diffusion coefficients and the friction
coefficients depend on the composition of the multicomponent system (as well
as on temperature and pressure). The strength of the Stefan-Maxwell approach
is that it provides a particular functional dependence of the friction coefficients
on the concentrations and proposes the use of another type of diffusion coeffi-
cient. Thus, when concentrated solutions are considered, the Fickian diffusion
coefficients depend strongly on the concentrations, while the Stefan-Maxwell
diffusion coefficients are roughly constant. This explains why the Stefan—
Maxwell approach is often preferred for the description of transport processes
in concentrated solutions. '®

2.4.2 Diffusion of a neutral component

The Stefan—Maxwell approach can be introduced by considering a two-
component solution. The solvent is denoted by the index i = 0 and the solute
by i = 1. The driving force for the motion of the solute is the negative gradi-
ent of its chemical potential. During its motion, the solute can only experience
friction with the solvent, and then the Stefan—-Maxwell transport equation can
be written as

e1Vuy = Ki (B — o), (2.130)

where K is the friction coefficient between solvent and solute. The solute
molar flux density in the Hittorf reference frame is

o o ] =2
M =c1@ — o) = ——Vpu,. (2.131)
Kip

Introducing the Stefan—-Maxwell diffusion coefficient

Do =RT2, (2.132)
Kip

16 Although it should be applied to dilute solutions only, the Nernst—Planck approach is, by far,
the most widely used in electrochemistry because it provides a simple and satisfactory understanding
of the transport processes.
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where x is the molar fraction of the solvent in the solution, the flux equation
can also be written as

-4 Digciz
i =— v
RTXxg

(2.133)

In dilute solutions, ideal behaviour can be assumed so that %p, | &~ RT Vin cl
and xo =~ 1. Equation (2.133) then takes the form of Fick’s first law, ;[1{ =
—D; %cl, so that the Fick and Stefan—-Maxwell diffusion coefficients, D; and
Dy, become equivalent. In concentrated solutions, however, they can differ
significantly.

From Stokes’ law for the frictional force of a viscous continuum on a spherical
particle of radius Ry [14], the friction coefficient can be estimated as Ko ~
6 R1nNac1, where Ny is Avogadro’s constant, and eqn (2.132) then leads to

c1X0 RT
D ~RT —~ —
K]y() 671R]17NA

(2.134)
which is known as the Stokes—Einstein equation.

In closing, it is interesting to observe that it is also possible to write an
equation like eqn (2.130) for the solvent, that is,

coVio = Ki0(31 — o). (2.135)

This equation brings nothing new to the formulation of the problem because it
contains just the same information as eqn (2.130). However, it serves to stress an
important point. Equations (2.130) and (2.135) are only valid if the mechanical
equilibrium condition

coVo +c1Vuy =Vp =0 (2.136)

is fulfilled. This occurs in free solution, but not in membrane processes, where
a pressure gradient is either imposed or develops as a consequence of the solute
concentration gradient (i.e. due to the osmotic pressure gradient). In fact, when
the Stefan—-Maxwell approach is applied to transport across membranes, there
is an additional friction force with the membrane that needs to be added to the
right-hand side of these equations. This is due to the fact that the membrane
is an additional component in the system, making it a multicomponent one. In
Sections 2.4.3 and 2.4.4, transport across membranes is not considered and the
condition Vp = 0 is accepted implicitly.

2.4.3 Binary electrolyte solution

Consider now the transport processes in the solution of a binary electrolyte that
dissociates completely into v ions of charge number z; and v; ions of charge
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number z7, such that z; vy +zpv2 = 0. The Stefan—-Maxwell transport equations
are

1Vt = K1,0(To — 01) + K12(02 — 1), (2.137)
2Vjia = Ko (B0 — 2) + Ka,1 (%) — ), (2.138)

where Onsager’s reciprocal theorem
Kij = Kj; (2.139)

also applies to the friction coefficients between species i and j. We aim at
determining the molar ionic flux densities in the Hittorf reference frame

=@ - o). (2.140)

making use of the local electroneutrality condition
z1c1 + 2200 =0 (2.141)

and the definition of the conduction current density
I =F@jt + 2t = Fzie1 (@) — 12). (2.142)

In the absence of electric current, eqn (2.142) requires that v; = v, and eqns
(2.137) and (2.138) simplify to

, L Dioci - )
7= i@ — o) = — R’,DCO’ (Vi + zF V)
Dioci - 3
= —%[v In(yict) + zif V), (2.143)
0

where 5,;0 = RTcixo/K; . Equation (2.143) resembles quite closely the Nernst—
Planck equation, eqn (2.68).

In the case of pure electric conduction, that is, in the absence of concentration
gradients, the Stefan—-Maxwell transport equations reduce to

21c1F Ve = Ky (B0 — B1) + K12(52 — B1), (2.144)
202F Vo = Ko (B — 12) + Ka,1 (81 — B2), (2.145)

and lead to Ohm’s law
I = —«kVoorm = —kVp (Ve; = 0), (2.146)
where the electric conductivity is

FF2 (K10 + K20)
Ki10K20 + Ki2(K10 + K20)

=
I

(2.147)
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It is interesting to note that the friction between the ions, which is described
by the last terms in the right-hand sides of eqns (2.144) and (2.145), is only
relevant in the presence of electric current because I = Fzjci (V1 — 02). In
relation to this it can be shown that the diffusion potential gradient is

= 1 El =3 Ez -
Vogr =——= | —Vur+—=Vua |, (2.148)
F \z1
which does not depend on K » because the ionic transport numbers are defined
as

- Ky D1

7 = - 11— (2.149)
Kio+ Ko vDig+viDap

‘When concentration gradients and electric current are both present, the trans-
port equations can be transformed to a diffusion—conduction form, quite similar
toeqn (2.60). Introducing the gradient of the chemical potential of the electrolyte
through

eV = iVt + Vi = a1 Vi + Vi, (2.150)

where we have made use of the relation ¢; = v;c12, the above equations can be
written in matrix form as

—Kio —Kao) (vi—v0) _ (c12Viiz ’ @2.151)
e 202 v — Vo I/F
and inverted to give
“H - - N
N\ (er@r —to)) _ 1 —c1 Kao/z1\ (c12Viz
]‘2“‘ c2(v2 — 7o) Ko+ Ko \mc2 Kio/z2 IJF )’
(2.152)

In concentrated solutions, %M]z = v|2RT§ In(yj2c12) and the diffusion—
conduction equation becomes

D dln - il
o 22 (1 SN2 Gy (2.153)
X0 dlncy ziF
where the diffusion coefficient of the electrolyte is
— RT DioD
Dy = viocXoRT - viaDioDag (2.154)

- Kio+K2zo  wDig+viDapo

In dilute solutions (x1,x2 < xp), the friction coefficients can be approx-
imated by K;o = RTc;/D; and ideal behaviour can be assumed to evaluate
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cip (M)

the chemical potential gradient as %/}.12 = vlzRT% In c¢q2, so that the above
equations reduce to

-

- til
M= —vDpVen + —, (2.155)
ziF
RT DD
Dpy = Va2 _ _vDiDy ’ 2.156)
Kio+Kyo v2Dy+viDy
(__ afldio+Ke) _ FADici +3Dsc2) @157
K1,0K20 + K12(K1,0 + K2,0) RT ' '
K D
= —20 (2.158)
Kio+Kxo v2Dy+viDs

Thus, once again, the Nernst—Planck and Stefan-Maxwell approaches are found
to be equivalent in dilute solutions.

Note that D1, ;, and the mean activity coefficient y|, can be measured at
different concentrations [9]. Thus, the diffusion coefficients 5,-,0 (i=1,2)can
be determined from eqns (2.149) and (2.154). Similarly, the cross-diffusion
coefficient!’ 51,2 can be evaluated from electrical conductivity measurements.
Figure 2.2 shows the Stefan-Maxwell diffusion coefficients in sodium chloride
aqueous solutions. The cross-diffusion coefficient 51,2 increases with the elec-
trolyte concentration, roughly as (c12)%, but it is significantly smaller than the

coefficients D; o (i = 1, 2) throughout the whole concentration range.

2.4.4 Multi-ionic systems

In a multi-ionic system, the Stefan-Maxwell equations are

Vi =y Kij(@ — i), (2.159)
J

17 The cross-coefficient 51,2 should not be confused with the diffusion coefficient of the
electrolyte Dp5.
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Fig. 2.2.

Concentration dependence of the
Stefan-Maxwell diffusion coefficients in
an aqueous solution of sodium chloride:
D) o water-chloride ion, Dy
water-sodium ion, 51’2 sodium
ion-chloride ion. (Data taken from Ref. [7]
with permission.)
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where the sum also includes the solvent. The friction coefficients are written as

Kij = K;; = RTep—2, (2.160)
i

where ct is the total molar concentration (including the solvent) and the recipro-
calrelation D; ; = Dj; also holds for the Stefan-Maxwell diffusion coefficients.
Equation (2.160) can be written in terms of the flux densities as

Ci I~ - 2 =
o Vil =) =y — ) = = ) Bijjj. 2.161)
RT ~ Dij -

where
Xi Xk
Bij=—=—+3; —_ (2.162)
i k=0 bk

Equation (2.161) represents a linear system of equations that can be formulated
in matrix form and solved for the flux densities. We do not pursue this approach
any further here and the interested reader is referred to specialized books such
as [7] and [15]. Newman’s book [16] is also a recommended reference for
electrochemical systems.

Note, finally, that the Stefan-Maxwell equations only involve relative veloc-
ities and they are therefore independent of the reference frame. At the same
time, this implies that additional equations are needed to describe the absolute
motion of the solution with respect to, e.g., the laboratory [7].

Exercises

2.1 The statement that every flux density ji(i =1, %, ...) is a function 01; the gen-
eralized forces can be formally written as ],- =f; ()} 1 ,)}2, ...) where f; denotes
a generic function. Derive the linear phenomenological equations by expanding
Jfi as a Taylor series around the equilibrium state, characterized by the condition
)?j = 0 for all j. What are the expressions for the phenomenological coeffi-
cients and the dissipation function? What condition do the phenomenological
coefficients have to satisfy to ensure that the entropy production remains positive?

2.2 The phenomenological equations

Ji=L1,1X1 + L12X
Jo =L1X1 + 122X
can also be written in the form
X; =Ky1J1 + K1 2]
Xo =Ky 11+ Ko pJo,
where the forces are functions of fluxes. This leads to a different kind of for-

malism, but the phenomenological coefficients can be related to each other.
Derive the friction coefficients K; ; in terms of the phenomenological transport
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2.5

2.6

2.7

Exercises

coefficients L;, j. What condition must fulfil the coefficients K;, ;, and what does
it mean in practice? Are Onsager’s reciprocal relations still valid?
(a) Show that the invariance of the dissipation function under a transformation

of fluxes and forces requires that the matrixes &7 and &y that transform a set of
fluxes J and forces X into another setJ' = &y -J and X’ = &y - X, satisfy the

NP P | . .
relation «; = ay , where the superscript 7' denote the transpose matrix.
Consider a binary electrolyte solution. Using the relation between the ionic and
the component phenomenological coefficients

Lz Lizg) _ (2/vi ti/v2) (hin lip\ (/v aF
Lizg Lpg 2F F ) \lip ha) \ti/va z2F
as well as the relations zjv| + zpvp = 0 and 7] 4+ 1, = 1, show that

111K l1p
(Fzivp)?  vvp’

le,d) = 0,L¢,¢ =, and L12’12 =

Show that the ionic phenomenological coefficients /; j(i,j = 1,2) can be written
in terms of «, #;, and L7 12 as

titjk
lij = —— +viviL12,12.
ij Fzz,'z_,' iVjE12,

Starting from the dissipation function

—Oed =Jj1 - Vi1 +j2- Viia

(a) show that the transport equations only involve one transport coeffi-
cient when transport occurs subject to the constraint j = 0 and
find the relation between this coefficient and the ionic coefficients /; ;
@i,j=1,2).

(b) Show that the transport equations only involve one transport coeffi-
cient when transport occurs subject to the constraint / = 0 and
find the relation between this coefficient and the ionic coefficients /; ;
(,j=1,2).

Starting from the dissipation function

—Oeq =J12 - V12 +1 - Véohm

(c

~

show that the transport equations only involve one transport coefficient when

transport occurs subject to the constraint j, = 0 and find the relation between

this coefficient and the component coefficients L; j(i,j = 12, ¢).

(d) Show that the transport equations only involve one transport coefficient when
transport occurs subject to the constraint / = 0 and find the relation between
this coefficient and the component coefficients L; j(i,j = 12, ¢).

Check the invariance of the dissipation function under the transformation between

ionic and component fluxes in a ternary system, i.e. prove that the following

equality holds

—0ed =j1- V1 +j2-Vila +j3- Vi3
=J13- Vi +J23 - Viias +1 - Véopm.
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2.8 (a) Substituting the gradients

Vs = vV + V3,1%M3 =@+ U3,1)RT§111613
+ V3,1RT%1H(1 +v32023/v3,1€13)
Vs = Vs + v3aVius = (1 + V3,2)RT§ln €23

+ V3,2RT% In(1 +v31¢13/v32023)

H -

H
{1 V] 0 n/uF {13
/2H =| 0 vy t/nF leé
H v vz B3/nF 7
73

vi 0 n/zF\ (Liziz Lizps 0\ (Vuis
=—| 0 v n/oF| (L2 L3 0] | Vs
v31 V32 13/z3F 0 0 «) \Voonm

and comparing the resulting equations with

- > 2 117
Ji = —v1(D13,13Ve13 + D13 23Veps) + uF

-H > > 1
Jp = —v2(D23,13Ve13 + D23 23Ven3) + oF

j? = —v3,1(D13,13Vc13+D1323V23)

- - 131
—v32(D23,13Ve13+D23 23 VC23)+Z37

find the relations between the component phenomenological L; g and diffusion
coefficients Dy g (I, K = 13,23) in this ternary electrolyte solution.
(b) Substituting in these relations the expressions

L n—nx

13,13= —— 75
(Fzjvp)?

ik
Li3p3 = 123,13 = T v

L nh(l —n)k

2323 = ———— 5
(Fzav)?

determine the diffusion coefficients Dy g (I, K = 13, 23).



Exercises

2.9 Consider the description of transport in a binary electrolyte solution within the
Nernst—Planck approximation.
(a) Starting from the diffusion—migration form of the ionic flux equation

Ji = =Di(Vei + zicif V)

prove that
= = = 1 /1 n\ 2 i
V¢ = Vgit + Véohm = —7 | — + — | Vincpp — —
fla 2z K
1 D-D, - 1
= —7#Vlnc12 - —.
f 2Dy — 2Dy K

(b) Starting from the chemical diffusion-ohmic conduction equation

' DiaFers + 5L = _ppyFer+ i
=y, ¢ o c 4+ 2,
Ji i12VCl12 uF 12V¢i uF
and from
- r-
V¢ = —Vincyy,
f
prove that %d) = %¢dif + %%hm- Remember that

L zii/Dy + 222/
2122 J1/D1+j2/Da2

(c) Would it be possible to make the derivation in case (b) without using the
equation %(b = (F/f)% Incyp?
2.10 Find the effective diffusion coefficient of an electrolyte that can form ion pairs
according to the reaction

Mt +A~ 2 1P,

where M1, A—, and IP represent the cation, the anion, and the ion pair, respec-
tively. Assume chemical equilibrium and denote the association constant by Kip.

2.11 Show that the effective diffusion coefficient of a symmetric, weak binary
electrolyte

vio(1 —a)Dipy +aDyp
vip(l —a) +«

D=

can be written as

K
D =D D, —D _
12,T 12,u+ D12 12,0) /K+4012’T

2.12 Show that in the case of an arbitrary binary electrolyte, the convention

3> Smy=0
Zj

i
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leads to
Vi V2
Inyp=—Iny; = =1Iny,.
V2 Vi
2.13 Find the relation between the activity coefficient corrections

2.14

2.15

2.16

217

dInyp dlnyy
=(1 dBr=|(1
hi <+dlnc1>£mﬂ2 (+dlnc2

in the case of an asymmetric 2:1 binary electrolyte.
Evaluate

dIn dln
pr=14+ 401 v
dIncy dincpp

at ¢1p=0.01 M and 0.1 M using the Debye—Hiickel limiting law
Iny; = faz,-zﬁ ,

where I = (z%cl +z§c2)/2 is the ionic strength and o = 1.1779M~ /2 at 25°C.
Discuss the importance of the activity corrections in 1:1 and 2:1 electrolytes.
(a) Within the Stefan—-Maxwell approach, discuss whether friction effects between
the ions act to decrease or to increase the solution electric conductivity

o AFiKig+Krp)
K1,0K20 + K1 2(K10 + Kz 0)

(b) Using the relation K; ; = RTc'Tx,-xj/EL j» Where ¢t is the total molar con-
centration (including the solvent), show that the electrical conductivity can
also be expressed as

F? 2126'151,0 + 236'252,0
K= —— — — — .
RT xo + (x1D2,0 +x2D1,0)/D12

In order to determine the cross-diffusion coefficient 51’2 from the measured
electrical conductivity, the equation given in the previous exercise must be used.
Show that this equation can be solved for Dy 5 to give

B

- -1
Dy, = U122 (Fzjvicn)?  Tiiaviaeinx
cT K Dpy

(a) In the Stefan-Maxwell approach, show that the generalized Ohm’s law
I=—« %(bohm
is valid even in the presence of concentration gradients, if we define

> 1 ;1 - ;2 -
Véohm = 7 ZVM] + EVU«Z s
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where the transport numbers are

_ K> Dy _
t = = =1—-1.
Kio+Kyo v2Dy+viDy
(b) Show that the electrolyte flux density
H ;2 —“H f] —“H
= =i+ =
12 vljl vzlz
is given by
2
- - vlzclz -
IR =LV =—""12—Vpup,
12 ’ Kio+ K20

even in the presence of electric current.
(c) The Stefan-Maxwell equations

1 Vil =Ky — 1) + K1 22 — B1)

2Vl = Ko o(g — 02) + K2,1 (41 — 92)

contain tljree transport coefficients. The equations I= —K%%hm andJ ]Hz =

—L12,12V 412 can be derived from the former, but contain only two transport
coefficients. How can you explain then that they are also of general validity?

(d) Check the consistency of the results of this exercise with those of Exercise 2.4.

2.18 (a) In order to guarantee that the two ions in a binary electrolyte solution move at
the same velocity in the absence of electric current (0 = 7> when lel'l + Zy_g'I

= 6) in spite of their different friction coefficients with the solvent (K1 o # K2 ¢

or Dy 0F 52,0), an electric potential gradient must develop in the solution. This
electric field is internally generated rather than externally imposed. From the flux
equation

5i,OCi
RTxq

= ci(@; — ) = — (Vii +ziF V)
Ei,OCi - N
= —T[V In(yic;) +zif VoI,

and determining the activity coefficients according to the convention

Zglﬂyi=0,

;

show that the diffusion potential gradient in the Stefan-Maxwell approach is

_ _ — —
- RT Drog—D viDpyo —v5D dIn -
‘ 20=Dio | viP20=v3Dio N2 110 e,
vv2(Dao — Dy ) dIncio

(b) Explain why %Q&dif does not depend on the cross-diffusion coefficient D 12-

75



76

Transport equations

2.19

2.20

(c) Show that the diffusion potential gradient in the Stefan-Maxwell approach
can also be written as

- 1 (1 = 7 -
Vodit = —% ZVM + gvuz

In the Nernst—Planck approach the principle of independence allows us to write
the flux density of species i as

- tik 6
ji=-— .
1 Zl.2F2 1

In the Stefan—-Maxwell approach the principle of independence does not apply
and the flux density of species i depends also on the electrochemical potential
gradients of other species. This means that, besides the term shown in the previous
equation, additional terms must arise due to the friction between the ionic species

- tik = 2
ji= 721.2?VM1' + (Ji)cross effects-

Considering the case of a binary electrolyte solution, find the term due to
cross-effects in the Stefan-Maxwell approach.

The following table shows the definitions of the electrical conductivity and the
migrational transport numbers in the TIP, Nernst-Planck, and Stefan-Maxwell
approaches. However, while those corresponding to the TIP and Nernst-Planck
approaches are valid for multi-ionic systems, the Stefan-Maxwell ones are valid
only for a binary system. Deduce the corresponding Stefan—-Maxwell equations
for a multi-ionic system.

Electrical conductivity Migrational transport

number

. ol
TIP = F23". ol b= Skl
ik ziakdix LT ki

Nernst-Planck = E Y 22D 4= {Dic
=FRT 3 k- kCk LT Y 2Dk
2222 _ K
Stefan-Maxwell « = — ,,'L_ll t =
(binary) Kiothaop) 4K KiotKzo
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Transport at
electrodes

3.1 Faraday’s law

Mass transport at electrodes takes place due to electrode reactions, where the
electrode is a surface source or a sink of the species involved in the reaction.
As a consequence, concentration differences are created in the vicinity of the
electrode, which gives rise to mass transport.

An electrode reaction can involve the following mechanisms:

1) a species is reduced (or oxidized) at the electrode and precipitates on the
surface (e.g. CuSO4 + 2e~ — Cu(s) + SOi_);

2) a species is reduced (or oxidized) at the electrode, remains in solution and
is transported away from the electrode (e.g. Fe>* — Fe3t 4 e7);

3) a species reacts on the electrode and is transported into the electrode (e.g.
Hg);

4) electrochemical (anodic) dissolution of an electrode (e.g. Cu(s) — Cu?t +
2e7).

The rate of an electrochemical reaction is accurately known via Faraday’s
law. If the number of electrons exchanged in the electrode reaction is n and
the electric current density is I, Faraday'’s law establishes that the reaction rate
(density) is

I

r=—.
nF

3.1
This is an exceptional and valuable feature of electrochemistry: the reaction rate
can be monitored or controlled in situ. Furthermore, with modern equipment
very low currents i = [A, where A is the electrode area, can be measured.
A current of the order of 10~ A implies a reaction rate A of the order of
10~ mol s~!, a current of 10712 A implies a reaction rate of 10~ 7mol s~ 1,
and a current of 1013 A implies a reaction rate of the order of 10™2%mol s~
Thus, a femtoamp current measures an event where 6000 electrons in a second
are transferred across the electrode solution/interface.

Our sign convention is such that the reaction rate r is always positive, and
I and n have the same sign. This sign is positive in anodic oxidations (i.e.
when the current flows from the electrode to the bulk solution) and negative
in cathodic reductions. Similarly, the flux density of an electroactive species



Faraday’s law

(i.e. one that participates in the electrode reaction) is positive when it moves
from the electrode to the bulk solution and negative otherwise. In relation to the
spatial position co-ordinate x, the electrode is located at x = 0 and the solution in
the positive x region. The fluxes and the current density are considered positive
in the positive x direction, and the potential drop A¢ in the solution adjacent to
the electrode is defined as the potential in the bulk solution minus the potential
at the electrode surface, i.e. with the same sign as the electric potential gradient
d¢/dx. Hence, for an oxidation reaction A¢ is negative, and for a reduction
reaction itis positive. With this convention, the generalized Ohm’s law is written
as I = —«d¢onm/dx, where k > 0 is the electrical conductivity, and dgopm /dx
(or A¢onm) and I have opposite signs.
The general form of electrode reaction can be written as

> viBj 4 ne” =0, (3.2)

i

where charge conservation requires that n = )", z;v;. In eqn (3.2), the stoi-
chiometric number of species i, v;, and that of the electron, n, are positive for
products and negative for reactants. For instance, in the oxidationR — O+ne™,
vo = —VvR = landn > 0, and in the reduction O+ |nje™ — R,v)g = —vg =1
andn < 0.

The reaction rate is related to transport through the mass balance. Faraday’s
law implies that the flux density at the electrode surface of an electroactive
species i is

vil

=5 (3.3)

Ji
Obviously, when there is only one electroactive ion in solution, i.e. when the
electrode reaction involves only one ionic species in solution, eqn (3.3) becomes

I
= —. 3.4
Ji oF 34

For instance, in the cathodic deposition of copper, Cu>* (aq.) + 2¢~ — Cu(s),
we have n = —2 and only one electroactive ion in the aqueous solution, the
cupric ion, which has vq 2+ = —1 and zc 2+ = 2. Thus, I < 0 and j 2+ =
1/2F < 0, which means that these ions are transported from the solution to
the electrode surface (where they are deposited). On the contrary, in the redox
electrode reaction Cu2+(aq.) +e~ — Cu'(aq.) there are two active ions in
solution and eqn (3.3) can be applied to any of them with / < O and n = —1.
Thus, the flux density of the cupric ion is j- 2+ < 0 because it is consumed at
the electrode, and that of the cuprous ion is j-,+ > 0 because it is produced by
the electrode reaction and transported to the solution.

In three-dimensional systems / and j; in eqn (3.3) must be interpreted as the
components of the corresponding vector quantities in the direction normal to
the electrode surface (positive normal direction is taken from the electrode to
the solution). Nevertheless, the electrode surface is usually equipotential and
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Fig. 3.1.

Solution velocity (long dashed line) and
concentration (solid line) profiles in the
vicinity of an electrode. The diffusion
boundary layer 8 is defined by the crossing
of the linearly extrapolated concentration
profile at the electrode surface and the bulk
concentration (short dashed lines).

Transport at electrodes

has uniform accessibility to the reactants, so that I and }i are actually directed
normal to the electrode surface.

3.2 Electrode processes in stationary state

3.2.1 Nernst diffusion boundary layer

In stationary transport processes, the continuity equation of a species i not
involved in homogeneous chemical reactions reduces to V - j; = —dc¢;/dt = 0.
Stirring is necessary to establish the stationary transport conditions because
otherwise the situation becomes ambiguous due to natural convection, which
tends to stir the solution in an uncontrolled fashion. An exception is an electrode
that creates a spherical diffusion process; this case is discussed later in Section
3.2.7. When the solution is stirred, the velocity profile can be determined by
solving the Navier—Stokes equation subject to the appropriate boundary condi-
tions. There is an abundance of literature [ 1] concerning different hydrodynamic
conditions, but here we present the general features taking the case of a planar
electrode, where the solution is stirred with a propeller, as an example.

When species i reacts at the electrode surface, the situation under limiting
current conditions can be depicted as shown in Fig. 3.1. The diffusion boundary
layer can be some orders of magnitude thinner than the hydrodynamic boundary
layer. The thickness of these layers cannot be defined unambiguously because
the concentration and the velocity approach their bulk values asymptotically.
As far as the diffusion boundary layer is concerned, the concept of Nernst
or unstirred layer adjacent to the electrode surface is customarily introduced.
In this layer, it is assumed that ionic transport takes place only by diffusion
and migration, the convective contribution being negligible. Its thickness § is
defined as the distance through which the linear portion of the concentration
profile of a reacting species (usually the one that is totally consumed at the
surface under limiting conditions) must be extrapolated to reach its bulk con-
centration. This concept of an unstirred or stagnant layer does not apply as such
in other geometries or stirring conditions and must be modified accordingly. It
must also be emphasized that an experimental determination of the thickness
of the diffusion boundary layer is rarely possible, and therefore, the problem is
treated with the aid of the limiting current (density) as discussed below.

—_ -
S -
Il - Bulk velocity
B e
5] i /
] o /
Q: [~ /
= e
2
[ /
E Vs Bulk concentration
3 b
= c;
m|//
X
0



Electrode processes in stationary state

3.2.2 Limiting current density

The transport to or from the electrode can take place by diffusion, migration
and convection. At the electrode surface, however, the solution velocity usually
vanishes due to the non-slip and non-penetrability conditions, and transport
takes place by diffusion and migration only. When an electroactive species
is consumed at the electrode surface, its surface concentration is lower than
in the bulk solution. Since migration is proportional to the ionic concentration,
the migrational contribution to the overall mass transport is often smaller than
the diffusional one. In particular, when the surface concentration of reactant
i vanishes, its flux density is purely diffusive close to the electrode surface,!
and is given by j; = —D;Vc¢;. In one-dimensional systems, the concentration
gradient at the electrode surface located at x = 0 then takes its maximum value
(dei/dx)y=0 = c}’/B (Fig. 3.1), and the system reaches the limiting current
density

nFjL.; nFD;c?
=k o (3.5)

V; )

This is the limiting diffusion current density of species i. Note that § can be
expressed in terms of I ;, which is a measurable quantity.

By definition, the flux density under limiting conditions for species i (c;(0) =
0) is negative, ji.; = —D,-clb /8 < 0. This means that in order for species i to
reach limiting conditions, it must be consumed at the electrode. Species i is
then a reactant in the reaction and v; < 0. The sign of I, ; in eqn (3.5) is then
that of n. Thus, in the anodic oxidation R — O 4 ne™, the limiting diffusion
current density of species Ris I g > O because n > 0 and vg = —1. Similarly,
in the cathodic reduction O + [n|e™ — R, the limiting diffusion current density
of species O is I o < 0 because n < 0 and vo = —1. In principle, it is
also possible to apply the definition of /1 ; in eqn (3.5) to the products of the
electrode reaction but /1 ; then becomes just an auxiliary variable. For instance,
in the anodic oxidation R — O + ne™, the limiting diffusion current density
of species O is I, 0 < 0 because n > 0 and vo > 0. But, since / is defined
to be positive in oxidations, it is clear that the situation / = I, o can never be
realized and the reaction product cannot reach limiting conditions.

When the electrode reaction involves several reactants, the limiting current
density of the system is determined by the reactant that runs out first; in the
following sections we chose subscript 1 for such species. In oxidations, the
limiting current density of the system /i, > 0 is equal to the lowest of their
limiting diffusion current densities of the reactant. In reductions, when /1, < 0
and the reactants have It ; < 0, I, is equal to the /1 ; that has the lowest absolute
magnitude.

! In the absence of supporting electrolyte and under limiting conditions, this is not valid because
the electric field becomes so intense at the electrode surface located at x = 0 that other transport
mechanisms (such as electroconvection) come into play.
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3.2.3 Transport equations in multi-ionic solutions

We compile here the main transport equations, in the Nernst—Planck approach,
from Chapter 2. In a multi-ionic system with NV species in solution, the number
of unknown variables is N + 1: the N molar concentrations c¢; and the electric
potential ¢. The N 4 1 equations that allow for their determination are the N
equations for the flux densities

—ji = Di(Vei + zicif V), (3.6)

and the local electroneutrality assumption?
> i =0. (3.7)
i

In non-stationary or transient processes, the time dependence of these
variables is determined by the continuity equation

ac; >
==V jitm, (3.8)

where 7; is the net production rate of species i due to homogeneous chemical
reactions. For stationary processes and absence of homogeneous reactions, the
continuity equation reduces to

V.j;=0. (3.9)
Moreover, the fluxes are coupled through the equation for the electric current?

I=F zj. (3.10)

The Nernst-Planck equation can be rewritten by making the ionic contribu-
tion to ohmic conduction explicit (i.e. the so-called chemical diffusion—ohmic
conduction form of the transport equations). In the case of binary electrolyte
solutions, this takes the simple expression

-

- - l‘l'[
Jji=—-DnVei+ —, (3.11)
ziF

and its general form in multi-ionic solutions (see Section 2.3.3) is
- = t,‘?
—ji =Y DisVer — —, (3.12)
Z ziF

2 When the current density approaches the limiting value in the absence of a supporting
electrolyte, this approximation fails and electroconvection must be taken into account.

3 In electrical relaxation transients, the displacement current also needs to be taken into account.
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where the cross-diffusion coefficients are
t.

Dij = Didi + Z—fzk (Di — Dy), (3.13)
l

and §;, is the Kronecker delta (6; = 1 wheni = k and é; = 0 when i # k).
Equation (3.12) shows explicitly that the ionic flux densities are coupled in
a system where the ionic species have different mobilities, due to the local
electroneutrality requirement.*

Alternatively, by elimination of the electric field, the Nernst—Planck equations
can be cast in the form

- -

Ji = ZiCi Jk
— =—-V¢i+ —— k> (3.14)
D; l pE Zk Dy

and solved in terms of sums such as
Zj—" =-V> a (3.15)
D i

which can be integrated straightforwardly (assuming that the diffusion coeffi-
cients are constant) because the flux densities are constant under steady-state
conditions. Note that in the case of binary solutions, eqn (3.15) is simply Fick’s
first equation for the electrolyte, J 12 = —Dlzﬁc 12. This procedure is explained
in further detail in Section 3.2.6.

3.2.4 Traceions

In electrochemical practice, supporting electrolytes are commonly used to
increase the electric conductivity of the solutions. Those other ions that do
not contribute significantly to the conductivity and have negligible transport
numbers, #; < 1, are known as trace ions. Since the second term in the right-
hand side of eqn (3.13) contains a factor ¢;, the cross-diffusion coefficients
reduce to D;; ~ D;8; for a trace ion. This means that its transport decouples
from that of the other ionic species, and its flux density is given by

—j,' ~ D,‘%Ci — i ~ D,’%C,‘. (3.16)

ZiF
Hence, a trace ion is mainly transported by diffusion and its flux equation can
be approximated by Fick’s first law even though it is charged and an electric
field might be present in the solution. The last approximation in eqn (3.16)
comes from the fact that the contribution of electric conduction to the transport
of a trace ion is negligible, regardless of the relative magnitudes of |z;Fj;| and

4 However, this equation is of limited utility in the solution of transport problems because the
transport numbers #; are functions of the local ionic concentrations. Rather often, eqn (3.12) cannot
be integrated analytically in multicomponent solutions.
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|1|. In fact, a trace ion might carry all the electric current in the vicinity of the
electrode surface, so that I = ziF;',- but still || K |z,~F;',-|.

Under steady-state conditions and in the absence of homogeneous reactions,
the continuity equation for a trace ion reduces to V -j; = 0. Equation (3.16) then
implies that the spatial distribution of its concentration is given by the Laplace
equation

V¢ = 0. (3.17)

Thus, in one-dimensional systems the concentration profile of a trace ion is
linear

ci(x) = ci(0) + [P — ci<0)];f, (3.18)

and its surface concentration is

ci(0) =c? (1 - m—F]’> =cP (1 - L) , (3.19)

vilL i I,

where I ; is its limiting diffusion current density.

Equations (3.16) and (3.17) are the most common transport equations in mod-
ern electrochemistry. Although quite a number of assumptions have been made
to derive them, it has to be realized that they are valid with sufficient accuracy
also in cases where the present assumptions are not strictly fulfilled. Finally,
an interesting feature of eqn (3.16) is that it contains the ionic diffusion coeffi-
cient, not that of the component, which makes its experimental determination
feasible.

3.2.5 Solutions with only one electroactive ion

The steady-state transport equations can be easily solved when the solution con-
tains only one electroactive ion. In this section we show the solution procedure
for one-dimensional systems (in the absence of homogeneous reactions) and
illustrate it with an example. Since the electroactive ions are either consumed
or produced at the electrode surface, their flux density is different from zero in
the electrode vicinity. On the contrary, the electroinactive ions have zero flux
density there. Under steady-state conditions, the continuity equation requires
that the flux density of every ion is independent of position. Hence, throughout
the diffusion boundary layer, the ionic flux densities are

1
1= —, 3.20
Ji oF (3.20)
Jji=0, i#1, 3.21)
where the index i = 1 denotes the electroactive ion. Moreover, when there is

only one electroactive ion, its stoichiometric number in the electrode reaction
must be equal to n/z;, where n is the stoichiometric number of the electrons in
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the reaction. Thus, the limiting current density of the active species can also be
written as

ZlFch’]f

; (3.22)

Iy =—

In the case of binary electrolyte solutions, the diffusion—conduction form of
the transport equations

. 1 dcy nl deip | 1l
=—=-Dp—+—=—-vDp— + — 3.23

/1 uF 12 dx z1F 1712 dx uF ( )

. dep ol dcip ol

J2 127 oF 2D12— oF (3.24)

allows us to solve easily for the concentration gradient. This gradient

deip _ (I —1)I _ ]

dx z21viFD1y — v FDyps

(3.25)

can be integrated subject to the boundary condition c12(§) = cll’2 and leads to
the concentration profile

y o I —=m)I
= - (5 —x). 3.26
c12(x) =cpp + Z]vlFDm( X) (3.26)

In the case of a symmetric electrolyte this further simplifies to

1

m(a _ (3.27)

cn@) =, +

The limiting current density can then be evaluated from the condition of
vanishing electrolyte concentration at the electrode surface, c12(0) = 0, as

_ 221FDich,

3 (3.28)

L=

where the resulting minus sign comes from our sign convention (i.e. ¢12(0) = 0
can only occur when j; < 0). Note that this is double the limiting diffusion
current of the active species, I | = —z1FD 1c'f /6. This feature is known as the
supporting electrolyte paradox: adding an inert electrolyte to the solution, the
conductivity of the solution increases but the limiting current density decreases.
As shown above, this happens because a trace ion has no migrational contribu-
tion in the transport equation, namely #; &~ 0. In multi-ionic solutions a similar
approach is not possible because the transport numbers ¢; are functions of the
(unknown) local ionic concentrations and, hence, eqn (3.23) cannot be inte-
grated analytically. Fortunately, the diffusion—migration form of the transport
equations can be easily integrated as we show next.
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Consider first the case of a binary solution. The diffusion—migration form of
the transport equations

. 1 dcy do
-1 __p (% had 3.29
J1 IF l(dx+ZlCLfdx) (3.29)
de d
j2=0=-D, (f + Z202fa¢> (3.30)

allows us to solve for the electric potential gradient®

d¢ 1 dinc; 1 dincyy
dx of dx  znf dx

(3.31)

Moreover, using the local electroneutrality assumption zjc + z2¢2 = 0, the
electric potential gradient can be eliminated from the transport equations and
the concentration gradient is found as

deqp _ 1

=, (3.32)
dx Z1V1 2F D]

which is the same as that shown in eqn (3.25); here, vi» = v +v7. Aninteresting
feature of this procedure is that it provides directly the electric potential drop
in the diffusion boundary layer in the form of the Nernstian equation

1 0
Ap=¢® —¢(0) = — In mb( ) (3.33)
of
as well as the current—voltage curve
[ = I (1 —e2f29), (3.34)

where we have used the following expression for the surface concentration

15 1
0 =ch+——rwm=c" (1 — 7) : (3.35)

ziviaFDy 12 I
In the case of multi-ionic solutions, we take advantage of the fact that
the fluxes of electroinactive ions are zero. Hence, from their Nernst—Planck

equations it is readily seen that they distribute in the boundary layer 0 < x < §
according to the Boltzmann equation

ci(x) =cPe™W, i #£1, (3.36)

> Note that when changing dIncj to dncy the stoichiometric coefficient v, cancels out.
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where ¢ (x) = f[¢p(x) — ¢b] is the dimensionless local electric potential relative
to the bulk solution. From eqn (3.36) and the local electroneutrality assumption,
the concentration of the electroactive ion is

1 1 )
c1(x) = - Zz,'c,- =—= Zzic?e_z"", (3.37)

L Sy

and its flux density is

) I deg de dcy dc;

- —_p | == ci— | =—p; | == E had)

/] uF ! dx 4 Zlcldx ! dx + e~ dx
i#1 i#1

(3.38)

where ct = ) _; ¢; is the total ionic concentration. The same result is obtained
also by calculating the sum ) ; (j;/D;) and using the electroneutrality condition.
Then, only //(z1FDy) is left on the left-hand side, and the terms on the right-
hand side containing d¢/dx cancel out. As the flux density j; is independent of
position, this can be integrated from x = 0 to x = § to give

. D, by _ D, i\ bozfAe
J1= ?[CT(O) —c7] = 5 ; (1 — Z) ¢} (e% -1, (3.39)

where Agp = ¢ — ¢(0) = —¢(0)/f and we have used eqns (3.36) and (3.37).
Equations (3.36) and (3.39) allow us to calculate the variation of the surface
concentrations with the current density and the current—voltage curve of the
system.

With the help of eqn (3.37), eqn (3.38) can also be written as a generalized
Ohm’s law

d
I = _Keffi’ (3.40)
dx

where the effective electrical conductivity ke = (F 2/RT)D; Zizizc,- only
involves D1 because the electroactive species is the only one that moves in the
solution.

Particularly interesting is the variation of the surface concentration of the
electroactive ion with the current density. If it is a trace ion, its surface
concentration can be evaluated as

b S8y 1
aO =+ =4 (1 - E) . (3.41)

It is worth remembering the sign convention. When the active species is con-
sumed at the electrode, c¢;(0) < cll’, j1 < 0,and I/IL,; > 0, and when it is
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generated there (e.g. in a metal electrode dissolution), ¢ (0) > c'f, j1 >0, and
1 / ILJ < 0.

If the electroactive ion does not behave as a trace ion, analytical expressions
for its surface concentration as a function of the current density, similarly to
eqn (3.41), can only be obtained in special cases. We illustrate this with an
example. In particular, we consider the stationary transport in a dilute aque-
ous solution of H,SO4 and K>SOy associated to the cathodic reaction 2HT +
2¢e~ — Hj.

We denote by index i = 1 the electroactive ion H* (z; = +1), by i = 2 the
electroinactive cation K™ (zo = +1), and by i = 3 the common anion SOi_
(z3 = —2). The electrolytes H»SO4 and K>SOy are characterized by indexes
13 and 23, respectively, and their concentrations in the bulk solution are c'l’3
and cg3. The bulk ionic concentrations are then c‘l’ = 2c‘1’3, c’z’ = 2c‘5’3, and
cg’ = 0?3 + cg3. Bisulphate is thus assumed to be completely dissociated into
sulphate in this example.

From eqn (3.39), the current—voltage curve can be written as

FD
I = T‘3c‘;(e—2fA¢ — 1) =Io(1 —e Y9y, (3.42)
where I} = —3FD1ct3’/5 = —Fch‘%/S < 0 is an auxiliary variable. The

limiting current density /i, is defined from the condition that the concentration of
the H' ion vanishes at the electrode surface, and consequently c3(0) = 2¢3(0).
From eqn (3.36), the limiting value of the electric potential drop in the diffusion
boundary layer (A¢p = A¢ whenl = I) is

1 b 1
A¢L = ——1In C—Zb = —1In(l + by /cBy) > 0. (3.43)
3 288 3

Substituting eqn (3.43) in eqn (3.42), the limiting current density is obtained as
I =Io(l —e 2%y = [o[1 — (1 4+ By /ch) ™1 < 0. (3.44)

Equation (3.44) has two interesting limiting cases (Fig. 3.2). First, when cll’3 <
033 we recover the trace ion case, [, ~ 1] < ILO.6 Also, the potential drop
in the diffusion boundary layer A¢p, vanishes. Second, when 033 < cl]’3, the
system behaves as a binary electrolyte solution, and it is directly seen from eqn
(3.43) that A¢r, — oo, and from eqn (3.44) that the limiting current density
becomes I, ~ I o ~ (1 — z1/z3)IL 1.

® The limiting value of eqn (3.44) can be calculated with, e.g., the Taylor series as ctl’3 approaches
Zero.
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Fig. 3.2.

Limiting current density and potential drop in the boundary layer under limiting conditions as a function of the electrolyte concentration ratio
cllj3 / cgg. When cth / c% « 0.1, K»S0y4 plays the role of a supporting electrolyte and H behaves as a trace ion, so that the potential drop vanishes,

migration is negligible, and the limiting current is /1, 1. When 0?3/033 >> 100, the reduction of migration by K»SOy is negligible, and the limiting
current increases by a factor 1 —z;/z3 = 1.5.

The surface concentrations can be evaluated from eqns (3.36) and (3.42) as

c3(0) vy 1 _
S me M o = - (/B TR (345)
a3 Iio I

1/2

Cz(bo) —ofA (0 , (3.46)

b
3 3

fo I )3/2 (3.47)

c1(0) = —c2(0) +2¢3(0) = 2¢3(0) | 1 — (
Io—1
These concentrations are equal to the corresponding bulk values when the
current density vanishes, and to ¢;(0) = 0, c2(0) = 2¢3(0) and ¢3(0) =
(ct2’3)2/ 3 (ct]’3 + cg3)l/ 3 when the current density approaches the limiting value.
We can see from the current—voltage curves in Fig. 3.3 that the behaviour
of the solution is practically ohmic in the presence of excess inert electrolyte.
Indeed, it is easy to check that the current—voltage curve then reduces to / =
—keif AP /8, where ket = (F2/RT)D; > zizcl?, as expected from eqn (3.40).

3.2.6 Solutions with several electroactive species

We begin the study of these systems with an example. In particular, we consider
the stationary transport in a dilute aqueous solution of CuSO4 and H»SOy4. These
electrolytes are denoted by indexes 13 and 23, respectively, and their concen-
trations in the bulk solution are 51133 and c'2’3. Depending on the concentrations,
different species exist in the solution. We consider here only such concentra-
tions that the free sulphate ion SO?{ does not exist, namely 0'53 > 0.1 M. The
systems considered are’

7 To the best of our knowledge, copper bisulphate is an imaginary species.



90

Fig. 3.3.

Surface concentrations and potential drop in the boundary layer as a function of the current density for the cases cll’3/ c12’3 =10, 1, and 0.1.

Transport at electrodes
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i) Cu*™ + H* + HSO,
ii) Cu(HSO,)" +H*' + HSO;
iii) Cu(HSOy)2 +H" 4+ HSOy

or a mixture thereof and the electrode reactions are, respectively,

Cu’t +2¢” — Cu(s)
Cu(HSO4)" +2e~ — Cu(s) + HSO;
Cu(HSO,), +2e~ — Cu(s) + 2HSO} .

(3.48)
(3.49)
(3.50)
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In the first and third cases there is only one electroactive ion in solution. The
solution of the transport equations then follows the procedure explained in the
previous section. We concentrate here on case ii).

We denote the species Cu(HSO4)+, HT, and HSO, by indexesi = 1,2, and
3, respectively, and their bulk concentrations are cll’ = ctl’3, cg = 033 — ctl’3, and
cg = cg3. From the electrode reaction in eqn (3.49) and Faraday’s law, the ionic
flux densities are known as j; = —j3 = [/2F and j, = 0. The Nernst—Planck
equations are then

J1 1 dey d¢

A had , 51
R R T 35D
J2 deo d¢

_h_y_da < 352
D, P +szdx (3.52)
J3 I dcs d¢

_B =82 353
Dy -2, - Y (3-53)

and the local electroneutrality condition requires that ¢z = c¢1 + c2. These
equations can be rearranged as

g, j2 3 I (1 1 de3
(B () 288 3.54
(Dl * Dy * D3> 2F <Dl Da) dx G:39
a2 I (1 1 d¢
Y (P S B D B (LS DY S 3.55
<D1 * D, D3> 2F (Dl * Ds) e (359

.4 »_ .l d¢
bto— b Ds+Di Sy,

Qg oy s T Dy—Dp ding’
D1+D2+D3 3 ! dx3

-
I

(3.56)

The interest in this algebraic manipulation is that the Nernst—Planck equations
form a system of coupled, non-linear differential equations, while eqns (3.54)
and (3.56) are two uncoupled, linear equations. Moreover, their left-hand sides
are known constants from Faraday’s law.

The integration of eqns (3.54) and (3.56) yields

c3(0) = 5 + TV 8 ( - Iiio) = Qe /AT, (3.57)
A =¢® - $(0) = —; In 630(30) = —; In (1 - é) : (3.58)
where
D3 = % (3.59)
Dy + Ds
Io= —%. (3.60)

8
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The surface concentration of the HT ion is
o]" 1\
c
o) =& | =5 = (1 - —) , 3.61)
o Lo
which is obtained by eliminating the electric field from eqns (3.52) and (3.56).
The surface concentration of the Cu(HSO4)+ ion is determined from the
local electroneutrality condition as ¢ (0) = ¢3(0) — ¢2(0). The limiting current
density /1 is attained when c¢1(0) = 0 (Fig. 3.4). Under these conditions, eqns
(3.57) and (3.61) lead to
Ad L L,%__T <1 IL>>0 (3.62)
L =———I—==——In{l1—-——] >0, .
f(l + r) Cg f ILO
20¢ ety /ehy =05 15 [
- : cby /ey =05
15}¢ i
J\G g 10 r
210 g I
z 5
5 b
0.5 i
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0.0k o
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[ boreb —02 L
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N z
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S q sl
0.5 i
Cu(HSO,)* L
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Fig. 3.4.

Surface concentrations and potential drop in the boundary layer as a function of the current density for the cases C'fz /ng =0.5,0.2,and 0.1.
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and it becomes now clear that /1 o is the value of the limiting current density in
the case cg =0(.e. cl]’3 = 033), while in general It, = I o(1 — e/ AdL/Ty,

Once this example has been explained, we aim next at finding a general solu-
tion procedure for multi-ionic solutions with several electroactive species. Such
amethod is necessarily complicated if we consider any charge numbers, but rel-
atively simple if we restrict discussion to a situation of symmetric electrolytes
in which all ions have either charge number z or —z. Similarly to eqns (3.54)—
(3.58) we perform the following algebraic manipulation of the Nernst—Planck
equations

oy Ay der
Go = Xi:Di_dXXi:Cl_ = (3.63)
Gl = N\ 2. 4o 5 d¢
G = Z D Xizziczfdx =z Cdex’ (3.64)
G d
r=Jt oy (3.65)

722Gy ~ diner’
where the local electroneutrality condition ), z;c; = 0 has been used. Since I'
is a constant that can be evaluated from Faraday’s law as
G Y.wji/Di Y zvi/Di
2Go 2 ik/Dx X w/Di’

where v; is the stoichiometric coefficient of species i in the electrode reaction,
the integration of these equations yields

r= (3.66)

I X
e1(0) = B + Gos = & (1 - T) = e/ AW/T (3.67)
Lo
r 0 r I
Ap=¢®—¢(0)=——In CTi) =——In (1-—), (3.68)
o f ILo
r
b —¢* = 1 T, (3.69)
f o
where
b[ F b
ho=—1= T (3.70)

S8Go  S(Lvi/D)
Finally, the surface concentrations can be calculated as

)
¢i(0) = c}) + %/ezifwx)dx e~z 0 (0)

i
0

R 8 zi -z
i C;FdCT:| |:CT(0)i|

_ b
¢

N [ Dic® Go(ch)ar

b
‘T
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Y P Jjid 11‘70 <1 B I)lJrZiI‘ . <l ~ I)qr
' Djc? (1 4+ ) Io Iio
b C%Ui/Di I 14z, T I -zl
=i ! - —1|t{1-—
(I+zD)e} 32, vi/D; ILo ILo

where the integral has been calculated with the help of eqns (3.63) and (3.65).
Note that /1o is not the limiting current density but a convenient auxiliary
variable, and that eqn (3.71) is only valid if z;I" # —1. If there is only one
active species, then I' = 1/z; and eqn (3.71) reduces to

cb 1 b —2cb I\!
0)=ZL(1——)-T —1(1-— 3.72
c1(0) 2 ( 1L0> > o , (3.72)
I —zi/z1
ci(0) =P (1——) , i # 1L (3.73)
Io

If we use the subscript i = 1 for that reactant whose surface concentration
vanishes first when increasing the current density, i.e. for the one that satisfies

1 Ny 1/(14zT) 1 L Y a+ED
[1_( +z1 )L,l] z[l—( +zi )L,z:| for all i.
I o Io
(3.74)
where I, ; = —nFD;c}’ /(v;8) is the limiting diffusion current density of species

i, then eqn (3.71) allows us to determine the limiting current density as

1+ z D) YA+
I =Io(1 — e A% =1 {1 - [1 - M}

Io

(3.75)

(1+zD)ed Y, vy/p; D
=lIoyl—|1- & ,
crv1/Dy

which reduces to

2c'l3
I =Lo|1l- - | (3.76)
‘r

if species 1 is the only active species in solution. Note also that when all the
electroactive ions behave as trace ions, I' = 0, and eqn (3.74) reduces to
I.1/ho < LLi/lo, as expected if species 1 determines the limiting current.

It should be stressed that we have been able to find an analytical expres-
sion for the surface concentrations, eqn (3.71), because we have restricted
discussion to the case of two valency classes (i.e. charge numbers z and —z).
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Although the steady-state transport equations for a general multi-ionic sys-
tem can also be solved [2], an approximate solution procedure proves to be
rather accurate and much simpler in those systems. We refer to the Goldman
constant-field approximation, which leads to the following equation for the
surface concentrations

zif AP _ 1.

ci(0) v chesfdo y T Z Lo (3.77)

wfAg  D;
where the electric potential gradient has been written as d¢/dx = A¢/§ =
[¢® — ¢(0)]/8. In eqn (3.77) the ionic flux densities are known from Faraday’s
law and the potential drop is chosen so that the electroneutrality condition
> i zici(0) = 0 is satisfied.

Table 3.1 summarizes the expressions derived in Sections 3.2.4-3.2.6.

3.2.7 Transport in spherical geometry

Stationary transport conditions usually require vigorous stirring of the elec-
trolyte solutions. An exception to this rule is the transport in spherical geometry,
where the system need not be stirred in order to achieve the steady state. Con-
sider that the transport of an electroactive species i takes place along the radial
direction in a semi-infinite medium limited by a hemispherical electrode of
radius a. In the presence of a supporting electrolyte this species behaves as a
trace ion and its flux density is

dc;
Ji & —Di—, (3.78)
dr
where r is the distance from the electrode centre. The steady-state continuity
equation, dj;/dr = 0, then implies that the spatial distribution of its molar
concentration is given by the Laplace equation

d>¢; 2de; 1 d [ ,do
o (A ) =, 3.79
dr? + rdr  r2dr <r dr) (3-79)

and the boundary conditions

de; I
(—C) - (3.80)
dr /,_, ziFD;

ci(r = 00) = cP, (3.81)
where the first one comes from Faraday’s law (in the case of an electrode
reaction with a single electroactive species i) and the convention of defining
the current density as positive in the direction from the electrode to the solution
(i.e. in the positive radial direction).

The solution of eqn (3.79) is

) = +leil@ - 1, (3.82)
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Table 3.1. Limiting current density, potential drop in the boundary layer under limiting conditions, current-voltage relation, and surface

concentrations for different types of solutions

Binary solution, symmetric electrolyte
I = 25 FDy b, /8

2 AP — o0

I =1 (1 —c2f00)

e120) = by (1 =1/

Multi-ionic solution, only one active species
and it is a trace ion

IL=1I1 =—2FD|cb/8

A¢r, =0

A¢p ~0

10 =8 —1/n)

Binary solution, symmetric electrolyte
IL=—(1—z1/2)a FD1} /8

71 A¢p, — o0

1= (1 —c2f2%)

c12(0) = S, (1 — I/IL)

Multi-ionic solution, all active species are
trace ions, species 1 determines /1,

I =11 = —nFD{ Y /v

Ap~0

AgpL =0

€i(0) = (1 — vl /niL;)

Multi-ionic solution, one active species, symmetric Multi-ionic solution, one active species,

electrolytes (charge numbers z and —z)

I, =Io(1 — /1 —2cb/chy

221 Agr, = — In(1 = 2¢} /cb)

I=1Io(1—e 3/ 29) 1o =2 FDch/s
b 720[]7

Cb C
1 (0) = L —1/lo) — L5101/l )

¢i(0) = P = I/Io) "%/, i £ 1
e1(0) = h(l = 1/I9)

arbitrary electrolytes

I = @ FD1/8) ¥ (1 — zi/z1) (e 9L — 1)
i#1

> Zic?elifAd’L =0

i#1

I=(@FD1/8) ¥ (1 —zi/z1) Q&2 — 1)

i#1

c1(0) = —(1/z1) ¥ zici(0)

i#1

¢i(0) = Peif A% i £ 1

Multi-ionic solution, several active species, species 1 determines /1, symmetric electrolytes

(charge numbers z and —z)

I =hof{l = [1 — (1 +z D)/A VOFaDy o = —

(1 + 7 D)fAgL = —TIn[1 — (1 +z,T)/A]
I =Io(l—e/A¢/T)

nFc /s o Ai/D;
2P Y /D

ci(0) = (A = 1/ILo) T+ AL = 1/lg) 4T =11/ + 5D}, 2 # =1/ T

€i(0) = (1 — I /ILo)[1 + A;In(1 — 1 /I 9)], zj = —1/T

er(0) = (1 —1/IL)

and the relation between the surface concentration c;(a) and the current density
Iis

H(-7)
c@=c(1-=), (3.83)
1L

where

ziFD;c?
a

I = (3.84)
is the limiting current density. From eqn (3.84) it can be seen that the mass-
transfer rate is enhanced when the electrode radius a decreases. This observation
has led to the development of ultramicroelectrodes, whose radii are of the order
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Electrode

' rla

of micrometers or less. When the mass-transfer rate is so enhanced, diffusion
is no longer the rate-determining step of the reaction and kinetic measurements
become more feasible.

Let us consider, for example, a first-order reaction taking place on the surface
of a small spherical particle. The reaction rate is r = kc;(a), where k is the rate
constant (in s~! units). At steady state, the diffusion flux towards the surface
equals to the reaction rate

3Ci

kei(a) = D; ( oy

) = %[C? —ci(a)], (3.85)

from which the surface concentration c;(a) can be solved as

cb
(@) = ———. 3.86
ci(a) 1+ ka/D; (3.860)
The reaction rate thus becomes
keP
r=-—->"" . (3.87)
1 + ka/D;

When® Da = ka/D; « 1 the reaction is under kinetic control and the rate is
r A kc}’. ‘When Da > 1, the reaction is under diffusion control and r ~ Dic:? /a.
Hence, by reducing the particle size a, reactions with higher values of the rate
constant k can be monitored.

Unlike hemispherical electrodes, which are difficult to prepare, microdisc
electrodes are commonly used because their diffusion field also has a quasi-
spherical symmetry, as shown in Fig. 3.5. Without going into the details of the
description of mass transport to a microdisc electrode® [4], we mention here
some relevant characteristics. First, the limiting current at a microdisc electrode
of radius a is

iL = y'razlL = —4z,~FD,'c}Ja, (3.88)

8 Da is known as the second Damkohler number [3].

® The solution is obtained in cylindrical co-ordinates in terms of modified Bessel functions.
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Fig. 3.5.

Radial distribution of the current density
and equiconcentration lines on a disc
electrode (arbitrary units).
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to be compared with that at a hemispherical electrode ii = 2mwd?l =
—27'rzl~FD,-cll.’a. It is observed that the limiting current is lower by a factor 2/
at the microdisc electrode. Second, the current distribution at the microdisc
electrode is not uniform, that is, the current density varies with the radial posi-
tion variable. It can be shown [5] that the functional dependence of the current
distribution is

I(r) « (3.89)

1
JI=G/a?
which diverges at the disc edge r = a, as shown in Fig. 3.5. Yet, the integral
over the disc is finite. In practice, the current density is limited at the disc edge
by the kinetics of the electrode reaction.

Ultramicroelectrodes also have the advantage that the current flowing in the
system is very low, and therefore the ohmic loss becomes negligible. Ultra-
microelectrodes of various geometries are widely used in electroanalytical
applications, and the interested reader is directed to, e.g., Ref. [6].

3.3 Hydrodynamic electrodes

Stirring of the electrolyte solution is required to establish a diffusion boundary
layer of well-defined thickness, §. If the solution is not stirred, this layer expands
from the electrode towards the bulk of the solution as a function of time, until
natural convection begins to mix the solution due to density differences created
by the electrode process. Increasing the stirring rate, decreases § and, conse-
quently, enhances the mass transport rate. Because the mass transfer frequently
is the rate-determining step of the overall electrode process, its enhancement
makes feasible the determination of higher values of kinetic parameters. Dif-
ferent hydrodynamic methods have different characteristics of mass transfer,
and in the following sections the most usual ones are briefly presented.

3.3.1 Rotating-disc electrode

Perhaps the most common hydrodynamic electrochemical method is the
rotating-disc electrode (RDE). When a disc electrode is rotated, a well-defined
velocity profile is developed at the electrode. This velocity profile is sketched in
Fig. 3.6. A modification of the RDE is the rotating ring-disc electrode (RRDE)
where there is an additional ring-shaped electrode around the disc. The potential
of the ring can be varied independently, so that a species generated in the disc
reaction is collected at the ring. Details of the RRDE can be found in standard
electrochemistry textbooks [1, 7, 8].

a) The convective electrodiffusion equation

When describing mass transport, the flux density is decomposed into electrod-
iffusive and convective contributions, and the steady-state continuity equation
for species i is written as

0=V -ji=V-("+c0)=V-j"+5- Ve, (3.90)
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where the continuity equation for the total mass, V - % = 0, has been used.
Since the properties of the disc surface are uniform with respect to the electrode
reaction, the flux densny Ji" and the concentration gradient Vc can be assumed
to take place along the normal direction only. Thus, even though the solution
velocity pattern is clearly three-dimensional, eqn (3.90) reduces to

0= % der (3.91)
Tode o T’ '
where x is the distance to the electrode surface, and the mass transport is
considered as one-dimensional. Equation (3.91) describes the stationary con-
vective electrodiffusion and must be solved under the boundary conditions
ci(x = 00) = c and j"(x = 0) = vl /nF [see eqn (3.3)].

The convectlve velocity is determined from the solution of the Navier—Stokes
equation. In the case of a RDE, this solution can be obtained in the form of a
series expansion in the variable x(w/v)'/2, where w is the electrode angular
rotation frequency and v is the kinematic solution viscosity. The first term of
the series expansion of the normal component of the velocity is

vy A —Bx?, (3.92)
where B = —0.510w/2v~1/2 and the minus sign indicates that the fluid moves
towards the electrode. Since higher-order terms have been neglected, eqn (3.92)
is only valid when x(w/v)'/? < 1, i.e. when x is much smaller than an upper
bound (v/w)!/? that is of the order of 100 yum for a rotation frequency w/2mw =
100 Hz.

b) Trace ion

Consider first the case of a single electroactive ion (denoted by index 1) that

behaves as a trace ion. Since ji'(x) = —Didcy/dx, eqn (3.91) reduces to
47w

— = " 3.93
dx D]Jl ( )

Fig. 3.6.
Fluid velocity field in a rotating-disc
electrode.
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and can be solved as follows
X 3
') = ji'0) exp | —(B/Dy) [u*du | = ji(0)e P/, (3.94)
0

where jT(O) = j1(0) because vy(0) = 0, and u is a dummy variable. As
expected, ji"(x) rapidly decreases with the distance to the electrode and becomes
negligible when x > (D1 /B)'/3 ~ Sc'/3(v/w)'/2, where Sc = v/D; ~ 10° is
the Schmidt number.

As depicted in Fig. 3.1, the common procedure in electrochemistry is to
describe the concentration profile established due to the combined action of
electrodiffusion and convection by a linear profile that neglects convection

c1(0)

b_
1) ~ ¢1(0) + (@> x=c )+ 2= (3.95)
dx /. 8

The effective thickness of the diffusion boundary layer is defined as

A —ci1(0)  [y7 (der/doydx

B} / m(x)dx (3.96)
der/d)—o  (der/do)e—o  j1(0)

and integration of eqn (3.94) leads to the result
T 3 3D\ '3
5= /e—Bf /3Dy = (7‘> T'4/3) = 1.61D 0~ /21/% (3.97)

where we have introduced the gamma function I'(n) = fooo —1"=1dt and used
its value I'(4/3) = 0.893. There is an apparent dilemma in the derivation of eqn
(3.97): the integration is carried out to infinity, while the parabolic approxima-
tion in eqn (3.92) is valid only at short distances. The error made is, however,
negligible because exp(—Bx>/3D1) goes to zero very fast as x increases.

When the surface concentration c¢1(0) vanishes, the electric current density
I = z1Fj1(0) takes its maximum value

ZlFch1

L=IL,=- = —0.620z FD? o' /2y =116, (3.98)

This is known as the Levich equation and evidences the characteristic feature
of the RDE: the limiting current density is proportional to the square root of the
rotation frequency.

The actual concentration profile can be written after some cumbersome
algebra in terms of the incomplete gamma function I'(n,x) = fxoo e ' ldr
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where
g B2 _ [ramy] (3.100)
o 3D, a §d .

Figure 3.7 shows a representation of this profile and its comparison with eqn
(3.95). Note that eqn (3.99) reduces to c1(0) = c'l’(l — I/IL) at the electrode
surface.

In relation to eqn (3.94) we have mentioned that the diffusive contribution
to the flux density ji"(x) decreases (in magnitude) with increasing distance to
the electrode surface. The convective contribution cj vy, on the contrary, is zero
at the interface and increases with this distance because both ¢; and v, also
increase. The total flux density in the laboratory reference frame j; = j|' +civx
also increases with increasing distance to the electrode, and it can be proved
from eqns (3.90) and (3.91) that dj; /dx = c1dv,/dx. Thus, solute transport is
predominantly diffusive in the vicinity of the electrode and convective in the
outer region of the diffusion boundary layer (Fig. 3.8).

The fact that the flux density is the lowest at the electrode surface means that
the species accessing the electrode and reacting there have flowed through a
smaller cross-sectional area than that of the electrode. This can be seen also in
Fig. 3.6 where the streamlines are radially separated from each other close to the
electrode surface, indicating a decreased flux density normal to the electrode
surface. Yet, at steady state, the flux remains constant throughout the whole
system. It must be emphasized that the parabolic velocity profile, eqn (3.92),
cannot be extended over the distance &, i.e. the increase of the flux density is
terminated at x = §.

10" Note that St adu = [§° jydu— [° 7 (u)du, which leads to a factor I'(1/3)~T'(1/3.8).
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Fig. 3.7.

Concentration profile at the rotating-disc
electrode (solid line) as described by eqn
(3.99) and its linear approximation (dashed
line).
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Fig. 3.8.

Contributions to the solute flux density at
the rotating-disc electrode under limiting
current conditions: diffusive jq”,
convective ¢ vy, and total j;.
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¢) Binary electrolyte solution

Although most experimental situations involve the use of supporting electrolyte
and this allows us to treat the electroactive ion as a trace ion, we describe now
the transport at a RDE in the absence of supporting electrolyte [10, 11]. Thisis a
more complicated situation in which migration is not negligible. Consider that
the solute is a binary electrolyte. By making use of the local electroneutrality
assumption, zic1 + z2¢2 = 0, the electric field can be eliminated from the two
convective electrodiffusion equations!!

dzci d d¢ vy dc;
SOy () = 2 3.101
dx2+z‘fdx<c’dx) D; dx (3.10D)

and the convective diffusion equation for the electrolyte is then obtained as

dzci vy dej
= —, 3.102
dx? Dy, dx ( )

where D15 is the Nernst—Hartley electrolyte diffusion coefficient. This equation
can be solved following the same procedure explained above and leads to

5= 161D} w1210, (3.103)
It is interesting to note that the thickness of the diffusion boundary layer is

determined by D15. This might seem surprising, e.g. in case where only species
1 is electroactive, because the boundary conditions at the electrode surface

. 1 dcy do
()em0 = 5 = =Dy [(al:o +21e10)f (al:o] (3.104)
0= (@) + 202 (0)f (d—"’) (3.105)
dx x=0 dx x=0

do not involve D, and hence it could be expected that only D; determines
8. However, this is not the case because the ionic flux densities are position

' The electric field varies with position and hence these convective electrodiffusion equations
cannot be solved with the help of the Goldman constant-field assumption.
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dependent and D; is involved in the transport equations at all positions except
for the electrode surface.
The limiting current density is defined in this system as

1 FDy ¢}
1L=<1_9)1L,1=—( —Zi)—“ o (3.106)

2 2 8

and the surface concentration of the electroactive species is ¢1(0) = ctl’(l -
1/11). Finally, the electric field at the electrode surface is given from eqns (3.96)

and (3.105) as
do\ A
2f 6 (a)x:() = <1 - 7) . (3.107)

This field increases (in magnitude) with increasing current density and
diverges under limiting conditions, which evidences deviations from the local
electroneutrality assumption [1].

d) Ternary electrolyte solution
The last case that we consider is that of a ternary solution formed by the mixture
of two strong binary electrolytes AC and DC. The ions A%, D%, and C™% are
denoted by the indexes 1, 2, and 3, respectively. Only the ion A is electroactive,
and DC is an inert electrolyte. The concentration of inert electrolyte is such that
the migrational contribution to the transport of A® is small but not negligible,
and we aim to describe the effect of the electric field on the limiting current
density.

Due to the presence of excess inert electrolyte, we can assume that the electric
field is constant and small (compared to R7/F§), so that eqn (3.101)

dzcl Uy d¢\ dcg Bx? d¢\ dc;
=2 ) o ) 3.108
dx? <D1 zfdx) dx < D Zfdx) dx ( )

can be integrated to
d d d
% = Ce % exp (—zfﬁx) ~ Ce¢ (1 - zfa(px) , (3.109)

where & = Bx3 /3Dy = [(x/8)"(4/ 3)]3‘ Since the convective velocity is zero
at the electrode surface, the boundary condition for the electroactive ion is

G _ L _ D[dﬂ + (o)dib} 0 (3.110)
JD=0= "5 =-D <dx>x:0 zcl fdx <0, .

and the integration constant C can be determined as

C— dcl) _ 1 _ 0 .d¢ 3111
= <E x:O_ 72FD1 zer ( )fa~ (3.111)
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Integration of eqn (3.109) over the diffusion boundary layer yields

& —c1(0) = C§ [1 ;gg; f— ] (3.112)

where we have used eqn (3.97) and

00 2/3
/ e B0 g = (PLYT LR TR o hs0ss 3a13)
B 3 F(]/3)

Finally, combining eqns (3.111) and (3.112), the surface concentration is

T(2/3)
-5 [ (/3% f*‘s}

1—zf—¢5 ,

c1(0) = 01

(3.114)

where I, = —zFchtl’ /6 and we have neglected second-order terms in the
electric field, for the sake of consistency with the linear approximation intro-
duced in eqn (3.109). Equation (3.114) describes the effect of the electric field
on the transport of the electroactive ion toward the RDE.

If we further assume that the electric field is ohmic, the potential drop in the
boundary later is A¢opm = (d¢/dx)d = —I R, where R = §/« is the electrical
resistance!? of the solution in this layer, and the limiting current density can be
written as

ZFDy b [1 r'2/3) f— ]1

L=77 r(1/3)
_ ZFDic} r'2/3)
N [1+F(]/3)zfA¢>ohm] . (3.115)

Since the ions A? (no matter whether they are cations or anions, i.e. regardless
of the sign of z) are consumed at the electrode surface, we have that (ji)x=0 =
1/zF < 0 and zA¢pohm = z[¢p(8)—¢(0)] = —zI R > 0. Therefore, we conclude
that the effect of an ohmic electric field is to increase the magnitude of the
limiting current density. In relation to this, it should be remembered that eqn
(3.106) also described an increase in the magnitude of the limiting current
density, in a factor 1 — z1/z2 > 1, due to the effect of the electric field in a
binary electrolyte solution, although in that case the field had both ohmic and
diffusional contributions. The effect of the electric field on the limiting current
density in a ternary electrolyte solution, taking into account both ohmic and
diffusion contributions, is described, e.g., in Ref. [12].

2 Strictly speaking, R is the product of the resistance and the area through which current is
transported. The ohmic potential drop, IR, where I is the current density, has units of electric
potential.
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3.3.2 Channelflow electrode

The channel-flow electrode (CFE) is frequently used as a detector in liquid
chromatography, capillary electrophoresis, and flow-injection analysis [13]. In
a typical experimental set-up (Fig. 3.9), a channel electrode is located down-
stream after the separation unit and is biased at a sufficiently positive (or
negative) potential such that the analyte is readily oxidized (reduced) at the
electrode. Thus, a CFE is operated under limiting current conditions. The refer-
ence electrode is usually situated upstream of the working electrode, preferably
via a liquid junction, while the counter electrode is placed downstream to pre-
vent contamination of the working electrode due to the electrolysis products
formed at the counter electrode.

Another large application area of CFEs is in the study of homogeneous chemi-
cal reactions (C) coupled to electrochemical reactions (E). Since hydrodynamics
has a strong effect on the concentration profiles of the species reacting in the
bulk of the solution, while the electrochemical step takes place at the electrode
only, it is possible to distinguish between, say, CE and EC or ECE reaction
mechanisms.

The mass-transfer problem at a CFE can be solved in closed form, because the
convection velocity can be determined from the solution of the Navier—Stokes
equation. The solution flow takes place in the x direction, thus the velocity
components vy and v, are zero; direction y is normal to the electrode surface
and the channel width is defined in the z direction (Fig. 3.9). The diffusion
equation to be solved is eqn (3.90), and in the trace ion case it becomes

8201 32C1 326‘1 dcy
Di|—+—4+—)—v—=0. 3.116
1 ( axz + 3_)’2 + 322 ) Ux x ( )

The usual approximation made is that the diffusion in the z direction is negligible
if the electrode width w is smaller than the channel width d [1]. Also, since
convection is usually fast compared to diffusion, it appears that (8%c;/dx%) <
(0%c1/0y™).

In a fully developed Poiseuille flow the velocity profile has a parabolic form

v (y) = Umax% (2 - %) , (3.117)

with its maximum value v,y at the pore centre y = h and becoming zero at
the pore walls y = 0 and y = 2A due to the non-slip boundary condition. The
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Fig. 3.9.
Sketch of the channel flow electrode. The
solution flows along direction x.
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maximum velocity is usually evaluated from the volume flow V as!3

3V

—-—. 3.118
4 hd ( )

Umax =

Changes in the concentration take place in the close vicinity of the electrode
and, therefore, Lévéque’s approximation

vy (y) & 2Umax% (3.119)

can be used. Hence, eqn (3.116) is reduced to

92 2 9
2 _Zmax (L), (3.120)
8y2 x D]h 0x y

Assuming that c¢;(x,y) depends on the position variables only through the
combination

3
g Umax Y~

§ 9Dh x

(3.121)

eqn (3.120) transforms to the following linear ordinary differential equation for

ci1(§)

d*cy 2\ de;
w1 5) & =o (122

Under limiting current conditions, the boundary conditions for this equation
are ¢1(0) = 0 and cj(oc0) = c'l’, and its integration yields

o

e t¢2B3de
6 — Cb{ _ o[, _rase
1 hee ! r(/3)

] , (U=IL). (3.123)
[ete2/g

(=]

The limiting current flowing across the electrode is then

1

9
i = —leDIW[<ﬂ) dx
3y Jy=o

0

1
1/3
”m“">/ 61 x4y, (3.124)

= —z|FDc®
arfaw (Dlh T(1/3)
0

13 This equation neglects the edge effects on the velocity profile caused by channel walls at z =
0 and z = d but this is a good approximation because d < w.
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where [ is the length of the electrode (in the flow direction), and using eqn
(3.118) and the value 6 1/3T"(1/3) & 1.4743, it can be transformed to the Levich
equation

12"/ 1/3
) (3.125)

ir, = —0.92447, FD} " cbw (%

Sometimes, the numerical coefficient is replaced by 0.835 depending on the
simplifying assumptions made in the derivation of the velocity profile [14].
The essential finding is, however, that the limiting current is proportional to the
cube root of the volume flow rate. In any case, a detector is always calibrated
with known solutions prior to use.

Complete current—voltage characteristics taking electrode kinetics into
account have been provided by Matsuda [15]. Various reaction mechanisms
have been treated in non-stationary cases by Compton et al. [13, 16]. The anal-
ysis of the effect of the channel geometry is also omitted here, as the simula-
tion of the transport problems in arbitrary geometry is feasible nowadays with
numerical software packages [17] (Fig. 3.10).

3.3.3 Walljet electrode

An impinging jet electrode is an interesting modification of a RDE. Instead of
rotating the disc, which induces a convective flow towards the electrode, a jet
stream is directed towards the electrode (Fig. 3.11), thus creating a well-defined
flow profile [20] as depicted in Figure 3.12.
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Fig. 3.10.

Simulated equiconcentration surface at the
channel flow electrode. (Reproduced from
Ref. [18] with permission.)
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Fig. 3.11.

Schematic picture of a wall-jet electrode.
At the wall-tube region the axial and at the
wall-jet region the radial velocity is
governing. The lengths of the arrows
indicate their relative magnitude.
(Reproduced from Ref. [19] with
permission.)
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Fig. 3.12.

(Left) Dimensionless radial (v,) and normal (v,) velocity components as a function of the dimensionless distance 7 from the electrode.
(Right) Fluid velocity field in the (r, z) plane also showing the curve n = 3.96 where the normal component reverses direction.

The dimensionless distance from the electrode is defined as [21]

s\t
=Gy ) B

where r and z are the radial and axial co-ordinates, respectively, M =
k*V3/(2m3d?), v is the kinematic viscosity of the solution, V is the volume
flow rate of the jet, d,, is its diameter, and k = 0.86 is an experimental constant.

As can be seen in Fig. 3.12, the normal velocity vanishes when n = 3.96.
At distances shorter than that the flow is directed towards the electrode and at
larger distances away from the electrode. This velocity pattern means that the
electrode only sees fresh solution passing through the jet nozzle. In the electrode
vicinity, n < 1, the velocity components can be approximated as

(3.126)

2 (15M\'/?
7 [40Mv\*
g A %( 33 ) n? (3.128)
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Neglecting the radial diffusion term, (32c1/8r2), the convective diffusion
equation to be solved is

8261 dcy dacy
— —v,— —v,— = 0. 3.129
192 ~ Uy TV ( )

Transforming from variables (r, z) to variables (p, &) defined as p = (r/ a)’/8
and

9 \!3/ 125 \1/12
() () e

where a is the electrode radius, eqn (3.129) is converted to

Por _ oo (3.131)
&2 " op’ '

The boundary conditions on ¢ (p, £€) under limiting conditions are c1 (p, 0) = 0,
c1(p,00) = c'f, and ¢1(0,&) = c'f. This equation can be solved by Laplace
transformation with respect to variable p. Denoting by ¢1(s,&) = L[c1(p,&)]
the transformed concentration, eqn (3.131) becomes

d%¢; -
@ £(s¢ — cb), (3.132)

and its solution is given in terms of the Airy function as

N

.4 [ Ai(s'¢)
cg=—|1-—

ATO) ] (I =1). (3.133)

The concentration gradient at the electrode surface can be evaluated using
the inverse Laplace transform £~ as

(5).0m () (8), e
0z J.—o  \92/ .- dg ). 12 Ai(0)

bg 32/3F(2/3) p71/3 bé 31/3 i3
=c|= =c = P b
2 313T(1/3) T(2/3) ZT(1/3)

9 \'/3/ 125 \V12 3173
=MV — r4 (3.134)
8D, 21613 r(1/3)

where we have used the properties of the Airy function Ai(0) = 132731 2/3)17!
and Ai'(0) = —[3V 3F(l / 3)]~!. The Fo/4 dependence of the concentration
gradient implies that the electrode is non-uniformly accessible because the
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current density is proportional to this gradient. Finally, the limiting current is
obtained as

a

. acy
i, = —2mz71FDq — rdr
0z z=0
0

13/ 125 \1/12 3173 |
—271lecht1’M1/4 i > 3 r~ 144y
8D, 216v° r'(1/3)
0

73/4 3/4

2/3 V°I*a

—1.5971ka FD} ) ———.
al?ysn

(3.135)
The characteristic features of the wall-jet electrode are that the limiting current
density varies with the volume flow rate to the 3/4 power, and that the diffusion
boundary layer thickness is not uniform along the electrode surface.

The wall-jet electrode has the advantage that very high convection rates
are possible, which makes the study of fast heterogeneous kinetics feasible.
Compared with the RDE, the mass-transfer rate at the wall-jet electrode can
correspond to the rotation frequency of 500 000 Hz [19]. In a channel flow, for
example, the convection rate is limited by the onset of turbulence in the cell,
when the Reynolds number exceeds the value of ca. 2000.

3.4 Non-stationary or transient electrode
processes

3.4.1 Introduction

The key equation to describe non-stationary transport processes in the absence
of homogeneous chemical reactions is the continuity equation

o _ 55 (3.136)
a Ji- '
In one-dimensional problems with no convection, this equation leads to

4 2.
i _p. [3 L ( %)] (3.137)

ot a2 o \“ax

where the Nernst-Planck equation has been used. If migration is negligible
due to the presence of an excess of supporting electrolyte, this reduces to the
diffusion equation

3Ci ~ 32Ci

o Fer (3.138)

1

In the case of neutral solutes, including, e.g., the electrolyte in a binary solution,
eqn (3.138) is exact and receives the name of Fick’s second law.
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In the following sections we consider that there is only one electroactive ion
in solution (i = 1) and it behaves as a trace ion. Equation (3.138) then has to be
solved under the appropriate boundary conditions. The concentration ¢ (0, #)
at the electrode surface is specified in chronoamperometric techniques, while

the concentration gradient
a I(t
( C‘) __ 10 (3.139)
x=0

ox " 21FD,

is known in chronopotentiometric techniques. Note that the sign convention is
such that / > 0 if the electroactive ion is anodically dissolved, and I < Oifitis
reduced at the cathode. The boundary condition that specifies the bulk solution
concentration

c1(x = 00,1) = ¢} (3.140)
can be replaced by
ca@,n=c (3.141)

when the solution is mixed and the diffusion boundary layer has a finite thick-
ness §. Finally, the initial condition is

c1(x,0) = cb. (3.142)

Equation (3.138) can be solved by the method of Laplace transformation
[22]. It is then converted to the linear ordinary differential equation

~ b d251
sC|p —c] = Dl@’ (3.143)
where
o0
¢1(x,s) E/ c1(x,t) e Sdt (3.144)
0

is the Laplace transformed concentration. The general solution of eqn (3.143)
has the form
b b
¢1=-L +Ae” +Be % = L 4 Csinhgx +E coshgr, (3.145)
K s

where g = +/s/Dj. In the absence of mixing, the solution based on the expo-
nentials is preferred because eqn (3.140) imposes that A = 0. In the presence
of mixing, the solution based on the hyperbolic trigonometric functions must
be used and eqn (3.141) requires that

E = —Ctanhgd. (3.146)

In the following sections we determine the coefficients B or C for some of the
most common transient electrochemical techniques.
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Fig. 3.13.

Concentration profile in a current step.

Transport at electrodes

3.4.2 Current step in the absence of mixing

In chronopotentiometric techniques, the electric current density is known as a
function of time and eqn (3.139) can be used to determine the coefficient B in
eqn (3.145) as

1(s) 1(s) 1

- le«/SDl a ZlFDl q’

(3.147)

where I (s) is the Laplace transform of the current density. The solution of eqn
(3.138) in the time domain is formally given by

I e
= 4! (Z1FD1 eq > , (3.148)

where £~ denotes the inverse Laplace transformation.

In a current step (galvanostatic method) the function /(¢) is zero for r < 0
and takes the constant value Iy for ¢ > 0. Its Laplace transform is I (s) =1Io/s
and the inverse Laplace transform in eqn (3.148) can then be found in Laplace
tables [9, 22-24] as

21
by =+ ——0—
z21F /D

where ¢ = x/(2+/Dqt) is the Boltzmann variable, and erfc is the complementary
error function. The function inside the brackets in eqn (3.149) is the first integral
of the complementary error function [9]

Vil Vet — cerfe(o)], (3.149)

ferfe(¢) = 7712 e~ — rerfe(?). (3.150)

The concentration profile in eqn (3.149) is represented in Fig. 3.13.
At the electrode surface, the concentration takes the value

cl(O,t)zclf—l—i«ﬂzctl’ [1—\/1. (3.151)
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If the electroactive species is reduced at the cathode, then Iy < 0 and the surface
concentration vanishes (Fig. 3.14) after a transition time!# that is given by the
Sand equation

ZlFCtl’
——y (3.152)
21
Using the values /o = —0.ImAcm =2, Dy = 1075cm?s™!, z; = I, and ¢ =

10~°mol cm*3, the transition time can be estimated as

2
96500 x 10~°
_ -5 ~
T=m 10 ( 7% 102 >s~7s.

Obviously, for smaller current densities, the transition time would be larger.
But it must be observed that the experimental times cannot be very much larger
because convection might then play arole in the mass transport, and the solution
obtained would no longer be valid.

The electrode potential E, i.e. the potential at the electrode with respect to
the solution, is given by the Nernst equation, which in this case takes the form

. RT RT t
E®)=E + —Inci(0,1) =EQ)+ —1In|1—./—|, (3.153)
ZlF ZLF T

where E°’ is the formal standard potential and E(0) = E® + (RT/z;F)Inc?
is the initial electrode potential; the concentrations in these equations must be
expressed in M units. It is clearly seen in eqn (3.153) that E diverges when the
transition time is approached (Fig. 3.15). In experimental practice, this means
that the electrode potential changes so much that new electrode processes take
place (before an actual divergence can occur).

The above equations provide an accurate description of the concentration
changes during a current-step experiment. When the current is established at

1.0

o 2
o

<
'S

100/

14 When this transition time is determined experimentally, the current density Iy is chosen so
that natural convection and double-layer charging do not interfere with the measurement.
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Fig. 3.14.
Time variation of the surface concentration
in a current step.
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Fig. 3.15.
Time variation of the electrode potential in
a current step.

Fig. 3.16.

Concentration profile during a current step
experiment at times

t/t =0.1,0.2,...,0.9, and 1.0 (increasing
in the arrow direction). Note that the
concentration gradient at the electrode
surface is independent of time because it is
fixed by the constant current.

Transport at electrodes

time ¢ = 0, the concentration of the electroactive species in the vicinity of the
electrode changes in such a way that its gradient at the surface is determined
by the current. The concentration changes propagate towards the bulk solution
and the surface concentration decreases with increasing time. Eventually, the
surface concentration vanishes at the transition time 7. The diffusion front has
then covered a distance of ca. 44/D;t (Fig. 3.16).

The transient transport processes can be better understood with the help
of the concept of diffusion length, Ly(t) = 2./Dit/x. This is the distance
across which concentration changes propagate by diffusion in a time #, and
the Boltzmann variable can be rewritten as ¢ = x//mLg(t). When ¢ > 1
the concentration changes caused by the electrode reaction have not reached
position x yet and the concentration ¢ (x, ) is still equal to the initial value clf.
On the contrary, the concentration is significantly different from the initial value
at those positions x in which ¢ < 1. Interestingly, Figs. 3.13 and 3.16 show that
at time ¢ the concentration changes are confined within a region of thickness
ca. 3L4, which is thus the maximum distance at which the digital simulation of
this electrochemical process needs to be extended; this conclusion also holds
for other techniques, such as the current scan and the voltage step.

—(z1FIRT) [E(t)—E(0)]

tlT

0.0 1 1 1 1
0.0 0.5 1.0 1.5 2.0

x/ Q2N D7)
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3.4.3 Current step with mixing

When the solution is mixed during the current-step experiment, the thickness &
of the diffusion boundary layer remains constant and the solution of the transport
equations differs from that in eqn (3.149). Following the discussion at the end
of the previous section, the situation is now different because, in addition to x
and Lq4(1), § is another characteristic length of the problem. Accordingly, there
is an additional characteristic time of the system, ts = w82/4D; which is the
time required by diffusion to reach the outer end of the boundary layer, §.

Regarding the relative values of the current densities, we can distinguish two
possible regimes: Io/I1..; > land lp/I1.1 < 1,wherel | = —lechl]’/S is the
limiting diffusion current density of the electroactive species. When Ip/I1,1 > 1
the surface concentration vanishes before the concentration changes reach the
outer end of the boundary layer. That is, the transition time 7 defined by Sand’s
equation is smaller than t5. Hence, the influence of mixing cannot be noticed
and this situation does not differ practically from that considered in the previous
section. Thus, we restrict the present study to the case Ip/I1.1 < 1 and T > t5.

Due to the mixing, the concentration changes cannot propagate by diffusion
beyond x = §. At short times (f < 75 and Lg < 8), § is not a relevant variable
and the concentration ¢; must be a function of ¢ (and ¢) practically identical to
that in eqn (3.149). At large times (# > 75 and Ly 3> §), the diffusion length Ly
is not a relevant variable, and the concentration ¢; must be a function of x/3§.
In particular, for the current-step technique under consideration, a steady state
is reached at large times, and the diffusion equation reduces to

dZC]
o2 0, > 1. (3.154)
The solution of this equation is
b b X
aw@ =+ -d1(1-3). > (3.155)

and the surface concentration can be calculated from eqn (3.139) as
b )
ct)=cj|{l——]), t>1s. (3.156)
I

At intermediate times, the concentration ¢ (x, ) must be determined from
the solution of the diffusion equation, eqn (3.138). Using the last expression in

eqn (3.145) and eqn (3.146), the transformed concentration can be written as
b .
c hq(§ —
&= 1 Cw’ (3.157)
s cosh ¢é

where g = /s/Dj. Since the transformed current density is I(s) = Ip/s in a
current step, eqn (3.139) can be used to determine the coefficient C as
1) Io

C=-— =— . (3.158)
21F+/sDy 21F+/$3Dy
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The concentration is then

c1(x,t) =c] —

Iy - |:sinhq(6 —X) i] (3.159)

21FDy coshgd gs

but this inverse transform cannot be found in the tables. Instead, we use the
series expansion

1
cosh ¢é

%)
= 26_(18(1 + e—2q5)—1 = 23_‘15 Z (_])Ile—an(S
n=0

o0
=2 (—D)re” e, (3.160)
n=0

The concentration can now be calculated using the same inverse Laplace
transform as in eqn (3.149) as

cr(x,t

q(2n6+x) 0 q(2n6 —X) i|

[Z( e +Z( yE—

200/t ; 2n8 + x
:cll’ ZlFr |:Z( 1) 1erfc< ﬁ)

+Z( 1)"ierfc <MF>} (3.161)

n=1

This concentration profile has been represented in Figs. 3.17 and 3.18. Equation
(3.161) has the correct limiting behaviour. In the absence of mixing the diffusion
boundary layer thickness goes to infinity (i.e. § > Lg at all times), and the
functions ierfc tend to zero except for the one corresponding to n = 0. Therefore,
eqn (3.161) becomes equal to eqn (3.149), as expected. In fact, regardless of
the value of 8, eqn (3.161) becomes equal to eqn (3.149) at times short enough
that t < 75 and 6§ > Lg.
From eqns (3.152) and (3.161) the surface concentration is

c1(0, t)_clil—f[lJrsz( 1)'11erfc(&)}}, (3.162)

n=1

which tends asymptotically towards zero. Since ierfc is a monotonous and
rapidly decreasing function, we conclude that the mixing increases the surface
concentration (Fig. 3.19), that is, ¢1(0,¢) > cl]’(l — Jt/7).

In the time range ¢ > 75, the series in eqns (3.161) and (3.162) converge
to the values given in eqns (3.155) and (3.156), respectively, as can be seen in
Figs. 3.17 and 3.18. However, the convergence is rather slow and it is difficult to
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Fig. 3.17.

Concentration profile during a current step
with mixing for /) = I and times

t/ts = 0.01,0.02, 0.05,0.1,0.2,0.5, 1.0,
and 5.0 (increasing in the arrow direction).
The concentration gradient at the electrode
surface is independent of time (and fixed
by the constant current) only at short
times, while at large times it is determined
by the boundary layer thickness.

Fig. 3.18.

Concentration profile in a current step with
mixing at times 7/t5 = 0.01, 0.02, 0.05,
0.1,0.2,0.5, 1.0, and 5.0 (increasing in the
arrow direction). This plot is valid for any
value of the current density.

Fig. 3.19.

Time variation of the surface concentration
in a current step with mixing for Iy = I1,
(solid line) and the comparison with the
variation in the absence of mixing (dashed
line). Note that Iy = I, | implies T = 5.
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check this limiting behaviour analytically from eqn (3.161). Fortunately, with
the help of the approximation

ierfc(z) = Z [ierfc(z + ny — y) — ierfe(z + ny)]

n=1

o0 o0
%yZerfc(z—l—n —%)%ZyZerfc(z—i-Zny—y)
n=1 n=1
- y y
~2 [f( 2n—1 ——)—'f( 2 —7)}
Zlerc z+ (2n )y > ierfc ( z 4 2ny 2

n=1

—22(—1) 1erfc( Z4ny— E) (3.163)

where we have treated both y and n as dummy variables with the only restriction
that y < z, eqn (3.161) reduces to

(x,1) 1—1\/5[2' f(L>—' ( +x)
c1(x, ’\-/Cl 5 . 1eric Zm ierfc Zm

. §—x
—ierfc <2 Dﬂ)]} R (3.164)

for ¢t > t5 and Lg > §. When the arguments of the ierfc functions are very
small, we can further use that

1
ierfc(z) ® — —z whenz <« 1, (3.165)
JT

and eqn (3.164) then becomes approximately equal to eqn (3.155); see also
Fig. 3.17.

3.4.4 Current scan

The time dependence of a linear current scan from zero at time ¢ = 0 is
I(t) = lyat, (3.166)

where @ > 0 is a constant with dimensions of inverse of time. Its Laplace
transform is

I(s) = OT (3.167)

and eqn (3.166) can then be used to determine the coefficient B in eqn (3.145) as

B Its)  Ia 1 3.168)
a 21F+/sDq - 721FDy qs2’ '

where g = /s/D; and we have considered that the solution is not mixed.




Non-stationary or transient electrode processes

The solution of eqn (3.138) in the time domain is now formally given by

_ Ipa e %
caGn=c+£ I(Z]FD] qs2>' (3.169)

This inverse Laplace transform can be found in Laplace tables [9, 22-24] and
leads to

loa 3/2:3
————(41)”“17erfc(¢), 3.170
lem( ) () ( )

where ¢ = x/(2+4/D1t) is the previously defined Boltzmann variable and

cl(x0) =c} +

—1/2

14
erfe() = T(;z T et - 1%(28 + 3)erfe(?) (3.171)
is the third integral of the complementary error function [9]. This concentration
profile has been represented in Fig. 3.20.

The surface concentration

4 Iya t\?
1O =c+-———=p3?=¢b 1—(7) 3.172
1(0,1) 1 3 ZlF\/rDl 1 T ( )
vanishes (for cathodic reductions where Iy < 0) at the transition time
2/3 2
3z1FcP/7D 371 Fc?
r= (VAR _gpy (2L (3.173)
4lpa 4lpat

which varies with the scan rate a (Fig. 3.21).
If we compare this transition time with that observed using the current-step
technique we have, from eqns (3.152) and (3.173), that

(Tscan)l/2 _ é step (3.174)
Tstep 2 I(Tscan)” '

2 o o o

¢ (x )=c1 (0,0
ct]’A c1 (0, 1)

e o o 9o

)

e Y
00 05 10 15 20 25 30

x/ @2y Dit)
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Fig. 3.20.
Concentration profile in a current scan
(without mixing).
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Fig. 3.21.
Time variation of the surface concentration
in a current scan.

Fig. 3.22.

Concentration profile during a current scan
at times 7/t = 0.1,0.2,...,0.9, and 1.0
(increasing in the direction of the arrow).
The concentration gradient at the electrode
surface is proportional to time because it is
determined by the scanned current.

Transport at electrodes
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where I (tscan) = lpat; note that the second equality in eqn (3.173) is very help-
ful to verify eqn (3.174). If we choose the scan rate a so that the transition time
is the same in these two techniques, then the scanned current at the transition
time is 3/2 times higher than in the step technique.

The concentration changes during a current-scan experiment can be better
understood with the help of Fig. 3.22. As time progresses, the concentration
changes propagate towards the bulk solution and the surface concentration
decreases in such a way that the gradient at the surface is determined by the
current, and hence it is proportional to time. Eventually, a transition time 7 is
reached when the surface concentration vanishes. The diffusion front has then
covered a distance of ca. 34/D;T.

3.4.5 Voltage step

In chronoamperometric techniques, the electrode potential and hence the sur-
face concentration of the electroactive species is known as a function of time.
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The coefficient B in eqn (3.145) can now be determined as

Cb
B=2(0,s5) — L, (3.175)
S

where ¢1(0, s) is the Laplace transform of the surface concentration ¢y (0, 7).

In a voltage step (potentiostatic method) the electrode potential is biased to
a constant negative (or positive) value at ¢ = 0 so that the electroactive species
is immediately reduced (or oxidized). The Nernst equation for the equilibrium
electrode potential implies that the surface concentration of the electroactive
species is fixed after the voltage step (i.e. for ¢ > 0) to the value

c1(0,1) = he?VAE, (3.176)

where AFE is the voltage step. This surface concentration is practically zero
when the step is very large (i.e. —zif AE > 1). Since this concentration is
independent of time, its Laplace transform is ¢1(0,s) = ctl’eZ‘fAE /s and the
solution of Fick’s second law, eqn (3.138), in the time domain is formally
given by

e

i =ct [1 + @/AE ! (T)] (3.177)

Looking for this inverse transform in the Laplace tables [9, 22-24] we get
c1060) = S8+ @@AE — 1) erfe(0)], (3.178)

where ¢ = x/2+/Dit is the Boltzmann variable. This concentration profile is
represented in Fig. 3.23 in a dimensionless form that is valid for all values
of AE. It can be seen from eqn (3.178) that the function represented in this
figure is erf(¢). In fact, when —z;f AE > 1, the concentration profile reduces
toci(x, 1) ~ cl]’erf (¢). Finally, it is interesting to observe once again that the
diffusion front proceeds no further than ca. 6+/Dit. Thus, digital simulations
of diffusion in an electrochemical process do not need to extend beyond this
distance.
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Fig. 3.23.

Concentration profile in a voltage step.



122

Transport at electrodes

The electric current density is then

3 D
1(t) = —z1FD) (ﬂ> = g FP (e AE — 1y [ZL (3.179)
ox /o wt

which is known as the Cottrell equation.

Exercises

3.1

3.2

33

34

3.5

In relation to the example of a ternary electrolyte worked out in Section 3.2.5,

show that the system behaves as a binary electrolyte solution when 012’3 < cll’3
and the ionic concentrations at the electrode surface are then

I
¢i(0) =c? <1—7) i=1,3.
L

Consider the cathodic reduction of a univalent metal cation M7 in an aqueous
solution containing the salt MTA~ and the acid HFA~. Derive the steady-state
concentration profiles in the following cases:

(a) the salt MTA™ is completely dissociated, and

(b) the salt MTA~ is completely associated.

How does the diffusion coefficient of A™ affect the limiting current in both cases?
Consider the stationary ionic transport in an aqueous solution of Cu(HSO4) T,
HT, and HSO, in the boundary layer close to an electrode where the reaction

Cu(HSO4)" +2e~ — Cu(s) + HSO

takes place, i.e. case ii) in Section 3.2.6. Find the ionic concentrations at the
electrode surface as particular cases of the general expression, eqn (3.71)

) b jid Io I 14z I =zl
ci(0)=¢/ 1 — —_— {1l = — —1 1-——
! Dic? (141 ILo ILo

worked out at the end of that section. Check also that ¢1(0) = ¢3(0) — ¢2(0).
Consider the stationary ionic transport in an aqueous solution of Cut2, Ht, and
HSO, in the boundary layer close to a cathode where the reaction

Cut? 4 2e™ — Cu(s)

takes place, i.e. case i) in Section 3.2.6. Determine the limiting current density
and the potential drop in the diffusion boundary layer as a function of the bulk
concentrations of Cu(HSOg4); and H>SO4. Study also the limiting cases in which
either of these concentrations vanishes.

A metal electrode is placed in an aqueous solution of a binary electrolyte AT B~.
The initial electrolyte concentration is cb. By imposing a constant current density
I, the reduction of the cation takes place until the stationary state is achieved.
Calculate the final concentration profile and the limiting current density in the
following cases:

(a) The solution is well stirred and the thickness of the Nernst layer close to the

electrode is §.



3.6

3.7

3.8

3.9

3.10

3.11

Exercises

(b) Fromthe beginning, anideally selective cation-exchange membrane is placed
at a distance 8. From the cathode, and the electrolyte solution is stagnant in
between them.

Describe the time-dependent concentration and electric potential distribution in

the two cases of the previous exercise.

An electrode is equilibrated with a solution that contains a redox couple A%l /A%2.

From time ¢+ = 0, a current step of amplitude I is applied and the electrode

reaction

AT Z A2 4 ope”

proceeds under quasi-equilibrium conditions until species A%! runs out at the
electrode surface. Using the Nernst equation

E(t) = E°’ + Eln 2(0, t)7
nF  ¢1(0,1)

where E°’ is the formal standard potential, and assuming that /Dy c'l’ ~ «/chg,
show that the electrode potential can be expressed as

SN —
E(t) =E° + arctanh N
nF T

where 7 is the transition time.

Solve the diffusion equation for a current step with mixing using the method of
separating the variables, i.e. introducing the transformation ¢ = ctl’ + X )T (1)
and writing the concentration of the electroactive ion as a Fourier series.

The voltage step can be (mathematically) described as a chronopotentiomet-
ric technique in which the current is proportional to 1~1/2_ Solve the diffusion
equation imposing that the current is / = ot~ /2, and evaluate the surface con-
centration. Then find the value of & by comparing your result with the equation
c1(0,1) = c'l’ezlfAE.

Consider the irreversible reaction of species 1 at the electrode forming species
2, which undergoes a homogeneous, irreversible reaction forming species 3 (i.e.
the so-called EC mechanism). By solving the equations

dey _ pd%
ar  oax2’
d202

0=D w2 kcg',

where m > 11is an integer, obtain the concentration profiles ¢y (x, f) and ¢; (x) with
appropriate initial and boundary conditions. Note that the transport of species 2
is assumed to take place under steady state.

Consider the irreversible reaction of species 1 at the electrode forming species
2, which undergoes a homogeneous, irreversible reaction forming species 3 (i.e.
the so-called EC mechanism). By solving the equations

dcp 3201
ar 7 ax?
dcy 3262

o0 ~Poa ke
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312

3.13

3.14

obtain the concentration profiles cq (x, ) and c¢; (x, ) with appropriate initial and
boundary conditions. Compare your solution with that of the previous exercise
form = 1.

Find the Cottrell equation corresponding to a large voltage step in a hemispherical
microelectrode of radius a by solving the diffusion equation in spherical geometry

dc 18 (,dc 3%c L 20
— =D——\rr—\|)=D| — -_—
ot r2 or ar a2 ror

under the initial and boundary conditions c¢(r,0) = P and c(a,t) =0.

(Hint: Use the transformation c(r,t) = b+ u(r,t)/r.)

Describe the time evolution of the concentration profile during a current step in
a hemispherical microelectrode of radius a by solving the diffusion equation in
spherical geometry

dc 19 (,0c 326+23c
—=D——[rr—|=D|— -
ot r2 or ar ar2  ror

under the initial and boundary conditions c(r,0) = b and 0c/0r)r=q =
—1/zFD. Is there a transition time for any value of the current density as in
the case of a planar electrode?

(Hint: Use the transformation c(r, 1) = &+ u(r,t)/r.)

A simplified conductance cell is formed by two parallel plates of the same metal
M that have a geometrical surface area A and are separated by a distance d. For
the sake of simplicity, consider that the cell has uniform cross-section A. The
cell is filled with an aqueous solution of concentration P ofa strong electrolyte
M1A~, and the electrode reactions are M + e~ < M.

(a) Find the dependence of the electric current i = A/l through the cell with

the applied potential difference between the metal plates, Ag ¢ = ¢ﬁ — @Y,
where B and « denote the metal plates. In the solution phase use a position
co-ordinate x ranging from O at the plate « to d at the plate 8, and define the
current density / as positive from « to S.

(b) From the total power —i Ag ¢ consumed by the cell during operation, evaluate
the contribution from ohmic (or Joule) dissipation and the contribution from
electrodiffusion.

(c) Describe the relation between qub = ¢f — ¢% and I when I — 0, and
discuss whether diffusion (or concentration polarization) effects can then be
neglected.
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Transport in
membranes

4.1 Transport across neutral porous
membranes

In this section we describe different aspects of the one-dimensional trans-
port processes (in the absence of homogeneous chemical reactions) across a
chemically inert, porous membrane, which has the only function of creating a
well-defined unmixed space between two compartments « and . The compart-
ments are ideally mixed, so that they have homogeneous solute concentrations
¢ and ¢ at all times. These concentrations may be constant if the compartment
solutions are circulated, or vary with time as a result of the transport across the
membrane if they are not. If the first case, a true steady state can be reached. In
the second one, the transport process is time dependent because so they are the
compartment concentrations. However, when the compartment volumes V¢ and
V# are large (compared to the membrane volume), the solute flow leads to very
slow time variations of ¢®(¢) and ¢?(¢), and these can be considered constant
as far as the transport across the membrane is concerned. This type of transient
transport processes are known as quasi-steady processes. In Section 4.1.1 we
consider the transport of a neutral solute under these conditions and then in
Section 4.1.2 we analyse the validity of the quasi-steady-state assumption.

4.1.1 Quasi-steady diffusive transport between two
closed compartments

Consider the transport of a neutral solute in the experimental set-up depicted
in Fig. 4.1. Initially, the solute is present only in compartment o, where its
concentration is c. The time variation of the concentration in compartment o
is given by the mass balance

. Ve de® @0

T A A '
where j is the solute flux density across the membrane and A is the membrane
area. The solute concentration in compartment 8 can be obtained from the total
mass balance in the cell

Vel = Ve () + VPP (1) 4.2
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cP(t) = W[CO —c*()]. 4.3)
The solute concentration inside the membrane is denoted as c(x, t) and its
flux density j is given by Fick’s first equation

ac

" (4.4)

j=-D
Under (quasi)steady-state conditions, it can be assumed that j is independent
of position and eqn (4.4) can then be easily integrated over the membrane,
extending from x = 0 where the solute concentration is ¢(0,7) = ¢*(¢) to
x = h, where itis c(h, t) = P (1), to give

P -

The concentrations ¢® and c?, and the flux density j, however, are slowly
varying functions of time. In particular, since the solute is initially present in
compartment « only, the flux density varies from an initial maximum value
Dcg /h to zero at large times when the two compartments have the same
concentration

C

yo
= Cgo

o
o0

Inserting eqns (4.5) and (4.3) into eqn (4.1), the solute concentration
in compartment « is found to be given by the linear ordinary differential
equation

dc® 1 1 o« €0
?*(Tﬁiﬁ) <=2 @7
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where the coefficients

Veh
™ = (4.8)
AD
B
s Vh (4.9)
AD

are the characteristic times required for diffusion to change significantly the
concentrations of compartments « and 3, respectively. The solution of eqn (4.7)
with the initial condition ¢*(0) = cf is

N P + .[ﬂ e—t/r

(1) = ¢l 7 = e /T 4t (1—eT), (4.10)

and, therefore,
Ay =cla—e /) 4.11)
j= —V;% = %e—”f = DTcge—f/f, (4.12)

where 1/t = 1/t + 1/7P. The fact that the relaxation time of the system
towards equilibrium, 7, is a harmonic mean of 7% and z# implies that the smaller
compartment determines the system response. Thus, for instance, if compart-
ment B is much larger in volume than compartment «, eqn (4.10) reduces to
c“(t) = cg e~!/™  Figure 4.2 shows the representation of eqns (4.10) and (4.11)
for different values of the ratio t#/t% = V#/V?. Note that at large times the
concentrations are given by eqn (4.6) and decrease with increasing V4 /V¢.

In Fig. 4.2 we have not used the values of the membrane thickness /# and
area A because of the use of dimensionless variables. In practice, however, the
so-called membrane constant A/h is not known and has to be determined from
the experimental data of ¢ (7). In particular, eqn (4.11) shows that a plot of

tlT tlT

Fig. 4.2.

Time variation of the solute concentration in compartments « and j for o /7% = 1,3, 10, and 30 (increasing in the arrow direction).
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In[1 — cP (t)/cgo] vs. t must yield a straight line of negative slope 1/t < A/h
from which A/h can be determined. Alternatively, the analysis of the initial
behaviour leads to

VBB (1) ~ (A/)Dc3t  whent < T, (4.13)

from which A /A could also be determined if V# and D were known.

4.1.2 Lagtime in diffusion

The quasi-steady-state assumption used in Section 4.1.1 implies that the con-
centration profile inside the membrane is linear and can be described by the
expression

c(n, ) = (1) (1 - %) + cﬁ(t)%
= e/ (1 - %) (1 —eT), 4.14)

where we have used that ¢%, = cgo. This assumption might seem dubious
because the linearity of the profile stems from the absence of time depen-
dence of the diffusion process and, at the same time, the solute concentration
in the compartments varies with time. The validity argument that was given
in Section 4.1.1 is that the solute concentration in the compartments varies
slowly with time when their volumes V¢ and V# are large compared to the
membrane volume VM = Ah. We can now provide additional reasons. The
time required for the solute to cross the membrane is the diffusional time
™ = p2/D = VMp/AD. Since the flux density at short times 7 << 7 is
j= ch /h [see eqn (4.12)], the amount of solute that transfers to compartment

in a time ™ is
B
An ~ AjeM &~ vMeg, 4.15)

When this is compared with the amount of solute initially present in compart-
ment «, nj = V%c{, it becomes clear that the condition V* > VM implies
that the changes in the solute concentration in the compartments are negligible
for processes taking place in times of the order of t™, and hence the quasi-
steady transport assumption seems reasonable. In fact, the weakest point in the
use of this assumption is that the flux density in eqn (4.5) is considered to be
established immediately, even though the membrane does not actually have a
linear concentration profile at ¢ = 0. In any case, a more complete analysis of
the validity of the quasi-steady-state assumption seems to be convenient.

The actual time and spatial variation of the solute concentration inside the
membrane should be obtained from the combination of Fick’s first law and the
continuity equation, that is, from Fick’s second equation

dc 9j e 3%
- = D

— = — =0. 4.16
at  ox ot 9x2 (4.16)
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We solve this equation next for a situation in which the concentration in com-
partments o and B are kept constant (by external circulation) at the values c”
and 0, respectively. At the beginning of the experiment, the solute concentration
inside the membrane is c(x,0) = 0 and the boundary conditions for eqn (4.16)
are then ¢(0,7) = ¢ and c(h, ) = 0. Since the boundary conditions establish
that the changes in concentration must take place over a spatial scale fixed by
the membrane thickness %, a dimensional analysis of eqn (4.16) shows that the
time scale for concentration changes is T = h2/D. That is, the solution of
eqn (4.16) must approach the steady-state behaviour

c(x,00) = (1 - %) 4.17)

in a time of the order of ™.,

Equation (4.16) does not have an analytical solution in closed form under
these boundary conditions but can be solved by the method of separation of
variables,! i.e. by writing the solution in the form

c(x, 1) = c(x,00) + X ()T (1). (4.18)
Inserting this ansatz into eqn (4.16) we obtain

1 d7 14X
- -2 4.19
DT dt X dx? “.19)
Since the right-hand side of eqn (4.19) is only a function of position and the
left-hand side is only a function of time, we conclude that this can only be true
if both sides are equal to a constant that we write as —A%. Thus, we can split
eqn (4.19) into two ordinary differential equations

1 dr 2
——— ==\, (4.20)
DT dr
1 d’x 5
—— = —A, 4.21
X a2 4.21)
whose solutions are
T =e¥D, 4.22)
X = Asin(Ax) 4+ B cos(ix), (4.23)

where we have imposed, without loss of generality, that 7(0) = 1. The boundary
condition ¢(0,7) = ¢ requires that the coefficient B must vanish, and the

! Actually, the name of this method is superposition of separated solutions because the solution
is not finally written in the form of eqn (4.18) but as a sum of terms with separated dependence in
xand .
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boundary condition c(k, t) = Orequires that sin(Ah) = 0, which can be satisfied
if A is of the form

nmw .
I = W ninteger. 4.24)

Therefore, the complete solution must be
o0 2.2
b X . nmx n=m<Dt
) = 1—7)4— A, sin — e —— . 4.25
cx,n)=c ( N r?_l n 7 Xp( 2 > (4.25)

h
Finally, the orthogonality condition f sin(nmwx/h) sin(mmx/h)dx = (h/2)8,m

0
and the initial condition c¢(x,0) =0 can be used to determine the coefficients
A, as

2 b
A, =2 (4.26)

niw

The final solution is then

b 2.2
b X 2¢ 1 . nmx nm<Dt
C(X, t) =c (1 — ﬁ) — 7 E ; sin T exp <_ 2 B (427)

and its graphical representation appears in Fig. 4.3.

Figure 4.3 confirms that the time required to establish the linear concentration
profile inside the membrane is of the order of z™. Therefore, it is only after this
time that the flux density that enters the compartment S

ity =—p( 2
=0 (5).

D 72D,
; [1+2Z( 1)"exp< h’ﬂ (4.28)

n=1

reaches the steady-state value Dc®/h (Fig. 4.4).

0.0 0.2 0.4 0.6 0.8 1.0
x/h
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Fig. 4.3.

Concentration profiles inside the
membrane at times t/‘L'M = Dt/h2 =
1074, 1073, 1072, 107!, and 1
(increasing in the arrow direction); the first
100 terms have been computed in the
series of eqn (4.27).
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Fig. 4.4.

Time variation of the dimensionless flux
density that reaches the compartment
according to eqn (4.28); the first 100 terms
have been computed in the series.

Fig. 4.5.

Cumulative flux density, in heb units,
against time according to eqn (4.29); the
first 100 terms have been computed in the
series. The dashed line corresponds to the
approximate behaviour at large times
described by eqn (4.30).
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The flux density represented in Fig. 4.4 is not measured directly. Instead, the
concentration in compartment 8 can be measured as a function of time and used
to evaluate, through the relation Q = VA#¢#/A, the cumulative flux

t
o = f j(h, tHar'
0
Dcb ™M M (qyn ( n’n2Dt
=0 expl| ———

t_i_i
h 6 w2 n? h?

n=1

) , (4.29)

oo
where we have used that > (—1)"/ n* = —m?/12. Equation (4.29) reduces at
n=1
large times to

- DcP b! — Tlag
o) ~ T([ — Tlag) = he M (4.30)

which is the same as would be expected if the steady-state flux density Dc?/h
were established after a lag time 715, = ™6 = h2/6D. Figure 4.5 shows a
comparison of the graphical representations of eqns (4.29) and (4.30).

In conclusion, we have shown that the quasi-steady-state approximation is
indeed very good when T™™ <« 7%, t# and that, at times t > t™, the concen-
tration profile is approximately linear and the flux density is independent of
position.
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4.1.3 lontophoretic enhancement

We consider now the transport of a charged solute in the experimental set-up
shown in Fig. 4.6, where a potential difference A is applied between the
electrodes. A fraction A¢ of this potential difference drops inside the membrane
and influences the transport of the charged solute. We aim here to determine
the migrational contribution to the steady-state solute flux density across the
membrane.

The solute flux density j is given by the Nernst—Planck equation

j=—-D %-{- d—¢> (4.31)
Jj=- (dx ZCfdx s .

where f = F/RT and z is the solute charge number, and we consider in detail
those cases in which migration enhances the solute flux in the positive x direction
(i.e. from compartment « to 8). This requires that zf d¢ /dx < 0. For the sake of
simplicity, we use the Goldman constant-field assumption,2 dep/dx = A¢/h.
Since the steady-state flux density is independent of position, the Nernst—Planck
equation then becomes a first-order, linear, ordinary differential equation that
can be integrated over the membrane, extending from x = 0, where the solute
concentration is ¢(0) = ¢%, to x = h, where it is ¢(h) = ¢P. This leads to an
exponential concentration profile inside the membrane

e—ZfA¢ _ e—zfA¢ x/h

— B o _ B
c(x) =c” 4+ (¢ c?) e v s

(4.32)

2 In principle, the local electric field is an unknown variable that needs to be determined from the
local electroneutrality requirement. This field acts on every charged solute and hence is responsible
for the coupling of the ionic fluxes. In the Goldman approach, the electric field is not determined and
hence the coupling between the ionic flux equations is eliminated, and we can solve the transport
equation of any charged solute without considering the other solutes.
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Fig. 4.6.

A cell divided in two compartments by a
porous membrane. The compartments are
well stirred so that concentration gradients
only appear inside the membrane. The
solute concentration in the compartments
can vary with time due to the mass
transport across the membrane. A potential
difference is applied between two
electrodes in compartments « and 8. A
fraction A¢ of this potential difference
drops inside the membrane and influences
the transport of the charged solute.
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Fig. 4.7.

Dimensionless stationary concentration
profiles calculated from eqn (4.32) for
—zf A¢p =0,1,2, and 5 (increasing in the
arrow direction).

Transport in membranes

and to the Goldman equation for the flux density

. D zfA¢ . D .
j= _Ziezfi«b . l(cﬂerA¢ =) = LB - PeT 29, (4.33)
where
h fA
E= _ _JAae (4.34)

[l ed 1= Odx T efAe —

is the so-called iontophoretic enhancement factor. Figure 4.7 shows the effect
of a dimensionless membrane potential on the concentration profile. Obviously,
when A¢ = 0 there is no migrational contribution and the concentration profile
is linear, ¢ = ¢® 4+ (c? — ¢*)x/h.

To illustrate the importance of the iontophoretic enhancement factor
(Fig. 4.8), it can be mentioned that in drug-delivery problems, compartment
o might represent a drug patch and compartment 8 the body circulation, so that
VA > V®and ¢ ~ 0 [see eqn (4.3)]. That is, compartment 8 behaves as a per-
fect sink for the solute. The solute flux density is then j = DEc®/h, so that E tells
us how much the applied electric potential difference (such that —zf A¢ > 0)
enhances the flux of the charged drug across the membrane (i.e. across the
human skin). At high potential differences —zf A¢p > 1, E ~ —zf A¢ and,
since 1/f = 25mV, a potential difference A¢p = —1V makes E =~ 40 for a
singly charged drug, z = 1. This explains why iontophoretic drug delivery has
received quite a lot of attention during recent decades.

In closing this section, we analyse how the (time-independent) membrane
potential A¢ influences the time evolution of the solute concentration in com-
partments o and . These vary, respectively, from their initial values ¢ and 0
to the final equilibrium values. Setting j = 0 in eqn (4.33), it is deduced that
the equilibrium concentrations satisfy the Nernst equation

Ap =¢f —¢p* = %ln %. (4.35)
Coo

C‘CB
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This equilibrium condition, together with the mass balance V(¢ — cg,)

=Vh cgo, determines the final concentrations

Va
P L S (4.36)
o Oye  yBe—i A
B _ ve
&f = 4.37)

o
Oyadas 4 vh-

From eqns (4.1), (4.3) and (4.33), the time variation of the solute concentra-
tion in compartment « is given by

(4.38)

dc® 1 e A¢ Eeo cSEe*’f Ad
= _ =0
dt TY ‘[ﬂ ‘[ﬂ

where ¢ and 7# are the characteristic times defined in eqns (4.8) and (4.9).
The solution of this equation with the initial condition ¢*(0) = cf is

(1) = e TAP) 2 [ — e /TAP)], (4.39)
Pty = B[1—e 1/ AD), (4.40)
j= %Cge”/ Ta9), (4.41)
where
1 1 e¥A¢
WEE({[X—I— — ) (4.42)

The time evolution of the solute concentration in the compartments calculated
from eqns (4.39) and (4.40) is presented in Fig. 4.9 for the case t* = 2. 1t
is observed that rather modest values of —zf A¢ > 0 empty compartment o
very fast and effectively. That is, the effect of a migrational contribution to the
solute flux (from compartment « to B) is to decrease both the characteristic
time of the process T(A¢) and the final concentration ¢%_, as can be deduced
from eqns (4.36) and (4.42).
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Fig. 4.8.

The iontophoretic enhancement factor

E =zf A/ 2 — 1) equals one in the
absence of membrane potential (A¢ = 0)
and increases linearly with —zf A¢ > 0 at
large membrane potentials.



136 Transport in membranes

1.0} 1.0t
08} 08}
“osf % 0.6]
< o4l S o4l
<
02f 02}
0.0k . n n n n ; 0.0 E . . . . . .
00 05 10 15 20 25 30 00 05 1.0 15 20 25 30
/T t/ T

Fig. 4.9.

Time variation of the solute concentration in compartments « and § for 7% = 7P and —zf A¢p =0,1,2, and 5 (increasing in the arrow direction).

4.1.4 Lagtime in electrodiffusion

Figure 4.9 and eqn (4.42) show that an increase in the membrane potential
reduces the characteristic time for the observation of the concentration changes
in the compartments. The theoretical approach that has led to Fig. 4.9 is based
on the use of the quasi-steady-state assumption and we can expect, from the
arguments worked out in Section 4.1.2, that this assumption is valid only when
T(Agp) > ™, In other words, a sufficiently large increase in the membrane
potential might have the effect of breaking the validity of the quasi-steady-
state assumption. It is therefore convenient to extend the analysis carried out in
Section 4.1.2 to take into account the effect of migration.

The actual time and spatial variation of the solute concentration inside
the membrane should be obtained from the combination of the Nernst—
Planck equation and the continuity equation. Under the Goldman constant-field
assumption, this equation is

dc 9 dc 3%c  zfA¢ dc
—+L=—"_D|— —)=0. 4.43
ot + ox 9t <8x2 + h  ox (4.43)

We solve this equation next for a situation in which the concentrations in com-
partments « and § are kept constant (by external circulation) to the values c*
and ¢, respectively. At the beginning of the experiment, the solute concen-
tration inside the membrane is c(x,0) =c? and the boundary conditions for
eqn (4.43) are then ¢(0,¢) =c% and c(h,t) = B, Using an approach similar to
that worked out in Section 4.1.2, we write the solution of eqn (4.43) in the form

e~ Abx/h _ |

. — oo B _
clx,t) =c" + (c c”) p v —

+Xx)T (1), (4.44)

and split it into the following two linear, ordinary differential equations

1 dr )
—_—— = A7, 4.45
DT dt ( )

1 d2X+zfA¢dX
X \ dx? ho dx

= -2, (4.46)
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whose solutions are

T =e XDt (4.47)
X = e ¥29X/2h (A gin rx + B cos rx), (4.48)

where r = /A2 — (zf A¢/2h)2. The boundary condition c(0, £) = c* requires
that B = 0 and the boundary condition c¢(h,t) = c? requires that sin 7h = 0,
which can be satisfied if r is of the form r,, = nm /h with n integer. Therefore,
the complete solution is

e—ZfAd)x/h -1

—2f Apx/2h
g1 1 °

c(x,t) = + (c? — )

x Y Aysin % exp {—%[nzn2 + (fAD /2)2]}. (4.49)

n=1

Multiplying both sides of eqn (4.49) by ¥ 2¢*/2hsin(ms x/h), integrating over
the membrane thickness and making use of the initial condition c(x,0) = ¢/
the coefficients A,, are determined as

nmw

_ B _
An =2(e" = ¢ )nzrr2 + (zf Agp/2)2°

(4.50)

and the final solution is then

e~ Abx/h _

B _ a\.—f Apx/2h
p v — +2(c” = c™)e

et t) =c* + (P — %)
ad nw nwx
x Z 22 + (zf Ag/2)? S

n=1

 ex Dt 5 5 2
R ("7 + (f Ap/2)" ] . (4.51)

Figure 4.10 shows the graphical representation of eqn (4.51) and it is observed

that migration modifies the final concentration profile but the time required to

achieve it is still of the order of T™ = A2 /D, like in the absence of migration.
The flux density that enters the compartment S is

P [( 3;) N CﬁM} = _Dpepeane _ o
ox /) _p h h
D - o0 (_])nnznz
P f Ag/2 S o o~
25 (" =cMe > n?m? + (zf Ap/2)?

n=1

X exp {—%M[nzyﬁ + (Ff A /2)2]} 4.52)
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Fig. 4.10.

Concentration profiles inside the
membrane according to eqn (4.51) for

—2f A¢ = 5 and times /T = Dr/h?
=107%,1073, 1072, 107!, and 1
(increasing in the arrow direction); the first
100 terms have been computed in the
series.
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and the cumulative flux is

t
o) = / j(h, YAt = —hE(cPe? B¢ — %) LM
T
0
B oy BB (=)"n’n?
+ 2h(c? — c%)e nz i T (A

x (exp {—TLM[n%# + (zfA¢/2)2]} - 1). 4.53)

At large times, the cumulative flux can be approximated by

(1) = hE(c® — cPei ) L~ Tae (4.54)
T
where
o _ B _
M *—c 7f A¢ coth(zf Ag/2) — 2
Tag =T 0~ BedAd (f Ap)? ’ (4.55)
and we have used the result [1, 2]
ad (—=D"n*n? 1 zf A¢ coth(zf Agp/2) — 2
Z 2.2 212 - " 1 : : (4.56)
o It + f Ag/2)7] 4 zf A¢sinh(zf Ap/2)

The lag time in eqn (4.55) takes its maximum value ™ /6 when the membrane
potential vanishes and decreases with increasing —zf A¢ > 0 so that at large
potential differences 11,5 ~ ™/ |zf A¢|. Figure 4.11 shows the time evolution
of the cumulative flux and its approximate behaviour at large times for the case
c? =0.

In conclusion, we have analysed the effect of migration (in cases where
it has the same direction as diffusion) and shown that it increases the flux
density by an amount given by the iontophoretic enhancement factor. In this
case of flux enhancement, migration also reduces both the lag time and the
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characteristic time for the changes in the compartment concentrations. The
conditions of validity of the quasi-steady transport approximation are not
significantly modified (at the potential differences considered here).

4.1.5 Circulation of compartments

In Section 4.1.3 we have studied the electrodiffusion of a charged solute across a
neutral porous membrane under quasi-steady-state conditions. We consider now
a similar process in which the solutions in compartments « and 8 are changed
as shown schematically in Fig. 4.12. The compartments are ideally mixed and
have uniform concentrations of the same binary electrolyte. A volume flow rate
V® of pure water is pumped into compartment « and the same flow rate is taken
as an outflow, so that no convection takes place across the membrane. The
electrolyte concentration in this outflow is c{,. The volume of compartment
B is circulated and, after a transient period, the system reaches a state with
approximately constant concentrations c{, and cfz. This is so in spite of the
fact that we are pumping water and taking solution out from compartment o,
because the volume of compartment g is very large, V# > V¢, and its solute
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Fig. 4.11.

Cumulative electrodiffusive flux density,
in hEc® units, against time for —zf A¢ =5
and ¢ =0 according to eqn (4.53). The
first 100 terms have been computed in the
series. The dashed line corresponds to the
approximate behaviour at large times
described by eqn (4.54). The lag time is
Tlag & 0.1237M for —zf A¢ =5 while in
the absence of migration it is 75y =~ rM/G.

Fig. 4.12.

Schematic drawing of the cell used to study
the transport of species i through a porous
membrane with circulation of the solution
in compartment . A volume flow rate V¢
of pure water is pumped into compartment
« and the same flow rate is taken as an
outflow, so that no convection takes place
across the membrane. The arrows for the
flux density of species i and the electric
current density indicate the positive
direction, not the actual flow direction.
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concentration is not affected in practice by the flow through the membrane
towards compartment «. In other words, the system can be considered to be in
a steady state.

The mass balance for an ionic species i(i = 1,2) in compartment «

dc® .
V"‘% = —jiA — Vo 457)
reduces at steady state to
Ve
ji=— n L <0, (4.58)

which allows us to evaluate the molar flux density j; across the membrane. In
the diffusion—conduction approach, this flux density is given by
dc; til Ac; til

Ji 295 +z,-F 2 +ZiF

s (4.59)

where Ac; = cﬁg — ¢ and we have made use of the fact that the concentration

profile is linear because j; is a constant under steady-state conditions. Note that
D1, and t; take approximately the same value in the porous membrane as in the
external solutions.

As mentioned in Section 4.1.1, the membrane constant A/h is an important
membrane parameter that has to be determined experimentally. In the cell of
Fig. 4.12, the membrane constant can be determined by analysing the outflow
concentrations as

(0 P44
é _ C; Ve + lilA/Zl‘F’ (4.60)
b Dy -

where eqns (4.58) and (4.59) have been used. It must be emphasized that the
membrane constant cannot be evaluated from the thickness and porosity pro-
vided by the manufacturer because, among other effects, the membrane swells
in solution. In addition, the effect of the assumptions introduced in the theo-
retical modelling or possible inaccuracies of the experimental set-up are also
hidden in the value of the membrane constant.

4.1.6 Convective electrophoresis

Continuing with the same experimental set-up depicted in Fig. 4.12, let us now
consider that the outflow rate from compartment «, \'/gm, is different from the
inflow rate Viﬁ of pure water. The mass balance for the whole cell shows that
a convective motion is now created across the membrane (Fig. 4.13) and that

the solution velocity is given by

Ve —ye
v= mT"”‘. 4.61)
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The importance of this convective motion in relation to the electrolyte diffusion
across the membrane is characterized by the dimensionless Peclet number

vh
Pe= —

, (4.62)
Di»

so that the influence of convection is expected to be significant when Pe > 1.

Adding the convection term to the diffusion—conduction equation, the flux
density of a solute species i (in the membrane-fixed reference system) is now
given by

Ji=civ— Dlz% Z;—; (4.63)
or
% = % (ci — Cp), (4.64)
where
cyzl(h—”l>. (4.65)
v ziF

The solution of this equation under the boundary conditions ¢;(0) =c{ and
cithy=cl is

ePex/h _ aPe

€
€)= Cit (e = C e = 4 (f )

(4.66)
It is interesting to observe that the concentration profile is only determined by
the Peclet number Pe and the external concentrations, although the external
concentration ¢ is determined by the electric current density as explained
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Fig. 4.13.

Schematic drawing of the cell used to
study the transport of species i through a
porous membrane in the presence of
simultaneous diffusion, conduction and
convection. A volume flow rate Vi‘i‘l of pure
water is pumped into compartment « and a
different flow rate Vs‘m is taken as an
outflow. The solution in compartment S is
circulated. The arrows for the flux density
of species i, the convective velocity and
the electric current density indicate the
positive direction, not the actual flow
direction.
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Fig. 4.14.

Concentration profiles in convective
diffusion calculated from eqn (4.66). The
curves correspond to Peclet numbers:

Pe = —10,—-5,-2,0,2,5, and 10
(increasing in the arrow direction).
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below. Figure 4.14 shows the concentration profiles corresponding to different
values of Pe. In the absence of convection, Pe = 0, the concentration profile is
linear and the concentration gradient inside the membrane is (¢f — cf; )/h. When
Pe is positive and large, the concentration inside the membrane is equal to that in
compartment o, except in the close vicinity of the boundary with compartment
where the concentration drops sharply to c?
—Pe(cf — c;.g )/h. When Pe is negative and large in magnitude, the solution
in compartment § is pushed towards the membrane phase, the concentration

inside the membrane is equal to cf} except in the close vicinity of the boundary

and the concentration gradient is

with compartment o where the concentration gradient is Pe(c{ — clﬁ )/h.
The steady-state flux density is a constant that can be evaluated from the
mass balance in compartment « as
Ve oo
ji= -2 <, (467)

and related to the solute concentration in compartments « and 8 by

. _Dp  Pe _
ji = ﬁ(cf‘ —c?e Pey +

til
h 11— '

oF (4.68)
Curiously, the factor Pe/(1 — e ") in eqn (4.68) has a close mathematical
similarity to the iontophoretic enhancement factor introduced in Section 4.1.3.
This is due to the fact that both eqn (4.31) under the Goldman constant-field
assumption and eqn (4.63) are similar first-order, linear, ordinary differential
equations. The important fact, however, is that eqns (4.66) and (4.68) establish
arelation between the solute concentration in the compartments, the convective
flow velocity, and the electric current density. Therefore, for given experimental
values of 1, v and cf} , these equations allow us to evaluate the concentration cf?‘
that we should expect to measure in compartment o when the steady state is
reached.

An interesting particular case of the above situation is that with Vg‘u[ = 0.The
transport mechanisms inside the membrane are then coupled in such a way that
the flux density of species i given by eqn (4.68) is zero. This has been studied
here for the case of a binary solution, but it can also be achieved in multi-ionic
solutions.
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4.1.7 Lliquid-junction potential

We know from Section 2.3.3 that the transport of a charged species is linked
to the transport of other charged species due to the long-range electrostatic
forces. This coupling implies that the transport of ionic species often gives
rise to internal electric fields that must be evaluated from the solution of
the transport equations. In this section we evaluate the electric potential drop
Adgir = ¢P — ¢* that is established between the membrane boundaries due to
the transport of ionic species under open-circuit conditions (i.e. in the absence
of electric current passing through the membrane).> We do it first for the case
of a binary electrolyte, and then for electrolyte mixtures.

The local electroneutrality assumption accounts for the electrostatic coupling
between ionic species. In the simple case of a binary electrolyte this is

z1c1 + 2202 =0, (4.69)
and the diffusion potential gradient

doais _h dlncy th dlncp

- = 4.70
f dx 71 dx 2 dx 70
can then be easily integrated over the membrane to give
B B
t t c D, —-D c
f At =—(—1+—2> 2= 277 g2 “.71)
AR ) ¢, uaDir—2Dy  cf,

This implies that Aggr =d# — ¢ has the same sign as Acjp = c']S 5 — ¢
when the anion has a larger diffusion coefficient than the cation, and vice versa.
That is, the diffusion potential gives a migrational contribution to the ionic flux
densities that enhances the diffusive contribution of the ion with lower mobility
and opposes the diffusive contribution of the ion with higher mobility.

In multi-ionic systems the situation is much more complicated because the
ionic transport numbers vary with position and the expression for the diffusion
potential gradient

_fdf(i;iif _ tfidng; _ > ZiDiZ(dCi/dx) @72)
Fa 2.5 Djcs

cannot be integrated analytically because the concentration profiles are not
known in general. In the case of mixtures of symmetric z:z electrolytes, the
transport equations can be solved and the diffusion potential obtained from the
solution of two algebraic equations. The integration procedure is explained in
detail in Section 4.3.7 and we outline here the most important steps (for the

3 The evaluation of the membrane potential in the presence of an electric current can be done as
a particular case of that considered in Section 4.3.7 when the fixed-charge concentration vanishes.
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case of a neutral membrane). Using the boundary conditions ¢;(0) = ¢¢ and
ci(h) = ¢”, the diffusion potential is

Adar = 1 it 4.73)
¢d1f—f nc%’ .

and the flux densities of cations and anions are

;i B _ o BoifAdar _ .
C C: C. € C:
L TS ) i M W L ifg=2, (4.74)
D; h P et Apar — (2
T T
;. ﬂ _ A0 .B —ZfA¢dif _ A0
C C C: € C:
L T ) g M W L ifg=—z, (4.75)
D, h C"frj e~ At — &

wherecr = ) ; ¢i is the total ionic concentration and I is an unknown constant.
The open-circuit condition, I = F')_; z; ji = 0, requires that

o e~ Aduit ZDicf— > D,‘Ci-x

cf, edf At — TR C!l’i e~df Adair — 2

o A > DiC,ﬁ— > Dic?
* - . (476)

and further elimination of the diffusion potential using eqn (4.73) leads to

B anzl B o
ct /¢ Dici — > Djc®
(ep/cp) ; i€ ; i¢ 1—¢T (Cg/c%)wzr 1

3 5 = 3 . @I
(h /e Y Dicl =Y Dic® 1420 (chyegyt=r — 1

This transcendental equation must be solved numerically to obtain the value
of I, and then the diffusion potential can be evaluated from eqn (4.73). The
+ and — signs under the sums in eqns (4.76) and (4.77) indicate that they are
restricted to cations and anions, respectively.

Although the above procedure is not too complicated, there are two alter-
native methods that are more popular because they allow for a much simpler
approximate evaluation of the diffusion potential. The first one is Henderson’s
method [3, 4], which assumes that the concentration profiles of all ionic species
have the same functional form

ci =cf + Acid(x/h), 4.78)

where Ac; = cf — ¢ and §(x/h) is an undetermined function that satisfies

8(0) = 0and (1) = 1. Integration of eqn (4.72) gives then

> i zDiAc n Y. 22Dic)

— . 4.79)
Zj ZJ-ZDJ'ACJ‘ > ZIZD[C?

S Adair ~
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In the case of mixtures of z : z symmetric electrolytes, Henderson’s equation
reduces to

ZD,‘AC,’ - ZD,’AC,’

B
¥ 24 Die
of Aaif ~ — Tk

In .
> DjAc; 21 Dicf

(4.80)

In the case of a binary electrolyte, eqn (4.79) is exact and reduces to eqn (4.71).

The second method is based on the Goldman constant-field assumption. This
amounts to considering that the electric potential gradient in the Nernst—Planck
flux equation is independent of position and can be written as d¢ /dx = Adgis /h
(in the case I = 0). The integration of the flux equation for species i then leads
to the Goldman flux equation

jfi _ ZifA¢dif C? eZifA(bdif — C;x (4 81)
D; ~  eufAdair — 1 h ’ ’

The use of eqn (4.81) and the open-circuit condition, I = F )", z; ji = 0, leads
in general to an algebraic equation in e/ 294 that allows for the determination of
Adggir . In the case of mixtures of symmetric, z : z electrolytes, this determination
is very simple because the open-circuit condition requires

otf Adaic ; Dic? - ;Dic;?‘ o~ At ZDiC? — YD

e Aair — | - e~ Adait — |

(4.82)

and multiplication of both the numerator and the denominator of the fraction in
the right-hand side of the above equation by ¥ 2%dif Jeads immediately to the
Goldman equation for the diffusion potential

; DiC? + Z Dﬂ';3

; D,‘C? + Z: Dic;"

(4.83)

The + and — signs under the sums indicate, once again, that they are restricted
to cations and anions, respectively.

To compare these three alternative ways of evaluating the diffusion potential
in neutral membranes, we consider a solution formed by mixing two 1:1 elec-
trolytes with a common anion (which is denoted as species 3). Equation (4.77)
then reduces to

(/T + ) — o+ 1-T

= s 4.84
(Cf/cgt)l-ﬁ—l" -1 14T ( )
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where % = Dic?/Dsc%,rfy = Dl Dscl 18, = Dyc¥/Dscd, and

;"233 = chg /D3C§ . Henderson’s equation reduces in this case to

s+ 8y = (/e — s + 15— D)
(s + 15y + (e /e) — 8y + 15+ 1)

BB, B
(Gt tl) (4.85)
LA ]

fAdgis = —

And Goldman’s equation becomes

Ll (/) + 1

[ A¢air = —In —=——== F
i3 3+ (c3/c5)

(4.86)

Finally, it is noted that the exact diffusion potential can be formally written

as*
B B B 14T o o B
+rh -1 — s — 1
f Aair = — (r}; 2 )(C;/ ) U475 DG g
(3 + s+ DG /)T =+ 5+ 1D G

which resembles eqn (4.85) and, hence, somehow evidences that the Henderson
approximation is more accurate than Goldman’s one. However, eqn (4.87) is
not really useful because it contains the unknown I', which must be evaluated
from eqn (4.84), just like the much simpler eqn (4.73) from which it has been
derived.

Figure 4.15 shows the graphical representation of eqns (4.85)—(4.87) for a
case with 0.2 D; = D, = D3 and different values of the ratios r‘l"3 and rf}3; the

values of r%; and r§3 are then determined from the electroneutrality condition
c1 + ¢2 = c3. Itis concluded from these plots that Henderson’s approximation
is a much better approximation than Goldman’s one. The former is exact in the
case of binary solution (i.e. when either r{5 or rf}3 vanishes). It is also exact
when the two electrolytes are in the same ratio in compartments « and B, i.e.
when r‘f‘3 = rf 3> and both eqn (4.85) and eqn (4.87) simplify then to

A
In = (4.88)
r{g + r§3 +1 G

B B
f Adais = _M
i =

On the contrary, Goldman’s equation only provides a reasonably good
approximation to the exact diffusion potential when cg ~ ¢§. In fact, it can
be proved (see Section 4.3.7) that the electric field is indeed constant when

* Since I'is given by eqn (4.84) and this is a transcendental equation, it is not possible to solve
completely for I'. To derive eqn (4.87) we must obtain a formal expression for I and substitute it
in eqn (4.73). We have considered that the left-hand side of eqn (4.84) is known (even though it
contains I') and that I in the right-hand side is the unknown we must solve for.
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Fig. 4.15.

Diffusion potential (in R7/F units) vs. loglo(cg / cg‘) in a ternary system formed by mixing two
1:1 electrolytes with a common anion (species 3). The diffusion coefficients satisfy the relation
0.2 D1 = Dy = D3 and the concentrations in compartments « and § are: (a)

/e = 1,cf 1 =1, ) /e = 05,¢8 e = 0.5, and () ¢ /e = 1,¢P /ch = 0. That is,
plot (a) corresponds to a binary system, plot (b) to a mixture of electrolytes at equal
concentrations, and plot (c) to bi-ionic conditions where the compartments contain different
electrolytes. The solid lines represent exact results, the long dashed lines have been obtained from
the Henderson approximation, and the short dashed lines from the Goldman approximation.
Henderson’s results are exact in cases (a) and (b), and hence the solid and long dashed lines
overlap. Regardless of the value of cg/cg, I'=(D3 —Dy)/(Dy +D3) = —2/3 and

I' = (2D3 — D1 — D3)/(2D3 + D1 + D3) = —1/2 in cases (a) and (b), respectively. In case (c),
I" varies as shown in plot (d).

cg = c%,s and therefore the accuracy of Goldman’s approximation decreases

as the difference between cg and c% increases.

Plots (c) and (d) in Fig. 4.15 correspond to the case 033 = cf3 =0 in which
compartment o contains only the electrolyte 13 and compartment S the elec-
trolyte 23. In contrast to plots (a) and (b), the diffusion potential is different
from zero when ¢§ = c3ﬂ . This is the so-called bi-ionic potential and amounts to
D1+ D3

. 4.89
Dy & D (4.89)

fAggir =In

5 Itis also required that there are only two ion classes, i.e. the ions have either charge number

z1 Or 2.
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When cf /c§ is much larger than unity, the diffusion potential goes to zero
because electrolyte 23 is then dominant and it creates no diffusion potential
(since we have taken D, = D3).% This explains the somewhat fortuitous accu-
racy of the Goldman approximation in this range. When c3’3 /¢§ is much smaller
than unity, the electrolyte 13 is then dominant and it creates a significant diffu-
sion potential because we have taken D; = 5D3. This potential is approximately
given by

D1 — D3

Adgit ~ —
S Adais D 1 Ds

B
C
In C—; Ared <. (4.90)
3

4.1.8 Uphill transport

The transport of a neutral solute across a neutral membrane takes place in the
direction of decreasing concentration. Charged solutes must also respond to the
electric field and, therefore, they can be transported in the direction of increasing
concentration by application of an appropriate electric field. The transport of
an ionic species against its concentration gradient can also be observed in the
absence of an externally applied electric field. The reason is that an internal
field can be generated due to the presence of concentration gradients and the
differences in ionic mobilities [5, 6]. The transport against the concentration
gradient under these conditions receives the name of uphill transport, and it
deserves special attention because it nicely illustrates the coupling of ionic
transport.

Uphill transport can be better understood by analysing the energetics of
ion transport. The transport of one mol of species i from compartment «

where its concentration is ¢ to compartment § where its concentration is

c? > ¢f requires a minimum work Au; = RT ln(cf/c;") > 0. This energy
can be taken from an electric field: if the membrane potential A¢ = o — ¢

satisfies

RTIn(cl /c&) + ziF A¢ <0, 4.91)
then uphill transport is possible. This condition can be written as Afi; = [Af
—it$ < 0 and highlights an important feature of uphill transport, namely, that
an ionic species i can move down or up its concentration gradient, but it must
move down the gradient of its electrochemical potential.”

Another interesting aspect is that, since the system is under open-circuit
conditions (I = 0), the electrostatic energy —z;F'A¢ taken by species i
during its uphill transport must be provided by other ionic species that
move down their concentration gradient and generate a diffusion potential

® This constitutes the principle of the KCl salt bridge.

7 In the Nernst—Planck formalism, the transport of an ionic species always takes place in the
direction of decreasing electrochemical potential. The transport against the gradient of the electro-
chemical potential can take place across biological membranes, where additional sources of energy
are available, and receives the name of active transport.
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AP = Adggir that satisfies eqn (4.91). As we learned from Chapter 1, the
second law of thermodynamics requires that the dissipation function must be
positive, and therefore

=Y il ==Y jibui = 0,( =0). (4.92)

1

For the species that moves against its concentration gradient, the contribution
—jiAp; to the sum is negative, but this is compensated by positive contributions
due to the ions that move down their concentration gradients.

Consider that the membrane separates ternary electrolyte solutions formed
by mixing two 1:1 binary electrolytes AC and DC with a common anion C™.
The electrolytes are denoted by indices 13 and 23, respectively, and are assumed
to be completely dissociated. The electrolyte concentrations in compartments
a and B are, respectively, c{3, c53, c{g, and czﬂ3 > ¢5;. We aim at describing
the uphill transport of the cation D™, that is, those situations in which its flux
density jp is positive (i.e. from « to ) in spite of the fact that cg > 5 (see
Fig. 4.16). This requires that ¢§ = c{; +¢5; < clﬂ 3+ c2ﬁ3 = cg and therefore the

ratio r3 = c§/ cg < 1 is a convenient parameter to be used. The case cg =c5

is not considered here because no uphill transport can be then observed.
In order to obtain the ionic flux densities, the Nernst—Planck equations must
be solved. The local electroneutrality assumption

cl+c=c3 (4.93)

can be used to eliminate the electric field from the Nernst—Planck equations as
follows
2 B de3

4+ 2 2= (4.94)

Gy = JL
Dy D, Dj3 dx

This implies that the anion concentration profile is linear and that Gy = 2(c5 —

cf )/h. This information can be used in turn to integrate the Nernst—Planck
equation for anions and show that the electric potential profile is given by

Flg@ — 91 = Tn 2 4.95)

3

where

b s
r= W (4.96)
ot o, to;

The diffusion potential can then be written as A¢ = A¢gir = —(I'/f) Inr3 and
the parameter I is yet to be determined.
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Fig. 4.16.

Schematic illustration of the uphill diffusion process. A neutral membrane separates two solutions
of HCI and KCI. Both electrolytes have a larger concentration in compartment 8 than in
compartment «. However, while HCl moves from f to «, it is possible to observe under some
conditions that KCI moves from « to $, that is, against its concentration gradient (a). This is due
to the fact that the electrolytes diffuse as ions and the electrodiffusion of the three ions involved is
coupled through the condition / = 0. This creates a diffusion potential that maintains zero current.
As shown in drawing (b), the potassium ions also move against their concentration gradient.
However, all three ions move in the decreasing direction of their electrochemical potentials (c).

The anion flux density is

D D3’
Jj3= 73(1 —I)(§ — Cg.ﬂ) = 3763(1 -3 =1, 4.97)

and those of the cations are

D

1= IIE (cf3 — Cfsefw)’ (4.98)

L D o B .fAp

2= 7E (¢33 — CH3€ ), (4.99)

where®
E=$—%&_(1+F)M
— rh [ (x)—p?] - dx Lﬁ - r 1+ _ 1
j{) ef * dx f;_(; (C3)Fd6‘3 ( 3)

(4.100)

The condition //zF = j; + j» —j3 = 0 and eqns (4.97)—(4.99) lead to the
following transcendental equation for I'

r
of Ab _ & _ Xiubief +T ¥, Dicf
3 Y, zDicf +T Y, Dic?

(4.101)

8 In deriving eqn (4.100) it is implicitly assumed that I' # — 1. Note the similarity with the factor

E defined in eqn (4.34). When cg‘ ~ c3, Goldman’s constant field is a good approximation and
eqn (4.34) yields approximate values of E very close to those obtained from the exact eqn (4.100).
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>B N3
o3/ ¢35

[Note that eqn (4.101) is the same as eqn (4.84), and it can also be obtained as a
particular case of eqn (4.77).] An initial value that can be used to find iteratively
the numerical solution of this equation is I'g = (D3 — D1)/(D3 + D1), which
corresponds to the absence of electrolyte 23.

Consider that the membrane separates two HCI-KCI solutions such that
cﬁm > chcr cI’iCl > cgep and ¢y > ¢k - The last condition allows us to
conclude that the diffusion potential established in this ternary system should
be practically the same as in the absence of KCI. This diffusion potential is then
approximately given by

B B
C D3—D1 C

Adgit = FAG ~ Toln HA — 22 771, 713 (4.102
fAgait =fAp ~ Ty o " Dy Dy e, )

and, since Do~ = D3 < D; = Dy, it takes negative values. That is, since
the hydrogen ions have a larger mobility than the chloride ions, they make the
electric potential in compartment « positive (with respect to compartment )
when they move towards compartment « due to the concentration difference
cﬁCl — cfic1 > 0 (see Fig. 4.16). Of course, when taking into account both the
concentration and the electric potential gradient, it turns out that hydrogen and
chloride ions move at the same velocity because the diffusion potential enhances
the diffusive flux of chloride ions and retards that of hydrogen ions, and therefore
J1 =~ j3. The transport of potassium ions is affected by the diffusion potential
in a similar way to that of hydrogen ions. That is, the migrational contribution
to the flux density of potassium ions is positive (i.e. from compartment « to
B) and this contribution can overrule a moderate concentration gradient in
the opposite direction (i.e. creating a negative diffusive contribution to the
flux density of potassium ions when c{ic] > cgep)- When this happens, we
talk of uphill transport of potassium ions or, equivalently, uphill transport of
potassium chloride due to the countertransport of hydrochloric acid. Figure 4.16
schematically depicts this situation.

The above comments have referred to a situation in which the concentration
of potassium chloride was much smaller than that of hydrochloric acid, C%Cl >
Ckcy» and hence the diffusion potential was mainly governed by the diffusion
of the latter. This helps us in understanding the nature of uphill transport but
it is not a necessary condition. Thus, although the uphill flux of KCI decreases
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Fig. 4.17.

Dimensionless diffusion potential
established across a neutral membrane that
separates solutions of a mixture of two 1:1
binary electrolytes 13 and 23 against
c2’33/cg3 when c’133/c‘1"3 =5, and

cf3/c55 = 1,2,5,10, and 50 (from top to
bottom). The diffusion coefficients satisfy
the relation 0.2Dy = Dy = D3.
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Fig. 4.18.

Flux density of ionic species 2 (in

Jo = D3¢55/h units) against 053/03‘3 when
/e = 5, and % /2, = 50,10,5,2,
and 1 (from top to bottom). The diffusion
coefficients satisfy the relation

0.2D{ = Dy = D3. The positive values
correspond to flux direction from
compartment « to 8 and hence to uphill
transport.
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Uphill transport

Downbhill transport

c% /¢Sy

in magnitude as cfj¢ /ck decreases, Figs. 4.17 and 4.18 show that this uphill

o — o ,ﬁ o
transport can'also' be obser\'/ed' wh'en Chal = Ckq and ca. kel [¢kar < 24
because the diffusion potential is still rather large (and negative).

4.2 Donnan equilibrium in charged
membranes

4.2.1

Ion-exchange membranes can be defined as ion-exchange resins that can be
regenerated with electric current. They are used in, e.g., various modes of elec-
trodialysis and polymer electrolyte fuel cells as well as to separate (unwanted)
electrode reaction products from the rest of the process. lon-exchange mem-
branes are either cation or anion selective. This is implemented by insertion
of fixed acidic or basic dissociating groups into the membrane matrix. These
groups can be either weak (like carboxyl and amino groups) or strong (like
sulphonate groups), thus leading to fixed-charge distributions that depend or
not, respectively, on the composition of the solution filling the membrane phase.
The membranes with negatively charged (or anionic) groups repel electrostati-
cally the anions and attract the cations, so that their fixed charge is compensated.
They are known as cation-selective, cation-exchange or anionic membranes,
although the latter denomination is discouraged. Similarly, the membranes with
positively charged (or cationic) groups are known as anion-selective, anion-
exchange or cationic membranes. The ions in the solution filling the membrane
are denoted either as counterions if they are of opposite sign to the fixed charge
groups, or as co-ions if they have similar charge. In general, cation-exchange
membranes are more selective and durable than anion-exchange membranes,
but both types have lately been improved significantly and can resist elevated
temperatures and strong acidic and alkaline solutions. A typical structure of a
cation-exchange membrane is schematically depicted in Fig. 4.19.

lon-exchange membranes

4.2.2 Donnan equilibrium

The immobilized ion-exchange groups in the membrane, —R?, bring about
an interesting equilibrium state between the electrolyte solutions internal and
external to the membrane. Consider that these solutions are composed of the
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same strong binary electrolyte A,, C,,, dissociating completely into v; ions
AY and v, ions C? such that zjv; + zov» = 0. The molar concentration® of
fixed groups is c¢p and their charge number is zy; in practice, all available
ion-exchange membranes have univalently charged groups and zy = +1.

The Donnan equilibrium condition for the distribution of an ionic species
i between the internal (phase superscript M) and external (superscript w)
solutions establish that its electrochemical potential is the same in the two
phases

aM =Y. (4.103)
Similarly, the equilibrium condition for the electrolyte is
1 = i) s = viay + nid = uh. (4.104)
Using the expression
i = ui + RT In(yic;) + ziF ¢ (4.105)

for the electrochemical potential of species i, the above distribution equilibrium
conditions become!?

1M 4 RT In(MeM) + 2 FgM = 10 + RT In(yVel) + ziF¢Y, (4.106)

1wt + RTIn(yeM ) = w5y’ + RT In(ysel 1), (4.107)

° Rather often, the product zppc is referred to as the fixed-charge concentration, which has the
dimensions of a molar concentration and is positive for anion-exchange membranes and negative
for cation-exchange membranes. Here, we use X for zyienm/zo > 0, where subscript 2 denotes the
co-ion. Other literature sources may use X for zyjem or [zvem|-

1 The effect of the pressure difference between the phases M and w is discussed later in this
section.
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Fig. 4.19.

A schematic drawing of a cation-exchange
membrane, with fixed negative groups
(O), counter-ions (), co-ions (©) and
water (. ..). Solid lines indicate reinforcing
of the membrane matrix. (Reproduced with
permission from Ref. [7].)
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where cy 12 = (c]fl cgz)]/”12 and yy 1p = (yf" )/2”2)]/”12 are the electrolyte mean
molar concentration and mean activity coefficient, respectively. The partition
coefficient is then defined as

M w

C: . oM oW .
K= = LMefw,- ~uiMRT o=z f D | 2, (4.108)
¢ Vi
M w
C oM ow
Kip = =12 = 112 o~y aiishy/Re, (4.109)
T2 Y2

where A¢p = M — ¢V is the Donnan potential. The first exponential factor
in eqns (4.108) and (4.109), K,; = e~ =#7"V/RT (j = 1,2, 12), is known as
the chemical partition coefficient and accounts for the difference in the solute
environment (water concentration, dielectric constant, short-range interactions,
etc.) in the two phases. The second exponential factor in eqn (4.108), K.; =
e~%/2¢p_is known as the electrostatic partition coefficient and accounts for
the difference in electrostatic energy of the ions in the two phases due to the
charge associated to the fixed groups. It is greater than unity for counterions
and less than unity for co-ions. In symmetric binary electrolytes the relation
K 1Kep = 1is satisfied.

In membranes with high water content, it can be assumed that the activity
coefficients and the standard chemical potentials are the same in both phases,
and therefore the distribution equilibria are described by the simpler equations
M = ¢Vemu/ A, (4.110)

1

Mo=c¥ . (4.111)

In the case of multicomponent systems (under equilibrium conditions), similar
equations are valid for all ionic species and neutral electrolytes that achieve the
distribution equilibrium between the two phases.

The above description of the Donnan equilibrium has been based on
the thermodynamically meaningful mean electrolyte concentration c+ 12. In
the external solution, this concentration is related to the stoichiometric
concentration

ey
h=L1=2 (4.112)
Vi V)
by the simple relation
01,12 = vy 12005, (4.113)
where v4 12 = (vr ! vzv2 1/vi2 In the electrolyte solution filling the membrane

phase, however, eqn (4.112) is not satisfied, that is, cll\/l/v] * cg/l /v2, and
therefore eqn (4.113) does not hold either, c'\i/[12 # viylzcll\g. In fact, the

stoichiometric electrolyte concentration in the membrane phase cllvé is yet to
be defined.
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Since the ion-exchange groups —R™ participate in the ionic distribution
equilibrium, the solution filling the membrane can be considered to be composed
of two binary electrolytes with a common ion, the counterion A?!, which is
denoted as species 1. The electrolyte formed by the counterions and the fixed-
charge groups can be denoted as A, \ R,,; and that formed with the co-ions is
A, C,,. The stoichiometric concentration of the latter is

M =N (4.114)

This magnitude is the so-called Donnan electrolyte concentration and, contrarily
to c+ 12 [see eqn (4.111)], it does not take the same value in the internal and
external phases under equilibrium conditions, i.e. cllvé #c)y.

The local electroneutrality condition inside the membrane

acM + M+ amem =0 (4.115)

and eqns (4.110) and (4.112) lead to the following equation for the Donnan
potential

X = zmem/z2 = vacts (e 7V AP — e 72/ Ay, (4.116)

Since X > 0, because species 2 is the co-ion (and therefore zyzo > 0), this
equation implies that zof A¢p > 0. That is, the potential in the membrane
phase is positive with respect to the external phase, A¢p = M — ¢p% > 0, if
the fixed groups are positively charged and negative otherwise. Moreover, we
conclude that the stoichiometric electrolyte concentration inside the membrane
is smaller than in the external phase

M =My = e/ < oy (4.117)

This phenomenon is known as Donnan exclusion (or co-ion exclusion) and it
is responsible for the permselectivity of the ion-exchange membranes, that is,
for their selectivity with respect to the transfer of charged species across them.

The value of the Donnan potential drop must be obtained from the solution
of eqn (4.116). In general, this is an algebraic, linear equation of order |z — 22/,
which has to be solved numerically. Figures 4.20 (a) and (b) show the graphical
representation of eqn (4.116) for different electrolytes. There are some fea-
tures that can be easily identified. In strongly charged membranes, X > c{%,
the co-ions are excluded and their charge number does not affect the value
of the Donnan potential; the magnitude represented in the abscissa axis appa-
rently includes the co-ion charge number, but z>¢Y", can also be rewritten as the
counterion concentration in the external bulk solution. The lines represented in
Fig. 4.20 (a) are then linear with a slope of (60/ |z1]) mV/decade. In weakly
charged membranes, X < c}%, the Donnan potential is so small that the expo-
nentials in eqn (4.116) can be linearized. This approximately linear relation
between the Donnan potential and the fixed-charge concentration is apparent
in Fig. 4.20 (b).
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100 s
s g
) <
L 50 =1
= %
)
0
log,(X/c}3) log,,(X/ct3)
Fig. 4.20.

Donnan potential |A¢p| vs. X /cY; in semi-logarithmic (a) and double-logarithmic plot

(b) calculated from eqn (4.116) for different binary electrolytes: |z1] : |z2]| = 1 : 1 (solid line), 2:1
(long dashed line), 3:1 (short dashed line), 1:2 (dotted line), and 1:3 (dot-dashed line). The charge
numbers have been identified by the ratio of the absolute values corresponding to the counterion
and coion, regardless whether they are cations or anions. In positively charged membranes, the
Donnan potential is positive, the counterion is an anion (z; < 0) and the coion is a cation

(z2 > 0). In negatively charged membranes, A¢p < 0,z; > 0, and zp < 0. The value 26 mV has
been used for 1/f = RT /F.

In the case of symmetric electrolytes, eqns (4.115) and (4.116) simplify to

M=NM+x, 4.118)
1/2
fAP inh—r ] X + X 2+1 / (4.119)
=arcsimn———— =1mny§ —— —_— . .
= P 1y 2cty 2ty

From eqns (4.117) and (4.119), the stoichiometric electrolyte concentration in
the membrane phase can be evaluated as

M= —(X/2) + [(X/2)> + (212 (4.120)

In weakly charged membranes, X < cY5, eqn (4.120) yields the expected
result ¢ ~ c,. In strongly charged membranes, X > cY5, this can be approx-
imated by c'lvé ~ (c}“’z)2 /X <« cY,. The membranes that are so strongly charged
that cllvé can be neglected are known as ideally selective membranes. Real
membranes, however, are never ideally selective. This inability to exclude
completely the Donnan electrolyte (that is, the co-ions) is known as Donnan
failure.!!

Similarly, the ionic concentrations in the membrane phase can be obtained

M_ M
asc, =cp, and

off =l e VA = b X = (X/2) +[(X /2 + (17, @121

1" Under process conditions, the Donnan electrolyte concentration is a function of position inside
the membrane. The ability to exclude co-ions is then also affected by the extent of the concentration
polarization at the boundary layers flanking the membrane. In operating commercial membranes,
the fraction of counterions is seldom higher than 95%.
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and the total ionic concentration inside the membrane is
M+ M =[x+ A2 (4.122)

Remember that eqns (4.118)—(4.122) are only valid for symmetric electrolytes.

In closing this section, we comment on the equilibrium condition for the
solvent. In strongly charged membranes, X > ¢}, eqn (4.122) implies that
the total ionic concentration inside the membrane is much larger than outside
the membrane, cllvI + cg/l > 2c},. If not only the solutes but also the solvent
is equilibrated between the internal and external phases, a significant pres-
sure difference may exist between them. Indeed, the Gibbs—Duhem equation
codpo + Y ;cidu; = dp and the Euler equation for the solution volume
COUO+21‘ civ; = lleadtodpp = vo(dp—drmr), where 7 is the osmotic pressure.
The equilibrium condition for water, ,uOM = uy , implies that the Donnan pres-

sure difference must follow the osmotic pressure difference, App = pM —p% =

M — ¥ = Amp, where it has been assumed that the water partial molar vol-
ume is approximately the same in both phases. The osmotic pressure is given
by the differential dm = )" ; c;duf/covo = (RT/couo)d ) ;¢; = RTd ) c;,
and therefore Anmp ~ RT (Y ; c?’l — > ;c¥) ~ RTX [see eqn (4.121)], which
is of the order of 26 atm at 300 K for X = 1 M. If the pv; contribution to the
electrochemical potential of the ions needs to be included in the equilibrium

conditions, these become

My — (M= ™) /RT .~z f App .—Ampvi/RT
S o Yooy u™)/RT = f Ao g Amoui/RT, (4.123)
C: Y:
1 1
CE12 Vi3 (Moo RT .~ Ampura/RT
v = e Kz —Hiz e~ ~TDVR/RE (4.124)
C
+12 Y12

where v = Vv + Vrv; is the electrolyte partial molar volume, and we have
assumed that all partial molar volumes are approximately the same in both
phases. In eqn (4.124), for instance, the pressure correction is approximately
equal to e~¥V12, which is only significant when the volume fraction occupied
by the fixed-charged groups and their counterions is of the order of unity.

4.2.3 lon-exchange equilibrium

The ion-exchange membranes owe their name to their ability to equilibrate with
the bathing solution and replace the counterions inside by those present in the
solution. This ion-exchange process requires some time because the counterions
have to diffuse in and out of the membrane. Later in this section we describe the
time evolution of the counterion concentration in the bathing solution within the
context of a particular example of practical interest, the drug-release kinetics
from areservoir. First, we describe the ion-exchange equilibrium that is attained
at large times.

Consider an ion-exchange membrane with fixed-charged groups —RZ.
Initially the membrane is in A®' form, that is, the counterions are A*! ions.
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The membrane is then immersed in a very large volume of a bathing solution
containing counterions D2. The achievement of the thermodynamic distribu-
tion equilibrium requires that some of the D?2 ions must enter the membrane
and some of the A% ions must leave it. This ion-exchange process is described
by either of the two following forms

VIAT (M) + 1nD2(w) 2= 1»yD2?(M) + viA(w), (4.125)
—RA, (M) + nD?2(w) 2 —RD,,(M) + vjA¥(w), (4.126)
where the stoichiometric relation zjv; = zpvp must be satisfied. Assuming

that the activity coefficients satisfy the relation (y,"/ ;/IM)"] =/ yZM)"2, the
thermodynamic equilibrium condition is represented by the mass action law

M
—AG°/RT __ (1) ()"

Kip=¢ =
‘ (@D (e}

(4.127)

where the standard Gibbs potential is A,G° = viu{™ + vzu;’M - vl,ucl”M —
) M;,w. The ion-exchange equilibrium constant can be expressed in terms of

oM oW
the ionic chemical partition coefficients K. ; = e~ —1i /R (j=1,2) as
Ki2 = (Ke2) (Ke) ™ (4.128)

When the volume of the bathing solution is much larger than that of the
membrane, the final (equilibrium) concentration of A*! ions is practically zero
in both phases, while that of D?2 ions in the external solution is practically
unaffected. The ion-exchange process can then be described as the exchange
of the amount ”(1) of moles of of A% ions initially present in the membrane by
an equivalent amount (v / vz)n(l) of D?2 ions.

When the volumes of the bathing solution and the membrane, V¥V and yM,
respectively, are comparable, eqn (4.127) must be combined with the mass
balances

nd = MOVM = vy 4 My, (4.129)

nd =y OvY = ey VY 4 MvM, (4.130)
in order to solve for the final equilibrium concentrations. Note, however, that we
have four unknown concentrations and only three equations. The other equation
is the electric charge balance.

In ideally selective membranes, when no co-ions can enter the membrane,
the charge balance simplifies to

zlcllvl’o = mcllw + chlzvl. (4.131)
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If vi = v, = 1 and the membrane shows no preference for any of the
counterions, K1» = 1, this system of equations reduces to

M MO M M.,0

c =xic;, ¢ =1 —xp)e; T,

O ey = —x)e)”, (4.132)

cf =xicy
where x| = "(1) / (n(l) + ng). For other values of K3, the system can be reduced
to a linear, second-order algebraic equation.

In non-ideal selective membranes, the amount of co-ions in the membrane
phase is neither negligible nor constant, and their equilibrium distribution also
needs to be taken into account. For the sake of simplicity, we take in this
description all stoichiometric and activity coefficients equal to one. Consider a
membrane that is initially equilibrated with a bathing solution of concentration
c(l)3 of electrolyte AC. In this initial situation, the ionic concentrations inside
the membrane are

MO = MO X (X /2) 4 (X2 4 Kis( )2 (4133)

where K73 is the partition coefficient of the electrolyte AC and X = zmem/23-
The membrane is then immersed in another bathing solution of the same volume
with a concentration 083 of electrolyte DC. After waiting for the subsequent
equilibration, the ionic concentrations inside the membrane are

M =x13{(X/2) + [(X/2)* + Ki3(c¥ 13)* + Kaa(c¥3)? 1), (4.134)
M =3 {(X/2) + [(X/2)* + Ki3(c¥13)? + Kaz(cho)?12), (4.135)
M= —(X/2) + [(X/2)? + Ki3(c}13)* + Koz ()12, (4.136)

where c¥ |; = (c‘l”cg”)l/ 2 and Yoy = (Y 0‘3’")1/ 2 are the mean electrolyte
concentrations, and

K13(0113)2
X13 =

= =1—xp3. 4.137)
K13(Cil3)2 +K23(C123)2

Equations (4.134)—(4.136) are obtained from the conditions of chemical
equilibria

M M M M w_ M
cyc Ccy C cre K>3
Ki3= 23 Ky= S K= == (4.138)
cyey ey ey Kis
and local electroneutrality
4+ =cy, (4.139)

My —M=x. (4.140)
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A difficulty associated with the use of eqns (4.134)—(4.136) is that the elec-
trolyte concentrations in the external solutions are not known. In fact, the final
equilibrium concentrations in both phases must be determined from the solution
of eqns (4.134)—(4.136) and the mass balances

n) = MOVM = vy 4 My M, (4.141)
nd =y VY =SV 4 MvM, (4.142)
nd =y OV 4 SPOVM = vy g MvM, (4.143)
0 .0 0
where sz;v = c;’v = )3

4.2.4 Electrical double layer at the membrane/
external solution interface

The Donnan potential given by eqn (4.116) is the difference in electric potential
between two homogeneous phases that have uniform potentials ™ and ¢* and
are locally electroneutral. Somewhere in between the two phases, the poten-
tial must show a non-linear spatial variation from ¢M to ¢* and, according
to the Poisson equation of electrostatics, this requires a non-zero space-charge
density. In order words, the Donnan potential drop must take place in a non-
electroneutral (or electrified) interfacial region, which is known as the electrical
double layer. Since the local electroneutrality assumption plays a key role in
the solution of the ionic transport equations, it is interesting to determine the
thickness of such electrified interfacial region where the local electroneutrality
condition does not apply. This is calculated below from the equilibrium electri-
cal potential distribution in the interfacial region between a charged membrane
occupying the region x < 0 and a binary electrolyte solution in the region
x > 0. Far from the interface, the electric potential in the membrane phase is
M, the electric field is zero, and the space-charge density is zero. This is known
as the bulk of the membrane phase. Similarly, in the bulk of the external solu-
tion, the electric potential is ¢V, the electric field is zero, and the space-charge
density is zero. The membrane is supposed to have a uniform concentration ¢y
of fixed groups, the electrolyte concentration in the bulk of the water phase is
¢}y, and both phases are assumed to have the same dielectric permittivity e.
The case z1 = —zp and K| = 1 is considered, and a convenient dimensionless
electric potential variable is defined as follows

px) =22flp() — "], (4.144)

where species 2 is the co-ion. This function is continuous and positively defined
over the whole system. It tends to zero in the bulk external phase and to

¢p = 22f A¢gp = arcsinh(X /2c},) > 0 (4.145)

in the bulk membrane phase.
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The ionic distributions over the whole system are given by the Boltzmann
equilibrium equations

c1(x) = ¢y e W= — o o0 (4.146)
cr(x) = ¢}y e 2/ [PD=¢"] — (W o=¢ (4.147)

When eqns (4.145)—(4.147) are substituted in the Poisson equation in the
membrane phase

d2¢7 2 F
= e —a-X) (4.148)

this becomes the dimensionless Poisson—Boltzmann equation

é — sinh ¢ — sinh ¢p (4.149)

where & = k{Jx is a dimensionless position variable and

12
ZZ%FZC}Nz
w_ (228 ‘i 4150
“D ( ¢RT (4.150)

is the reciprocal Debye length. Similarly, in the aqueous phase the dimen-
sionless Poisson—Boltzmann equation is

L (4.151)
—F = SIn . .
de2 ¢

Multiplying eqn (4.151) by 2dg/d&, it can be integrated between the bulk

external phase and a position x > 0 to give

2
(jig) = 2(cosh ¢ — 1) = 4sinh?(¢/2). (4.152)

Taking the square root (with negative sign) of eqn (4.152) and rewriting it as

cosh(p/4) 1 dp

— = —4, 4.153
sinh(p/4) cosh?(p/4) d§ ( )

the electric potential distribution in the external solution can be obtained by
integration between the interface x = 0, where ¢ takes the value ¢, and a
position x > 0, as

@(x) = 4 arctanh[tanh(ps/4) e D], (x > 0). (4.154)
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Similarly, multiplying eqn (4.149) by 2d¢/dé, it can be integrated between
the bulk membrane phase and a position x < 0 to give

2
(%) = 4sinh2((p/2) — 4sinh2(¢D/2) —2sinh¢p (p — ¢p).  (4.155)

The condition of continuity of the electric displacement at the interface requires
that eqns (4.152) and (4.155) must take the same value at x = 0. The interfacial
value @5 can then be determined as

%s = ¢p — tanh(gp/2). (4.156)

We can take advantage of the information provided by eqn (4.156) to obtain
an approximate analytical integration of eqn (4.155) and hence an expression
for the electric potential distribution in the membrane phase. Since the tanh
function is bound to 1, the difference |¢ — ¢p| is always smaller than 1 in the
membrane phase and the Poisson—Boltzmann equation can be approximated
there by its linear form

2

d
Eﬁ = sinh ¢ — sinh ¢p ~ cosh ¢p (¢ — ¢p)
M\ 2
kp
K;
D
where
252 1/2
K = Ky (cosh gp)/? = ;TT X2+ 244 (4.158)

is the reciprocal Debye length that characterizes the electrical potential
distribution in the membrane phase. The solution to eqn (4.157) is

o(x) = gp — tanh(gp/2) D* ,  x < 0. (4.159)

Equations (4.154) and (4.159) show that the electrical double layer extends
over a region with a thickness of the order of 1/k{] in the external phase and
1 /K]l:\)/l < 1/kg in the membrane phase. These equations have been represented
in Fig. 4.21 (a). It is clear there that the electric potential drop in the membrane
phase takes place over a shorter distance than in the external solution. It is also
clear in this figure that the magnitude of the potential drop in the membrane
is smaller than in the external phase. Fig. 4.21 (b) shows the variation of the
electrical charge density with position in the interfacial region. The space-charge
density inside the membrane has the same sign as the fixed-charge groups, and
that in the external phase has the opposite sign. Obviously, the magnitude of the
total charge is the same at either side of the interface but the distribution takes
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place with a slightly different functional dependence. Finally, the solid curve
corresponding to the strongly charge membrane, X /c}, = 100, shows that the
charge accumulation close to the interface extends over a smaller thickness in
the membrane than in the external solution.

Since Fig. 4.21 (a) has been presented in dimensionless units, it is convenient
to estimate the values of the relevant magnitudes. The dimensionless electric
potential can be converted to mV by using that 1/f ~ 26 mV (which corre-
sponds to 25° C). The dimensionless Donnan potential values in Fig. 4.21 (a)
can then be compared to those in Fig. 4.20 (solid line) for the same values of
X /cls.

The position axis has been scaled with the Debye length in the external phase.
Figure 4.22 shows the values of the Debye lengths 1/«{] (solid line) and 1/:{%’1
(dashed lines) at 25 °C as a function of the external electrolyte concentration.
The Debye length describes the screening of the interfacial electric fields and is
larger in the external solution than inside the membrane because the total ionic
concentration is larger inside the membrane.

4.2.5

So far, the membrane phase has been considered to be homogeneous and all
variables are independent of position within the membrane under equilibrium
conditions. Even though this is a reasonable assumption that allows for a simple
description of the ion-exchange membrane equilibrium, it should be realized
that real membranes have a certain degree of heterogeneity. This could result
from an uneven distribution of fixed-charge groups throughout the membrane
volume [8-10] or from the internal structure of the membrane. For instance, in
charged porous membranes the charge groups are distributed on the pore walls
and the solution inside the pore is not homogeneous [11]. These heterogeneities
give rise to deviations from the behaviour predicted in Sections 4.2.1-4.2.4,
and obviously this has practical importance when describing transport through
the membrane. As a rule, the membrane heterogeneities give rise to a loss of

Influence of the membrane heterogeneities
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Fig. 4.21.

(a) Dimensionless electric potential

¢ =22f(¢ — ¢") vs. kyx calculated from
eqns (4.52) and (4.57) and

(b) dimensionless space charge density
pe/2z1Fcyy vs. iy x for different values of
ratio fixed charge to external
concentration: X / "IIVZ = 100 (solid line),
10 (long dashed line), and 1 (short dashed
line). The charged membrane and the
external solution occupy the regions x < 0
and x > 0, respectively. Note that the
Debye length in the external solution has
been used to scale the position axis.
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Fig. 4.22.

Debye length l/KII:\)/l as a function of the
external electrolyte concentration c’l"z for
different values of the membrane fixed
charge concentration: X = 0.01 M (long
dashed line), 0.1 M (short dashed line),
and 1 M (dotted line). The solid line
corresponds to X = 0 and represents the
Debye length in the external solution,
I/KB'. As a typical value, the Debye length
in the external phase is ca. 10 nm when
c{» = 1 mM. When decreasing the
external electrolyte concentration, the
Debye length 1 //(g[ saturates to a value
determined by the fixed charge
concentration. On the contrary, when the
external concentration is very high, the
Debye length is the same in the internal
and external phases.
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permselectivity. This was first observed experimentally by Glueckauf and co-
workers [12, 13] and discussed at length by Petropoulos [14]. We prove below
that this is the case under conditions close to equilibrium. However, in the
presence of a relatively large electric current, the heterogeneities may also give
rise to permselectivity enhancement [8—10].

Consider, for instance, that the membrane is immersed in a solution with
a concentration cY, of a symmetric binary electrolyte, and that the relations
Y =yMand ,uf’M = u;" hold for both ions. It was shown in Section 4.2.2
that the electrostatic partition coefficients of the ions satisfy the relation
K.1K.p = e 2240 — 1 However, this was based on the idea that
the electric potential inside the membrane takes the same value ¢™ throughout
the membrane. Imagine now that the electric potential inside the membrane is
a function of position, &M (7). The ionic concentrations inside the membrane
are then given by

M) = cfpe/ @), (4.160)

and their average values inside the membrane can be written as

L

(M) = cppens @ {emur o), .161)

where the brackets () denote spatial averaging over the membrane volume. In
these equations ¢V is the electric potential in the bulk external solution.
Using the Cauchy—Schwartz—Buniakowski inequality

%Sg” =( ) e ) 2 (4.162)

where the equal sign corresponds to the homogenous case, and the global
electroneutrality condition inside the membrane

<c11‘4) - <c§4) +(X), (4.163)
we conclude that the ionic concentrations must be larger than in a homogeneous
membrane with a uniform fixed-charge concentration (X ). That is, due to the

membrane heterogeneities, both ions increase their concentration in the same
amount (€12)peter > 0, so that

(C11w> = (C11w> + (C12)heter » (4.164)
hom
(6124) = (654) + (€12 heter » (4.165)
hom
where the ionic concentration in a homogenous membrane is given by

() =() 0 =X+ + I @166)
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and subscript 2 denotes the co-ion. Equation (4.165) proves that the Donnan
theory provides an upper bound for co-ion exclusion, but the actual exclusion
is lower due to the membrane heterogeneities.

As mentioned above, the heterogeneities can have different origin (non-
uniform distribution of fixed-charge groups along the flow direction, charged
porous membrane structure, etc.). We close this section with an estimation
of the increase in the co-ion uptake (or absorption), (¢12)peter> due to the non-
uniform electric potential distribution in the radial direction of a charged porous
membrane. We consider a membrane in equilibrium with a bathing solution of
concentration ¢}, and assume that the membrane can be described as an array of
parallel, cylindrical capillaries of radius a with a uniform surface-charge con-
centration ¢ on the pore walls. The relation between the surface-charge density
o and the fixed-charge concentration ¢y used above is

MeMm = 20 /aF. (4.167)

Under these conditions, the electric potential inside the membrane is a func-
tion of a radial position co-ordinate r that measures the distance to the pore
axis. This potential distribution must be obtained from the solution of the
Poisson—Boltzmann equation in the membrane

1d( d F 20 FeY
T4 (90 _2f oy = 22 G, (4.168)
rdr dr £ €

where ¢(r) = z2f [¢ (r) — ¢V] is the dimensionless electric potential. In terms
of this potential, the Poisson—-Boltzmann equation is

1d de
- — S—) = sinh ¢, (4.169)
£ dg ( dg
where & = k{Jr is a dimensionless radial position variable and
1/2
225F %Y,
w g V)
=|——= 4.170
D ( eRT ) *-170)

is the reciprocal Debye length. The boundary conditions of eqn (4.169) are

(dﬁ) -0, “.171)
d& /o

d F

(i’) = 207 (4.172)
dé t=x¥a eRTkpy

Note that the latter equation arises from Gauss’ law at the pore walls and is
equivalent to the global electroneutrality condition

(M) = {e3r) + x, 4.173)
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where the brackets () denote spatial averaging over the pore cross-section,
which in this case is equivalent to an average over the membrane volume.

For the sake of simplicity we consider that the surface-charge density is
so low that ¢ < 1 and, hence, that the Poisson—Boltzmann equation can be
linearized to

L d (g d“’) (4.174)
—— &= ) =0 :
& d& \" d¢
The solution of this equation is
) = nFo ) _ X kpa hE)
¢ eRTKY h(§a)  2¢% 2 Ii(kha)
= oI (), (4.175)

where Ip(¢) and 1, (€) are the modified Bessel functions of orders 0 and 1,
respectively. It is interesting to note that the average value of the potential is

(p) = 9(0) {Io()) = X /215, (4.176)
where we have used the relation £lp=d(&7;)/dé to evaluate (lo(§)) =
211 (k3 a) /iy a. Note that eqn (4.145) predicts that the dimensionless Donnan

potential in the limit of weakly charged membranes is {(¢) = X /2cY).
The average ionic concentrations in the membrane can now be evaluated as

(M) =enfe?) ~ et {140+ (1/2)6%)

= C\IVZ + (X/Z) + <012>heter s 4.177)
() =t fe™)~ ey (1 -0+ (1/2097)
= CYVZ — (X/2) + {c12)heter » 4.178)

where

w 2 0 X2 1 w 2
{€12)heter = # <[10($)]2> = 32cY (K\ga)z H%] !
12 D

(4.179)

is the additional amount of Donnan electrolyte that enters the membrane due to
the non-uniform distribution of the electric potential along the radial direction.
In the case of wide capillaries, kJa > 1, this can be estimated as

X2
(C12)heter ~ 7’6\6]“ ~ 7('0('(]‘3,“) <

4.180
32¢Y, 8 (4-180)

g,

since we have assumed that ¢ < 1.
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In narrow capillaries (of weakly charged membranes), kJa is smaller than
unity, so that ¢(0) ~ @(ka) ~ X /2c}, and {c12)peter ~ X2/80‘1’"2 < X/4.In
any case, the above estimation illustrates that the spatial variation of the electric
potential inside the membrane leads to a poorer co-ion exclusion than predicted
by the Donnan theory. Furthermore, it shows the actual co-ion exclusion can
only be estimated if we know the potential distribution. Since the fixed-charge
distribution inside a membrane cannot be known accurately, it should be appar-
ent that the Donnan theory provides only a rough estimation of the electrolyte
exclusion. In practical situations, the operating conditions (such as the electric
current density passing through the membrane) also affect the co-ion exclusion,
and the deviations from the equilibrium values can be significant [9, 15].

4.3 Steady-state transport across
ion-exchange membranes

In this section we describe the electrodiffusion of electrolyte solutions across
ion-exchange membrane systems in the absence of convection. By membrane
system we refer to a three-layer system composed by the membrane itself and the
two diffusion boundary layers flanking it. The effect of the diffusion boundary
layers on the transport properties of the system is described in Sections 4.3.8 and
4.3.9. Homogeneous membranes with uniform concentration of fixed-charged
groups are considered unless otherwise stated. As a rule, the transport equations
are first formulated inside the membrane for the general case of asymmetric elec-
trolytes and arbitrary geometry. The condition of electrochemical (or Donnan)
equilibrium with the external solution is then applied at the membrane bound-
aries and the Nernst—Planck transport equations are finally solved (for planar
geometry and, most often, for symmetric electrolytes) in order to determine
the flux densities and the potential drop across the membrane, as well as the
concentration and electric-potential distributions inside it.

4.3.1 Transport coefficients and their equilibrium values

The polymer nature, the presence of fixed-charge groups and internal struc-
ture influence the membrane transport properties and make them different from
those in the external solution. We must therefore make explicit the phase in
which the transport magnitudes are evaluated. In the next sections we use the
following convention for the sake of clarity. The concentrations inside the mem-
brane incorporate no superscript, and the concentrations in the external solution
incorporate a superscript w, o or . The ionic diffusion coefficients incorporate
no superscript, and the symbols of other magnitudes in the internal and external
phase include superscripts M and w, respectively.

Although the ionic diffusion coefficients may take, in practice, different val-
ues inside the membrane and in the external solution, we neglect here such
a difference because we want to concentrate on the effect of the composition
of the membrane phase on its transport properties. However, in membranes
with low water content the diffusion coefficients are significantly smaller than
in the external solutions. Moreover, electrostatic interactions also seem to be
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responsible for the observed reduction in the counterion diffusion coefficients
in strongly charged membranes [16].

Consider the transport of a strong binary electrolyte A, C,, dissociated into
vy ions A*! and v ions C*2 whose charge numbers z; and z; satisfy the stoichio-
metric relation zjvy 4+ zovy = 0. Fick’s first law for the (Donnan) electrolyte
diffusion

M M
- Iy = - M
J12 = =j1+ —j2 = —=D{3Vcia, (4.181)
V| %)

and the generalized Ohm’s law for the electric conduction
I =F(ji +22) = MV — Vi) = —cMVom (4.182)

are valid inside the membrane, but the values of the electrolyte diffusion coef-
ficient DY = Dy + rMD, and the electrical conductivity x™ are different
from those in the external solution (see Table 4.1).

The flux density of an ionic species inside a charged membrane can be
written as

-

Ji =

-

MM
Vii;. (4.183)

ZF?

Taking eqn (4.183) to the expression for the electric current density
I = F) ,zji and comparing it to the generalized Ohm’s law, it is
obtained that the diffusion potential gradient inside the membrane is given

Table 4.1. Transport coefficients inside the membrane and in the external solution.

Transport coefficient External solution Membrane phase

Electrolyte diffusion coefficient 5 5
w — _aDiDa w _ DiDaGer +5en)

(asymmetric electrolyte) == c
127 w,D) +vDy 1 Z%DICI +z§D252

Electrical conductivity

2,202 2
ZviF* (D D F
(asymmetric electrolyte) kW = lRIT (U—ll + 722) ety M = R ZzizD,-c,-
Transport numbers zl
i . W Dj/vi M_ _GiDici
(asymmetric electrolyte) = W = S Zpe
1/V1 2/V2 iz Djcj
Electrolyte diffusion coefficient DD DZD:’Z(J -’:’ )
(symmetric electrolyte) D‘l’"2 e et D]]\g = fir2ta o)
. L Dy +Dy Dicy +Dycy
Electrical conductivity 252 252
z _ z
(symmetric electrolyte) KV = ;Q—T(Dl + Da)cly M= IR—T(chl + Dyc)
Transport numbers
w D; M Dici

=

symmetric electrolyte W=—"_ o
(sy yte) i T D 1D, i = Diey + Dacy
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Table 4.2. Transport coefficients of a symmetric electrolyte inside an ion-exchange membrane
under equilibrium conditions.

Weakly charged, Moderately charged, Strongly charged,
X « c‘l”2 X > c‘l’"2 X > CYZ
2
D ey
M M o 2 12 M
DY, ~ DY) Dy; = Dy |:1+<1*E> <7) :| Dy; ~ Dy
252 2 252
WM W KM’AYLF el 1+ l+& ﬁ KM%LF Dix
RT D X RT
2
Dy (Y
M M _ M 2 12 M _ ~
T 11_17t2~17D71<7> nW=l-~

by the expression
- M.
—f Vit = - Ving;, 4.184
f ¢d1f Z % i ( )

where the transport numbers th are functions of the local composition and
hence of position. Thus, for instance, when describing the transport of a binary
electrolyte across a strongly charged membrane, it is satisfied that ¢; >> ¢ and
M M buttMVine ~ YVine,.

As described in Section 4.2.2 under equilibrium conditions, the composition
of the solution filling the membrane is determined by the influence of the bound
fixed-charge groups on the electrostatic partitioning of ions. Thus, for instance,
when the membrane is in equilibrium with a bathing solution of a symmetric
binary electrolyte!? of concentration ¢}, the ionic molar concentrations in the
membrane phase are

cr=c+X =(X/2)+[(X/2)2 + (¢}, (4.185)

where subscripts 1 and 2 denote the counterion and the co-ion, respectively.
The use of eqn (4.185) allows us to find the approximate expressions of the
transport coefficients shown in Table 4.2.

Figure 4.23 shows the dependence of these transport coefficients on the
fixed-charge concentration for different values of the diffusion coefficient
ratio D> /Dj. As a rule, the transport numbers of the co-ions inside the mem-
brane are smaller than in the external solutions while the transport numbers
of the counterions show the opposite behaviour. In the limiting case of very
low external electrolyte concentration (compared with that of the membrane
fixed-charged groups) the co-ion exclusion is practically total, the electri-
cal conductivity is determined by the counterions only, and the membrane is
said to be ideally permselective. The real membrane systems, however, never

12 The restriction of the transport equations to the case of a symmetric electrolyte can often be
identified by the use of magnitude X = zppenm/z2. On the contrary, when asymmetric electrolytes
are considered, the fixed-charge concentration ¢ is used.
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Fig. 4.23.

(a) Ionic transport numbers (1: counterion,
2: co-ion), (b) permselectivity, (c)
electrical conductivity (referred to the
external conductivity), and (d) electrolyte
diffusion coefficient (referred to the
external value) of an ion-exchange
membrane with a fixed charge
concentration X in equilibrium with a
symmetric, binary electrolyte solution of
concentration cY,. The ionic diffusion
coefficient ratio has been given the values
D, /Dy = 0.2 (solid lines), 1 (long
dashed), and 2 (short dashed), which could
be considered as characteristic of the
electrolytes HCI, KCI, and TEACI
(tetraethylammonium chloride),
respectively. These transport coefficients
take their external solution values when
the membrane fixed charge concentration
vanishes.

Transport in membranes

1.0 === 1.0

Transport number

log,((X/ct3)

log,((X/ct3)

show ideal permselectivity due to incomplete co-ion exclusion (and the influ-
ence of the diffusion boundary layers). The term membrane permselectivity
refers to its larger permeability to counterions than to co-ions, and it is often
quantified by the ratio

M w
-

S=——-.
-

(4.186)

This magnitude has also been represented in Fig. 4.23.

Note, finally, that the main difficulty in the accurate solution of the transport
equations arises from the fact that the solution composition inside the membrane
depends on position under non-equilibrium conditions. The transport numbers,
the electrical conductivity and the electrolyte diffusion coefficient are deter-
mined by the composition and therefore they also vary with position.'? Their
local values are not known a priori and must be obtained from the solution of
the transport equations.

4.3.2 The diffusion—conduction flux equation inside
charged membranes

Consider the mass transport across a membrane that separates two uniform

solutions of a symmetric, binary electrolyte with concentrations c{, and c’ls2

B In non-equilibrium systems, the membrane permselectivity does not vary with position, but
its definition differs from that in eqn (4.186)[17].
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under closed-circuit conditions, / # 0. In the diffusion-conduction approach,
the flux density of species i (i = 1,2) is written in terms of the electric current
density T and the electrolyte flux dens1ty Jjiz2 ineqns (4.1) and (4.2) as

RN Ve SN P ) (4.187)
Ji =J12 o F = 12VCi o F .
where we have used the fact that the concentration gradient of the Donnan elec-
trolyte inside the membrane is %clz = %cl = %cz, Equation (4.187) is the
diffusion—conduction flux equation for a symmetric, binary electrolyte inside
a charged membrane. It is important to observe that the electrolyte diffusion
coefficient Dllvé and the ionic transport numbers th are functions of the local
ionic concentrations (see Table 4.1) and, therefore, they are position depen-
dent under transport conditions. This makes the exact analytical integration of
eqn (4.187) across the membrane difficult.
Approximate solutions can be obtained, however, when the external elec-

trolyte concentrations are very similar to each other, i.e. when )c’fz — c‘l"z) <
@, where % = (cf »+c{,)/2is the average external concentration. The trans-

port coefficients can then be approximated by the equilibrium (or membrane
average) values

M T DD @+ @) D11+ 2cy/X)M2
Dy, ~ DY, = — — = — , (4.188)
Dici + Dac; 0 =6y + 14 2c},/X)? /2
livl M Dicq _ {1+ [1+ (2y£()2] 12 W
Dici +Docz £ — 1y +[1+ (2c}5/X)2]1/2 2
(4.189)
where the average ionic concentrations are given by
—_ = _ 2 owy2q1/2
c=ca+X=X/2)+[X/2)"+ (cR) T (4.190)
The ionic flux equation can then be integrated as
I + tM ! (4.191)
Jji =i o F .
where the electrolyte flux density is
ji2 = —D%Aclz/h, (4.192)

and the concentration difference inside the membrane, Acyy = c¢12(h) —c12(0),
is approximated by

W
Acy

Acpp~ ———"——" R
[1+ 2c5/X)]

(4.193)

171



172

Fig. 4.24.

The effect of increasing the fixed
concentration on the electrolyte transport
as described by eqn (4.192). The
electrolyte flux density has been scaled to
the value corresponding to a neutral
membrane, /0, = DY, (%, — ci)/h. The
external concentration ratio has been fixed
torp = c‘f‘z/cfz = 1.2 and the diffusion
coefficient ratio Dy /D1 has been given the
values: 0.2 (solid lines), 1 (long dashed),
and 2 (short dashed).

Transport in membranes
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where Ac}, = c’f , — cf, is the external concentration difference. Note that in
neutral membranes (¢ = 0 and superscript 0), Dll\g = D}, Aci2 = Ac), and
the electrolyte flux density is

7 ~ =DV Act, /h. (4.194)

As shown in Section 4.3.8, eqn (4.191) can be useful in understanding the
different transport mechanisms inside and outside the ion-exchange membrane.

Figure 4.24 shows the graphical representation of eqns (4.192) and (4.193),
and evidences that, in general, the electrolyte flux density decreases with
increasing fixed-charge concentration. This trend comes from the fact that the
internal concentration difference is smaller than the external one, |Aciz| <
|Ac‘1”2 , as can be deduced from eqn (4.193). However, since Dll\g can be larger
than DY, (see Fig. 4.23 (d)) it turns out that the electrolyte flux density can
be larger than through a neutral membrane in moderately charged membranes
when 1" < 3 (or D1 < D3). It must be remembered that eqn (4.192) is only

valid when ‘sz — c‘f‘z‘ < @; the general expression for jj, is obtained in the

next section. R

If we were able to drive an electric current density / through an ion-exchange
membrane that separates two external solutions of identical composition while
avoiding the development of concentration gradients inside the membrane, the
flux density of ionic species i would then be given by'*

- - M7
Ji=—zDicif V¢ = ——, (4.195)
zi F
and the electric current density would satisfy Ohm’s law I= —KM€¢. Both

th and kM would be independent of position under these conditions and Ohm'’s
law could be straightforwardly integrated to A¢p = —I RM where RM = 1/kM
is the membrane electrical resistance. Note the minus sign due to the sign
convention for A¢ = ¢ (h) — ¢(0) and I, and that the SI units of RM and «M

14 In the absence of concentration gradients inside the membrane the transport number th is the
fraction of electric current transported by species i, but in general it is defined as the contribution
of this species to the electrical conductivity of the solution and depends on position.
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are Qm? and Q' m™1, respectively. It must be mentioned, however, that this
case of pure electric conduction is very seldom applicable because concentration
gradients develop even when the external solutions have the same composition
(see Section 4.3.8).

A final interesting case is that of strongly charged membranes or low elec-
trolyte concentrations, c‘fz, sz <« X, where the ionic concentrations ¢ and ¢»
are very different from each other and the co-ion transport number is negligible,
t%/[ < ti\’[. The electrolyte diffusion is then determined by the co-ion because
Dll\g ~ D5 and the ionic flux densities are approximated described by

-

R - i
Jj1~ —=DyVey + —, (4.196)
uF

jr A~ —DyVes. (4.197)

These transport equations can be integrated immediately and evidence the fact
that in these membranes co-ion transport takes place by diffusion, while counte-
rion transport takes place by diffusion and migration. This conclusion is worked
out in more detail at the end of the next section.

4.3.3 Diffusion of a binary electrolyte

Consider the diffusion process that occurs when a membrane separates two uni-
form solutions of a binary electrolyte A, C,, with concentrations c‘fz and sz
under open-circuit conditions, / = 0. The ionic flux densities are then related
to the electrolyte flux density by the simple relation ;’i = vJu (i=1,2),and
we aim to calculate the electrolyte flux density as a function of the external
solution concentrations c{, and C/132 and the membrane fixed-charge concen-
tration ¢p. As mentioned in the previous section, this cannot be achieved
from Fick’s equation }12 = —Dllvi%clz because of the dependence of the elec-
trolyte diffusion coefficient Dll\g on the ionic concentrations, and hence, on
position. Alternatively, the Nernst—Planck formalism is used. In the follow-
ing paragraphs the transport equations are presented for the general case of
an asymmetric electrolyte. The boundary conditions at the membrane/external
solution interfaces require the solution of the equations describing the Donnan
equilibria at the membrane/external solution interfaces, which only have a
simple analytical form in the case of symmetric electrolytes, as described in
Section 4.2.2. The final equations in this section are then restricted to symmetric
electrolytes.

a) Electrolyte flux density
The steady-state Nernst—Planck equations for the ionic flux densities

—j1 = Di1(Ver + zie1f V) (4.198)
—jr = Dy(Ves + maeaf V) (4.199)
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constitute a system of two differential equations with three unknown variables
c1,¢2, and ¢. The local electroneutrality assumption

zic1 +22¢2 + zmem =0 (4.200)

completes the equation system that allows for the evaluation of the electrolyte
concentration and electric potential inside the membrane, as well as the mem-
brane potential and the electrolyte flux density. In homogeneously charged
membranes, the co-ion and counterion concentrations can differ by several
orders of magnitude, but their gradients must be similar to each other because
the local electroneutrality assumption implies that

21Ver +z2Ves = 0. (4.201)

This fact simplifies the mathematical problem and has interesting consequences.
Dividing eqn (4.198) by D and eqn (4.199) by D,, and adding them we get

2 = IMCM , 2
Jji2 = —D}, <V012 - Tzf V¢>dif> , (4.202)

where the relation]‘,- = v,-flz gi =1, %) has been used and v12§clz = %cl + %cz
from eqn (4.201). Note that V¢ = V¢gir because there is no ohmic drop when
I = 0. Equation (4.202) can be easily integrated because it involves constant
coefficients. Integration over a planar membrane extending from positionx = 0
to x = h, where & is the membrane thickness, yields

. DY,
jip=——12 <A612 -

IMCM .
0 f Ad)dif) , (4.203)
V12
where Acip = c12(h) — ¢12(0) is the concentration drop inside the mem-
brane. The electrolyte concentrations at the membrane boundaries are given by
the Donnan equilibrium conditions, eqn (4.111). The diffusion potential drop,

Aggir = ¢ (h) — ¢(0), is given by

' c1(h) +ca(h) + zmemll + (21 + 22)/(2122)]

A¢dif =—1In N (4.204)
o c1(0) + c2(0) + zmemlT + (21 + 22)/(z122)]
where
[ s D, —D
r=-— (L + i) =2 (4.205)
2 22 21Dy — 22D2
and
1D D
=T L gy (4.206)

V' 2iDi —2Dy  wiDi+viDy
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is the counterion transport number in the external solutions. Equation (4.204)
has been obtained by transforming eqn (4.184) to

- N MCMEY > memty
FVas =TV n ( n &) ¥ ( n &)
21 22
w

> t ty
=TVin [cl +¢2 + 2mem (i + l)} (4.207)
22 21

and further integration.

It should be noted that the local electroneutrality equation, zj ¢1 (x)+z2¢2 (x)+
zmem = 0, implies that the spatial distribution of the counterion and co-ion
concentrations must have the same functional dependence, ¢;(x) = ¢;(0) +
Ac;id(x) (=1, 2). Therefore, the Henderson equation for the diffusion potential

I 22Dici(h) +22Dxer(h
Adar = —lnzé 1ci( )+Z§ hc2(h)
f ziD1c1(0) 4+ z25D2¢2(0)

(4.208)

is exact in this situation and, indeed, eqn (4.204) can be transformed to
eqn (4.208).

In the case of a symmetric electrolyte,!3 the total electrolyte concentration
at the membrane boundaries is

er(0) = ¢1(0) + ¢2(0) = [X* + (2c},)*] /2, (4.209)
crh) = e1(h) + ey = [X* + 212, (4.210)
where X = zmcm/z2 and the electrolyte concentration drop inside the

membrane is
Acia = Ay = [(X /22 + (D )H'2 = 1(X /2% + (212 @.211)

The electrolyte flux density can now be evaluated from eqn (4.203) as a func-
tion of the membrane fixed-charge and external solution concentrations. Since
the reversal of the external concentration difference simply changes the flow
direction, only the case c‘fz > c‘lq2 (j12 > 0) is considered. Introducing the aver-
age value @ = (6,132 + ¢f,)/2 and the ratio r;2 = cf, /c'lg2 of the external
concentrations, eqns (4.203), (4.204), and (4.210) lead to

B+CH —1))
A+CEy -1

Ji2

=A—B+C@ —1))In 4.212)

le,max

15 Recall that the equations restricted to symmetric electrolytes can be identified by the use of
symbol X . In contrast, the fixed-charge concentration c)j appears in the equations valid for general
electrolytes.
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Fig. 4.25.

The electrolyte flux density decreases
monotonously with the fixed charge
concentration when Dy = D;. The external
concentration ratio takes the values (from
top to bottom) r1o = 1000, 10, 5, and 2.

Transport in membranes

where

0) ke
a=T0 _ (:2+<r12 , (4.213)
4cY, 1+r2
172
h 1 \?
p= W _ d+< ) , 4.214)
4cY, 1+r2
C =X /4ct,, (4.215)

and j?z’max = ZDY’Z@/ h is the maximum electrolyte flux density across a neu-

tral membrane for a given value of % (which corresponds to c']s2 = 0 and
%, = 2c}5).

Equation (4.212) should be compared to the approximation expression in
eqn (4.192), and to eqn (4.194) corresponding to neutral membranes. It was
shown in Fig. 4.24 that the electrolyte flux density decreases with increasing
fixed-charge concentration; a trend that is broken in the case of moderately
charged membranes and D1 < D;. (Remember that t}” — tgv is equal to (D1 —
D») /(D1 + Dy) for symmetric electrolytes.) Similarly, the exact eqn (4.212)
also describes this trend, as shown in Fig. 4.25.

Contrarily to the expression j(l)2 = —D}, AcY, /h for the electrolyte flux den-
sity through a neutral membrane, eqn (4.212) does not show clearly enough
how the electrolyte flux density varies with the external concentration differ-
ence, AcY,. It can be observed in Fig. 4.26 that the flux density increases almost

linearly with —Ac}, = ¢, — cfz, and the effect of increasing the fixed-charge
concentration is to reduce the coefficient of this approximately linear variation.

In Figs. 4.25 and 4.26 the ionic diffusion coefficients have been assumed to
be equal to each other, D; = D», and hence the diffusion potential inside the
membrane vanishes. The effect of varying the ratio of the diffusion coefficients
was already shown in Fig. 4.24 and there arise no significant new features from
the use of the exact eqn (4.212), except for the fact that the maximum that
appears when D, > Dj is slightly less pronounced (in relative terms) when
increasing ry2 (see Fig. 4.27).
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b) Membrane potential
In the Teorell-Meyer—Sievers model [18], the membrane potential A¢gy =
¢P —p?, i.e. the potential drop across the external boundaries of the membrane,
is evaluated as

ABD + Aair,

Apm = Adp — (4.216)

where A¢g and A¢g are the Donnan potential drops, and Ay is the diffusion
potential. For symmetric electrolytes, these are given by [see eqn (4.119)]

2f AdE = In{(X /2¢%) + [(X /2¢%)? + 1112} = lnw,

2
(4.217)
AP =In{ (X /2c0) + 1(X /2¢0)? + 112} = n[(B + C)(1
2f Agp = In{(X/2¢),) + [(X/2¢5)” + 1] /7} = In[(B + C)(1 + r12)],
(4.218)
B+C@t) —tf
Adar = (1Y — %) 1n FCw —5) 4.219
2f Adait = (t] —1y)1In ArCa =By ( )
and the final expression for the membrane potential is
A+C B+CHt) —tf
2f Apm = —Inrpp + ln + @ —)In ( 2 (4.220)

A+CEy —13)
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Fig. 4.26.

The electrolyte flux density increases
monotonously with the external
concentration difference. The diffusion
coefficients have been assumed to be equal
to each other, D1 = D5, and the ratio of
the fixed charge concentration to the
average external electrolyte concentration,
X/Cl2’ takes the values (from top to
bottom) 0, 0.5, 1, 2, 5, 10, and 20.

Fig. 4.27.

Variation of the electrolyte flux density
with the fixed charge concentration for
D, /Dy = 5. The external concentration
ratio takes the values (from top to bottom)
ri2 = 1000, 10, 5, and 2. Note that
J12/1y max = (r12 = D/(r12 + 1) in the
limit of weakly charged membranes.
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Fig. 4.28.

Membrane potential Ay = ¢P — ¢
against electrolyte concentration in
compartment « for constant concentration
in compartment f3, c’ls2 = 0.5X, and
different values of the ratio of diffusion
coefficients: D, /Dy = 0.1,0.2,0.5,1,2,5,
and 10 (increasing in the direction of the
arrows). The membrane potential vanishes
when the equilibrium condition c‘l"z = C,]qz
is satisfied.
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where A, B, and C are defined in eqns (4.213)—(4.215). This can also be
written as

B

Vi v C
2f Agy = (M — ) In 12,
12

4.221)

which constitutes the (implicit) definition of the potentiometric transport
numbers t}\’[ and tg/l =1- tll\’l.

In weakly charged membranes, the membrane potential is approximately
given by the diffusion potential, Agy ~ Ad)gif, and this can be easily obtained
from eqn (4.204) as

B
C
fA¢gif =TI1In % =—IIn r12.
‘12

(4.222)

The superscript 0 on the diffusion potential indicates the restriction ¢y = 0.
In strongly charged membranes, C>>1, the membrane potential
reduces to

B

~ ‘12

2f Agm ~ —lnrip = In —=,
12

(4.223)

which corresponds to the (Nernst) equilibrium potential for the counterion if
the electrolyte is symmetric. That is, since the permeability of the membrane
to the counterion is much larger than to the co-ion, and their fluxes are related
through the open-circuit condition (I = 0), the deviation from equilibrium is
much smaller for the counterion than for the co-ion.

Figure 4.28 shows the variation of the membrane potential with the exter-
nal electrolyte concentration in compartment « (and constant concentration in
compartment ) for different values of D, /D1. All the curves cross at A¢y = 0

when c{,/X =05 = c']g /X, which corresponds to the equilibrium condition

j12 = 0. In the region c‘f‘z < cfz(right side of the plot), the flux density ji2

is negative and very small in value. Correspondingly, the membrane potential
tends in this region to the Nernstian slope of 60 mV/decade (particularly, when

100
N
\

\
oF

2Ady, (mV)

/

-100 %

2 -1 0 1 2
log,((X/c{3)
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c{, < X). In the region c{, > sz (left side of the plot), the flux density ji»
is positive and increases almost linearly with c{,. The variation of the mem-
brane potential with ¢, is also logarithmic in the range c{, > X: the slope
is 60 mV/decade when D,/D; « 1, -60 mV/decade when D,/D; > 1, and
differs from 60 mV/decade in a factor £’ — £’ = (D1 — D2)/(D1 + D>) in other
cases. Figure 4.28 can be used for both cation- and anion-exchange membranes.
When used for cation-exchange membranes, the co-ion is an anion (z2 < 0)
and hence the magnitude represented in the ordinate axis, z A¢wm, has opposite
sign to the membrane potential. When used for anion-exchange membranes,
there is no sign reversal, but the value of D /D must be reversed, so that it
continues to be the ratio of co-ion to counterion diffusion coefficient.

The experimental study of the membrane potential is often carried out by
keeping constant the electrolyte concentration in, e.g., compartment S and
varying that in compartment . Obviously, the ratio D, /D then takes the value
corresponding to the electrolyte under study (although it must be remembered
that in practice the ionic diffusion coefficients inside the membrane are neither
strictly constant nor exactly equal to those in the external solutions). The plots
obtained in this way for different values of the concentration in compartment
are shown in Fig. 4.29 for D, /D = 0.5 and 2. These values of the ratio D, /D
have been chosen to compare the membrane potential for the same electrolyte
and external concentration in one anion- and one cation-exchange membrane
that only differ in the sign of the fixed-charge groups. The lack of symmetry
between these two families of curves is useful to identify the sign of the fixed

@

100
S
g
S

: o
&

100E . . . .
-2 -1 0 1 2 -2 -1 0 1 2
log,o(X/ci) log,o(X/cy)
Fig. 4.29.

Variation of the membrane potential Agy = ¢’3 — ¢* with the external electrolyte concentration
in compartment « while keeping constant that in compartment S. (a) The curves correspond to the
values (from top to bottom) c’fZ/X =10,5,2,1,0.5,0.2, and 0.1, and the ratio of diffusion
coefficients is Dy /Dy = 0.5. In this case zp A¢pg increases monotonously with X/c‘f‘2 at constant
C,Ig /X, and hence it also increases monotonously with c‘;3 /X at constant X / c‘]"2. (b) The solid
lines correspond to (from top to bottom) c’lsz/X =1,0.5,0.2,and 0.1, and D, /D| = 2. The
dashed lines correspond (from top to bottom) to c‘lgz/X =2,5,and 10, and Dy /D = 2. The
presence of a minimum in the membrane potential curves in this case leads to a non-monotonous
variation of zp A¢y with cf /X at constant X /5(112' Note that A¢y vanishes when the

equilibrium condition c‘l)‘2 = sz is satisfied.
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Fig. 4.30.

Donnan electrolyte (or coion)
concentration profiles for the case

c‘f‘z =2X = 4c’18 , and different values of
the diffusion coefficient ratio:

D, /Dy = 0.2 (long dashed line), 1 (solid),

and 5 (short dashed).

Transport in membranes

charge when it is uncertain (note also the sign reversal of the membrane poten-
tial because the ordinate axis includes the co-ion transport number). Moreover,
the values of the membrane potential along one of these curves can be used to
estimate the fixed-charge concentration.

In order to derive the expressions for the electrolyte flux density and the diffu-
sion potential, eqns (4.203) and (4.204), we have integrated the corresponding
differential equations, eqns (4.202) and (4.207), over the membrane thickness.
By performing these integrations from the boundary x = 0 to an arbitrary posi-
tion x, the concentration cj2(x) = c2(x) and electric-potential distributions
inside the membrane can be calculated. In the case of symmetric electrolytes
these are given by the following equations

x e —cn(0) — X /2 /o) —¢(0)]

== , (4.224)

h ci2(h) — c1200) — (X /2)z2f[¢(h) — ¢(0)]
w20 +4'X

2flp(x) —¢O] = (" —13)In O T X X (4.225)

c12(0) = —(X /2) + [(X /2)* + (c5,)*1'2, (4.226)

cia(h) = —(X/2) + [(X /2> + ()12, (4.227)

and have been represented in Figs. 4.30 and 4.31 for the case ¢{, = 2X = 46’;32
and three values of the diffusion coefficient ratio D, /D;. We can observe there
that the concentration and electric-potential profiles are almost linear under
these conditions. Note that these figures are also valid for both anion- and
cation-exchange membranes.

¢) Co-ions move by diffusion in strongly charged membranes

We now discuss the relative importance of the diffusional and migrational
contributions to the ionic flux densities in strongly charged membranes. The
diffusional contributions of co-ions and counterions are similar in magnitude
because of the local electroneutrality. The migrational contributions, on the
contrary, are very different because they are proportional to the ionic concen-
trations and the counterion and co-ion concentrations are very different. It is
then concluded that, when }1 and j are of similar magnitude, the migrational

C]z(x)/x

0.0 0.5 1.0
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contribution to the flux of co-ions must be negligible and fg ~ —D, %cz. Thus,
the main transport mechanism for co-ions under these conditions is diffusion,
while counterion transport takes place both by diffusion and migration. Fur-
thermore, the diffusion potential is negligible in strongly charged membranes.
Indeed, since the co-ion concentration is then much smaller than the fixed-
charge concentration, the argument of the logarithm in eqn (4.207) varies very
slightly with position inside the membrane and the diffusion potential gradient
is approximately given by
. Dy —D; -
f Voair ¥ ——Vcy, (4.228)
zmemDi

which is very small in strongly charged membranes. Note, however, that the
migrational contribution to the counterion flux is not negligible, except for the
trivial case D| = D; in which there isﬁno potential gradient. This contribution
is approximately given by (D1 — D2)Vc¢; and eqn (4.198) becomes

J1 = =Di(Ver — avemf Voair) ~ —DaVey, (4.229)

which fully agrees with}'z ~ —Dg%cz because;’l = (vl/vg)j'z = —(Zz/zl)jz.

Although these conclusions were also obtained in Section 4.3.2, we are now
in position to work them out in more detail and deduce the conditions that make
the migrational contribution to the coion flux negligible. Taking the (implicit)
derivative of eqn (4.224) and making use of eqn (4.203) the concentration
gradient inside the membrane can be written as

dep  jiz cn) +4'X

=L e 17 4.230
dx DY cin(x) + (X/2) ( )

The relative contribution of diffusion to the co-ion flux density is then
jz,d{f'(X) _ _Dader _ (1/t)e12(x) +X, 4231)

J2 joodx 2 +X

which has been represented at x = 0 in Fig. 4.32. This means that when the
membrane fixed-charge concentration is larger than the external electrolyte
concentration (in both compartments) by ca. a factor 10, eqn (4.203) can be
approximated by the much simpler expression jjo & —DayAci2/h.

181

Fig. 4.31.

Electric potential profile for the case

C‘;‘z =2X = 4c’f2 and different values of
the diffusion coefficient ratio:

Dy /Dy = 0.2 (long dashed line), 1 (solid),
and 5 (short dashed).
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Fig. 4.32.

Variation of the diffusive contribution to
the coion flux density, evaluated from

eqn (4.231) at x = 0, with the fixed charge
concentration for different values of the
diffusion coefficient ratio: Dy /Dy = 0.2
(long dashed line), 1 (solid line), and 5
(short dashed line).
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d) Membrane permeability
We close this section with some additional comments on the electrolyte flux

density. The membrane permeability to the electrolyte is defined as
2
Act),

P = (4.232)

The SIunit of this magnitude is m/s, as can be easily checked from the expression
corresponding to a neutral membrane

-0 DY

PY, = —A’%?z ==k (4.233)
We obtained in eqn (4.203) that ;5 is the sum of —DY), Acy2/h and another term
proportional to A¢ygir. Since the concentration drop of the Donnan electrolyte
inside the membrane, Acj2 = c12(h) — c12(0), is generally smaller (in magni-
tude) than the difference of the external concentrations, Ac‘l’"2 = cfz — c‘l"z, it
is often the case that the permeability of a charged membrane to an electrolyte
is significantly smaller than that of a neutral membrane, i.e. P12 < P?z. There
are, however, exceptions to this rule.

The term proportional to A¢g;ir in eqn (4.203) may have equal or opposite
sign to that proportional to Acjz depending on the values of the ionic transport
numbers in the external solutions. In particular, we have observed in Figs.
4.24 and 4.27 that the electrolyte flux density may exhibit some maxima as a
function of X /Y, when the co-ion diffusion coefficient is larger than that of the
counterion. It is then possible to find ‘abnormal’ situations in which a charged
membrane is more permeable to the electrolyte than a neutral membrane of
equal thickness in spite of the fact that the fixed charges exclude the (Donnan)
electrolyte.

4.3.4 Membrane permselectivity

As an extension of the transport problem considered in Section 4.3.3, we
consider here the conduction of an electric current density by a binary electrolyte

I=F@j+z2)) (4.234)
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across a membrane that separates two uniform solutions of a binary elec-
trolyte with concentrations cf, and cf »- The main difference from the situation
described in Section 4.3.3 is that the two ionic_flux densities are no longer
similar to each other. That is, the relation j; = v;j12(i = 1,2) describing elec-
trolyte diffusion does not hold and must be replaced by the diffusion—conduction
equation, 1, = vmz + tMI /(ziF). In relation to the conduction term it must be
observed that the transport numbers of the counterion and the co-ion inside
charged membranes can be very different from each other and, therefore, the
flux densities j; and j, can also be very different. As a limiting situation, we
could think of an ideally permselective membrane in which jl ~1 /z1F and
j2 =~ 0. In general, however, both ions contribute to the transport of electric
current and it becomes convenient to introduce the integral transport numbers
T;(i=1,2) as

7fﬂ7 (4.235)
=5 .

Under steady-state conditions, the ionic flux densities and the electric current
density are independent of position (or, at least, show no divergence in the case
of non-planar geometry), and therefore the integral transport numbers are also
independent of position. This is one of the main differences between 7; and
the local migrational transport number t[M that appears in eqn (4.189). The
other difference is that th is only related to electric conduction, while 7; is
also affected by the electrolyte diffusion. In other words, the integral transport
numbers should be rather understood as dimensionless values for the ionic flux
densities. They are obtained by scaling the actual flux densities by the value
that corresponds to the case in which only the species under consideration is
responsible for electric current transport. Obviously, 7; = th in the absence
of concentration gradients inside the membrane, but this situation occurs very
seldom in practice.

Our aim in this section is to solve the Nernst—Planck equations and local
electroneutrality approximation, eqns (4.198)—(4.200), and to evaluate the ionic
flux densities, the membrane potential A¢y, and related magnitudes like the
membrane permselectivity

g n-n (4.236)
=7- v .
and the membrane electrical resistance
RM = — Adpopm /1. (4.237)

Arather general solution procedure of the transport equations for asymmetric
electrolytes is based on the use of a new set of concentration and flux-density
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variables. These are defined as

So=c1+cp =cr, (4.238)

S1 =zi1c1 + 2200 = —2ZMCM, (4.239)

Sy = Z|2c‘1 +chz = (21 + 22)81 — z1220T>s (4.240)

N

Go= 2L + 22, (4.241)
1 D2

G = B (4.242)
1 D,

Moreover, assuming that the vectors éo and él have the same direction, a
convenient dimensionless constant I" can be defined implicitly through the
relation

G1 = —2122Go. (4.243)

The Nernst—Planck equations are then written in terms of these variables as

—Go=VSo+S1f Ve = Ver — zvemf Vo, (4.244)
—G1 =VS1 4+ S2f Vo = Sof Vo, (4.245)
where we have used that %Sl = —zM%cM = 0. Since S> and cr are

related through eqn (4.240), eqns (4.244) and (4.245) can be considered as
an equation system in the variables ct and ¢. This system can be easily inte-
grated. Equation (4.244) has constant coefficients, and eqn (4.243) can be used
to obtain the following expression for the electric potential gradient

£ V¢ =TVIn{cr + zmemlT + (21 + 22)/(z122)]1}. (4.246)

Finally, combining eqns (4.234), (4.241) and (4.242), the current density can
be written as

- n 5\ az >
I=|T+ =+ =) ——(@D1 — 22D2)FGy, (4.247)
2 ) -

and this equation allows us to determine I'; note that éo is also known as
a function of I" after integration of eqns (4.244) and (4.246). The ionic flux
densities are then evaluated as

- 72D > 1)1D‘f’2 > ti’vi

j1=—0+72"NGy = —=Gop+ —, (4.248)
22— V12 uF

- 21D > DY, - v

=2 (140G = —2Gy + 2. (4.249)

i1 —22 V12 22



Steady-state transport across ion-exchange membranes

In the case of a symmetric electrolyte and planar geometry, this solution
procedure is applied as follows. Integration of eqns (4.244) and (4.246) over
the membrane leads to

Goh = —Act + 22Xf A¢, (4.250)

cr(h) + 22T'X

Ap=T1 ,
fAg =TI T TX

4.251)

where c1(0) and cT(h) are given by eqns (4.209) and (4.210),and X = zmem/22.
The parameter I' must be evaluated from the solution of the transcendental
equation

21F (D1 + D»)

2h
cr(h) + 22X
c1(0) +ZQFX] ’

1=(er—l‘f]+l§])
X |:ACT —zl'X In (4.252)

which is obtained after substitution of eqn (4.250) into eqn (4.247). Note that
I" is related to the membrane permselectivity

§= T — Z‘IN _ leYZ 721FGy
I - t‘lN via(l — t‘lN) 1
FD/G 2t
Tl ot , (4.253)
1 ) =1y =zl

where eqns (4.247) and (4.248) have been used. Thus, when the membrane is
strongly charged and exhibits a high permselectivity (§ = 1),z[" takes the
value —1.

The total ionic concentration ct(x) and the electric-potential distributions
inside the membrane can be calculated by integrating eqns (4.244) and (4.246)
from x = 0 to an arbitrary position x. The expressions thus obtained are

x _ cr(0) —er@) + 22Xf [ (x) — ¢(0)]

- = , (4.254)
h cr(0) —cr(h) + 22Xf (¢ (h) — ¢(0)]
and
. cr(x) +22I'X
flpx) — (@] =TIn O T X (4.255)
The ionic concentrations are then obtained as ¢y = (¢t + X)/2 and ¢ =

(et — X)) /2. The close similarity between eqns (4.254) and (4.255), on the one
hand, and eqns (4.224) and (4.225), on the other hand, can be expected from the
fact that all equations in Section 4.3.3 could have been obtained as particular
cases of those in the present section after setting / = 0.

The potential drop inside the membrane, i.e. the electric potential difference
between the internal boundaries of the membrane, can be written as the sum of
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ohmic and diffusional contributions, A¢ = A¢gir + Adonm- The diffusional
contribution is given by eqns (4.204) or (4.208) and is rewritten here as
er(h) + @) = HX

Adgis = (7 — t¥) 1 .
af Adar = =) o X

(4.256)

The ohmic contribution can be evaluated from eqns (4.251) and (4.256) as

cr(h) + 2I'X

cr(0) + 22X

cr(h) + (1} —HX
er(0) + (1 — )X

22f A¢pohm = 22" In

— @Y —1Y)In (4.257)

Remember that 1} — £3" is the value of zoI" when / = 0.
The membrane potential, i.e. the electric potential difference between the
external boundaries of the membrane, is

Adw = ApE — Agh + A (4.258)

where Ag¢p and Aqbg are the Donnan potential drops given by eqns (4.217) and
(4.218).

The graphical representation of the above transport magnitudes can be con-
veniently done after the introduction of the average value @ = (c'ls 5 +c5)/2

and the ratio rip = c‘l"2 / 6,132 of the external concentrations, as in Section 4.3.3.
Equations (4.250)—(4.252) then take the form

G B+2I'C
0 _A—Bt+mprChmot2C

(4.259)

o A+ are
B+ pI'C
Ap=Tlnh————, 4.260
fAad A+2IC ( )
1 Gy

ol =1 — 1 — 2y — o (4.261)

Iy Go
where Gg’m x = 4@/ his the maximum value of G in the case of neutral mem-

branes, Iy = 2leD}”2@/h, and A, B, C are defined in eqns (4.213)—(4.215).
Figures 4.33 (a)—(f) show graphical representations of Go/Ggmax vs.

log (X /@) = log((4C) under different conditions. In very weakly charged
membranes, C < 1, and

Go ~ _ZAC‘I”Z _ 2(c§, — cfz) O ]'
h h 0,max o + 1

(4.262)

In very strongly charged membranes, co-ion exclusion is almost complete, so
that ¢c; & X, Act = 0, and j» = 0. As a consequence, zpI" &~ —1, and

~ = (4.263)
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In the absence of current density, / = 0, the results obtained in Section 4.3.3 are
reproduced. In particular, Go/ Gg’max is then equal to ji2/ j?z’max in Figs. 4.25
and 4.27.

Figures 4.34 (a)—(f) show the values of parameter zpI" corresponding to
Figs. 4.33 (a)—(f). In the absence of current density, this parameter takes the
constant value zoI" = #}' — ¢, as we deduced in Section 4.3.3. In the presence
of current, the variation of z,I" with X /@ can be rather complicated and shows
some singularities when Gy vanishes. Since Go/ Gg’max takes the value given in
eqn (4.262) in the limit of weakly charged membranes, the parameter z,I" dif-
fers then from ¢ — ¢3 in a value proportional to the current, z2I" — £} + 13 oc 1.
In the opposite limit of very strongly charged membranes, z>I" tends to —1 in
the presence of current.
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Fig. 4.33.

Variation of the magnitude G/ Gg, max
with the fixed charge concentration for
different values (from top to bottom) of
1/1y = 1.0 (dotted), 0.5, 0, —0.5, and —1.0
(dashed) and D, /D; = 0.5 (a, b), 1.0 (c,
d), and 2.0 (e, f). The external
concentration ratio takes the values

rip = 10 (a, ¢, e) and 0.1 (b, d, ). Note
that changing r|5 to its reciprocal simply

reverses the sign of GO/GS max”
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Fig. 4.34.

Variation of parameter I" with the fixed
charge concentration for different values of
1/Ip = 1.0 (dotted), 0.5, 0, —0.5, and —1.0
(dashed) and D, /D1 = 0.5 (a, b), 1.0 (c,
d), and 2.0 (e, f). The external
concentration ratio takes the values

ri2 = 10 (a, ¢, e) and 0.1 (b, d, f).

Transport in membranes
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Figures 4.35 (a)—(f) show the graphical representations of the counterion and
co-ion flux densities corresponding to Figs. 4.33 (a), (d), and (e). The counterion
and co-ion flux densities are linked by the relation (j; — j2)/. j(l)Z,max = 1/,
and they are equal to the electrolyte flux density in the absence of current,
Jj1 = j2 = j12. Note also that Figs. 4.35 (a), (d), and (e) and Figs. 4.33 (a),
(d), and (e) contain similar information because the magnitudes represented
there satisfy the relation j; /j?Z,max = GQ/G((])’maX +1}'1/Iy. Since the co-ions are
excluded from very strongly charged membranes, j, ~ 0 and j; /. j(l)Z,max =1/l
in this limit.

Figures 4.36 (a)—(f) show some graphical representations of the membrane
potential for electric current densities in the range, |/ /Io| < 1; values outside this
range could have been considered as well because /j is merely a convenient unit.
In very weakly charged membranes, the potential drops are A¢p — Aqﬁl’g ~ 0
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and A¢ =~ (I'/f) ln(c’]gz/c‘l"z) = —(I'/f) In r15. The latter can be written as the
sum of a diffusional contribution

oy, b
Adgit = + In —=, (4.264)
f \za k&) c,

which coincides with that in eqn (4.258), and an ohmic contribution A¢opm =
—IRM where

B

h
/ dx / hRT chy
= —_— = n—=
) KM F2(D1 +D) ) M7 2P0, +DyAcY,
(4.265)
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Fig. 4.35.

Variation of counterion (a, ¢, €) and co-ion
flux densities (b, d, ), i"j(l)z,max units,
with the fixed charge concentration for an
external concentration ratio rip = 10,
different values of the diffusion coefficient
ratio Do /D1 = 0.5 (a, b), 1.0 (c, d), and 2.0
(e, f), and different values of 1/l = 1.0
(dotted), 0.5, 0, —0.5, and —1.0 (dashed).
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log,, (X/cty) 1/1,

Fig. 4.36.

(a, ¢, e) Variation of the membrane potential A¢y; with the electrolyte concentration in compartment @ while keeping constant cf2 = 0.5X. The
electric current densities are /Iy = 1.0 (dotted), 0.5, 0, —0.5, and —1.0 (dashed), and the diffusion coefficient ratios are D, /D; = 0.5 (a), 1 (c),
and 2 (e). Note that Agy = —1 RM when the equilibrium condition c‘f‘z = cf 2 is satisfied.

(b, d, f) Variation of A¢y with the electric current density / /1 for different values of the external concentration ratio ri» = 0.1, 1, and 10 (from
top to bottom), and fixed diffusion coefficient ratio, D, /D = 0.5. Plot (b) corresponds to a weakly charged membrane with X / c‘I’VZ =0.01,

plot (d) to a moderately charged one with X/E = 1, and plot (f) to a strongly charged one with X/@ = 10.

is the membrane electrical resistance. When evaluating the integral, we have
used the fact that the distribution of the electrolyte concentration is linear inside
the membrane.

In Fig. 4.36 (b), we have represented 2o A¢pm ~ —(z2I'/f) In 12 against the
current density at constant ry; for a weakly charged membrane. It is observed
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that zo A¢m varies almost linearly with /. Since the Donnan potential drops are
negligible then, and the diffusional contribution to the potential drop is constant
under these conditions, the variation must be due to the ohmic potential drop,
2f Adohm ~ —(z22' — ' + £3) Inr2. Note that, according to eqns (4.261)
and (4.262), zoI" — 1Y + Y oc I and this latter expression of zp Agohm can be
transformed to Adopm = —I RM.

In very strongly charged membranes, co-ion exclusion is almost complete,
the Donnan potential drops are z> f (A¢f — Aqbg) ~ ln(c’fz/c‘fz) = —Inrp,
and the potential drop in the membrane is ohmic, i.e. A¢p = —IRM where
RM = /kM is the membrane electrical resistance and kM ~ z]2F 2D\ X /RT is
its conductivity.

In Fig. 4.36 (f), we have represented zp Apm ~ —(z22T'/f) In r, against the
current density at constant 7> for a strongly charged membrane. It is observed
that zp A¢y varies almost linearly with /. Since the diffusive contribution to
the potential drop is negligible then, it is observed that zo f A¢gm ~ —Inryn
when / = 0. In the presence of electric current, the membrane potential varies
linearly and the slope is smaller (i.e. the membrane resistance is lower) than
in Figs. 4.36 (b) and (d), where the fixed-charge concentration is smaller. This
reflects the fact that the membrane electrical conductivity increases with X.
Moreover, using the values X /@ = 10 and D,/D; = 0.5, corresponding
to Fig. 4.36 (f), it can be obtained that A¢ = —IRM ~ 35mV (I/Ip), in
agreement with the slopes observed in this plot.

4.3.5 Counterion interdiffusion through an ideally
permselective membrane

Consider a ternary electrolyte solution formed by two binary electrolytes with
a common ion. The common ion is considered to be the co-ion and is denoted
by index i = 3. The counterions are denoted by indices 1 and 2. The electrolytes
Ay, Cy;, and Dy, C,;, are denoted by indices 13 and 23, respectively, and are
assumed to be completely dissociated according to

AU] CV},] <__> UlAzl + V3’1C23, (4.266)
DUZCVB.Z <__> l)zDz2 + U3’2Cz3, (4.267)
where the stoichiometric relations zj vy 4+ z3v3,1 = 0 and z2v2 4+ z3v32 = 0 are

satisfied.

In the general case, the ion-exchange membrane separates two uniform sol-
utions with electrolyte concentrations c‘f‘3, 0‘3‘3 and cf 3 czﬁ3 under closed-circuit
conditions, I # 0. For the sake of simplicity, the membrane is considered to
be ideally selective and the co-ion (i = 3) is completely excluded from the
membrane phase. In a binary electrolyte case, ¢5; = 62,33 =0, the only transport
process that can occur across an ideally selective membrane is the conduction of
electric current by the counterions, j; = I/z1F and j3 = 0. Electrolyte diffusion
cannot then take place because the electrolyte A, C,, | is not a component in the
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membrane phase and jj3 = 0. Similarly, in the ternary electrolyte case under
consideration, the electrolytes A,, C,;, and D,,C,,, are not components of the
membrane phase if this is ideally selective and there is no diffusion of neutral
electrolytes, j13 = 0 and jo3 = 0. Still, however, the interdiffusion of ions 1 and
2 can occur in addition to the conduction of electric current by the counterions.

Writing the electric potential gradient as the sum of ohmic and diffusion
contributions

.- B, 1M M I
V¢ = Vair + Voohm = —= | —VIncy + =Vine | — —, (4.268)
f\a 22 K

and substituting it in the Nernst—Planck equations for the ionic flux densities,
these can be written in the diffusion—conduction form

-

M

- - 1

i =-DMVe, + 1 -, (4.269)
u F
" -

R R M7

ja=-DMVe, + 2 —, (4.270)
2 F

where DY = iMD + 1MD,, and

2
M_ #, 4271)
z1Dic1 + z3D2c2

and tg/[ =1- tiw are the local transport numbers of the counterions in the
membrane. It should be stressed that the diffusion coefficient Dll\g does not
describe the diffusion of any ‘electrolyte’ formed by the two counterions, but
their interdiffusion across the membrane. The derivation of eqns (4.269) and
(4.270) has made use of the relation z; Ve 1= —Zz%cz that arises from the local
electroneutrality assumption

z1c1 + 2202 + 2mem =0, (4.272)

and the uniformity of the fixed-charge distribution. This relation implies that
there is only one ‘diffusional’ driving force for the transport across the mem-
brane (more exactly, a relation between the driving forces for the two ions) and
therefore that a single diffusion coefficient, Dllvé, characterizes the interdiffusion
process.

As commented in Section 4.3.2for the case of a binary electrolyte, the
diffusion—conduction equations, eqns (4.269) and (4.270), are not very useful
for calculating the ionic flux densities as a function of the external solution con-
centrations and the electric current density because the transport coefficients
Dll\g and tllvI =1- tg/[ are functions of the local concentrations and, hence,
of position. Interestingly, the procedure worked out in Section 4.3.4 for the
solution of the Nernst—Planck equations in a binary electrolyte can be directly
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applied to this case because there are two ionic species inside the ideally selec-
tive membrane and no assumption on the values of the charge numbers was
used in Section 4.3.4.

If both counterions have the same charge number z; = z = z, the parameter
I' = —G1/(z2122Gp) = —1/z and the concentrations gradients of the counteri-
ons are opposite and equal in magnitude, so that det/dx = 0. The electric field
inside the membrane is then constant, and the Nernst—Planck equations can be
integrated to give the Goldman equation

D; fA¢

Ji= =7 e LT A = ci(O)]. (4.273)

The ionic concentrations at the membrane boundaries are given by the Donnan
equilibrium conditions and the local electroneutrality condition as

‘l(ﬂ) - ‘2(5) =M _ (4.274)
| cy z(c] +¢5) T
0 0
A0 _ a0 me e o
c 5 z(cf +¢5) e

The electric potential drop can be determined by substituting eqn (4.273) in the
equation for the electric current density, I = zF (j; + j2), as the solution to the
following transcendental equation

1 . Dici(h) + Daca(h) +i

Ap=——1n - (4.276)
7 Dic1(0) + Dac2(0) + i

where i = IRTh/(z*F?A¢). In the absence of electric current (I = 0) this
reduces to

1 . Dici(h) + Daca(h)

Adgif = ——In ———— ==~ 4.277

ai zf Dici(0) + D2c2(0) ¢ )

and in the absence of concentration gradients (dc;/dx = 0) the potential
drop is

Adonm = —IRM, 4.278)

where RM = h/icM is the membrane electrical resistance and ™ is its electrical
conductivity. Note, finally, that the ionic flux densities can also be expressed as

. DD, D I

- G =, 4279
Ty, N s Y N (4.279)
ho 2iD2 o D2 T (4.280)
2=, "D, " b, —D,F :

where Go = (j1/D1) + (j2/D2) = zmemf Ad/h.
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If the counterions have different charge numbers z; # zp, the ionic flux
densities are given by [see eqns (4.248)—(4.251)]

. 22D

J1= (1 +z211)Go, (4.281)
2 — 21

) 21D,

Jo = ——— (1 +22I")Go, (4.282)
21— 22

where Go = (—Act + 2memf A¢)/h and the electric potential drop is

cr(h) + zmemlI” + (21 + 22)/(z122)]
c1(0) + zmeml(l + (21 + 22)/(@122)]

fA¢p =Tl (4.283)

where I" has to be determined as the solution of the transcendental equation

tW
1=<r+i+

g) 2122F (21D — 22D»)
1 2

(z1 —22)h
cr(h) + zmemlT + (21 + 22)/(z122)]
cr(0) + zmem(I" + (21 + 22)/(z122)]

} . (4.284)

X {ACT —zmemI In

It is worth noting that when that the membrane separates solutions of differ-

ent electrolytes, cf3 = c%3 = 0, the flux densities and the potential drop inside
the membrane are independent of the values of the external concentrations c{;

and c2ﬁ3. This occurs because the boundary concentrations are only determined
by the fixed charge concentration, zi¢1(0) = z2¢2(h) = —zmeM, and the mem-
brane phase cannot ‘know’ the external concentrations. The situation of ideal
permselectivity considered here is an approximation that can only be used when
the external concentrations are much lower than the fixed-charge concentration,
and hence this independence of the flux densities and the potential drop inside
the membrane from the external concentrations should not be surprising. Yet,
the Donnan potential drops

1 0 R

Fagh =~ SO _ 1, mamew (4.285)
21 (& 21 216y
1 eh 1. —zmc

FAGE = ——n ‘2(,3) ———n ZM;M (4.286)
22 5 22 2205

are sensitive to the external concentrations.
Continuing with the discussion of the situation c‘fS = c%3 = 0, the ionic flux
densities reduce under open-circuit conditions, / = 0, to

2122D1D2Gy

211 = —2j2=—
21D — 22D>

amem 2122D1D3 1 1
=- —_ (* - — +fA¢>dif> ) (4.287)

h 21Dy — D2 \z2  z1
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v/ Jo

2 -1 0 1 2 -2 -1 0 1 2
lOglo(D]/Dz) lOglo(D]/Dz)

where the diffusion potential

Dy — Dy In 21D
21D1 — 22Dy 22D3

f Agait = (4.288)
can be obtained either from eqn (4.283) or from the Henderson approxima-
tion (which is exact in this case). Figure 4.37 shows the representation of
eqns (4.287) and (4.288). When D1 > D; we observe that z1f A¢giris posi-
tive, and that the flux density j; is smaller than jo = —zmemDi/z1h, which can
be understood as a typical value when D; = D,. Contrarily, we observe that
z1f Aggiris negative and j /jo > 1 when D; < D;.

4.3.6 Bi-ionic potential

The bi-ionic potential is the potential difference between two solutions of dif-
ferent binary electrolytes with a common co-ion at the same concentration that
are separated by a charged membrane under open-circuit conditions, / = 0. We
consider here that all ions are monovalent. Let us denote the counterions by
indices 1 and 2, and the common co-ion by index i = 3. The electrolytes A, C,
and D, CV3,2 are denoted by indices 13 and 23, respectively, and are assumed
to be completely dissociated. The electrolyte concentrations are c{; = c2’33, and
5 = c’lg 3 = 0. In the absence of chemical partition coefficients this implies
that the two Donnan interfacial potential drops cancel out, and therefore the
bi-ionic potential is equal to the diffusion potential drop inside the membrane.

Since the total ionic concentration, ct = ¢1 + ¢2 + ¢3, is constant throughout
the membrane, the electric field is also constant, and the ionic flux densities are
given by the Goldman flux equation

D; zif A¢

Ji= = el A — ) (4.289)

The zero current condition, 0 = jj +j» —j3, leads then to the Goldman equation
for the diffusion potential

Dsca(h) + D3c3(0)

3 f Aggir = In .
af Aair =10 O F Daes )

(4.290)
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Fig. 4.37.

Diffusion potential, in RT /z F units, and
flux density of counterion 1, in

Jo = —zmcemDi/z1h units, against the
counterion diffusion coefficient ratio,

D1 /D3, in the interdiffusion of counterions
across an ideally permselective membrane.
The counterion charge number ratios used
are: z1/zp = 1/3,1/2,1,2,and 3
(increasing in the arrow direction).
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Fig. 4.38.
Schematic representation of the variation
of the bi-ionic potential with the

o o — B
electrolyte concentration c{3 = ¢53.
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In strongly charged membranes, the bi-ionic potential is approximately given
by

D,
z3f Adgir = In Do (4.291)
1

and in very weakly charged membranes it can be evaluated as

.. D2+ D3

23f Aggir ~ In D 1Dy (4.292)

which agrees with eqn (4.89). This asymptotic behaviour has been represented
in Fig. 4.38.

Finally, it should be mentioned that boundary-layer effects have been

neglected in this simple description of the bi-ionic potential. These effects are

particularly important in the case of strongly charged membranes [19] and

account for the deviations of the actual measurements from eqn (4.290).

4.3.7 Transport in multi-ionic solutions

In the previous sections we have explained a solution procedure for steady-
state transport equations in one-dimensional systems. This procedure is applied
here to multi-ionic systems. We consider mixtures of electrolytes such that all
counterions have the same charge number z; and all co-ions have the same
charge number z5; that is, there are only two classes of ions. It is assumed that
all ionic concentrations at the (internal) membrane boundaries, c;(0) and ¢;(h),
are known and we aim to evaluate the ionic flux densities and the potential drop
across the membrane as a function of the electric current density / crossing the
membrane.

The basic idea behind the method employed here to solve this problem is
that the Nernst—Planck equations can be combined to yield an equation for
the electric field. The solution of this equation and further integration allows
us to obtain the electric-potential distribution ¢ (x). Then, the Nernst—Planck
equation for species i can be multiplied by e/ ®® and integrated between the
membrane boundaries. This leads to the following equation for the flux density
of species i

o, G T2 — ci0)
! S euif19—p O] dx

ji= (4.293)

This equation is known as Kramer’s equation and can be considered as a
generalization of the Goldman flux equation, eqn (4.289).

In order to obtain the above-mentioned equation for the electric field, we
introduce first a transformation of variables. The Nernst—Planck equations of
the counterions can be combined in the form

acy

—Go1 = o

d
+ zlclfip, (4.294)
dx
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where

C = Z ¢ (4.295)

counterions
is the total counterion concentration and

Goa= Y I (4.296)

counterions

After multiplication by e/ ®, eqn (4.294) can be formally integrated between
the membrane boundaries to give

Ci(h) /29 — C1(0)

Go = — .
’ /0’1 et flp®—¢ O] dx

4.297)
Combination of eqns (4.293) and (4.297) allows us to write the flux density of
any counterion species as

ci(h) e/ A — ci(0)
Ci(h) €729 — C1(0)

Ji = DiGo,1 , =121 (4.298)

Similarly, the flux density of any co-ion species can be written as

cilh) 2750 — ¢;(0)

Ji=DiGor e 0 TR o0y O T 2 ( )
where
C = Z ¢ (4.300)
co-ions
is the total co-ion concentration and
_ Ji
Gos = Z o 4.301)
CcOo-10ns

The ionic flux densities are coupled through the equation for the electric current
density, I = F ) ; ZiJi- Equations (4.298) and (4.299) lead then to

Y Dicith) e /2% — 3 Dici(0)

Zi=21 Zi=1]
Ci(h)ea/Ad — Cy(0)

> Dici(h) &2/ 2% — 3 Djci(0)

Zi=22 Zi=22

Ca(h) e2/ 29 — C5(0)

~

7=ZG
F 10,1

+22Gop2 (4.302)
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This equation plays a key role in the solution procedure but involves the
variables Go 1, Go2, and A¢ that are still to be determined.
Let us introduce the additional auxiliary variables

cr=Y =0+, (4.303)
i
S1=z21C1 +22Cr = —zmcM, (4.304)
Ji
Go=Y £ =Gy + Goa, 4305
0 Xl: D; 0,1 0.2 ( )
Gi=Y, Wi _ 4Goy + 22Goa. (4.306)
T Di Y ’
G
=1 (4.307)
2122Go

and combine the Nernst—Planck equations in the forms

dc d
o= 0T ZMCMfa"’, (4.308)
d¢
—~G1 = (ZC + zgcz)fa
d¢
= —z122ler + 2mem(z1 + zz)/(mzz)]fa, (4.309)

where we have used the fact that dey/dx = 0. Equation (4.308) allows us
to conclude that the electric field is constant throughout the membrane when
c1(0) = cr(h), a case that is considered later in this section.

From eqns (4.307)-(4.309), the equation for the electric field is

dﬁ _ r det

= —, (4.310)
dx  cor+amemll” + (21 + 22)/(z1z2)] dx
and hence the electric potential drop in the membrane is
h) +z r , . 12
FAG=TIn cr(h) + vemll” + @1 + 22)/@iz)] @311
c1(0) + zmeml[l + (21 + 22)/(z122)]

Similarly, the integration of eqn (4.308) over the membrane leads to

Goh = —Act + zmemf Ad. (4.312)

This equation system is solved as follows. First, we guess a value of I" and
evaluate the electric potential drop and Go from eqns (4.311) and (4.312). Then,
we calculate

2
Gy, =

(14211 Go, (4.313)
2 —21
21

Gop = (1 + 22" Go, (4.314)

1 —22
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and substitute them in eqn (4.302). The value of T" is iteratively modified until
this equation is satisfied.

As a final comment it is worth remembering that the above equations only
apply to the case of two ion classes. Although the procedure can be extended
for as many ion classes as ions that are present in the system [20-22], this is
obviously rather complicated, and a much simpler approximate solution gives
good results in the case of multi-ionic systems. This is the so-called Goldman
constant-field assumption that decouples the transport equations of the different
ionic species by assuming that the electric field is a constant. The flux density
of species i is then given by the Goldman equation

: zif A . zif AP )
Ji = —Dim[éi (h) e —¢i(0)]. (4.315)
Taking eqn (4.315) to the equation for the electric currentdensity I = F Y ; zjji,
the electric potential drop across the membrane can be obtained as the solution of
atranscendental equation. In the case of a mixture of symmetric z : z electrolytes
this equation is

> Dici(0) + Y Djci(h) +i
+ —

S Dici(h) + Y. Dici(0) + 1 (4-316)
+ —

7f Ap =1

where i = IRTh/(z>F*A¢) and the signs under the sums indicate that they are
restricted to either cations or anions. Note also that eqns (4.315) and (4.316)
become exact when det/dx = 0, a case to which eqns (4.310)—(4.314) cannot
be applied. This means that the Goldman constant-field assumption is expected
to be more accurate when Act/ct < 1 or, equivalently, when the electrical
conductivity of the multi-ionic solution does not vary much with position [23].

4.3.8 Concentration polarization in ion-exchange
membrane systems

Under steady-state conditions, the ionic flux density j; is independent of
position. The diffusion-conduction equation for a binary system

; ; i1
Ji=viju+—— (4.317)
i F

shows that the electrolyte diffusion and the conduction contributions to j; can
depend on position, but their sum cannot. That is, when the migrational trans-
port number #; varies with position (and I # 0), the electrolyte flux density
j12 must vary accordingly. The fixed charge in an ion-exchange membrane
increases the transport number of the counterions and decreases that of co-ions
(with respect to the external solution values). This difference in the migrational
transport numbers inside and outside the membrane implies that (electrolyte)
concentration gradients must evolve on both sides of the membrane when an
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Fig. 4.39.

Schematic representation of the electrolyte
concentration profile in the membrane
system under consideration.
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electric current is forced through it.!® This phenomenon is known as concen-
tration polarization. In particular, in the ‘feeding’ side of the membrane there is
a deficit of counterions, and in the ‘receiving’ side there is an excess of coun-
terions. Because of the electroneutrality condition, this also means that there is
a deficit and an excess of electrolyte, respectively.

Consider that the membrane separates two solutions with the same electrolyte
concentration c}, and compare the diffusive and ohmic contributions to the
flux density of counterions (i = 1) in the membrane phase and in the feeding
external solution. Since the flux density of the counterions is the same in both
phases

I ™M
v+ =i+ 4318
112 o F 12 o F ( )
and
wo_ M M wy L
ViU —Jjp) = @ — 1) —. (4.319)
uF

The sign of j}, is that of 1/z; because t%VI > ¢}, and this means that electrolyte
diffusion in the feeding solution occurs in the same direction as the motion of
counterions inside the membrane.

The flux density jll\g takes place in the opposite direction to j}, if the bulk
solutions have the same concentration and it is usually much smaller in mag-
nitude. By neglecting jll\g and replacing the local counterion transport number
in the membrane by its average value, eqn (4.319) can be integrated over the
external phase, extending from x = —§ to O (see Fig. 4.39), to give

. c12(0) — ¢}
Vs = —le‘szia 12

—~ 1
=@ -H—, (4.320)
1 Vo F
where c12(—8) = cY} is the bulk electrolyte concentration. An increase in the
magnitude of the current density then leads to a decrease in the surface con-
centration c12(0). This concentration becomes zero when the limiting current

18 We arrive at similar conclusions when these arguments are applied to ternary and multi-ionic
systems.
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density

W W
I = Z]V]FDIZLIZ

L — 4.321)
s@EM — 1)

is reached. Note that / and /;, can be either positive or negative (depending on
whether the membrane is of cation- or anion-exchange type), but the ratio /I,
is positive since the surface concentration is given by

c12(0) = (1 = 1/I) < ¢, (4.322)

In the case of an ideally selective membrane jll\g =0, W =1 and

_ ZIVIFDYQC}NZ _ ZIVIZFDIC‘lNz
FETsa -y T 5 ’

(4.323)

which is smaller (in magnitude) than that in eqn (4.321) because tiv[ < 1.
Moreover, this limiting current does not depend on D>, as should be expected
from the fact that the ionic transport equations in the diffusion boundary layers
reduce in this case to

I dcy d¢ dero
- _ & e o 3 4324
7D, ™ +Zlclfdx iz T ( )
d d
0= % Y20 fa‘p. (4.325)

In closing, it is interesting to observe that tllvl is related to the membrane
permselectivity S and to z2I" by eqn (4.253)
P My 21
-1 =ty =2l

(4.326)

By elimination of tﬂ, eqn (4.326) can also be written (for a symmetric
electrolyte) as

21F (D1 + Do)cy)y

I=—(al — 1) +18) ; , 4.327)

and the parameter zoI" must be evaluated from the solution of the transcendental
equation

21F (D1 + D3)

h
cr(h) + 2I'X
cr(0) + ZZFX] ’

I= — (@l - +1)

X [—ACT +2I'X In (4.328)
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where
er(0) = (X2 + [} ()P}, (4.329)
er(h) = (X2 + [ (1P}, (4.330)
c1(0) = ¥ (1 —1/I1), (4.331)
K(h) =X +1/IL). (4.332)

Note that ¢} = 2c}, in a symmetric electrolyte. Equation (4.321) is a very

simple expression for the limiting current density /; but it assumes that t{\’[
is known. Equations (4.327)—(4.332) look much more complicated, but they

provide both /7 and z,I" or, equivalently, /7 and ti\’[.

4.3.9 Influence of the diffusion boundary layers
on the permselectivity

In the previous sections we have considered both the cases of ideally perm-
selective membranes that completely exclude the co-ions from their interior,
and real membranes containing both co-ions and counterions. By comparing
eqns (4.321) and (4.323) it becomes apparent that the permselectivity of a mem-
brane in relation to its performance in electrically driven separation processes
can be characterized by means of the coefficient
M
S=—. (4.333)
-
The permselectivity of a membrane system, however, is not only determined
by the number of co-ions in the membrane. When an electric current density /
crosses the system, concentration polarization develops as explained in the pre-
vious section. Even in the limiting case I — 0, this concentration polarization
affects the value of the counterion flux density. To account for the influence of
concentration polarization, the counterion integral transport number

_ukj
1

T (4.334)

is used instead of t?/[ in eqn (4.333). We aim at determining the value of 77 for
a membrane system composed of a membrane of thickness /4 flanked by two
diffusion boundary layers of the same thickness §. For the sake of simplicity,
we consider that the membrane separates two identical solutions of a symmetric
binary electrolyte.

In eqn (4.181), the electrolyte flux density was written in terms of the
gradient of the stoichiometric concentration of the Donnan electrolyte as

Jiz= —D%Vclz, where the electrolyte diffusion coefficient is

DDy (ci + c2)
M =Mp, + Mp, === 727 4335
R Dici + Dacy ( )
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The Donnan equilibrium requires that the mean electrolyte concentration ¢+ 12
must be continuous across the membrane/external solution interfaces. This con-
dition makes it convenient to use c4 12 rather than cjp. The stoichiometric
concentration gradient can be related to the mean concentration gradient by

. 1= 1= Y
Vet 1o =—Ver+—Vep = ate Ve
C+12 1 ] 3
= %%cu. (4.336)
(cx,12)
Thus, the diffusion—conduction flux equation becomes
- M = M7
Ji=—viD{ ,Ver i+ ——, (4.337)
s Zi F
where
2D Dscy 12
M )
= ——" 4.338
2127 Diey + Daca ( )
and
D. .
M_ TG (4.339)
Dici + Dac

In order to evaluate the counterion integral transport number 77, eqn (4.337)
has to be integrated over the membrane system extending from x = —§ to
h + &. Multiplying this equation by Dic; + D>c2, and calculating the integral,
we obtain
. . . Djc; 1
JiDier + Dycz) = ——, (4.340)
zi F
where the overbars denote the average value over —6 < x < h + 6. In
this integration, we have used the fact that c4 jp is continuous across the
membrane/external solution interfaces and that it takes the same value ¢ |,
at x = —§ and at x = h + 8. The counterion integral transport number is then
given by
-7 W=
- Dl fha (4.341)
Dici + Dy l‘r"cl + [;VCz

Since the concentration profiles in the diffusion boundary layers are linear and
have the same gradient, the average concentrations over the whole membrane
system can be related to the average concentrations inside the membrane by the
simple relation

0 h+8 —_
Gz / drt / dr+ / ar| Bt
AT ‘i )T s n '

) h 0
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Fig. 4.40.

Variation of the membrane permselectivity
with the fixed charge concentration for

t}” = 0.5 and different values of the ratio
r= ZBC‘IVZ /hX that describes the relative
importance of the boundary layer effects:
r=0.01,0.1, 1, and 10 (from top to
bottom).
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and eqn (4.341) becomes

1y (28¢Y, + hel)
1y 28¢t + hey!) + 1§ 28¢t) + hed)

T =

r—‘,—y/X

I — —_,
r+ @M+ /X

(4.343)

where r = 28c}’, /hX . Due to the boundary-layer effects, the integral counterion
transport number is lower than unity even in ideally selective membranes and
eqn (4.343) then reduces to

+M/x
T =1 rhal/x oy (4.344)
r+n'clt/x

Indeed, substituting eqn (4.343) in eqn (4.333) it becomes evident that the
membrane permselectivity is smaller than unity because of both the presence
of co-ions inside the membrane and the boundary-layer effects
tW
§=—1 (4.345)

Y +r+ cgd /X

For small electric current densities, the average ionic concentrations do no
differ much from the equilibrium values given by eqns (4.121) and (4.122)

M= (X/2) +[(X/2)* + ()12, (4.346)
AN = —(X/2) + [(X/2)* + ()22, (4.347)

and the integral counterion transport number can be evaluated from eqn (4.343)
for different values of the parameter r characterizing the importance of the
diffusion boundary layers. Figure 4.40 shows the boundary-layer effects on the
membrane permselectivity as evaluated from eqns (4.345) and (4.347).
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4.4 Steady-state transport across charged
porous membranes

Porous membrane with charges on its pore walls are permselective. These
charges may be due to dissociating groups in the membrane matrix
(e.g.—COOH) or ion adsorption. For instance, a neutral membrane often exhibits
cation selectivity in chloride solutions because chloride anions are strongly
adsorbed on hydrophilic surfaces. In the former case, the membrane charge
can be assumed to be constant along the pore, while in the latter case, it is
determined through an adsorption isotherm, and therefore it depends on the
concentration distribution in the pore. For the sake of simplicity, we consider
throughout this section that the membrane is immersed in a symmetric (binary)
electrolyte solution and that the fixed-charge groups are uniformly distributed
along the transport (or axial) direction. Moreover, no pressure gradient exists
inside the membrane.

4.4.1 The radial electrical double layer

a) The membrane model

Charged porous membranes are most often modelled as an array of parallel,
cylindrical capillaries of radius a with a uniform surface-charge density o on
the pore walls. Since all pores are assumed to be identical, the entire membrane
is analysed as if it were a single pore. The pore length /4 is much larger than
the radius a, and hence edge (i.e. pore entrance) effects are neglected. The total
surface charge in a pore is o2mwah and the charge density per pore volume
is 0 2wah/(wa®h). The charges bound to the pore walls can then be described
either in terms of the surface-charge density o or in terms of an equivalent
molar concentration of fixed-charge groups

20
oM =

= . 4.348
zmFa ( )

Because of the cylindrical symmetry of the membrane model, all transport
magnitudes are considered to be dependent, in principle, on two spatial co-
ordinates: the axial position x and the radial position r. The former varies
between O at the interface with compartment o and £ at the interface with
compartment S. The latter varies between 0O at the pore axis and a at the pore
wall.

b) The radial electrical double layer

The charges on the pore walls create an electrical double layer in the radial
direction, as discussed in Section 4.2.5. The electrolyte solution filling the pores
is not locally electroneutral, and the ionic concentrations ¢ (r,x) and cz(r, x)
can be different at every location inside the pore. A global electroneutrality
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condition, however, must hold at every axial position

a

a
o2ma = —/,032717'(17'2 —F/(zwl + zpcp)2mrdr
0

0
= nFra*((e)) — (c2)), (4.349)
or
X =zvem/z2 = {c1) — (c2), (4.350)

where pe = F(z1c1 + z2¢2) is the space-charge density associated to the ions
in the pore solution and the symbol () denotes the average value over the
pore cross-section. The subscripts 1 and 2 are used for counterion and co-ion,
respectively. The average ionic concentrations (c;) (x)(i = 1,2) may still vary
along the pore axis.

The electric potential ¢ (r, x) is conveniently decomposed into two contribu-
tions, V (x) and ¥ (r, x). The potential contribution v (r, x) is defined from the
equilibrium condition along the radial direction

oL 0
R R L nei+2ifd) =0, i=1,2 (4.351)
ar ar
as
1 1
= -2 (4.352)
af  cxn of  cxn2

where c+ 12(x) = [c1(r,x)ca(r,x)] 1/2 {5 the mean electrolyte concentration.

The contribution V (x) then becomes defined as

V) = ¢@rx) — ¥ (r,x). (4.353)

Equation (4.351) simply states that the radial component of the ionic flux
densities must vanish because the pore wall is impenetrable to the ions.

The variation of ¥ (r, x) along the radial direction is described by the Poisson
equation V2¢ = —p,/e, where ¢ is the electrical permittivity of the solution.
The left-hand side of this equation is

v 2y 2y 1oy
Vi =VV 4V =— 4+ 4T T 4.354

¢ VY dx2  9x? + orz  r or ( )
and the space-charge density can be written as

pe = F(zic1 + 22¢2) = —z2Fcy 1p(e™ MV —e72/7)
— —2zFcs psinh(zaf ). (4.355)
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The Poisson equation becomes the Poisson—Boltzmann equation when the
equilibrium ionic distributions are used to evaluate the space-charge density
in this way. The boundary conditions for the Poisson—Boltzmann equation are

3
A2 0, (4.356)
or |,—

Wloo_e (4.357)
or |,—, &

and the integration of the Poisson equation over any pore cross-section leads to

v P )
w2 T 0 (4.358)
which can be considered as a straightforward consequence of the global elec-
troneutrality condition, eqn (4.350). Although the potential ¥ (r,x) is not
identical to its pore average value (¥) (x), eqn (4.358) implies that the first
two terms in the right-hand side of eqn (4.354) partially cancel out. Moreover,
since the pore length is much larger than the pore radius, the second deriva-
tive of the potential along the axial direction is expected to be much smaller
than its second derivative in the radial direction. Thus, we conclude that the
Poisson—Boltzmann equation can be approximated by

2
of (3 14 + 1%) _nfd <r%> ~ ()2 sinh(oaf ), (4359)

or? ror r or or

where kJ (x) = [2szzci,12(x)/8RT] 1/2 is the Debye parameter at position x.
In general, this equation must be solved numerically, but analytical solutions
can also be obtained in some cases. As a preliminary step, it is interesting to
write down the boundary condition at the pore wall, eqn (4.357), as

222]"% = (k3)%a, (4.360)

r=a

where k% = (zJF?X /eRT)!/? is the Debye parameter referred to the mem-
brane fixed-charge concentration. Moreover, by multiplication of both sides
of eqn (4.359) by 27 r and further integration along the pore radius, with the
boundary conditions in eqns (4.356) and (4.357), it is obtained that

K ? X
<sinh(z2f¢)>=<3> = (4.361)
kp

2c+12
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Equations (4.360) and (4.361) state that the electric field at the pore wall and
the average value of the potential'” are determined by Kg a and K]))( /K » respec-
tively. These conclusions help in the analysis of the approximate solutions of
eqn (4.359).

¢) Linear approximation

When the surface-charge density is so low that z f ¢ (r,x) < 1, the Poisson—
Boltzmann equation can be linearized to

2
Py 1oy

IR (). (4.362)

The solution of this equation is

o Ip(kyr) X kyalo (k) r)
Y(r,x) = — 0 Do~ D OWD
ekp I (kpa) Az fer 12 hikpa)
= ¥ (0,0 (kpy7), (4.363)

where I (&) and I (§) are the modified Bessel functions of orders 0 and 1, respec-
tively, and argument & = «{r. It is interesting to note that eqn (4.361) implies
that the average value of this potential contribution is () ~ X /(22 fci,lz).ls
Moreover, since this approximate solution of the Poisson—Boltzmann equation
is expected to be valid when the pore radius is much larger than the Debye length
(i.e. the reciprocal of the Debye parameter k7)) and the difference between
Iy(ka) and Iy (xJa) is smaller than 10% when ca. kJa > 6, we can write
down the condition of validity, zo f ¥ (a,x) < 1, of this approximation as
X < dex 12/ (kfa).

Figure 4.41 shows a graphical representation of the potential distribution
described by eqn (4.363) that evidences that the thickness of the electrical dou-
ble layer adjacent to the pore wall decreases with increasing «yJa. In particular,
itis observed that the electrical double layer extends to ca. half of the pore radius
when «Ja = 10 and that it is confined to the close vicinity of the pore wall
when kJa is larger than this value. Figure 4.41 (b) shows that the value poten-
tial gradient at the pore wall is determined by K])D( a, as imposed by eqn (4.360).
Note, finally, that the condition of validity of this linear approximation can also
be stated as (Kga)z/(ZKBVa) < 1.

17 Exprgssing the potential as ¥ = (/) +1/~f, itis easy to see that (sinh( zp f ¥ )) ~ sinh@ f ()
when zp f ¥ < 1. It is possible, however, that zo f ¥ > 1 when Kf)(a >> 1, but this fact does not
significantly modify our conclusions.

'8 This conclusion can also be derived from eqn (4.360) as (y) = o {lg (K]‘S’r )/
[ex3 11 () @)] and evaluating (I o (< r )) = (2/k )]} (kY @) from the relation 1y = d(£11)/d§.
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209

Radial distribution of the electric potential inside a charged cylindrical pore in the linear approximation. (a) Potential relative to its maximum
value at the pore wall evaluated for Kf’)va = 10 (solid line), 20 (long dashed line), and 100 (short dashed line). For a given value of the average

potential, the potential at the pore centre decreases and that at the pore wall increases with increasing KS a. (b) Potential distribution for

KB’u =20 and ’(I))(“ = 4 (solid line), 2 (long dashed), and 1 (short dashed).

d) Total co-ion exclusion approximation

When the surface charge density is so high that zo f v (r, x) > 1, the Poisson—
Boltzmann equation can be approximated by

x\2 €xp2f )

Ry 10\ s sthGf ) s ep@rh)
af <a Tt ar) = D) b 0 e
(4.364)
or, in short,
Po  1dg oy, e 0,2
a2 Ty D) (g = 0 (30

where ¢ = 2 f[¥(r,x) — ¥(0,x)] and 3 = [z2F%c(0,x)/eRT]/? is the
Debye parameter referred to the counterion concentration at the pore axis,
c1(0,x) = cx 12explzaf ¥ (0, )c)].19 Equation (4.365) can also be obtained by
noting that the co-ion concentration can be neglected inside the pore solution
when zp f ¥ (r,x) > 1. The solution of eqn (4.365) is

@(r,x) = —2In[1 — (k3r)?/8]. (4.366)

Since the (dimensionless) average space-charge density is
(e?) = <[1 - (xgr)Z/g]*Z) =1 — Qa)?/8]7", (4.367)

19 Note that these different Debye parameters are conveniently introduced for the sake of simplic-
ity of our notation. It is shown below, when describing the ‘flat’ distribution approximation, that the
potential distribution inside the pore is actually determined by Kg[ = [z%Fz(X +2c412)/eRT] 172,
which closely resembles that defined in eqn (4.158) and reduces to either K[V)V or /cg in the limits of
weakly and strongly charged membranes, respectively.
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Fig. 4.42.

Radial distribution of the electric potential inside a charged cylindrical pore in the total coion exclusion approximation. (a) Difference between the
local potential and the potential at the pore axis relative to the potential drop along the pore radius. (b) Difference between the local potential and
the potential at the pore axis, in R7/z F units. The distributions have been evaluated for K]))((l = 4 (solid line), 2 (long dashed), and 1 (short dashed).

and eqn (4.361) becomes (exp(z2fv¥)) =~ 2(sinh(zafV¥)) = X/c+ 12, the
counterion concentration at the pore axis can be evaluated as

X

a0 =X s

(4.368)

This is equivalent to the relation (/cg)2 = (K]))( 2 /11 + (K]’)(a)2 /8], which pre-
vents the argument of the logarithm in eqn (4.366) to take negative values. The
potential drop in the radial direction can thus be evaluated as

@(a,x) = =21In[1 — (k3a)?/8] = 2In[1 + (ki a)?/8]. (4.369)

The potential distribution in eqn (4.366) has been represented in Fig. 4.42 for
different values of KI))( a.Itis clear from the above equations that K]))( a determines
the potential gradient at the pore wall and the potential drop along the pore
radius, and both increase with Kl))( a.

Finally, since the potential at the pore axis is

02 X
2f¥(0,x) =In a@x) _ 20p)" 2(k%)

ctr2 W2 R+ kEa)?/8)

(4.370)

the condition of validity of this total co-ion exclusion approximation,
22f¥(0,x) > 1, can be established as X /[1 + (ks @)?/8] > ¢ 12.

e) ‘Flat’ distribution approximation

When the deviation ¥ = ¥ — (y) of the local potential from the average value
is small, 2o f ¥ < 1, it is possible to derive a third approximation solution
of the Poisson—Boltzmann equation that can be used in the intermediate case
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z2f (¥) ~ 1. By substituting the decomposition ¥/ = () + ¥ in the Poisson—
Boltzmann equation, this can be transformed to

32y

ar?

ror

of ~ (k)*[sinh(z2f (¥)) + cosh(zaf (¥))zaf V]

~ (k) + (k) 22 f ¥, 4371
where k' = [(5)* + (c3)*1"/* = [z7F?(2c.12 + X) /eRT]'/? is the Debye
parameter inside the pore and we have used the fact that (sinh(zzf¢)) =
(X /ic¥)? A sinh(za.f (1)). The solution of eqn (4.371) is

afo i) (f)? () [ yalotedr)
exM LeNMa)y 2 2| 2hkNa)

2f U(rx) =

(4.372)

Since (lo(kN'r)) = 2/kMa)]; (kNa), it is satisfied that (&) = 0, as required
by its definition. Figure 4.43 shows that this ‘flat’ distribution approximation is
most useful when /cg a ~ kpja =~ 1. Finally, Fig. 4.44 shows several potential
distributions obtained with the appropriate approximations. Some cases, like
K]))(a = 10 and kja = 10 (not shown), cannot be described with any of the
above approximations and would require a numerical solution of the Poisson—
Boltzmann equation.
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Fig. 4.43.

Radial distribution of the electric potential
inside a charged cylindrical pore for: (a)
kRa=1,k3a=0.5,(b)

K]))(a =2,xpa=1(c)
«Xa=05kYa=1,and (d)

K[))(a = l,KSa = 2. The line styles
correspond to the different
approximations: (solid) ‘flat’ distribution,
(long dashed) total coion exclusion, and
(short dashed) linear approximation. In
cases (a) and (b) the linear approximation
is not valid. In cases (c) and (d) the total
coion exclusion approximation is not valid.
Note that zp > 0 because subscript 2
denotes the coion. In the case

K']))(a = «kya = 1 (not shown), only the
“flat’ distribution approximation is valid.
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Fig. 4.44.

Radial distribution of the electric potential
inside a charged cylindrical pore for: (a)
«Xa =5 and kya = 0.1 (solid line), 1
(long dashed), and 10 (short dashed), and
(b) k¥a = 0.5 and kX a = 2 (solid line), 1
(long dashed), and 0.5 (short dashed). Note
that the electrical double layer extends
over the whole pore cross section in all
cases except for K[))(a = 5and kjja = 10.
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4.4.2 Electro-osmotic convection

In the previous section we have described the most important issue for under-
standing the ion transport in charged porous membranes: the radial electrical
double layer. We now study another key characteristic: the occurrence of con-
vective flow. Consider a charged porous membrane that separates two solutions
with the same concentration of a symmetric electrolyte. Although we should
expect neither a solution flow nor a solvent flow through the membrane under
these conditions, it is experimentally observed that convective flow is estab-
lished when an electric potential difference is applied between the two external
solutions to drive an electric current through the pores under steady-state con-
ditions. The origin of this solution flow is related to the radial electrical double
layer. The solution inside the pores is not locally electroneutral. The applied
electric field acts on the charge in every solution volume element and, in com-
bination with the effect of viscosity, causes its steady motion in the direction of
the field in cation-exchange membranes and in the opposite direction in anion-
exchange membranes. In other words, the counterions are the majority in the
pore solution and, due to their interaction with the field, impart more momen-
tum to the solution than the co-ions do. Since this convective flow takes place
in the same direction of motion as that of the counterions, they move faster than
they would do in a stationary liquid. The opposite is true for the co-ions. As a
consequence, this convection increases the current efficiency of the membrane.

a) Electro-osmotic velocity
In the situation under consideration, the ionic flux densities are

dv
Ji = _ZiDiCifa + ¢, (4.373)

and the solution velocity v(r) is given by the axial component of the Navier—
Stokes equation, eqn (1.86),

(4.374)
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By elimination of the space-charge density pe = F(z1¢1 + z2¢2) between the
Navier—Stokes equation and the Poisson equation

Ld <r%> _— (4.375)

rdr dr £

and after a first integration with respect to r (using the symmetry boundary
conditions at the pore axis), we obtain

d av d
a2 _ Vv (4.376)
dr dx dr

Therefore, the solution velocity is related to the electric potential contribution
¥ by

e dV
u(r) = ——[¥(a) — v ()], 4.377)
n dx

where the non-slip boundary condition, v(a) = 0, has been used at the pore
wall. The average velocity is then

edV e~ dV
=—— — = - —_, 4.378
(v) 0 d [V (a) — (¥)] nl#(a)] ( )
where ¥ = ¢ — () denotes the deviation from the average value.

Equation (4.378) is known as the Helmholtz—Smoluchowski formula in elec-
trokinetics.

The magnitude ¥ (a) can be evaluated from the approximate solutions of the
Poisson—Boltzmann equation derived above. Thus, when the radial electrical
double layer is described in terms of the total co-ion exclusion approximation

wf ¥ = pa) — (p)

X N2
—2mi1 + (a8 -2 { . 1[1+<>/81}

(ka)?/8
=2[1 + 8/ (kS a@)*1In[1 + (k} a)?/8] — 2, (4.379)

where we have used eqn (4.369) and calculated the average of ¢ in eqn (4.366).
Similarly, when the radial electrical double layer is described in terms of the
‘flat’ distribution approximation

(/cf)()2 Kg[a ]()(Kgla) _q
(ep)? | 201 (kp'a) '

2f¥a) = (4.380)

This expression can also be used when the membrane is weakly charged, X <«
c+,12, and the linear approximation is then valid, because xjj ~ «p}. These
expressions are represented in Fig. 4.45. As expected, v (a) can take larger
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Fig. 4.45.

Difference between the electric potential at the pore wall and its average value (in RT/zo F units) inside a charged cylindrical pore against K]))(a:
(a) total co-ion exclusion approximation and (b) ‘flat’ distribution approximation with Kg a = 10 (solid line), 5 (long dashed), and 2 (short
dashed). In case (a), KB’ a should be small enough to ensure the validity of the total co-ion exclusion approximation. In case (b), the curves have
been drawn only within the range of validity of the ‘flat’ distribution approximation.

values when the total co-ion exclusion is valid and, particularly, when Kg a

is large. This implies that the electro-osmotic velocity is more important in
membranes with high surface-charge density and wide pores (because of their
large hydraulic permeability).

Before the development of the charged capillary model by Dresner [24] and
Osterle and co-workers [25-27], Schlogl clearly explained the importance of
convection in transport processes across charged porous membranes. He found
that it was not only responsible for the phenomenon of anomalous osmosis
but also caused an increase in the electrical conductivity between ca. 10 and
45% [28-30]. Since Schlogl did not describe the variation of the electrostatic
potential in the radial direction inside the pores, his expression for the average
velocity20 can be obtained after replacing p. by (p.) = —zmFem = —22FX
in the Navier—Stokes equation, eqn (4.374), and integrating it subject to the
non-slip condition at the pore wall and the symmetry condition at the pore axis.
Thus, the average electro-osmotic velocity can be estimated in this approach as

N 22FXa? dv i (K]})(a)2 dv

(v 8y dx  n 8z»f dx’

(4.381)

It is noteworthy that eqn (4.381) leads to the same conclusion as the charged
capillary model, i.e. that the electro-osmotic velocity is larger in membranes
with large pore radius and large surface-charge density. In fact, eqn (4.381)
can be obtained from eqn (4.380) when /cg[a < 1, and from eqn (4.379) when
(/c]))(a)2 /8 < 1 after introducing the approximation In(1 4+ x) ~ x — x2/2. As
a final comment, we mention that convection was neglected in the classical
Teorell-Meyer—Sievers theory of membrane transport.

2 For instance, in Ref. [29], Schlogl obtained the (average) velocity from the balance of hydro-
dynamical forces K (v)+(pe) dV /dx = 0, where K is the hydraulic flow resistance of the membrane
(i.e. the reciprocal of the hydraulic permeability).
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b) Convective conductivity
The electric current density that flows through the pores is

. . dv
I =F(ziji +22)2) = _”E + pev

£ dv
=- {K — —pel¥(a) — w(r)]} . (4.382)
n dx

where k = F? (z%Dl c1 + z%chz) /RT 1is the electrical conductivity. The terms
—kdV /dx and pev are the conduction and the electro-osmotic current densities,
respectively, and both are proportional to the applied electric field in the axial
direction.?!

The average value of the electro-osmotic current density is

dv

(Ie) = (pev) = — (K¢) P (4.383)

where

ekl
n

(ke) = (X (a) — ((c1 — c)¥)] (4.384)
is the ‘convective electrical conductivity’ of the symmetric electrolyte, and
we have used the global electroneutrality condition, (c; — ¢2) = X. Since
2¥(r) < z2v¥(a), it should be clear from the right-hand side of eqn (4.384)
that (k.) > 0, and therefore the solution flow induced by the applied current
enhances the effective electrical conductivity. In other words, the conductive
and the convective contributions to the electric current density have the same
direction. The equations describing electric conduction are then

(1) =~ + e
v _ D=l (4.386)
dx )

(4.385)

where (k) is the average electrical conductivity of the pore solution and (/) the
average current density.

c¢) Weakly charged membranes

In weakly charged membranes the deviations of the transport magnitudes with
respect to their pore average values are relatively small and the average value of
a product of two magnitudes can be approximated by the product of the average
values. For instance, the convective contribution to the electric current density
is then

(e} = (pe) (v) = —22FX (v), (4.387)

2 fact, the proportionality between the convective velocity and the axial field can be used to
define the mechanical mobility u. of the pore solution from the relation (v) = zp FucdV /dx [31].
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and, from eqn (4.378), the convective conductivity can be approximated by
E ~
(ke) =~ zzFXgl//(a) (4.388)

Similarly, the ionic flux densities can be approximated in weakly charged
membranes by

dv
(i) ~ —ziD; (Q’)fa + {ci) (v, (4.389)

and the current efficiency, i.e. the integral transport number of the counterion,
can be approximated by

_aF(n k) + (en) /X) (ke)

T, = ~ s 4.390
T ) + (o) (4-390)

where k1 = z%F 2D1c1/RT is the counterion contribution to the electri-
cal conductivity. Note that the current efficiency increases with increasing
electro-osmotic convection [32] because (k1) / (k) < 1 < {(c1) /X.

d) “Barycentric” reference frame

In a reference frame moving with respect to the membrane with the average
solution velocity (v) (which can be understood as a kind of barycentric reference
frame), the corresponding equations would be

(")~ —zDi{ci )f%/ (4.391)

; . dv
(1) = Faa (it )+ 225D = = (o) o (4.392)
where the superscript m identifies the magnitudes relative to this reference
frame. Since the fixed charges bound to the membrane would move with velocity

— (v) in this reference frame, they would carry an electric current
() = —2mFem (v), (4.393)
which, obviously, coincides with that shown in eqn (4.387), i.e. <Iﬁ) = (I.) and

(I'"™y = (I) — (I.). In fact, the flux density of the fixed-charge groups in this
reference frame can be written as

(i) =—cm(v) = ZTI‘HZ) = —ZMDﬁCMf%, (4.394)
where
Dy = % (Kke) (4.395)
oM

is the effective diffusion coefficient of the fixed groups in this reference frame.
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In the laboratory reference frame, the fixed groups are immobile and their
flux density is obviously zero, ji = 0. The average ionic flux densities can be
written as

. ; dv
(i) = (") + (ci) (v) = —(zD;i — 2mDyyp) (ci ).fa (4.396)
Note that, as already explained above, the conductive and convective contribu-
tions are in the same direction for the counterion and in opposite directions for
the co-ion.

4.4.3 Transport mechanisms in charged porous membranes

The transport of a binary electrolyte across a charged porous membrane
separating two solutions at different concentrations is characterized by the ratio
a/Lfy = Kkpya between the pore radius a and the thickness Ly = 1/«] of the
radial double layer, where k) = [2z]2F zcin /eRT] 172 is the Debye param-
eter. Somewhat arbitrarily, we can assume that the transport mechanisms are
different depending on the value of this ratio. When a/L}§ < 1, the double
layer fills the entire pore, co-ions are excluded and counterion transport takes
place through a migrational hopping mechanism. That is, the counterions hope
from a fixed-charge group to another. Electro-osmotic convection might also be
important if the hydraulic permeability of the membrane is not too low. When
a/L} > 1, both diffusion and migration take place inside the pore, but the elec-
trical double layer plays an important role in the analysis. Finally, diffusion,
migration, and convection come into play when a/L{ =~ 1. We write below the
corresponding transport equations in these three cases. For the sake of clarity,
we avoid the use of the average symbol () and understand implicitly that all
magnitudes involved are average values over the pore cross-section.

a) Narrow pores a < Ly

When the double layer fills the entire pore, the membrane actually is an ideally
selective membrane in which co-ions are completely excluded and electrolyte
diffusion cannot take place (see Section 4.3.5). The counterion transport number
is one, and its flux density (in the membrane-fixed reference system) is

po il =k ! (4.397)
= — Cl1v = V= —. .
1 721 F ! uF uF

Moreover, the electrical conductivity of the pore solutionis k = z]2F ’D\X /RT.

b) Wide pores a > Lj

The condition a >> L} also implies that the membrane is weakly charged and
that the space-charge density is small. The electro-osmotic velocity is propor-
tional to the electrical force acting on the solution, which in turn is proportional
to the space-charge density, and therefore convection is expected to be negligible
inthe casea > Ll\D/I. The charge on the pore walls, however, affects the transport
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phenomena because the ionic concentrations must satisfy the electroneutrality
condition, eqn (4.350), c; = 2 + X.
The flux density of species i is>>

= -0, (% 4 e 2 (4.398)
Ji = i\ Zzszdx . .

The equivalent diffusion—conduction form [see eqn (4.187)] is

__pwda 01 (4.399)
Ji= 12 4x zi F’ '

where, for a symmetric electrolyte, th = Djci/(Dic1 4+ Dacp) and Dllvé =
tg/[D1 + tIIVIDz. Using the electroneutrality condition ¢; = ¢ + X, it can be
easily shown that

1 Dscr Dy, D)X 1 Dy X
=14 =142 =— - , (4.400)
4 Dic D Dic & Dic

and hence we conclude that

X Dy (1 1
l=—=—|—— — 4.401
cq D> (l‘}’v tllv[> ( )

is always a positive magnitude. Moreover, 6 is measurable because the trans-
port numbers ¢ and tllV[ can be experimentally determined (and the diffusion
coefficients Dy and D; are known with good accuracy). If species 1 is the coun-
terion, 6 varies between 0 and 1, depending on the ion-exchange capacity of
the membrane.

The condition @ >> L} also implies that the ionic concentrations vary very
smoothly with the radial position coordinate. Then, it can be assumed that the
average value of the product of ionic concentrations is equal to the product of
average concentrations. The Donnan equilibrium condition then states that

(€)? = (Y1) = (M )? ~erea, (4.402)
where the right-hand side should be read as the product of the average concen-
trations, and it has been assumed that the activity coefficients are the same in
the two phases. The combination of eqn (4.402) and the global electroneutrality
condition, ¢ = ¢ + X, leads to

() ~ciea=ci(c1 —X) =ct(1—6). (4.403)

22 Remember that the average symbols have been suppressed but the concentration in eqn (4.398)
is the pore-average concentration and this justifies the use of the total derivative symbols.
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Since 6 can be measured by means of eqn (4.401), eqn (4.403) can be used to
evaluate the average ionic concentrations in the membrane phase as

cr=cha—6)712, (4.404)
cr=clha -2 (4.405)

c¢) Intermediate pore sizes, a ~ Lg

Ionic transport results in this case from a combination of three mechanisms:
diffusion, migration, and convection. The flux density of species i (in the
membrane-fixed reference frame) is

dc;

d
Jji=—Dj <5 + zicif df) + civ, (4.406)

and the electric current density is

d¢  dogir
I=—(=—=— FXv, 4.407
* <dx dx ) takdv ( )
where
dobif nt At de
—= =L+ = 4.408
! dx <Z1 72 ] dx ( )

is the diffusion potential gradient and th = Djci/(Dic1+Dac2) for asymmetric
electrolyte. The flux density of species i can also be written as

M

d 1
M + gl = @/ X, (4.409)

j -D
Ji= 1274,
where DY =MDy + 1MD,.

4.4.4 Theoretical approaches for describing transport
in porous membranes

In the previous sections we have discussed the basic ideas for the description of
mass-transport processes in charged porous membranes. We briefly outline here
some alternative theoretical approaches in order to clarify their differences.
The simplest possibility for describing transport processes in charged porous
membranes makes use of a single axial position co-ordinate, and neglects the
radial dependence of all transport magnitudes. This is known as the homoge-
neous membrane or homogeneous potential model. In contrast, the space-charge
or charged-capillary model takes into account both the radial and axial posi-
tion co-ordinates, and solves the Nernst—Planck (including convection) and
Navier-Stokes equations, together with the Poisson-Boltzmann equation in
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the radial direction. This latter model is considered to be the most appropri-
ate for the description of transport across charged porous membranes, but its
solution is rather demanding from the point of view of numerical computation.
Naturally, there have been several studies aiming at determining under which
conditions the space-charge model leads to results significantly different from
those obtained from the much simpler homogeneous potential model. Thus,
for instance, one of the conclusions of these studies is that, as we explained in
Section 4.2.5, the radial dependence of the electric potential inside a charged
porous membrane implies that the co-ion exclusion is poorer. This is more
noticeable when the radial dependence of the potential is stronger (that is,
when /cga > 1 and kja < 1; see Fig. 4.44), and implies that (tIlV[ — t%’[) is
smaller in the space-charge model than in the homogeneous potential model
due to the poorer co-ion exclusion. Therefore, the diffusion potential inside the
membrane, see eqn (4.408),

c1(h)
mfA%ﬁ=‘/(%—4¥MQ (4.410)
c1(0)

is also smaller than predicted by the homogeneous potential model [33]. Note,
however, that both models give similar results when the fixed-charge concen-
tration is small. A complete comparison of transport magnitudes evaluated from
these two models can be found in Ref. [33].

In the homogeneous potential model, symbols like ¢, ¢; or th denote average
values over the pore cross-section. This is the approach followed in Section 4.4.3
and closely resembles that used in Section 4.3. The fundamental set of transport
equations (for a symmetric binary electrolyte) is

el =c+ X, (4.411)
. dc; do

Ji=-Di (al + Ziﬁ‘fa) + ¢iv, (4.412)
I = F(z1j1 + 222), (4.413)

where the convective velocity v is either determined experimentally or
estimated from

dp 22FX dé (4.414)
v = —, .

nal i o

where dj, is the hydraulic permeability of the membrane.

The integration of the transport equations over the membrane thickness is
done as follows [34]. First, we note that dX /dx = 0 because the fixed-charge
concentration is independent of the axial position x, and eliminate the con-
centration gradient from the flux-density equations for the two ionic species,
eqn (4.412), to obtain the electric potential gradient as

d¢ 2

nf—=——— |51 — 1) — &c1 — 1y )], (4.415)
dx  DY(c1+c2) [ : : ! ]
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where 1) = D /(D) +D3) = 1—1¢; and DY, = 2D D> /(D + D>). Similarly,
we can eliminate the electric potential gradient from the flux-density equations
for the two ionic species and obtain the concentration gradient

dey dey 2 . w.
— === — (c1t 0] 4.416
& & DLt [crc2v — (112 + caty'jD) ] ( )

This equation can be written as

DY, (@—cple—c)

2v dx 2¢c2 + X)der X +2cy X +2c- dey
Cy —C— ’

(4.417)

c—cy c)—cC—

where ¢y and c_ are the two roots of the equation (c2 +X)cov = (c2+X )t‘l’" o+
ooty ji (solved with respect to c3). Equation (4.417) can be integrated over the
membrane thickness to give

2uh _ ca(h) —cy
Dfivz(cqt —c)=X+2c4)In 762(0) ey
co(h) —c—

and the Donnan equilibrium conditions at the membrane boundaries, together
with eqn (4.350), then allow determination of the flux densities. Similarly,
eliminating the position co-ordinate from eqns (4.415) and (4.416), we obtain

i —th — el — v

22fdp =

c1eov = (c1t)'j2 + caty'j1)

_[@ = 5Des + @1 = 12) /v — 15X
) — Cyq

@ =)+ @Gh )/ - 5'XT do
c—cC— cy

, (4419

which can be integrated to obtain the potential drop in the membrane.

Exercises

4.1 Employing the Goldman constant-field assumption, d¢/dx = A¢/h, solve the
steady-state Nernst—Planck equation

(% g%
j= D<dx+chdx>
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4.2

4.3

4.4

under the boundary conditions ¢(0) = ¢¥ and c(h) = ¢P, and show that the
concentration profile is

—if Apx/h _
c:ca+(cﬂ—ca)e !

e~ A
—if AP _ o—3f Apx/h
:ﬂ a B € €
c” + (¢ cP) x v —

and that the flux density is given by the Goldman equation

i D _FAD e
j= herA¢_1(ce ).

The lag time in diffusion processes can be evaluated solving Fick’s second law

dc 9%c

ot 9x2

by the Laplace transform method.
(a) Transform this equation and its boundary conditions (see Section 4.1.2) and
show that the Laplace-transformed concentration is

® sinh g(h — x)
s sinh gh

¢ =

(b) Using the inverse transform formula

() s5p) (o)

and a series expansion of 1/sinhgh [see eqn (3.160)], show that the
concentration is

. > nh+h—x/2 nh+x/2
c=LT'@O =) [crf <T) —erf (Wﬂ

n=0

and reproduce Fig. 4.3 using this equation.
In the experimental set-up of Fig. 4.12 the membrane constant is given by

A V4 GIA[F

h D12(Cf3 —cf)

and does not depend on the volume of compartment 8. Explain the influence of
the compartment volumes in this experimental set-up and compare it with the
experimental set-up of Fig. 4.1.

In the experimental set-up considered in Fig. 4.12 the electric current density and
the volume flow rate are independent parameters that can take any value. How
can the membrane constant

A VY4 GIA[GF

h Dlz(C{} —cf)

be determined when I = —z; Fc Ve /A2
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4.6

Exercises

It has been shown in Section 4.1.7 that when a membrane that bears no
fixed-charge groups separates a mixture of two 1:1 electrolytes, the diffusion
potential is

r c-ﬁi
Adgir = ]7111 o
T

where cr = ) ; ¢; is the total ionic concentration and T is a constant that must
be determined from the solution of the following transcendental equation

R/ ol + 4y~ ofy+ %) 1T
(Cg/cgl)l+l"_1 1+T°

where r5 = Dicf /D3c§, r'183 = ch’f/D3c§, 1§y = Dac§ /D3cf, and r§3 =

Dyb /D3t

(a) Using the above equations, evaluate the liquid junction potential A@gir =
(bﬁ — ¢ when a saturated 4.2 M KCl solution (compartment «) is in contact
(through a neutral membrane) with a 0.1 M HCI (compartment ).

(b) Evaluate this liquid junction potential using Henderson’s equation

Byt B =D ) — % + 1% — 1)
oy + s+ D e = (8 + 15+ D)

Cf ’f3+r/233+1
Mo o 1]
G3ri3 Tt

(c) Evaluate this liquid-junction potential using Goldman’s equation

fAdgir = —

L O+ /) + 1

fAggir = —1 o 7 o
i3+ g3+ ey /e3)

In all cases, denote the ions Ht, KT, Cl~as species 1, 2, and 3, respectively,
and take Dj- = 1.037Dg+ = 0.218Dy+ and 1/f =26 mV.
It has been shown in Section 4.1.7 that when a membrane that bears no
fixed-charge groups separates a mixture of symmetric z : z electrolytes under
strong stirring conditions, the exact value of the diffusion potential Adgis

=P —¢%is

B

I C;
Adgir = fln C%
T

where ¢ = ) ¢; is the total ionic concentration and I" is a constant that must
be determined from the solution of the following transcendental equation

B, ayzl D; {3, D:c%
(CT/CT) ; i€ ; i€ B 1—zI (C’?/C%)1+ZI‘ 1

/T LD = Loiey I (e -1
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4.7

4.8

4.9

where the + and — signs under the sums indicate that they are restricted to cations
and anions, respectively. Prove that when the solution contains only a 1:1 binary
electrolyte these equations reduce to

B

Dy —Dy . 1o
J Aggir = In =,
! D1+ Dy C?z

where species 1 is the cation and species 2 is the anion.
Using Henderson’s equation

£ Abgir ~ > ziDiAc; In >k Z;%Dka
dif ~ —

Zj Z,szjACj Z/ Z%D[C?
evaluate the liquid-junction potential A¢gif = ¢ﬂ — ¢% when a x M NaCl
solution (compartment «) is in contact (through a neutral membrane) witha 1 M
NapSOy solution (compartment 8). Take Dy,+ = 0.656 Dj- = 0'314DSOZ’

4

and 1/f = 26 mV, and plot your result as a function of x.

In cell biophysics, the resting potential is usually estimated using Goldman’s
equation for the liquid-junction potential

Y Dic% + Y. DicP
+ —
Adaif = =

In Py E—
! ;aq+zm¢

Denote the outside of the cell as compartment « and the inside as compartment
B, and consider that they both contain NaCl+KCI mixtures with the following

H o —_ o —_ o2 —_ .ﬁ —
concentrations CNat = 145 mM, g+ = 4 mM, o= 149 mM, CNat = 12 mM,

chy =150 mM, and & - =162 mM.

(a) Using the values Dy,+ = 1.556 D~ = 0.007 Dg+ and 1/f = 26.7mV,
show that the Goldman approximation provides a value very close to the
actual liquid-junction potential. Evaluate the latter from

B
r ocr
Aggif = —In—,
fooer
where I" must be obtained first by solving numerically the equation

/eI oy + ) — 08 + 1% _1-Tr
(cg/cg)““r—l b+

where r{; = Dyc{/D3c5, r% = chf/D3c§, 3y = Dycf§ /D3c§, and
r§3 = chg/D3c§.
(b) Estimate also the liquid-junction potential under the above conditions from
the Henderson approximation.
It can be considered that the ions that determine the resting potential in non-
excitable cells are sodium, potassium and chloride ions, because they are in
larger concentration in the outer () and inner (8) solutions. The chloride ions,
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4.11

4.12

Exercises

however, do not really need to be taken into account because their distribution
is very close to equilibrium and their flux density can be neglected in the open-
circuit equation I/F = jN,+ + jk+ —Jjc- = 0. This means that Goldman’s
equation for the liquid-junction potential can be used taking into account only
the Nat and K ions

1 Dngrey,+ T Dr+cir
Aggif ~ —In B I
f Dya+en+ T Dr+egr

(a) Estimate the diffusion coefficient ratio Dy, + /D + from the measured values

of the resting potential A¢ggir = —90mV and ionic concentrations cﬁa L=

14\5/ mM, ¢, =4mM, ¢} | =12mM, and ¢}, = 150 mM. Take 1/f=26.7

mV.

(b) Show that the above equation for Adg;r can be deduced from jy,+ +jk+ ~ 0
and the formal integration of the Nernst—Planck equations without employing
Goldman’s constant-field approximation.

P. Fatt and B.L. Ginsborg [Journal of Physiology (London), 142 (1958) 516]

studied the action potential in crustacean muscle fibres and concluded that the

resting potential (i.e. the diffusion potential across the cell membrane) was deter-
mined by the exchange of Ca?t and K1 ions. Denoting the outside of the cell
as compartment « and the inside as compartment S, the ionic concentrations are

gzt = LS MM, ¢y =4 mM, cgaz+ =0.1 uM, and ci+ =155 mM.
(a) From the Goldman flux equation

Ji - _ zif Aggif ij e%if Adair _ o

D; eaif Adair — | 7

and the open-circuit equation, I /F = 2j,2+ + jg+ = 0, show that the resting
potential (under the conditions described here) is approximately given by

B
4D !
Adgit = oF — g% = L1 et

Sy

The ionic permeability ratio in these fibres is P 2+ /Pg+ = 3000, and we can
simulate it in our formalism (without introducing partition coefficients or other
magnitudes) with a diffusion coefficient ratio D2+ /D + = 3000. Evaluate the
resting potential using 1/f = 26.7mV.

A neutral membrane separates two compartments containing NaCl+KCl mix-

tures with the following concentrations C;:ﬁ =100 mM, cg | = 1mM, cgl_ =

101 mM,cf . = 1mM,ck, = 12mM, and /= 22 mM. The ionic

diffusion coefficients inside the membrane satisfy the ratios Dg+ = D¢- =

1.5Dy,+-

(a) Evaluate the diffusion potential A¢gir = ¢ﬂ — ¢, (Take 1/f =26mV.)

(b) Evaluate the ionic flux densities and comment on their direction in relation
to the direction of the concentration gradient.

(c) Evaluate the Gibbs potential change associated to the transfer of one mole of
sodium, potassium and chloride ions from compartment « to S.

Derive the expression for the Donnan potential in the case of a multi-ionic system

with two ion classes.
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4.13

4.14

4.15

4.16

Extend the diffuse layer model in Section 4.2.4 to the case of different dielec-
tric permittivities in the two phases and show that the surface potential is then
given by

@s =22f (¢s — ¢™) = 22f A¢p — tanh(z f Adp/2)
2 sinh2(gs/2) <sW )2 X
sinh(zof A¢gp) | \ eM '
Extend the diffuse layer model in Section 4.2.4 to include the effect of the

ionic chemical partition coefficients K¢ ; and show that the Donnan and surface
potentials are now given by

X
A¢p = inh s
z2.f A¢p = arcsin (20(6‘1”2) + B

¢s = ¢p — tanh[(¢p — B)/2] + sinh(gp — B)

x {sinhz[(ws ~§)/21— - sinbgy/2)

where o = (K¢ 1K:2)'/? and B = (1/2) In(Ke 2 /K. 1)-
Extend the diffuse layer model in Section 4.2.4 to the case of weakly dissociating
fixed-charge groups. Consider that the dissociation reaction

—RAZ —RM 4 A™M

has an equilibrium constant K, that the total molar concentration of fixed-charge
groups (dissociated or not) is ¢y, and that the membrane is equilibrated with a
solution of a symmetric binary electrolyte of the same counterion A™M.
Consider the interfacial region between a charged membrane occupying the
region x<0 and a 1:1 binary electrolyte solution in the region x>0. Far from
the interface, the electric potential in the membrane phase is ¢M, the electric
field is zero, and the space-charge density is zero. The membrane has charged
mobile groups with charge number z) that can distribute according to the local
electric potential. The concentration of this charged mobile groups in the bulk
membrane phase is cpj. In the bulk of the external solution, the electrolyte con-
centration is 0‘1”2, the electric potential is ¢%, the electric field is zero, and the
space-charge density is zero. Both phases are assumed to have the same dielectric
permittivity e. Calculate the equilibrium electrical-potential distribution in this
interfacial region by solving the Poisson—Boltzmann equation

d2¢ _F c?’ze"/’ - c}"’ze‘/’ S x>0
A2~ e | cfheT? —che? +ameme™ ™M, x <0

where ¢(x) = f[¢(x) — ¢ ] is a dimensionless electric potential variable that
varies continuously from zero in the bulk external phase to

., IMC
¢p = f A¢p = arcsinh MWM
2y

in the bulk membrane phase.
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4.18

4.19

4.20

4.21

Exercises

The Poisson—Boltzmann equation cannot be integrated in exact form in the mem-
brane phase. The approximate analytical solution given in eqn (4.157) has been
based on the linearization of the Poisson—Boltzmann equation in the membrane
phase. An alternative approximate analytical solution can be obtained by assum-
ing that the region —LI[;A < x < 0 (where the value of LI(Y[ is yet to be determined)
is depleted of mobile 10ns in the membrane side of the interfacial region. This is
the so-called depleted layer model (DLM). The Poisson—-Boltzmann equation in
this region then becomes

where § =« x.
(a) Solve this equation under the boundary conditions ¢(§ = —
2f A¢p, (dw/dS)gf—KWLM = 0, and ¢(0) = ¢s to obtain the potential
=—kphy

Ky LM =

distribution in the region ng’[ < x < 0. Note that the Donnan potential is
given by sinh(z2 f A¢p) = cm/c}y

(b) Make use of the continuity of the electric displacement at the interface as well
as the electric-potential distribution in the external phase given by eqn (4.154)
to show that the depleted layer model overestimates the electric potential drop
in the external phase, that is, ((ps)deplewd > (gos)diffuse > 0.

(c) Find the value of ng/l

(a) Derive the expression of the diffusion potential drop inside an ion-exchange

membrane for the case of a 1:1 electrolyte and singly charged fixed groups.

Take the limit of a highly charged membrane and show that substitution

of the resulting equation into eqn (4.203) leads to the expression jip =

—DyAcyp/h.

(c) Take the limit of a weakly charged membrane and show that substitution
of the resulting equation into eqn (4.203) leads to the expression jip =
—D‘l’vagclz/h.

Under steady state conditions and in the absence of homogeneous chemical reac-

tlom the ionic ﬂux densmei and the electric current density have zero divergence,

V. ], =0and V-7 = 0. In a one-dimensional membrane system this 1mp11e9

that these fluxes are independent of position and do not change when crossing

the membrane boundaries. By analysing the diffusion-conduction flux equation

(b

=

> G4 ti;
U L
Ji iJ12 4 F

what can you say about the position dependence of the Donnan electrolyte flux
density f] 2?

Using a phenomenological approach with cross-coefficients, show that the inter-
diffusion of two counterions across an ideally selective ion-exchange membrane
under open-circuit conditions only involves one diffusion coefficient even when
the Nernst—Planck approximation is not employed.

Apply the equations derived in Section 4.3.7 to a much simpler situation in which
all cations have the same charge number z and all anions have the same charge
number —z, the membrane is neutral, the electric current is zero, and both sides
of the membrane have similar ionic strength, _; ¢j(h) &~ >_; ¢;(0). Show that the

227



228

Transport in membranes

4.22

4.23

4.24

diffusion potential is then given by the Goldman—Hodgkin—Katz (GHK) equation
> Pici(0) + 3 Pici(h)
+ —

I S P £ 5 Pres(0)
+ —_

Adgir = 7

where P; denotes the permeability of the membrane to ionic
species i.

From the equations derived in Section 4.3.7, determine the expression for the
potential drop in a membrane that is so strongly charged that co-ions are excluded
from the membrane and do not contribute to the current transport.

In Section 4.3.4 it was obtained that the ohmic potential drop, when a symmetric
binary electrolyte is transported across an ion-exchange membrane, is given by

cr(h) + X w W

cr(h) + (1) — )X
cr(0) + 22I'X

A =zl .
22f Agohm = 22T In c1(0) + (G’V _ l‘g'])X

(a) Show that this expression can also be derived from the evaluation of the
membrane resistance as

h
dx  IRT dx
Py

h
A =—IRM = —1/ .
Pohm K 22F2 ) Dici+Dacy

0 0

(b) Find the expression for the ohmic potential drop in the limit c‘]"2 ~ 0/132’ ie.

when [c§, — clﬁz\ < @
Hint: Remember that ¢c; = (¢ + X)/2 and ¢y = (¢ — X)/2, and evaluate
det/dx from

cr(®) +22I'X

xGg =c1(0) —cr(¥) + 2oI'X In —————.

0=cr(0) —cr(®) +22 o1(0) T ol X

In Section 4.4.2 we have obtained that the electric conduction equation in charged
porous membranes, in the absence of concentration gradients, is

(N =—-(k) + (Kc))%/.

This equation can also be written as

2ra dv
I)=— —KS+K‘3>—
0 (na2 dx

where «P is the bulk conductivity (i.e. the electrical conductivity of the exter-
nal solution) and K* is the surface conductivity (note that it does not have the
dimensions of a conductivity because of the geometrical factor). Thus, the surface
conductivity accounts for the differences between electric conduction inside the
membrane pores and in the external solution, which involve mainly two aspects.
First, the (total) ionic concentration is larger than in the external solution because
there is a need to counterbalance the fixed charge on the pore walls. And second,
electro-osmotic convection influences the ionic motion.
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Knowing that the convective conductivity in the linear approximation is

X\2 w W
<Kc>wx¥zzf&<a>~ eRT (kp) {KD“’O(KD“)_ }

3)? | 2hkpa)

obtain an expression for K.

In Section 4.4.4 we have obtained that the potential drop when a symmetric binary
electrolyte is transported across a charged porous membrane can be evaluated in
the homogeneous potential approach by integration of the equation

o fdd &) — e+ + @1 — ) /v — 15X
S fdep =

@) —t)e— + (1§ .y )/Ctth de
_12—211112”2]%

) —c—

Cy —C—

where c4 and c_ are the two roots of the equation (c; +X)cv = (¢ +X )t‘l” 2+
cztﬁ” j1 (solved with respect to ¢p). Show that this equation reduces to

W W

)
2 fdp = mdcz,

when convection is negligible and no electric current is transported across the
membrane, v = 0 and / = 0, and compare the expression for the (diffusion)
potential drop thus obtained with the expression

c1(h) + ey + XY — 1)
c1(0) + c2(0) + X (1} —13)

0 f Aggis = (1 —13')In

that was obtained in Section 4.3.3.
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Transport through
liguid membranes

5.1 Distribution equilibria in liquid
membrane systems
5.1.1 Liquid membranes

Liquid membranes form an interesting group of membranes, which can be
used to selectively separate or extract solutes from one phase to another [1].
They can also be used as a crude model for a biomembrane, although they
have no organized structure on the molecular level like a phospholipid bilayer.
Liquid membranes can either be emulsion-like or supported. In an emulsion lig-
uid membrane (or surfactant liquid membrane) the solutes to be separated are
enriched in the stripping phase inside the micelle created by the membrane-
forming surfactant. This type of liquid membrane is common in practical
extraction processes, but they are not considered here.

A supported liquid membrane is usually a porous hydrophobic membrane
where an organic solvent is impregnated. The solvent is held inside the mem-
brane by capillary forces. Extraction by liquid membranes takes place in one
stage only, i.e. separate extraction and stripping stages are not required. Extrac-
tion is often based on some selective carrier molecule in the membrane phase,
whereby solutes can be transferred across the membrane against their concen-
tration gradient. In this case, the chemical energy needed for the process is
taken from the transfer of some other species, e.g. a proton. As the volume of
the membrane phase is very small, expensive and/or even toxic carriers can
be utilized in extraction because the amount of material is minimized. By the
appropriate choice of the carrier molecule and the solvent, extraction can be
made very selective.

Also, electric fields can be used to run extraction processes of metal cations,
for example. There exist, however, a few difficulties. Firstly, the membrane
phase must remain electroneutral. If an ion enters the membrane at one inter-
face, either another ion must leave the membrane at the opposing interface, or
an ion with an opposite charge has to enter the membrane. Secondly, because
the membrane presumably is thin, of the order of 100 wm, the potential dif-
ference across the individual aqueous/organic interfaces cannot be monitored

1

! Although other geometries might be preferable for some applications [2], in this chapter we
consider only planar membranes.
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or controlled. Only the total potential difference across the membrane can be
controlled, and as a consequence of the coupling of charges, the total potential
difference distributes itself asymmetrically in the system. It may create initially,
for instance, such a high potential difference on the stripping side, as no ions
are available yet, that the interface becomes unstable, or the base electrolytes of
the aqueous or membrane phase cross the interface. Next, we are considering
the distribution equilibrium of different species between the liquid membrane
and one of the aqueous solutions in contact with it.

5.1.2 Equilibrium partitioning at the aqueous/organic
solution interface

When a liquid membrane is clamped by two aqueous phases, i.e. the feed and
the strip solutions, two aqueous/organic solution interfaces are formed. We
consider here one of those interfaces and describe the equilibrium partitioning
i(w) Zi(0) of a solute i. The ability of neutral solute to cross the interface
depends only on the solute and solvent properties. The equilibrium partition
ratio af /a’ is then equal to its chemical partition coefficient K;, and this is
determined by the Gibbs free energy of transfer of the solute i from the organic
to the aqueous solution, AJG; = M?’W—M?’O, through the thermodynamic
relation K; = e®0%/RT_ For hydrophobic neutral solutes, AJG? > 0 and
al/ay’ = K; > 1 so that they have a higher activity in the organic phase. On
the contrary, for hydrophilic neutral solutes AJG? < 0 and a?/a’ = K; < 1.

In the case of an ionic solute i, the distribution equilibrium requires that
the electrochemical potential of this solute takes the same value in both
phases, ji; = 17, and therefore the equilibrium condition involves the electric
potentials in these phases

wi™ + RTIna + ziF¢% = u;° + RT Inaf + z;:F ¢°. (5.1

This implies that ionic solutes can be ‘pushed’ across the interface by adjusting
the interfacial potential difference A ¢ = ¢% — ¢°. In fact, their partitioning
is often explained in terms of potential differences only by writing the Gibbs
free energy of transfer as AJ G} = —z;FF AY ¢; . This expression constitutes the
definition of the standard transfer potential of species i, A} ¢?. The transfer
potential is positive for hydrophilic cations and hydrophobic anions, and neg-
ative otherwise. A few values are given in Table 5.1. The chemical affinity of a
hydrophilic cation for the aqueous phase is then interpreted in terms of a pos-
itive transfer potential Af'¢; so that the interfacial potential drop Ag'¢ must
be increased above Af'¢; to ‘push’ this hydrophilic cation from the aqueous to
the organic phase. The equilibrium partition ratio for ionic solutes is then

(19 AW FIAY W 40
£ = K;eil 85 b — ol (AJ¢=A5d) (5.2)
4
which is equivalent to eqn (5.1). Thus, for instance, increasing the electrostatic
energy of a hydrophilic solute in the aqueous phase so much that the difference
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Table 5.1. Ionic standard transfer potentials Af,%;? (mV) for mutually sat-
urated water—organic solvent systems at 25°C. (Extracted from Ref. [3] with
permission.)

Ton nitrobenzene  1,2-dichloroethane  dichloromethane
Lit 298 493

Nat 355 490

HT 337

NHf 284

K+ 241 499

Rb* 201 445

CsT 159 360

acetylcholine 52

(CH3)4N* 37 182 195
(CoH35)4NT —63 44 44
(C3H7)4NT —160 —91 —91
(C4Hg)4NT —270 —225 —230
(CsHj)4NT —360 —377
(CgHs)4As™ —372 —364

crystal violet —410

(C¢H13)4NT —472 —494 —455
Mg?t 370

Ca>* 354

Sr2t 348

Ba* 328

ClI~ —395 —481 —481
Br~ —335 —408 —408
NO3 —270

I~ —195 —273 —273
SCN™ —161

BE, —91

Clo, —91 —178 -221
2 4-dinitrophenolate =77

PF 6_ 12

picrate 47 —69

(CgH5)4B™ 372 364

dipicrylaminate 414

dicarbolylcobaltate 520

in standard chemical potentials is overcome, z; Ay ¢ > z; A¥ @7, it can be forced
into the organic phase.?

The activity coefficients of species i in the two phases are often assumed to
be equal to each other, ¥ & y,", and the partitioning equilibrium equation is
simplified to

c©

AES) i (5.3)

W
l

o

which can also be applied to neutral solutes (z; = 0).

% This actually means that the activity of the hydrophobic solute in the aqueous phase can be
raised above the activity in the organic phase.
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w (o)

|
K
A = A

W
KCA

C+A Z CA

o
KCA

C+A = CA

CA == CA

5.1.3 Finite-volume effects on the partitioning of
a neutral solute

As the volume of the liquid membrane is much smaller than those of the bathing
aqueous solutions, partitioning of solutes between an aqueous solution and the
membrane has some interesting characteristics. Let us consider first a case
where the aqueous solution contains a hydrophilic solute A that can partition
to the membrane and the membrane contains a hydrophobic ligand C that can
also partition to the aqueous solution (Fig. 5.1). Initially, i.e. before the equi-
librium distribution is established, the solute A is only present in the aqueous
phase with a concentration CX’O and the ligand C is only present in the liquid
membrane with a concentration cg‘o. After the equilibrium has been established,
their concentrations in both phases are>

K

&} = Kack = e} A 64
K

@ = Keell = 20 —=C (55)

c Kc-i—r,

where r = V¥ /V° is the volume ratio of the aqueous and membrane phase,
and K, Kc are the partition coefficients of A and C, respectively. Thus, for
instance, in order not to lose ligand from the membrane, it must be satisfied that
r < Kc.

Consider now that A and C can form a hydrophobic ligand—solute complex
CA that can also be present in both phases. The chemical equilibrium condition
for this complexation reaction in the aqueous phase is

Ca
o (5.6)

W
KCA_CWC
C*A

and a similar mass-action law can be written for the membrane phase, although
this is not an independent relation because the corresponding equilibrium

3 . . .
These equations are derived from mass balances as explained below.
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Fig. 5.1.

Equilibrium partitioning of a neutral solute
A and a ligand C that can associate to form
a complex CA.
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constant K2, is determined by K, and the partition coefficients as? K2, =
K(‘:’“ '\ Kca/KcKa. The equilibrium concentrations of the different species in the
aqueous and membrane phases are no longer given by eqns (5.4) and (5.5) and

they must be found out from the mass balances

NOVY = (W + VY 4 (R +c24) VO solute balance, (5.7)

c?:’oV0 = (& +cC)VY + (gt +c2p)V°  ligand balance. (5.8)

Introducing the volume ratio r, the partition coefficients, and the reaction
equilibrium constant, the mass balances can be transformed to

ex'r = [Ka + 7+ (Kea + NKZycd ek, (5:9)

¥ = [Kc +r + (Kca + NKEpc¥ ey, (5.10)

which is a simple equation system that can be solved for the variables ¢} and c{¥.
Some typical results are shown in Fig. 5.2 for the parameter values: Kx = 1073,
Kc = 10%, Kca = 10%, K%, =3 x 10°M, ¢4* = 0.01 M, and ¢’ = 0.1 M.
Figure 5.2 shows that the total ligand concentration in the membrane, cg +
g4 18 practically equal to the initial value cg‘o for all values of the volume ratio
in the range, r < Kc, as was also concluded from eqn (5.5) in the absence of a
complexation reaction. The solute concentration in the aqueous phase ¢}y drops
significantly from the initial value, chV’O, due to the complexation reaction when
r ~ Kcak®,ct" /Kc, which corresponds to the condition ¢ V¥ ~ ¢, V°,
i.e. when the amount of solute in free form in the aqueous solution is of the

same order of magnitude as the amount of solute in complexed form inside the
membrane.

e
s S 10 2
: : ¢
g g
§ § 10 o8
5 s
&) &)
1075}
1 10 100 1000 1 10 100 1000
AR vwye

Fig. 5.2.

Equilibrium concentrations (aqueous left, membrane right) as a function of the volume ratio; parameter values given in the text.

* Note that Kca without superscript denotes here the partition coefficient of the ligand—solute
complex.
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5.1.4 Finite-volume effects on the partitioning of an
ionic solute

Consider next the case where the bathing solution contains a strong acid AB,
say HCI, and the organic phase contains a hydrophobic ligand C (e.g. an amine
R-NH>) that can extract the acid from the aqueous to the organic phase by
forming an acid—amine complex. This partitioning process can be illustrated
by either of the two schemes in Fig. 5.3. In the aqueous solution the strong
acid is dissociated into the ions AT and B~(e.g. HT and CI7), and in the
organic solution it is more likely in the form of ion pairs AB due to its lower
relative electrical permittivity. Similarly, the acid—amine complex CAB can be
considered to be dissociated into the ions CA™ and B~ (e.g. R — NH;3Cl or
R— NH;‘ and CI™). The important point, however, is that the partition constant
of species i is now the product of two terms, a chemical partition coefficient K;
and an electrostatic coefficient %/ 25 ?, and that the latter is not a property of the
ion and the solvents, but it is rather determined by the concentrations of all the
jons dissolved in both phases. Let us then introduce the variable K, = ef%0¢
and write the partition constant of the cations as K;K. and that of the anion as
K;/K.. The partition coefficient of the ion pairs is the product of the chemical
partition coefficients of the corresponding ions, e.g. KR _NH;c1 = KR—NH;“ Kc-
and Kyc) = Ky+Kgy-- )
Initially, i.e. before the equilibrium distribution is established, the acid AB is
only present in the aqueous phase with a concentration cXi;) and the amine C is

only present in the liquid membrane with a concentration c%’o. The equilibrium
concentrations of the different species in the aqueous and organic phases must
be found from the mass balances

w,0 .
cag V" = (cp+ + el )VY + (ch+ +¢2,+)V®  ionic solute balance,
.11
0,0v,0 (] o o :
c&Ve = (g + ch+)Vw + (¢ +¢lp+)V®  amine balance.
(5.12)
w (o] w o
AT = AT AB == AB
c==¢C ca=c
+t— + +— +
CHA™==CA CHA™== CA C+AB == CAB C+AB== CAB
CA* = CA*
CAB==CAB
B~ <= B~
Fig. 5.3.
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Equilibrium partitioning of an acid AB and an amine C that can associate to form an acid—amine complex CAB. The equilibrium distribution can

be described considering either ions or ion pairs.



238

Transport through liquid membranes

The chemical equilibrium condition for the complexation reaction in the
aqueous phase is

CW
CAT
Oat = (5.13)
CeCp+

and a similar mass-action law can be written for the organic phase with an
equilibrium constant K8A+ = KgA+ Kca+/KcKp+.
The electrostatic contribution to the partition coefficient of the cations, K =
w . . LS .
ef239 can be determined from the electroneutrality condition in both phases,
W __ W W 0 — 0 0
Cp- = Cp+ T o5+ andcy =cyy + Cept The latter can be transformed to

(K- /Ke)eg- = (Kp-/Ke)(cx+ + clp+)
= Ka+Kelts + KoprKecl, - (5.14)

and, therefore,

12
Kg-(1+KY .c¥)
= [ B CA*TC } . (5.15)

Kp+ + KCA+KgA+Cg

where we have introduced the complexation constant defined in eqn (5.13).
Similarly, the mass balances can be transformed to

Npr = [Ka+Ke + 1+ (Kep+Ke + DKE,c)1els, (5.16)

C%’O = [Kc +r+ (Kca+Ke + ")KgA+CX+]Cgs 5.17)

where r = VV/V° is the volume ratio of the aqueous and membrane phase.
Note that these equations only differ from eqns (5.9) and (5.10) in the factor
K., which is given by eqn (5.15). This equation system can be solved for the
variables ¢} and c{! in terms of r,> and some typical results are shown in
Figs. 5.4 and 5.5 for the parameter values: Ko+ = 107>, Kg- = 2 x 107>,
Kc = 10%, Kopr = 1072, KY, . = 10°M, ¢}y = 0.01 M, and ¢2° = 0.1 M.

Figure 5.5 shows that, even in the absence of an external electric circuit, a
substantial galvanic potential difference A}¢ = ¢V — ¢° is developed across
the phase boundary, which changes the partition equilibrium accordingly. This
has a significant impact in the partitioning of ionic drugs into biomembranes,
for example. The sign of the potential drop, negative in the aqueous phase, is
due to the fact that we have considered an acid—amine complex that is much
less hydrophilic than the acid ions AT and B~, see eqn (5.15).

Although the exact form of the curves depends strongly on the given para-
meter values, Fig. 5.4 shows that the total ligand concentration in the membrane,
e+ cg 4+ 1s significantly smaller than the initial value cg’o for all values of the

5 In fact, it is simpler to solve for the variables r and CX in terms of cg , and the graphical
representation of the solution is then made as a parametric plot.
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Equilibrium concentrations (aqueous left, membrane right) as a function of the volume ratio; parameter values given in the text.
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volume ratio in the range, » > 10. This is due in this case to the complexation
reaction and that fact that the acid—amine complex is hydrophilic and parti-
tions preferably to the aqueous phase. Similarly, the solute concentration in the
aqueous phase ¢}, drops significantly from the initial value, cXé) , due to the
complexation reaction except for such high values of r that most of the ligand
is in complex form.

A detailed analysis of the multi-ionic equilibria at the liquid/liquid interface,
considering the effect of the volume ratio and pH was first given by Hung
[4, 5] and later by Kakiuchi [6], emphasizing the effect on the ion-selective
electrodes, in particular.

5.2 lon transfer across a liquid membrane

To illustrate the description of steady-state ion transfer across a liquid mem-
brane, we consider in this section the electrically driven transport of a trace ion
between two aqueous solutions, & and 8, of identical composition. Such an ion
(identified by subscript 1) could typically be tetraethylammonium (CoHs)4N™,
or TEAT, and its transfer from compartment « to 8 across the membrane is
driven by applying a potential difference A§¢> = ¢P — p* < 0. Moreover, this
is the only electroactive species in the system, and its flux density is propor-
tional to the electric current density, jj = I/z;F. Our aim is to find the equation

Fig. 5.5.

Distribution potential (at 25°C) as a
function of the volume ratio r for the
partitioning equilibrium considered in
Fig. 5.4.
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describing the current—voltage curve of this membrane system and to analyse
the influence of the different transport parameters, such as the concentrations
of the transferring ion in the aqueous solutions, ¢}, and in the membrane phase,
cl‘;, and the thickness of the membrane, £, and of the diffusion boundary layers
in the aqueous phases, 8. The most interesting characteristic of this system is
that the transferring ion encounters some resistance to its transfer from both the
membrane and the aqueous diffusion boundary layers. The current density can
then be limited by either the membrane or the diffusion boundary layers.

Supporting electrolyte is added in the aqueous phases, such that transfer
of TEA™ is under diffusion control. Under steady-state conditions, the flux
density of this ion is constant throughout the system and in the aqueous diffusion
boundary layers it is

n—_pvda _ 1 5 0, h h+8 5.18
]1_—Dla_m—F (=6 <x<0, h<x<h+29J). (5.18)

The concentration profiles are then linear and their values at the (external)
membrane boundaries are

Y(O) = (1 =1/, (5.19)
c‘f’(h) = ct‘f'(l +1/1Y), (5.20)
where
FDW W
= % (5.21)

is the limiting current density in the aqueous phases® and the boundary
conditions ¢} (—8) = ¢ (h + §) = ¢} have been used.

The electrolyte solution inside the membrane is binary (i.e. there is no sup-
porting electrolyte and migration is not negligible), but the other ion, e.g.
tetraphenylborate TPB™, is not capable of crossing the interface. Since only
species 1 can cross the membrane boundaries, the transport equations in the
membrane are

. dey d¢ !

J1 =—D(f (a +2161fa> 2217 O<x<h), (5.22)
d d

jo=—D8 (7(;2 —}—zZsz—df) =0 (O<x<h). (5.23)

The local electroneutrality condition zjc1 +z2c2 = 0 then implies that the ionic
concentration distributions are also linear in the organic phase. The average

% For the sake of convenience, we have chosen I = IIL” when c‘l"’ (0) = 0. If we had chosen
13=221]iv when c‘l"’ (h) = 0, a negative sign would appear and eqn (5.21) would then resemble eqn
(3.22).
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concentration in the membrane phase is bound to be its ‘bulk’ value

1 h
cp = 7/(; cy dx, (5.24)

and, therefore, at the membrane centre the transferring ion concentration is
¢{(h/2) = cp. The concentration drop inside the membrane then depends on
the electric current density, and its maximum is Ac{ = ¢{(h) — c{(0) = —2c}
that corresponds to the limiting current in the organic phase, I{. Thus, at the
(internal) membrane boundaries, the concentrations of the transferring ion are

S0) = QU +1/1D), (5.25)
Shy = (1 —1/IY), (5.26)

where

2211 = 21/2)FD{e)

I Y

(5.27)

The interfacial electric potential drops are given by eqn (5.2) (with the
assumption y;” & y,") as

1 c9(0) 1 (1 +1/12)
AVH(0) ~ AVg + — In 2 = AV + — In—>—— "L (528
PO B+ T Iy = Mot M vy O
1 O(h 1 o1 =1/1°
AV ~ AVgS + 1 T _ Afy¢;’+—1nM (5.29)

af ) af ey +1/1Yy’

and the potential drop in the membrane can be obtained from eqns (5.23)-
(5.26) as

1 cS(h) 1 c2(h)
Ap° =¢°(h) —¢°(0) =——In =~ =——1In—.
nf  0) 2f  0)
I O 7
=——In——. 5.30
of 1+I/IP -30)
The cell potential Ageen = ¢P — ¢ = ¢¥ (h) — ¢™(0) is then
Adeel = AJ P (h) + Ag° — AT (0)
1 1-1/Y -2z l—I/If
=—1In
af 1+I/K anf  1+I/R
2 1 2(z2 —z 1
= ——— arctanh— — M arctanh—, (5.31)
zf I zz2f Ip

where the standard potentials have cancelled out.
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Equation (5.31) describes the current—voltage characteristics of the mem-
brane system under consideration. The current—voltage relation is linear at low
deviations from equilibrium (i.e. low electric current or low electric potential
difference). The behaviour of the system is then ohmic, —Ag¢cel = IR, where
the total electrical resistance is the sum of the contributions from the three lay-
ers, R = 2R™ + R® with RY = §/k%;, R° = h/k%y. and k% = 2 F>DYcl /RT
being the effective electrical conductivity of phase ¢(¢ = o,w). At higher
applied potentials, the current—voltage curve is non-linear and shows a limiting
current density, which is the lower of I’ and /}*. It can also be noticed that the
current—voltage characteristics are symmetric. That is, reversing the sign of the
cell potential leads to a reversal of the electric current density without affecting
its magnitude.

Figures 5.6 and 5.7 show some typical results correspondingtoz; = —z2 = 1
and AJ ¢} = 44 mV, which is roughly the value corresponding to TEAT™ at the
water/1,2-dichloroethane interface. Figure 5.6 shows the current—voltage curve
and the contributions AY ¢ (h), A¢°, and —AY ¢ (0) to the cell potential for a
case in which cp /¢y’ =100 and I /I = 5. The limiting current density is then
determined by the aqueous phase (i.e. the depleted diffusion boundary layer)
and the membrane does not get polarized practically (and hence, |A¢°| K
[Adcenl)-

Figure 5.7 shows the current—voltage curve and the contributions A¥ ¢ (h),
A¢°, and —AJ ¢ (0) to the cell potential for a case in which cp/c) = 10 and
I2 /1Y = 0.5. The limiting current density is then determined by the membrane,
but the interfacial potential drops are still relevant. In fact, it can be shown
that Ag® ~ A¥¢p(h) — AYP(0) & Agcen/2. Note also that, in spite of the
close similarity of the current—voltage curves in Figs. 5.6 and 5.7, these two
curves are not exactly equal to each other. First, the limiting current is differ-
ent. And second, the cell potential axis is also different. Note, for instance,
that their initial slopes are (5/14)fI}" and (1/5)fI7, respectively, as can be

1.0f 300 F
s
0.8 E 200¢ A¥h(0)
o
27 06 £ 100}
~ 04 g e
. ‘E 0
8
0.2 £ —100} A (h)
. —
0.0 . . . . 200 . . . .
0 50 100 150 200 0 50 100 150 200

—A¢ oy (mV) —Ad oy (mV)

Fig. 5.6.

(Left) Current-voltage curve (at 25°C) for cation transfer across a liquid membrane when cg/cbw = 100 and I]‘j/li” =5, a case in which the
current is limited by the transport in the depleted diffusion boundary layer. (Right) The cell potential is the sum of three contributions: the potential
drop in the organic phase A¢°, and the interfacial potential drops at the boundaries x = 0 and &, AY ¢ (0) and AY ¢ (h). When the limiting current
density is approached, the interfacial potential drop AY ¢ (0) diverges.
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(Left) Current-voltage curve (at 25°C) for a cation transfer across a liquid membrane when cg/ck‘:’ =10 and lf/[ﬁ’ = 0.5, a case in which the
current is limited by the transport in the membrane. (Right) The cell potential is the sum of three contributions: the potential drop in the organic

phase A¢°, and the interfacial potential drops at the boundaries x = 0 and h, A} ¢(0) and AY ¢ (h). When the limiting current density is

approached, both the potential drop inside the membrane A¢° and the interfacial potential drop AY ¢ (h) diverge.

deduced from

I Ve
<7> - ﬂ%. (5.32)
_A¢cell 1=0 2 IL + (1 — 211 /Z2)IL

Experimentally, ion-transfer processes in liquid membranes can be conve-
niently studied, e.g., in arotating diffusion cell [7]. This cell consists of arotating
cylinder that contains one cell compartment and is limited by the membrane
from below. The other solution compartment surrounds the rotating cylinder.
By adjusting the rotation speed, regular convection profiles are created on both
sides of the membrane and the thickness of the aqueous diffusion boundary lay-
ers varies in a controlled way with the rotation speed. The difference with the
rotating-disc electrode is that only slow rotation speeds (ca. 20 rpm) are possible
in this system due to the mechanical instability of the liquid membrane.

5.3 Carrier-mediated transport
5.3.1 Solute permeability in a supported liquid membrane

In this section we describe the steady-state transport of a neutral solute A across
a supported liquid membrane from a concentrated to a dilute aqueous solution.
The solute transport is driven by the molar concentration difference A%cA =

- cfi > 0, where compartment o contains the source or feed solution and

compartment 8 contains the receiving, strip or sweep solution, and hence the
molar flux density of this solute j is positive in the direction from « to . In this
transport process, the solute has to overcome different (transport) resistances:
diffusional resistance to transport in the aqueous phase «, interfacial resistance
to partition to the membrane phase, diffusional resistance in the membrane
phase, interfacial resistance to partition to the receiving aqueous phase S, and
diffusional resistance to transport in the latter. In the case of supported liquid
membranes, the interfacial resistances are negligible compared to the other
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Fig. 5.8.

Schematic concentration profile for free
solute transport across a supported liquid
membrane flanked by two aqueous
diffusion boundary layers.

Transport through liquid membranes

ones, and hence the partitioning between the aqueous and organic phase can be
assumed to take place under equilibrium conditions. The solute permeability
P4 in the membrane system is defined (implicitly) by the equation

Jja =Pa(c% —cb). (5.33)

It is a positive-definite quantity with dimensions of velocity. Our aim in
the following sections is to identify the factors that determine the solute
permeability.

5.3.2 Free solute transport: the solubility—diffusion mechanism

The diffusional transport resistance in the aqueous phase can be reduced by
stirring, so that the rate-limiting transport resistance comes from diffusion in
the liquid membrane. In this case the solute concentration difference (¢ —cfi) in
eqn (5.33) is approximately equal to the concentration drop across the outer (i.e.
aqueous phase) membrane boundaries, ¢y (0) —c} (h), where & is the membrane
thickness (Fig. 5.8). The transport can then be explained in terms of the so-called
solubility—diffusion mechanism. The solute that reaches the supported liquid
membrane from the concentrated aqueous solution must become soluble in the
organic membrane phase before it can diffuse across it. We assume that this
partitioning process is thermodynamically reversible. The membrane offers
some resistance to the diffusion process, which is the only resistance under
consideration in this section. At the other interface, the solute must transfer the
aqueous phase, and this process releases the same amount of Gibbs free energy
of transfer that was consumed when crossing the first interface.
The flux density of a neutral solute in the membrane phase is given by

ja=—-D%—4. (5.34)

Under steady-state conditions, the flux density is constant and the integration
of eqn (5.34) over the membrane (i.e. from x = 0 to /) leads to

ja = (DR/Wca (0) — i (W]. (5.35)
a o B
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Since the solute concentration ratio at the membrane/external solution inter-
faces is given by the solute chemical partition coefficient Ka = ¢ (0)/c} (0) =
e (h)/cy (h), see eqn (5.2), the solute permeability across the membrane
reduces in this case to

KaD3,
—

Pp=Pg (5.36)

This equation shows that solutes that are poorly soluble in the organic phase
find a large overall resistance to their transfer across the membrane. If we
want to increase the rate of solute transfer, we can only change the organic
solvent (trying to maximize the product Ko DY) and to decrease the membrane
thickness h. Moreover, the selectivity of this type of solute transport is quite
limited because the choice of solvent is our only degree of freedom.

It is worth observing that the chemical partition coefficient of the solute was
not considered in the description of transport across the membranes considered
in Chapter 4. This was justified on the basis that no significant difference in
the standard chemical potential of the solute should be expected between the
solutions internal and external to the membrane because they were both aque-
ous; this holds true unless the water content of the membrane were extremely
low. However, when considering the transport across supported liquid mem-
branes, the use of organic solvents in the membrane phase makes it necessary to
take into account the difference in the standard chemical potential of the solute
between the internal and external solutions at the membrane boundaries.

In the case of ions, the electrostatic solvation energy in an organic phase, as
deduced for instance from the Born equation, is much larger than in an aqueous
phase due to their different dielectric permittivities. The solubility of ions in the
organic phase is then very small (particularly in the case of small ions) and the
membrane is practically impermeable to them. There are, however, some ways
to increase the solubility of charged solutes in the membrane phase. These are
studied in the next sections and can be either chemical methods, for example
the complexation with some appropriate ligand in the membrane phase, or elec-
trochemical methods, which require control of the electric potential difference
between the aqueous and the organic phases (and not necessarily via the use of
electrodes in these phases).

5.3.3 The effect of the diffusion boundary layers on free
solute transport

When the stirring of the aqueous solutions is not so efficient, we must consider
that the membrane is flanked by two diffusion boundary layers of thickness 4 that
also offer some resistance to the solute transport and, therefore, affect the solute
permeability (Fig. 5.8). Using an electrical analogy, the three layers (liquid
membrane and aqueous diffusion boundary layers) behave as three resistors in
series (Fig. 5.9) and, therefore, the overall resistance of the membrane system
to the solute transport is the sum of the three resistances. Hence, we show below
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Fig. 5.9.

The total resistance to solute transport of a supported liquid membrane flanked by two aqueous
diffusion boundary layers can be evaluated as the sum of three transport resistances in series. The
permeability of each one of these layers to the solute is the reciprocal of its transport resistance.

that the solute permeability is

1 2 1 26 h

—=— 4 —=—4+ —. 5.37
+ + 5T (537)

Pr Py PS DY

Across the aqueous diffusion boundary layer in the source solution the solute
concentration profile is linear and its flux density is

ja=—DY=2 = PY[cX - cX 0], (5.38)

where PX = DX /8 is the solute permeability in this layer. Similarly, in the
boundary layer of the receiving solution, we have jo = PY[cy (h) — cﬁ], Note
that under steady-state conditions the solute flux density is independent of
position, and this justifies the absence of a phase superscript on ja. By writing
the overall concentration drop as the sum of three concentration drops

& - ci =% —ca(0) 4+ cX(0) — cy (B) + X (h) — cﬁ, (5.39)
and using the above equation, this can be transformed to

Ja _Jad o Jah | jad
Py DY ' KaD} ' DY’

(5.40)

which is the same as eqn (5.37). We conclude then that the aqueous diffusion
boundary layers decrease the permeability of the membrane system to the solute,
and this effect is particularly important when the permeability of the organic
phase is high and when the boundary layers have a thickness comparable to
that of the membrane because stirring is not very strong.

5.3.4 Carrier-mediated solute transport: the facilitation factor

The study of liquid membranes is important because of industrial applications,
but also because it resembles in some aspects the solute transport across bio-
logical membranes. The mechanisms of transport across biological membranes
are quite diverse, but many of them are characterized by a high specificity with
respect to the solutes and by a saturation of the rate of transport at high solute
concentrations in the source solution. These characteristics can be explained
(although not exclusively) assuming that the solute transport is mediated by a
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carrier molecule inside the membrane. This is a mobile molecule that binds the
solute at one interface and releases it at the opposite interface. The presence
of carriers in biological membranes was first proposed by Pfeffer in 1890 and
received widespread interest after Pressman found that valinomycin facilitated
selective transport of potassium in a factor of several thousands [8]. When its
role in transport across biological membranes was understood, the use of carri-
ers was also proposed in commercial membrane-separation processes [9, 10],
and in ion-selective electrodes [11].

Consider a liquid membrane that separates two aqueous solutions of a neutral
solute A at concentrations ¢4 (source or feed compartment) and cﬁ (receiving
or strip compartment). These solutions are assumed to be ideally mixed, so
that the aqueous diffusion boundary layers offer no transport resistance, and
approximately ¢ and cﬁ are the concentrations at the external membrane
boundaries. The (free) solute can partition inside the membrane and diffuse
from the source to the receiving solution. As we have studied in Section 5.3.2,
the solute permeability in the membrane associated to this transport mechanism
is P} = KaDS /h, where D, is the diffusion coefficient of the free solute inside
the membrane and K = ¢ /c} is its partition coefficient.

The membrane also contains a carrier C (Fig. 5.10) that is able to complex
with the solute at the membrane aqueous solution interfaces as described by
the reaction’

A(w) + C(0) < CA(0), (5.41)

with an equilibrium constant®

Kca = —. (5.42)
ccey
a o B
CA CA
— A=t H—-A —
C C
A A A A
0 h

7 The complexation reaction could be presented as A(o) + C(o) 2 CA(0), but we recommend
eqn (5.41), involving species in different phases, to emphasize that it does not take place inside
the membrane (i.e. it is not a homogeneous reaction) but at the interfaces (i.e. it is a heterogeneous
reaction).

8 Not to be confused with a partition equilibrium constant for the complex CA, because it is
assumed here that this complex cannot partition to the aqueous phase. This interfacial complexation
constant also differs from the bulk complexation constants Kg ', and Kg A defined in Sections 5.1.3
and 5.1.4.
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Fig. 5.10.

Carrier-mediated transport of a neutral
solute A across a supported liquid
membrane. A solubility—diffusion transport
mechanism of the free solute runs in
parallel with the carrier-mediated transport
mechanism.
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Note that no phase superscript is used for the carrier and the complex CA
because they can only be in the membrane phase. Since the supported liquid
membranes are relatively thick and the limitation to solute transport arises
from the diffusion inside the membrane and not from the interfacial kinetics
[12], it is a very good approximation to consider that the reaction (5.41) is
under conditions of thermodynamic equilibrium. Yet, there is a small, positive
(i.e. in the forward direction) net rate at the source solution/liquid membrane
interface, and a small, negative (i.e. in the backward direction) net rate at the
liquid membrane/receiving solution interface. The carrier-mediated transport
then proceeds following the steps:

1) at the source solution/liquid membrane interface, the solute A binds to the
free carrier molecules C and forms the complex CA,

2) the complex CA diffuses through the membrane,

3) at the liquid membrane/receiving solution interface, the complex CA disso-
ciates, the solute is released and partitions to the receiving aqueous solution,
and the complex C remains in the liquid membrane because it has anegligible
solubility in the aqueous phase,

4) the carrier C diffuses back to the source solution/liquid membrane interface,
and the cycle is repeated.

The solute flux density across the membrane due to the carrier-mediated
mechanism is also driven by the concentration difference A%ca = ¢ — cﬁ > 0,
and we can formally write the contribution of this mechanism to the solute flux
density as jca = Pca A%CA, which constitutes the definition of the solute
permeability Pca due to the carrier-mediated transport mechanism. Since two
transport mechanisms (free and carrier-mediated transport) take place in parallel
in the membrane phase, the total permeability P of the membrane to the solute
is the sum of the permeabilities P} and Pca,

Pa =PZ+PCA- (5.43)

This equation simply states that the total solute flux density across the mem-
brane is the sum of the flux density of free carrier and that of the complex, P}
and Pca,ja = j} +Jjca. Remember that the total permeability is defined by
eqn (5.33).
The facilitation factor F' is defined as the relative increase in the flux across
the membrane due to the carrier
_Ja _ Pa Pca

===—=1 . 5.44
RomCUTR 04

‘When the chemical partition coefficient K4 is small and the solubility—diffusion
mechanism is practically inoperative, the facilitation factor is very large, thus
showing the importance of the carrier-mediated transport to increase the rate of
solute transport from the source to the receiving solution.

We aim at evaluating the permeability Pca, and hence, the total permeability

P as a function of the solute concentrations ¢ and cﬁ, the equilibrium and
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partition constants, the carrier concentration and the diffusion coefficients of
the free carrier and complex. Since the complexation reaction, eqn (5.41), takes
place at the interfaces and not inside the membrane, the concentrations of the
free and complexed forms of the carrier, and hence also its total concentration
ccT = cc + cca, vary linearly with position. Introducing the average total
carrier concentration, CI(JIT = (1/h) foh cct(x)dx, the total carrier concentration
at the membrane boundaries satisfies the relation

cct(0) + cer(h) = 2c@y. (5.45)

Note that c'éT is determined by the amount of carrier dissolved in the organic
solvent when the liquid membrane is prepared and is one of the key parameters
in carrier-mediated transport.

The flux densities of free and complexed carrier are

. dec
je = =De > = (De/Wlec(0) — cc(h], (5.46)
d
Joa = —Dca—E2 = (Dea /h)leca(0) — cca(h)], (5.47)

and it is assumed that jc + jca = 0, which states that the total (i.e. free and
complexed) carrier flux density must be zero because the carrier cannot parti-
tion to the aqueous phase. Moreover, since the carrier is often a macrocyclic
compound that accommodates the solute in its interior, the size and shape of
the carrier is not significantly modified by the complexation with the solute and
it can be assumed that Dc = Dca. The above equations then imply that the
total carrier has a uniform distribution, cct(0) = ccr(h) = c'éT. We restrict the
discussion to this case hereafter and eliminate the superscript b for the sake of
clarity.

The fraction of complexed carrier & = cca/cct depends on the amount of
solute available. At the membrane boundaries this is given by

KCACK
CACp
B
9P — &CA/S’ (5.49)
1 + Kcacy

where eqn (5.42) has been used.® The solute flux density due to the carrier-
mediated mechanism can then be written as

D
jea = %(ea — 0P, (5.50)

o Although eqns (5.48) and (5.49) are of the form of the Langmuir adsorption isotherm, no
adsorption isotherm is assumed.
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Fig. 5.11.

Schematic representation of the initial

(Ci ~ () solute flux density vs. the solute
concentration in the source solution for
carrier-mediated transport. The solute flux
density is the sum of the contributions of
the carrier-mediated mechanism and the
solubility—diffusion mechanism. The first
one saturates at high solute concentrations,
while the latter shows a linear behaviour.

Transport through liquid membranes

and a comparison with the expression jca = Pca A%L‘A allows us to determine
the permeability Pca as

Kcacer
Pca =

h (14 Keac%)(1+ Keach)

(5.51)

It is noteworthy that this permeability depends on the solute concentrations c%

and cﬁ, which implies that the flux density jca, and hence ja, is a non-linear
function of the concentration drop A% ca. Only when the solute concentration
is small, cﬁ < ¢4 < 1/Kca, does the permeability Pca reduce to Pca gl =
KcaDccecr/h, and the solute flux density jo become proportional to AgcA.
From an experimental point of view, carrier-mediated transport can be conve-
niently studied by analysing the initial-time solute flux density. This corresponds
to a situation where the solute is present only in the source compartment and the
running time of the experiment is so short that we can assume cﬁ ~ 0. In this
case, the solute flux density due to the carrier-mediated mechanism reduces to

o
Kcacy

— a0 5.52
’Ll + Kcacy ( )

Jjca = Pcacy & jc (Cfi ~ 0),

and saturates to its maximum value jc 1. = Dcccer/h in the limit of high solute
concentration, KCAcg > 1. Since jc . is determined by the amount of carrier
inside the membrane, and not by the solute concentration ci, aplotofja vs. L‘X
shows a tendency to saturation at high solute concentrations that corresponds to
Jja ~ j{ +icL = P{cy +jc.L (Fig. 5.11). This is one of the most distinguishing
characteristics of carrier-mediated transport.

Due to this tendency to saturation in the flux density (for the case c/’i ~ (),
the solute permeability in the membrane due to carrier-mediated transport is a
decreasing function of the solute concentration in the source solution (Fig. 5.12).
At low concentrations, KCACZ < 1, the permeability Pca takes its maximum
value, Pca dgii = KcaDcccr/h, and at high concentrations it decreases with
increasing concentration as Pca sat = Dcccr/c h. Note that the complexation
constant Kca can be experimentally determined, e.g., from the ratio of the
permeability at low concentrations Pca gi and the saturation flux density jc 1.

Ja
,_-”*jCA

Flux density
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Pcp gt =KcaDccerlh

Pea/Pea gil

0.01 0.1 1 10 100

(3
Kca ca

It was mentioned at the beginning of this section that carrier-mediated trans-
port is also characterized by a high solute selectivity. Specific carriers are
available (or can be designed with the current supramolecular chemistry tech-
niques) for a large number of solutes. This means that the equilibrium constant
Kca is large for the complexation of the carrier with a given solute and very
small for other solutes, so that only the former is effectively transported across
the liquid membrane. In other words, while in the solubility—diffusion mecha-
nism we could only change the organic solvent to affect the solute flux across
the membrane, the choice of different carriers implies a much more significant
change in the solute flux.

This comment on the selectivity leads us to another interesting issue of carrier-
mediated transport. In the case ci ~ ( considered above we have concluded
that the solute flux density is a monotonously increasing function of the solute
concentration in the source solution that saturates to the value jc 1. = Dcccr/h
in the limit of high solute concentration, Kcack > 1. Thus, one is tempted
to conclude that the facilitation factor increases with increasing complexation
equilibrium constant Kca . However, this is not correct and a very high value of
this constant may result in a low solute flux density, and hence, on a facilitation
factor of the order of one. The reason for this behaviour is the fact that the
solute is not released at the membrane receiving solution interface when Kca
is very large. All the carrier molecules are then in the form of solute—carrier
complex, and they do not contribute to solute transport. To analyse this effect,
we have to consider the case cﬁ # 0. Figure 5.13 shows the solute flux density

against Kcacy for some values of the solute concentration ratio ci /ey Ttis
observed that there is an optimum value of the complexation constant Kca that
leads to a maximum facilitation of the solute transport through the membrane
when Kcacy ~ 1.The saturation behaviour of the solute flux density mentioned

above is therefore a peculiarity of the case cﬁ = 0. Moreover, since the diffusion

boundary layer at the receiving side makes the solution concentration at the
membrane interface larger than cfi, it is to be expected that this layer leads
to a significant reduction in the solute flux density in the limit of high solute
concentrations (in the source solution).

In conclusion, the coupling between diffusion of the different species and the
complexation reactions at the membrane interfaces gives rise to a non-linear
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Fig. 5.12.

The solute permeability in the membrane
due to carrier-mediated transport is a
decreasing function of the solute
concentration in the source solution (for
the case cﬁ ~ (). At low concentrations,
KcacX < 1, the permeability Pcp takes
its maximum value, Pca g4ii = Kcajc,L-
At high concentrations, Kac§ > 1, it
decreases with increasing CZ as

PCA sat =.7C,L/C‘XA~
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Fig. 5.13.

The solute flux density due to
carrier-mediated transport shows a
maximum when K¢ ACK ~ | for non-zero

values of the concentration ratio cﬁ / ci.
This implies that the complexation
constant has to be optimized in order to
maximize the facilitation factor.

Fig. 5.14.

The total resistance to solute transport of a
supported liquid membrane that
incorporates a carrier and is flanked by two
aqueous diffusion boundary layers can be
evaluated as the sum of three transport
resistances in series, the middle one
representing the liquid membrane and
consisting in turn in a parallel association
of two transport resistances.

Transport through liquid membranes

0.01 0.1 1 10 100
Kca ¢
1/Pca
/Py /Py

/Py

MWW

dependence of the solute flux density with the system variables (concentrations
and equilibrium constant) and, therefore, to a rather rich system behaviour. The
general equations that describe the solute flux are eqns (5.43) and (5.51). Their
particular cases have limited ranges of validity that have to be clearly stated to
avoid errors in the analysis of experimental data.

5.3.5 The effect of the diffusion boundary layers on
carrier-mediated transport

As explained in Section 5.3.3, the liquid membrane is flanked by two diffu-
sion boundary layers of thickness § when the aqueous solutions are poorly
stirred and offer some resistance to the solute transport. Using an electrical
analogy, the three layers (liquid membrane and aqueous diffusion boundary
layers) behave as three resistors in series, but the resistor representing the liquid
membrane consists in turn in a parallel association of resistors representing the
different transport mechanisms inside the membrane, such as free and carrier-
mediated solute transport. Since the transport resistance is the reciprocal of the
solute permeability in the corresponding phase, it can be shown that the solute
permeability is (Fig. 5.14)

L_2 + ! (5.53)
Py PV PQ+Pca ’
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The derivation of this formula runs parallel to that of eqn (5.37) and the con-
clusion is similar, that is, the aqueous diffusion boundary layers decrease
the permeability of the membrane system to the solute, and this effect is
particularly important when the permeability of the organic phase is high.
Thus, since the presence of the carrier significantly increases the perme-
ability of the solute in the liquid membrane, we conclude that the effect of
the aqueous diffusion boundary layers is more important in carrier-mediated
transport than when solute is only transported by the solubility—diffusion
mechanism.

In this section we describe the solute flux density across the supported liquid
membrane taking into account the diffusion boundary layers, thus extending
the analyses made in the previous two sections. For the sake of simplicity, we
introduce the following assumptions:

1) Dc & Dca, and hence cct is independent on position,
2) cﬁ ~ 0, i.e. we discuss only the initial measurements, and
3) P} < Pca, so that the free solute cannot get inside the membrane.

Under these conditions, the total permeability of solute A in the membrane
system is Pa = [2/P) + 1/Pcal™", where PY = DY /4 is the permeability in
one boundary layer and the permeability in the membrane

Dc Kcacer
h [1+ Kcacy (O)][1 + Kcacy (h)]

Pca = (5.54)

is a non-linear function of the solute concentration at the membrane boundaries
(see below). We aim at finding the relation between the solute flux density ja
and its source concentration c.

When the liquid membrane offers a negligible transport resistance, it is said
that the system operates under conditions of film control. The maximum solute
flux density would then be ji; = D}cj/25. This is expected to occur at
low solute concentrations, KCAc"‘A & 1, since Pca then takes its maximum
value Pcagit = KcaDcecr/h (Fig. 5.12), but it also requires that Py <«
Pca gil (otherwise both the membrane and the boundary layers control the solute
flux).

When the diffusion boundary layers were disregarded in Section 5.3.4 it was
concluded that the maximum solute flux density was the saturation flux density
JjcL. = Dccect/h, which corresponds to the limit of high solute concentration
in the source solution, KCAC“A > 1. The question to be solved in this section
is whether jc is also the maximum solute flux density when the diffusion
boundary layers in the aqueous solution have a high solute permeability. In
other words, we have to determine whether it is possible that P} > Pca and
hence Pa ~ Pca under any conditions. If this were the case, we would say that
the system operates under conditions of membrane control. On the contrary,
if P} and Pca are of the same order of magnitude, the system operates under
conditions of mixed control, i.e. both the diffusion boundary layers and the
liquid membrane offer a significant transport resistance.
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The flux density of the solute across the diffusion boundary layer in the source
compartment is jo = Py [cX — c} (0)]. Then, the solute concentration at the
membrane source solution interface is given by

eNO) =g — 22 (5.55)

Similarly, at the membrane receiving solution interface the solute concentra-
tion is

JA

cp(h) = %. (5.56)

Since we are assuming that P} < Pca, the transport in the membrane phase is
only carrier-mediated, and hence ja ~ jca = Pcalc)y (0) — ¢} (7)]. Denoting
the concentration of the complexed carrier as cca = ccrb, the solute flux
density in the liquid membrane is

. . Dcccr . Kcalcy (0) — ci (h)]
Jja ~jea = [6(0) — ()] = jcr e .
h [1+ Kcacy (0)I[1 + Kcacy (h)]
(5.57)
Introducing the auxiliary parameter
Pcagit  KcaDcececerd JcL
= — = Kca—, 5.58
p Py DA CA Py (5.58)

eqn (5.57) can be transformed to

ELS [1 + Kcacl —p?i] [1 +p,Ji] = Keac? —2p22 . (5.59)
JCL JCL JCL JCL

This is the relation between ja and ¢} that we were looking for. This can
be interpreted as a third-order algebraic equation in ja, but it is much more
convenient to consider it as a first-order equation in ¢ . Thus, eqn (5.59) can
be presented as

Kenc? — I8 P (alicL)* —2p—1
CACA = T— — . B — .
JeL pGalicL)* + (Jalicp) — 1

(5.60)
At low concentrations, Kcacy < 1, (which also implies ja /jc,. < 1) this
reduces to

KCACZ
1+2p

JAdil = JjcL , (5.61)
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which is equivalent to jo ~ j¥ | if p > 1. Athigh concentrations, Kcack > 1,
the solute flux density saturates to

J1+4p —1
+7p’ (5.62)

JAsat = JCL %

which is equivalent to jo & jc 1 only if p < 1.

Figure 5.15 shows the graphical representation of eqn (5.60) for different
values of the parameter p. It is observed that the diffusion boundary layers
make the saturation current smaller than jc ., and this effect becomes more
significant as P}y decreases (or p increases). In the limit of low concentration
c; and low permeability P, the solute flux density is ja = j} ;, as indicated
by the dashed line in Fig. 5.15. This is the only case where the diffusion bound-
ary layers completely control the solute transport. Membrane control can be
observed when p = 0. Otherwise, solute transport occurs under conditions of
mixed control. In fact, the most significant conclusion is that even at high con-
centrations c"‘A, when the permeability Pca decrease to low values, we cannot
neglect the influence of the diffusion boundary layers on the solute transport.

5.3.6 Extraction of an acid

Facilitated diffusion was originally employed in gas separations but the range
of applications has widened considerably in recent decades. We consider here
as a practical example the case of acid extraction. The source (or feed) solution
o contains the acid A (e.g., HCI) to be extracted, and contains an excess of
supporting electrolyte (e.g., NaCl). The receiving (or strip) solution 8 contains
an excess of base B (e.g., NaOH). The acid extracted reacts with the base and

JalJeL

a
KCA Ca

Fig. 5.15.

Solute flux density against concentration in source compartment for carrier-mediated transport
across a liquid membrane flanked by two diffusion boundary layers. Parameter p is the ratio
between the solute permeability in the membrane when the source solution is diluted and the
permeability in the boundary layers. Thus, p = 0 corresponds to the absence of boundary layers.
The saturation current decreases with increasing p, and therefore the effect of the boundary layers
cannot be neglected even at high solute concentrations. At low concentrations and high p, the
boundary layers control the solute flux and j =~ jX,L (dashed line). The situations marked with
the labels A and B are analysed in Fig. 5.16.
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Fig. 5.16.
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Concentration profiles in the membrane system corresponding to a permeability ratio p = 10 and the two solute concentrations marked with the
labels A and B in Fig. 5.15. In the boundary layers, the magnitude represented in the ordinate axis is c / CZ, and in the membrane it is

0 = cca/ccT; note that ja sac/jic,L, = 6(0) — 6(h). At low solute concentrations and high p (case A) most of the concentration drop takes place in
the diffusion boundary layers, a situation known as film control. At high concentrations (case B) the concentration drops in these layers are smaller
but significant. Hence, their influence cannot be neglected. This occurs because the solute concentration at the membrane receiving solution

interface determines the concentration drop (of the complexed solute) inside the membrane and it is finite, although cﬁ =0.

produces salt BA (e.g., NaCl) in the receiving compartment. The membrane
is flanked by two diffusion boundary layers of thickness &. The heterogeneous
reactions at the membrane interfaces are

A(a) + C(0) = CA(0) feed, (5.63)
CA(0) + B(8) < C(0) + BA(B) strip, (5.64)

where the carrier C is typically an amine and CA is the amine—acid complex.
That is, reaction (5.63) could be

HCI(w) + R — NHz(0) = R — NHI CI™ (0). (5.65)

The five stages of this transport process are:

1) diffusion of A across the diffusion boundary layer in the source solution
(=6 <x<0),

2) reaction of A with C at the source solution/membrane interface,

3) diffusion of complex CA across the membrane, accompanied by simultane-
ous diffusion of free C in the opposite direction,

4) dissociation of complex CA via the reaction with B at the mem-
brane/receiving solution interface, and

5) diffusion of BA and B across the receiving diffusion layer (h < x < h+ ).

Figure 5.17 illustrates the interfacial reactions involved in this acid-extraction-
process. At the interface between the membrane and the source solution, the
amine carrier reacts with the acid. At the opposite interface, the amine—acid
complex reacts with the base, producing salt and the free carrier. This figure
also shows schematically the concentration profiles in the system.
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Fig. 5.17.

(Left) Schematic reaction mechanism for the extraction of an acid A using carrier-mediated transport across a supported liquid membrane.
Species B at the receiving solution S is a base. (Right) Schematic concentration profiles in the membrane and the aqueous diffusion boundary
layers for the situation considered in this section.

The interfacial heterogeneous reactions are not rate limiting and can be
assumed to be described by the equilibria'®

Kea = —2 (5.66)
ccea

Kpp = CBA (5.67)
CCACB

where no phase superscripts are needed because it is assumed that species A, B
and BA can only be present in the aqueous phases and species C and CA cannot
leave the membrane. Since the receiving solution contains an excess of base,
it can be assumed that cg in eqn (5.67) is a constant (equal to cg). Although
the acid does not exist as a solute in the receiving solution, it is convenient to
defined its ‘concentration’ in the receiving diffusion boundary layer as

CBA

=— ———  (h<x<h+9). (5.68)
KcaKpacs

CA

Under steady-state conditions the flux density of the acid A across the diffusion
boundary layer in the source solution is the same as the flux density of amine—
acid complex CA in the liquid membrane, and also the same as the flux density
of salt BA in the receiving diffusion boundary layer, jo = jca = jpa. These
flux densities can be written as

ja = Py[cx —ca(0)], (5.69)
Jjca = (Dc/M)eca(0) — cca(h)] = Pcalea(0) — ca(M)], (5.70)
Jsa = (Dpa/®)lca(h) — cha] = Ppalea(h) — ci1, (5.71)

1 The reaction of the acid with the base at the membrane/receiving solution interface also
produces water, and the equilibrium constant includes the water concentration.
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where PX = DA/(S,PBA = KCAKBACBDBA/(S, and

D K
Pea= == CACCT . (5.72)
h [1+4+ Kcaca(O)][1 + Kcaca(h)]

The solute permeability across the membrane system, Pa = ja/(ck — cﬁ), is
then

1 1 1 1

Pn  PY  Pca Ppa’ ©.73)
as expected for the transport across three layers in series. In these expressions,
the effective diffusion coefficients have to be determined. In the source diffusion
boundary layer, the acid is completely dissociated. Since there is an excess of
salt (acting as supporting electrolyte), this is the trace-ion diffusion case, see
eqn (3.16), and the effective diffusion coefficient of the HCl component is then
the diffusion coefficient of the HT ion, Do = Dy Similarly, the (H,O-NaOH-
NaCl) solution in the receiving diffusion boundary layer is essentially ternary
(Nat, OH™, Cl7) because the concentration of H* ions is negligible, and the
situation is again that of trace-ion diffusion (due to the excess of base). So, the
effective diffusion coefficient of the salt is Dga = D¢)-. In the membrane, it
is assumed that Dca = Dc as usual.

As in the previous sections, we consider the situation of practical importance
of short running times (and efficient stirring) where the amount of salt AB in the
bulk of compartment f is negligible, cg A=0= cﬁ. If we consider the solute
flux density ja to be known, the above equations can be used to determine all
the concentrations at the membrane boundaries as follows

Ja
ca(0) =cy — = (5.74)
A A PA
cnthy = —BAW A (5.75)

KcaKpacs  Ppa

j]ciL[l + Kcaca(O)][1 + Kcaca ()] = Kcalea(0) — ca()], (5.76)

where jc1, = Dcccr/h is the limiting, carrier-mediated solute flux density.
Introducing the auxiliary parameters

Pcadii  KcaDcecrd
PY DYh
PW DW
=_A A (5.78)
Pga KcaKpacsDpa

, (5.77)

p

eqn (5.76) can be transformed to

Ja Ja JA JA
— [1 + Kcacy —p~— ] [1 +Pt1.*} = Kcacy —p(1 +q)—.
JCcL JCL JCL JCcL

(5.79)
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Fig. 5.18.

Solute flux density against concentration in source compartment for the acid extraction as an
example of carrier-mediated transport across a liquid membrane flanked by two diffusion
boundary layers. Parameter ¢ is the ratio between the solute permeability in the source boundary
layer and in the receiving boundary layer, where it is transported in the form of salt; the value

q = 1 reproduces the situation analysed in Fig. 5.15. The ratio between the solute permeability
across the liquid membrane in dilute source solutions and the solute permeability in the source
boundary layer has been fixed as p = 10. Thus, the curve ¢ = 0 corresponds to no polarization
(i.e. no concentration drop) of the receiving boundary layer and saturates to jo = jc - The
situations marked with the labels A and B are analysed in Fig. 5.19.

This relation between ja and ¢4 can be interpreted as a third-order algebraic
equation in ja or, more conveniently, as a first-order equation in ¢ that can be
solved to obtain the following solute flux density—source concentration relation

o _ Ja PPaUalicL)* +p(1 = @)GalicL) —p(1 +¢) — 1
A~ 7 .

Kcac — — (5.80)
JjeL pa(ia/jcL)? + (ialjicer) — 1
At high concentrations, Kcac > 1, the solute flux density saturates to
. . NMT+4pg—1
JAsat =JCL— %> (5.81)

2pq

which is equivalent to ja ~ jcpL ifp K 1 org < 1.

Figure 5.18 shows the graphical representation of eqn (5.80) for p = 10 and
different values of the parameter g. At high solute concentrations, Kcacy > 1,
the liquid membrane is always limiting the transport because this is essential to
carrier-mediated transport. If pg < 1, the diffusion boundary layers do not limit
the transport at high concentrations and the maximum solute flux density is jc 1.
However, if pq is of the order of or larger than unity, mixed control (membrane
and boundary layers) takes place at high concentrations. At low concentrations,
Kc Ac% <« 1, the membrane determines the rate of solute transport if p <« 1 and
pq < 1, and the flux density is then jo & Pca dil c"‘A. The source boundary layer
determines the rate if p >> 1 and ¢ < 1, so that the flux density is ja ~ P} c%.
Finally, the receiving boundary layer determines the rate if p > 1 and ¢ > 1,
so that the flux density is ja &~ Ppac}.

In conclusion, since the acid transport takes place in different form in the
source and receiving boundary layers, the phenomenology is richer than in
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Fig. 5.19.
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Concentration profiles in the membrane system corresponding to a solute concentration in the source compartment KCACX = 25, and permeability
ratios (A) p = 10, g = 0 and (B) p = 10, ¢ = 10, corresponding to the labels A and B in Fig. 5.18. In the boundary layers, the magnitude
represented is cp /c”‘A, and in the liquid membrane it is 0 = cca /ccT; note that ja sat/jc,. = 6(0) — 6(h). At low values of g (case A) the
concentration drop in the receiving boundary layer vanishes, the fraction of complexed carrier vanishes at the membrane receiving solution
interface and, therefore, the solute flux density can reach the saturation value jc 1 at high solute concentration in the source solution. At high values
of g (case B) the concentration drop in the source boundary layer is small compared to that in the receiving layer.

Section 5.3.5. Any of the three layers (membrane and the two boundary layers)
may determine the rate the acid transport, and this depends on the component
concentrations in the different phases. By measuring the flux with varying
bulk concentrations of A, B and C, the rate-determining step can be found
experimentally.!!

5.3.7 Additional comments on the modelling of
carrier-mediated transport

The mathematical modelling of carrier-mediated transport constitutes a compli-
cated and diverse problem [13]. Both the complexation reactions and diffusion
in the aqueous phases as well as in the membrane need to be taken into account.
Analysis is further complicated by the fact that solvents used in liquid mem-
branes are usually non-polar and, as a consequence, their relative permittivities
(dielectric constants) are very low, causing agglomeration of carriers. Therefore,
the transport of electrolytes is usually feasible only as ion pairs. If electroassisted
transport is considered, the membrane solvent must have sufficiently high rela-
tive permittivity to allow for the dissociation of electrolytes, and hence ensure
some conductivity in the membrane.

Some simplifying assumptions often introduced in the theoretical modelling
are widely accepted, such as:

1) the transport can be studied using the quasi-steady-state approximation,

A secondary problem when analysing the experimental data is that the numerical values of
the equilibrium constants and the diffusion coefficients are not always available in the literature
but they can be either estimated or found from the best fit to the experimental data. The diffusion
coefficients can be estimated, if no better data is available, with Walden’s rule, which states that
the ratio Dn/T is independent of the solvent. In this relation, D is the diffusion coefficient, n the
solvent viscosity and 7' the absolute temperature. The Walden rule can formally be derived from
the Stokes law for spherical solutes.
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2) the membrane is so porous that the area of the aqueous/membrane interface
is equal to the geometrical area of the membrane, and

3) both aqueous phases are well stirred, forming diffusion boundary layers of
thickness §.

Other approximations need to be tested for the experimental set-up used, such
as the assumption that the carrier does not dissolve in the aqueous phases. As we
have learned from Sections 5.1.3 and 5.1.4 this approximation might fail and
the partitioning of the carrier must then be considered. Possibly, the approx-
imation that is more open to discussion refers to the complexation reactions
[14]. In this chapter we assume that they are heterogeneous and take place at
the interfaces, not inside the membrane. This assumption has been experimen-
tally confirmed in some systems discussed in Sections 5.4.4 and 5.4.5, and it is
widely used when describing carrier-mediated transport in biomembranes. On
the contrary, most theoretical analyses of carrier-mediated transport in chem-
ical engineering assume that the complexation reactions take place inside the
membrane. The theoretical description of these diffusion—reaction problems
is more complicated because the flux densities are not constant with position
under steady-state conditions, and the differential transport equations are non-
linear [15]. However, in some cases the homogeneous reaction takes place in a
region so close to the interface that it can hardly be discriminated from a true
heterogeneous reaction.

5.4 Carrier-mediated coupled transport
5.4.1 Introduction

When two neutral solutes A and B are simultaneously transported across a
supported liquid membrane by a carrier-mediated mechanism involving a sin-
gle carrier, their transport is coupled. From the point of view of the transport
equations, this implies that the driving force for the flux of solute A is not only
the concentration gradient of this solute but also the concentration gradient
of solute B, and vice versa. The coupled transport of the two solutes in the
same direction is known as co-transport and the coupled transport in opposite
directions in known as countertransport. Coupled transport is widely used in
practical applications like liquid-phase extraction.

The transport of these two solutes is a spontaneous process towards equilib-
rium that leads to a decrease of Gibbs free energy and, hence, it does not require
an external source of energy. In the biophysical jargon, it is said that this is a
case of passive transport, as opposed to the case of primary active transport
(not considered here) where the coupled transport requires an external source
of metabolic energy because it drives the system to a non-equilibrium state.

Two related concepts are that of downbhill transport and uphill transport.
When applied to neutral solutes, the former refers to the diffusion from a more
concentrated solution to a less concentration solution, and the uphill trans-
port refers to the opposite case of diffusion from a less to a more concentrated
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solution. In the case of independent transport of a solute, the second law of ther-
modynamics requires that passive transport occurs downhill. However, when
the two solutes share the same carrier and their transport is coupled, it is possible
that one of them is transported uphill. Again, the second law of thermodynam-
ics requires that the other solute must be transported downhill. From the point
of view of the rate of variation of Gibbs free energy in the transport process,
the uphill transport of one of the solutes requires a source of free energy. Such
a source is provided by the downhill transport of the second solute. Simi-
larly, from the point of view of entropy production, we could say then that
the solute that is transported against its concentration gradient has a negative
contribution to the entropy production, and the second law of thermodynamics
requires that the downhill transport of the other solute produces more entropy
than the uphill transport of the first one. In biophysics, the uphill transport of
a solute using the free energy released by the simultaneous, coupled downhill
transport of another solute is known as secondary active transport.

In the next sections we consider two mechanisms for carrier-mediated cou-
pled transport of two neutral solutes A and B. We choose solute B as the one
that is always transported downbhill. First, we consider competitive binding to
a carrier dissolved in the membrane. When the two solutes flow in the same
directions, solute A can only be transported downhill. However, when the solutes
flow in opposite directions, solute A can be transported uphill under some con-
ditions. For this reason, competitive binding to a carrier is often related to
countertransport. Second, we consider sequential binding to a carrier. When
the two solutes flow in opposite directions, solute A can only be transported
downhill. However, when the solutes flow in the same direction, solute A can
be transported against its concentration gradient under some conditions. For
this reason, sequential binding to a carrier is often related to co-transport.

5.4.2 Competitive binding of two neutral solutes to a carrier

Consider a liquid membrane that separates two aqueous solutions, « and S,
containing two neutral solutes A and B at molar concentrations c"‘A, cg, cﬁ, and

cg. Without loss of generality, we consider that c¢§ > cg and that the transport
of this solute proceeds from compartment « to 8. These solutions are assumed
to be ideally mixed, so that the aqueous diffusion boundary layers offer no
transport resistance. The membrane contains a neutral carrier C that can bind
competitively to either solute A or solute B (Figs. 5.20 and 5.21). For the sake
of simplicity, we neglect free solute diffusion. That is, none of the solutes
can partition inside the membrane without binding to the carrier. Thus, only
the solute—carrier complexes CA and CB, and the free carrier C, can diffuse
throughout the membrane.
The complexation reactions at the membrane aqueous solution interfaces

A(W) + C(0) = CA(o), (5.82)
B(w) + C(0) < CB(0) (5.83)
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cccy
CCB
Kc = T (5.85)
cceg
The flux densities of free and complexed carrier are
. dec
Jjc —Dca = (Dc/M)cc(0) — cc()], (5.86)
. dcca
Jea _DCAF = (Dca/M)lcca(0) — cca(M], (5.87)
. dccg
JcB = _DCB? = (Dc/Mlcce(0) — cca ()], (5.88)

and it is assumed that jc +jca +jc = 0, which states that the total (i.e. free and
complexed) carrier flux density must be zero because the carrier cannot partition
to the aqueous phase. Furthermore, we assume that Dc = Dca = Dcg, so that
the above equations imply that the total carrier cct = cc + cca + ccp has a

12 Since the supported liquid membranes are relatively thick and the limitation to solute transport
arises from the diffusion inside the membrane and not from the interfacial kinetics, it is a very good
approximation to consider that reactions (5.82) and (5.83) are under conditions of thermodynamic

equilibrium.
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Fig. 5.20.

The carrier-mediated countertransport of
two competing neutral solutes A and B
across a supported liquid membrane may
proceed downhill (left) or uphill (right) for
one of the solutes.

Fig. 5.21.

The carrier-mediated co-transport of two
competing neutral solutes A and B across a
supported liquid membrane always
proceeds downhill for both solutes.
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uniform distribution. Then, the fraction of carrier in CA form at the membrane
solution « interface is

cca(0) Kcack

6(0) = = R
© CcCT 1+ KCAC(X‘ + KCBC%

(5.89)

and similar expressions can be written for CB and the other interface.

Since free solute transport is not possible, the flux density of solute A
across the membrane is jo = jca, and using eqns (5.87) and (5.89) it can
be evaluated as

o Decer % (14 Kepeh) — b (1 + Kepe®)
A= cA .
h [1 4+ Kcack + Kcpeglll + KCACfZ + KCBCg]

(5.90)

The most important characteristic of this equation is that it is no longer conve-
nient to present it in the form ja = Pca(c} — cﬁ), because the permeability
Pca would then be a complicated function of the concentrations c“A, g cﬁ,

and cg, and the equilibrium constants Kca and Kcg. In fact, the transport of

solute A is not only driven by the concentration difference A%CA =cy — cﬁ

but the concentration difference of the other solute A%cg = ¢ — cg > ( can

also act as a driving force for A, and vice versa. Indeed, the solute flux densities
are given by the equations

(1 + Kcpe)Kea(cy — Cﬁ) — KcacaKcp(cg — Cg)
[1+ KCAC(X + KCBC%][I + KCACi + KCBCQ]

Ja =jcL . (9D

i — joy U Keaéa)Ken (e = ch) — KepepKea (e — ) 592)
B =JCL ) .
[1+ Kcac® + Kepe1[1 + Keach + Kepehl

where ca = (c§ + ci) /2 and cg = (cg + cg) /2 are the average solute concen-
trations and jcy, = Dcccr/h is the limiting flux density in a carrier-mediated
transport mechanism.

Equation (5.90) clearly shows that the sign of j o, and hence the flow direction
for solute A, is equal to the sign of [c§ (1 + chcg) — cﬁ(l + Kcpeg)] and
not to the sign of (¢} — cﬁ). This opens up the possibility for uphill transport.
If ¢§ < cfi then jo < 0 and the countertransport proceeds downhill for both

solutes (Fig. 5.20, left). If ¢§ > cﬁ, we can observe that j4 < 0 (i.e. solute A
can flow from a low concentration solution § to a high concentration solution
«) provided that 1 < ci/ci < (1 + Kcpeg)/(1 + KCBcg) (Fig. 5.20, right).

Obviously, this requires that cg > cg and also that a significant fraction of the

carrier is coupled to solute B, because otherwise Kcp cl’i < Kcpeg < 1and the
above requirement could not be satisfied. These two conditions then imply that
JjB > 0 and, therefore, that solute B must be transported downhill if solute A
is transported uphill. Finally, if the concentration difference for solute A is so
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high that cX/cfi > (14 Kcpeg)/(1 + KCBcg) > 1, then the coupled transport
of the two solutes proceeds in the same direction (Fig. 5.21).

Let us analyse in more detail the carrier-mediated countertransport illustrated
in Fig. 5.20. If the free carrier were not able to diffuse across the membrane,
the countertransport could be understood as the following sequence of steps:

1) at the interface between the liquid membrane and the solution with a low
concentration of solute B, the equilibria in eqns (5.82) and (5.83) are dis-
placed towards the dissociation of carrier complex CB and the formation
of carrier complex CA, releasing solute B to and taking solute A from the
aqueous solution,

2) the carrier complex CA diffuses across the membrane,

3) atthe opposite interface, the equilibriain eqns (5.82) and (5.83) are displaced
towards the dissociation of carrier complex CA and the formation of carrier
complex CB, releasing solute A to and taking solute B from the aqueous
solution,

4) the carrier complex CB diffuses back across the membrane, and the cycle
is repeated.

In this case, the transport of the two solutes satisfies a 1:1 stoichiometric rela-
tion since jca = —jcB When jc = 0. Stoichiometric countertransport is very
common in biomembranes, although the coupling mechanism there is usually
a channel protein or an ionic pump rather than a carrier.

When the free carrier also diffuses across the membrane, as we have con-
sidered in the above theoretical description, the countertransport could be
understood as the following sequence of steps:

1) at the interface between the liquid membrane and the solution g (diluted in
solute B), the equilibria in eqns (5.82) and (5.83) are displaced towards the
dissociation of carrier complex CB and the formation of carrier complex
CA, releasing solute B to and taking solute A from the aqueous solution. In
addition, the interfacial reaction produces some free carrier C, which has a
high concentration there,

2) the carrier complex CA and the free carrier C diffuse across the membrane,

3) atthe opposite interface, the equilibria in eqns (5.82) and (5.83) are displaced
towards the dissociation of carrier complex CA and the formation of carrier
complex CB, releasing solute A to and taking solute B from the solution. In
addition, the interfacial reaction consumes some free carrier C, which has a
low concentration there,

4) the carrier complex CB diffuses back across the membrane, and the cycle
is repeated.

The interesting thing here is that the fraction of complex CA at the interfaces
with the solution « and B is not only determined by the concentrations of solute
A at the respective solutions but also by the concentrations of solute B. Thus, if
the concentration of solute B in solution « is very high, the fraction of carrier in
CA form at this interface is very small. Conversely, the concentration of solute
B in solution B is low, and the fraction of carrier in CA form at this interface
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Fig. 5.22.

Solute flux densities as a function of
Kcaca evaluated from eqns (5.91) and
(5.92) for the following values of the
concentration ratio rp = CZ /cﬁ =05,1,
2,3,5,7, 10, and 15 (increasing in the
arrow direction). The concentration ratio
of solute B has been fixed to

B = cfy/cg = 10 and two values of its
average concentration have been
considered, Kcgcg = 0.1 and 10.
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is large, even if the concentration of solute A in solution 8 is lower than in
solution «. This explains why uphill countertransport is then observed.

Figure 5.22 shows the solute flux densities evaluated from eqns (5.91) and
(5.92) as a function of Kcaca for different values of the concentration ratio
ra =cX/ c/’i and fixed values of rg = ¢/ cg and Kcgcg. It is observed that the
flux density ja vanishes when Kcaca does. This is because jao o Kcaca in this
range. Itis also observed that j5 vanishes when Kcaca takes very large values, a
phenomenon already noted and illustrated in Fig. 5.13. Atintermediate values of
Kcaca the flux density j is of the order of the maximum value jc 1, = Dcccr/h.
If ra > (1 4+ Kcpeg)/(1 + KCBcg), both solutes flow from solution « to B. If
ra < 1, solute A flows from solution § to «. Uphill countertransport of solute
Alis observed when 1 < rp < (1 + Kcpeg)/(1 + KCBcg), which corresponds
tol < ra < 1.16 when Kcgeg = 0.1 and 1 < rp < 6.80 when Kcgeg = 10.
In relation to the flux density jg, it is noticed that it is independent of 7o when
Kcaca < 1, as expected because the transport of B must be independent of
solute A when the latter is present in trace amounts. Again, the flux density
jB vanishes when Kcaca >> 1 because the carrier is then in CA form and is
not able to transport any of the solutes. At intermediate values of Kcaca the
coupling between the transport of the two solutes is more important and it is
observed that it can lead to either an enhancement of jg or even to a situation of
uphill countertransport of B driven by the concentration gradient of solute A.

Figure 5.23 clearly shows the regions when uphill countertransport is
possible. Note that the asymmetry in this diagram arises from the values
considered for Kcaca and Kcpcp. Otherwise, eqns (5.91) and (5.92) evidence
the symmetry of the transport equations with respect to solutes A and B, although
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0.6

JalJeL

ra
0.01 0.1 1 10 100 0.01 0.1 1 10 100

Kcaca

Kcaca

rg= 10, Kcg cg = 10

rg= 10, Kcg cg = 10

JalJeL

100 0.01 0.1 1 10 100

Kcaca

.6 - -
0.01 0.1 1 10

Kcaca



Carrier-mediated coupled transport

100

LN

0.1

0.01
0.01 0.1 1 10 100

we have chosen above to discuss the situations when B is transported downhill
for the sake of clarity.

The energetics of uphill countertransport is analysed next. The rate of change
of Gibbs free energy per unit membrane area can be understood as a sum of
two contributions, A,G = A,Ga + A,Gg where A,GA = jA(,ui — ,u‘/’g) =
—RTjalInra, ArGg = —RTjgInrg and the solute flux densities are given
by eqns (5.91) and (5.92). The second law of thermodynamics requires that
A,G < 0 but there is no constraint on the contributions A,Ga and A,Gg.
Uphill transport of solute A is characterized by the condition A,Ga > 0, and
similarly for solute B. Figure 5.24 shows the contributions A,Ga and A,Gg for
the transport conditions considered in Fig. 5.22. For the situations considered
here, uphill transport of A is observed when ra= 2, 3, 5 and Kcgcp = 10, and
uphill transport of B is observed, in a limited range of values of Kcaca, when
FA= 15 and KCBEB = 10.

5.4.3 Sequential binding of two neutral solutes to a carrier

Consider a liquid membrane that separates two aqueous solutions, « and S,
containing two neutral solutes A and B at molar concentrations c%, cg, cﬁ,

and cg. Without loss of generality, we consider that ¢g > cg and that the
transport of this solute proceeds from compartment « to S. The solutions are
assumed to be ideally mixed, so that the aqueous diffusion boundary layers
offer no transport resistance. The membrane contains a neutral carrier C that
can bind sequentially first to solute A and then to solute B (Fig. 5.25). For the
sake of simplicity, we neglect free solute diffusion. That is, none of the solutes
can partition inside the membrane without binding to the carrier. Thus, only
the solute—carrier complexes CA and CAB, and the free carrier C, can diffuse
throughout the membrane.
The complexation reactions at the membrane aqueous solution interfaces

A(W) + C(0) = CA(0), (5.82)
CA(0) + B(w) < CAB(0), (5.93)
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Fig. 5.23.

The arrows in every region of this diagram
show the flow direction of solutes A and B
(upper and lower arrows, respectively), as
evaluated from eqn (5.91) and (5.92) for
the values Kcaca = 1 and Kcgep = 10.
The shaded regions correspond to uphill
countertransport: in regions 1 and 3, solute
B is transported uphill driven by the
concentration gradient of solute A, and in
regions 2 and 4, the uphill transport of
solute A is driven by the concentration
gradient of solute B.
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Fig. 5.25.

The carrier-mediated co-transport of two neutral solutes A and B that bind sequentially to the same carrier may proceed downhill (left) or uphill

(right) for one of the solutes.

have equilibrium constants'3

CCA
Kca = —» (5.84)
ccey
CCA
Kcap = —22_ (5.94)
CCACB

3 As explained before, it is a very good approximation to consider that these reactions are under
conditions of thermodynamic equilibrium.
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The flux densities of free and complexed carrier are

d
je = =De = = De/Mlec(0) = cchl, (5.86)
d
Jjca = _DCA% = (Dca/M)lcca(0) — cca(M)], (5.87)
d n
jcaB = —Dcas ‘;jB = (Dcas/h)leca(0) — ccap (W], (5.95)

and it is assumed that jc + jca +jcap = 0, which states that the total (i.e. free
and complexed) carrier flux density must be zero because the carrier cannot
partition to the aqueous phase. Furthermore, we assume that Dc = Dca =
Dcag, so that the above equations imply that the total carrier ccr = cc +
cca + ccap has a uniform distribution. Then, the fraction of carrier in CA and
CAB forms at the membrane, solution « interface are

oea(0) = <29 _ Keack (5.96)
cer 1+ Kcac% (1 + Kcape)’ '

fean (0) = ccap(0) KcaKcapel o (5.97)

AR T Teer T 14+ Kcac (1 + Keapel)’ '

and similar expressions can be written for the other interface.
Since free solute transport is not possible, the flux density of solute A across
the membrane is jo = jca + jcaB, and it can be evaluated as

% (1 + Kcapel) — ch (14 Keapch)

[1 + Kcac% (1 + Keape)I[1 + Keach (1 4+ Keageh)l’
(5.98)

Ja = jcLKca

where jc1. = Dcccr/h. As in the case of competitive binding to the carrier,
it is not convenient to write this flux density in the form jo = Pca(c§ —
ci) because the permeability Pca would then be a complicated function of
the concentrations ¢}, cj, cﬁ, and cg, and the equilibrium constants Kca and
Kcag. Equation (5.98) clearly shows that the sign of ja is equal to the sign of
[c% (1 + Kcapc®) — ch (1 + Kcagch)] and not to the sign of (¢ — ¢f). This
opens the possibility for uphill co-transport.

If ¢§ > cﬁ then jo > 0 and the co-transport proceeds downhill for both

solutes (Fig. 5.25, left). If ¢§ < cﬁ, we can observe that j4 > 0 (i.e. solute
A can flow uphill from a low concentration solution « to a high concentra-
tion solution ) provided that (1 4+ Kcapcg)/(1 + KCABCg) > ci/ci > 1
(Fig. 5.25, right). Obviously, this requires that c¢g > cg and also that a sig-
nificant fraction of the carrier is in CAB form. These two conditions then
imply that jg > 0 and, therefore, that solute B must be transported down-
hill when solute A is transported uphill. Finally, if the concentration difference
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Fig. 5.26.

The carrier-mediated countertransport of
two neutral solutes A and B that bind
sequentially to the same carrier always
proceeds downhill for both solutes.

Transport through liquid membranes
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for solute A is so high that ¢& /c% > (1 + Kcape®)/(1 + Kcapch) > 1,
then the coupled transport of the two solutes proceeds in the opposite direction
(Fig. 5.26).

In relation to the carrier-mediated co-transport illustrated in Fig. 5.25, it is
interesting to note that if the complexed carrier CA were not able to diffuse
across the membrane, the transport of the two solutes would satisfy a 1:1 stoi-
chiometric relation. This stoichiometric co-transport could then be understood
as the following sequence of steps:

1

~

at the interface with solution «, the solutes A and B bind to the carrier and
form CAB,

2) the carrier complex CAB diffuses across the membrane,

3) at the opposite interface, solutes A and B are released,

4) the free carrier C diffuses back across the membrane, and the cycle is
repeated.

In this simple situation the uphill co-transport of solute A can be easily under-
stood because its transport across the membrane depends on the difference

(cSeg — cicé), which can be positive even though ¢§ < cﬁ.

5.4.4 Polyelectrolyte extraction by carrier-mediated
co-transport with an acid

As an application example of the theory presented in the previous sections, we
consider the extraction of an anionic polyelectrolyte PE”~ by carrier-mediated
co-transport using supported liquid membranes. The carrier C is an amine, and
the solute that is co-transported is an acid. A specific system that we have inves-
tigated is the extraction of lignosulphonate using trilaurylamine as a carrier and
decanol as the membrane solvent [16]. The feed solution (solution «) contains
HCl and the polyelectrolyte in sodium form Na,, PE. The strip solution (solution
B) contains NaOH.
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The reactions taking place at the membrane interfaces are

HCl() 4+ C(0) = C : HCI(0) feed, (5.99)
NauPE(e) +m C : HCI(0) = (C : H),,PE(0) + m NaCl(a) feed,  (5.100)
C : HCI(0) + NaOH(B) = C(0) + NaCl(8) 4+ H,O(8) strip, (5.101)
(C : H),,PE(0) + m NaOH(B) < m C(0) + Na,,PE(B) + m HyO(B) strip,
(5.102)

where the semicolon (e.g. in C:HC]) illustrates the electrostatic bond between
the carrier and the hydrogen ion. As usual, reactions (5.99)—(5.102) are consid-
ered to be in equilibrium. Although the polyelectrolyte has several counterions,
not all of them are released when it binds to the C:HCI complex in reaction
(5.100). In the experiments reported in Ref. [16] it was verified that low molec-
ular mass lignosulphonate exchanged only one counterion when binding to the
amine complex, that is, m = 1 in reactions (5.100) and (5.102). Thus, in the
following paragraphs we denote the polyelectrolyte anion with the counterions
that have not been released as PE™.

Before proceeding to the theoretical description of this transport problem, it
is in order to discuss whether it corresponds to a sequential or a competitive
binding mechanism. The species of interest, PE~, cannot bind to the free carrier
C unless the latter binds first to H, thus forming the complex C:HPE. From
this point of view, it could be understood that binding is sequential, as shown in
reactions (5.99) and (5.100). Nevertheless, due to the low relative permittivity of
the membrane, the protonated amine C:H™ can only diffuse through the liquid
membrane in salt (or ion pair) form, C:HCI. Thus, the theoretical modelling
of this transport problem resembles one of competitive binding where the two
neutral solutes that compete for using the carrier to cross the membrane are HC1
and HPE, and the two carrier complexes are C:HCI and C:HPE. It should be
stressed, however, that in the aqueous feed solution there is no species like HPE
trying to compete with HCI for the carrier. Reaction (5.100) occurs between
PE™ in the aqueous phase and C:HCl in the organic phase.

Let us then introduce the notation A= HPE, B = HCI, CA = C:HPE complex,
and CB = C:HCI complex. Reaction (5.100) then reads

A(a) + CB(0) < CA(0) + B(w), (5.103)

and its equilibrium constant is'*

_ CCACB

K= )
CCBCA

(5.104)

where no phase superscripts are needed because every species can only be in
one phase.

14 If there were a reaction like HPE(«) + C(0) < C:HPE(0), then K would be the ratio of the
equilibrium constants of this reaction and (5.99), i.e. it would be K = Kca /Kcp in the notation
of Section 5.4.3.
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Under the appropriate experimental conditions, it can be assumed that:

1) the aqueous phases do not get polarized, i.e. the rate-determining step is the
transport across the membrane, and hence the concentrations of the carrier
complexes on the strip side are zero, cca (h) ~ 0 and ccp(h) ~ 0, and

2) reaction (5.99) is so displaced towards the formation of complexed carrier
C:HCI that there is no free carrier C at the feed side, cc(0) = 0.

Figure 5.27 shows a sketch of the concentration profiles in the system, where it
has been illustrated that the total carrier concentration at the interface with the
feed solution, cct(0) = cca(0) + ccp(0), might be different from that at the
interface with the strip solution, cct(h) = cc(h).

The flux densities inside the membrane are

. Dc
jo === "cch, (5.105)
D
jea = = ccal0), (5.106)
. D
JcB = %CCB(O)- (5.107)

The condition that the carrier cannot exit the membrane phase,
Jjc +Jjca +jcs = 0, implies that the distribution of the total carrier concen-
tration is linear and, therefore, that

ccr(0) + cer(h) = 2¢2y, (5.108)

where cl(’:T is the average total carrier concentration. If we could use the approx-
imation Dc & Dca =~ Dcg, as in the previous sections, the polyelectrolyte flux
density, jao = jca, would be given by

o
Kcy

—_—a 5.109
Ky +cg ( )

Jja =JcL
where jc1 = DccgT /h. This result can be considered a particular case of eqn

(5.90) corresponding to cﬁ ~ 0, cg ~ 0, and cc(0) ~ 0. However, the C:HPE
complex is much larger that the free carrier and the C:HCI complex, and the
differences in their diffusion coefficients are significant. The polyelectrolyte
flux density, jo = jca, can then be evaluated as

. DCCléT ZDCAKcaA
JA = .
h (D¢ + Dca)Kcl + (Dc + DcB)ceg

(5.110)

As expected in the case of membrane-control under study, eqn (5.110) shows
that the polyelectrolyte flux density is proportional to the total carrier con-
centration. This is a good diagnostic criterion for the analysis of experimental
results. However, the carrier concentration cannot be increased arbitrarily, as
after certain limit (typically of the order of 0.1 M) the carrier begins to aggregate.
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Introducing the approximation Dca < D¢ & Dcg, eqn (5.110) can be further
simplified to

1 h 28
—=— (14 , (5.111)

ja 2DcacRy Ke

which shows that a linear plot of measured values of 1/j against ¢ /c§ allows
us to determine DCAch /h and K from the intercept at the origin and slope,
respectively. Note that the maximum flux density is ZDCAch /h, where the
factor 2 arises from the approximation Dca < Dc. Equation (5.110) provides
several diagnostic criteria for membrane control. Reducing the membrane thick-
ness, increasing the carrier concentration, or increasing Dca by reducing the
solvent viscosity all increase the flux. These variations cannot, of course, be
realized without limitation, as the rate-determining step may change to, for
example, the stripping reaction.

5.4.5 Polyelectrolyte extraction by carrier-mediated
countertransport with an acid

The experimental set-up and theoretical modelling considered in Section 5.4.4
can be used, with minor changes, to study the extraction of an anionic poly-
electrolyte (PE™) using carrier-mediated counter-transport with an acid. Most
assumptions employed there, including that the transport across the membrane
is the rate-determining step, are also used here. The feed solution (solution
o) contains HCI and the polyelectrolyte in sodium form NaPE, and the solu-
tion receiving the polyelectrolyte (solution ) contains HCI in a concentration
larger than in the feed side. Moreover, it can be assumed here that the fraction
of free carriers can be neglected, cc =~ 0 (Fig. 5.28). This implies that the
countertransport of polyelectrolyte and acid takes place in a 1:1 stoichiometric
relation, i.e. one HCI molecule is transported to the compartment for every
extracted polyelectrolyte molecule.

«a 0 B
— A
— B cc(h)
ccg(0)
cca(0)
ccalh)=0
cc(0)x0 cep(h)=~0
0 h
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Fig. 5.27.

Schematic concentration profiles in
polyelectrolyte extraction by
carrier-mediated co-transport with an acid.
The carrier is an amine and the complexes
are CA = C:HPE and CB = C:HCL.
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Fig. 5.28.

Schematic concentration profiles in
polyelectrolyte extraction by
carrier-mediated countertransport with an
acid. The carrier is an amine and the
complexes are CA = C:HPE and CB =
C:HCI. The polyelectrolyte concentration
at the receiving solution is negligible when
transport through the membrane is the
rate-determining step.

Transport through liquid membranes
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The flux densities inside the membrane are

. Dc
Jca = TACCA(O), (5.106)

D
jop = %[ccg(m — cca(M)]. (5.112)

The condition that the carrier cannot exit the membrane phase, jca +jcg = 0,
implies that the distribution of the total carrier concentration is linear and,
therefore, that

cca(0) + cca(0) + ccp(h) = 2c@r, (5.113)

where ch is the average total carrier concentration. As already explained in
Section 5.4.4, if we could use the approximation Dc & Dca = Dcpg, the
polyelectrolyte flux density would be given by eqn (5.109). However, the C:HPE
complex is much larger that the free carrier and the C:HCI complex, and the
differences in their diffusion coefficients are significant. The polyelectrolyte
flux density, jo = jca, can then be evaluated as

. DcBcdy 2DcaKc,
A = .
! I (Dca + Dep)Ke§, + 2Dcpc

(5.114)

Once again, since the transport is controlled by the membrane, eqn (5.114)
shows that the polyelectrolyte flux density is proportional to the total carrier
concentration. Moreover, introducing the approximation Dcay <« D¢ ~ Dcs,
eqn (5.114) also simplifies to eqn (5.111). Therefore, we conclude that a linear
plot of measured values of 1/j against c /c% allows us to determine Dc ACtéT /h
and K from the intercept at the origin and slope, respectively; that is, similar
information as in co-transport would be obtained.

Contrary to the predictions from eqn (5.114), it can be experimentally
observed that the polyelectrolyte flux density depends on the HCI concentration
in the strip side, cg. This interesting situation occurs when the strip reaction
is kinetically controlled, as we show below. Heterogeneous reaction kinetics is
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often dictated by the adsorption equilibria of the reacting species. The reaction
mechanism can thus be formally written as

CA(0) + B(w) < CA(o) + B(o), (5.115)
CA(0) + B(c) = CB(0) + A(W), (5.116)

where ¢ denotes the membrane/stripping solution interface. It is reasonable to
assume that reaction (5.116) is the rate-determining step. At steady state, the
rate of this reaction is equal to the flux density, and we can write

Jja = kOca0g, (5.117)

where Oca and 6p are the surface coverage fractions at the strip interface and k
is the kinetic rate constant of the heterogeneous reaction (5.116). The concen-
tration cca (h) is probably so low that the surface coverage follows the linear
form of the Langmuir adsorption isotherm

Oca = kcacca(h), (5.118)

while for the hydrochloric acid the full form of the Langmuir isotherm is needed

s
KBC

Op = 3735 (5.119)
1 +«pe

In eqns (5.118) and (5.119), kca and kg are the adsorption constants. At steady
state, the governing equations are

S 0 N4
(/CB( ) — cBa , (5120)
cca(0)  Kci
. . Dcaleca(0) —cca(h)]  Dclecp(h) — ccp(0)] .
JA =JCA = A = h = —JCB»
(5.121)
cca(0) + cc(0) + cca(h) + ccp(h) = 2cy, (5.122)
8
k h)ipe
ja = kBeab = w()g‘“ (5.123)
1 +«Bey

After some algebra, the polyelectrolyte flux density can be shown to satisty

Ja Dcg 2Dca k  Kkca KB cg

(5.124)

ctrKe§ _ h (Dca+Dep)Keg +2Depef | 1K +f (1 L] >
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which reduces to eqn (5.114) when the kinetic rate constant k is very large and
describes well the experimentally observed dependence on cg. Thus, although
kinetic limitations have been neglected throughout this chapter because it is a
good approximation in supported liquid membranes due to their relatively large
thickness, this last application example serves to emphasize that the simplifying
assumptions introduced in any theoretical modelling have to be supported by
the experimental data.

Exercises

5.1 Assume that a weak 1:1 electrolyte is partitioning at the aqueous/organic interface,
i.e. both the cation and anion, as well as the undissociated species are in equilibrium
between the two phases. How does the distribution ratio ¢ /cY change as the ratio
of the volumes of the phases vary?

5.2 Evaluate the facilitation factor F' for the transport of a single solute A in the limit of

small concentration differences AgcA &K Ccp,Wherecp = (ci +c§)/2, and show
that it is roughly proportional to the total carrier concentration in the membrane.

5.3 Show that the facilitation factor F' for the transport of an electrolyte AB that is
completely in AT and B~ ions in the aqueous phase and transported as ion pairs
AB, either free or complexed to the carrier, in a liquid membrane is

Dceet Kcap(cQy + c/’iB)

F=1+— e
DABKAB [1+ Kcap ()21 + Kcap (chp)?]

where DYy, is the diffusion coefficient of the ion pairs in the liquid membrane,
KA = /Ka+Kp- is the partition coefficient of the electrolyte that is given by
the geometric mean of the chemical partition coefficients of the ions, and Kcap
is the equilibrium constant of the complexation reaction At (w) + B~ (w) + C(o)
2 CAB(0). Assume that Dc = Dcap and neglect boundary-layer effects.

5.4 Show that in the case Dc # Dcp the permeability of the membrane to the solute
(due to the carrier-mediated transport) is

D¢ Dca AB .y
h Dc(1 —8) + Depaf Acy

0 —
Pea =

where 8 = [0(0) + 6(h)]/2 is the average value of the fraction of complexed
carriers.

References

[1] R.D.NobleandJ.Douglas Way (ed.), Liquid Membranes. Theory and Applications,
ACS Symposium Series 347, ACS, Washington, 1987; R.A. Bartsch and J. Douglas
Way (ed.), Chemical Separations with Liquid Membranes, ACS Symposium Series
642, ACS, Washington, 1996.

[2] R.W. Barker, Membrane Technology and Applications, John Wiley & Sons,
Chichester, 2004, Ch. 11.

[3] T. Kakiuchi, ‘Equilibrium electric potential between two immiscible electrolyte
solutions’, in A.G. Volkov and D.W. Deamer (ed.), Liquid-Liquid Interfaces. Theory
and Methods, CRC Press, Boca Raton, 1996, Ch. 1.



[4]

[3]

[6

—_

(71

(81

[9]

[10]
[11]

[12]

[13]
[14]

[15]

[16]

References

L.Q. Hung, ‘Electrochemical properties of the interface between two immis-
cible electrolyte solutions: Part I. Equilibrium situation and Galvani potential
difference’, J. Electroanal. Chem., 115 (1980) 159-174.

L.Q. Hung, ‘Electrochemical properties of the interface between two immiscible
electrolyte solutions: Part III. The general case of the Galvani potential differ-
ence at the interface and of the distribution of an arbitrary number of components
interacting in both phases’, J. Electroanal. Chem., 149 (1983), 1-14.

T. Kakiuchi, ‘Limiting behavior in equilibrium partitioning of ionic components
in liquid-liquid two-phase systems’, Anal. Chem., 68 (1996) 3658-3664.

J.A. Manzanares, R. Lahtinen, B. Quinn, K. Kontturi, and D.J. Schiffrin, ‘Deter-
mination of rate constants of ion transfer kinetics across immiscible electrolyte
solutions’, Electrochim. Acta, 44 (1998) 59-71.

B.C. Pressmann, ‘Induced active transport of ions in mitochondria’, PNAS, 53
(1965) 1076-1083; B.C. Pressmann, E.J. Harris, W.S. Jagger, and J.H. Johnson,
‘Antibiotic-mediated transport of alkali ions across lipid barriers’, PNAS, 58 (1967)
1949-1956.

W.J. Ward and W.L. Robb, ‘Carbon dioxide-oxygen separation: facilitated transport
of carbon dioxide across a liquid film’, Science, 156 (1967) 1481-1484.

E.L. Cussler, ‘Membranes which pump’, AICKE J., 17 (1971) 1300-1303.

M.S. Frant and J.W. Ross Jr., ‘Potassium ion specific electrode with high selectivity
for potassium over sodium’, Science, 167 (1970) 987-988.

H.C. Visser, D.N. Reinhoudt, and F. de Jong, ‘Carrier-mediated transport through
liquid membranes’, Chem. Soc. Rev., (1994) 75-81.

E.L. Cussler, Multicomponent Diffusion, Elsevier, New York, 1975.

S. Durand-Vidal, J.P. Simonin, and P. Turq, Electrolytes at Interfaces, Kluwer
Academic Publishers, New York, 2002, Section 3.4.1.

A.J. Barbero, J.A. Manzanares, and S. Mafé, ‘A computational study of facilitated
diffusion using the boundary element method’, J. Non-Equilib. Thermodyn., 20
(1995) 332-341.

A.K. Kontturi, K. Kontturi, P. Niinikoski, and G. Sundholm, ‘Extraction of a poly-
electrolyte using a supported liquid membrane. Parts I and II’, Acta Chem. Scand.,
44 (1990) 879-882, 883-891.

277



List of symbols

For those symbols that have been used with different meanings (e.g.,
B,c,h,I,R,U,...)or as auxiliary variables (e.g., A, B, C, E,. . .) only the most
frequent use is mentioned here. Other symbols (e.g., Da, Pe, Sc, I, R;, w, ...)
are used only once in the text and are not included here either. Note that the
phase superscript ¢ is included here in many symbols, although they are used
sometimes in the text without it.

Acronyms

BRF barycentric reference frame
FRF  Fick’s reference frame
HRF Hittorf’s reference frame
LRF laboratory reference frame

Roman symbols

a electrode radius, m

a;p activity of component 7 in phase ¢, 1

A electrode or membrane area, m?

Ay =-> ; Vi,rii, chemical affinity of reaction r, J mol !

b volume density of an arbitrary extensive quantity B, [B] m~3
B arbitrary extensive quantity, [B]

Bix auxiliary variable, s m—2

c;P molar concentration of component i in phase ¢, mol m~3

dn hydraulic permeability of the membrane, m? s~!Pa~!

D electric displacement, C m~2

D;P diffusion coefficient of component i in phase ¢, m? s~

Dg’ = B,D;, diffusion coefficient of component i corrected for activity,

m?s~!
D;;  cross-diffusion coefficient, m? s~
D Stefan-Maxwell diffusion coefficient, m? s~
Fickian diffusion coefficient, m? s !
= ey + u, total energy density, J m—3
= pv?/2, translational kinetic energy density, J m—>
electrode potential, V
electrophoretic enhancement factor, 1
electric field intensity, V m~!
=E— thm, diffusion electric field, V m~!
= 7’"//{, ohmic electric field, V m™!

1
1

S 89D
~
I

lglh’jlh‘j Iy

]
=
3



List of symbols

= F/RT, auxiliary variable, V!

Faraday constant, C mol ™!

facilitation factor, 1

volume density of Gibbs potential, J m~3

Gibbs potential or Gibbs free energy, J

=3 zl’? ji/D;, auxiliary variable, mol m—*

rate of change of the Gibbs free energy due to a transport process,

oW o

=W — W *°, standard Gibbs free energy of transfer of component

membrane thickness, m

electric current, A

=F) ; z,j,-, conduction electric current density (in the LRF if used
without superscript), A m~2

= 85/ at, displacement electric current density,

Am™2

= —nFD,-c:? /v;8, limiting diffusion current density of component i,
Am™2

limiting current density in phase ¢, A m~2

= 7d + 1, total electric current density, A m~2

flux density of B (in the LRF if used without superscript),
[Blm~2s~!

= ¢;7;, molar flux density of component i in the LRF,
mol m2 s~!

molar flux density of component i in the BRF, mol m~2 s
= %, volume flux density in the LRE, m s~ !

= ¢k Uk, molar flux density of neutral component K in the LRF,
mol m~2 s~

molar flux density of neutral component K in the HRF, mol m~2 s~
reaction rate constant, [k]

thermodynamic equilibrium constant (of a homogeneous
reaction), [K]

equilibrium partition constant of component i, 1
Stefan—Maxwell friction coefficient, N s m~*

ionic phenomenological transport coefficient, mol> J=! m~
diffusion length, m

component phenomenological transport coefficient, mol? J~!
m~!s7!

mass of component i, kg

molar mass of component i, kg mol~!

stoichiometric number of the electron in an electrode reaction, 1
amount of matter of component i, mol

number of components, 1

Avogadro’s constant, mol !

mechanical pressure, Pa

—1

1

11

S
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280 List of symbols

permeability of component i in phase ¢, m s~ !

cumulative flux, mol m?

radial position co-ordinate, m
(electrode) reaction rate, mol m—2 s~
auxiliary variable used for different ratios, 1
position, m

=ct/ c?, concentration ratio of component i, 1
universal gas constant, J K~! mol~!

electrical resistance, 2 m?

position along a fluid particle trajectory, m

volume density of entropy, J K~! m™3

variable in Laplace domain, s~!

entropy, J K~!

membrane permselectivity, 1

= Zi zl’Fc,-, auxiliary concentration variable, mol m—3
transport number of ionic species i, 1

temperature, K

= z;Fj;/I, integral transport number of ionic species i, 1
volume density of internal energy, J m~3

mobility of component i, m mol N~!s~!

internal energy, J
solution velocity, m s~
= Y. w;V;, barycentric velocity in the LRF, m s~!
velocity of component i in the LRF, m s~!

= Zi ¢;v;¥;, volume-average velocity in the LRF, m s~
volume of phase ¢, m?

1

1

1

St ST ITRNNT L= @ I NI Y IO
B . 6

V(x) electric potential component, V

14 volume flow rate, m> s~

wi mass fraction of component i, 1

X Cartesian position co-ordinate, m

X = zMeM/22, membrane fixed-charge concentration, mol m—3

y Cartesian position co-ordinate, m

z Cartesian position co-ordinate, m

Zi charge number of ionic species i, 1

Greek symbols

o dissociation degree, 1

Bi activity correction factor for the diffusion coefficient of ionic
species i, 1

8 diffusion boundary layer thickness, m

ik =1if i =k, =0 if i # k, Kronecker delta, 1

¢ electric potential, V

A§¢ = ¢P — ¢, potential difference between bulk phases, V

AJ¢? = —AJG?/ziF, standard transfer potential of component i, V

[0) = 20f [¢ (x) — ¢™], dimensionless electric potential, 1



Vi,K

Ty
Tle
T

TTs
Ty
Tly;

List of symbols
viscous deformation rate tensor, s~
molar activity coefficient of component i in phase ¢, 1
auxiliary variable, 1
= fooo e~'t"~1dr, gamma function of argument 7, 1
= fx > e~'"~1ds, incomplete gamma function of argument 7, 1
dynamic viscosity, Pa s
electrical conductivity in phase ¢, Q7! m~
Debye parameter (or reciprocal Debye length) in phase ¢, m™
contribution of ionic species i to the electrical conductivity,
Q 'm™!
thermal conductivity, W K~! m~
molar electrical conductivity of ionic species i, m?>Q~! mol~!
chemical potential of component i, J mol~!
electrochemical potential of component i, J mol ™!
kinematic viscosity, m* s~
stoichiometric coefficient of ionic species i, 1
stoichiometric coefficient of component i in reaction r, 1
stoichiometric coefficient of component i in component K, 1
osmotic pressure, Pa
volume density of production rate of B, [B] m~ s
volume density of production rate of total energy, Jm™3 s~
volume density of production rate of amount of component i,
mol m—3 s~
volume density of production rate of entropy, ] K~! m=3 s~
volume density of external force, Pa m™!
volume density of production rate of mass of component i,
kgm3 57!
= T'my, dissipation function, J m3s
auxiliary variable (used for different concentration fractions), 1
contribution of homogeneous chemical reactions to the dissipation
function, J m~3 s~!
contribution of chemical diffusion to the dissipation function,
Tm=3s7!
= B4ir + Bohm, contribution of electrodiffusion to the dissipation
function, J m=3 s~
contribution of viscous flow to the dissipation function, ] m—3 s
contribution of electric conduction to the dissipation function,
Jm=3s7!
mass density, kg m™—3
= pw;, mass density of component i, kg m~
= F Y, zic;, electric charge density, C m~3
membrane surface-charge concentration, C m~2
stress tensor, Pa

1
1

1

-1
1

-1

-1

3

viscous stress tensor, Pa
transition or relaxation time, s
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282 List of symbols

v; partial molar volume of component i, m> mol~!
w angular rotation frequency, rad s~

& dimensionless position variable, 1

& molar reaction co-ordinate, mol m—3

¥(r,x), electric potential component, V

Iy = x/(24/D11), Boltzmann variable, 1

Subscripts and superscripts

0 solvent

1 electroactive species (in electrode processes)
2 co-ion (in membrane processes)
3 common ion (in ternary systems)
12 electrolyte

12,d dissociated electrolyte

12, T total electrolyte

12,u undissociated electrolyte

13 electrolyte

23 electrolyte

c chemical contribution

cell cell (potential)

ch chemical reaction

chem dif chemical diffusion

D Donnan

D Debye

e electrostatic contribution

ed electrodiffusion

eff effective value

dif (chemical) diffusion

dif diffusion (potential)

H Hittorf

i charged species
ion dif ionic diffusion
neutral component
spatial direction
spatial direction
neutral component
limiting value
barycentric
ig ionic migration
membrane
organic phase
m ohmic or electric conduction
total
Fick
aqueous phase
thermodynamic mean value

EIoxF T~

HeeHgoz



List of symbols

Mathematical symbols

—
~

14

4

ek

Yo <

definition

average value (in radial direction or over the membrane volume)
average value (in axial direction or average of values in bulk solutions
or over the membrane system)

Laplace transformed variable (except in fi and v/)

deviation from average value

change in a variable when the system undergoes an infinitesimal process
magnitudes referred to a volume element

increment

Laplace transform operator

inverse Laplace transform operator

gradient operator, m~!

=7-V+ (%); material or substantial time derivative, s~}
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Index

acid extraction, 255

active transport, 148
primary, 261
secondary, 262

activity coefficient, 63, 73

affinity, 23, 35

Airy function, 109

average velocity
barycentric or mass, 1, 14, 40
electro-osmotic, 213
volume, 12

balance equation
component, 14
chemical reaction, 14
component mass, 13
electric energy, 28
energy of the fluid, 20, 24, 29
entropy, 8, 21
chemical reaction, 22
viscous flow, 24
general, 8, 10, 35
internal energy, 21, 24, 29
kinetic energy, 20, 24, 25
linear momentum, 16
Cartesian component, 19
electromagnetic field, 28
non-viscous fluid, 17
viscous flow, 25
mass, 13
barycentric reference frame, 12
bi-ionic potential, 147, 195
binary diffusion, 48
binding
competitive, 262
sequential, 267
Boltzmann distribution, 86
Boltzmann variable, 112, 114, 119, 121

capacitor discharge, 30

carrier-mediated transport, 246
coupled transport, 261
effect of diffusion boundary layers, 253, 255
optimal complexation constant, 251
saturation, 250
selectivity, 251

Cauchy-Schwartz-Buniakowski
inequality, 164
channel flow electrode, 105
charge density, 4, 5, 206
balance equation, 15
charged capillary model, 219
chemical diffusion, 22, 49
chemical potential
binary electrolyte, 5, 6
ion vs. component formalism, 45
ionic species, 5
weak electrolyte, 34
chemical reaction
affinity, 23, 35
EC mechanism, 123
heterogeneous, 97
rate, 14
chronoamperometry, 111, 120
chronopotentiometry, 111, 112
complementary error function, 112, 121
first integral, 112, 116
third integral, 119
co-ion, 152
diffusive transport, 173, 180
exclusion, 209, 220
complexation reaction
equilibrium constant, 247
heterogeneous vs. homogeneous, 261
concentrated solution, transport in, 50, 65
concentration
average ionic, 171
Donnan electrolyte, 155
mean electrolyte, 154
membrane, average ionic, 166
concentration polarization, 200
conservation law
component, 14
electric charge, 14, 15
linear momentum, 17, 29
mass, 13
total energy, 20, 28
vs. balance equation, 8
continuity equation
component, 14, 82
steady-state, 14, 82
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Index

continuity equation (cont.)
convective electrodiffusion, 98, 102,
105, 109
diffusion, 110
incompressible fluid, 13
continuum hypothesis, 1
convection, 12, 51
electro-osmotic, 212, 228
convective electrodiffusion see continuity
equation
convective electrophoresis, 140
co-transport, 261
Couette flow, 17, 35
counterion, 152
interdiffusion, 191, 227
counter-transport, 261
Curie-Prigogine principle, 38
current density
conduction, 15
convective, 15
displacement, 15, 28, 30
electro-osmotic, 215
reference frame, 15, 35
total, 15
current efficiency, 212, 216
current scan, 118
current step, 112
hemispherical electrode, 125
mixing, 115
current-voltage curve
electrode, 87, 96
ion-exchange membrane, 185, 197, 198
liquid membrane, 242

Damkahler number, 97

Debye parameter, 163
external aqueous phase, 161, 165, 207
membrane phase, 162, 207

membrane phase, total coion exclusion, 209

degree of dissociation, 62
depleted layer model, 227
dielectric permittivity, 27
diffuse layer model, 160, 226
diffusion, 12
chemical, 22, 49
diffusion boundary layer, 80
RDE, 102
diffusion coefficient
activity correction, 63, 74
binary solution, 48
cross, 49, 74, 83
effective, fixed charge, 216
electrical coupling, 52
electrolyte, membrane, 171
Fickian, 47

ionic, 51
Nernst-Hartley, 57
polyelectrolyte, 61
relation to friction coefficients, 68
relation to molar conductivity, 53
relation to phenomenological coefficient,
47, 60
Stefan-Maxwell, 65
ternary electrolyte, 60
weak electrolyte, 62, 73
diffusion length, 114
diffusion potential, 54, 55
Goldman equation, 145
Henderson, 144, 175
ion-exchange membrane, 174
membrane, binary system, 143
membrane, multi-ion system, 144
Stefan-Maxwell, 75
displacement current. see current density,
displacement
dissipation function, 8, 20, 27, 38
chemical diffusion, 22, 44, 45
binary electrolyte, 23
chemical reaction, 22
electrodiffusion, 21, 39, 40
binary electrolyte, 23
ohmic conduction, 22, 44
binary electrolyte, 24
invariance under transformation of fluxes
and forces, 71
viscous flow, 24, 27, 35, 36
distribution equilibrium, 153, 233
divergence theorem, 10, 11
Donnan
equilibrium, 153
exclusion, 155, 165, 167, 209
failure, 156
potential, ion-exchange membrane, 154,
177,225
pressure difference, 157
downbhill transport, 261

electric current density see current density
electric energy

conversion to internal energy, 21, 28, 31, 32

conversion to kinetic energy, 20, 28
electric field

diffusional or internal, 22, 54, 55, 75, 168

ohmic, 22
electrical conductivity, 22, 52, 76

binary electrolyte, 43

convective, 215, 229

ionic contribution, 44

molar, 52

multi-ionic solution, 44



relation to friction coefficients, 67
Stefan-Maxwell, 74, 76
surface, 228
electrical double layer, 160, 205
formation, 31
electrical relaxation, 32
electroactive species, 78
electrochemical potential, 5, 7, 30, 153, 233
electroconvection, 81, 82
electrode
channel flow, 105
hemispherical, 95, 125
hydrodynamic, 98
rotating disc, 98
rotating ring disc, 98
wall jet, 107
electrodiffusion
driving force, 21
electroneutrality, 5, 55, 82
deviations, 6
global, 164, 205
local, membrane, 174
electro-osmosis, 212
energy of the fluid, 20
balance equation, 20, 24, 29
production rate, 20
enhancement factor, iontophoretic, 134
entropy
balance equation, 8
production, 8, 20
equation
balance see balance equation
Boltzmann, 86, 161
Born, 245
continuity see continuity equation
convective-electrodiffusion, 98, 102,
105, 109
Cottrell, 122, 125
diffusion, 110, 125
Euler, 2, 157
Fourier, 39
Gibbs, 2, 3
Gibbs-Duhem, 3, 6, 36, 40, 157
Goldman, diffusion potential, 223,
224,225
Goldman, flux density, 134, 145, 222, 225
Goldman-Hodgkin-Katz, 228
Henderson, 145, 175, 223, 224
Kramer, 196
Laplace, 27, 62, 84
Laplace, spherical symmetry, 95
Levich, CFE, 107
Levich, RDE, 100
Maxwell, 28
Navier-Stokes, 17, 26
Nernst, 123

Index

Nernst-Einstein, 51, 52

Nernst-Planck see Nernst-Planck equation
phenomenological, 38

Poisson, 15, 56, 161

Poisson-Boltzmann, 165, 208, 227

Sand, 113

Stokes, 19, 26

Stokes-Einstein, 66

transport. see transport equation

facilitation factor, 248, 276
Faraday’s law, 78, 79
Fick’s first law, 39, 43, 48, 83, 127
Fick’s reference frame, 12, 41, 48
Fick’s second law, 110, 129
fixed-charge concentration, 153
flat distribution approximation, 211
fluid particle, 1
flux density, 10
barycentric reference frame, 9, 11
binary electrolyte, 58
convective, 12
diffusive, 12
electromagnetic energy, 28
energy of the fluid, 21
entropy, 21
Fick’s reference frame, 12, 41, 47
Hittorf’s reference frame, 13, 40
internal energy, 21
kinetic energy, 20, 27
laboratory reference frame, 8
linear momentum, 16, 25
laboratory reference frame, 26
viscous flow, 25
mass, 13
principle of independence, 50, 52, 76
solvent, 40
force
driving, electrodiffusion, 21
driving, reaction, 23
driving, Stefan-Maxwell, 65
electric, 16, 20, 26
generalized, 8, 38
Lorentz, 34
surface, 16
tensor, 24, 35
Fourier series, 123, 131
Fourier’s law, 39
friction coefficient, 65
multi-ionic solution, 70

gamma function, 100
incomplete, 100, 106
Gibbs free energy of transfer, 225, 233

287



288

Index

Gibbs potential, 2, 6
standard, 158
Goldman constant field, 95, 103, 133, 136,
145, 150, 221

Helmbholtz-Smoluchowski formula, 213

hemispherical diffusion. see electrode,
hemispherical

Hittorf’s reference frame, 13

hydrodynamic boundary layer, 80

hydrodynamic electrode, 98

hydrophobicity, 233

interdiffusion, 192, 227

interfacial Kinetics, 248, 275

ion pair, 73, 122, 276

ionic strength, 57

iontophoretic enhancement factor, 134

Joule power, 22, 31, 55, 125

lag time
diffusion, 132, 222
electrodiffusion, 138
Langmuir adsorption isotherm, 275
Laplace transformation, 109, 111, 112, 222
Lévéque’s approximation, 106
limiting current density, 95, 96
binary electrolyte, 85
diffusion, 81
effect of electric field, 104
hemispherical electrode, 96
liquid membrane, 241
multi-ionic solution, 94
ternary electrolyte, 88
three-layer system, 240
wall jet, 110
liquid junction
formation, 32
potential, 33, 143, 223
local electroneutrality see electroneutrality
local equilibrium hypothesis, 2, 8

mass balance, 158
compartments, 126, 135
membrane, 160

material time derivative, 4, 11

Maxwell stress tensor, 28

membrane
charged capillary model, 219
charged porous, 205
constant, 128, 140, 222
heterogenities, 163
homogeneous potential model, 219

ideally selective, 156, 158, 169, 183, 191
ion-exchange, 152
liquid, supported, 232
potential, 148, 177
mobility, 51

Navier-Stokes equation, 26
non-viscous fluid, 17
Nernst layer, 80
Nernst potential, 31
Nernst-Einstein relation, 51, 52
Nernst-Planck equation, 51
concentrated solution, 64
convection, 51
general solution procedure, 93, 183, 196
multi-ionic solution, 82
Newton’s law of viscosity, 18, 35

Ohm’s law, 22, 39, 43, 79, 168

ohmic electric field, 22, 44

ohmic resistance, 104, 189

Onsager reciprocal relations, 39, 42, 67, 71
osmotic pressure, 157

oxidation, 81

partition coefficient
chemical, 154, 158, 233
electrolyte, 159
electrostatic, 154, 237
partition ratio, 233
finite-volume effects, 235, 237
Peclet number, 141
perfect sink, 134
permeability, 244
biological membrane, 228
carrier-mediated transport, 248, 250, 253

effect of diffusion boundary layers, 246, 258

ion-exchange membrane, 182
membrane, hydraulic, 214, 220
solubility-diffusion mechanism, 245
permselectivity, 170, 183, 201
effect of concentration polarization, 204
effect of heterogeneities, 164
enhancement, 164
phenomenological coefficient, 39
conditions, 70
cross, 59
ionic, 50
relation to diffusion coefficient, 47, 60
ternary electrolyte, 59, 72
transformation, 43, 45, 46, 71
Poiseuille flow
cylindrical, 35
planar, 19, 25, 105



polyelectrolyte
diffusion coefficient, 60
extraction, 270, 273
potential
bi-ionic, 147, 195
potential (cont.)
diffusion see diffusion potential
Donnan, 154, 155, 177, 225
membrane, 148, 177
production rate, 8
electric energy, 28
energy of the fluid, 20
internal energy, 21
linear momentum, 26

quasi-steady state assumption, 126, 136

reduction, 81
reference frame
barycentric, 12
barycentric, membrane, 216
Fick, 12,41, 48
Hittorf, 13, 40, 65
laboratory, 1,9
membrane-fixed, 141
relaxation time
diffusional, 33, 115
electrical, 32
Reynolds transport theorem, 11
rotating diffusion cell, 243

salt bridge, 148, 223
Schmidt number, 100
separation of variables, 123, 130
sign convention, 78
solubility-diffusion mechanism, 244
space charge density see charge density
space charge model, 219
space charge region, 33
spatial averaging, 166, 206
standard transfer potential, 233
state variables, 1, 2, 39
Stefan-Maxwell
diffusion coefficient, 65
diffusion potential, 75
electrical conductivity, 74, 76
transport equation, 67, 69
transport number, 68, 76
vs. Fickian approach, 64
stoichiometric coefficient
in electrolyte dissociation, 22, 45
in electrode reaction, 79

Index

Stokes equation, 19

in non-electroneutral solutions, 26
Stokes’ law, 66
stress tensor, 25

Maxwell, 28

shear components, 26, 35
substantial time derivative, 4, 11
supporting electrolyte, 83

paradox, 85
surface charge density, 165, 205
surface conductivity, 228

Teorell-Meyer-Sievers model, 177, 214
time derivative, substantial or material, 4, 11
trace ion, 83
transition time
current scan, 119
current step, 113, 119, 123
transport equation
diffusion-conduction, 49, 52, 68, 82, 170
diffusion-migration, 51
Fickian, 47, 49
ion vs. component formalism, 22, 24
phenomenological, 45, 46
Stefan-Maxwell, 67
transport number
integral, 183
membrane, 171
migrational, 43, 44, 52, 76
potentiometric, 178
Stefan-Maxwell, 68, 76

ultramicroelectrodes, 98

uphill transport, 148, 261, 264
co-transport, 269
counter-transport, 266, 267

velocity see average velocity
viscosity, dynamic, 18
viscous flow, 25
viscous stress tensor, 18
voltage step, 120, 123
volume density
charge, 4
electric energy, 27, 30
energy of the fluid, 20
linear momentum, 16
thermodynamic potential, 2

Walden’s rule, 260
weak electrolyte, 61, 73, 276
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